| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247 |
- #include "common.h"
- #include "llama.h"
- #include <vector>
- #include <cstdio>
- #include <chrono>
- int main(int argc, char ** argv) {
- gpt_params params;
- params.prompt = "The quick brown fox";
- if (!gpt_params_parse(argc, argv, params)) {
- gpt_params_print_usage(argc, argv, params);
- return 1;
- }
- print_build_info();
- if (params.n_predict < 0) {
- params.n_predict = 16;
- }
- auto n_past = 0;
- std::string result0;
- std::string result1;
- std::string result2;
- // init
- llama_model * model;
- llama_context * ctx;
- std::tie(model, ctx) = llama_init_from_gpt_params(params);
- if (model == nullptr || ctx == nullptr) {
- fprintf(stderr, "%s : failed to init\n", __func__);
- return 1;
- }
- // tokenize prompt
- auto tokens = llama_tokenize(ctx, params.prompt, true);
- // evaluate prompt
- llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size(), n_past, 0));
- n_past += tokens.size();
- // save state (rng, logits, embedding and kv_cache) to file
- {
- std::vector<uint8_t> state_mem(llama_state_get_size(ctx));
- const size_t written = llama_state_get_data(ctx, state_mem.data());
- FILE *fp_write = fopen("dump_state.bin", "wb");
- fwrite(state_mem.data(), 1, written, fp_write);
- fclose(fp_write);
- fprintf(stderr, "%s : serialized state into %zd out of a maximum of %zd bytes\n", __func__, written, state_mem.size());
- }
- // save state (last tokens)
- const auto n_past_saved = n_past;
- // first run
- printf("\nfirst run: %s", params.prompt.c_str());
- for (auto i = 0; i < params.n_predict; i++) {
- auto * logits = llama_get_logits(ctx);
- auto n_vocab = llama_n_vocab(model);
- std::vector<llama_token_data> candidates;
- candidates.reserve(n_vocab);
- for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
- candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
- }
- llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
- auto next_token = llama_sample_token(ctx, &candidates_p);
- auto next_token_str = llama_token_to_piece(ctx, next_token);
- printf("%s", next_token_str.c_str());
- result0 += next_token_str;
- if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0))) {
- fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
- llama_free(ctx);
- llama_free_model(model);
- return 1;
- }
- n_past += 1;
- }
- printf("\n\n");
- // free old context
- llama_free(ctx);
- // make new context
- auto * ctx2 = llama_new_context_with_model(model, llama_context_params_from_gpt_params(params));
- printf("\nsecond run: %s", params.prompt.c_str());
- // load state (rng, logits, embedding and kv_cache) from file
- {
- std::vector<uint8_t> state_mem(llama_state_get_size(ctx2));
- FILE * fp_read = fopen("dump_state.bin", "rb");
- const size_t read = fread(state_mem.data(), 1, state_mem.size(), fp_read);
- fclose(fp_read);
- if (read != llama_state_set_data(ctx2, state_mem.data())) {
- fprintf(stderr, "\n%s : failed to read state\n", __func__);
- llama_free(ctx2);
- llama_free_model(model);
- return 1;
- }
- fprintf(stderr, "%s : deserialized state from %zd out of a maximum of %zd bytes\n", __func__, read, state_mem.size());
- }
- // restore state (last tokens)
- n_past = n_past_saved;
- // second run
- for (auto i = 0; i < params.n_predict; i++) {
- auto * logits = llama_get_logits(ctx2);
- auto n_vocab = llama_n_vocab(model);
- std::vector<llama_token_data> candidates;
- candidates.reserve(n_vocab);
- for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
- candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
- }
- llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
- auto next_token = llama_sample_token(ctx2, &candidates_p);
- auto next_token_str = llama_token_to_piece(ctx2, next_token);
- printf("%s", next_token_str.c_str());
- result1 += next_token_str;
- if (llama_decode(ctx2, llama_batch_get_one(&next_token, 1, n_past, 0))) {
- fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
- llama_free(ctx2);
- llama_free_model(model);
- return 1;
- }
- n_past += 1;
- }
- printf("\n\n");
- llama_free(ctx2);
- if (result0 != result1) {
- fprintf(stderr, "\n%s : error : the 2 generations are different\n", __func__);
- return 1;
- }
- // make new context
- auto* ctx3 = llama_new_context_with_model(model, llama_context_params_from_gpt_params(params));
- printf("\nsingle seq run: %s", params.prompt.c_str());
- // load state (rng, logits, embedding and kv_cache) from file
- {
- std::vector<uint8_t> state_mem(llama_state_get_size(ctx3));
- FILE * fp_read = fopen("dump_state.bin", "rb");
- const size_t read = fread(state_mem.data(), 1, state_mem.size(), fp_read);
- fclose(fp_read);
- if (read != llama_state_set_data(ctx3, state_mem.data())) {
- fprintf(stderr, "\n%s : failed to read state\n", __func__);
- llama_free(ctx3);
- llama_free_model(model);
- return 1;
- }
- fprintf(stderr, "%s : deserialized state from %zd out of a maximum of %zd bytes\n", __func__, read, state_mem.size());
- }
- // restore state (last tokens)
- n_past = n_past_saved;
- // save seq 0 and load into seq 1
- {
- // save kv of seq 0
- std::vector<uint8_t> seq_store(llama_state_seq_get_size(ctx3, 0));
- const size_t ncopy = llama_state_seq_get_data(ctx3, seq_store.data(), 0);
- if (ncopy != seq_store.size()) {
- fprintf(stderr, "\n%s : seq copy data length %zd does not match expected length %zd\n", __func__, ncopy, seq_store.size());
- llama_free(ctx3);
- llama_free_model(model);
- return 1;
- }
- fprintf(stderr, "%s : seq 0 copied, %zd bytes\n", __func__, ncopy);
- // erase whole kv
- llama_kv_cache_clear(ctx3);
- fprintf(stderr, "%s : kv cache cleared\n", __func__);
- // restore kv into seq 1
- const size_t nset = llama_state_seq_set_data(ctx3, seq_store.data(), 1);
- if (nset != seq_store.size()) {
- fprintf(stderr, "\n%s : seq set data length %zd does not match expected length %zd\n", __func__, nset, seq_store.size());
- llama_free(ctx3);
- llama_free_model(model);
- return 1;
- }
- fprintf(stderr, "%s : seq 1 restored, %zd bytes\n", __func__, nset);
- }
- // third run with seq 1 instead of 0
- for (auto i = 0; i < params.n_predict; i++) {
- auto * logits = llama_get_logits(ctx3);
- auto n_vocab = llama_n_vocab(model);
- std::vector<llama_token_data> candidates;
- candidates.reserve(n_vocab);
- for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
- candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
- }
- llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
- auto next_token = llama_sample_token(ctx3, &candidates_p);
- auto next_token_str = llama_token_to_piece(ctx3, next_token);
- printf("%s", next_token_str.c_str());
- result2 += next_token_str;
- if (llama_decode(ctx3, llama_batch_get_one(&next_token, 1, n_past, 1))) {
- fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
- llama_free(ctx3);
- llama_free_model(model);
- return 1;
- }
- n_past += 1;
- }
- printf("\n");
- llama_free(ctx3);
- llama_free_model(model);
- if (result0 != result2) {
- fprintf(stderr, "\n%s : error : the seq restore generation is different\n", __func__);
- return 1;
- }
- fprintf(stderr, "\n%s : success\n", __func__);
- return 0;
- }
|