k_quants.c 170 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318
  1. #include "k_quants.h"
  2. #include "ggml.h"
  3. #include <math.h>
  4. #include <string.h>
  5. #include <assert.h>
  6. #ifdef __ARM_NEON
  7. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  8. //
  9. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  10. //
  11. #include <arm_neon.h>
  12. #if !defined(__aarch64__)
  13. inline static int32_t vaddvq_s16(int16x8_t v) {
  14. return
  15. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  16. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  17. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  18. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  19. }
  20. inline static int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) {
  21. int16x4_t a0 = vpadd_s16(vget_low_s16(a), vget_high_s16(a));
  22. int16x4_t b0 = vpadd_s16(vget_low_s16(b), vget_high_s16(b));
  23. return vcombine_s16(a0, b0);
  24. }
  25. inline static int32_t vaddvq_s32(int32x4_t v) {
  26. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  27. }
  28. #endif
  29. #else
  30. #ifdef __wasm_simd128__
  31. #include <wasm_simd128.h>
  32. #else
  33. #ifdef __POWER9_VECTOR__
  34. #include <altivec.h>
  35. #undef bool
  36. #define bool _Bool
  37. #else
  38. #if defined(_MSC_VER) || defined(__MINGW32__)
  39. #include <intrin.h>
  40. #else
  41. #if !defined(__riscv)
  42. #include <immintrin.h>
  43. #endif
  44. #endif
  45. #endif
  46. #endif
  47. #endif
  48. #undef MIN
  49. #undef MAX
  50. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  51. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  52. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  53. //
  54. // 2-6 bit quantization in super-blocks
  55. //
  56. //
  57. // ===================== Helper functions
  58. //
  59. static inline int nearest_int(float fval) {
  60. assert(fval <= 4194303.f);
  61. float val = fval + 12582912.f;
  62. int i; memcpy(&i, &val, sizeof(int));
  63. return (i & 0x007fffff) - 0x00400000;
  64. }
  65. static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type) {
  66. float max = 0;
  67. float amax = 0;
  68. for (int i = 0; i < n; ++i) {
  69. float ax = fabsf(x[i]);
  70. if (ax > amax) { amax = ax; max = x[i]; }
  71. }
  72. if (amax < 1e-30f) { // all zero
  73. for (int i = 0; i < n; ++i) {
  74. L[i] = 0;
  75. }
  76. return 0.f;
  77. }
  78. float iscale = -nmax / max;
  79. if (rmse_type == 0) {
  80. for (int i = 0; i < n; ++i) {
  81. int l = nearest_int(iscale * x[i]);
  82. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  83. }
  84. return 1/iscale;
  85. }
  86. bool return_early = false;
  87. if (rmse_type < 0) {
  88. rmse_type = -rmse_type;
  89. return_early = true;
  90. }
  91. int weight_type = rmse_type%2;
  92. float sumlx = 0;
  93. float suml2 = 0;
  94. for (int i = 0; i < n; ++i) {
  95. int l = nearest_int(iscale * x[i]);
  96. l = MAX(-nmax, MIN(nmax-1, l));
  97. L[i] = l + nmax;
  98. float w = weight_type == 1 ? x[i] * x[i] : 1;
  99. sumlx += w*x[i]*l;
  100. suml2 += w*l*l;
  101. }
  102. float scale = sumlx/suml2;
  103. if (return_early) return suml2 > 0 ? 0.5f*(scale + 1/iscale) : 1/iscale;
  104. float best = scale * sumlx;
  105. for (int is = -9; is <= 9; ++is) {
  106. if (is == 0) {
  107. continue;
  108. }
  109. iscale = -(nmax + 0.1f*is) / max;
  110. sumlx = suml2 = 0;
  111. for (int i = 0; i < n; ++i) {
  112. int l = nearest_int(iscale * x[i]);
  113. l = MAX(-nmax, MIN(nmax-1, l));
  114. float w = weight_type == 1 ? x[i] * x[i] : 1;
  115. sumlx += w*x[i]*l;
  116. suml2 += w*l*l;
  117. }
  118. if (suml2 > 0 && sumlx*sumlx > best*suml2) {
  119. for (int i = 0; i < n; ++i) {
  120. int l = nearest_int(iscale * x[i]);
  121. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  122. }
  123. scale = sumlx/suml2; best = scale*sumlx;
  124. }
  125. }
  126. return scale;
  127. }
  128. static float make_q3_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, bool do_rmse) {
  129. float max = 0;
  130. float amax = 0;
  131. for (int i = 0; i < n; ++i) {
  132. float ax = fabsf(x[i]);
  133. if (ax > amax) { amax = ax; max = x[i]; }
  134. }
  135. if (!amax) { // all zero
  136. for (int i = 0; i < n; ++i) { L[i] = 0; }
  137. return 0.f;
  138. }
  139. float iscale = -nmax / max;
  140. if (do_rmse) {
  141. float sumlx = 0;
  142. float suml2 = 0;
  143. for (int i = 0; i < n; ++i) {
  144. int l = nearest_int(iscale * x[i]);
  145. l = MAX(-nmax, MIN(nmax-1, l));
  146. L[i] = l;
  147. float w = x[i]*x[i];
  148. sumlx += w*x[i]*l;
  149. suml2 += w*l*l;
  150. }
  151. for (int itry = 0; itry < 5; ++itry) {
  152. int n_changed = 0;
  153. for (int i = 0; i < n; ++i) {
  154. float w = x[i]*x[i];
  155. float slx = sumlx - w*x[i]*L[i];
  156. if (slx > 0) {
  157. float sl2 = suml2 - w*L[i]*L[i];
  158. int new_l = nearest_int(x[i] * sl2 / slx);
  159. new_l = MAX(-nmax, MIN(nmax-1, new_l));
  160. if (new_l != L[i]) {
  161. slx += w*x[i]*new_l;
  162. sl2 += w*new_l*new_l;
  163. if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
  164. L[i] = new_l; sumlx = slx; suml2 = sl2;
  165. ++n_changed;
  166. }
  167. }
  168. }
  169. }
  170. if (!n_changed) {
  171. break;
  172. }
  173. }
  174. for (int i = 0; i < n; ++i) {
  175. L[i] += nmax;
  176. }
  177. return sumlx / suml2;
  178. }
  179. for (int i = 0; i < n; ++i) {
  180. int l = nearest_int(iscale * x[i]);
  181. l = MAX(-nmax, MIN(nmax-1, l));
  182. L[i] = l + nmax;
  183. }
  184. return 1/iscale;
  185. }
  186. static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, float * restrict the_min,
  187. int ntry, float alpha) {
  188. float min = x[0];
  189. float max = x[0];
  190. for (int i = 1; i < n; ++i) {
  191. if (x[i] < min) min = x[i];
  192. if (x[i] > max) max = x[i];
  193. }
  194. if (max == min) {
  195. for (int i = 0; i < n; ++i) L[i] = 0;
  196. *the_min = 0;
  197. return 0.f;
  198. }
  199. if (min > 0) min = 0;
  200. float iscale = nmax/(max - min);
  201. float scale = 1/iscale;
  202. for (int itry = 0; itry < ntry; ++itry) {
  203. float sumlx = 0; int suml2 = 0;
  204. bool did_change = false;
  205. for (int i = 0; i < n; ++i) {
  206. int l = nearest_int(iscale*(x[i] - min));
  207. l = MAX(0, MIN(nmax, l));
  208. if (l != L[i]) {
  209. L[i] = l;
  210. did_change = true;
  211. }
  212. sumlx += (x[i] - min)*l;
  213. suml2 += l*l;
  214. }
  215. scale = sumlx/suml2;
  216. float sum = 0;
  217. for (int i = 0; i < n; ++i) {
  218. sum += x[i] - scale*L[i];
  219. }
  220. min = alpha*min + (1 - alpha)*sum/n;
  221. if (min > 0) min = 0;
  222. iscale = 1/scale;
  223. if (!did_change) break;
  224. }
  225. *the_min = -min;
  226. return scale;
  227. }
  228. static float make_qkx2_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
  229. uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
  230. float rmin, float rdelta, int nstep, bool use_mad) {
  231. float min = x[0];
  232. float max = x[0];
  233. float sum_w = weights[0];
  234. float sum_x = sum_w * x[0];
  235. for (int i = 1; i < n; ++i) {
  236. if (x[i] < min) min = x[i];
  237. if (x[i] > max) max = x[i];
  238. float w = weights[i];
  239. sum_w += w;
  240. sum_x += w * x[i];
  241. }
  242. if (min > 0) min = 0;
  243. if (max == min) {
  244. for (int i = 0; i < n; ++i) L[i] = 0;
  245. *the_min = -min;
  246. return 0.f;
  247. }
  248. float iscale = nmax/(max - min);
  249. float scale = 1/iscale;
  250. float best_mad = 0;
  251. for (int i = 0; i < n; ++i) {
  252. int l = nearest_int(iscale*(x[i] - min));
  253. L[i] = MAX(0, MIN(nmax, l));
  254. float diff = scale * L[i] + min - x[i];
  255. diff = use_mad ? fabsf(diff) : diff * diff;
  256. float w = weights[i];
  257. best_mad += w * diff;
  258. }
  259. if (nstep < 1) {
  260. *the_min = -min;
  261. return scale;
  262. }
  263. for (int is = 0; is <= nstep; ++is) {
  264. iscale = (rmin + rdelta*is + nmax)/(max - min);
  265. float sum_l = 0, sum_l2 = 0, sum_xl = 0;
  266. for (int i = 0; i < n; ++i) {
  267. int l = nearest_int(iscale*(x[i] - min));
  268. l = MAX(0, MIN(nmax, l));
  269. Laux[i] = l;
  270. float w = weights[i];
  271. sum_l += w*l;
  272. sum_l2 += w*l*l;
  273. sum_xl += w*l*x[i];
  274. }
  275. float D = sum_w * sum_l2 - sum_l * sum_l;
  276. if (D > 0) {
  277. float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
  278. float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D;
  279. if (this_min > 0) {
  280. this_min = 0;
  281. this_scale = sum_xl / sum_l2;
  282. }
  283. float mad = 0;
  284. for (int i = 0; i < n; ++i) {
  285. float diff = this_scale * Laux[i] + this_min - x[i];
  286. diff = use_mad ? fabsf(diff) : diff * diff;
  287. float w = weights[i];
  288. mad += w * diff;
  289. }
  290. if (mad < best_mad) {
  291. for (int i = 0; i < n; ++i) {
  292. L[i] = Laux[i];
  293. }
  294. best_mad = mad;
  295. scale = this_scale;
  296. min = this_min;
  297. }
  298. }
  299. }
  300. *the_min = -min;
  301. return scale;
  302. }
  303. #if QK_K == 256
  304. static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) {
  305. if (j < 4) {
  306. *d = q[j] & 63; *m = q[j + 4] & 63;
  307. } else {
  308. *d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
  309. *m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
  310. }
  311. }
  312. #endif
  313. //========================- 2-bit (de)-quantization
  314. void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int k) {
  315. assert(k % QK_K == 0);
  316. const int nb = k / QK_K;
  317. uint8_t L[QK_K];
  318. uint8_t Laux[16];
  319. float weights[16];
  320. float mins[QK_K/16];
  321. float scales[QK_K/16];
  322. const float q4scale = 15.f;
  323. for (int i = 0; i < nb; i++) {
  324. float max_scale = 0; // as we are deducting the min, scales are always positive
  325. float max_min = 0;
  326. for (int j = 0; j < QK_K/16; ++j) {
  327. for (int l = 0; l < 16; ++l) weights[l] = fabsf(x[16*j + l]);
  328. scales[j] = make_qkx2_quants(16, 3, x + 16*j, weights, L + 16*j, &mins[j], Laux, -0.5f, 0.1f, 15, true);
  329. float scale = scales[j];
  330. if (scale > max_scale) {
  331. max_scale = scale;
  332. }
  333. float min = mins[j];
  334. if (min > max_min) {
  335. max_min = min;
  336. }
  337. }
  338. if (max_scale > 0) {
  339. float iscale = q4scale/max_scale;
  340. for (int j = 0; j < QK_K/16; ++j) {
  341. int l = nearest_int(iscale*scales[j]);
  342. y[i].scales[j] = l;
  343. }
  344. y[i].d = ggml_fp32_to_fp16(max_scale/q4scale);
  345. } else {
  346. for (int j = 0; j < QK_K/16; ++j) y[i].scales[j] = 0;
  347. y[i].d = ggml_fp32_to_fp16(0.f);
  348. }
  349. if (max_min > 0) {
  350. float iscale = q4scale/max_min;
  351. for (int j = 0; j < QK_K/16; ++j) {
  352. int l = nearest_int(iscale*mins[j]);
  353. y[i].scales[j] |= (l << 4);
  354. }
  355. y[i].dmin = ggml_fp32_to_fp16(max_min/q4scale);
  356. } else {
  357. y[i].dmin = ggml_fp32_to_fp16(0.f);
  358. }
  359. for (int j = 0; j < QK_K/16; ++j) {
  360. const float d = ggml_fp16_to_fp32(y[i].d) * (y[i].scales[j] & 0xF);
  361. if (!d) continue;
  362. const float dm = ggml_fp16_to_fp32(y[i].dmin) * (y[i].scales[j] >> 4);
  363. for (int ii = 0; ii < 16; ++ii) {
  364. int l = nearest_int((x[16*j + ii] + dm)/d);
  365. l = MAX(0, MIN(3, l));
  366. L[16*j + ii] = l;
  367. }
  368. }
  369. #if QK_K == 256
  370. for (int j = 0; j < QK_K; j += 128) {
  371. for (int l = 0; l < 32; ++l) {
  372. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  373. }
  374. }
  375. #else
  376. for (int l = 0; l < 16; ++l) {
  377. y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
  378. }
  379. #endif
  380. x += QK_K;
  381. }
  382. }
  383. void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int k) {
  384. assert(k % QK_K == 0);
  385. const int nb = k / QK_K;
  386. for (int i = 0; i < nb; i++) {
  387. const float d = ggml_fp16_to_fp32(x[i].d);
  388. const float min = ggml_fp16_to_fp32(x[i].dmin);
  389. const uint8_t * q = x[i].qs;
  390. #if QK_K == 256
  391. int is = 0;
  392. float dl, ml;
  393. for (int n = 0; n < QK_K; n += 128) {
  394. int shift = 0;
  395. for (int j = 0; j < 4; ++j) {
  396. uint8_t sc = x[i].scales[is++];
  397. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  398. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l] >> shift) & 3)) - ml;
  399. sc = x[i].scales[is++];
  400. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  401. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml;
  402. shift += 2;
  403. }
  404. q += 32;
  405. }
  406. #else
  407. float dl1 = d * (x[i].scales[0] & 0xF), ml1 = min * (x[i].scales[0] >> 4);
  408. float dl2 = d * (x[i].scales[1] & 0xF), ml2 = min * (x[i].scales[1] >> 4);
  409. float dl3 = d * (x[i].scales[2] & 0xF), ml3 = min * (x[i].scales[2] >> 4);
  410. float dl4 = d * (x[i].scales[3] & 0xF), ml4 = min * (x[i].scales[3] >> 4);
  411. for (int l = 0; l < 16; ++l) {
  412. y[l+ 0] = dl1 * ((int8_t)((q[l] >> 0) & 3)) - ml1;
  413. y[l+16] = dl2 * ((int8_t)((q[l] >> 2) & 3)) - ml2;
  414. y[l+32] = dl3 * ((int8_t)((q[l] >> 4) & 3)) - ml3;
  415. y[l+48] = dl4 * ((int8_t)((q[l] >> 6) & 3)) - ml4;
  416. }
  417. y += QK_K;
  418. #endif
  419. }
  420. }
  421. void quantize_row_q2_K(const float * restrict x, void * restrict vy, int k) {
  422. quantize_row_q2_K_reference(x, vy, k);
  423. }
  424. size_t ggml_quantize_q2_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  425. const int nb = k / QK_K;
  426. // TODO - collect histograms - although, at a second thought, I don't really care about them
  427. (void)hist;
  428. for (int j = 0; j < nb; j += k) {
  429. block_q2_K * restrict y = (block_q2_K *)dst + j/QK_K;
  430. quantize_row_q2_K_reference(src + j, y, k);
  431. }
  432. return (n/QK_K*sizeof(block_q2_K));
  433. }
  434. //========================= 3-bit (de)-quantization
  435. void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int k) {
  436. assert(k % QK_K == 0);
  437. const int nb = k / QK_K;
  438. int8_t L[QK_K];
  439. float scales[QK_K / 16];
  440. for (int i = 0; i < nb; i++) {
  441. float max_scale = 0;
  442. float amax = 0;
  443. for (int j = 0; j < QK_K/16; ++j) {
  444. scales[j] = make_q3_quants(16, 4, x + 16*j, L + 16*j, true);
  445. float scale = fabsf(scales[j]);
  446. if (scale > amax) {
  447. amax = scale; max_scale = scales[j];
  448. }
  449. }
  450. #if QK_K == 256
  451. memset(y[i].scales, 0, 12);
  452. if (max_scale) {
  453. float iscale = -32.f/max_scale;
  454. for (int j = 0; j < QK_K/16; ++j) {
  455. int8_t l = nearest_int(iscale*scales[j]);
  456. l = MAX(-32, MIN(31, l)) + 32;
  457. if (j < 8) {
  458. y[i].scales[j] = l & 0xF;
  459. } else {
  460. y[i].scales[j-8] |= ((l & 0xF) << 4);
  461. }
  462. l >>= 4;
  463. y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
  464. }
  465. y[i].d = ggml_fp32_to_fp16(1/iscale);
  466. } else {
  467. y[i].d = ggml_fp32_to_fp16(0.f);
  468. }
  469. int8_t sc;
  470. for (int j = 0; j < QK_K/16; ++j) {
  471. sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
  472. sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
  473. float d = ggml_fp16_to_fp32(y[i].d) * sc;
  474. if (!d) {
  475. continue;
  476. }
  477. for (int ii = 0; ii < 16; ++ii) {
  478. int l = nearest_int(x[16*j + ii]/d);
  479. l = MAX(-4, MIN(3, l));
  480. L[16*j + ii] = l + 4;
  481. }
  482. }
  483. #else
  484. if (max_scale) {
  485. float iscale = -8.f/max_scale;
  486. for (int j = 0; j < QK_K/16; j+=2) {
  487. int l1 = nearest_int(iscale*scales[j]);
  488. l1 = 8 + MAX(-8, MIN(7, l1));
  489. int l2 = nearest_int(iscale*scales[j+1]);
  490. l2 = 8 + MAX(-8, MIN(7, l2));
  491. y[i].scales[j/2] = l1 | (l2 << 4);
  492. }
  493. y[i].d = ggml_fp32_to_fp16(1/iscale);
  494. } else {
  495. for (int j = 0; j < QK_K/16; j+=2) {
  496. y[i].scales[j/2] = 0;
  497. }
  498. y[i].d = ggml_fp32_to_fp16(0.f);
  499. }
  500. for (int j = 0; j < QK_K/16; ++j) {
  501. int s = j%2 == 0 ? y[i].scales[j/2] & 0xF : y[i].scales[j/2] >> 4;
  502. float d = ggml_fp16_to_fp32(y[i].d) * (s - 8);
  503. if (!d) {
  504. continue;
  505. }
  506. for (int ii = 0; ii < 16; ++ii) {
  507. int l = nearest_int(x[16*j + ii]/d);
  508. l = MAX(-4, MIN(3, l));
  509. L[16*j + ii] = l + 4;
  510. }
  511. }
  512. #endif
  513. memset(y[i].hmask, 0, QK_K/8);
  514. // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
  515. int m = 0;
  516. uint8_t hm = 1;
  517. for (int j = 0; j < QK_K; ++j) {
  518. if (L[j] > 3) {
  519. y[i].hmask[m] |= hm;
  520. L[j] -= 4;
  521. }
  522. if (++m == QK_K/8) {
  523. m = 0; hm <<= 1;
  524. }
  525. }
  526. #if QK_K == 256
  527. for (int j = 0; j < QK_K; j += 128) {
  528. for (int l = 0; l < 32; ++l) {
  529. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  530. }
  531. }
  532. #else
  533. for (int l = 0; l < 16; ++l) {
  534. y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
  535. }
  536. #endif
  537. x += QK_K;
  538. }
  539. }
  540. #if QK_K == 256
  541. void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) {
  542. assert(k % QK_K == 0);
  543. const int nb = k / QK_K;
  544. const uint32_t kmask1 = 0x03030303;
  545. const uint32_t kmask2 = 0x0f0f0f0f;
  546. uint32_t aux[4];
  547. const int8_t * scales = (const int8_t*)aux;
  548. for (int i = 0; i < nb; i++) {
  549. const float d_all = ggml_fp16_to_fp32(x[i].d);
  550. const uint8_t * restrict q = x[i].qs;
  551. const uint8_t * restrict hm = x[i].hmask;
  552. uint8_t m = 1;
  553. memcpy(aux, x[i].scales, 12);
  554. uint32_t tmp = aux[2];
  555. aux[2] = ((aux[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  556. aux[3] = ((aux[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  557. aux[0] = (aux[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  558. aux[1] = (aux[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  559. int is = 0;
  560. float dl;
  561. for (int n = 0; n < QK_K; n += 128) {
  562. int shift = 0;
  563. for (int j = 0; j < 4; ++j) {
  564. dl = d_all * (scales[is++] - 32);
  565. for (int l = 0; l < 16; ++l) {
  566. *y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((hm[l+ 0] & m) ? 0 : 4));
  567. }
  568. dl = d_all * (scales[is++] - 32);
  569. for (int l = 0; l < 16; ++l) {
  570. *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((hm[l+16] & m) ? 0 : 4));
  571. }
  572. shift += 2;
  573. m <<= 1;
  574. }
  575. q += 32;
  576. }
  577. }
  578. }
  579. #else
  580. void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) {
  581. assert(k % QK_K == 0);
  582. assert(QK_K == 64);
  583. const int nb = k / QK_K;
  584. for (int i = 0; i < nb; i++) {
  585. const float d_all = ggml_fp16_to_fp32(x[i].d);
  586. const uint8_t * restrict q = x[i].qs;
  587. const uint8_t * restrict hm = x[i].hmask;
  588. const float d1 = d_all * ((x[i].scales[0] & 0xF) - 8);
  589. const float d2 = d_all * ((x[i].scales[0] >> 4) - 8);
  590. const float d3 = d_all * ((x[i].scales[1] & 0xF) - 8);
  591. const float d4 = d_all * ((x[i].scales[1] >> 4) - 8);
  592. for (int l=0; l<8; ++l) {
  593. uint8_t h = hm[l];
  594. y[l+ 0] = d1 * ((int8_t)((q[l+0] >> 0) & 3) - ((h & 0x01) ? 0 : 4));
  595. y[l+ 8] = d1 * ((int8_t)((q[l+8] >> 0) & 3) - ((h & 0x02) ? 0 : 4));
  596. y[l+16] = d2 * ((int8_t)((q[l+0] >> 2) & 3) - ((h & 0x04) ? 0 : 4));
  597. y[l+24] = d2 * ((int8_t)((q[l+8] >> 2) & 3) - ((h & 0x08) ? 0 : 4));
  598. y[l+32] = d3 * ((int8_t)((q[l+0] >> 4) & 3) - ((h & 0x10) ? 0 : 4));
  599. y[l+40] = d3 * ((int8_t)((q[l+8] >> 4) & 3) - ((h & 0x20) ? 0 : 4));
  600. y[l+48] = d4 * ((int8_t)((q[l+0] >> 6) & 3) - ((h & 0x40) ? 0 : 4));
  601. y[l+56] = d4 * ((int8_t)((q[l+8] >> 6) & 3) - ((h & 0x80) ? 0 : 4));
  602. }
  603. y += QK_K;
  604. }
  605. }
  606. #endif
  607. void quantize_row_q3_K(const float * restrict x, void * restrict vy, int k) {
  608. quantize_row_q3_K_reference(x, vy, k);
  609. }
  610. size_t ggml_quantize_q3_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  611. const int nb = k / QK_K;
  612. // TODO - collect histograms - although, at a second thought, I don't really care about them
  613. (void)hist;
  614. for (int j = 0; j < nb; j += k) {
  615. block_q3_K * restrict y = (block_q3_K *)dst + j/QK_K;
  616. quantize_row_q3_K_reference(src + j, y, k);
  617. }
  618. return (n/QK_K*sizeof(block_q3_K));
  619. }
  620. // ====================== 4-bit (de)-quantization
  621. void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k) {
  622. assert(k % QK_K == 0);
  623. const int nb = k / QK_K;
  624. uint8_t L[QK_K];
  625. uint8_t Laux[32];
  626. float weights[32];
  627. float mins[QK_K/32];
  628. float scales[QK_K/32];
  629. for (int i = 0; i < nb; i++) {
  630. float max_scale = 0; // as we are deducting the min, scales are always positive
  631. float max_min = 0;
  632. for (int j = 0; j < QK_K/32; ++j) {
  633. //scales[j] = make_qkx1_quants(32, 15, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
  634. float sum_x2 = 0;
  635. for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
  636. float av_x = sqrtf(sum_x2/32);
  637. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  638. scales[j] = make_qkx2_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -1.f, 0.1f, 20, false);
  639. float scale = scales[j];
  640. if (scale > max_scale) {
  641. max_scale = scale;
  642. }
  643. float min = mins[j];
  644. if (min > max_min) {
  645. max_min = min;
  646. }
  647. }
  648. #if QK_K == 256
  649. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  650. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  651. for (int j = 0; j < QK_K/32; ++j) {
  652. uint8_t ls = nearest_int(inv_scale*scales[j]);
  653. uint8_t lm = nearest_int(inv_min*mins[j]);
  654. ls = MIN(63, ls);
  655. lm = MIN(63, lm);
  656. if (j < 4) {
  657. y[i].scales[j] = ls;
  658. y[i].scales[j+4] = lm;
  659. } else {
  660. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  661. y[i].scales[j-4] |= ((ls >> 4) << 6);
  662. y[i].scales[j-0] |= ((lm >> 4) << 6);
  663. }
  664. }
  665. y[i].d = ggml_fp32_to_fp16(max_scale/63.f);
  666. y[i].dmin = ggml_fp32_to_fp16(max_min/63.f);
  667. uint8_t sc, m;
  668. for (int j = 0; j < QK_K/32; ++j) {
  669. get_scale_min_k4(j, y[i].scales, &sc, &m);
  670. const float d = ggml_fp16_to_fp32(y[i].d) * sc;
  671. if (!d) continue;
  672. const float dm = ggml_fp16_to_fp32(y[i].dmin) * m;
  673. for (int ii = 0; ii < 32; ++ii) {
  674. int l = nearest_int((x[32*j + ii] + dm)/d);
  675. l = MAX(0, MIN(15, l));
  676. L[32*j + ii] = l;
  677. }
  678. }
  679. #else
  680. const float s_factor = 15.f;
  681. float inv_scale = max_scale > 0 ? s_factor/max_scale : 0.f;
  682. float inv_min = max_min > 0 ? s_factor/max_min : 0.f;
  683. int d1 = nearest_int(inv_scale*scales[0]);
  684. int m1 = nearest_int(inv_min*mins[0]);
  685. int d2 = nearest_int(inv_scale*scales[1]);
  686. int m2 = nearest_int(inv_min*mins[1]);
  687. y[i].scales[0] = d1 | (m1 << 4);
  688. y[i].scales[1] = d2 | (m2 << 4);
  689. y[i].d[0] = ggml_fp32_to_fp16(max_scale/s_factor);
  690. y[i].d[1] = ggml_fp32_to_fp16(max_min/s_factor);
  691. float sumlx = 0;
  692. int suml2 = 0;
  693. for (int j = 0; j < QK_K/32; ++j) {
  694. const uint8_t sd = y[i].scales[j] & 0xF;
  695. const uint8_t sm = y[i].scales[j] >> 4;
  696. const float d = ggml_fp16_to_fp32(y[i].d[0]) * sd;
  697. if (!d) continue;
  698. const float m = ggml_fp16_to_fp32(y[i].d[1]) * sm;
  699. for (int ii = 0; ii < 32; ++ii) {
  700. int l = nearest_int((x[32*j + ii] + m)/d);
  701. l = MAX(0, MIN(15, l));
  702. L[32*j + ii] = l;
  703. sumlx += (x[32*j + ii] + m)*l*sd;
  704. suml2 += l*l*sd*sd;
  705. }
  706. }
  707. if (suml2) {
  708. y[i].d[0] = ggml_fp32_to_fp16(sumlx/suml2);
  709. }
  710. #endif
  711. uint8_t * q = y[i].qs;
  712. for (int j = 0; j < QK_K; j += 64) {
  713. for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
  714. q += 32;
  715. }
  716. x += QK_K;
  717. }
  718. }
  719. void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int k) {
  720. assert(k % QK_K == 0);
  721. const int nb = k / QK_K;
  722. for (int i = 0; i < nb; i++) {
  723. const uint8_t * q = x[i].qs;
  724. #if QK_K == 256
  725. const float d = ggml_fp16_to_fp32(x[i].d);
  726. const float min = ggml_fp16_to_fp32(x[i].dmin);
  727. int is = 0;
  728. uint8_t sc, m;
  729. for (int j = 0; j < QK_K; j += 64) {
  730. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  731. const float d1 = d * sc; const float m1 = min * m;
  732. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  733. const float d2 = d * sc; const float m2 = min * m;
  734. for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1;
  735. for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l] >> 4) - m2;
  736. q += 32; is += 2;
  737. }
  738. #else
  739. const float dall = ggml_fp16_to_fp32(x[i].d[0]);
  740. const float mall = ggml_fp16_to_fp32(x[i].d[1]);
  741. const float d1 = dall * (x[i].scales[0] & 0xF), m1 = mall * (x[i].scales[0] >> 4);
  742. const float d2 = dall * (x[i].scales[1] & 0xF), m2 = mall * (x[i].scales[1] >> 4);
  743. for (int l = 0; l < 32; ++l) {
  744. y[l+ 0] = d1 * (q[l] & 0xF) - m1;
  745. y[l+32] = d2 * (q[l] >> 4) - m2;
  746. }
  747. y += QK_K;
  748. #endif
  749. }
  750. }
  751. void quantize_row_q4_K(const float * restrict x, void * restrict vy, int k) {
  752. assert(k % QK_K == 0);
  753. block_q4_K * restrict y = vy;
  754. quantize_row_q4_K_reference(x, y, k);
  755. }
  756. size_t ggml_quantize_q4_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  757. assert(k % QK_K == 0);
  758. const int nb = k / QK_K;
  759. (void)hist; // TODO: collect histograms
  760. for (int j = 0; j < nb; j += k) {
  761. block_q4_K * restrict y = (block_q4_K *)dst + j/QK_K;
  762. quantize_row_q4_K_reference(src + j, y, k);
  763. }
  764. return (n/QK_K*sizeof(block_q4_K));
  765. }
  766. // ====================== 5-bit (de)-quantization
  767. void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k) {
  768. assert(k % QK_K == 0);
  769. const int nb = k / QK_K;
  770. #if QK_K == 256
  771. uint8_t L[QK_K];
  772. float mins[QK_K/32];
  773. float scales[QK_K/32];
  774. float weights[32];
  775. uint8_t Laux[32];
  776. #else
  777. int8_t L[QK_K];
  778. float scales[QK_K/16];
  779. #endif
  780. for (int i = 0; i < nb; i++) {
  781. #if QK_K == 256
  782. float max_scale = 0; // as we are deducting the min, scales are always positive
  783. float max_min = 0;
  784. for (int j = 0; j < QK_K/32; ++j) {
  785. //scales[j] = make_qkx1_quants(32, 31, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
  786. float sum_x2 = 0;
  787. for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
  788. float av_x = sqrtf(sum_x2/32);
  789. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  790. scales[j] = make_qkx2_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.5f, 0.1f, 15, false);
  791. float scale = scales[j];
  792. if (scale > max_scale) {
  793. max_scale = scale;
  794. }
  795. float min = mins[j];
  796. if (min > max_min) {
  797. max_min = min;
  798. }
  799. }
  800. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  801. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  802. for (int j = 0; j < QK_K/32; ++j) {
  803. uint8_t ls = nearest_int(inv_scale*scales[j]);
  804. uint8_t lm = nearest_int(inv_min*mins[j]);
  805. ls = MIN(63, ls);
  806. lm = MIN(63, lm);
  807. if (j < 4) {
  808. y[i].scales[j] = ls;
  809. y[i].scales[j+4] = lm;
  810. } else {
  811. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  812. y[i].scales[j-4] |= ((ls >> 4) << 6);
  813. y[i].scales[j-0] |= ((lm >> 4) << 6);
  814. }
  815. }
  816. y[i].d = ggml_fp32_to_fp16(max_scale/63.f);
  817. y[i].dmin = ggml_fp32_to_fp16(max_min/63.f);
  818. uint8_t sc, m;
  819. for (int j = 0; j < QK_K/32; ++j) {
  820. get_scale_min_k4(j, y[i].scales, &sc, &m);
  821. const float d = ggml_fp16_to_fp32(y[i].d) * sc;
  822. if (!d) continue;
  823. const float dm = ggml_fp16_to_fp32(y[i].dmin) * m;
  824. for (int ii = 0; ii < 32; ++ii) {
  825. int l = nearest_int((x[32*j + ii] + dm)/d);
  826. l = MAX(0, MIN(31, l));
  827. L[32*j + ii] = l;
  828. }
  829. }
  830. uint8_t * restrict qh = y[i].qh;
  831. uint8_t * restrict ql = y[i].qs;
  832. memset(qh, 0, QK_K/8);
  833. uint8_t m1 = 1, m2 = 2;
  834. for (int n = 0; n < QK_K; n += 64) {
  835. for (int j = 0; j < 32; ++j) {
  836. int l1 = L[n + j];
  837. if (l1 > 15) {
  838. l1 -= 16; qh[j] |= m1;
  839. }
  840. int l2 = L[n + j + 32];
  841. if (l2 > 15) {
  842. l2 -= 16; qh[j] |= m2;
  843. }
  844. ql[j] = l1 | (l2 << 4);
  845. }
  846. m1 <<= 2; m2 <<= 2;
  847. ql += 32;
  848. }
  849. #else
  850. float max_scale = 0, amax = 0;
  851. for (int j = 0; j < QK_K/16; ++j) {
  852. scales[j] = make_qx_quants(16, 16, x + 16*j, L + 16*j, 1);
  853. float abs_scale = fabsf(scales[j]);
  854. if (abs_scale > amax) {
  855. amax = abs_scale;
  856. max_scale = scales[j];
  857. }
  858. }
  859. float iscale = -128.f/max_scale;
  860. for (int j = 0; j < QK_K/16; ++j) {
  861. int l = nearest_int(iscale*scales[j]);
  862. y[i].scales[j] = MAX(-128, MIN(127, l));
  863. }
  864. y[i].d = ggml_fp32_to_fp16(1/iscale);
  865. for (int j = 0; j < QK_K/16; ++j) {
  866. const float d = ggml_fp16_to_fp32(y[i].d) * y[i].scales[j];
  867. if (!d) continue;
  868. for (int ii = 0; ii < 16; ++ii) {
  869. int l = nearest_int(x[16*j + ii]/d);
  870. l = MAX(-16, MIN(15, l));
  871. L[16*j + ii] = l + 16;
  872. }
  873. }
  874. uint8_t * restrict qh = y[i].qh;
  875. uint8_t * restrict ql = y[i].qs;
  876. memset(qh, 0, QK_K/8);
  877. for (int j = 0; j < 32; ++j) {
  878. int jm = j%8;
  879. int is = j/8;
  880. int l1 = L[j];
  881. if (l1 > 15) {
  882. l1 -= 16; qh[jm] |= (1 << is);
  883. }
  884. int l2 = L[j + 32];
  885. if (l2 > 15) {
  886. l2 -= 16; qh[jm] |= (1 << (4 + is));
  887. }
  888. ql[j] = l1 | (l2 << 4);
  889. }
  890. #endif
  891. x += QK_K;
  892. }
  893. }
  894. void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int k) {
  895. assert(k % QK_K == 0);
  896. const int nb = k / QK_K;
  897. for (int i = 0; i < nb; i++) {
  898. const uint8_t * ql = x[i].qs;
  899. const uint8_t * qh = x[i].qh;
  900. #if QK_K == 256
  901. const float d = ggml_fp16_to_fp32(x[i].d);
  902. const float min = ggml_fp16_to_fp32(x[i].dmin);
  903. int is = 0;
  904. uint8_t sc, m;
  905. uint8_t u1 = 1, u2 = 2;
  906. for (int j = 0; j < QK_K; j += 64) {
  907. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  908. const float d1 = d * sc; const float m1 = min * m;
  909. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  910. const float d2 = d * sc; const float m2 = min * m;
  911. for (int l = 0; l < 32; ++l) *y++ = d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1;
  912. for (int l = 0; l < 32; ++l) *y++ = d2 * ((ql[l] >> 4) + (qh[l] & u2 ? 16 : 0)) - m2;
  913. ql += 32; is += 2;
  914. u1 <<= 2; u2 <<= 2;
  915. }
  916. #else
  917. float d = ggml_fp16_to_fp32(x[i].d);
  918. const int8_t * restrict s = x[i].scales;
  919. for (int l = 0; l < 8; ++l) {
  920. y[l+ 0] = d * s[0] * ((ql[l+ 0] & 0xF) - (qh[l] & 0x01 ? 0 : 16));
  921. y[l+ 8] = d * s[0] * ((ql[l+ 8] & 0xF) - (qh[l] & 0x02 ? 0 : 16));
  922. y[l+16] = d * s[1] * ((ql[l+16] & 0xF) - (qh[l] & 0x04 ? 0 : 16));
  923. y[l+24] = d * s[1] * ((ql[l+24] & 0xF) - (qh[l] & 0x08 ? 0 : 16));
  924. y[l+32] = d * s[2] * ((ql[l+ 0] >> 4) - (qh[l] & 0x10 ? 0 : 16));
  925. y[l+40] = d * s[2] * ((ql[l+ 8] >> 4) - (qh[l] & 0x20 ? 0 : 16));
  926. y[l+48] = d * s[3] * ((ql[l+16] >> 4) - (qh[l] & 0x40 ? 0 : 16));
  927. y[l+56] = d * s[3] * ((ql[l+24] >> 4) - (qh[l] & 0x80 ? 0 : 16));
  928. }
  929. y += QK_K;
  930. #endif
  931. }
  932. }
  933. void quantize_row_q5_K(const float * restrict x, void * restrict vy, int k) {
  934. assert(k % QK_K == 0);
  935. block_q5_K * restrict y = vy;
  936. quantize_row_q5_K_reference(x, y, k);
  937. }
  938. size_t ggml_quantize_q5_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  939. assert(k % QK_K == 0);
  940. const int nb = k / QK_K;
  941. (void)hist;
  942. for (int j = 0; j < nb; j += k) {
  943. block_q5_K * restrict y = (block_q5_K *)dst + j/QK_K;
  944. quantize_row_q5_K_reference(src + j, y, k);
  945. }
  946. return (n/QK_K*sizeof(block_q5_K));
  947. }
  948. // ====================== 6-bit (de)-quantization
  949. void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k) {
  950. assert(k % QK_K == 0);
  951. const int nb = k / QK_K;
  952. int8_t L[QK_K];
  953. float scales[QK_K/16];
  954. for (int i = 0; i < nb; i++) {
  955. float max_scale = 0;
  956. float max_abs_scale = 0;
  957. for (int ib = 0; ib < QK_K/16; ++ib) {
  958. const float scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1);
  959. scales[ib] = scale;
  960. const float abs_scale = fabsf(scale);
  961. if (abs_scale > max_abs_scale) {
  962. max_abs_scale = abs_scale;
  963. max_scale = scale;
  964. }
  965. }
  966. if (!max_abs_scale) {
  967. memset(&y[i], 0, sizeof(block_q6_K));
  968. y[i].d = ggml_fp32_to_fp16(0.f);
  969. x += QK_K;
  970. continue;
  971. }
  972. float iscale = -128.f/max_scale;
  973. y[i].d = ggml_fp32_to_fp16(1/iscale);
  974. for (int ib = 0; ib < QK_K/16; ++ib) {
  975. y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
  976. }
  977. for (int j = 0; j < QK_K/16; ++j) {
  978. float d = ggml_fp16_to_fp32(y[i].d) * y[i].scales[j];
  979. if (!d) {
  980. continue;
  981. }
  982. for (int ii = 0; ii < 16; ++ii) {
  983. int l = nearest_int(x[16*j + ii]/d);
  984. l = MAX(-32, MIN(31, l));
  985. L[16*j + ii] = l + 32;
  986. }
  987. }
  988. uint8_t * restrict ql = y[i].ql;
  989. uint8_t * restrict qh = y[i].qh;
  990. #if QK_K == 256
  991. for (int j = 0; j < QK_K; j += 128) {
  992. for (int l = 0; l < 32; ++l) {
  993. const uint8_t q1 = L[j + l + 0] & 0xF;
  994. const uint8_t q2 = L[j + l + 32] & 0xF;
  995. const uint8_t q3 = L[j + l + 64] & 0xF;
  996. const uint8_t q4 = L[j + l + 96] & 0xF;
  997. ql[l+ 0] = q1 | (q3 << 4);
  998. ql[l+32] = q2 | (q4 << 4);
  999. qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
  1000. }
  1001. ql += 64;
  1002. qh += 32;
  1003. }
  1004. #else
  1005. for (int l = 0; l < 32; ++l) {
  1006. const uint8_t q1 = L[l + 0] & 0xF;
  1007. const uint8_t q2 = L[l + 32] & 0xF;
  1008. ql[l] = q1 | (q2 << 4);
  1009. }
  1010. for (int l = 0; l < 16; ++l) {
  1011. qh[l] = (L[l] >> 4) | ((L[l + 16] >> 4) << 2) | ((L[l + 32] >> 4) << 4) | ((L[l + 48] >> 4) << 6);
  1012. }
  1013. #endif
  1014. x += QK_K;
  1015. }
  1016. }
  1017. void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int k) {
  1018. assert(k % QK_K == 0);
  1019. const int nb = k / QK_K;
  1020. for (int i = 0; i < nb; i++) {
  1021. const float d = ggml_fp16_to_fp32(x[i].d);
  1022. const uint8_t * restrict ql = x[i].ql;
  1023. const uint8_t * restrict qh = x[i].qh;
  1024. const int8_t * restrict sc = x[i].scales;
  1025. #if QK_K == 256
  1026. for (int n = 0; n < QK_K; n += 128) {
  1027. for (int l = 0; l < 32; ++l) {
  1028. int is = l/16;
  1029. const int8_t q1 = (int8_t)((ql[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  1030. const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  1031. const int8_t q3 = (int8_t)((ql[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  1032. const int8_t q4 = (int8_t)((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  1033. y[l + 0] = d * sc[is + 0] * q1;
  1034. y[l + 32] = d * sc[is + 2] * q2;
  1035. y[l + 64] = d * sc[is + 4] * q3;
  1036. y[l + 96] = d * sc[is + 6] * q4;
  1037. }
  1038. y += 128;
  1039. ql += 64;
  1040. qh += 32;
  1041. sc += 8;
  1042. }
  1043. #else
  1044. for (int l = 0; l < 16; ++l) {
  1045. const int8_t q1 = (int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  1046. const int8_t q2 = (int8_t)((ql[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  1047. const int8_t q3 = (int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  1048. const int8_t q4 = (int8_t)((ql[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  1049. y[l+ 0] = d * sc[0] * q1;
  1050. y[l+16] = d * sc[1] * q2;
  1051. y[l+32] = d * sc[2] * q3;
  1052. y[l+48] = d * sc[3] * q4;
  1053. }
  1054. y += 64;
  1055. #endif
  1056. }
  1057. }
  1058. void quantize_row_q6_K(const float * restrict x, void * restrict vy, int k) {
  1059. assert(k % QK_K == 0);
  1060. block_q6_K * restrict y = vy;
  1061. quantize_row_q6_K_reference(x, y, k);
  1062. }
  1063. size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist) {
  1064. assert(k % QK_K == 0);
  1065. const int nb = k / QK_K;
  1066. (void)hist; // TODO
  1067. for (int j = 0; j < nb; j += k) {
  1068. block_q6_K * restrict y = (block_q6_K *)dst + j/QK_K;
  1069. quantize_row_q6_K_reference(src + j, y, k);
  1070. }
  1071. return (n/QK_K*sizeof(block_q6_K));
  1072. }
  1073. //===================================== Q8_K ==============================================
  1074. void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k) {
  1075. assert(k % QK_K == 0);
  1076. const int nb = k / QK_K;
  1077. for (int i = 0; i < nb; i++) {
  1078. float max = 0;
  1079. float amax = 0;
  1080. for (int j = 0; j < QK_K; ++j) {
  1081. float ax = fabsf(x[j]);
  1082. if (ax > amax) {
  1083. amax = ax; max = x[j];
  1084. }
  1085. }
  1086. if (!amax) {
  1087. y[i].d = 0;
  1088. memset(y[i].qs, 0, QK_K);
  1089. x += QK_K;
  1090. continue;
  1091. }
  1092. const float iscale = -128.f/max;
  1093. for (int j = 0; j < QK_K; ++j) {
  1094. int v = nearest_int(iscale*x[j]);
  1095. y[i].qs[j] = MIN(127, v);
  1096. }
  1097. for (int j = 0; j < QK_K/16; ++j) {
  1098. int sum = 0;
  1099. for (int ii = 0; ii < 16; ++ii) {
  1100. sum += y[i].qs[j*16 + ii];
  1101. }
  1102. y[i].bsums[j] = sum;
  1103. }
  1104. y[i].d = 1/iscale;
  1105. x += QK_K;
  1106. }
  1107. }
  1108. void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int k) {
  1109. assert(k % QK_K == 0);
  1110. const int nb = k / QK_K;
  1111. for (int i = 0; i < nb; i++) {
  1112. for (int j = 0; j < QK_K; ++j) {
  1113. *y++ = x[i].d * x[i].qs[j];
  1114. }
  1115. }
  1116. }
  1117. void quantize_row_q8_K(const float * restrict x, void * restrict y, int k) {
  1118. quantize_row_q8_K_reference(x, y, k);
  1119. }
  1120. //===================================== Dot ptoducts =================================
  1121. //
  1122. // Helper functions
  1123. //
  1124. #if __AVX__ || __AVX2__ || __AVX512F__
  1125. // horizontally add 8 floats
  1126. static inline float hsum_float_8(const __m256 x) {
  1127. __m128 res = _mm256_extractf128_ps(x, 1);
  1128. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  1129. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  1130. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  1131. return _mm_cvtss_f32(res);
  1132. }
  1133. // shuffles to pick the required scales in dot products
  1134. static inline __m256i get_scale_shuffle_q3k(int i) {
  1135. static const uint8_t k_shuffle[128] = {
  1136. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  1137. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  1138. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  1139. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,
  1140. };
  1141. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  1142. }
  1143. static inline __m256i get_scale_shuffle_k4(int i) {
  1144. static const uint8_t k_shuffle[256] = {
  1145. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
  1146. 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  1147. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
  1148. 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  1149. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
  1150. 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  1151. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,
  1152. 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15
  1153. };
  1154. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  1155. }
  1156. static inline __m128i get_scale_shuffle(int i) {
  1157. static const uint8_t k_shuffle[128] = {
  1158. 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
  1159. 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
  1160. 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
  1161. 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,
  1162. 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
  1163. 10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,
  1164. 12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13,
  1165. 14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15
  1166. };
  1167. return _mm_loadu_si128((const __m128i*)k_shuffle + i);
  1168. }
  1169. #endif
  1170. #if QK_K == 256
  1171. void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1172. const block_q2_K * restrict x = vx;
  1173. const block_q8_K * restrict y = vy;
  1174. const int nb = n / QK_K;
  1175. #ifdef __ARM_NEON
  1176. const uint8x16_t m3 = vdupq_n_u8(0x3);
  1177. const uint8x16_t m4 = vdupq_n_u8(0xF);
  1178. #if defined(__ARM_FEATURE_DOTPROD)
  1179. const int32x4_t vzero = vdupq_n_s32(0);
  1180. #endif
  1181. int8x16x2_t q2bytes;
  1182. uint8_t aux[16];
  1183. float sum = 0;
  1184. for (int i = 0; i < nb; ++i) {
  1185. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1186. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1187. const uint8_t * restrict q2 = x[i].qs;
  1188. const int8_t * restrict q8 = y[i].qs;
  1189. const uint8_t * restrict sc = x[i].scales;
  1190. const uint8x16_t mins_and_scales = vld1q_u8(sc);
  1191. const uint8x16_t scales = vandq_u8(mins_and_scales, m4);
  1192. vst1q_u8(aux, scales);
  1193. const uint8x16_t mins = vshrq_n_u8(mins_and_scales, 4);
  1194. const int16x8x2_t q8sums = vld1q_s16_x2(y[i].bsums);
  1195. const int16x8x2_t mins16 = {vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))};
  1196. const int32x4_t s0 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[0]), vget_low_s16 (q8sums.val[0])),
  1197. vmull_s16(vget_high_s16(mins16.val[0]), vget_high_s16(q8sums.val[0])));
  1198. const int32x4_t s1 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[1]), vget_low_s16 (q8sums.val[1])),
  1199. vmull_s16(vget_high_s16(mins16.val[1]), vget_high_s16(q8sums.val[1])));
  1200. sum += dmin * vaddvq_s32(vaddq_s32(s0, s1));
  1201. int isum = 0;
  1202. int is = 0;
  1203. // We use this macro instead of a function call because for some reason
  1204. // the code runs 2-3% slower, even if the function is declared inline
  1205. #if defined(__ARM_FEATURE_DOTPROD)
  1206. #define MULTIPLY_ACCUM_WITH_SCALE(index)\
  1207. isum += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * aux[is+(index)];\
  1208. isum += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * aux[is+1+(index)];
  1209. #else
  1210. #define MULTIPLY_ACCUM_WITH_SCALE(index)\
  1211. {\
  1212. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[0]), vget_low_s8 (q8bytes.val[0])),\
  1213. vmull_s8(vget_high_s8(q2bytes.val[0]), vget_high_s8(q8bytes.val[0])));\
  1214. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[1]), vget_low_s8 (q8bytes.val[1])),\
  1215. vmull_s8(vget_high_s8(q2bytes.val[1]), vget_high_s8(q8bytes.val[1])));\
  1216. isum += vaddvq_s16(p1) * aux[is+(index)] + vaddvq_s16(p2) * aux[is+1+(index)];\
  1217. }
  1218. #endif
  1219. #define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\
  1220. q8bytes = vld1q_s8_x2(q8); q8 += 32;\
  1221. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[0], (shift)), m3));\
  1222. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\
  1223. MULTIPLY_ACCUM_WITH_SCALE((index));
  1224. for (int j = 0; j < QK_K/128; ++j) {
  1225. const uint8x16x2_t q2bits = vld1q_u8_x2(q2); q2 += 32;
  1226. int8x16x2_t q8bytes = vld1q_s8_x2(q8); q8 += 32;
  1227. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3));
  1228. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3));
  1229. MULTIPLY_ACCUM_WITH_SCALE(0);
  1230. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(2, 2);
  1231. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(4, 4);
  1232. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(6, 6);
  1233. is += 8;
  1234. }
  1235. sum += d * isum;
  1236. }
  1237. *s = sum;
  1238. #elif defined __AVX2__
  1239. const __m256i m3 = _mm256_set1_epi8(3);
  1240. const __m128i m4 = _mm_set1_epi8(0xF);
  1241. __m256 acc = _mm256_setzero_ps();
  1242. for (int i = 0; i < nb; ++i) {
  1243. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1244. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1245. const uint8_t * restrict q2 = x[i].qs;
  1246. const int8_t * restrict q8 = y[i].qs;
  1247. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  1248. const __m128i scales8 = _mm_and_si128(mins_and_scales, m4);
  1249. const __m128i mins8 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  1250. const __m256i mins = _mm256_cvtepi8_epi16(mins8);
  1251. const __m256i prod = _mm256_madd_epi16(mins, _mm256_loadu_si256((const __m256i*)y[i].bsums));
  1252. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(prod), acc);
  1253. const __m256i all_scales = _mm256_cvtepi8_epi16(scales8);
  1254. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  1255. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  1256. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  1257. __m256i sumi = _mm256_setzero_si256();
  1258. for (int j = 0; j < QK_K/128; ++j) {
  1259. const __m256i q2bits = _mm256_loadu_si256((const __m256i*)q2); q2 += 32;
  1260. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1261. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1262. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1263. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1264. const __m256i q2_0 = _mm256_and_si256(q2bits, m3);
  1265. const __m256i q2_1 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 2), m3);
  1266. const __m256i q2_2 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 4), m3);
  1267. const __m256i q2_3 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 6), m3);
  1268. __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
  1269. __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
  1270. __m256i p2 = _mm256_maddubs_epi16(q2_2, q8_2);
  1271. __m256i p3 = _mm256_maddubs_epi16(q2_3, q8_3);
  1272. p0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(0)), p0);
  1273. p1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(1)), p1);
  1274. p2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(2)), p2);
  1275. p3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(3)), p3);
  1276. p0 = _mm256_add_epi32(p0, p1);
  1277. p2 = _mm256_add_epi32(p2, p3);
  1278. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p0, p2));
  1279. }
  1280. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  1281. }
  1282. *s = hsum_float_8(acc);
  1283. #elif defined __AVX__
  1284. const __m128i m3 = _mm_set1_epi8(0x3);
  1285. const __m128i m4 = _mm_set1_epi8(0xF);
  1286. const __m128i m2 = _mm_set1_epi8(0x2);
  1287. __m256 acc = _mm256_setzero_ps();
  1288. for (int i = 0; i < nb; ++i) {
  1289. const float dall = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1290. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1291. const uint8_t * restrict q2 = x[i].qs;
  1292. const int8_t * restrict q8 = y[i].qs;
  1293. // load mins and scales from block_q2_K.scales[QK_K/16]
  1294. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  1295. const __m128i scales16 = _mm_and_si128(mins_and_scales, m4);
  1296. const __m128i mins16 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  1297. const __m128i mins_0 = _mm_cvtepi8_epi16(mins16);
  1298. const __m128i mins_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(mins16, mins16));
  1299. // summs = y[i].bsums * (x[i].scales >> 4) in 16bits*8*2 to 32bits*4*2
  1300. const __m128i summs_0 = _mm_madd_epi16(mins_0, _mm_loadu_si128((const __m128i*)&y[i].bsums[0]));
  1301. const __m128i summs_1 = _mm_madd_epi16(mins_1, _mm_loadu_si128((const __m128i*)&y[i].bsums[8]));
  1302. // sumf += -dmin * summs in 32bits*8
  1303. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(MM256_SET_M128I(summs_1, summs_0))), acc);
  1304. const __m128i scales_0 = _mm_cvtepi8_epi16(scales16);
  1305. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales16, scales16));
  1306. const __m128i scales[2] = { scales_0, scales_1 };
  1307. __m128i sumi_0 = _mm_setzero_si128();
  1308. __m128i sumi_1 = _mm_setzero_si128();
  1309. for (int j = 0; j < QK_K/128; ++j) {
  1310. // load Q8 quants int8*16*8 from block_q8_K.qs[QK_K]
  1311. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1312. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1313. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1314. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1315. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1316. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1317. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1318. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1319. // load 2bits*16*8 from block_q2_K.qs[QK_K/4]
  1320. __m128i q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  1321. const __m128i q2_0 = _mm_and_si128(q2bits, m3);
  1322. const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  1323. const __m128i q2_4 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  1324. const __m128i q2_6 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  1325. q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  1326. const __m128i q2_1 = _mm_and_si128(q2bits, m3);
  1327. const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  1328. const __m128i q2_5 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  1329. const __m128i q2_7 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  1330. // isuml = q8[l] * ((q2[l] >> shift) & 3) in 8bits*16*8 to 16bits*8*8
  1331. __m128i p0 = _mm_maddubs_epi16(q2_0, q8_0);
  1332. __m128i p1 = _mm_maddubs_epi16(q2_1, q8_1);
  1333. __m128i p2 = _mm_maddubs_epi16(q2_2, q8_2);
  1334. __m128i p3 = _mm_maddubs_epi16(q2_3, q8_3);
  1335. __m128i p4 = _mm_maddubs_epi16(q2_4, q8_4);
  1336. __m128i p5 = _mm_maddubs_epi16(q2_5, q8_5);
  1337. __m128i p6 = _mm_maddubs_epi16(q2_6, q8_6);
  1338. __m128i p7 = _mm_maddubs_epi16(q2_7, q8_7);
  1339. // isum += (x[i].scales[is++] & 0xF) * isuml in 16bits*8*8 to 32bits*4*8
  1340. __m128i shuffle = _mm_set1_epi16(0x0100);
  1341. p0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p0);
  1342. shuffle = _mm_add_epi16(shuffle, m2);
  1343. p1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p1);
  1344. shuffle = _mm_add_epi16(shuffle, m2);
  1345. p2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p2);
  1346. shuffle = _mm_add_epi16(shuffle, m2);
  1347. p3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p3);
  1348. shuffle = _mm_add_epi16(shuffle, m2);
  1349. p4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p4);
  1350. shuffle = _mm_add_epi16(shuffle, m2);
  1351. p5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p5);
  1352. shuffle = _mm_add_epi16(shuffle, m2);
  1353. p6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p6);
  1354. shuffle = _mm_add_epi16(shuffle, m2);
  1355. p7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p7);
  1356. p0 = _mm_add_epi32(p0, p1);
  1357. p2 = _mm_add_epi32(p2, p3);
  1358. p4 = _mm_add_epi32(p4, p5);
  1359. p6 = _mm_add_epi32(p6, p7);
  1360. // isum in 32bits*4*2
  1361. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p0, p2));
  1362. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p4, p6));
  1363. }
  1364. // sumf += dall * isum - dmin * summs in 32bits
  1365. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  1366. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dall), _mm256_cvtepi32_ps(sumi)), acc);
  1367. }
  1368. *s = hsum_float_8(acc);
  1369. #else
  1370. float sumf = 0;
  1371. for (int i = 0; i < nb; ++i) {
  1372. const uint8_t * q2 = x[i].qs;
  1373. const int8_t * q8 = y[i].qs;
  1374. const uint8_t * sc = x[i].scales;
  1375. int summs = 0;
  1376. for (int j = 0; j < 16; ++j) {
  1377. summs += y[i].bsums[j] * (sc[j] >> 4);
  1378. }
  1379. const float dall = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1380. const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1381. int isum = 0;
  1382. int is = 0;
  1383. int d;
  1384. for (int k = 0; k < QK_K/128; ++k) {
  1385. int shift = 0;
  1386. for (int j = 0; j < 4; ++j) {
  1387. d = sc[is++] & 0xF;
  1388. int isuml = 0;
  1389. for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  1390. isum += d * isuml;
  1391. d = sc[is++] & 0xF;
  1392. isuml = 0;
  1393. for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  1394. isum += d * isuml;
  1395. shift += 2;
  1396. q8 += 32;
  1397. }
  1398. q2 += 32;
  1399. }
  1400. sumf += dall * isum - dmin * summs;
  1401. }
  1402. *s = sumf;
  1403. #endif
  1404. }
  1405. #else
  1406. void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1407. const block_q2_K * restrict x = vx;
  1408. const block_q8_K * restrict y = vy;
  1409. const int nb = n / QK_K;
  1410. #ifdef __ARM_NEON
  1411. const uint8x16_t m3 = vdupq_n_u8(0x3);
  1412. #if defined(__ARM_FEATURE_DOTPROD)
  1413. const int32x4_t vzero = vdupq_n_s32(0);
  1414. #endif
  1415. int8x16x4_t q2bytes;
  1416. uint32_t aux32[2];
  1417. const uint8_t * scales = (const uint8_t *)aux32;
  1418. float sum = 0;
  1419. for (int i = 0; i < nb; ++i) {
  1420. const float d = y[i].d * (float)x[i].d;
  1421. const float dmin = -y[i].d * (float)x[i].dmin;
  1422. const uint8_t * restrict q2 = x[i].qs;
  1423. const int8_t * restrict q8 = y[i].qs;
  1424. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  1425. aux32[0] = sc[0] & 0x0f0f0f0f;
  1426. aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f;
  1427. sum += dmin * (scales[4] * y[i].bsums[0] + scales[5] * y[i].bsums[1] + scales[6] * y[i].bsums[2] + scales[7] * y[i].bsums[3]);
  1428. int isum1 = 0, isum2 = 0;
  1429. const uint8x16_t q2bits = vld1q_u8(q2);
  1430. const int8x16x4_t q8bytes = vld1q_s8_x4(q8);
  1431. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits, m3));
  1432. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 2), m3));
  1433. q2bytes.val[2] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 4), m3));
  1434. q2bytes.val[3] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 6), m3));
  1435. #if defined(__ARM_FEATURE_DOTPROD)
  1436. isum1 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * scales[0];
  1437. isum2 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * scales[1];
  1438. isum1 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[2], q8bytes.val[2])) * scales[2];
  1439. isum2 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[3], q8bytes.val[3])) * scales[3];
  1440. #else
  1441. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  1442. vmull_s8(vget_high_s8(q2bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  1443. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  1444. vmull_s8(vget_high_s8(q2bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  1445. isum1 += vaddvq_s16(p1) * scales[0];
  1446. isum2 += vaddvq_s16(p2) * scales[1];
  1447. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  1448. vmull_s8(vget_high_s8(q2bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  1449. const int16x8_t p4 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  1450. vmull_s8(vget_high_s8(q2bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  1451. isum1 += vaddvq_s16(p3) * scales[2];
  1452. isum2 += vaddvq_s16(p4) * scales[3];
  1453. #endif
  1454. sum += d * (isum1 + isum2);
  1455. }
  1456. *s = sum;
  1457. #elif defined __AVX2__
  1458. const __m256i m3 = _mm256_set1_epi8(3);
  1459. __m256 acc = _mm256_setzero_ps();
  1460. uint32_t ud, um;
  1461. const uint8_t * restrict db = (const uint8_t *)&ud;
  1462. const uint8_t * restrict mb = (const uint8_t *)&um;
  1463. float summs = 0;
  1464. // TODO: optimize this
  1465. for (int i = 0; i < nb; ++i) {
  1466. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1467. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1468. const uint8_t * restrict q2 = x[i].qs;
  1469. const int8_t * restrict q8 = y[i].qs;
  1470. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  1471. ud = (sc[0] >> 0) & 0x0f0f0f0f;
  1472. um = (sc[0] >> 4) & 0x0f0f0f0f;
  1473. int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3];
  1474. summs += dmin * smin;
  1475. const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2);
  1476. const __m256i q2_0 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 2), q2bits), m3);
  1477. const __m256i q2_1 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 6), _mm_srli_epi16(q2bits, 4)), m3);
  1478. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  1479. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  1480. const __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
  1481. const __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
  1482. const __m256i p_0 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 0));
  1483. const __m256i p_1 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 1));
  1484. const __m256i p_2 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 0));
  1485. const __m256i p_3 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 1));
  1486. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0), acc);
  1487. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1), acc);
  1488. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2), acc);
  1489. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3), acc);
  1490. }
  1491. *s = hsum_float_8(acc) + summs;
  1492. #elif defined __AVX__
  1493. const __m128i m3 = _mm_set1_epi8(3);
  1494. __m256 acc = _mm256_setzero_ps();
  1495. uint32_t ud, um;
  1496. const uint8_t * restrict db = (const uint8_t *)&ud;
  1497. const uint8_t * restrict mb = (const uint8_t *)&um;
  1498. float summs = 0;
  1499. // TODO: optimize this
  1500. for (int i = 0; i < nb; ++i) {
  1501. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1502. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1503. const uint8_t * restrict q2 = x[i].qs;
  1504. const int8_t * restrict q8 = y[i].qs;
  1505. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  1506. ud = (sc[0] >> 0) & 0x0f0f0f0f;
  1507. um = (sc[0] >> 4) & 0x0f0f0f0f;
  1508. int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3];
  1509. summs += dmin * smin;
  1510. const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2);
  1511. const __m128i q2_0 = _mm_and_si128(q2bits, m3);
  1512. const __m128i q2_1 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  1513. const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  1514. const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  1515. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  1516. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  1517. const __m128i p0 = _mm_maddubs_epi16(q2_0, _mm256_extractf128_si256(q8_0, 0));
  1518. const __m128i p1 = _mm_maddubs_epi16(q2_1, _mm256_extractf128_si256(q8_0, 1));
  1519. const __m128i p2 = _mm_maddubs_epi16(q2_2, _mm256_extractf128_si256(q8_1, 0));
  1520. const __m128i p3 = _mm_maddubs_epi16(q2_3, _mm256_extractf128_si256(q8_1, 1));
  1521. const __m256i p_0 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p0, p0)), _mm_cvtepi16_epi32(p0));
  1522. const __m256i p_1 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p1, p1)), _mm_cvtepi16_epi32(p1));
  1523. const __m256i p_2 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p2, p2)), _mm_cvtepi16_epi32(p2));
  1524. const __m256i p_3 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p3, p3)), _mm_cvtepi16_epi32(p3));
  1525. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0)), acc);
  1526. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1)), acc);
  1527. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2)), acc);
  1528. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3)), acc);
  1529. }
  1530. *s = hsum_float_8(acc) + summs;
  1531. #else
  1532. float sumf = 0;
  1533. int isum[4];
  1534. for (int i = 0; i < nb; ++i) {
  1535. const uint8_t * q2 = x[i].qs;
  1536. const int8_t * q8 = y[i].qs;
  1537. const uint8_t * sc = x[i].scales;
  1538. int summs = 0;
  1539. for (int j = 0; j < QK_K/16; ++j) {
  1540. summs += y[i].bsums[j] * (sc[j] >> 4);
  1541. }
  1542. const float dall = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1543. const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1544. isum[0] = isum[1] = isum[2] = isum[3] = 0;
  1545. for (int l = 0; l < 16; ++l) {
  1546. isum[0] += q8[l+ 0] * ((q2[l] >> 0) & 3);
  1547. isum[1] += q8[l+16] * ((q2[l] >> 2) & 3);
  1548. isum[2] += q8[l+32] * ((q2[l] >> 4) & 3);
  1549. isum[3] += q8[l+48] * ((q2[l] >> 6) & 3);
  1550. }
  1551. for (int l = 0; l < 4; ++l) {
  1552. isum[l] *= (sc[l] & 0xF);
  1553. }
  1554. sumf += dall * (isum[0] + isum[1] + isum[2] + isum[3]) - dmin * summs;
  1555. }
  1556. *s = sumf;
  1557. #endif
  1558. }
  1559. #endif
  1560. #if QK_K == 256
  1561. void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1562. assert(n % QK_K == 0);
  1563. const uint32_t kmask1 = 0x03030303;
  1564. const uint32_t kmask2 = 0x0f0f0f0f;
  1565. const block_q3_K * restrict x = vx;
  1566. const block_q8_K * restrict y = vy;
  1567. const int nb = n / QK_K;
  1568. #ifdef __ARM_NEON
  1569. uint32_t aux[3];
  1570. uint32_t utmp[4];
  1571. const uint8x16_t m3b = vdupq_n_u8(0x3);
  1572. #ifdef __ARM_FEATURE_DOTPROD
  1573. const int32x4_t vzero = vdupq_n_s32(0);
  1574. #endif
  1575. const uint8x16_t m0 = vdupq_n_u8(1);
  1576. const uint8x16_t m1 = vshlq_n_u8(m0, 1);
  1577. const uint8x16_t m2 = vshlq_n_u8(m0, 2);
  1578. const uint8x16_t m3 = vshlq_n_u8(m0, 3);
  1579. const int8_t m32 = 32;
  1580. int8x16x4_t q3bytes;
  1581. float sum = 0;
  1582. for (int i = 0; i < nb; ++i) {
  1583. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1584. const uint8_t * restrict q3 = x[i].qs;
  1585. const uint8_t * restrict qh = x[i].hmask;
  1586. const int8_t * restrict q8 = y[i].qs;
  1587. uint8x16x2_t qhbits = vld1q_u8_x2(qh);
  1588. uint8x16x4_t q3h;
  1589. int32_t isum = 0;
  1590. // Set up scales
  1591. memcpy(aux, x[i].scales, 12);
  1592. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  1593. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  1594. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  1595. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  1596. int8_t * scale = (int8_t *)utmp;
  1597. for (int j = 0; j < 16; ++j) scale[j] -= m32;
  1598. for (int j = 0; j < QK_K/128; ++j) {
  1599. const uint8x16x2_t q3bits = vld1q_u8_x2(q3); q3 += 32;
  1600. const int8x16x4_t q8bytes_1 = vld1q_s8_x4(q8); q8 += 64;
  1601. const int8x16x4_t q8bytes_2 = vld1q_s8_x4(q8); q8 += 64;
  1602. q3h.val[0] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[0]), 2);
  1603. q3h.val[1] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[1]), 2);
  1604. q3h.val[2] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[0]), 1);
  1605. q3h.val[3] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[1]), 1);
  1606. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[0], m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  1607. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[1], m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  1608. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 2), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  1609. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 2), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  1610. #if defined(__ARM_FEATURE_DOTPROD)
  1611. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes_1.val[0])) * scale[0];
  1612. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes_1.val[1])) * scale[1];
  1613. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes_1.val[2])) * scale[2];
  1614. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes_1.val[3])) * scale[3];
  1615. #else
  1616. int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes_1.val[0])),
  1617. vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes_1.val[0])));
  1618. int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes_1.val[1])),
  1619. vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes_1.val[1])));
  1620. int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes_1.val[2])),
  1621. vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes_1.val[2])));
  1622. int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes_1.val[3])),
  1623. vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes_1.val[3])));
  1624. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1] + vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
  1625. #endif
  1626. scale += 4;
  1627. q3h.val[0] = vbicq_u8(m2, qhbits.val[0]);
  1628. q3h.val[1] = vbicq_u8(m2, qhbits.val[1]);
  1629. q3h.val[2] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[0]), 1);
  1630. q3h.val[3] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[1]), 1);
  1631. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 4), m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  1632. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 4), m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  1633. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 6), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  1634. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 6), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  1635. #if defined(__ARM_FEATURE_DOTPROD)
  1636. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes_2.val[0])) * scale[0];
  1637. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes_2.val[1])) * scale[1];
  1638. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes_2.val[2])) * scale[2];
  1639. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes_2.val[3])) * scale[3];
  1640. #else
  1641. p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes_2.val[0])),
  1642. vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes_2.val[0])));
  1643. p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes_2.val[1])),
  1644. vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes_2.val[1])));
  1645. p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes_2.val[2])),
  1646. vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes_2.val[2])));
  1647. p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes_2.val[3])),
  1648. vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes_2.val[3])));
  1649. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1] + vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
  1650. #endif
  1651. scale += 4;
  1652. if (j == 0) {
  1653. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 4);
  1654. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 4);
  1655. }
  1656. }
  1657. sum += d * isum;
  1658. }
  1659. *s = sum;
  1660. #elif defined __AVX2__
  1661. const __m256i m3 = _mm256_set1_epi8(3);
  1662. const __m256i mone = _mm256_set1_epi8(1);
  1663. const __m128i m32 = _mm_set1_epi8(32);
  1664. __m256 acc = _mm256_setzero_ps();
  1665. uint32_t aux[3];
  1666. for (int i = 0; i < nb; ++i) {
  1667. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1668. const uint8_t * restrict q3 = x[i].qs;
  1669. const int8_t * restrict q8 = y[i].qs;
  1670. // Set up scales
  1671. memcpy(aux, x[i].scales, 12);
  1672. __m128i scales128 = _mm_set_epi32(
  1673. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  1674. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  1675. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  1676. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  1677. scales128 = _mm_sub_epi8(scales128, m32);
  1678. const __m256i all_scales = _mm256_cvtepi8_epi16(scales128);
  1679. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  1680. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  1681. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  1682. // high bit
  1683. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].hmask);
  1684. // integer accumulator
  1685. __m256i sumi = _mm256_setzero_si256();
  1686. int bit = 0;
  1687. int is = 0;
  1688. for (int j = 0; j < QK_K/128; ++j) {
  1689. // load low 2 bits
  1690. const __m256i q3bits = _mm256_loadu_si256((const __m256i*)q3); q3 += 32;
  1691. // prepare low and high bits
  1692. const __m256i q3l_0 = _mm256_and_si256(q3bits, m3);
  1693. const __m256i q3h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  1694. ++bit;
  1695. const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 2), m3);
  1696. const __m256i q3h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  1697. ++bit;
  1698. const __m256i q3l_2 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 4), m3);
  1699. const __m256i q3h_2 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  1700. ++bit;
  1701. const __m256i q3l_3 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 6), m3);
  1702. const __m256i q3h_3 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  1703. ++bit;
  1704. // load Q8 quants
  1705. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1706. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1707. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1708. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1709. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  1710. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  1711. // and 2 if the high bit was set)
  1712. __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
  1713. __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
  1714. __m256i q8s_2 = _mm256_maddubs_epi16(q3h_2, q8_2);
  1715. __m256i q8s_3 = _mm256_maddubs_epi16(q3h_3, q8_3);
  1716. __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
  1717. __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
  1718. __m256i p16_2 = _mm256_maddubs_epi16(q3l_2, q8_2);
  1719. __m256i p16_3 = _mm256_maddubs_epi16(q3l_3, q8_3);
  1720. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  1721. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  1722. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  1723. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  1724. // multiply with scales
  1725. p16_0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0);
  1726. p16_1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1);
  1727. p16_2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2);
  1728. p16_3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3);
  1729. // accumulate
  1730. p16_0 = _mm256_add_epi32(p16_0, p16_1);
  1731. p16_2 = _mm256_add_epi32(p16_2, p16_3);
  1732. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_2));
  1733. }
  1734. // multiply with block scale and accumulate
  1735. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  1736. }
  1737. *s = hsum_float_8(acc);
  1738. #elif defined __AVX__
  1739. const __m128i m3 = _mm_set1_epi8(3);
  1740. const __m128i mone = _mm_set1_epi8(1);
  1741. const __m128i m32 = _mm_set1_epi8(32);
  1742. const __m128i m2 = _mm_set1_epi8(2);
  1743. __m256 acc = _mm256_setzero_ps();
  1744. const uint32_t *aux;
  1745. for (int i = 0; i < nb; ++i) {
  1746. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1747. const uint8_t * restrict q3 = x[i].qs;
  1748. const int8_t * restrict q8 = y[i].qs;
  1749. // Set up scales
  1750. aux = (const uint32_t *)x[i].scales;
  1751. __m128i scales128 = _mm_set_epi32(
  1752. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  1753. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  1754. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  1755. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  1756. scales128 = _mm_sub_epi8(scales128, m32);
  1757. const __m128i scales_0 = _mm_cvtepi8_epi16(scales128);
  1758. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales128, scales128));
  1759. const __m128i scales[2] = { scales_0, scales_1 };
  1760. // high bit *128*2 from block_q3_K.hmask[QK_K/8]
  1761. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].hmask[0]);
  1762. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].hmask[16]);
  1763. // integer accumulator
  1764. __m128i sumi_0 = _mm_setzero_si128();
  1765. __m128i sumi_1 = _mm_setzero_si128();
  1766. for (int j = 0; j < QK_K/128; ++j) {
  1767. // load low 2 bits *64*2 from block_q3_K.qs[QK_K/4]
  1768. const __m128i q3bits_0 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  1769. const __m128i q3bits_1 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  1770. // prepare low and high bits
  1771. const int bit = j << 2;
  1772. const __m128i q3l_0 = _mm_and_si128(q3bits_0, m3);
  1773. const __m128i q3l_1 = _mm_and_si128(q3bits_1, m3);
  1774. const __m128i q3h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit)), bit), 2);
  1775. const __m128i q3h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit)), bit), 2);
  1776. const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 2), m3);
  1777. const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 2), m3);
  1778. const __m128i q3h_2 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  1779. const __m128i q3h_3 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  1780. const __m128i q3l_4 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 4), m3);
  1781. const __m128i q3l_5 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 4), m3);
  1782. const __m128i q3h_4 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  1783. const __m128i q3h_5 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  1784. const __m128i q3l_6 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 6), m3);
  1785. const __m128i q3l_7 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 6), m3);
  1786. const __m128i q3h_6 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  1787. const __m128i q3h_7 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  1788. // load Q8 quants from block_q8_K.qs[QK_K]
  1789. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1790. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1791. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1792. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1793. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1794. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1795. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1796. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1797. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  1798. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  1799. // and 2 if the high bit was set)
  1800. __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, q8_0);
  1801. __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, q8_1);
  1802. __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, q8_2);
  1803. __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, q8_3);
  1804. __m128i q8s_4 = _mm_maddubs_epi16(q3h_4, q8_4);
  1805. __m128i q8s_5 = _mm_maddubs_epi16(q3h_5, q8_5);
  1806. __m128i q8s_6 = _mm_maddubs_epi16(q3h_6, q8_6);
  1807. __m128i q8s_7 = _mm_maddubs_epi16(q3h_7, q8_7);
  1808. __m128i p16_0 = _mm_maddubs_epi16(q3l_0, q8_0);
  1809. __m128i p16_1 = _mm_maddubs_epi16(q3l_1, q8_1);
  1810. __m128i p16_2 = _mm_maddubs_epi16(q3l_2, q8_2);
  1811. __m128i p16_3 = _mm_maddubs_epi16(q3l_3, q8_3);
  1812. __m128i p16_4 = _mm_maddubs_epi16(q3l_4, q8_4);
  1813. __m128i p16_5 = _mm_maddubs_epi16(q3l_5, q8_5);
  1814. __m128i p16_6 = _mm_maddubs_epi16(q3l_6, q8_6);
  1815. __m128i p16_7 = _mm_maddubs_epi16(q3l_7, q8_7);
  1816. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  1817. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  1818. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  1819. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  1820. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  1821. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  1822. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  1823. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  1824. // multiply with scales
  1825. __m128i shuffle = _mm_set1_epi16(0x0100);
  1826. p16_0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_0);
  1827. shuffle = _mm_add_epi16(shuffle, m2);
  1828. p16_1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_1);
  1829. shuffle = _mm_add_epi16(shuffle, m2);
  1830. p16_2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_2);
  1831. shuffle = _mm_add_epi16(shuffle, m2);
  1832. p16_3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_3);
  1833. shuffle = _mm_add_epi16(shuffle, m2);
  1834. p16_4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_4);
  1835. shuffle = _mm_add_epi16(shuffle, m2);
  1836. p16_5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_5);
  1837. shuffle = _mm_add_epi16(shuffle, m2);
  1838. p16_6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_6);
  1839. shuffle = _mm_add_epi16(shuffle, m2);
  1840. p16_7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_7);
  1841. // accumulate
  1842. p16_0 = _mm_add_epi32(p16_0, p16_1);
  1843. p16_2 = _mm_add_epi32(p16_2, p16_3);
  1844. p16_4 = _mm_add_epi32(p16_4, p16_5);
  1845. p16_6 = _mm_add_epi32(p16_6, p16_7);
  1846. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  1847. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_4, p16_6));
  1848. }
  1849. // multiply with block scale and accumulate
  1850. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  1851. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  1852. }
  1853. *s = hsum_float_8(acc);
  1854. #else
  1855. // scalar version
  1856. // This function is written like this so the compiler can manage to vectorize most of it
  1857. // Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
  1858. // manually vectorized version above. Every other version I tried would run at least 4 times slower.
  1859. // The ideal situation would be if we could just write the code once, and the compiler would
  1860. // automatically produce the best possible set of machine instructions, instead of us having to manually
  1861. // write vectorized versions for AVX, ARM_NEON, etc.
  1862. int8_t aux8[QK_K];
  1863. int16_t aux16[8];
  1864. float sums [8];
  1865. int32_t aux32[8];
  1866. memset(sums, 0, 8*sizeof(float));
  1867. uint32_t auxs[4];
  1868. const int8_t * scales = (const int8_t*)auxs;
  1869. float sumf = 0;
  1870. for (int i = 0; i < nb; ++i) {
  1871. const uint8_t * restrict q3 = x[i].qs;
  1872. const uint8_t * restrict hm = x[i].hmask;
  1873. const int8_t * restrict q8 = y[i].qs;
  1874. memset(aux32, 0, 8*sizeof(int32_t));
  1875. int8_t * restrict a = aux8;
  1876. uint8_t m = 1;
  1877. for (int j = 0; j < QK_K; j += 128) {
  1878. for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
  1879. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  1880. a += 32; m <<= 1;
  1881. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
  1882. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  1883. a += 32; m <<= 1;
  1884. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
  1885. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  1886. a += 32; m <<= 1;
  1887. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
  1888. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  1889. a += 32; m <<= 1;
  1890. q3 += 32;
  1891. }
  1892. a = aux8;
  1893. memcpy(auxs, x[i].scales, 12);
  1894. uint32_t tmp = auxs[2];
  1895. auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  1896. auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  1897. auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  1898. auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  1899. for (int j = 0; j < QK_K/16; ++j) {
  1900. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  1901. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  1902. q8 += 8; a += 8;
  1903. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  1904. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  1905. q8 += 8; a += 8;
  1906. }
  1907. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  1908. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  1909. }
  1910. for (int l = 0; l < 8; ++l) sumf += sums[l];
  1911. *s = sumf;
  1912. #endif
  1913. }
  1914. #else
  1915. void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1916. assert(n % QK_K == 0);
  1917. const block_q3_K * restrict x = vx;
  1918. const block_q8_K * restrict y = vy;
  1919. const int nb = n / QK_K;
  1920. #ifdef __ARM_NEON
  1921. #ifdef __ARM_FEATURE_DOTPROD
  1922. const int32x4_t vzero = vdupq_n_s32(0);
  1923. #endif
  1924. const uint8x16_t m3b = vdupq_n_u8(0x3);
  1925. const uint8x16_t mh = vdupq_n_u8(4);
  1926. int8x16x4_t q3bytes;
  1927. uint16_t aux16[2];
  1928. int8_t * scales = (int8_t *)aux16;
  1929. float sum = 0;
  1930. for (int i = 0; i < nb; ++i) {
  1931. uint8x16x4_t q3h;
  1932. const uint8x8_t hbits = vld1_u8(x[i].hmask);
  1933. const uint8x16_t q3bits = vld1q_u8(x[i].qs);
  1934. const int8x16x4_t q8bytes = vld1q_s8_x4(y[i].qs);
  1935. const uint16_t a = *(const uint16_t *)x[i].scales;
  1936. aux16[0] = a & 0x0f0f;
  1937. aux16[1] = (a >> 4) & 0x0f0f;
  1938. for (int j = 0; j < 4; ++j) scales[j] -= 8;
  1939. int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]);
  1940. const float d = y[i].d * (float)x[i].d;
  1941. const uint8x16_t htmp = vcombine_u8(hbits, vshr_n_u8(hbits, 1));
  1942. q3h.val[0] = vandq_u8(mh, vshlq_n_u8(htmp, 2));
  1943. q3h.val[1] = vandq_u8(mh, htmp);
  1944. q3h.val[2] = vandq_u8(mh, vshrq_n_u8(htmp, 2));
  1945. q3h.val[3] = vandq_u8(mh, vshrq_n_u8(htmp, 4));
  1946. q3bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q3bits, m3b), q3h.val[0]));
  1947. q3bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 2), m3b), q3h.val[1]));
  1948. q3bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 4), m3b), q3h.val[2]));
  1949. q3bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q3bits, 6), q3h.val[3]));
  1950. #if defined(__ARM_FEATURE_DOTPROD)
  1951. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes.val[0])) * scales[0];
  1952. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes.val[1])) * scales[2];
  1953. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes.val[2])) * scales[1];
  1954. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes.val[3])) * scales[3];
  1955. #else
  1956. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  1957. vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  1958. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  1959. vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  1960. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  1961. vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  1962. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  1963. vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  1964. isum += vaddvq_s16(p0) * scales[0] + vaddvq_s16(p1) * scales[2] + vaddvq_s16(p2) * scales[1] + vaddvq_s16(p3) * scales[3];
  1965. #endif
  1966. sum += d * isum;
  1967. }
  1968. *s = sum;
  1969. #elif defined __AVX2__
  1970. const __m256i m3 = _mm256_set1_epi8(3);
  1971. const __m256i m1 = _mm256_set1_epi8(1);
  1972. __m256 acc = _mm256_setzero_ps();
  1973. uint64_t aux64;
  1974. uint16_t aux16[2];
  1975. const int8_t * aux8 = (const int8_t *)aux16;
  1976. for (int i = 0; i < nb; ++i) {
  1977. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1978. const uint8_t * restrict q3 = x[i].qs;
  1979. const int8_t * restrict q8 = y[i].qs;
  1980. const uint16_t a = *(const uint16_t *)x[i].scales;
  1981. aux16[0] = a & 0x0f0f;
  1982. aux16[1] = (a >> 4) & 0x0f0f;
  1983. const __m256i scale_0 = MM256_SET_M128I(_mm_set1_epi16(aux8[2] - 8), _mm_set1_epi16(aux8[0] - 8));
  1984. const __m256i scale_1 = MM256_SET_M128I(_mm_set1_epi16(aux8[3] - 8), _mm_set1_epi16(aux8[1] - 8));
  1985. memcpy(&aux64, x[i].hmask, 8);
  1986. const __m128i haux = _mm_set_epi64x(aux64 >> 1, aux64 >> 0);
  1987. __m256i q3h_0 = MM256_SET_M128I(_mm_srli_epi16(haux, 2), haux);
  1988. __m256i q3h_1 = _mm256_srli_epi16(q3h_0, 4);
  1989. q3h_0 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_0, m1), 2);
  1990. q3h_1 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_1, m1), 2);
  1991. // load low 2 bits
  1992. const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3);
  1993. // prepare low and high bits
  1994. const __m256i q3aux = MM256_SET_M128I(_mm_srli_epi16(q3bits, 2), q3bits);
  1995. const __m256i q3l_0 = _mm256_and_si256(q3aux, m3);
  1996. const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3aux, 4), m3);
  1997. // load Q8 quants
  1998. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  1999. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  2000. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  2001. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  2002. // and 2 if the high bit was set)
  2003. const __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
  2004. const __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
  2005. __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
  2006. __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
  2007. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  2008. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  2009. // multiply with scales
  2010. p16_0 = _mm256_madd_epi16(scale_0, p16_0);
  2011. p16_1 = _mm256_madd_epi16(scale_1, p16_1);
  2012. p16_0 = _mm256_add_epi32(p16_0, p16_1);
  2013. // multiply with block scale and accumulate
  2014. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16_0), acc);
  2015. }
  2016. *s = hsum_float_8(acc);
  2017. #elif defined __AVX__
  2018. const __m128i m3 = _mm_set1_epi8(3);
  2019. const __m128i m1 = _mm_set1_epi8(1);
  2020. __m256 acc = _mm256_setzero_ps();
  2021. uint64_t aux64;
  2022. uint16_t aux16[2];
  2023. const int8_t * aux8 = (const int8_t *)aux16;
  2024. for (int i = 0; i < nb; ++i) {
  2025. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2026. const uint8_t * restrict q3 = x[i].qs;
  2027. const int8_t * restrict q8 = y[i].qs;
  2028. const uint16_t a = *(const uint16_t *)x[i].scales;
  2029. aux16[0] = a & 0x0f0f;
  2030. aux16[1] = (a >> 4) & 0x0f0f;
  2031. const __m128i scale_0 = _mm_set1_epi16(aux8[0] - 8);
  2032. const __m128i scale_1 = _mm_set1_epi16(aux8[2] - 8);
  2033. const __m128i scale_2 = _mm_set1_epi16(aux8[1] - 8);
  2034. const __m128i scale_3 = _mm_set1_epi16(aux8[3] - 8);
  2035. memcpy(&aux64, x[i].hmask, 8);
  2036. __m128i q3h_0 = _mm_set_epi64x(aux64 >> 1, aux64 >> 0);
  2037. __m128i q3h_1 = _mm_srli_epi16(q3h_0, 2);
  2038. __m128i q3h_2 = _mm_srli_epi16(q3h_0, 4);
  2039. __m128i q3h_3 = _mm_srli_epi16(q3h_0, 6);
  2040. q3h_0 = _mm_slli_epi16(_mm_andnot_si128(q3h_0, m1), 2);
  2041. q3h_1 = _mm_slli_epi16(_mm_andnot_si128(q3h_1, m1), 2);
  2042. q3h_2 = _mm_slli_epi16(_mm_andnot_si128(q3h_2, m1), 2);
  2043. q3h_3 = _mm_slli_epi16(_mm_andnot_si128(q3h_3, m1), 2);
  2044. // load low 2 bits
  2045. const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3);
  2046. // prepare low and high bits
  2047. const __m128i q3l_0 = _mm_and_si128(q3bits, m3);
  2048. const __m128i q3l_1 = _mm_and_si128(_mm_srli_epi16(q3bits, 2), m3);
  2049. const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits, 4), m3);
  2050. const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits, 6), m3);
  2051. // load Q8 quants
  2052. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  2053. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  2054. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm_maddubs_epi16,
  2055. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  2056. // and 2 if the high bit was set)
  2057. const __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, _mm256_extractf128_si256(q8_0, 0));
  2058. const __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, _mm256_extractf128_si256(q8_0, 1));
  2059. const __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, _mm256_extractf128_si256(q8_1, 0));
  2060. const __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, _mm256_extractf128_si256(q8_1, 1));
  2061. __m128i p16_0 = _mm_maddubs_epi16(q3l_0, _mm256_extractf128_si256(q8_0, 0));
  2062. __m128i p16_1 = _mm_maddubs_epi16(q3l_1, _mm256_extractf128_si256(q8_0, 1));
  2063. __m128i p16_2 = _mm_maddubs_epi16(q3l_2, _mm256_extractf128_si256(q8_1, 0));
  2064. __m128i p16_3 = _mm_maddubs_epi16(q3l_3, _mm256_extractf128_si256(q8_1, 1));
  2065. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  2066. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  2067. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  2068. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  2069. // multiply with scales
  2070. p16_0 = _mm_madd_epi16(scale_0, p16_0);
  2071. p16_1 = _mm_madd_epi16(scale_1, p16_1);
  2072. p16_2 = _mm_madd_epi16(scale_2, p16_2);
  2073. p16_3 = _mm_madd_epi16(scale_3, p16_3);
  2074. p16_0 = _mm_add_epi32(p16_0, p16_2);
  2075. p16_1 = _mm_add_epi32(p16_1, p16_3);
  2076. __m256i p16 = MM256_SET_M128I(p16_1, p16_0);
  2077. // multiply with block scale and accumulate
  2078. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16)), acc);
  2079. }
  2080. *s = hsum_float_8(acc);
  2081. #else
  2082. int8_t aux8[QK_K];
  2083. int16_t aux16[8];
  2084. float sums [8];
  2085. int32_t aux32[8];
  2086. int32_t scales[4];
  2087. memset(sums, 0, 8*sizeof(float));
  2088. float sumf = 0;
  2089. for (int i = 0; i < nb; ++i) {
  2090. const uint8_t * restrict q3 = x[i].qs;
  2091. const uint8_t * restrict hm = x[i].hmask;
  2092. const int8_t * restrict q8 = y[i].qs;
  2093. int8_t * restrict a = aux8;
  2094. for (int l = 0; l < 8; ++l) {
  2095. a[l+ 0] = (int8_t)((q3[l+0] >> 0) & 3) - (hm[l] & 0x01 ? 0 : 4);
  2096. a[l+ 8] = (int8_t)((q3[l+8] >> 0) & 3) - (hm[l] & 0x02 ? 0 : 4);
  2097. a[l+16] = (int8_t)((q3[l+0] >> 2) & 3) - (hm[l] & 0x04 ? 0 : 4);
  2098. a[l+24] = (int8_t)((q3[l+8] >> 2) & 3) - (hm[l] & 0x08 ? 0 : 4);
  2099. a[l+32] = (int8_t)((q3[l+0] >> 4) & 3) - (hm[l] & 0x10 ? 0 : 4);
  2100. a[l+40] = (int8_t)((q3[l+8] >> 4) & 3) - (hm[l] & 0x20 ? 0 : 4);
  2101. a[l+48] = (int8_t)((q3[l+0] >> 6) & 3) - (hm[l] & 0x40 ? 0 : 4);
  2102. a[l+56] = (int8_t)((q3[l+8] >> 6) & 3) - (hm[l] & 0x80 ? 0 : 4);
  2103. }
  2104. scales[0] = (x[i].scales[0] & 0xF) - 8;
  2105. scales[1] = (x[i].scales[0] >> 4) - 8;
  2106. scales[2] = (x[i].scales[1] & 0xF) - 8;
  2107. scales[3] = (x[i].scales[1] >> 4) - 8;
  2108. memset(aux32, 0, 8*sizeof(int32_t));
  2109. for (int j = 0; j < QK_K/16; ++j) {
  2110. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2111. q8 += 8; a += 8;
  2112. for (int l = 0; l < 8; ++l) aux16[l] += q8[l] * a[l];
  2113. q8 += 8; a += 8;
  2114. for (int l = 0; l < 8; ++l) aux32[l] += scales[j] * aux16[l];
  2115. }
  2116. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  2117. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  2118. }
  2119. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2120. *s = sumf;
  2121. #endif
  2122. }
  2123. #endif
  2124. #if QK_K == 256
  2125. void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2126. assert(n % QK_K == 0);
  2127. const block_q4_K * restrict x = vx;
  2128. const block_q8_K * restrict y = vy;
  2129. const int nb = n / QK_K;
  2130. static const uint32_t kmask1 = 0x3f3f3f3f;
  2131. static const uint32_t kmask2 = 0x0f0f0f0f;
  2132. static const uint32_t kmask3 = 0x03030303;
  2133. uint32_t utmp[4];
  2134. #ifdef __ARM_NEON
  2135. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2136. #ifdef __ARM_FEATURE_DOTPROD
  2137. const int32x4_t mzero = vdupq_n_s32(0);
  2138. #endif
  2139. int8x16x2_t q4bytes;
  2140. int8x16x2_t q8bytes;
  2141. float sumf = 0;
  2142. for (int i = 0; i < nb; ++i) {
  2143. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2144. const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2145. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  2146. memcpy(utmp, x[i].scales, 12);
  2147. uint32x2_t mins8 = { 0 };
  2148. mins8 = vset_lane_u32(utmp[1] & kmask1, mins8, 0);
  2149. mins8 = vset_lane_u32(((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4), mins8, 1);
  2150. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2151. utmp[0] &= kmask1;
  2152. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins8)));
  2153. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  2154. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  2155. sumf -= dmin * vaddvq_s32(prod);
  2156. const uint8_t * scales = (const uint8_t *)utmp;
  2157. const uint8_t * restrict q4 = x[i].qs;
  2158. const int8_t * restrict q8 = y[i].qs;
  2159. int32_t sumi1 = 0;
  2160. int32_t sumi2 = 0;
  2161. for (int j = 0; j < QK_K/64; ++j) {
  2162. const uint8x16x2_t q4bits = vld1q_u8_x2(q4); q4 += 32;
  2163. #ifdef __ARM_FEATURE_DOTPROD
  2164. q8bytes = vld1q_s8_x2(q8); q8 += 32;
  2165. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  2166. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  2167. const int32x4_t p1 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  2168. sumi1 += vaddvq_s32(p1) * scales[2*j+0];
  2169. q8bytes = vld1q_s8_x2(q8); q8 += 32;
  2170. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  2171. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  2172. const int32x4_t p2 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  2173. sumi2 += vaddvq_s32(p2) * scales[2*j+1];
  2174. #else
  2175. q8bytes = vld1q_s8_x2(q8); q8 += 32;
  2176. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  2177. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  2178. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2179. vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2180. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2181. vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2182. sumi1 += vaddvq_s16(vaddq_s16(p0, p1)) * scales[2*j+0];
  2183. q8bytes = vld1q_s8_x2(q8); q8 += 32;
  2184. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  2185. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  2186. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2187. vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2188. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2189. vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2190. sumi2 += vaddvq_s16(vaddq_s16(p2, p3)) * scales[2*j+1];
  2191. #endif
  2192. }
  2193. sumf += d * (sumi1 + sumi2);
  2194. }
  2195. *s = sumf;
  2196. #elif defined __AVX2__
  2197. const __m256i m4 = _mm256_set1_epi8(0xF);
  2198. __m256 acc = _mm256_setzero_ps();
  2199. __m128 acc_m = _mm_setzero_ps();
  2200. for (int i = 0; i < nb; ++i) {
  2201. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2202. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2203. memcpy(utmp, x[i].scales, 12);
  2204. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2205. const uint32_t uaux = utmp[1] & kmask1;
  2206. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2207. utmp[2] = uaux;
  2208. utmp[0] &= kmask1;
  2209. const uint8_t * restrict q4 = x[i].qs;
  2210. const int8_t * restrict q8 = y[i].qs;
  2211. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  2212. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  2213. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  2214. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  2215. acc_m = _mm_fmadd_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod), acc_m);
  2216. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  2217. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  2218. __m256i sumi = _mm256_setzero_si256();
  2219. for (int j = 0; j < QK_K/64; ++j) {
  2220. const __m256i scale_l = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  2221. const __m256i scale_h = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  2222. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  2223. const __m256i q4l = _mm256_and_si256(q4bits, m4);
  2224. const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
  2225. const __m256i q8l = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2226. __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
  2227. p16l = _mm256_madd_epi16(scale_l, p16l);
  2228. const __m256i q8h = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2229. __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
  2230. p16h = _mm256_madd_epi16(scale_h, p16h);
  2231. const __m256i sumj = _mm256_add_epi32(p16l, p16h);
  2232. sumi = _mm256_add_epi32(sumi, sumj);
  2233. }
  2234. __m256 vd = _mm256_set1_ps(d);
  2235. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  2236. }
  2237. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  2238. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  2239. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  2240. #elif defined __AVX__
  2241. const __m128i m4 = _mm_set1_epi8(0xF);
  2242. const __m128i m2 = _mm_set1_epi8(0x2);
  2243. __m256 acc = _mm256_setzero_ps();
  2244. __m128 acc_m = _mm_setzero_ps();
  2245. for (int i = 0; i < nb; ++i) {
  2246. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2247. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2248. const uint8_t * restrict q4 = x[i].qs;
  2249. const int8_t * restrict q8 = y[i].qs;
  2250. memcpy(utmp, x[i].scales, 12);
  2251. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2252. const uint32_t uaux = utmp[1] & kmask1;
  2253. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2254. utmp[2] = uaux;
  2255. utmp[0] &= kmask1;
  2256. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  2257. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  2258. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  2259. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  2260. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  2261. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  2262. const __m128i prod = _mm_madd_epi16(mins, q8s);
  2263. acc_m = _mm_add_ps(_mm_mul_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod)), acc_m);
  2264. __m128i sumi_0 = _mm_setzero_si128();
  2265. __m128i sumi_1 = _mm_setzero_si128();
  2266. __m128i shuffle = _mm_set1_epi16(0x0100);
  2267. for (int j = 0; j < QK_K/64; ++j) {
  2268. const __m128i scale_l = _mm_shuffle_epi8(scales, shuffle);
  2269. shuffle = _mm_add_epi16(shuffle, m2);
  2270. const __m128i scale_h = _mm_shuffle_epi8(scales, shuffle);
  2271. shuffle = _mm_add_epi16(shuffle, m2);
  2272. __m128i q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  2273. const __m128i q4l_0 = _mm_and_si128(q4bits, m4);
  2274. const __m128i q4h_0 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  2275. q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  2276. const __m128i q4l_1 = _mm_and_si128(q4bits, m4);
  2277. const __m128i q4h_1 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  2278. const __m128i q8l_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2279. __m128i p16l = _mm_maddubs_epi16(q4l_0, q8l_0);
  2280. p16l = _mm_madd_epi16(scale_l, p16l);
  2281. sumi_0 = _mm_add_epi32(sumi_0, p16l);
  2282. const __m128i q8l_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2283. p16l = _mm_maddubs_epi16(q4l_1, q8l_1);
  2284. p16l = _mm_madd_epi16(scale_l, p16l);
  2285. sumi_1 = _mm_add_epi32(sumi_1, p16l);
  2286. const __m128i q8h_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2287. __m128i p16h = _mm_maddubs_epi16(q4h_0, q8h_0);
  2288. p16h = _mm_madd_epi16(scale_h, p16h);
  2289. sumi_0 = _mm_add_epi32(sumi_0, p16h);
  2290. const __m128i q8h_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2291. p16h = _mm_maddubs_epi16(q4h_1, q8h_1);
  2292. p16h = _mm_madd_epi16(scale_h, p16h);
  2293. sumi_1 = _mm_add_epi32(sumi_1, p16h);
  2294. }
  2295. __m256 vd = _mm256_set1_ps(d);
  2296. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  2297. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  2298. }
  2299. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  2300. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  2301. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  2302. #else
  2303. const uint8_t * scales = (const uint8_t*)&utmp[0];
  2304. const uint8_t * mins = (const uint8_t*)&utmp[2];
  2305. int8_t aux8[QK_K];
  2306. int16_t aux16[8];
  2307. float sums [8];
  2308. int32_t aux32[8];
  2309. memset(sums, 0, 8*sizeof(float));
  2310. float sumf = 0;
  2311. for (int i = 0; i < nb; ++i) {
  2312. const uint8_t * restrict q4 = x[i].qs;
  2313. const int8_t * restrict q8 = y[i].qs;
  2314. memset(aux32, 0, 8*sizeof(int32_t));
  2315. int8_t * restrict a = aux8;
  2316. for (int j = 0; j < QK_K/64; ++j) {
  2317. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  2318. a += 32;
  2319. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  2320. a += 32; q4 += 32;
  2321. }
  2322. memcpy(utmp, x[i].scales, 12);
  2323. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2324. const uint32_t uaux = utmp[1] & kmask1;
  2325. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2326. utmp[2] = uaux;
  2327. utmp[0] &= kmask1;
  2328. int sumi = 0;
  2329. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  2330. a = aux8;
  2331. int is = 0;
  2332. for (int j = 0; j < QK_K/32; ++j) {
  2333. int32_t scale = scales[is++];
  2334. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2335. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2336. q8 += 8; a += 8;
  2337. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2338. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2339. q8 += 8; a += 8;
  2340. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2341. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2342. q8 += 8; a += 8;
  2343. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2344. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2345. q8 += 8; a += 8;
  2346. }
  2347. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  2348. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  2349. const float dmin = ggml_fp16_to_fp32(x[i].dmin) * y[i].d;
  2350. sumf -= dmin * sumi;
  2351. }
  2352. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2353. *s = sumf;
  2354. #endif
  2355. }
  2356. #else
  2357. void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2358. assert(n % QK_K == 0);
  2359. const block_q4_K * restrict x = vx;
  2360. const block_q8_K * restrict y = vy;
  2361. const int nb = n / QK_K;
  2362. #ifdef __ARM_NEON
  2363. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2364. #ifdef __ARM_FEATURE_DOTPROD
  2365. const int32x4_t mzero = vdupq_n_s32(0);
  2366. #endif
  2367. float sumf = 0;
  2368. int8x16x2_t q4bytes;
  2369. int8x16x4_t q8bytes;
  2370. float sum_mins = 0.f;
  2371. uint16_t aux16[2];
  2372. const uint8_t * restrict scales = (const uint8_t *)aux16;
  2373. for (int i = 0; i < nb; ++i) {
  2374. const uint8_t * restrict q4 = x[i].qs;
  2375. const int8_t * restrict q8 = y[i].qs;
  2376. const uint16_t * restrict a = (const uint16_t *)x[i].scales;
  2377. aux16[0] = a[0] & 0x0f0f;
  2378. aux16[1] = (a[0] >> 4) & 0x0f0f;
  2379. const int32_t summi = scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]);
  2380. sum_mins += y[i].d * (float)x[i].d[1] * summi;
  2381. const float d = y[i].d * (float)x[i].d[0];
  2382. const uint8x16x2_t q4bits = vld1q_u8_x2(q4);
  2383. #ifdef __ARM_FEATURE_DOTPROD
  2384. q8bytes = vld1q_s8_x4(q8);
  2385. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  2386. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  2387. const int32x4_t p1 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  2388. const int32_t sumi1 = vaddvq_s32(p1) * scales[0];
  2389. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  2390. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  2391. const int32x4_t p2 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[2]), q4bytes.val[1], q8bytes.val[3]);
  2392. const int32_t sumi2 = vaddvq_s32(p2) * scales[1];
  2393. #else
  2394. q8bytes = vld1q_s8_x4(q8);
  2395. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  2396. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  2397. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2398. vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2399. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2400. vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2401. int32_t sumi1 = vaddvq_s16(vaddq_s16(p0, p1)) * scales[0];
  2402. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  2403. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  2404. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[2])),
  2405. vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[2])));
  2406. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[3])),
  2407. vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[3])));
  2408. int32_t sumi2 = vaddvq_s16(vaddq_s16(p2, p3)) * scales[1];
  2409. #endif
  2410. sumf += d * (sumi1 + sumi2);
  2411. }
  2412. *s = sumf - sum_mins;
  2413. #elif defined __AVX2__
  2414. const __m256i m4 = _mm256_set1_epi8(0xF);
  2415. __m256 acc = _mm256_setzero_ps();
  2416. float summs = 0;
  2417. uint16_t aux16[2];
  2418. const uint8_t * scales = (const uint8_t *)aux16;
  2419. for (int i = 0; i < nb; ++i) {
  2420. const float d = ggml_fp16_to_fp32(x[i].d[0]) * y[i].d;
  2421. const float m = ggml_fp16_to_fp32(x[i].d[1]) * y[i].d;
  2422. const __m256 vd = _mm256_set1_ps(d);
  2423. const uint16_t * a = (const uint16_t *)x[i].scales;
  2424. aux16[0] = a[0] & 0x0f0f;
  2425. aux16[1] = (a[0] >> 4) & 0x0f0f;
  2426. summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  2427. const uint8_t * restrict q4 = x[i].qs;
  2428. const int8_t * restrict q8 = y[i].qs;
  2429. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4);
  2430. const __m256i q4l = _mm256_and_si256(q4bits, m4);
  2431. const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
  2432. const __m256i q8l = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  2433. const __m256i q8h = _mm256_loadu_si256((const __m256i*)(q8+32));
  2434. const __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
  2435. const __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
  2436. const __m256i p32l = _mm256_madd_epi16(_mm256_set1_epi16(scales[0]), p16l);
  2437. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32l), acc);
  2438. const __m256i p32h = _mm256_madd_epi16(_mm256_set1_epi16(scales[1]), p16h);
  2439. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32h), acc);
  2440. }
  2441. *s = hsum_float_8(acc) - summs;
  2442. #elif defined __AVX__
  2443. const __m128i m4 = _mm_set1_epi8(0xF);
  2444. __m256 acc = _mm256_setzero_ps();
  2445. float summs = 0;
  2446. uint16_t aux16[2];
  2447. const uint8_t * scales = (const uint8_t *)aux16;
  2448. for (int i = 0; i < nb; ++i) {
  2449. const float d = ggml_fp16_to_fp32(x[i].d[0]) * y[i].d;
  2450. const float m = ggml_fp16_to_fp32(x[i].d[1]) * y[i].d;
  2451. const __m256 vd = _mm256_set1_ps(d);
  2452. const uint16_t * a = (const uint16_t *)x[i].scales;
  2453. aux16[0] = a[0] & 0x0f0f;
  2454. aux16[1] = (a[0] >> 4) & 0x0f0f;
  2455. summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  2456. const uint8_t * restrict q4 = x[i].qs;
  2457. const int8_t * restrict q8 = y[i].qs;
  2458. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4);
  2459. const __m128i q4bits_0 = _mm256_extractf128_si256(q4bits, 0);
  2460. const __m128i q4bits_1 = _mm256_extractf128_si256(q4bits, 1);
  2461. const __m128i q4_0 = _mm_and_si128(q4bits_0, m4);
  2462. const __m128i q4_1 = _mm_and_si128(q4bits_1, m4);
  2463. const __m128i q4_2 = _mm_and_si128(_mm_srli_epi16(q4bits_0, 4), m4);
  2464. const __m128i q4_3 = _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4);
  2465. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  2466. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  2467. const __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0));
  2468. const __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1));
  2469. const __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0));
  2470. const __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1));
  2471. const __m128i p32_0 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_0);
  2472. const __m128i p32_1 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_1);
  2473. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_1, p32_0))), acc);
  2474. const __m128i p32_2 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_2);
  2475. const __m128i p32_3 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_3);
  2476. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_3, p32_2))), acc);
  2477. }
  2478. *s = hsum_float_8(acc) - summs;
  2479. #else
  2480. uint8_t aux8[QK_K];
  2481. int16_t aux16[16];
  2482. float sums [8];
  2483. memset(sums, 0, 8*sizeof(float));
  2484. uint16_t s16[2];
  2485. const uint8_t * restrict scales = (const uint8_t *)s16;
  2486. float sumf = 0;
  2487. for (int i = 0; i < nb; ++i) {
  2488. const uint8_t * restrict q4 = x[i].qs;
  2489. const int8_t * restrict q8 = y[i].qs;
  2490. uint8_t * restrict a = aux8;
  2491. for (int l = 0; l < 32; ++l) a[l+ 0] = q4[l] & 0xF;
  2492. for (int l = 0; l < 32; ++l) a[l+32] = q4[l] >> 4;
  2493. const uint16_t * restrict b = (const uint16_t *)x[i].scales;
  2494. s16[0] = b[0] & 0x0f0f;
  2495. s16[1] = (b[0] >> 4) & 0x0f0f;
  2496. sumf -= y[i].d * ggml_fp16_to_fp32(x[i].d[1]) * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  2497. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d[0]);
  2498. for (int j = 0; j < QK_K/32; ++j) {
  2499. for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l];
  2500. q8 += 16; a += 16;
  2501. for (int l = 0; l < 16; ++l) aux16[l] += q8[l] * a[l];
  2502. q8 += 16; a += 16;
  2503. const float dl = d * scales[j];
  2504. for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[l+8]);
  2505. }
  2506. }
  2507. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2508. *s = sumf;
  2509. #endif
  2510. }
  2511. #endif
  2512. #if QK_K == 256
  2513. void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2514. assert(n % QK_K == 0);
  2515. const block_q5_K * restrict x = vx;
  2516. const block_q8_K * restrict y = vy;
  2517. const int nb = n / QK_K;
  2518. static const uint32_t kmask1 = 0x3f3f3f3f;
  2519. static const uint32_t kmask2 = 0x0f0f0f0f;
  2520. static const uint32_t kmask3 = 0x03030303;
  2521. uint32_t utmp[4];
  2522. #ifdef __ARM_NEON
  2523. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2524. const uint8x16_t mone = vdupq_n_u8(1);
  2525. const uint8x16_t mtwo = vdupq_n_u8(2);
  2526. #if defined(__ARM_FEATURE_DOTPROD)
  2527. const int32x4_t mzero = vdupq_n_s32(0);
  2528. #endif
  2529. int8x16x4_t q5bytes;
  2530. float sumf = 0;
  2531. for (int i = 0; i < nb; ++i) {
  2532. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2533. const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2534. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  2535. memcpy(utmp, x[i].scales, 12);
  2536. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2537. const uint32_t uaux = utmp[1] & kmask1;
  2538. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2539. utmp[2] = uaux;
  2540. utmp[0] &= kmask1;
  2541. const uint8x8_t mins8 = vld1_u8((const uint8_t*)utmp + 8);
  2542. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(mins8));
  2543. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  2544. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  2545. int32_t sumi_mins = vaddvq_s32(prod);
  2546. const uint8_t * scales = (const uint8_t *)utmp;
  2547. const uint8_t * restrict q5 = x[i].qs;
  2548. const uint8_t * restrict qh = x[i].qh;
  2549. const int8_t * restrict q8 = y[i].qs;
  2550. uint8x16x2_t qhbits = vld1q_u8_x2(qh);
  2551. uint8x16x4_t q5h;
  2552. int32_t sumi = 0;
  2553. for (int j = 0; j < QK_K/64; ++j) {
  2554. const uint8x16x2_t q5bits = vld1q_u8_x2(q5); q5 += 32;
  2555. const int8x16x4_t q8bytes = vld1q_s8_x4(q8); q8 += 64;
  2556. q5h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  2557. q5h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  2558. q5h.val[2] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[0]), 3);
  2559. q5h.val[3] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[1]), 3);
  2560. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 2);
  2561. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 2);
  2562. q5bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[0], m4b), q5h.val[0]));
  2563. q5bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[1], m4b), q5h.val[1]));
  2564. q5bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[0], 4), q5h.val[2]));
  2565. q5bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[1], 4), q5h.val[3]));
  2566. #if defined(__ARM_FEATURE_DOTPROD)
  2567. sumi += vaddvq_s32(vdotq_s32(vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]), q5bytes.val[1], q8bytes.val[1])) * *scales++;
  2568. sumi += vaddvq_s32(vdotq_s32(vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]), q5bytes.val[3], q8bytes.val[3])) * *scales++;
  2569. #else
  2570. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2571. vmull_s8(vget_high_s8(q5bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2572. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2573. vmull_s8(vget_high_s8(q5bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2574. sumi += vaddvq_s16(vaddq_s16(p0, p1)) * *scales++;
  2575. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  2576. vmull_s8(vget_high_s8(q5bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  2577. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  2578. vmull_s8(vget_high_s8(q5bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  2579. sumi += vaddvq_s16(vaddq_s16(p2, p3)) * *scales++;
  2580. #endif
  2581. }
  2582. sumf += d * sumi - dmin * sumi_mins;
  2583. }
  2584. *s = sumf;
  2585. #elif defined __AVX2__
  2586. const __m256i m4 = _mm256_set1_epi8(0xF);
  2587. const __m128i mzero = _mm_setzero_si128();
  2588. const __m256i mone = _mm256_set1_epi8(1);
  2589. __m256 acc = _mm256_setzero_ps();
  2590. float summs = 0.f;
  2591. for (int i = 0; i < nb; ++i) {
  2592. const uint8_t * restrict q5 = x[i].qs;
  2593. const int8_t * restrict q8 = y[i].qs;
  2594. #if QK_K == 256
  2595. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2596. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2597. memcpy(utmp, x[i].scales, 12);
  2598. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2599. const uint32_t uaux = utmp[1] & kmask1;
  2600. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2601. utmp[2] = uaux;
  2602. utmp[0] &= kmask1;
  2603. #else
  2604. // TODO
  2605. const float d = 0, dmin = 0;
  2606. #endif
  2607. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  2608. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  2609. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  2610. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  2611. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  2612. summs += dmin * _mm_extract_epi32(hsum, 0);
  2613. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  2614. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  2615. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].qh);
  2616. __m256i hmask = mone;
  2617. __m256i sumi = _mm256_setzero_si256();
  2618. int bit = 0;
  2619. for (int j = 0; j < QK_K/64; ++j) {
  2620. const __m256i scale_0 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  2621. const __m256i scale_1 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  2622. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); q5 += 32;
  2623. const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
  2624. const __m256i q5h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  2625. const __m256i q5_0 = _mm256_add_epi8(q5l_0, q5h_0);
  2626. hmask = _mm256_slli_epi16(hmask, 1);
  2627. const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
  2628. const __m256i q5h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  2629. const __m256i q5_1 = _mm256_add_epi8(q5l_1, q5h_1);
  2630. hmask = _mm256_slli_epi16(hmask, 1);
  2631. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2632. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2633. __m256i p16_0 = _mm256_maddubs_epi16(q5_0, q8_0);
  2634. __m256i p16_1 = _mm256_maddubs_epi16(q5_1, q8_1);
  2635. p16_0 = _mm256_madd_epi16(scale_0, p16_0);
  2636. p16_1 = _mm256_madd_epi16(scale_1, p16_1);
  2637. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  2638. }
  2639. __m256 vd = _mm256_set1_ps(d);
  2640. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  2641. }
  2642. *s = hsum_float_8(acc) + summs;
  2643. #elif defined __AVX__
  2644. const __m128i m4 = _mm_set1_epi8(0xF);
  2645. const __m128i mzero = _mm_setzero_si128();
  2646. const __m128i mone = _mm_set1_epi8(1);
  2647. const __m128i m2 = _mm_set1_epi8(2);
  2648. __m256 acc = _mm256_setzero_ps();
  2649. float summs = 0.f;
  2650. for (int i = 0; i < nb; ++i) {
  2651. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2652. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2653. const uint8_t * restrict q5 = x[i].qs;
  2654. const int8_t * restrict q8 = y[i].qs;
  2655. memcpy(utmp, x[i].scales, 12);
  2656. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2657. const uint32_t uaux = utmp[1] & kmask1;
  2658. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2659. utmp[2] = uaux;
  2660. utmp[0] &= kmask1;
  2661. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  2662. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  2663. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  2664. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  2665. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  2666. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  2667. const __m128i prod = _mm_madd_epi16(mins, q8s);
  2668. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  2669. summs += dmin * _mm_extract_epi32(hsum, 0);
  2670. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].qh[0]);
  2671. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].qh[16]);
  2672. __m128i hmask = mone;
  2673. __m128i sumi_0 = _mm_setzero_si128();
  2674. __m128i sumi_1 = _mm_setzero_si128();
  2675. int bit = 0;
  2676. __m128i shuffle = _mm_set1_epi16(0x0100);
  2677. for (int j = 0; j < QK_K/64; ++j) {
  2678. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  2679. shuffle = _mm_add_epi16(shuffle, m2);
  2680. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  2681. shuffle = _mm_add_epi16(shuffle, m2);
  2682. const __m128i q5bits_0 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  2683. const __m128i q5bits_1 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  2684. __m128i q5l_0 = _mm_and_si128(q5bits_0, m4);
  2685. __m128i q5l_1 = _mm_and_si128(q5bits_1, m4);
  2686. __m128i q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  2687. __m128i q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  2688. __m128i q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  2689. __m128i q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  2690. hmask = _mm_slli_epi16(hmask, 1);
  2691. __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2692. __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2693. __m128i p16_0 = _mm_maddubs_epi16(q5_0, q8_0);
  2694. __m128i p16_1 = _mm_maddubs_epi16(q5_1, q8_1);
  2695. p16_0 = _mm_madd_epi16(scale_0, p16_0);
  2696. p16_1 = _mm_madd_epi16(scale_0, p16_1);
  2697. q5l_0 = _mm_and_si128(_mm_srli_epi16(q5bits_0, 4), m4);
  2698. q5l_1 = _mm_and_si128(_mm_srli_epi16(q5bits_1, 4), m4);
  2699. q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  2700. q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  2701. q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  2702. q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  2703. hmask = _mm_slli_epi16(hmask, 1);
  2704. q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2705. q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2706. __m128i p16_2 = _mm_maddubs_epi16(q5_0, q8_0);
  2707. __m128i p16_3 = _mm_maddubs_epi16(q5_1, q8_1);
  2708. p16_2 = _mm_madd_epi16(scale_1, p16_2);
  2709. p16_3 = _mm_madd_epi16(scale_1, p16_3);
  2710. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  2711. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  2712. }
  2713. __m256 vd = _mm256_set1_ps(d);
  2714. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  2715. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  2716. }
  2717. *s = hsum_float_8(acc) + summs;
  2718. #else
  2719. const uint8_t * scales = (const uint8_t*)&utmp[0];
  2720. const uint8_t * mins = (const uint8_t*)&utmp[2];
  2721. int8_t aux8[QK_K];
  2722. int16_t aux16[8];
  2723. float sums [8];
  2724. int32_t aux32[8];
  2725. memset(sums, 0, 8*sizeof(float));
  2726. float sumf = 0;
  2727. for (int i = 0; i < nb; ++i) {
  2728. const uint8_t * restrict q4 = x[i].qs;
  2729. const uint8_t * restrict hm = x[i].qh;
  2730. const int8_t * restrict q8 = y[i].qs;
  2731. memset(aux32, 0, 8*sizeof(int32_t));
  2732. int8_t * restrict a = aux8;
  2733. uint8_t m = 1;
  2734. for (int j = 0; j < QK_K/64; ++j) {
  2735. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  2736. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  2737. a += 32; m <<= 1;
  2738. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  2739. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  2740. a += 32; m <<= 1;
  2741. q4 += 32;
  2742. }
  2743. memcpy(utmp, x[i].scales, 12);
  2744. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2745. const uint32_t uaux = utmp[1] & kmask1;
  2746. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2747. utmp[2] = uaux;
  2748. utmp[0] &= kmask1;
  2749. int sumi = 0;
  2750. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  2751. a = aux8;
  2752. int is = 0;
  2753. for (int j = 0; j < QK_K/32; ++j) {
  2754. int32_t scale = scales[is++];
  2755. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2756. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2757. q8 += 8; a += 8;
  2758. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2759. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2760. q8 += 8; a += 8;
  2761. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2762. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2763. q8 += 8; a += 8;
  2764. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2765. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2766. q8 += 8; a += 8;
  2767. }
  2768. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  2769. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  2770. const float dmin = ggml_fp16_to_fp32(x[i].dmin) * y[i].d;
  2771. sumf -= dmin * sumi;
  2772. }
  2773. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2774. *s = sumf;
  2775. #endif
  2776. }
  2777. #else
  2778. void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2779. assert(n % QK_K == 0);
  2780. const block_q5_K * restrict x = vx;
  2781. const block_q8_K * restrict y = vy;
  2782. const int nb = n / QK_K;
  2783. #ifdef __ARM_NEON
  2784. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2785. const uint8x16_t mh = vdupq_n_u8(16);
  2786. #if defined(__ARM_FEATURE_DOTPROD)
  2787. const int32x4_t mzero = vdupq_n_s32(0);
  2788. #endif
  2789. int8x16x4_t q5bytes;
  2790. uint8x16x4_t q5h;
  2791. float sumf = 0;
  2792. for (int i = 0; i < nb; ++i) {
  2793. const float d = y[i].d * (float)x[i].d;
  2794. const int8_t * sc = x[i].scales;
  2795. const uint8_t * restrict q5 = x[i].qs;
  2796. const uint8_t * restrict qh = x[i].qh;
  2797. const int8_t * restrict q8 = y[i].qs;
  2798. const uint8x8_t qhbits = vld1_u8(qh);
  2799. const uint8x16x2_t q5bits = vld1q_u8_x2(q5);
  2800. const int8x16x4_t q8bytes = vld1q_s8_x4(q8);
  2801. const uint8x16_t htmp = vcombine_u8(qhbits, vshr_n_u8(qhbits, 1));
  2802. q5h.val[0] = vbicq_u8(mh, vshlq_n_u8(htmp, 4));
  2803. q5h.val[1] = vbicq_u8(mh, vshlq_n_u8(htmp, 2));
  2804. q5h.val[2] = vbicq_u8(mh, htmp);
  2805. q5h.val[3] = vbicq_u8(mh, vshrq_n_u8(htmp, 2));
  2806. q5bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[0], m4b)), vreinterpretq_s8_u8(q5h.val[0]));
  2807. q5bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[1], m4b)), vreinterpretq_s8_u8(q5h.val[1]));
  2808. q5bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[0], 4)), vreinterpretq_s8_u8(q5h.val[2]));
  2809. q5bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[1], 4)), vreinterpretq_s8_u8(q5h.val[3]));
  2810. #if defined(__ARM_FEATURE_DOTPROD)
  2811. int32_t sumi1 = sc[0] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]));
  2812. int32_t sumi2 = sc[1] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[1], q8bytes.val[1]));
  2813. int32_t sumi3 = sc[2] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]));
  2814. int32_t sumi4 = sc[3] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[3], q8bytes.val[3]));
  2815. sumf += d * (sumi1 + sumi2 + sumi3 + sumi4);
  2816. #else
  2817. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2818. vmull_s8(vget_high_s8(q5bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2819. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2820. vmull_s8(vget_high_s8(q5bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2821. int32_t sumi = sc[0] * vaddvq_s16(p0) + sc[1] * vaddvq_s16(p1);
  2822. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  2823. vmull_s8(vget_high_s8(q5bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  2824. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  2825. vmull_s8(vget_high_s8(q5bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  2826. sumi += sc[2] * vaddvq_s16(p2) + sc[3] * vaddvq_s16(p3);
  2827. sumf += d*sumi;
  2828. #endif
  2829. }
  2830. *s = sumf;
  2831. #elif defined __AVX2__
  2832. const __m256i m4 = _mm256_set1_epi8(0xF);
  2833. const __m256i mone = _mm256_set1_epi8(1);
  2834. __m256 acc = _mm256_setzero_ps();
  2835. for (int i = 0; i < nb; ++i) {
  2836. const uint8_t * restrict q5 = x[i].qs;
  2837. const int8_t * restrict q8 = y[i].qs;
  2838. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2839. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5);
  2840. const __m256i scale_l = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[1]), _mm_set1_epi16(x[i].scales[0]));
  2841. const __m256i scale_h = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[3]), _mm_set1_epi16(x[i].scales[2]));
  2842. int64_t aux64;
  2843. memcpy(&aux64, x[i].qh, 8);
  2844. const __m128i haux128 = _mm_set_epi64x(aux64 >> 1, aux64);
  2845. const __m256i haux256 = MM256_SET_M128I(_mm_srli_epi16(haux128, 2), haux128);
  2846. const __m256i q5h_0 = _mm256_slli_epi16(_mm256_andnot_si256(haux256, mone), 4);
  2847. const __m256i q5h_1 = _mm256_slli_epi16(_mm256_andnot_si256(_mm256_srli_epi16(haux256, 4), mone), 4);
  2848. const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
  2849. const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
  2850. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  2851. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  2852. const __m256i p16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5l_0, q8_0));
  2853. const __m256i p16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5l_1, q8_1));
  2854. const __m256i s16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5h_0, q8_0));
  2855. const __m256i s16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5h_1, q8_1));
  2856. const __m256i dot = _mm256_sub_epi32(_mm256_add_epi32(p16_0, p16_1), _mm256_add_epi32(s16_0, s16_1));
  2857. acc = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(dot), acc);
  2858. }
  2859. *s = hsum_float_8(acc);
  2860. #elif defined __AVX__
  2861. const __m128i m4 = _mm_set1_epi8(0xF);
  2862. const __m128i mone = _mm_set1_epi8(1);
  2863. __m256 acc = _mm256_setzero_ps();
  2864. for (int i = 0; i < nb; ++i) {
  2865. const uint8_t * restrict q5 = x[i].qs;
  2866. const int8_t * restrict q8 = y[i].qs;
  2867. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2868. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5);
  2869. const __m128i scale_0 = _mm_set1_epi16(x[i].scales[0]);
  2870. const __m128i scale_1 = _mm_set1_epi16(x[i].scales[1]);
  2871. const __m128i scale_2 = _mm_set1_epi16(x[i].scales[2]);
  2872. const __m128i scale_3 = _mm_set1_epi16(x[i].scales[3]);
  2873. int64_t aux64;
  2874. memcpy(&aux64, x[i].qh, 8);
  2875. const __m128i haux128_0 = _mm_set_epi64x(aux64 >> 1, aux64);
  2876. const __m128i haux128_1 = _mm_srli_epi16(haux128_0, 2);
  2877. const __m128i q5h_0 = _mm_slli_epi16(_mm_andnot_si128(haux128_0, mone), 4);
  2878. const __m128i q5h_1 = _mm_slli_epi16(_mm_andnot_si128(haux128_1, mone), 4);
  2879. const __m128i q5h_2 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_0, 4), mone), 4);
  2880. const __m128i q5h_3 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_1, 4), mone), 4);
  2881. const __m128i q5l_0 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 0), m4);
  2882. const __m128i q5l_1 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 1), m4);
  2883. const __m128i q5l_2 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 0), 4), m4);
  2884. const __m128i q5l_3 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 1), 4), m4);
  2885. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  2886. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  2887. const __m128i p16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5l_0, _mm256_extractf128_si256(q8_0, 0)));
  2888. const __m128i p16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5l_1, _mm256_extractf128_si256(q8_0, 1)));
  2889. const __m128i p16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5l_2, _mm256_extractf128_si256(q8_1, 0)));
  2890. const __m128i p16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5l_3, _mm256_extractf128_si256(q8_1, 1)));
  2891. const __m128i s16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5h_0, _mm256_extractf128_si256(q8_0, 0)));
  2892. const __m128i s16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5h_1, _mm256_extractf128_si256(q8_0, 1)));
  2893. const __m128i s16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5h_2, _mm256_extractf128_si256(q8_1, 0)));
  2894. const __m128i s16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5h_3, _mm256_extractf128_si256(q8_1, 1)));
  2895. const __m128i dot_0 = _mm_sub_epi32(_mm_add_epi32(p16_0, p16_2), _mm_add_epi32(s16_0, s16_2));
  2896. const __m128i dot_1 = _mm_sub_epi32(_mm_add_epi32(p16_1, p16_3), _mm_add_epi32(s16_1, s16_3));
  2897. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(dot_1, dot_0))), acc);
  2898. }
  2899. *s = hsum_float_8(acc);
  2900. #else
  2901. int8_t aux8[QK_K];
  2902. int16_t aux16[16];
  2903. float sums [8];
  2904. memset(sums, 0, 8*sizeof(float));
  2905. float sumf = 0;
  2906. for (int i = 0; i < nb; ++i) {
  2907. const uint8_t * restrict q4 = x[i].qs;
  2908. const uint8_t * restrict hm = x[i].qh;
  2909. const int8_t * restrict q8 = y[i].qs;
  2910. int8_t * restrict a = aux8;
  2911. for (int l = 0; l < 32; ++l) {
  2912. a[l+ 0] = q4[l] & 0xF;
  2913. a[l+32] = q4[l] >> 4;
  2914. }
  2915. for (int is = 0; is < 8; ++is) {
  2916. uint8_t m = 1 << is;
  2917. for (int l = 0; l < 8; ++l) a[8*is + l] -= (hm[l] & m ? 0 : 16);
  2918. }
  2919. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2920. const int8_t * restrict sc = x[i].scales;
  2921. for (int j = 0; j < QK_K/16; ++j) {
  2922. const float dl = d * sc[j];
  2923. for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l];
  2924. for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[8+l]);
  2925. q8 += 16; a += 16;
  2926. }
  2927. }
  2928. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2929. *s = sumf;
  2930. #endif
  2931. }
  2932. #endif
  2933. #if QK_K == 256
  2934. void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2935. assert(n % QK_K == 0);
  2936. const block_q6_K * restrict x = vx;
  2937. const block_q8_K * restrict y = vy;
  2938. const int nb = n / QK_K;
  2939. #ifdef __ARM_NEON
  2940. float sum = 0;
  2941. const uint8x16_t m4b = vdupq_n_u8(0xF);
  2942. #if defined(__ARM_FEATURE_DOTPROD)
  2943. const int32x4_t vzero = vdupq_n_s32(0);
  2944. #endif
  2945. //const int8x16_t m32s = vdupq_n_s8(32);
  2946. const uint8x16_t mone = vdupq_n_u8(3);
  2947. int8x16x4_t q6bytes;
  2948. uint8x16x4_t q6h;
  2949. for (int i = 0; i < nb; ++i) {
  2950. const float d_all = ggml_fp16_to_fp32(x[i].d);
  2951. const uint8_t * restrict q6 = x[i].ql;
  2952. const uint8_t * restrict qh = x[i].qh;
  2953. const int8_t * restrict q8 = y[i].qs;
  2954. const int8_t * restrict scale = x[i].scales;
  2955. const int16x8x2_t q8sums = vld1q_s16_x2(y[i].bsums);
  2956. const int8x16_t scales = vld1q_s8(scale);
  2957. const int16x8x2_t q6scales = {vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))};
  2958. const int32x4_t prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[0]), vget_low_s16 (q6scales.val[0])),
  2959. vmull_s16(vget_high_s16(q8sums.val[0]), vget_high_s16(q6scales.val[0]))),
  2960. vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[1]), vget_low_s16 (q6scales.val[1])),
  2961. vmull_s16(vget_high_s16(q8sums.val[1]), vget_high_s16(q6scales.val[1]))));
  2962. int32_t isum_mins = vaddvq_s32(prod);
  2963. int32_t isum = 0;
  2964. for (int j = 0; j < QK_K/128; ++j) {
  2965. uint8x16x2_t qhbits = vld1q_u8_x2(qh); qh += 32;
  2966. uint8x16x4_t q6bits = vld1q_u8_x4(q6); q6 += 64;
  2967. int8x16x4_t q8bytes = vld1q_s8_x4(q8); q8 += 64;
  2968. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  2969. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  2970. uint8x16_t shifted = vshrq_n_u8(qhbits.val[0], 2);
  2971. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2972. shifted = vshrq_n_u8(qhbits.val[1], 2);
  2973. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2974. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
  2975. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
  2976. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2])), m32s);
  2977. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3])), m32s);
  2978. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0]));
  2979. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1]));
  2980. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2]));
  2981. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3]));
  2982. #if defined(__ARM_FEATURE_DOTPROD)
  2983. isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  2984. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  2985. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  2986. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  2987. scale += 4;
  2988. #else
  2989. int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2990. vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2991. int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2992. vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2993. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
  2994. scale += 2;
  2995. int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  2996. vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  2997. int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  2998. vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  2999. isum += vaddvq_s16(p2) * scale[0] + vaddvq_s16(p3) * scale[1];
  3000. scale += 2;
  3001. #endif
  3002. q8bytes = vld1q_s8_x4(q8); q8 += 64;
  3003. shifted = vshrq_n_u8(qhbits.val[0], 4);
  3004. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  3005. shifted = vshrq_n_u8(qhbits.val[1], 4);
  3006. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  3007. shifted = vshrq_n_u8(qhbits.val[0], 6);
  3008. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  3009. shifted = vshrq_n_u8(qhbits.val[1], 6);
  3010. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  3011. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0])), m32s);
  3012. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1])), m32s);
  3013. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2])), m32s);
  3014. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3])), m32s);
  3015. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0]));
  3016. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1]));
  3017. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2]));
  3018. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3]));
  3019. #if defined(__ARM_FEATURE_DOTPROD)
  3020. isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  3021. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  3022. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  3023. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  3024. scale += 4;
  3025. //for (int l = 0; l < 4; ++l) {
  3026. // const int32x4_t p = vdotq_s32(vzero, q6bytes.val[l], q8bytes.val[l]);
  3027. // isum += vaddvq_s32(p) * *scale++;
  3028. //}
  3029. #else
  3030. p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  3031. vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  3032. p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  3033. vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  3034. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
  3035. scale += 2;
  3036. p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  3037. vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  3038. p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  3039. vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  3040. isum += vaddvq_s16(p2) * scale[0] + vaddvq_s16(p3) * scale[1];
  3041. scale += 2;
  3042. #endif
  3043. }
  3044. //sum += isum * d_all * y[i].d;
  3045. sum += d_all * y[i].d * (isum - 32 * isum_mins);
  3046. }
  3047. *s = sum;
  3048. #elif defined __AVX2__
  3049. const __m256i m4 = _mm256_set1_epi8(0xF);
  3050. const __m256i m2 = _mm256_set1_epi8(3);
  3051. const __m256i m32s = _mm256_set1_epi8(32);
  3052. __m256 acc = _mm256_setzero_ps();
  3053. for (int i = 0; i < nb; ++i) {
  3054. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  3055. const uint8_t * restrict q4 = x[i].ql;
  3056. const uint8_t * restrict qh = x[i].qh;
  3057. const int8_t * restrict q8 = y[i].qs;
  3058. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  3059. __m256i sumi = _mm256_setzero_si256();
  3060. int is = 0;
  3061. for (int j = 0; j < QK_K/128; ++j) {
  3062. const __m128i scale_0 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 0));
  3063. const __m128i scale_1 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 1));
  3064. const __m128i scale_2 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 2));
  3065. const __m128i scale_3 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 3));
  3066. is += 4;
  3067. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  3068. const __m256i q4bits2 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  3069. const __m256i q4bitsH = _mm256_loadu_si256((const __m256i*)qh); qh += 32;
  3070. const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(q4bitsH, m2), 4);
  3071. const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 2), m2), 4);
  3072. const __m256i q4h_2 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 4), m2), 4);
  3073. const __m256i q4h_3 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 6), m2), 4);
  3074. const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
  3075. const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(q4bits2, m4), q4h_1);
  3076. const __m256i q4_2 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_2);
  3077. const __m256i q4_3 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits2, 4), m4), q4h_3);
  3078. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3079. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3080. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3081. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3082. __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
  3083. __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
  3084. __m256i q8s_2 = _mm256_maddubs_epi16(m32s, q8_2);
  3085. __m256i q8s_3 = _mm256_maddubs_epi16(m32s, q8_3);
  3086. __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
  3087. __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
  3088. __m256i p16_2 = _mm256_maddubs_epi16(q4_2, q8_2);
  3089. __m256i p16_3 = _mm256_maddubs_epi16(q4_3, q8_3);
  3090. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  3091. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  3092. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  3093. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  3094. p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
  3095. p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
  3096. p16_2 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_2), p16_2);
  3097. p16_3 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_3), p16_3);
  3098. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  3099. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_2, p16_3));
  3100. }
  3101. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  3102. }
  3103. *s = hsum_float_8(acc);
  3104. #elif defined __AVX__
  3105. const __m128i m4 = _mm_set1_epi8(0xF);
  3106. const __m128i m3 = _mm_set1_epi8(3);
  3107. const __m128i m32s = _mm_set1_epi8(32);
  3108. const __m128i m2 = _mm_set1_epi8(2);
  3109. __m256 acc = _mm256_setzero_ps();
  3110. for (int i = 0; i < nb; ++i) {
  3111. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  3112. const uint8_t * restrict q4 = x[i].ql;
  3113. const uint8_t * restrict qh = x[i].qh;
  3114. const int8_t * restrict q8 = y[i].qs;
  3115. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  3116. __m128i sumi_0 = _mm_setzero_si128();
  3117. __m128i sumi_1 = _mm_setzero_si128();
  3118. __m128i shuffle = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  3119. for (int j = 0; j < QK_K/128; ++j) {
  3120. const __m128i q4bitsH_0 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  3121. const __m128i q4bitsH_1 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  3122. const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH_0, m3), 4);
  3123. const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(q4bitsH_1, m3), 4);
  3124. const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 2), m3), 4);
  3125. const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 2), m3), 4);
  3126. const __m128i q4h_4 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 4), m3), 4);
  3127. const __m128i q4h_5 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 4), m3), 4);
  3128. const __m128i q4h_6 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 6), m3), 4);
  3129. const __m128i q4h_7 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 6), m3), 4);
  3130. const __m128i q4bits1_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  3131. const __m128i q4bits1_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  3132. const __m128i q4bits2_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  3133. const __m128i q4bits2_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  3134. const __m128i q4_0 = _mm_or_si128(_mm_and_si128(q4bits1_0, m4), q4h_0);
  3135. const __m128i q4_1 = _mm_or_si128(_mm_and_si128(q4bits1_1, m4), q4h_1);
  3136. const __m128i q4_2 = _mm_or_si128(_mm_and_si128(q4bits2_0, m4), q4h_2);
  3137. const __m128i q4_3 = _mm_or_si128(_mm_and_si128(q4bits2_1, m4), q4h_3);
  3138. const __m128i q4_4 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_0, 4), m4), q4h_4);
  3139. const __m128i q4_5 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_1, 4), m4), q4h_5);
  3140. const __m128i q4_6 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_0, 4), m4), q4h_6);
  3141. const __m128i q4_7 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_1, 4), m4), q4h_7);
  3142. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3143. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3144. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3145. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3146. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3147. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3148. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3149. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3150. __m128i q8s_0 = _mm_maddubs_epi16(m32s, q8_0);
  3151. __m128i q8s_1 = _mm_maddubs_epi16(m32s, q8_1);
  3152. __m128i q8s_2 = _mm_maddubs_epi16(m32s, q8_2);
  3153. __m128i q8s_3 = _mm_maddubs_epi16(m32s, q8_3);
  3154. __m128i q8s_4 = _mm_maddubs_epi16(m32s, q8_4);
  3155. __m128i q8s_5 = _mm_maddubs_epi16(m32s, q8_5);
  3156. __m128i q8s_6 = _mm_maddubs_epi16(m32s, q8_6);
  3157. __m128i q8s_7 = _mm_maddubs_epi16(m32s, q8_7);
  3158. __m128i p16_0 = _mm_maddubs_epi16(q4_0, q8_0);
  3159. __m128i p16_1 = _mm_maddubs_epi16(q4_1, q8_1);
  3160. __m128i p16_2 = _mm_maddubs_epi16(q4_2, q8_2);
  3161. __m128i p16_3 = _mm_maddubs_epi16(q4_3, q8_3);
  3162. __m128i p16_4 = _mm_maddubs_epi16(q4_4, q8_4);
  3163. __m128i p16_5 = _mm_maddubs_epi16(q4_5, q8_5);
  3164. __m128i p16_6 = _mm_maddubs_epi16(q4_6, q8_6);
  3165. __m128i p16_7 = _mm_maddubs_epi16(q4_7, q8_7);
  3166. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  3167. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  3168. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  3169. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  3170. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  3171. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  3172. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  3173. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  3174. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  3175. shuffle = _mm_add_epi8(shuffle, m2);
  3176. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  3177. shuffle = _mm_add_epi8(shuffle, m2);
  3178. const __m128i scale_2 = _mm_shuffle_epi8(scales, shuffle);
  3179. shuffle = _mm_add_epi8(shuffle, m2);
  3180. const __m128i scale_3 = _mm_shuffle_epi8(scales, shuffle);
  3181. shuffle = _mm_add_epi8(shuffle, m2);
  3182. p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
  3183. p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
  3184. p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
  3185. p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
  3186. p16_4 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_2), p16_4);
  3187. p16_5 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_2, scale_2)), p16_5);
  3188. p16_6 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_3), p16_6);
  3189. p16_7 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_3, scale_3)), p16_7);
  3190. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  3191. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  3192. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_4, p16_6));
  3193. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_5, p16_7));
  3194. }
  3195. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  3196. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  3197. }
  3198. *s = hsum_float_8(acc);
  3199. #else
  3200. int8_t aux8[QK_K];
  3201. int16_t aux16[8];
  3202. float sums [8];
  3203. int32_t aux32[8];
  3204. memset(sums, 0, 8*sizeof(float));
  3205. float sumf = 0;
  3206. for (int i = 0; i < nb; ++i) {
  3207. const uint8_t * restrict q4 = x[i].ql;
  3208. const uint8_t * restrict qh = x[i].qh;
  3209. const int8_t * restrict q8 = y[i].qs;
  3210. memset(aux32, 0, 8*sizeof(int32_t));
  3211. int8_t * restrict a = aux8;
  3212. for (int j = 0; j < QK_K; j += 128) {
  3213. for (int l = 0; l < 32; ++l) {
  3214. a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  3215. a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  3216. a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  3217. a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  3218. }
  3219. a += 128;
  3220. q4 += 64;
  3221. qh += 32;
  3222. }
  3223. a = aux8;
  3224. int is = 0;
  3225. for (int j = 0; j < QK_K/16; ++j) {
  3226. int scale = x[i].scales[is++];
  3227. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  3228. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  3229. q8 += 8; a += 8;
  3230. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  3231. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  3232. q8 += 8; a += 8;
  3233. }
  3234. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  3235. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  3236. }
  3237. for (int l = 0; l < 8; ++l) sumf += sums[l];
  3238. *s = sumf;
  3239. #endif
  3240. }
  3241. #else
  3242. void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  3243. assert(n % QK_K == 0);
  3244. const block_q6_K * restrict x = vx;
  3245. const block_q8_K * restrict y = vy;
  3246. const int nb = n / QK_K;
  3247. #ifdef __ARM_NEON
  3248. float sum = 0;
  3249. const uint8x16_t m4b = vdupq_n_u8(0xF);
  3250. const int8x16_t m32s = vdupq_n_s8(32);
  3251. #if defined(__ARM_FEATURE_DOTPROD)
  3252. const int32x4_t vzero = vdupq_n_s32(0);
  3253. #endif
  3254. const uint8x16_t mone = vdupq_n_u8(3);
  3255. int8x16x4_t q6bytes;
  3256. uint8x16x4_t q6h;
  3257. for (int i = 0; i < nb; ++i) {
  3258. const float d_all = (float)x[i].d;
  3259. const uint8_t * restrict q6 = x[i].ql;
  3260. const uint8_t * restrict qh = x[i].qh;
  3261. const int8_t * restrict q8 = y[i].qs;
  3262. const int8_t * restrict scale = x[i].scales;
  3263. int32_t isum = 0;
  3264. uint8x16_t qhbits = vld1q_u8(qh);
  3265. uint8x16x2_t q6bits = vld1q_u8_x2(q6);
  3266. int8x16x4_t q8bytes = vld1q_s8_x4(q8);
  3267. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits), 4);
  3268. uint8x16_t shifted = vshrq_n_u8(qhbits, 2);
  3269. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  3270. shifted = vshrq_n_u8(qhbits, 4);
  3271. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  3272. shifted = vshrq_n_u8(qhbits, 6);
  3273. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  3274. q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
  3275. q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
  3276. q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[2])), m32s);
  3277. q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[3])), m32s);
  3278. #if defined(__ARM_FEATURE_DOTPROD)
  3279. isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  3280. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  3281. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  3282. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  3283. #else
  3284. int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  3285. vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  3286. int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  3287. vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  3288. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
  3289. int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  3290. vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  3291. int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  3292. vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  3293. isum += vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
  3294. #endif
  3295. sum += isum * d_all * y[i].d;
  3296. }
  3297. *s = sum;
  3298. #elif defined __AVX2__
  3299. const __m256i m4 = _mm256_set1_epi8(0xF);
  3300. const __m256i m2 = _mm256_set1_epi8(3);
  3301. const __m256i m32s = _mm256_set1_epi8(32);
  3302. __m256 acc = _mm256_setzero_ps();
  3303. for (int i = 0; i < nb; ++i) {
  3304. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  3305. const uint8_t * restrict q4 = x[i].ql;
  3306. const uint8_t * restrict qh = x[i].qh;
  3307. const int8_t * restrict q8 = y[i].qs;
  3308. const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]);
  3309. const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]);
  3310. const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]);
  3311. const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]);
  3312. __m256i sumi = _mm256_setzero_si256();
  3313. const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1);
  3314. const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3);
  3315. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4);
  3316. const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh);
  3317. const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 2), q4bitsH), m2), 4);
  3318. const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 6), _mm_srli_epi16(q4bitsH, 4)), m2), 4);
  3319. const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
  3320. const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_1);
  3321. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  3322. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  3323. __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
  3324. __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
  3325. __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
  3326. __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
  3327. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  3328. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  3329. p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
  3330. p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
  3331. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  3332. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  3333. }
  3334. *s = hsum_float_8(acc);
  3335. #elif defined __AVX__
  3336. const __m128i m4 = _mm_set1_epi8(0xF);
  3337. const __m128i m2 = _mm_set1_epi8(3);
  3338. const __m128i m32s = _mm_set1_epi8(32);
  3339. __m256 acc = _mm256_setzero_ps();
  3340. for (int i = 0; i < nb; ++i) {
  3341. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  3342. const uint8_t * restrict q4 = x[i].ql;
  3343. const uint8_t * restrict qh = x[i].qh;
  3344. const int8_t * restrict q8 = y[i].qs;
  3345. const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]);
  3346. const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]);
  3347. const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]);
  3348. const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]);
  3349. __m128i sumi_0 = _mm_setzero_si128();
  3350. __m128i sumi_1 = _mm_setzero_si128();
  3351. const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1);
  3352. const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3);
  3353. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4);
  3354. const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh);
  3355. const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH, m2), 4);
  3356. const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 2), m2), 4);
  3357. const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 4), m2), 4);
  3358. const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 6), m2), 4);
  3359. const __m128i q4_0 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 0), m4), q4h_0);
  3360. const __m128i q4_1 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 1), m4), q4h_1);
  3361. const __m128i q4_2 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 0), 4), m4), q4h_2);
  3362. const __m128i q4_3 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 1), 4), m4), q4h_3);
  3363. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  3364. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  3365. __m128i q8s_0 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 0));
  3366. __m128i q8s_1 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 1));
  3367. __m128i q8s_2 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 0));
  3368. __m128i q8s_3 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 1));
  3369. __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0));
  3370. __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1));
  3371. __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0));
  3372. __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1));
  3373. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  3374. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  3375. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  3376. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  3377. p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
  3378. p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
  3379. p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
  3380. p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
  3381. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  3382. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  3383. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(MM256_SET_M128I(sumi_1, sumi_0))), acc);
  3384. }
  3385. *s = hsum_float_8(acc);
  3386. #else
  3387. int8_t aux8[QK_K];
  3388. int16_t aux16[8];
  3389. float sums [8];
  3390. int32_t aux32[8];
  3391. memset(sums, 0, 8*sizeof(float));
  3392. float sumf = 0;
  3393. for (int i = 0; i < nb; ++i) {
  3394. const uint8_t * restrict q4 = x[i].ql;
  3395. const uint8_t * restrict qh = x[i].qh;
  3396. const int8_t * restrict q8 = y[i].qs;
  3397. memset(aux32, 0, 8*sizeof(int32_t));
  3398. int8_t * restrict a = aux8;
  3399. for (int l = 0; l < 16; ++l) {
  3400. a[l+ 0] = (int8_t)((q4[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  3401. a[l+16] = (int8_t)((q4[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  3402. a[l+32] = (int8_t)((q4[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  3403. a[l+48] = (int8_t)((q4[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  3404. }
  3405. int is = 0;
  3406. for (int j = 0; j < QK_K/16; ++j) {
  3407. int scale = x[i].scales[is++];
  3408. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  3409. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  3410. q8 += 8; a += 8;
  3411. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  3412. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  3413. q8 += 8; a += 8;
  3414. }
  3415. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  3416. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  3417. }
  3418. for (int l = 0; l < 8; ++l) sumf += sums[l];
  3419. *s = sumf;
  3420. #endif
  3421. }
  3422. #endif