convert-hf-to-gguf.py 109 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526
  1. #!/usr/bin/env python3
  2. from __future__ import annotations
  3. import argparse
  4. import contextlib
  5. import json
  6. import os
  7. import re
  8. import sys
  9. from abc import ABC, abstractmethod
  10. from enum import IntEnum
  11. from pathlib import Path
  12. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterator, Sequence, TypeVar, cast
  13. import numpy as np
  14. import torch
  15. if TYPE_CHECKING:
  16. from torch import Tensor
  17. if 'NO_LOCAL_GGUF' not in os.environ:
  18. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  19. import gguf
  20. from convert import LlamaHfVocab, permute
  21. ###### MODEL DEFINITIONS ######
  22. class SentencePieceTokenTypes(IntEnum):
  23. NORMAL = 1
  24. UNKNOWN = 2
  25. CONTROL = 3
  26. USER_DEFINED = 4
  27. UNUSED = 5
  28. BYTE = 6
  29. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  30. class Model(ABC):
  31. _model_classes: dict[str, type[Model]] = {}
  32. def __init__(self, dir_model: Path, ftype: int, fname_out: Path, is_big_endian: bool, use_temp_file: bool):
  33. self.dir_model = dir_model
  34. self.ftype = ftype
  35. self.fname_out = fname_out
  36. self.is_big_endian = is_big_endian
  37. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  38. self.use_temp_file = use_temp_file
  39. self.is_safetensors = self._is_model_safetensors()
  40. self.num_parts = Model.count_model_parts(self.dir_model, ".safetensors" if self.is_safetensors else ".bin")
  41. self.part_names = self._get_part_names()
  42. self.hparams = Model.load_hparams(self.dir_model)
  43. self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file)
  44. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
  45. @property
  46. @abstractmethod
  47. def model_arch(self) -> gguf.MODEL_ARCH:
  48. pass
  49. def find_hparam(self, keys: Sequence[str], optional: bool = False) -> Any:
  50. key = next((k for k in keys if k in self.hparams), None)
  51. if key is not None:
  52. return self.hparams[key]
  53. if optional:
  54. return None
  55. raise KeyError(f"could not find any of: {keys}")
  56. def set_vocab(self):
  57. self._set_vocab_gpt2()
  58. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  59. for part_name in self.part_names:
  60. print(f"gguf: loading model part '{part_name}'")
  61. ctx: ContextManager[Any]
  62. if self.is_safetensors:
  63. from safetensors import safe_open
  64. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  65. else:
  66. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  67. with ctx as model_part:
  68. for name in model_part.keys():
  69. data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
  70. yield name, data
  71. def set_gguf_parameters(self):
  72. self.gguf_writer.add_name(self.dir_model.name)
  73. self.gguf_writer.add_block_count(self.block_count)
  74. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  75. self.gguf_writer.add_context_length(n_ctx)
  76. print(f"gguf: context length = {n_ctx}")
  77. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  78. self.gguf_writer.add_embedding_length(n_embd)
  79. print(f"gguf: embedding length = {n_embd}")
  80. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  81. self.gguf_writer.add_feed_forward_length(n_ff)
  82. print(f"gguf: feed forward length = {n_ff}")
  83. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  84. self.gguf_writer.add_head_count(n_head)
  85. print(f"gguf: head count = {n_head}")
  86. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  87. self.gguf_writer.add_head_count_kv(n_head_kv)
  88. print(f"gguf: key-value head count = {n_head_kv}")
  89. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  90. self.gguf_writer.add_rope_freq_base(rope_theta)
  91. print(f"gguf: rope theta = {rope_theta}")
  92. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  93. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  94. print(f"gguf: rms norm epsilon = {f_rms_eps}")
  95. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  96. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  97. print(f"gguf: layer norm epsilon = {f_norm_eps}")
  98. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  99. self.gguf_writer.add_expert_count(n_experts)
  100. print(f"gguf: expert count = {n_experts}")
  101. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  102. self.gguf_writer.add_expert_used_count(n_experts_used)
  103. print(f"gguf: experts used count = {n_experts_used}")
  104. self.gguf_writer.add_file_type(self.ftype)
  105. print(f"gguf: file type = {self.ftype}")
  106. def write_tensors(self):
  107. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  108. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  109. for name, data_torch in self.get_tensors():
  110. # we don't need these
  111. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  112. continue
  113. old_dtype = data_torch.dtype
  114. # convert any unsupported data types to float32
  115. if data_torch.dtype not in (torch.float16, torch.float32):
  116. data_torch = data_torch.to(torch.float32)
  117. data = data_torch.squeeze().numpy()
  118. # map tensor names
  119. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  120. if new_name is None:
  121. print(f"Can not map tensor {name!r}")
  122. sys.exit()
  123. n_dims = len(data.shape)
  124. data_dtype = data.dtype
  125. # if f32 desired, convert any float16 to float32
  126. if self.ftype == 0 and data_dtype == np.float16:
  127. data = data.astype(np.float32)
  128. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  129. if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
  130. data = data.astype(np.float32)
  131. # if f16 desired, convert any float32 2-dim weight tensors to float16
  132. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  133. data = data.astype(np.float16)
  134. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  135. self.gguf_writer.add_tensor(new_name, data)
  136. def write(self):
  137. self.write_tensors()
  138. self.gguf_writer.write_header_to_file()
  139. self.gguf_writer.write_kv_data_to_file()
  140. self.gguf_writer.write_tensors_to_file()
  141. self.gguf_writer.close()
  142. def write_vocab(self):
  143. self.gguf_writer.write_header_to_file()
  144. self.gguf_writer.write_kv_data_to_file()
  145. self.gguf_writer.close()
  146. @staticmethod
  147. def count_model_parts(dir_model: Path, prefix: str) -> int:
  148. num_parts = 0
  149. for filename in os.listdir(dir_model):
  150. if filename.endswith(prefix):
  151. num_parts += 1
  152. return num_parts
  153. @staticmethod
  154. def load_hparams(dir_model):
  155. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  156. return json.load(f)
  157. @classmethod
  158. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  159. assert names
  160. def func(modelcls: type[Model]):
  161. for name in names:
  162. cls._model_classes[name] = modelcls
  163. return modelcls
  164. return func
  165. @classmethod
  166. def from_model_architecture(cls, arch):
  167. try:
  168. return cls._model_classes[arch]
  169. except KeyError:
  170. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  171. def _is_model_safetensors(self) -> bool:
  172. return Model.count_model_parts(self.dir_model, ".safetensors") > 0
  173. def _get_part_names(self):
  174. if self.is_safetensors:
  175. if self.num_parts == 1: # there's only one .safetensors file
  176. return ("model.safetensors",)
  177. return (f"model-{n:05}-of-{self.num_parts:05}.safetensors" for n in range(1, self.num_parts + 1))
  178. if self.num_parts == 1: # there's only one .bin file
  179. return ("pytorch_model.bin",)
  180. return (f"pytorch_model-{n:05}-of-{self.num_parts:05}.bin" for n in range(1, self.num_parts + 1))
  181. # used for GPT-2 BPE and WordPiece vocabs
  182. def get_basic_vocab(self) -> tuple[list[str], list[int]]:
  183. tokens: list[str] = []
  184. toktypes: list[int] = []
  185. from transformers import AutoTokenizer
  186. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  187. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  188. assert max(tokenizer.vocab.values()) < vocab_size
  189. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  190. added_vocab = tokenizer.get_added_vocab()
  191. for i in range(vocab_size):
  192. if i not in reverse_vocab:
  193. tokens.append(f"[PAD{i}]")
  194. toktypes.append(gguf.TokenType.USER_DEFINED)
  195. elif reverse_vocab[i] in added_vocab:
  196. tokens.append(reverse_vocab[i])
  197. if tokenizer.added_tokens_decoder[i].special:
  198. toktypes.append(gguf.TokenType.CONTROL)
  199. else:
  200. toktypes.append(gguf.TokenType.USER_DEFINED)
  201. else:
  202. tokens.append(reverse_vocab[i])
  203. toktypes.append(gguf.TokenType.NORMAL)
  204. return tokens, toktypes
  205. def _set_vocab_gpt2(self) -> None:
  206. tokens, toktypes = self.get_basic_vocab()
  207. self.gguf_writer.add_tokenizer_model("gpt2")
  208. self.gguf_writer.add_token_list(tokens)
  209. self.gguf_writer.add_token_types(toktypes)
  210. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  211. special_vocab.add_to_gguf(self.gguf_writer)
  212. def _set_vocab_qwen(self):
  213. dir_model = self.dir_model
  214. hparams = self.hparams
  215. tokens: list[str] = []
  216. toktypes: list[int] = []
  217. from transformers import AutoTokenizer
  218. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  219. vocab_size = hparams["vocab_size"]
  220. assert max(tokenizer.get_vocab().values()) < vocab_size
  221. merges = []
  222. vocab = {}
  223. mergeable_ranks = tokenizer.mergeable_ranks
  224. for token, rank in mergeable_ranks.items():
  225. vocab[QwenModel.token_bytes_to_string(token)] = rank
  226. if len(token) == 1:
  227. continue
  228. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  229. assert len(merged) == 2
  230. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  231. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  232. added_vocab = tokenizer.special_tokens
  233. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in (vocab | added_vocab).items()}
  234. for i in range(vocab_size):
  235. if i not in reverse_vocab:
  236. tokens.append(f"[PAD{i}]")
  237. toktypes.append(gguf.TokenType.USER_DEFINED)
  238. elif reverse_vocab[i] in added_vocab:
  239. tokens.append(reverse_vocab[i])
  240. toktypes.append(gguf.TokenType.CONTROL)
  241. else:
  242. tokens.append(reverse_vocab[i])
  243. toktypes.append(gguf.TokenType.NORMAL)
  244. self.gguf_writer.add_tokenizer_model("gpt2")
  245. self.gguf_writer.add_token_list(tokens)
  246. self.gguf_writer.add_token_types(toktypes)
  247. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  248. special_vocab.merges = merges
  249. # only add special tokens when they were not already loaded from config.json
  250. if len(special_vocab.special_token_ids) == 0:
  251. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  252. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  253. # this one is usually not in config.json anyway
  254. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  255. special_vocab.add_to_gguf(self.gguf_writer)
  256. def _set_vocab_sentencepiece(self):
  257. from sentencepiece import SentencePieceProcessor
  258. tokenizer_path = self.dir_model / 'tokenizer.model'
  259. tokens: list[bytes] = []
  260. scores: list[float] = []
  261. toktypes: list[int] = []
  262. if not tokenizer_path.is_file():
  263. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  264. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  265. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  266. for token_id in range(tokenizer.vocab_size()):
  267. piece = tokenizer.id_to_piece(token_id)
  268. text = piece.encode("utf-8")
  269. score = tokenizer.get_score(token_id)
  270. toktype = SentencePieceTokenTypes.NORMAL
  271. if tokenizer.is_unknown(token_id):
  272. toktype = SentencePieceTokenTypes.UNKNOWN
  273. elif tokenizer.is_control(token_id):
  274. toktype = SentencePieceTokenTypes.CONTROL
  275. elif tokenizer.is_unused(token_id):
  276. toktype = SentencePieceTokenTypes.UNUSED
  277. elif tokenizer.is_byte(token_id):
  278. toktype = SentencePieceTokenTypes.BYTE
  279. tokens.append(text)
  280. scores.append(score)
  281. toktypes.append(toktype)
  282. added_tokens_file = self.dir_model / 'added_tokens.json'
  283. if added_tokens_file.is_file():
  284. with open(added_tokens_file, "r", encoding="utf-8") as f:
  285. added_tokens_json = json.load(f)
  286. for key in added_tokens_json:
  287. key = key.encode("utf-8")
  288. if key not in tokens:
  289. tokens.append(key)
  290. scores.append(-1000.0)
  291. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  292. assert len(tokens) == vocab_size
  293. self.gguf_writer.add_tokenizer_model("llama")
  294. self.gguf_writer.add_token_list(tokens)
  295. self.gguf_writer.add_token_scores(scores)
  296. self.gguf_writer.add_token_types(toktypes)
  297. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  298. special_vocab.add_to_gguf(self.gguf_writer)
  299. def _set_vocab_llama_hf(self):
  300. vocab = LlamaHfVocab(self.dir_model)
  301. tokens = []
  302. scores = []
  303. toktypes = []
  304. for text, score, toktype in vocab.all_tokens():
  305. tokens.append(text)
  306. scores.append(score)
  307. toktypes.append(toktype)
  308. assert len(tokens) == vocab.vocab_size
  309. self.gguf_writer.add_tokenizer_model("llama")
  310. self.gguf_writer.add_token_list(tokens)
  311. self.gguf_writer.add_token_scores(scores)
  312. self.gguf_writer.add_token_types(toktypes)
  313. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  314. special_vocab.add_to_gguf(self.gguf_writer)
  315. @Model.register("GPTNeoXForCausalLM")
  316. class GPTNeoXModel(Model):
  317. model_arch = gguf.MODEL_ARCH.GPTNEOX
  318. def set_gguf_parameters(self):
  319. block_count = self.hparams["num_hidden_layers"]
  320. self.gguf_writer.add_name(self.dir_model.name)
  321. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  322. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  323. self.gguf_writer.add_block_count(block_count)
  324. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  325. self.gguf_writer.add_rope_dimension_count(
  326. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  327. )
  328. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  329. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  330. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  331. @Model.register("BloomForCausalLM")
  332. class BloomModel(Model):
  333. model_arch = gguf.MODEL_ARCH.BLOOM
  334. def set_gguf_parameters(self):
  335. self.gguf_writer.add_name("Bloom")
  336. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  337. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  338. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  339. self.gguf_writer.add_embedding_length(n_embed)
  340. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  341. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  342. self.gguf_writer.add_head_count(n_head)
  343. self.gguf_writer.add_head_count_kv(n_head)
  344. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  345. self.gguf_writer.add_file_type(self.ftype)
  346. def write_tensors(self):
  347. block_count = self.hparams["n_layer"]
  348. tensors = dict(self.get_tensors())
  349. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  350. has_lm_head = True
  351. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  352. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  353. for name, data_torch in tensors.items():
  354. if "lm_head.weight" not in tensors.keys() and "output.weight" not in tensors.keys():
  355. has_lm_head = False
  356. name = re.sub(r'transformer\.', '', name)
  357. old_dtype = data_torch.dtype
  358. # convert any unsupported data types to float32
  359. if data_torch.dtype not in (torch.float16, torch.float32):
  360. data_torch = data_torch.to(torch.float32)
  361. data = data_torch.squeeze().numpy()
  362. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  363. # Map bloom-style qkv_linear to gpt-style qkv_linear
  364. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  365. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  366. qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed))
  367. data = np.concatenate(
  368. (
  369. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  370. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  371. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  372. ),
  373. axis=0,
  374. )
  375. print("re-format attention.linear_qkv.weight")
  376. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  377. qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
  378. data = np.concatenate(
  379. (
  380. qkv_bias[:, 0, :].reshape((n_embed,)),
  381. qkv_bias[:, 1, :].reshape((n_embed,)),
  382. qkv_bias[:, 2, :].reshape((n_embed,)),
  383. ),
  384. axis=0,
  385. )
  386. print("re-format attention.linear_qkv.bias")
  387. # map tensor names
  388. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  389. if new_name is None:
  390. print(f"Can not map tensor {name!r}")
  391. sys.exit()
  392. n_dims = len(data.shape)
  393. data_dtype = data.dtype
  394. # if f32 desired, convert any float16 to float32
  395. if self.ftype == 0 and data_dtype == np.float16:
  396. data = data.astype(np.float32)
  397. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  398. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  399. data = data.astype(np.float32)
  400. # if f16 desired, convert any float32 2-dim weight tensors to float16
  401. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  402. data = data.astype(np.float16)
  403. print(f"=> {new_name}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  404. self.gguf_writer.add_tensor(new_name, data)
  405. if not has_lm_head and name == "word_embeddings.weight":
  406. self.gguf_writer.add_tensor("output.weight", data)
  407. print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  408. @Model.register("MPTForCausalLM")
  409. class MPTModel(Model):
  410. model_arch = gguf.MODEL_ARCH.MPT
  411. def set_vocab(self):
  412. try:
  413. self._set_vocab_gpt2()
  414. except Exception:
  415. # Fallback for SEA-LION model
  416. self._set_vocab_sentencepiece()
  417. self.gguf_writer.add_add_bos_token(False)
  418. self.gguf_writer.add_pad_token_id(3)
  419. self.gguf_writer.add_eos_token_id(1)
  420. self.gguf_writer.add_unk_token_id(0)
  421. def set_gguf_parameters(self):
  422. block_count = self.hparams["n_layers"]
  423. self.gguf_writer.add_name(self.dir_model.name)
  424. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  425. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  426. self.gguf_writer.add_block_count(block_count)
  427. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  428. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  429. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  430. self.gguf_writer.add_head_count_kv(kv_n_heads)
  431. self.gguf_writer.add_layer_norm_eps(1e-5)
  432. if self.hparams["attn_config"]["clip_qkv"] is not None:
  433. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  434. if self.hparams["attn_config"]["alibi"]:
  435. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  436. else:
  437. self.gguf_writer.add_max_alibi_bias(0.0)
  438. def write_tensors(self):
  439. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers"))
  440. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  441. for name, data_torch in self.get_tensors():
  442. # we don't need these
  443. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  444. continue
  445. old_dtype = data_torch.dtype
  446. # convert any unsupported data types to float32
  447. if data_torch.dtype not in (torch.float16, torch.float32):
  448. data_torch = data_torch.to(torch.float32)
  449. data = data_torch.squeeze().numpy()
  450. # map tensor names
  451. if "scales" in name:
  452. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  453. if new_name is not None:
  454. new_name = new_name.replace("scales", "act.scales")
  455. else:
  456. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  457. if new_name is None:
  458. print(f"Can not map tensor {name!r}")
  459. sys.exit()
  460. n_dims = len(data.shape)
  461. data_dtype = data.dtype
  462. # if f32 desired, convert any float16 to float32
  463. if self.ftype == 0 and data_dtype == np.float16:
  464. data = data.astype(np.float32)
  465. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  466. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  467. data = data.astype(np.float32)
  468. # if f16 desired, convert any float32 2-dim weight tensors to float16
  469. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  470. data = data.astype(np.float16)
  471. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  472. self.gguf_writer.add_tensor(new_name, data)
  473. @Model.register("OrionForCausalLM")
  474. class OrionModel(Model):
  475. model_arch = gguf.MODEL_ARCH.ORION
  476. def set_vocab(self):
  477. self._set_vocab_sentencepiece()
  478. def set_gguf_parameters(self):
  479. block_count = self.hparams["num_hidden_layers"]
  480. head_count = self.hparams["num_attention_heads"]
  481. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  482. hf_repo = self.hparams.get("_name_or_path", "")
  483. ctx_length = 0
  484. if "max_sequence_length" in self.hparams:
  485. ctx_length = self.hparams["max_sequence_length"]
  486. elif "max_position_embeddings" in self.hparams:
  487. ctx_length = self.hparams["max_position_embeddings"]
  488. elif "model_max_length" in self.hparams:
  489. ctx_length = self.hparams["model_max_length"]
  490. else:
  491. print("gguf: can not find ctx length parameter.")
  492. sys.exit()
  493. self.gguf_writer.add_file_type(self.ftype)
  494. self.gguf_writer.add_name(self.dir_model.name)
  495. self.gguf_writer.add_source_hf_repo(hf_repo)
  496. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  497. self.gguf_writer.add_context_length(ctx_length)
  498. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  499. self.gguf_writer.add_block_count(block_count)
  500. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  501. self.gguf_writer.add_head_count(head_count)
  502. self.gguf_writer.add_head_count_kv(head_count_kv)
  503. # note: config provides rms norm but it is actually layer norm
  504. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  505. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  506. def write_tensors(self):
  507. # Collect tensors from generator object
  508. model_kv = dict(self.get_tensors())
  509. block_count = self.hparams["num_hidden_layers"]
  510. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  511. for name, data_torch in model_kv.items():
  512. # we don't need these
  513. if name.endswith(".rotary_emb.inv_freq"):
  514. continue
  515. old_dtype = data_torch.dtype
  516. # convert any unsupported data types to float32
  517. if data_torch.dtype not in (torch.float16, torch.float32):
  518. data_torch = data_torch.to(torch.float32)
  519. data = data_torch.squeeze().numpy()
  520. # map tensor names
  521. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  522. if new_name is None:
  523. print(f"Can not map tensor {name!r}")
  524. sys.exit()
  525. n_dims = len(data.shape)
  526. data_dtype = data.dtype
  527. # if f32 desired, convert any float16 to float32
  528. if self.ftype == 0 and data_dtype == np.float16:
  529. data = data.astype(np.float32)
  530. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  531. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  532. data = data.astype(np.float32)
  533. # if f16 desired, convert any float32 2-dim weight tensors to float16
  534. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  535. data = data.astype(np.float16)
  536. print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  537. self.gguf_writer.add_tensor(new_name, data)
  538. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  539. class BaichuanModel(Model):
  540. model_arch = gguf.MODEL_ARCH.BAICHUAN
  541. def set_vocab(self):
  542. self._set_vocab_sentencepiece()
  543. def set_gguf_parameters(self):
  544. block_count = self.hparams["num_hidden_layers"]
  545. head_count = self.hparams["num_attention_heads"]
  546. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  547. hf_repo = self.hparams.get("_name_or_path", "")
  548. ctx_length = 0
  549. if "max_sequence_length" in self.hparams:
  550. ctx_length = self.hparams["max_sequence_length"]
  551. elif "max_position_embeddings" in self.hparams:
  552. ctx_length = self.hparams["max_position_embeddings"]
  553. elif "model_max_length" in self.hparams:
  554. ctx_length = self.hparams["model_max_length"]
  555. else:
  556. print("gguf: can not find ctx length parameter.")
  557. sys.exit()
  558. self.gguf_writer.add_name(self.dir_model.name)
  559. self.gguf_writer.add_source_hf_repo(hf_repo)
  560. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  561. self.gguf_writer.add_context_length(ctx_length)
  562. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  563. self.gguf_writer.add_block_count(block_count)
  564. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  565. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  566. self.gguf_writer.add_head_count(head_count)
  567. self.gguf_writer.add_head_count_kv(head_count_kv)
  568. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  569. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  570. if self.hparams["rope_scaling"].get("type") == "linear":
  571. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  572. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  573. def write_tensors(self):
  574. # Collect tensors from generator object
  575. model_kv = dict(self.get_tensors())
  576. block_count = self.hparams["num_hidden_layers"]
  577. head_count = self.hparams["num_attention_heads"]
  578. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  579. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  580. for i in range(block_count):
  581. if (w := model_kv.get(f"model.layers.{i}.self_attn.W_pack.weight")) is not None:
  582. print(f"Unpacking and permuting layer {i}")
  583. model_kv[f"model.layers.{i}.self_attn.q_proj.weight"] = \
  584. self._reverse_hf_permute_part(w, 0, head_count, head_count)
  585. model_kv[f"model.layers.{i}.self_attn.k_proj.weight"] = \
  586. self._reverse_hf_permute_part(w, 1, head_count, head_count_kv)
  587. model_kv[f"model.layers.{i}.self_attn.v_proj.weight"] = \
  588. self._reverse_hf_part(w, 2)
  589. del model_kv[f"model.layers.{i}.self_attn.W_pack.weight"]
  590. for name, data_torch in model_kv.items():
  591. # we don't need these
  592. if name.endswith(".rotary_emb.inv_freq"):
  593. continue
  594. old_dtype = data_torch.dtype
  595. # convert any unsupported data types to float32
  596. if data_torch.dtype not in (torch.float16, torch.float32):
  597. data_torch = data_torch.to(torch.float32)
  598. data = data_torch.squeeze().numpy()
  599. # map tensor names
  600. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  601. if new_name is None:
  602. print(f"Can not map tensor {name!r}")
  603. sys.exit()
  604. n_dims = len(data.shape)
  605. data_dtype = data.dtype
  606. # if f32 desired, convert any float16 to float32
  607. if self.ftype == 0 and data_dtype == np.float16:
  608. data = data.astype(np.float32)
  609. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  610. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  611. data = data.astype(np.float32)
  612. # if f16 desired, convert any float32 2-dim weight tensors to float16
  613. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  614. data = data.astype(np.float16)
  615. print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  616. self.gguf_writer.add_tensor(new_name, data)
  617. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  618. if n_kv_head is not None and n_head != n_kv_head:
  619. n_head //= n_kv_head
  620. return (
  621. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  622. .swapaxes(1, 2)
  623. .reshape(weights.shape)
  624. )
  625. def _reverse_hf_permute_part(
  626. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  627. ) -> Tensor:
  628. r = weights.shape[0] // 3
  629. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  630. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  631. r = weights.shape[0] // 3
  632. return weights[r * n_part:r * n_part + r, ...]
  633. @Model.register("XverseForCausalLM")
  634. class XverseModel(Model):
  635. model_arch = gguf.MODEL_ARCH.XVERSE
  636. def set_vocab(self):
  637. assert (self.dir_model / "tokenizer.json").is_file()
  638. dir_model = self.dir_model
  639. hparams = self.hparams
  640. tokens: list[bytearray] = []
  641. toktypes: list[int] = []
  642. from transformers import AutoTokenizer
  643. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  644. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  645. assert max(tokenizer.vocab.values()) < vocab_size
  646. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  647. added_vocab = tokenizer.get_added_vocab()
  648. for token_id in range(vocab_size):
  649. token_text = reverse_vocab[token_id].encode('utf-8')
  650. # replace "\x00" to string with length > 0
  651. if token_text == b"\x00":
  652. toktype = gguf.TokenType.BYTE # special
  653. token_text = f"<{token_text}>".encode('utf-8')
  654. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  655. toktype = gguf.TokenType.BYTE # special
  656. elif reverse_vocab[token_id] in added_vocab:
  657. if tokenizer.added_tokens_decoder[token_id].special:
  658. toktype = gguf.TokenType.CONTROL
  659. else:
  660. toktype = gguf.TokenType.USER_DEFINED
  661. else:
  662. toktype = gguf.TokenType.NORMAL
  663. tokens.append(token_text)
  664. toktypes.append(toktype)
  665. self.gguf_writer.add_tokenizer_model("llama")
  666. self.gguf_writer.add_token_list(tokens)
  667. self.gguf_writer.add_token_types(toktypes)
  668. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  669. special_vocab.add_to_gguf(self.gguf_writer)
  670. def set_gguf_parameters(self):
  671. block_count = self.hparams["num_hidden_layers"]
  672. head_count = self.hparams["num_attention_heads"]
  673. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  674. hf_repo = self.hparams.get("_name_or_path", "")
  675. ctx_length = 0
  676. if "max_sequence_length" in self.hparams:
  677. ctx_length = self.hparams["max_sequence_length"]
  678. elif "max_position_embeddings" in self.hparams:
  679. ctx_length = self.hparams["max_position_embeddings"]
  680. elif "model_max_length" in self.hparams:
  681. ctx_length = self.hparams["model_max_length"]
  682. else:
  683. print("gguf: can not find ctx length parameter.")
  684. sys.exit()
  685. self.gguf_writer.add_name(self.dir_model.name)
  686. self.gguf_writer.add_source_hf_repo(hf_repo)
  687. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  688. self.gguf_writer.add_context_length(ctx_length)
  689. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  690. self.gguf_writer.add_block_count(block_count)
  691. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  692. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  693. self.gguf_writer.add_head_count(head_count)
  694. self.gguf_writer.add_head_count_kv(head_count_kv)
  695. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  696. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  697. if self.hparams["rope_scaling"].get("type") == "linear":
  698. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  699. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  700. def write_tensors(self):
  701. # Collect tensors from generator object
  702. model_kv = dict(self.get_tensors())
  703. block_count = self.hparams["num_hidden_layers"]
  704. head_count = self.hparams["num_attention_heads"]
  705. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  706. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  707. for name, data_torch in model_kv.items():
  708. # we don't need these
  709. if name.endswith(".rotary_emb.inv_freq"):
  710. continue
  711. old_dtype = data_torch.dtype
  712. # convert any unsupported data types to float32
  713. if data_torch.dtype not in (torch.float16, torch.float32):
  714. data_torch = data_torch.to(torch.float32)
  715. # HF models permute some of the tensors, so we need to undo that
  716. if name.endswith(("q_proj.weight")):
  717. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  718. if name.endswith(("k_proj.weight")):
  719. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  720. data = data_torch.squeeze().numpy()
  721. # map tensor names
  722. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  723. if new_name is None:
  724. print(f"Can not map tensor {name!r}")
  725. sys.exit()
  726. n_dims = len(data.shape)
  727. data_dtype = data.dtype
  728. # if f32 desired, convert any float16 to float32
  729. if self.ftype == 0 and data_dtype == np.float16:
  730. data = data.astype(np.float32)
  731. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  732. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  733. data = data.astype(np.float32)
  734. # if f16 desired, convert any float32 2-dim weight tensors to float16
  735. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  736. data = data.astype(np.float16)
  737. print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  738. self.gguf_writer.add_tensor(new_name, data)
  739. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  740. if n_kv_head is not None and n_head != n_kv_head:
  741. n_head //= n_kv_head
  742. return (
  743. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  744. .swapaxes(1, 2)
  745. .reshape(weights.shape)
  746. )
  747. @Model.register("FalconForCausalLM", "RWForCausalLM")
  748. class FalconModel(Model):
  749. model_arch = gguf.MODEL_ARCH.FALCON
  750. def set_gguf_parameters(self):
  751. block_count = self.hparams.get("num_hidden_layers")
  752. if block_count is None:
  753. block_count = self.hparams["n_layer"] # old name
  754. n_head = self.hparams.get("num_attention_heads")
  755. if n_head is None:
  756. n_head = self.hparams["n_head"] # old name
  757. n_head_kv = self.hparams.get("num_kv_heads")
  758. if n_head_kv is None:
  759. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  760. self.gguf_writer.add_name("Falcon")
  761. self.gguf_writer.add_context_length(2048) # not in config.json
  762. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  763. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  764. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  765. self.gguf_writer.add_block_count(block_count)
  766. self.gguf_writer.add_head_count(n_head)
  767. self.gguf_writer.add_head_count_kv(n_head_kv)
  768. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  769. self.gguf_writer.add_file_type(self.ftype)
  770. def write_tensors(self):
  771. block_count = self.hparams.get("num_hidden_layers")
  772. if block_count is None:
  773. block_count = self.hparams["n_layer"] # old name
  774. n_head = self.hparams.get("num_attention_heads")
  775. if n_head is None:
  776. n_head = self.hparams["n_head"] # old name
  777. n_head_kv = self.hparams.get("num_kv_heads")
  778. if n_head_kv is None:
  779. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  780. head_dim = self.hparams["hidden_size"] // n_head
  781. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  782. for name, data_torch in self.get_tensors():
  783. old_dtype = data_torch.dtype
  784. # convert any unsupported data types to float32
  785. if data_torch.dtype not in (torch.float16, torch.float32):
  786. data_torch = data_torch.to(torch.float32)
  787. # QKV tensor transform
  788. # The original query_key_value tensor contains n_head_kv "kv groups",
  789. # each consisting of n_head/n_head_kv query weights followed by one key
  790. # and one value weight (shared by all query heads in the kv group).
  791. # This layout makes it a big pain to work with in GGML.
  792. # So we rearrange them here,, so that we have n_head query weights
  793. # followed by n_head_kv key weights followed by n_head_kv value weights,
  794. # in contiguous fashion.
  795. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  796. if "query_key_value" in name:
  797. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  798. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  799. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  800. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  801. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  802. data = data_torch.squeeze().numpy()
  803. # map tensor names
  804. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  805. if new_name is None:
  806. print(f"Can not map tensor {name!r}")
  807. sys.exit()
  808. n_dims = len(data.shape)
  809. data_dtype = data.dtype
  810. # if f32 desired, convert any float16 to float32
  811. if self.ftype == 0 and data_dtype == np.float16:
  812. data = data.astype(np.float32)
  813. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  814. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  815. data = data.astype(np.float32)
  816. # if f16 desired, convert any float32 2-dim weight tensors to float16
  817. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  818. data = data.astype(np.float16)
  819. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  820. self.gguf_writer.add_tensor(new_name, data)
  821. @Model.register("GPTBigCodeForCausalLM")
  822. class StarCoderModel(Model):
  823. model_arch = gguf.MODEL_ARCH.STARCODER
  824. def set_gguf_parameters(self):
  825. block_count = self.hparams["n_layer"]
  826. self.gguf_writer.add_name("StarCoder")
  827. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  828. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  829. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  830. self.gguf_writer.add_block_count(block_count)
  831. self.gguf_writer.add_head_count(self.hparams["n_head"])
  832. self.gguf_writer.add_head_count_kv(1)
  833. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  834. self.gguf_writer.add_file_type(self.ftype)
  835. @Model.register("GPTRefactForCausalLM")
  836. class RefactModel(Model):
  837. model_arch = gguf.MODEL_ARCH.REFACT
  838. def set_gguf_parameters(self):
  839. hidden_dim = self.hparams["n_embd"]
  840. inner_dim = 4 * hidden_dim
  841. hidden_dim = int(2 * inner_dim / 3)
  842. multiple_of = 256
  843. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  844. block_count = self.hparams["n_layer"]
  845. self.gguf_writer.add_name("Refact")
  846. # refact uses Alibi. So this is from config.json which might be used by training.
  847. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  848. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  849. self.gguf_writer.add_feed_forward_length(ff_dim)
  850. self.gguf_writer.add_block_count(block_count)
  851. self.gguf_writer.add_head_count(self.hparams["n_head"])
  852. self.gguf_writer.add_head_count_kv(1)
  853. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  854. self.gguf_writer.add_file_type(self.ftype)
  855. def write_tensors(self):
  856. hidden_dim = self.hparams["n_embd"]
  857. inner_dim = 4 * hidden_dim
  858. hidden_dim = int(2 * inner_dim / 3)
  859. multiple_of = 256
  860. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  861. n_head = self.hparams["n_head"]
  862. n_head_kv = 1
  863. head_dim = self.hparams["n_embd"] // n_head
  864. block_count = self.hparams["n_layer"]
  865. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  866. tensors = dict(self.get_tensors())
  867. for i in range(block_count):
  868. if (w := tensors.get(f"transformer.h.{i}.attn.kv.weight")) is not None:
  869. tensors[f"model.layers.{i}.self_attn.k_proj.weight"] = w[:n_head_kv * head_dim]
  870. tensors[f"model.layers.{i}.self_attn.v_proj.weight"] = w[n_head_kv * head_dim:]
  871. del tensors[f"transformer.h.{i}.attn.kv.weight"]
  872. if (w := tensors.get(f"transformer.h.{i}.attn.q.weight")) is not None:
  873. tensors[f"model.layers.{i}.self_attn.q_proj.weight"] = w
  874. del tensors[f"transformer.h.{i}.attn.q.weight"]
  875. if (w := tensors.get(f"transformer.h.{i}.mlp.gate_up_proj.weight")) is not None:
  876. tensors[f"model.layers.{i}.mlp.gate_proj.weight"] = w[:ff_dim]
  877. tensors[f"model.layers.{i}.mlp.up_proj.weight"] = w[ff_dim:]
  878. del tensors[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
  879. for name, data_torch in tensors.items():
  880. old_dtype = data_torch.dtype
  881. # convert any unsupported data types to float32
  882. if data_torch.dtype not in (torch.float16, torch.float32):
  883. data_torch = data_torch.to(torch.float32)
  884. data = data_torch.squeeze().numpy()
  885. # map tensor names
  886. new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
  887. if new_name is None:
  888. print(f"Can not map tensor {name!r}")
  889. sys.exit()
  890. n_dims = len(data.shape)
  891. data_dtype = data.dtype
  892. # if f32 desired, convert any float16 to float32
  893. if self.ftype == 0 and data_dtype == np.float16:
  894. data = data.astype(np.float32)
  895. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  896. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  897. data = data.astype(np.float32)
  898. # if f16 desired, convert any float32 2-dim weight tensors to float16
  899. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  900. data = data.astype(np.float16)
  901. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  902. self.gguf_writer.add_tensor(new_name, data)
  903. @Model.register("PersimmonForCausalLM")
  904. class PersimmonModel(Model):
  905. model_arch = gguf.MODEL_ARCH.PERSIMMON
  906. def set_gguf_parameters(self):
  907. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  908. head_count = self.hparams["num_attention_heads"]
  909. head_count_kv = head_count
  910. hidden_size = self.hparams["hidden_size"]
  911. self.gguf_writer.add_name('persimmon-8b-chat')
  912. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  913. self.gguf_writer.add_embedding_length(hidden_size)
  914. self.gguf_writer.add_block_count(block_count)
  915. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  916. # NOTE: not sure about this change - why does the model not have a rope dimension count when it is smaller
  917. # than the head size?
  918. # ref: https://github.com/ggerganov/llama.cpp/pull/4889
  919. # self.gguf_writer.add_rope_dimension_count(hidden_size // head_count)
  920. self.gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2)
  921. self.gguf_writer.add_head_count(head_count)
  922. self.gguf_writer.add_head_count_kv(head_count_kv)
  923. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  924. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  925. def set_vocab(self):
  926. self._set_vocab_sentencepiece()
  927. # self.gguf_writer.add_bos_token_id(71013)
  928. # self.gguf_writer.add_eos_token_id(71013)
  929. def write_tensors(self):
  930. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  931. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  932. for name, data_torch in self.get_tensors():
  933. if name.endswith(".self_attention.rotary_emb.inv_freq"):
  934. continue
  935. old_dtype = data_torch.dtype
  936. # TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
  937. data = data_torch.to(torch.float32).squeeze().numpy()
  938. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  939. if new_name is None:
  940. print(f"Can not map tensor {name!r}")
  941. sys.exit()
  942. n_dims = len(data.shape)
  943. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  944. self.gguf_writer.add_tensor(new_name, data)
  945. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  946. class StableLMModel(Model):
  947. model_arch = gguf.MODEL_ARCH.STABLELM
  948. def set_vocab(self):
  949. if (self.dir_model / "tokenizer.json").is_file():
  950. self._set_vocab_gpt2()
  951. else:
  952. # StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab
  953. self._set_vocab_qwen()
  954. def set_gguf_parameters(self):
  955. hparams = self.hparams
  956. block_count = hparams["num_hidden_layers"]
  957. self.gguf_writer.add_name(self.dir_model.name)
  958. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  959. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  960. self.gguf_writer.add_block_count(block_count)
  961. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  962. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  963. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  964. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  965. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  966. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  967. @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  968. class LlamaModel(Model):
  969. model_arch = gguf.MODEL_ARCH.LLAMA
  970. def set_vocab(self):
  971. try:
  972. self. _set_vocab_sentencepiece()
  973. except FileNotFoundError:
  974. self._set_vocab_llama_hf()
  975. def set_gguf_parameters(self):
  976. super().set_gguf_parameters()
  977. hparams = self.hparams
  978. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  979. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  980. # Same as super class, but permuting q_proj, k_proj
  981. def write_tensors(self):
  982. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  983. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  984. n_head = self.hparams.get("num_attention_heads")
  985. n_kv_head = self.hparams.get("num_key_value_heads")
  986. n_experts = self.hparams.get("num_local_experts")
  987. experts = dict()
  988. for name, data_torch in self.get_tensors():
  989. # we don't need these
  990. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  991. continue
  992. old_dtype = data_torch.dtype
  993. # convert any unsupported data types to float32
  994. if data_torch.dtype not in (torch.float16, torch.float32):
  995. data_torch = data_torch.to(torch.float32)
  996. data = data_torch.numpy()
  997. if name.endswith("q_proj.weight"):
  998. data = permute(data, n_head, n_head)
  999. if name.endswith("k_proj.weight"):
  1000. data = permute(data, n_head, n_kv_head)
  1001. data = data.squeeze()
  1002. # process the experts separately
  1003. if name.find("block_sparse_moe.experts") != -1:
  1004. experts[name] = data
  1005. if len(experts) >= n_experts:
  1006. # merge the experts into a single 3d tensor
  1007. for bid in range(block_count):
  1008. for wid in range(1, 4):
  1009. full = True
  1010. for xid in range(n_experts):
  1011. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight"
  1012. if ename not in experts:
  1013. full = False
  1014. break
  1015. if not full:
  1016. continue
  1017. datas = []
  1018. for xid in range(n_experts):
  1019. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight"
  1020. datas.append(experts[ename])
  1021. del experts[ename]
  1022. data = np.stack(datas, axis=0)
  1023. data_dtype = data.dtype
  1024. if self.ftype == 0 and data_dtype == np.float16:
  1025. data = data.astype(np.float32)
  1026. if self.ftype == 1 and data_dtype == np.float32:
  1027. data = data.astype(np.float16)
  1028. merged_name = f"layers.{bid}.feed_forward.experts.w{wid}.weight"
  1029. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1030. if new_name is None:
  1031. print(f"Can not map tensor {name!r}")
  1032. sys.exit()
  1033. print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1034. self.gguf_writer.add_tensor(new_name, data)
  1035. continue
  1036. # map tensor names
  1037. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1038. if new_name is None:
  1039. print(f"Can not map tensor {name!r}")
  1040. sys.exit()
  1041. n_dims = len(data.shape)
  1042. data_dtype = data.dtype
  1043. # if f32 desired, convert any float16 to float32
  1044. if self.ftype == 0 and data_dtype == np.float16:
  1045. data = data.astype(np.float32)
  1046. # 1d tensors need to be converted to float32
  1047. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1048. data = data.astype(np.float32)
  1049. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1050. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1051. data = data.astype(np.float16)
  1052. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1053. self.gguf_writer.add_tensor(new_name, data)
  1054. if len(experts) > 0:
  1055. raise ValueError(f"Unprocessed experts: {experts.keys()}")
  1056. @Model.register("GrokForCausalLM")
  1057. class GrokModel(Model):
  1058. model_arch = gguf.MODEL_ARCH.GROK
  1059. def set_vocab(self):
  1060. self._set_vocab_sentencepiece()
  1061. def __init__(self, *args, **kwargs):
  1062. super().__init__(*args, **kwargs)
  1063. def set_gguf_parameters(self):
  1064. super().set_gguf_parameters()
  1065. self.gguf_writer.add_name("Grok")
  1066. def write_tensors(self):
  1067. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1068. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1069. n_experts = self.hparams.get("num_local_experts")
  1070. experts = dict()
  1071. for name, data_torch in self.get_tensors():
  1072. # we don't need these
  1073. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1074. continue
  1075. old_dtype = data_torch.dtype
  1076. # convert any unsupported data types to float32
  1077. if data_torch.dtype not in (torch.float16, torch.float32):
  1078. data_torch = data_torch.to(torch.float32)
  1079. data = data_torch.squeeze().numpy()
  1080. # process the experts separately
  1081. if name.find(".moe.") != -1:
  1082. experts[name] = data
  1083. if len(experts) >= n_experts:
  1084. # merge the experts into a single 3d tensor
  1085. for bid in range(block_count):
  1086. for wid in ["linear", "linear_1", "linear_v"]:
  1087. full = True
  1088. for xid in range(n_experts):
  1089. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1090. if ename not in experts:
  1091. full = False
  1092. break
  1093. if not full:
  1094. continue
  1095. datas = []
  1096. for xid in range(n_experts):
  1097. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1098. datas.append(experts[ename])
  1099. del experts[ename]
  1100. data = np.stack(datas, axis=0)
  1101. data_dtype = data.dtype
  1102. if self.ftype == 0 and data_dtype == np.float16:
  1103. data = data.astype(np.float32)
  1104. if self.ftype == 1 and data_dtype == np.float32:
  1105. data = data.astype(np.float16)
  1106. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1107. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1108. if new_name is None:
  1109. print(f"Can not map tensor {name!r}")
  1110. sys.exit()
  1111. print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1112. self.gguf_writer.add_tensor(new_name, data)
  1113. continue
  1114. # map tensor names
  1115. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1116. if new_name is None:
  1117. print(f"Can not map tensor {name!r}")
  1118. sys.exit()
  1119. n_dims = len(data.shape)
  1120. data_dtype = data.dtype
  1121. # if f32 desired, convert any float16 to float32
  1122. if self.ftype == 0 and data_dtype == np.float16:
  1123. data = data.astype(np.float32)
  1124. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1125. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1126. data = data.astype(np.float32)
  1127. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1128. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1129. data = data.astype(np.float16)
  1130. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1131. self.gguf_writer.add_tensor(new_name, data)
  1132. @Model.register("DbrxForCausalLM")
  1133. class DbrxModel(Model):
  1134. model_arch = gguf.MODEL_ARCH.DBRX
  1135. def set_gguf_parameters(self):
  1136. ffn_config = self.hparams["ffn_config"]
  1137. attn_config = self.hparams["attn_config"]
  1138. self.gguf_writer.add_name(self.hparams["model_type"])
  1139. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1140. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1141. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1142. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1143. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1144. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1145. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1146. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1147. self.gguf_writer.add_file_type(self.ftype)
  1148. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1149. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1150. self.gguf_writer.add_layer_norm_eps(1e-5)
  1151. self.gguf_writer.add_file_type(self.ftype)
  1152. print(f"gguf: file type = {self.ftype}")
  1153. def write_tensors(self):
  1154. block_count = self.hparams.get("n_layers")
  1155. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1156. for name, data_torch in self.get_tensors():
  1157. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1158. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1159. n_embd = self.hparams["d_model"]
  1160. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1161. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1162. # But llama.cpp moe graph works differently
  1163. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1164. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1165. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1166. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1167. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1168. experts = False
  1169. for exp_tensor_name in exp_tensor_names.keys():
  1170. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1171. experts = True
  1172. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1173. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1174. data_torch = data_torch.permute(*permute_tensor)
  1175. break
  1176. old_dtype = data_torch.dtype
  1177. # convert any unsupported data types to float32
  1178. if data_torch.dtype not in (torch.float16, torch.float32):
  1179. data_torch = data_torch.to(torch.float32)
  1180. data = data_torch.squeeze().numpy()
  1181. # map tensor names
  1182. # In MoE models the ffn tensors are typically most of the model weights,
  1183. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1184. # Every other model has the weight names ending in .weight,
  1185. # let's assume that is the convention which is not the case for dbrx:
  1186. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1187. new_name = tensor_map.get_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1188. if new_name is None:
  1189. print(f"Can not map tensor {name!r}")
  1190. sys.exit()
  1191. n_dims = len(data.shape)
  1192. data_dtype = data.dtype
  1193. # Most of the codebase that takes in 1D tensors only handles F32 tensors
  1194. # and most of the outputs tensors are F32.
  1195. if data_dtype != np.float32 and n_dims == 1:
  1196. print(f"Can not map tensor {name!r}: all 1D tensors must be F32")
  1197. sys.exit()
  1198. # if f32 desired, convert any float16 to float32
  1199. if self.ftype == 0 and data_dtype == np.float16:
  1200. data = data.astype(np.float32)
  1201. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1202. if self.ftype == 1 and data_dtype == np.float32 and n_dims > 1:
  1203. data = data.astype(np.float16)
  1204. print(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  1205. self.gguf_writer.add_tensor(new_name, data)
  1206. @Model.register("MiniCPMForCausalLM")
  1207. class MiniCPMModel(Model):
  1208. model_arch = gguf.MODEL_ARCH.MINICPM
  1209. def set_gguf_parameters(self):
  1210. block_count = self.hparams["num_hidden_layers"]
  1211. self.gguf_writer.add_name("MiniCPM")
  1212. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1213. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1214. self.gguf_writer.add_block_count(block_count)
  1215. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1216. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1217. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1218. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1219. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1220. self.gguf_writer.add_file_type(self.ftype)
  1221. def set_vocab(self):
  1222. self._set_vocab_llama_hf()
  1223. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1224. if n_kv_head is not None and n_head != n_kv_head:
  1225. n_head //= n_kv_head
  1226. return (
  1227. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1228. .swapaxes(1, 2)
  1229. .reshape(weights.shape)
  1230. )
  1231. def write_tensors(self):
  1232. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1233. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1234. n_head = self.hparams.get("num_attention_heads")
  1235. n_kv_head = self.hparams.get("num_key_value_heads")
  1236. for name, data_torch in self.get_tensors():
  1237. # we don't need these
  1238. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1239. continue
  1240. old_dtype = data_torch.dtype
  1241. # convert any unsupported data types to float32
  1242. if data_torch.dtype not in (torch.float16, torch.float32):
  1243. data_torch = data_torch.to(torch.float32)
  1244. # HF models permute some of the tensors, so we need to undo that
  1245. if name.endswith(("q_proj.weight")):
  1246. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1247. if name.endswith(("k_proj.weight")):
  1248. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1249. data = data_torch.squeeze().numpy()
  1250. # map tensor names
  1251. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1252. if new_name is None:
  1253. print(f"Can not map tensor {name!r}")
  1254. sys.exit()
  1255. n_dims = len(data.shape)
  1256. data_dtype = data.dtype
  1257. # if f32 desired, convert any float16 to float32
  1258. if self.ftype == 0 and data_dtype == np.float16:
  1259. data = data.astype(np.float32)
  1260. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1261. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1262. data = data.astype(np.float32)
  1263. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1264. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1265. data = data.astype(np.float16)
  1266. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1267. self.gguf_writer.add_tensor(new_name, data)
  1268. @Model.register("QWenLMHeadModel")
  1269. class QwenModel(Model):
  1270. model_arch = gguf.MODEL_ARCH.QWEN
  1271. @staticmethod
  1272. def token_bytes_to_string(b):
  1273. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1274. byte_encoder = bytes_to_unicode()
  1275. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1276. @staticmethod
  1277. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1278. parts = [bytes([b]) for b in token]
  1279. while True:
  1280. min_idx = None
  1281. min_rank = None
  1282. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1283. rank = mergeable_ranks.get(pair[0] + pair[1])
  1284. if rank is not None and (min_rank is None or rank < min_rank):
  1285. min_idx = i
  1286. min_rank = rank
  1287. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1288. break
  1289. assert min_idx is not None
  1290. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1291. return parts
  1292. def set_vocab(self):
  1293. self._set_vocab_qwen()
  1294. def set_gguf_parameters(self):
  1295. self.gguf_writer.add_name("Qwen")
  1296. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1297. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1298. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1299. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1300. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1301. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1302. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1303. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1304. def write_tensors(self):
  1305. block_count = self.hparams["num_hidden_layers"]
  1306. model_kv = dict(self.get_tensors())
  1307. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1308. for name, data_torch in model_kv.items():
  1309. # we don't need these
  1310. if name.endswith(".rotary_emb.inv_freq"):
  1311. continue
  1312. old_dtype = data_torch.dtype
  1313. # convert any unsupported data types to float32
  1314. if data_torch.dtype not in (torch.float16, torch.float32):
  1315. data_torch = data_torch.to(torch.float32)
  1316. data = data_torch.squeeze().numpy()
  1317. # map tensor names
  1318. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1319. if new_name is None:
  1320. print(f"Can not map tensor {name!r}")
  1321. sys.exit()
  1322. n_dims = len(data.shape)
  1323. data_dtype = data.dtype
  1324. # if f32 desired, convert any float16 to float32
  1325. if self.ftype == 0 and data_dtype == np.float16:
  1326. data = data.astype(np.float32)
  1327. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1328. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1329. data = data.astype(np.float32)
  1330. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1331. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1332. data = data.astype(np.float16)
  1333. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1334. self.gguf_writer.add_tensor(new_name, data)
  1335. @Model.register("Qwen2ForCausalLM")
  1336. class Qwen2Model(Model):
  1337. model_arch = gguf.MODEL_ARCH.QWEN2
  1338. @Model.register("GPT2LMHeadModel")
  1339. class GPT2Model(Model):
  1340. model_arch = gguf.MODEL_ARCH.GPT2
  1341. def set_gguf_parameters(self):
  1342. self.gguf_writer.add_name(self.dir_model.name)
  1343. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1344. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1345. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1346. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1347. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1348. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1349. self.gguf_writer.add_file_type(self.ftype)
  1350. def write_tensors(self):
  1351. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1352. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1353. for name, data_torch in self.get_tensors():
  1354. # we don't need these
  1355. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq", ".attn.bias", ".attn.masked_bias")):
  1356. continue
  1357. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1358. data_torch = data_torch.transpose(1, 0)
  1359. old_dtype = data_torch.dtype
  1360. # convert any unsupported data types to float32
  1361. if data_torch.dtype not in (torch.float16, torch.float32):
  1362. data_torch = data_torch.to(torch.float32)
  1363. data = data_torch.squeeze().numpy()
  1364. # map tensor names
  1365. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1366. if new_name is None:
  1367. print(f"Can not map tensor {name!r}")
  1368. sys.exit()
  1369. n_dims = len(data.shape)
  1370. data_dtype = data.dtype
  1371. # if f32 desired, convert any float16 to float32
  1372. if self.ftype == 0 and data_dtype == np.float16:
  1373. data = data.astype(np.float32)
  1374. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1375. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1376. data = data.astype(np.float32)
  1377. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1378. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1379. data = data.astype(np.float16)
  1380. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1381. self.gguf_writer.add_tensor(new_name, data)
  1382. # note: GPT2 output is tied to (same as) wte in original model
  1383. if new_name == "token_embd.weight":
  1384. print(f"output.weight, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1385. self.gguf_writer.add_tensor("output.weight", data)
  1386. @Model.register("PhiForCausalLM")
  1387. class Phi2Model(Model):
  1388. model_arch = gguf.MODEL_ARCH.PHI2
  1389. def set_gguf_parameters(self):
  1390. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1391. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1392. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1393. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1394. self.gguf_writer.add_name("Phi2")
  1395. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1396. self.gguf_writer.add_embedding_length(n_embd)
  1397. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1398. self.gguf_writer.add_block_count(block_count)
  1399. self.gguf_writer.add_head_count(n_head)
  1400. self.gguf_writer.add_head_count_kv(n_head)
  1401. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1402. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1403. self.gguf_writer.add_file_type(self.ftype)
  1404. self.gguf_writer.add_add_bos_token(False)
  1405. @Model.register("PlamoForCausalLM")
  1406. class PlamoModel(Model):
  1407. model_arch = gguf.MODEL_ARCH.PLAMO
  1408. def set_vocab(self):
  1409. self._set_vocab_sentencepiece()
  1410. def set_gguf_parameters(self):
  1411. hparams = self.hparams
  1412. block_count = hparams["num_hidden_layers"]
  1413. self.gguf_writer.add_name("PLaMo")
  1414. self.gguf_writer.add_context_length(4096) # not in config.json
  1415. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1416. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1417. self.gguf_writer.add_block_count(block_count)
  1418. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1419. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1420. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1421. def shuffle_attn_q_weight(self, data_torch):
  1422. assert data_torch.size() == (5120, 5120)
  1423. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1424. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1425. data_torch = torch.reshape(data_torch, (5120, 5120))
  1426. return data_torch
  1427. def shuffle_attn_output_weight(self, data_torch):
  1428. assert data_torch.size() == (5120, 5120)
  1429. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1430. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1431. data_torch = torch.reshape(data_torch, (5120, 5120))
  1432. return data_torch
  1433. def write_tensors(self):
  1434. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  1435. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1436. for name, data_torch in self.get_tensors():
  1437. if "self_attn.rotary_emb.inv_freq" in name:
  1438. continue
  1439. # map tensor names
  1440. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1441. if new_name is None:
  1442. print(f"Can not map tensor {name!r}")
  1443. sys.exit()
  1444. # shuffle for broadcasting of gqa in ggml_mul_mat
  1445. if new_name.endswith("attn_q.weight"):
  1446. data_torch = self.shuffle_attn_q_weight(data_torch)
  1447. elif new_name.endswith("attn_output.weight"):
  1448. data_torch = self.shuffle_attn_output_weight(data_torch)
  1449. old_dtype = data_torch.dtype
  1450. # convert any unsupported data types to float32
  1451. if data_torch.dtype not in (torch.float16, torch.float32):
  1452. data_torch = data_torch.to(torch.float32)
  1453. data = data_torch.squeeze().numpy()
  1454. n_dims = len(data.shape)
  1455. data_dtype = data.dtype
  1456. # if f32 desired, convert any float16 to float32
  1457. if self.ftype == 0 and data_dtype == np.float16:
  1458. data = data.astype(np.float32)
  1459. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1460. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1461. data = data.astype(np.float32)
  1462. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1463. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1464. data = data.astype(np.float16)
  1465. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1466. self.gguf_writer.add_tensor(new_name, data)
  1467. @Model.register("CodeShellForCausalLM")
  1468. class CodeShellModel(Model):
  1469. model_arch = gguf.MODEL_ARCH.CODESHELL
  1470. def set_gguf_parameters(self):
  1471. block_count = self.hparams["n_layer"]
  1472. self.gguf_writer.add_name("CodeShell")
  1473. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1474. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1475. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1476. self.gguf_writer.add_block_count(block_count)
  1477. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1478. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1479. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1480. self.gguf_writer.add_file_type(self.ftype)
  1481. self.gguf_writer.add_rope_freq_base(10000.0)
  1482. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1483. self.gguf_writer.add_rope_scaling_factor(1.0)
  1484. def write_tensors(self):
  1485. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1486. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1487. tensors = dict(self.get_tensors())
  1488. has_lm_head = "lm_head.weight" in tensors.keys() or "output.weight" in tensors.keys()
  1489. for name, data_torch in tensors.items():
  1490. # we don't need these
  1491. if name.endswith((".attn.rotary_emb.inv_freq")):
  1492. continue
  1493. old_dtype = data_torch.dtype
  1494. # convert any unsupported data types to float32
  1495. if data_torch.dtype not in (torch.float16, torch.float32):
  1496. data_torch = data_torch.to(torch.float32)
  1497. data = data_torch.squeeze().numpy()
  1498. # map tensor names
  1499. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1500. if new_name is None:
  1501. print(f"Can not map tensor {name!r}")
  1502. sys.exit()
  1503. n_dims = len(data.shape)
  1504. data_dtype = data.dtype
  1505. # if f32 desired, convert any float16 to float32
  1506. if self.ftype == 0 and data_dtype == np.float16:
  1507. data = data.astype(np.float32)
  1508. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1509. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1510. data = data.astype(np.float32)
  1511. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1512. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1513. data = data.astype(np.float16)
  1514. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1515. self.gguf_writer.add_tensor(new_name, data)
  1516. if not has_lm_head and name == "transformer.wte.weight":
  1517. self.gguf_writer.add_tensor("output.weight", data)
  1518. print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  1519. @Model.register("InternLM2ForCausalLM")
  1520. class InternLM2Model(Model):
  1521. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1522. def set_vocab(self):
  1523. # (TODO): Is there a better way?
  1524. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1525. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1526. # recognized as an empty string in C++.
  1527. from sentencepiece import SentencePieceProcessor
  1528. from sentencepiece import sentencepiece_model_pb2 as model
  1529. tokenizer_path = self.dir_model / 'tokenizer.model'
  1530. tokens: list[bytes] = []
  1531. scores: list[float] = []
  1532. toktypes: list[int] = []
  1533. if not tokenizer_path.is_file():
  1534. print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
  1535. sys.exit(1)
  1536. sentencepiece_model = model.ModelProto()
  1537. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1538. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1539. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  1540. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1541. for token_id in range(vocab_size):
  1542. piece = tokenizer.id_to_piece(token_id)
  1543. text = piece.encode("utf-8")
  1544. score = tokenizer.get_score(token_id)
  1545. if text == b"\x00":
  1546. # (TODO): fixme
  1547. # Hack here and replace the \x00 characters.
  1548. print(f"InternLM2 convert token '{text}' to '🐉'!")
  1549. text = "🐉"
  1550. toktype = SentencePieceTokenTypes.NORMAL
  1551. if tokenizer.is_unknown(token_id):
  1552. toktype = SentencePieceTokenTypes.UNKNOWN
  1553. elif tokenizer.is_control(token_id):
  1554. toktype = SentencePieceTokenTypes.CONTROL
  1555. elif tokenizer.is_unused(token_id):
  1556. toktype = SentencePieceTokenTypes.UNUSED
  1557. elif tokenizer.is_byte(token_id):
  1558. toktype = SentencePieceTokenTypes.BYTE
  1559. tokens.append(text)
  1560. scores.append(score)
  1561. toktypes.append(toktype)
  1562. added_tokens_file = self.dir_model / 'added_tokens.json'
  1563. if added_tokens_file.is_file():
  1564. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1565. added_tokens_json = json.load(f)
  1566. for key in added_tokens_json:
  1567. tokens.append(key.encode("utf-8"))
  1568. scores.append(-1000.0)
  1569. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1570. self.gguf_writer.add_tokenizer_model("llama")
  1571. self.gguf_writer.add_token_list(tokens)
  1572. self.gguf_writer.add_token_scores(scores)
  1573. self.gguf_writer.add_token_types(toktypes)
  1574. self.gguf_writer.add_add_space_prefix(add_prefix)
  1575. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1576. old_eos = special_vocab.special_token_ids["eos"]
  1577. if "chat" in os.path.basename(self.dir_model.absolute()):
  1578. # For the chat model, we replace the eos with '<|im_end|>'.
  1579. special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
  1580. print(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
  1581. in chat mode so that the conversation can end normally.")
  1582. special_vocab.add_to_gguf(self.gguf_writer)
  1583. def _try_get_sft_eos(self, tokenizer):
  1584. unused_145_list = tokenizer.encode('[UNUSED_TOKEN_145]')
  1585. im_end_list = tokenizer.encode('<|im_end|>')
  1586. assert (len(unused_145_list) == 1) ^ (len(im_end_list) == 1)
  1587. if len(unused_145_list) == 1:
  1588. eos_token = unused_145_list[0]
  1589. if len(im_end_list) == 1:
  1590. eos_token = im_end_list[0]
  1591. return eos_token
  1592. def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int):
  1593. if n_head_kv is not None and n_head != n_head_kv:
  1594. n_head = n_head_kv
  1595. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1596. .swapaxes(1, 2)
  1597. .reshape(weights.shape))
  1598. def set_gguf_parameters(self):
  1599. self.gguf_writer.add_name("InternLM2")
  1600. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1601. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1602. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1603. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1604. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1605. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1606. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1607. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1608. def post_write_tensors(self, tensor_map, name, data_torch):
  1609. old_dtype = data_torch.dtype
  1610. # convert any unsupported data types to float32
  1611. if data_torch.dtype not in (torch.float16, torch.float32):
  1612. data_torch = data_torch.to(torch.float32)
  1613. data = data_torch.squeeze().numpy()
  1614. # map tensor names
  1615. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1616. if new_name is None:
  1617. print(f"Can not map tensor {name!r}")
  1618. sys.exit()
  1619. n_dims = len(data.shape)
  1620. data_dtype = data.dtype
  1621. # if f32 desired, convert any float16 to float32
  1622. if self.ftype == 0 and data_dtype == np.float16:
  1623. data = data.astype(np.float32)
  1624. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1625. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1626. data = data.astype(np.float32)
  1627. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1628. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1629. data = data.astype(np.float16)
  1630. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1631. self.gguf_writer.add_tensor(new_name, data)
  1632. def write_tensors(self):
  1633. from einops import rearrange
  1634. num_heads = self.hparams.get("num_attention_heads")
  1635. num_kv_heads = self.hparams.get("num_key_value_heads")
  1636. hidden_size = self.hparams.get("hidden_size")
  1637. q_per_kv = num_heads // num_kv_heads
  1638. head_dim = hidden_size // num_heads
  1639. num_groups = num_heads // q_per_kv
  1640. block_count = self.hparams["num_hidden_layers"]
  1641. model_kv = dict(self.get_tensors())
  1642. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1643. qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv"
  1644. for name, data_torch in model_kv.items():
  1645. # we don't need these
  1646. if name.endswith(".rotary_emb.inv_freq"):
  1647. continue
  1648. if re.match(qkv_pattern, name):
  1649. bid = re.findall(qkv_pattern, name)[0]
  1650. qkv = data_torch
  1651. qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
  1652. q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :]
  1653. # The model weights of q and k equire additional reshape.
  1654. q = self._hf_permute_qk(rearrange(q, " o g n i -> o (g n i)").T, num_heads, num_heads)
  1655. k = self._hf_permute_qk(rearrange(k, " o g n i -> o (g n i)").T, num_heads, num_kv_heads)
  1656. v = rearrange(v, " o g n i -> o (g n i)").T
  1657. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wq.weight", q)
  1658. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wk.weight", k)
  1659. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wv.weight", v)
  1660. else:
  1661. self.post_write_tensors(tensor_map, name, data_torch)
  1662. @Model.register("BertModel", "CamembertModel")
  1663. class BertModel(Model):
  1664. model_arch = gguf.MODEL_ARCH.BERT
  1665. def __init__(self, *args, **kwargs):
  1666. super().__init__(*args, **kwargs)
  1667. self.vocab_size = None
  1668. def set_gguf_parameters(self):
  1669. super().set_gguf_parameters()
  1670. self.gguf_writer.add_causal_attention(False)
  1671. # get pooling path
  1672. pooling_path = None
  1673. module_path = self.dir_model / "modules.json"
  1674. if module_path.is_file():
  1675. with open(module_path, encoding="utf-8") as f:
  1676. modules = json.load(f)
  1677. for mod in modules:
  1678. if mod["type"] == "sentence_transformers.models.Pooling":
  1679. pooling_path = mod["path"]
  1680. break
  1681. # get pooling type
  1682. if pooling_path is not None:
  1683. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1684. pooling = json.load(f)
  1685. if pooling["pooling_mode_mean_tokens"]:
  1686. pooling_type = gguf.PoolingType.MEAN
  1687. elif pooling["pooling_mode_cls_token"]:
  1688. pooling_type = gguf.PoolingType.CLS
  1689. else:
  1690. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  1691. self.gguf_writer.add_pooling_type(pooling_type)
  1692. def set_vocab(self):
  1693. tokens, toktypes = self.get_basic_vocab()
  1694. self.vocab_size = len(tokens)
  1695. # we need this to validate the size of the token_type embeddings
  1696. # though currently we are passing all zeros to the token_type embeddings
  1697. self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
  1698. # convert to phantom space vocab
  1699. def phantom(tok):
  1700. if tok.startswith("[") and tok.endswith("]"):
  1701. return tok
  1702. if tok.startswith("##"):
  1703. return tok[2:]
  1704. return "\u2581" + tok
  1705. tokens = list(map(phantom, tokens))
  1706. # add vocab to gguf
  1707. self.gguf_writer.add_tokenizer_model("bert")
  1708. self.gguf_writer.add_token_list(tokens)
  1709. self.gguf_writer.add_token_types(toktypes)
  1710. # handle special tokens
  1711. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1712. special_vocab.add_to_gguf(self.gguf_writer)
  1713. def write_tensors(self):
  1714. tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  1715. tensors = dict(self.get_tensors())
  1716. for name, data_torch in tensors.items():
  1717. # we are only using BERT for embeddings so we don't need the pooling layer
  1718. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  1719. continue # we don't need these
  1720. # map tensor names
  1721. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1722. if new_name is None:
  1723. print(f"Can not map tensor {name!r}")
  1724. sys.exit()
  1725. data = data_torch.squeeze().numpy()
  1726. n_dims = len(data.shape)
  1727. new_dtype: type[np.floating[Any]]
  1728. if (
  1729. self.ftype == 1 and name.endswith(".weight") and n_dims == 2
  1730. and name != "embeddings.token_type_embeddings.weight" # not used with get_rows, must be F32
  1731. ):
  1732. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1733. new_dtype = np.float16
  1734. else:
  1735. # if f32 desired, convert any float16 to float32
  1736. new_dtype = np.float32
  1737. print(f"{new_name}, n_dims = {n_dims}, {data_torch.dtype} --> {new_dtype}")
  1738. if data.dtype != new_dtype:
  1739. data = data.astype(new_dtype)
  1740. self.gguf_writer.add_tensor(new_name, data)
  1741. @Model.register("NomicBertModel")
  1742. class NomicBertModel(BertModel):
  1743. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  1744. def __init__(self, *args, **kwargs):
  1745. super().__init__(*args, **kwargs)
  1746. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  1747. self.hparams["n_ctx"] = 2048
  1748. # SwigLU activation
  1749. assert self.hparams["activation_function"] == "swiglu"
  1750. # this doesn't do anything in the HF version
  1751. assert self.hparams["causal"] is False
  1752. # no bias tensors
  1753. assert self.hparams["qkv_proj_bias"] is False
  1754. assert self.hparams["mlp_fc1_bias"] is False
  1755. assert self.hparams["mlp_fc2_bias"] is False
  1756. # norm at end of layer
  1757. assert self.hparams["prenorm"] is False
  1758. # standard RoPE
  1759. assert self.hparams["rotary_emb_fraction"] == 1.0
  1760. assert self.hparams["rotary_emb_interleaved"] is False
  1761. assert self.hparams["rotary_emb_scale_base"] is None
  1762. def set_gguf_parameters(self):
  1763. super().set_gguf_parameters()
  1764. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1765. @Model.register("GemmaForCausalLM")
  1766. class GemmaModel(Model):
  1767. model_arch = gguf.MODEL_ARCH.GEMMA
  1768. def set_vocab(self):
  1769. self._set_vocab_sentencepiece()
  1770. def set_gguf_parameters(self):
  1771. hparams = self.hparams
  1772. block_count = hparams["num_hidden_layers"]
  1773. self.gguf_writer.add_name(self.dir_model.name)
  1774. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1775. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1776. self.gguf_writer.add_block_count(block_count)
  1777. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1778. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1779. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  1780. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1781. self.gguf_writer.add_key_length(hparams["head_dim"])
  1782. self.gguf_writer.add_value_length(hparams["head_dim"])
  1783. self.gguf_writer.add_file_type(self.ftype)
  1784. def write_tensors(self):
  1785. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1786. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1787. for name, data_torch in self.get_tensors():
  1788. old_dtype = data_torch.dtype
  1789. # convert any unsupported data types to float32
  1790. if data_torch.dtype not in (torch.float16, torch.float32):
  1791. data_torch = data_torch.to(torch.float32)
  1792. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  1793. if name.endswith("norm.weight"):
  1794. data_torch = data_torch + 1
  1795. data = data_torch.squeeze().numpy()
  1796. # map tensor names
  1797. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1798. if new_name is None:
  1799. print(f"Can not map tensor {name!r}")
  1800. sys.exit()
  1801. n_dims = len(data.shape)
  1802. data_dtype = data.dtype
  1803. data = data.astype(np.float32)
  1804. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1805. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1806. data = data.astype(np.float16)
  1807. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1808. self.gguf_writer.add_tensor(new_name, data)
  1809. @Model.register("Starcoder2ForCausalLM")
  1810. class StarCoder2Model(Model):
  1811. model_arch = gguf.MODEL_ARCH.STARCODER2
  1812. @Model.register("MambaForCausalLM", "MambaLMHeadModel")
  1813. class MambaModel(Model):
  1814. model_arch = gguf.MODEL_ARCH.MAMBA
  1815. def set_vocab(self):
  1816. vocab_size = self.hparams["vocab_size"]
  1817. # Round vocab size to next multiple of 8
  1818. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  1819. # pad using ceiling division
  1820. # ref: https://stackoverflow.com/a/17511341/22827863
  1821. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  1822. self.hparams["vocab_size"] = vocab_size
  1823. if (self.dir_model / "tokenizer.json").is_file():
  1824. self._set_vocab_gpt2()
  1825. else:
  1826. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  1827. tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf"
  1828. print(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1829. neox_reader = gguf.GGUFReader(tokenizer_path, "r")
  1830. field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1831. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]))
  1832. field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1833. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1834. field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1835. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1836. field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1837. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1838. field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)
  1839. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  1840. field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)
  1841. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  1842. field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)
  1843. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  1844. def set_gguf_parameters(self):
  1845. d_model = self.find_hparam(["hidden_size", "d_model"])
  1846. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  1847. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  1848. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  1849. # ceiling division
  1850. # ref: https://stackoverflow.com/a/17511341/22827863
  1851. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  1852. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  1853. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  1854. # Fail early for models which don't have a block expansion factor of 2
  1855. assert d_inner == 2 * d_model
  1856. self.gguf_writer.add_name(self.dir_model.name)
  1857. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  1858. self.gguf_writer.add_embedding_length(d_model)
  1859. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  1860. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  1861. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1862. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  1863. self.gguf_writer.add_ssm_inner_size(d_inner)
  1864. self.gguf_writer.add_ssm_state_size(d_state)
  1865. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  1866. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  1867. self.gguf_writer.add_file_type(self.ftype)
  1868. def write_tensors(self):
  1869. block_count = self.hparams["n_layer"]
  1870. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1871. tok_embd = None
  1872. tok_embd_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.TOKEN_EMBD] + ".weight"
  1873. output_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.OUTPUT] + ".weight"
  1874. for name, data_torch in self.get_tensors():
  1875. old_dtype = data_torch.dtype
  1876. # convert any unsupported data types to float32
  1877. if data_torch.dtype not in (torch.float16, torch.float32):
  1878. data_torch = data_torch.to(torch.float32)
  1879. # map tensor names
  1880. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1881. if new_name is None:
  1882. print(f"Can not map tensor {name!r}")
  1883. sys.exit()
  1884. if name.endswith(".A_log"):
  1885. print("A_log --> A ==> " + new_name)
  1886. data_torch = -torch.exp(data_torch)
  1887. # assuming token_embd.weight is seen before output.weight
  1888. if tok_embd is not None and new_name == output_name:
  1889. if torch.equal(tok_embd, data_torch):
  1890. print(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  1891. continue
  1892. if new_name == tok_embd_name:
  1893. tok_embd = data_torch
  1894. data = data_torch.squeeze().numpy()
  1895. n_dims = len(data.shape)
  1896. data_dtype = data.dtype
  1897. # if f32 desired, convert any float16 to float32
  1898. if self.ftype == 0 and data_dtype == np.float16:
  1899. data = data.astype(np.float32)
  1900. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1901. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1902. data = data.astype(np.float32)
  1903. # if f16 desired, convert big float32 2-dim weight tensors to float16
  1904. new_weight_name = new_name[:-len(".weight")] if new_name.endswith(".weight") else ""
  1905. if self.ftype == 1 and data_dtype == np.float32 and new_weight_name.endswith((".ssm_in", ".ssm_out", "token_embd", "output")) and n_dims == 2:
  1906. data = data.astype(np.float16)
  1907. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1908. self.gguf_writer.add_tensor(new_name, data)
  1909. @Model.register("CohereForCausalLM")
  1910. class CommandR2Model(Model):
  1911. model_arch = gguf.MODEL_ARCH.COMMAND_R
  1912. def __init__(self, *args, **kwargs):
  1913. super().__init__(*args, **kwargs)
  1914. # max_position_embeddings = 8192 in config.json but model was actually
  1915. # trained on 128k context length
  1916. self.hparams["max_position_embeddings"] = self.hparams["model_max_length"]
  1917. def set_gguf_parameters(self):
  1918. super().set_gguf_parameters()
  1919. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  1920. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  1921. ###### CONVERSION LOGIC ######
  1922. def parse_args() -> argparse.Namespace:
  1923. parser = argparse.ArgumentParser(
  1924. description="Convert a huggingface model to a GGML compatible file")
  1925. parser.add_argument(
  1926. "--vocab-only", action="store_true",
  1927. help="extract only the vocab",
  1928. )
  1929. parser.add_argument(
  1930. "--awq-path", type=Path, default=None,
  1931. help="Path to scale awq cache file")
  1932. parser.add_argument(
  1933. "--outfile", type=Path,
  1934. help="path to write to; default: based on input",
  1935. )
  1936. parser.add_argument(
  1937. "--outtype", type=str, choices=["f32", "f16"], default="f16",
  1938. help="output format - use f32 for float32, f16 for float16",
  1939. )
  1940. parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine")
  1941. parser.add_argument(
  1942. "model", type=Path,
  1943. help="directory containing model file",
  1944. )
  1945. parser.add_argument("--use-temp-file", action="store_true", help="use the tempfile library while processing (helpful when running out of memory, process killed)")
  1946. return parser.parse_args()
  1947. def main() -> None:
  1948. args = parse_args()
  1949. dir_model = args.model
  1950. if args.awq_path:
  1951. sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
  1952. from awq.apply_awq import add_scale_weights # type: ignore[import-not-found]
  1953. tmp_model_path = args.model / "weighted_model"
  1954. dir_model = tmp_model_path
  1955. if tmp_model_path.is_dir():
  1956. print(f"{tmp_model_path} exists as a weighted model.")
  1957. else:
  1958. tmp_model_path.mkdir(parents=True, exist_ok=True)
  1959. print("Saving new weighted model ...")
  1960. add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
  1961. print(f"Saved weighted model at {tmp_model_path}.")
  1962. if not dir_model.is_dir():
  1963. print(f'Error: {args.model} is not a directory', file=sys.stderr)
  1964. sys.exit(1)
  1965. ftype_map = {
  1966. "f32": gguf.GGMLQuantizationType.F32,
  1967. "f16": gguf.GGMLQuantizationType.F16,
  1968. }
  1969. if args.outfile is not None:
  1970. fname_out = args.outfile
  1971. else:
  1972. # output in the same directory as the model by default
  1973. fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
  1974. print(f"Loading model: {dir_model.name}")
  1975. hparams = Model.load_hparams(dir_model)
  1976. with torch.inference_mode():
  1977. model_class = Model.from_model_architecture(hparams["architectures"][0])
  1978. model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file)
  1979. print("Set model parameters")
  1980. model_instance.set_gguf_parameters()
  1981. print("Set model tokenizer")
  1982. model_instance.set_vocab()
  1983. if args.vocab_only:
  1984. print(f"Exporting model vocab to '{fname_out}'")
  1985. model_instance.write_vocab()
  1986. else:
  1987. print(f"Exporting model to '{fname_out}'")
  1988. model_instance.write()
  1989. print(f"Model successfully exported to '{fname_out}'")
  1990. if __name__ == '__main__':
  1991. main()