ggml-opencl.cpp 339 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068
  1. #define CL_TARGET_OPENCL_VERSION GGML_OPENCL_TARGET_VERSION
  2. #define CL_USE_DEPRECATED_OPENCL_1_2_APIS
  3. // suppress warnings in CL headers for GCC and Clang
  4. #pragma GCC diagnostic ignored "-Woverlength-strings"
  5. #ifdef __clang__
  6. #pragma GCC diagnostic ignored "-Wgnu-anonymous-struct"
  7. #endif
  8. #include "ggml-opencl.h"
  9. #include "ggml-backend.h"
  10. #include "ggml-impl.h"
  11. #include "ggml-backend-impl.h"
  12. #include "ggml.h"
  13. #include <CL/cl.h>
  14. #include <string.h>
  15. #include <cstddef>
  16. #include <cstdint>
  17. #include <atomic>
  18. #include <fstream>
  19. #include <limits>
  20. #include <vector>
  21. #include <string>
  22. #include <cmath>
  23. #include <map>
  24. #include <memory>
  25. #include <charconv>
  26. #include <mutex>
  27. #undef MIN
  28. #undef MAX
  29. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  30. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  31. #define CEIL_DIV(M, N) (((M) + (N)-1) / (N))
  32. #define UNUSED(x) (void)(x)
  33. #define CL_CHECK(err) \
  34. do { \
  35. cl_int err_ = (err); \
  36. if (err_ != CL_SUCCESS) { \
  37. GGML_LOG_ERROR("ggml_opencl: %s error %d at %s:%d\n", \
  38. #err, err_, __FILE__, __LINE__); \
  39. GGML_ASSERT(0); \
  40. } \
  41. } while (0)
  42. //------------------------------------------------------------------------------
  43. // OpenCL
  44. //------------------------------------------------------------------------------
  45. bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor);
  46. enum GPU_FAMILY {
  47. ADRENO,
  48. INTEL,
  49. UNKNOWN,
  50. };
  51. enum ADRENO_GPU_GEN {
  52. ADRENO_UNKNOWN,
  53. A7X,
  54. A8X,
  55. X1E,
  56. };
  57. enum ADRENO_CL_COMPILER_TYPE {
  58. E031,
  59. DX,
  60. };
  61. struct ggml_cl_version {
  62. cl_uint major = 0;
  63. cl_uint minor = 0;
  64. };
  65. struct ggml_cl_compiler_version {
  66. ADRENO_CL_COMPILER_TYPE type;
  67. int major = -1;
  68. int minor = -1;
  69. int patch = -1;
  70. bool same(ADRENO_CL_COMPILER_TYPE t, int x, int y, int z) const {
  71. return major == x && minor == y && patch == z && type == t;
  72. }
  73. bool newer_than(ADRENO_CL_COMPILER_TYPE t, int x, int y, int z) const {
  74. return major*10000 + minor*100 + patch > x*10000 + y*100 + z && type == t;
  75. }
  76. bool newer_than_or_same(ADRENO_CL_COMPILER_TYPE t, int x, int y, int z) const {
  77. return same(t, x, y, z) || newer_than(t, x, y, z);
  78. }
  79. };
  80. static size_t align_to(size_t value, size_t to_alignment) {
  81. GGML_ASSERT(to_alignment && "Invalid alignment (must be non-zero)");
  82. GGML_ASSERT((to_alignment & (to_alignment - 1)) == 0 && "to_alignment must be power-of-two");
  83. return ((value + to_alignment - 1) / to_alignment) * to_alignment;
  84. }
  85. // Parses a version string of form "XX.YY ". On an error returns ggml_cl_version with all zeroes.
  86. static ggml_cl_version parse_cl_version(std::string_view str) {
  87. size_t major_str_begin = 0;
  88. size_t major_str_end = str.find(".", major_str_begin);
  89. if (major_str_end == std::string::npos) {
  90. return {};
  91. }
  92. size_t minor_str_begin = major_str_end + 1;
  93. size_t minor_str_end = str.find(" ", minor_str_begin);
  94. if (minor_str_end == std::string::npos) {
  95. return {};
  96. }
  97. cl_uint version_major;
  98. if (std::from_chars(str.data() + major_str_begin, str.data() + major_str_end, version_major).ec != std::errc{}) {
  99. return {};
  100. }
  101. cl_uint version_minor;
  102. if (std::from_chars(str.data() + minor_str_begin, str.data() + minor_str_end, version_minor).ec != std::errc{}) {
  103. return {};
  104. }
  105. return { version_major, version_minor };
  106. }
  107. // Returns OpenCL platform's version. On an error returns ggml_cl_version with all zeroes.
  108. static ggml_cl_version get_opencl_platform_version(cl_platform_id platform) {
  109. size_t param_size;
  110. CL_CHECK(clGetPlatformInfo(platform, CL_PLATFORM_VERSION, 0, nullptr, &param_size));
  111. std::unique_ptr<char[]> param_storage(new char[param_size]);
  112. CL_CHECK(clGetPlatformInfo(platform, CL_PLATFORM_VERSION, param_size, param_storage.get(), nullptr));
  113. auto param_value = std::string_view(param_storage.get(), param_size);
  114. const std::string version_prefix = "OpenCL "; // Suffix: "XX.YY <platform-specific-info>"
  115. if (param_value.find(version_prefix) != 0) {
  116. return {};
  117. }
  118. param_value.remove_prefix(version_prefix.length());
  119. return parse_cl_version(param_value);
  120. }
  121. // Return a version to use in OpenCL C compilation. On an error returns ggml_cl_version with all zeroes.
  122. static ggml_cl_version get_opencl_c_version(ggml_cl_version platform_version, cl_device_id device) {
  123. size_t param_size;
  124. #if CL_TARGET_OPENCL_VERSION >= 300
  125. if (platform_version.major >= 3) {
  126. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_ALL_VERSIONS, 0, nullptr, &param_size));
  127. if (!param_size) {
  128. return {};
  129. }
  130. std::unique_ptr<cl_name_version[]> versions(new cl_name_version[param_size]);
  131. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_ALL_VERSIONS, param_size, versions.get(), nullptr));
  132. unsigned versions_count = param_size / sizeof(cl_name_version);
  133. cl_version version_max = 0;
  134. for (unsigned i = 0; i < versions_count; i++) {
  135. version_max = std::max<cl_version>(versions[i].version, version_max);
  136. }
  137. return { CL_VERSION_MAJOR(version_max), CL_VERSION_MINOR(version_max) };
  138. }
  139. #else
  140. GGML_UNUSED(platform_version);
  141. #endif // CL_TARGET_OPENCL_VERSION >= 300
  142. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_VERSION, 0, nullptr, &param_size));
  143. if (!param_size) {
  144. return {};
  145. }
  146. std::unique_ptr<char[]> param_storage(new char[param_size]);
  147. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_VERSION, param_size, param_storage.get(), nullptr));
  148. auto param_value = std::string_view(param_storage.get(), param_size);
  149. const std::string version_prefix = "OpenCL C "; // Suffix: "XX.YY <platform-specific-info>"
  150. if (param_value.find(version_prefix) != 0) {
  151. return {};
  152. }
  153. param_value.remove_prefix(version_prefix.length());
  154. return parse_cl_version(param_value);
  155. }
  156. static ADRENO_GPU_GEN get_adreno_gpu_gen(const char *device_name) {
  157. if (strstr(device_name, "730") ||
  158. strstr(device_name, "740") ||
  159. strstr(device_name, "750")) {
  160. return ADRENO_GPU_GEN::A7X;
  161. }
  162. if (strstr(device_name, "830")) {
  163. return ADRENO_GPU_GEN::A8X;
  164. }
  165. if (strstr(device_name, "X1")) {
  166. return ADRENO_GPU_GEN::X1E;
  167. }
  168. return ADRENO_GPU_GEN::ADRENO_UNKNOWN;
  169. }
  170. static ggml_cl_compiler_version get_adreno_cl_compiler_version(const char *driver_version) {
  171. std::string driver_ver_str(driver_version);
  172. ADRENO_CL_COMPILER_TYPE type = ADRENO_CL_COMPILER_TYPE::E031;
  173. size_t compiler_ver_pos = driver_ver_str.find("E031");
  174. size_t compiler_ver_len = 13;
  175. size_t compiler_major_offset = 5;
  176. size_t compiler_minor_offset = 8;
  177. size_t compiler_patch_offset = 11;
  178. if (compiler_ver_pos == std::string::npos) {
  179. compiler_ver_pos = driver_ver_str.find("DX");
  180. if (compiler_ver_pos == std::string::npos) {
  181. return {};
  182. }
  183. type = ADRENO_CL_COMPILER_TYPE::DX;
  184. compiler_ver_len = 11;
  185. compiler_major_offset = 3;
  186. }
  187. std::string compiler_ver_str = driver_ver_str.substr(compiler_ver_pos, compiler_ver_len);
  188. int major = std::atoi(compiler_ver_str.substr(compiler_major_offset, 2).c_str());
  189. int minor = std::atoi(compiler_ver_str.substr(compiler_minor_offset, 2).c_str());
  190. int patch = std::atoi(compiler_ver_str.substr(compiler_patch_offset, 2).c_str());
  191. return { type, major, minor, patch };
  192. }
  193. // Profiling
  194. struct ProfilingInfo {
  195. std::string op_name;
  196. std::string kernel_name;
  197. cl_kernel kernel;
  198. cl_event evt;
  199. cl_ulong cmd_queued;
  200. cl_ulong cmd_submit;
  201. cl_ulong cmd_start;
  202. cl_ulong cmd_end;
  203. cl_ulong overhead_start;
  204. cl_ulong overhead_end;
  205. // For the times below, see spec for clGetEventProfilingInfo
  206. // The time kernel spent in cmd queue - SUBMIT - QUEUED
  207. cl_ulong cmd_queued_duration_ns;
  208. // The time kernel spent for submission - START - SUBMIT
  209. cl_ulong cmd_submit_duration_ns;
  210. // Kernel execution time in nanoseconds - END - START
  211. cl_ulong cmd_duration_ns;
  212. // The time for the kernel to complete - COMPLETE - END
  213. cl_ulong cmd_complete_duration_ns;
  214. // Total time to finish the kernel - COMPELTE - QUEUED
  215. cl_ulong cmd_total_duration_ns;
  216. // Global and local work sizes.
  217. size_t global_size[3];
  218. size_t local_size[3];
  219. // Op output size.
  220. size_t output_size[4];
  221. };
  222. static void populateProfilingInfo(
  223. ProfilingInfo& info, cl_event evt, cl_kernel kernel, cl_uint work_dim,
  224. size_t global_size[3], size_t local_size[3],
  225. const ggml_tensor * tensor) {
  226. info.op_name = tensor->name;
  227. info.kernel = kernel;
  228. info.evt = evt;
  229. // 0 means not specified, e.g., 2D workgroup, or NULL for driver to choose
  230. info.local_size[0] = 0;
  231. info.local_size[1] = 0;
  232. info.local_size[2] = 0;
  233. info.global_size[0] = 0;
  234. info.global_size[1] = 0;
  235. info.global_size[2] = 0;
  236. if (local_size) {
  237. for (cl_uint i = 0; i < work_dim; ++i) {
  238. info.local_size[i] = local_size[i];
  239. }
  240. }
  241. for (cl_uint i = 0; i < work_dim; ++i) {
  242. info.global_size[i] = global_size[i];
  243. }
  244. info.output_size[0] = tensor->ne[0];
  245. info.output_size[1] = tensor->ne[1];
  246. info.output_size[2] = tensor->ne[2];
  247. info.output_size[3] = tensor->ne[3];
  248. }
  249. struct ggml_backend_opencl_context;
  250. // backend device context
  251. struct ggml_backend_opencl_device_context {
  252. cl_platform_id platform;
  253. std::string platform_name;
  254. cl_device_id device;
  255. std::string device_name;
  256. cl_device_type device_type;
  257. std::string device_version;
  258. // Initialized by ggml_cl2_init().
  259. ggml_backend_opencl_context * backend_ctx = nullptr;
  260. // Initialized by ggml_backend_opencl_device_get_buffer_type()
  261. ggml_backend_buffer_type buffer_type;
  262. cl_context context = nullptr;
  263. };
  264. // backend context
  265. struct ggml_backend_opencl_context {
  266. int ref_count;
  267. cl_device_id device;
  268. std::string device_name;
  269. std::string driver_version;
  270. GPU_FAMILY gpu_family;
  271. ADRENO_GPU_GEN adreno_gen;
  272. cl_int alignment;
  273. size_t max_alloc_size;
  274. size_t max_workgroup_size;
  275. bool fp16_support;
  276. bool has_vector_subgroup_broadcast;
  277. bool disable_fusion;
  278. ggml_cl_compiler_version adreno_cl_compiler_version;
  279. int adreno_wave_size;
  280. cl_bool non_uniform_workgroups;
  281. cl_context context;
  282. cl_command_queue queue;
  283. cl_program program_add;
  284. cl_program program_add_id;
  285. cl_program program_clamp;
  286. cl_program program_cpy;
  287. cl_program program_cvt;
  288. cl_program program_diag_mask_inf;
  289. cl_program program_gelu;
  290. cl_program program_gemv_noshuffle_general;
  291. cl_program program_gemv_noshuffle;
  292. cl_program program_get_rows;
  293. cl_program program_set_rows;
  294. cl_program program_glu;
  295. cl_program program_im2col_f16;
  296. cl_program program_im2col_f32;
  297. cl_program program_mul_mat_Ab_Bi_8x4;
  298. cl_program program_mul_mv_q4_0_f32;
  299. cl_program program_mul_mv_q4_0_f32_v;
  300. cl_program program_mul_mv_q4_0_f32_8x_flat;
  301. cl_program program_mul_mv_q4_0_f32_1d_8x_flat;
  302. cl_program program_mul_mv_q4_0_f32_1d_16x_flat;
  303. cl_program program_mul_mv_q6_K;
  304. cl_program program_mul_mv_mxfp4_f32;
  305. cl_program program_mul_mv_f16_f16;
  306. cl_program program_mul_mv_f16_f32_1row;
  307. cl_program program_mul_mv_f16_f32_l4;
  308. cl_program program_mul_mv_f16_f32;
  309. cl_program program_mul_mv_f32_f32;
  310. cl_program program_mul;
  311. cl_program program_mul_mat_f16_f32_tiled;
  312. cl_program program_div;
  313. cl_program program_sub;
  314. cl_program program_norm;
  315. cl_program program_relu;
  316. cl_program program_rms_norm;
  317. cl_program program_group_norm;
  318. cl_program program_rope;
  319. cl_program program_scale;
  320. cl_program program_silu;
  321. cl_program program_sigmoid;
  322. cl_program program_softmax_f32;
  323. cl_program program_softmax_f16;
  324. cl_program program_softmax_4_f32;
  325. cl_program program_softmax_4_f16;
  326. cl_program program_argsort_f32_i32;
  327. cl_program program_sum_rows_f32;
  328. cl_program program_repeat;
  329. cl_program program_pad;
  330. cl_program program_tanh;
  331. cl_program program_upscale;
  332. cl_program program_concat;
  333. cl_program program_conv_2d_f16;
  334. cl_program program_conv_2d_f32;
  335. cl_program program_conv_2d_f16_f32;
  336. cl_program program_tsembd;
  337. cl_program program_mul_mv_id_q4_0_f32_8x_flat;
  338. cl_program program_mul_mv_id_mxfp4_f32;
  339. cl_program program_mul_mm_f32_f32_l4_lm;
  340. cl_program program_mul_mm_f16_f32_l4_lm;
  341. cl_kernel kernel_add, kernel_add_row, kernel_add_f16, kernel_add_row_f16;
  342. cl_kernel kernel_mul, kernel_mul_row, kernel_mul_f16, kernel_mul_row_f16;
  343. cl_kernel kernel_div, kernel_div_row, kernel_div_f16, kernel_div_row_f16;
  344. cl_kernel kernel_sub, kernel_sub_row, kernel_sub_f16, kernel_sub_row_f16;
  345. cl_kernel kernel_add_id;
  346. cl_kernel kernel_scale;
  347. cl_kernel kernel_silu, kernel_silu_4;
  348. cl_kernel kernel_gelu, kernel_gelu_4;
  349. cl_kernel kernel_gelu_erf, kernel_gelu_erf_4;
  350. cl_kernel kernel_gelu_quick, kernel_gelu_quick_4;
  351. cl_kernel kernel_relu;
  352. cl_kernel kernel_sigmoid_f32, kernel_sigmoid_f16;
  353. cl_kernel kernel_clamp;
  354. cl_kernel kernel_geglu, kernel_reglu, kernel_swiglu, kernel_swiglu_oai, kernel_geglu_erf, kernel_geglu_quick,
  355. kernel_geglu_f16, kernel_reglu_f16, kernel_swiglu_f16, kernel_geglu_erf_f16, kernel_geglu_quick_f16;
  356. cl_kernel kernel_norm, kernel_norm_mul_add;
  357. cl_kernel kernel_rms_norm, kernel_rms_norm_mul;
  358. cl_kernel kernel_group_norm, kernel_group_norm_mul_add;
  359. cl_kernel kernel_diag_mask_inf, kernel_diag_mask_inf_8;
  360. cl_kernel kernel_soft_max, kernel_soft_max_4;
  361. cl_kernel kernel_soft_max_f16, kernel_soft_max_4_f16;
  362. std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f16;
  363. std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f16_q1;
  364. std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f32;
  365. std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f32_q1;
  366. std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f32_f16;
  367. std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f32_f16_q1;
  368. std::map<std::pair<int, int>, int> kernels_flash_attn_bm;
  369. std::map<std::pair<int, int>, int> kernels_flash_attn_bn;
  370. cl_kernel kernel_get_rows_f32, kernel_get_rows_f16, kernel_get_rows_q4_0;
  371. cl_kernel kernel_set_rows_f32, kernel_set_rows_f16;
  372. cl_kernel kernel_rope_norm_f32, kernel_rope_norm_f16, kernel_rope_neox_f32, kernel_rope_neox_f16;
  373. cl_kernel kernel_rope_multi_f32, kernel_rope_multi_f16, kernel_rope_vision_f32, kernel_rope_vision_f16;
  374. cl_kernel kernel_cpy_f16_f16, kernel_cpy_f16_f32, kernel_cpy_f32_f16, kernel_cpy_f32_f32;
  375. cl_kernel kernel_mul_mat_f32_f32;
  376. cl_kernel kernel_mul_mat_f16_f16;
  377. cl_kernel kernel_mul_mat_f16_f32_1row;
  378. cl_kernel kernel_mul_mat_f16_f32;
  379. cl_kernel kernel_mul_mat_f16_f32_l4;
  380. cl_kernel kernel_mul_mat_f16_f32_tiled;
  381. cl_kernel kernel_mul_mat_q4_0_f32, kernel_mul_mat_q4_0_f32_v;
  382. cl_kernel kernel_convert_block_q4_0, kernel_restore_block_q4_0;
  383. cl_kernel kernel_mul_mat_q4_0_f32_8x_flat;
  384. cl_kernel kernel_convert_block_q4_0_noshuffle;
  385. cl_kernel kernel_mul_mat_q4_0_f32_1d_8x_flat, kernel_mul_mat_q4_0_f32_1d_16x_flat;
  386. cl_kernel kernel_mul_mv_q6_K_f32;
  387. cl_kernel kernel_mul_mv_mxfp4_f32;
  388. cl_kernel kernel_im2col_f32, kernel_im2col_f16;
  389. cl_kernel kernel_argsort_f32_i32;
  390. cl_kernel kernel_sum_rows_f32;
  391. cl_kernel kernel_repeat;
  392. cl_kernel kernel_pad;
  393. cl_kernel kernel_tanh_f32_nd;
  394. cl_kernel kernel_tanh_f16_nd;
  395. cl_kernel kernel_upscale;
  396. cl_kernel kernel_upscale_bilinear;
  397. cl_kernel kernel_concat_f32_contiguous;
  398. cl_kernel kernel_concat_f32_non_contiguous;
  399. cl_kernel kernel_conv_2d_f16;
  400. cl_kernel kernel_conv_2d_f32;
  401. cl_kernel kernel_conv_2d_f16_f32;
  402. cl_kernel kernel_timestep_embedding;
  403. cl_kernel kernel_mul_mv_id_q4_0_f32_8x_flat;
  404. cl_kernel kernel_mul_mv_id_mxfp4_f32;
  405. cl_kernel kernel_mul_mm_f32_f32_l4_lm;
  406. cl_kernel kernel_mul_mm_f16_f32_l4_lm;
  407. std::vector<ProfilingInfo> profiling_info;
  408. void write_profiling_info() {
  409. FILE * fperf = fopen("cl_profiling.csv", "w");
  410. if (!fperf) {
  411. GGML_LOG_ERROR("Failed to open cl_profiling.csv\n");
  412. return;
  413. }
  414. // Populate profiling info
  415. for (ProfilingInfo & info : profiling_info) {
  416. cl_ulong cmd_queued;
  417. cl_ulong cmd_submit;
  418. cl_ulong cmd_start;
  419. cl_ulong cmd_end;
  420. cl_ulong cmd_complete;
  421. CL_CHECK(clWaitForEvents(1, &info.evt));
  422. CL_CHECK(clGetEventProfilingInfo(
  423. info.evt, CL_PROFILING_COMMAND_QUEUED, sizeof(cl_ulong), &cmd_queued, NULL));
  424. CL_CHECK(clGetEventProfilingInfo(
  425. info.evt, CL_PROFILING_COMMAND_SUBMIT, sizeof(cl_ulong), &cmd_submit, NULL));
  426. CL_CHECK(clGetEventProfilingInfo(
  427. info.evt, CL_PROFILING_COMMAND_START, sizeof(cl_ulong), &cmd_start, NULL));
  428. CL_CHECK(clGetEventProfilingInfo(
  429. info.evt, CL_PROFILING_COMMAND_END, sizeof(cl_ulong), &cmd_end, NULL));
  430. CL_CHECK(clGetEventProfilingInfo(
  431. info.evt, CL_PROFILING_COMMAND_COMPLETE, sizeof(cl_ulong), &cmd_complete, NULL));
  432. CL_CHECK(clReleaseEvent(info.evt));
  433. char kernel_name[512];
  434. CL_CHECK(clGetKernelInfo(info.kernel, CL_KERNEL_FUNCTION_NAME,
  435. sizeof(kernel_name), kernel_name, NULL));
  436. info.kernel_name = kernel_name;
  437. info.cmd_queued = cmd_queued;
  438. info.cmd_submit = cmd_submit;
  439. info.cmd_start = cmd_start;
  440. info.cmd_end = cmd_end;
  441. info.cmd_queued_duration_ns = cmd_submit - cmd_queued;
  442. info.cmd_submit_duration_ns = cmd_start - cmd_submit;
  443. info.cmd_duration_ns = cmd_end - cmd_start;
  444. info.cmd_complete_duration_ns = cmd_complete - cmd_end;
  445. info.cmd_total_duration_ns = cmd_complete - cmd_queued;
  446. }
  447. // Dump a csv
  448. float total_kernel_time = 0;
  449. fprintf(fperf, "op name, kernel name, queued duration (ms), submit duration(ms), exec duration (ms), complete duration (ms), total duration (ms), global size, local size, output size\n");
  450. for (const ProfilingInfo & info : profiling_info) {
  451. total_kernel_time += info.cmd_duration_ns/1.e6f;
  452. fprintf(fperf, "%s,%s,%f,%f,%f,%f,%f,%zux%zux%zu,%zux%zux%zu,%zux%zux%zux%zu\n",
  453. info.op_name.c_str(), info.kernel_name.c_str(),
  454. info.cmd_queued_duration_ns/1.e6f,
  455. info.cmd_submit_duration_ns/1.e6f,
  456. info.cmd_duration_ns/1.e6f,
  457. info.cmd_complete_duration_ns/1.e6f,
  458. info.cmd_total_duration_ns/1.e6f,
  459. info.global_size[0], info.global_size[1], info.global_size[2],
  460. info.local_size[0], info.local_size[1], info.local_size[2],
  461. info.output_size[0], info.output_size[1], info.output_size[2], info.output_size[3]);
  462. }
  463. fclose(fperf);
  464. GGML_LOG_INFO("ggml_opencl: total kernel time: %f\n", total_kernel_time);
  465. // Dump a simple chrome trace
  466. FILE* ftrace = fopen("cl_trace.json", "w");
  467. if (!ftrace) {
  468. GGML_LOG_ERROR("Failed to open cl_trace.json\n");
  469. return;
  470. }
  471. fprintf(ftrace, "[\n");
  472. for (const ProfilingInfo & info : profiling_info) {
  473. fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"B\", \"ts\": %lu, \"pid\": \"\", \"tid\": \"Host\"},\n",
  474. info.kernel_name.c_str(), info.cmd_queued/1000);
  475. fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"E\", \"ts\": %lu, \"pid\": \"\", \"tid\": \"Host\"},\n",
  476. info.kernel_name.c_str(), info.cmd_submit/1000);
  477. fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"B\", \"ts\": %lu, \"pid\": \"\", \"tid\": \"Device\"},\n",
  478. info.kernel_name.c_str(), info.cmd_start/1000);
  479. fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"E\", \"ts\": %lu, \"pid\": \"\", \"tid\": \"Device\"},\n",
  480. info.kernel_name.c_str(), info.cmd_end/1000);
  481. }
  482. fclose(ftrace);
  483. }
  484. size_t get_kernel_workgroup_size(cl_kernel kernel) const {
  485. size_t workgroup_size = 0;
  486. size_t ret_size = 0;
  487. CL_CHECK(
  488. clGetKernelWorkGroupInfo(kernel, device, CL_KERNEL_WORK_GROUP_SIZE,
  489. sizeof(size_t), &workgroup_size, &ret_size));
  490. GGML_ASSERT(sizeof(size_t) == ret_size);
  491. return workgroup_size;
  492. }
  493. void enqueue_ndrange_kernel(cl_kernel kernel, cl_uint work_dim, size_t *global_work_size, size_t *local_work_size, const ggml_tensor * tensor) {
  494. #ifdef GGML_OPENCL_PROFILING
  495. cl_event evt;
  496. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, work_dim, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  497. profiling_info.emplace_back();
  498. populateProfilingInfo(profiling_info.back(), evt, kernel, work_dim, global_work_size, local_work_size, tensor);
  499. #else
  500. GGML_UNUSED(tensor);
  501. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, work_dim, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  502. #endif
  503. }
  504. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  505. // Transpose kernels
  506. cl_program program_transpose;
  507. cl_kernel kernel_transpose_32;
  508. cl_kernel kernel_transpose_32_16;
  509. cl_kernel kernel_transpose_16;
  510. cl_kernel kernel_transpose_16_4x1;
  511. cl_mem A_s_d_max; // max scale buffer size for transpose
  512. cl_mem A_q_d_max; // max weight buffer size for transpose
  513. cl_mem B_d_max; // max activation buffer size for transpose
  514. // Gemm and Gemv related programs, kernels, etc
  515. cl_program program_CL_gemm;
  516. cl_program program_CL_gemv_general;
  517. cl_program program_CL_gemv_4096_1_11008;
  518. cl_program program_CL_gemv_4096_1_4096;
  519. cl_program program_CL_gemv_11008_1_4096;
  520. cl_program program_CL_gemv_32000_1_4096;
  521. cl_kernel CL_mul_mat_Ab_Bi_8x4;
  522. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general;
  523. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008;
  524. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096;
  525. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096;
  526. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096;
  527. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  528. void free() {
  529. ref_count--;
  530. if (ref_count == 0) {
  531. #ifdef GGML_OPENCL_PROFILING
  532. write_profiling_info();
  533. profiling_info.clear();
  534. #endif
  535. }
  536. }
  537. };
  538. // All registered devices with a default device in the front.
  539. static std::vector<ggml_backend_device> g_ggml_backend_opencl_devices;
  540. inline std::string read_file(const std::string &path) {
  541. std::ifstream ifs(path);
  542. if (!ifs) {
  543. return "";
  544. }
  545. std::string text;
  546. ifs.seekg(0, std::ios::end);
  547. text.resize(ifs.tellg());
  548. ifs.seekg(0, std::ios::beg);
  549. ifs.read(&text[0], text.size());
  550. return text;
  551. }
  552. static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer, const std::string &compile_opts) {
  553. cl_program p;
  554. char *program_log;
  555. size_t program_size;
  556. size_t log_size;
  557. int err;
  558. program_size = strlen(program_buffer);
  559. p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err);
  560. if(err < 0) {
  561. GGML_LOG_ERROR("OpenCL error creating program");
  562. exit(1);
  563. }
  564. err = clBuildProgram(p, 0, NULL, compile_opts.c_str(), NULL, NULL);
  565. if(err < 0) {
  566. clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
  567. program_log = (char*) malloc(log_size + 1);
  568. program_log[log_size] = '\0';
  569. clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL);
  570. GGML_LOG_ERROR("ggml_opencl: kernel compile error:\n\n%s\n", program_log);
  571. free(program_log);
  572. exit(1);
  573. }
  574. return p;
  575. }
  576. static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_version opencl_c_version) {
  577. cl_int err;
  578. // compiler options for general kernels
  579. auto opencl_c_std =
  580. std::string("CL") + std::to_string(opencl_c_version.major) + "." + std::to_string(opencl_c_version.minor);
  581. std::string compile_opts = std::string("-cl-std=") + opencl_c_std +
  582. " -cl-mad-enable -cl-unsafe-math-optimizations"
  583. " -cl-finite-math-only -cl-fast-relaxed-math";
  584. GGML_LOG_INFO("ggml_opencl: loading OpenCL kernels");
  585. // add
  586. {
  587. #ifdef GGML_OPENCL_EMBED_KERNELS
  588. const std::string kernel_src {
  589. #include "add.cl.h"
  590. };
  591. #else
  592. const std::string kernel_src = read_file("add.cl");
  593. #endif
  594. backend_ctx->program_add =
  595. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  596. CL_CHECK((backend_ctx->kernel_add = clCreateKernel(backend_ctx->program_add, "kernel_add", &err), err));
  597. CL_CHECK((backend_ctx->kernel_add_row = clCreateKernel(backend_ctx->program_add, "kernel_add_row", &err), err));
  598. CL_CHECK((backend_ctx->kernel_add_f16 = clCreateKernel(backend_ctx->program_add, "kernel_add_f16", &err), err));
  599. CL_CHECK((backend_ctx->kernel_add_row_f16 = clCreateKernel(backend_ctx->program_add, "kernel_add_row_f16", &err), err));
  600. GGML_LOG_CONT(".");
  601. }
  602. // add_id
  603. {
  604. #ifdef GGML_OPENCL_EMBED_KERNELS
  605. const std::string kernel_src {
  606. #include "add_id.cl.h"
  607. };
  608. #else
  609. const std::string kernel_src = read_file("add_id.cl");
  610. #endif
  611. backend_ctx->program_add_id =
  612. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  613. CL_CHECK((backend_ctx->kernel_add_id = clCreateKernel(backend_ctx->program_add_id, "kernel_add_id", &err), err));
  614. GGML_LOG_CONT(".");
  615. }
  616. // clamp
  617. {
  618. #ifdef GGML_OPENCL_EMBED_KERNELS
  619. const std::string kernel_src {
  620. #include "clamp.cl.h"
  621. };
  622. #else
  623. const std::string kernel_src = read_file("clamp.cl");
  624. #endif
  625. backend_ctx->program_clamp =
  626. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  627. CL_CHECK((backend_ctx->kernel_clamp = clCreateKernel(backend_ctx->program_clamp, "kernel_clamp", &err), err));
  628. GGML_LOG_CONT(".");
  629. }
  630. // cpy
  631. {
  632. #ifdef GGML_OPENCL_EMBED_KERNELS
  633. const std::string kernel_src {
  634. #include "cpy.cl.h"
  635. };
  636. #else
  637. const std::string kernel_src = read_file("cpy.cl");
  638. #endif
  639. backend_ctx->program_cpy =
  640. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  641. CL_CHECK((backend_ctx->kernel_cpy_f16_f16 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f16_f16", &err), err));
  642. CL_CHECK((backend_ctx->kernel_cpy_f16_f32 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f16_f32", &err), err));
  643. CL_CHECK((backend_ctx->kernel_cpy_f32_f16 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f32_f16", &err), err));
  644. CL_CHECK((backend_ctx->kernel_cpy_f32_f32 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f32_f32", &err), err));
  645. GGML_LOG_CONT(".");
  646. }
  647. // cvt
  648. {
  649. #ifdef GGML_OPENCL_EMBED_KERNELS
  650. const std::string kernel_src {
  651. #include "cvt.cl.h"
  652. };
  653. #else
  654. const std::string kernel_src = read_file("cvt.cl");
  655. #endif
  656. backend_ctx->program_cvt =
  657. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  658. CL_CHECK((backend_ctx->kernel_convert_block_q4_0_noshuffle = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q4_0_noshuffle", &err), err));
  659. CL_CHECK((backend_ctx->kernel_convert_block_q4_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q4_0", &err), err));
  660. CL_CHECK((backend_ctx->kernel_restore_block_q4_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_q4_0", &err), err));
  661. GGML_LOG_CONT(".");
  662. }
  663. // diag_mask_inf
  664. {
  665. #ifdef GGML_OPENCL_EMBED_KERNELS
  666. const std::string kernel_src {
  667. #include "diag_mask_inf.cl.h"
  668. };
  669. #else
  670. const std::string kernel_src = read_file("diag_mask_inf.cl");
  671. #endif
  672. backend_ctx->program_diag_mask_inf =
  673. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  674. CL_CHECK((backend_ctx->kernel_diag_mask_inf_8 = clCreateKernel(backend_ctx->program_diag_mask_inf, "kernel_diag_mask_inf_8", &err), err));
  675. CL_CHECK((backend_ctx->kernel_diag_mask_inf = clCreateKernel(backend_ctx->program_diag_mask_inf, "kernel_diag_mask_inf", &err), err));
  676. GGML_LOG_CONT(".");
  677. }
  678. // gelu
  679. {
  680. #ifdef GGML_OPENCL_EMBED_KERNELS
  681. const std::string kernel_src {
  682. #include "gelu.cl.h"
  683. };
  684. #else
  685. const std::string kernel_src = read_file("gelu.cl");
  686. #endif
  687. backend_ctx->program_gelu =
  688. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  689. CL_CHECK((backend_ctx->kernel_gelu = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu", &err), err));
  690. CL_CHECK((backend_ctx->kernel_gelu_4 = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_4", &err), err));
  691. CL_CHECK((backend_ctx->kernel_gelu_erf = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_erf", &err), err));
  692. CL_CHECK((backend_ctx->kernel_gelu_erf_4 = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_erf_4", &err), err));
  693. CL_CHECK((backend_ctx->kernel_gelu_quick = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_quick", &err), err));
  694. CL_CHECK((backend_ctx->kernel_gelu_quick_4 = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_quick_4", &err), err));
  695. GGML_LOG_CONT(".");
  696. }
  697. // glu
  698. {
  699. #ifdef GGML_OPENCL_EMBED_KERNELS
  700. const std::string kernel_src {
  701. #include "glu.cl.h"
  702. };
  703. #else
  704. const std::string kernel_src = read_file("glu.cl");
  705. #endif
  706. backend_ctx->program_glu =
  707. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  708. CL_CHECK((backend_ctx->kernel_geglu = clCreateKernel(backend_ctx->program_glu, "kernel_geglu", &err), err));
  709. CL_CHECK((backend_ctx->kernel_reglu = clCreateKernel(backend_ctx->program_glu, "kernel_reglu", &err), err));
  710. CL_CHECK((backend_ctx->kernel_swiglu = clCreateKernel(backend_ctx->program_glu, "kernel_swiglu", &err), err));
  711. CL_CHECK((backend_ctx->kernel_swiglu_oai = clCreateKernel(backend_ctx->program_glu, "kernel_swiglu_oai", &err), err));
  712. CL_CHECK((backend_ctx->kernel_geglu_erf = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_erf", &err), err));
  713. CL_CHECK((backend_ctx->kernel_geglu_quick = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_quick", &err), err));
  714. CL_CHECK((backend_ctx->kernel_geglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_f16", &err), err));
  715. CL_CHECK((backend_ctx->kernel_reglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_reglu_f16", &err), err));
  716. CL_CHECK((backend_ctx->kernel_swiglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_swiglu_f16", &err), err));
  717. CL_CHECK((backend_ctx->kernel_geglu_erf_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_erf_f16", &err), err));
  718. CL_CHECK((backend_ctx->kernel_geglu_quick_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_quick_f16", &err), err));
  719. GGML_LOG_CONT(".");
  720. }
  721. // get_rows
  722. {
  723. #ifdef GGML_OPENCL_EMBED_KERNELS
  724. const std::string kernel_src {
  725. #include "get_rows.cl.h"
  726. };
  727. #else
  728. const std::string kernel_src = read_file("get_rows.cl");
  729. #endif
  730. backend_ctx->program_get_rows =
  731. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  732. CL_CHECK((backend_ctx->kernel_get_rows_f32 = clCreateKernel(backend_ctx->program_get_rows, "kernel_get_rows_f32", &err), err));
  733. CL_CHECK((backend_ctx->kernel_get_rows_f16 = clCreateKernel(backend_ctx->program_get_rows, "kernel_get_rows_f16", &err), err));
  734. CL_CHECK((backend_ctx->kernel_get_rows_q4_0 = clCreateKernel(backend_ctx->program_get_rows, "kernel_get_rows_q4_0", &err), err));
  735. GGML_LOG_CONT(".");
  736. }
  737. // im2col_f32
  738. {
  739. #ifdef GGML_OPENCL_EMBED_KERNELS
  740. const std::string kernel_src {
  741. #include "im2col_f32.cl.h"
  742. };
  743. #else
  744. const std::string kernel_src = read_file("im2col_f32.cl");
  745. #endif
  746. backend_ctx->program_im2col_f32 =
  747. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  748. CL_CHECK((backend_ctx->kernel_im2col_f32 = clCreateKernel(backend_ctx->program_im2col_f32, "kernel_im2col_f32", &err), err));
  749. GGML_LOG_CONT(".");
  750. }
  751. // im2col_f16
  752. {
  753. #ifdef GGML_OPENCL_EMBED_KERNELS
  754. const std::string kernel_src {
  755. #include "im2col_f16.cl.h"
  756. };
  757. #else
  758. const std::string kernel_src = read_file("im2col_f16.cl");
  759. #endif
  760. backend_ctx->program_im2col_f16 =
  761. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  762. CL_CHECK((backend_ctx->kernel_im2col_f16 = clCreateKernel(backend_ctx->program_im2col_f16, "kernel_im2col_f16", &err), err));
  763. GGML_LOG_CONT(".");
  764. }
  765. // mul_mv_q4_0_f32
  766. {
  767. #ifdef GGML_OPENCL_EMBED_KERNELS
  768. const std::string kernel_src {
  769. #include "mul_mv_q4_0_f32.cl.h"
  770. };
  771. #else
  772. const std::string kernel_src = read_file("mul_mv_q4_0_f32.cl");
  773. #endif
  774. backend_ctx->program_mul_mv_q4_0_f32 =
  775. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  776. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32 = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32, "kernel_mul_mat_q4_0_f32", &err), err));
  777. GGML_LOG_CONT(".");
  778. }
  779. // mul_mv_q4_0_f32_v
  780. {
  781. #ifdef GGML_OPENCL_EMBED_KERNELS
  782. const std::string kernel_src {
  783. #include "mul_mv_q4_0_f32_v.cl.h"
  784. };
  785. #else
  786. const std::string kernel_src = read_file("mul_mv_q4_0_f32_v.cl");
  787. #endif
  788. backend_ctx->program_mul_mv_q4_0_f32_v =
  789. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  790. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_v = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_v, "kernel_mul_mat_q4_0_f32_v", &err), err));
  791. GGML_LOG_CONT(".");
  792. }
  793. // mul_mv_q4_0_f32_8x_flat
  794. {
  795. #ifdef GGML_OPENCL_EMBED_KERNELS
  796. const std::string kernel_src {
  797. #include "mul_mv_q4_0_f32_8x_flat.cl.h"
  798. };
  799. #else
  800. const std::string kernel_src = read_file("mul_mv_q4_0_f32_8x_flat.cl");
  801. #endif
  802. backend_ctx->program_mul_mv_q4_0_f32_8x_flat =
  803. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  804. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_8x_flat, "kernel_mul_mat_q4_0_f32_8x_flat", &err), err));
  805. GGML_LOG_CONT(".");
  806. }
  807. // mul_mv_q4_0_f32_1d_8x_flat
  808. // This kernel does not compiler on Adreno cl compiler 38.01. Skip it for
  809. // those compiler versions since it is anyway not used for Adreno.
  810. if (backend_ctx->gpu_family != ADRENO ||
  811. backend_ctx->adreno_cl_compiler_version.newer_than_or_same(E031, 38, 11, 0) ||
  812. backend_ctx->adreno_cl_compiler_version.type == DX) {
  813. #ifdef GGML_OPENCL_EMBED_KERNELS
  814. const std::string kernel_src {
  815. #include "mul_mv_q4_0_f32_1d_8x_flat.cl.h"
  816. };
  817. #else
  818. const std::string kernel_src = read_file("mul_mv_q4_0_f32_1d_8x_flat.cl");
  819. #endif
  820. backend_ctx->program_mul_mv_q4_0_f32_1d_8x_flat =
  821. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  822. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_1d_8x_flat = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_1d_8x_flat, "kernel_mul_mat_q4_0_f32_1d_8x_flat", &err), err));
  823. GGML_LOG_CONT(".");
  824. }
  825. // mul_mv_q4_0_f32_1d_16x_flat
  826. // This kernel does not compiler on Adreno cl compiler 38.01. Skip it for
  827. // those compiler versions since it is anyway not used for Adreno.
  828. if (backend_ctx->gpu_family != ADRENO ||
  829. backend_ctx->adreno_cl_compiler_version.newer_than_or_same(E031, 38, 11, 0) ||
  830. backend_ctx->adreno_cl_compiler_version.type == DX) {
  831. #ifdef GGML_OPENCL_EMBED_KERNELS
  832. const std::string kernel_src {
  833. #include "mul_mv_q4_0_f32_1d_16x_flat.cl.h"
  834. };
  835. #else
  836. const std::string kernel_src = read_file("mul_mv_q4_0_f32_1d_16x_flat.cl");
  837. #endif
  838. backend_ctx->program_mul_mv_q4_0_f32_1d_16x_flat =
  839. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  840. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_1d_16x_flat = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_1d_16x_flat, "kernel_mul_mat_q4_0_f32_1d_16x_flat", &err), err));
  841. GGML_LOG_CONT(".");
  842. }
  843. // mul_mv_q6_k
  844. {
  845. #ifdef GGML_OPENCL_EMBED_KERNELS
  846. const std::string kernel_src {
  847. #include "mul_mv_q6_k.cl.h"
  848. };
  849. #else
  850. const std::string kernel_src = read_file("mul_mv_q6_k.cl");
  851. #endif
  852. backend_ctx->program_mul_mv_q6_K =
  853. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  854. CL_CHECK((backend_ctx->kernel_mul_mv_q6_K_f32 = clCreateKernel(backend_ctx->program_mul_mv_q6_K, "kernel_mul_mv_q6_K_f32", &err), err));
  855. GGML_LOG_CONT(".");
  856. }
  857. // mul_mv_mxfp4_f32
  858. {
  859. #ifdef GGML_OPENCL_EMBED_KERNELS
  860. const std::string kernel_src {
  861. #include "mul_mv_mxfp4_f32.cl.h"
  862. };
  863. #else
  864. const std::string kernel_src = read_file("mul_mv_mxfp4_f32.cl");
  865. #endif
  866. backend_ctx->program_mul_mv_mxfp4_f32 =
  867. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  868. CL_CHECK((backend_ctx->kernel_mul_mv_mxfp4_f32 = clCreateKernel(backend_ctx->program_mul_mv_mxfp4_f32, "kernel_mul_mv_mxfp4_f32", &err), err));
  869. GGML_LOG_CONT(".");
  870. }
  871. // mul_mv_f16_f16
  872. {
  873. #ifdef GGML_OPENCL_EMBED_KERNELS
  874. const std::string kernel_src {
  875. #include "mul_mv_f16_f16.cl.h"
  876. };
  877. #else
  878. const std::string kernel_src = read_file("mul_mv_f16_f16.cl");
  879. #endif
  880. backend_ctx->program_mul_mv_f16_f16 =
  881. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  882. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f16 = clCreateKernel(backend_ctx->program_mul_mv_f16_f16, "kernel_mul_mat_f16_f16", &err), err));
  883. GGML_LOG_CONT(".");
  884. }
  885. // mul_mv_f16_f32_1row
  886. {
  887. #ifdef GGML_OPENCL_EMBED_KERNELS
  888. const std::string kernel_src {
  889. #include "mul_mv_f16_f32_1row.cl.h"
  890. };
  891. #else
  892. const std::string kernel_src = read_file("mul_mv_f16_f32_1row.cl");
  893. #endif
  894. backend_ctx->program_mul_mv_f16_f32_1row =
  895. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  896. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_1row = clCreateKernel(backend_ctx->program_mul_mv_f16_f32_1row, "kernel_mul_mat_f16_f32_1row", &err), err));
  897. GGML_LOG_CONT(".");
  898. }
  899. // mul_mv_f16_f32_l4
  900. {
  901. #ifdef GGML_OPENCL_EMBED_KERNELS
  902. const std::string kernel_src {
  903. #include "mul_mv_f16_f32_l4.cl.h"
  904. };
  905. #else
  906. const std::string kernel_src = read_file("mul_mv_f16_f32_l4.cl");
  907. #endif
  908. backend_ctx->program_mul_mv_f16_f32_l4 =
  909. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  910. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_l4 = clCreateKernel(backend_ctx->program_mul_mv_f16_f32_l4, "kernel_mul_mat_f16_f32_l4", &err), err));
  911. GGML_LOG_CONT(".");
  912. }
  913. // mul_mv_f16_f32
  914. {
  915. #ifdef GGML_OPENCL_EMBED_KERNELS
  916. const std::string kernel_src {
  917. #include "mul_mv_f16_f32.cl.h"
  918. };
  919. #else
  920. const std::string kernel_src = read_file("mul_mv_f16_f32.cl");
  921. #endif
  922. backend_ctx->program_mul_mv_f16_f32 =
  923. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  924. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32 = clCreateKernel(backend_ctx->program_mul_mv_f16_f32, "kernel_mul_mat_f16_f32", &err), err));
  925. GGML_LOG_CONT(".");
  926. }
  927. // mul_mv_f32_f32
  928. {
  929. #ifdef GGML_OPENCL_EMBED_KERNELS
  930. const std::string kernel_src {
  931. #include "mul_mv_f32_f32.cl.h"
  932. };
  933. #else
  934. const std::string kernel_src = read_file("mul_mv_f32_f32.cl");
  935. #endif
  936. backend_ctx->program_mul_mv_f32_f32 =
  937. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  938. CL_CHECK((backend_ctx->kernel_mul_mat_f32_f32 = clCreateKernel(backend_ctx->program_mul_mv_f32_f32, "kernel_mul_mat_f32_f32", &err), err));
  939. GGML_LOG_CONT(".");
  940. }
  941. // mul_mat_f16_f32_tiled
  942. {
  943. #ifdef GGML_OPENCL_EMBED_KERNELS
  944. const std::string kernel_src {
  945. #include "mul_mat_f16_f32.cl.h"
  946. };
  947. #else
  948. const std::string kernel_src = read_file("mul_mat_f16_f32.cl");
  949. #endif
  950. backend_ctx->program_mul_mat_f16_f32_tiled =
  951. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  952. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_tiled = clCreateKernel(backend_ctx->program_mul_mat_f16_f32_tiled, "mul_mat_f16_f32", &err), err));
  953. GGML_LOG_CONT(".");
  954. }
  955. // mul_mm_f32_f32_l4_lm
  956. {
  957. #ifdef GGML_OPENCL_EMBED_KERNELS
  958. const std::string kernel_src {
  959. #include "mul_mm_f32_f32_l4_lm.cl.h"
  960. };
  961. #else
  962. const std::string kernel_src = read_file("mul_mm_f32_f32_l4_lm.cl");
  963. #endif
  964. backend_ctx->program_mul_mm_f32_f32_l4_lm =
  965. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  966. CL_CHECK((backend_ctx->kernel_mul_mm_f32_f32_l4_lm = clCreateKernel(backend_ctx->program_mul_mm_f32_f32_l4_lm, "kernel_mul_mm_f32_f32_l4_lm", &err), err));
  967. GGML_LOG_CONT(".");
  968. }
  969. // mul_mm_f16_f32_l4_lm
  970. {
  971. #ifdef GGML_OPENCL_EMBED_KERNELS
  972. const std::string kernel_src {
  973. #include "mul_mm_f16_f32_l4_lm.cl.h"
  974. };
  975. #else
  976. const std::string kernel_src = read_file("mul_mm_f16_f32_l4_lm.cl");
  977. #endif
  978. backend_ctx->program_mul_mm_f16_f32_l4_lm =
  979. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  980. CL_CHECK((backend_ctx->kernel_mul_mm_f16_f32_l4_lm = clCreateKernel(backend_ctx->program_mul_mm_f16_f32_l4_lm, "kernel_mul_mm_f16_f32_l4_lm", &err), err));
  981. GGML_LOG_CONT(".");
  982. }
  983. // mul
  984. {
  985. #ifdef GGML_OPENCL_EMBED_KERNELS
  986. const std::string kernel_src {
  987. #include "mul.cl.h"
  988. };
  989. #else
  990. const std::string kernel_src = read_file("mul.cl");
  991. #endif
  992. backend_ctx->program_mul =
  993. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  994. CL_CHECK((backend_ctx->kernel_mul = clCreateKernel(backend_ctx->program_mul, "kernel_mul", &err), err));
  995. CL_CHECK((backend_ctx->kernel_mul_row = clCreateKernel(backend_ctx->program_mul, "kernel_mul_row", &err), err));
  996. CL_CHECK((backend_ctx->kernel_mul_f16 = clCreateKernel(backend_ctx->program_mul, "kernel_mul_f16", &err), err));
  997. CL_CHECK((backend_ctx->kernel_mul_row_f16 = clCreateKernel(backend_ctx->program_mul, "kernel_mul_row_f16", &err), err));
  998. GGML_LOG_CONT(".");
  999. }
  1000. // norm
  1001. {
  1002. #ifdef GGML_OPENCL_EMBED_KERNELS
  1003. const std::string kernel_src {
  1004. #include "norm.cl.h"
  1005. };
  1006. #else
  1007. const std::string kernel_src = read_file("norm.cl");
  1008. #endif
  1009. backend_ctx->program_norm =
  1010. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1011. CL_CHECK((backend_ctx->kernel_norm = clCreateKernel(backend_ctx->program_norm, "kernel_norm", &err), err));
  1012. CL_CHECK((backend_ctx->kernel_norm_mul_add = clCreateKernel(backend_ctx->program_norm, "kernel_norm_mul_add", &err), err));
  1013. GGML_LOG_CONT(".");
  1014. }
  1015. // relu
  1016. {
  1017. #ifdef GGML_OPENCL_EMBED_KERNELS
  1018. const std::string kernel_src {
  1019. #include "relu.cl.h"
  1020. };
  1021. #else
  1022. const std::string kernel_src = read_file("relu.cl");
  1023. #endif
  1024. backend_ctx->program_relu =
  1025. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1026. CL_CHECK((backend_ctx->kernel_relu = clCreateKernel(backend_ctx->program_relu, "kernel_relu", &err), err));
  1027. GGML_LOG_CONT(".");
  1028. }
  1029. // rms_norm
  1030. {
  1031. #ifdef GGML_OPENCL_EMBED_KERNELS
  1032. const std::string kernel_src {
  1033. #include "rms_norm.cl.h"
  1034. };
  1035. #else
  1036. const std::string kernel_src = read_file("rms_norm.cl");
  1037. #endif
  1038. backend_ctx->program_rms_norm =
  1039. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1040. CL_CHECK((backend_ctx->kernel_rms_norm = clCreateKernel(backend_ctx->program_rms_norm, "kernel_rms_norm", &err), err));
  1041. CL_CHECK((backend_ctx->kernel_rms_norm_mul = clCreateKernel(backend_ctx->program_rms_norm, "kernel_rms_norm_mul", &err), err));
  1042. GGML_LOG_CONT(".");
  1043. }
  1044. // rope
  1045. {
  1046. #ifdef GGML_OPENCL_EMBED_KERNELS
  1047. const std::string kernel_src {
  1048. #include "rope.cl.h"
  1049. };
  1050. #else
  1051. const std::string kernel_src = read_file("rope.cl");
  1052. #endif
  1053. backend_ctx->program_rope =
  1054. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1055. CL_CHECK((backend_ctx->kernel_rope_norm_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_norm_f32", &err), err));
  1056. CL_CHECK((backend_ctx->kernel_rope_norm_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_norm_f16", &err), err));
  1057. CL_CHECK((backend_ctx->kernel_rope_neox_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_neox_f32", &err), err));
  1058. CL_CHECK((backend_ctx->kernel_rope_neox_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_neox_f16", &err), err));
  1059. CL_CHECK((backend_ctx->kernel_rope_multi_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_multi_f32", &err), err));
  1060. CL_CHECK((backend_ctx->kernel_rope_multi_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_multi_f16", &err), err));
  1061. CL_CHECK((backend_ctx->kernel_rope_vision_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_vision_f32", &err), err));
  1062. CL_CHECK((backend_ctx->kernel_rope_vision_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_vision_f16", &err), err));
  1063. GGML_LOG_CONT(".");
  1064. }
  1065. // scale
  1066. {
  1067. #ifdef GGML_OPENCL_EMBED_KERNELS
  1068. const std::string kernel_src {
  1069. #include "scale.cl.h"
  1070. };
  1071. #else
  1072. const std::string kernel_src = read_file("scale.cl");
  1073. #endif
  1074. backend_ctx->program_scale =
  1075. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1076. CL_CHECK((backend_ctx->kernel_scale = clCreateKernel(backend_ctx->program_scale, "kernel_scale", &err), err));
  1077. GGML_LOG_CONT(".");
  1078. }
  1079. // silu
  1080. {
  1081. #ifdef GGML_OPENCL_EMBED_KERNELS
  1082. const std::string kernel_src {
  1083. #include "silu.cl.h"
  1084. };
  1085. #else
  1086. const std::string kernel_src = read_file("silu.cl");
  1087. #endif
  1088. backend_ctx->program_silu =
  1089. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1090. CL_CHECK((backend_ctx->kernel_silu = clCreateKernel(backend_ctx->program_silu, "kernel_silu", &err), err));
  1091. CL_CHECK((backend_ctx->kernel_silu_4 = clCreateKernel(backend_ctx->program_silu, "kernel_silu_4", &err), err));
  1092. GGML_LOG_CONT(".");
  1093. }
  1094. // softmax_f32
  1095. {
  1096. #ifdef GGML_OPENCL_EMBED_KERNELS
  1097. const std::string kernel_src {
  1098. #include "softmax_f32.cl.h"
  1099. };
  1100. #else
  1101. const std::string kernel_src = read_file("softmax_f32.cl");
  1102. #endif
  1103. backend_ctx->program_softmax_f32 =
  1104. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1105. CL_CHECK((backend_ctx->kernel_soft_max = clCreateKernel(backend_ctx->program_softmax_f32, "kernel_soft_max", &err), err));
  1106. GGML_LOG_CONT(".");
  1107. }
  1108. // softmax_f16
  1109. {
  1110. #ifdef GGML_OPENCL_EMBED_KERNELS
  1111. const std::string kernel_src {
  1112. #include "softmax_f16.cl.h"
  1113. };
  1114. #else
  1115. const std::string kernel_src = read_file("softmax_f16.cl");
  1116. #endif
  1117. backend_ctx->program_softmax_f16 =
  1118. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1119. CL_CHECK((backend_ctx->kernel_soft_max_f16 = clCreateKernel(backend_ctx->program_softmax_f16, "kernel_soft_max_f16", &err), err));
  1120. GGML_LOG_CONT(".");
  1121. }
  1122. // softmax_4_f32
  1123. {
  1124. #ifdef GGML_OPENCL_EMBED_KERNELS
  1125. const std::string kernel_src {
  1126. #include "softmax_4_f32.cl.h"
  1127. };
  1128. #else
  1129. const std::string kernel_src = read_file("softmax_4_f32.cl");
  1130. #endif
  1131. backend_ctx->program_softmax_4_f32 =
  1132. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1133. CL_CHECK((backend_ctx->kernel_soft_max_4 = clCreateKernel(backend_ctx->program_softmax_4_f32, "kernel_soft_max_4", &err), err));
  1134. GGML_LOG_CONT(".");
  1135. }
  1136. // softmax_4_f16
  1137. {
  1138. #ifdef GGML_OPENCL_EMBED_KERNELS
  1139. const std::string kernel_src {
  1140. #include "softmax_4_f16.cl.h"
  1141. };
  1142. #else
  1143. const std::string kernel_src = read_file("softmax_4_f16.cl");
  1144. #endif
  1145. backend_ctx->program_softmax_4_f16 =
  1146. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1147. CL_CHECK((backend_ctx->kernel_soft_max_4_f16 = clCreateKernel(backend_ctx->program_softmax_4_f16, "kernel_soft_max_4_f16", &err), err));
  1148. GGML_LOG_CONT(".");
  1149. }
  1150. // flash_attn
  1151. {
  1152. #ifdef GGML_OPENCL_EMBED_KERNELS
  1153. const std::string kernel_src_f16 {
  1154. #include "flash_attn_f16.cl.h"
  1155. };
  1156. const std::string kernel_src_f32 {
  1157. #include "flash_attn_f32.cl.h"
  1158. };
  1159. const std::string kernel_src_f32_f16 {
  1160. #include "flash_attn_f32_f16.cl.h"
  1161. };
  1162. #else
  1163. const std::string kernel_src_f16 = read_file("flash_attn_f16.cl");
  1164. const std::string kernel_src_f32 = read_file("flash_attn_f32.cl");
  1165. const std::string kernel_src_f32_f16 = read_file("flash_attn_f32_f16.cl");
  1166. #endif
  1167. if (!kernel_src_f16.empty() && !kernel_src_f32.empty() && !kernel_src_f32_f16.empty()) {
  1168. const struct { int dk; int dv; int bm; int bn; } fa_dims[] = {
  1169. { 40, 40, 32, 32}, { 64, 64, 64, 64}, { 80, 80, 64, 32}, { 96, 96, 64, 32},
  1170. {112, 112, 32, 32}, {128, 128, 32, 32}, {192, 128, 16, 16},
  1171. {192, 192, 16, 16}, {256, 256, 16, 16},
  1172. };
  1173. for (size_t i = 0; i < sizeof(fa_dims)/sizeof(fa_dims[0]); ++i) {
  1174. const int dk = fa_dims[i].dk;
  1175. const int dv = fa_dims[i].dv;
  1176. const int bm = fa_dims[i].bm;
  1177. const int bn = fa_dims[i].bn;
  1178. std::string OPTS = compile_opts +
  1179. " -D DK=" + std::to_string(dk) +
  1180. " -D DV=" + std::to_string(dv) +
  1181. " -D BLOCK_M=" + std::to_string(bm) +
  1182. " -D BLOCK_N=" + std::to_string(bn);
  1183. cl_program prog_f16 = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_f16.c_str(), OPTS);
  1184. cl_kernel k_f16, k_f16_q1;
  1185. CL_CHECK((k_f16 = clCreateKernel(prog_f16, "flash_attn_f16", &err), err));
  1186. CL_CHECK((k_f16_q1 = clCreateKernel(prog_f16, "flash_attn_f16_q1", &err), err));
  1187. backend_ctx->kernels_flash_attn_f16[{dk, dv}] = k_f16;
  1188. backend_ctx->kernels_flash_attn_f16_q1[{dk, dv}] = k_f16_q1;
  1189. CL_CHECK(clReleaseProgram(prog_f16));
  1190. cl_program prog_f32 = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_f32.c_str(), OPTS);
  1191. cl_kernel k_f32, k_f32_q1;
  1192. CL_CHECK((k_f32 = clCreateKernel(prog_f32, "flash_attn_f32", &err), err));
  1193. CL_CHECK((k_f32_q1 = clCreateKernel(prog_f32, "flash_attn_f32_q1", &err), err));
  1194. backend_ctx->kernels_flash_attn_f32[{dk, dv}] = k_f32;
  1195. backend_ctx->kernels_flash_attn_f32_q1[{dk, dv}] = k_f32_q1;
  1196. CL_CHECK(clReleaseProgram(prog_f32));
  1197. cl_program prog_f32_f16 = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_f32_f16.c_str(), OPTS);
  1198. cl_kernel k_f32_f16, k_f32_f16_q1;
  1199. CL_CHECK((k_f32_f16 = clCreateKernel(prog_f32_f16, "flash_attn_f32_f16", &err), err));
  1200. CL_CHECK((k_f32_f16_q1 = clCreateKernel(prog_f32_f16, "flash_attn_f32_f16_q1", &err), err));
  1201. backend_ctx->kernels_flash_attn_f32_f16[{dk, dv}] = k_f32_f16;
  1202. backend_ctx->kernels_flash_attn_f32_f16_q1[{dk, dv}] = k_f32_f16_q1;
  1203. CL_CHECK(clReleaseProgram(prog_f32_f16));
  1204. backend_ctx->kernels_flash_attn_bm[{dk, dv}] = bm;
  1205. backend_ctx->kernels_flash_attn_bn[{dk, dv}] = bn;
  1206. }
  1207. GGML_LOG_CONT(".");
  1208. }
  1209. }
  1210. // argsort
  1211. {
  1212. #ifdef GGML_OPENCL_EMBED_KERNELS
  1213. const std::string kernel_src {
  1214. #include "argsort.cl.h"
  1215. };
  1216. #else
  1217. const std::string kernel_src = read_file("argsort.cl");
  1218. #endif
  1219. backend_ctx->program_argsort_f32_i32 =
  1220. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1221. CL_CHECK((backend_ctx->kernel_argsort_f32_i32 = clCreateKernel(backend_ctx->program_argsort_f32_i32, "kernel_argsort_f32_i32", &err), err));
  1222. GGML_LOG_CONT(".");
  1223. }
  1224. // div
  1225. {
  1226. #ifdef GGML_OPENCL_EMBED_KERNELS
  1227. const std::string kernel_src {
  1228. #include "div.cl.h"
  1229. };
  1230. #else
  1231. const std::string kernel_src = read_file("div.cl");
  1232. #endif
  1233. std::string compile_opts = std::string("-cl-std=") + opencl_c_std +
  1234. " -cl-mad-enable -cl-finite-math-only ";
  1235. backend_ctx->program_div =
  1236. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1237. CL_CHECK((backend_ctx->kernel_div = clCreateKernel(backend_ctx->program_div, "kernel_div", &err), err));
  1238. CL_CHECK((backend_ctx->kernel_div_row = clCreateKernel(backend_ctx->program_div, "kernel_div_row", &err), err));
  1239. CL_CHECK((backend_ctx->kernel_div_f16 = clCreateKernel(backend_ctx->program_div, "kernel_div_f16", &err), err));
  1240. CL_CHECK((backend_ctx->kernel_div_row_f16 = clCreateKernel(backend_ctx->program_div, "kernel_div_row_f16", &err), err));
  1241. GGML_LOG_CONT(".");
  1242. }
  1243. // sub
  1244. {
  1245. #ifdef GGML_OPENCL_EMBED_KERNELS
  1246. const std::string kernel_src {
  1247. #include "sub.cl.h"
  1248. };
  1249. #else
  1250. const std::string kernel_src = read_file("sub.cl");
  1251. #endif
  1252. backend_ctx->program_sub =
  1253. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1254. CL_CHECK((backend_ctx->kernel_sub = clCreateKernel(backend_ctx->program_sub, "kernel_sub", &err), err));
  1255. CL_CHECK((backend_ctx->kernel_sub_row = clCreateKernel(backend_ctx->program_sub, "kernel_sub_row", &err), err));
  1256. CL_CHECK((backend_ctx->kernel_sub_f16 = clCreateKernel(backend_ctx->program_sub, "kernel_sub_f16", &err), err));
  1257. CL_CHECK((backend_ctx->kernel_sub_row_f16 = clCreateKernel(backend_ctx->program_sub, "kernel_sub_row_f16", &err), err));
  1258. GGML_LOG_CONT(".");
  1259. }
  1260. // sum_rows
  1261. {
  1262. #ifdef GGML_OPENCL_EMBED_KERNELS
  1263. const std::string kernel_src {
  1264. #include "sum_rows.cl.h"
  1265. };
  1266. #else
  1267. const std::string kernel_src = read_file("sum_rows.cl");
  1268. #endif
  1269. backend_ctx->program_sum_rows_f32 =
  1270. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1271. CL_CHECK((backend_ctx->kernel_sum_rows_f32 = clCreateKernel(backend_ctx->program_sum_rows_f32, "kernel_sum_rows_f32", &err), err));
  1272. GGML_LOG_CONT(".");
  1273. }
  1274. // sigmoid
  1275. {
  1276. #ifdef GGML_OPENCL_EMBED_KERNELS
  1277. const std::string kernel_src {
  1278. #include "sigmoid.cl.h"
  1279. };
  1280. #else
  1281. const std::string kernel_src = read_file("sigmoid.cl");
  1282. #endif
  1283. backend_ctx->program_sigmoid =
  1284. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1285. CL_CHECK((backend_ctx->kernel_sigmoid_f32 = clCreateKernel(backend_ctx->program_sigmoid, "kernel_sigmoid_f32", &err), err));
  1286. CL_CHECK((backend_ctx->kernel_sigmoid_f16 = clCreateKernel(backend_ctx->program_sigmoid, "kernel_sigmoid_f16", &err), err));
  1287. GGML_LOG_CONT(".");
  1288. }
  1289. // group_norm
  1290. {
  1291. #ifdef GGML_OPENCL_EMBED_KERNELS
  1292. const std::string kernel_src {
  1293. #include "group_norm.cl.h"
  1294. };
  1295. #else
  1296. const std::string kernel_src = read_file("group_norm.cl");
  1297. #endif
  1298. backend_ctx->program_group_norm =
  1299. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1300. CL_CHECK((backend_ctx->kernel_group_norm = clCreateKernel(backend_ctx->program_group_norm, "kernel_group_norm", &err), err));
  1301. CL_CHECK((backend_ctx->kernel_group_norm_mul_add = clCreateKernel(backend_ctx->program_group_norm, "kernel_group_norm_mul_add", &err), err));
  1302. GGML_LOG_CONT(".");
  1303. }
  1304. // repeat
  1305. {
  1306. #ifdef GGML_OPENCL_EMBED_KERNELS
  1307. const std::string kernel_src {
  1308. #include "repeat.cl.h"
  1309. };
  1310. #else
  1311. const std::string kernel_src = read_file("repeat.cl");
  1312. #endif
  1313. if (!kernel_src.empty()) {
  1314. backend_ctx->program_repeat =
  1315. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1316. CL_CHECK((backend_ctx->kernel_repeat = clCreateKernel(backend_ctx->program_repeat, "kernel_repeat", &err), err));
  1317. GGML_LOG_CONT(".");
  1318. } else {
  1319. GGML_LOG_WARN("ggml_opencl: repeat kernel source not found or empty. Repeat operations will not be available.\n");
  1320. backend_ctx->program_repeat = nullptr;
  1321. backend_ctx->kernel_repeat = nullptr;
  1322. }
  1323. }
  1324. // pad
  1325. {
  1326. #ifdef GGML_OPENCL_EMBED_KERNELS
  1327. const std::string kernel_src {
  1328. #include "pad.cl.h"
  1329. };
  1330. #else
  1331. const std::string kernel_src = read_file("pad.cl");
  1332. #endif
  1333. if (!kernel_src.empty()) {
  1334. backend_ctx->program_pad =
  1335. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1336. CL_CHECK((backend_ctx->kernel_pad = clCreateKernel(backend_ctx->program_pad, "kernel_pad", &err), err));
  1337. GGML_LOG_CONT(".");
  1338. } else {
  1339. GGML_LOG_WARN("ggml_opencl: pad kernel source not found or empty. Pad operations will not be available.\n");
  1340. backend_ctx->program_pad = nullptr;
  1341. backend_ctx->kernel_pad = nullptr;
  1342. }
  1343. }
  1344. // tanh
  1345. {
  1346. #ifdef GGML_OPENCL_EMBED_KERNELS
  1347. const std::string kernel_src {
  1348. #include "tanh.cl.h"
  1349. };
  1350. #else
  1351. const std::string kernel_src = read_file("tanh.cl");
  1352. #endif
  1353. if (!kernel_src.empty()) {
  1354. backend_ctx->program_tanh =
  1355. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1356. CL_CHECK((backend_ctx->kernel_tanh_f32_nd = clCreateKernel(backend_ctx->program_tanh, "kernel_tanh_f32_nd", &err), err));
  1357. CL_CHECK((backend_ctx->kernel_tanh_f16_nd = clCreateKernel(backend_ctx->program_tanh, "kernel_tanh_f16_nd", &err), err));
  1358. GGML_LOG_CONT(".");
  1359. } else {
  1360. GGML_LOG_WARN("ggml_opencl: tanh kernel source not found or empty. Tanh operation will not be available.\n");
  1361. backend_ctx->program_tanh = nullptr;
  1362. backend_ctx->kernel_tanh_f32_nd = nullptr;
  1363. backend_ctx->kernel_tanh_f16_nd = nullptr;
  1364. }
  1365. }
  1366. // upscale
  1367. {
  1368. #ifdef GGML_OPENCL_EMBED_KERNELS
  1369. const std::string kernel_src {
  1370. #include "upscale.cl.h"
  1371. };
  1372. #else
  1373. const std::string kernel_src = read_file("upscale.cl");
  1374. #endif
  1375. if (!kernel_src.empty()) {
  1376. backend_ctx->program_upscale =
  1377. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1378. CL_CHECK((backend_ctx->kernel_upscale = clCreateKernel(backend_ctx->program_upscale, "kernel_upscale", &err), err));
  1379. if (backend_ctx->program_upscale) {
  1380. cl_int err_bilinear;
  1381. backend_ctx->kernel_upscale_bilinear = clCreateKernel(backend_ctx->program_upscale, "kernel_upscale_bilinear", &err_bilinear);
  1382. if (err_bilinear != CL_SUCCESS) {
  1383. GGML_LOG_WARN("ggml_opencl: kernel_upscale_bilinear not found in upscale.cl. Bilinear upscale will not be available. Error: %d\n", err_bilinear);
  1384. backend_ctx->kernel_upscale_bilinear = nullptr;
  1385. }
  1386. } else {
  1387. backend_ctx->kernel_upscale_bilinear = nullptr;
  1388. }
  1389. GGML_LOG_CONT(".");
  1390. } else {
  1391. GGML_LOG_WARN("ggml_opencl: upscale kernel source not found or empty. Upscale operations will not be available.\n");
  1392. backend_ctx->program_upscale = nullptr;
  1393. backend_ctx->kernel_upscale = nullptr;
  1394. backend_ctx->kernel_upscale_bilinear = nullptr;
  1395. }
  1396. }
  1397. // concat
  1398. {
  1399. #ifdef GGML_OPENCL_EMBED_KERNELS
  1400. const std::string kernel_src {
  1401. #include "concat.cl.h"
  1402. };
  1403. #else
  1404. const std::string kernel_src = read_file("concat.cl");
  1405. #endif
  1406. if (!kernel_src.empty()) {
  1407. backend_ctx->program_concat =
  1408. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1409. CL_CHECK((backend_ctx->kernel_concat_f32_contiguous = clCreateKernel(backend_ctx->program_concat, "kernel_concat_f32_contiguous", &err), err));
  1410. CL_CHECK((backend_ctx->kernel_concat_f32_non_contiguous = clCreateKernel(backend_ctx->program_concat, "kernel_concat_f32_non_contiguous", &err), err));
  1411. GGML_LOG_CONT(".");
  1412. } else {
  1413. GGML_LOG_WARN("ggml_opencl: concat kernel source not found or empty. Concat operations will not be available.\n");
  1414. backend_ctx->program_concat = nullptr;
  1415. backend_ctx->kernel_concat_f32_contiguous = nullptr;
  1416. backend_ctx->kernel_concat_f32_non_contiguous = nullptr;
  1417. }
  1418. }
  1419. // timestep_embedding
  1420. {
  1421. #ifdef GGML_OPENCL_EMBED_KERNELS
  1422. const std::string kernel_src {
  1423. #include "tsembd.cl.h"
  1424. };
  1425. #else
  1426. const std::string kernel_src = read_file("tsembd.cl");
  1427. #endif
  1428. if (!kernel_src.empty()) {
  1429. backend_ctx->program_tsembd =
  1430. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1431. CL_CHECK((backend_ctx->kernel_timestep_embedding = clCreateKernel(backend_ctx->program_tsembd, "kernel_timestep_embedding", &err), err));
  1432. GGML_LOG_CONT(".");
  1433. } else {
  1434. GGML_LOG_WARN("ggml_opencl: timestep_embedding kernel source not found or empty. This op will not be available.\n");
  1435. backend_ctx->program_tsembd = nullptr;
  1436. backend_ctx->kernel_timestep_embedding = nullptr;
  1437. }
  1438. }
  1439. // set_rows
  1440. {
  1441. #ifdef GGML_OPENCL_EMBED_KERNELS
  1442. const std::string kernel_src {
  1443. #include "set_rows.cl.h"
  1444. };
  1445. #else
  1446. const std::string kernel_src = read_file("set_rows.cl");
  1447. #endif
  1448. backend_ctx->program_set_rows =
  1449. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1450. CL_CHECK((backend_ctx->kernel_set_rows_f32 = clCreateKernel(backend_ctx->program_set_rows, "kernel_set_rows_f32", &err), err));
  1451. CL_CHECK((backend_ctx->kernel_set_rows_f16 = clCreateKernel(backend_ctx->program_set_rows, "kernel_set_rows_f16", &err), err));
  1452. GGML_LOG_CONT(".");
  1453. }
  1454. // conv2d
  1455. {
  1456. #ifdef GGML_OPENCL_EMBED_KERNELS
  1457. const std::string kernel_src {
  1458. #include "conv2d.cl.h"
  1459. };
  1460. const std::string kernel_src_f16_f32 {
  1461. #include "conv2d_f16_f32.cl.h"
  1462. };
  1463. #else
  1464. const std::string kernel_src = read_file("conv2d.cl");
  1465. const std::string kernel_src_f16_f32 = read_file("conv2d_f16_f32.cl");
  1466. #endif
  1467. if (!kernel_src.empty()) {
  1468. backend_ctx->program_conv_2d_f16 =
  1469. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), (std::string(compile_opts) + " -DUSE_FP16=1").c_str());
  1470. CL_CHECK((backend_ctx->kernel_conv_2d_f16 = clCreateKernel(backend_ctx->program_conv_2d_f16, "kernel_conv_2d", &err), err));
  1471. GGML_LOG_CONT(".");
  1472. backend_ctx->program_conv_2d_f32 =
  1473. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1474. CL_CHECK((backend_ctx->kernel_conv_2d_f32 = clCreateKernel(backend_ctx->program_conv_2d_f32, "kernel_conv_2d", &err), err));
  1475. GGML_LOG_CONT(".");
  1476. } else {
  1477. GGML_LOG_WARN("ggml_opencl: conv2d kernel source not found or empty. This op will not be available.\n");
  1478. backend_ctx->program_conv_2d_f16 = nullptr;
  1479. backend_ctx->kernel_conv_2d_f16 = nullptr;
  1480. backend_ctx->program_conv_2d_f32 = nullptr;
  1481. backend_ctx->kernel_conv_2d_f32 = nullptr;
  1482. }
  1483. if (!kernel_src_f16_f32.empty()) {
  1484. backend_ctx->program_conv_2d_f16_f32 =
  1485. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_f16_f32.c_str(), compile_opts);
  1486. CL_CHECK((backend_ctx->kernel_conv_2d_f16_f32 = clCreateKernel(backend_ctx->program_conv_2d_f16_f32, "kernel_conv_2d", &err), err));
  1487. GGML_LOG_CONT(".");
  1488. } else {
  1489. GGML_LOG_WARN("ggml_opencl: conv2d_f16_f32 kernel source not found or empty. This op will not be available.\n");
  1490. backend_ctx->program_conv_2d_f16_f32 = nullptr;
  1491. backend_ctx->kernel_conv_2d_f16_f32 = nullptr;
  1492. }
  1493. }
  1494. // mul_mv_id_q4_0_f32_8x_flat
  1495. {
  1496. #ifdef GGML_OPENCL_EMBED_KERNELS
  1497. const std::string kernel_src {
  1498. #include "mul_mv_id_q4_0_f32_8x_flat.cl.h"
  1499. };
  1500. #else
  1501. const std::string kernel_src = read_file("mul_mv_id_q4_0_f32_8x_flat.cl");
  1502. #endif
  1503. backend_ctx->program_mul_mv_id_q4_0_f32_8x_flat =
  1504. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1505. CL_CHECK((backend_ctx->kernel_mul_mv_id_q4_0_f32_8x_flat = clCreateKernel(backend_ctx->program_mul_mv_id_q4_0_f32_8x_flat, "kernel_mul_mv_id_q4_0_f32_8x_flat", &err), err));
  1506. GGML_LOG_CONT(".");
  1507. }
  1508. // mul_mv_id_mxfp4_f32
  1509. {
  1510. #ifdef GGML_OPENCL_EMBED_KERNELS
  1511. const std::string kernel_src {
  1512. #include "mul_mv_id_mxfp4_f32.cl.h"
  1513. };
  1514. #else
  1515. const std::string kernel_src = read_file("mul_mv_id_mxfp4_f32.cl");
  1516. #endif
  1517. backend_ctx->program_mul_mv_id_mxfp4_f32 =
  1518. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1519. CL_CHECK((backend_ctx->kernel_mul_mv_id_mxfp4_f32 = clCreateKernel(backend_ctx->program_mul_mv_id_mxfp4_f32, "kernel_mul_mv_id_mxfp4_f32", &err), err));
  1520. GGML_LOG_CONT(".");
  1521. }
  1522. // Adreno kernels
  1523. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  1524. // transpose
  1525. {
  1526. #ifdef GGML_OPENCL_EMBED_KERNELS
  1527. const std::string kernel_src {
  1528. #include "transpose.cl.h"
  1529. };
  1530. #else
  1531. const std::string kernel_src = read_file("transpose.cl");
  1532. #endif
  1533. backend_ctx->program_transpose =
  1534. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1535. CL_CHECK((backend_ctx->kernel_transpose_32_16 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_32_16", &err), err));
  1536. CL_CHECK((backend_ctx->kernel_transpose_32 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_32", &err), err));
  1537. CL_CHECK((backend_ctx->kernel_transpose_16 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_16", &err), err));
  1538. CL_CHECK((backend_ctx->kernel_transpose_16_4x1 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_16_4x1", &err), err));
  1539. GGML_LOG_CONT(".");
  1540. }
  1541. // gemv_noshuffle_general
  1542. {
  1543. std::string CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1544. " -cl-mad-enable "
  1545. " -DSIMDGROUP_WIDTH=" +
  1546. std::to_string(backend_ctx->adreno_wave_size);
  1547. if (backend_ctx->has_vector_subgroup_broadcast) {
  1548. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  1549. }
  1550. #ifdef GGML_OPENCL_EMBED_KERNELS
  1551. const std::string kernel_src_CL_gemv_general {
  1552. #include "gemv_noshuffle_general.cl.h"
  1553. };
  1554. #else
  1555. const std::string kernel_src_CL_gemv_general = read_file("gemv_noshuffle_general.cl");
  1556. #endif
  1557. backend_ctx->program_CL_gemv_general = build_program_from_source(
  1558. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv_general.c_str(), CL_gemv_compile_opts);
  1559. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general = clCreateKernel(backend_ctx->program_CL_gemv_general, "kernel_gemv_noshuffle", &err), err));
  1560. GGML_LOG_CONT(".");
  1561. }
  1562. // gemv_noshuffle
  1563. {
  1564. // Gemv 2048, 16384
  1565. std::string CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1566. " -cl-mad-enable "
  1567. " -DLINE_STRIDE_A=2048 "
  1568. " -DBLOCK_STRIDE_A=16384 "
  1569. " -DSIMDGROUP_WIDTH=" +
  1570. std::to_string(backend_ctx->adreno_wave_size);
  1571. if (backend_ctx->has_vector_subgroup_broadcast) {
  1572. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  1573. }
  1574. #ifdef GGML_OPENCL_EMBED_KERNELS
  1575. const std::string kernel_src_CL_gemv {
  1576. #include "gemv_noshuffle.cl.h"
  1577. };
  1578. #else
  1579. const std::string kernel_src_CL_gemv = read_file("gemv_noshuffle.cl");
  1580. #endif
  1581. backend_ctx->program_CL_gemv_4096_1_4096 = build_program_from_source(
  1582. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
  1583. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_4096_1_4096, "kernel_gemv_noshuffle", &err), err));
  1584. GGML_LOG_CONT(".");
  1585. // Gemv 2048, 16384
  1586. CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1587. " -cl-mad-enable "
  1588. " -DLINE_STRIDE_A=2048 "
  1589. " -DBLOCK_STRIDE_A=16384 "
  1590. " -DSIMDGROUP_WIDTH=" +
  1591. std::to_string(backend_ctx->adreno_wave_size);
  1592. if (backend_ctx->has_vector_subgroup_broadcast) {
  1593. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  1594. }
  1595. backend_ctx->program_CL_gemv_4096_1_11008 = build_program_from_source(
  1596. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
  1597. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008 = clCreateKernel(backend_ctx->program_CL_gemv_4096_1_11008, "kernel_gemv_noshuffle", &err), err));
  1598. GGML_LOG_CONT(".");
  1599. // Gemv 5504, 44032
  1600. CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1601. " -cl-mad-enable "
  1602. " -DLINE_STRIDE_A=5504 "
  1603. " -DBLOCK_STRIDE_A=44032 "
  1604. " -DSIMDGROUP_WIDTH=" +
  1605. std::to_string(backend_ctx->adreno_wave_size);
  1606. if (backend_ctx->has_vector_subgroup_broadcast) {
  1607. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  1608. }
  1609. backend_ctx->program_CL_gemv_11008_1_4096 = build_program_from_source(
  1610. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
  1611. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_11008_1_4096, "kernel_gemv_noshuffle", &err), err));
  1612. GGML_LOG_CONT(".");
  1613. // Gemv 16000, 128000
  1614. CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1615. " -cl-mad-enable "
  1616. " -DLINE_STRIDE_A=16000 "
  1617. " -DBLOCK_STRIDE_A=128000 "
  1618. " -DSIMDGROUP_WIDTH=" +
  1619. std::to_string(backend_ctx->adreno_wave_size);
  1620. if (backend_ctx->has_vector_subgroup_broadcast) {
  1621. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  1622. }
  1623. backend_ctx->program_CL_gemv_32000_1_4096 = build_program_from_source(
  1624. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
  1625. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_32000_1_4096, "kernel_gemv_noshuffle", &err), err));
  1626. GGML_LOG_CONT(".");
  1627. }
  1628. // mul_mat_Ab_Bi_8x4
  1629. {
  1630. #ifdef GGML_OPENCL_EMBED_KERNELS
  1631. const std::string kernel_src_CL_gemm {
  1632. #include "mul_mat_Ab_Bi_8x4.cl.h"
  1633. };
  1634. #else
  1635. const std::string kernel_src_CL_gemm = read_file("mul_mat_Ab_Bi_8x4.cl");
  1636. #endif
  1637. backend_ctx->program_CL_gemm = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_CL_gemm.c_str(), compile_opts);
  1638. CL_CHECK((backend_ctx->CL_mul_mat_Ab_Bi_8x4 = clCreateKernel(backend_ctx->program_CL_gemm, "kernel_mul_mat_Ab_Bi_8x4", &err), err));
  1639. GGML_LOG_CONT(".");
  1640. }
  1641. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  1642. GGML_LOG_CONT("\n");
  1643. }
  1644. // XXX static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
  1645. // XXX static bool initialized = false;
  1646. // XXX static ggml_backend_opencl_context *backend_ctx = nullptr;
  1647. static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev);
  1648. namespace /* anonymous */ {
  1649. extern struct ggml_backend_device_i ggml_backend_opencl_device_i;
  1650. }
  1651. // Look for available and suitable devices.
  1652. static std::vector<ggml_backend_device> ggml_opencl_probe_devices(ggml_backend_reg * reg) {
  1653. std::vector<ggml_backend_device> found_devices;
  1654. #ifdef GGML_OPENCL_PROFILING
  1655. GGML_LOG_INFO("ggml_opencl: OpenCL profiling enabled\n");
  1656. #endif
  1657. struct cl_device;
  1658. struct cl_platform {
  1659. cl_platform_id id;
  1660. unsigned number;
  1661. char name[128];
  1662. char vendor[128];
  1663. struct cl_device * devices;
  1664. unsigned n_devices;
  1665. struct cl_device * default_device;
  1666. };
  1667. struct cl_device {
  1668. struct cl_platform * platform;
  1669. cl_device_id id;
  1670. unsigned number;
  1671. cl_device_type type;
  1672. char name[128];
  1673. char version[128];
  1674. };
  1675. enum { NPLAT = 16, NDEV = 16 };
  1676. struct cl_platform platforms[NPLAT];
  1677. unsigned n_platforms = 0;
  1678. struct cl_device devices[NDEV];
  1679. unsigned n_devices = 0;
  1680. struct cl_device * default_device = NULL;
  1681. unsigned default_platform_number = 0;
  1682. cl_platform_id platform_ids[NPLAT];
  1683. if (clGetPlatformIDs(NPLAT, platform_ids, &n_platforms) != CL_SUCCESS) {
  1684. GGML_LOG_ERROR("ggml_opencl: plaform IDs not available.\n");
  1685. return found_devices;
  1686. }
  1687. for (unsigned i = 0; i < n_platforms; i++) {
  1688. struct cl_platform * p = &platforms[i];
  1689. p->number = i;
  1690. p->id = platform_ids[i];
  1691. CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_NAME, sizeof(p->name), &p->name, NULL));
  1692. CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_VENDOR, sizeof(p->vendor), &p->vendor, NULL));
  1693. cl_device_id device_ids[NDEV];
  1694. cl_int clGetDeviceIDsError = clGetDeviceIDs(p->id, CL_DEVICE_TYPE_ALL, NDEV, device_ids, &p->n_devices);
  1695. if (clGetDeviceIDsError == CL_DEVICE_NOT_FOUND) {
  1696. p->n_devices = 0;
  1697. } else {
  1698. CL_CHECK(clGetDeviceIDsError);
  1699. }
  1700. p->devices = p->n_devices > 0 ? &devices[n_devices] : NULL;
  1701. p->default_device = NULL;
  1702. for (unsigned j = 0; j < p->n_devices; j++) {
  1703. struct cl_device * d = &devices[n_devices];
  1704. d->number = n_devices++;
  1705. d->id = device_ids[j];
  1706. d->platform = p;
  1707. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_NAME, sizeof(d->name), &d->name, NULL));
  1708. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_TYPE, sizeof(d->type), &d->type, NULL));
  1709. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_VERSION, sizeof(d->version), &d->version, NULL));
  1710. if (p->default_device == NULL && d->type == CL_DEVICE_TYPE_GPU) {
  1711. p->default_device = d;
  1712. }
  1713. }
  1714. if (default_device == NULL && p->default_device != NULL) {
  1715. default_device = p->default_device;
  1716. default_platform_number = i;
  1717. }
  1718. }
  1719. if (n_devices == 0) {
  1720. GGML_LOG_ERROR("ggml_opencl: could find any OpenCL devices.\n");
  1721. return found_devices;
  1722. }
  1723. char * user_platform_string = getenv("GGML_OPENCL_PLATFORM");
  1724. char * user_device_string = getenv("GGML_OPENCL_DEVICE");
  1725. int user_platform_number = -1;
  1726. int user_device_number = -1;
  1727. cl_device * candidate_devices = nullptr;
  1728. unsigned n_candidate_devices = 0;
  1729. unsigned n;
  1730. if (user_platform_string != NULL && sscanf(user_platform_string, " %u", &n) == 1 && n < n_platforms) {
  1731. user_platform_number = (int)n;
  1732. }
  1733. if (user_device_string != NULL && sscanf(user_device_string, " %u", &n) == 1 && n < n_devices) {
  1734. user_device_number = (int)n;
  1735. }
  1736. if (user_platform_number != -1 && user_device_number != -1) {
  1737. cl_platform* platform = &platforms[user_platform_number];
  1738. if ((unsigned)user_device_number >= platform->n_devices) {
  1739. GGML_LOG_ERROR("ggml_opencl: invalid device number %d\n", user_device_number);
  1740. exit(1);
  1741. }
  1742. default_device = &platform->devices[user_device_number];
  1743. candidate_devices = platform->devices;
  1744. n_candidate_devices = platform->n_devices;
  1745. } else {
  1746. // Choose a platform by matching a substring.
  1747. if (user_platform_number == -1 && user_platform_string != NULL && user_platform_string[0] != 0) {
  1748. for (unsigned i = 0; i < n_platforms; i++) {
  1749. struct cl_platform * p = &platforms[i];
  1750. if (strstr(p->name, user_platform_string) != NULL ||
  1751. strstr(p->vendor, user_platform_string) != NULL) {
  1752. user_platform_number = (int)i;
  1753. break;
  1754. }
  1755. }
  1756. if (user_platform_number == -1) {
  1757. GGML_LOG_ERROR("ggml_opencl: no platform matching '%s' was found.\n", user_platform_string);
  1758. exit(1);
  1759. }
  1760. }
  1761. int platform_idx = user_platform_number != -1 ? user_platform_number : default_platform_number;
  1762. struct cl_platform * p = &platforms[platform_idx];
  1763. candidate_devices = p->devices;
  1764. n_candidate_devices = p->n_devices;
  1765. default_device = p->default_device;
  1766. if (n_candidate_devices == 0) {
  1767. GGML_LOG_ERROR("ggml_opencl: selected platform '%s' does not have any devices.\n", p->name);
  1768. exit(1);
  1769. }
  1770. if (user_device_number == -1 && user_device_string != NULL && user_device_string[0] != 0) {
  1771. for (unsigned i = 0; i < n_candidate_devices; i++) {
  1772. struct cl_device * d = &candidate_devices[i];
  1773. if (strstr(d->name, user_device_string) != NULL) {
  1774. user_device_number = d->number;
  1775. break;
  1776. }
  1777. }
  1778. if (user_device_number == -1) {
  1779. GGML_LOG_ERROR("ggml_opencl: no device matching '%s' was found.\n", user_device_string);
  1780. exit(1);
  1781. }
  1782. }
  1783. if (user_device_number != -1) {
  1784. candidate_devices = &devices[user_device_number];
  1785. n_candidate_devices = 1;
  1786. default_device = &candidate_devices[0];
  1787. }
  1788. GGML_ASSERT(n_candidate_devices > 0);
  1789. if (default_device == NULL) {
  1790. default_device = &candidate_devices[0];
  1791. }
  1792. }
  1793. GGML_ASSERT(n_candidate_devices != 0 && candidate_devices);
  1794. // Put the default device in front.
  1795. for (unsigned i = 1; i < n_candidate_devices; i++) {
  1796. if (&candidate_devices[i] == default_device) {
  1797. std::swap(candidate_devices[0], candidate_devices[i]);
  1798. default_device = &candidate_devices[0];
  1799. break;
  1800. }
  1801. }
  1802. GGML_LOG_INFO("ggml_opencl: selected platform: '%s'\n", default_device->platform->name);
  1803. std::vector<cl_device_id> device_ids;
  1804. for (auto dev = candidate_devices, dev_end = candidate_devices + n_candidate_devices; dev != dev_end; dev++) {
  1805. device_ids.push_back(dev->id);
  1806. }
  1807. cl_int err;
  1808. cl_context shared_context;
  1809. cl_context_properties properties[] = { (intptr_t) CL_CONTEXT_PLATFORM, (intptr_t) default_device->platform->id, 0 };
  1810. CL_CHECK(
  1811. (shared_context = clCreateContext(properties, device_ids.size(), device_ids.data(), NULL, NULL, &err), err));
  1812. for (auto dev = candidate_devices, dev_end = candidate_devices + n_candidate_devices; dev != dev_end; dev++) {
  1813. GGML_LOG_INFO("\nggml_opencl: device: '%s (%s)'\n", dev->name, dev->version);
  1814. auto dev_ctx = std::unique_ptr<ggml_backend_opencl_device_context>(new ggml_backend_opencl_device_context{
  1815. /*.platform =*/dev->platform->id,
  1816. /*.platform_nane =*/dev->platform->name,
  1817. /*.device =*/dev->id,
  1818. /*.device_name =*/dev->name,
  1819. /*.device_type =*/dev->type,
  1820. /*.device_version =*/dev->version,
  1821. /*.backend_ctx =*/nullptr,
  1822. /*.buffer_type =*/{},
  1823. /*.context =*/shared_context,
  1824. });
  1825. found_devices.push_back(ggml_backend_device{
  1826. /* .iface = */ ggml_backend_opencl_device_i,
  1827. /* .reg = */ reg,
  1828. /* .context = */ dev_ctx.get(),
  1829. });
  1830. if (!ggml_cl2_init(&found_devices.back())) {
  1831. found_devices.pop_back();
  1832. GGML_LOG_INFO("ggml_opencl: drop unsupported device.\n");
  1833. continue;
  1834. }
  1835. dev_ctx.release();
  1836. }
  1837. if (found_devices.size()) {
  1838. auto * dev_ctx = static_cast<ggml_backend_opencl_device_context *>(found_devices.front().context);
  1839. GGML_LOG_INFO("ggml_opencl: default device: '%s (%s)'\n", dev_ctx->device_name.c_str(),
  1840. dev_ctx->device_version.c_str());
  1841. if (dev_ctx->device_type != CL_DEVICE_TYPE_GPU) {
  1842. GGML_LOG_WARN("ggml_opencl: warning, the default device is not a GPU: '%s'.\n",
  1843. dev_ctx->device_name.c_str());
  1844. }
  1845. }
  1846. return found_devices;
  1847. }
  1848. // Initialize device if it is supported (returns nullptr if it is not).
  1849. static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
  1850. GGML_ASSERT(dev);
  1851. GGML_ASSERT(dev->context);
  1852. ggml_backend_opencl_device_context * dev_ctx = (ggml_backend_opencl_device_context *) dev->context;
  1853. GGML_ASSERT(dev_ctx->platform);
  1854. GGML_ASSERT(dev_ctx->device);
  1855. if (dev_ctx->backend_ctx) {
  1856. return dev_ctx->backend_ctx;
  1857. }
  1858. auto backend_ctx = std::make_unique<ggml_backend_opencl_context>();
  1859. backend_ctx->device = dev_ctx->device;
  1860. backend_ctx->gpu_family = GPU_FAMILY::UNKNOWN;
  1861. // ref_count get increased in ggml_backend_opencl_device_init
  1862. // This function is also used to retrieve backend context, so we don't want
  1863. // to increase ref_count for each call. We only want to increase ref_count
  1864. // when the associated device is initialized
  1865. backend_ctx->ref_count = 0;
  1866. if (strstr(dev_ctx->device_name.c_str(), "Adreno") ||
  1867. strstr(dev_ctx->device_name.c_str(), "Qualcomm") ||
  1868. strstr(dev_ctx->device_version.c_str(), "Adreno")) {
  1869. backend_ctx->gpu_family = GPU_FAMILY::ADRENO;
  1870. // Usually device version contains the detailed device name
  1871. backend_ctx->adreno_gen = get_adreno_gpu_gen(dev_ctx->device_version.c_str());
  1872. if (backend_ctx->adreno_gen == ADRENO_GPU_GEN::ADRENO_UNKNOWN) {
  1873. backend_ctx->adreno_gen = get_adreno_gpu_gen(dev_ctx->device_name.c_str());
  1874. }
  1875. // Use wave size of 64 for all Adreno GPUs.
  1876. backend_ctx->adreno_wave_size = 64;
  1877. } else if (strstr(dev_ctx->device_name.c_str(), "Intel")) {
  1878. backend_ctx->gpu_family = GPU_FAMILY::INTEL;
  1879. } else {
  1880. GGML_LOG_ERROR("Unsupported GPU: %s\n", dev_ctx->device_name.c_str());
  1881. backend_ctx->gpu_family = GPU_FAMILY::UNKNOWN;
  1882. return nullptr;
  1883. }
  1884. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  1885. if (backend_ctx->gpu_family != GPU_FAMILY::ADRENO) {
  1886. GGML_LOG_ERROR("ggml_opencl: Adreno-specific kernels should not be enabled for non-Adreno GPUs; "
  1887. "run on an Adreno GPU or recompile with CMake option `-DGGML_OPENCL_USE_ADRENO_KERNELS=OFF`\n");
  1888. return nullptr;
  1889. }
  1890. #endif
  1891. // Populate backend device name
  1892. backend_ctx->device_name = dev_ctx->device_name;
  1893. // A local ref of cl_device_id for convenience
  1894. cl_device_id device = backend_ctx->device;
  1895. ggml_cl_version platform_version = get_opencl_platform_version(dev_ctx->platform);
  1896. // Check device OpenCL version, OpenCL 2.0 or above is required
  1897. ggml_cl_version opencl_c_version = get_opencl_c_version(platform_version, device);
  1898. if (opencl_c_version.major < 2) {
  1899. GGML_LOG_ERROR("ggml_opencl: OpenCL 2.0 or above is required\n");
  1900. return nullptr;
  1901. }
  1902. // Check driver version
  1903. size_t driver_version_str_size;
  1904. clGetDeviceInfo(device, CL_DRIVER_VERSION, 0, NULL, &driver_version_str_size);
  1905. char *driver_version = (char *)alloca(driver_version_str_size + 1);
  1906. clGetDeviceInfo(device, CL_DRIVER_VERSION, driver_version_str_size, driver_version, NULL);
  1907. driver_version[driver_version_str_size] = '\0';
  1908. GGML_LOG_INFO("ggml_opencl: OpenCL driver: %s\n", driver_version);
  1909. backend_ctx->driver_version = driver_version;
  1910. backend_ctx->adreno_cl_compiler_version = get_adreno_cl_compiler_version(driver_version);
  1911. backend_ctx->has_vector_subgroup_broadcast =
  1912. (backend_ctx->adreno_cl_compiler_version.type == E031 && backend_ctx->adreno_cl_compiler_version.major >= 47) ||
  1913. (backend_ctx->adreno_cl_compiler_version.type == DX && backend_ctx->adreno_cl_compiler_version.major >= 17);
  1914. GGML_LOG_INFO("ggml_opencl: vector subgroup broadcast support: %s\n",
  1915. backend_ctx->has_vector_subgroup_broadcast ? "true" : "false");
  1916. size_t ext_str_size;
  1917. clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 0, NULL, &ext_str_size);
  1918. char *ext_buffer = (char *)alloca(ext_str_size + 1);
  1919. clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, ext_str_size, ext_buffer, NULL);
  1920. ext_buffer[ext_str_size] = '\0'; // ensure it is null terminated
  1921. // Check if ext_buffer contains cl_khr_fp16
  1922. backend_ctx->fp16_support = strstr(ext_buffer, "cl_khr_fp16") != NULL;
  1923. GGML_LOG_INFO("ggml_opencl: device FP16 support: %s\n", backend_ctx->fp16_support ? "true" : "false");
  1924. // fp16 is required
  1925. if (!backend_ctx->fp16_support) {
  1926. GGML_LOG_ERROR("ggml_opencl: device does not support FP16\n");
  1927. return nullptr;
  1928. }
  1929. // If OpenCL 3.0 is supported, then check for cl_khr_subgroups, which becomes
  1930. // optional in OpenCL 3.0 (cl_khr_subgroup is mandatory in OpenCL 2.x)
  1931. if (opencl_c_version.major == 3 && strstr(ext_buffer, "cl_khr_subgroups") == NULL &&
  1932. strstr(ext_buffer, "cl_intel_subgroups") == NULL) {
  1933. GGML_LOG_ERROR("ggml_opencl: device does not support subgroups (cl_khr_subgroups or cl_intel_subgroups) "
  1934. "(note that subgroups is an optional feature in OpenCL 3.0)\n");
  1935. return nullptr;
  1936. }
  1937. cl_uint base_align_in_bits;
  1938. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_MEM_BASE_ADDR_ALIGN, sizeof(cl_uint), &base_align_in_bits, NULL));
  1939. GGML_ASSERT(base_align_in_bits % 8u == 0);
  1940. backend_ctx->alignment = base_align_in_bits / 8u;
  1941. GGML_LOG_INFO("ggml_opencl: mem base addr align: %u\n", backend_ctx->alignment);
  1942. clGetDeviceInfo(device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(size_t), &backend_ctx->max_alloc_size, NULL);
  1943. GGML_LOG_INFO("ggml_opencl: max mem alloc size: %zu MB\n", backend_ctx->max_alloc_size/1024/1024);
  1944. clGetDeviceInfo(device, CL_DEVICE_MAX_WORK_GROUP_SIZE, sizeof(size_t), &backend_ctx->max_workgroup_size, NULL);
  1945. GGML_LOG_INFO("ggml_opencl: device max workgroup size: %lu\n", backend_ctx->max_workgroup_size);
  1946. // Check SVM.
  1947. cl_device_svm_capabilities svm_caps;
  1948. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_SVM_CAPABILITIES, sizeof(cl_device_svm_capabilities), &svm_caps, 0));
  1949. GGML_LOG_INFO("ggml_opencl: SVM coarse grain buffer support: %s\n",
  1950. svm_caps & CL_DEVICE_SVM_COARSE_GRAIN_BUFFER ? "true" : "false");
  1951. GGML_LOG_INFO("ggml_opencl: SVM fine grain buffer support: %s\n",
  1952. svm_caps & CL_DEVICE_SVM_FINE_GRAIN_BUFFER ? "true" : "false");
  1953. GGML_LOG_INFO("ggml_opencl: SVM fine grain system support: %s\n",
  1954. svm_caps & CL_DEVICE_SVM_FINE_GRAIN_SYSTEM ? "true" : "false");
  1955. GGML_LOG_INFO("ggml_opencl: SVM atomics support: %s\n",
  1956. svm_caps & CL_DEVICE_SVM_ATOMICS ? "true" : "false");
  1957. if (opencl_c_version.major >= 3) {
  1958. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_NON_UNIFORM_WORK_GROUP_SUPPORT, sizeof(cl_bool),
  1959. &backend_ctx->non_uniform_workgroups, 0));
  1960. } else {
  1961. GGML_ASSERT(opencl_c_version.major == 2);
  1962. // Non-uniform workgroup sizes is mandatory feature in v2.x.
  1963. backend_ctx->non_uniform_workgroups = true;
  1964. }
  1965. // Print out configurations
  1966. #ifdef GGML_OPENCL_SOA_Q
  1967. GGML_LOG_INFO("ggml_opencl: flattening quantized weights representation as struct of arrays (GGML_OPENCL_SOA_Q)\n");
  1968. #endif // GGML_OPENCL_SOA_Q
  1969. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  1970. GGML_LOG_INFO("ggml_opencl: using kernels optimized for Adreno (GGML_OPENCL_USE_ADRENO_KERNELS)\n");
  1971. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  1972. cl_int err;
  1973. // A local ref of cl_context for convenience
  1974. cl_context context = backend_ctx->context = dev_ctx->context;
  1975. //CL_CHECK((queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err),
  1976. // (err != CL_INVALID_QUEUE_PROPERTIES && err != CL_INVALID_VALUE ? err :
  1977. // (queue = clCreateCommandQueue(context, device, 0, &err), err)
  1978. //)));
  1979. cl_command_queue_properties command_queue_props = 0;
  1980. #ifdef GGML_OPENCL_PROFILING
  1981. command_queue_props |= CL_QUEUE_PROFILING_ENABLE;
  1982. #endif
  1983. CL_CHECK((backend_ctx->queue = clCreateCommandQueue(context, device, command_queue_props, &err), err));
  1984. // Load kernels
  1985. load_cl_kernels(backend_ctx.get(), opencl_c_version);
  1986. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  1987. // Allocate intermediate buffers and images
  1988. size_t required_A_q_d_bytes = 311164928;
  1989. size_t required_A_s_d_bytes = 38895616;
  1990. size_t required_B_d_bytes = 45088768;
  1991. // Ensure buffer sizes do not exceed the maximum allocation size
  1992. size_t max_A_q_d_bytes = MIN(required_A_q_d_bytes, backend_ctx->max_alloc_size);
  1993. size_t max_A_s_d_bytes = MIN(required_A_s_d_bytes, backend_ctx->max_alloc_size);
  1994. size_t max_B_d_bytes = MIN(required_B_d_bytes, backend_ctx->max_alloc_size);
  1995. if (required_A_q_d_bytes > backend_ctx->max_alloc_size) {
  1996. GGML_LOG_WARN("ggml_opencl: A_q_d buffer size reduced from %zu to %zu due to device limitations.\n",
  1997. required_A_q_d_bytes, max_A_q_d_bytes);
  1998. }
  1999. if (required_A_s_d_bytes > backend_ctx->max_alloc_size) {
  2000. GGML_LOG_WARN("ggml_opencl: A_s_d buffer size reduced from %zu to %zu due to device limitations.\n",
  2001. required_A_s_d_bytes, max_A_s_d_bytes);
  2002. }
  2003. if (required_B_d_bytes > backend_ctx->max_alloc_size) {
  2004. GGML_LOG_WARN("ggml_opencl: B_d buffer size reduced from %zu to %zu due to device limitations.\n",
  2005. required_B_d_bytes, max_B_d_bytes);
  2006. }
  2007. CL_CHECK((backend_ctx->A_q_d_max = clCreateBuffer(context, 0, max_A_q_d_bytes, NULL, &err), err));
  2008. CL_CHECK((backend_ctx->A_s_d_max = clCreateBuffer(context, 0, max_A_s_d_bytes, NULL, &err), err));
  2009. CL_CHECK((backend_ctx->B_d_max = clCreateBuffer(context, 0, max_B_d_bytes, NULL, &err), err));
  2010. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  2011. backend_ctx->disable_fusion = getenv("GGML_OPENCL_DISABLE_FUSION") != nullptr;
  2012. dev_ctx->backend_ctx = backend_ctx.release();
  2013. return dev_ctx->backend_ctx;
  2014. }
  2015. static void ggml_cl2_free(ggml_backend_t backend) {
  2016. ggml_backend_opencl_context * ctx = (ggml_backend_opencl_context *) backend->context;
  2017. ctx->free();
  2018. // The CL context is shared by all backends, release it if all backends have been released
  2019. bool should_release_opencl = true;
  2020. for (auto device : g_ggml_backend_opencl_devices) {
  2021. ggml_backend_opencl_device_context * ctx_dev = (ggml_backend_opencl_device_context *) device.context;
  2022. if (ctx_dev->backend_ctx->ref_count > 0) {
  2023. should_release_opencl = false;
  2024. }
  2025. }
  2026. if (should_release_opencl) {
  2027. CL_CHECK(clReleaseContext(ctx->context));
  2028. }
  2029. }
  2030. //------------------------------------------------------------------------------
  2031. // Tensor extra management
  2032. //------------------------------------------------------------------------------
  2033. struct ggml_tensor_extra_cl {
  2034. // The buffer object that holds the data.
  2035. cl_mem data_device;
  2036. // The offset into the buffer object. This is primarily for scratch buffer
  2037. // and view operation.
  2038. // NB: this offset no longer includes view offset (view_offs). Whenever this
  2039. // offset is used, view_offs should be considered.
  2040. cl_ulong offset;
  2041. // The actual size of the cl_mem object. This is needed when returning the
  2042. // block to the pool.
  2043. size_t actual_size;
  2044. void reset() {
  2045. data_device = nullptr;
  2046. offset = 0;
  2047. actual_size = 0;
  2048. }
  2049. };
  2050. // Additional tensor extra structs for quantized tensors.
  2051. // These tensors are loaded from files and should not be allocated in scratch --
  2052. // they should always be allocated from the pool. Hence, they do not have an
  2053. // `offset`, which indicate their locations in the scratch buffer.
  2054. struct ggml_tensor_extra_cl_q4_0 {
  2055. // Quantized values.
  2056. cl_mem q = nullptr;
  2057. // Quantized values in image1d_buffer_t.
  2058. cl_mem q_img = nullptr;
  2059. // Scales.
  2060. cl_mem d = nullptr;
  2061. // Scales in image1d_buffer_t.
  2062. cl_mem d_img = nullptr;
  2063. // Size of quantized values.
  2064. size_t size_q = 0;
  2065. // Size of scales.
  2066. size_t size_d = 0;
  2067. ~ggml_tensor_extra_cl_q4_0() {
  2068. reset();
  2069. }
  2070. void reset() {
  2071. // q and d are subbuffers into the bigger buffer allocated in ggml_backend_buffer.
  2072. // They must be properly released so that the original buffer can be
  2073. // properly released to avoid memory leak.
  2074. if (q != nullptr) {
  2075. CL_CHECK(clReleaseMemObject(q));
  2076. q = nullptr;
  2077. }
  2078. if (d != nullptr) {
  2079. CL_CHECK(clReleaseMemObject(d));
  2080. d = nullptr;
  2081. }
  2082. // Currently, q_img and d_img are only initialized when SMALL_ALLOC is
  2083. // enabled. They point to the images in ggml_backend_opencl_buffer_context.
  2084. // So, there is no need to release them here.
  2085. // TODO: initialize them for non SMALL_PATH path, or remove them.
  2086. q_img = nullptr;
  2087. d_img = nullptr;
  2088. size_q = 0;
  2089. size_d = 0;
  2090. }
  2091. };
  2092. //------------------------------------------------------------------------------
  2093. // Backend API
  2094. //------------------------------------------------------------------------------
  2095. //
  2096. // backend
  2097. //
  2098. static const char * ggml_backend_opencl_name(ggml_backend_t backend) {
  2099. return "OpenCL";
  2100. UNUSED(backend);
  2101. }
  2102. static void ggml_backend_opencl_free(ggml_backend_t backend) {
  2103. ggml_cl2_free(backend);
  2104. }
  2105. static void ggml_backend_opencl_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  2106. GGML_UNUSED(backend);
  2107. GGML_UNUSED(tensor);
  2108. GGML_UNUSED(data);
  2109. GGML_UNUSED(offset);
  2110. GGML_UNUSED(size);
  2111. }
  2112. static void ggml_backend_opencl_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  2113. GGML_UNUSED(backend);
  2114. GGML_UNUSED(tensor);
  2115. GGML_UNUSED(data);
  2116. GGML_UNUSED(offset);
  2117. GGML_UNUSED(size);
  2118. }
  2119. static bool ggml_backend_opencl_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) {
  2120. GGML_UNUSED(backend);
  2121. GGML_UNUSED(src);
  2122. GGML_UNUSED(dst);
  2123. return false;
  2124. }
  2125. static void ggml_backend_opencl_synchronize(ggml_backend_t backend) {
  2126. auto * backend_ctx = static_cast<ggml_backend_opencl_context *>(backend->context);
  2127. cl_event evt;
  2128. CL_CHECK(clEnqueueBarrierWithWaitList(backend_ctx->queue, 0, nullptr, &evt));
  2129. CL_CHECK(clWaitForEvents(1, &evt));
  2130. CL_CHECK(clReleaseEvent(evt));
  2131. }
  2132. // Syncronizes the 'backend_ctx's device with others so that commands
  2133. // enqueued to it won't start until commands in the other devices have
  2134. // completed.
  2135. static void sync_with_other_backends(ggml_backend_opencl_context * backend_ctx) {
  2136. if (g_ggml_backend_opencl_devices.size() < 2)
  2137. return; // No other devices to synchronize with.
  2138. std::vector<cl_event> events;
  2139. events.reserve(g_ggml_backend_opencl_devices.size());
  2140. for (ggml_backend_device & backend_dev : g_ggml_backend_opencl_devices) {
  2141. auto * other_backend_ctx = ggml_cl2_init(&backend_dev);
  2142. if (backend_ctx != other_backend_ctx) {
  2143. cl_event ev;
  2144. CL_CHECK(clEnqueueMarkerWithWaitList(other_backend_ctx->queue, 0, nullptr, &ev));
  2145. CL_CHECK(clFlush(other_backend_ctx->queue));
  2146. events.push_back(ev);
  2147. }
  2148. }
  2149. CL_CHECK(clEnqueueBarrierWithWaitList(backend_ctx->queue, events.size(), events.data(), nullptr));
  2150. for (auto ev : events) {
  2151. CL_CHECK(clReleaseEvent(ev));
  2152. }
  2153. }
  2154. static void sync_with_other_backends(ggml_backend_t backend) {
  2155. auto * backend_ctx = static_cast<ggml_backend_opencl_context *>(backend->context);
  2156. sync_with_other_backends(backend_ctx);
  2157. }
  2158. static bool ggml_opencl_can_fuse(const struct ggml_cgraph * cgraph, int node_idx, std::initializer_list<enum ggml_op> ops) {
  2159. if (!ggml_can_fuse(cgraph, node_idx, ops)) {
  2160. return false;
  2161. }
  2162. if (ops.size() == 2 && ops.begin()[0] == GGML_OP_RMS_NORM && ops.begin()[1] == GGML_OP_MUL) {
  2163. const ggml_tensor *rms_norm = cgraph->nodes[node_idx];
  2164. const ggml_tensor *mul = cgraph->nodes[node_idx+1];
  2165. GGML_ASSERT(rms_norm->src[0]->type == GGML_TYPE_F32);
  2166. GGML_ASSERT(rms_norm->type == GGML_TYPE_F32);
  2167. // rms_norm only supports f32
  2168. if (mul->src[0]->type != GGML_TYPE_F32 ||
  2169. mul->src[1]->type != GGML_TYPE_F32 ||
  2170. mul->type != GGML_TYPE_F32) {
  2171. return false;
  2172. }
  2173. // if rms_norm is the B operand, then we don't handle broadcast
  2174. if (rms_norm == mul->src[1] &&
  2175. !ggml_are_same_shape(mul->src[0], rms_norm->src[1])) {
  2176. return false;
  2177. }
  2178. // rms_norm assumes contiguous rows
  2179. if (!ggml_is_contiguous_rows(mul->src[0]) || !ggml_is_contiguous_rows(mul->src[1])) {
  2180. return false;
  2181. }
  2182. } else if (ops.size() == 3 && ops.begin()[0] == GGML_OP_NORM && ops.begin()[1] == GGML_OP_MUL && ops.begin()[2] == GGML_OP_ADD) {
  2183. const ggml_tensor *norm = cgraph->nodes[node_idx];
  2184. const ggml_tensor *mul = cgraph->nodes[node_idx+1];
  2185. const ggml_tensor *add = cgraph->nodes[node_idx+2];
  2186. const ggml_tensor *w = mul->src[0] == norm ? mul->src[1] : mul->src[0];
  2187. const ggml_tensor *b = add->src[0] == mul ? add->src[1] : add->src[0];
  2188. // norm fusion only supports F32
  2189. if (norm->src[0]->type != GGML_TYPE_F32 || w->type != GGML_TYPE_F32 || b->type != GGML_TYPE_F32) {
  2190. return false;
  2191. }
  2192. if (norm->src[0]->ne[0] % 4 != 0) {
  2193. return false;
  2194. }
  2195. if (!ggml_is_contiguous(norm->src[0]) || !ggml_is_contiguous(w) || !ggml_is_contiguous(b)) {
  2196. return false;
  2197. }
  2198. } else if (ops.size() == 3 && ops.begin()[0] == GGML_OP_GROUP_NORM && ops.begin()[1] == GGML_OP_MUL && ops.begin()[2] == GGML_OP_ADD) {
  2199. const ggml_tensor *gn = cgraph->nodes[node_idx];
  2200. const ggml_tensor *mul = cgraph->nodes[node_idx+1];
  2201. const ggml_tensor *add = cgraph->nodes[node_idx+2];
  2202. const ggml_tensor *w = mul->src[0] == gn ? mul->src[1] : mul->src[0];
  2203. const ggml_tensor *b = add->src[0] == mul ? add->src[1] : add->src[0];
  2204. if (gn->src[0]->type != GGML_TYPE_F32 || w->type != GGML_TYPE_F32 || b->type != GGML_TYPE_F32) {
  2205. return false;
  2206. }
  2207. if (!ggml_is_contiguous(gn->src[0]) || !ggml_is_contiguous(w) || !ggml_is_contiguous(b)) {
  2208. return false;
  2209. }
  2210. }
  2211. return true;
  2212. }
  2213. static void ggml_opencl_op_rms_norm_fused(ggml_backend_t backend, ggml_tensor * rms_norm_tensor, ggml_tensor * mul_tensor);
  2214. static void ggml_opencl_op_norm_fused(ggml_backend_t backend, ggml_tensor * norm_tensor, ggml_tensor * mul_tensor, ggml_tensor * add_tensor);
  2215. static void ggml_opencl_op_group_norm_fused(ggml_backend_t backend, ggml_tensor * gn_tensor, ggml_tensor * mul_tensor, ggml_tensor * add_tensor);
  2216. static ggml_status ggml_backend_opencl_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
  2217. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  2218. for (int i = 0; i < cgraph->n_nodes; i++) {
  2219. ggml_tensor * node = cgraph->nodes[i];
  2220. // NOTE: this may oversynchronize by synchronizing with
  2221. // backends/devices which don't compute 'cgraph's
  2222. // dependencies.
  2223. sync_with_other_backends(backend);
  2224. if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
  2225. continue;
  2226. }
  2227. if (!backend_ctx->disable_fusion && ggml_opencl_can_fuse(cgraph, i, { GGML_OP_NORM, GGML_OP_MUL, GGML_OP_ADD })) {
  2228. ggml_opencl_op_norm_fused(backend, node, cgraph->nodes[i+1], cgraph->nodes[i+2]);
  2229. i += 2;
  2230. continue;
  2231. }
  2232. if (!backend_ctx->disable_fusion && ggml_opencl_can_fuse(cgraph, i, { GGML_OP_GROUP_NORM, GGML_OP_MUL, GGML_OP_ADD })) {
  2233. ggml_opencl_op_group_norm_fused(backend, node, cgraph->nodes[i+1], cgraph->nodes[i+2]);
  2234. i += 2;
  2235. continue;
  2236. }
  2237. if (!backend_ctx->disable_fusion && ggml_opencl_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL })) {
  2238. ggml_opencl_op_rms_norm_fused(backend, node, cgraph->nodes[i+1]);
  2239. i++;
  2240. continue;
  2241. }
  2242. bool ok = ggml_cl_compute_forward(backend, node);
  2243. if (!ok) {
  2244. GGML_LOG_ERROR("%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
  2245. }
  2246. GGML_ASSERT(ok);
  2247. }
  2248. return GGML_STATUS_SUCCESS;
  2249. }
  2250. static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
  2251. ggml_backend_opencl_device_context * dev_ctx = (ggml_backend_opencl_device_context *)dev->context;
  2252. ggml_backend_opencl_context * backend_ctx = dev_ctx->backend_ctx;
  2253. switch (op->op) {
  2254. case GGML_OP_NONE:
  2255. return true;
  2256. case GGML_OP_GET_ROWS:
  2257. switch (op->src[0]->type) {
  2258. case GGML_TYPE_F32:
  2259. case GGML_TYPE_F16:
  2260. return true;
  2261. case GGML_TYPE_Q4_0:
  2262. #ifdef GGML_OPENCL_SOA_Q
  2263. // We do not support flattened Q4_0 (and possibly other Q's)
  2264. return false;
  2265. #else // GGML_OPENCL_SOA_Q
  2266. return true;
  2267. #endif // GGML_OPENCL_SOA_Q
  2268. default:
  2269. return false;
  2270. }
  2271. case GGML_OP_SET_ROWS:
  2272. {
  2273. // TODO: add support
  2274. // ref: https://github.com/ggml-org/llama.cpp/pull/14274
  2275. #pragma message("TODO: implement BF16, Q4_0, Q4_1, Q5_0, Q5_1, Q8_0, IQ4_NL support (https://github.com/ggml-org/llama.cpp/pull/14661)")
  2276. if (op->src[0]->type != GGML_TYPE_F32) {
  2277. return false;
  2278. }
  2279. switch (op->type) {
  2280. case GGML_TYPE_F16:
  2281. case GGML_TYPE_F32:
  2282. return true;
  2283. default:
  2284. return false;
  2285. }
  2286. }
  2287. case GGML_OP_CPY:
  2288. case GGML_OP_DUP:
  2289. case GGML_OP_CONT:
  2290. switch (op->src[0]->type) {
  2291. case GGML_TYPE_F32:
  2292. switch (op->type) {
  2293. case GGML_TYPE_F16:
  2294. case GGML_TYPE_F32:
  2295. return true;
  2296. default:
  2297. return false;
  2298. }
  2299. case GGML_TYPE_F16:
  2300. switch (op->type) {
  2301. case GGML_TYPE_F16:
  2302. case GGML_TYPE_F32:
  2303. return true;
  2304. default:
  2305. return false;
  2306. }
  2307. default:
  2308. return false;
  2309. }
  2310. case GGML_OP_SCALE:
  2311. return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]);
  2312. case GGML_OP_ADD:
  2313. if (op->type == GGML_TYPE_F16) {
  2314. const bool src0_ok = op->src[0]->type == GGML_TYPE_F16 || op->src[0]->type == GGML_TYPE_F32;
  2315. const bool src1_ok = op->src[1]->type == GGML_TYPE_F16 || op->src[1]->type == GGML_TYPE_F32;
  2316. if (src0_ok && src1_ok) {
  2317. return true;
  2318. }
  2319. }
  2320. case GGML_OP_MUL:
  2321. case GGML_OP_DIV:
  2322. case GGML_OP_SUB:
  2323. return (op->src[0]->type == op->src[1]->type) &&
  2324. (op->src[0]->type == op->type) &&
  2325. (op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16);
  2326. case GGML_OP_ADD_ID:
  2327. return op->src[0]->type == GGML_TYPE_F32;
  2328. case GGML_OP_UNARY:
  2329. switch (ggml_get_unary_op(op)) {
  2330. case GGML_UNARY_OP_GELU:
  2331. case GGML_UNARY_OP_SILU:
  2332. case GGML_UNARY_OP_RELU:
  2333. case GGML_UNARY_OP_GELU_ERF:
  2334. case GGML_UNARY_OP_GELU_QUICK:
  2335. return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
  2336. case GGML_UNARY_OP_SIGMOID:
  2337. return ggml_is_contiguous(op->src[0]);
  2338. case GGML_UNARY_OP_TANH:
  2339. return (op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32) ||
  2340. (op->src[0]->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16);
  2341. default:
  2342. return false;
  2343. }
  2344. case GGML_OP_GLU:
  2345. switch (ggml_get_glu_op(op)) {
  2346. case GGML_GLU_OP_GEGLU:
  2347. case GGML_GLU_OP_REGLU:
  2348. case GGML_GLU_OP_SWIGLU:
  2349. case GGML_GLU_OP_SWIGLU_OAI:
  2350. case GGML_GLU_OP_GEGLU_ERF:
  2351. case GGML_GLU_OP_GEGLU_QUICK:
  2352. return ggml_is_contiguous_1(op->src[0]) && (op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16);
  2353. default:
  2354. return false;
  2355. }
  2356. case GGML_OP_CLAMP:
  2357. return op->src[0]->type == GGML_TYPE_F32;
  2358. case GGML_OP_SOFT_MAX:
  2359. case GGML_OP_NORM:
  2360. return true;
  2361. case GGML_OP_RMS_NORM:
  2362. return op->ne[0] % 4 == 0 && ggml_is_contiguous_rows(op->src[0]);
  2363. case GGML_OP_REPEAT:
  2364. return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32; // Assuming F32 for now, can be expanded
  2365. case GGML_OP_PAD:
  2366. return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32 &&
  2367. op->src[0]->ne[3] == 1 && op->ne[3] == 1 &&
  2368. (ggml_get_op_params_i32(op, 0) == 0) && (ggml_get_op_params_i32(op, 2) == 0) &&
  2369. (ggml_get_op_params_i32(op, 4) == 0) && (ggml_get_op_params_i32(op, 6) == 0);
  2370. case GGML_OP_UPSCALE:
  2371. return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
  2372. case GGML_OP_CONV_2D:
  2373. return (op->src[0]->type == GGML_TYPE_F16 && op->src[1]->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16) ||
  2374. (op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32) ||
  2375. (op->src[0]->type == GGML_TYPE_F16 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32);
  2376. case GGML_OP_CONCAT:
  2377. return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
  2378. case GGML_OP_TIMESTEP_EMBEDDING:
  2379. return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
  2380. case GGML_OP_GROUP_NORM:
  2381. return ggml_is_contiguous(op->src[0]);
  2382. case GGML_OP_MUL_MAT:
  2383. if (op->src[0]->type == GGML_TYPE_F16) {
  2384. return true;
  2385. } else if (op->src[0]->type == GGML_TYPE_F32) {
  2386. return op->src[1]->type == GGML_TYPE_F32;
  2387. } else if (op->src[0]->type == GGML_TYPE_Q4_0 || op->src[0]->type == GGML_TYPE_MXFP4 ||
  2388. op->src[0]->type == GGML_TYPE_Q6_K) {
  2389. return op->src[1]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
  2390. }
  2391. return false;
  2392. case GGML_OP_MUL_MAT_ID:
  2393. if (op->src[0]->type == GGML_TYPE_Q4_0 ||
  2394. op->src[0]->type == GGML_TYPE_MXFP4) {
  2395. if (op->src[1]->type == GGML_TYPE_F32) {
  2396. return ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
  2397. }
  2398. }
  2399. return false;
  2400. case GGML_OP_RESHAPE:
  2401. case GGML_OP_VIEW:
  2402. case GGML_OP_PERMUTE:
  2403. case GGML_OP_TRANSPOSE:
  2404. return true;
  2405. case GGML_OP_DIAG_MASK_INF:
  2406. return op->ne[3] == 1;
  2407. case GGML_OP_ROPE: {
  2408. const int mode = ((const int32_t *) op->op_params)[2];
  2409. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  2410. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  2411. if (is_mrope && !is_vision) {
  2412. if (op->src[0]->type == GGML_TYPE_F32 ||
  2413. op->src[0]->type == GGML_TYPE_F16) {
  2414. return true;
  2415. }
  2416. return false;
  2417. }
  2418. if (is_vision) {
  2419. if (op->src[0]->type == GGML_TYPE_F32 ||
  2420. op->src[0]->type == GGML_TYPE_F16) {
  2421. return true;
  2422. }
  2423. return false;
  2424. }
  2425. return true;
  2426. }
  2427. case GGML_OP_IM2COL:
  2428. return true;
  2429. case GGML_OP_ARGSORT: {
  2430. cl_kernel kernel = backend_ctx->kernel_argsort_f32_i32;
  2431. int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
  2432. int cols = 1;
  2433. while (cols < op->ne[0]) {
  2434. cols *= 2;
  2435. }
  2436. return cols <= max_workgroup_size && op->src[0]->type == GGML_TYPE_F32;
  2437. }
  2438. case GGML_OP_SUM_ROWS:
  2439. return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]);
  2440. case GGML_OP_FLASH_ATTN_EXT:
  2441. {
  2442. const ggml_tensor * q = op->src[0];
  2443. const ggml_tensor * k = op->src[1];
  2444. const ggml_tensor * v = op->src[2];
  2445. const int dk = q->ne[0];
  2446. const int dv = v->ne[0];
  2447. const struct { int dk; int dv; } supported_dims[] = {
  2448. { 40, 40}, { 64, 64}, { 80, 80}, { 96, 96},
  2449. {112, 112}, {128, 128}, {192, 128},
  2450. {192, 192}, {256, 256},
  2451. };
  2452. bool dims_supported = false;
  2453. for (size_t i = 0; i < sizeof(supported_dims)/sizeof(supported_dims[0]); ++i) {
  2454. if (supported_dims[i].dk == dk && supported_dims[i].dv == dv) {
  2455. dims_supported = true;
  2456. break;
  2457. }
  2458. }
  2459. if (!dims_supported) {
  2460. return false;
  2461. }
  2462. const bool is_f32_f32 = q->type == GGML_TYPE_F32 && k->type == GGML_TYPE_F32 &&
  2463. v->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
  2464. const bool is_f16_f16 = q->type == GGML_TYPE_F16 && k->type == GGML_TYPE_F16 &&
  2465. v->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16;
  2466. const bool is_f32_f16 = q->type == GGML_TYPE_F32 && k->type == GGML_TYPE_F16 &&
  2467. v->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F32;
  2468. return is_f32_f32 || is_f16_f16 || is_f32_f16;
  2469. }
  2470. default:
  2471. return false;
  2472. }
  2473. }
  2474. // Forward declaration - implementation appears later in the file.
  2475. static const char * ggml_backend_opencl_buffer_type_get_name(ggml_backend_buffer_type_t buffer_type);
  2476. static ggml_guid_t ggml_backend_opencl_guid() {
  2477. static ggml_guid guid = { 0xde, 0xe0, 0x70, 0xa2, 0x73, 0x4e, 0x4d, 0xbc, 0xb0, 0xc7, 0x4f, 0xd4, 0x6d, 0x4e, 0x90, 0xfe };
  2478. return &guid;
  2479. }
  2480. static ggml_backend_i ggml_backend_opencl_i = {
  2481. /* .get_name = */ ggml_backend_opencl_name,
  2482. /* .free = */ ggml_backend_opencl_free,
  2483. /* .set_tensor_async = */ NULL, /* ggml_backend_opencl_set_tensor_async */
  2484. /* .get_tensor_async = */ NULL, /* ggml_backend_opencl_get_tensor_async */
  2485. /* .cpy_tensor_async = */ NULL, /* ggml_backend_opencl_cpy_tensor_async */
  2486. /* .synchronize = */ ggml_backend_opencl_synchronize,
  2487. /* .graph_plan_create = */ NULL,
  2488. /* .graph_plan_free = */ NULL,
  2489. /* .graph_plan_update = */ NULL,
  2490. /* .graph_plan_compute = */ NULL,
  2491. /* .graph_compute = */ ggml_backend_opencl_graph_compute,
  2492. /* .event_record = */ NULL,
  2493. /* .event_wait = */ NULL,
  2494. /* .optimize_graph = */ NULL,
  2495. };
  2496. ggml_backend_t ggml_backend_opencl_init(void) {
  2497. ggml_backend_dev_t dev = ggml_backend_reg_dev_get(ggml_backend_opencl_reg(), 0);
  2498. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(dev);
  2499. ggml_backend_t backend = new ggml_backend {
  2500. /* .guid = */ ggml_backend_opencl_guid(),
  2501. /* .iface = */ ggml_backend_opencl_i,
  2502. /* .device = */ dev,
  2503. /* .context = */ backend_ctx
  2504. };
  2505. return backend;
  2506. }
  2507. bool ggml_backend_is_opencl(ggml_backend_t backend) {
  2508. return backend && backend->iface.get_name == ggml_backend_opencl_name;
  2509. }
  2510. //
  2511. // buffer
  2512. //
  2513. struct ggml_backend_opencl_buffer_context {
  2514. // A buffer context can hold multiple cl_mem objects. This is for flattening
  2515. // quantized weights and should be used with GGML_OPENCL_SMALL_ALLOC where
  2516. // each tensor is allocated a separate buffer. When flattening is enabled
  2517. // with small allocation, each tensor is backed by two cl_mem objects (for
  2518. // quants and scales) packed into a backend_opencl_buffer.
  2519. ggml_backend_opencl_buffer_context(cl_mem buf)
  2520. : name("OpenCL") {
  2521. buffer.push_back(buf);
  2522. }
  2523. ~ggml_backend_opencl_buffer_context() {
  2524. for (cl_mem buf : buffer) {
  2525. CL_CHECK(clReleaseMemObject(buf));
  2526. }
  2527. for (cl_mem im : img) {
  2528. CL_CHECK(clReleaseMemObject(im));
  2529. }
  2530. // Delete all extras to trigger their destructors
  2531. for (ggml_tensor_extra_cl * e : temp_tensor_extras) {
  2532. delete e;
  2533. }
  2534. for (ggml_tensor_extra_cl * e : temp_tensor_extras_in_use) {
  2535. delete e;
  2536. }
  2537. for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0) {
  2538. delete e;
  2539. }
  2540. for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0_in_use) {
  2541. delete e;
  2542. }
  2543. }
  2544. ggml_tensor_extra_cl * ggml_opencl_alloc_temp_tensor_extra() {
  2545. ggml_tensor_extra_cl * extra;
  2546. if (temp_tensor_extras.empty()) {
  2547. extra = new ggml_tensor_extra_cl();
  2548. } else {
  2549. extra = temp_tensor_extras.back();
  2550. temp_tensor_extras.pop_back();
  2551. }
  2552. temp_tensor_extras_in_use.push_back(extra);
  2553. extra->reset();
  2554. return extra;
  2555. }
  2556. ggml_tensor_extra_cl_q4_0 * ggml_opencl_alloc_temp_tensor_extra_q4_0() {
  2557. ggml_tensor_extra_cl_q4_0 * extra;
  2558. if (temp_tensor_extras_q4_0.empty()) {
  2559. extra = new ggml_tensor_extra_cl_q4_0();
  2560. } else {
  2561. extra = temp_tensor_extras_q4_0.back();
  2562. temp_tensor_extras_q4_0.pop_back();
  2563. }
  2564. temp_tensor_extras_q4_0_in_use.push_back(extra);
  2565. extra->reset();
  2566. return extra;
  2567. }
  2568. void reset() {
  2569. for (ggml_tensor_extra_cl * e : temp_tensor_extras_in_use) {
  2570. temp_tensor_extras.push_back(e);
  2571. }
  2572. temp_tensor_extras_in_use.clear();
  2573. for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0_in_use) {
  2574. temp_tensor_extras_q4_0.push_back(e);
  2575. }
  2576. temp_tensor_extras_q4_0_in_use.clear();
  2577. }
  2578. // Pools for extras. Available extras are in `temp_tensor_extras`. Extras
  2579. // being used are in `temp_tensor_extras_in_use`. At the first run, new
  2580. // extras get created and put in `in_use`. When the buffer is reset via
  2581. // the `reset` callback, all extras in `in_use` get moved to available extras
  2582. // for reuse.
  2583. std::vector<ggml_tensor_extra_cl *> temp_tensor_extras;
  2584. std::vector<ggml_tensor_extra_cl *> temp_tensor_extras_in_use;
  2585. std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0;
  2586. std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0_in_use;
  2587. // The buffer_context is initially created by ggml_backend_buft_alloc_buffer
  2588. // before any tensor is initialized (at the beginning of alloc_tensor_range).
  2589. // Hence, there is alway a buffer object in this vector. When each tensor is
  2590. // being initialized, this original buffer object will be released if both
  2591. // flattening and small allocation are enabled, and additional buffer
  2592. // objects will be created in init_tensor to represent flattened quantized
  2593. // weights.
  2594. std::vector<cl_mem> buffer;
  2595. // These are image1d_buffer_t objects that wrap around the quants and scales.
  2596. // For Q4_0 quantization, there should be two of them - one for quants and
  2597. // one for scales. They should be populated only when flattening and small
  2598. // allocation are enabled.
  2599. std::vector<cl_mem> img;
  2600. std::string name;
  2601. };
  2602. static void ggml_backend_opencl_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  2603. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  2604. delete ctx;
  2605. }
  2606. static void * ggml_backend_opencl_buffer_get_base(ggml_backend_buffer_t buffer) {
  2607. ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer->buft->device);
  2608. return (void *) (uintptr_t) backend_ctx->alignment;
  2609. }
  2610. static enum ggml_status ggml_backend_opencl_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
  2611. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  2612. ggml_cl2_init(buffer->buft->device);
  2613. if (tensor->view_src != nullptr) {
  2614. GGML_ASSERT(tensor->view_src->buffer->buft == buffer->buft);
  2615. ggml_tensor_extra_cl * view_extra = (ggml_tensor_extra_cl *) tensor->view_src->extra;
  2616. GGML_ASSERT(view_extra && "view_extra is nullptr?");
  2617. // Reuse extra of the parent tensor. The offset of this view tensor
  2618. // becomes `extra->offset + view_offs` and needs to be calculated when
  2619. // it is used. This changes is needed because of the change to
  2620. // ggml_alloc.c in https://github.com/ggerganov/llama.cpp/pull/7640.
  2621. // `buffer` passed in here will always be `tensor->buffer`. It is OK
  2622. // to allocate extras from the same buffer context for ordinary
  2623. // intermediate tensors. But for views into kv cache tensors, doing so
  2624. // would mess up the extras used by kv cache.
  2625. // Before #7640, `buffer` is for intermediate tensors, which is always
  2626. // different from that of kv cache tensors.
  2627. //
  2628. // NB: now extra->offset no longer accounts for view_offs.
  2629. // NB: this should not apply to weight tensors (for end-to-end runs, but
  2630. // may apply for test-backend-ops).
  2631. // FIXME: if any unexpected results are seen, double check the offset -
  2632. // there could be other places that need fix.
  2633. tensor->extra = view_extra;
  2634. } else {
  2635. {
  2636. size_t offset = (char *) tensor->data - (char *) ggml_backend_opencl_buffer_get_base(buffer);
  2637. ggml_tensor_extra_cl * extra = ctx->ggml_opencl_alloc_temp_tensor_extra();
  2638. extra->offset = offset;
  2639. extra->data_device = ctx->buffer[0];
  2640. extra->actual_size = ggml_nbytes(tensor);
  2641. tensor->extra = extra;
  2642. }
  2643. }
  2644. return GGML_STATUS_SUCCESS;
  2645. }
  2646. // The optimized gemm and gemv kernels are used for large matrices without batch.
  2647. // tensor is the quantized weights matrix.
  2648. inline bool use_adreno_kernels(const ggml_backend_opencl_context *backend_ctx, const ggml_tensor *tensor) {
  2649. int64_t threshold_ne0 = 512;
  2650. int64_t threshold_ne1 = 512;
  2651. if (!backend_ctx->adreno_cl_compiler_version.newer_than_or_same(E031, 38, 11, 0) &&
  2652. backend_ctx->adreno_cl_compiler_version.type != DX) {
  2653. threshold_ne0 = 128;
  2654. threshold_ne1 = 128;
  2655. }
  2656. return tensor->ne[0] >= threshold_ne0 && tensor->ne[1] >= threshold_ne1 &&
  2657. tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2658. }
  2659. static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  2660. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer->buft->device);
  2661. cl_context context = backend_ctx->context;
  2662. cl_command_queue queue = backend_ctx->queue;
  2663. #ifdef GGML_OPENCL_SOA_Q
  2664. // We separate the quantized bits and scale from block_q4_0 by using an
  2665. // additional kernel, where each thread handles a block. We first read the
  2666. // original weights into a temporary buffer, then create two separate
  2667. // buffers for quantized bits and scales, which are then populated by the
  2668. // conversion kernel.
  2669. if (tensor->type == GGML_TYPE_Q4_0) {
  2670. // Tensors should have been preallocated, therefore they should
  2671. // already have ggml_tensor_extra_cl as extra.
  2672. ggml_tensor_extra_cl * extra_orig = (ggml_tensor_extra_cl *)tensor->extra;
  2673. GGML_ASSERT(extra_orig && "Tesnors in OpenCL backend should have been allocated and initialized");
  2674. // Allocate the new extra and create aliases from the original.
  2675. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  2676. ggml_tensor_extra_cl_q4_0 * extra = ctx->ggml_opencl_alloc_temp_tensor_extra_q4_0();
  2677. size_t size_d = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*sizeof(ggml_fp16_t);
  2678. size_t size_q = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*ggml_blck_size(tensor->type)/2;
  2679. GGML_ASSERT(size_d + size_q == ggml_nbytes(tensor) && "Incorrect tensor size");
  2680. cl_int err;
  2681. cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
  2682. ggml_nbytes(tensor), NULL, &err);
  2683. CL_CHECK(err);
  2684. CL_CHECK(clEnqueueWriteBuffer(
  2685. queue, data_device, CL_TRUE, 0,
  2686. ggml_nbytes(tensor), data, 0, NULL, NULL));
  2687. // We consider the specified offset arg as always, although For weights
  2688. // the offset arg should be 0 (we do not assert this).
  2689. //GGML_ASSERT(offset == 0);
  2690. // We create subbuffers from the original tensor buffer for scales and
  2691. // quants - i.e., scales and quants are aliases into the buffer obejct
  2692. // that backs the original tensor. This is a cleaner way to adapt to the
  2693. // new memory management.
  2694. // In the old code, we allocate new buffers for scales and quants
  2695. // respectively, which could still be done but would result in double
  2696. // allocation; properly deallocating the preallocated buffer that backs
  2697. // the tensors is tricky and would leak the backend specific information
  2698. // into the general backend code.
  2699. // Does this create misaligned subbuffers (alignment is 1024) in certain
  2700. // cases ?
  2701. cl_buffer_region region;
  2702. // The original tensor memory is divided into scales and quants, i.e.,
  2703. // we first store scales, then quants.
  2704. // Create subbuffer for scales.
  2705. region.origin = align_to(extra_orig->offset + tensor->view_offs + offset, backend_ctx->alignment);
  2706. region.size = size_d;
  2707. extra->d = clCreateSubBuffer(
  2708. extra_orig->data_device, CL_MEM_READ_WRITE,
  2709. CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
  2710. CL_CHECK(err);
  2711. auto previous_origin = region.origin;
  2712. // Create subbuffer for quants.
  2713. region.origin = align_to(previous_origin + size_d, backend_ctx->alignment);
  2714. region.size = size_q;
  2715. extra->q = clCreateSubBuffer(
  2716. extra_orig->data_device, CL_MEM_READ_WRITE,
  2717. CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
  2718. CL_CHECK(err);
  2719. //cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
  2720. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  2721. cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
  2722. // The optimized kernels need weights in natural order, so unshuffle.
  2723. if (use_adreno_kernels(backend_ctx, tensor)) {
  2724. kernel = backend_ctx->kernel_convert_block_q4_0_noshuffle;
  2725. }
  2726. #else
  2727. cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
  2728. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  2729. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device));
  2730. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q));
  2731. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->d));
  2732. size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
  2733. size_t local_work_size[] = {64, 1, 1};
  2734. cl_event evt;
  2735. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  2736. CL_CHECK(clWaitForEvents(1, &evt));
  2737. CL_CHECK(clReleaseMemObject(data_device));
  2738. tensor->extra = extra;
  2739. // transpose the weights and scales
  2740. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  2741. // Only do transpose for large, non batched matrix
  2742. // TODO: use preallocated images instead of sub-buffer then image
  2743. if (use_adreno_kernels(backend_ctx, tensor)) {
  2744. // <----------------------------------------------------------------------------------> //
  2745. // start transpose
  2746. // <----------------------------------------------------------------------------------> //
  2747. int M = tensor->ne[1]; // ne01
  2748. int K = tensor->ne[0]; // ne00
  2749. //For matrix-vector multiplication kernel, we assume K is a multiple of 32
  2750. GGML_ASSERT(K % 32 == 0);
  2751. //For transpose kernels, we assume K is a multiple of 4 (satisfied by prior assert), and M is a multiple of 4
  2752. GGML_ASSERT(M % 4 == 0);
  2753. // transpose is out of place, so we need to allocate transposed buffers
  2754. // <----------------------------------------------------------------------------------> //
  2755. // use sub_buffer of max buffer size instead
  2756. size_t q_size_bytes = K * M / 8 * sizeof(float);
  2757. cl_buffer_region region;
  2758. region.origin = 0;
  2759. region.size = q_size_bytes;
  2760. cl_mem qT_d = clCreateSubBuffer(
  2761. backend_ctx->A_q_d_max,
  2762. 0,
  2763. CL_BUFFER_CREATE_TYPE_REGION,
  2764. &region,
  2765. &err);
  2766. // cl_mem qT_d = clCreateBuffer(context, CL_MEM_READ_WRITE, q_size_bytes, NULL, &err);
  2767. CL_CHECK(err);
  2768. bool K_tile_trans = true;
  2769. if ((K / 32) % 4 != 0){
  2770. K_tile_trans =false;
  2771. }
  2772. size_t d_size_bytes = M * (K / 32) * 2;
  2773. region.origin = 0;
  2774. region.size = d_size_bytes;
  2775. cl_mem dT_d = clCreateSubBuffer(
  2776. backend_ctx->A_s_d_max,
  2777. 0,
  2778. CL_BUFFER_CREATE_TYPE_REGION,
  2779. &region,
  2780. &err);
  2781. // cl_mem dT_d = clCreateBuffer(context, CL_MEM_READ_WRITE, d_size_bytes, NULL, &err);
  2782. CL_CHECK(err);
  2783. // <----------------------------------------------------------------------------------> //
  2784. // create images from the buffers
  2785. // <----------------------------------------------------------------------------------> //
  2786. cl_mem q_d_image1D;
  2787. cl_mem d_d_image1D;
  2788. cl_mem qT_d_image1D;
  2789. cl_mem dT_d_image1D;
  2790. cl_image_format img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
  2791. cl_image_desc img_desc_1d;
  2792. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  2793. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  2794. img_desc_1d.image_width = M * K / 4 / 4;
  2795. img_desc_1d.buffer = extra->q;
  2796. q_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
  2797. CL_CHECK(err);
  2798. img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
  2799. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  2800. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  2801. img_desc_1d.image_width = M * K / 4 / 4;
  2802. img_desc_1d.buffer = qT_d;
  2803. qT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
  2804. CL_CHECK(err);
  2805. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  2806. if (K_tile_trans) {
  2807. img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
  2808. img_desc_1d.image_width = M * K / 32 / 4;
  2809. } else {
  2810. img_fmt_1d = { CL_R, CL_HALF_FLOAT };
  2811. img_desc_1d.image_width = M * K / 32;
  2812. }
  2813. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  2814. img_desc_1d.buffer = extra->d;
  2815. d_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
  2816. CL_CHECK(err);
  2817. img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
  2818. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  2819. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  2820. img_desc_1d.image_width = M * K / 32 / 4;
  2821. img_desc_1d.buffer = dT_d;
  2822. dT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
  2823. CL_CHECK(err);
  2824. // <----------------------------------------------------------------------------------> //
  2825. // set up and call the transpose kernels
  2826. // <----------------------------------------------------------------------------------> //
  2827. // weights
  2828. int height_q = M / 4;
  2829. int width_q = K / 4 / 4;
  2830. kernel = backend_ctx->kernel_transpose_16;
  2831. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &q_d_image1D));
  2832. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &qT_d_image1D));
  2833. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_q));
  2834. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_q));
  2835. size_t local_size_q[3] = {4, 16, 1};
  2836. size_t global_size_q[3] = {static_cast<size_t>(width_q), static_cast<size_t>(height_q), 1};
  2837. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_size_q, local_size_q, 0, NULL, &evt));
  2838. CL_CHECK(clWaitForEvents(1, &evt));
  2839. // scales
  2840. int height_s = M / 4;
  2841. int width_s = K / 32 / 4;
  2842. kernel = backend_ctx->kernel_transpose_16;
  2843. if (!K_tile_trans) {
  2844. kernel = backend_ctx->kernel_transpose_16_4x1;
  2845. width_s = K / 32;
  2846. }
  2847. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_d_image1D));
  2848. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &dT_d_image1D));
  2849. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_s));
  2850. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_s));
  2851. size_t local_size_s[3] = {4, 16, 1};
  2852. size_t global_size_s[3] = {static_cast<size_t>(width_s), static_cast<size_t>(height_s), 1};
  2853. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_size_s, local_size_s, 0, NULL, &evt));
  2854. CL_CHECK(clWaitForEvents(1, &evt));
  2855. // <----------------------------------------------------------------------------------> //
  2856. // copy transposed buffer contents to original buffers
  2857. // <----------------------------------------------------------------------------------> //
  2858. // weights
  2859. CL_CHECK(clEnqueueCopyBuffer(queue, qT_d, extra->q, 0, 0, q_size_bytes, 0, NULL, &evt));
  2860. CL_CHECK(clWaitForEvents(1, &evt));
  2861. // scales
  2862. CL_CHECK(clEnqueueCopyBuffer(queue, dT_d, extra->d, 0, 0, d_size_bytes, 0, NULL, &evt));
  2863. CL_CHECK(clWaitForEvents(1, &evt));
  2864. // <----------------------------------------------------------------------------------> //
  2865. // deallocate transpose buffers
  2866. // <----------------------------------------------------------------------------------> //
  2867. CL_CHECK(clReleaseMemObject(qT_d));
  2868. CL_CHECK(clReleaseMemObject(dT_d));
  2869. // deallocate temporary images
  2870. CL_CHECK(clReleaseMemObject(q_d_image1D));
  2871. CL_CHECK(clReleaseMemObject(d_d_image1D));
  2872. CL_CHECK(clReleaseMemObject(qT_d_image1D));
  2873. CL_CHECK(clReleaseMemObject(dT_d_image1D));
  2874. // <----------------------------------------------------------------------------------> //
  2875. // end transpose
  2876. // <----------------------------------------------------------------------------------> //
  2877. }
  2878. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  2879. return;
  2880. }
  2881. #endif // GGML_OPENCL_SOA_Q
  2882. ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
  2883. GGML_ASSERT(extra);
  2884. CL_CHECK(clEnqueueWriteBuffer(
  2885. queue, extra->data_device, CL_TRUE, extra->offset + offset,
  2886. size, data, 0, NULL, NULL));
  2887. GGML_UNUSED(buffer);
  2888. }
  2889. static void ggml_backend_opencl_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  2890. GGML_ASSERT(tensor->extra);
  2891. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer->buft->device);
  2892. cl_context context = backend_ctx->context;
  2893. cl_command_queue queue = backend_ctx->queue;
  2894. // Make sure all previously submitted commands in other devices are finished.
  2895. sync_with_other_backends(backend_ctx);
  2896. #ifdef GGML_OPENCL_SOA_Q
  2897. // In end-to-end runs, get_tensor is usually used to get back the logits,
  2898. // where we can simply do clEnqueueReadBuffer since they are f32.
  2899. // However, in test-backend-ops, the GPU graph is copied to the CPU backend,
  2900. // which requires reading back quantized weight tensors.
  2901. // To properly support this, we need to restore block_q4_0 struct arrays
  2902. // from the flattened buffers.
  2903. if (tensor->type == GGML_TYPE_Q4_0) {
  2904. ggml_tensor_extra_cl_q4_0 * extra = (ggml_tensor_extra_cl_q4_0 *)tensor->extra;
  2905. cl_int err;
  2906. cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
  2907. ggml_nbytes(tensor), NULL, &err);
  2908. CL_CHECK(err);
  2909. cl_kernel kernel = backend_ctx->kernel_restore_block_q4_0;
  2910. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
  2911. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->d));
  2912. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device));
  2913. size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
  2914. size_t local_work_size[] = {1, 1, 1};
  2915. cl_event evt;
  2916. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
  2917. global_work_size, local_work_size, 0, NULL, &evt));
  2918. CL_CHECK(clWaitForEvents(1, &evt));
  2919. CL_CHECK(clEnqueueReadBuffer(
  2920. queue, data_device, CL_TRUE, offset,
  2921. size, data, 0, NULL, NULL));
  2922. CL_CHECK(clReleaseMemObject(data_device));
  2923. return;
  2924. }
  2925. #endif // GGML_OPENCL_SOA_Q
  2926. ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
  2927. CL_CHECK(clEnqueueReadBuffer(
  2928. queue, extra->data_device, CL_TRUE, extra->offset + tensor->view_offs + offset,
  2929. size, data, 0, NULL, NULL));
  2930. GGML_UNUSED(buffer);
  2931. }
  2932. static void ggml_backend_opencl_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  2933. ggml_backend_dev_t dev = buffer->buft->device;
  2934. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(dev);
  2935. cl_command_queue queue = backend_ctx->queue;
  2936. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  2937. for (cl_mem buf : ctx->buffer) {
  2938. CL_CHECK(clEnqueueFillBuffer(queue, buf, &value, sizeof(value), 0, buffer->size, 0, NULL, NULL));
  2939. }
  2940. CL_CHECK(clFinish(queue));
  2941. }
  2942. static void ggml_backend_opencl_buffer_reset(ggml_backend_buffer_t buffer) {
  2943. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  2944. ctx->reset();
  2945. }
  2946. static ggml_backend_buffer_i ggml_backend_opencl_buffer_interface = {
  2947. /* .free_buffer = */ ggml_backend_opencl_buffer_free_buffer,
  2948. /* .get_base = */ ggml_backend_opencl_buffer_get_base,
  2949. /* .init_tensor = */ ggml_backend_opencl_buffer_init_tensor,
  2950. /* .memset_tensor = */ NULL,
  2951. /* .set_tensor = */ ggml_backend_opencl_buffer_set_tensor,
  2952. /* .get_tensor = */ ggml_backend_opencl_buffer_get_tensor,
  2953. /* .cpy_tensor = */ NULL,
  2954. /* .clear = */ ggml_backend_opencl_buffer_clear,
  2955. /* .reset = */ ggml_backend_opencl_buffer_reset,
  2956. };
  2957. //
  2958. // buffer type
  2959. //
  2960. static const char * ggml_backend_opencl_buffer_type_get_name(ggml_backend_buffer_type_t buffer_type) {
  2961. return "OpenCL";
  2962. GGML_UNUSED(buffer_type);
  2963. }
  2964. static ggml_backend_buffer_t ggml_backend_opencl_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buffer_type, size_t size) {
  2965. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer_type->device);
  2966. // clCreateBuffer returns -61 for size 0
  2967. size = std::max(size, (size_t)1);
  2968. cl_int err;
  2969. cl_mem mem = clCreateBuffer(backend_ctx->context, CL_MEM_READ_WRITE, size, NULL, &err);
  2970. if (err != CL_SUCCESS) {
  2971. GGML_LOG_INFO("%s: failed to allocate %.2f MiB\n", __func__, size / 1024.0 / 1024.0);
  2972. return nullptr;
  2973. }
  2974. ggml_backend_opencl_buffer_context * ctx = new ggml_backend_opencl_buffer_context(mem);
  2975. return ggml_backend_buffer_init(buffer_type, ggml_backend_opencl_buffer_interface, ctx, size);
  2976. }
  2977. static size_t ggml_backend_opencl_buffer_type_get_alignment(ggml_backend_buffer_type_t buffer_type) {
  2978. ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer_type->device);
  2979. return backend_ctx->alignment;
  2980. }
  2981. static size_t ggml_backend_opencl_buffer_type_get_max_size(ggml_backend_buffer_type_t buffer_type) {
  2982. static size_t max_size = -1;
  2983. if (max_size == (size_t)-1) {
  2984. ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer_type->device);
  2985. max_size = backend_ctx->max_alloc_size;
  2986. }
  2987. return max_size;
  2988. }
  2989. static bool ggml_backend_opencl_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
  2990. return ggml_backend_is_opencl(backend);
  2991. UNUSED(buft);
  2992. }
  2993. static ggml_backend_buffer_type_i ggml_backend_opencl_buffer_type_interface = {
  2994. /* .get_name = */ ggml_backend_opencl_buffer_type_get_name,
  2995. /* .alloc_buffer = */ ggml_backend_opencl_buffer_type_alloc_buffer,
  2996. /* .get_alignment = */ ggml_backend_opencl_buffer_type_get_alignment,
  2997. /* .get_max_size = */ ggml_backend_opencl_buffer_type_get_max_size,
  2998. /* .get_alloc_size = */ NULL,
  2999. /* .is_host = */ NULL,
  3000. };
  3001. //
  3002. // backend device
  3003. //
  3004. static const char * ggml_backend_opencl_device_get_name(ggml_backend_dev_t dev) {
  3005. return "GPUOpenCL";
  3006. GGML_UNUSED(dev);
  3007. }
  3008. static const char * ggml_backend_opencl_device_get_description(ggml_backend_dev_t dev) {
  3009. ggml_backend_opencl_device_context *dev_ctx = (ggml_backend_opencl_device_context *) dev->context;
  3010. return dev_ctx->device_name.c_str();
  3011. }
  3012. static void ggml_backend_opencl_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
  3013. *free = 1;
  3014. *total = 1;
  3015. GGML_UNUSED(dev);
  3016. }
  3017. static enum ggml_backend_dev_type ggml_backend_opencl_device_get_type(ggml_backend_dev_t dev) {
  3018. return GGML_BACKEND_DEVICE_TYPE_GPU;
  3019. GGML_UNUSED(dev);
  3020. }
  3021. static void ggml_backend_opencl_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
  3022. props->name = ggml_backend_opencl_device_get_name(dev);
  3023. props->description = ggml_backend_opencl_device_get_description(dev);
  3024. props->type = ggml_backend_opencl_device_get_type(dev);
  3025. ggml_backend_opencl_device_get_memory(dev, &props->memory_free, &props->memory_total);
  3026. props->caps = ggml_backend_dev_caps {
  3027. /* .async = */ false,
  3028. /* .host_buffer = */ false,
  3029. /* .buffer_from_host_ptr = */ false,
  3030. /* .events = */ false,
  3031. };
  3032. }
  3033. static ggml_backend_t ggml_backend_opencl_device_init(ggml_backend_dev_t dev, const char * params) {
  3034. ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(dev);
  3035. // Getting a new reference to the backend, increase ref_count
  3036. backend_ctx->ref_count++;
  3037. ggml_backend_t backend = new ggml_backend {
  3038. /* .guid = */ ggml_backend_opencl_guid(),
  3039. /* .interface = */ ggml_backend_opencl_i,
  3040. /* .device = */ dev,
  3041. /* .context = */ backend_ctx,
  3042. };
  3043. return backend;
  3044. GGML_UNUSED(params);
  3045. }
  3046. static ggml_backend_buffer_type_t ggml_backend_opencl_device_get_buffer_type(ggml_backend_dev_t dev) {
  3047. auto * dev_ctx = static_cast<ggml_backend_opencl_device_context *>(dev->context);
  3048. dev_ctx->buffer_type = ggml_backend_buffer_type{
  3049. /* .iface = */ ggml_backend_opencl_buffer_type_interface,
  3050. /* .device = */ dev,
  3051. /* .context = */ nullptr,
  3052. };
  3053. return &dev_ctx->buffer_type;
  3054. }
  3055. static ggml_backend_buffer_t ggml_backend_opencl_device_buffer_from_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
  3056. GGML_UNUSED(dev);
  3057. GGML_UNUSED(ptr);
  3058. GGML_UNUSED(size);
  3059. GGML_UNUSED(max_tensor_size);
  3060. return nullptr;
  3061. }
  3062. static bool ggml_backend_opencl_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
  3063. return ggml_opencl_supports_op(dev, op);
  3064. }
  3065. static bool ggml_backend_opencl_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
  3066. // Check 'dev' and 'buffer_type' are not objects belonging to this backend.
  3067. if (dev->iface.get_name != ggml_backend_opencl_device_get_name ||
  3068. buft->iface.get_name != ggml_backend_opencl_buffer_type_get_name) {
  3069. return false;
  3070. }
  3071. // Check cl_context is the same. clEnqueue* commands may not use
  3072. // buffers from another cl_context.
  3073. ggml_backend_opencl_context * backend_ctx0 = ggml_cl2_init(dev);
  3074. ggml_backend_opencl_context * backend_ctx1 = ggml_cl2_init(buft->device);
  3075. return backend_ctx0->context == backend_ctx1->context;
  3076. }
  3077. namespace /* anonymous */ {
  3078. struct ggml_backend_device_i ggml_backend_opencl_device_i = {
  3079. /* .get_name = */ ggml_backend_opencl_device_get_name,
  3080. /* .get_description = */ ggml_backend_opencl_device_get_description,
  3081. /* .get_memory = */ ggml_backend_opencl_device_get_memory,
  3082. /* .get_type = */ ggml_backend_opencl_device_get_type,
  3083. /* .get_props = */ ggml_backend_opencl_device_get_props,
  3084. /* .init_backend = */ ggml_backend_opencl_device_init,
  3085. /* .get_buffer_type = */ ggml_backend_opencl_device_get_buffer_type,
  3086. /* .get_host_buffer_type = */ NULL,
  3087. /* .buffer_from_host_ptr = */ ggml_backend_opencl_device_buffer_from_ptr,
  3088. /* .supports_op = */ ggml_backend_opencl_device_supports_op,
  3089. /* .supports_buft = */ ggml_backend_opencl_device_supports_buft,
  3090. /* .offload_op = */ NULL,
  3091. /* .event_new = */ NULL,
  3092. /* .event_free = */ NULL,
  3093. /* .event_synchronize = */ NULL,
  3094. };
  3095. }
  3096. // Backend registry
  3097. static const char * ggml_backend_opencl_reg_get_name(ggml_backend_reg_t reg) {
  3098. return "OpenCL";
  3099. GGML_UNUSED(reg);
  3100. }
  3101. static size_t ggml_backend_opencl_reg_device_count(ggml_backend_reg_t reg) {
  3102. return g_ggml_backend_opencl_devices.size();
  3103. GGML_UNUSED(reg);
  3104. }
  3105. static ggml_backend_dev_t ggml_backend_opencl_reg_device_get(ggml_backend_reg_t reg, size_t index) {
  3106. GGML_ASSERT(index < ggml_backend_opencl_reg_device_count(reg));
  3107. return &g_ggml_backend_opencl_devices[index];
  3108. GGML_UNUSED(reg);
  3109. GGML_UNUSED(index);
  3110. }
  3111. static struct ggml_backend_reg_i ggml_backend_opencl_reg_i = {
  3112. /* .get_name = */ ggml_backend_opencl_reg_get_name,
  3113. /* .device_count = */ ggml_backend_opencl_reg_device_count,
  3114. /* .device_get = */ ggml_backend_opencl_reg_device_get,
  3115. /* .get_proc_address = */ NULL,
  3116. };
  3117. ggml_backend_reg_t ggml_backend_opencl_reg(void) {
  3118. static std::mutex mutex;
  3119. static ggml_backend_reg reg;
  3120. static bool initialized = false;
  3121. std::lock_guard<std::mutex> lock(mutex);
  3122. if (initialized) {
  3123. return &reg;
  3124. }
  3125. initialized = true;
  3126. g_ggml_backend_opencl_devices = ggml_opencl_probe_devices(&reg);
  3127. reg = ggml_backend_reg{
  3128. /* .api_version = */ GGML_BACKEND_API_VERSION,
  3129. /* .iface = */ ggml_backend_opencl_reg_i,
  3130. /* .context = */ NULL,
  3131. };
  3132. return &reg;
  3133. }
  3134. GGML_BACKEND_DL_IMPL(ggml_backend_opencl_reg)
  3135. //------------------------------------------------------------------------------
  3136. // Debugging utils
  3137. //------------------------------------------------------------------------------
  3138. #if 0
  3139. #define QK4_0 32
  3140. typedef struct {
  3141. ggml_fp16_t d; // delta
  3142. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  3143. } block_q4_0;
  3144. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2,
  3145. "wrong q4_0 block size/padding");
  3146. #include <math.h>
  3147. #ifdef __cplusplus
  3148. #include "half.hpp"
  3149. #endif
  3150. static void dump_tensor(ggml_backend_t backend, const struct ggml_tensor * tensor) {
  3151. void * buf = malloc(ggml_nbytes(tensor));
  3152. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3153. cl_command_queue queue = backend_ctx->queue;
  3154. #ifdef GGML_OPENCL_SOA_Q
  3155. void * buf_q;
  3156. void * buf_d;
  3157. #endif
  3158. // Make sure everything is done.
  3159. CL_CHECK(clFinish(queue));
  3160. #ifdef GGML_OPENCL_SOA_Q
  3161. if (tensor->type == GGML_TYPE_Q4_0) {
  3162. ggml_tensor_extra_cl_q4_0 * extra = (ggml_tensor_extra_cl_q4_0 *) tensor->extra;
  3163. GGML_ASSERT(extra);
  3164. size_t size_q = ggml_nelements(tensor)/QK4_0 * QK4_0/2;
  3165. size_t size_d = ggml_nelements(tensor)/QK4_0 * sizeof(ggml_fp16_t);
  3166. GGML_ASSERT(size_q + size_d == ggml_nbytes(tensor));
  3167. buf_q = malloc(size_q);
  3168. buf_d = malloc(size_d);
  3169. CL_CHECK(clEnqueueReadBuffer(queue, extra->q, CL_TRUE, 0, size_q, buf_q, 0, NULL, NULL));
  3170. CL_CHECK(clEnqueueReadBuffer(queue, extra->d, CL_TRUE, 0, size_d, buf_d, 0, NULL, NULL));
  3171. CL_CHECK(clFinish(queue));
  3172. } else {
  3173. // Read out the tensor from GPU memory.
  3174. ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
  3175. GGML_ASSERT(extra);
  3176. CL_CHECK(clEnqueueReadBuffer(queue, extra->data_device, CL_TRUE,
  3177. extra->offset, ggml_nbytes(tensor), buf, 0, NULL, NULL));
  3178. CL_CHECK(clFinish(queue));
  3179. }
  3180. #else
  3181. // Read out the tensor from GPU memory.
  3182. ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
  3183. GGML_ASSERT(extra);
  3184. CL_CHECK(clEnqueueReadBuffer(queue, extra->data_device, CL_TRUE,
  3185. extra->offset, ggml_nbytes(tensor), buf, 0, NULL, NULL));
  3186. CL_CHECK(clFinish(queue));
  3187. #endif // GGML_OPENCL_SOA_Q
  3188. // Open file and dump.
  3189. char fname[512];
  3190. snprintf(fname, sizeof(fname), "./tensor-dumps/%s.txt", tensor->name);
  3191. FILE * f = fopen(fname, "w");
  3192. if (!f) {
  3193. printf("Failed to open %s\n", fname);
  3194. return;
  3195. }
  3196. if (tensor->type == GGML_TYPE_F32) {
  3197. float * data = (float *) buf;
  3198. for (int i = 0; i < ggml_nelements(tensor); ++i) {
  3199. if (isnan(data[i])) {
  3200. printf("NaN found: %s\n", tensor->name);
  3201. break;
  3202. }
  3203. fprintf(f, "%f\n", data[i]);
  3204. }
  3205. } else if (tensor->type == GGML_TYPE_I32) {
  3206. int * data = (int *) buf;
  3207. for (int i = 0; i < ggml_nelements(tensor); ++i) {
  3208. if (isnan(data[i])) {
  3209. printf("NaN found: %s\n", tensor->name);
  3210. break;
  3211. }
  3212. fprintf(f, "%d\n", data[i]);
  3213. }
  3214. } else if (tensor->type == GGML_TYPE_F16) {
  3215. #ifdef __cplusplus
  3216. half_float::half * data = (half_float::half *) buf;
  3217. for (int i = 0; i < ggml_nelements(tensor); ++i) {
  3218. if (std::isnan(data[i])) {
  3219. printf("NaN found: %s\n", tensor->name);
  3220. break;
  3221. }
  3222. fprintf(f, "%f\n", float(data[i]));
  3223. }
  3224. #endif
  3225. } else if (tensor->type == GGML_TYPE_Q4_0) {
  3226. #ifdef GGML_OPENCL_SOA_Q
  3227. ggml_fp16_t * data_d = (ggml_fp16_t *)buf_d;
  3228. unsigned char * data_q = (unsigned char *)buf_q;
  3229. for (int i = 0; i < ggml_nelements(tensor)/QK4_0; ++i) {
  3230. fprintf(f, "%04x, ", data_d[i]);
  3231. for (int k = 0; k < QK4_0/2; ++k) {
  3232. fprintf(f, "%02x, ", data_q[k]);
  3233. }
  3234. fprintf(f, "\n");
  3235. data_q += QK4_0/2;
  3236. }
  3237. free(buf_d);
  3238. free(buf_q);
  3239. #else
  3240. block_q4_0 * data = (block_q4_0 *) buf;
  3241. for (int i = 0; i < ggml_nelements(tensor)/QK4_0; ++i) {
  3242. fprintf(f, "%04x, ", data[i].d);
  3243. for (int k = 0; k < QK4_0/2; ++k) {
  3244. fprintf(f, "%02x, ", data[i].qs[k]);
  3245. }
  3246. fprintf(f, "\n");
  3247. }
  3248. #endif // GGML_OPENCL_SOA_Q
  3249. }
  3250. free(buf);
  3251. fflush(f);
  3252. fclose(f);
  3253. }
  3254. #else
  3255. #define dump_tensor(tensor)
  3256. #endif
  3257. //------------------------------------------------------------------------------
  3258. // Ops
  3259. //------------------------------------------------------------------------------
  3260. static bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
  3261. const int64_t ne10 = src1->ne[0];
  3262. const int64_t ne0 = dst->ne[0];
  3263. const int64_t ne1 = dst->ne[1];
  3264. // TODO: find the optimal values for these
  3265. return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
  3266. src1->type == GGML_TYPE_F32 &&
  3267. dst->type == GGML_TYPE_F32 &&
  3268. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32);
  3269. }
  3270. static void ggml_cl_nop(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3271. UNUSED(backend);
  3272. UNUSED(src0);
  3273. UNUSED(src1);
  3274. UNUSED(dst);
  3275. }
  3276. static void ggml_cl_get_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3277. GGML_ASSERT(src0);
  3278. GGML_ASSERT(src0->extra);
  3279. GGML_ASSERT(src1);
  3280. GGML_ASSERT(src1->extra);
  3281. GGML_ASSERT(dst);
  3282. GGML_ASSERT(dst->extra);
  3283. const int ne00 = src0 ? src0->ne[0] : 0;
  3284. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  3285. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  3286. const int ne10 = src1 ? src1->ne[0] : 0;
  3287. const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
  3288. const int ne11 = src1 ? src1->ne[1] : 0;
  3289. const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
  3290. const cl_ulong nb1 = dst ? dst->nb[1] : 0;
  3291. const cl_ulong nb2 = dst ? dst->nb[2] : 0;
  3292. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3293. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3294. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  3295. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3296. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3297. cl_ulong offset1 = extra1->offset + src1->view_offs;
  3298. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3299. cl_kernel kernel;
  3300. switch (src0->type) {
  3301. case GGML_TYPE_F32:
  3302. kernel = backend_ctx->kernel_get_rows_f32;
  3303. break;
  3304. case GGML_TYPE_F16:
  3305. kernel = backend_ctx->kernel_get_rows_f16;
  3306. break;
  3307. case GGML_TYPE_Q4_0:
  3308. kernel = backend_ctx->kernel_get_rows_q4_0;
  3309. break;
  3310. default:
  3311. GGML_ASSERT(false && "not implemented");
  3312. }
  3313. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3314. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3315. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3316. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3317. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3318. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3319. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  3320. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  3321. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  3322. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  3323. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb10));
  3324. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb11));
  3325. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb1));
  3326. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb2));
  3327. size_t global_work_size[] = {(size_t)ne10, (size_t)ne11, 1};
  3328. size_t local_work_size[] = {1, 1, 1};
  3329. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3330. }
  3331. static void ggml_cl_set_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3332. GGML_ASSERT(src0);
  3333. GGML_ASSERT(src0->extra);
  3334. GGML_ASSERT(src1);
  3335. GGML_ASSERT(src1->extra);
  3336. GGML_ASSERT(dst);
  3337. GGML_ASSERT(dst->extra);
  3338. // ne0 = ne00
  3339. // ne2 = ne02
  3340. // ne3 = ne03
  3341. const int ne01 = src0->ne[1];
  3342. const int ne02 = src0->ne[2];
  3343. const int ne03 = src0->ne[3];
  3344. const cl_ulong nb01 = src0->nb[1];
  3345. const cl_ulong nb02 = src0->nb[2];
  3346. const cl_ulong nb03 = src0->nb[3];
  3347. const int ne11 = src1->ne[1];
  3348. const int ne12 = src1->ne[2];
  3349. const cl_ulong nb10 = src1->nb[0];
  3350. const cl_ulong nb11 = src1->nb[1];
  3351. const cl_ulong nb12 = src1->nb[2];
  3352. const int ne0 = dst->ne[0];
  3353. const cl_ulong nb1 = dst->nb[1];
  3354. const cl_ulong nb2 = dst->nb[2];
  3355. const cl_ulong nb3 = dst->nb[3];
  3356. const int nblk0 = ne0/ggml_blck_size(dst->type);
  3357. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3358. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3359. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  3360. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3361. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3362. cl_ulong offset1 = extra1->offset + src1->view_offs;
  3363. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3364. cl_kernel kernel;
  3365. switch (dst->type) {
  3366. case GGML_TYPE_F32:
  3367. kernel = backend_ctx->kernel_set_rows_f32;
  3368. break;
  3369. case GGML_TYPE_F16:
  3370. kernel = backend_ctx->kernel_set_rows_f16;
  3371. break;
  3372. default:
  3373. GGML_ABORT("not implemented");
  3374. }
  3375. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3376. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3377. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3378. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3379. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3380. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3381. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne01));
  3382. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  3383. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  3384. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
  3385. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne11));
  3386. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne12));
  3387. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb10));
  3388. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb11));
  3389. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb12));
  3390. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &nblk0));
  3391. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb1));
  3392. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb2));
  3393. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb3));
  3394. int nth0 = 64;
  3395. if (backend_ctx->gpu_family == INTEL) {
  3396. nth0 = 32;
  3397. } else if (backend_ctx->gpu_family == ADRENO) {
  3398. nth0 = 64;
  3399. }
  3400. int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
  3401. while (nth0 < nblk0 && nth0 < max_workgroup_size) {
  3402. nth0 *= 2;
  3403. }
  3404. int rows_per_workgroup = 1;
  3405. if (nth0 > nblk0) {
  3406. rows_per_workgroup = nth0 / nblk0;
  3407. nth0 = nblk0;
  3408. }
  3409. size_t global_work_size[] = {
  3410. (size_t)(ne01 + rows_per_workgroup - 1)/rows_per_workgroup*nth0,
  3411. (size_t)ne02*rows_per_workgroup,
  3412. (size_t)ne03};
  3413. size_t local_work_size[] = {(size_t)nth0, (size_t)rows_per_workgroup, 1};
  3414. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3415. }
  3416. static void ggml_cl_add(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3417. GGML_ASSERT(src0);
  3418. GGML_ASSERT(src0->extra);
  3419. GGML_ASSERT(src1);
  3420. GGML_ASSERT(src1->extra);
  3421. GGML_ASSERT(dst);
  3422. GGML_ASSERT(dst->extra);
  3423. const int ne00 = src0->ne[0];
  3424. const int ne01 = src0->ne[1];
  3425. const int ne02 = src0->ne[2];
  3426. const int ne03 = src0->ne[3];
  3427. const cl_ulong nb00 = src0->nb[0];
  3428. const cl_ulong nb01 = src0->nb[1];
  3429. const cl_ulong nb02 = src0->nb[2];
  3430. const cl_ulong nb03 = src0->nb[3];
  3431. const int ne10 = src1->ne[0];
  3432. const int ne11 = src1->ne[1];
  3433. const int ne12 = src1->ne[2];
  3434. const int ne13 = src1->ne[3];
  3435. const cl_ulong nb10 = src1->nb[0];
  3436. const cl_ulong nb11 = src1->nb[1];
  3437. const cl_ulong nb12 = src1->nb[2];
  3438. const cl_ulong nb13 = src1->nb[3];
  3439. const int ne0 = dst->ne[0];
  3440. const int ne1 = dst->ne[1];
  3441. const int ne2 = dst->ne[2];
  3442. const int ne3 = dst->ne[3];
  3443. const cl_ulong nb0 = dst->nb[0];
  3444. const cl_ulong nb1 = dst->nb[1];
  3445. const cl_ulong nb2 = dst->nb[2];
  3446. const cl_ulong nb3 = dst->nb[3];
  3447. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3448. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3449. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  3450. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3451. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3452. cl_ulong offset1 = extra1->offset + src1->view_offs;
  3453. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3454. cl_kernel kernel;
  3455. const bool bcast_row = ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0;
  3456. if (bcast_row) {
  3457. GGML_ASSERT(ggml_is_contiguous(src0));
  3458. GGML_ASSERT(ne11 == 1);
  3459. }
  3460. if (dst->type == GGML_TYPE_F32) {
  3461. GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32);
  3462. if (bcast_row) {
  3463. kernel = backend_ctx->kernel_add_row;
  3464. const int ne = ne00 / 4;
  3465. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3466. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3467. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3468. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3469. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3470. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3471. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
  3472. } else {
  3473. kernel = backend_ctx->kernel_add;
  3474. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3475. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3476. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3477. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3478. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3479. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3480. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  3481. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  3482. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  3483. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
  3484. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
  3485. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
  3486. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
  3487. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
  3488. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10));
  3489. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11));
  3490. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12));
  3491. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13));
  3492. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
  3493. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
  3494. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
  3495. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
  3496. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0));
  3497. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1));
  3498. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2));
  3499. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3));
  3500. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
  3501. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
  3502. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
  3503. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
  3504. }
  3505. } else if (dst->type == GGML_TYPE_F16) {
  3506. GGML_ASSERT(src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_F32);
  3507. GGML_ASSERT(src1->type == GGML_TYPE_F16 || src1->type == GGML_TYPE_F32);
  3508. const int type_src0 = (src0->type == GGML_TYPE_F32);
  3509. const int type_src1 = (src1->type == GGML_TYPE_F32);
  3510. if (bcast_row) {
  3511. kernel = backend_ctx->kernel_add_row_f16;
  3512. const int ne = ne00 / 4;
  3513. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3514. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3515. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3516. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3517. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3518. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3519. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
  3520. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &type_src0));
  3521. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &type_src1));
  3522. } else {
  3523. kernel = backend_ctx->kernel_add_f16;
  3524. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3525. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3526. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3527. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3528. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3529. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3530. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  3531. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  3532. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  3533. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
  3534. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
  3535. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
  3536. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
  3537. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
  3538. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10));
  3539. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11));
  3540. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12));
  3541. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13));
  3542. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
  3543. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
  3544. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
  3545. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
  3546. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0));
  3547. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1));
  3548. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2));
  3549. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3));
  3550. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
  3551. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
  3552. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
  3553. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
  3554. CL_CHECK(clSetKernelArg(kernel, 30, sizeof(int), &type_src0));
  3555. CL_CHECK(clSetKernelArg(kernel, 31, sizeof(int), &type_src1));
  3556. }
  3557. } else {
  3558. GGML_ASSERT(false && "unsupported data types for add");
  3559. }
  3560. if (bcast_row) {
  3561. int n = ggml_nelements(dst)/4;
  3562. size_t global_work_size[] = {(size_t)n, 1, 1};
  3563. size_t local_work_size[] = {64, 1, 1};
  3564. size_t * local_work_size_ptr = local_work_size;
  3565. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  3566. local_work_size_ptr = nullptr;
  3567. }
  3568. backend_ctx->enqueue_ndrange_kernel(kernel, 1, global_work_size, local_work_size_ptr, dst);
  3569. } else {
  3570. unsigned int nth = MIN(64, ne0);
  3571. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  3572. size_t local_work_size[] = {nth, 1, 1};
  3573. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3574. }
  3575. }
  3576. static void ggml_cl_add_id(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3577. GGML_ASSERT(src0);
  3578. GGML_ASSERT(src0->extra);
  3579. GGML_ASSERT(src1);
  3580. GGML_ASSERT(src1->extra);
  3581. GGML_ASSERT(dst);
  3582. GGML_ASSERT(dst->extra);
  3583. const ggml_tensor * src2 = dst->src[2];
  3584. GGML_ASSERT(src2);
  3585. GGML_ASSERT(src2->extra);
  3586. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  3587. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  3588. GGML_ASSERT(src2->type == GGML_TYPE_I32);
  3589. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  3590. GGML_ASSERT(ggml_is_contiguous_rows(src0));
  3591. const int ne00 = src0->ne[0];
  3592. const int ne01 = src0->ne[1];
  3593. const int ne02 = src0->ne[2];
  3594. const cl_ulong nb01 = src0->nb[1];
  3595. const cl_ulong nb02 = src0->nb[2];
  3596. const cl_ulong nb11 = src1->nb[1];
  3597. const cl_ulong nb21 = src2->nb[1];
  3598. const int ne0 = dst->ne[0];
  3599. const int ne1 = dst->ne[1];
  3600. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3601. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3602. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  3603. ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
  3604. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3605. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3606. cl_ulong offset1 = extra1->offset + src1->view_offs;
  3607. cl_ulong offset2 = extra2->offset + src2->view_offs;
  3608. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3609. cl_kernel kernel = backend_ctx->kernel_add_id;
  3610. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3611. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3612. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3613. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3614. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  3615. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  3616. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  3617. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  3618. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  3619. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  3620. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb11));
  3621. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb21));
  3622. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne0));
  3623. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne1));
  3624. int nth = MIN(ne00, (int) backend_ctx->get_kernel_workgroup_size(kernel));
  3625. size_t global_work_size[] = { (size_t)ne01*nth, (size_t)ne02, 1 };
  3626. size_t local_work_size[] = { (size_t)nth, 1, 1 };
  3627. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3628. }
  3629. static void ggml_cl_mul(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3630. GGML_ASSERT(src0);
  3631. GGML_ASSERT(src0->extra);
  3632. GGML_ASSERT(src1);
  3633. GGML_ASSERT(src1->extra);
  3634. GGML_ASSERT(dst);
  3635. GGML_ASSERT(dst->extra);
  3636. GGML_ASSERT(src0->type == src1->type);
  3637. GGML_ASSERT(src0->type == dst->type);
  3638. GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
  3639. const int ne00 = src0->ne[0];
  3640. const int ne01 = src0->ne[1];
  3641. const int ne02 = src0->ne[2];
  3642. const int ne03 = src0->ne[3];
  3643. const cl_ulong nb00 = src0->nb[0];
  3644. const cl_ulong nb01 = src0->nb[1];
  3645. const cl_ulong nb02 = src0->nb[2];
  3646. const cl_ulong nb03 = src0->nb[3];
  3647. const int ne10 = src1->ne[0];
  3648. const int ne11 = src1->ne[1];
  3649. const int ne12 = src1->ne[2];
  3650. const int ne13 = src1->ne[3]; UNUSED(ne13);
  3651. const cl_ulong nb10 = src1->nb[0];
  3652. const cl_ulong nb11 = src1->nb[1];
  3653. const cl_ulong nb12 = src1->nb[2];
  3654. const cl_ulong nb13 = src1->nb[3]; UNUSED(nb13);
  3655. const int ne0 = dst->ne[0];
  3656. const int ne1 = dst->ne[1];
  3657. const int ne2 = dst->ne[2];
  3658. const int ne3 = dst->ne[3];
  3659. const cl_ulong nb0 = dst->nb[0];
  3660. const cl_ulong nb1 = dst->nb[1];
  3661. const cl_ulong nb2 = dst->nb[2];
  3662. const cl_ulong nb3 = dst->nb[3];
  3663. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3664. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3665. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  3666. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3667. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3668. cl_ulong offset1 = extra1->offset + src1->view_offs;
  3669. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3670. bool bcast_row = false;
  3671. cl_kernel kernel;
  3672. if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
  3673. GGML_ASSERT(ggml_is_contiguous(src0));
  3674. // src1 is a row
  3675. GGML_ASSERT(ne11 == 1);
  3676. bcast_row = true;
  3677. int ne = ne00 / 4;
  3678. if (src0->type == GGML_TYPE_F32) {
  3679. kernel = backend_ctx->kernel_mul_row;
  3680. } else {
  3681. kernel = backend_ctx->kernel_mul_row_f16;
  3682. }
  3683. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3684. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3685. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3686. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3687. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3688. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3689. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
  3690. } else {
  3691. if (src0->type == GGML_TYPE_F32) {
  3692. kernel = backend_ctx->kernel_mul;
  3693. } else {
  3694. kernel = backend_ctx->kernel_mul_f16;
  3695. }
  3696. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3697. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3698. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3699. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3700. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3701. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3702. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  3703. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  3704. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  3705. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
  3706. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
  3707. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
  3708. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
  3709. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
  3710. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10));
  3711. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11));
  3712. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12));
  3713. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13));
  3714. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
  3715. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
  3716. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
  3717. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
  3718. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0));
  3719. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1));
  3720. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2));
  3721. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3));
  3722. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
  3723. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
  3724. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
  3725. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
  3726. }
  3727. if (bcast_row) {
  3728. int n = ggml_nelements(dst)/4;
  3729. size_t global_work_size[] = {(size_t)n, 1, 1};
  3730. size_t local_work_size[] = {64, 1, 1};
  3731. size_t * local_work_size_ptr = local_work_size;
  3732. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  3733. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  3734. }
  3735. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  3736. } else {
  3737. unsigned int nth = MIN(64, ne0);
  3738. size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
  3739. size_t local_work_size[] = {nth, 1, 1};
  3740. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3741. }
  3742. }
  3743. static void ggml_cl_div(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3744. GGML_ASSERT(src0);
  3745. GGML_ASSERT(src0->extra);
  3746. GGML_ASSERT(src1);
  3747. GGML_ASSERT(src1->extra);
  3748. GGML_ASSERT(dst);
  3749. GGML_ASSERT(dst->extra);
  3750. GGML_ASSERT(src0->type == src1->type);
  3751. GGML_ASSERT(src0->type == dst->type);
  3752. GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
  3753. const int ne00 = src0->ne[0];
  3754. const int ne01 = src0->ne[1];
  3755. const int ne02 = src0->ne[2];
  3756. const int ne03 = src0->ne[3];
  3757. const cl_ulong nb00 = src0->nb[0];
  3758. const cl_ulong nb01 = src0->nb[1];
  3759. const cl_ulong nb02 = src0->nb[2];
  3760. const cl_ulong nb03 = src0->nb[3];
  3761. const int ne10 = src1->ne[0];
  3762. const int ne11 = src1->ne[1];
  3763. const int ne12 = src1->ne[2];
  3764. const int ne13 = src1->ne[3];
  3765. const cl_ulong nb10 = src1->nb[0];
  3766. const cl_ulong nb11 = src1->nb[1];
  3767. const cl_ulong nb12 = src1->nb[2];
  3768. const cl_ulong nb13 = src1->nb[3];
  3769. const int ne0 = dst->ne[0];
  3770. const cl_ulong nb0 = dst->nb[0];
  3771. const cl_ulong nb1 = dst->nb[1];
  3772. const cl_ulong nb2 = dst->nb[2];
  3773. const cl_ulong nb3 = dst->nb[3];
  3774. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3775. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3776. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  3777. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3778. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3779. cl_ulong offset1 = extra1->offset + src1->view_offs;
  3780. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3781. bool bcast_row = false;
  3782. cl_kernel kernel;
  3783. if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
  3784. GGML_ASSERT(ggml_is_contiguous(src0));
  3785. // src1 is a row
  3786. GGML_ASSERT(ne11 == 1);
  3787. bcast_row = true;
  3788. int ne = ne00 / 4;
  3789. if (src0->type == GGML_TYPE_F32) {
  3790. kernel = backend_ctx->kernel_div_row;
  3791. } else {
  3792. kernel = backend_ctx->kernel_div_row_f16;
  3793. }
  3794. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3795. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3796. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3797. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3798. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3799. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3800. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
  3801. } else {
  3802. if (src0->type == GGML_TYPE_F32) {
  3803. kernel = backend_ctx->kernel_div;
  3804. } else {
  3805. kernel = backend_ctx->kernel_div_f16;
  3806. }
  3807. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3808. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3809. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3810. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3811. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3812. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3813. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb00));
  3814. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  3815. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  3816. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
  3817. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne10));
  3818. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne11));
  3819. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne12));
  3820. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne13));
  3821. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10));
  3822. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11));
  3823. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12));
  3824. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13));
  3825. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne0));
  3826. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb0));
  3827. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb1));
  3828. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb2));
  3829. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb3));
  3830. }
  3831. if (bcast_row) {
  3832. int n = ggml_nelements(dst)/4;
  3833. size_t global_work_size[] = {(size_t)n, 1, 1};
  3834. size_t local_work_size[] = {64, 1, 1};
  3835. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3836. } else {
  3837. unsigned int nth = MIN(64, ne0);
  3838. size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
  3839. size_t local_work_size[] = {nth, 1, 1};
  3840. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3841. }
  3842. }
  3843. static void ggml_cl_sub(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3844. GGML_ASSERT(src0);
  3845. GGML_ASSERT(src0->extra);
  3846. GGML_ASSERT(src1);
  3847. GGML_ASSERT(src1->extra);
  3848. GGML_ASSERT(dst);
  3849. GGML_ASSERT(dst->extra);
  3850. GGML_ASSERT(src0->type == src1->type);
  3851. GGML_ASSERT(src0->type == dst->type);
  3852. GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
  3853. const int ne00 = src0->ne[0];
  3854. const int ne01 = src0->ne[1];
  3855. const int ne02 = src0->ne[2];
  3856. const int ne03 = src0->ne[3];
  3857. const cl_ulong nb00 = src0->nb[0];
  3858. const cl_ulong nb01 = src0->nb[1];
  3859. const cl_ulong nb02 = src0->nb[2];
  3860. const cl_ulong nb03 = src0->nb[3];
  3861. const int ne10 = src1->ne[0];
  3862. const int ne11 = src1->ne[1];
  3863. const int ne12 = src1->ne[2];
  3864. const int ne13 = src1->ne[3];
  3865. const cl_ulong nb10 = src1->nb[0];
  3866. const cl_ulong nb11 = src1->nb[1];
  3867. const cl_ulong nb12 = src1->nb[2];
  3868. const cl_ulong nb13 = src1->nb[3];
  3869. const int ne0 = dst->ne[0];
  3870. const cl_ulong nb0 = dst->nb[0];
  3871. const cl_ulong nb1 = dst->nb[1];
  3872. const cl_ulong nb2 = dst->nb[2];
  3873. const cl_ulong nb3 = dst->nb[3];
  3874. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3875. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3876. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  3877. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3878. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3879. cl_ulong offset1 = extra1->offset + src1->view_offs;
  3880. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3881. bool bcast_row = false;
  3882. cl_kernel kernel;
  3883. if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
  3884. GGML_ASSERT(ggml_is_contiguous(src0));
  3885. // src1 is a row
  3886. GGML_ASSERT(ne11 == 1);
  3887. bcast_row = true;
  3888. int ne = ne00 / 4;
  3889. if (src0->type == GGML_TYPE_F32) {
  3890. kernel = backend_ctx->kernel_sub_row;
  3891. } else {
  3892. kernel = backend_ctx->kernel_sub_row_f16;
  3893. }
  3894. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3895. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3896. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3897. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3898. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3899. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3900. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
  3901. } else {
  3902. if (src0->type == GGML_TYPE_F32) {
  3903. kernel = backend_ctx->kernel_sub;
  3904. } else {
  3905. kernel = backend_ctx->kernel_sub_f16;
  3906. }
  3907. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3908. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3909. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3910. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3911. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3912. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3913. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb00));
  3914. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  3915. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  3916. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
  3917. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne10));
  3918. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne11));
  3919. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne12));
  3920. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne13));
  3921. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10));
  3922. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11));
  3923. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12));
  3924. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13));
  3925. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne0));
  3926. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb0));
  3927. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb1));
  3928. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb2));
  3929. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb3));
  3930. }
  3931. if (bcast_row) {
  3932. int n = ggml_nelements(dst)/4;
  3933. size_t global_work_size[] = {(size_t)n, 1, 1};
  3934. size_t local_work_size[] = {64, 1, 1};
  3935. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3936. } else {
  3937. unsigned int nth = MIN(64, ne0);
  3938. size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
  3939. size_t local_work_size[] = {nth, 1, 1};
  3940. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3941. }
  3942. }
  3943. static void ggml_cl_gelu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3944. GGML_ASSERT(src0);
  3945. GGML_ASSERT(src0->extra);
  3946. GGML_ASSERT(dst);
  3947. GGML_ASSERT(dst->extra);
  3948. UNUSED(src1);
  3949. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3950. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3951. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3952. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3953. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3954. cl_kernel kernel;
  3955. int n = ggml_nelements(dst);
  3956. if (n % 4 == 0) {
  3957. kernel = backend_ctx->kernel_gelu_4;
  3958. n /= 4;
  3959. } else {
  3960. kernel = backend_ctx->kernel_gelu;
  3961. }
  3962. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3963. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3964. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  3965. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  3966. size_t global_work_size[] = {(size_t)n, 1, 1};
  3967. size_t local_work_size[] = {64, 1, 1};
  3968. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3969. }
  3970. static void ggml_cl_gelu_erf(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3971. GGML_ASSERT(src0);
  3972. GGML_ASSERT(src0->extra);
  3973. GGML_ASSERT(dst);
  3974. GGML_ASSERT(dst->extra);
  3975. UNUSED(src1);
  3976. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3977. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3978. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3979. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3980. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3981. cl_kernel kernel;
  3982. int n = ggml_nelements(dst);
  3983. if (n % 4 == 0) {
  3984. kernel = backend_ctx->kernel_gelu_erf_4;
  3985. n /= 4;
  3986. } else {
  3987. kernel = backend_ctx->kernel_gelu_erf;
  3988. }
  3989. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3990. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3991. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  3992. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  3993. size_t global_work_size[] = {(size_t)n, 1, 1};
  3994. size_t local_work_size[] = {64, 1, 1};
  3995. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3996. }
  3997. static void ggml_cl_gelu_quick(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3998. GGML_ASSERT(src0);
  3999. GGML_ASSERT(src0->extra);
  4000. GGML_ASSERT(dst);
  4001. GGML_ASSERT(dst->extra);
  4002. UNUSED(src1);
  4003. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4004. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4005. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4006. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4007. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4008. cl_kernel kernel;
  4009. int n = ggml_nelements(dst);
  4010. if (n % 4 == 0) {
  4011. kernel = backend_ctx->kernel_gelu_quick_4;
  4012. n /= 4;
  4013. } else {
  4014. kernel = backend_ctx->kernel_gelu_quick;
  4015. }
  4016. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4017. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4018. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4019. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4020. size_t global_work_size[] = {(size_t)n, 1, 1};
  4021. size_t local_work_size[] = {64, 1, 1};
  4022. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4023. }
  4024. static void ggml_cl_silu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4025. GGML_ASSERT(src0);
  4026. GGML_ASSERT(src0->extra);
  4027. GGML_ASSERT(dst);
  4028. GGML_ASSERT(dst->extra);
  4029. UNUSED(src1);
  4030. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4031. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4032. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4033. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4034. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4035. cl_kernel kernel;
  4036. int n = ggml_nelements(dst);
  4037. if (n % 4 == 0) {
  4038. kernel = backend_ctx->kernel_silu_4;
  4039. n /= 4;
  4040. } else {
  4041. kernel = backend_ctx->kernel_silu;
  4042. }
  4043. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4044. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4045. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4046. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4047. size_t global_work_size[] = {(size_t)n, 1, 1};
  4048. size_t local_work_size[] = {64, 1, 1};
  4049. size_t * local_work_size_ptr = local_work_size;
  4050. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  4051. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  4052. }
  4053. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  4054. }
  4055. static void ggml_cl_relu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4056. GGML_ASSERT(src0);
  4057. GGML_ASSERT(src0->extra);
  4058. GGML_ASSERT(dst);
  4059. GGML_ASSERT(dst->extra);
  4060. UNUSED(src1);
  4061. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4062. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4063. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4064. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4065. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4066. cl_kernel kernel = backend_ctx->kernel_relu;
  4067. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4068. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4069. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4070. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4071. const int64_t n = ggml_nelements(dst);
  4072. size_t global_work_size[] = {(size_t)n, 1, 1};
  4073. size_t local_work_size[] = {64, 1, 1};
  4074. size_t * local_work_size_ptr = local_work_size;
  4075. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  4076. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  4077. }
  4078. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  4079. }
  4080. static void ggml_cl_sigmoid(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4081. GGML_ASSERT(src0);
  4082. GGML_ASSERT(src0->extra);
  4083. GGML_ASSERT(dst);
  4084. GGML_ASSERT(dst->extra);
  4085. UNUSED(src1);
  4086. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4087. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4088. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4089. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4090. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4091. cl_kernel kernel;
  4092. if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
  4093. kernel = backend_ctx->kernel_sigmoid_f32;
  4094. } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
  4095. kernel = backend_ctx->kernel_sigmoid_f16;
  4096. } else {
  4097. GGML_ASSERT(false && "Unsupported data types for sigmoid (input and output must be both f32 or f16)");
  4098. }
  4099. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4100. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4101. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4102. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4103. const int64_t n = ggml_nelements(dst);
  4104. size_t global_work_size[] = {(size_t)n, 1, 1};
  4105. size_t local_work_size[] = {64, 1, 1};
  4106. size_t * local_work_size_ptr = local_work_size;
  4107. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  4108. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  4109. }
  4110. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  4111. }
  4112. static void ggml_cl_clamp(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4113. GGML_ASSERT(src0);
  4114. GGML_ASSERT(src0->extra);
  4115. GGML_ASSERT(dst);
  4116. GGML_ASSERT(dst->extra);
  4117. UNUSED(src1);
  4118. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4119. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4120. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4121. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4122. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4123. float min;
  4124. float max;
  4125. memcpy(&min, ((int32_t *) dst->op_params) + 0, sizeof(float));
  4126. memcpy(&max, ((int32_t *) dst->op_params) + 1, sizeof(float));
  4127. cl_kernel kernel = backend_ctx->kernel_clamp;
  4128. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4129. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4130. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4131. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4132. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(float), &min));
  4133. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(float), &max));
  4134. const int64_t n = ggml_nelements(dst);
  4135. size_t global_work_size[] = {(size_t)n, 1, 1};
  4136. size_t local_work_size[] = {64, 1, 1};
  4137. size_t * local_work_size_ptr = local_work_size;
  4138. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  4139. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  4140. }
  4141. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  4142. }
  4143. static void ggml_cl_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4144. GGML_ASSERT(src0);
  4145. GGML_ASSERT(src0->extra);
  4146. GGML_ASSERT(dst);
  4147. GGML_ASSERT(dst->extra);
  4148. UNUSED(src1);
  4149. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4150. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4151. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4152. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4153. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4154. float eps;
  4155. memcpy(&eps, dst->op_params, sizeof(float));
  4156. const int ne00 = src0 ? src0->ne[0] : 0;
  4157. const int ne01 = src0 ? src0->ne[1] : 0;
  4158. const int ne02 = src0 ? src0->ne[2] : 0;
  4159. const int ne03 = src0 ? src0->ne[3] : 0;
  4160. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  4161. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  4162. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  4163. const int nth = MIN(64, ne00);
  4164. cl_kernel kernel = backend_ctx->kernel_norm;
  4165. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4166. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4167. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4168. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4169. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  4170. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  4171. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  4172. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  4173. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  4174. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  4175. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
  4176. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(float), &eps));
  4177. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float)*nth, NULL));
  4178. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  4179. size_t local_work_size[] = {(size_t)nth, 1, 1};
  4180. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4181. }
  4182. static void ggml_cl_rms_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4183. GGML_ASSERT(src0);
  4184. GGML_ASSERT(src0->extra);
  4185. GGML_ASSERT(dst);
  4186. GGML_ASSERT(dst->extra);
  4187. UNUSED(src1);
  4188. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4189. //ggml_backend_opencl_device_context * dev_ctx =
  4190. // (ggml_backend_opencl_device_context *)backend->device->context;
  4191. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4192. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4193. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4194. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4195. float eps;
  4196. memcpy(&eps, dst->op_params, sizeof(float));
  4197. const int ne00 = src0 ? src0->ne[0] : 0;
  4198. const int ne01 = src0 ? src0->ne[1] : 0;
  4199. const int ne02 = src0 ? src0->ne[2] : 0;
  4200. const int ne03 = src0 ? src0->ne[3] : 0;
  4201. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  4202. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  4203. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  4204. GGML_ASSERT(ne00 % 4 == 0);
  4205. const int nth = MIN(64, ne00);
  4206. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  4207. size_t local_work_size[] = {(size_t)nth, 1, 1};
  4208. cl_kernel kernel = backend_ctx->kernel_rms_norm;
  4209. // Note, this kernel declares local memory in kernel args and the size
  4210. // depends on subgroup size.
  4211. // Note, this requires OpenCL 2.1 and above
  4212. // For now we use fixed subgroup size to simplify support for OpenCL 2.0.
  4213. size_t sgs;
  4214. //CL_CHECK(clGetKernelSubGroupInfo(kernel, dev_ctx->device,
  4215. // CL_KERNEL_MAX_SUB_GROUP_SIZE_FOR_NDRANGE,
  4216. // sizeof(local_work_size), local_work_size,
  4217. // sizeof(size_t), &sgs, NULL));
  4218. if (backend_ctx->gpu_family == ADRENO) {
  4219. sgs = 64;
  4220. } else if (backend_ctx->gpu_family == INTEL) {
  4221. sgs = 32;
  4222. } else {
  4223. GGML_ASSERT(false && "Unsupported GPU");
  4224. }
  4225. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4226. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4227. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4228. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4229. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  4230. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  4231. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  4232. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  4233. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  4234. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  4235. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
  4236. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(float), &eps));
  4237. // This is local memory - the size depends on subgroup size.
  4238. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float)*nth/sgs, NULL));
  4239. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4240. }
  4241. static void ggml_opencl_op_rms_norm_fused(ggml_backend_t backend, ggml_tensor * rms_norm_tensor, ggml_tensor * mul_tensor) {
  4242. GGML_ASSERT(mul_tensor);
  4243. GGML_ASSERT(rms_norm_tensor);
  4244. // src0 is the src of rms_norm, src1 is the other src of mul (one being rms_norm)
  4245. const ggml_tensor * src0 = rms_norm_tensor->src[0];
  4246. const ggml_tensor * src1;
  4247. if (mul_tensor->src[0] == rms_norm_tensor) {
  4248. src1 = mul_tensor->src[1];
  4249. } else if (mul_tensor->src[1] == rms_norm_tensor) {
  4250. src1 = mul_tensor->src[0];
  4251. } else {
  4252. GGML_ASSERT(false && "Invalid args for rms_norm and mul");
  4253. }
  4254. const ggml_tensor * dst = mul_tensor;
  4255. GGML_ASSERT(src0);
  4256. GGML_ASSERT(src0->extra);
  4257. GGML_ASSERT(src1);
  4258. GGML_ASSERT(src1->extra);
  4259. GGML_ASSERT(dst);
  4260. GGML_ASSERT(dst->extra);
  4261. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4262. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4263. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4264. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4265. cl_ulong offset1 = extra1->offset + src0->view_offs;
  4266. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4267. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4268. float eps;
  4269. memcpy(&eps, rms_norm_tensor->op_params, sizeof(float));
  4270. const int ne00 = src0->ne[0];
  4271. const int ne01 = src0->ne[1];
  4272. const int ne02 = src0->ne[2];
  4273. const int ne03 = src0->ne[3];
  4274. const cl_ulong nb01 = src0->nb[1];
  4275. const cl_ulong nb02 = src0->nb[2];
  4276. const cl_ulong nb03 = src0->nb[3];
  4277. const int ne10 = src1->ne[0];
  4278. const int ne11 = src1->ne[1];
  4279. const int ne12 = src1->ne[2];
  4280. const int ne13 = src1->ne[3];
  4281. const cl_ulong nb11 = src1->nb[1];
  4282. const cl_ulong nb12 = src1->nb[2];
  4283. const cl_ulong nb13 = src1->nb[3];
  4284. const cl_ulong nb1 = dst->nb[1];
  4285. const cl_ulong nb2 = dst->nb[2];
  4286. const cl_ulong nb3 = dst->nb[3];
  4287. GGML_ASSERT(ne00 % 4 == 0);
  4288. size_t sgs;
  4289. if (backend_ctx->gpu_family == ADRENO) {
  4290. sgs = 64;
  4291. } else if (backend_ctx->gpu_family == INTEL) {
  4292. sgs = 32;
  4293. } else {
  4294. GGML_ASSERT(false && "Unsupported GPU");
  4295. }
  4296. cl_kernel kernel = backend_ctx->kernel_rms_norm_mul;
  4297. int nth = sgs;
  4298. int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
  4299. while (nth < ne00 && nth < max_workgroup_size) {
  4300. nth *= 2;
  4301. }
  4302. nth = MIN(nth, max_workgroup_size);
  4303. nth = MIN(nth, ne00);
  4304. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  4305. size_t local_work_size[] = {(size_t)nth, 1, 1};
  4306. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4307. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4308. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4309. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4310. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4311. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4312. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  4313. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  4314. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  4315. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
  4316. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
  4317. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
  4318. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
  4319. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
  4320. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
  4321. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
  4322. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne13));
  4323. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
  4324. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
  4325. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
  4326. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb1));
  4327. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb2));
  4328. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb3));
  4329. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(float), &eps));
  4330. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(float)*nth/sgs, NULL));
  4331. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4332. }
  4333. static void ggml_opencl_op_norm_fused(ggml_backend_t backend, ggml_tensor * norm_tensor, ggml_tensor * mul_tensor, ggml_tensor * add_tensor) {
  4334. GGML_ASSERT(norm_tensor && mul_tensor && add_tensor);
  4335. const ggml_tensor * src0 = norm_tensor->src[0];
  4336. const ggml_tensor * src1 = mul_tensor->src[0] == norm_tensor ? mul_tensor->src[1] : mul_tensor->src[0];
  4337. const ggml_tensor * src2 = add_tensor->src[0] == mul_tensor ? add_tensor->src[1] : add_tensor->src[0];
  4338. const ggml_tensor * dst = add_tensor;
  4339. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4340. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4341. ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
  4342. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4343. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4344. cl_ulong offset1 = extra1->offset + src1->view_offs;
  4345. cl_ulong offset2 = extra2->offset + src2->view_offs;
  4346. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4347. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4348. float eps;
  4349. memcpy(&eps, norm_tensor->op_params, sizeof(float));
  4350. const int ne00 = src0->ne[0], ne01 = src0->ne[1], ne02 = src0->ne[2], ne03 = src0->ne[3];
  4351. const cl_ulong nb01 = src0->nb[1], nb02 = src0->nb[2], nb03 = src0->nb[3];
  4352. const int ne10 = src1->ne[0], ne11 = src1->ne[1], ne12 = src1->ne[2], ne13 = src1->ne[3];
  4353. const cl_ulong nb11 = src1->nb[1], nb12 = src1->nb[2], nb13 = src1->nb[3];
  4354. const int ne20 = src2->ne[0], ne21 = src2->ne[1], ne22 = src2->ne[2], ne23 = src2->ne[3];
  4355. const cl_ulong nb21 = src2->nb[1], nb22 = src2->nb[2], nb23 = src2->nb[3];
  4356. const cl_ulong nbd1 = dst->nb[1], nbd2 = dst->nb[2], nbd3 = dst->nb[3];
  4357. size_t sgs;
  4358. if (backend_ctx->gpu_family == ADRENO) sgs = 64;
  4359. else if (backend_ctx->gpu_family == INTEL) sgs = 32;
  4360. else GGML_ASSERT(false && "Unsupported GPU");
  4361. cl_kernel kernel = backend_ctx->kernel_norm_mul_add;
  4362. int nth = sgs;
  4363. int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
  4364. while (nth < ne00/4 && nth < max_workgroup_size) nth *= 2;
  4365. nth = MIN(nth, max_workgroup_size);
  4366. nth = MIN(nth, ne00/4);
  4367. size_t gws[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  4368. size_t lws[] = {(size_t)nth, 1, 1};
  4369. size_t num_subgroups = (nth + sgs - 1) / sgs;
  4370. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4371. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4372. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4373. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4374. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  4375. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  4376. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  4377. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  4378. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  4379. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
  4380. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne02));
  4381. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne03));
  4382. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb01));
  4383. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb02));
  4384. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb03));
  4385. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne10));
  4386. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne11));
  4387. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne12));
  4388. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne13));
  4389. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
  4390. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
  4391. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
  4392. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne20));
  4393. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne21));
  4394. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne22));
  4395. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne23));
  4396. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb21));
  4397. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb22));
  4398. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb23));
  4399. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nbd1));
  4400. CL_CHECK(clSetKernelArg(kernel, 30, sizeof(cl_ulong), &nbd2));
  4401. CL_CHECK(clSetKernelArg(kernel, 31, sizeof(cl_ulong), &nbd3));
  4402. CL_CHECK(clSetKernelArg(kernel, 32, sizeof(float), &eps));
  4403. CL_CHECK(clSetKernelArg(kernel, 33, sizeof(cl_float2) * num_subgroups, NULL));
  4404. backend_ctx->enqueue_ndrange_kernel(kernel, 3, gws, lws, dst);
  4405. }
  4406. static void ggml_opencl_op_group_norm_fused(ggml_backend_t backend, ggml_tensor * gn_tensor, ggml_tensor * mul_tensor, ggml_tensor * add_tensor) {
  4407. GGML_ASSERT(gn_tensor && mul_tensor && add_tensor);
  4408. const ggml_tensor * src0 = gn_tensor->src[0];
  4409. const ggml_tensor * src1 = mul_tensor->src[0] == gn_tensor ? mul_tensor->src[1] : mul_tensor->src[0];
  4410. const ggml_tensor * src2 = add_tensor->src[0] == mul_tensor ? add_tensor->src[1] : add_tensor->src[0];
  4411. const ggml_tensor * dst = add_tensor;
  4412. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4413. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4414. ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
  4415. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4416. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4417. cl_ulong offset1 = extra1->offset + src1->view_offs;
  4418. cl_ulong offset2 = extra2->offset + src2->view_offs;
  4419. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4420. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4421. int groups;
  4422. float eps;
  4423. memcpy(&groups, gn_tensor->op_params, sizeof(int));
  4424. memcpy(&eps, (char *)gn_tensor->op_params + sizeof(int), sizeof(float));
  4425. cl_kernel kernel = backend_ctx->kernel_group_norm_mul_add;
  4426. int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
  4427. int ne = ggml_nelements(src0);
  4428. int group_size = ne / groups;
  4429. size_t lws[] = { (size_t)MIN(max_workgroup_size, group_size) };
  4430. size_t gws[] = { (size_t)groups * lws[0] };
  4431. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4432. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4433. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4434. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4435. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  4436. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  4437. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  4438. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  4439. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne));
  4440. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &group_size));
  4441. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(float), &eps));
  4442. backend_ctx->enqueue_ndrange_kernel(kernel, 1, gws, lws, dst);
  4443. }
  4444. static void ggml_cl_group_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4445. GGML_ASSERT(src0);
  4446. GGML_ASSERT(src0->extra);
  4447. GGML_ASSERT(dst);
  4448. GGML_ASSERT(dst->extra);
  4449. UNUSED(src1);
  4450. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4451. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4452. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4453. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4454. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4455. int32_t n_groups = ((const int32_t *) dst->op_params)[0];
  4456. int32_t group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + n_groups - 1) / n_groups);
  4457. float eps = ((const float *) dst->op_params)[1];
  4458. const int ne00 = src0->ne[0];
  4459. const int ne01 = src0->ne[1];
  4460. const int ne02 = src0->ne[2];
  4461. const int ne = ne00*ne01*ne02;
  4462. cl_kernel kernel = backend_ctx->kernel_group_norm;
  4463. size_t sgs = 64;
  4464. if (backend_ctx->gpu_family == ADRENO) {
  4465. sgs = 64;
  4466. } else if (backend_ctx->gpu_family == INTEL) {
  4467. sgs = 32;
  4468. } else {
  4469. GGML_ASSERT(false && "Unsupported GPU");
  4470. }
  4471. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4472. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4473. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4474. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4475. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne));
  4476. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &group_size));
  4477. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(float), &eps));
  4478. size_t global_work_size[] = {(size_t)n_groups*sgs, 1, 1};
  4479. size_t local_work_size[] = {(size_t)sgs, 1, 1};
  4480. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4481. }
  4482. static void ggml_cl_tanh(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4483. GGML_ASSERT(src0);
  4484. GGML_ASSERT(src0->extra);
  4485. GGML_ASSERT(dst);
  4486. GGML_ASSERT(dst->extra);
  4487. UNUSED(src1);
  4488. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4489. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4490. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4491. cl_ulong offset0_abs = extra0->offset + src0->view_offs;
  4492. cl_ulong offsetd_abs = extrad->offset + dst->view_offs;
  4493. cl_kernel kernel;
  4494. if (dst->type == GGML_TYPE_F32) {
  4495. kernel = backend_ctx->kernel_tanh_f32_nd;
  4496. } else if (dst->type == GGML_TYPE_F16) {
  4497. kernel = backend_ctx->kernel_tanh_f16_nd;
  4498. } else {
  4499. GGML_ASSERT(false && "Unsupported type for ggml_cl_tanh");
  4500. }
  4501. GGML_ASSERT(kernel != nullptr);
  4502. const int ne00 = src0->ne[0]; const int ne01 = src0->ne[1]; const int ne02 = src0->ne[2]; const int ne03 = src0->ne[3];
  4503. const cl_ulong nb00 = src0->nb[0]; const cl_ulong nb01 = src0->nb[1]; const cl_ulong nb02 = src0->nb[2]; const cl_ulong nb03 = src0->nb[3];
  4504. const int ne10 = dst->ne[0]; const int ne11 = dst->ne[1]; const int ne12 = dst->ne[2]; const int ne13 = dst->ne[3];
  4505. const cl_ulong nb10 = dst->nb[0]; const cl_ulong nb11 = dst->nb[1]; const cl_ulong nb12 = dst->nb[2]; const cl_ulong nb13 = dst->nb[3];
  4506. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4507. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0_abs));
  4508. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4509. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd_abs));
  4510. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  4511. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  4512. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  4513. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  4514. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb00));
  4515. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
  4516. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong),&nb02));
  4517. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong),&nb03));
  4518. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10));
  4519. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne11));
  4520. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne12));
  4521. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne13));
  4522. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong),&nb10));
  4523. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong),&nb11));
  4524. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong),&nb12));
  4525. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong),&nb13));
  4526. size_t global_work_size[3];
  4527. if (ne10 == 0 || ne11 == 0 || ne12 == 0 || ne13 == 0) { // Handle case of 0 elements
  4528. return;
  4529. }
  4530. global_work_size[0] = (size_t)ne10;
  4531. global_work_size[1] = (size_t)ne11;
  4532. global_work_size[2] = (size_t)ne12;
  4533. size_t lws0 = 16, lws1 = 4, lws2 = 1;
  4534. if (ne10 < 16) lws0 = ne10;
  4535. if (ne11 < 4) lws1 = ne11;
  4536. if (ne12 < 1) lws2 = ne12 > 0 ? ne12 : 1;
  4537. while (lws0 * lws1 * lws2 > 256 && lws0 > 1) lws0 /= 2;
  4538. while (lws0 * lws1 * lws2 > 256 && lws1 > 1) lws1 /= 2;
  4539. while (lws0 * lws1 * lws2 > 256 && lws2 > 1) lws2 /= 2;
  4540. size_t local_work_size[] = {lws0, lws1, lws2};
  4541. size_t* local_work_size_ptr = local_work_size;
  4542. if (!backend_ctx->non_uniform_workgroups) {
  4543. if (global_work_size[0] % local_work_size[0] != 0 ||
  4544. global_work_size[1] % local_work_size[1] != 0 ||
  4545. global_work_size[2] % local_work_size[2] != 0) {
  4546. local_work_size_ptr = NULL;
  4547. }
  4548. }
  4549. if (global_work_size[0] == 0 || global_work_size[1] == 0 || global_work_size[2] == 0) return;
  4550. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  4551. }
  4552. static void ggml_cl_repeat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1_shape_def, ggml_tensor * dst) {
  4553. GGML_ASSERT(src0);
  4554. GGML_ASSERT(src0->extra);
  4555. GGML_ASSERT(dst);
  4556. GGML_ASSERT(dst->extra);
  4557. GGML_ASSERT(dst->type == src0->type);
  4558. UNUSED(src1_shape_def);
  4559. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4560. if (backend_ctx->kernel_repeat == nullptr) {
  4561. GGML_LOG_WARN("%s: repeat kernel not available, skipping OpenCL execution.\n", __func__);
  4562. return;
  4563. }
  4564. ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
  4565. ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
  4566. cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
  4567. cl_ulong off_dst = extra_dst->offset + dst->view_offs;
  4568. const int src0_ne0 = src0->ne[0]; const int src0_ne1 = src0->ne[1]; const int src0_ne2 = src0->ne[2]; const int src0_ne3 = src0->ne[3];
  4569. const cl_ulong src0_nb0 = src0->nb[0]; const cl_ulong src0_nb1 = src0->nb[1]; const cl_ulong src0_nb2 = src0->nb[2]; const cl_ulong src0_nb3 = src0->nb[3];
  4570. const int dst_ne0 = dst->ne[0]; const int dst_ne1 = dst->ne[1]; const int dst_ne2 = dst->ne[2]; const int dst_ne3 = dst->ne[3];
  4571. const cl_ulong dst_nb0 = dst->nb[0]; const cl_ulong dst_nb1 = dst->nb[1]; const cl_ulong dst_nb2 = dst->nb[2]; const cl_ulong dst_nb3 = dst->nb[3];
  4572. cl_kernel kernel = backend_ctx->kernel_repeat;
  4573. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
  4574. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra_dst->data_device));
  4575. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_ulong), &off_src0));
  4576. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
  4577. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &src0_ne0));
  4578. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &src0_ne1));
  4579. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &src0_ne2));
  4580. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &src0_ne3));
  4581. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &src0_nb0));
  4582. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &src0_nb1));
  4583. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &src0_nb2));
  4584. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &src0_nb3));
  4585. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &dst_ne0));
  4586. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &dst_ne1));
  4587. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &dst_ne2));
  4588. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &dst_ne3));
  4589. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &dst_nb0));
  4590. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &dst_nb1));
  4591. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &dst_nb2));
  4592. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &dst_nb3));
  4593. size_t gws0 = dst_ne1 > 0 ? (size_t)dst_ne1 : 1;
  4594. size_t gws1 = dst_ne2 > 0 ? (size_t)dst_ne2 : 1;
  4595. size_t gws2 = dst_ne3 > 0 ? (size_t)dst_ne3 : 1;
  4596. size_t global_work_size[] = { gws0, gws1, gws2 };
  4597. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, NULL, dst);
  4598. }
  4599. static void ggml_cl_pad(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) {
  4600. GGML_ASSERT(src0);
  4601. GGML_ASSERT(src0->extra);
  4602. GGML_ASSERT(dst);
  4603. GGML_ASSERT(dst->extra);
  4604. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  4605. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  4606. GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1);
  4607. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4608. if (backend_ctx->kernel_pad == nullptr) {
  4609. GGML_LOG_WARN("%s: pad kernel not available, skipping OpenCL execution.\n", __func__);
  4610. return;
  4611. }
  4612. ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
  4613. ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
  4614. cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
  4615. cl_ulong off_dst = extra_dst->offset + dst->view_offs;
  4616. const int s_ne0 = src0->ne[0];
  4617. const int s_ne1 = src0->ne[1];
  4618. const int s_ne2 = src0->ne[2];
  4619. const int d_ne0 = dst->ne[0];
  4620. const int d_ne1 = dst->ne[1];
  4621. const int d_ne2 = dst->ne[2];
  4622. cl_kernel kernel = backend_ctx->kernel_pad;
  4623. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
  4624. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
  4625. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_dst->data_device));
  4626. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
  4627. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &s_ne0));
  4628. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &s_ne1));
  4629. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &s_ne2));
  4630. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &d_ne0));
  4631. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &d_ne1));
  4632. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &d_ne2));
  4633. size_t lws0 = 64;
  4634. size_t gws0 = (( (size_t)d_ne0 + lws0 - 1 ) / lws0) * lws0;
  4635. size_t global_work_size[] = { gws0, (size_t)d_ne1, (size_t)d_ne2 };
  4636. size_t local_work_size[] = { lws0, 1, 1 };
  4637. size_t * local_work_size_ptr = local_work_size;
  4638. if (d_ne0 % lws0 != 0 && !backend_ctx->non_uniform_workgroups) {
  4639. local_work_size_ptr = nullptr;
  4640. }
  4641. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  4642. }
  4643. static void ggml_cl_upscale(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) {
  4644. GGML_ASSERT(src0);
  4645. GGML_ASSERT(src0->extra);
  4646. GGML_ASSERT(dst);
  4647. GGML_ASSERT(dst->extra);
  4648. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  4649. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  4650. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4651. const int mode_flags = (ggml_scale_mode) ggml_get_op_params_i32(dst, 0);
  4652. const ggml_scale_mode mode = (ggml_scale_mode) (mode_flags & 0xFF);
  4653. cl_kernel kernel = nullptr;
  4654. if (mode == GGML_SCALE_MODE_NEAREST) {
  4655. kernel = backend_ctx->kernel_upscale;
  4656. if (kernel == nullptr) {
  4657. GGML_LOG_WARN("%s: nearest upscale kernel not available, skipping OpenCL execution.\n", __func__);
  4658. return;
  4659. }
  4660. } else if (mode == GGML_SCALE_MODE_BILINEAR) {
  4661. kernel = backend_ctx->kernel_upscale_bilinear;
  4662. if (kernel == nullptr) {
  4663. GGML_LOG_WARN("%s: bilinear upscale kernel not available, skipping OpenCL execution.\n", __func__);
  4664. return;
  4665. }
  4666. } else {
  4667. GGML_LOG_WARN("%s: unsupported upscale mode %d, skipping OpenCL execution.\n", __func__, mode);
  4668. return;
  4669. }
  4670. ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
  4671. ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
  4672. cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
  4673. cl_ulong off_dst = extra_dst->offset + dst->view_offs;
  4674. const cl_ulong nb00 = src0->nb[0];
  4675. const cl_ulong nb01 = src0->nb[1];
  4676. const cl_ulong nb02 = src0->nb[2];
  4677. const cl_ulong nb03 = src0->nb[3];
  4678. const int ne00 = src0->ne[0];
  4679. const int ne01 = src0->ne[1];
  4680. const int ne02 = src0->ne[2];
  4681. const int ne03 = src0->ne[3];
  4682. const int ne0 = dst->ne[0];
  4683. const int ne1 = dst->ne[1];
  4684. const int ne2 = dst->ne[2];
  4685. const int ne3 = dst->ne[3];
  4686. float sf0 = (float)ne0 / ne00;
  4687. float sf1 = (float)ne1 / ne01;
  4688. float sf2 = (float)ne2 / ne02;
  4689. float sf3 = (float)ne3 / ne03;
  4690. float pixel_offset = 0.5f;
  4691. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
  4692. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
  4693. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_dst->data_device));
  4694. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
  4695. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &nb00));
  4696. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &nb01));
  4697. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb02));
  4698. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb03));
  4699. if (mode == GGML_SCALE_MODE_NEAREST) {
  4700. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne0));
  4701. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne1));
  4702. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne2));
  4703. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne3));
  4704. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float), &sf0));
  4705. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(float), &sf1));
  4706. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(float), &sf2));
  4707. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(float), &sf3));
  4708. } else if (mode == GGML_SCALE_MODE_BILINEAR) {
  4709. if (mode_flags & GGML_SCALE_FLAG_ALIGN_CORNERS) {
  4710. sf0 = (float)(ne0 - 1) / (ne00 - 1);
  4711. sf1 = (float)(ne1 - 1) / (ne01 - 1);
  4712. pixel_offset = 0.0f;
  4713. }
  4714. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  4715. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
  4716. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne0));
  4717. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne1));
  4718. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne2));
  4719. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne3));
  4720. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(float), &sf0));
  4721. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(float), &sf1));
  4722. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(float), &sf2));
  4723. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(float), &sf3));
  4724. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(float), &pixel_offset));
  4725. }
  4726. size_t dst_total_elements = (size_t)ne0 * ne1 * ne2 * ne3;
  4727. if (dst_total_elements == 0) {
  4728. return;
  4729. }
  4730. size_t global_work_size[] = { dst_total_elements, 1, 1 };
  4731. size_t local_work_size_pref = 256;
  4732. size_t local_work_size[] = { MIN(local_work_size_pref, dst_total_elements), 1, 1};
  4733. size_t * local_work_size_ptr = local_work_size;
  4734. if (dst_total_elements % local_work_size[0] != 0 && !backend_ctx->non_uniform_workgroups) {
  4735. local_work_size_ptr = nullptr;
  4736. }
  4737. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  4738. }
  4739. static void ggml_cl_concat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4740. GGML_ASSERT(src0);
  4741. GGML_ASSERT(src0->extra);
  4742. GGML_ASSERT(src1);
  4743. GGML_ASSERT(src1->extra);
  4744. GGML_ASSERT(dst);
  4745. GGML_ASSERT(dst->extra);
  4746. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  4747. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  4748. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  4749. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4750. cl_command_queue queue = backend_ctx->queue;
  4751. if (backend_ctx->kernel_concat_f32_contiguous == nullptr || backend_ctx->kernel_concat_f32_non_contiguous == nullptr) {
  4752. GGML_LOG_WARN("%s: concat kernels not available, skipping OpenCL execution.\n", __func__);
  4753. return;
  4754. }
  4755. ggml_tensor_extra_cl * extra0_cl = (ggml_tensor_extra_cl *)src0->extra;
  4756. ggml_tensor_extra_cl * extra1_cl = (ggml_tensor_extra_cl *)src1->extra;
  4757. ggml_tensor_extra_cl * extrad_cl = (ggml_tensor_extra_cl *)dst->extra;
  4758. cl_ulong off_src0 = extra0_cl->offset + src0->view_offs;
  4759. cl_ulong off_src1 = extra1_cl->offset + src1->view_offs;
  4760. cl_ulong off_dst = extrad_cl->offset + dst->view_offs;
  4761. const int32_t dim = ((const int32_t *) dst->op_params)[0];
  4762. GGML_ASSERT(dim >= 0 && dim <= 3);
  4763. if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) {
  4764. if (dim == 3) {
  4765. size_t nbytes_src0 = ggml_nbytes(src0);
  4766. size_t nbytes_src1 = ggml_nbytes(src1);
  4767. CL_CHECK(clEnqueueCopyBuffer(queue, extra0_cl->data_device, extrad_cl->data_device,
  4768. off_src0, off_dst, nbytes_src0, 0, NULL, NULL));
  4769. CL_CHECK(clEnqueueCopyBuffer(queue, extra1_cl->data_device, extrad_cl->data_device,
  4770. off_src1, off_dst + nbytes_src0, nbytes_src1, 0, NULL, NULL));
  4771. } else {
  4772. cl_kernel kernel = backend_ctx->kernel_concat_f32_contiguous;
  4773. size_t global_work_size[3];
  4774. for (int i3 = 0; i3 < dst->ne[3]; ++i3) {
  4775. cl_ulong current_off_src0 = off_src0 + (i3 * src0->nb[3]);
  4776. cl_ulong current_off_src1 = off_src1 + (i3 * src1->nb[3]);
  4777. cl_ulong current_off_dst = off_dst + (i3 * dst->nb[3]);
  4778. int d_ne00 = src0->ne[0]; int d_ne01 = src0->ne[1]; int d_ne02 = src0->ne[2];
  4779. int d_ne10 = src1->ne[0]; int d_ne11 = src1->ne[1]; int d_ne12 = src1->ne[2];
  4780. int d_ne0 = dst->ne[0]; int d_ne1 = dst->ne[1]; int d_ne2 = dst->ne[2];
  4781. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_cl->data_device));
  4782. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &current_off_src0));
  4783. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1_cl->data_device));
  4784. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &current_off_src1));
  4785. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad_cl->data_device));
  4786. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &current_off_dst));
  4787. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &d_ne00));
  4788. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &d_ne01));
  4789. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &d_ne02));
  4790. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &d_ne10));
  4791. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &d_ne11));
  4792. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &d_ne12));
  4793. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &d_ne0));
  4794. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &d_ne1));
  4795. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &d_ne2));
  4796. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &dim));
  4797. global_work_size[0] = d_ne0;
  4798. global_work_size[1] = d_ne1;
  4799. global_work_size[2] = d_ne2;
  4800. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, NULL, dst);
  4801. }
  4802. }
  4803. } else {
  4804. cl_kernel kernel = backend_ctx->kernel_concat_f32_non_contiguous;
  4805. long ne00 = src0->ne[0], ne01 = src0->ne[1], ne02 = src0->ne[2], ne03 = src0->ne[3];
  4806. cl_ulong nb00 = src0->nb[0], nb01 = src0->nb[1], nb02 = src0->nb[2], nb03 = src0->nb[3];
  4807. cl_ulong nb10 = src1->nb[0], nb11 = src1->nb[1], nb12 = src1->nb[2], nb13 = src1->nb[3];
  4808. long d_ne0 = dst->ne[0], d_ne1 = dst->ne[1], d_ne2 = dst->ne[2], d_ne3 = dst->ne[3];
  4809. cl_ulong d_nb0 = dst->nb[0], d_nb1 = dst->nb[1], d_nb2 = dst->nb[2], d_nb3 = dst->nb[3];
  4810. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_cl->data_device));
  4811. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
  4812. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1_cl->data_device));
  4813. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_src1));
  4814. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad_cl->data_device));
  4815. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &off_dst));
  4816. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(long), &ne00));
  4817. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(long), &ne01));
  4818. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(long), &ne02));
  4819. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(long), &ne03));
  4820. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
  4821. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
  4822. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
  4823. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
  4824. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10));
  4825. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11));
  4826. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12));
  4827. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13));
  4828. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(long), &d_ne0));
  4829. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(long), &d_ne1));
  4830. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(long), &d_ne2));
  4831. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(long), &d_ne3));
  4832. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &d_nb0));
  4833. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_ulong), &d_nb1));
  4834. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(cl_ulong), &d_nb2));
  4835. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(cl_ulong), &d_nb3));
  4836. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(int), &dim));
  4837. size_t global_work_size_nc[] = { d_ne1 > 0 ? (size_t)d_ne1 : 1,
  4838. d_ne2 > 0 ? (size_t)d_ne2 : 1,
  4839. d_ne3 > 0 ? (size_t)d_ne3 : 1 };
  4840. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size_nc, NULL, dst);
  4841. }
  4842. }
  4843. static void ggml_cl_timestep_embedding(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) {
  4844. GGML_ASSERT(src0);
  4845. GGML_ASSERT(src0->extra);
  4846. GGML_ASSERT(dst);
  4847. GGML_ASSERT(dst->extra);
  4848. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  4849. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  4850. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4851. if (backend_ctx->kernel_timestep_embedding == nullptr) {
  4852. GGML_LOG_WARN("%s: timestep_embedding kernel not available, skipping OpenCL execution.\n", __func__);
  4853. return;
  4854. }
  4855. ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
  4856. ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
  4857. cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
  4858. cl_ulong off_dst = extra_dst->offset + dst->view_offs;
  4859. const int logical_dim = dst->op_params[0];
  4860. const int max_period = dst->op_params[1];
  4861. const int dst_nb1_bytes = dst->nb[1];
  4862. cl_kernel kernel = backend_ctx->kernel_timestep_embedding;
  4863. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
  4864. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
  4865. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_dst->data_device));
  4866. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
  4867. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &dst_nb1_bytes));
  4868. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &logical_dim));
  4869. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &max_period));
  4870. size_t gws0 = (size_t)(((logical_dim + 1) / 2) + 1);
  4871. size_t gws1 = (size_t)src0->ne[0];
  4872. size_t global_work_size[] = {gws0, gws1, 1};
  4873. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, NULL, dst);
  4874. }
  4875. static void ggml_cl_flash_attn(ggml_backend_t backend, const ggml_tensor * q, const ggml_tensor * k, ggml_tensor * dst) {
  4876. const ggml_tensor * v = dst->src[2];
  4877. const ggml_tensor * mask = dst->src[3];
  4878. const ggml_tensor * sinks = dst->src[4];
  4879. GGML_ASSERT(q->extra);
  4880. GGML_ASSERT(k->extra);
  4881. GGML_ASSERT(v->extra);
  4882. GGML_ASSERT(dst->extra);
  4883. if (mask) {
  4884. GGML_ASSERT(mask->extra);
  4885. }
  4886. if (sinks) {
  4887. GGML_ASSERT(sinks->extra);
  4888. }
  4889. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4890. const int n_q = q->ne[1];
  4891. const int n_kv = k->ne[1];
  4892. const int d_head_q = q->ne[0];
  4893. const int d_head_v = v->ne[0];
  4894. const int n_head = q->ne[2];
  4895. const int n_head_kv = k->ne[2];
  4896. const int n_batch = q->ne[3];
  4897. cl_kernel kernel = NULL;
  4898. const bool is_f16 = q->type == GGML_TYPE_F16;
  4899. const bool is_mixed = q->type == GGML_TYPE_F32 && k->type == GGML_TYPE_F16;
  4900. const std::pair<int, int> dk_dv = {d_head_q, d_head_v};
  4901. if (n_q == 1) {
  4902. if (is_mixed) {
  4903. kernel = backend_ctx->kernels_flash_attn_f32_f16_q1.at(dk_dv);
  4904. } else if (is_f16) {
  4905. kernel = backend_ctx->kernels_flash_attn_f16_q1.at(dk_dv);
  4906. } else {
  4907. kernel = backend_ctx->kernels_flash_attn_f32_q1.at(dk_dv);
  4908. }
  4909. } else {
  4910. if (is_mixed) {
  4911. kernel = backend_ctx->kernels_flash_attn_f32_f16.at(dk_dv);
  4912. } else if (is_f16) {
  4913. kernel = backend_ctx->kernels_flash_attn_f16.at(dk_dv);
  4914. } else {
  4915. kernel = backend_ctx->kernels_flash_attn_f32.at(dk_dv);
  4916. }
  4917. }
  4918. GGML_ASSERT(kernel != NULL);
  4919. ggml_tensor_extra_cl * extra_q = (ggml_tensor_extra_cl *)q->extra;
  4920. ggml_tensor_extra_cl * extra_k = (ggml_tensor_extra_cl *)k->extra;
  4921. ggml_tensor_extra_cl * extra_v = (ggml_tensor_extra_cl *)v->extra;
  4922. ggml_tensor_extra_cl * extra_o = (ggml_tensor_extra_cl *)dst->extra;
  4923. ggml_tensor_extra_cl * extra_mask = mask ? (ggml_tensor_extra_cl *)mask->extra : NULL;
  4924. ggml_tensor_extra_cl * extra_sinks = sinks ? (ggml_tensor_extra_cl *)sinks->extra : NULL;
  4925. cl_ulong offset_q = extra_q->offset + q->view_offs;
  4926. cl_ulong offset_k = extra_k->offset + k->view_offs;
  4927. cl_ulong offset_v = extra_v->offset + v->view_offs;
  4928. cl_ulong offset_o = extra_o->offset + dst->view_offs;
  4929. cl_mem mask_buffer = extra_mask ? extra_mask->data_device : NULL;
  4930. cl_ulong offset_mask = extra_mask ? extra_mask->offset + mask->view_offs : 0;
  4931. cl_mem sinks_buffer = extra_sinks ? extra_sinks->data_device : NULL;
  4932. cl_ulong offset_sinks = extra_sinks ? extra_sinks->offset + sinks->view_offs : 0;
  4933. const cl_ulong q_nb1 = q->nb[1], q_nb2 = q->nb[2], q_nb3 = q->nb[3];
  4934. const cl_ulong k_nb1 = k->nb[1], k_nb2 = k->nb[2], k_nb3 = k->nb[3];
  4935. const cl_ulong v_nb1 = v->nb[1], v_nb2 = v->nb[2], v_nb3 = v->nb[3];
  4936. const cl_ulong o_nb1 = dst->nb[1], o_nb2 = dst->nb[2], o_nb3 = dst->nb[3];
  4937. const cl_ulong mask_nb1 = mask ? mask->nb[1] : 0;
  4938. const cl_ulong mask_nb2 = mask ? mask->nb[2] : 0;
  4939. const cl_ulong mask_nb3 = mask ? mask->nb[3] : 0;
  4940. const int mask_ne2 = mask ? mask->ne[2] : 0;
  4941. const int mask_ne3 = mask ? mask->ne[3] : 0;
  4942. float scale, max_bias, logit_softcap;
  4943. const float * params = (const float *)dst->op_params;
  4944. scale = params[0];
  4945. max_bias = params[1];
  4946. logit_softcap = params[2];
  4947. const int is_causal = (mask == NULL && n_q > 1 && n_q == n_kv);
  4948. const int n_head_log2_val = n_head > 0 ? 1u << (int)floorf(log2f((float)n_head)) : 0;
  4949. const float n_head_log2_f = n_head_log2_val > 0 ? (float)n_head_log2_val : 1.0f;
  4950. const float m0 = powf(2.0f, -(max_bias) / n_head_log2_f);
  4951. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2_f);
  4952. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_q->data_device));
  4953. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset_q));
  4954. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_k->data_device));
  4955. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset_k));
  4956. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra_v->data_device));
  4957. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset_v));
  4958. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extra_o->data_device));
  4959. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offset_o));
  4960. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(float), &scale));
  4961. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &n_q));
  4962. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &n_kv));
  4963. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &is_causal));
  4964. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &n_head));
  4965. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &q_nb1)); CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &q_nb2)); CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &q_nb3));
  4966. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &k_nb1)); CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &k_nb2)); CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &k_nb3));
  4967. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &v_nb1)); CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &v_nb2)); CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &v_nb3));
  4968. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &o_nb1)); CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_ulong), &o_nb2)); CL_CHECK(clSetKernelArg(kernel, 24, sizeof(cl_ulong), &o_nb3));
  4969. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(float), &max_bias));
  4970. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(float), &m0));
  4971. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(float), &m1));
  4972. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(int), &n_head_log2_val));
  4973. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(float), &logit_softcap));
  4974. CL_CHECK(clSetKernelArg(kernel, 30, sizeof(int), &n_head_kv));
  4975. CL_CHECK(clSetKernelArg(kernel, 31, sizeof(cl_mem), &mask_buffer));
  4976. CL_CHECK(clSetKernelArg(kernel, 32, sizeof(cl_ulong), &offset_mask));
  4977. CL_CHECK(clSetKernelArg(kernel, 33, sizeof(cl_ulong), &mask_nb1));
  4978. CL_CHECK(clSetKernelArg(kernel, 34, sizeof(cl_ulong), &mask_nb2));
  4979. CL_CHECK(clSetKernelArg(kernel, 35, sizeof(cl_ulong), &mask_nb3));
  4980. CL_CHECK(clSetKernelArg(kernel, 36, sizeof(int), &mask_ne2));
  4981. CL_CHECK(clSetKernelArg(kernel, 37, sizeof(int), &mask_ne3));
  4982. CL_CHECK(clSetKernelArg(kernel, 38, sizeof(cl_mem), &sinks_buffer));
  4983. CL_CHECK(clSetKernelArg(kernel, 39, sizeof(cl_ulong), &offset_sinks));
  4984. if (n_q == 1) {
  4985. const size_t wg_size = 64;
  4986. size_t local_work_size[] = { wg_size, 1 };
  4987. size_t global_work_size[] = { wg_size, (size_t)(n_head * n_batch) };
  4988. backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_work_size, local_work_size, dst);
  4989. } else {
  4990. const int block_m = backend_ctx->kernels_flash_attn_bm.at(dk_dv);
  4991. const size_t wg_size = block_m;
  4992. size_t local_work_size[] = { wg_size, 1 };
  4993. size_t global_work_size[] = { (size_t)((n_q + block_m - 1) / block_m) * wg_size, (size_t)(n_head * n_batch) };
  4994. backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_work_size, local_work_size, dst);
  4995. }
  4996. }
  4997. static void ggml_cl_mul_mat_f16_f32_tiled(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4998. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4999. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5000. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  5001. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5002. cl_ulong offset0 = extra0->offset + src0->view_offs;
  5003. cl_ulong offset1 = extra1->offset + src1->view_offs;
  5004. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5005. const int M = src0->ne[1];
  5006. const int N = src1->ne[1];
  5007. const int K = src0->ne[0];
  5008. cl_kernel kernel = backend_ctx->kernel_mul_mat_f16_f32_tiled;
  5009. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(int), &M));
  5010. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(int), &N));
  5011. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &K));
  5012. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &extra0->data_device));
  5013. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &offset0));
  5014. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_mem), &extra1->data_device));
  5015. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &offset1));
  5016. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_mem), &extrad->data_device));
  5017. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &offsetd));
  5018. // Tiling parameters. These need to be tuned for optimal performance.
  5019. // They must match the #defines in the kernel mul_mat_f16_f32.cl.
  5020. //
  5021. // OPWM / OPWN: Output tile size per Work-Group. A work-group computes a tile of size OPWM x OPWN.
  5022. // TPWM / TPWN: Threads per Work-group. This is the work-group size.
  5023. // OPTM / OPTN: Output elements per Thread. Each thread computes OPTM x OPTN elements.
  5024. //
  5025. // The following relationships must hold:
  5026. // OPWM = TPWM * OPTM
  5027. // OPWN = TPWN * OPTN
  5028. //
  5029. const int OPWM = 64;
  5030. const int OPWN = 64;
  5031. const int TPWM = 16;
  5032. const int TPWN = 8;
  5033. size_t local_work_size[2] = { TPWM, TPWN };
  5034. size_t global_work_size[2] = {
  5035. (size_t) ((M + OPWM - 1) / OPWM) * TPWM,
  5036. (size_t) ((N + OPWN - 1) / OPWN) * TPWN,
  5037. };
  5038. backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_work_size, local_work_size, dst);
  5039. }
  5040. static void ggml_cl_conv_2d(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5041. GGML_TENSOR_BINARY_OP_LOCALS;
  5042. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5043. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5044. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  5045. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5046. cl_ulong offset0 = extra0->offset + src0->view_offs;
  5047. cl_ulong offset1 = extra1->offset + src1->view_offs;
  5048. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5049. const cl_uint Cout = ne03; const cl_uint Cin = ne02; const cl_uint N = ne13;
  5050. const cl_uint KW = ne00; const cl_uint KH = ne01; const cl_uint W = ne10; const cl_uint H = ne11; const cl_uint OW = ne0; const cl_uint OH = ne1;
  5051. const cl_uint s0 = dst->op_params[0]; const cl_uint s1 = dst->op_params[1];
  5052. const cl_uint p0 = dst->op_params[2]; const cl_uint p1 = dst->op_params[3];
  5053. const cl_uint d0 = dst->op_params[4]; const cl_uint d1 = dst->op_params[5];
  5054. const cl_uint cl_nb01 = nb01/ggml_type_size(src0->type); const cl_uint cl_nb02 = nb02/ggml_type_size(src0->type); const cl_uint cl_nb03 = nb03/ggml_type_size(src0->type);
  5055. const cl_uint cl_nb11 = nb11/ggml_type_size(src1->type); const cl_uint cl_nb12 = nb12/ggml_type_size(src1->type); const cl_uint cl_nb13 = nb13/ggml_type_size(src1->type);
  5056. const cl_uint cl_nb1 = nb1/ggml_type_size(dst->type); const cl_uint cl_nb2 = nb2/ggml_type_size(dst->type); const cl_uint cl_nb3 = nb3/ggml_type_size(dst->type);
  5057. const int64_t NPQ = (int64_t)N * OW * OH;
  5058. const uint32_t BS_K = 64;
  5059. const uint32_t BS_NPQ = 64;
  5060. const uint32_t BS_CRS = 16;
  5061. const uint32_t VEC_SIZE = 4;
  5062. const uint32_t TS_K = 4;
  5063. const uint32_t TS_NPQ = 8;
  5064. const uint32_t WG_K = BS_K / TS_K;
  5065. const uint32_t WG_NPQ = BS_NPQ / TS_NPQ;
  5066. auto splitWork = [](uint32_t work_size, uint32_t block_size) { return (block_size + work_size - 1) / block_size; };
  5067. const uint32_t NB_K = splitWork(Cout, BS_K);
  5068. const uint32_t NB_NPQ = splitWork(NPQ, BS_NPQ);
  5069. cl_kernel kernel;
  5070. size_t shmem_size;
  5071. if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
  5072. kernel = backend_ctx->kernel_conv_2d_f16;
  5073. shmem_size = (size_t)(BS_K * BS_CRS * sizeof(cl_half) + BS_CRS * (BS_NPQ / VEC_SIZE) * sizeof(cl_half4));
  5074. } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
  5075. kernel = backend_ctx->kernel_conv_2d_f32;
  5076. shmem_size = (size_t)(BS_K * BS_CRS * sizeof(cl_float) + BS_CRS * (BS_NPQ / VEC_SIZE) * sizeof(cl_float4));
  5077. } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
  5078. kernel = backend_ctx->kernel_conv_2d_f16_f32;
  5079. shmem_size = (size_t)(BS_K * BS_CRS * sizeof(cl_half) + BS_CRS * (BS_NPQ / VEC_SIZE) * sizeof(cl_float4));
  5080. } else {
  5081. GGML_ASSERT(false && "Unsupported data type combination for conv2d");
  5082. }
  5083. cl_uint idx = 0;
  5084. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_mem), &extra0->data_device)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_ulong), &offset0));
  5085. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_mem), &extra1->data_device)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_ulong), &offset1));
  5086. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_mem), &extrad->data_device)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_ulong), &offsetd));
  5087. CL_CHECK(clSetKernelArg(kernel, idx++, shmem_size, NULL));
  5088. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &Cout)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &Cin)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &N));
  5089. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &KW)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &KH)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &W)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &H));
  5090. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &OW)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &OH));
  5091. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &s0)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &s1)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &p0)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &p1));
  5092. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &d0)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &d1));
  5093. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb01)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb02)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb03));
  5094. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb11)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb12)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb13));
  5095. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb1)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb2)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb3));
  5096. size_t global_work_size[] = { (size_t)NB_K * WG_K, (size_t)NB_NPQ * WG_NPQ, 1 };
  5097. size_t local_work_size[] = { (size_t)WG_K, (size_t)WG_NPQ, 1 };
  5098. backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_work_size, local_work_size, dst);
  5099. }
  5100. static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5101. GGML_ASSERT(src0);
  5102. GGML_ASSERT(src0->extra);
  5103. GGML_ASSERT(src1);
  5104. GGML_ASSERT(src1->extra);
  5105. GGML_ASSERT(dst);
  5106. GGML_ASSERT(dst->extra);
  5107. const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
  5108. const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
  5109. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5110. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5111. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  5112. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5113. cl_ulong offset0 = extra0->offset + src0->view_offs;
  5114. cl_ulong offset1 = extra1->offset + src1->view_offs;
  5115. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5116. #ifdef GGML_OPENCL_SOA_Q
  5117. ggml_tensor_extra_cl_q4_0 * extra0_q4_0 = (ggml_tensor_extra_cl_q4_0 *)src0->extra;
  5118. #endif
  5119. const int ne00 = src0 ? src0->ne[0] : 0;
  5120. const int ne01 = src0 ? src0->ne[1] : 0;
  5121. const int ne02 = src0 ? src0->ne[2] : 0;
  5122. const int ne03 = src0 ? src0->ne[3] : 0;
  5123. const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
  5124. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  5125. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  5126. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  5127. const int ne10 = src1 ? src1->ne[0] : 0;
  5128. const int ne11 = src1 ? src1->ne[1] : 0;
  5129. const int ne12 = src1 ? src1->ne[2] : 0;
  5130. const int ne13 = src1 ? src1->ne[3] : 0;
  5131. const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
  5132. const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
  5133. const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
  5134. const cl_ulong nb13 = src1 ? src1->nb[3] : 0;
  5135. const int ne0 = dst ? dst->ne[0] : 0;
  5136. const int ne1 = dst ? dst->ne[1] : 0;
  5137. int r2 = ne12/ne02;
  5138. int r3 = ne13/ne03;
  5139. GGML_ASSERT(ne00 == ne10);
  5140. int nth0 = 32;
  5141. int nth1 = 1;
  5142. int nrows = 1;
  5143. // The number of values produced by each subgroup
  5144. int ndst = 4;
  5145. cl_kernel kernel;
  5146. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  5147. cl_context context = backend_ctx->context;
  5148. if (ne01 && ne1 && use_adreno_kernels(backend_ctx, src0)) {
  5149. // init CL objects
  5150. // <--------------------------------------------> //
  5151. cl_int status;
  5152. cl_image_format img_fmt_1d;
  5153. cl_image_desc img_desc_1d;
  5154. cl_buffer_region region;
  5155. cl_mem A_image1d = nullptr;
  5156. cl_mem B_image1d = nullptr;
  5157. cl_mem B_sub_buffer = nullptr;
  5158. cl_mem C_d = nullptr;
  5159. // for B transpose
  5160. cl_mem B_d = nullptr;
  5161. cl_mem B_d_input_image = nullptr;
  5162. // <--------------------------------------------> //
  5163. // define matrix dimensions
  5164. // <--------------------------------------------> //
  5165. int M = ne01;
  5166. int N = ne1;
  5167. int K = ne00;
  5168. int padding;
  5169. // <--------------------------------------------> //
  5170. // q4_0 x fp32
  5171. if(src0t == GGML_TYPE_Q4_0 && src1t == GGML_TYPE_F32) {
  5172. // TODO: remove duplicate definitions of image description + format -- move to top
  5173. // create an image for A
  5174. // <--------------------------------------------> //
  5175. if (N == 1) {
  5176. img_fmt_1d = { CL_R, CL_UNSIGNED_INT32};
  5177. } else {
  5178. img_fmt_1d = { CL_R, CL_FLOAT};
  5179. }
  5180. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  5181. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  5182. img_desc_1d.image_width = M * K / 2 / 4; // Divide by 4 for char -> float
  5183. img_desc_1d.buffer = extra0_q4_0->q;
  5184. A_image1d = clCreateImage(
  5185. context,
  5186. CL_MEM_READ_ONLY,
  5187. &img_fmt_1d,
  5188. &img_desc_1d,
  5189. NULL,
  5190. &status);
  5191. CL_CHECK(status);
  5192. // <--------------------------------------------> //
  5193. // create a sub_buffer for B
  5194. // <--------------------------------------------> //
  5195. region.origin = (extra1->offset);
  5196. region.size = K * N * sizeof(float);
  5197. B_sub_buffer = clCreateSubBuffer(
  5198. extra1->data_device,
  5199. 0,
  5200. CL_BUFFER_CREATE_TYPE_REGION,
  5201. &region,
  5202. &status);
  5203. CL_CHECK(status);
  5204. // <--------------------------------------------> //
  5205. // transpose activation for Skyler's gemm
  5206. if (N != 1) {
  5207. //how many extra elements beyond multiple of 8
  5208. int extra_elements = N % 8;
  5209. //how much padding to add
  5210. padding = 0;
  5211. if (extra_elements > 0){
  5212. padding = 8 - extra_elements;
  5213. }
  5214. // Specify the starting offset (in bytes)
  5215. region.origin = 0;
  5216. // Specify the size of the sub-buffer (divide by 2 for FP16)
  5217. region.size = K * (N + padding) * sizeof(float)/2;
  5218. B_d = clCreateSubBuffer(
  5219. backend_ctx->B_d_max,
  5220. 0,
  5221. CL_BUFFER_CREATE_TYPE_REGION,
  5222. &region,
  5223. &status);
  5224. CL_CHECK(status);
  5225. cl_image_format image_format_B_d_input = { CL_RGBA, CL_FLOAT };
  5226. cl_image_desc image_desc_B_d_input = {
  5227. CL_MEM_OBJECT_IMAGE1D_BUFFER,
  5228. static_cast<size_t>(K * N / 4),
  5229. 0, 0, 0, 0, 0, 0, 0, { B_sub_buffer }
  5230. };
  5231. B_d_input_image = clCreateImage(
  5232. context,
  5233. 0,
  5234. &image_format_B_d_input,
  5235. &image_desc_B_d_input,
  5236. NULL,
  5237. &status);
  5238. CL_CHECK(status);
  5239. cl_image_format image_format_B_d_output = { CL_RGBA, CL_HALF_FLOAT }; //(CL_HALF_FLOAT for FP16)
  5240. cl_image_desc image_desc_B_d_output = {
  5241. CL_MEM_OBJECT_IMAGE1D_BUFFER,
  5242. static_cast<size_t>(K * (N + padding)/4),
  5243. 0, 0, 0, 0, 0, 0, 0, { B_d }
  5244. };
  5245. B_image1d = clCreateImage(
  5246. context,
  5247. 0,
  5248. &image_format_B_d_output,
  5249. &image_desc_B_d_output,
  5250. NULL,
  5251. &status);
  5252. CL_CHECK(status);
  5253. int height_B = N/4;
  5254. if (height_B == 0) {
  5255. height_B = 1;
  5256. }
  5257. int width_B = K/4;
  5258. int padded_height_B = (N + padding)/4;
  5259. kernel = backend_ctx->kernel_transpose_32_16;
  5260. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &B_d_input_image));
  5261. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &B_image1d));
  5262. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_B));
  5263. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_B));
  5264. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &padded_height_B));
  5265. size_t local_size_t[2] = { 1, 16 };
  5266. //WGS tuning
  5267. if (ne0 == 4096 && ne1 == 128 && ne10 == 4096) {
  5268. local_size_t[0]=4;
  5269. local_size_t[1]=8;
  5270. } else if (ne0 == 11008 && ne1 == 128 && ne10 == 4096) {
  5271. local_size_t[0]=2;
  5272. local_size_t[1]=8;
  5273. } else if(ne0 == 4096 && ne1 == 128 && ne10 == 11008) {
  5274. local_size_t[0]=1;
  5275. local_size_t[1]=8;
  5276. } else if(ne0 == 32000 && ne1 == 128 && ne10 == 4096) {
  5277. local_size_t[0]=2;
  5278. local_size_t[1]=8;
  5279. }
  5280. size_t global_size_t[2] = {
  5281. static_cast<size_t>(width_B),
  5282. static_cast<size_t>(padded_height_B)
  5283. };
  5284. backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_size_t, local_size_t, dst);
  5285. } else {
  5286. // no need to transpose B in other cases
  5287. // create an image for B from sub_buffer
  5288. // <--------------------------------------------> //
  5289. img_fmt_1d = {CL_RGBA, CL_FLOAT};
  5290. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  5291. img_desc_1d.image_width = K * N / 4;
  5292. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  5293. img_desc_1d.buffer = B_sub_buffer;
  5294. B_image1d = clCreateImage(
  5295. context,
  5296. CL_MEM_READ_ONLY,
  5297. &img_fmt_1d,
  5298. &img_desc_1d,
  5299. NULL,
  5300. &status);
  5301. CL_CHECK(status);
  5302. // <--------------------------------------------> //
  5303. }
  5304. // choose gemm or gemv kernel
  5305. // <--------------------------------------------> //
  5306. if (N == 1) {
  5307. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general;
  5308. if (M == 4096 && K == 4096) {
  5309. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096;
  5310. } else if (M == 4096 && K == 11008) {
  5311. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008;
  5312. } else if (M == 11008 && K == 4096) {
  5313. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096;
  5314. } else if (M == 32000 && K == 4096) {
  5315. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096;
  5316. }
  5317. } else {
  5318. kernel = backend_ctx->CL_mul_mat_Ab_Bi_8x4;
  5319. }
  5320. // <--------------------------------------------> //
  5321. // set kernel args
  5322. // <--------------------------------------------> //
  5323. cl_uint k_arg = 0;
  5324. if (N == 1) {
  5325. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &A_image1d));
  5326. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &extra0_q4_0->d));
  5327. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &B_image1d));
  5328. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_ulong), &extra1->offset));
  5329. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &extrad->data_device));
  5330. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_ulong), &extrad->offset));
  5331. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne00));
  5332. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne01));
  5333. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne02));
  5334. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne10));
  5335. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne12));
  5336. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne0));
  5337. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne1));
  5338. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &r2));
  5339. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &r3));
  5340. } else {
  5341. region.origin = extrad->offset; // Specify the starting offset (in bytes)
  5342. region.size = M * N * sizeof(float); // Specify the size of the sub-buffer
  5343. C_d = clCreateSubBuffer(extrad->data_device, CL_MEM_WRITE_ONLY, CL_BUFFER_CREATE_TYPE_REGION, &region, &status);
  5344. CL_CHECK(status);
  5345. int padded_N = ne1 + padding;
  5346. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q)); //A_q_dextra0_q4_0->q
  5347. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d)); //A_s_d
  5348. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &B_image1d)); //B_d
  5349. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &C_d)); //C_d
  5350. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne01)); //M
  5351. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &padded_N)); //N with padding
  5352. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00)); //K
  5353. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne1)); //N without padding
  5354. }
  5355. // <--------------------------------------------> //
  5356. // choose workgroup size
  5357. // <--------------------------------------------> //
  5358. size_t global_work_size[3] = {
  5359. 64, static_cast<size_t>((M+63)/64), static_cast<size_t>((N+31)/32)};
  5360. size_t local_work_size[3] = {64, 2, 4};
  5361. global_work_size[0] = (size_t)(ceil((float)ne1/8));
  5362. global_work_size[1] = (size_t)(ne01/4);
  5363. global_work_size[2] = (size_t)(1);
  5364. local_work_size[0] = (size_t)(1); //4x32 for FP32
  5365. local_work_size[1] = (size_t)(128);
  5366. local_work_size[2] = (size_t)(1);
  5367. //WGS tuning
  5368. if (ne0 == 4096 && ne1 == 128 && ne10 == 4096) {
  5369. local_work_size[0] = 1;
  5370. local_work_size[1] = 128;
  5371. } else if (ne0 == 11008 && ne1 == 128 && ne10 == 4096) {
  5372. local_work_size[0] = 2;
  5373. local_work_size[1] = 64;
  5374. } else if (ne0 == 4096 && ne1 == 128 && ne10 == 11008) {
  5375. local_work_size[0] = 2;
  5376. local_work_size[1] = 64;
  5377. } else if (ne0 == 32000 && ne1 == 128 && ne10 == 4096) {
  5378. local_work_size[0] = 2;
  5379. local_work_size[1] = 64;
  5380. }
  5381. if (N == 1) {
  5382. size_t wavesize = backend_ctx->adreno_wave_size;
  5383. local_work_size[0] = wavesize; // localsize
  5384. local_work_size[1] = 4; // reduce factor
  5385. local_work_size[2] = 1;
  5386. global_work_size[0] = (((M / 2) + wavesize - 1) / wavesize) * wavesize;
  5387. global_work_size[1] = 4; // reduce factor
  5388. global_work_size[2] = 1;
  5389. }
  5390. // <--------------------------------------------> //
  5391. // enqueue kernel with profiling
  5392. // <--------------------------------------------> //
  5393. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  5394. // <--------------------------------------------> //
  5395. // deallocate sub buffers and images
  5396. // <--------------------------------------------> //
  5397. CL_CHECK(clReleaseMemObject(A_image1d));
  5398. CL_CHECK(clReleaseMemObject(B_sub_buffer));
  5399. CL_CHECK(clReleaseMemObject(B_image1d));
  5400. if (N != 1) {
  5401. CL_CHECK(clReleaseMemObject(B_d));
  5402. CL_CHECK(clReleaseMemObject(B_d_input_image));
  5403. CL_CHECK(clReleaseMemObject(C_d));
  5404. }
  5405. // <--------------------------------------------> //
  5406. return;
  5407. }
  5408. } // if (ne01 && ne1)
  5409. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  5410. // GEMM using local memory
  5411. // Current BK = 16, so ne00 % 16 == 0
  5412. if (ggml_is_contiguous(src0) &&
  5413. ggml_is_contiguous(src1) &&
  5414. src1t == GGML_TYPE_F32 &&
  5415. ne00 % 16 == 0 &&
  5416. ne11 > 1) {
  5417. switch(src0t) {
  5418. case GGML_TYPE_F32: {
  5419. kernel = backend_ctx->kernel_mul_mm_f32_f32_l4_lm;
  5420. nth0 = 128; // calculated as (BM*BN)/(TM*TN)
  5421. int batch_stride_a = ne00*ne01;
  5422. int batch_stride_b = ne10*ne11;
  5423. int batch_stride_d = ne0*ne1;
  5424. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5425. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5426. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  5427. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  5428. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  5429. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  5430. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  5431. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  5432. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  5433. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne11));
  5434. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  5435. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10)); // stride_a
  5436. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10)); // stride_b
  5437. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne01)); // stride_d
  5438. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &batch_stride_a));
  5439. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &batch_stride_b));
  5440. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &batch_stride_d));
  5441. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r2));
  5442. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r3));
  5443. // 64 is block tile size BM and BN - change here when BM and BN in the kernel are changed.
  5444. size_t global_work_size[] = {(size_t)(CEIL_DIV(ne01, 64)*nth0), (size_t)(CEIL_DIV(ne11, 64)), (size_t)ne12*ne13};
  5445. size_t local_work_size[] = {(size_t)nth0, 1, 1};
  5446. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  5447. return;
  5448. }
  5449. case GGML_TYPE_F16: {
  5450. kernel = backend_ctx->kernel_mul_mm_f16_f32_l4_lm;
  5451. nth0 = 128; // calculated as (BM*BN)/(TM*TN)
  5452. int batch_stride_a = ne00*ne01;
  5453. int batch_stride_b = ne10*ne11;
  5454. int batch_stride_d = ne0*ne1;
  5455. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5456. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5457. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  5458. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  5459. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  5460. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  5461. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  5462. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  5463. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  5464. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne11));
  5465. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  5466. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10)); // stride_a
  5467. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10)); // stride_b
  5468. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne01)); // stride_d
  5469. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &batch_stride_a));
  5470. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &batch_stride_b));
  5471. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &batch_stride_d));
  5472. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r2));
  5473. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r3));
  5474. // 64 is block tile size BM and BN - change here when BM and BN in the kernel are changed.
  5475. size_t global_work_size[] = {(size_t)(CEIL_DIV(ne01, 64)*nth0), (size_t)(CEIL_DIV(ne11, 64)), (size_t)ne12*ne13};
  5476. size_t local_work_size[] = {(size_t)nth0, 1, 1};
  5477. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  5478. return;
  5479. }
  5480. default:
  5481. break;
  5482. }
  5483. }
  5484. if (src0t == GGML_TYPE_F16 && src1t == GGML_TYPE_F32 &&
  5485. src0->ne[1] > 32 && // M > 32
  5486. src1->ne[1] > 32 && // N > 32
  5487. src0->ne[0] > 32 && // K > 32
  5488. src0->ne[2] == 1 && src0->ne[3] == 1 &&
  5489. src1->ne[2] == 1 && src1->ne[3] == 1 &&
  5490. ggml_is_contiguous(src0) && ggml_is_contiguous(src1) &&
  5491. backend_ctx->kernel_mul_mat_f16_f32_tiled != NULL) {
  5492. ggml_cl_mul_mat_f16_f32_tiled(backend, src0, src1, dst);
  5493. return;
  5494. }
  5495. if (!ggml_is_transposed(src0) &&
  5496. !ggml_is_transposed(src1) &&
  5497. src1t == GGML_TYPE_F32 &&
  5498. ne00%32 == 0 &&
  5499. ne11 > 2) {
  5500. #ifdef GGML_OPENCL_SOA_Q
  5501. // Set up kernel.
  5502. switch(src0t) {
  5503. case GGML_TYPE_Q4_0:
  5504. // This should have been satisfied.
  5505. GGML_ASSERT(ne11 == ne1);
  5506. GGML_ASSERT(ne01 == ne0);
  5507. if (backend_ctx->gpu_family == INTEL) {
  5508. nth0 = 16;
  5509. nth1 = 1;
  5510. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_1d_16x_flat;
  5511. } else if (backend_ctx->gpu_family == ADRENO) {
  5512. nth0 = 64;
  5513. nth1 = 1;
  5514. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_1d_8x_flat;
  5515. } else {
  5516. GGML_ASSERT(false && "TODO: Unknown GPU");
  5517. }
  5518. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
  5519. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
  5520. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  5521. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  5522. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  5523. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  5524. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  5525. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  5526. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  5527. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  5528. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  5529. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
  5530. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
  5531. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
  5532. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
  5533. break;
  5534. default:
  5535. break;
  5536. }
  5537. // Launch kernel.
  5538. if (src0t == GGML_TYPE_Q4_0) {
  5539. size_t global_work_size[] = {(size_t)(ne01 + 7)/8*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
  5540. size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
  5541. if (backend_ctx->gpu_family == INTEL) {
  5542. // Set global size for Intel. It uses 16x output values.
  5543. global_work_size[0] = (size_t)(ne01 + 15)/16*nth0;
  5544. global_work_size[1] = (size_t)ne11*nth1;
  5545. global_work_size[2] = (size_t)ne12*ne13;
  5546. }
  5547. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  5548. return;
  5549. }
  5550. #else // GGML_OPENCL_SOA_Q
  5551. // TODO: add block_q4_0 variant.
  5552. #endif // GGML_OPENCL_SOA_Q
  5553. }
  5554. // use custom matrix x vector kernel
  5555. switch (src0t) {
  5556. case GGML_TYPE_F32:
  5557. //GGML_ASSERT(ne02 == ne12);
  5558. GGML_ASSERT(src1t == GGML_TYPE_F32);
  5559. kernel = backend_ctx->kernel_mul_mat_f32_f32;
  5560. nrows = 4;
  5561. if (backend_ctx->gpu_family == INTEL) {
  5562. nth0 = 32;
  5563. nth1 = 1;
  5564. } else if (backend_ctx->gpu_family == ADRENO) {
  5565. nth0 = 64;
  5566. nth1 = 1;
  5567. } else {
  5568. GGML_ASSERT(false && "TODO: Unknown GPU");
  5569. }
  5570. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5571. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5572. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  5573. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  5574. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  5575. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  5576. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  5577. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  5578. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  5579. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb00));
  5580. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
  5581. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
  5582. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
  5583. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
  5584. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
  5585. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
  5586. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
  5587. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
  5588. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
  5589. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
  5590. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
  5591. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
  5592. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
  5593. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
  5594. break;
  5595. case GGML_TYPE_F16:
  5596. //GGML_ASSERT(ne02 == ne12);
  5597. if (backend_ctx->gpu_family == INTEL) {
  5598. nth0 = 32;
  5599. nth1 = 1;
  5600. } else if (backend_ctx->gpu_family == ADRENO) {
  5601. nth0 = 64;
  5602. nth1 = 1;
  5603. } else {
  5604. GGML_ASSERT(false && "TODO: Unknown GPU");
  5605. }
  5606. if (src1t == GGML_TYPE_F32) {
  5607. if (ne11 * ne12 < 4) {
  5608. kernel = backend_ctx->kernel_mul_mat_f16_f32_1row;
  5609. } else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
  5610. kernel = backend_ctx->kernel_mul_mat_f16_f32_l4;
  5611. nrows = ne11;
  5612. } else {
  5613. kernel = backend_ctx->kernel_mul_mat_f16_f32;
  5614. nrows = 4;
  5615. }
  5616. } else {
  5617. kernel = backend_ctx->kernel_mul_mat_f16_f16;
  5618. nrows = 4;
  5619. }
  5620. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5621. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5622. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  5623. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  5624. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  5625. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  5626. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  5627. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  5628. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  5629. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb00));
  5630. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
  5631. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
  5632. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
  5633. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
  5634. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
  5635. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
  5636. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
  5637. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
  5638. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
  5639. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
  5640. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
  5641. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
  5642. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
  5643. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
  5644. break;
  5645. case GGML_TYPE_Q4_0:
  5646. // This should have been satisfied.
  5647. GGML_ASSERT(ne11 == ne1);
  5648. GGML_ASSERT(ne01 == ne0);
  5649. #ifdef GGML_OPENCL_SOA_Q
  5650. if (backend_ctx->gpu_family == INTEL) {
  5651. nth0 = 16;
  5652. nth1 = 1;
  5653. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat;
  5654. ndst = 8;
  5655. } else if (backend_ctx->gpu_family == ADRENO) {
  5656. nth0 = 64;
  5657. nth1 = 1;
  5658. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat;
  5659. ndst =8;
  5660. } else {
  5661. GGML_ASSERT(false && "TODO: Unknown GPU");
  5662. }
  5663. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
  5664. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
  5665. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  5666. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  5667. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  5668. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  5669. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  5670. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  5671. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  5672. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  5673. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  5674. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
  5675. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
  5676. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
  5677. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
  5678. #else // GGML_OPENCL_SOA_Q
  5679. if (backend_ctx->gpu_family == INTEL) {
  5680. // Use 1D local size. Each workgroup is a SIMD group. Each SIMD
  5681. // group produces N_DST (4 for Q4_0 kernel) values in the result.
  5682. // The number of workgroups on dim 0 (the leading dimension) is
  5683. // the nearest multiple of 4 that covers ne0 (equals ne01).
  5684. nth0 = 16;
  5685. nth1 = 1;
  5686. kernel = backend_ctx->kernel_mul_mat_q4_0_f32;
  5687. ndst = 4;
  5688. } else if (backend_ctx->gpu_family == ADRENO) {
  5689. nth0 = 64;
  5690. nth1 = 1;
  5691. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_v;
  5692. ndst = 4;
  5693. } else {
  5694. GGML_ASSERT(false && "TODO: Unknown GPU");
  5695. }
  5696. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5697. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5698. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  5699. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  5700. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  5701. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  5702. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  5703. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  5704. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  5705. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  5706. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  5707. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
  5708. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
  5709. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
  5710. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
  5711. #endif // GGML_OPENCL_SOA_Q
  5712. break;
  5713. case GGML_TYPE_Q4_1:
  5714. case GGML_TYPE_Q8_0:
  5715. case GGML_TYPE_Q2_K:
  5716. case GGML_TYPE_Q3_K:
  5717. case GGML_TYPE_Q4_K:
  5718. case GGML_TYPE_Q5_K:
  5719. case GGML_TYPE_Q6_K:
  5720. kernel = backend_ctx->kernel_mul_mv_q6_K_f32;
  5721. if (backend_ctx->gpu_family == INTEL) {
  5722. nth0 = 2;
  5723. nth1 = 16;
  5724. } else if (backend_ctx->gpu_family == ADRENO) {
  5725. nth0 = 2;
  5726. nth1 = 64;
  5727. } else {
  5728. GGML_ASSERT(false && "TODO: Unknown GPU");
  5729. }
  5730. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5731. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5732. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  5733. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  5734. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  5735. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  5736. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  5737. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  5738. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  5739. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  5740. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  5741. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
  5742. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
  5743. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
  5744. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
  5745. break;
  5746. case GGML_TYPE_MXFP4: {
  5747. kernel = backend_ctx->kernel_mul_mv_mxfp4_f32;
  5748. if (backend_ctx->gpu_family == INTEL) {
  5749. nth0 = 16;
  5750. nth1 = 2;
  5751. ndst = nth1*2;
  5752. } else if (backend_ctx->gpu_family == ADRENO) {
  5753. nth0 = 64;
  5754. nth1 = 2;
  5755. ndst = nth1*2;
  5756. } else {
  5757. GGML_ASSERT(false && "TODO: Unknown GPU");
  5758. }
  5759. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5760. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5761. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  5762. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  5763. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  5764. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  5765. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  5766. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  5767. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  5768. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
  5769. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  5770. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb11));
  5771. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb12));
  5772. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb13));
  5773. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne0));
  5774. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne1));
  5775. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &r2));
  5776. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r3));
  5777. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(float)*nth0,nullptr));
  5778. break;
  5779. }
  5780. default:
  5781. GGML_ASSERT(false && "not implemented");
  5782. }
  5783. if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_MXFP4 ||
  5784. src0t == GGML_TYPE_Q4_1 ||
  5785. src0t == GGML_TYPE_Q8_0 ||
  5786. src0t == GGML_TYPE_Q2_K) {
  5787. // Each SIMD group produces N_DST values in the result. Assuming each
  5788. // workgroup has N_SIMDGROUP SIMD groups, then each workgroup will
  5789. // produce N_DST*N_SIMDGROUP values in the result. Hence, the grid size
  5790. // (number of workgroups) will be a nearest multiple of
  5791. // N_DST*N_SIMDGROUP to cover the size of the dimension. Below, 4 is
  5792. // N_DST*N_SIMDGROUP (see the kernel for Q4_0 matmul).
  5793. size_t global_work_size[] = {(size_t)(ne01 + ndst-1)/ndst*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
  5794. size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
  5795. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  5796. } else if (src0t == GGML_TYPE_Q4_K) {
  5797. GGML_ASSERT(false && "not implemented");
  5798. } else if (src0t == GGML_TYPE_Q3_K) {
  5799. GGML_ASSERT(false && "not implemented");
  5800. } else if (src0t == GGML_TYPE_Q5_K) {
  5801. GGML_ASSERT(false && "not implemented");
  5802. } else if (src0t == GGML_TYPE_Q6_K) {
  5803. size_t global_work_size[] = {(size_t)(ne01+1)/2*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
  5804. size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
  5805. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  5806. } else {
  5807. int64_t ny = (ne11 + nrows - 1)/nrows;
  5808. size_t global_work_size[] = {(size_t)ne01*nth0, (size_t)ny*nth1, (size_t)ne12*ne13};
  5809. size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
  5810. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  5811. }
  5812. }
  5813. static void ggml_cl_mul_mat_id(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5814. GGML_ASSERT(src0);
  5815. GGML_ASSERT(src0->extra);
  5816. GGML_ASSERT(src1);
  5817. GGML_ASSERT(src1->extra);
  5818. GGML_ASSERT(dst);
  5819. GGML_ASSERT(dst->extra);
  5820. const ggml_tensor * src2 = dst->src[2];
  5821. GGML_ASSERT(src2);
  5822. GGML_ASSERT(src2->extra);
  5823. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5824. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5825. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  5826. ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
  5827. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5828. cl_ulong offset0 = extra0->offset + src0->view_offs;
  5829. cl_ulong offset1 = extra1->offset + src1->view_offs;
  5830. cl_ulong offset2 = extra2->offset + src2->view_offs;
  5831. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5832. #ifdef GGML_OPENCL_SOA_Q
  5833. ggml_tensor_extra_cl_q4_0 * extra0_q4_0 = (ggml_tensor_extra_cl_q4_0 *)src0->extra;
  5834. #endif
  5835. const int ne00 = src0->ne[0];
  5836. const int ne01 = src0->ne[1];
  5837. const int ne02 = src0->ne[2];
  5838. const int ne03 = src0->ne[3];
  5839. const cl_ulong nb00 = src0->nb[0];
  5840. const cl_ulong nb01 = src0->nb[1];
  5841. const cl_ulong nb02 = src0->nb[2];
  5842. const cl_ulong nb03 = src0->nb[3];
  5843. const int ne10 = src1->ne[0];
  5844. const int ne11 = src1->ne[1];
  5845. const int ne12 = src1->ne[2];
  5846. const int ne13 = src1->ne[3];
  5847. const cl_ulong nb11 = src1->nb[1];
  5848. const cl_ulong nb12 = src1->nb[2];
  5849. const cl_ulong nb13 = src1->nb[3];
  5850. const int ne20 = src2->ne[0];
  5851. const int ne21 = src2->ne[1];
  5852. const cl_ulong nb21 = src2->nb[1];
  5853. const int ne0 = dst->ne[0];
  5854. const int ne1 = dst->ne[1];
  5855. const int r2 = ne12/ne02;
  5856. const int r3 = ne13/ne03;
  5857. const int dst_rows = ne20*ne21; // ne20 = n_used_experts, ne21 = n_rows
  5858. GGML_ASSERT(ne00 == ne10);
  5859. int sgs = 32; // subgroup size
  5860. int nsg = 1; // number of subgroups
  5861. int nrows = 1; // number of row in src1
  5862. int ndst = 4; // number of values produced by each subgroup
  5863. cl_kernel kernel;
  5864. // subgroup mat vec
  5865. switch (src0->type) {
  5866. case GGML_TYPE_Q4_0: {
  5867. kernel = backend_ctx->kernel_mul_mv_id_q4_0_f32_8x_flat;
  5868. if (backend_ctx->gpu_family == INTEL) {
  5869. sgs = 16;
  5870. nsg = 1;
  5871. ndst = 8;
  5872. } else if (backend_ctx->gpu_family == ADRENO) {
  5873. sgs = 64;
  5874. nsg = 1;
  5875. ndst = 8;
  5876. } else {
  5877. GGML_ASSERT(false && "TODO: Unknown GPU");
  5878. }
  5879. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
  5880. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
  5881. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  5882. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  5883. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  5884. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  5885. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  5886. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  5887. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  5888. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
  5889. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne02));
  5890. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb00));
  5891. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
  5892. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
  5893. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
  5894. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
  5895. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb11));
  5896. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb12));
  5897. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne20));
  5898. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne21));
  5899. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb21));
  5900. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne0));
  5901. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne1));
  5902. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r2));
  5903. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &r3));
  5904. break;
  5905. }
  5906. case GGML_TYPE_MXFP4: {
  5907. kernel = backend_ctx->kernel_mul_mv_id_mxfp4_f32;
  5908. if (backend_ctx->gpu_family == INTEL) {
  5909. sgs = 16;
  5910. nsg = 2;
  5911. ndst = 2;
  5912. } else if (backend_ctx->gpu_family == ADRENO) {
  5913. sgs = 64;
  5914. nsg = 2;
  5915. ndst = 2;
  5916. } else {
  5917. GGML_ASSERT(false && "TODO: Unknown GPU");
  5918. }
  5919. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5920. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5921. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  5922. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  5923. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  5924. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  5925. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  5926. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  5927. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  5928. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
  5929. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
  5930. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
  5931. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne11));
  5932. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne12));
  5933. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb11));
  5934. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb12));
  5935. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb13));
  5936. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne20));
  5937. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne21));
  5938. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb21));
  5939. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
  5940. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
  5941. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
  5942. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
  5943. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(float)*sgs,nullptr));
  5944. break;
  5945. }
  5946. default:
  5947. GGML_ASSERT(false && "not implemented");;
  5948. }
  5949. int _ne1 = 1;
  5950. int ne123 = dst_rows;
  5951. size_t global_work_size[] = {(size_t)(ne01+ndst*nsg-1)/(ndst*nsg)*sgs, (size_t)(_ne1+nrows-1)/nrows*nsg, (size_t)ne123};
  5952. size_t local_work_size[] = {(size_t)sgs, (size_t)nsg, 1};
  5953. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  5954. }
  5955. static void ggml_cl_scale(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5956. GGML_ASSERT(src0);
  5957. GGML_ASSERT(src0->extra);
  5958. GGML_ASSERT(dst);
  5959. GGML_ASSERT(dst->extra);
  5960. GGML_UNUSED(src1);
  5961. GGML_ASSERT(ggml_is_contiguous(src0));
  5962. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5963. float scale;
  5964. float bias;
  5965. memcpy(&scale, ((int32_t *) dst->op_params) + 0, sizeof(float));
  5966. memcpy(&bias, ((int32_t *) dst->op_params) + 1, sizeof(float));
  5967. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5968. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5969. cl_ulong offset0 = extra0->offset + src0->view_offs;
  5970. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5971. cl_kernel kernel = backend_ctx->kernel_scale;
  5972. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5973. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5974. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  5975. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  5976. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(float), &scale));
  5977. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(float), &bias));
  5978. int n = ggml_nelements(dst)/4;
  5979. size_t global_work_size[] = {(size_t)n, 1, 1};
  5980. size_t local_work_size[] = {64, 1, 1};
  5981. size_t * local_work_size_ptr = local_work_size;
  5982. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  5983. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  5984. }
  5985. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  5986. }
  5987. static void ggml_cl_cpy(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5988. GGML_ASSERT(src0);
  5989. GGML_ASSERT(src0->extra);
  5990. GGML_ASSERT(src1);
  5991. GGML_ASSERT(src1->extra);
  5992. // GGML_OP_CPY happens between src0 and src1.
  5993. // GGML_OP_DUP and GGML_OP_CONT happen between src0 and dst.
  5994. UNUSED(dst);
  5995. const int ne00 = src0 ? src0->ne[0] : 0;
  5996. const int ne01 = src0 ? src0->ne[1] : 0;
  5997. const int ne02 = src0 ? src0->ne[2] : 0;
  5998. const int ne03 = src0 ? src0->ne[3] : 0;
  5999. const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
  6000. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  6001. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  6002. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  6003. const int ne10 = src1 ? src1->ne[0] : 0;
  6004. const int ne11 = src1 ? src1->ne[1] : 0;
  6005. const int ne12 = src1 ? src1->ne[2] : 0;
  6006. const int ne13 = src1 ? src1->ne[3] : 0;
  6007. const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
  6008. const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
  6009. const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
  6010. const cl_ulong nb13 = src1 ? src1->nb[3] : 0;
  6011. const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
  6012. const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
  6013. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  6014. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  6015. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  6016. cl_ulong offset0 = extra0->offset + src0->view_offs;
  6017. cl_ulong offset1 = extra1->offset + src1->view_offs;
  6018. cl_kernel kernel;
  6019. switch (src0t) {
  6020. case GGML_TYPE_F32:
  6021. switch (src1t) {
  6022. case GGML_TYPE_F16:
  6023. kernel = backend_ctx->kernel_cpy_f32_f16;
  6024. break;
  6025. case GGML_TYPE_F32:
  6026. kernel = backend_ctx->kernel_cpy_f32_f32;
  6027. break;
  6028. default:
  6029. GGML_ASSERT(false && "not implemented");
  6030. }
  6031. break;
  6032. case GGML_TYPE_F16:
  6033. switch (src1t) {
  6034. case GGML_TYPE_F16:
  6035. kernel = backend_ctx->kernel_cpy_f16_f16;
  6036. break;
  6037. case GGML_TYPE_F32:
  6038. kernel = backend_ctx->kernel_cpy_f16_f32;
  6039. break;
  6040. default:
  6041. GGML_ASSERT(false && "not implemented");
  6042. }
  6043. break;
  6044. default:
  6045. GGML_ASSERT(false && "not implemented");
  6046. }
  6047. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6048. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6049. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6050. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6051. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  6052. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  6053. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  6054. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  6055. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb00));
  6056. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
  6057. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
  6058. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
  6059. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10));
  6060. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne11));
  6061. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne12));
  6062. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne13));
  6063. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
  6064. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
  6065. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
  6066. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
  6067. const int nth = MIN(64, ne00);
  6068. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  6069. size_t local_work_size[] = {(size_t)nth, 1, 1};
  6070. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, src1);
  6071. }
  6072. static void ggml_cl_dup(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  6073. ggml_cl_cpy(backend, src0, dst, nullptr);
  6074. UNUSED(src1);
  6075. }
  6076. static void ggml_cl_diag_mask_inf(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  6077. GGML_ASSERT(src0);
  6078. GGML_ASSERT(src0->extra);
  6079. GGML_ASSERT(dst);
  6080. GGML_ASSERT(dst->extra);
  6081. UNUSED(src1);
  6082. int n_past = ((int32_t *)(dst->op_params))[0];
  6083. const int ne00 = src0 ? src0->ne[0] : 0;
  6084. const int ne01 = src0 ? src0->ne[1] : 0;
  6085. const int ne02 = src0 ? src0->ne[2] : 0;
  6086. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  6087. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  6088. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  6089. cl_ulong offset0 = extra0->offset + src0->view_offs;
  6090. cl_ulong offsetd = extrad->offset + dst->view_offs;
  6091. cl_kernel kernel;
  6092. if (ne00%8 == 0) {
  6093. kernel = backend_ctx->kernel_diag_mask_inf_8;
  6094. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6095. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6096. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  6097. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  6098. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  6099. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  6100. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &n_past));
  6101. size_t global_work_size[] = {(size_t)ne00*ne01*ne02/8, 1, 1};
  6102. size_t local_work_size[] = {64, 1, 1};
  6103. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6104. } else {
  6105. kernel = backend_ctx->kernel_diag_mask_inf;
  6106. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6107. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6108. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  6109. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  6110. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  6111. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  6112. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &n_past));
  6113. size_t global_work_size[] = {(size_t)ne00, (size_t)ne01, (size_t)ne02};
  6114. size_t local_work_size[] = {64, 1, 1};
  6115. size_t * local_work_size_ptr = local_work_size;
  6116. if (ne00 % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  6117. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  6118. }
  6119. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  6120. }
  6121. }
  6122. static void ggml_cl_soft_max(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  6123. GGML_ASSERT(src0);
  6124. GGML_ASSERT(src0->extra);
  6125. GGML_ASSERT(dst);
  6126. GGML_ASSERT(dst->extra);
  6127. // Softmax can now fuse KQ mask and KQ scale, which used to be two additional
  6128. // ops before softmax. It now also fuses alibi if `max_bias > 0`. For llama,
  6129. // alibi is not used; however, for some other models, it is used.
  6130. // KQ_mask
  6131. if (src1) {
  6132. GGML_ASSERT(src1);
  6133. GGML_ASSERT(src1->extra);
  6134. }
  6135. const ggml_tensor * src2 = dst->src[2];
  6136. if (src2) {
  6137. GGML_ASSERT(src2->extra);
  6138. }
  6139. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  6140. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  6141. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  6142. ggml_tensor_extra_cl * extra1 = src1 ? (ggml_tensor_extra_cl *)src1->extra : nullptr;
  6143. ggml_tensor_extra_cl * extra2 = src2 ? (ggml_tensor_extra_cl *)src2->extra : nullptr;
  6144. cl_ulong offset0 = extra0->offset + src0->view_offs;
  6145. cl_ulong offsetd = extrad->offset + dst->view_offs;
  6146. cl_ulong offset1 = extra1 ? extra1->offset + src1->view_offs : offset0;
  6147. cl_ulong offset2 = extra2 ? extra2->offset + src2->view_offs : offset0;
  6148. const int ne00 = src0->ne[0];
  6149. const int ne01 = src0->ne[1];
  6150. const int ne02 = src0->ne[2];
  6151. const int ne03 = src0->ne[3];
  6152. const cl_long nb01 = src0->nb[1];
  6153. const cl_long nb02 = src0->nb[2];
  6154. const cl_long nb03 = src0->nb[3];
  6155. const int ne12 = src1 ? src1->ne[2] : 0;
  6156. const int ne13 = src1 ? src1->ne[3] : 0;
  6157. const cl_long nb11 = src1 ? src1->nb[1] : 0;
  6158. const cl_long nb12 = src1 ? src1->nb[2] : 0;
  6159. const cl_long nb13 = src1 ? src1->nb[3] : 0;
  6160. const cl_long nb1 = dst->nb[1];
  6161. const cl_long nb2 = dst->nb[2];
  6162. const cl_long nb3 = dst->nb[3];
  6163. float scale, max_bias;
  6164. memcpy(&scale, dst->op_params + 0, sizeof(float));
  6165. memcpy(&max_bias, dst->op_params + 1, sizeof(float));
  6166. const int n_head = src0->ne[2];
  6167. const int n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
  6168. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  6169. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  6170. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  6171. // Local size must be wave size. Each workgroup is a wave, working on a row,
  6172. // where a row corresponds to leading dimension.
  6173. int nth = MIN(32, ne00);
  6174. if (backend_ctx->gpu_family == INTEL) {
  6175. // This is the same as the initial value.
  6176. nth = MIN(32, ne00);
  6177. }
  6178. else if (backend_ctx->gpu_family == ADRENO) {
  6179. nth = 64;
  6180. } else {
  6181. GGML_ASSERT(false && "TODO: Unknown GPU");
  6182. }
  6183. cl_kernel kernel;
  6184. if (ne00%4 == 0) {
  6185. if (use_f16) {
  6186. kernel = backend_ctx->kernel_soft_max_4_f16;
  6187. } else {
  6188. kernel = backend_ctx->kernel_soft_max_4;
  6189. }
  6190. } else {
  6191. if (use_f16) {
  6192. kernel = backend_ctx->kernel_soft_max_f16;
  6193. } else {
  6194. kernel = backend_ctx->kernel_soft_max;
  6195. }
  6196. }
  6197. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6198. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6199. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), extra1 ? &extra1->data_device : &extra0->data_device));
  6200. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6201. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), extra2 ? &extra2->data_device : &extra0->data_device));
  6202. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  6203. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  6204. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  6205. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  6206. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
  6207. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
  6208. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
  6209. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne12));
  6210. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne13));
  6211. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb11));
  6212. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb12));
  6213. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb13));
  6214. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb1));
  6215. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb2));
  6216. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb3));
  6217. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(float), &scale));
  6218. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(float), &max_bias));
  6219. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(float), &m0));
  6220. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(float), &m1));
  6221. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &n_head_log2));
  6222. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  6223. size_t local_work_size[] = {(size_t)nth, 1, 1};
  6224. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6225. }
  6226. static void ggml_cl_rope(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  6227. GGML_ASSERT(src0);
  6228. GGML_ASSERT(src0->extra);
  6229. GGML_ASSERT(src1);
  6230. GGML_ASSERT(src1->extra);
  6231. GGML_ASSERT(dst);
  6232. GGML_ASSERT(dst->extra);
  6233. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  6234. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  6235. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  6236. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  6237. cl_ulong offset0 = extra0->offset + src0->view_offs;
  6238. cl_ulong offset1 = extra1->offset + src1->view_offs;
  6239. cl_ulong offsetd = extrad->offset + dst->view_offs;
  6240. ggml_tensor * src2 = dst->src[2];
  6241. ggml_tensor_extra_cl * extra2 = src2 ? (ggml_tensor_extra_cl *)src2->extra : nullptr;
  6242. cl_ulong offset2 = extra2 ? extra2->offset + src2->view_offs : offset0;
  6243. const int ne00 = src0 ? src0->ne[0] : 0;
  6244. const int ne01 = src0 ? src0->ne[1] : 0;
  6245. const int ne02 = src0 ? src0->ne[2] : 0;
  6246. const int ne03 = src0 ? src0->ne[3] : 0;
  6247. const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
  6248. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  6249. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  6250. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  6251. const int ne10 = src1 ? src1->ne[0] : 0;
  6252. const int ne11 = src1 ? src1->ne[1] : 0; UNUSED(ne11);
  6253. const int ne12 = src1 ? src1->ne[2] : 0; UNUSED(ne12);
  6254. const int ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
  6255. const int ne0 = dst ? dst->ne[0] : 0;
  6256. const int ne1 = dst ? dst->ne[1] : 0;
  6257. const int ne2 = dst ? dst->ne[2] : 0;
  6258. const int ne3 = dst ? dst->ne[3] : 0;
  6259. const cl_ulong nb0 = dst ? dst->nb[0] : 0;
  6260. const cl_ulong nb1 = dst ? dst->nb[1] : 0;
  6261. const cl_ulong nb2 = dst ? dst->nb[2] : 0;
  6262. const cl_ulong nb3 = dst ? dst->nb[3] : 0;
  6263. GGML_ASSERT(ne10 % ne02 == 0);
  6264. GGML_ASSERT(ne10 >= ne02);
  6265. int nth = MIN(64, ne00);
  6266. const int n_past = ((int *) dst->op_params)[0];
  6267. const int n_dims = ((int *) dst->op_params)[1];
  6268. const int mode = ((int *) dst->op_params)[2];
  6269. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  6270. float freq_base;
  6271. float freq_scale;
  6272. float ext_factor;
  6273. float attn_factor;
  6274. float beta_fast;
  6275. float beta_slow;
  6276. int32_t sections[4];
  6277. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  6278. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  6279. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  6280. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  6281. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  6282. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  6283. memcpy(&sections, (int32_t *) dst->op_params + 11, sizeof(int32_t)*4);
  6284. const bool is_neox = mode & 2;
  6285. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  6286. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  6287. if (is_mrope) {
  6288. GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0);
  6289. }
  6290. if (is_vision) {
  6291. GGML_ASSERT(n_dims == ne00/2);
  6292. }
  6293. cl_kernel kernel;
  6294. if (is_neox) {
  6295. switch (src0->type) {
  6296. case GGML_TYPE_F32:
  6297. kernel = backend_ctx->kernel_rope_neox_f32;
  6298. break;
  6299. case GGML_TYPE_F16:
  6300. kernel = backend_ctx->kernel_rope_neox_f16;
  6301. break;
  6302. default:
  6303. GGML_ASSERT(false);
  6304. };
  6305. } else if (is_mrope && !is_vision) {
  6306. switch (src0->type) {
  6307. case GGML_TYPE_F32:
  6308. kernel = backend_ctx->kernel_rope_multi_f32;
  6309. break;
  6310. case GGML_TYPE_F16:
  6311. kernel = backend_ctx->kernel_rope_multi_f16;
  6312. break;
  6313. default:
  6314. GGML_ASSERT(false);
  6315. };
  6316. } else if (is_vision) {
  6317. switch (src0->type) {
  6318. case GGML_TYPE_F32:
  6319. kernel = backend_ctx->kernel_rope_vision_f32;
  6320. break;
  6321. case GGML_TYPE_F16:
  6322. kernel = backend_ctx->kernel_rope_vision_f16;
  6323. break;
  6324. default:
  6325. GGML_ASSERT(false);
  6326. }
  6327. } else {
  6328. switch (src0->type) {
  6329. case GGML_TYPE_F32:
  6330. kernel = backend_ctx->kernel_rope_norm_f32;
  6331. break;
  6332. case GGML_TYPE_F16:
  6333. kernel = backend_ctx->kernel_rope_norm_f16;
  6334. break;
  6335. default:
  6336. GGML_ASSERT(false);
  6337. };
  6338. }
  6339. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6340. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6341. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6342. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6343. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), extra2 ? &extra2->data_device : &extra0->data_device));
  6344. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  6345. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  6346. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  6347. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  6348. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
  6349. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne02));
  6350. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne03));
  6351. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb00));
  6352. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb01));
  6353. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb02));
  6354. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb03));
  6355. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne0));
  6356. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne1));
  6357. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne2));
  6358. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne3));
  6359. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb0));
  6360. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb1));
  6361. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb2));
  6362. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_ulong), &nb3));
  6363. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &n_past));
  6364. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &n_dims));
  6365. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(int), &n_ctx_orig));
  6366. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(float), &freq_base));
  6367. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(float), &freq_scale));
  6368. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(float), &ext_factor));
  6369. CL_CHECK(clSetKernelArg(kernel, 30, sizeof(float), &attn_factor));
  6370. CL_CHECK(clSetKernelArg(kernel, 31, sizeof(float), &beta_fast));
  6371. CL_CHECK(clSetKernelArg(kernel, 32, sizeof(float), &beta_slow));
  6372. if (is_mrope || is_vision) {
  6373. CL_CHECK(clSetKernelArg(kernel, 33, sizeof(int32_t)*4, &sections));
  6374. }
  6375. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  6376. size_t local_work_size[] = {(size_t)nth, 1, 1};
  6377. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6378. }
  6379. static void ggml_cl_im2col(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  6380. GGML_ASSERT(src0);
  6381. GGML_ASSERT(src1);
  6382. GGML_ASSERT(src1->extra);
  6383. GGML_ASSERT(dst);
  6384. GGML_ASSERT(dst->extra);
  6385. // src0 - filter, src1 - input
  6386. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6387. GGML_ASSERT(dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
  6388. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  6389. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  6390. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  6391. cl_ulong offset1 = extra1->offset + src1->view_offs;
  6392. cl_ulong offsetd = extrad->offset + dst->view_offs;
  6393. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  6394. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  6395. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  6396. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  6397. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  6398. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  6399. const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
  6400. const cl_long IC = src1->ne[is_2D ? 2 : 1];
  6401. const cl_long IH = is_2D ? src1->ne[1] : 1;
  6402. const cl_long IW = src1->ne[0];
  6403. const cl_long KH = is_2D ? src0->ne[1] : 1;
  6404. const cl_long KW = src0->ne[0];
  6405. const cl_long OH = is_2D ? dst->ne[2] : 1;
  6406. const cl_long OW = dst->ne[1];
  6407. // nb is byte offset, src is type float32
  6408. const cl_ulong delta_offset = src1->nb[is_2D ? 2 : 1]/4;
  6409. const cl_long batch = src1->ne[is_2D ? 3 : 2];
  6410. const cl_ulong batch_offset = src1->nb[is_2D ? 3 : 2]/4;
  6411. const cl_long pelements = OW*KW*KH;
  6412. const cl_long CHW = IC*KH*KW;
  6413. cl_kernel kernel;
  6414. if(dst->type == GGML_TYPE_F16) {
  6415. kernel = backend_ctx->kernel_im2col_f16;
  6416. } else {
  6417. kernel = backend_ctx->kernel_im2col_f32;
  6418. }
  6419. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra1->data_device));
  6420. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset1));
  6421. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  6422. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  6423. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &batch_offset));
  6424. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &delta_offset));
  6425. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_long), &IW));
  6426. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_long), &IH));
  6427. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_long), &IC));
  6428. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_long), &OW));
  6429. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_long), &OH));
  6430. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_long), &KW));
  6431. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_long), &KH));
  6432. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_long), &pelements));
  6433. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_long), &CHW));
  6434. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &s0));
  6435. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &s1));
  6436. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &p0));
  6437. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &p1));
  6438. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &d0));
  6439. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &d1));
  6440. const int num_blocks = (pelements + 256 - 1) / 256;
  6441. size_t global_work_size[] = {(size_t)num_blocks*256, (size_t)OH, (size_t)batch*IC};
  6442. size_t local_work_size[] = {256, 1, 1};
  6443. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6444. }
  6445. static void ggml_cl_argsort(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  6446. GGML_ASSERT(src0);
  6447. GGML_ASSERT(src0->extra);
  6448. GGML_ASSERT(dst);
  6449. GGML_ASSERT(dst->extra);
  6450. GGML_UNUSED(src1);
  6451. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6452. GGML_ASSERT( dst->type == GGML_TYPE_I32);
  6453. GGML_ASSERT(ggml_is_contiguous(src0));
  6454. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  6455. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  6456. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  6457. cl_ulong offset0 = extra0->offset + src0->view_offs;
  6458. cl_ulong offsetd = extrad->offset + dst->view_offs;
  6459. const int ne00 = src0->ne[0];
  6460. const int nrows = ggml_nrows(src0);
  6461. int ne00_padded = 1;
  6462. while (ne00_padded < ne00) {
  6463. ne00_padded *= 2;
  6464. }
  6465. int order = (enum ggml_sort_order) dst->op_params[0];
  6466. cl_kernel kernel = backend_ctx->kernel_argsort_f32_i32;
  6467. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6468. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6469. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  6470. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  6471. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  6472. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne00_padded));
  6473. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &order));
  6474. CL_CHECK(clSetKernelArg(kernel, 7, ne00_padded*sizeof(int), NULL));
  6475. size_t global_work_size[] = {(size_t)ne00_padded, (size_t)nrows, (size_t)1};
  6476. size_t local_work_size[] = {(size_t)ne00_padded, 1, 1};
  6477. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6478. }
  6479. static void ggml_cl_sum_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  6480. GGML_ASSERT(src0);
  6481. GGML_ASSERT(src0->extra);
  6482. GGML_ASSERT(dst);
  6483. GGML_ASSERT(dst->extra);
  6484. GGML_UNUSED(src1);
  6485. GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
  6486. GGML_ASSERT(ggml_is_contiguous(src0));
  6487. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  6488. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  6489. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  6490. cl_ulong offset0 = extra0->offset + src0->view_offs;
  6491. cl_ulong offsetd = extrad->offset + dst->view_offs;
  6492. const int ne00 = src0->ne[0];
  6493. const int ne01 = src0->ne[1];
  6494. const int ne02 = src0->ne[2];
  6495. const int ne03 = src0->ne[3];
  6496. const cl_ulong nb01 = src0->nb[1];
  6497. const cl_ulong nb02 = src0->nb[2];
  6498. const cl_ulong nb03 = src0->nb[3];
  6499. const cl_ulong nb1 = dst->nb[1];
  6500. const cl_ulong nb2 = dst->nb[2];
  6501. const cl_ulong nb3 = dst->nb[3];
  6502. cl_kernel kernel = backend_ctx->kernel_sum_rows_f32;
  6503. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6504. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6505. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  6506. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  6507. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  6508. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  6509. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  6510. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  6511. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  6512. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  6513. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
  6514. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb1));
  6515. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb2));
  6516. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb3));
  6517. size_t global_work_size[] = {(size_t)ne01, (size_t)ne02, (size_t)ne03};
  6518. size_t local_work_size[] = {(size_t)64, 1, 1};
  6519. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6520. }
  6521. static void ggml_cl_glu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  6522. GGML_ASSERT(src0);
  6523. GGML_ASSERT(src0->extra);
  6524. GGML_ASSERT(dst);
  6525. GGML_ASSERT(dst->extra);
  6526. GGML_ASSERT(ggml_is_contiguous_1(src0));
  6527. if (src1) {
  6528. GGML_ASSERT(src1);
  6529. GGML_ASSERT(src1->extra);
  6530. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  6531. }
  6532. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  6533. cl_kernel kernel;
  6534. switch (ggml_get_glu_op(dst)) {
  6535. case GGML_GLU_OP_GEGLU:
  6536. if (dst->type == GGML_TYPE_F32) {
  6537. kernel = backend_ctx->kernel_geglu;
  6538. } else {
  6539. kernel = backend_ctx->kernel_geglu_f16;
  6540. }
  6541. break;
  6542. case GGML_GLU_OP_REGLU:
  6543. if (dst->type == GGML_TYPE_F32) {
  6544. kernel = backend_ctx->kernel_reglu;
  6545. } else {
  6546. kernel = backend_ctx->kernel_reglu_f16;
  6547. }
  6548. break;
  6549. case GGML_GLU_OP_SWIGLU:
  6550. if (dst->type == GGML_TYPE_F32) {
  6551. kernel = backend_ctx->kernel_swiglu;
  6552. } else {
  6553. kernel = backend_ctx->kernel_swiglu_f16;
  6554. }
  6555. break;
  6556. case GGML_GLU_OP_SWIGLU_OAI:
  6557. kernel = backend_ctx->kernel_swiglu_oai;
  6558. break;
  6559. case GGML_GLU_OP_GEGLU_ERF:
  6560. if (dst->type == GGML_TYPE_F32) {
  6561. kernel = backend_ctx->kernel_geglu_erf;
  6562. } else {
  6563. kernel = backend_ctx->kernel_geglu_erf_f16;
  6564. }
  6565. break;
  6566. case GGML_GLU_OP_GEGLU_QUICK:
  6567. if (dst->type == GGML_TYPE_F32) {
  6568. kernel = backend_ctx->kernel_geglu_quick;
  6569. } else {
  6570. kernel = backend_ctx->kernel_geglu_quick_f16;
  6571. }
  6572. break;
  6573. default:
  6574. GGML_ABORT("Unsupported glu op");
  6575. }
  6576. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  6577. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  6578. ggml_tensor_extra_cl * extra1 = src1 ? (ggml_tensor_extra_cl *)src1->extra : nullptr;
  6579. cl_ulong offset0 = extra0->offset + src0->view_offs;
  6580. cl_ulong offsetd = extrad->offset + dst->view_offs;
  6581. cl_ulong offset1 = extra1 ? extra1->offset + src1->view_offs : offset0;
  6582. const int ne0 = dst->ne[0];
  6583. const cl_ulong nb01 = src0->nb[1];
  6584. const cl_ulong nb11 = src1 ? src1->nb[1] : nb01;
  6585. const cl_ulong nb1 = dst->nb[1];
  6586. const int swp = ggml_get_op_params_i32(dst, 1);
  6587. const float alpha = ggml_get_op_params_f32(dst, 2);
  6588. const float limit = ggml_get_op_params_f32(dst, 3);
  6589. const int ne00_off = src1 ? 0 : (swp ? ne0 : 0);
  6590. const int ne10_off = src1 ? 0 : (swp ? 0 : ne0);
  6591. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6592. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6593. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), src1 ? &extra1->data_device : &extra0->data_device));
  6594. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6595. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6596. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6597. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb01));
  6598. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb11));
  6599. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne0));
  6600. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb1));
  6601. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne00_off));
  6602. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10_off));
  6603. if (ggml_get_glu_op(dst) == GGML_GLU_OP_SWIGLU_OAI) {
  6604. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float), &limit));
  6605. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(float), &alpha));
  6606. }
  6607. const size_t nrows = ggml_nrows(src0);
  6608. size_t nth = 512;
  6609. size_t global_work_size[] = {nrows*nth, 1, 1};
  6610. size_t local_work_size[] = {nth, 1, 1};
  6611. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6612. }
  6613. //------------------------------------------------------------------------------
  6614. // Op offloading
  6615. //------------------------------------------------------------------------------
  6616. typedef void (*ggml_cl_func_t)(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
  6617. bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor) {
  6618. ggml_cl_func_t func = nullptr;
  6619. ggml_tensor * src0 = tensor->src[0];
  6620. ggml_tensor * src1 = tensor->src[1];
  6621. const bool any_on_device = tensor->extra
  6622. || (src0 != nullptr && src0->extra)
  6623. || (src1 != nullptr && src1->extra);
  6624. switch (tensor->op) {
  6625. case GGML_OP_GET_ROWS:
  6626. if (!any_on_device) {
  6627. return false;
  6628. }
  6629. func = ggml_cl_get_rows;
  6630. break;
  6631. case GGML_OP_SET_ROWS:
  6632. if (!any_on_device) {
  6633. return false;
  6634. }
  6635. func = ggml_cl_set_rows;
  6636. break;
  6637. case GGML_OP_CPY:
  6638. if (!any_on_device) {
  6639. return false;
  6640. }
  6641. func = ggml_cl_cpy;
  6642. break;
  6643. case GGML_OP_DUP:
  6644. case GGML_OP_CONT:
  6645. if (!any_on_device) {
  6646. return false;
  6647. }
  6648. func = ggml_cl_dup;
  6649. break;
  6650. case GGML_OP_ADD:
  6651. if (!any_on_device) {
  6652. return false;
  6653. }
  6654. func = ggml_cl_add;
  6655. break;
  6656. case GGML_OP_ADD_ID:
  6657. if (!any_on_device) {
  6658. return false;
  6659. }
  6660. func = ggml_cl_add_id;
  6661. break;
  6662. case GGML_OP_MUL:
  6663. if (!any_on_device) {
  6664. return false;
  6665. }
  6666. func = ggml_cl_mul;
  6667. break;
  6668. case GGML_OP_DIV:
  6669. if (!any_on_device) {
  6670. return false;
  6671. }
  6672. func = ggml_cl_div;
  6673. break;
  6674. case GGML_OP_SUB:
  6675. if (!any_on_device) {
  6676. return false;
  6677. }
  6678. func = ggml_cl_sub;
  6679. break;
  6680. case GGML_OP_UNARY:
  6681. switch (ggml_get_unary_op(tensor)) {
  6682. case GGML_UNARY_OP_GELU:
  6683. if (!any_on_device) {
  6684. return false;
  6685. }
  6686. func = ggml_cl_gelu;
  6687. break;
  6688. case GGML_UNARY_OP_GELU_ERF:
  6689. if (!any_on_device) {
  6690. return false;
  6691. }
  6692. func = ggml_cl_gelu_erf;
  6693. break;
  6694. case GGML_UNARY_OP_GELU_QUICK:
  6695. if (!any_on_device) {
  6696. return false;
  6697. }
  6698. func = ggml_cl_gelu_quick;
  6699. break;
  6700. case GGML_UNARY_OP_SILU:
  6701. if (!any_on_device) {
  6702. return false;
  6703. }
  6704. func = ggml_cl_silu;
  6705. break;
  6706. case GGML_UNARY_OP_RELU:
  6707. if (!any_on_device) {
  6708. return false;
  6709. }
  6710. func = ggml_cl_relu;
  6711. break;
  6712. case GGML_UNARY_OP_SIGMOID:
  6713. if (!any_on_device) {
  6714. return false;
  6715. }
  6716. func = ggml_cl_sigmoid;
  6717. break;
  6718. case GGML_UNARY_OP_TANH:
  6719. if (!any_on_device) {
  6720. return false;
  6721. }
  6722. func = ggml_cl_tanh;
  6723. break;
  6724. default:
  6725. return false;
  6726. } break;
  6727. case GGML_OP_GLU:
  6728. if (!any_on_device) {
  6729. return false;
  6730. }
  6731. func = ggml_cl_glu;
  6732. break;
  6733. case GGML_OP_CLAMP:
  6734. if (!any_on_device) {
  6735. return false;
  6736. }
  6737. func = ggml_cl_clamp;
  6738. break;
  6739. case GGML_OP_NORM:
  6740. if (!any_on_device) {
  6741. return false;
  6742. }
  6743. func = ggml_cl_norm;
  6744. break;
  6745. case GGML_OP_RMS_NORM:
  6746. if (!any_on_device) {
  6747. return false;
  6748. }
  6749. func = ggml_cl_rms_norm;
  6750. break;
  6751. case GGML_OP_GROUP_NORM:
  6752. if (!any_on_device) {
  6753. return false;
  6754. }
  6755. func = ggml_cl_group_norm;
  6756. break;
  6757. case GGML_OP_REPEAT:
  6758. if (!any_on_device) {
  6759. return false;
  6760. }
  6761. func = ggml_cl_repeat;
  6762. break;
  6763. case GGML_OP_PAD:
  6764. if (!any_on_device) {
  6765. return false;
  6766. }
  6767. ggml_cl_pad(backend, tensor->src[0], tensor);
  6768. return true;
  6769. case GGML_OP_UPSCALE:
  6770. if (!any_on_device) {
  6771. return false;
  6772. }
  6773. ggml_cl_upscale(backend, tensor->src[0], tensor);
  6774. return true;
  6775. case GGML_OP_CONV_2D:
  6776. if (!any_on_device) {
  6777. return false;
  6778. }
  6779. func = ggml_cl_conv_2d;
  6780. break;
  6781. case GGML_OP_CONCAT:
  6782. if (!any_on_device) {
  6783. return false;
  6784. }
  6785. func = ggml_cl_concat;
  6786. break;
  6787. case GGML_OP_TIMESTEP_EMBEDDING:
  6788. if (!any_on_device) {
  6789. return false;
  6790. }
  6791. ggml_cl_timestep_embedding(backend, tensor->src[0], tensor);
  6792. return true;
  6793. case GGML_OP_MUL_MAT:
  6794. if (!any_on_device && !ggml_cl_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) {
  6795. return false;
  6796. }
  6797. func = ggml_cl_mul_mat;
  6798. break;
  6799. case GGML_OP_MUL_MAT_ID:
  6800. if (!any_on_device) {
  6801. return false;
  6802. }
  6803. func = ggml_cl_mul_mat_id;
  6804. break;
  6805. case GGML_OP_SCALE:
  6806. if (!any_on_device) {
  6807. return false;
  6808. }
  6809. func = ggml_cl_scale;
  6810. break;
  6811. case GGML_OP_RESHAPE:
  6812. case GGML_OP_VIEW:
  6813. case GGML_OP_PERMUTE:
  6814. case GGML_OP_TRANSPOSE:
  6815. if (!any_on_device) {
  6816. return false;
  6817. }
  6818. func = ggml_cl_nop;
  6819. break;
  6820. case GGML_OP_DIAG_MASK_INF:
  6821. if (!any_on_device) {
  6822. return false;
  6823. }
  6824. func = ggml_cl_diag_mask_inf;
  6825. break;
  6826. case GGML_OP_SOFT_MAX:
  6827. if (!any_on_device) {
  6828. return false;
  6829. }
  6830. func = ggml_cl_soft_max;
  6831. break;
  6832. case GGML_OP_ROPE:
  6833. if (!any_on_device) {
  6834. return false;
  6835. }
  6836. func = ggml_cl_rope;
  6837. break;
  6838. case GGML_OP_IM2COL:
  6839. if (!any_on_device) {
  6840. return false;
  6841. }
  6842. func = ggml_cl_im2col;
  6843. break;
  6844. case GGML_OP_ARGSORT:
  6845. if (!any_on_device) {
  6846. return false;
  6847. }
  6848. func = ggml_cl_argsort;
  6849. break;
  6850. case GGML_OP_SUM_ROWS:
  6851. if (!any_on_device) {
  6852. return false;
  6853. }
  6854. func = ggml_cl_sum_rows;
  6855. break;
  6856. case GGML_OP_FLASH_ATTN_EXT:
  6857. if (!any_on_device) {
  6858. return false;
  6859. }
  6860. ggml_cl_flash_attn(backend, tensor->src[0], tensor->src[1], tensor);
  6861. return true;
  6862. default:
  6863. return false;
  6864. }
  6865. func(backend, tensor->src[0], tensor->src[1], tensor);
  6866. return true;
  6867. }