ggml-metal.metal 227 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289
  1. #define GGML_COMMON_DECL_METAL
  2. #define GGML_COMMON_IMPL_METAL
  3. #include "ggml-common.h"
  4. #include <metal_stdlib>
  5. using namespace metal;
  6. #define MAX(x, y) ((x) > (y) ? (x) : (y))
  7. #define MIN(x, y) ((x) < (y) ? (x) : (y))
  8. #define SWAP(x, y) { auto tmp = (x); (x) = (y); (y) = tmp; }
  9. #define N_SIMDWIDTH 32 // assuming SIMD group size is 32
  10. enum ggml_sort_order {
  11. GGML_SORT_ORDER_ASC,
  12. GGML_SORT_ORDER_DESC,
  13. };
  14. // general-purpose kernel for addition, multiplication and division of two tensors
  15. // pros: works for non-contiguous tensors, supports broadcast across all dims
  16. // cons: not very efficient
  17. kernel void kernel_add(
  18. device const char * src0,
  19. device const char * src1,
  20. device char * dst,
  21. constant int64_t & ne00,
  22. constant int64_t & ne01,
  23. constant int64_t & ne02,
  24. constant int64_t & ne03,
  25. constant uint64_t & nb00,
  26. constant uint64_t & nb01,
  27. constant uint64_t & nb02,
  28. constant uint64_t & nb03,
  29. constant int64_t & ne10,
  30. constant int64_t & ne11,
  31. constant int64_t & ne12,
  32. constant int64_t & ne13,
  33. constant uint64_t & nb10,
  34. constant uint64_t & nb11,
  35. constant uint64_t & nb12,
  36. constant uint64_t & nb13,
  37. constant int64_t & ne0,
  38. constant int64_t & ne1,
  39. constant int64_t & ne2,
  40. constant int64_t & ne3,
  41. constant uint64_t & nb0,
  42. constant uint64_t & nb1,
  43. constant uint64_t & nb2,
  44. constant uint64_t & nb3,
  45. constant int64_t & offs,
  46. uint3 tgpig[[threadgroup_position_in_grid]],
  47. uint3 tpitg[[thread_position_in_threadgroup]],
  48. uint3 ntg[[threads_per_threadgroup]]) {
  49. const int64_t i03 = tgpig.z;
  50. const int64_t i02 = tgpig.y;
  51. const int64_t i01 = tgpig.x;
  52. const int64_t i13 = i03 % ne13;
  53. const int64_t i12 = i02 % ne12;
  54. const int64_t i11 = i01 % ne11;
  55. device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01 + offs;
  56. device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
  57. device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1 + offs;
  58. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  59. const int i10 = i0 % ne10;
  60. *((device float *)(dst_ptr + i0*nb0)) = *((device float *)(src0_ptr + i0*nb00)) + *((device float *)(src1_ptr + i10*nb10));
  61. }
  62. }
  63. kernel void kernel_mul(
  64. device const char * src0,
  65. device const char * src1,
  66. device char * dst,
  67. constant int64_t & ne00,
  68. constant int64_t & ne01,
  69. constant int64_t & ne02,
  70. constant int64_t & ne03,
  71. constant uint64_t & nb00,
  72. constant uint64_t & nb01,
  73. constant uint64_t & nb02,
  74. constant uint64_t & nb03,
  75. constant int64_t & ne10,
  76. constant int64_t & ne11,
  77. constant int64_t & ne12,
  78. constant int64_t & ne13,
  79. constant uint64_t & nb10,
  80. constant uint64_t & nb11,
  81. constant uint64_t & nb12,
  82. constant uint64_t & nb13,
  83. constant int64_t & ne0,
  84. constant int64_t & ne1,
  85. constant int64_t & ne2,
  86. constant int64_t & ne3,
  87. constant uint64_t & nb0,
  88. constant uint64_t & nb1,
  89. constant uint64_t & nb2,
  90. constant uint64_t & nb3,
  91. uint3 tgpig[[threadgroup_position_in_grid]],
  92. uint3 tpitg[[thread_position_in_threadgroup]],
  93. uint3 ntg[[threads_per_threadgroup]]) {
  94. const int64_t i03 = tgpig.z;
  95. const int64_t i02 = tgpig.y;
  96. const int64_t i01 = tgpig.x;
  97. const int64_t i13 = i03 % ne13;
  98. const int64_t i12 = i02 % ne12;
  99. const int64_t i11 = i01 % ne11;
  100. device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
  101. device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
  102. device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1;
  103. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  104. const int i10 = i0 % ne10;
  105. *((device float *)(dst_ptr + i0*nb0)) = *((device float *)(src0_ptr + i0*nb00)) * *((device float *)(src1_ptr + i10*nb10));
  106. }
  107. }
  108. kernel void kernel_div(
  109. device const char * src0,
  110. device const char * src1,
  111. device char * dst,
  112. constant int64_t & ne00,
  113. constant int64_t & ne01,
  114. constant int64_t & ne02,
  115. constant int64_t & ne03,
  116. constant uint64_t & nb00,
  117. constant uint64_t & nb01,
  118. constant uint64_t & nb02,
  119. constant uint64_t & nb03,
  120. constant int64_t & ne10,
  121. constant int64_t & ne11,
  122. constant int64_t & ne12,
  123. constant int64_t & ne13,
  124. constant uint64_t & nb10,
  125. constant uint64_t & nb11,
  126. constant uint64_t & nb12,
  127. constant uint64_t & nb13,
  128. constant int64_t & ne0,
  129. constant int64_t & ne1,
  130. constant int64_t & ne2,
  131. constant int64_t & ne3,
  132. constant uint64_t & nb0,
  133. constant uint64_t & nb1,
  134. constant uint64_t & nb2,
  135. constant uint64_t & nb3,
  136. uint3 tgpig[[threadgroup_position_in_grid]],
  137. uint3 tpitg[[thread_position_in_threadgroup]],
  138. uint3 ntg[[threads_per_threadgroup]]) {
  139. const int64_t i03 = tgpig.z;
  140. const int64_t i02 = tgpig.y;
  141. const int64_t i01 = tgpig.x;
  142. const int64_t i13 = i03 % ne13;
  143. const int64_t i12 = i02 % ne12;
  144. const int64_t i11 = i01 % ne11;
  145. device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
  146. device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
  147. device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1;
  148. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  149. const int i10 = i0 % ne10;
  150. *((device float *)(dst_ptr + i0*nb0)) = *((device float *)(src0_ptr + i0*nb00)) / *((device float *)(src1_ptr + i10*nb10));
  151. }
  152. }
  153. // assumption: src1 is a row
  154. // broadcast src1 into src0
  155. kernel void kernel_add_row(
  156. device const float4 * src0,
  157. device const float4 * src1,
  158. device float4 * dst,
  159. constant uint64_t & nb [[buffer(28)]],
  160. uint tpig[[thread_position_in_grid]]) {
  161. dst[tpig] = src0[tpig] + src1[tpig % nb];
  162. }
  163. kernel void kernel_mul_row(
  164. device const float4 * src0,
  165. device const float4 * src1,
  166. device float4 * dst,
  167. constant uint64_t & nb [[buffer(28)]],
  168. uint tpig[[thread_position_in_grid]]) {
  169. dst[tpig] = src0[tpig] * src1[tpig % nb];
  170. }
  171. kernel void kernel_div_row(
  172. device const float4 * src0,
  173. device const float4 * src1,
  174. device float4 * dst,
  175. constant uint64_t & nb [[buffer(28)]],
  176. uint tpig[[thread_position_in_grid]]) {
  177. dst[tpig] = src0[tpig] / src1[tpig % nb];
  178. }
  179. kernel void kernel_scale(
  180. device const float * src0,
  181. device float * dst,
  182. constant float & scale,
  183. uint tpig[[thread_position_in_grid]]) {
  184. dst[tpig] = src0[tpig] * scale;
  185. }
  186. kernel void kernel_scale_4(
  187. device const float4 * src0,
  188. device float4 * dst,
  189. constant float & scale,
  190. uint tpig[[thread_position_in_grid]]) {
  191. dst[tpig] = src0[tpig] * scale;
  192. }
  193. kernel void kernel_relu(
  194. device const float * src0,
  195. device float * dst,
  196. uint tpig[[thread_position_in_grid]]) {
  197. dst[tpig] = max(0.0f, src0[tpig]);
  198. }
  199. kernel void kernel_tanh(
  200. device const float * src0,
  201. device float * dst,
  202. uint tpig[[thread_position_in_grid]]) {
  203. device const float & x = src0[tpig];
  204. dst[tpig] = precise::tanh(x);
  205. }
  206. constant float GELU_COEF_A = 0.044715f;
  207. constant float GELU_QUICK_COEF = -1.702f;
  208. constant float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  209. kernel void kernel_gelu(
  210. device const float4 * src0,
  211. device float4 * dst,
  212. uint tpig[[thread_position_in_grid]]) {
  213. device const float4 & x = src0[tpig];
  214. // BEWARE !!!
  215. // Simply using "tanh" instead of "precise::tanh" will sometimes results in NaNs!
  216. // This was observed with Falcon 7B and 40B models
  217. //
  218. dst[tpig] = 0.5f*x*(1.0f + precise::tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  219. }
  220. kernel void kernel_gelu_quick(
  221. device const float4 * src0,
  222. device float4 * dst,
  223. uint tpig[[thread_position_in_grid]]) {
  224. device const float4 & x = src0[tpig];
  225. dst[tpig] = x*(1.0f/(1.0f+exp(GELU_QUICK_COEF*x)));
  226. }
  227. kernel void kernel_silu(
  228. device const float4 * src0,
  229. device float4 * dst,
  230. uint tpig[[thread_position_in_grid]]) {
  231. device const float4 & x = src0[tpig];
  232. dst[tpig] = x / (1.0f + exp(-x));
  233. }
  234. kernel void kernel_sqr(
  235. device const float * src0,
  236. device float * dst,
  237. uint tpig[[thread_position_in_grid]]) {
  238. dst[tpig] = src0[tpig] * src0[tpig];
  239. }
  240. kernel void kernel_sum_rows(
  241. device const float * src0,
  242. device float * dst,
  243. constant int64_t & ne00,
  244. constant int64_t & ne01,
  245. constant int64_t & ne02,
  246. constant int64_t & ne03,
  247. constant uint64_t & nb00,
  248. constant uint64_t & nb01,
  249. constant uint64_t & nb02,
  250. constant uint64_t & nb03,
  251. constant int64_t & ne10,
  252. constant int64_t & ne11,
  253. constant int64_t & ne12,
  254. constant int64_t & ne13,
  255. constant uint64_t & nb10,
  256. constant uint64_t & nb11,
  257. constant uint64_t & nb12,
  258. constant uint64_t & nb13,
  259. constant int64_t & ne0,
  260. constant int64_t & ne1,
  261. constant int64_t & ne2,
  262. constant int64_t & ne3,
  263. constant uint64_t & nb0,
  264. constant uint64_t & nb1,
  265. constant uint64_t & nb2,
  266. constant uint64_t & nb3,
  267. uint3 tpig[[thread_position_in_grid]]) {
  268. int64_t i3 = tpig.z;
  269. int64_t i2 = tpig.y;
  270. int64_t i1 = tpig.x;
  271. if (i3 >= ne03 || i2 >= ne02 || i1 >= ne01) {
  272. return;
  273. }
  274. device const float * src_row = (device const float *) ((device const char *) src0 + i1*nb01 + i2*nb02 + i3*nb03);
  275. device float * dst_row = (device float *) ((device char *) dst + i1*nb1 + i2*nb2 + i3*nb3);
  276. float row_sum = 0;
  277. for (int64_t i0 = 0; i0 < ne00; i0++) {
  278. row_sum += src_row[i0];
  279. }
  280. dst_row[0] = row_sum;
  281. }
  282. kernel void kernel_soft_max(
  283. device const float * src0,
  284. device const float * src1,
  285. device const float * src2,
  286. device float * dst,
  287. constant int64_t & ne00,
  288. constant int64_t & ne01,
  289. constant int64_t & ne02,
  290. constant float & scale,
  291. constant float & max_bias,
  292. constant float & m0,
  293. constant float & m1,
  294. constant uint32_t & n_head_log2,
  295. threadgroup float * buf [[threadgroup(0)]],
  296. uint tgpig[[threadgroup_position_in_grid]],
  297. uint tpitg[[thread_position_in_threadgroup]],
  298. uint sgitg[[simdgroup_index_in_threadgroup]],
  299. uint tiisg[[thread_index_in_simdgroup]],
  300. uint ntg[[threads_per_threadgroup]]) {
  301. const int64_t i03 = (tgpig) / (ne02*ne01);
  302. const int64_t i02 = (tgpig - i03*ne02*ne01) / ne01;
  303. const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01);
  304. device const float * psrc0 = src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  305. device const float * pmask = src1 != src0 ? src1 + i01*ne00 : nullptr;
  306. device const float * ppos = src2 != src0 ? src2 : nullptr;
  307. device float * pdst = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  308. float slope = 0.0f;
  309. // ALiBi
  310. if (max_bias > 0.0f) {
  311. const int64_t h = i02;
  312. const float base = h < n_head_log2 ? m0 : m1;
  313. const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
  314. slope = pow(base, exp);
  315. }
  316. // parallel max
  317. float lmax = -INFINITY;
  318. for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
  319. lmax = MAX(lmax, psrc0[i00]*scale + (pmask ? pmask[i00] : 0.0f) + (ppos ? slope*ppos[i00] : 0.0f));
  320. }
  321. // find the max value in the block
  322. float max_val = simd_max(lmax);
  323. if (ntg > N_SIMDWIDTH) {
  324. if (sgitg == 0) {
  325. buf[tiisg] = -INFINITY;
  326. }
  327. threadgroup_barrier(mem_flags::mem_threadgroup);
  328. if (tiisg == 0) {
  329. buf[sgitg] = max_val;
  330. }
  331. threadgroup_barrier(mem_flags::mem_threadgroup);
  332. max_val = buf[tiisg];
  333. max_val = simd_max(max_val);
  334. }
  335. // parallel sum
  336. float lsum = 0.0f;
  337. for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
  338. const float exp_psrc0 = exp((psrc0[i00]*scale + (pmask ? pmask[i00] : 0.0f) + (ppos ? slope*ppos[i00] : 0.0f)) - max_val);
  339. lsum += exp_psrc0;
  340. pdst[i00] = exp_psrc0;
  341. }
  342. // This barrier fixes a failing test
  343. // ref: https://github.com/ggerganov/ggml/pull/621#discussion_r1425156335
  344. threadgroup_barrier(mem_flags::mem_none);
  345. float sum = simd_sum(lsum);
  346. if (ntg > N_SIMDWIDTH) {
  347. if (sgitg == 0) {
  348. buf[tiisg] = 0.0f;
  349. }
  350. threadgroup_barrier(mem_flags::mem_threadgroup);
  351. if (tiisg == 0) {
  352. buf[sgitg] = sum;
  353. }
  354. threadgroup_barrier(mem_flags::mem_threadgroup);
  355. sum = buf[tiisg];
  356. sum = simd_sum(sum);
  357. }
  358. const float inv_sum = 1.0f/sum;
  359. for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
  360. pdst[i00] *= inv_sum;
  361. }
  362. }
  363. kernel void kernel_soft_max_4(
  364. device const float * src0,
  365. device const float * src1,
  366. device const float * src2,
  367. device float * dst,
  368. constant int64_t & ne00,
  369. constant int64_t & ne01,
  370. constant int64_t & ne02,
  371. constant float & scale,
  372. constant float & max_bias,
  373. constant float & m0,
  374. constant float & m1,
  375. constant uint32_t & n_head_log2,
  376. threadgroup float * buf [[threadgroup(0)]],
  377. uint tgpig[[threadgroup_position_in_grid]],
  378. uint tpitg[[thread_position_in_threadgroup]],
  379. uint sgitg[[simdgroup_index_in_threadgroup]],
  380. uint tiisg[[thread_index_in_simdgroup]],
  381. uint ntg[[threads_per_threadgroup]]) {
  382. const int64_t i03 = (tgpig) / (ne02*ne01);
  383. const int64_t i02 = (tgpig - i03*ne02*ne01) / ne01;
  384. const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01);
  385. device const float4 * psrc4 = (device const float4 *)(src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
  386. device const float4 * pmask = src1 != src0 ? (device const float4 *)(src1 + i01*ne00) : nullptr;
  387. device const float4 * ppos = src2 != src0 ? (device const float4 *)(src2) : nullptr;
  388. device float4 * pdst4 = (device float4 *)(dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
  389. float slope = 0.0f;
  390. if (max_bias > 0.0f) {
  391. const int64_t h = i02;
  392. const float base = h < n_head_log2 ? m0 : m1;
  393. const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
  394. slope = pow(base, exp);
  395. }
  396. // parallel max
  397. float4 lmax4 = -INFINITY;
  398. for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
  399. lmax4 = fmax(lmax4, psrc4[i00]*scale + (pmask ? pmask[i00] : 0.0f) + (ppos ? slope*ppos[i00] : 0.0f));
  400. }
  401. const float lmax = MAX(MAX(lmax4[0], lmax4[1]), MAX(lmax4[2], lmax4[3]));
  402. float max_val = simd_max(lmax);
  403. if (ntg > N_SIMDWIDTH) {
  404. if (sgitg == 0) {
  405. buf[tiisg] = -INFINITY;
  406. }
  407. threadgroup_barrier(mem_flags::mem_threadgroup);
  408. if (tiisg == 0) {
  409. buf[sgitg] = max_val;
  410. }
  411. threadgroup_barrier(mem_flags::mem_threadgroup);
  412. max_val = buf[tiisg];
  413. max_val = simd_max(max_val);
  414. }
  415. // parallel sum
  416. float4 lsum4 = 0.0f;
  417. for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
  418. const float4 exp_psrc4 = exp((psrc4[i00]*scale + (pmask ? pmask[i00] : 0.0f) + (ppos ? slope*ppos[i00] : 0.0f)) - max_val);
  419. lsum4 += exp_psrc4;
  420. pdst4[i00] = exp_psrc4;
  421. }
  422. const float lsum = lsum4[0] + lsum4[1] + lsum4[2] + lsum4[3];
  423. // This barrier fixes a failing test
  424. // ref: https://github.com/ggerganov/ggml/pull/621#discussion_r1425156335
  425. threadgroup_barrier(mem_flags::mem_none);
  426. float sum = simd_sum(lsum);
  427. if (ntg > N_SIMDWIDTH) {
  428. if (sgitg == 0) {
  429. buf[tiisg] = 0.0f;
  430. }
  431. threadgroup_barrier(mem_flags::mem_threadgroup);
  432. if (tiisg == 0) {
  433. buf[sgitg] = sum;
  434. }
  435. threadgroup_barrier(mem_flags::mem_threadgroup);
  436. sum = buf[tiisg];
  437. sum = simd_sum(sum);
  438. }
  439. const float inv_sum = 1.0f/sum;
  440. for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
  441. pdst4[i00] *= inv_sum;
  442. }
  443. }
  444. kernel void kernel_diag_mask_inf(
  445. device const float * src0,
  446. device float * dst,
  447. constant int64_t & ne00,
  448. constant int64_t & ne01,
  449. constant int & n_past,
  450. uint3 tpig[[thread_position_in_grid]]) {
  451. const int64_t i02 = tpig[2];
  452. const int64_t i01 = tpig[1];
  453. const int64_t i00 = tpig[0];
  454. if (i00 > n_past + i01) {
  455. dst[i02*ne01*ne00 + i01*ne00 + i00] = -INFINITY;
  456. } else {
  457. dst[i02*ne01*ne00 + i01*ne00 + i00] = src0[i02*ne01*ne00 + i01*ne00 + i00];
  458. }
  459. }
  460. kernel void kernel_diag_mask_inf_8(
  461. device const float4 * src0,
  462. device float4 * dst,
  463. constant int64_t & ne00,
  464. constant int64_t & ne01,
  465. constant int & n_past,
  466. uint3 tpig[[thread_position_in_grid]]) {
  467. const int64_t i = 2*tpig[0];
  468. dst[i+0] = src0[i+0];
  469. dst[i+1] = src0[i+1];
  470. int64_t i4 = 4*i;
  471. const int64_t i02 = i4/(ne00*ne01); i4 -= i02*ne00*ne01;
  472. const int64_t i01 = i4/(ne00); i4 -= i01*ne00;
  473. const int64_t i00 = i4;
  474. for (int k = 3; k >= 0; --k) {
  475. if (i00 + 4 + k <= n_past + i01) {
  476. break;
  477. }
  478. dst[i+1][k] = -INFINITY;
  479. if (i00 + k > n_past + i01) {
  480. dst[i][k] = -INFINITY;
  481. }
  482. }
  483. }
  484. kernel void kernel_norm(
  485. device const void * src0,
  486. device float * dst,
  487. constant int64_t & ne00,
  488. constant uint64_t & nb01,
  489. constant float & eps,
  490. threadgroup float * sum [[threadgroup(0)]],
  491. uint tgpig[[threadgroup_position_in_grid]],
  492. uint tpitg[[thread_position_in_threadgroup]],
  493. uint ntg[[threads_per_threadgroup]]) {
  494. device const float * x = (device const float *) ((device const char *) src0 + tgpig*nb01);
  495. // MEAN
  496. // parallel sum
  497. sum[tpitg] = 0.0f;
  498. for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
  499. sum[tpitg] += x[i00];
  500. }
  501. // reduce
  502. threadgroup_barrier(mem_flags::mem_threadgroup);
  503. for (uint i = ntg/2; i > 0; i /= 2) {
  504. if (tpitg < i) {
  505. sum[tpitg] += sum[tpitg + i];
  506. }
  507. threadgroup_barrier(mem_flags::mem_threadgroup);
  508. }
  509. const float mean = sum[0] / ne00;
  510. // recenter and VARIANCE
  511. threadgroup_barrier(mem_flags::mem_threadgroup);
  512. device float * y = dst + tgpig*ne00;
  513. sum[tpitg] = 0.0f;
  514. for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
  515. y[i00] = x[i00] - mean;
  516. sum[tpitg] += y[i00] * y[i00];
  517. }
  518. // reduce
  519. threadgroup_barrier(mem_flags::mem_threadgroup);
  520. for (uint i = ntg/2; i > 0; i /= 2) {
  521. if (tpitg < i) {
  522. sum[tpitg] += sum[tpitg + i];
  523. }
  524. threadgroup_barrier(mem_flags::mem_threadgroup);
  525. }
  526. const float variance = sum[0] / ne00;
  527. const float scale = 1.0f/sqrt(variance + eps);
  528. for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
  529. y[i00] = y[i00] * scale;
  530. }
  531. }
  532. kernel void kernel_rms_norm(
  533. device const void * src0,
  534. device float * dst,
  535. constant int64_t & ne00,
  536. constant uint64_t & nb01,
  537. constant float & eps,
  538. threadgroup float * buf [[threadgroup(0)]],
  539. uint tgpig[[threadgroup_position_in_grid]],
  540. uint tpitg[[thread_position_in_threadgroup]],
  541. uint sgitg[[simdgroup_index_in_threadgroup]],
  542. uint tiisg[[thread_index_in_simdgroup]],
  543. uint ntg[[threads_per_threadgroup]]) {
  544. device const float4 * x = (device const float4 *) ((device const char *) src0 + tgpig*nb01);
  545. float4 sumf = 0;
  546. float all_sum = 0;
  547. // parallel sum
  548. for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
  549. sumf += x[i00] * x[i00];
  550. }
  551. all_sum = sumf[0] + sumf[1] + sumf[2] + sumf[3];
  552. all_sum = simd_sum(all_sum);
  553. if (ntg > N_SIMDWIDTH) {
  554. if (sgitg == 0) {
  555. buf[tiisg] = 0.0f;
  556. }
  557. threadgroup_barrier(mem_flags::mem_threadgroup);
  558. if (tiisg == 0) {
  559. buf[sgitg] = all_sum;
  560. }
  561. threadgroup_barrier(mem_flags::mem_threadgroup);
  562. all_sum = buf[tiisg];
  563. all_sum = simd_sum(all_sum);
  564. }
  565. const float mean = all_sum/ne00;
  566. const float scale = 1.0f/sqrt(mean + eps);
  567. device float4 * y = (device float4 *) (dst + tgpig*ne00);
  568. for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
  569. y[i00] = x[i00] * scale;
  570. }
  571. }
  572. kernel void kernel_group_norm(
  573. device const float * src0,
  574. device float * dst,
  575. constant int64_t & ne00,
  576. constant int64_t & ne01,
  577. constant int64_t & ne02,
  578. constant uint64_t & nb00,
  579. constant uint64_t & nb01,
  580. constant uint64_t & nb02,
  581. constant int32_t & n_groups,
  582. constant float & eps,
  583. threadgroup float * buf [[threadgroup(0)]],
  584. uint tgpig[[threadgroup_position_in_grid]],
  585. uint tpitg[[thread_position_in_threadgroup]],
  586. uint sgitg[[simdgroup_index_in_threadgroup]],
  587. uint tiisg[[thread_index_in_simdgroup]],
  588. uint ntg[[threads_per_threadgroup]]) {
  589. const int64_t ne = ne00*ne01*ne02;
  590. const int64_t gs = ne00*ne01*((ne02 + n_groups - 1) / n_groups);
  591. int start = tgpig * gs;
  592. int end = start + gs;
  593. start += tpitg;
  594. if (end >= ne) {
  595. end = ne;
  596. }
  597. float tmp = 0.0f; // partial sum for thread in warp
  598. for (int j = start; j < end; j += ntg) {
  599. tmp += src0[j];
  600. }
  601. threadgroup_barrier(mem_flags::mem_threadgroup);
  602. tmp = simd_sum(tmp);
  603. if (ntg > N_SIMDWIDTH) {
  604. if (sgitg == 0) {
  605. buf[tiisg] = 0.0f;
  606. }
  607. threadgroup_barrier(mem_flags::mem_threadgroup);
  608. if (tiisg == 0) {
  609. buf[sgitg] = tmp;
  610. }
  611. threadgroup_barrier(mem_flags::mem_threadgroup);
  612. tmp = buf[tiisg];
  613. tmp = simd_sum(tmp);
  614. }
  615. const float mean = tmp / gs;
  616. tmp = 0.0f;
  617. for (int j = start; j < end; j += ntg) {
  618. float xi = src0[j] - mean;
  619. dst[j] = xi;
  620. tmp += xi * xi;
  621. }
  622. tmp = simd_sum(tmp);
  623. if (ntg > N_SIMDWIDTH) {
  624. if (sgitg == 0) {
  625. buf[tiisg] = 0.0f;
  626. }
  627. threadgroup_barrier(mem_flags::mem_threadgroup);
  628. if (tiisg == 0) {
  629. buf[sgitg] = tmp;
  630. }
  631. threadgroup_barrier(mem_flags::mem_threadgroup);
  632. tmp = buf[tiisg];
  633. tmp = simd_sum(tmp);
  634. }
  635. const float variance = tmp / gs;
  636. const float scale = 1.0f/sqrt(variance + eps);
  637. for (int j = start; j < end; j += ntg) {
  638. dst[j] *= scale;
  639. }
  640. }
  641. // function for calculate inner product between half a q4_0 block and 16 floats (yl), sumy is SUM(yl[i])
  642. // il indicates where the q4 quants begin (0 or QK4_0/4)
  643. // we assume that the yl's have been multiplied with the appropriate scale factor
  644. // that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
  645. inline float block_q_n_dot_y(device const block_q4_0 * qb_curr, float sumy, thread float * yl, int il) {
  646. float d = qb_curr->d;
  647. float2 acc = 0.f;
  648. device const uint16_t * qs = ((device const uint16_t *)qb_curr + 1 + il/2);
  649. for (int i = 0; i < 8; i+=2) {
  650. acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F)
  651. + yl[i + 1] * (qs[i / 2] & 0x0F00);
  652. acc[1] += yl[i + 8] * (qs[i / 2] & 0x00F0)
  653. + yl[i + 9] * (qs[i / 2] & 0xF000);
  654. }
  655. return d * (sumy * -8.f + acc[0] + acc[1]);
  656. }
  657. // function for calculate inner product between half a q4_1 block and 16 floats (yl), sumy is SUM(yl[i])
  658. // il indicates where the q4 quants begin (0 or QK4_0/4)
  659. // we assume that the yl's have been multiplied with the appropriate scale factor
  660. // that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
  661. inline float block_q_n_dot_y(device const block_q4_1 * qb_curr, float sumy, thread float * yl, int il) {
  662. float d = qb_curr->d;
  663. float m = qb_curr->m;
  664. float2 acc = 0.f;
  665. device const uint16_t * qs = ((device const uint16_t *)qb_curr + 2 + il/2);
  666. for (int i = 0; i < 8; i+=2) {
  667. acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F)
  668. + yl[i + 1] * (qs[i / 2] & 0x0F00);
  669. acc[1] += yl[i + 8] * (qs[i / 2] & 0x00F0)
  670. + yl[i + 9] * (qs[i / 2] & 0xF000);
  671. }
  672. return d * (acc[0] + acc[1]) + sumy * m;
  673. }
  674. // function for calculate inner product between half a q5_0 block and 16 floats (yl), sumy is SUM(yl[i])
  675. // il indicates where the q5 quants begin (0 or QK5_0/4)
  676. // we assume that the yl's have been multiplied with the appropriate scale factor
  677. // that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
  678. inline float block_q_n_dot_y(device const block_q5_0 * qb_curr, float sumy, thread float * yl, int il) {
  679. float d = qb_curr->d;
  680. float2 acc = 0.f;
  681. device const uint16_t * qs = ((device const uint16_t *)qb_curr + 3 + il/2);
  682. const uint32_t qh = *((device const uint32_t *)qb_curr->qh);
  683. for (int i = 0; i < 8; i+=2) {
  684. acc[0] += yl[i + 0] * ((qs[i / 2] & 0x000F) | ((qh >> (i+0+il ) << 4 ) & 0x00010))
  685. + yl[i + 1] * ((qs[i / 2] & 0x0F00) | ((qh >> (i+1+il ) << 12) & 0x01000));
  686. acc[1] += yl[i + 8] * ((qs[i / 2] & 0x00F0) | ((qh >> (i+0+il+QK5_0/2) << 8 ) & 0x00100))
  687. + yl[i + 9] * ((qs[i / 2] & 0xF000) | ((qh >> (i+1+il+QK5_0/2) << 16) & 0x10000));
  688. }
  689. return d * (sumy * -16.f + acc[0] + acc[1]);
  690. }
  691. // function for calculate inner product between half a q5_1 block and 16 floats (yl), sumy is SUM(yl[i])
  692. // il indicates where the q5 quants begin (0 or QK5_1/4)
  693. // we assume that the yl's have been multiplied with the appropriate scale factor
  694. // that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
  695. inline float block_q_n_dot_y(device const block_q5_1 * qb_curr, float sumy, thread float * yl, int il) {
  696. float d = qb_curr->d;
  697. float m = qb_curr->m;
  698. float2 acc = 0.f;
  699. device const uint16_t * qs = ((device const uint16_t *)qb_curr + 4 + il/2);
  700. const uint32_t qh = *((device const uint32_t *)qb_curr->qh);
  701. for (int i = 0; i < 8; i+=2) {
  702. acc[0] += yl[i + 0] * ((qs[i / 2] & 0x000F) | ((qh >> (i+0+il ) << 4 ) & 0x00010))
  703. + yl[i + 1] * ((qs[i / 2] & 0x0F00) | ((qh >> (i+1+il ) << 12) & 0x01000));
  704. acc[1] += yl[i + 8] * ((qs[i / 2] & 0x00F0) | ((qh >> (i+0+il+QK5_0/2) << 8 ) & 0x00100))
  705. + yl[i + 9] * ((qs[i / 2] & 0xF000) | ((qh >> (i+1+il+QK5_0/2) << 16) & 0x10000));
  706. }
  707. return d * (acc[0] + acc[1]) + sumy * m;
  708. }
  709. // putting them in the kernel cause a significant performance penalty
  710. #define N_DST 4 // each SIMD group works on 4 rows
  711. #define N_SIMDGROUP 2 // number of SIMD groups in a thread group
  712. //Note: This is a template, but strictly speaking it only applies to
  713. // quantizations where the block size is 32. It also does not
  714. // guard against the number of rows not being divisible by
  715. // N_DST, so this is another explicit assumption of the implementation.
  716. template<typename block_q_type, int nr, int nsg, int nw>
  717. void mul_vec_q_n_f32_impl(
  718. device const void * src0,
  719. device const float * src1,
  720. device float * dst,
  721. constant int64_t & ne00,
  722. constant int64_t & ne01,
  723. constant int64_t & ne02,
  724. constant int64_t & ne10,
  725. constant int64_t & ne12,
  726. constant int64_t & ne0,
  727. constant int64_t & ne1,
  728. constant uint & r2,
  729. constant uint & r3,
  730. threadgroup int8_t * shared_values,
  731. uint3 tgpig, uint tiisg, uint sgitg) {
  732. const int nb = ne00/QK4_0;
  733. const int r0 = tgpig.x;
  734. const int r1 = tgpig.y;
  735. const int im = tgpig.z;
  736. const int first_row = (r0 * nsg + sgitg) * nr;
  737. const uint i12 = im%ne12;
  738. const uint i13 = im/ne12;
  739. const uint offset0 = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  740. device const block_q_type * x = (device const block_q_type *) src0 + offset0;
  741. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  742. float yl[16]; // src1 vector cache
  743. float sumf[nr] = {0.f};
  744. const int ix = (tiisg/2);
  745. const int il = (tiisg%2)*8;
  746. device const float * yb = y + ix * QK4_0 + il;
  747. // each thread in a SIMD group deals with half a block.
  748. for (int ib = ix; ib < nb; ib += nw/2) {
  749. float sumy = 0;
  750. for (int i = 0; i < 8; i += 2) {
  751. sumy += yb[i] + yb[i+1];
  752. yl[i+0] = yb[i+ 0];
  753. yl[i+1] = yb[i+ 1]/256.f;
  754. sumy += yb[i+16] + yb[i+17];
  755. yl[i+8] = yb[i+16]/16.f;
  756. yl[i+9] = yb[i+17]/4096.f;
  757. }
  758. for (int row = 0; row < nr; row++) {
  759. sumf[row] += block_q_n_dot_y(x+ib+row*nb, sumy, yl, il);
  760. }
  761. yb += QK4_0 * 16;
  762. }
  763. for (int row = 0; row < nr; ++row) {
  764. const float tot = simd_sum(sumf[row]);
  765. if (tiisg == 0 && first_row + row < ne01) {
  766. dst[im*ne0*ne1 + r1*ne0 + first_row + row] = tot;
  767. }
  768. }
  769. }
  770. kernel void kernel_mul_mv_q4_0_f32(
  771. device const void * src0,
  772. device const float * src1,
  773. device float * dst,
  774. constant int64_t & ne00,
  775. constant int64_t & ne01,
  776. constant int64_t & ne02,
  777. constant uint64_t & nb00,
  778. constant uint64_t & nb01,
  779. constant uint64_t & nb02,
  780. constant int64_t & ne10,
  781. constant int64_t & ne11,
  782. constant int64_t & ne12,
  783. constant uint64_t & nb10,
  784. constant uint64_t & nb11,
  785. constant uint64_t & nb12,
  786. constant int64_t & ne0,
  787. constant int64_t & ne1,
  788. constant uint & r2,
  789. constant uint & r3,
  790. uint3 tgpig[[threadgroup_position_in_grid]],
  791. uint tiisg[[thread_index_in_simdgroup]],
  792. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  793. mul_vec_q_n_f32_impl<block_q4_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,nullptr,tgpig,tiisg,sgitg);
  794. }
  795. kernel void kernel_mul_mv_q4_1_f32(
  796. device const void * src0,
  797. device const float * src1,
  798. device float * dst,
  799. constant int64_t & ne00,
  800. constant int64_t & ne01,
  801. constant int64_t & ne02,
  802. constant uint64_t & nb00,
  803. constant uint64_t & nb01,
  804. constant uint64_t & nb02,
  805. constant int64_t & ne10,
  806. constant int64_t & ne11,
  807. constant int64_t & ne12,
  808. constant uint64_t & nb10,
  809. constant uint64_t & nb11,
  810. constant uint64_t & nb12,
  811. constant int64_t & ne0,
  812. constant int64_t & ne1,
  813. constant uint & r2,
  814. constant uint & r3,
  815. uint3 tgpig[[threadgroup_position_in_grid]],
  816. uint tiisg[[thread_index_in_simdgroup]],
  817. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  818. mul_vec_q_n_f32_impl<block_q4_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,nullptr,tgpig,tiisg,sgitg);
  819. }
  820. kernel void kernel_mul_mv_q5_0_f32(
  821. device const void * src0,
  822. device const float * src1,
  823. device float * dst,
  824. constant int64_t & ne00,
  825. constant int64_t & ne01,
  826. constant int64_t & ne02,
  827. constant uint64_t & nb00,
  828. constant uint64_t & nb01,
  829. constant uint64_t & nb02,
  830. constant int64_t & ne10,
  831. constant int64_t & ne11,
  832. constant int64_t & ne12,
  833. constant uint64_t & nb10,
  834. constant uint64_t & nb11,
  835. constant uint64_t & nb12,
  836. constant int64_t & ne0,
  837. constant int64_t & ne1,
  838. constant uint & r2,
  839. constant uint & r3,
  840. uint3 tgpig[[threadgroup_position_in_grid]],
  841. uint tiisg[[thread_index_in_simdgroup]],
  842. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  843. mul_vec_q_n_f32_impl<block_q5_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,nullptr,tgpig,tiisg,sgitg);
  844. }
  845. kernel void kernel_mul_mv_q5_1_f32(
  846. device const void * src0,
  847. device const float * src1,
  848. device float * dst,
  849. constant int64_t & ne00,
  850. constant int64_t & ne01,
  851. constant int64_t & ne02,
  852. constant uint64_t & nb00,
  853. constant uint64_t & nb01,
  854. constant uint64_t & nb02,
  855. constant int64_t & ne10,
  856. constant int64_t & ne11,
  857. constant int64_t & ne12,
  858. constant uint64_t & nb10,
  859. constant uint64_t & nb11,
  860. constant uint64_t & nb12,
  861. constant int64_t & ne0,
  862. constant int64_t & ne1,
  863. constant uint & r2,
  864. constant uint & r3,
  865. uint3 tgpig[[threadgroup_position_in_grid]],
  866. uint tiisg[[thread_index_in_simdgroup]],
  867. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  868. mul_vec_q_n_f32_impl<block_q5_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,nullptr,tgpig,tiisg,sgitg);
  869. }
  870. #define NB_Q8_0 8
  871. void kernel_mul_mv_q8_0_f32_impl(
  872. device const void * src0,
  873. device const float * src1,
  874. device float * dst,
  875. constant int64_t & ne00,
  876. constant int64_t & ne01,
  877. constant int64_t & ne02,
  878. constant int64_t & ne10,
  879. constant int64_t & ne12,
  880. constant int64_t & ne0,
  881. constant int64_t & ne1,
  882. constant uint & r2,
  883. constant uint & r3,
  884. threadgroup int8_t * shared_values [[threadgroup(0)]],
  885. uint3 tgpig[[threadgroup_position_in_grid]],
  886. uint tiisg[[thread_index_in_simdgroup]],
  887. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  888. const int nr = N_DST;
  889. const int nsg = N_SIMDGROUP;
  890. const int nw = N_SIMDWIDTH;
  891. const int nb = ne00/QK8_0;
  892. const int r0 = tgpig.x;
  893. const int r1 = tgpig.y;
  894. const int im = tgpig.z;
  895. const int first_row = (r0 * nsg + sgitg) * nr;
  896. const uint i12 = im%ne12;
  897. const uint i13 = im/ne12;
  898. const uint offset0 = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  899. device const block_q8_0 * x = (device const block_q8_0 *) src0 + offset0;
  900. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  901. float yl[NB_Q8_0];
  902. float sumf[nr]={0.f};
  903. const int ix = tiisg/4;
  904. const int il = tiisg%4;
  905. device const float * yb = y + ix * QK8_0 + NB_Q8_0*il;
  906. // each thread in a SIMD group deals with NB_Q8_0 quants at a time
  907. for (int ib = ix; ib < nb; ib += nw/4) {
  908. for (int i = 0; i < NB_Q8_0; ++i) {
  909. yl[i] = yb[i];
  910. }
  911. for (int row = 0; row < nr; row++) {
  912. device const int8_t * qs = x[ib+row*nb].qs + NB_Q8_0*il;
  913. float sumq = 0.f;
  914. for (int iq = 0; iq < NB_Q8_0; ++iq) {
  915. sumq += qs[iq] * yl[iq];
  916. }
  917. sumf[row] += sumq*x[ib+row*nb].d;
  918. }
  919. yb += NB_Q8_0 * nw;
  920. }
  921. for (int row = 0; row < nr; ++row) {
  922. const float tot = simd_sum(sumf[row]);
  923. if (tiisg == 0 && first_row + row < ne01) {
  924. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = tot;
  925. }
  926. }
  927. }
  928. [[host_name("kernel_mul_mv_q8_0_f32")]]
  929. kernel void kernel_mul_mv_q8_0_f32(
  930. device const void * src0,
  931. device const float * src1,
  932. device float * dst,
  933. constant int64_t & ne00,
  934. constant int64_t & ne01,
  935. constant int64_t & ne02,
  936. constant uint64_t & nb00,
  937. constant uint64_t & nb01,
  938. constant uint64_t & nb02,
  939. constant int64_t & ne10,
  940. constant int64_t & ne11,
  941. constant int64_t & ne12,
  942. constant uint64_t & nb10,
  943. constant uint64_t & nb11,
  944. constant uint64_t & nb12,
  945. constant int64_t & ne0,
  946. constant int64_t & ne1,
  947. constant uint & r2,
  948. constant uint & r3,
  949. uint3 tgpig[[threadgroup_position_in_grid]],
  950. uint tiisg[[thread_index_in_simdgroup]],
  951. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  952. kernel_mul_mv_q8_0_f32_impl(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,nullptr,tgpig,tiisg,sgitg);
  953. }
  954. #define N_F32_F32 4
  955. void kernel_mul_mv_f32_f32_impl(
  956. device const char * src0,
  957. device const char * src1,
  958. device float * dst,
  959. constant int64_t & ne00,
  960. constant int64_t & ne01,
  961. constant int64_t & ne02,
  962. constant uint64_t & nb00,
  963. constant uint64_t & nb01,
  964. constant uint64_t & nb02,
  965. constant int64_t & ne10,
  966. constant int64_t & ne11,
  967. constant int64_t & ne12,
  968. constant uint64_t & nb10,
  969. constant uint64_t & nb11,
  970. constant uint64_t & nb12,
  971. constant int64_t & ne0,
  972. constant int64_t & ne1,
  973. constant uint & r2,
  974. constant uint & r3,
  975. uint3 tgpig[[threadgroup_position_in_grid]],
  976. uint tiisg[[thread_index_in_simdgroup]]) {
  977. const int64_t r0 = tgpig.x;
  978. const int64_t rb = tgpig.y*N_F32_F32;
  979. const int64_t im = tgpig.z;
  980. const uint i12 = im%ne12;
  981. const uint i13 = im/ne12;
  982. const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02;
  983. device const float * x = (device const float *) (src0 + offset0);
  984. if (ne00 < 128) {
  985. for (int row = 0; row < N_F32_F32; ++row) {
  986. int r1 = rb + row;
  987. if (r1 >= ne11) {
  988. break;
  989. }
  990. device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
  991. float sumf = 0;
  992. for (int i = tiisg; i < ne00; i += 32) {
  993. sumf += (float) x[i] * (float) y[i];
  994. }
  995. float all_sum = simd_sum(sumf);
  996. if (tiisg == 0) {
  997. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  998. }
  999. }
  1000. } else {
  1001. device const float4 * x4 = (device const float4 *)x;
  1002. for (int row = 0; row < N_F32_F32; ++row) {
  1003. int r1 = rb + row;
  1004. if (r1 >= ne11) {
  1005. break;
  1006. }
  1007. device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
  1008. device const float4 * y4 = (device const float4 *) y;
  1009. float sumf = 0;
  1010. for (int i = tiisg; i < ne00/4; i += 32) {
  1011. for (int k = 0; k < 4; ++k) sumf += (float) x4[i][k] * y4[i][k];
  1012. }
  1013. float all_sum = simd_sum(sumf);
  1014. if (tiisg == 0) {
  1015. for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (float) x[i] * y[i];
  1016. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1017. }
  1018. }
  1019. }
  1020. }
  1021. [[host_name("kernel_mul_mv_f32_f32")]]
  1022. kernel void kernel_mul_mv_f32_f32(
  1023. device const char * src0,
  1024. device const char * src1,
  1025. device float * dst,
  1026. constant int64_t & ne00,
  1027. constant int64_t & ne01,
  1028. constant int64_t & ne02,
  1029. constant uint64_t & nb00,
  1030. constant uint64_t & nb01,
  1031. constant uint64_t & nb02,
  1032. constant int64_t & ne10,
  1033. constant int64_t & ne11,
  1034. constant int64_t & ne12,
  1035. constant uint64_t & nb10,
  1036. constant uint64_t & nb11,
  1037. constant uint64_t & nb12,
  1038. constant int64_t & ne0,
  1039. constant int64_t & ne1,
  1040. constant uint & r2,
  1041. constant uint & r3,
  1042. uint3 tgpig[[threadgroup_position_in_grid]],
  1043. uint tiisg[[thread_index_in_simdgroup]]) {
  1044. kernel_mul_mv_f32_f32_impl(src0, src1, dst, ne00, ne01, ne02, nb00, nb01, nb02, ne10, ne11, ne12, nb10, nb11, nb12, ne0, ne1, r2, r3, tgpig, tiisg);
  1045. }
  1046. #define N_F16_F16 4
  1047. kernel void kernel_mul_mv_f16_f16(
  1048. device const char * src0,
  1049. device const char * src1,
  1050. device float * dst,
  1051. constant int64_t & ne00,
  1052. constant int64_t & ne01,
  1053. constant int64_t & ne02,
  1054. constant uint64_t & nb00,
  1055. constant uint64_t & nb01,
  1056. constant uint64_t & nb02,
  1057. constant int64_t & ne10,
  1058. constant int64_t & ne11,
  1059. constant int64_t & ne12,
  1060. constant uint64_t & nb10,
  1061. constant uint64_t & nb11,
  1062. constant uint64_t & nb12,
  1063. constant int64_t & ne0,
  1064. constant int64_t & ne1,
  1065. constant uint & r2,
  1066. constant uint & r3,
  1067. uint3 tgpig[[threadgroup_position_in_grid]],
  1068. uint tiisg[[thread_index_in_simdgroup]]) {
  1069. const int64_t r0 = tgpig.x;
  1070. const int64_t rb = tgpig.y*N_F16_F16;
  1071. const int64_t im = tgpig.z;
  1072. const uint i12 = im%ne12;
  1073. const uint i13 = im/ne12;
  1074. const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02;
  1075. device const half * x = (device const half *) (src0 + offset0);
  1076. if (ne00 < 128) {
  1077. for (int row = 0; row < N_F16_F16; ++row) {
  1078. int r1 = rb + row;
  1079. if (r1 >= ne11) {
  1080. break;
  1081. }
  1082. device const half * y = (device const half *) (src1 + r1*nb11 + im*nb12);
  1083. float sumf = 0;
  1084. for (int i = tiisg; i < ne00; i += 32) {
  1085. sumf += (half) x[i] * (half) y[i];
  1086. }
  1087. float all_sum = simd_sum(sumf);
  1088. if (tiisg == 0) {
  1089. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1090. }
  1091. }
  1092. } else {
  1093. device const half4 * x4 = (device const half4 *)x;
  1094. for (int row = 0; row < N_F16_F16; ++row) {
  1095. int r1 = rb + row;
  1096. if (r1 >= ne11) {
  1097. break;
  1098. }
  1099. device const half * y = (device const half *) (src1 + r1*nb11 + im*nb12);
  1100. device const half4 * y4 = (device const half4 *) y;
  1101. float sumf = 0;
  1102. for (int i = tiisg; i < ne00/4; i += 32) {
  1103. for (int k = 0; k < 4; ++k) sumf += (half) x4[i][k] * y4[i][k];
  1104. }
  1105. float all_sum = simd_sum(sumf);
  1106. if (tiisg == 0) {
  1107. for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (half) x[i] * y[i];
  1108. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1109. }
  1110. }
  1111. }
  1112. }
  1113. void kernel_mul_mv_f16_f32_1row_impl(
  1114. device const char * src0,
  1115. device const char * src1,
  1116. device float * dst,
  1117. constant int64_t & ne00,
  1118. constant int64_t & ne01,
  1119. constant int64_t & ne02,
  1120. constant uint64_t & nb00,
  1121. constant uint64_t & nb01,
  1122. constant uint64_t & nb02,
  1123. constant int64_t & ne10,
  1124. constant int64_t & ne11,
  1125. constant int64_t & ne12,
  1126. constant uint64_t & nb10,
  1127. constant uint64_t & nb11,
  1128. constant uint64_t & nb12,
  1129. constant int64_t & ne0,
  1130. constant int64_t & ne1,
  1131. constant uint & r2,
  1132. constant uint & r3,
  1133. uint3 tgpig[[threadgroup_position_in_grid]],
  1134. uint tiisg[[thread_index_in_simdgroup]]) {
  1135. const int64_t r0 = tgpig.x;
  1136. const int64_t r1 = tgpig.y;
  1137. const int64_t im = tgpig.z;
  1138. const uint i12 = im%ne12;
  1139. const uint i13 = im/ne12;
  1140. const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02;
  1141. device const half * x = (device const half *) (src0 + offset0);
  1142. device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
  1143. float sumf = 0;
  1144. if (ne00 < 128) {
  1145. for (int i = tiisg; i < ne00; i += 32) {
  1146. sumf += (float) x[i] * (float) y[i];
  1147. }
  1148. float all_sum = simd_sum(sumf);
  1149. if (tiisg == 0) {
  1150. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1151. }
  1152. } else {
  1153. device const half4 * x4 = (device const half4 *) x;
  1154. device const float4 * y4 = (device const float4 *) y;
  1155. for (int i = tiisg; i < ne00/4; i += 32) {
  1156. for (int k = 0; k < 4; ++k) sumf += (float)x4[i][k] * y4[i][k];
  1157. }
  1158. float all_sum = simd_sum(sumf);
  1159. if (tiisg == 0) {
  1160. for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (float) x[i] * y[i];
  1161. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1162. }
  1163. }
  1164. }
  1165. [[host_name("kernel_mul_mv_f16_f32_1row")]]
  1166. kernel void kernel_mul_mv_f16_f32_1row(
  1167. device const char * src0,
  1168. device const char * src1,
  1169. device float * dst,
  1170. constant int64_t & ne00,
  1171. constant int64_t & ne01,
  1172. constant int64_t & ne02,
  1173. constant uint64_t & nb00,
  1174. constant uint64_t & nb01,
  1175. constant uint64_t & nb02,
  1176. constant int64_t & ne10,
  1177. constant int64_t & ne11,
  1178. constant int64_t & ne12,
  1179. constant uint64_t & nb10,
  1180. constant uint64_t & nb11,
  1181. constant uint64_t & nb12,
  1182. constant int64_t & ne0,
  1183. constant int64_t & ne1,
  1184. constant uint & r2,
  1185. constant uint & r3,
  1186. uint3 tgpig[[threadgroup_position_in_grid]],
  1187. uint tiisg[[thread_index_in_simdgroup]]) {
  1188. kernel_mul_mv_f16_f32_1row_impl(src0, src1, dst, ne00, ne01, ne02, nb00, nb01, nb02, ne10, ne11, ne12, nb10, nb11, nb12, ne0, ne1, r2, r3, tgpig, tiisg);
  1189. }
  1190. #define N_F16_F32 4
  1191. void kernel_mul_mv_f16_f32_impl(
  1192. device const char * src0,
  1193. device const char * src1,
  1194. device float * dst,
  1195. constant int64_t & ne00,
  1196. constant int64_t & ne01,
  1197. constant int64_t & ne02,
  1198. constant uint64_t & nb00,
  1199. constant uint64_t & nb01,
  1200. constant uint64_t & nb02,
  1201. constant int64_t & ne10,
  1202. constant int64_t & ne11,
  1203. constant int64_t & ne12,
  1204. constant uint64_t & nb10,
  1205. constant uint64_t & nb11,
  1206. constant uint64_t & nb12,
  1207. constant int64_t & ne0,
  1208. constant int64_t & ne1,
  1209. constant uint & r2,
  1210. constant uint & r3,
  1211. uint3 tgpig[[threadgroup_position_in_grid]],
  1212. uint tiisg[[thread_index_in_simdgroup]]) {
  1213. const int64_t r0 = tgpig.x;
  1214. const int64_t rb = tgpig.y*N_F16_F32;
  1215. const int64_t im = tgpig.z;
  1216. const uint i12 = im%ne12;
  1217. const uint i13 = im/ne12;
  1218. const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02;
  1219. device const half * x = (device const half *) (src0 + offset0);
  1220. if (ne00 < 128) {
  1221. for (int row = 0; row < N_F16_F32; ++row) {
  1222. int r1 = rb + row;
  1223. if (r1 >= ne11) {
  1224. break;
  1225. }
  1226. device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
  1227. float sumf = 0;
  1228. for (int i = tiisg; i < ne00; i += 32) {
  1229. sumf += (float) x[i] * (float) y[i];
  1230. }
  1231. float all_sum = simd_sum(sumf);
  1232. if (tiisg == 0) {
  1233. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1234. }
  1235. }
  1236. } else {
  1237. device const half4 * x4 = (device const half4 *)x;
  1238. for (int row = 0; row < N_F16_F32; ++row) {
  1239. int r1 = rb + row;
  1240. if (r1 >= ne11) {
  1241. break;
  1242. }
  1243. device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
  1244. device const float4 * y4 = (device const float4 *) y;
  1245. float sumf = 0;
  1246. for (int i = tiisg; i < ne00/4; i += 32) {
  1247. for (int k = 0; k < 4; ++k) sumf += (float) x4[i][k] * y4[i][k];
  1248. }
  1249. float all_sum = simd_sum(sumf);
  1250. if (tiisg == 0) {
  1251. for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (float) x[i] * y[i];
  1252. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1253. }
  1254. }
  1255. }
  1256. }
  1257. [[host_name("kernel_mul_mv_f16_f32")]]
  1258. kernel void kernel_mul_mv_f16_f32(
  1259. device const char * src0,
  1260. device const char * src1,
  1261. device float * dst,
  1262. constant int64_t & ne00,
  1263. constant int64_t & ne01,
  1264. constant int64_t & ne02,
  1265. constant uint64_t & nb00,
  1266. constant uint64_t & nb01,
  1267. constant uint64_t & nb02,
  1268. constant int64_t & ne10,
  1269. constant int64_t & ne11,
  1270. constant int64_t & ne12,
  1271. constant uint64_t & nb10,
  1272. constant uint64_t & nb11,
  1273. constant uint64_t & nb12,
  1274. constant int64_t & ne0,
  1275. constant int64_t & ne1,
  1276. constant uint & r2,
  1277. constant uint & r3,
  1278. uint3 tgpig[[threadgroup_position_in_grid]],
  1279. uint tiisg[[thread_index_in_simdgroup]]) {
  1280. kernel_mul_mv_f16_f32_impl(src0, src1, dst, ne00, ne01, ne02, nb00, nb01, nb02, ne10, ne11, ne12, nb10, nb11, nb12, ne0, ne1, r2, r3, tgpig, tiisg);
  1281. }
  1282. // Assumes row size (ne00) is a multiple of 4
  1283. kernel void kernel_mul_mv_f16_f32_l4(
  1284. device const char * src0,
  1285. device const char * src1,
  1286. device float * dst,
  1287. constant int64_t & ne00,
  1288. constant int64_t & ne01,
  1289. constant int64_t & ne02,
  1290. constant uint64_t & nb00,
  1291. constant uint64_t & nb01,
  1292. constant uint64_t & nb02,
  1293. constant int64_t & ne10,
  1294. constant int64_t & ne11,
  1295. constant int64_t & ne12,
  1296. constant uint64_t & nb10,
  1297. constant uint64_t & nb11,
  1298. constant uint64_t & nb12,
  1299. constant int64_t & ne0,
  1300. constant int64_t & ne1,
  1301. constant uint & r2,
  1302. constant uint & r3,
  1303. uint3 tgpig[[threadgroup_position_in_grid]],
  1304. uint tiisg[[thread_index_in_simdgroup]]) {
  1305. const int nrows = ne11;
  1306. const int64_t r0 = tgpig.x;
  1307. const int64_t im = tgpig.z;
  1308. const uint i12 = im%ne12;
  1309. const uint i13 = im/ne12;
  1310. const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02;
  1311. device const half4 * x4 = (device const half4 *) (src0 + offset0);
  1312. for (int r1 = 0; r1 < nrows; ++r1) {
  1313. device const float4 * y4 = (device const float4 *) (src1 + r1*nb11 + im*nb12);
  1314. float sumf = 0;
  1315. for (int i = tiisg; i < ne00/4; i += 32) {
  1316. for (int k = 0; k < 4; ++k) sumf += (float) x4[i][k] * y4[i][k];
  1317. }
  1318. float all_sum = simd_sum(sumf);
  1319. if (tiisg == 0) {
  1320. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1321. }
  1322. }
  1323. }
  1324. kernel void kernel_alibi_f32(
  1325. device const float * src0,
  1326. device float * dst,
  1327. constant int64_t & ne00,
  1328. constant int64_t & ne01,
  1329. constant int64_t & ne02,
  1330. constant int64_t & ne03,
  1331. constant uint64_t & nb00,
  1332. constant uint64_t & nb01,
  1333. constant uint64_t & nb02,
  1334. constant uint64_t & nb03,
  1335. constant int64_t & ne0,
  1336. constant int64_t & ne1,
  1337. constant int64_t & ne2,
  1338. constant int64_t & ne3,
  1339. constant uint64_t & nb0,
  1340. constant uint64_t & nb1,
  1341. constant uint64_t & nb2,
  1342. constant uint64_t & nb3,
  1343. constant float & m0,
  1344. constant float & m1,
  1345. constant int & n_heads_log2_floor,
  1346. uint3 tgpig[[threadgroup_position_in_grid]],
  1347. uint3 tpitg[[thread_position_in_threadgroup]],
  1348. uint3 ntg[[threads_per_threadgroup]]) {
  1349. const int64_t i03 = tgpig[2];
  1350. const int64_t i02 = tgpig[1];
  1351. const int64_t i01 = tgpig[0];
  1352. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  1353. const int64_t i3 = n / (ne2*ne1*ne0);
  1354. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  1355. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  1356. //const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
  1357. const int64_t k = i3*ne3 + i2;
  1358. float m_k;
  1359. if (k < n_heads_log2_floor) {
  1360. m_k = pow(m0, k + 1);
  1361. } else {
  1362. m_k = pow(m1, 2 * (k - n_heads_log2_floor) + 1);
  1363. }
  1364. device char * dst_row = (device char *) dst + i3*nb3 + i2*nb2 + i1*nb1;
  1365. device const char * src_row = (device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01;
  1366. for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
  1367. const float src_v = *(device float *)(src_row + i00*nb00);
  1368. device float * dst_v = (device float *)(dst_row + i00*nb0);
  1369. *dst_v = i00 * m_k + src_v;
  1370. }
  1371. }
  1372. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  1373. const float y = (i0 / 2 - low) / max(0.001f, high - low);
  1374. return 1.0f - min(1.0f, max(0.0f, y));
  1375. }
  1376. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  1377. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  1378. static void rope_yarn(
  1379. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  1380. thread float * cos_theta, thread float * sin_theta
  1381. ) {
  1382. // Get n-d rotational scaling corrected for extrapolation
  1383. float theta_interp = freq_scale * theta_extrap;
  1384. float theta = theta_interp;
  1385. if (ext_factor != 0.0f) {
  1386. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  1387. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  1388. // Get n-d magnitude scaling corrected for interpolation
  1389. mscale *= 1.0f + 0.1f * log(1.0f / freq_scale);
  1390. }
  1391. *cos_theta = cos(theta) * mscale;
  1392. *sin_theta = sin(theta) * mscale;
  1393. }
  1394. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  1395. // `corr_fac(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  1396. static float rope_yarn_corr_factor(int n_dims, int n_orig_ctx, float n_rot, float base) {
  1397. return n_dims * log(n_orig_ctx / (n_rot * 2 * M_PI_F)) / (2 * log(base));
  1398. }
  1399. static void rope_yarn_corr_dims(
  1400. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  1401. ) {
  1402. // start and end correction dims
  1403. dims[0] = max(0.0f, floor(rope_yarn_corr_factor(n_dims, n_orig_ctx, beta_fast, freq_base)));
  1404. dims[1] = min(n_dims - 1.0f, ceil(rope_yarn_corr_factor(n_dims, n_orig_ctx, beta_slow, freq_base)));
  1405. }
  1406. typedef void (rope_t)(
  1407. device const void * src0,
  1408. device const int32_t * src1,
  1409. device float * dst,
  1410. constant int64_t & ne00,
  1411. constant int64_t & ne01,
  1412. constant int64_t & ne02,
  1413. constant int64_t & ne03,
  1414. constant uint64_t & nb00,
  1415. constant uint64_t & nb01,
  1416. constant uint64_t & nb02,
  1417. constant uint64_t & nb03,
  1418. constant int64_t & ne0,
  1419. constant int64_t & ne1,
  1420. constant int64_t & ne2,
  1421. constant int64_t & ne3,
  1422. constant uint64_t & nb0,
  1423. constant uint64_t & nb1,
  1424. constant uint64_t & nb2,
  1425. constant uint64_t & nb3,
  1426. constant int & n_past,
  1427. constant int & n_dims,
  1428. constant int & mode,
  1429. constant int & n_orig_ctx,
  1430. constant float & freq_base,
  1431. constant float & freq_scale,
  1432. constant float & ext_factor,
  1433. constant float & attn_factor,
  1434. constant float & beta_fast,
  1435. constant float & beta_slow,
  1436. uint tiitg[[thread_index_in_threadgroup]],
  1437. uint3 tptg[[threads_per_threadgroup]],
  1438. uint3 tgpig[[threadgroup_position_in_grid]]);
  1439. template<typename T>
  1440. kernel void kernel_rope(
  1441. device const void * src0,
  1442. device const int32_t * src1,
  1443. device float * dst,
  1444. constant int64_t & ne00,
  1445. constant int64_t & ne01,
  1446. constant int64_t & ne02,
  1447. constant int64_t & ne03,
  1448. constant uint64_t & nb00,
  1449. constant uint64_t & nb01,
  1450. constant uint64_t & nb02,
  1451. constant uint64_t & nb03,
  1452. constant int64_t & ne0,
  1453. constant int64_t & ne1,
  1454. constant int64_t & ne2,
  1455. constant int64_t & ne3,
  1456. constant uint64_t & nb0,
  1457. constant uint64_t & nb1,
  1458. constant uint64_t & nb2,
  1459. constant uint64_t & nb3,
  1460. constant int & n_past,
  1461. constant int & n_dims,
  1462. constant int & mode,
  1463. constant int & n_orig_ctx,
  1464. constant float & freq_base,
  1465. constant float & freq_scale,
  1466. constant float & ext_factor,
  1467. constant float & attn_factor,
  1468. constant float & beta_fast,
  1469. constant float & beta_slow,
  1470. uint tiitg[[thread_index_in_threadgroup]],
  1471. uint3 tptg[[threads_per_threadgroup]],
  1472. uint3 tgpig[[threadgroup_position_in_grid]]) {
  1473. const int64_t i3 = tgpig[2];
  1474. const int64_t i2 = tgpig[1];
  1475. const int64_t i1 = tgpig[0];
  1476. const bool is_neox = mode & 2;
  1477. float corr_dims[2];
  1478. rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  1479. device const int32_t * pos = src1;
  1480. const int64_t p = pos[i2];
  1481. const float theta_0 = (float)p;
  1482. const float inv_ndims = -1.f/n_dims;
  1483. if (!is_neox) {
  1484. for (int64_t i0 = 2*tiitg; i0 < ne0; i0 += 2*tptg.x) {
  1485. const float theta = theta_0 * pow(freq_base, inv_ndims*i0);
  1486. float cos_theta, sin_theta;
  1487. rope_yarn(theta, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
  1488. device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  1489. device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1490. const T x0 = src[0];
  1491. const T x1 = src[1];
  1492. dst_data[0] = x0*cos_theta - x1*sin_theta;
  1493. dst_data[1] = x0*sin_theta + x1*cos_theta;
  1494. }
  1495. } else {
  1496. for (int64_t ic = 2*tiitg; ic < ne0; ic += 2*tptg.x) {
  1497. if (ic < n_dims) {
  1498. const int64_t ib = 0;
  1499. // simplified from `(ib * n_dims + ic) * inv_ndims`
  1500. const float cur_rot = inv_ndims*ic - ib;
  1501. const float theta = theta_0 * pow(freq_base, cur_rot);
  1502. float cos_theta, sin_theta;
  1503. rope_yarn(theta, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
  1504. const int64_t i0 = ib*n_dims + ic/2;
  1505. device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  1506. device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1507. const float x0 = src[0];
  1508. const float x1 = src[n_dims/2];
  1509. dst_data[0] = x0*cos_theta - x1*sin_theta;
  1510. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  1511. } else {
  1512. const int64_t i0 = ic;
  1513. device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  1514. device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1515. dst_data[0] = src[0];
  1516. dst_data[1] = src[1];
  1517. }
  1518. }
  1519. }
  1520. }
  1521. template [[host_name("kernel_rope_f32")]] kernel rope_t kernel_rope<float>;
  1522. template [[host_name("kernel_rope_f16")]] kernel rope_t kernel_rope<half>;
  1523. typedef void (im2col_t)(
  1524. device const float * x,
  1525. device char * dst,
  1526. constant int32_t & ofs0,
  1527. constant int32_t & ofs1,
  1528. constant int32_t & IW,
  1529. constant int32_t & IH,
  1530. constant int32_t & CHW,
  1531. constant int32_t & s0,
  1532. constant int32_t & s1,
  1533. constant int32_t & p0,
  1534. constant int32_t & p1,
  1535. constant int32_t & d0,
  1536. constant int32_t & d1,
  1537. uint3 tgpig[[threadgroup_position_in_grid]],
  1538. uint3 tgpg[[threadgroups_per_grid]],
  1539. uint3 tpitg[[thread_position_in_threadgroup]],
  1540. uint3 ntg[[threads_per_threadgroup]]);
  1541. template <typename T>
  1542. kernel void kernel_im2col(
  1543. device const float * x,
  1544. device char * dst,
  1545. constant int32_t & ofs0,
  1546. constant int32_t & ofs1,
  1547. constant int32_t & IW,
  1548. constant int32_t & IH,
  1549. constant int32_t & CHW,
  1550. constant int32_t & s0,
  1551. constant int32_t & s1,
  1552. constant int32_t & p0,
  1553. constant int32_t & p1,
  1554. constant int32_t & d0,
  1555. constant int32_t & d1,
  1556. uint3 tgpig[[threadgroup_position_in_grid]],
  1557. uint3 tgpg[[threadgroups_per_grid]],
  1558. uint3 tpitg[[thread_position_in_threadgroup]],
  1559. uint3 ntg[[threads_per_threadgroup]]) {
  1560. const int32_t iiw = tgpig[2] * s0 + tpitg[2] * d0 - p0;
  1561. const int32_t iih = tgpig[1] * s1 + tpitg[1] * d1 - p1;
  1562. const int32_t offset_dst =
  1563. (tpitg[0] * tgpg[1] * tgpg[2] + tgpig[1] * tgpg[2] + tgpig[2]) * CHW +
  1564. (tgpig[0] * (ntg[1] * ntg[2]) + tpitg[1] * ntg[2] + tpitg[2]);
  1565. device T * pdst = (device T *) (dst);
  1566. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  1567. pdst[offset_dst] = 0.0f;
  1568. } else {
  1569. const int32_t offset_src = tpitg[0] * ofs0 + tgpig[0] * ofs1;
  1570. pdst[offset_dst] = x[offset_src + iih * IW + iiw];
  1571. }
  1572. }
  1573. template [[host_name("kernel_im2col_f32")]] kernel im2col_t kernel_im2col<float>;
  1574. template [[host_name("kernel_im2col_f16")]] kernel im2col_t kernel_im2col<half>;
  1575. kernel void kernel_upscale_f32(
  1576. device const char * src0,
  1577. device char * dst,
  1578. constant int64_t & ne00,
  1579. constant int64_t & ne01,
  1580. constant int64_t & ne02,
  1581. constant int64_t & ne03,
  1582. constant uint64_t & nb00,
  1583. constant uint64_t & nb01,
  1584. constant uint64_t & nb02,
  1585. constant uint64_t & nb03,
  1586. constant int64_t & ne0,
  1587. constant int64_t & ne1,
  1588. constant int64_t & ne2,
  1589. constant int64_t & ne3,
  1590. constant uint64_t & nb0,
  1591. constant uint64_t & nb1,
  1592. constant uint64_t & nb2,
  1593. constant uint64_t & nb3,
  1594. constant int32_t & sf,
  1595. uint3 tgpig[[threadgroup_position_in_grid]],
  1596. uint3 tpitg[[thread_position_in_threadgroup]],
  1597. uint3 ntg[[threads_per_threadgroup]]) {
  1598. const int64_t i3 = tgpig.z;
  1599. const int64_t i2 = tgpig.y;
  1600. const int64_t i1 = tgpig.x;
  1601. const int64_t i03 = i3;
  1602. const int64_t i02 = i2;
  1603. const int64_t i01 = i1/sf;
  1604. device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01);
  1605. device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1);
  1606. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  1607. dst_ptr[i0] = src0_ptr[i0/sf];
  1608. }
  1609. }
  1610. kernel void kernel_pad_f32(
  1611. device const char * src0,
  1612. device char * dst,
  1613. constant int64_t & ne00,
  1614. constant int64_t & ne01,
  1615. constant int64_t & ne02,
  1616. constant int64_t & ne03,
  1617. constant uint64_t & nb00,
  1618. constant uint64_t & nb01,
  1619. constant uint64_t & nb02,
  1620. constant uint64_t & nb03,
  1621. constant int64_t & ne0,
  1622. constant int64_t & ne1,
  1623. constant int64_t & ne2,
  1624. constant int64_t & ne3,
  1625. constant uint64_t & nb0,
  1626. constant uint64_t & nb1,
  1627. constant uint64_t & nb2,
  1628. constant uint64_t & nb3,
  1629. uint3 tgpig[[threadgroup_position_in_grid]],
  1630. uint3 tpitg[[thread_position_in_threadgroup]],
  1631. uint3 ntg[[threads_per_threadgroup]]) {
  1632. const int64_t i3 = tgpig.z;
  1633. const int64_t i2 = tgpig.y;
  1634. const int64_t i1 = tgpig.x;
  1635. const int64_t i03 = i3;
  1636. const int64_t i02 = i2;
  1637. const int64_t i01 = i1;
  1638. device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01);
  1639. device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1);
  1640. if (i1 < ne01 && i2 < ne02 && i3 < ne03) {
  1641. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  1642. if (i0 < ne00) {
  1643. dst_ptr[i0] = src0_ptr[i0];
  1644. } else {
  1645. dst_ptr[i0] = 0.0f;
  1646. }
  1647. }
  1648. return;
  1649. }
  1650. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  1651. dst_ptr[i0] = 0.0f;
  1652. }
  1653. }
  1654. kernel void kernel_arange_f32(
  1655. device char * dst,
  1656. constant int64_t & ne0,
  1657. constant float & start,
  1658. constant float & step,
  1659. uint3 tgpig[[threadgroup_position_in_grid]],
  1660. uint3 tpitg[[thread_position_in_threadgroup]],
  1661. uint3 ntg[[threads_per_threadgroup]]) {
  1662. device float * dst_ptr = (device float *) dst;
  1663. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  1664. dst_ptr[i0] = start + step * i0;
  1665. }
  1666. }
  1667. kernel void kernel_timestep_embedding_f32(
  1668. device const char * src0,
  1669. device char * dst,
  1670. constant uint64_t & nb1,
  1671. constant int & dim,
  1672. constant int & max_period,
  1673. uint3 tgpig[[threadgroup_position_in_grid]],
  1674. uint3 tpitg[[thread_position_in_threadgroup]],
  1675. uint3 ntg[[threads_per_threadgroup]]) {
  1676. int i = tgpig.x;
  1677. device float * embed_data = (device float *)(dst + i*nb1);
  1678. int half_ = dim / 2;
  1679. for (int j = tpitg.x; j < half_; j += ntg.x) {
  1680. float timestep = ((device float *)src0)[i];
  1681. float freq = (float)exp(-log((float)max_period) * j / half_);
  1682. float arg = timestep * freq;
  1683. embed_data[j ] = cos(arg);
  1684. embed_data[j + half_] = sin(arg);
  1685. }
  1686. if (dim % 2 != 0 && tpitg.x == 0) {
  1687. embed_data[dim] = 0.f;
  1688. }
  1689. }
  1690. // bitonic sort implementation following the CUDA kernels as reference
  1691. typedef void (argsort_t)(
  1692. device const float * x,
  1693. device int32_t * dst,
  1694. constant int64_t & ncols,
  1695. constant int64_t & ncols_pad,
  1696. threadgroup int32_t * shared_values [[threadgroup(0)]],
  1697. uint3 tgpig[[threadgroup_position_in_grid]],
  1698. uint3 tpitg[[thread_position_in_threadgroup]]);
  1699. template<ggml_sort_order order>
  1700. kernel void kernel_argsort_f32_i32(
  1701. device const float * x,
  1702. device int32_t * dst,
  1703. constant int64_t & ncols,
  1704. constant int64_t & ncols_pad,
  1705. threadgroup int32_t * shared_values [[threadgroup(0)]],
  1706. uint3 tgpig[[threadgroup_position_in_grid]],
  1707. uint3 tpitg[[thread_position_in_threadgroup]]) {
  1708. // bitonic sort
  1709. int col = tpitg[0];
  1710. int row = tgpig[1];
  1711. if (col >= ncols_pad) return;
  1712. device const float * x_row = x + row * ncols;
  1713. threadgroup int32_t * dst_row = shared_values;
  1714. // initialize indices
  1715. dst_row[col] = col;
  1716. threadgroup_barrier(mem_flags::mem_threadgroup);
  1717. for (int k = 2; k <= ncols_pad; k *= 2) {
  1718. for (int j = k / 2; j > 0; j /= 2) {
  1719. int ixj = col ^ j;
  1720. if (ixj > col) {
  1721. if ((col & k) == 0) {
  1722. if (dst_row[col] >= ncols ||
  1723. (dst_row[ixj] < ncols && (order == GGML_SORT_ORDER_ASC ?
  1724. x_row[dst_row[col]] > x_row[dst_row[ixj]] :
  1725. x_row[dst_row[col]] < x_row[dst_row[ixj]]))
  1726. ) {
  1727. SWAP(dst_row[col], dst_row[ixj]);
  1728. }
  1729. } else {
  1730. if (dst_row[ixj] >= ncols ||
  1731. (dst_row[col] < ncols && (order == GGML_SORT_ORDER_ASC ?
  1732. x_row[dst_row[col]] < x_row[dst_row[ixj]] :
  1733. x_row[dst_row[col]] > x_row[dst_row[ixj]]))
  1734. ) {
  1735. SWAP(dst_row[col], dst_row[ixj]);
  1736. }
  1737. }
  1738. }
  1739. threadgroup_barrier(mem_flags::mem_threadgroup);
  1740. }
  1741. }
  1742. // copy the result to dst without the padding
  1743. if (col < ncols) {
  1744. dst[row * ncols + col] = dst_row[col];
  1745. }
  1746. }
  1747. template [[host_name("kernel_argsort_f32_i32_asc")]] kernel argsort_t kernel_argsort_f32_i32<GGML_SORT_ORDER_ASC>;
  1748. template [[host_name("kernel_argsort_f32_i32_desc")]] kernel argsort_t kernel_argsort_f32_i32<GGML_SORT_ORDER_DESC>;
  1749. kernel void kernel_leaky_relu_f32(
  1750. device const float * src0,
  1751. device float * dst,
  1752. constant float & slope,
  1753. uint tpig[[thread_position_in_grid]]) {
  1754. dst[tpig] = src0[tpig] > 0.0f ? src0[tpig] : src0[tpig] * slope;
  1755. }
  1756. kernel void kernel_cpy_f16_f16(
  1757. device const half * src0,
  1758. device half * dst,
  1759. constant int64_t & ne00,
  1760. constant int64_t & ne01,
  1761. constant int64_t & ne02,
  1762. constant int64_t & ne03,
  1763. constant uint64_t & nb00,
  1764. constant uint64_t & nb01,
  1765. constant uint64_t & nb02,
  1766. constant uint64_t & nb03,
  1767. constant int64_t & ne0,
  1768. constant int64_t & ne1,
  1769. constant int64_t & ne2,
  1770. constant int64_t & ne3,
  1771. constant uint64_t & nb0,
  1772. constant uint64_t & nb1,
  1773. constant uint64_t & nb2,
  1774. constant uint64_t & nb3,
  1775. uint3 tgpig[[threadgroup_position_in_grid]],
  1776. uint3 tpitg[[thread_position_in_threadgroup]],
  1777. uint3 ntg[[threads_per_threadgroup]]) {
  1778. const int64_t i03 = tgpig[2];
  1779. const int64_t i02 = tgpig[1];
  1780. const int64_t i01 = tgpig[0];
  1781. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  1782. const int64_t i3 = n / (ne2*ne1*ne0);
  1783. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  1784. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  1785. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
  1786. device half * dst_data = (device half *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1787. for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
  1788. device const half * src = (device half *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  1789. dst_data[i00] = src[0];
  1790. }
  1791. }
  1792. kernel void kernel_cpy_f16_f32(
  1793. device const half * src0,
  1794. device float * dst,
  1795. constant int64_t & ne00,
  1796. constant int64_t & ne01,
  1797. constant int64_t & ne02,
  1798. constant int64_t & ne03,
  1799. constant uint64_t & nb00,
  1800. constant uint64_t & nb01,
  1801. constant uint64_t & nb02,
  1802. constant uint64_t & nb03,
  1803. constant int64_t & ne0,
  1804. constant int64_t & ne1,
  1805. constant int64_t & ne2,
  1806. constant int64_t & ne3,
  1807. constant uint64_t & nb0,
  1808. constant uint64_t & nb1,
  1809. constant uint64_t & nb2,
  1810. constant uint64_t & nb3,
  1811. uint3 tgpig[[threadgroup_position_in_grid]],
  1812. uint3 tpitg[[thread_position_in_threadgroup]],
  1813. uint3 ntg[[threads_per_threadgroup]]) {
  1814. const int64_t i03 = tgpig[2];
  1815. const int64_t i02 = tgpig[1];
  1816. const int64_t i01 = tgpig[0];
  1817. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  1818. const int64_t i3 = n / (ne2*ne1*ne0);
  1819. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  1820. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  1821. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
  1822. device float * dst_data = (device float *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1823. for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
  1824. device const half * src = (device half *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  1825. dst_data[i00] = src[0];
  1826. }
  1827. }
  1828. kernel void kernel_cpy_f32_f16(
  1829. device const float * src0,
  1830. device half * dst,
  1831. constant int64_t & ne00,
  1832. constant int64_t & ne01,
  1833. constant int64_t & ne02,
  1834. constant int64_t & ne03,
  1835. constant uint64_t & nb00,
  1836. constant uint64_t & nb01,
  1837. constant uint64_t & nb02,
  1838. constant uint64_t & nb03,
  1839. constant int64_t & ne0,
  1840. constant int64_t & ne1,
  1841. constant int64_t & ne2,
  1842. constant int64_t & ne3,
  1843. constant uint64_t & nb0,
  1844. constant uint64_t & nb1,
  1845. constant uint64_t & nb2,
  1846. constant uint64_t & nb3,
  1847. uint3 tgpig[[threadgroup_position_in_grid]],
  1848. uint3 tpitg[[thread_position_in_threadgroup]],
  1849. uint3 ntg[[threads_per_threadgroup]]) {
  1850. const int64_t i03 = tgpig[2];
  1851. const int64_t i02 = tgpig[1];
  1852. const int64_t i01 = tgpig[0];
  1853. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  1854. const int64_t i3 = n / (ne2*ne1*ne0);
  1855. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  1856. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  1857. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
  1858. device half * dst_data = (device half *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1859. for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
  1860. device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  1861. dst_data[i00] = src[0];
  1862. }
  1863. }
  1864. kernel void kernel_cpy_f32_f32(
  1865. device const float * src0,
  1866. device float * dst,
  1867. constant int64_t & ne00,
  1868. constant int64_t & ne01,
  1869. constant int64_t & ne02,
  1870. constant int64_t & ne03,
  1871. constant uint64_t & nb00,
  1872. constant uint64_t & nb01,
  1873. constant uint64_t & nb02,
  1874. constant uint64_t & nb03,
  1875. constant int64_t & ne0,
  1876. constant int64_t & ne1,
  1877. constant int64_t & ne2,
  1878. constant int64_t & ne3,
  1879. constant uint64_t & nb0,
  1880. constant uint64_t & nb1,
  1881. constant uint64_t & nb2,
  1882. constant uint64_t & nb3,
  1883. uint3 tgpig[[threadgroup_position_in_grid]],
  1884. uint3 tpitg[[thread_position_in_threadgroup]],
  1885. uint3 ntg[[threads_per_threadgroup]]) {
  1886. const int64_t i03 = tgpig[2];
  1887. const int64_t i02 = tgpig[1];
  1888. const int64_t i01 = tgpig[0];
  1889. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  1890. const int64_t i3 = n / (ne2*ne1*ne0);
  1891. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  1892. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  1893. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
  1894. device float * dst_data = (device float *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1895. for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
  1896. device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  1897. dst_data[i00] = src[0];
  1898. }
  1899. }
  1900. kernel void kernel_cpy_f32_q8_0(
  1901. device const float * src0,
  1902. device void * dst,
  1903. constant int64_t & ne00,
  1904. constant int64_t & ne01,
  1905. constant int64_t & ne02,
  1906. constant int64_t & ne03,
  1907. constant uint64_t & nb00,
  1908. constant uint64_t & nb01,
  1909. constant uint64_t & nb02,
  1910. constant uint64_t & nb03,
  1911. constant int64_t & ne0,
  1912. constant int64_t & ne1,
  1913. constant int64_t & ne2,
  1914. constant int64_t & ne3,
  1915. constant uint64_t & nb0,
  1916. constant uint64_t & nb1,
  1917. constant uint64_t & nb2,
  1918. constant uint64_t & nb3,
  1919. uint3 tgpig[[threadgroup_position_in_grid]],
  1920. uint3 tpitg[[thread_position_in_threadgroup]],
  1921. uint3 ntg[[threads_per_threadgroup]]) {
  1922. const int64_t i03 = tgpig[2];
  1923. const int64_t i02 = tgpig[1];
  1924. const int64_t i01 = tgpig[0];
  1925. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  1926. const int64_t i3 = n / (ne2*ne1*ne0);
  1927. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  1928. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  1929. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK8_0;
  1930. device block_q8_0 * dst_data = (device block_q8_0 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1931. for (int64_t i00 = tpitg.x*QK8_0; i00 < ne00; i00 += ntg.x*QK8_0) {
  1932. device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  1933. float amax = 0.0f; // absolute max
  1934. for (int j = 0; j < QK8_0; j++) {
  1935. const float v = src[j];
  1936. amax = MAX(amax, fabs(v));
  1937. }
  1938. const float d = amax / ((1 << 7) - 1);
  1939. const float id = d ? 1.0f/d : 0.0f;
  1940. dst_data[i00/QK8_0].d = d;
  1941. for (int j = 0; j < QK8_0; ++j) {
  1942. const float x0 = src[j]*id;
  1943. dst_data[i00/QK8_0].qs[j] = round(x0);
  1944. }
  1945. }
  1946. }
  1947. kernel void kernel_cpy_f32_q4_0(
  1948. device const float * src0,
  1949. device void * dst,
  1950. constant int64_t & ne00,
  1951. constant int64_t & ne01,
  1952. constant int64_t & ne02,
  1953. constant int64_t & ne03,
  1954. constant uint64_t & nb00,
  1955. constant uint64_t & nb01,
  1956. constant uint64_t & nb02,
  1957. constant uint64_t & nb03,
  1958. constant int64_t & ne0,
  1959. constant int64_t & ne1,
  1960. constant int64_t & ne2,
  1961. constant int64_t & ne3,
  1962. constant uint64_t & nb0,
  1963. constant uint64_t & nb1,
  1964. constant uint64_t & nb2,
  1965. constant uint64_t & nb3,
  1966. uint3 tgpig[[threadgroup_position_in_grid]],
  1967. uint3 tpitg[[thread_position_in_threadgroup]],
  1968. uint3 ntg[[threads_per_threadgroup]]) {
  1969. const int64_t i03 = tgpig[2];
  1970. const int64_t i02 = tgpig[1];
  1971. const int64_t i01 = tgpig[0];
  1972. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  1973. const int64_t i3 = n / (ne2*ne1*ne0);
  1974. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  1975. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  1976. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK4_0;
  1977. device block_q4_0 * dst_data = (device block_q4_0 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1978. for (int64_t i00 = tpitg.x*QK4_0; i00 < ne00; i00 += ntg.x*QK4_0) {
  1979. device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  1980. float amax = 0.0f; // absolute max
  1981. float max = 0.0f;
  1982. for (int j = 0; j < QK4_0; j++) {
  1983. const float v = src[j];
  1984. if (amax < fabs(v)) {
  1985. amax = fabs(v);
  1986. max = v;
  1987. }
  1988. }
  1989. const float d = max / -8;
  1990. const float id = d ? 1.0f/d : 0.0f;
  1991. dst_data[i00/QK4_0].d = d;
  1992. for (int j = 0; j < QK4_0/2; ++j) {
  1993. const float x0 = src[0 + j]*id;
  1994. const float x1 = src[QK4_0/2 + j]*id;
  1995. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  1996. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  1997. dst_data[i00/QK4_0].qs[j] = xi0;
  1998. dst_data[i00/QK4_0].qs[j] |= xi1 << 4;
  1999. }
  2000. }
  2001. }
  2002. kernel void kernel_cpy_f32_q4_1(
  2003. device const float * src0,
  2004. device void * dst,
  2005. constant int64_t & ne00,
  2006. constant int64_t & ne01,
  2007. constant int64_t & ne02,
  2008. constant int64_t & ne03,
  2009. constant uint64_t & nb00,
  2010. constant uint64_t & nb01,
  2011. constant uint64_t & nb02,
  2012. constant uint64_t & nb03,
  2013. constant int64_t & ne0,
  2014. constant int64_t & ne1,
  2015. constant int64_t & ne2,
  2016. constant int64_t & ne3,
  2017. constant uint64_t & nb0,
  2018. constant uint64_t & nb1,
  2019. constant uint64_t & nb2,
  2020. constant uint64_t & nb3,
  2021. uint3 tgpig[[threadgroup_position_in_grid]],
  2022. uint3 tpitg[[thread_position_in_threadgroup]],
  2023. uint3 ntg[[threads_per_threadgroup]]) {
  2024. const int64_t i03 = tgpig[2];
  2025. const int64_t i02 = tgpig[1];
  2026. const int64_t i01 = tgpig[0];
  2027. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  2028. const int64_t i3 = n / (ne2*ne1*ne0);
  2029. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  2030. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  2031. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK4_1;
  2032. device block_q4_1 * dst_data = (device block_q4_1 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  2033. for (int64_t i00 = tpitg.x*QK4_1; i00 < ne00; i00 += ntg.x*QK4_1) {
  2034. device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  2035. float min = FLT_MAX;
  2036. float max = -FLT_MAX;
  2037. for (int j = 0; j < QK4_1; j++) {
  2038. const float v = src[j];
  2039. if (min > v) min = v;
  2040. if (max < v) max = v;
  2041. }
  2042. const float d = (max - min) / ((1 << 4) - 1);
  2043. const float id = d ? 1.0f/d : 0.0f;
  2044. dst_data[i00/QK4_1].d = d;
  2045. dst_data[i00/QK4_1].m = min;
  2046. for (int j = 0; j < QK4_1/2; ++j) {
  2047. const float x0 = (src[0 + j] - min)*id;
  2048. const float x1 = (src[QK4_1/2 + j] - min)*id;
  2049. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  2050. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  2051. dst_data[i00/QK4_1].qs[j] = xi0;
  2052. dst_data[i00/QK4_1].qs[j] |= xi1 << 4;
  2053. }
  2054. }
  2055. }
  2056. kernel void kernel_cpy_f32_q5_0(
  2057. device const float * src0,
  2058. device void * dst,
  2059. constant int64_t & ne00,
  2060. constant int64_t & ne01,
  2061. constant int64_t & ne02,
  2062. constant int64_t & ne03,
  2063. constant uint64_t & nb00,
  2064. constant uint64_t & nb01,
  2065. constant uint64_t & nb02,
  2066. constant uint64_t & nb03,
  2067. constant int64_t & ne0,
  2068. constant int64_t & ne1,
  2069. constant int64_t & ne2,
  2070. constant int64_t & ne3,
  2071. constant uint64_t & nb0,
  2072. constant uint64_t & nb1,
  2073. constant uint64_t & nb2,
  2074. constant uint64_t & nb3,
  2075. uint3 tgpig[[threadgroup_position_in_grid]],
  2076. uint3 tpitg[[thread_position_in_threadgroup]],
  2077. uint3 ntg[[threads_per_threadgroup]]) {
  2078. const int64_t i03 = tgpig[2];
  2079. const int64_t i02 = tgpig[1];
  2080. const int64_t i01 = tgpig[0];
  2081. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  2082. const int64_t i3 = n / (ne2*ne1*ne0);
  2083. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  2084. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  2085. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK5_0;
  2086. device block_q5_0 * dst_data = (device block_q5_0 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  2087. for (int64_t i00 = tpitg.x*QK5_0; i00 < ne00; i00 += ntg.x*QK5_0) {
  2088. device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  2089. float amax = 0.0f; // absolute max
  2090. float max = 0.0f;
  2091. for (int j = 0; j < QK5_0; j++) {
  2092. const float v = src[j];
  2093. if (amax < fabs(v)) {
  2094. amax = fabs(v);
  2095. max = v;
  2096. }
  2097. }
  2098. const float d = max / -16;
  2099. const float id = d ? 1.0f/d : 0.0f;
  2100. dst_data[i00/QK5_0].d = d;
  2101. uint32_t qh = 0;
  2102. for (int j = 0; j < QK5_0/2; ++j) {
  2103. const float x0 = src[0 + j]*id;
  2104. const float x1 = src[QK5_0/2 + j]*id;
  2105. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  2106. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  2107. dst_data[i00/QK5_0].qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4);
  2108. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  2109. qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
  2110. }
  2111. thread const uint8_t * qh8 = (thread const uint8_t *)&qh;
  2112. for (int j = 0; j < 4; ++j) {
  2113. dst_data[i00/QK5_0].qh[j] = qh8[j];
  2114. }
  2115. }
  2116. }
  2117. kernel void kernel_cpy_f32_q5_1(
  2118. device const float * src0,
  2119. device void * dst,
  2120. constant int64_t & ne00,
  2121. constant int64_t & ne01,
  2122. constant int64_t & ne02,
  2123. constant int64_t & ne03,
  2124. constant uint64_t & nb00,
  2125. constant uint64_t & nb01,
  2126. constant uint64_t & nb02,
  2127. constant uint64_t & nb03,
  2128. constant int64_t & ne0,
  2129. constant int64_t & ne1,
  2130. constant int64_t & ne2,
  2131. constant int64_t & ne3,
  2132. constant uint64_t & nb0,
  2133. constant uint64_t & nb1,
  2134. constant uint64_t & nb2,
  2135. constant uint64_t & nb3,
  2136. uint3 tgpig[[threadgroup_position_in_grid]],
  2137. uint3 tpitg[[thread_position_in_threadgroup]],
  2138. uint3 ntg[[threads_per_threadgroup]]) {
  2139. const int64_t i03 = tgpig[2];
  2140. const int64_t i02 = tgpig[1];
  2141. const int64_t i01 = tgpig[0];
  2142. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  2143. const int64_t i3 = n / (ne2*ne1*ne0);
  2144. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  2145. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  2146. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK5_1;
  2147. device block_q5_1 * dst_data = (device block_q5_1 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  2148. for (int64_t i00 = tpitg.x*QK5_1; i00 < ne00; i00 += ntg.x*QK5_1) {
  2149. device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  2150. float max = src[0];
  2151. float min = src[0];
  2152. for (int j = 1; j < QK5_1; j++) {
  2153. const float v = src[j];
  2154. min = v < min ? v : min;
  2155. max = v > max ? v : max;
  2156. }
  2157. const float d = (max - min) / 31;
  2158. const float id = d ? 1.0f/d : 0.0f;
  2159. dst_data[i00/QK5_1].d = d;
  2160. dst_data[i00/QK5_1].m = min;
  2161. uint32_t qh = 0;
  2162. for (int j = 0; j < QK5_1/2; ++j) {
  2163. const float x0 = (src[0 + j] - min)*id;
  2164. const float x1 = (src[QK5_1/2 + j] - min)*id;
  2165. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  2166. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  2167. dst_data[i00/QK5_1].qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4);
  2168. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  2169. qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_1/2);
  2170. }
  2171. thread const uint8_t * qh8 = (thread const uint8_t *)&qh;
  2172. for (int j = 0; j < 4; ++j) {
  2173. dst_data[i00/QK5_1].qh[j] = qh8[j];
  2174. }
  2175. }
  2176. }
  2177. static inline int best_index_int8(int n, constant float * val, float x) {
  2178. if (x <= val[0]) return 0;
  2179. if (x >= val[n-1]) return n-1;
  2180. int ml = 0, mu = n-1;
  2181. while (mu-ml > 1) {
  2182. int mav = (ml+mu)/2;
  2183. if (x < val[mav]) mu = mav; else ml = mav;
  2184. }
  2185. return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
  2186. }
  2187. constexpr constant static float kvalues_iq4nl_f[16] = {
  2188. -127.f, -104.f, -83.f, -65.f, -49.f, -35.f, -22.f, -10.f, 1.f, 13.f, 25.f, 38.f, 53.f, 69.f, 89.f, 113.f
  2189. };
  2190. kernel void kernel_cpy_f32_iq4_nl(
  2191. device const float * src0,
  2192. device void * dst,
  2193. constant int64_t & ne00,
  2194. constant int64_t & ne01,
  2195. constant int64_t & ne02,
  2196. constant int64_t & ne03,
  2197. constant uint64_t & nb00,
  2198. constant uint64_t & nb01,
  2199. constant uint64_t & nb02,
  2200. constant uint64_t & nb03,
  2201. constant int64_t & ne0,
  2202. constant int64_t & ne1,
  2203. constant int64_t & ne2,
  2204. constant int64_t & ne3,
  2205. constant uint64_t & nb0,
  2206. constant uint64_t & nb1,
  2207. constant uint64_t & nb2,
  2208. constant uint64_t & nb3,
  2209. uint3 tgpig[[threadgroup_position_in_grid]],
  2210. uint3 tpitg[[thread_position_in_threadgroup]],
  2211. uint3 ntg[[threads_per_threadgroup]]) {
  2212. const int64_t i03 = tgpig[2];
  2213. const int64_t i02 = tgpig[1];
  2214. const int64_t i01 = tgpig[0];
  2215. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  2216. const int64_t i3 = n / (ne2*ne1*ne0);
  2217. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  2218. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  2219. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK4_NL;
  2220. device block_iq4_nl * dst_data = (device block_iq4_nl *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  2221. for (int64_t i00 = tpitg.x*QK4_NL; i00 < ne00; i00 += ntg.x*QK4_NL) {
  2222. device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  2223. float amax = 0.0f; // absolute max
  2224. float max = 0.0f;
  2225. for (int j = 0; j < QK4_0; j++) {
  2226. const float v = src[j];
  2227. if (amax < fabs(v)) {
  2228. amax = fabs(v);
  2229. max = v;
  2230. }
  2231. }
  2232. const float d = max / kvalues_iq4nl_f[0];
  2233. const float id = d ? 1.0f/d : 0.0f;
  2234. float sumqx = 0, sumq2 = 0;
  2235. for (int j = 0; j < QK4_NL/2; ++j) {
  2236. const float x0 = src[0 + j]*id;
  2237. const float x1 = src[QK4_NL/2 + j]*id;
  2238. const uint8_t xi0 = best_index_int8(16, kvalues_iq4nl_f, x0);
  2239. const uint8_t xi1 = best_index_int8(16, kvalues_iq4nl_f, x1);
  2240. dst_data[i00/QK4_NL].qs[j] = xi0 | (xi1 << 4);
  2241. const float v0 = kvalues_iq4nl_f[xi0];
  2242. const float v1 = kvalues_iq4nl_f[xi1];
  2243. const float w0 = src[0 + j]*src[0 + j];
  2244. const float w1 = src[QK4_NL/2 + j]*src[QK4_NL/2 + j];
  2245. sumqx += w0*v0*src[j] + w1*v1*src[QK4_NL/2 + j];
  2246. sumq2 += w0*v0*v0 + w1*v1*v1;
  2247. }
  2248. dst_data[i00/QK4_NL].d = sumq2 > 0 ? sumqx/sumq2 : d;
  2249. }
  2250. }
  2251. kernel void kernel_concat(
  2252. device const char * src0,
  2253. device const char * src1,
  2254. device char * dst,
  2255. constant int64_t & ne00,
  2256. constant int64_t & ne01,
  2257. constant int64_t & ne02,
  2258. constant int64_t & ne03,
  2259. constant uint64_t & nb00,
  2260. constant uint64_t & nb01,
  2261. constant uint64_t & nb02,
  2262. constant uint64_t & nb03,
  2263. constant int64_t & ne10,
  2264. constant int64_t & ne11,
  2265. constant int64_t & ne12,
  2266. constant int64_t & ne13,
  2267. constant uint64_t & nb10,
  2268. constant uint64_t & nb11,
  2269. constant uint64_t & nb12,
  2270. constant uint64_t & nb13,
  2271. constant int64_t & ne0,
  2272. constant int64_t & ne1,
  2273. constant int64_t & ne2,
  2274. constant int64_t & ne3,
  2275. constant uint64_t & nb0,
  2276. constant uint64_t & nb1,
  2277. constant uint64_t & nb2,
  2278. constant uint64_t & nb3,
  2279. uint3 tgpig[[threadgroup_position_in_grid]],
  2280. uint3 tpitg[[thread_position_in_threadgroup]],
  2281. uint3 ntg[[threads_per_threadgroup]]) {
  2282. const int64_t i03 = tgpig.z;
  2283. const int64_t i02 = tgpig.y;
  2284. const int64_t i01 = tgpig.x;
  2285. const int64_t i13 = i03 % ne13;
  2286. const int64_t i12 = i02 % ne12;
  2287. const int64_t i11 = i01 % ne11;
  2288. device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01 + tpitg.x*nb00;
  2289. device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11 + tpitg.x*nb10;
  2290. device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1 + tpitg.x*nb0;
  2291. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  2292. if (i02 < ne02) {
  2293. ((device float *)dst_ptr)[0] = ((device float *)src0_ptr)[0];
  2294. src0_ptr += ntg.x*nb00;
  2295. } else {
  2296. ((device float *)dst_ptr)[0] = ((device float *)src1_ptr)[0];
  2297. src1_ptr += ntg.x*nb10;
  2298. }
  2299. dst_ptr += ntg.x*nb0;
  2300. }
  2301. }
  2302. void kernel_mul_mv_q2_K_f32_impl(
  2303. device const void * src0,
  2304. device const float * src1,
  2305. device float * dst,
  2306. constant int64_t & ne00,
  2307. constant int64_t & ne01,
  2308. constant int64_t & ne02,
  2309. constant int64_t & ne10,
  2310. constant int64_t & ne12,
  2311. constant int64_t & ne0,
  2312. constant int64_t & ne1,
  2313. constant uint & r2,
  2314. constant uint & r3,
  2315. threadgroup int8_t * shared_values [[threadgroup(0)]],
  2316. uint3 tgpig[[threadgroup_position_in_grid]],
  2317. uint tiisg[[thread_index_in_simdgroup]],
  2318. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2319. const int nb = ne00/QK_K;
  2320. const int r0 = tgpig.x;
  2321. const int r1 = tgpig.y;
  2322. const int im = tgpig.z;
  2323. const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
  2324. const int ib_row = first_row * nb;
  2325. const uint i12 = im%ne12;
  2326. const uint i13 = im/ne12;
  2327. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  2328. device const block_q2_K * x = (device const block_q2_K *) src0 + ib_row + offset0;
  2329. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  2330. float yl[32];
  2331. float sumf[N_DST]={0.f}, all_sum;
  2332. const int step = sizeof(block_q2_K) * nb;
  2333. #if QK_K == 256
  2334. const int ix = tiisg/8; // 0...3
  2335. const int it = tiisg%8; // 0...7
  2336. const int iq = it/4; // 0 or 1
  2337. const int ir = it%4; // 0...3
  2338. const int is = (8*ir)/16;// 0 or 1
  2339. device const float * y4 = y + ix * QK_K + 128 * iq + 8 * ir;
  2340. for (int ib = ix; ib < nb; ib += 4) {
  2341. float4 sumy = {0.f, 0.f, 0.f, 0.f};
  2342. for (int i = 0; i < 8; ++i) {
  2343. yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0];
  2344. yl[i+ 8] = y4[i+32]; sumy[1] += yl[i+ 8];
  2345. yl[i+16] = y4[i+64]; sumy[2] += yl[i+16];
  2346. yl[i+24] = y4[i+96]; sumy[3] += yl[i+24];
  2347. }
  2348. device const uint8_t * sc = (device const uint8_t *)x[ib].scales + 8*iq + is;
  2349. device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 16 * iq + 4 * ir;
  2350. device const half * dh = &x[ib].d;
  2351. for (int row = 0; row < N_DST; row++) {
  2352. float4 acc1 = {0.f, 0.f, 0.f, 0.f};
  2353. float4 acc2 = {0.f, 0.f, 0.f, 0.f};
  2354. for (int i = 0; i < 8; i += 2) {
  2355. acc1[0] += yl[i+ 0] * (qs[i/2] & 0x0003);
  2356. acc2[0] += yl[i+ 1] * (qs[i/2] & 0x0300);
  2357. acc1[1] += yl[i+ 8] * (qs[i/2] & 0x000c);
  2358. acc2[1] += yl[i+ 9] * (qs[i/2] & 0x0c00);
  2359. acc1[2] += yl[i+16] * (qs[i/2] & 0x0030);
  2360. acc2[2] += yl[i+17] * (qs[i/2] & 0x3000);
  2361. acc1[3] += yl[i+24] * (qs[i/2] & 0x00c0);
  2362. acc2[3] += yl[i+25] * (qs[i/2] & 0xc000);
  2363. }
  2364. float dall = dh[0];
  2365. float dmin = dh[1] * 1.f/16.f;
  2366. sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc2[0]) * (sc[0] & 0xF) * 1.f/ 1.f +
  2367. (acc1[1] + 1.f/256.f * acc2[1]) * (sc[2] & 0xF) * 1.f/ 4.f +
  2368. (acc1[2] + 1.f/256.f * acc2[2]) * (sc[4] & 0xF) * 1.f/16.f +
  2369. (acc1[3] + 1.f/256.f * acc2[3]) * (sc[6] & 0xF) * 1.f/64.f) -
  2370. dmin * (sumy[0] * (sc[0] & 0xF0) + sumy[1] * (sc[2] & 0xF0) + sumy[2] * (sc[4] & 0xF0) + sumy[3] * (sc[6] & 0xF0));
  2371. qs += step/2;
  2372. sc += step;
  2373. dh += step/2;
  2374. }
  2375. y4 += 4 * QK_K;
  2376. }
  2377. #else
  2378. const int ix = tiisg/2; // 0...15
  2379. const int it = tiisg%2; // 0...1
  2380. device const float * y4 = y + ix * QK_K + 8 * it;
  2381. for (int ib = ix; ib < nb; ib += 16) {
  2382. float4 sumy = {0.f, 0.f, 0.f, 0.f};
  2383. for (int i = 0; i < 8; ++i) {
  2384. yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0];
  2385. yl[i+ 8] = y4[i+16]; sumy[1] += yl[i+ 8];
  2386. yl[i+16] = y4[i+32]; sumy[2] += yl[i+16];
  2387. yl[i+24] = y4[i+48]; sumy[3] += yl[i+24];
  2388. }
  2389. device const uint8_t * sc = (device const uint8_t *)x[ib].scales;
  2390. device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 4 * it;
  2391. device const half * dh = &x[ib].d;
  2392. for (int row = 0; row < N_DST; row++) {
  2393. float4 acc1 = {0.f, 0.f, 0.f, 0.f};
  2394. float4 acc2 = {0.f, 0.f, 0.f, 0.f};
  2395. for (int i = 0; i < 8; i += 2) {
  2396. acc1[0] += yl[i+ 0] * (qs[i/2] & 0x0003);
  2397. acc2[0] += yl[i+ 1] * (qs[i/2] & 0x0300);
  2398. acc1[1] += yl[i+ 8] * (qs[i/2] & 0x000c);
  2399. acc2[1] += yl[i+ 9] * (qs[i/2] & 0x0c00);
  2400. acc1[2] += yl[i+16] * (qs[i/2] & 0x0030);
  2401. acc2[2] += yl[i+17] * (qs[i/2] & 0x3000);
  2402. acc1[3] += yl[i+24] * (qs[i/2] & 0x00c0);
  2403. acc2[3] += yl[i+25] * (qs[i/2] & 0xc000);
  2404. }
  2405. float dall = dh[0];
  2406. float dmin = dh[1];
  2407. sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc2[0]) * (sc[0] & 0xF) * 1.f/ 1.f +
  2408. (acc1[1] + 1.f/256.f * acc2[1]) * (sc[1] & 0xF) * 1.f/ 4.f +
  2409. (acc1[2] + 1.f/256.f * acc2[2]) * (sc[2] & 0xF) * 1.f/16.f +
  2410. (acc1[3] + 1.f/256.f * acc2[3]) * (sc[3] & 0xF) * 1.f/64.f) -
  2411. dmin * (sumy[0] * (sc[0] >> 4) + sumy[1] * (sc[1] >> 4) + sumy[2] * (sc[2] >> 4) + sumy[3] * (sc[3] >> 4));
  2412. qs += step/2;
  2413. sc += step;
  2414. dh += step/2;
  2415. }
  2416. y4 += 16 * QK_K;
  2417. }
  2418. #endif
  2419. for (int row = 0; row < N_DST; ++row) {
  2420. all_sum = simd_sum(sumf[row]);
  2421. if (tiisg == 0) {
  2422. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
  2423. }
  2424. }
  2425. }
  2426. [[host_name("kernel_mul_mv_q2_K_f32")]]
  2427. kernel void kernel_mul_mv_q2_K_f32(
  2428. device const void * src0,
  2429. device const float * src1,
  2430. device float * dst,
  2431. constant int64_t & ne00,
  2432. constant int64_t & ne01,
  2433. constant int64_t & ne02,
  2434. constant uint64_t & nb00,
  2435. constant uint64_t & nb01,
  2436. constant uint64_t & nb02,
  2437. constant int64_t & ne10,
  2438. constant int64_t & ne11,
  2439. constant int64_t & ne12,
  2440. constant uint64_t & nb10,
  2441. constant uint64_t & nb11,
  2442. constant uint64_t & nb12,
  2443. constant int64_t & ne0,
  2444. constant int64_t & ne1,
  2445. constant uint & r2,
  2446. constant uint & r3,
  2447. uint3 tgpig[[threadgroup_position_in_grid]],
  2448. uint tiisg[[thread_index_in_simdgroup]],
  2449. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2450. kernel_mul_mv_q2_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg);
  2451. }
  2452. #if QK_K == 256
  2453. void kernel_mul_mv_q3_K_f32_impl(
  2454. device const void * src0,
  2455. device const float * src1,
  2456. device float * dst,
  2457. constant int64_t & ne00,
  2458. constant int64_t & ne01,
  2459. constant int64_t & ne02,
  2460. constant int64_t & ne10,
  2461. constant int64_t & ne12,
  2462. constant int64_t & ne0,
  2463. constant int64_t & ne1,
  2464. constant uint & r2,
  2465. constant uint & r3,
  2466. threadgroup int8_t * shared_values [[threadgroup(0)]],
  2467. uint3 tgpig[[threadgroup_position_in_grid]],
  2468. uint tiisg[[thread_index_in_simdgroup]],
  2469. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2470. const int nb = ne00/QK_K;
  2471. const int64_t r0 = tgpig.x;
  2472. const int64_t r1 = tgpig.y;
  2473. const int64_t im = tgpig.z;
  2474. const int first_row = (r0 * N_SIMDGROUP + sgitg) * 2;
  2475. const uint i12 = im%ne12;
  2476. const uint i13 = im/ne12;
  2477. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  2478. device const block_q3_K * x = (device const block_q3_K *) src0 + first_row*nb + offset0;
  2479. device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  2480. float yl[32];
  2481. //const uint16_t kmask1 = 0x3030;
  2482. //const uint16_t kmask2 = 0x0f0f;
  2483. const int tid = tiisg/4;
  2484. const int ix = tiisg%4;
  2485. const int ip = tid/4; // 0 or 1
  2486. const int il = 2*((tid%4)/2); // 0 or 2
  2487. const int ir = tid%2;
  2488. const int n = 8;
  2489. const int l0 = n*ir;
  2490. // One would think that the Metal compiler would figure out that ip and il can only have
  2491. // 4 possible states, and optimize accordingly. Well, no. It needs help, and we do it
  2492. // with these two tales.
  2493. //
  2494. // Possible masks for the high bit
  2495. const ushort4 mm[4] = {{0x0001, 0x0100, 0x0002, 0x0200}, // ip = 0, il = 0
  2496. {0x0004, 0x0400, 0x0008, 0x0800}, // ip = 0, il = 2
  2497. {0x0010, 0x1000, 0x0020, 0x2000}, // ip = 1, il = 0
  2498. {0x0040, 0x4000, 0x0080, 0x8000}}; // ip = 1, il = 2
  2499. // Possible masks for the low 2 bits
  2500. const int4 qm[2] = {{0x0003, 0x0300, 0x000c, 0x0c00}, {0x0030, 0x3000, 0x00c0, 0xc000}};
  2501. const ushort4 hm = mm[2*ip + il/2];
  2502. const int shift = 2*il;
  2503. const float v1 = il == 0 ? 4.f : 64.f;
  2504. const float v2 = 4.f * v1;
  2505. const uint16_t s_shift1 = 4*ip;
  2506. const uint16_t s_shift2 = s_shift1 + il;
  2507. const int q_offset = 32*ip + l0;
  2508. const int y_offset = 128*ip + 32*il + l0;
  2509. const int step = sizeof(block_q3_K) * nb / 2;
  2510. device const float * y1 = yy + ix*QK_K + y_offset;
  2511. uint32_t scales32, aux32;
  2512. thread uint16_t * scales16 = (thread uint16_t *)&scales32;
  2513. thread const int8_t * scales = (thread const int8_t *)&scales32;
  2514. float sumf1[2] = {0.f};
  2515. float sumf2[2] = {0.f};
  2516. for (int i = ix; i < nb; i += 4) {
  2517. for (int l = 0; l < 8; ++l) {
  2518. yl[l+ 0] = y1[l+ 0];
  2519. yl[l+ 8] = y1[l+16];
  2520. yl[l+16] = y1[l+32];
  2521. yl[l+24] = y1[l+48];
  2522. }
  2523. device const uint16_t * q = (device const uint16_t *)(x[i].qs + q_offset);
  2524. device const uint16_t * h = (device const uint16_t *)(x[i].hmask + l0);
  2525. device const uint16_t * a = (device const uint16_t *)(x[i].scales);
  2526. device const half * dh = &x[i].d;
  2527. for (int row = 0; row < 2; ++row) {
  2528. const float d_all = (float)dh[0];
  2529. scales16[0] = a[4];
  2530. scales16[1] = a[5];
  2531. aux32 = ((scales32 >> s_shift2) << 4) & 0x30303030;
  2532. scales16[0] = a[il+0];
  2533. scales16[1] = a[il+1];
  2534. scales32 = ((scales32 >> s_shift1) & 0x0f0f0f0f) | aux32;
  2535. float s1 = 0, s2 = 0, s3 = 0, s4 = 0, s5 = 0, s6 = 0;
  2536. for (int l = 0; l < n; l += 2) {
  2537. const int32_t qs = q[l/2];
  2538. s1 += yl[l+0] * (qs & qm[il/2][0]);
  2539. s2 += yl[l+1] * (qs & qm[il/2][1]);
  2540. s3 += ((h[l/2] & hm[0]) ? 0.f : yl[l+0]) + ((h[l/2] & hm[1]) ? 0.f : yl[l+1]);
  2541. s4 += yl[l+16] * (qs & qm[il/2][2]);
  2542. s5 += yl[l+17] * (qs & qm[il/2][3]);
  2543. s6 += ((h[l/2] & hm[2]) ? 0.f : yl[l+16]) + ((h[l/2] & hm[3]) ? 0.f : yl[l+17]);
  2544. }
  2545. float d1 = d_all * (s1 + 1.f/256.f * s2 - s3*v1);
  2546. float d2 = d_all * (s4 + 1.f/256.f * s5 - s6*v2);
  2547. sumf1[row] += d1 * (scales[0] - 32);
  2548. sumf2[row] += d2 * (scales[2] - 32);
  2549. s1 = s2 = s3 = s4 = s5 = s6 = 0;
  2550. for (int l = 0; l < n; l += 2) {
  2551. const int32_t qs = q[l/2+8];
  2552. s1 += yl[l+8] * (qs & qm[il/2][0]);
  2553. s2 += yl[l+9] * (qs & qm[il/2][1]);
  2554. s3 += ((h[l/2+8] & hm[0]) ? 0.f : yl[l+8]) + ((h[l/2+8] & hm[1]) ? 0.f : yl[l+9]);
  2555. s4 += yl[l+24] * (qs & qm[il/2][2]);
  2556. s5 += yl[l+25] * (qs & qm[il/2][3]);
  2557. s6 += ((h[l/2+8] & hm[2]) ? 0.f : yl[l+24]) + ((h[l/2+8] & hm[3]) ? 0.f : yl[l+25]);
  2558. }
  2559. d1 = d_all * (s1 + 1.f/256.f * s2 - s3*v1);
  2560. d2 = d_all * (s4 + 1.f/256.f * s5 - s6*v2);
  2561. sumf1[row] += d1 * (scales[1] - 32);
  2562. sumf2[row] += d2 * (scales[3] - 32);
  2563. q += step;
  2564. h += step;
  2565. a += step;
  2566. dh += step;
  2567. }
  2568. y1 += 4 * QK_K;
  2569. }
  2570. for (int row = 0; row < 2; ++row) {
  2571. const float sumf = (sumf1[row] + 0.25f * sumf2[row]) / (1 << shift);
  2572. sumf1[row] = simd_sum(sumf);
  2573. }
  2574. if (tiisg == 0) {
  2575. for (int row = 0; row < 2; ++row) {
  2576. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = sumf1[row];
  2577. }
  2578. }
  2579. }
  2580. #else
  2581. void kernel_mul_mv_q3_K_f32_impl(
  2582. device const void * src0,
  2583. device const float * src1,
  2584. device float * dst,
  2585. constant int64_t & ne00,
  2586. constant int64_t & ne01,
  2587. constant int64_t & ne02,
  2588. constant int64_t & ne10,
  2589. constant int64_t & ne12,
  2590. constant int64_t & ne0,
  2591. constant int64_t & ne1,
  2592. constant uint & r2,
  2593. constant uint & r3,
  2594. threadgroup int8_t * shared_values [[threadgroup(0)]],
  2595. uint3 tgpig[[threadgroup_position_in_grid]],
  2596. uint tiisg[[thread_index_in_simdgroup]],
  2597. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2598. const int nb = ne00/QK_K;
  2599. const int64_t r0 = tgpig.x;
  2600. const int64_t r1 = tgpig.y;
  2601. const int64_t im = tgpig.z;
  2602. const int row = 2 * r0 + sgitg;
  2603. const uint i12 = im%ne12;
  2604. const uint i13 = im/ne12;
  2605. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  2606. device const block_q3_K * x = (device const block_q3_K *) src0 + row*nb + offset0;
  2607. device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  2608. const int ix = tiisg/4;
  2609. const int il = 4 * (tiisg%4);// 0, 4, 8, 12
  2610. const int iq = il/8; // 0, 0, 1, 1
  2611. const int in = il%8; // 0, 4, 0, 4
  2612. float2 sum = {0.f, 0.f};
  2613. for (int i = ix; i < nb; i += 8) {
  2614. const float d_all = (float)(x[i].d);
  2615. device const uint16_t * q = (device const uint16_t *)(x[i].qs + il);
  2616. device const uint16_t * h = (device const uint16_t *)(x[i].hmask + in);
  2617. device const uint16_t * s = (device const uint16_t *)(x[i].scales);
  2618. device const float * y = yy + i * QK_K + il;
  2619. const float d1 = d_all * ((int32_t)(s[0] & 0x000F) - 8);
  2620. const float d2 = d_all * ((int32_t)(s[0] & 0x00F0) - 128) * 1.f/64.f;
  2621. const float d3 = d_all * ((int32_t)(s[0] & 0x0F00) - 2048) * 1.f/4096.f;
  2622. const float d4 = d_all * ((int32_t)(s[0] & 0xF000) - 32768) * 1.f/262144.f;
  2623. for (int l = 0; l < 4; l += 2) {
  2624. const uint16_t hm = h[l/2] >> iq;
  2625. sum[0] += y[l+ 0] * d1 * ((int32_t)(q[l/2] & 0x0003) - ((hm & 0x0001) ? 0 : 4))
  2626. + y[l+16] * d2 * ((int32_t)(q[l/2] & 0x000c) - ((hm & 0x0004) ? 0 : 16))
  2627. + y[l+32] * d3 * ((int32_t)(q[l/2] & 0x0030) - ((hm & 0x0010) ? 0 : 64))
  2628. + y[l+48] * d4 * ((int32_t)(q[l/2] & 0x00c0) - ((hm & 0x0040) ? 0 : 256));
  2629. sum[1] += y[l+ 1] * d1 * ((int32_t)(q[l/2] & 0x0300) - ((hm & 0x0100) ? 0 : 1024))
  2630. + y[l+17] * d2 * ((int32_t)(q[l/2] & 0x0c00) - ((hm & 0x0400) ? 0 : 4096))
  2631. + y[l+33] * d3 * ((int32_t)(q[l/2] & 0x3000) - ((hm & 0x1000) ? 0 : 16384))
  2632. + y[l+49] * d4 * ((int32_t)(q[l/2] & 0xc000) - ((hm & 0x4000) ? 0 : 65536));
  2633. }
  2634. }
  2635. const float sumf = sum[0] + sum[1] * 1.f/256.f;
  2636. const float tot = simd_sum(sumf);
  2637. if (tiisg == 0) {
  2638. dst[r1*ne0 + im*ne0*ne1 + row] = tot;
  2639. }
  2640. }
  2641. #endif
  2642. [[host_name("kernel_mul_mv_q3_K_f32")]]
  2643. kernel void kernel_mul_mv_q3_K_f32(
  2644. device const void * src0,
  2645. device const float * src1,
  2646. device float * dst,
  2647. constant int64_t & ne00,
  2648. constant int64_t & ne01,
  2649. constant int64_t & ne02,
  2650. constant uint64_t & nb00,
  2651. constant uint64_t & nb01,
  2652. constant uint64_t & nb02,
  2653. constant int64_t & ne10,
  2654. constant int64_t & ne11,
  2655. constant int64_t & ne12,
  2656. constant uint64_t & nb10,
  2657. constant uint64_t & nb11,
  2658. constant uint64_t & nb12,
  2659. constant int64_t & ne0,
  2660. constant int64_t & ne1,
  2661. constant uint & r2,
  2662. constant uint & r3,
  2663. uint3 tgpig[[threadgroup_position_in_grid]],
  2664. uint tiisg[[thread_index_in_simdgroup]],
  2665. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2666. kernel_mul_mv_q3_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg);
  2667. }
  2668. #if QK_K == 256
  2669. void kernel_mul_mv_q4_K_f32_impl(
  2670. device const void * src0,
  2671. device const float * src1,
  2672. device float * dst,
  2673. constant int64_t & ne00,
  2674. constant int64_t & ne01,
  2675. constant int64_t & ne02,
  2676. constant int64_t & ne10,
  2677. constant int64_t & ne12,
  2678. constant int64_t & ne0,
  2679. constant int64_t & ne1,
  2680. constant uint & r2,
  2681. constant uint & r3,
  2682. threadgroup int8_t * shared_values [[threadgroup(0)]],
  2683. uint3 tgpig[[threadgroup_position_in_grid]],
  2684. uint tiisg[[thread_index_in_simdgroup]],
  2685. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2686. const uint16_t kmask1 = 0x3f3f;
  2687. const uint16_t kmask2 = 0x0f0f;
  2688. const uint16_t kmask3 = 0xc0c0;
  2689. const int ix = tiisg/8; // 0...3
  2690. const int it = tiisg%8; // 0...7
  2691. const int iq = it/4; // 0 or 1
  2692. const int ir = it%4; // 0...3
  2693. const int nb = ne00/QK_K;
  2694. const int r0 = tgpig.x;
  2695. const int r1 = tgpig.y;
  2696. const int im = tgpig.z;
  2697. //const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
  2698. const int first_row = r0 * N_DST;
  2699. const int ib_row = first_row * nb;
  2700. const uint i12 = im%ne12;
  2701. const uint i13 = im/ne12;
  2702. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  2703. device const block_q4_K * x = (device const block_q4_K *) src0 + ib_row + offset0;
  2704. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  2705. float yl[16];
  2706. float yh[16];
  2707. float sumf[N_DST]={0.f}, all_sum;
  2708. const int step = sizeof(block_q4_K) * nb / 2;
  2709. device const float * y4 = y + ix * QK_K + 64 * iq + 8 * ir;
  2710. uint16_t sc16[4];
  2711. thread const uint8_t * sc8 = (thread const uint8_t *)sc16;
  2712. for (int ib = ix; ib < nb; ib += 4) {
  2713. float4 sumy = {0.f, 0.f, 0.f, 0.f};
  2714. for (int i = 0; i < 8; ++i) {
  2715. yl[i+0] = y4[i+ 0]; sumy[0] += yl[i+0];
  2716. yl[i+8] = y4[i+ 32]; sumy[1] += yl[i+8];
  2717. yh[i+0] = y4[i+128]; sumy[2] += yh[i+0];
  2718. yh[i+8] = y4[i+160]; sumy[3] += yh[i+8];
  2719. }
  2720. device const uint16_t * sc = (device const uint16_t *)x[ib].scales + iq;
  2721. device const uint16_t * q1 = (device const uint16_t *)x[ib].qs + 16 * iq + 4 * ir;
  2722. device const half * dh = &x[ib].d;
  2723. for (int row = 0; row < N_DST; row++) {
  2724. sc16[0] = sc[0] & kmask1;
  2725. sc16[1] = sc[2] & kmask1;
  2726. sc16[2] = ((sc[4] >> 0) & kmask2) | ((sc[0] & kmask3) >> 2);
  2727. sc16[3] = ((sc[4] >> 4) & kmask2) | ((sc[2] & kmask3) >> 2);
  2728. device const uint16_t * q2 = q1 + 32;
  2729. float4 acc1 = {0.f, 0.f, 0.f, 0.f};
  2730. float4 acc2 = {0.f, 0.f, 0.f, 0.f};
  2731. for (int i = 0; i < 8; i += 2) {
  2732. acc1[0] += yl[i+0] * (q1[i/2] & 0x000F);
  2733. acc1[1] += yl[i+1] * (q1[i/2] & 0x0F00);
  2734. acc1[2] += yl[i+8] * (q1[i/2] & 0x00F0);
  2735. acc1[3] += yl[i+9] * (q1[i/2] & 0xF000);
  2736. acc2[0] += yh[i+0] * (q2[i/2] & 0x000F);
  2737. acc2[1] += yh[i+1] * (q2[i/2] & 0x0F00);
  2738. acc2[2] += yh[i+8] * (q2[i/2] & 0x00F0);
  2739. acc2[3] += yh[i+9] * (q2[i/2] & 0xF000);
  2740. }
  2741. float dall = dh[0];
  2742. float dmin = dh[1];
  2743. sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc1[1]) * sc8[0] +
  2744. (acc1[2] + 1.f/256.f * acc1[3]) * sc8[1] * 1.f/16.f +
  2745. (acc2[0] + 1.f/256.f * acc2[1]) * sc8[4] +
  2746. (acc2[2] + 1.f/256.f * acc2[3]) * sc8[5] * 1.f/16.f) -
  2747. dmin * (sumy[0] * sc8[2] + sumy[1] * sc8[3] + sumy[2] * sc8[6] + sumy[3] * sc8[7]);
  2748. q1 += step;
  2749. sc += step;
  2750. dh += step;
  2751. }
  2752. y4 += 4 * QK_K;
  2753. }
  2754. for (int row = 0; row < N_DST; ++row) {
  2755. all_sum = simd_sum(sumf[row]);
  2756. if (tiisg == 0) {
  2757. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
  2758. }
  2759. }
  2760. }
  2761. #else
  2762. void kernel_mul_mv_q4_K_f32_impl(
  2763. device const void * src0,
  2764. device const float * src1,
  2765. device float * dst,
  2766. constant int64_t & ne00,
  2767. constant int64_t & ne01,
  2768. constant int64_t & ne02,
  2769. constant int64_t & ne10,
  2770. constant int64_t & ne12,
  2771. constant int64_t & ne0,
  2772. constant int64_t & ne1,
  2773. constant uint & r2,
  2774. constant uint & r3,
  2775. threadgroup int8_t * shared_values [[threadgroup(0)]],
  2776. uint3 tgpig[[threadgroup_position_in_grid]],
  2777. uint tiisg[[thread_index_in_simdgroup]],
  2778. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2779. const int ix = tiisg/4; // 0...7
  2780. const int it = tiisg%4; // 0...3
  2781. const int nb = ne00/QK_K;
  2782. const int r0 = tgpig.x;
  2783. const int r1 = tgpig.y;
  2784. const int im = tgpig.z;
  2785. const int first_row = r0 * N_DST;
  2786. const int ib_row = first_row * nb;
  2787. const uint i12 = im%ne12;
  2788. const uint i13 = im/ne12;
  2789. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  2790. device const block_q4_K * x = (device const block_q4_K *) src0 + ib_row + offset0;
  2791. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  2792. float yl[8];
  2793. float yh[8];
  2794. float sumf[N_DST]={0.f}, all_sum;
  2795. const int step = sizeof(block_q4_K) * nb / 2;
  2796. device const float * y4 = y + ix * QK_K + 8 * it;
  2797. uint16_t sc16[4];
  2798. for (int ib = ix; ib < nb; ib += 8) {
  2799. float2 sumy = {0.f, 0.f};
  2800. for (int i = 0; i < 8; ++i) {
  2801. yl[i] = y4[i+ 0]; sumy[0] += yl[i];
  2802. yh[i] = y4[i+32]; sumy[1] += yh[i];
  2803. }
  2804. device const uint16_t * sc = (device const uint16_t *)x[ib].scales;
  2805. device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 4 * it;
  2806. device const half * dh = x[ib].d;
  2807. for (int row = 0; row < N_DST; row++) {
  2808. sc16[0] = sc[0] & 0x000f;
  2809. sc16[1] = sc[0] & 0x0f00;
  2810. sc16[2] = sc[0] & 0x00f0;
  2811. sc16[3] = sc[0] & 0xf000;
  2812. float2 acc1 = {0.f, 0.f};
  2813. float2 acc2 = {0.f, 0.f};
  2814. for (int i = 0; i < 8; i += 2) {
  2815. acc1[0] += yl[i+0] * (qs[i/2] & 0x000F);
  2816. acc1[1] += yl[i+1] * (qs[i/2] & 0x0F00);
  2817. acc2[0] += yh[i+0] * (qs[i/2] & 0x00F0);
  2818. acc2[1] += yh[i+1] * (qs[i/2] & 0xF000);
  2819. }
  2820. float dall = dh[0];
  2821. float dmin = dh[1];
  2822. sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc1[1]) * sc16[0] +
  2823. (acc2[0] + 1.f/256.f * acc2[1]) * sc16[1] * 1.f/4096.f) -
  2824. dmin * 1.f/16.f * (sumy[0] * sc16[2] + sumy[1] * sc16[3] * 1.f/256.f);
  2825. qs += step;
  2826. sc += step;
  2827. dh += step;
  2828. }
  2829. y4 += 8 * QK_K;
  2830. }
  2831. for (int row = 0; row < N_DST; ++row) {
  2832. all_sum = simd_sum(sumf[row]);
  2833. if (tiisg == 0) {
  2834. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
  2835. }
  2836. }
  2837. }
  2838. #endif
  2839. [[host_name("kernel_mul_mv_q4_K_f32")]]
  2840. kernel void kernel_mul_mv_q4_K_f32(
  2841. device const void * src0,
  2842. device const float * src1,
  2843. device float * dst,
  2844. constant int64_t & ne00,
  2845. constant int64_t & ne01,
  2846. constant int64_t & ne02,
  2847. constant uint64_t & nb00,
  2848. constant uint64_t & nb01,
  2849. constant uint64_t & nb02,
  2850. constant int64_t & ne10,
  2851. constant int64_t & ne11,
  2852. constant int64_t & ne12,
  2853. constant uint64_t & nb10,
  2854. constant uint64_t & nb11,
  2855. constant uint64_t & nb12,
  2856. constant int64_t & ne0,
  2857. constant int64_t & ne1,
  2858. constant uint & r2,
  2859. constant uint & r3,
  2860. uint3 tgpig[[threadgroup_position_in_grid]],
  2861. uint tiisg[[thread_index_in_simdgroup]],
  2862. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2863. kernel_mul_mv_q4_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg);
  2864. }
  2865. void kernel_mul_mv_q5_K_f32_impl(
  2866. device const void * src0,
  2867. device const float * src1,
  2868. device float * dst,
  2869. constant int64_t & ne00,
  2870. constant int64_t & ne01,
  2871. constant int64_t & ne02,
  2872. constant int64_t & ne10,
  2873. constant int64_t & ne12,
  2874. constant int64_t & ne0,
  2875. constant int64_t & ne1,
  2876. constant uint & r2,
  2877. constant uint & r3,
  2878. threadgroup int8_t * shared_values [[threadgroup(0)]],
  2879. uint3 tgpig[[threadgroup_position_in_grid]],
  2880. uint tiisg[[thread_index_in_simdgroup]],
  2881. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2882. const int nb = ne00/QK_K;
  2883. const int64_t r0 = tgpig.x;
  2884. const int64_t r1 = tgpig.y;
  2885. const int im = tgpig.z;
  2886. const int first_row = (r0 * N_SIMDGROUP + sgitg) * 2;
  2887. const uint i12 = im%ne12;
  2888. const uint i13 = im/ne12;
  2889. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  2890. device const block_q5_K * x = (device const block_q5_K *) src0 + first_row*nb + offset0;
  2891. device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  2892. float sumf[2]={0.f};
  2893. const int step = sizeof(block_q5_K) * nb;
  2894. #if QK_K == 256
  2895. #
  2896. float yl[16], yh[16];
  2897. const uint16_t kmask1 = 0x3f3f;
  2898. const uint16_t kmask2 = 0x0f0f;
  2899. const uint16_t kmask3 = 0xc0c0;
  2900. const int tid = tiisg/4;
  2901. const int ix = tiisg%4;
  2902. const int iq = tid/4;
  2903. const int ir = tid%4;
  2904. const int n = 8;
  2905. const int l0 = n*ir;
  2906. const int q_offset = 32*iq + l0;
  2907. const int y_offset = 64*iq + l0;
  2908. const uint8_t hm1 = 1u << (2*iq);
  2909. const uint8_t hm2 = hm1 << 1;
  2910. const uint8_t hm3 = hm1 << 4;
  2911. const uint8_t hm4 = hm2 << 4;
  2912. uint16_t sc16[4];
  2913. thread const uint8_t * sc8 = (thread const uint8_t *)sc16;
  2914. device const float * y1 = yy + ix*QK_K + y_offset;
  2915. for (int i = ix; i < nb; i += 4) {
  2916. device const uint8_t * q1 = x[i].qs + q_offset;
  2917. device const uint8_t * qh = x[i].qh + l0;
  2918. device const half * dh = &x[i].d;
  2919. device const uint16_t * a = (device const uint16_t *)x[i].scales + iq;
  2920. device const float * y2 = y1 + 128;
  2921. float4 sumy = {0.f, 0.f, 0.f, 0.f};
  2922. for (int l = 0; l < 8; ++l) {
  2923. yl[l+0] = y1[l+ 0]; sumy[0] += yl[l+0];
  2924. yl[l+8] = y1[l+32]; sumy[1] += yl[l+8];
  2925. yh[l+0] = y2[l+ 0]; sumy[2] += yh[l+0];
  2926. yh[l+8] = y2[l+32]; sumy[3] += yh[l+8];
  2927. }
  2928. for (int row = 0; row < 2; ++row) {
  2929. device const uint8_t * q2 = q1 + 64;
  2930. sc16[0] = a[0] & kmask1;
  2931. sc16[1] = a[2] & kmask1;
  2932. sc16[2] = ((a[4] >> 0) & kmask2) | ((a[0] & kmask3) >> 2);
  2933. sc16[3] = ((a[4] >> 4) & kmask2) | ((a[2] & kmask3) >> 2);
  2934. float4 acc1 = {0.f};
  2935. float4 acc2 = {0.f};
  2936. for (int l = 0; l < n; ++l) {
  2937. uint8_t h = qh[l];
  2938. acc1[0] += yl[l+0] * (q1[l] & 0x0F);
  2939. acc1[1] += yl[l+8] * (q1[l] & 0xF0);
  2940. acc1[2] += yh[l+0] * (q2[l] & 0x0F);
  2941. acc1[3] += yh[l+8] * (q2[l] & 0xF0);
  2942. acc2[0] += h & hm1 ? yl[l+0] : 0.f;
  2943. acc2[1] += h & hm2 ? yl[l+8] : 0.f;
  2944. acc2[2] += h & hm3 ? yh[l+0] : 0.f;
  2945. acc2[3] += h & hm4 ? yh[l+8] : 0.f;
  2946. }
  2947. const float dall = dh[0];
  2948. const float dmin = dh[1];
  2949. sumf[row] += dall * (sc8[0] * (acc1[0] + 16.f*acc2[0]) +
  2950. sc8[1] * (acc1[1]/16.f + 16.f*acc2[1]) +
  2951. sc8[4] * (acc1[2] + 16.f*acc2[2]) +
  2952. sc8[5] * (acc1[3]/16.f + 16.f*acc2[3])) -
  2953. dmin * (sumy[0] * sc8[2] + sumy[1] * sc8[3] + sumy[2] * sc8[6] + sumy[3] * sc8[7]);
  2954. q1 += step;
  2955. qh += step;
  2956. dh += step/2;
  2957. a += step/2;
  2958. }
  2959. y1 += 4 * QK_K;
  2960. }
  2961. #else
  2962. float yl[8], yh[8];
  2963. const int il = 4 * (tiisg/8); // 0, 4, 8, 12
  2964. const int ix = tiisg%8;
  2965. const int iq = il/8; // 0, 0, 1, 1
  2966. const int in = il%8; // 0, 4, 0, 4
  2967. device const float * y = yy + ix*QK_K + il;
  2968. for (int i = ix; i < nb; i += 8) {
  2969. for (int l = 0; l < 4; ++l) {
  2970. yl[l+0] = y[l+ 0];
  2971. yl[l+4] = y[l+16];
  2972. yh[l+0] = y[l+32];
  2973. yh[l+4] = y[l+48];
  2974. }
  2975. device const half * dh = &x[i].d;
  2976. device const uint8_t * q = x[i].qs + il;
  2977. device const uint8_t * h = x[i].qh + in;
  2978. device const int8_t * s = x[i].scales;
  2979. for (int row = 0; row < 2; ++row) {
  2980. const float d = dh[0];
  2981. float2 acc = {0.f, 0.f};
  2982. for (int l = 0; l < 4; ++l) {
  2983. const uint8_t hl = h[l] >> iq;
  2984. acc[0] += yl[l+0] * s[0] * ((int16_t)(q[l+ 0] & 0x0F) - (hl & 0x01 ? 0 : 16))
  2985. + yl[l+4] * s[1] * ((int16_t)(q[l+16] & 0x0F) - (hl & 0x04 ? 0 : 16));
  2986. acc[1] += yh[l+0] * s[2] * ((int16_t)(q[l+ 0] & 0xF0) - (hl & 0x10 ? 0 : 256))
  2987. + yh[l+4] * s[3] * ((int16_t)(q[l+16] & 0xF0) - (hl & 0x40 ? 0 : 256));
  2988. }
  2989. sumf[row] += d * (acc[0] + 1.f/16.f * acc[1]);
  2990. q += step;
  2991. h += step;
  2992. s += step;
  2993. dh += step/2;
  2994. }
  2995. y += 8 * QK_K;
  2996. }
  2997. #endif
  2998. for (int row = 0; row < 2; ++row) {
  2999. const float tot = simd_sum(sumf[row]);
  3000. if (tiisg == 0) {
  3001. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = tot;
  3002. }
  3003. }
  3004. }
  3005. [[host_name("kernel_mul_mv_q5_K_f32")]]
  3006. kernel void kernel_mul_mv_q5_K_f32(
  3007. device const void * src0,
  3008. device const float * src1,
  3009. device float * dst,
  3010. constant int64_t & ne00,
  3011. constant int64_t & ne01,
  3012. constant int64_t & ne02,
  3013. constant uint64_t & nb00,
  3014. constant uint64_t & nb01,
  3015. constant uint64_t & nb02,
  3016. constant int64_t & ne10,
  3017. constant int64_t & ne11,
  3018. constant int64_t & ne12,
  3019. constant uint64_t & nb10,
  3020. constant uint64_t & nb11,
  3021. constant uint64_t & nb12,
  3022. constant int64_t & ne0,
  3023. constant int64_t & ne1,
  3024. constant uint & r2,
  3025. constant uint & r3,
  3026. uint3 tgpig[[threadgroup_position_in_grid]],
  3027. uint tiisg[[thread_index_in_simdgroup]],
  3028. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3029. kernel_mul_mv_q5_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg);
  3030. }
  3031. void kernel_mul_mv_q6_K_f32_impl(
  3032. device const void * src0,
  3033. device const float * src1,
  3034. device float * dst,
  3035. constant int64_t & ne00,
  3036. constant int64_t & ne01,
  3037. constant int64_t & ne02,
  3038. constant int64_t & ne10,
  3039. constant int64_t & ne12,
  3040. constant int64_t & ne0,
  3041. constant int64_t & ne1,
  3042. constant uint & r2,
  3043. constant uint & r3,
  3044. threadgroup int8_t * shared_values [[threadgroup(0)]],
  3045. uint3 tgpig[[threadgroup_position_in_grid]],
  3046. uint tiisg[[thread_index_in_simdgroup]],
  3047. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3048. const uint8_t kmask1 = 0x03;
  3049. const uint8_t kmask2 = 0x0C;
  3050. const uint8_t kmask3 = 0x30;
  3051. const uint8_t kmask4 = 0xC0;
  3052. const int nb = ne00/QK_K;
  3053. const int64_t r0 = tgpig.x;
  3054. const int64_t r1 = tgpig.y;
  3055. const int im = tgpig.z;
  3056. const int row = 2 * r0 + sgitg;
  3057. const uint i12 = im%ne12;
  3058. const uint i13 = im/ne12;
  3059. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  3060. device const block_q6_K * x = (device const block_q6_K *) src0 + row * nb + offset0;
  3061. device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  3062. float sumf = 0;
  3063. #if QK_K == 256
  3064. const int tid = tiisg/2;
  3065. const int ix = tiisg%2;
  3066. const int ip = tid/8; // 0 or 1
  3067. const int il = tid%8;
  3068. const int n = 4;
  3069. const int l0 = n*il;
  3070. const int is = 8*ip + l0/16;
  3071. const int y_offset = 128*ip + l0;
  3072. const int q_offset_l = 64*ip + l0;
  3073. const int q_offset_h = 32*ip + l0;
  3074. for (int i = ix; i < nb; i += 2) {
  3075. device const uint8_t * q1 = x[i].ql + q_offset_l;
  3076. device const uint8_t * q2 = q1 + 32;
  3077. device const uint8_t * qh = x[i].qh + q_offset_h;
  3078. device const int8_t * sc = x[i].scales + is;
  3079. device const float * y = yy + i * QK_K + y_offset;
  3080. const float dall = x[i].d;
  3081. float4 sums = {0.f, 0.f, 0.f, 0.f};
  3082. for (int l = 0; l < n; ++l) {
  3083. sums[0] += y[l+ 0] * ((int8_t)((q1[l] & 0xF) | ((qh[l] & kmask1) << 4)) - 32);
  3084. sums[1] += y[l+32] * ((int8_t)((q2[l] & 0xF) | ((qh[l] & kmask2) << 2)) - 32);
  3085. sums[2] += y[l+64] * ((int8_t)((q1[l] >> 4) | ((qh[l] & kmask3) << 0)) - 32);
  3086. sums[3] += y[l+96] * ((int8_t)((q2[l] >> 4) | ((qh[l] & kmask4) >> 2)) - 32);
  3087. }
  3088. sumf += dall * (sums[0] * sc[0] + sums[1] * sc[2] + sums[2] * sc[4] + sums[3] * sc[6]);
  3089. }
  3090. #else
  3091. const int ix = tiisg/4;
  3092. const int il = 4*(tiisg%4);
  3093. for (int i = ix; i < nb; i += 8) {
  3094. device const float * y = yy + i * QK_K + il;
  3095. device const uint8_t * ql = x[i].ql + il;
  3096. device const uint8_t * qh = x[i].qh + il;
  3097. device const int8_t * s = x[i].scales;
  3098. const float d = x[i].d;
  3099. float4 sums = {0.f, 0.f, 0.f, 0.f};
  3100. for (int l = 0; l < 4; ++l) {
  3101. sums[0] += y[l+ 0] * ((int8_t)((ql[l+ 0] & 0xF) | ((qh[l] & kmask1) << 4)) - 32);
  3102. sums[1] += y[l+16] * ((int8_t)((ql[l+16] & 0xF) | ((qh[l] & kmask2) << 2)) - 32);
  3103. sums[2] += y[l+32] * ((int8_t)((ql[l+ 0] >> 4) | ((qh[l] & kmask3) >> 0)) - 32);
  3104. sums[3] += y[l+48] * ((int8_t)((ql[l+16] >> 4) | ((qh[l] & kmask4) >> 2)) - 32);
  3105. }
  3106. sumf += d * (sums[0] * s[0] + sums[1] * s[1] + sums[2] * s[2] + sums[3] * s[3]);
  3107. }
  3108. #endif
  3109. const float tot = simd_sum(sumf);
  3110. if (tiisg == 0) {
  3111. dst[r1*ne0 + im*ne0*ne1 + row] = tot;
  3112. }
  3113. }
  3114. [[host_name("kernel_mul_mv_q6_K_f32")]]
  3115. kernel void kernel_mul_mv_q6_K_f32(
  3116. device const void * src0,
  3117. device const float * src1,
  3118. device float * dst,
  3119. constant int64_t & ne00,
  3120. constant int64_t & ne01,
  3121. constant int64_t & ne02,
  3122. constant uint64_t & nb00,
  3123. constant uint64_t & nb01,
  3124. constant uint64_t & nb02,
  3125. constant int64_t & ne10,
  3126. constant int64_t & ne11,
  3127. constant int64_t & ne12,
  3128. constant uint64_t & nb10,
  3129. constant uint64_t & nb11,
  3130. constant uint64_t & nb12,
  3131. constant int64_t & ne0,
  3132. constant int64_t & ne1,
  3133. constant uint & r2,
  3134. constant uint & r3,
  3135. uint3 tgpig[[threadgroup_position_in_grid]],
  3136. uint tiisg[[thread_index_in_simdgroup]],
  3137. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3138. kernel_mul_mv_q6_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg);
  3139. }
  3140. // ======================= "True" 2-bit
  3141. void kernel_mul_mv_iq2_xxs_f32_impl(
  3142. device const void * src0,
  3143. device const float * src1,
  3144. device float * dst,
  3145. constant int64_t & ne00,
  3146. constant int64_t & ne01,
  3147. constant int64_t & ne02,
  3148. constant int64_t & ne10,
  3149. constant int64_t & ne12,
  3150. constant int64_t & ne0,
  3151. constant int64_t & ne1,
  3152. constant uint & r2,
  3153. constant uint & r3,
  3154. threadgroup int8_t * shared_values [[threadgroup(0)]],
  3155. uint3 tgpig[[threadgroup_position_in_grid]],
  3156. uint tiisg[[thread_index_in_simdgroup]],
  3157. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3158. const int nb = ne00/QK_K;
  3159. const int r0 = tgpig.x;
  3160. const int r1 = tgpig.y;
  3161. const int im = tgpig.z;
  3162. const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
  3163. const int ib_row = first_row * nb;
  3164. const uint i12 = im%ne12;
  3165. const uint i13 = im/ne12;
  3166. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  3167. device const block_iq2_xxs * x = (device const block_iq2_xxs *) src0 + ib_row + offset0;
  3168. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  3169. float yl[32];
  3170. float sumf[N_DST]={0.f}, all_sum;
  3171. const int nb32 = nb * (QK_K / 32);
  3172. threadgroup uint64_t * values = (threadgroup uint64_t *)shared_values;
  3173. threadgroup uint8_t * shared_signs = (threadgroup uint8_t *)(values + 256);
  3174. {
  3175. int nval = 4;
  3176. int pos = (32*sgitg + tiisg)*nval;
  3177. for (int i = 0; i < nval; ++i) values[pos + i] = iq2xxs_grid[pos + i];
  3178. nval = 2;
  3179. pos = (32*sgitg + tiisg)*nval;
  3180. for (int i = 0; i < nval; ++i) shared_signs[pos+i] = ksigns_iq2xs[pos+i];
  3181. threadgroup_barrier(mem_flags::mem_threadgroup);
  3182. }
  3183. const int ix = tiisg;
  3184. device const float * y4 = y + 32 * ix;
  3185. for (int ib32 = ix; ib32 < nb32; ib32 += 32) {
  3186. for (int i = 0; i < 32; ++i) {
  3187. yl[i] = y4[i];
  3188. }
  3189. const int ibl = ib32 / (QK_K / 32);
  3190. const int ib = ib32 % (QK_K / 32);
  3191. device const block_iq2_xxs * xr = x + ibl;
  3192. device const uint16_t * q2 = xr->qs + 4 * ib;
  3193. device const half * dh = &xr->d;
  3194. for (int row = 0; row < N_DST; row++) {
  3195. const float db = dh[0];
  3196. device const uint8_t * aux8 = (device const uint8_t *)q2;
  3197. const uint32_t aux32 = q2[2] | (q2[3] << 16);
  3198. const float d = db * (0.5f + (aux32 >> 28));
  3199. float sum = 0;
  3200. for (int l = 0; l < 4; ++l) {
  3201. const threadgroup uint8_t * grid = (const threadgroup uint8_t *)(values + aux8[l]);
  3202. const uint8_t signs = shared_signs[(aux32 >> 7*l) & 127];
  3203. for (int j = 0; j < 8; ++j) {
  3204. sum += yl[8*l + j] * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
  3205. }
  3206. }
  3207. sumf[row] += d * sum;
  3208. dh += nb*sizeof(block_iq2_xxs)/2;
  3209. q2 += nb*sizeof(block_iq2_xxs)/2;
  3210. }
  3211. y4 += 32 * 32;
  3212. }
  3213. for (int row = 0; row < N_DST; ++row) {
  3214. all_sum = simd_sum(sumf[row]);
  3215. if (tiisg == 0) {
  3216. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum * 0.25f;
  3217. }
  3218. }
  3219. }
  3220. [[host_name("kernel_mul_mv_iq2_xxs_f32")]]
  3221. kernel void kernel_mul_mv_iq2_xxs_f32(
  3222. device const void * src0,
  3223. device const float * src1,
  3224. device float * dst,
  3225. constant int64_t & ne00,
  3226. constant int64_t & ne01,
  3227. constant int64_t & ne02,
  3228. constant uint64_t & nb00,
  3229. constant uint64_t & nb01,
  3230. constant uint64_t & nb02,
  3231. constant int64_t & ne10,
  3232. constant int64_t & ne11,
  3233. constant int64_t & ne12,
  3234. constant uint64_t & nb10,
  3235. constant uint64_t & nb11,
  3236. constant uint64_t & nb12,
  3237. constant int64_t & ne0,
  3238. constant int64_t & ne1,
  3239. constant uint & r2,
  3240. constant uint & r3,
  3241. threadgroup int8_t * shared_values [[threadgroup(0)]],
  3242. uint3 tgpig[[threadgroup_position_in_grid]],
  3243. uint tiisg[[thread_index_in_simdgroup]],
  3244. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3245. kernel_mul_mv_iq2_xxs_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg);
  3246. }
  3247. void kernel_mul_mv_iq2_xs_f32_impl(
  3248. device const void * src0,
  3249. device const float * src1,
  3250. device float * dst,
  3251. constant int64_t & ne00,
  3252. constant int64_t & ne01,
  3253. constant int64_t & ne02,
  3254. constant int64_t & ne10,
  3255. constant int64_t & ne12,
  3256. constant int64_t & ne0,
  3257. constant int64_t & ne1,
  3258. constant uint & r2,
  3259. constant uint & r3,
  3260. threadgroup int8_t * shared_values [[threadgroup(0)]],
  3261. uint3 tgpig[[threadgroup_position_in_grid]],
  3262. uint tiisg[[thread_index_in_simdgroup]],
  3263. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3264. const int nb = ne00/QK_K;
  3265. const int r0 = tgpig.x;
  3266. const int r1 = tgpig.y;
  3267. const int im = tgpig.z;
  3268. const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
  3269. const int ib_row = first_row * nb;
  3270. const uint i12 = im%ne12;
  3271. const uint i13 = im/ne12;
  3272. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  3273. device const block_iq2_xs * x = (device const block_iq2_xs *) src0 + ib_row + offset0;
  3274. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  3275. float yl[32];
  3276. float sumf[N_DST]={0.f}, all_sum;
  3277. const int nb32 = nb * (QK_K / 32);
  3278. threadgroup uint64_t * values = (threadgroup uint64_t *)shared_values;
  3279. threadgroup uint8_t * shared_signs = (threadgroup uint8_t *)(values + 512);
  3280. {
  3281. int nval = 8;
  3282. int pos = (32*sgitg + tiisg)*nval;
  3283. for (int i = 0; i < nval; ++i) values[pos + i] = iq2xs_grid[pos + i];
  3284. nval = 2;
  3285. pos = (32*sgitg + tiisg)*nval;
  3286. for (int i = 0; i < nval; ++i) shared_signs[pos+i] = ksigns_iq2xs[pos+i];
  3287. threadgroup_barrier(mem_flags::mem_threadgroup);
  3288. }
  3289. const int ix = tiisg;
  3290. device const float * y4 = y + 32 * ix;
  3291. for (int ib32 = ix; ib32 < nb32; ib32 += 32) {
  3292. for (int i = 0; i < 32; ++i) {
  3293. yl[i] = y4[i];
  3294. }
  3295. const int ibl = ib32 / (QK_K / 32);
  3296. const int ib = ib32 % (QK_K / 32);
  3297. device const block_iq2_xs * xr = x + ibl;
  3298. device const uint16_t * q2 = xr->qs + 4 * ib;
  3299. device const uint8_t * sc = xr->scales + ib;
  3300. device const half * dh = &xr->d;
  3301. for (int row = 0; row < N_DST; row++) {
  3302. const float db = dh[0];
  3303. const uint8_t ls1 = sc[0] & 0xf;
  3304. const uint8_t ls2 = sc[0] >> 4;
  3305. const float d1 = db * (0.5f + ls1);
  3306. const float d2 = db * (0.5f + ls2);
  3307. float sum1 = 0, sum2 = 0;
  3308. for (int l = 0; l < 2; ++l) {
  3309. const threadgroup uint8_t * grid = (const threadgroup uint8_t *)(values + (q2[l] & 511));
  3310. const uint8_t signs = shared_signs[(q2[l] >> 9)];
  3311. for (int j = 0; j < 8; ++j) {
  3312. sum1 += yl[8*l + j] * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
  3313. }
  3314. }
  3315. for (int l = 2; l < 4; ++l) {
  3316. const threadgroup uint8_t * grid = (const threadgroup uint8_t *)(values + (q2[l] & 511));
  3317. const uint8_t signs = shared_signs[(q2[l] >> 9)];
  3318. for (int j = 0; j < 8; ++j) {
  3319. sum2 += yl[8*l + j] * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
  3320. }
  3321. }
  3322. sumf[row] += d1 * sum1 + d2 * sum2;
  3323. dh += nb*sizeof(block_iq2_xs)/2;
  3324. q2 += nb*sizeof(block_iq2_xs)/2;
  3325. sc += nb*sizeof(block_iq2_xs);
  3326. }
  3327. y4 += 32 * 32;
  3328. }
  3329. for (int row = 0; row < N_DST; ++row) {
  3330. all_sum = simd_sum(sumf[row]);
  3331. if (tiisg == 0) {
  3332. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum * 0.25f;
  3333. }
  3334. }
  3335. }
  3336. [[host_name("kernel_mul_mv_iq2_xs_f32")]]
  3337. kernel void kernel_mul_mv_iq2_xs_f32(
  3338. device const void * src0,
  3339. device const float * src1,
  3340. device float * dst,
  3341. constant int64_t & ne00,
  3342. constant int64_t & ne01,
  3343. constant int64_t & ne02,
  3344. constant uint64_t & nb00,
  3345. constant uint64_t & nb01,
  3346. constant uint64_t & nb02,
  3347. constant int64_t & ne10,
  3348. constant int64_t & ne11,
  3349. constant int64_t & ne12,
  3350. constant uint64_t & nb10,
  3351. constant uint64_t & nb11,
  3352. constant uint64_t & nb12,
  3353. constant int64_t & ne0,
  3354. constant int64_t & ne1,
  3355. constant uint & r2,
  3356. constant uint & r3,
  3357. threadgroup int8_t * shared_values [[threadgroup(0)]],
  3358. uint3 tgpig[[threadgroup_position_in_grid]],
  3359. uint tiisg[[thread_index_in_simdgroup]],
  3360. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3361. kernel_mul_mv_iq2_xs_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg);
  3362. }
  3363. void kernel_mul_mv_iq3_xxs_f32_impl(
  3364. device const void * src0,
  3365. device const float * src1,
  3366. device float * dst,
  3367. constant int64_t & ne00,
  3368. constant int64_t & ne01,
  3369. constant int64_t & ne02,
  3370. constant int64_t & ne10,
  3371. constant int64_t & ne12,
  3372. constant int64_t & ne0,
  3373. constant int64_t & ne1,
  3374. constant uint & r2,
  3375. constant uint & r3,
  3376. threadgroup int8_t * shared_values [[threadgroup(0)]],
  3377. uint3 tgpig[[threadgroup_position_in_grid]],
  3378. uint tiisg[[thread_index_in_simdgroup]],
  3379. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3380. const int nb = ne00/QK_K;
  3381. const int r0 = tgpig.x;
  3382. const int r1 = tgpig.y;
  3383. const int im = tgpig.z;
  3384. const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
  3385. const int ib_row = first_row * nb;
  3386. const uint i12 = im%ne12;
  3387. const uint i13 = im/ne12;
  3388. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  3389. device const block_iq3_xxs * x = (device const block_iq3_xxs *) src0 + ib_row + offset0;
  3390. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  3391. float yl[32];
  3392. float sumf[N_DST]={0.f}, all_sum;
  3393. const int nb32 = nb * (QK_K / 32);
  3394. threadgroup uint32_t * values = (threadgroup uint32_t *)shared_values;
  3395. threadgroup uint8_t * shared_signs = (threadgroup uint8_t *)(values + 256);
  3396. {
  3397. int nval = 4;
  3398. int pos = (32*sgitg + tiisg)*nval;
  3399. for (int i = 0; i < nval; ++i) values[pos + i] = iq3xxs_grid[pos + i];
  3400. nval = 2;
  3401. pos = (32*sgitg + tiisg)*nval;
  3402. for (int i = 0; i < nval; ++i) shared_signs[pos+i] = ksigns_iq2xs[pos+i];
  3403. threadgroup_barrier(mem_flags::mem_threadgroup);
  3404. }
  3405. const int ix = tiisg;
  3406. device const float * y4 = y + 32 * ix;
  3407. for (int ib32 = ix; ib32 < nb32; ib32 += 32) {
  3408. for (int i = 0; i < 32; ++i) {
  3409. yl[i] = y4[i];
  3410. }
  3411. const int ibl = ib32 / (QK_K / 32);
  3412. const int ib = ib32 % (QK_K / 32);
  3413. device const block_iq3_xxs * xr = x + ibl;
  3414. device const uint8_t * q3 = xr->qs + 8 * ib;
  3415. device const uint16_t * gas = (device const uint16_t *)(xr->qs + QK_K/4) + 2 * ib;
  3416. device const half * dh = &xr->d;
  3417. for (int row = 0; row < N_DST; row++) {
  3418. const float db = dh[0];
  3419. const uint32_t aux32 = gas[0] | (gas[1] << 16);
  3420. const float d = db * (0.5f + (aux32 >> 28));
  3421. float2 sum = {0};
  3422. for (int l = 0; l < 4; ++l) {
  3423. const threadgroup uint8_t * grid1 = (const threadgroup uint8_t *)(values + q3[2*l+0]);
  3424. const threadgroup uint8_t * grid2 = (const threadgroup uint8_t *)(values + q3[2*l+1]);
  3425. const uint8_t signs = shared_signs[(aux32 >> 7*l) & 127];
  3426. for (int j = 0; j < 4; ++j) {
  3427. sum[0] += yl[8*l + j + 0] * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
  3428. sum[1] += yl[8*l + j + 4] * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
  3429. }
  3430. }
  3431. sumf[row] += d * (sum[0] + sum[1]);
  3432. dh += nb*sizeof(block_iq3_xxs)/2;
  3433. q3 += nb*sizeof(block_iq3_xxs);
  3434. gas += nb*sizeof(block_iq3_xxs)/2;
  3435. }
  3436. y4 += 32 * 32;
  3437. }
  3438. for (int row = 0; row < N_DST; ++row) {
  3439. all_sum = simd_sum(sumf[row]);
  3440. if (tiisg == 0) {
  3441. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum * 0.5f;
  3442. }
  3443. }
  3444. }
  3445. [[host_name("kernel_mul_mv_iq3_xxs_f32")]]
  3446. kernel void kernel_mul_mv_iq3_xxs_f32(
  3447. device const void * src0,
  3448. device const float * src1,
  3449. device float * dst,
  3450. constant int64_t & ne00,
  3451. constant int64_t & ne01,
  3452. constant int64_t & ne02,
  3453. constant uint64_t & nb00,
  3454. constant uint64_t & nb01,
  3455. constant uint64_t & nb02,
  3456. constant int64_t & ne10,
  3457. constant int64_t & ne11,
  3458. constant int64_t & ne12,
  3459. constant uint64_t & nb10,
  3460. constant uint64_t & nb11,
  3461. constant uint64_t & nb12,
  3462. constant int64_t & ne0,
  3463. constant int64_t & ne1,
  3464. constant uint & r2,
  3465. constant uint & r3,
  3466. threadgroup int8_t * shared_values [[threadgroup(0)]],
  3467. uint3 tgpig[[threadgroup_position_in_grid]],
  3468. uint tiisg[[thread_index_in_simdgroup]],
  3469. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3470. kernel_mul_mv_iq3_xxs_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg);
  3471. }
  3472. void kernel_mul_mv_iq3_s_f32_impl(
  3473. device const void * src0,
  3474. device const float * src1,
  3475. device float * dst,
  3476. constant int64_t & ne00,
  3477. constant int64_t & ne01,
  3478. constant int64_t & ne02,
  3479. constant int64_t & ne10,
  3480. constant int64_t & ne12,
  3481. constant int64_t & ne0,
  3482. constant int64_t & ne1,
  3483. constant uint & r2,
  3484. constant uint & r3,
  3485. threadgroup int8_t * shared_values [[threadgroup(0)]],
  3486. uint3 tgpig[[threadgroup_position_in_grid]],
  3487. uint tiisg[[thread_index_in_simdgroup]],
  3488. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3489. const int nb = ne00/QK_K;
  3490. const int r0 = tgpig.x;
  3491. const int r1 = tgpig.y;
  3492. const int im = tgpig.z;
  3493. const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
  3494. const int ib_row = first_row * nb;
  3495. const uint i12 = im%ne12;
  3496. const uint i13 = im/ne12;
  3497. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  3498. device const block_iq3_s * x = (device const block_iq3_s *) src0 + ib_row + offset0;
  3499. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  3500. float yl[32];
  3501. float sumf[N_DST]={0.f}, all_sum;
  3502. const int nb32 = nb * (QK_K / 32);
  3503. threadgroup uint32_t * values = (threadgroup uint32_t *)shared_values;
  3504. {
  3505. int nval = 8;
  3506. int pos = (32*sgitg + tiisg)*nval;
  3507. for (int i = 0; i < nval; ++i) values[pos + i] = iq3s_grid[pos + i];
  3508. threadgroup_barrier(mem_flags::mem_threadgroup);
  3509. }
  3510. const int ix = tiisg;
  3511. device const float * y4 = y + 32 * ix;
  3512. for (int ib32 = ix; ib32 < nb32; ib32 += 32) {
  3513. for (int i = 0; i < 32; ++i) {
  3514. yl[i] = y4[i];
  3515. }
  3516. const int ibl = ib32 / (QK_K / 32);
  3517. const int ib = ib32 % (QK_K / 32);
  3518. device const block_iq3_s * xr = x + ibl;
  3519. device const uint8_t * qs = xr->qs + 8 * ib;
  3520. device const uint8_t * qh = xr->qh + ib;
  3521. device const uint8_t * sc = xr->scales + (ib/2);
  3522. device const uint8_t * signs = xr->signs + 4 * ib;
  3523. device const half * dh = &xr->d;
  3524. for (int row = 0; row < N_DST; row++) {
  3525. const float db = dh[0];
  3526. const float d = db * (1 + 2*((sc[0] >> 4*(ib%2)) & 0xf));
  3527. float2 sum = {0};
  3528. for (int l = 0; l < 4; ++l) {
  3529. const threadgroup uint32_t * table1 = qh[0] & kmask_iq2xs[2*l+0] ? values + 256 : values;
  3530. const threadgroup uint32_t * table2 = qh[0] & kmask_iq2xs[2*l+1] ? values + 256 : values;
  3531. const threadgroup uint8_t * grid1 = (const threadgroup uint8_t *)(table1 + qs[2*l+0]);
  3532. const threadgroup uint8_t * grid2 = (const threadgroup uint8_t *)(table2 + qs[2*l+1]);
  3533. for (int j = 0; j < 4; ++j) {
  3534. sum[0] += yl[8*l + j + 0] * grid1[j] * select(1, -1, signs[l] & kmask_iq2xs[j+0]);
  3535. sum[1] += yl[8*l + j + 4] * grid2[j] * select(1, -1, signs[l] & kmask_iq2xs[j+4]);
  3536. }
  3537. }
  3538. sumf[row] += d * (sum[0] + sum[1]);
  3539. dh += nb*sizeof(block_iq3_s)/2;
  3540. qs += nb*sizeof(block_iq3_s);
  3541. qh += nb*sizeof(block_iq3_s);
  3542. sc += nb*sizeof(block_iq3_s);
  3543. signs += nb*sizeof(block_iq3_s);
  3544. }
  3545. y4 += 32 * 32;
  3546. }
  3547. for (int row = 0; row < N_DST; ++row) {
  3548. all_sum = simd_sum(sumf[row]);
  3549. if (tiisg == 0) {
  3550. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
  3551. }
  3552. }
  3553. }
  3554. [[host_name("kernel_mul_mv_iq3_s_f32")]]
  3555. kernel void kernel_mul_mv_iq3_s_f32(
  3556. device const void * src0,
  3557. device const float * src1,
  3558. device float * dst,
  3559. constant int64_t & ne00,
  3560. constant int64_t & ne01,
  3561. constant int64_t & ne02,
  3562. constant uint64_t & nb00,
  3563. constant uint64_t & nb01,
  3564. constant uint64_t & nb02,
  3565. constant int64_t & ne10,
  3566. constant int64_t & ne11,
  3567. constant int64_t & ne12,
  3568. constant uint64_t & nb10,
  3569. constant uint64_t & nb11,
  3570. constant uint64_t & nb12,
  3571. constant int64_t & ne0,
  3572. constant int64_t & ne1,
  3573. constant uint & r2,
  3574. constant uint & r3,
  3575. threadgroup int8_t * shared_values [[threadgroup(0)]],
  3576. uint3 tgpig[[threadgroup_position_in_grid]],
  3577. uint tiisg[[thread_index_in_simdgroup]],
  3578. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3579. kernel_mul_mv_iq3_s_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg);
  3580. }
  3581. void kernel_mul_mv_iq2_s_f32_impl(
  3582. device const void * src0,
  3583. device const float * src1,
  3584. device float * dst,
  3585. constant int64_t & ne00,
  3586. constant int64_t & ne01,
  3587. constant int64_t & ne02,
  3588. constant int64_t & ne10,
  3589. constant int64_t & ne12,
  3590. constant int64_t & ne0,
  3591. constant int64_t & ne1,
  3592. constant uint & r2,
  3593. constant uint & r3,
  3594. threadgroup int8_t * shared_values [[threadgroup(0)]],
  3595. uint3 tgpig[[threadgroup_position_in_grid]],
  3596. uint tiisg[[thread_index_in_simdgroup]],
  3597. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3598. const int nb = ne00/QK_K;
  3599. const int r0 = tgpig.x;
  3600. const int r1 = tgpig.y;
  3601. const int im = tgpig.z;
  3602. const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
  3603. const int ib_row = first_row * nb;
  3604. const uint i12 = im%ne12;
  3605. const uint i13 = im/ne12;
  3606. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  3607. device const block_iq2_s * x = (device const block_iq2_s *) src0 + ib_row + offset0;
  3608. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  3609. float yl[32];
  3610. float sumf[N_DST]={0.f}, all_sum;
  3611. const int nb32 = nb * (QK_K / 32);
  3612. //threadgroup uint64_t * values = (threadgroup uint64_t *)shared_values;
  3613. //{
  3614. // int nval = 32;
  3615. // int pos = (32*sgitg + tiisg)*nval;
  3616. // for (int i = 0; i < nval; ++i) values[pos + i] = iq2s_grid[pos + i];
  3617. // threadgroup_barrier(mem_flags::mem_threadgroup);
  3618. //}
  3619. const int ix = tiisg;
  3620. device const float * y4 = y + 32 * ix;
  3621. for (int ib32 = ix; ib32 < nb32; ib32 += 32) {
  3622. for (int i = 0; i < 32; ++i) {
  3623. yl[i] = y4[i];
  3624. }
  3625. const int ibl = ib32 / (QK_K / 32);
  3626. const int ib = ib32 % (QK_K / 32);
  3627. device const block_iq2_s * xr = x + ibl;
  3628. device const uint8_t * qs = xr->qs + 4 * ib;
  3629. device const uint8_t * qh = xr->qh + ib;
  3630. device const uint8_t * sc = xr->scales + ib;
  3631. device const uint8_t * signs = qs + QK_K/8;
  3632. device const half * dh = &xr->d;
  3633. for (int row = 0; row < N_DST; row++) {
  3634. const float db = dh[0];
  3635. const float d1 = db * (0.5f + (sc[0] & 0xf));
  3636. const float d2 = db * (0.5f + (sc[0] >> 4));
  3637. float2 sum = {0};
  3638. for (int l = 0; l < 2; ++l) {
  3639. //const threadgroup uint8_t * grid1 = (const threadgroup uint8_t *)(values + (qs[l+0] | ((qh[0] << (8-2*l)) & 0x300)));
  3640. //const threadgroup uint8_t * grid2 = (const threadgroup uint8_t *)(values + (qs[l+2] | ((qh[0] << (4-2*l)) & 0x300)));
  3641. constant uint8_t * grid1 = (constant uint8_t *)(iq2s_grid + (qs[l+0] | ((qh[0] << (8-2*l)) & 0x300)));
  3642. constant uint8_t * grid2 = (constant uint8_t *)(iq2s_grid + (qs[l+2] | ((qh[0] << (4-2*l)) & 0x300)));
  3643. for (int j = 0; j < 8; ++j) {
  3644. sum[0] += yl[8*l + j + 0] * grid1[j] * select(1, -1, signs[l+0] & kmask_iq2xs[j]);
  3645. sum[1] += yl[8*l + j + 16] * grid2[j] * select(1, -1, signs[l+2] & kmask_iq2xs[j]);
  3646. }
  3647. }
  3648. sumf[row] += d1 * sum[0] + d2 * sum[1];
  3649. dh += nb*sizeof(block_iq2_s)/2;
  3650. qs += nb*sizeof(block_iq2_s);
  3651. qh += nb*sizeof(block_iq2_s);
  3652. sc += nb*sizeof(block_iq2_s);
  3653. signs += nb*sizeof(block_iq2_s);
  3654. }
  3655. y4 += 32 * 32;
  3656. }
  3657. for (int row = 0; row < N_DST; ++row) {
  3658. all_sum = simd_sum(sumf[row]);
  3659. if (tiisg == 0) {
  3660. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum * 0.25f;
  3661. }
  3662. }
  3663. }
  3664. [[host_name("kernel_mul_mv_iq2_s_f32")]]
  3665. kernel void kernel_mul_mv_iq2_s_f32(
  3666. device const void * src0,
  3667. device const float * src1,
  3668. device float * dst,
  3669. constant int64_t & ne00,
  3670. constant int64_t & ne01,
  3671. constant int64_t & ne02,
  3672. constant uint64_t & nb00,
  3673. constant uint64_t & nb01,
  3674. constant uint64_t & nb02,
  3675. constant int64_t & ne10,
  3676. constant int64_t & ne11,
  3677. constant int64_t & ne12,
  3678. constant uint64_t & nb10,
  3679. constant uint64_t & nb11,
  3680. constant uint64_t & nb12,
  3681. constant int64_t & ne0,
  3682. constant int64_t & ne1,
  3683. constant uint & r2,
  3684. constant uint & r3,
  3685. threadgroup int8_t * shared_values [[threadgroup(0)]],
  3686. uint3 tgpig[[threadgroup_position_in_grid]],
  3687. uint tiisg[[thread_index_in_simdgroup]],
  3688. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3689. kernel_mul_mv_iq2_s_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg);
  3690. }
  3691. void kernel_mul_mv_iq1_s_f32_impl(
  3692. device const void * src0,
  3693. device const float * src1,
  3694. device float * dst,
  3695. constant int64_t & ne00,
  3696. constant int64_t & ne01,
  3697. constant int64_t & ne02,
  3698. constant int64_t & ne10,
  3699. constant int64_t & ne12,
  3700. constant int64_t & ne0,
  3701. constant int64_t & ne1,
  3702. constant uint & r2,
  3703. constant uint & r3,
  3704. threadgroup int8_t * shared_values [[threadgroup(0)]],
  3705. uint3 tgpig[[threadgroup_position_in_grid]],
  3706. uint tiisg[[thread_index_in_simdgroup]],
  3707. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3708. const int nb = ne00/QK_K;
  3709. const int r0 = tgpig.x;
  3710. const int r1 = tgpig.y;
  3711. const int im = tgpig.z;
  3712. const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
  3713. const int ib_row = first_row * nb;
  3714. const uint i12 = im%ne12;
  3715. const uint i13 = im/ne12;
  3716. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  3717. device const block_iq1_s * x = (device const block_iq1_s *) src0 + ib_row + offset0;
  3718. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  3719. float yl[32];
  3720. float sumf[N_DST]={0.f}, all_sum;
  3721. const int nb32 = nb * (QK_K / 32);
  3722. const int ix = tiisg;
  3723. device const float * y4 = y + 32 * ix;
  3724. for (int ib32 = ix; ib32 < nb32; ib32 += 32) {
  3725. float sumy = 0;
  3726. for (int i = 0; i < 32; ++i) {
  3727. yl[i] = y4[i];
  3728. sumy += yl[i];
  3729. }
  3730. const int ibl = ib32 / (QK_K / 32);
  3731. const int ib = ib32 % (QK_K / 32);
  3732. device const block_iq1_s * xr = x + ibl;
  3733. device const uint8_t * qs = xr->qs + 4 * ib;
  3734. device const uint16_t * qh = xr->qh + ib;
  3735. device const half * dh = &xr->d;
  3736. for (int row = 0; row < N_DST; row++) {
  3737. constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((qh[0] << 8) & 0x700)));
  3738. constant uint8_t * grid2 = (constant uint8_t *)(iq1s_grid_gpu + (qs[1] | ((qh[0] << 5) & 0x700)));
  3739. constant uint8_t * grid3 = (constant uint8_t *)(iq1s_grid_gpu + (qs[2] | ((qh[0] << 2) & 0x700)));
  3740. constant uint8_t * grid4 = (constant uint8_t *)(iq1s_grid_gpu + (qs[3] | ((qh[0] >> 1) & 0x700)));
  3741. float sum = 0;
  3742. for (int j = 0; j < 4; ++j) {
  3743. sum += yl[j+ 0] * (grid1[j] & 0xf) + yl[j+ 4] * (grid1[j] >> 4)
  3744. + yl[j+ 8] * (grid2[j] & 0xf) + yl[j+12] * (grid2[j] >> 4)
  3745. + yl[j+16] * (grid3[j] & 0xf) + yl[j+20] * (grid3[j] >> 4)
  3746. + yl[j+24] * (grid4[j] & 0xf) + yl[j+28] * (grid4[j] >> 4);
  3747. }
  3748. sumf[row] += (float)dh[0] * (sum + sumy * (qh[0] & 0x8000 ? -1 - IQ1S_DELTA : -1 + IQ1S_DELTA)) * (2*((qh[0] >> 12) & 7) + 1);
  3749. dh += nb*sizeof(block_iq1_s)/2;
  3750. qs += nb*sizeof(block_iq1_s);
  3751. qh += nb*sizeof(block_iq1_s)/2;
  3752. }
  3753. y4 += 32 * 32;
  3754. }
  3755. for (int row = 0; row < N_DST; ++row) {
  3756. all_sum = simd_sum(sumf[row]);
  3757. if (tiisg == 0) {
  3758. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
  3759. }
  3760. }
  3761. }
  3762. void kernel_mul_mv_iq1_m_f32_impl(
  3763. device const void * src0,
  3764. device const float * src1,
  3765. device float * dst,
  3766. constant int64_t & ne00,
  3767. constant int64_t & ne01,
  3768. constant int64_t & ne02,
  3769. constant int64_t & ne10,
  3770. constant int64_t & ne12,
  3771. constant int64_t & ne0,
  3772. constant int64_t & ne1,
  3773. constant uint & r2,
  3774. constant uint & r3,
  3775. threadgroup int8_t * shared_values [[threadgroup(0)]],
  3776. uint3 tgpig[[threadgroup_position_in_grid]],
  3777. uint tiisg[[thread_index_in_simdgroup]],
  3778. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3779. const int nb = ne00/QK_K;
  3780. const int r0 = tgpig.x;
  3781. const int r1 = tgpig.y;
  3782. const int im = tgpig.z;
  3783. const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
  3784. const int ib_row = first_row * nb;
  3785. const uint i12 = im%ne12;
  3786. const uint i13 = im/ne12;
  3787. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  3788. device const block_iq1_m * x = (device const block_iq1_m *) src0 + ib_row + offset0;
  3789. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  3790. float yl[32];
  3791. float sumf[N_DST]={0.f}, all_sum;
  3792. const int nb32 = nb * (QK_K / 32);
  3793. const int ix = tiisg;
  3794. device const float * y4 = y + 32 * ix;
  3795. #if QK_K != 64
  3796. iq1m_scale_t scale;
  3797. #endif
  3798. for (int ib32 = ix; ib32 < nb32; ib32 += 32) {
  3799. float4 sumy = {0.f};
  3800. for (int i = 0; i < 8; ++i) {
  3801. yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0];
  3802. yl[i+ 8] = y4[i+ 8]; sumy[1] += yl[i+ 8];
  3803. yl[i+16] = y4[i+16]; sumy[2] += yl[i+16];
  3804. yl[i+24] = y4[i+24]; sumy[3] += yl[i+24];
  3805. }
  3806. const int ibl = ib32 / (QK_K / 32);
  3807. const int ib = ib32 % (QK_K / 32);
  3808. device const block_iq1_m * xr = x + ibl;
  3809. device const uint8_t * qs = xr->qs + 4 * ib;
  3810. device const uint8_t * qh = xr->qh + 2 * ib;
  3811. device const uint16_t * sc = (device const uint16_t *)xr->scales;
  3812. for (int row = 0; row < N_DST; row++) {
  3813. #if QK_K != 64
  3814. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  3815. #endif
  3816. constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((qh[0] << 8) & 0x700)));
  3817. constant uint8_t * grid2 = (constant uint8_t *)(iq1s_grid_gpu + (qs[1] | ((qh[0] << 4) & 0x700)));
  3818. constant uint8_t * grid3 = (constant uint8_t *)(iq1s_grid_gpu + (qs[2] | ((qh[1] << 8) & 0x700)));
  3819. constant uint8_t * grid4 = (constant uint8_t *)(iq1s_grid_gpu + (qs[3] | ((qh[1] << 4) & 0x700)));
  3820. float2 sum = {0.f};
  3821. for (int j = 0; j < 4; ++j) {
  3822. sum[0] += yl[j+ 0] * (grid1[j] & 0xf) + yl[j+ 4] * (grid1[j] >> 4)
  3823. + yl[j+ 8] * (grid2[j] & 0xf) + yl[j+12] * (grid2[j] >> 4);
  3824. sum[1] += yl[j+16] * (grid3[j] & 0xf) + yl[j+20] * (grid3[j] >> 4)
  3825. + yl[j+24] * (grid4[j] & 0xf) + yl[j+28] * (grid4[j] >> 4);
  3826. }
  3827. const float delta1 = sumy[0] * (qh[0] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA) + sumy[1] * (qh[0] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
  3828. const float delta2 = sumy[2] * (qh[1] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA) + sumy[3] * (qh[1] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
  3829. #if QK_K == 64
  3830. const float d = (float) *((device const half *)(sc - 1));
  3831. sumf[row] += d * ((sum[0] + delta1) * (2*((sc[0] >> (8*(ib%2)+0)) & 0xf) + 1) +
  3832. (sum[1] + delta2) * (2*((sc[0] >> (8*(ib%2)+4)) & 0xf) + 1));
  3833. #else
  3834. sumf[row] += (float)scale.f16 * ((sum[0] + delta1) * (2*((sc[ib/2] >> (6*(ib%2)+0)) & 7) + 1) +
  3835. (sum[1] + delta2) * (2*((sc[ib/2] >> (6*(ib%2)+3)) & 7) + 1));
  3836. #endif
  3837. sc += nb*sizeof(block_iq1_m)/2;
  3838. qs += nb*sizeof(block_iq1_m);
  3839. qh += nb*sizeof(block_iq1_m);
  3840. }
  3841. y4 += 32 * 32;
  3842. }
  3843. for (int row = 0; row < N_DST; ++row) {
  3844. all_sum = simd_sum(sumf[row]);
  3845. if (tiisg == 0) {
  3846. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
  3847. }
  3848. }
  3849. }
  3850. void kernel_mul_mv_iq4_nl_f32_impl(
  3851. device const void * src0,
  3852. device const float * src1,
  3853. device float * dst,
  3854. constant int64_t & ne00,
  3855. constant int64_t & ne01,
  3856. constant int64_t & ne02,
  3857. constant int64_t & ne10,
  3858. constant int64_t & ne12,
  3859. constant int64_t & ne0,
  3860. constant int64_t & ne1,
  3861. constant uint & r2,
  3862. constant uint & r3,
  3863. threadgroup int8_t * shared_values_i8 [[threadgroup(0)]],
  3864. uint3 tgpig[[threadgroup_position_in_grid]],
  3865. uint tiisg[[thread_index_in_simdgroup]],
  3866. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3867. threadgroup float * shared_values = (threadgroup float *)shared_values_i8;
  3868. const int nb = ne00/QK4_NL;
  3869. const int r0 = tgpig.x;
  3870. const int r1 = tgpig.y;
  3871. const int im = tgpig.z;
  3872. const int first_row = (r0 * 2 + sgitg) * 2;
  3873. const int ib_row = first_row * nb;
  3874. const uint i12 = im%ne12;
  3875. const uint i13 = im/ne12;
  3876. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  3877. device const block_iq4_nl * x = (device const block_iq4_nl *) src0 + ib_row + offset0;
  3878. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  3879. const int ix = tiisg/2; // 0...15
  3880. const int it = tiisg%2; // 0 or 1
  3881. shared_values[tiisg] = kvalues_iq4nl_f[tiisg%16];
  3882. threadgroup_barrier(mem_flags::mem_threadgroup);
  3883. float4 yl[4];
  3884. float sumf[2]={0.f}, all_sum;
  3885. device const float * yb = y + ix * QK4_NL + it * 8;
  3886. uint32_t aux32[2];
  3887. thread const uint8_t * q8 = (thread const uint8_t *)aux32;
  3888. float4 qf1, qf2;
  3889. for (int ib = ix; ib < nb; ib += 16) {
  3890. device const float4 * y4 = (device const float4 *)yb;
  3891. yl[0] = y4[0]; yl[1] = y4[4]; yl[2] = y4[1]; yl[3] = y4[5];
  3892. for (int row = 0; row < 2; ++row) {
  3893. device const block_iq4_nl & xb = x[row*nb + ib];
  3894. device const uint16_t * q4 = (device const uint16_t *)(xb.qs + 8*it);
  3895. float4 acc1 = {0.f}, acc2 = {0.f};
  3896. aux32[0] = q4[0] | (q4[1] << 16);
  3897. aux32[1] = (aux32[0] >> 4) & 0x0f0f0f0f;
  3898. aux32[0] &= 0x0f0f0f0f;
  3899. qf1 = {shared_values[q8[0]], shared_values[q8[1]], shared_values[q8[2]], shared_values[q8[3]]};
  3900. qf2 = {shared_values[q8[4]], shared_values[q8[5]], shared_values[q8[6]], shared_values[q8[7]]};
  3901. acc1 += yl[0] * qf1;
  3902. acc2 += yl[1] * qf2;
  3903. aux32[0] = q4[2] | (q4[3] << 16);
  3904. aux32[1] = (aux32[0] >> 4) & 0x0f0f0f0f;
  3905. aux32[0] &= 0x0f0f0f0f;
  3906. qf1 = {shared_values[q8[0]], shared_values[q8[1]], shared_values[q8[2]], shared_values[q8[3]]};
  3907. qf2 = {shared_values[q8[4]], shared_values[q8[5]], shared_values[q8[6]], shared_values[q8[7]]};
  3908. acc1 += yl[2] * qf1;
  3909. acc2 += yl[3] * qf2;
  3910. acc1 += acc2;
  3911. sumf[row] += (float)xb.d * (acc1[0] + acc1[1] + acc1[2] + acc1[3]);
  3912. }
  3913. yb += 16 * QK4_NL;
  3914. }
  3915. for (int row = 0; row < 2; ++row) {
  3916. all_sum = simd_sum(sumf[row]);
  3917. if (tiisg == 0) {
  3918. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
  3919. }
  3920. }
  3921. }
  3922. #if QK_K != 64
  3923. void kernel_mul_mv_iq4_xs_f32_impl(
  3924. device const void * src0,
  3925. device const float * src1,
  3926. device float * dst,
  3927. constant int64_t & ne00,
  3928. constant int64_t & ne01,
  3929. constant int64_t & ne02,
  3930. constant int64_t & ne10,
  3931. constant int64_t & ne12,
  3932. constant int64_t & ne0,
  3933. constant int64_t & ne1,
  3934. constant uint & r2,
  3935. constant uint & r3,
  3936. threadgroup int8_t * shared_values_i8 [[threadgroup(0)]],
  3937. uint3 tgpig[[threadgroup_position_in_grid]],
  3938. uint tiisg[[thread_index_in_simdgroup]],
  3939. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3940. threadgroup float * shared_values = (threadgroup float *)shared_values_i8;
  3941. const int nb = ne00/QK_K;
  3942. const int r0 = tgpig.x;
  3943. const int r1 = tgpig.y;
  3944. const int im = tgpig.z;
  3945. const int first_row = (r0 * 2 + sgitg) * 2;
  3946. const int ib_row = first_row * nb;
  3947. const uint i12 = im%ne12;
  3948. const uint i13 = im/ne12;
  3949. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  3950. device const block_iq4_xs * x = (device const block_iq4_xs *) src0 + ib_row + offset0;
  3951. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  3952. const int ix = tiisg/16; // 0 or 1
  3953. const int it = tiisg%16; // 0...15
  3954. const int ib = it/2;
  3955. const int il = it%2;
  3956. shared_values[tiisg] = kvalues_iq4nl_f[tiisg%16];
  3957. threadgroup_barrier(mem_flags::mem_threadgroup);
  3958. float4 yl[4];
  3959. float sumf[2]={0.f}, all_sum;
  3960. device const float * yb = y + ix * QK_K + ib * 32 + il * 8;
  3961. uint32_t aux32[2];
  3962. thread const uint8_t * q8 = (thread const uint8_t *)aux32;
  3963. float4 qf1, qf2;
  3964. for (int ibl = ix; ibl < nb; ibl += 2) {
  3965. device const float4 * y4 = (device const float4 *)yb;
  3966. yl[0] = y4[0]; yl[1] = y4[4]; yl[2] = y4[1]; yl[3] = y4[5];
  3967. for (int row = 0; row < 2; ++row) {
  3968. device const block_iq4_xs & xb = x[row*nb + ibl];
  3969. device const uint32_t * q4 = (device const uint32_t *)(xb.qs + 16*ib + 8*il);
  3970. float4 acc1 = {0.f}, acc2 = {0.f};
  3971. aux32[0] = q4[0] & 0x0f0f0f0f;
  3972. aux32[1] = (q4[0] >> 4) & 0x0f0f0f0f;
  3973. qf1 = {shared_values[q8[0]], shared_values[q8[1]], shared_values[q8[2]], shared_values[q8[3]]};
  3974. qf2 = {shared_values[q8[4]], shared_values[q8[5]], shared_values[q8[6]], shared_values[q8[7]]};
  3975. acc1 += yl[0] * qf1;
  3976. acc2 += yl[1] * qf2;
  3977. aux32[0] = q4[1] & 0x0f0f0f0f;
  3978. aux32[1] = (q4[1] >> 4) & 0x0f0f0f0f;
  3979. qf1 = {shared_values[q8[0]], shared_values[q8[1]], shared_values[q8[2]], shared_values[q8[3]]};
  3980. qf2 = {shared_values[q8[4]], shared_values[q8[5]], shared_values[q8[6]], shared_values[q8[7]]};
  3981. acc1 += yl[2] * qf1;
  3982. acc2 += yl[3] * qf2;
  3983. acc1 += acc2;
  3984. const int ls = (((xb.scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((xb.scales_h >> 2*ib) & 3) << 4)) - 32;
  3985. sumf[row] += (float)xb.d * ls * (acc1[0] + acc1[1] + acc1[2] + acc1[3]);
  3986. }
  3987. yb += 2 * QK_K;
  3988. }
  3989. for (int row = 0; row < 2; ++row) {
  3990. all_sum = simd_sum(sumf[row]);
  3991. if (tiisg == 0) {
  3992. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
  3993. }
  3994. }
  3995. }
  3996. #endif
  3997. [[host_name("kernel_mul_mv_iq1_s_f32")]]
  3998. kernel void kernel_mul_mv_iq1_s_f32(
  3999. device const void * src0,
  4000. device const float * src1,
  4001. device float * dst,
  4002. constant int64_t & ne00,
  4003. constant int64_t & ne01,
  4004. constant int64_t & ne02,
  4005. constant uint64_t & nb00,
  4006. constant uint64_t & nb01,
  4007. constant uint64_t & nb02,
  4008. constant int64_t & ne10,
  4009. constant int64_t & ne11,
  4010. constant int64_t & ne12,
  4011. constant uint64_t & nb10,
  4012. constant uint64_t & nb11,
  4013. constant uint64_t & nb12,
  4014. constant int64_t & ne0,
  4015. constant int64_t & ne1,
  4016. constant uint & r2,
  4017. constant uint & r3,
  4018. uint3 tgpig[[threadgroup_position_in_grid]],
  4019. uint tiisg[[thread_index_in_simdgroup]],
  4020. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  4021. kernel_mul_mv_iq1_s_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg);
  4022. }
  4023. [[host_name("kernel_mul_mv_iq1_m_f32")]]
  4024. kernel void kernel_mul_mv_iq1_m_f32(
  4025. device const void * src0,
  4026. device const float * src1,
  4027. device float * dst,
  4028. constant int64_t & ne00,
  4029. constant int64_t & ne01,
  4030. constant int64_t & ne02,
  4031. constant uint64_t & nb00,
  4032. constant uint64_t & nb01,
  4033. constant uint64_t & nb02,
  4034. constant int64_t & ne10,
  4035. constant int64_t & ne11,
  4036. constant int64_t & ne12,
  4037. constant uint64_t & nb10,
  4038. constant uint64_t & nb11,
  4039. constant uint64_t & nb12,
  4040. constant int64_t & ne0,
  4041. constant int64_t & ne1,
  4042. constant uint & r2,
  4043. constant uint & r3,
  4044. uint3 tgpig[[threadgroup_position_in_grid]],
  4045. uint tiisg[[thread_index_in_simdgroup]],
  4046. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  4047. kernel_mul_mv_iq1_m_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg);
  4048. }
  4049. [[host_name("kernel_mul_mv_iq4_nl_f32")]]
  4050. kernel void kernel_mul_mv_iq4_nl_f32(
  4051. device const void * src0,
  4052. device const float * src1,
  4053. device float * dst,
  4054. constant int64_t & ne00,
  4055. constant int64_t & ne01,
  4056. constant int64_t & ne02,
  4057. constant uint64_t & nb00,
  4058. constant uint64_t & nb01,
  4059. constant uint64_t & nb02,
  4060. constant int64_t & ne10,
  4061. constant int64_t & ne11,
  4062. constant int64_t & ne12,
  4063. constant uint64_t & nb10,
  4064. constant uint64_t & nb11,
  4065. constant uint64_t & nb12,
  4066. constant int64_t & ne0,
  4067. constant int64_t & ne1,
  4068. constant uint & r2,
  4069. constant uint & r3,
  4070. threadgroup int8_t * shared_values [[threadgroup(0)]],
  4071. uint3 tgpig[[threadgroup_position_in_grid]],
  4072. uint tiisg[[thread_index_in_simdgroup]],
  4073. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  4074. kernel_mul_mv_iq4_nl_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg);
  4075. }
  4076. [[host_name("kernel_mul_mv_iq4_xs_f32")]]
  4077. kernel void kernel_mul_mv_iq4_xs_f32(
  4078. device const void * src0,
  4079. device const float * src1,
  4080. device float * dst,
  4081. constant int64_t & ne00,
  4082. constant int64_t & ne01,
  4083. constant int64_t & ne02,
  4084. constant uint64_t & nb00,
  4085. constant uint64_t & nb01,
  4086. constant uint64_t & nb02,
  4087. constant int64_t & ne10,
  4088. constant int64_t & ne11,
  4089. constant int64_t & ne12,
  4090. constant uint64_t & nb10,
  4091. constant uint64_t & nb11,
  4092. constant uint64_t & nb12,
  4093. constant int64_t & ne0,
  4094. constant int64_t & ne1,
  4095. constant uint & r2,
  4096. constant uint & r3,
  4097. threadgroup int8_t * shared_values [[threadgroup(0)]],
  4098. uint3 tgpig[[threadgroup_position_in_grid]],
  4099. uint tiisg[[thread_index_in_simdgroup]],
  4100. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  4101. #if QK_K == 64
  4102. kernel_mul_mv_iq4_nl_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg);
  4103. #else
  4104. kernel_mul_mv_iq4_xs_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg);
  4105. #endif
  4106. }
  4107. //============================= templates and their specializations =============================
  4108. // NOTE: this is not dequantizing - we are simply fitting the template
  4109. template <typename type4x4>
  4110. void dequantize_f32(device const float4x4 * src, short il, thread type4x4 & reg) {
  4111. float4x4 temp = *(((device float4x4 *)src));
  4112. for (int i = 0; i < 16; i++){
  4113. reg[i/4][i%4] = temp[i/4][i%4];
  4114. }
  4115. }
  4116. template <typename type4x4>
  4117. void dequantize_f16(device const half4x4 * src, short il, thread type4x4 & reg) {
  4118. half4x4 temp = *(((device half4x4 *)src));
  4119. for (int i = 0; i < 16; i++){
  4120. reg[i/4][i%4] = temp[i/4][i%4];
  4121. }
  4122. }
  4123. template <typename type4x4>
  4124. void dequantize_q4_0(device const block_q4_0 *xb, short il, thread type4x4 & reg) {
  4125. device const uint16_t * qs = ((device const uint16_t *)xb + 1);
  4126. const float d1 = il ? (xb->d / 16.h) : xb->d;
  4127. const float d2 = d1 / 256.f;
  4128. const float md = -8.h * xb->d;
  4129. const ushort mask0 = il ? 0x00F0 : 0x000F;
  4130. const ushort mask1 = mask0 << 8;
  4131. for (int i=0;i<8;i++) {
  4132. reg[i/2][2*(i%2)+0] = d1 * (qs[i] & mask0) + md;
  4133. reg[i/2][2*(i%2)+1] = d2 * (qs[i] & mask1) + md;
  4134. }
  4135. }
  4136. template <typename type4x4>
  4137. void dequantize_q4_1(device const block_q4_1 *xb, short il, thread type4x4 & reg) {
  4138. device const uint16_t * qs = ((device const uint16_t *)xb + 2);
  4139. const float d1 = il ? (xb->d / 16.h) : xb->d;
  4140. const float d2 = d1 / 256.f;
  4141. const float m = xb->m;
  4142. const ushort mask0 = il ? 0x00F0 : 0x000F;
  4143. const ushort mask1 = mask0 << 8;
  4144. for (int i=0;i<8;i++) {
  4145. reg[i/2][2*(i%2)+0] = ((qs[i] & mask0) * d1) + m;
  4146. reg[i/2][2*(i%2)+1] = ((qs[i] & mask1) * d2) + m;
  4147. }
  4148. }
  4149. template <typename type4x4>
  4150. void dequantize_q5_0(device const block_q5_0 *xb, short il, thread type4x4 & reg) {
  4151. device const uint16_t * qs = ((device const uint16_t *)xb + 3);
  4152. const float d = xb->d;
  4153. const float md = -16.h * xb->d;
  4154. const ushort mask = il ? 0x00F0 : 0x000F;
  4155. const uint32_t qh = *((device const uint32_t *)xb->qh);
  4156. const int x_mv = il ? 4 : 0;
  4157. const int gh_mv = il ? 12 : 0;
  4158. const int gh_bk = il ? 0 : 4;
  4159. for (int i = 0; i < 8; i++) {
  4160. // extract the 5-th bits for x0 and x1
  4161. const uint8_t xh_0 = ((qh >> (gh_mv + 2*i )) << gh_bk) & 0x10;
  4162. const uint8_t xh_1 = ((qh >> (gh_mv + 2*i+1)) << gh_bk) & 0x10;
  4163. // combine the 4-bits from qs with the 5th bit
  4164. const int32_t x0 = ((((qs[i] ) & mask) >> x_mv) | xh_0);
  4165. const int32_t x1 = ((((qs[i] >> 8) & mask) >> x_mv) | xh_1);
  4166. reg[i/2][2*(i%2)+0] = d * x0 + md;
  4167. reg[i/2][2*(i%2)+1] = d * x1 + md;
  4168. }
  4169. }
  4170. template <typename type4x4>
  4171. void dequantize_q5_1(device const block_q5_1 *xb, short il, thread type4x4 & reg) {
  4172. device const uint16_t * qs = ((device const uint16_t *)xb + 4);
  4173. const float d = xb->d;
  4174. const float m = xb->m;
  4175. const ushort mask = il ? 0x00F0 : 0x000F;
  4176. const uint32_t qh = *((device const uint32_t *)xb->qh);
  4177. const int x_mv = il ? 4 : 0;
  4178. const int gh_mv = il ? 12 : 0;
  4179. const int gh_bk = il ? 0 : 4;
  4180. for (int i = 0; i < 8; i++) {
  4181. // extract the 5-th bits for x0 and x1
  4182. const uint8_t xh_0 = ((qh >> (gh_mv + 2*i )) << gh_bk) & 0x10;
  4183. const uint8_t xh_1 = ((qh >> (gh_mv + 2*i+1)) << gh_bk) & 0x10;
  4184. // combine the 4-bits from qs with the 5th bit
  4185. const int32_t x0 = ((((qs[i] ) & mask) >> x_mv) | xh_0);
  4186. const int32_t x1 = ((((qs[i] >> 8) & mask) >> x_mv) | xh_1);
  4187. reg[i/2][2*(i%2)+0] = d * x0 + m;
  4188. reg[i/2][2*(i%2)+1] = d * x1 + m;
  4189. }
  4190. }
  4191. template <typename type4x4>
  4192. void dequantize_q8_0(device const block_q8_0 *xb, short il, thread type4x4 & reg) {
  4193. device const int8_t * qs = ((device const int8_t *)xb->qs);
  4194. const half d = xb->d;
  4195. for (int i = 0; i < 16; i++) {
  4196. reg[i/4][i%4] = (qs[i + 16*il] * d);
  4197. }
  4198. }
  4199. template <typename type4x4>
  4200. void dequantize_q2_K(device const block_q2_K *xb, short il, thread type4x4 & reg) {
  4201. const float d = xb->d;
  4202. const float min = xb->dmin;
  4203. device const uint8_t * q = (device const uint8_t *)xb->qs;
  4204. float dl, ml;
  4205. uint8_t sc = xb->scales[il];
  4206. #if QK_K == 256
  4207. q = q + 32*(il/8) + 16*(il&1);
  4208. il = (il/2)%4;
  4209. #endif
  4210. half coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
  4211. uchar mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
  4212. dl = d * (sc & 0xF) * coef, ml = min * (sc >> 4);
  4213. for (int i = 0; i < 16; ++i) {
  4214. reg[i/4][i%4] = dl * (q[i] & mask) - ml;
  4215. }
  4216. }
  4217. template <typename type4x4>
  4218. void dequantize_q3_K(device const block_q3_K *xb, short il, thread type4x4 & reg) {
  4219. const half d_all = xb->d;
  4220. device const uint8_t * q = (device const uint8_t *)xb->qs;
  4221. device const uint8_t * h = (device const uint8_t *)xb->hmask;
  4222. device const int8_t * scales = (device const int8_t *)xb->scales;
  4223. #if QK_K == 256
  4224. q = q + 32 * (il/8) + 16 * (il&1);
  4225. h = h + 16 * (il&1);
  4226. uint8_t m = 1 << (il/2);
  4227. uint16_t kmask1 = (il/4)>1 ? ((il/4)>2 ? 192 : 48) : \
  4228. ((il/4)>0 ? 12 : 3);
  4229. uint16_t kmask2 = il/8 ? 0xF0 : 0x0F;
  4230. uint16_t scale_2 = scales[il%8], scale_1 = scales[8 + il%4];
  4231. int16_t dl_int = (il/4)&1 ? (scale_2&kmask2) | ((scale_1&kmask1) << 2)
  4232. : (scale_2&kmask2) | ((scale_1&kmask1) << 4);
  4233. float dl = il<8 ? d_all * (dl_int - 32.f) : d_all * (dl_int / 16.f - 32.f);
  4234. const float ml = 4.f * dl;
  4235. il = (il/2) & 3;
  4236. const half coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
  4237. const uint8_t mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
  4238. dl *= coef;
  4239. for (int i = 0; i < 16; ++i) {
  4240. reg[i/4][i%4] = dl * (q[i] & mask) - (h[i] & m ? 0 : ml);
  4241. }
  4242. #else
  4243. float kcoef = il&1 ? 1.f/16.f : 1.f;
  4244. uint16_t kmask = il&1 ? 0xF0 : 0x0F;
  4245. float dl = d_all * ((scales[il/2] & kmask) * kcoef - 8);
  4246. float coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
  4247. uint8_t mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
  4248. uint8_t m = 1<<(il*2);
  4249. for (int i = 0; i < 16; ++i) {
  4250. reg[i/4][i%4] = coef * dl * ((q[i] & mask) - ((h[i%8] & (m * (1 + i/8))) ? 0 : 4.f/coef));
  4251. }
  4252. #endif
  4253. }
  4254. static inline uchar2 get_scale_min_k4_just2(int j, int k, device const uchar * q) {
  4255. return j < 4 ? uchar2{uchar(q[j+0+k] & 63), uchar(q[j+4+k] & 63)}
  4256. : uchar2{uchar((q[j+4+k] & 0xF) | ((q[j-4+k] & 0xc0) >> 2)), uchar((q[j+4+k] >> 4) | ((q[j-0+k] & 0xc0) >> 2))};
  4257. }
  4258. template <typename type4x4>
  4259. void dequantize_q4_K(device const block_q4_K *xb, short il, thread type4x4 & reg) {
  4260. device const uchar * q = xb->qs;
  4261. #if QK_K == 256
  4262. short is = (il/4) * 2;
  4263. q = q + (il/4) * 32 + 16 * (il&1);
  4264. il = il & 3;
  4265. const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales);
  4266. const float d = il < 2 ? xb->d : xb->d / 16.h;
  4267. const float min = xb->dmin;
  4268. const float dl = d * sc[0];
  4269. const float ml = min * sc[1];
  4270. #else
  4271. (void) get_scale_min_k4_just2;
  4272. q = q + 16 * (il&1);
  4273. device const uint8_t * s = xb->scales;
  4274. device const half2 * dh = (device const half2 *)xb->d;
  4275. const float2 d = (float2)dh[0];
  4276. const float dl = il<2 ? d[0] * (s[0]&0xF) : d[0] * (s[1]&0xF)/16.h;
  4277. const float ml = il<2 ? d[1] * (s[0]>>4) : d[1] * (s[1]>>4);
  4278. #endif
  4279. const ushort mask = il<2 ? 0x0F : 0xF0;
  4280. for (int i = 0; i < 16; ++i) {
  4281. reg[i/4][i%4] = dl * (q[i] & mask) - ml;
  4282. }
  4283. }
  4284. template <typename type4x4>
  4285. void dequantize_q5_K(device const block_q5_K *xb, short il, thread type4x4 & reg) {
  4286. device const uint8_t * q = xb->qs;
  4287. device const uint8_t * qh = xb->qh;
  4288. #if QK_K == 256
  4289. short is = (il/4) * 2;
  4290. q = q + 32 * (il/4) + 16 * (il&1);
  4291. qh = qh + 16 * (il&1);
  4292. uint8_t ul = 1 << (il/2);
  4293. il = il & 3;
  4294. const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales);
  4295. const float d = il < 2 ? xb->d : xb->d / 16.f;
  4296. const float min = xb->dmin;
  4297. const float dl = d * sc[0];
  4298. const float ml = min * sc[1];
  4299. const ushort mask = il<2 ? 0x0F : 0xF0;
  4300. const float qh_val = il<2 ? 16.f : 256.f;
  4301. for (int i = 0; i < 16; ++i) {
  4302. reg[i/4][i%4] = dl * ((q[i] & mask) + (qh[i] & ul ? qh_val : 0)) - ml;
  4303. }
  4304. #else
  4305. q = q + 16 * (il&1);
  4306. device const int8_t * s = xb->scales;
  4307. const float dl = xb->d * s[il];
  4308. uint8_t m = 1<<(il*2);
  4309. const float coef = il<2 ? 1.f : 1.f/16.f;
  4310. const ushort mask = il<2 ? 0x0F : 0xF0;
  4311. for (int i = 0; i < 16; ++i) {
  4312. reg[i/4][i%4] = coef * dl * ((q[i] & mask) - (qh[i%8] & (m*(1+i/8)) ? 0.f : 16.f/coef));
  4313. }
  4314. #endif
  4315. }
  4316. template <typename type4x4>
  4317. void dequantize_q6_K(device const block_q6_K *xb, short il, thread type4x4 & reg) {
  4318. const half d_all = xb->d;
  4319. device const uint8_t * ql = (device const uint8_t *)xb->ql;
  4320. device const uint8_t * qh = (device const uint8_t *)xb->qh;
  4321. device const int8_t * scales = (device const int8_t *)xb->scales;
  4322. #if QK_K == 256
  4323. ql = ql + 64*(il/8) + 32*((il/2)&1) + 16*(il&1);
  4324. qh = qh + 32*(il/8) + 16*(il&1);
  4325. float sc = scales[(il%2) + 2 * ((il/2))];
  4326. il = (il/2) & 3;
  4327. #else
  4328. ql = ql + 16 * (il&1);
  4329. float sc = scales[il];
  4330. #endif
  4331. const uint16_t kmask1 = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
  4332. const uint16_t kmask2 = il>1 ? 0xF0 : 0x0F;
  4333. const float coef = il>1 ? 1.f/16.f : 1.f;
  4334. const float ml = d_all * sc * 32.f;
  4335. const float dl = d_all * sc * coef;
  4336. for (int i = 0; i < 16; ++i) {
  4337. const half q = il&1 ? ((ql[i] & kmask2) | ((qh[i] & kmask1) << 2))
  4338. : ((ql[i] & kmask2) | ((qh[i] & kmask1) << 4));
  4339. reg[i/4][i%4] = dl * q - ml;
  4340. }
  4341. }
  4342. template <typename type4x4>
  4343. void dequantize_iq2_xxs(device const block_iq2_xxs * xb, short il, thread type4x4 & reg) {
  4344. // il is 0...15 for QK_K = 256 => index of block of 32 is il/2
  4345. const float d = xb->d;
  4346. const int ib32 = il/2;
  4347. il = il%2;
  4348. // il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16
  4349. // each block of 32 needs 2 uint32_t's for the quants & scale, so 4 uint16_t's.
  4350. device const uint16_t * q2 = xb->qs + 4*ib32;
  4351. const uint32_t aux32_g = q2[0] | (q2[1] << 16);
  4352. const uint32_t aux32_s = q2[2] | (q2[3] << 16);
  4353. thread const uint8_t * aux8 = (thread const uint8_t *)&aux32_g;
  4354. const float dl = d * (0.5f + (aux32_s >> 28)) * 0.25f;
  4355. constant uint8_t * grid = (constant uint8_t *)(iq2xxs_grid + aux8[2*il+0]);
  4356. uint8_t signs = ksigns_iq2xs[(aux32_s >> 14*il) & 127];
  4357. for (int i = 0; i < 8; ++i) {
  4358. reg[i/4][i%4] = dl * grid[i] * (signs & kmask_iq2xs[i] ? -1.f : 1.f);
  4359. }
  4360. grid = (constant uint8_t *)(iq2xxs_grid + aux8[2*il+1]);
  4361. signs = ksigns_iq2xs[(aux32_s >> (14*il+7)) & 127];
  4362. for (int i = 0; i < 8; ++i) {
  4363. reg[2+i/4][i%4] = dl * grid[i] * (signs & kmask_iq2xs[i] ? -1.f : 1.f);
  4364. }
  4365. }
  4366. template <typename type4x4>
  4367. void dequantize_iq2_xs(device const block_iq2_xs * xb, short il, thread type4x4 & reg) {
  4368. // il is 0...15 for QK_K = 256 => index of block of 32 is il/2
  4369. const float d = xb->d;
  4370. const int ib32 = il/2;
  4371. il = il%2;
  4372. // il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16
  4373. device const uint16_t * q2 = xb->qs + 4*ib32;
  4374. const float dl = d * (0.5f + ((xb->scales[ib32] >> 4*il) & 0xf)) * 0.25f;
  4375. constant uint8_t * grid = (constant uint8_t *)(iq2xs_grid + (q2[2*il+0] & 511));
  4376. uint8_t signs = ksigns_iq2xs[q2[2*il+0] >> 9];
  4377. for (int i = 0; i < 8; ++i) {
  4378. reg[i/4][i%4] = dl * grid[i] * (signs & kmask_iq2xs[i] ? -1.f : 1.f);
  4379. }
  4380. grid = (constant uint8_t *)(iq2xs_grid + (q2[2*il+1] & 511));
  4381. signs = ksigns_iq2xs[q2[2*il+1] >> 9];
  4382. for (int i = 0; i < 8; ++i) {
  4383. reg[2+i/4][i%4] = dl * grid[i] * (signs & kmask_iq2xs[i] ? -1.f : 1.f);
  4384. }
  4385. }
  4386. template <typename type4x4>
  4387. void dequantize_iq3_xxs(device const block_iq3_xxs * xb, short il, thread type4x4 & reg) {
  4388. // il is 0...15 for QK_K = 256 => index of block of 32 is il/2
  4389. const float d = xb->d;
  4390. const int ib32 = il/2;
  4391. il = il%2;
  4392. // il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16
  4393. device const uint8_t * q3 = xb->qs + 8*ib32;
  4394. device const uint16_t * gas = (device const uint16_t *)(xb->qs + QK_K/4) + 2*ib32;
  4395. const uint32_t aux32 = gas[0] | (gas[1] << 16);
  4396. const float dl = d * (0.5f + (aux32 >> 28)) * 0.5f;
  4397. constant uint8_t * grid1 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+0]);
  4398. constant uint8_t * grid2 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+1]);
  4399. uint8_t signs = ksigns_iq2xs[(aux32 >> 14*il) & 127];
  4400. for (int i = 0; i < 4; ++i) {
  4401. reg[0][i] = dl * grid1[i] * (signs & kmask_iq2xs[i+0] ? -1.f : 1.f);
  4402. reg[1][i] = dl * grid2[i] * (signs & kmask_iq2xs[i+4] ? -1.f : 1.f);
  4403. }
  4404. grid1 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+2]);
  4405. grid2 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+3]);
  4406. signs = ksigns_iq2xs[(aux32 >> (14*il+7)) & 127];
  4407. for (int i = 0; i < 4; ++i) {
  4408. reg[2][i] = dl * grid1[i] * (signs & kmask_iq2xs[i+0] ? -1.f : 1.f);
  4409. reg[3][i] = dl * grid2[i] * (signs & kmask_iq2xs[i+4] ? -1.f : 1.f);
  4410. }
  4411. }
  4412. template <typename type4x4>
  4413. void dequantize_iq3_s(device const block_iq3_s * xb, short il, thread type4x4 & reg) {
  4414. // il is 0...15 for QK_K = 256 => index of block of 32 is il/2
  4415. const float d = xb->d;
  4416. const int ib32 = il/2;
  4417. il = il%2;
  4418. // il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16
  4419. device const uint8_t * qs = xb->qs + 8*ib32;
  4420. device const uint8_t * signs = xb->signs + 4*ib32 + 2*il;
  4421. const uint8_t qh = xb->qh[ib32] >> 4*il;
  4422. const float dl = d * (1 + 2*((xb->scales[ib32/2] >> 4*(ib32%2)) & 0xf));
  4423. constant uint8_t * grid1 = (constant uint8_t *)(iq3s_grid + (qs[4*il+0] | ((qh << 8) & 256)));
  4424. constant uint8_t * grid2 = (constant uint8_t *)(iq3s_grid + (qs[4*il+1] | ((qh << 7) & 256)));
  4425. for (int i = 0; i < 4; ++i) {
  4426. reg[0][i] = dl * grid1[i] * select(1, -1, signs[0] & kmask_iq2xs[i+0]);
  4427. reg[1][i] = dl * grid2[i] * select(1, -1, signs[0] & kmask_iq2xs[i+4]);
  4428. }
  4429. grid1 = (constant uint8_t *)(iq3s_grid + (qs[4*il+2] | ((qh << 6) & 256)));
  4430. grid2 = (constant uint8_t *)(iq3s_grid + (qs[4*il+3] | ((qh << 5) & 256)));
  4431. for (int i = 0; i < 4; ++i) {
  4432. reg[2][i] = dl * grid1[i] * select(1, -1, signs[1] & kmask_iq2xs[i+0]);
  4433. reg[3][i] = dl * grid2[i] * select(1, -1, signs[1] & kmask_iq2xs[i+4]);
  4434. }
  4435. }
  4436. template <typename type4x4>
  4437. void dequantize_iq2_s(device const block_iq2_s * xb, short il, thread type4x4 & reg) {
  4438. // il is 0...15 for QK_K = 256 => index of block of 32 is il/2
  4439. const float d = xb->d;
  4440. const int ib32 = il/2;
  4441. il = il%2;
  4442. // il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16
  4443. device const uint8_t * qs = xb->qs + 4*ib32 + 2*il;
  4444. device const uint8_t * signs = qs + QK_K/8;
  4445. const uint8_t qh = xb->qh[ib32] >> 4*il;
  4446. const float dl = d * (0.5f + ((xb->scales[ib32] >> 4*il) & 0xf)) * 0.25f;
  4447. constant uint8_t * grid1 = (constant uint8_t *)(iq2s_grid + (qs[0] | ((qh << 8) & 0x300)));
  4448. constant uint8_t * grid2 = (constant uint8_t *)(iq2s_grid + (qs[1] | ((qh << 6) & 0x300)));
  4449. for (int i = 0; i < 8; ++i) {
  4450. reg[i/4+0][i%4] = dl * grid1[i] * select(1, -1, signs[0] & kmask_iq2xs[i]);
  4451. reg[i/4+2][i%4] = dl * grid2[i] * select(1, -1, signs[1] & kmask_iq2xs[i]);
  4452. }
  4453. }
  4454. template <typename type4x4>
  4455. void dequantize_iq1_s(device const block_iq1_s * xb, short il, thread type4x4 & reg) {
  4456. // il is 0...15 for QK_K = 256 => index of block of 32 is il/2
  4457. const int ib32 = il/2;
  4458. il = il%2;
  4459. const float d = xb->d;
  4460. device const uint8_t * qs = xb->qs + 4*ib32 + 2*il;
  4461. device const uint16_t * qh = xb->qh;
  4462. const float dl = d * (2*((qh[ib32] >> 12) & 7) + 1);
  4463. const float ml = dl * (qh[ib32] & 0x8000 ? -1 - IQ1S_DELTA : -1 + IQ1S_DELTA);
  4464. const uint16_t h = qh[ib32] >> 6*il;
  4465. constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((h << 8) & 0x700)));
  4466. constant uint8_t * grid2 = (constant uint8_t *)(iq1s_grid_gpu + (qs[1] | ((h << 5) & 0x700)));
  4467. for (int i = 0; i < 4; ++i) {
  4468. reg[0][i] = dl * (grid1[i] & 0xf) + ml;
  4469. reg[1][i] = dl * (grid1[i] >> 4) + ml;
  4470. reg[2][i] = dl * (grid2[i] & 0xf) + ml;
  4471. reg[3][i] = dl * (grid2[i] >> 4) + ml;
  4472. }
  4473. }
  4474. template <typename type4x4>
  4475. void dequantize_iq1_m(device const block_iq1_m * xb, short il, thread type4x4 & reg) {
  4476. // il is 0...15 for QK_K = 256 => index of block of 32 is il/2
  4477. const int ib32 = il/2;
  4478. il = il%2;
  4479. device const uint16_t * sc = (device const uint16_t *)xb->scales;
  4480. #if QK_K == 64
  4481. const float d = xb->d;
  4482. #else
  4483. iq1m_scale_t scale;
  4484. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  4485. const float d = scale.f16;
  4486. #endif
  4487. device const uint8_t * qs = xb->qs + 4*ib32 + 2*il;
  4488. device const uint8_t * qh = xb->qh + 2*ib32 + il;
  4489. #if QK_K == 64
  4490. const float dl = d * (2*((sc[ib32/2] >> (8*(ib32%2)+4*il)) & 0xf) + 1);
  4491. #else
  4492. const float dl = d * (2*((sc[ib32/2] >> (6*(ib32%2)+3*il)) & 7) + 1);
  4493. #endif
  4494. const float ml1 = dl * (qh[0] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
  4495. const float ml2 = dl * (qh[0] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
  4496. constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((qh[0] << 8) & 0x700)));
  4497. constant uint8_t * grid2 = (constant uint8_t *)(iq1s_grid_gpu + (qs[1] | ((qh[0] << 4) & 0x700)));
  4498. for (int i = 0; i < 4; ++i) {
  4499. reg[0][i] = dl * (grid1[i] & 0xf) + ml1;
  4500. reg[1][i] = dl * (grid1[i] >> 4) + ml1;
  4501. reg[2][i] = dl * (grid2[i] & 0xf) + ml2;
  4502. reg[3][i] = dl * (grid2[i] >> 4) + ml2;
  4503. }
  4504. }
  4505. template <typename type4x4>
  4506. void dequantize_iq4_nl(device const block_iq4_nl * xb, short il, thread type4x4 & reg) {
  4507. device const uint16_t * q4 = (device const uint16_t *)xb->qs;
  4508. const float d = xb->d;
  4509. uint32_t aux32;
  4510. thread const uint8_t * q8 = (thread const uint8_t *)&aux32;
  4511. for (int i = 0; i < 4; ++i) {
  4512. aux32 = ((q4[2*i] | (q4[2*i+1] << 16)) >> 4*il) & 0x0f0f0f0f;
  4513. reg[i][0] = d * kvalues_iq4nl_f[q8[0]];
  4514. reg[i][1] = d * kvalues_iq4nl_f[q8[1]];
  4515. reg[i][2] = d * kvalues_iq4nl_f[q8[2]];
  4516. reg[i][3] = d * kvalues_iq4nl_f[q8[3]];
  4517. }
  4518. }
  4519. template <typename type4x4>
  4520. void dequantize_iq4_xs(device const block_iq4_xs * xb, short il, thread type4x4 & reg) {
  4521. #if QK_K == 64
  4522. dequantize_iq4_nl(xb, il, reg);
  4523. #else
  4524. // il is 0...15 for QK_K = 256 => index of block of 32 is il/2
  4525. const int ib32 = il/2;
  4526. il = il%2;
  4527. // il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16
  4528. device const uint32_t * q4 = (device const uint32_t *)xb->qs + 4*ib32;
  4529. const int ls = ((xb->scales_l[ib32/2] >> 4*(ib32%2)) & 0xf) | (((xb->scales_h >> 2*ib32) & 3) << 4);
  4530. const float d = (float)xb->d * (ls - 32);
  4531. uint32_t aux32;
  4532. thread const uint8_t * q8 = (thread const uint8_t *)&aux32;
  4533. for (int i = 0; i < 4; ++i) {
  4534. aux32 = (q4[i] >> 4*il) & 0x0f0f0f0f;
  4535. reg[i][0] = d * kvalues_iq4nl_f[q8[0]];
  4536. reg[i][1] = d * kvalues_iq4nl_f[q8[1]];
  4537. reg[i][2] = d * kvalues_iq4nl_f[q8[2]];
  4538. reg[i][3] = d * kvalues_iq4nl_f[q8[3]];
  4539. }
  4540. #endif
  4541. }
  4542. template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread float4x4 &)>
  4543. kernel void kernel_get_rows(
  4544. device const void * src0,
  4545. device const char * src1,
  4546. device float * dst,
  4547. constant int64_t & ne00,
  4548. constant uint64_t & nb01,
  4549. constant uint64_t & nb02,
  4550. constant int64_t & ne10,
  4551. constant uint64_t & nb10,
  4552. constant uint64_t & nb11,
  4553. constant uint64_t & nb1,
  4554. constant uint64_t & nb2,
  4555. uint3 tgpig[[threadgroup_position_in_grid]],
  4556. uint tiitg[[thread_index_in_threadgroup]],
  4557. uint3 tptg [[threads_per_threadgroup]]) {
  4558. //const int64_t i = tgpig;
  4559. //const int64_t r = ((device int32_t *) src1)[i];
  4560. const int64_t i10 = tgpig.x;
  4561. const int64_t i11 = tgpig.y;
  4562. const int64_t r = ((device int32_t *) ((device char *) src1 + i11*nb11 + i10*nb10))[0];
  4563. const int64_t i02 = i11;
  4564. for (int64_t ind = tiitg; ind < ne00/16; ind += tptg.x) {
  4565. float4x4 temp;
  4566. dequantize_func(
  4567. ((device const block_q *) ((device char *) src0 + r*nb01 + i02*nb02)) + ind/nl, ind%nl, temp);
  4568. *(((device float4x4 *) ((device char *) dst + i11*nb2 + i10*nb1)) + ind) = temp;
  4569. }
  4570. }
  4571. kernel void kernel_get_rows_f32(
  4572. device const void * src0,
  4573. device const char * src1,
  4574. device float * dst,
  4575. constant int64_t & ne00,
  4576. constant uint64_t & nb01,
  4577. constant uint64_t & nb02,
  4578. constant int64_t & ne10,
  4579. constant uint64_t & nb10,
  4580. constant uint64_t & nb11,
  4581. constant uint64_t & nb1,
  4582. constant uint64_t & nb2,
  4583. uint3 tgpig[[threadgroup_position_in_grid]],
  4584. uint tiitg[[thread_index_in_threadgroup]],
  4585. uint3 tptg [[threads_per_threadgroup]]) {
  4586. const int64_t i10 = tgpig.x;
  4587. const int64_t i11 = tgpig.y;
  4588. const int64_t r = ((device int32_t *) ((device char *) src1 + i11*nb11 + i10*nb10))[0];
  4589. const int64_t i02 = i11;
  4590. for (int ind = tiitg; ind < ne00; ind += tptg.x) {
  4591. ((device float *) ((device char *) dst + i11*nb2 + i10*nb1))[ind] =
  4592. ((device float *) ((device char *) src0 + r*nb01 + i02*nb02))[ind];
  4593. }
  4594. }
  4595. kernel void kernel_get_rows_f16(
  4596. device const void * src0,
  4597. device const char * src1,
  4598. device float * dst,
  4599. constant int64_t & ne00,
  4600. constant uint64_t & nb01,
  4601. constant uint64_t & nb02,
  4602. constant int64_t & ne10,
  4603. constant uint64_t & nb10,
  4604. constant uint64_t & nb11,
  4605. constant uint64_t & nb1,
  4606. constant uint64_t & nb2,
  4607. uint3 tgpig[[threadgroup_position_in_grid]],
  4608. uint tiitg[[thread_index_in_threadgroup]],
  4609. uint3 tptg [[threads_per_threadgroup]]) {
  4610. const int64_t i10 = tgpig.x;
  4611. const int64_t i11 = tgpig.y;
  4612. const int64_t r = ((device int32_t *) ((device char *) src1 + i11*nb11 + i10*nb10))[0];
  4613. const int64_t i02 = i11;
  4614. for (int ind = tiitg; ind < ne00; ind += tptg.x) {
  4615. ((device float *) ((device char *) dst + i11*nb2 + i10*nb1))[ind] =
  4616. ((device half *) ((device char *) src0 + r*nb01 + i02*nb02))[ind];
  4617. }
  4618. }
  4619. kernel void kernel_get_rows_i32(
  4620. device const void * src0,
  4621. device const char * src1,
  4622. device int32_t * dst,
  4623. constant int64_t & ne00,
  4624. constant uint64_t & nb01,
  4625. constant uint64_t & nb02,
  4626. constant int64_t & ne10,
  4627. constant uint64_t & nb10,
  4628. constant uint64_t & nb11,
  4629. constant uint64_t & nb1,
  4630. constant uint64_t & nb2,
  4631. uint3 tgpig[[threadgroup_position_in_grid]],
  4632. uint tiitg[[thread_index_in_threadgroup]],
  4633. uint3 tptg [[threads_per_threadgroup]]) {
  4634. const int64_t i10 = tgpig.x;
  4635. const int64_t i11 = tgpig.y;
  4636. const int64_t r = ((device int32_t *) ((device char *) src1 + i11*nb11 + i10*nb10))[0];
  4637. const int64_t i02 = i11;
  4638. for (int ind = tiitg; ind < ne00; ind += tptg.x) {
  4639. ((device int32_t *) ((device char *) dst + i11*nb2 + i10*nb1))[ind] =
  4640. ((device int32_t *) ((device char *) src0 + r*nb01 + i02*nb02))[ind];
  4641. }
  4642. }
  4643. #define BLOCK_SIZE_M 64 // 8 simdgroup matrices from matrix A
  4644. #define BLOCK_SIZE_N 32 // 4 simdgroup matrices from matrix B
  4645. #define BLOCK_SIZE_K 32
  4646. #define THREAD_MAT_M 4 // each thread take 4 simdgroup matrices from matrix A
  4647. #define THREAD_MAT_N 2 // each thread take 2 simdgroup matrices from matrix B
  4648. #define THREAD_PER_BLOCK 128
  4649. #define THREAD_PER_ROW 2 // 2 thread for each row in matrix A to load numbers
  4650. #define THREAD_PER_COL 4 // 4 thread for each row in matrix B to load numbers
  4651. #define SG_MAT_SIZE 64 // simdgroup matrix is of shape 8x8
  4652. #define SG_MAT_ROW 8
  4653. // each block_q contains 16*nl weights
  4654. template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread half4x4 &)>
  4655. void kernel_mul_mm_impl(device const uchar * src0,
  4656. device const uchar * src1,
  4657. device float * dst,
  4658. constant int64_t & ne00,
  4659. constant int64_t & ne02,
  4660. constant uint64_t & nb01,
  4661. constant uint64_t & nb02,
  4662. constant int64_t & ne12,
  4663. constant uint64_t & nb10,
  4664. constant uint64_t & nb11,
  4665. constant uint64_t & nb12,
  4666. constant int64_t & ne0,
  4667. constant int64_t & ne1,
  4668. constant uint & r2,
  4669. constant uint & r3,
  4670. threadgroup uchar * shared_memory [[threadgroup(0)]],
  4671. uint3 tgpig[[threadgroup_position_in_grid]],
  4672. uint tiitg[[thread_index_in_threadgroup]],
  4673. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  4674. threadgroup half * sa = (threadgroup half *)(shared_memory);
  4675. threadgroup float * sb = (threadgroup float *)(shared_memory + 4096);
  4676. const uint r0 = tgpig.y;
  4677. const uint r1 = tgpig.x;
  4678. const uint im = tgpig.z;
  4679. // if this block is of 64x32 shape or smaller
  4680. short n_rows = (ne0 - r0 * BLOCK_SIZE_M < BLOCK_SIZE_M) ? (ne0 - r0 * BLOCK_SIZE_M) : BLOCK_SIZE_M;
  4681. short n_cols = (ne1 - r1 * BLOCK_SIZE_N < BLOCK_SIZE_N) ? (ne1 - r1 * BLOCK_SIZE_N) : BLOCK_SIZE_N;
  4682. // a thread shouldn't load data outside of the matrix
  4683. short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1;
  4684. short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1;
  4685. simdgroup_half8x8 ma[4];
  4686. simdgroup_float8x8 mb[2];
  4687. simdgroup_float8x8 c_res[8];
  4688. for (int i = 0; i < 8; i++){
  4689. c_res[i] = make_filled_simdgroup_matrix<float, 8>(0.f);
  4690. }
  4691. short il = (tiitg % THREAD_PER_ROW);
  4692. const uint i12 = im%ne12;
  4693. const uint i13 = im/ne12;
  4694. uint offset0 = (i12/r2)*nb02 + (i13/r3)*(nb02*ne02);
  4695. ushort offset1 = il/nl;
  4696. device const block_q * x = (device const block_q *)(src0 + (r0 * BLOCK_SIZE_M + thread_row) * nb01 + offset0) + offset1;
  4697. device const float * y = (device const float *)(src1
  4698. + nb12 * im
  4699. + nb11 * (r1 * BLOCK_SIZE_N + thread_col)
  4700. + nb10 * (BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL)));
  4701. for (int loop_k = 0; loop_k < ne00; loop_k += BLOCK_SIZE_K) {
  4702. // load data and store to threadgroup memory
  4703. half4x4 temp_a;
  4704. dequantize_func(x, il, temp_a);
  4705. threadgroup_barrier(mem_flags::mem_threadgroup);
  4706. #pragma unroll(16)
  4707. for (int i = 0; i < 16; i++) {
  4708. *(sa + SG_MAT_SIZE * ((tiitg / THREAD_PER_ROW / 8) \
  4709. + (tiitg % THREAD_PER_ROW) * 16 + (i / 8) * 8) \
  4710. + (tiitg / THREAD_PER_ROW) % 8 + (i & 7) * 8) = temp_a[i/4][i%4];
  4711. }
  4712. *(threadgroup float2x4 *)(sb + (tiitg % THREAD_PER_COL) * 8 * 32 + 8 * (tiitg / THREAD_PER_COL)) = *((device float2x4 *)y);
  4713. il = (il + 2 < nl) ? il + 2 : il % 2;
  4714. x = (il < 2) ? x + (2+nl-1)/nl : x;
  4715. y += BLOCK_SIZE_K;
  4716. threadgroup_barrier(mem_flags::mem_threadgroup);
  4717. // load matrices from threadgroup memory and conduct outer products
  4718. threadgroup half * lsma = (sa + THREAD_MAT_M * SG_MAT_SIZE * (sgitg % 2));
  4719. threadgroup float * lsmb = (sb + THREAD_MAT_N * SG_MAT_SIZE * (sgitg / 2));
  4720. #pragma unroll(4)
  4721. for (int ik = 0; ik < BLOCK_SIZE_K / 8; ik++) {
  4722. #pragma unroll(4)
  4723. for (int i = 0; i < 4; i++) {
  4724. simdgroup_load(ma[i],lsma + SG_MAT_SIZE * i);
  4725. }
  4726. simdgroup_barrier(mem_flags::mem_none);
  4727. #pragma unroll(2)
  4728. for (int i = 0; i < 2; i++) {
  4729. simdgroup_load(mb[i],lsmb + SG_MAT_SIZE * i);
  4730. }
  4731. lsma += BLOCK_SIZE_M / SG_MAT_ROW * SG_MAT_SIZE;
  4732. lsmb += BLOCK_SIZE_N / SG_MAT_ROW * SG_MAT_SIZE;
  4733. #pragma unroll(8)
  4734. for (int i = 0; i < 8; i++){
  4735. simdgroup_multiply_accumulate(c_res[i], mb[i/4], ma[i%4], c_res[i]);
  4736. }
  4737. }
  4738. }
  4739. if ((r0 + 1) * BLOCK_SIZE_M <= ne0 && (r1 + 1) * BLOCK_SIZE_N <= ne1) {
  4740. device float * C = dst + (BLOCK_SIZE_M * r0 + 32 * (sgitg & 1)) \
  4741. + (BLOCK_SIZE_N * r1 + 16 * (sgitg >> 1)) * ne0 + im*ne1*ne0;
  4742. for (int i = 0; i < 8; i++) {
  4743. simdgroup_store(c_res[i], C + 8 * (i%4) + 8 * ne0 * (i/4), ne0);
  4744. }
  4745. } else {
  4746. // block is smaller than 64x32, we should avoid writing data outside of the matrix
  4747. threadgroup_barrier(mem_flags::mem_threadgroup);
  4748. threadgroup float * temp_str = ((threadgroup float *)shared_memory) \
  4749. + 32 * (sgitg&1) + (16 * (sgitg>>1)) * BLOCK_SIZE_M;
  4750. for (int i = 0; i < 8; i++) {
  4751. simdgroup_store(c_res[i], temp_str + 8 * (i%4) + 8 * BLOCK_SIZE_M * (i/4), BLOCK_SIZE_M);
  4752. }
  4753. threadgroup_barrier(mem_flags::mem_threadgroup);
  4754. device float * C = dst + (BLOCK_SIZE_M * r0) + (BLOCK_SIZE_N * r1) * ne0 + im*ne1*ne0;
  4755. if (sgitg == 0) {
  4756. for (int i = 0; i < n_rows; i++) {
  4757. for (int j = tiitg; j < n_cols; j += BLOCK_SIZE_N) {
  4758. *(C + i + j * ne0) = *(temp_str + i + j * BLOCK_SIZE_M);
  4759. }
  4760. }
  4761. }
  4762. }
  4763. }
  4764. // same as kernel_mul_mm_impl, but src1 and dst are accessed via indices stored in src1ids
  4765. template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread half4x4 &)>
  4766. void kernel_mul_mm_id_impl(
  4767. device const uchar * src0,
  4768. device const uchar * src1,
  4769. threadgroup short * src1ids,
  4770. device float * dst,
  4771. constant int64_t & ne00,
  4772. constant int64_t & ne02,
  4773. constant uint64_t & nb01,
  4774. constant uint64_t & nb02,
  4775. constant int64_t & ne12,
  4776. constant uint64_t & nb10,
  4777. constant uint64_t & nb11,
  4778. constant uint64_t & nb12,
  4779. constant int64_t & ne0,
  4780. int64_t ne1,
  4781. constant uint & r2,
  4782. constant uint & r3,
  4783. threadgroup uchar * shared_memory,
  4784. uint3 tgpig[[threadgroup_position_in_grid]],
  4785. uint tiitg[[thread_index_in_threadgroup]],
  4786. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  4787. threadgroup half * sa = (threadgroup half *)(shared_memory);
  4788. threadgroup float * sb = (threadgroup float *)(shared_memory + 4096);
  4789. const uint r0 = tgpig.y;
  4790. const uint r1 = tgpig.x;
  4791. const uint im = tgpig.z;
  4792. if (r1 * BLOCK_SIZE_N >= ne1) return;
  4793. // if this block is of 64x32 shape or smaller
  4794. short n_rows = (ne0 - r0 * BLOCK_SIZE_M < BLOCK_SIZE_M) ? (ne0 - r0 * BLOCK_SIZE_M) : BLOCK_SIZE_M;
  4795. short n_cols = (ne1 - r1 * BLOCK_SIZE_N < BLOCK_SIZE_N) ? (ne1 - r1 * BLOCK_SIZE_N) : BLOCK_SIZE_N;
  4796. // a thread shouldn't load data outside of the matrix
  4797. short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1;
  4798. short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1;
  4799. simdgroup_half8x8 ma[4];
  4800. simdgroup_float8x8 mb[2];
  4801. simdgroup_float8x8 c_res[8];
  4802. for (int i = 0; i < 8; i++){
  4803. c_res[i] = make_filled_simdgroup_matrix<float, 8>(0.f);
  4804. }
  4805. short il = (tiitg % THREAD_PER_ROW);
  4806. const uint i12 = im%ne12;
  4807. const uint i13 = im/ne12;
  4808. uint offset0 = (i12/r2)*nb02 + (i13/r3)*(nb02*ne02);
  4809. ushort offset1 = il/nl;
  4810. device const block_q * x = (device const block_q *)(src0 + (r0 * BLOCK_SIZE_M + thread_row) * nb01 + offset0) + offset1;
  4811. device const float * y = (device const float *)(src1
  4812. + nb12 * im
  4813. + nb11 * src1ids[r1 * BLOCK_SIZE_N + thread_col]
  4814. + nb10 * (BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL)));
  4815. for (int loop_k = 0; loop_k < ne00; loop_k += BLOCK_SIZE_K) {
  4816. // load data and store to threadgroup memory
  4817. half4x4 temp_a;
  4818. dequantize_func(x, il, temp_a);
  4819. threadgroup_barrier(mem_flags::mem_threadgroup);
  4820. for (int i = 0; i < 16; i++) {
  4821. *(sa + SG_MAT_SIZE * ((tiitg / THREAD_PER_ROW / 8) \
  4822. + (tiitg % THREAD_PER_ROW) * 16 + (i / 8) * 8) \
  4823. + (tiitg / THREAD_PER_ROW) % 8 + (i & 7) * 8) = temp_a[i/4][i%4];
  4824. }
  4825. *(threadgroup float2x4 *)(sb + (tiitg % THREAD_PER_COL) * 8 * 32 + 8 * (tiitg / THREAD_PER_COL)) = *((device float2x4 *)y);
  4826. il = (il + 2 < nl) ? il + 2 : il % 2;
  4827. x = (il < 2) ? x + (2+nl-1)/nl : x;
  4828. y += BLOCK_SIZE_K;
  4829. threadgroup_barrier(mem_flags::mem_threadgroup);
  4830. // load matrices from threadgroup memory and conduct outer products
  4831. threadgroup half * lsma = (sa + THREAD_MAT_M * SG_MAT_SIZE * (sgitg % 2));
  4832. threadgroup float * lsmb = (sb + THREAD_MAT_N * SG_MAT_SIZE * (sgitg / 2));
  4833. for (int ik = 0; ik < BLOCK_SIZE_K / 8; ik++) {
  4834. for (int i = 0; i < 4; i++) {
  4835. simdgroup_load(ma[i],lsma + SG_MAT_SIZE * i);
  4836. }
  4837. simdgroup_barrier(mem_flags::mem_none);
  4838. for (int i = 0; i < 2; i++) {
  4839. simdgroup_load(mb[i],lsmb + SG_MAT_SIZE * i);
  4840. }
  4841. lsma += BLOCK_SIZE_M / SG_MAT_ROW * SG_MAT_SIZE;
  4842. lsmb += BLOCK_SIZE_N / SG_MAT_ROW * SG_MAT_SIZE;
  4843. for (int i = 0; i < 8; i++){
  4844. simdgroup_multiply_accumulate(c_res[i], mb[i/4], ma[i%4], c_res[i]);
  4845. }
  4846. }
  4847. }
  4848. {
  4849. threadgroup_barrier(mem_flags::mem_threadgroup);
  4850. threadgroup float * temp_str = ((threadgroup float *)shared_memory) \
  4851. + 32 * (sgitg&1) + (16 * (sgitg>>1)) * BLOCK_SIZE_M;
  4852. for (int i = 0; i < 8; i++) {
  4853. simdgroup_store(c_res[i], temp_str + 8 * (i%4) + 8 * BLOCK_SIZE_M * (i/4), BLOCK_SIZE_M);
  4854. }
  4855. threadgroup_barrier(mem_flags::mem_threadgroup);
  4856. device float * C = dst + (BLOCK_SIZE_M * r0) + im*ne1*ne0;
  4857. if (sgitg == 0) {
  4858. for (int i = 0; i < n_rows; i++) {
  4859. for (int j = tiitg; j < n_cols; j += BLOCK_SIZE_N) {
  4860. *(C + i + src1ids[j + r1*BLOCK_SIZE_N] * ne0) = *(temp_str + i + j * BLOCK_SIZE_M);
  4861. }
  4862. }
  4863. }
  4864. }
  4865. }
  4866. template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread half4x4 &)>
  4867. kernel void kernel_mul_mm(device const uchar * src0,
  4868. device const uchar * src1,
  4869. device float * dst,
  4870. constant int64_t & ne00,
  4871. constant int64_t & ne02,
  4872. constant uint64_t & nb01,
  4873. constant uint64_t & nb02,
  4874. constant int64_t & ne12,
  4875. constant uint64_t & nb10,
  4876. constant uint64_t & nb11,
  4877. constant uint64_t & nb12,
  4878. constant int64_t & ne0,
  4879. constant int64_t & ne1,
  4880. constant uint & r2,
  4881. constant uint & r3,
  4882. threadgroup uchar * shared_memory [[threadgroup(0)]],
  4883. uint3 tgpig[[threadgroup_position_in_grid]],
  4884. uint tiitg[[thread_index_in_threadgroup]],
  4885. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  4886. kernel_mul_mm_impl<block_q, nl, dequantize_func>(
  4887. src0,
  4888. src1,
  4889. dst,
  4890. ne00,
  4891. ne02,
  4892. nb01,
  4893. nb02,
  4894. ne12,
  4895. nb10,
  4896. nb11,
  4897. nb12,
  4898. ne0,
  4899. ne1,
  4900. r2,
  4901. r3,
  4902. shared_memory,
  4903. tgpig,
  4904. tiitg,
  4905. sgitg);
  4906. }
  4907. template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread half4x4 &)>
  4908. kernel void kernel_mul_mm_id(
  4909. device const uchar * src0s,
  4910. device const uchar * src1,
  4911. device float * dst,
  4912. device const uchar * ids,
  4913. constant uint64_t & nbi1,
  4914. constant int64_t & ne00,
  4915. constant int64_t & ne02,
  4916. constant uint64_t & nb01,
  4917. constant uint64_t & nb02,
  4918. constant int64_t & ne12,
  4919. constant int64_t & ne13,
  4920. constant uint64_t & nb10,
  4921. constant uint64_t & nb11,
  4922. constant uint64_t & nb12,
  4923. constant int64_t & ne0,
  4924. constant int64_t & ne1,
  4925. constant uint64_t & nb1,
  4926. constant uint & r2,
  4927. constant uint & r3,
  4928. constant int & idx,
  4929. threadgroup uchar * shared_memory [[threadgroup(0)]],
  4930. uint3 tgpig[[threadgroup_position_in_grid]],
  4931. uint tiitg[[thread_index_in_threadgroup]],
  4932. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  4933. // expert id
  4934. const int32_t id = tgpig.z/(ne12*ne13);
  4935. device const uchar * src0 = src0s + id*nb02;
  4936. tgpig.z = tgpig.z%(ne12*ne13);
  4937. // row indices of src1 for expert id
  4938. threadgroup short * src1ids = (threadgroup short *)(shared_memory + 8192);
  4939. int64_t _ne1 = 0;
  4940. for (int64_t i1 = 0; i1 < ne1; i1++) {
  4941. if (((device int32_t *) (ids + i1*nbi1))[idx] == id) {
  4942. src1ids[_ne1++] = i1;
  4943. }
  4944. }
  4945. kernel_mul_mm_id_impl<block_q, nl, dequantize_func>(
  4946. src0,
  4947. src1,
  4948. src1ids,
  4949. dst,
  4950. ne00,
  4951. ne02,
  4952. nb01,
  4953. nb02,
  4954. ne12,
  4955. nb10,
  4956. nb11,
  4957. nb12,
  4958. ne0,
  4959. _ne1,
  4960. r2,
  4961. r3,
  4962. shared_memory,
  4963. tgpig,
  4964. tiitg,
  4965. sgitg);
  4966. }
  4967. #if QK_K == 256
  4968. #define QK_NL 16
  4969. #else
  4970. #define QK_NL 4
  4971. #endif
  4972. //
  4973. // get rows
  4974. //
  4975. typedef void (get_rows_t)(
  4976. device const void * src0,
  4977. device const char * src1,
  4978. device float * dst,
  4979. constant int64_t & ne00,
  4980. constant uint64_t & nb01,
  4981. constant uint64_t & nb02,
  4982. constant int64_t & ne10,
  4983. constant uint64_t & nb10,
  4984. constant uint64_t & nb11,
  4985. constant uint64_t & nb1,
  4986. constant uint64_t & nb2,
  4987. uint3, uint, uint3);
  4988. //template [[host_name("kernel_get_rows_f32")]] kernel get_rows_t kernel_get_rows<float4x4, 1, dequantize_f32>;
  4989. //template [[host_name("kernel_get_rows_f16")]] kernel get_rows_t kernel_get_rows<half4x4, 1, dequantize_f16>;
  4990. template [[host_name("kernel_get_rows_q4_0")]] kernel get_rows_t kernel_get_rows<block_q4_0, 2, dequantize_q4_0>;
  4991. template [[host_name("kernel_get_rows_q4_1")]] kernel get_rows_t kernel_get_rows<block_q4_1, 2, dequantize_q4_1>;
  4992. template [[host_name("kernel_get_rows_q5_0")]] kernel get_rows_t kernel_get_rows<block_q5_0, 2, dequantize_q5_0>;
  4993. template [[host_name("kernel_get_rows_q5_1")]] kernel get_rows_t kernel_get_rows<block_q5_1, 2, dequantize_q5_1>;
  4994. template [[host_name("kernel_get_rows_q8_0")]] kernel get_rows_t kernel_get_rows<block_q8_0, 2, dequantize_q8_0>;
  4995. template [[host_name("kernel_get_rows_q2_K")]] kernel get_rows_t kernel_get_rows<block_q2_K, QK_NL, dequantize_q2_K>;
  4996. template [[host_name("kernel_get_rows_q3_K")]] kernel get_rows_t kernel_get_rows<block_q3_K, QK_NL, dequantize_q3_K>;
  4997. template [[host_name("kernel_get_rows_q4_K")]] kernel get_rows_t kernel_get_rows<block_q4_K, QK_NL, dequantize_q4_K>;
  4998. template [[host_name("kernel_get_rows_q5_K")]] kernel get_rows_t kernel_get_rows<block_q5_K, QK_NL, dequantize_q5_K>;
  4999. template [[host_name("kernel_get_rows_q6_K")]] kernel get_rows_t kernel_get_rows<block_q6_K, QK_NL, dequantize_q6_K>;
  5000. template [[host_name("kernel_get_rows_iq2_xxs")]] kernel get_rows_t kernel_get_rows<block_iq2_xxs, QK_NL, dequantize_iq2_xxs>;
  5001. template [[host_name("kernel_get_rows_iq2_xs")]] kernel get_rows_t kernel_get_rows<block_iq2_xs, QK_NL, dequantize_iq2_xs>;
  5002. template [[host_name("kernel_get_rows_iq3_xxs")]] kernel get_rows_t kernel_get_rows<block_iq3_xxs, QK_NL, dequantize_iq3_xxs>;
  5003. template [[host_name("kernel_get_rows_iq3_s")]] kernel get_rows_t kernel_get_rows<block_iq3_s, QK_NL, dequantize_iq3_s>;
  5004. template [[host_name("kernel_get_rows_iq2_s")]] kernel get_rows_t kernel_get_rows<block_iq2_s, QK_NL, dequantize_iq2_s>;
  5005. template [[host_name("kernel_get_rows_iq1_s")]] kernel get_rows_t kernel_get_rows<block_iq1_s, QK_NL, dequantize_iq1_s>;
  5006. template [[host_name("kernel_get_rows_iq1_m")]] kernel get_rows_t kernel_get_rows<block_iq1_m, QK_NL, dequantize_iq1_m>;
  5007. template [[host_name("kernel_get_rows_iq4_nl")]] kernel get_rows_t kernel_get_rows<block_iq4_nl, 2, dequantize_iq4_nl>;
  5008. #if QK_K == 64
  5009. template [[host_name("kernel_get_rows_iq4_xs")]] kernel get_rows_t kernel_get_rows<block_iq4_xs, 2, dequantize_iq4_xs>;
  5010. #else
  5011. template [[host_name("kernel_get_rows_iq4_xs")]] kernel get_rows_t kernel_get_rows<block_iq4_xs, QK_NL, dequantize_iq4_xs>;
  5012. #endif
  5013. //
  5014. // matrix-matrix multiplication
  5015. //
  5016. typedef void (mat_mm_t)(
  5017. device const uchar * src0,
  5018. device const uchar * src1,
  5019. device float * dst,
  5020. constant int64_t & ne00,
  5021. constant int64_t & ne02,
  5022. constant uint64_t & nb01,
  5023. constant uint64_t & nb02,
  5024. constant int64_t & ne12,
  5025. constant uint64_t & nb10,
  5026. constant uint64_t & nb11,
  5027. constant uint64_t & nb12,
  5028. constant int64_t & ne0,
  5029. constant int64_t & ne1,
  5030. constant uint & r2,
  5031. constant uint & r3,
  5032. threadgroup uchar *,
  5033. uint3, uint, uint);
  5034. template [[host_name("kernel_mul_mm_f32_f32")]] kernel mat_mm_t kernel_mul_mm<float4x4, 1, dequantize_f32>;
  5035. template [[host_name("kernel_mul_mm_f16_f32")]] kernel mat_mm_t kernel_mul_mm<half4x4, 1, dequantize_f16>;
  5036. template [[host_name("kernel_mul_mm_q4_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_0, 2, dequantize_q4_0>;
  5037. template [[host_name("kernel_mul_mm_q4_1_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_1, 2, dequantize_q4_1>;
  5038. template [[host_name("kernel_mul_mm_q5_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q5_0, 2, dequantize_q5_0>;
  5039. template [[host_name("kernel_mul_mm_q5_1_f32")]] kernel mat_mm_t kernel_mul_mm<block_q5_1, 2, dequantize_q5_1>;
  5040. template [[host_name("kernel_mul_mm_q8_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q8_0, 2, dequantize_q8_0>;
  5041. template [[host_name("kernel_mul_mm_q2_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q2_K, QK_NL, dequantize_q2_K>;
  5042. template [[host_name("kernel_mul_mm_q3_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q3_K, QK_NL, dequantize_q3_K>;
  5043. template [[host_name("kernel_mul_mm_q4_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_K, QK_NL, dequantize_q4_K>;
  5044. template [[host_name("kernel_mul_mm_q5_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q5_K, QK_NL, dequantize_q5_K>;
  5045. template [[host_name("kernel_mul_mm_q6_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q6_K, QK_NL, dequantize_q6_K>;
  5046. template [[host_name("kernel_mul_mm_iq2_xxs_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq2_xxs, QK_NL, dequantize_iq2_xxs>;
  5047. template [[host_name("kernel_mul_mm_iq2_xs_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq2_xs, QK_NL, dequantize_iq2_xs>;
  5048. template [[host_name("kernel_mul_mm_iq3_xxs_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq3_xxs, QK_NL, dequantize_iq3_xxs>;
  5049. template [[host_name("kernel_mul_mm_iq3_s_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq3_s, QK_NL, dequantize_iq3_s>;
  5050. template [[host_name("kernel_mul_mm_iq2_s_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq2_s, QK_NL, dequantize_iq2_s>;
  5051. template [[host_name("kernel_mul_mm_iq1_s_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq1_s, QK_NL, dequantize_iq1_s>;
  5052. template [[host_name("kernel_mul_mm_iq1_m_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq1_m, QK_NL, dequantize_iq1_m>;
  5053. template [[host_name("kernel_mul_mm_iq4_nl_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq4_nl, 2, dequantize_iq4_nl>;
  5054. #if QK_K == 64
  5055. template [[host_name("kernel_mul_mm_iq4_xs_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq4_nl, 2, dequantize_iq4_xs>;
  5056. #else
  5057. template [[host_name("kernel_mul_mm_iq4_xs_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq4_xs, QK_NL, dequantize_iq4_xs>;
  5058. #endif
  5059. //
  5060. // indirect matrix-matrix multiplication
  5061. //
  5062. typedef void (mat_mm_id_t)(
  5063. device const uchar * src0s,
  5064. device const uchar * src1,
  5065. device float * dst,
  5066. device const uchar * ids,
  5067. constant uint64_t & nbi1,
  5068. constant int64_t & ne00,
  5069. constant int64_t & ne02,
  5070. constant uint64_t & nb01,
  5071. constant uint64_t & nb02,
  5072. constant int64_t & ne12,
  5073. constant int64_t & ne13,
  5074. constant uint64_t & nb10,
  5075. constant uint64_t & nb11,
  5076. constant uint64_t & nb12,
  5077. constant int64_t & ne0,
  5078. constant int64_t & ne1,
  5079. constant uint64_t & nb1,
  5080. constant uint & r2,
  5081. constant uint & r3,
  5082. constant int & idx,
  5083. threadgroup uchar *,
  5084. uint3, uint, uint);
  5085. template [[host_name("kernel_mul_mm_id_f32_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<float4x4, 1, dequantize_f32>;
  5086. template [[host_name("kernel_mul_mm_id_f16_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<half4x4, 1, dequantize_f16>;
  5087. template [[host_name("kernel_mul_mm_id_q4_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q4_0, 2, dequantize_q4_0>;
  5088. template [[host_name("kernel_mul_mm_id_q4_1_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q4_1, 2, dequantize_q4_1>;
  5089. template [[host_name("kernel_mul_mm_id_q5_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q5_0, 2, dequantize_q5_0>;
  5090. template [[host_name("kernel_mul_mm_id_q5_1_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q5_1, 2, dequantize_q5_1>;
  5091. template [[host_name("kernel_mul_mm_id_q8_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q8_0, 2, dequantize_q8_0>;
  5092. template [[host_name("kernel_mul_mm_id_q2_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q2_K, QK_NL, dequantize_q2_K>;
  5093. template [[host_name("kernel_mul_mm_id_q3_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q3_K, QK_NL, dequantize_q3_K>;
  5094. template [[host_name("kernel_mul_mm_id_q4_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q4_K, QK_NL, dequantize_q4_K>;
  5095. template [[host_name("kernel_mul_mm_id_q5_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q5_K, QK_NL, dequantize_q5_K>;
  5096. template [[host_name("kernel_mul_mm_id_q6_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q6_K, QK_NL, dequantize_q6_K>;
  5097. template [[host_name("kernel_mul_mm_id_iq2_xxs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq2_xxs, QK_NL, dequantize_iq2_xxs>;
  5098. template [[host_name("kernel_mul_mm_id_iq2_xs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq2_xs, QK_NL, dequantize_iq2_xs>;
  5099. template [[host_name("kernel_mul_mm_id_iq3_xxs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq3_xxs, QK_NL, dequantize_iq3_xxs>;
  5100. template [[host_name("kernel_mul_mm_id_iq3_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq3_s, QK_NL, dequantize_iq3_s>;
  5101. template [[host_name("kernel_mul_mm_id_iq2_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq2_s, QK_NL, dequantize_iq2_s>;
  5102. template [[host_name("kernel_mul_mm_id_iq1_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq1_s, QK_NL, dequantize_iq1_s>;
  5103. template [[host_name("kernel_mul_mm_id_iq1_m_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq1_m, QK_NL, dequantize_iq1_m>;
  5104. template [[host_name("kernel_mul_mm_id_iq4_nl_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq4_nl, 2, dequantize_iq4_nl>;
  5105. #if QK_K == 64
  5106. template [[host_name("kernel_mul_mm_id_iq4_xs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq4_xs, 2, dequantize_iq4_xs>;
  5107. #else
  5108. template [[host_name("kernel_mul_mm_id_iq4_xs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq4_xs, QK_NL, dequantize_iq4_xs>;
  5109. #endif
  5110. //
  5111. // matrix-vector multiplication
  5112. //
  5113. typedef void (kernel_mul_mv_impl_t)(
  5114. device const char * src0,
  5115. device const char * src1,
  5116. device float * dst,
  5117. constant int64_t & ne00,
  5118. constant int64_t & ne01,
  5119. constant int64_t & ne02,
  5120. constant uint64_t & nb00,
  5121. constant uint64_t & nb01,
  5122. constant uint64_t & nb02,
  5123. constant int64_t & ne10,
  5124. constant int64_t & ne11,
  5125. constant int64_t & ne12,
  5126. constant uint64_t & nb10,
  5127. constant uint64_t & nb11,
  5128. constant uint64_t & nb12,
  5129. constant int64_t & ne0,
  5130. constant int64_t & ne1,
  5131. constant uint & r2,
  5132. constant uint & r3,
  5133. uint3 tgpig[[threadgroup_position_in_grid]],
  5134. uint tiisg[[thread_index_in_simdgroup]]);
  5135. typedef void (kernel_mul_mv2_impl_t)(
  5136. device const void * src0,
  5137. device const float * src1,
  5138. device float * dst,
  5139. constant int64_t & ne00,
  5140. constant int64_t & ne01,
  5141. constant int64_t & ne02,
  5142. constant int64_t & ne10,
  5143. constant int64_t & ne12,
  5144. constant int64_t & ne0,
  5145. constant int64_t & ne1,
  5146. constant uint & r2,
  5147. constant uint & r3,
  5148. threadgroup int8_t * shared_values [[threadgroup(0)]],
  5149. uint3 tgpig[[threadgroup_position_in_grid]],
  5150. uint tiisg[[thread_index_in_simdgroup]],
  5151. uint sgitg[[simdgroup_index_in_threadgroup]]);
  5152. template<kernel_mul_mv_impl_t impl_fn>
  5153. void mmv_fn(
  5154. device const char * src0,
  5155. device const char * src1,
  5156. device float * dst,
  5157. constant int64_t & ne00,
  5158. constant int64_t & ne01,
  5159. constant int64_t & ne02,
  5160. constant uint64_t & nb00,
  5161. constant uint64_t & nb01,
  5162. constant uint64_t & nb02,
  5163. constant int64_t & ne10,
  5164. constant int64_t & ne11,
  5165. constant int64_t & ne12,
  5166. constant int64_t & ne13,
  5167. constant uint64_t & nb10,
  5168. constant uint64_t & nb11,
  5169. constant uint64_t & nb12,
  5170. constant int64_t & ne0,
  5171. constant int64_t & ne1,
  5172. constant uint64_t & nb1,
  5173. constant uint & r2,
  5174. constant uint & r3,
  5175. threadgroup int8_t * shared_values [[threadgroup(0)]],
  5176. uint3 tgpig[[threadgroup_position_in_grid]],
  5177. uint tiitg[[thread_index_in_threadgroup]],
  5178. uint tiisg[[thread_index_in_simdgroup]],
  5179. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  5180. impl_fn(src0,src1,dst,ne00,ne01,ne02,nb00,nb01,nb02,ne10,ne11,ne12,nb10,nb11,nb12,ne0,ne1,r2,r3,tgpig,tiisg);
  5181. }
  5182. template<kernel_mul_mv2_impl_t impl_fn>
  5183. void mmv_fn(
  5184. device const char * src0,
  5185. device const char * src1,
  5186. device float * dst,
  5187. constant int64_t & ne00,
  5188. constant int64_t & ne01,
  5189. constant int64_t & ne02,
  5190. constant uint64_t & nb00,
  5191. constant uint64_t & nb01,
  5192. constant uint64_t & nb02,
  5193. constant int64_t & ne10,
  5194. constant int64_t & ne11,
  5195. constant int64_t & ne12,
  5196. constant int64_t & ne13,
  5197. constant uint64_t & nb10,
  5198. constant uint64_t & nb11,
  5199. constant uint64_t & nb12,
  5200. constant int64_t & ne0,
  5201. constant int64_t & ne1,
  5202. constant uint64_t & nb1,
  5203. constant uint & r2,
  5204. constant uint & r3,
  5205. threadgroup int8_t * shared_values [[threadgroup(0)]],
  5206. uint3 tgpig[[threadgroup_position_in_grid]],
  5207. uint tiitg[[thread_index_in_threadgroup]],
  5208. uint tiisg[[thread_index_in_simdgroup]],
  5209. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  5210. impl_fn(src0,(const device float *)src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,shared_values,tgpig,tiisg,sgitg);
  5211. }
  5212. typedef void (mul_mv_impl_fn_t)(
  5213. device const char * src0,
  5214. device const char * src1,
  5215. device float * dst,
  5216. constant int64_t & ne00,
  5217. constant int64_t & ne01,
  5218. constant int64_t & ne02,
  5219. constant uint64_t & nb00,
  5220. constant uint64_t & nb01,
  5221. constant uint64_t & nb02,
  5222. constant int64_t & ne10,
  5223. constant int64_t & ne11,
  5224. constant int64_t & ne12,
  5225. constant int64_t & ne13,
  5226. constant uint64_t & nb10,
  5227. constant uint64_t & nb11,
  5228. constant uint64_t & nb12,
  5229. constant int64_t & ne0,
  5230. constant int64_t & ne1,
  5231. constant uint64_t & nb1,
  5232. constant uint & r2,
  5233. constant uint & r3,
  5234. threadgroup int8_t * shared_values [[threadgroup(0)]],
  5235. uint3 tgpig[[threadgroup_position_in_grid]],
  5236. uint tiitg[[thread_index_in_threadgroup]],
  5237. uint tiisg[[thread_index_in_simdgroup]],
  5238. uint sgitg[[simdgroup_index_in_threadgroup]]);
  5239. template<mul_mv_impl_fn_t impl_fn>
  5240. kernel void kernel_mul_mv_id(
  5241. device const char * src0s,
  5242. device const char * src1,
  5243. device float * dst,
  5244. device const char * ids,
  5245. constant uint64_t & nbi1,
  5246. constant int64_t & ne00,
  5247. constant int64_t & ne01,
  5248. constant int64_t & ne02,
  5249. constant uint64_t & nb00,
  5250. constant uint64_t & nb01,
  5251. constant uint64_t & nb02,
  5252. constant int64_t & ne10,
  5253. constant int64_t & ne11,
  5254. constant int64_t & ne12,
  5255. constant int64_t & ne13,
  5256. constant uint64_t & nb10,
  5257. constant uint64_t & nb11,
  5258. constant uint64_t & nb12,
  5259. constant int64_t & ne0,
  5260. constant int64_t & ne1,
  5261. constant uint64_t & nb1,
  5262. constant uint & r2,
  5263. constant uint & r3,
  5264. constant int & idx,
  5265. threadgroup int8_t * shared_values [[threadgroup(0)]],
  5266. uint3 tgpig[[threadgroup_position_in_grid]],
  5267. uint tiitg[[thread_index_in_threadgroup]],
  5268. uint tiisg[[thread_index_in_simdgroup]],
  5269. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  5270. const int64_t bid = tgpig.z/(ne12*ne13);
  5271. tgpig.z = tgpig.z%(ne12*ne13);
  5272. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  5273. device const char * src0 = src0s + id*nb02;
  5274. impl_fn(
  5275. src0,
  5276. src1 + bid*nb11,
  5277. dst + bid*ne0,
  5278. ne00,
  5279. ne01,
  5280. ne02,
  5281. nb00,
  5282. nb01,
  5283. nb02,
  5284. ne10,
  5285. ne11,
  5286. ne12,
  5287. ne13,
  5288. nb10,
  5289. nb11,
  5290. nb12,
  5291. ne0,
  5292. ne1,
  5293. nb1,
  5294. r2,
  5295. r3,
  5296. shared_values,
  5297. tgpig,
  5298. tiitg,
  5299. tiisg,
  5300. sgitg);
  5301. }
  5302. typedef void (kernel_mul_mv_id_t)(
  5303. device const char * src0s,
  5304. device const char * src1,
  5305. device float * dst,
  5306. device const char * ids,
  5307. constant uint64_t & nbi1,
  5308. constant int64_t & ne00,
  5309. constant int64_t & ne01,
  5310. constant int64_t & ne02,
  5311. constant uint64_t & nb00,
  5312. constant uint64_t & nb01,
  5313. constant uint64_t & nb02,
  5314. constant int64_t & ne10,
  5315. constant int64_t & ne11,
  5316. constant int64_t & ne12,
  5317. constant int64_t & ne13,
  5318. constant uint64_t & nb10,
  5319. constant uint64_t & nb11,
  5320. constant uint64_t & nb12,
  5321. constant int64_t & ne0,
  5322. constant int64_t & ne1,
  5323. constant uint64_t & nb1,
  5324. constant uint & r2,
  5325. constant uint & r3,
  5326. constant int & idx,
  5327. threadgroup int8_t * shared_values [[threadgroup(0)]],
  5328. uint3 tgpig[[threadgroup_position_in_grid]],
  5329. uint tiitg[[thread_index_in_threadgroup]],
  5330. uint tiisg[[thread_index_in_simdgroup]],
  5331. uint sgitg[[simdgroup_index_in_threadgroup]]);
  5332. template [[host_name("kernel_mul_mv_id_f32_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_f32_f32_impl>>;
  5333. template [[host_name("kernel_mul_mv_id_f16_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_f16_f32_impl>>;
  5334. template [[host_name("kernel_mul_mv_id_q8_0_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_q8_0_f32_impl>>;
  5335. template [[host_name("kernel_mul_mv_id_q4_0_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<mul_vec_q_n_f32_impl<block_q4_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>>>;
  5336. template [[host_name("kernel_mul_mv_id_q4_1_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<mul_vec_q_n_f32_impl<block_q4_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>>>;
  5337. template [[host_name("kernel_mul_mv_id_q5_0_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<mul_vec_q_n_f32_impl<block_q5_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>>>;
  5338. template [[host_name("kernel_mul_mv_id_q5_1_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<mul_vec_q_n_f32_impl<block_q5_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>>>;
  5339. template [[host_name("kernel_mul_mv_id_q2_K_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_q2_K_f32_impl>>;
  5340. template [[host_name("kernel_mul_mv_id_q3_K_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_q3_K_f32_impl>>;
  5341. template [[host_name("kernel_mul_mv_id_q4_K_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_q4_K_f32_impl>>;
  5342. template [[host_name("kernel_mul_mv_id_q5_K_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_q5_K_f32_impl>>;
  5343. template [[host_name("kernel_mul_mv_id_q6_K_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_q6_K_f32_impl>>;
  5344. template [[host_name("kernel_mul_mv_id_iq1_s_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq1_s_f32_impl>>;
  5345. template [[host_name("kernel_mul_mv_id_iq1_m_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq1_m_f32_impl>>;
  5346. template [[host_name("kernel_mul_mv_id_iq2_xxs_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq2_xxs_f32_impl>>;
  5347. template [[host_name("kernel_mul_mv_id_iq2_xs_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq2_xs_f32_impl>>;
  5348. template [[host_name("kernel_mul_mv_id_iq3_xxs_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq3_xxs_f32_impl>>;
  5349. template [[host_name("kernel_mul_mv_id_iq3_s_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq3_s_f32_impl>>;
  5350. template [[host_name("kernel_mul_mv_id_iq2_s_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq2_s_f32_impl>>;
  5351. template [[host_name("kernel_mul_mv_id_iq4_nl_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq4_nl_f32_impl>>;
  5352. #if QK_K != 64
  5353. template [[host_name("kernel_mul_mv_id_iq4_xs_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq4_xs_f32_impl>>;
  5354. #endif