1
0

ggml-vulkan.cpp 228 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255
  1. #include "ggml-vulkan.h"
  2. #ifdef VK_RUN_TESTS
  3. #include <chrono>
  4. #endif
  5. #include <vulkan/vulkan.hpp>
  6. #include <algorithm>
  7. #include <cmath>
  8. #include <iostream>
  9. #include <iomanip>
  10. #include <limits>
  11. #include <tuple>
  12. #include <vector>
  13. #include <sstream>
  14. #include <utility>
  15. #include "ggml.h"
  16. #include "ggml-backend-impl.h"
  17. #include "ggml-vulkan-shaders.hpp"
  18. #define VK_API_VERSION VK_API_VERSION_1_2
  19. #define CEIL_DIV(M, N) (((M) + (N)-1) / (N))
  20. #define VK_VENDOR_ID_AMD 0x1002
  21. #define VK_VENDOR_ID_INTEL 0x8086
  22. #define VK_VENDOR_ID_NVIDIA 0x10de
  23. #define VK_DEVICE_DESCRIPTOR_POOL_MODE_UNKNOWN 0
  24. #define VK_DEVICE_DESCRIPTOR_POOL_MODE_MULTI 1
  25. #define VK_DEVICE_DESCRIPTOR_POOL_MODE_SINGLE 2
  26. #define VK_NUM_TYPES 16
  27. #define GGML_VK_MAX_NODES 8192
  28. #ifndef K_QUANTS_PER_ITERATION
  29. #define K_QUANTS_PER_ITERATION 1
  30. #else
  31. static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
  32. #endif
  33. #define VK_CHECK(err, msg) \
  34. do { \
  35. vk::Result err_ = (err); \
  36. if (err_ != vk::Result::eSuccess) { \
  37. fprintf(stderr, "ggml_vulkan: %s error %s at %s:%d\n", \
  38. #err, to_string(err_).c_str(), __FILE__, __LINE__); \
  39. exit(1); \
  40. } \
  41. } while (0)
  42. struct vk_buffer {
  43. vk::Buffer buffer;
  44. vk::DeviceMemory device_memory;
  45. vk::MemoryPropertyFlags memory_property_flags;
  46. void * ptr;
  47. size_t size = 0;
  48. uint32_t qf_owner;
  49. };
  50. struct vk_subbuffer {
  51. vk_buffer buffer;
  52. uint64_t offset;
  53. uint64_t size;
  54. };
  55. struct vk_pipeline {
  56. std::string name;
  57. vk::DescriptorSetLayout dsl;
  58. std::vector<vk::DescriptorPool> descriptor_pools;
  59. std::vector<vk::DescriptorSet> descriptor_sets;
  60. uint32_t descriptor_set_idx;
  61. vk::PipelineLayout layout;
  62. vk::Pipeline pipeline;
  63. uint32_t push_constant_size;
  64. uint32_t parameter_count;
  65. std::array<uint32_t, 3> wg_denoms;
  66. uint32_t align;
  67. };
  68. struct vk_queue {
  69. uint32_t queue_family_index;
  70. vk::Queue queue;
  71. vk::CommandPool pool;
  72. uint32_t cmd_buffer_idx;
  73. std::vector<vk::CommandBuffer> cmd_buffers;
  74. vk::PipelineStageFlags stage_flags;
  75. };
  76. struct vk_semaphore {
  77. vk::Semaphore s;
  78. uint64_t value;
  79. };
  80. struct vk_submission {
  81. vk::CommandBuffer buffer;
  82. std::vector<vk_semaphore> wait_semaphores;
  83. std::vector<vk_semaphore> signal_semaphores;
  84. };
  85. typedef std::vector<vk_submission> vk_sequence;
  86. struct vk_device {
  87. vk::PhysicalDevice physical_device;
  88. vk::PhysicalDeviceProperties properties;
  89. uint64_t max_memory_allocation_size;
  90. bool fp16;
  91. vk::Device device;
  92. uint32_t vendor_id;
  93. vk_queue compute_queue;
  94. vk_queue transfer_queue;
  95. uint32_t descriptor_set_mode;
  96. uint32_t subgroup_size;
  97. bool uma;
  98. };
  99. struct vk_op_push_constants {
  100. uint32_t KX;
  101. uint32_t KY;
  102. float param1;
  103. float param2;
  104. };
  105. struct vk_op_cpy_push_constants {
  106. uint32_t ne;
  107. uint32_t ne00; uint32_t ne01; uint32_t nb00; uint32_t nb01; uint32_t nb02;
  108. uint32_t ne10; uint32_t ne11; uint32_t nb10; uint32_t nb11; uint32_t nb12;
  109. uint32_t d_offset;
  110. };
  111. struct vk_op_diag_mask_push_constants {
  112. uint32_t ncols;
  113. uint32_t rows_per_channel;
  114. int32_t n_past;
  115. };
  116. struct vk_op_rope_push_constants {
  117. uint32_t ncols;
  118. float freq_scale;
  119. uint32_t p_delta_rows;
  120. float freq_base;
  121. float ext_factor;
  122. float attn_factor;
  123. float corr_dims[4];
  124. };
  125. struct vk_op_rope_neox_push_constants {
  126. uint32_t ncols;
  127. uint32_t ndims;
  128. float freq_scale;
  129. uint32_t p_delta_rows;
  130. float freq_base;
  131. float ext_factor;
  132. float attn_factor;
  133. float corr_dims[4];
  134. float theta_scale;
  135. float inv_ndims;
  136. };
  137. // Allow pre-recording command buffers
  138. struct vk_staging_memcpy {
  139. vk_staging_memcpy(void * _dst, const void * _src, size_t _n) : dst(_dst), src(_src), n(_n) {}
  140. void * dst;
  141. const void * src;
  142. size_t n;
  143. };
  144. struct vk_context {
  145. size_t idx;
  146. vk_submission * s;
  147. std::vector<vk_sequence> seqs;
  148. ggml_tensor * exit_tensor;
  149. std::vector<vk_staging_memcpy> in_memcpys;
  150. std::vector<vk_staging_memcpy> out_memcpys;
  151. vk_queue * q;
  152. };
  153. struct ggml_tensor_extra_gpu {
  154. bool ready;
  155. size_t ctx_idx;
  156. vk_buffer buffer_gpu;
  157. uint64_t offset;
  158. void reset() {
  159. ready = false;
  160. ctx_idx = 0;
  161. buffer_gpu.size = 0;
  162. offset = 0;
  163. }
  164. };
  165. struct ggml_vk_garbage_collector {
  166. std::vector<vk_pipeline *> pipelines;
  167. std::vector<vk_semaphore> tl_semaphores;
  168. std::vector<vk_semaphore> semaphores;
  169. std::vector<vk::Event> events;
  170. std::vector<vk_buffer> temp_buffers;
  171. std::vector<vk_context> contexts;
  172. };
  173. typedef void (*ggml_vk_func_t)(vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
  174. vk::Instance vk_instance;
  175. vk_device vk_device;
  176. vk_pipeline vk_pipeline_matmul_f32_l, vk_pipeline_matmul_f32_m, vk_pipeline_matmul_f32_s;
  177. vk_pipeline vk_pipeline_matmul_f32_aligned_l, vk_pipeline_matmul_f32_aligned_m, vk_pipeline_matmul_f32_aligned_s;
  178. vk_pipeline vk_pipeline_matmul_f16_l, vk_pipeline_matmul_f16_m, vk_pipeline_matmul_f16_s;
  179. vk_pipeline vk_pipeline_matmul_f16_aligned_l, vk_pipeline_matmul_f16_aligned_m, vk_pipeline_matmul_f16_aligned_s;
  180. vk_pipeline vk_pipeline_matmul_f16_f32_l, vk_pipeline_matmul_f16_f32_m, vk_pipeline_matmul_f16_f32_s;
  181. vk_pipeline vk_pipeline_matmul_f16_f32_aligned_l, vk_pipeline_matmul_f16_f32_aligned_m, vk_pipeline_matmul_f16_f32_aligned_s;
  182. vk_pipeline vk_pipeline_matmul_split_k_reduce;
  183. vk_pipeline vk_pipeline_dequant[VK_NUM_TYPES];
  184. vk_pipeline vk_pipeline_dequant_mul_mat_vec_f32[VK_NUM_TYPES];
  185. vk_pipeline vk_pipeline_mul_mat_vec_p021_f16_f32;
  186. vk_pipeline vk_pipeline_mul_mat_vec_nc_f16_f32;
  187. vk_pipeline vk_pipeline_get_rows[VK_NUM_TYPES];
  188. vk_pipeline vk_pipeline_get_rows_f32[VK_NUM_TYPES];
  189. vk_pipeline vk_pipeline_mul_f32;
  190. vk_pipeline vk_pipeline_add_f32;
  191. vk_pipeline vk_pipeline_scale_f32;
  192. vk_pipeline vk_pipeline_sqr_f32;
  193. vk_pipeline vk_pipeline_clamp_f32;
  194. vk_pipeline vk_pipeline_cpy_f32_f32, vk_pipeline_cpy_f32_f16, vk_pipeline_cpy_f16_f16;
  195. vk_pipeline vk_pipeline_norm_f32;
  196. vk_pipeline vk_pipeline_rms_norm_f32;
  197. vk_pipeline vk_pipeline_gelu_f32;
  198. vk_pipeline vk_pipeline_silu_f32;
  199. vk_pipeline vk_pipeline_relu_f32;
  200. vk_pipeline vk_pipeline_diag_mask_inf_f32;
  201. vk_pipeline vk_pipeline_soft_max_f32;
  202. vk_pipeline vk_pipeline_rope_f32, vk_pipeline_rope_f16;
  203. vk_pipeline vk_pipeline_rope_neox_f32, vk_pipeline_rope_neox_f16;
  204. static size_t vk_semaphore_idx, vk_event_idx;
  205. static ggml_vk_garbage_collector vk_gc;
  206. static std::vector<std::tuple<void*, size_t, vk_buffer>> vk_pinned_memory;
  207. static size_t vk_prealloc_size_qx, vk_prealloc_size_qy, vk_prealloc_size_x, vk_prealloc_size_y, vk_prealloc_size_split_k;
  208. static vk_buffer vk_prealloc_qx, vk_prealloc_qy, vk_prealloc_x, vk_prealloc_y, vk_prealloc_split_k;
  209. static vk::Fence vk_fence;
  210. static vk_buffer vk_staging;
  211. static size_t vk_staging_size;
  212. static size_t vk_staging_offset;
  213. static vk_buffer vk_sync_staging;
  214. static vk_context * vk_ctx;
  215. static bool vk_disable;
  216. #ifdef GGML_VULKAN_CHECK_RESULTS
  217. size_t vk_skip_checks;
  218. size_t vk_output_tensor;
  219. #endif
  220. static vk_pipeline ggml_vk_create_pipeline(const std::string& name, size_t spv_size, const void* spv_data, const std::string& entrypoint, uint32_t parameter_count, uint32_t push_constant_size, std::array<uint32_t, 3> wg_denoms, std::vector<uint32_t>&& specialization_constants, uint32_t align) {
  221. #ifdef VK_DEBUG
  222. std::cerr << "ggml_vk_create_pipeline(" << name << ", " << entrypoint << ", " << parameter_count << ", " << push_constant_size << ", (" << wg_denoms[0] << "," << wg_denoms[1] << "," << wg_denoms[2] << "), specialization_constants, " << align << ")" << std::endl;
  223. #endif
  224. GGML_ASSERT(parameter_count > 0);
  225. GGML_ASSERT(wg_denoms[0] > 0 && wg_denoms[1] > 0 && wg_denoms[2] > 0); // NOLINT
  226. vk_pipeline pipeline;
  227. pipeline.name = name;
  228. pipeline.parameter_count = parameter_count;
  229. pipeline.push_constant_size = push_constant_size;
  230. pipeline.wg_denoms = wg_denoms;
  231. pipeline.align = align;
  232. vk::ShaderModuleCreateInfo shader_module_create_info({}, spv_size, reinterpret_cast<const uint32_t *>(spv_data));
  233. vk::ShaderModule shader_module = vk_device.device.createShaderModule(shader_module_create_info);
  234. std::vector<vk::DescriptorSetLayoutBinding> dsl_binding;
  235. std::vector<vk::DescriptorBindingFlags> dsl_binding_flags;
  236. for (uint32_t i = 0; i < parameter_count; i++) {
  237. dsl_binding.push_back({i, vk::DescriptorType::eStorageBuffer, 1, vk::ShaderStageFlagBits::eCompute});
  238. dsl_binding_flags.push_back({});
  239. }
  240. vk::DescriptorSetLayoutBindingFlagsCreateInfo dslbfci = { dsl_binding_flags };
  241. vk::PushConstantRange pcr(
  242. vk::ShaderStageFlagBits::eCompute,
  243. 0,
  244. pipeline.push_constant_size
  245. );
  246. vk::DescriptorSetLayoutCreateInfo descriptor_set_layout_create_info(
  247. {},
  248. dsl_binding);
  249. descriptor_set_layout_create_info.setPNext(&dslbfci);
  250. pipeline.dsl = vk_device.device.createDescriptorSetLayout(descriptor_set_layout_create_info);
  251. // Check if device supports multiple descriptors per pool
  252. if (vk_device.descriptor_set_mode == VK_DEVICE_DESCRIPTOR_POOL_MODE_UNKNOWN) {
  253. const uint32_t alloc_count = 2;
  254. // Try allocating multiple sets from one pool
  255. // This fails on AMD for some reason, so add a fall back to allocating one pool per set
  256. vk::DescriptorPoolSize descriptor_pool_size(vk::DescriptorType::eStorageBuffer, pipeline.parameter_count);
  257. vk::DescriptorPoolCreateInfo descriptor_pool_create_info({}, alloc_count, descriptor_pool_size);
  258. vk::DescriptorPool pool = vk_device.device.createDescriptorPool(descriptor_pool_create_info);
  259. std::vector<vk::DescriptorSetLayout> layouts(alloc_count);
  260. for (uint32_t i = 0; i < alloc_count; i++) {
  261. layouts[i] = pipeline.dsl;
  262. }
  263. try {
  264. vk::DescriptorSetAllocateInfo descriptor_set_alloc_info(pool, alloc_count, layouts.data());
  265. std::vector<vk::DescriptorSet> sets = vk_device.device.allocateDescriptorSets(descriptor_set_alloc_info);
  266. } catch(vk::OutOfPoolMemoryError const&) {
  267. vk_device.descriptor_set_mode = VK_DEVICE_DESCRIPTOR_POOL_MODE_SINGLE;
  268. }
  269. vk_device.device.destroyDescriptorPool(pool);
  270. }
  271. if (vk_device.descriptor_set_mode == VK_DEVICE_DESCRIPTOR_POOL_MODE_MULTI) {
  272. vk::DescriptorPoolSize descriptor_pool_size(vk::DescriptorType::eStorageBuffer, pipeline.parameter_count);
  273. vk::DescriptorPoolCreateInfo descriptor_pool_create_info({}, 128, descriptor_pool_size);
  274. pipeline.descriptor_pools.push_back(vk_device.device.createDescriptorPool(descriptor_pool_create_info));
  275. }
  276. pipeline.descriptor_set_idx = 0;
  277. vk::PipelineLayoutCreateInfo pipeline_layout_create_info(vk::PipelineLayoutCreateFlags(), pipeline.dsl, pcr);
  278. pipeline.layout = vk_device.device.createPipelineLayout(pipeline_layout_create_info);
  279. std::vector<vk::SpecializationMapEntry> specialization_entries(specialization_constants.size());
  280. for (size_t i = 0; i < specialization_constants.size(); i++) {
  281. specialization_entries[i].constantID = i;
  282. specialization_entries[i].offset = i * sizeof(uint32_t);
  283. specialization_entries[i].size = sizeof(uint32_t);
  284. }
  285. vk::SpecializationInfo specialization_info(
  286. specialization_entries.size(),
  287. specialization_entries.data(),
  288. specialization_constants.size() * sizeof(uint32_t),
  289. specialization_constants.data()
  290. );
  291. vk::PipelineShaderStageCreateInfo pipeline_shader_create_info(
  292. vk::PipelineShaderStageCreateFlags(),
  293. vk::ShaderStageFlagBits::eCompute,
  294. shader_module,
  295. entrypoint.c_str(),
  296. &specialization_info);
  297. vk::ComputePipelineCreateInfo compute_pipeline_create_info(
  298. vk::PipelineCreateFlags(),
  299. pipeline_shader_create_info,
  300. pipeline.layout);
  301. pipeline.pipeline = vk_device.device.createComputePipeline(VK_NULL_HANDLE, compute_pipeline_create_info).value;
  302. return pipeline;
  303. }
  304. static void ggml_vk_pipeline_allocate_descriptor_sets(vk_pipeline& pipeline, uint32_t n) {
  305. #ifdef VK_DEBUG
  306. std::cerr << "ggml_vk_pipeline_allocate_descriptor_sets(" << pipeline.name << ", " << n << ")" << std::endl;
  307. #endif
  308. // Check if gc already contains pipeline before adding it
  309. bool gc_found = false;
  310. for (auto * pl : vk_gc.pipelines) {
  311. if (&pipeline == pl) {
  312. gc_found = true;
  313. break;
  314. }
  315. }
  316. if (!gc_found) {
  317. vk_gc.pipelines.push_back(&pipeline);
  318. }
  319. if (pipeline.descriptor_sets.size() >= pipeline.descriptor_set_idx + n) {
  320. // Enough descriptors are available
  321. return;
  322. }
  323. if (vk_device.descriptor_set_mode == VK_DEVICE_DESCRIPTOR_POOL_MODE_MULTI) {
  324. const uint32_t alloc_count = pipeline.descriptor_set_idx + n - pipeline.descriptor_sets.size();
  325. std::vector<vk::DescriptorSetLayout> layouts(alloc_count);
  326. for (uint32_t i = 0; i < alloc_count; i++) {
  327. layouts[i] = pipeline.dsl;
  328. }
  329. vk::DescriptorSetAllocateInfo descriptor_set_alloc_info(pipeline.descriptor_pools[0], alloc_count, layouts.data());
  330. std::vector<vk::DescriptorSet> sets = vk_device.device.allocateDescriptorSets(descriptor_set_alloc_info);
  331. pipeline.descriptor_sets.insert(pipeline.descriptor_sets.end(), sets.begin(), sets.end());
  332. } else {
  333. for (uint32_t i = pipeline.descriptor_sets.size(); i < pipeline.descriptor_set_idx + n; i++) {
  334. vk::DescriptorPoolSize descriptor_pool_size(vk::DescriptorType::eStorageBuffer, pipeline.parameter_count);
  335. vk::DescriptorPoolCreateInfo descriptor_pool_create_info({}, 1, descriptor_pool_size);
  336. pipeline.descriptor_pools.push_back(vk_device.device.createDescriptorPool(descriptor_pool_create_info));
  337. vk::DescriptorSetAllocateInfo descriptor_set_alloc_info(pipeline.descriptor_pools[i], 1, &pipeline.dsl);
  338. std::vector<vk::DescriptorSet> sets = vk_device.device.allocateDescriptorSets(descriptor_set_alloc_info);
  339. pipeline.descriptor_sets.push_back(sets[0]);
  340. }
  341. }
  342. }
  343. static void ggml_vk_pipeline_cleanup(vk_pipeline& pipeline) {
  344. #ifdef VK_DEBUG
  345. std::cerr << "ggml_vk_pipeline_cleanup(" << pipeline.name << ")" << std::endl;
  346. #endif
  347. pipeline.descriptor_set_idx = 0;
  348. }
  349. static vk::CommandBuffer ggml_vk_create_cmd_buffer(vk_queue& q) {
  350. #ifdef VK_DEBUG
  351. std::cerr << "ggml_vk_create_cmd_buffer()" << std::endl;
  352. #endif
  353. if (q.cmd_buffers.size() > q.cmd_buffer_idx) {
  354. // Reuse command buffer
  355. return q.cmd_buffers[q.cmd_buffer_idx++];
  356. }
  357. vk::CommandBufferAllocateInfo command_buffer_alloc_info(
  358. q.pool,
  359. vk::CommandBufferLevel::ePrimary,
  360. 1);
  361. const std::vector<vk::CommandBuffer> cmd_buffers = vk_device.device.allocateCommandBuffers(command_buffer_alloc_info);
  362. auto buf = cmd_buffers.front();
  363. q.cmd_buffers.push_back(buf);
  364. q.cmd_buffer_idx++;
  365. return buf;
  366. }
  367. static vk_submission ggml_vk_create_submission(vk_queue& q, std::vector<vk_semaphore> wait_semaphores, std::vector<vk_semaphore> signal_semaphores) {
  368. #ifdef VK_DEBUG
  369. std::cerr << "ggml_vk_create_submission()" << std::endl;
  370. #endif
  371. vk_submission s;
  372. s.buffer = ggml_vk_create_cmd_buffer(q);
  373. s.wait_semaphores = std::move(wait_semaphores);
  374. s.signal_semaphores = std::move(signal_semaphores);
  375. return s;
  376. }
  377. static vk_sequence ggml_vk_create_sequence_1(vk_queue& q, std::vector<vk_semaphore> wait_semaphores, std::vector<vk_semaphore> signal_semaphores) {
  378. #ifdef VK_DEBUG
  379. std::cerr << "ggml_vk_create_sequence_1()" << std::endl;
  380. #endif
  381. return { ggml_vk_create_submission(q, std::move(wait_semaphores), std::move(signal_semaphores)) };
  382. }
  383. static void ggml_vk_submit(vk_context * ctx, vk::Fence fence) {
  384. #ifdef VK_DEBUG
  385. std::cerr << "ggml_vk_submit(" << ctx->seqs.size() << ", " << fence << ")" << std::endl;
  386. #endif
  387. if (ctx->seqs.empty()) {
  388. return;
  389. }
  390. std::vector<std::vector<uint64_t>> tl_wait_vals;
  391. std::vector<std::vector<uint64_t>> tl_signal_vals;
  392. std::vector<std::vector<vk::Semaphore>> tl_wait_semaphores;
  393. std::vector<std::vector<vk::Semaphore>> tl_signal_semaphores;
  394. std::vector<vk::TimelineSemaphoreSubmitInfo> tl_submit_infos;
  395. std::vector<vk::SubmitInfo> submit_infos;
  396. int idx = -1;
  397. std::vector<std::vector<vk::PipelineStageFlags>> stage_flags;
  398. size_t reserve = 0;
  399. for (const auto& sequence : ctx->seqs) {
  400. reserve += sequence.size();
  401. }
  402. // Pre-reserve vectors to prevent reallocation, which invalidates pointers
  403. tl_wait_semaphores.reserve(reserve);
  404. tl_wait_vals.reserve(reserve);
  405. tl_signal_semaphores.reserve(reserve);
  406. tl_signal_vals.reserve(reserve);
  407. tl_submit_infos.reserve(reserve);
  408. submit_infos.reserve(reserve);
  409. stage_flags.reserve(reserve);
  410. for (const auto& sequence : ctx->seqs) {
  411. for (const auto& submission : sequence) {
  412. stage_flags.push_back({});
  413. idx++;
  414. tl_wait_vals.push_back({});
  415. tl_wait_semaphores.push_back({});
  416. tl_signal_vals.push_back({});
  417. tl_signal_semaphores.push_back({});
  418. for (size_t i = 0; i < submission.wait_semaphores.size(); i++) {
  419. stage_flags[idx].push_back(ctx->q->stage_flags);
  420. tl_wait_vals[idx].push_back(submission.wait_semaphores[i].value);
  421. tl_wait_semaphores[idx].push_back(submission.wait_semaphores[i].s);
  422. }
  423. for (size_t i = 0; i < submission.signal_semaphores.size(); i++) {
  424. tl_signal_vals[idx].push_back(submission.signal_semaphores[i].value);
  425. tl_signal_semaphores[idx].push_back(submission.signal_semaphores[i].s);
  426. }
  427. tl_submit_infos.push_back({
  428. (uint32_t) submission.wait_semaphores.size(),
  429. tl_wait_vals[idx].data(),
  430. (uint32_t) submission.signal_semaphores.size(),
  431. tl_signal_vals[idx].data(),
  432. });
  433. tl_submit_infos[idx].sType = vk::StructureType::eTimelineSemaphoreSubmitInfo;
  434. tl_submit_infos[idx].pNext = nullptr;
  435. vk::SubmitInfo si{
  436. (uint32_t) submission.wait_semaphores.size(),
  437. tl_wait_semaphores[idx].data(),
  438. stage_flags[idx].data(),
  439. 1,
  440. &submission.buffer,
  441. (uint32_t) submission.signal_semaphores.size(),
  442. tl_signal_semaphores[idx].data(),
  443. };
  444. si.setPNext(&tl_submit_infos[idx]);
  445. submit_infos.push_back(si);
  446. }
  447. }
  448. ctx->q->queue.submit(submit_infos, fence);
  449. ctx->seqs.clear();
  450. }
  451. static uint32_t ggml_vk_find_queue_family_index(std::vector<vk::QueueFamilyProperties>& queue_family_props, const vk::QueueFlags& required, const vk::QueueFlags& avoid, int32_t compute_index, uint32_t min_num_queues) {
  452. #ifdef VK_DEBUG
  453. std::cerr << "ggml_vk_find_queue_family_index()" << std::endl;
  454. #endif
  455. const uint32_t qfsize = queue_family_props.size();
  456. // Try with avoid preferences first
  457. for (uint32_t i = 0; i < qfsize; i++) {
  458. if (queue_family_props[i].queueCount >= min_num_queues && (compute_index < 0 || i != (uint32_t) compute_index) && queue_family_props[i].queueFlags & required && !(queue_family_props[i].queueFlags & avoid)) {
  459. return i;
  460. }
  461. }
  462. // Fall back to only required
  463. for (size_t i = 0; i < qfsize; i++) {
  464. if (queue_family_props[i].queueCount >= min_num_queues && (compute_index < 0 || i != (uint32_t) compute_index) && queue_family_props[i].queueFlags & required) {
  465. return i;
  466. }
  467. }
  468. // Fall back to reusing compute queue
  469. for (size_t i = 0; i < qfsize; i++) {
  470. if (queue_family_props[i].queueCount >= min_num_queues && queue_family_props[i].queueFlags & required) {
  471. return i;
  472. }
  473. }
  474. // Fall back to ignoring min_num_queries
  475. for (size_t i = 0; i < qfsize; i++) {
  476. if (queue_family_props[i].queueFlags & required) {
  477. return i;
  478. }
  479. }
  480. std::cerr << "ggml_vulkan: No suitable queue family index found." << std::endl;
  481. for(auto &q_family : queue_family_props) {
  482. std::cerr << "Queue number: " + std::to_string(q_family.queueCount) << " flags: " + to_string(q_family.queueFlags) << std::endl;
  483. }
  484. abort();
  485. }
  486. static vk_queue ggml_vk_create_queue(uint32_t queue_family_index, uint32_t queue_index, vk::PipelineStageFlags&& stage_flags) {
  487. #ifdef VK_DEBUG
  488. std::cerr << "ggml_vk_create_queue()" << std::endl;
  489. #endif
  490. vk_queue q;
  491. q.queue_family_index = queue_family_index;
  492. vk::CommandPoolCreateInfo command_pool_create_info_compute(vk::CommandPoolCreateFlags(VK_COMMAND_POOL_CREATE_TRANSIENT_BIT), queue_family_index);
  493. q.pool = vk_device.device.createCommandPool(command_pool_create_info_compute);
  494. q.cmd_buffer_idx = 0;
  495. q.queue = vk_device.device.getQueue(queue_family_index, queue_index);
  496. q.stage_flags = stage_flags;
  497. return q;
  498. }
  499. static vk_context * ggml_vk_create_context(vk_queue& q) {
  500. #ifdef VK_DEBUG
  501. std::cerr << "ggml_vk_create_context()" << std::endl;
  502. #endif
  503. vk_gc.contexts.emplace_back();
  504. vk_context * result = &vk_gc.contexts[vk_gc.contexts.size() - 1];
  505. memset((void *) result, 0, sizeof(vk_context));
  506. result->idx = vk_gc.contexts.size() - 1;
  507. result->q = &q;
  508. return result;
  509. }
  510. static vk_semaphore * ggml_vk_create_binary_semaphore() {
  511. #ifdef VK_DEBUG
  512. std::cerr << "ggml_vk_create_timeline_semaphore()" << std::endl;
  513. #endif
  514. vk::SemaphoreTypeCreateInfo tci{ vk::SemaphoreType::eBinary, 0 };
  515. vk::SemaphoreCreateInfo ci{};
  516. ci.setPNext(&tci);
  517. vk::Semaphore semaphore = vk_device.device.createSemaphore(ci);
  518. vk_gc.semaphores.push_back({ semaphore, 0 });
  519. return &vk_gc.semaphores[vk_gc.semaphores.size() - 1];
  520. }
  521. static vk_semaphore * ggml_vk_create_timeline_semaphore() {
  522. #ifdef VK_DEBUG
  523. std::cerr << "ggml_vk_create_timeline_semaphore()" << std::endl;
  524. #endif
  525. if (vk_semaphore_idx >= vk_gc.tl_semaphores.size()) {
  526. vk::SemaphoreTypeCreateInfo tci{ vk::SemaphoreType::eTimeline, 0 };
  527. vk::SemaphoreCreateInfo ci{};
  528. ci.setPNext(&tci);
  529. vk::Semaphore semaphore = vk_device.device.createSemaphore(ci);
  530. vk_gc.tl_semaphores.push_back({ semaphore, 0 });
  531. }
  532. return &vk_gc.tl_semaphores[vk_semaphore_idx++];
  533. }
  534. static vk::Event ggml_vk_create_event() {
  535. if (vk_event_idx >= vk_gc.events.size()) {
  536. vk_gc.events.push_back(vk_device.device.createEvent({}));
  537. }
  538. return vk_gc.events[vk_event_idx++];
  539. }
  540. static void ggml_vk_queue_cleanup(vk_queue& q) {
  541. #ifdef VK_DEBUG
  542. std::cerr << "ggml_vk_queue_cleanup()" << std::endl;
  543. #endif
  544. // Requires command buffers to be done
  545. vk_device.device.resetCommandPool(q.pool);
  546. q.cmd_buffer_idx = 0;
  547. }
  548. static vk_buffer ggml_vk_create_buffer(size_t size, vk::MemoryPropertyFlags req_flags) {
  549. #ifdef VK_DEBUG
  550. std::cerr << "ggml_vk_create_buffer(" << size << ", " << to_string(req_flags) << ")" << std::endl;
  551. #endif
  552. GGML_ASSERT(size > 0);
  553. vk_buffer buf;
  554. buf.size = size;
  555. vk::BufferCreateInfo buffer_create_info{
  556. vk::BufferCreateFlags(),
  557. size,
  558. vk::BufferUsageFlagBits::eStorageBuffer | vk::BufferUsageFlagBits::eTransferSrc | vk::BufferUsageFlagBits::eTransferDst,
  559. vk::SharingMode::eExclusive,
  560. 0,
  561. nullptr,
  562. };
  563. buf.buffer = vk_device.device.createBuffer(buffer_create_info);
  564. vk::MemoryRequirements mem_req = vk_device.device.getBufferMemoryRequirements(buf.buffer);
  565. vk::PhysicalDeviceMemoryProperties mem_props = vk_device.physical_device.getMemoryProperties();
  566. uint32_t memory_type_index = UINT32_MAX;
  567. for (uint32_t i = 0; i < mem_props.memoryTypeCount; ++i) {
  568. vk::MemoryType memory_type = mem_props.memoryTypes[i];
  569. if ((mem_req.memoryTypeBits & ((uint64_t)1 << i)) && (req_flags & memory_type.propertyFlags) == req_flags && mem_props.memoryHeaps[memory_type.heapIndex].size >= mem_req.size) {
  570. memory_type_index = i;
  571. break;
  572. }
  573. }
  574. if (memory_type_index >= mem_props.memoryTypeCount) {
  575. throw vk::OutOfDeviceMemoryError("No suitable memory type found");
  576. }
  577. try {
  578. buf.device_memory = vk_device.device.allocateMemory({ mem_req.size, memory_type_index });
  579. } catch (const vk::SystemError& e) {
  580. // Out of Host/Device memory, clean up buffer
  581. vk_device.device.destroyBuffer(buf.buffer);
  582. buf.size = 0;
  583. throw e;
  584. }
  585. buf.memory_property_flags = req_flags;
  586. buf.ptr = nullptr;
  587. if (req_flags & vk::MemoryPropertyFlagBits::eHostVisible) {
  588. buf.ptr = vk_device.device.mapMemory(buf.device_memory, 0, VK_WHOLE_SIZE);
  589. }
  590. vk_device.device.bindBufferMemory(buf.buffer, buf.device_memory, 0);
  591. buf.qf_owner = VK_QUEUE_FAMILY_IGNORED;
  592. return buf;
  593. }
  594. static vk_buffer ggml_vk_create_buffer_check(size_t size, vk::MemoryPropertyFlags req_flags) {
  595. try {
  596. return ggml_vk_create_buffer(size, req_flags);
  597. } catch (const vk::SystemError& e) {
  598. std::cerr << "ggml_vulkan: Memory allocation of size " << size << " failed." << std::endl;
  599. std::cerr << "ggml_vulkan: " << e.what() << std::endl;
  600. throw e;
  601. }
  602. }
  603. static vk_buffer ggml_vk_create_buffer_device(size_t size) {
  604. vk_buffer buf;
  605. try {
  606. buf = ggml_vk_create_buffer(size, vk::MemoryPropertyFlagBits::eDeviceLocal);
  607. } catch (const vk::SystemError& e) {
  608. if (vk_device.uma) {
  609. // Fall back to host memory type
  610. buf = ggml_vk_create_buffer_check(size, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent);
  611. } else {
  612. std::cerr << "ggml_vulkan: Device memory allocation of size " << size << " failed." << std::endl;
  613. std::cerr << "ggml_vulkan: " << e.what() << std::endl;
  614. throw e;
  615. }
  616. }
  617. return buf;
  618. }
  619. static void ggml_vk_destroy_buffer(vk_buffer& buf) {
  620. if (buf.size == 0) {
  621. return;
  622. }
  623. #ifdef VK_DEBUG
  624. std::cerr << "ggml_vk_destroy_buffer(" << buf.size << ")" << std::endl;
  625. #endif
  626. buf.size = 0;
  627. vk_device.device.freeMemory(buf.device_memory);
  628. vk_device.device.destroyBuffer(buf.buffer);
  629. }
  630. static vk_subbuffer ggml_vk_subbuffer(vk_buffer& buf) {
  631. return { buf, 0, VK_WHOLE_SIZE };
  632. }
  633. static void ggml_vk_sync_buffers(vk_context * ctx) {
  634. #ifdef VK_DEBUG
  635. std::cerr << "ggml_vk_sync_buffers()" << std::endl;
  636. #endif
  637. const std::vector<vk::MemoryBarrier> mem_barriers{ { { vk::AccessFlagBits::eMemoryRead | vk::AccessFlagBits::eMemoryWrite }, { vk::AccessFlagBits::eMemoryRead | vk::AccessFlagBits::eMemoryWrite } } };
  638. ctx->s->buffer.pipelineBarrier(
  639. ctx->q->stage_flags,
  640. ctx->q->stage_flags,
  641. {},
  642. mem_barriers,
  643. {},
  644. {}
  645. );
  646. }
  647. static void ggml_vk_wait_events(vk::CommandBuffer& cmd_buffer, std::vector<vk::Event>&& events, vk::PipelineStageFlags src_stages, vk::PipelineStageFlags dst_stages) {
  648. #ifdef VK_DEBUG
  649. std::cerr << "ggml_vk_wait_events()" << std::endl;
  650. #endif
  651. if (events.empty()) {
  652. return;
  653. }
  654. cmd_buffer.waitEvents(
  655. events,
  656. src_stages,
  657. dst_stages,
  658. {},
  659. {},
  660. {}
  661. );
  662. }
  663. static bool ggml_vk_build_shader(ggml_type type) {
  664. switch(type) {
  665. case GGML_TYPE_F16:
  666. case GGML_TYPE_Q4_0:
  667. case GGML_TYPE_Q4_1:
  668. case GGML_TYPE_Q5_0:
  669. case GGML_TYPE_Q5_1:
  670. case GGML_TYPE_Q8_0:
  671. case GGML_TYPE_Q2_K:
  672. case GGML_TYPE_Q3_K:
  673. case GGML_TYPE_Q4_K:
  674. case GGML_TYPE_Q5_K:
  675. case GGML_TYPE_Q6_K:
  676. return true;
  677. default:
  678. return false;
  679. }
  680. }
  681. static void ggml_vk_load_shaders() {
  682. #ifdef VK_DEBUG
  683. std::cerr << "ggml_vk_load_shaders()" << std::endl;
  684. #endif
  685. // mulmat
  686. std::initializer_list<uint32_t> warptile_l = { 128, 128, 128, 16, vk_device.subgroup_size * 2, 64, 2, 4, 4, vk_device.subgroup_size };
  687. std::initializer_list<uint32_t> warptile_m = { 128, 64, 64, 16, vk_device.subgroup_size, 32, 2, 4, 2, vk_device.subgroup_size };
  688. std::initializer_list<uint32_t> warptile_s = { vk_device.subgroup_size, 32, 32, 8, 32, 32, 2, 2, 2, vk_device.subgroup_size };
  689. std::array<uint32_t, 3> l_wg_denoms = {128, 128, 1 };
  690. std::array<uint32_t, 3> m_wg_denoms = { 64, 64, 1 };
  691. std::array<uint32_t, 3> s_wg_denoms = { 32, 32, 1 };
  692. uint32_t l_align = 128;
  693. uint32_t m_align = 64;
  694. uint32_t s_align = 32;
  695. if (vk_device.fp16) {
  696. vk_pipeline_matmul_f32_l = ggml_vk_create_pipeline("matmul_f32_l", matmul_f32_l_len, matmul_f32_l_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, 1);
  697. vk_pipeline_matmul_f32_m = ggml_vk_create_pipeline("matmul_f32_m", matmul_f32_m_len, matmul_f32_m_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, 1);
  698. vk_pipeline_matmul_f32_s = ggml_vk_create_pipeline("matmul_f32_s", matmul_f32_s_len, matmul_f32_s_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, 1);
  699. vk_pipeline_matmul_f32_aligned_l = ggml_vk_create_pipeline("matmul_f32_aligned_l", matmul_f32_aligned_l_len, matmul_f32_aligned_l_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, l_align);
  700. vk_pipeline_matmul_f32_aligned_m = ggml_vk_create_pipeline("matmul_f32_aligned_m", matmul_f32_aligned_m_len, matmul_f32_aligned_m_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, m_align);
  701. vk_pipeline_matmul_f32_aligned_s = ggml_vk_create_pipeline("matmul_f32_aligned_s", matmul_f32_aligned_s_len, matmul_f32_aligned_s_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, s_align);
  702. vk_pipeline_matmul_f16_l = ggml_vk_create_pipeline("matmul_f16_l", matmul_f16_l_len, matmul_f16_l_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, 1);
  703. vk_pipeline_matmul_f16_m = ggml_vk_create_pipeline("matmul_f16_m", matmul_f16_m_len, matmul_f16_m_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, 1);
  704. vk_pipeline_matmul_f16_s = ggml_vk_create_pipeline("matmul_f16_s", matmul_f16_s_len, matmul_f16_s_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, 1);
  705. vk_pipeline_matmul_f16_aligned_l = ggml_vk_create_pipeline("matmul_f16_aligned_l", matmul_f16_aligned_l_len, matmul_f16_aligned_l_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, l_align);
  706. vk_pipeline_matmul_f16_aligned_m = ggml_vk_create_pipeline("matmul_f16_aligned_m", matmul_f16_aligned_m_len, matmul_f16_aligned_m_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, m_align);
  707. vk_pipeline_matmul_f16_aligned_s = ggml_vk_create_pipeline("matmul_f16_aligned_s", matmul_f16_aligned_s_len, matmul_f16_aligned_s_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, s_align);
  708. vk_pipeline_matmul_f16_f32_l = ggml_vk_create_pipeline("matmul_f16_f32_l", matmul_f16_f32_l_len, matmul_f16_f32_l_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, 1);
  709. vk_pipeline_matmul_f16_f32_m = ggml_vk_create_pipeline("matmul_f16_f32_m", matmul_f16_f32_m_len, matmul_f16_f32_m_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, 1);
  710. vk_pipeline_matmul_f16_f32_s = ggml_vk_create_pipeline("matmul_f16_f32_s", matmul_f16_f32_s_len, matmul_f16_f32_s_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, 1);
  711. vk_pipeline_matmul_f16_f32_aligned_l = ggml_vk_create_pipeline("matmul_f16_f32_aligned_l", matmul_f16_f32_aligned_l_len, matmul_f16_f32_aligned_l_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, l_align);
  712. vk_pipeline_matmul_f16_f32_aligned_m = ggml_vk_create_pipeline("matmul_f16_f32_aligned_m", matmul_f16_f32_aligned_m_len, matmul_f16_f32_aligned_m_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, m_align);
  713. vk_pipeline_matmul_f16_f32_aligned_s = ggml_vk_create_pipeline("matmul_f16_f32_aligned_s", matmul_f16_f32_aligned_s_len, matmul_f16_f32_aligned_s_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, s_align);
  714. // Build dequant shaders
  715. vk_pipeline_dequant[GGML_TYPE_F32] = ggml_vk_create_pipeline("f32_to_f16", f32_to_f16_len, f32_to_f16_data, "main", 2, 4 * sizeof(int), {64, 1, 1}, {}, 1);
  716. vk_pipeline_dequant[GGML_TYPE_F16] = ggml_vk_create_pipeline("dequant_f16", dequant_f16_len, dequant_f16_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
  717. vk_pipeline_dequant[GGML_TYPE_Q4_0] = ggml_vk_create_pipeline("dequant_q4_0", dequant_q4_0_len, dequant_q4_0_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
  718. vk_pipeline_dequant[GGML_TYPE_Q4_1] = ggml_vk_create_pipeline("dequant_q4_1", dequant_q4_1_len, dequant_q4_1_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
  719. vk_pipeline_dequant[GGML_TYPE_Q5_0] = ggml_vk_create_pipeline("dequant_q5_0", dequant_q5_0_len, dequant_q5_0_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
  720. vk_pipeline_dequant[GGML_TYPE_Q5_1] = ggml_vk_create_pipeline("dequant_q5_1", dequant_q5_1_len, dequant_q5_1_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
  721. vk_pipeline_dequant[GGML_TYPE_Q8_0] = ggml_vk_create_pipeline("dequant_q8_0", dequant_q8_0_len, dequant_q8_0_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
  722. vk_pipeline_dequant[GGML_TYPE_Q2_K] = ggml_vk_create_pipeline("dequant_q2_K", dequant_q2_K_len, dequant_q2_K_data, "main", 2, 4 * sizeof(int), {256 * 64, 1, 1}, {}, 1);
  723. vk_pipeline_dequant[GGML_TYPE_Q3_K] = ggml_vk_create_pipeline("dequant_q3_K", dequant_q3_K_len, dequant_q3_K_data, "main", 2, 4 * sizeof(int), {256 * 64, 1, 1}, {}, 1);
  724. vk_pipeline_dequant[GGML_TYPE_Q4_K] = ggml_vk_create_pipeline("dequant_q4_K", dequant_q4_K_len, dequant_q4_K_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
  725. vk_pipeline_dequant[GGML_TYPE_Q5_K] = ggml_vk_create_pipeline("dequant_q5_K", dequant_q5_K_len, dequant_q5_K_data, "main", 2, 4 * sizeof(int), {256 * 64, 1, 1}, {}, 1);
  726. vk_pipeline_dequant[GGML_TYPE_Q6_K] = ggml_vk_create_pipeline("dequant_q6_K", dequant_q6_K_len, dequant_q6_K_data, "main", 2, 4 * sizeof(int), {256 * 64, 1, 1}, {}, 1);
  727. // get_rows
  728. vk_pipeline_get_rows[GGML_TYPE_F16] = ggml_vk_create_pipeline("get_rows_f16", get_rows_f16_len, get_rows_f16_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  729. vk_pipeline_get_rows[GGML_TYPE_Q4_0] = ggml_vk_create_pipeline("get_rows_q4_0", get_rows_q4_0_len, get_rows_q4_0_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  730. vk_pipeline_get_rows[GGML_TYPE_Q4_1] = ggml_vk_create_pipeline("get_rows_q4_1", get_rows_q4_1_len, get_rows_q4_1_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  731. vk_pipeline_get_rows[GGML_TYPE_Q5_0] = ggml_vk_create_pipeline("get_rows_q5_0", get_rows_q5_0_len, get_rows_q5_0_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  732. vk_pipeline_get_rows[GGML_TYPE_Q5_1] = ggml_vk_create_pipeline("get_rows_q5_1", get_rows_q5_1_len, get_rows_q5_1_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  733. vk_pipeline_get_rows[GGML_TYPE_Q8_0] = ggml_vk_create_pipeline("get_rows_q8_0", get_rows_q8_0_len, get_rows_q8_0_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  734. vk_pipeline_get_rows_f32[GGML_TYPE_F16] = ggml_vk_create_pipeline("get_rows_f16_f32", get_rows_f16_f32_len, get_rows_f16_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  735. vk_pipeline_get_rows_f32[GGML_TYPE_Q4_0] = ggml_vk_create_pipeline("get_rows_q4_0_f32", get_rows_q4_0_f32_len, get_rows_q4_0_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  736. vk_pipeline_get_rows_f32[GGML_TYPE_Q4_1] = ggml_vk_create_pipeline("get_rows_q4_1_f32", get_rows_q4_1_f32_len, get_rows_q4_1_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  737. vk_pipeline_get_rows_f32[GGML_TYPE_Q5_0] = ggml_vk_create_pipeline("get_rows_q5_0_f32", get_rows_q5_0_f32_len, get_rows_q5_0_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  738. vk_pipeline_get_rows_f32[GGML_TYPE_Q5_1] = ggml_vk_create_pipeline("get_rows_q5_1_f32", get_rows_q5_1_f32_len, get_rows_q5_1_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  739. vk_pipeline_get_rows_f32[GGML_TYPE_Q8_0] = ggml_vk_create_pipeline("get_rows_q8_0_f32", get_rows_q8_0_f32_len, get_rows_q8_0_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  740. } else {
  741. vk_pipeline_matmul_f32_l = ggml_vk_create_pipeline("matmul_f32_l", matmul_f32_l_fp32_len, matmul_f32_l_fp32_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, 1);
  742. vk_pipeline_matmul_f32_m = ggml_vk_create_pipeline("matmul_f32_m", matmul_f32_m_fp32_len, matmul_f32_m_fp32_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, 1);
  743. vk_pipeline_matmul_f32_s = ggml_vk_create_pipeline("matmul_f32_s", matmul_f32_s_fp32_len, matmul_f32_s_fp32_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, 1);
  744. vk_pipeline_matmul_f32_aligned_l = ggml_vk_create_pipeline("matmul_f32_aligned_l", matmul_f32_aligned_l_fp32_len, matmul_f32_aligned_l_fp32_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, l_align);
  745. vk_pipeline_matmul_f32_aligned_m = ggml_vk_create_pipeline("matmul_f32_aligned_m", matmul_f32_aligned_m_fp32_len, matmul_f32_aligned_m_fp32_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, m_align);
  746. vk_pipeline_matmul_f32_aligned_s = ggml_vk_create_pipeline("matmul_f32_aligned_s", matmul_f32_aligned_s_fp32_len, matmul_f32_aligned_s_fp32_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, s_align);
  747. vk_pipeline_matmul_f16_l = ggml_vk_create_pipeline("matmul_f16_l", matmul_f16_l_fp32_len, matmul_f16_l_fp32_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, 1);
  748. vk_pipeline_matmul_f16_m = ggml_vk_create_pipeline("matmul_f16_m", matmul_f16_m_fp32_len, matmul_f16_m_fp32_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, 1);
  749. vk_pipeline_matmul_f16_s = ggml_vk_create_pipeline("matmul_f16_s", matmul_f16_s_fp32_len, matmul_f16_s_fp32_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, 1);
  750. vk_pipeline_matmul_f16_aligned_l = ggml_vk_create_pipeline("matmul_f16_aligned_l", matmul_f16_aligned_l_fp32_len, matmul_f16_aligned_l_fp32_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, l_align);
  751. vk_pipeline_matmul_f16_aligned_m = ggml_vk_create_pipeline("matmul_f16_aligned_m", matmul_f16_aligned_m_fp32_len, matmul_f16_aligned_m_fp32_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, m_align);
  752. vk_pipeline_matmul_f16_aligned_s = ggml_vk_create_pipeline("matmul_f16_aligned_s", matmul_f16_aligned_s_fp32_len, matmul_f16_aligned_s_fp32_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, s_align);
  753. vk_pipeline_matmul_f16_f32_l = ggml_vk_create_pipeline("matmul_f16_f32_l", matmul_f16_f32_l_fp32_len, matmul_f16_f32_l_fp32_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, 1);
  754. vk_pipeline_matmul_f16_f32_m = ggml_vk_create_pipeline("matmul_f16_f32_m", matmul_f16_f32_m_fp32_len, matmul_f16_f32_m_fp32_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, 1);
  755. vk_pipeline_matmul_f16_f32_s = ggml_vk_create_pipeline("matmul_f16_f32_s", matmul_f16_f32_s_fp32_len, matmul_f16_f32_s_fp32_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, 1);
  756. vk_pipeline_matmul_f16_f32_aligned_l = ggml_vk_create_pipeline("matmul_f16_f32_aligned_l", matmul_f16_f32_aligned_l_fp32_len, matmul_f16_f32_aligned_l_fp32_data, "main", 3, 14 * sizeof(uint32_t), l_wg_denoms, warptile_l, l_align);
  757. vk_pipeline_matmul_f16_f32_aligned_m = ggml_vk_create_pipeline("matmul_f16_f32_aligned_m", matmul_f16_f32_aligned_m_fp32_len, matmul_f16_f32_aligned_m_fp32_data, "main", 3, 14 * sizeof(uint32_t), m_wg_denoms, warptile_m, m_align);
  758. vk_pipeline_matmul_f16_f32_aligned_s = ggml_vk_create_pipeline("matmul_f16_f32_aligned_s", matmul_f16_f32_aligned_s_fp32_len, matmul_f16_f32_aligned_s_fp32_data, "main", 3, 14 * sizeof(uint32_t), s_wg_denoms, warptile_s, s_align);
  759. // Build dequant shaders
  760. vk_pipeline_dequant[GGML_TYPE_F32] = ggml_vk_create_pipeline("f32_to_f16", f32_to_f16_fp32_len, f32_to_f16_fp32_data, "main", 2, 4 * sizeof(int), {64, 1, 1}, {}, 1);
  761. vk_pipeline_dequant[GGML_TYPE_F16] = ggml_vk_create_pipeline("dequant_f16", dequant_f16_fp32_len, dequant_f16_fp32_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
  762. vk_pipeline_dequant[GGML_TYPE_Q4_0] = ggml_vk_create_pipeline("dequant_q4_0", dequant_q4_0_fp32_len, dequant_q4_0_fp32_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
  763. vk_pipeline_dequant[GGML_TYPE_Q4_1] = ggml_vk_create_pipeline("dequant_q4_1", dequant_q4_1_fp32_len, dequant_q4_1_fp32_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
  764. vk_pipeline_dequant[GGML_TYPE_Q5_0] = ggml_vk_create_pipeline("dequant_q5_0", dequant_q5_0_fp32_len, dequant_q5_0_fp32_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
  765. vk_pipeline_dequant[GGML_TYPE_Q5_1] = ggml_vk_create_pipeline("dequant_q5_1", dequant_q5_1_fp32_len, dequant_q5_1_fp32_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
  766. vk_pipeline_dequant[GGML_TYPE_Q8_0] = ggml_vk_create_pipeline("dequant_q8_0", dequant_q8_0_fp32_len, dequant_q8_0_fp32_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
  767. vk_pipeline_dequant[GGML_TYPE_Q2_K] = ggml_vk_create_pipeline("dequant_q2_K", dequant_q2_K_fp32_len, dequant_q2_K_fp32_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
  768. vk_pipeline_dequant[GGML_TYPE_Q3_K] = ggml_vk_create_pipeline("dequant_q3_K", dequant_q3_K_fp32_len, dequant_q3_K_fp32_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
  769. vk_pipeline_dequant[GGML_TYPE_Q4_K] = ggml_vk_create_pipeline("dequant_q4_K", dequant_q4_K_fp32_len, dequant_q4_K_fp32_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
  770. vk_pipeline_dequant[GGML_TYPE_Q5_K] = ggml_vk_create_pipeline("dequant_q5_K", dequant_q5_K_fp32_len, dequant_q5_K_fp32_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
  771. vk_pipeline_dequant[GGML_TYPE_Q6_K] = ggml_vk_create_pipeline("dequant_q6_K", dequant_q6_K_fp32_len, dequant_q6_K_fp32_data, "main", 2, 4 * sizeof(int), {256 * 32, 1, 1}, {}, 1);
  772. // get_rows
  773. vk_pipeline_get_rows[GGML_TYPE_F16] = ggml_vk_create_pipeline("get_rows_f16", get_rows_f16_fp32_len, get_rows_f16_fp32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  774. vk_pipeline_get_rows[GGML_TYPE_Q4_0] = ggml_vk_create_pipeline("get_rows_q4_0", get_rows_q4_0_fp32_len, get_rows_q4_0_fp32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  775. vk_pipeline_get_rows[GGML_TYPE_Q4_1] = ggml_vk_create_pipeline("get_rows_q4_1", get_rows_q4_1_fp32_len, get_rows_q4_1_fp32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  776. vk_pipeline_get_rows[GGML_TYPE_Q5_0] = ggml_vk_create_pipeline("get_rows_q5_0", get_rows_q5_0_fp32_len, get_rows_q5_0_fp32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  777. vk_pipeline_get_rows[GGML_TYPE_Q5_1] = ggml_vk_create_pipeline("get_rows_q5_1", get_rows_q5_1_fp32_len, get_rows_q5_1_fp32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  778. vk_pipeline_get_rows[GGML_TYPE_Q8_0] = ggml_vk_create_pipeline("get_rows_q8_0", get_rows_q8_0_fp32_len, get_rows_q8_0_fp32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  779. vk_pipeline_get_rows_f32[GGML_TYPE_F16] = ggml_vk_create_pipeline("get_rows_f16_f32", get_rows_f16_f32_fp32_len, get_rows_f16_f32_fp32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  780. vk_pipeline_get_rows_f32[GGML_TYPE_Q4_0] = ggml_vk_create_pipeline("get_rows_q4_0_f32", get_rows_q4_0_f32_fp32_len, get_rows_q4_0_f32_fp32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  781. vk_pipeline_get_rows_f32[GGML_TYPE_Q4_1] = ggml_vk_create_pipeline("get_rows_q4_1_f32", get_rows_q4_1_f32_fp32_len, get_rows_q4_1_f32_fp32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  782. vk_pipeline_get_rows_f32[GGML_TYPE_Q5_0] = ggml_vk_create_pipeline("get_rows_q5_0_f32", get_rows_q5_0_f32_fp32_len, get_rows_q5_0_f32_fp32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  783. vk_pipeline_get_rows_f32[GGML_TYPE_Q5_1] = ggml_vk_create_pipeline("get_rows_q5_1_f32", get_rows_q5_1_f32_fp32_len, get_rows_q5_1_f32_fp32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  784. vk_pipeline_get_rows_f32[GGML_TYPE_Q8_0] = ggml_vk_create_pipeline("get_rows_q8_0_f32", get_rows_q8_0_f32_fp32_len, get_rows_q8_0_f32_fp32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  785. }
  786. vk_pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_F16] = ggml_vk_create_pipeline("mul_mat_vec_f16_f32", mul_mat_vec_f16_f32_len, mul_mat_vec_f16_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1);
  787. vk_pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_Q4_0] = ggml_vk_create_pipeline("mul_mat_vec_q4_0_f32", mul_mat_vec_q4_0_f32_len, mul_mat_vec_q4_0_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1);
  788. vk_pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_Q4_1] = ggml_vk_create_pipeline("mul_mat_vec_q4_1_f32", mul_mat_vec_q4_1_f32_len, mul_mat_vec_q4_1_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1);
  789. vk_pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_Q5_0] = ggml_vk_create_pipeline("mul_mat_vec_q5_0_f32", mul_mat_vec_q5_0_f32_len, mul_mat_vec_q5_0_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1);
  790. vk_pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_Q5_1] = ggml_vk_create_pipeline("mul_mat_vec_q5_1_f32", mul_mat_vec_q5_1_f32_len, mul_mat_vec_q5_1_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1);
  791. vk_pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_Q8_0] = ggml_vk_create_pipeline("mul_mat_vec_q8_0_f32", mul_mat_vec_q8_0_f32_len, mul_mat_vec_q8_0_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1);
  792. vk_pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_Q2_K] = ggml_vk_create_pipeline("mul_mat_vec_q2_K_f32", mul_mat_vec_q2_K_f32_len, mul_mat_vec_q2_K_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1);
  793. vk_pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_Q3_K] = ggml_vk_create_pipeline("mul_mat_vec_q3_K_f32", mul_mat_vec_q3_K_f32_len, mul_mat_vec_q3_K_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1);
  794. vk_pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_Q4_K] = ggml_vk_create_pipeline("mul_mat_vec_q4_K_f32", mul_mat_vec_q4_K_f32_len, mul_mat_vec_q4_K_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1);
  795. vk_pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_Q5_K] = ggml_vk_create_pipeline("mul_mat_vec_q5_K_f32", mul_mat_vec_q5_K_f32_len, mul_mat_vec_q5_K_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1);
  796. vk_pipeline_dequant_mul_mat_vec_f32[GGML_TYPE_Q6_K] = ggml_vk_create_pipeline("mul_mat_vec_q6_K_f32", mul_mat_vec_q6_K_f32_len, mul_mat_vec_q6_K_f32_data, "main", 3, 3 * sizeof(int), {1, 1, 1}, {}, 1);
  797. vk_pipeline_matmul_split_k_reduce = ggml_vk_create_pipeline("split_k_reduce", split_k_reduce_len, split_k_reduce_data, "main", 2, 2 * sizeof(uint32_t), {256, 1, 1}, {}, 1);
  798. vk_pipeline_mul_mat_vec_p021_f16_f32 = ggml_vk_create_pipeline("mul_mat_vec_p021_f16_f32", mul_mat_vec_p021_f16_f32_len, mul_mat_vec_p021_f16_f32_data, "main", 3, 6 * sizeof(uint32_t), {1, 1, 1}, {}, 1);
  799. vk_pipeline_mul_mat_vec_nc_f16_f32 = ggml_vk_create_pipeline("mul_mat_vec_nc_f16_f32", mul_mat_vec_nc_f16_f32_len, mul_mat_vec_nc_f16_f32_data, "main", 3, 7 * sizeof(uint32_t), {1, 1, 1}, {}, 1);
  800. vk_pipeline_norm_f32 = ggml_vk_create_pipeline("norm_f32", norm_f32_len, norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
  801. vk_pipeline_rms_norm_f32 = ggml_vk_create_pipeline("rms_norm_f32", rms_norm_f32_len, rms_norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
  802. vk_pipeline_cpy_f32_f32 = ggml_vk_create_pipeline("cpy_f32_f32", cpy_f32_f32_len, cpy_f32_f32_data, "main", 2, sizeof(vk_op_cpy_push_constants), {512, 1, 1}, {}, 1);
  803. vk_pipeline_cpy_f32_f16 = ggml_vk_create_pipeline("cpy_f32_f16", cpy_f32_f16_len, cpy_f32_f16_data, "main", 2, sizeof(vk_op_cpy_push_constants), {512, 1, 1}, {}, 1);
  804. vk_pipeline_cpy_f16_f16 = ggml_vk_create_pipeline("cpy_f16_f16", cpy_f16_f16_len, cpy_f16_f16_data, "main", 2, sizeof(vk_op_cpy_push_constants), {512, 1, 1}, {}, 1);
  805. vk_pipeline_add_f32 = ggml_vk_create_pipeline("add_f32", add_f32_len, add_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  806. vk_pipeline_mul_f32 = ggml_vk_create_pipeline("mul_f32", mul_f32_len, mul_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  807. vk_pipeline_scale_f32 = ggml_vk_create_pipeline("scale_f32", scale_f32_len, scale_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  808. vk_pipeline_sqr_f32 = ggml_vk_create_pipeline("sqr_f32", sqr_f32_len, sqr_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  809. vk_pipeline_clamp_f32 = ggml_vk_create_pipeline("clamp_f32", clamp_f32_len, clamp_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  810. vk_pipeline_gelu_f32 = ggml_vk_create_pipeline("gelu_f32", gelu_f32_len, gelu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  811. vk_pipeline_silu_f32 = ggml_vk_create_pipeline("silu_f32", silu_f32_len, silu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  812. vk_pipeline_relu_f32 = ggml_vk_create_pipeline("relu_f32", relu_f32_len, relu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
  813. vk_pipeline_diag_mask_inf_f32 = ggml_vk_create_pipeline("diag_mask_inf_f32", diag_mask_inf_f32_len, diag_mask_inf_f32_data, "main", 2, sizeof(vk_op_diag_mask_push_constants), {512, 1, 1}, {}, 1);
  814. vk_pipeline_soft_max_f32 = ggml_vk_create_pipeline("soft_max_f32", soft_max_f32_len, soft_max_f32_data, "main", 3, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
  815. vk_pipeline_rope_f32 = ggml_vk_create_pipeline("rope_f32", rope_f32_len, rope_f32_data, "main", 3, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
  816. vk_pipeline_rope_f16 = ggml_vk_create_pipeline("rope_f16", rope_f16_len, rope_f16_data, "main", 3, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
  817. vk_pipeline_rope_neox_f32 = ggml_vk_create_pipeline("rope_neox_f32", rope_neox_f32_len, rope_neox_f32_data, "main", 3, sizeof(vk_op_rope_neox_push_constants), {1, 512, 1}, {}, 1);
  818. vk_pipeline_rope_neox_f16 = ggml_vk_create_pipeline("rope_neox_f16", rope_neox_f16_len, rope_neox_f16_data, "main", 3, sizeof(vk_op_rope_neox_push_constants), {1, 512, 1}, {}, 1);
  819. }
  820. void ggml_vk_init() {
  821. #ifdef VK_DEBUG
  822. std::cerr << "ggml_vk_init()" << std::endl;
  823. #endif
  824. static bool initialized = false;
  825. if (initialized) {
  826. return;
  827. }
  828. initialized = true;
  829. const char* GGML_VULKAN_DEVICE = getenv("GGML_VULKAN_DEVICE");
  830. int dev_num = (GGML_VULKAN_DEVICE == NULL ? 0 : atoi(GGML_VULKAN_DEVICE));
  831. vk::ApplicationInfo app_info{ "ggml-vulkan", 1, nullptr, 0, VK_API_VERSION };
  832. const std::vector<const char*> layers = {
  833. #ifdef VK_VALIDATE
  834. "VK_LAYER_KHRONOS_validation",
  835. #endif
  836. };
  837. const std::vector<const char*> extensions = {
  838. #ifdef VK_VALIDATE
  839. "VK_EXT_validation_features",
  840. #endif
  841. };
  842. vk::InstanceCreateInfo instance_create_info(vk::InstanceCreateFlags(), &app_info, layers, extensions);
  843. #ifdef VK_VALIDATE
  844. const std::vector<vk::ValidationFeatureEnableEXT> features_enable = { vk::ValidationFeatureEnableEXT::eBestPractices };
  845. vk::ValidationFeaturesEXT validation_features = {
  846. features_enable,
  847. {},
  848. };
  849. validation_features.setPNext(nullptr);
  850. instance_create_info.setPNext(&validation_features);
  851. std::cerr << "ggml_vulkan: Validation layers enabled" << std::endl;
  852. #endif
  853. vk_instance = vk::createInstance(instance_create_info);
  854. vk_device.physical_device = vk_instance.enumeratePhysicalDevices()[dev_num];
  855. std::vector<vk::ExtensionProperties> ext_props = vk_device.physical_device.enumerateDeviceExtensionProperties();
  856. bool maintenance4_support = false;
  857. // Check if maintenance4 is supported
  858. for (auto properties : ext_props) {
  859. if (strcmp("VK_KHR_maintenance4", properties.extensionName) == 0) {
  860. maintenance4_support = true;
  861. }
  862. }
  863. vk::PhysicalDeviceProperties2 props2;
  864. vk::PhysicalDeviceMaintenance3Properties props3;
  865. vk::PhysicalDeviceMaintenance4Properties props4;
  866. vk::PhysicalDeviceSubgroupProperties subgroup_props;
  867. props2.pNext = &props3;
  868. props3.pNext = &subgroup_props;
  869. if (maintenance4_support) {
  870. subgroup_props.pNext = &props4;
  871. }
  872. vk_device.physical_device.getProperties2(&props2);
  873. vk_device.properties = props2.properties;
  874. if (maintenance4_support) {
  875. vk_device.max_memory_allocation_size = std::min(props3.maxMemoryAllocationSize, props4.maxBufferSize);
  876. } else {
  877. vk_device.max_memory_allocation_size = props3.maxMemoryAllocationSize;
  878. }
  879. vk_device.vendor_id = vk_device.properties.vendorID;
  880. vk_device.subgroup_size = subgroup_props.subgroupSize;
  881. vk_device.uma = vk_device.properties.deviceType == vk::PhysicalDeviceType::eIntegratedGpu;
  882. bool fp16_storage = false;
  883. bool fp16_compute = false;
  884. for (auto properties : ext_props) {
  885. if (strcmp("VK_KHR_16bit_storage", properties.extensionName) == 0) {
  886. fp16_storage = true;
  887. } else if (strcmp("VK_KHR_shader_float16_int8", properties.extensionName) == 0) {
  888. fp16_compute = true;
  889. }
  890. }
  891. const char* GGML_VULKAN_DISABLE_F16 = getenv("GGML_VULKAN_DISABLE_F16");
  892. bool force_disable_f16 = GGML_VULKAN_DISABLE_F16 != NULL;
  893. vk_device.fp16 = !force_disable_f16 && fp16_storage && fp16_compute;
  894. std::vector<vk::QueueFamilyProperties> queue_family_props = vk_device.physical_device.getQueueFamilyProperties();
  895. // Try to find a non-graphics compute queue and transfer-focused queues
  896. const uint32_t compute_queue_family_index = ggml_vk_find_queue_family_index(queue_family_props, vk::QueueFlagBits::eCompute, vk::QueueFlagBits::eGraphics, -1, 1);
  897. const uint32_t transfer_queue_family_index = ggml_vk_find_queue_family_index(queue_family_props, vk::QueueFlagBits::eTransfer, vk::QueueFlagBits::eCompute | vk::QueueFlagBits::eGraphics, compute_queue_family_index, 1);
  898. const float priorities[] = { 1.0f, 1.0f };
  899. const bool single_queue = compute_queue_family_index == transfer_queue_family_index && queue_family_props[compute_queue_family_index].queueCount == 1;
  900. std::vector<vk::DeviceQueueCreateInfo> device_queue_create_infos;
  901. if (compute_queue_family_index != transfer_queue_family_index) {
  902. device_queue_create_infos.push_back({vk::DeviceQueueCreateFlags(), compute_queue_family_index, 1, priorities});
  903. device_queue_create_infos.push_back({vk::DeviceQueueCreateFlags(), transfer_queue_family_index, 1, priorities + 1});
  904. } else if(!single_queue) {
  905. device_queue_create_infos.push_back({vk::DeviceQueueCreateFlags(), compute_queue_family_index, 2, priorities});
  906. } else {
  907. device_queue_create_infos.push_back({vk::DeviceQueueCreateFlags(), compute_queue_family_index, 1, priorities});
  908. }
  909. vk::DeviceCreateInfo device_create_info;
  910. std::vector<const char *> device_extensions;
  911. vk::PhysicalDeviceFeatures device_features = vk_device.physical_device.getFeatures();
  912. VkPhysicalDeviceFeatures2 device_features2;
  913. device_features2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2;
  914. device_features2.pNext = nullptr;
  915. device_features2.features = (VkPhysicalDeviceFeatures)device_features;
  916. VkPhysicalDeviceVulkan11Features vk11_features;
  917. vk11_features.pNext = nullptr;
  918. vk11_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES;
  919. device_features2.pNext = &vk11_features;
  920. VkPhysicalDeviceVulkan12Features vk12_features;
  921. vk12_features.pNext = nullptr;
  922. vk12_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES;
  923. vk11_features.pNext = &vk12_features;
  924. vkGetPhysicalDeviceFeatures2(vk_device.physical_device, &device_features2);
  925. vk_device.fp16 = vk_device.fp16 && vk12_features.shaderFloat16;
  926. if (!vk11_features.storageBuffer16BitAccess) {
  927. std::cerr << "ggml_vulkan: device does not support 16-bit storage" << std::endl;
  928. GGML_ASSERT(false);
  929. }
  930. device_extensions.push_back("VK_KHR_16bit_storage");
  931. #ifdef VK_VALIDATE
  932. device_extensions.push_back("VK_KHR_shader_non_semantic_info");
  933. #endif
  934. if (vk_device.fp16) {
  935. device_extensions.push_back("VK_KHR_shader_float16_int8");
  936. }
  937. std::cerr << "ggml_vulkan: Using " << vk_device.properties.deviceName << " | uma: " << vk_device.uma << " | fp16: " << vk_device.fp16 << " | warp size: " << vk_device.subgroup_size << std::endl;
  938. device_create_info = {
  939. vk::DeviceCreateFlags(),
  940. device_queue_create_infos,
  941. {},
  942. device_extensions
  943. };
  944. device_create_info.setPNext(&device_features2);
  945. vk_device.device = vk_device.physical_device.createDevice(device_create_info);
  946. vk_device.descriptor_set_mode = VK_DEVICE_DESCRIPTOR_POOL_MODE_UNKNOWN;
  947. // Shaders
  948. ggml_vk_load_shaders();
  949. // Queues
  950. vk_device.compute_queue = ggml_vk_create_queue(compute_queue_family_index, 0, { vk::PipelineStageFlagBits::eComputeShader | vk::PipelineStageFlagBits::eTransfer });
  951. if (!single_queue) {
  952. const uint32_t transfer_queue_index = compute_queue_family_index == transfer_queue_family_index ? 1 : 0;
  953. vk_device.transfer_queue = ggml_vk_create_queue(transfer_queue_family_index, transfer_queue_index, { vk::PipelineStageFlagBits::eTransfer });
  954. } else {
  955. vk_device.transfer_queue = vk_device.compute_queue;
  956. }
  957. vk_fence = vk_device.device.createFence({});
  958. vk_ctx = nullptr;
  959. vk_disable = false;
  960. #ifdef GGML_VULKAN_CHECK_RESULTS
  961. const char* skip_checks = getenv("GGML_VULKAN_SKIP_CHECKS");
  962. vk_skip_checks = (skip_checks == NULL ? 0 : atoi(skip_checks));
  963. const char* output_tensor = getenv("GGML_VULKAN_OUTPUT_TENSOR");
  964. vk_output_tensor = (output_tensor == NULL ? 0 : atoi(output_tensor));
  965. #endif
  966. }
  967. static vk_pipeline* ggml_vk_get_to_fp16(ggml_type type) {
  968. #ifdef VK_DEBUG
  969. std::cerr << "ggml_vk_get_to_fp16()" << std::endl;
  970. #endif
  971. switch (type) {
  972. case GGML_TYPE_F32:
  973. case GGML_TYPE_Q4_0:
  974. case GGML_TYPE_Q4_1:
  975. case GGML_TYPE_Q5_0:
  976. case GGML_TYPE_Q5_1:
  977. case GGML_TYPE_Q8_0:
  978. case GGML_TYPE_Q2_K:
  979. case GGML_TYPE_Q3_K:
  980. case GGML_TYPE_Q4_K:
  981. case GGML_TYPE_Q5_K:
  982. case GGML_TYPE_Q6_K:
  983. break;
  984. default:
  985. return nullptr;
  986. }
  987. return &vk_pipeline_dequant[type];
  988. }
  989. static vk_pipeline* ggml_vk_get_dequantize_mul_mat_vec(ggml_type type) {
  990. #ifdef VK_DEBUG
  991. std::cerr << "ggml_vk_get_dequantize_mul_mat_vec()" << std::endl;
  992. #endif
  993. switch (type) {
  994. case GGML_TYPE_F16:
  995. case GGML_TYPE_Q4_0:
  996. case GGML_TYPE_Q4_1:
  997. case GGML_TYPE_Q5_0:
  998. case GGML_TYPE_Q5_1:
  999. case GGML_TYPE_Q8_0:
  1000. case GGML_TYPE_Q2_K:
  1001. case GGML_TYPE_Q3_K:
  1002. case GGML_TYPE_Q4_K:
  1003. case GGML_TYPE_Q5_K:
  1004. case GGML_TYPE_Q6_K:
  1005. break;
  1006. default:
  1007. return nullptr;
  1008. }
  1009. return &vk_pipeline_dequant_mul_mat_vec_f32[type];
  1010. }
  1011. // buffer pool for vulkan
  1012. #define MAX_VK_BUFFERS 256
  1013. static vk_buffer g_vk_buffer_pool[MAX_VK_BUFFERS];
  1014. static vk_buffer ggml_vk_pool_malloc(size_t size) {
  1015. #ifdef VK_DEBUG
  1016. std::cerr << "ggml_vk_pool_malloc(" << size << ")" << std::endl;
  1017. #endif
  1018. int best_i = -1;
  1019. size_t best_size = std::numeric_limits<size_t>::max(); //smallest unused buffer that fits our needs
  1020. int worst_i = -1;
  1021. size_t worst_size = 0; //largest unused buffer seen so far
  1022. for (int i = 0; i < MAX_VK_BUFFERS; ++i) {
  1023. vk_buffer &b = g_vk_buffer_pool[i];
  1024. if (b.size > 0 && b.size >= size && b.size < best_size) {
  1025. best_i = i;
  1026. best_size = b.size;
  1027. }
  1028. if (b.size > 0 && b.size > worst_size) {
  1029. worst_i = i;
  1030. worst_size = b.size;
  1031. }
  1032. }
  1033. if(best_i != -1) {
  1034. //found the smallest buffer that fits our needs
  1035. vk_buffer b = g_vk_buffer_pool[best_i];
  1036. g_vk_buffer_pool[best_i].size = 0;
  1037. return b;
  1038. }
  1039. if(worst_i != -1) {
  1040. //no buffer that fits our needs, resize largest one to save memory
  1041. vk_buffer& b = g_vk_buffer_pool[worst_i];
  1042. ggml_vk_destroy_buffer(b);
  1043. }
  1044. return ggml_vk_create_buffer_check(size, vk::MemoryPropertyFlagBits::eDeviceLocal);
  1045. }
  1046. static void ggml_vk_pool_free(vk_buffer& buffer) {
  1047. #ifdef VK_DEBUG
  1048. std::cerr << "ggml_vk_pool_free(" << buffer.size << ")" << std::endl;
  1049. #endif
  1050. for (int i = 0; i < MAX_VK_BUFFERS; ++i) {
  1051. vk_buffer& b = g_vk_buffer_pool[i];
  1052. if (b.size == 0) {
  1053. b = buffer;
  1054. // Set owning queue family index to ignored to avoid synchronization on next use
  1055. b.qf_owner = VK_QUEUE_FAMILY_IGNORED;
  1056. return;
  1057. }
  1058. }
  1059. fprintf(stderr, "WARNING: vk buffer pool full, increase MAX_VK_BUFFERS\n");
  1060. ggml_vk_destroy_buffer(buffer);
  1061. }
  1062. // Returns an available temporary buffer that may only be used temporarily, it will be reused
  1063. static vk_buffer ggml_vk_create_buffer_temp(size_t size) {
  1064. // Try to find existing temp buffer with enough capacity
  1065. for (auto& buffer : vk_gc.temp_buffers) {
  1066. if (buffer.size >= size) {
  1067. return buffer;
  1068. }
  1069. }
  1070. // Otherwise create new buffer
  1071. vk_buffer buf = ggml_vk_pool_malloc(size);
  1072. vk_gc.temp_buffers.push_back(buf);
  1073. return buf;
  1074. }
  1075. static void * ggml_vk_host_malloc(size_t size) {
  1076. #ifdef VK_DEBUG
  1077. std::cerr << "ggml_vk_host_malloc(" << size << ")" << std::endl;
  1078. #endif
  1079. vk_buffer buf = ggml_vk_create_buffer(size, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached);
  1080. if(!(buf.memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible)) {
  1081. fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory\n",
  1082. size/1024.0/1024.0);
  1083. buf.size = 0;
  1084. vk_device.device.freeMemory(buf.device_memory);
  1085. vk_device.device.destroyBuffer(buf.buffer);
  1086. return nullptr;
  1087. }
  1088. vk_pinned_memory.push_back(std::make_tuple(buf.ptr, size, buf));
  1089. return buf.ptr;
  1090. }
  1091. static void ggml_vk_host_free(void* ptr) {
  1092. if (ptr == nullptr) {
  1093. return;
  1094. }
  1095. #ifdef VK_DEBUG
  1096. std::cerr << "ggml_vk_host_free(" << ptr << ")" << std::endl;
  1097. #endif
  1098. vk_buffer* buf = nullptr;
  1099. size_t index;
  1100. for (size_t i = 0; i < vk_pinned_memory.size(); i++) {
  1101. const uint8_t* addr = (const uint8_t*) std::get<0>(vk_pinned_memory[i]);
  1102. const uint8_t* endr = addr + std::get<1>(vk_pinned_memory[i]);
  1103. if (ptr >= addr && ptr < endr) {
  1104. buf = &std::get<2>(vk_pinned_memory[i]);
  1105. index = i;
  1106. break;
  1107. }
  1108. }
  1109. if (buf == nullptr) {
  1110. fprintf(stderr, "WARNING: failed to free pinned memory: memory not in map\n");
  1111. return;
  1112. }
  1113. ggml_vk_destroy_buffer(*buf);
  1114. vk_pinned_memory.erase(vk_pinned_memory.begin() + index);
  1115. }
  1116. static void ggml_vk_host_get(const void * ptr, vk_buffer *& buf, size_t& buf_offset) {
  1117. buf = nullptr;
  1118. buf_offset = 0;
  1119. for (size_t i = 0; i < vk_pinned_memory.size(); i++) {
  1120. const uint8_t* addr = (const uint8_t*) std::get<0>(vk_pinned_memory[i]);
  1121. const uint8_t* endr = addr + std::get<1>(vk_pinned_memory[i]);
  1122. if (ptr >= addr && ptr < endr) {
  1123. buf = &std::get<2>(vk_pinned_memory[i]);
  1124. buf_offset = ((const uint8_t *)ptr) - addr;
  1125. break;
  1126. }
  1127. }
  1128. }
  1129. static vk_submission ggml_vk_begin_submission(vk_queue& q, bool one_time = true) {
  1130. vk_submission s;
  1131. s.buffer = ggml_vk_create_cmd_buffer(q);
  1132. if (one_time) {
  1133. s.buffer.begin({ vk::CommandBufferUsageFlagBits::eOneTimeSubmit });
  1134. } else {
  1135. s.buffer.begin({ vk::CommandBufferUsageFlags{} });
  1136. }
  1137. return s;
  1138. }
  1139. static void ggml_vk_dispatch_pipeline(vk_context * ctx, vk_pipeline& pipeline, std::vector<vk_subbuffer>&& buffers, size_t push_constant_size, const void* push_constants, std::array<uint32_t, 3> elements) {
  1140. const uint32_t wg0 = CEIL_DIV(elements[0], pipeline.wg_denoms[0]);
  1141. const uint32_t wg1 = CEIL_DIV(elements[1], pipeline.wg_denoms[1]);
  1142. const uint32_t wg2 = CEIL_DIV(elements[2], pipeline.wg_denoms[2]);
  1143. #ifdef VK_DEBUG
  1144. std::cerr << "ggml_vk_dispatch_pipeline(" << pipeline.name << ", (" << wg0 << "," << wg1 << "," << wg2 << "))" << std::endl;
  1145. #endif
  1146. std::vector<vk::DescriptorBufferInfo> descriptor_buffer_infos;
  1147. std::vector<vk::WriteDescriptorSet> write_descriptor_sets;
  1148. GGML_ASSERT(pipeline.descriptor_set_idx < pipeline.descriptor_sets.size());
  1149. GGML_ASSERT(buffers.size() == pipeline.parameter_count);
  1150. vk::DescriptorSet& descriptor_set = pipeline.descriptor_sets[pipeline.descriptor_set_idx++];
  1151. for (uint32_t i = 0; i < pipeline.parameter_count; i++) {
  1152. descriptor_buffer_infos.push_back({buffers[i].buffer.buffer, buffers[i].offset, buffers[i].size});
  1153. }
  1154. for (uint32_t i = 0; i < pipeline.parameter_count; i++) {
  1155. write_descriptor_sets.push_back({descriptor_set, i, 0, 1, vk::DescriptorType::eStorageBuffer, nullptr, &descriptor_buffer_infos[i]});
  1156. }
  1157. vk_device.device.updateDescriptorSets(write_descriptor_sets, {});
  1158. ctx->s->buffer.pushConstants(pipeline.layout, vk::ShaderStageFlagBits::eCompute, 0, push_constant_size, push_constants);
  1159. ctx->s->buffer.bindPipeline(vk::PipelineBindPoint::eCompute, pipeline.pipeline);
  1160. ctx->s->buffer.bindDescriptorSets(vk::PipelineBindPoint::eCompute,
  1161. pipeline.layout,
  1162. 0,
  1163. { descriptor_set },
  1164. {});
  1165. ctx->s->buffer.dispatch(wg0, wg1, wg2);
  1166. }
  1167. static void ggml_vk_end_submission(vk_submission& s, std::vector<vk_semaphore> wait_semaphores, std::vector<vk_semaphore> signal_semaphores) {
  1168. s.buffer.end();
  1169. s.wait_semaphores = std::move(wait_semaphores);
  1170. s.signal_semaphores = std::move(signal_semaphores);
  1171. }
  1172. static void ggml_vk_ctx_end(vk_context * ctx) {
  1173. #ifdef VK_DEBUG
  1174. std::cerr << "ggml_vk_ctx_end(" << ctx << ", " << ctx->seqs.size() << ")" << std::endl;
  1175. #endif
  1176. if (ctx->s == nullptr) {
  1177. return;
  1178. }
  1179. ctx->s->buffer.end();
  1180. ctx->s = nullptr;
  1181. }
  1182. static void ggml_vk_ctx_begin(vk_context * ctx) {
  1183. #ifdef VK_DEBUG
  1184. std::cerr << "ggml_vk_ctx_begin(" << ctx << ")" << std::endl;
  1185. #endif
  1186. if (ctx->s != nullptr) {
  1187. ggml_vk_ctx_end(ctx);
  1188. }
  1189. ctx->seqs.push_back({ ggml_vk_begin_submission(*ctx->q) });
  1190. ctx->s = ctx->seqs[ctx->seqs.size() - 1].data();
  1191. }
  1192. static size_t ggml_vk_align_size(size_t width, size_t align) {
  1193. return CEIL_DIV(width, align) * align;
  1194. }
  1195. static void deferred_memcpy(void * dst, const void * src, size_t size, std::vector<vk_staging_memcpy>* memcpys = nullptr) {
  1196. if (memcpys == nullptr) {
  1197. memcpy(dst, src, size);
  1198. } else {
  1199. memcpys->emplace_back(dst, src, size);
  1200. }
  1201. }
  1202. static void ensure_sync_staging_buffer(size_t size) {
  1203. if (vk_sync_staging.size < size) {
  1204. ggml_vk_destroy_buffer(vk_sync_staging);
  1205. vk_sync_staging = ggml_vk_create_buffer_check(size, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached);
  1206. }
  1207. }
  1208. static void ggml_vk_buffer_write_nc_async(vk_context * ctx, vk_buffer* dst, size_t offset, const ggml_tensor * tensor, bool sync_staging = false) {
  1209. #ifdef VK_DEBUG
  1210. std::cerr << "ggml_vk_buffer_write_nc_async(" << tensor << ")" << std::endl;
  1211. #endif
  1212. GGML_ASSERT(!ggml_is_contiguous(tensor));
  1213. // Buffer is already mapped
  1214. if(dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) {
  1215. std::cerr << "ggml_vulkan: buffer_write_nc_async dst buffer is host_visible. Use synchronous write." << std::endl;
  1216. GGML_ASSERT(false);
  1217. }
  1218. // Check if src is pinned memory
  1219. vk_buffer * buf = nullptr;
  1220. size_t buf_offset;
  1221. ggml_vk_host_get(tensor->data, buf, buf_offset);
  1222. const uint64_t ne0 = tensor->ne[0];
  1223. const uint64_t ne1 = tensor->ne[1];
  1224. const uint64_t ne2 = tensor->ne[2];
  1225. const uint64_t ne3 = tensor->ne[3];
  1226. const uint64_t nb0 = tensor->nb[0];
  1227. const uint64_t nb1 = tensor->nb[1];
  1228. const uint64_t nb2 = tensor->nb[2];
  1229. const uint64_t nb3 = tensor->nb[3];
  1230. const ggml_type type = tensor->type;
  1231. const uint64_t ts = ggml_type_size(type);
  1232. const uint64_t bs = ggml_blck_size(type);
  1233. const uint64_t dstnb0 = ts;
  1234. const uint64_t dstnb1 = dstnb0*(ne0/bs);
  1235. const uint64_t dstnb2 = dstnb1*ne1;
  1236. const uint64_t dstnb3 = dstnb2*ne2;
  1237. const uint64_t ne = ggml_nelements(tensor);
  1238. if (buf != nullptr) {
  1239. // Memory is pinned, use as staging buffer
  1240. std::vector<vk::BufferCopy> slices;
  1241. for (uint64_t i3 = 0; i3 < ne3; i3++) {
  1242. for (uint64_t i2 = 0; i2 < ne2; i2++) {
  1243. // Find longest contiguous slice
  1244. if (ne1*nb1 == dstnb2) {
  1245. slices.push_back({ buf_offset + i3*nb3 + i2*nb2, offset + i3*dstnb3 + i2*dstnb2, dstnb2 });
  1246. } else {
  1247. for (uint64_t i1 = 0; i1 < ne1; i1++) {
  1248. if (ne0*nb0/bs == dstnb1) {
  1249. slices.push_back({ buf_offset + i3*nb3 + i2*nb2 + i1*nb1, offset + i3*dstnb3 + i2*dstnb2 + i1*dstnb1, dstnb1 });
  1250. } else {
  1251. const uint64_t s_off = buf_offset + i3*nb3 + i2*nb2 + i1*nb1;
  1252. const uint64_t d_off = offset + i3*dstnb3 + i2*dstnb2 + i1*dstnb1;
  1253. for (uint64_t i0 = 0; i0 < ne0; i0++) {
  1254. slices.push_back({ s_off + i1*nb0, d_off + i0*dstnb0, dstnb0 });
  1255. }
  1256. }
  1257. }
  1258. }
  1259. }
  1260. }
  1261. ggml_vk_sync_buffers(ctx);
  1262. ctx->s->buffer.copyBuffer(buf->buffer, dst->buffer, slices);
  1263. return;
  1264. }
  1265. // Staging buffer required
  1266. vk_buffer * staging = &vk_staging;
  1267. size_t staging_offset = vk_staging_offset;
  1268. const size_t copy_size = ts*ne/bs;
  1269. if (vk_staging.size < vk_staging_offset + copy_size) {
  1270. if (sync_staging) {
  1271. // Create temporary larger buffer
  1272. ensure_sync_staging_buffer(copy_size);
  1273. staging = &vk_sync_staging;
  1274. staging_offset = 0;
  1275. } else {
  1276. GGML_ASSERT(false);
  1277. }
  1278. }
  1279. VkBufferCopy buf_copy{ staging_offset, offset, copy_size };
  1280. ggml_vk_sync_buffers(ctx);
  1281. vkCmdCopyBuffer(ctx->s->buffer, staging->buffer, dst->buffer, 1, &buf_copy);
  1282. for (uint64_t i3 = 0; i3 < ne3; i3++) {
  1283. for (uint64_t i2 = 0; i2 < ne2; i2++) {
  1284. // Find longest contiguous slice
  1285. if (ne1*nb1 == dstnb2) {
  1286. deferred_memcpy((uint8_t *)staging->ptr + staging_offset + i3*dstnb3 + i2*dstnb2, (const uint8_t *) tensor->data + buf_offset + i3*nb3 + i2*nb2, dstnb2, &ctx->in_memcpys);
  1287. } else {
  1288. for (uint64_t i1 = 0; i1 < ne1; i1++) {
  1289. if (ne0*nb0/bs == dstnb1) {
  1290. deferred_memcpy((uint8_t *)staging->ptr + staging_offset + i3*dstnb3 + i2*dstnb2 + i1*dstnb1, (const uint8_t *) tensor->data + buf_offset + i3*nb3 + i2*nb2 + i1*nb1, dstnb1, &ctx->in_memcpys);
  1291. } else {
  1292. const uint64_t s_off = buf_offset + i3*nb3 + i2*nb2 + i1*nb1;
  1293. const uint64_t d_off = staging_offset + i3*dstnb3 + i2*dstnb2 + i1*dstnb1;
  1294. for (uint64_t i0 = 0; i0 < ne0; i0++) {
  1295. deferred_memcpy((uint8_t *)staging->ptr + d_off + i0*dstnb0, (const uint8_t *) tensor->data + s_off + i0*nb0, dstnb0, &ctx->in_memcpys);
  1296. }
  1297. }
  1298. }
  1299. }
  1300. }
  1301. }
  1302. }
  1303. static void ggml_vk_buffer_write_2d_async(vk_context * ctx, vk_buffer* dst, size_t offset, const void * src, size_t spitch, size_t width, size_t height, bool sync_staging = false) {
  1304. #ifdef VK_DEBUG
  1305. std::cerr << "ggml_vk_buffer_write_2d_async(" << width << ", " << height << ")" << std::endl;
  1306. #endif
  1307. // Buffer is already mapped
  1308. if(dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) {
  1309. std::cerr << "ggml_vulkan: buffer_write_async dst buffer is host_visible. Use synchronous write." << std::endl;
  1310. GGML_ASSERT(false);
  1311. }
  1312. // Check if src is pinned memory
  1313. vk_buffer * buf = nullptr;
  1314. size_t buf_offset;
  1315. ggml_vk_host_get(src, buf, buf_offset);
  1316. if (buf != nullptr) {
  1317. // Memory is pinned, use as staging buffer
  1318. std::vector<vk::BufferCopy> slices(1);
  1319. if (width == spitch) {
  1320. // Only do single write if stride is equal
  1321. slices[0].srcOffset = buf_offset;
  1322. slices[0].dstOffset = offset;
  1323. slices[0].size = width * height;
  1324. } else {
  1325. slices.resize(height);
  1326. for (size_t i = 0; i < height; i++) {
  1327. slices[i].srcOffset = buf_offset + i * spitch;
  1328. slices[i].dstOffset = offset + i * width;
  1329. slices[i].size = width;
  1330. }
  1331. }
  1332. ggml_vk_sync_buffers(ctx);
  1333. ctx->s->buffer.copyBuffer(buf->buffer, dst->buffer, slices);
  1334. return;
  1335. }
  1336. #ifdef VK_DEBUG
  1337. std::cerr << "STAGING" << std::endl;
  1338. #endif
  1339. // Staging buffer required
  1340. vk_buffer * staging = &vk_staging;
  1341. size_t staging_offset = vk_staging_offset;
  1342. const size_t copy_size = width*height;
  1343. if (vk_staging.size < vk_staging_offset + copy_size) {
  1344. if (sync_staging) {
  1345. ensure_sync_staging_buffer(copy_size);
  1346. staging = &vk_sync_staging;
  1347. staging_offset = 0;
  1348. } else {
  1349. GGML_ASSERT(false);
  1350. }
  1351. }
  1352. VkBufferCopy buf_copy = {
  1353. staging_offset,
  1354. offset,
  1355. copy_size};
  1356. ggml_vk_sync_buffers(ctx);
  1357. vkCmdCopyBuffer(ctx->s->buffer, staging->buffer, dst->buffer, 1, &buf_copy);
  1358. if (width == spitch) {
  1359. deferred_memcpy((uint8_t *)staging->ptr + staging_offset, src, width * height, &ctx->in_memcpys);
  1360. } else {
  1361. for (size_t i = 0; i < height; i++) {
  1362. deferred_memcpy((uint8_t *)staging->ptr + staging_offset + i * width, (const uint8_t *) src + i * spitch, width, &ctx->in_memcpys);
  1363. }
  1364. }
  1365. }
  1366. static void ggml_vk_buffer_write_async(vk_context * ctx, vk_buffer* dst, size_t offset, const void * src, size_t size, bool sync_staging = false) {
  1367. #ifdef VK_DEBUG
  1368. std::cerr << "ggml_vk_buffer_write_async(" << size << ")" << std::endl;
  1369. #endif
  1370. return ggml_vk_buffer_write_2d_async(ctx, dst, offset, src, size, size, 1, sync_staging);
  1371. }
  1372. static void ggml_vk_buffer_write_2d(vk_buffer* dst, size_t offset, const void * src, size_t spitch, size_t width, size_t height) {
  1373. #ifdef VK_DEBUG
  1374. std::cerr << "ggml_vk_buffer_write_2d(" << width << ", " << height << ")" << std::endl;
  1375. #endif
  1376. // Buffer is already mapped
  1377. if(dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) {
  1378. GGML_ASSERT(dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostCoherent);
  1379. for (size_t i = 0; i < height; i++) {
  1380. memcpy((uint8_t *)dst->ptr + offset + i * width, (const uint8_t *) src + i * spitch, width);
  1381. }
  1382. } else {
  1383. vk_context * ctx = ggml_vk_create_context(vk_device.transfer_queue);
  1384. ggml_vk_ctx_begin(ctx);
  1385. ggml_vk_buffer_write_2d_async(ctx, dst, offset, src, spitch, width, height, true);
  1386. ggml_vk_ctx_end(ctx);
  1387. for (auto& cpy : ctx->in_memcpys) {
  1388. memcpy(cpy.dst, cpy.src, cpy.n);
  1389. }
  1390. ggml_vk_submit(ctx, vk_fence);
  1391. VK_CHECK(vk_device.device.waitForFences({ vk_fence }, true, UINT64_MAX), "vk_buffer_write_2d waitForFences");
  1392. vk_device.device.resetFences({ vk_fence });
  1393. }
  1394. }
  1395. static void ggml_vk_buffer_write(vk_buffer* dst, size_t offset, const void * src, size_t size) {
  1396. #ifdef VK_DEBUG
  1397. std::cerr << "ggml_vk_buffer_write(" << size << ")" << std::endl;
  1398. #endif
  1399. ggml_vk_buffer_write_2d(dst, offset, src, 0, size, 1);
  1400. }
  1401. static void ggml_vk_buffer_read_2d_async(vk_context * ctx, vk_buffer* src, size_t offset, void * dst, size_t spitch, size_t dpitch, size_t width, size_t height, bool sync_staging = false) {
  1402. #ifdef VK_DEBUG
  1403. std::cerr << "ggml_vk_buffer_read_2d_async(offset=" << offset << ", width=" << width << ", height=" << height << ")" << std::endl;
  1404. #endif
  1405. GGML_ASSERT(width > 0);
  1406. GGML_ASSERT(height > 0);
  1407. GGML_ASSERT(src->size > 0);
  1408. // Check if dst is pinned memory
  1409. vk_buffer * buf = nullptr;
  1410. size_t buf_offset;
  1411. ggml_vk_host_get(dst, buf, buf_offset);
  1412. std::vector<vk::BufferCopy> slices(1);
  1413. if (width == spitch && width == dpitch) {
  1414. // Only do single write if stride is equal
  1415. slices[0].srcOffset = offset;
  1416. slices[0].dstOffset = buf_offset;
  1417. slices[0].size = width * height;
  1418. } else {
  1419. slices.resize(height);
  1420. for (size_t i = 0; i < height; i++) {
  1421. slices[i].srcOffset = offset + i * spitch;
  1422. slices[i].dstOffset = buf_offset + i * dpitch;
  1423. slices[i].size = width;
  1424. }
  1425. }
  1426. if (buf != nullptr) {
  1427. // Memory is pinned, use as staging buffer
  1428. ggml_vk_sync_buffers(ctx);
  1429. ctx->s->buffer.copyBuffer(src->buffer, buf->buffer, slices);
  1430. return;
  1431. }
  1432. #ifdef VK_DEBUG
  1433. std::cerr << "STAGING" << std::endl;
  1434. #endif
  1435. // Fall back to staging buffer
  1436. vk_buffer * staging = &vk_staging;
  1437. const size_t copy_size = dpitch * height;
  1438. if (vk_staging.size < vk_staging_offset + copy_size) {
  1439. if (sync_staging) {
  1440. // Create temporary larger buffer
  1441. ensure_sync_staging_buffer(copy_size);
  1442. staging = &vk_sync_staging;
  1443. } else {
  1444. GGML_ASSERT(false);
  1445. }
  1446. }
  1447. ggml_vk_sync_buffers(ctx);
  1448. ctx->s->buffer.copyBuffer(src->buffer, staging->buffer, slices);
  1449. deferred_memcpy(dst, staging->ptr, copy_size, &ctx->out_memcpys);
  1450. }
  1451. static void ggml_vk_buffer_read_async(vk_context * ctx, vk_buffer* src, size_t offset, void * dst, size_t size, bool sync_staging = false) {
  1452. return ggml_vk_buffer_read_2d_async(ctx, src, offset, dst, size, size, size, 1, sync_staging);
  1453. }
  1454. static void ggml_vk_buffer_read(vk_buffer* src, size_t offset, void * dst, size_t size) {
  1455. #ifdef VK_DEBUG
  1456. std::cerr << "ggml_vk_buffer_read(" << offset << ", " << size << ")" << std::endl;
  1457. #endif
  1458. if(src->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) {
  1459. GGML_ASSERT(src->memory_property_flags & vk::MemoryPropertyFlagBits::eHostCoherent);
  1460. memcpy(dst, (uint8_t *) src->ptr + offset, size);
  1461. } else {
  1462. vk_context * ctx = ggml_vk_create_context(vk_device.transfer_queue);
  1463. ggml_vk_ctx_begin(ctx);
  1464. ggml_vk_buffer_read_async(ctx, src, offset, dst, size, true);
  1465. ggml_vk_ctx_end(ctx);
  1466. ggml_vk_submit(ctx, vk_fence);
  1467. VK_CHECK(vk_device.device.waitForFences({ vk_fence }, true, UINT64_MAX), "vk_buffer_read waitForFences");
  1468. vk_device.device.resetFences({ vk_fence });
  1469. for (auto& cpy : ctx->out_memcpys) {
  1470. memcpy(cpy.dst, cpy.src, cpy.n);
  1471. }
  1472. }
  1473. }
  1474. static void ggml_vk_buffer_copy_async(vk_context * ctx, vk_buffer * dst, size_t dst_offset, vk_buffer * src, size_t src_offset, size_t size) {
  1475. #ifdef VK_DEBUG
  1476. std::cerr << "ggml_vk_buffer_copy_async(" << size << ")" << std::endl;
  1477. #endif
  1478. VkBufferCopy bc{ src_offset, dst_offset, size };
  1479. vkCmdCopyBuffer(ctx->s->buffer, src->buffer, dst->buffer, 1, &bc);
  1480. }
  1481. static void ggml_vk_buffer_copy(vk_buffer * dst, size_t dst_offset, vk_buffer * src, size_t src_offset, size_t size) {
  1482. #ifdef VK_DEBUG
  1483. std::cerr << "ggml_vk_buffer_copy(" << size << ")" << std::endl;
  1484. #endif
  1485. VkBufferCopy bc{ src_offset, dst_offset, size };
  1486. vk_context * ctx = ggml_vk_create_context(vk_device.transfer_queue);
  1487. ggml_vk_ctx_begin(ctx);
  1488. vkCmdCopyBuffer(ctx->s->buffer, src->buffer, dst->buffer, 1, &bc);
  1489. ggml_vk_buffer_copy_async(ctx, dst, dst_offset, src, src_offset, size);
  1490. ggml_vk_ctx_end(ctx);
  1491. ggml_vk_submit(ctx, vk_fence);
  1492. VK_CHECK(vk_device.device.waitForFences({ vk_fence }, true, UINT64_MAX), "vk_buffer_copy waitForFences");
  1493. vk_device.device.resetFences({ vk_fence });
  1494. }
  1495. static void ggml_vk_buffer_memset(vk_buffer* dst, size_t offset, uint32_t c, size_t size) {
  1496. #ifdef VK_DEBUG
  1497. std::cerr << "ggml_vk_buffer_memset(" << offset << ", " << c << ", " << size << ")" << std::endl;
  1498. #endif
  1499. vk_context * ctx = ggml_vk_create_context(vk_device.transfer_queue);
  1500. ggml_vk_ctx_begin(ctx);
  1501. ctx->s->buffer.fillBuffer(dst->buffer, offset, size, c);
  1502. ggml_vk_ctx_end(ctx);
  1503. ggml_vk_submit(ctx, vk_fence);
  1504. VK_CHECK(vk_device.device.waitForFences({ vk_fence }, true, UINT64_MAX), "vk_memset waitForFences");
  1505. vk_device.device.resetFences({ vk_fence });
  1506. }
  1507. static void ggml_vk_h2d_tensor_2d(vk_context * ctx, vk_buffer * dst, size_t offset, const ggml_tensor * src, uint64_t i3, uint64_t i2, uint64_t i1) {
  1508. #ifdef VK_DEBUG
  1509. std::cerr << "ggml_vk_h2d_tensor_2d(dst=" << dst << ", offset=" << offset << ", src=" << src << ", i3=" << i3 << ", i2=" << i2 << ", i1=" << i1 << ")" << std::endl;
  1510. #endif
  1511. const uint64_t ne0 = src->ne[0];
  1512. const uint64_t ne1 = src->ne[1];
  1513. const uint64_t nb0 = src->nb[0];
  1514. const uint64_t nb1 = src->nb[1];
  1515. const uint64_t nb2 = src->nb[2];
  1516. const uint64_t nb3 = src->nb[3];
  1517. const enum ggml_type type = src->type;
  1518. const size_t ts = ggml_type_size(type);
  1519. const size_t bs = ggml_blck_size(type);
  1520. const size_t row_length = ts*ne0/bs;
  1521. const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3);
  1522. if (nb0 == ts && nb1 == row_length) {
  1523. return ggml_vk_buffer_write_async(ctx, dst, offset, x, i1*nb1);
  1524. }
  1525. if (nb0 == ts && (i1 == ne1 || !ggml_is_permuted(src))) {
  1526. return ggml_vk_buffer_write_2d_async(ctx, dst, offset, x, nb1, row_length, i1);
  1527. }
  1528. GGML_ASSERT(i3 == 0);
  1529. GGML_ASSERT(i2 == 0);
  1530. GGML_ASSERT(i1 == (uint64_t) ggml_nrows(src));
  1531. return ggml_vk_buffer_write_nc_async(ctx, dst, offset, src);
  1532. }
  1533. static void ggml_vk_d2h_tensor_2d(vk_context * ctx, vk_buffer * src, size_t offset, const ggml_tensor * dst) {
  1534. #ifdef VK_DEBUG
  1535. std::cerr << "ggml_vk_d2h_tensor_2d()" << std::endl;
  1536. #endif
  1537. const uint64_t ne0 = dst->ne[0];
  1538. const uint64_t ne1 = dst->ne[1];
  1539. const uint64_t ne2 = dst->ne[2];
  1540. const uint64_t ne3 = dst->ne[3];
  1541. const uint64_t nb0 = dst->nb[0];
  1542. const uint64_t nb1 = dst->nb[1];
  1543. // const uint64_t nb2 = dst->nb[2];
  1544. // const uint64_t nb3 = dst->nb[3];
  1545. const enum ggml_type type = dst->type;
  1546. const size_t ts = ggml_type_size(type);
  1547. const size_t bs = ggml_blck_size(type);
  1548. const size_t row_length = ts*ne0/bs;
  1549. if (ggml_is_contiguous(dst)) {
  1550. return ggml_vk_buffer_read_async(ctx, src, offset, dst->data, ne1*nb1*ne2*ne3);
  1551. }
  1552. if (nb0 == ts) {
  1553. return ggml_vk_buffer_read_2d_async(ctx, src, offset, dst->data, nb1, nb1, row_length, ne1*ne2*ne3);
  1554. }
  1555. GGML_ASSERT(false);
  1556. }
  1557. static uint32_t ggml_vk_guess_split_k(int m, int n, int k) {
  1558. #ifdef VK_DEBUG
  1559. std::cerr << "ggml_vk_guess_split_k(" << m << ", " << n << ", " << k << ")";
  1560. #endif
  1561. if (k > 128 && (m < 128 || n < 128) && m > 2 && n > 2) {
  1562. #ifdef VK_DEBUG
  1563. std::cerr << " = 4" << std::endl;
  1564. #endif
  1565. return 4;
  1566. }
  1567. #ifdef VK_DEBUG
  1568. std::cerr << " = 1" << std::endl;
  1569. #endif
  1570. return 1;
  1571. }
  1572. static uint32_t ggml_vk_guess_matmul_pipeline_align(int m, int n) {
  1573. #ifdef VK_DEBUG
  1574. std::cerr << "ggml_vk_guess_matmul_pipeline_align(" << m << ", " << n << ")" << std::endl;
  1575. #endif
  1576. if (m <= 32 || n <= 32) {
  1577. return vk_pipeline_matmul_f32_aligned_s.align;
  1578. }
  1579. if (vk_device.subgroup_size == 64 || m <= 64 || n <= 64) {
  1580. return vk_pipeline_matmul_f32_aligned_m.align;
  1581. }
  1582. return vk_pipeline_matmul_f32_aligned_l.align;
  1583. }
  1584. static vk_pipeline* ggml_vk_guess_matmul_pipeline(bool bit16_x, bool bit16_y, int m, int n, bool aligned) {
  1585. #ifdef VK_DEBUG
  1586. std::cerr << "ggml_vk_guess_matmul_pipeline(" << bit16_x << ", " << bit16_y << ", " << m << ", " << n << ", " << aligned << ")";
  1587. #endif
  1588. if (bit16_x && bit16_y) {
  1589. if (m <= 32 || n <= 32) {
  1590. #ifdef VK_DEBUG
  1591. std::cerr << " S" << std::endl;
  1592. #endif
  1593. return aligned ? &vk_pipeline_matmul_f16_aligned_s : &vk_pipeline_matmul_f16_s;
  1594. }
  1595. if (vk_device.subgroup_size == 64 || m <= 64 || n <= 64) {
  1596. #ifdef VK_DEBUG
  1597. std::cerr << " M" << std::endl;
  1598. #endif
  1599. return aligned ? &vk_pipeline_matmul_f16_aligned_m : &vk_pipeline_matmul_f16_m;
  1600. }
  1601. #ifdef VK_DEBUG
  1602. std::cerr << " L" << std::endl;
  1603. #endif
  1604. return aligned ? &vk_pipeline_matmul_f16_aligned_l : &vk_pipeline_matmul_f16_l;
  1605. }
  1606. if (bit16_x && !bit16_y) {
  1607. if (m <= 32 || n <= 32) {
  1608. #ifdef VK_DEBUG
  1609. std::cerr << " S" << std::endl;
  1610. #endif
  1611. return aligned ? &vk_pipeline_matmul_f16_f32_aligned_s : &vk_pipeline_matmul_f16_f32_s;
  1612. }
  1613. if (vk_device.subgroup_size == 64 || m <= 64 || n <= 64) {
  1614. #ifdef VK_DEBUG
  1615. std::cerr << " M" << std::endl;
  1616. #endif
  1617. return aligned ? &vk_pipeline_matmul_f16_f32_aligned_m : &vk_pipeline_matmul_f16_f32_m;
  1618. }
  1619. #ifdef VK_DEBUG
  1620. std::cerr << " L" << std::endl;
  1621. #endif
  1622. return aligned ? &vk_pipeline_matmul_f16_f32_aligned_l : &vk_pipeline_matmul_f16_f32_l;
  1623. }
  1624. if (!bit16_x && bit16_y) {
  1625. GGML_ASSERT(false);
  1626. }
  1627. if (m <= 32 || n <= 32) {
  1628. #ifdef VK_DEBUG
  1629. std::cerr << " S" << std::endl;
  1630. #endif
  1631. return aligned ? &vk_pipeline_matmul_f32_aligned_s : &vk_pipeline_matmul_f32_s;
  1632. }
  1633. if (vk_device.subgroup_size == 64 || m <= 64 || n <= 64) {
  1634. #ifdef VK_DEBUG
  1635. std::cerr << " M" << std::endl;
  1636. #endif
  1637. return aligned ? &vk_pipeline_matmul_f32_aligned_m : &vk_pipeline_matmul_f32_m;
  1638. }
  1639. #ifdef VK_DEBUG
  1640. std::cerr << " L" << std::endl;
  1641. #endif
  1642. return aligned ? &vk_pipeline_matmul_f32_aligned_l : &vk_pipeline_matmul_f32_l;
  1643. }
  1644. static void ggml_vk_matmul(vk_context * ctx, vk_pipeline& pipeline, vk_subbuffer&& a, vk_subbuffer&& b, vk_subbuffer&& d, vk_subbuffer&& split_k_buffer, uint32_t m, uint32_t n, uint32_t k, uint32_t stride_a, uint32_t stride_b, uint32_t stride_d, uint32_t split_k, uint32_t batch, uint32_t ne02, uint32_t ne12, uint32_t broadcast2, uint32_t broadcast3, uint32_t batch_stride_a, uint32_t batch_stride_b, uint32_t batch_stride_d) {
  1645. #ifdef VK_DEBUG
  1646. std::cerr << "ggml_vk_matmul(a: (" << a.buffer.buffer << ", " << a.offset << ", " << a.size << "), b: (" << b.buffer.buffer << ", " << b.offset << ", " << b.size << "), c: (" << d.buffer.buffer << ", " << d.offset << ", " << d.size << "), split_k: (" << split_k_buffer.buffer.buffer << ", " << split_k_buffer.offset << ", " << split_k_buffer.size << "), m: " << m << ", n: " << n << ", k: " << k << ", stride_a: " << stride_a << ", stride_b: " << stride_b << ", stride_d: " << stride_d << ", split_k: " << split_k << ", batch: " << batch << ", ne02: " << ne02 << ", ne12: " << ne12 << ", broadcast2: " << broadcast2 << ", broadcast3: " << broadcast3 << ", batch_stride_a: " << batch_stride_a << ", batch_stride_b: " << batch_stride_b << ", batch_stride_d: " << batch_stride_d << ")" << std::endl;
  1647. #endif
  1648. if (split_k == 1) {
  1649. ggml_vk_sync_buffers(ctx);
  1650. const std::array<uint32_t, 14> pc = { m, n, k, stride_a, stride_b, stride_d, k, ne02, ne12, broadcast2, broadcast3, batch_stride_a, batch_stride_b, batch_stride_d };
  1651. ggml_vk_dispatch_pipeline(ctx, pipeline, { a, b, d }, pc.size() * sizeof(uint32_t), pc.data(), { m, n, batch });
  1652. return;
  1653. }
  1654. GGML_ASSERT(batch_stride_d == m * n);
  1655. // Synchronize the two submissions
  1656. ggml_vk_sync_buffers(ctx);
  1657. ctx->s->buffer.fillBuffer(split_k_buffer.buffer.buffer, 0, split_k_buffer.size, 0);
  1658. ggml_vk_sync_buffers(ctx);
  1659. const std::array<uint32_t, 14> pc1 = { m, n, k, stride_a, stride_b, stride_d, CEIL_DIV(k, split_k), ne02, ne12, broadcast2, broadcast3, batch_stride_a, batch_stride_b, batch_stride_d };
  1660. // Make sure enough workgroups get assigned for split k to work
  1661. ggml_vk_dispatch_pipeline(ctx, pipeline, { a, b, split_k_buffer }, pc1.size() * sizeof(uint32_t), pc1.data(), { (CEIL_DIV(m, pipeline.wg_denoms[0]) * pipeline.wg_denoms[0]) * split_k, n, batch });
  1662. ggml_vk_sync_buffers(ctx);
  1663. const std::array<uint32_t, 2> pc2 = { (uint32_t)(m * n * batch), split_k };
  1664. ggml_vk_dispatch_pipeline(ctx, vk_pipeline_matmul_split_k_reduce, { split_k_buffer, d }, pc2.size() * sizeof(uint32_t), pc2.data(), { m * n * batch, 1, 1 });
  1665. }
  1666. static bool ggml_vk_dim01_contiguous(const ggml_tensor * tensor) {
  1667. return
  1668. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1669. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  1670. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1671. }
  1672. static vk_pipeline * ggml_vk_get_cpy_pipeline(ggml_type from, ggml_type to) {
  1673. if (from == GGML_TYPE_F32 && to == GGML_TYPE_F32) {
  1674. return &vk_pipeline_cpy_f32_f32;
  1675. }
  1676. if (from == GGML_TYPE_F32 && to == GGML_TYPE_F16) {
  1677. return &vk_pipeline_cpy_f32_f16;
  1678. }
  1679. if (from == GGML_TYPE_F16 && to == GGML_TYPE_F16) {
  1680. return &vk_pipeline_cpy_f16_f16;
  1681. }
  1682. std::cerr << "Missing CPY op for types: " << ggml_type_name(from) << " " << ggml_type_name(to) << std::endl;
  1683. GGML_ASSERT(false);
  1684. }
  1685. static void ggml_vk_cpy_to_contiguous(vk_context * ctx, vk_pipeline * pipeline, const ggml_tensor * tensor, vk_subbuffer&& in, vk_subbuffer&& out, ggml_type buffer_type, bool aligned=true) {
  1686. #ifdef VK_DEBUG
  1687. std::cerr << "ggml_vk_cpy_to_contiguous((" << tensor << ", type=" << tensor->type << ", backend=" << tensor->backend << ", ne0=" << tensor->ne[0] << ", ne1=" << tensor->ne[1] << ", ne2=" << tensor->ne[2] << ", ne3=" << tensor->ne[3] << ", nb0=" << tensor->nb[0] << ", nb1=" << tensor->nb[1] << ", nb2=" << tensor->nb[2] << ", nb3=" << tensor->nb[3] << "), ";
  1688. std::cerr << "buffer in size=" << in.buffer.size << ", buffer out size=" << out.buffer.size << ")" << std::endl;
  1689. #endif
  1690. const int tensor_type_size = ggml_type_size(tensor->type);
  1691. const int dst_type_size = ggml_type_size(buffer_type);
  1692. const uint32_t ne = tensor->ne[0] * tensor->ne[1] * tensor->ne[2];
  1693. const uint32_t nb2 = aligned ? ggml_vk_align_size(dst_type_size * tensor->ne[0] * tensor->ne[1], vk_device.properties.limits.minStorageBufferOffsetAlignment) / dst_type_size : tensor->ne[0] * tensor->ne[1];
  1694. const vk_op_cpy_push_constants pc = {
  1695. (uint32_t)ne,
  1696. (uint32_t)tensor->ne[0], (uint32_t)tensor->ne[1], (uint32_t)tensor->nb[0] / tensor_type_size, (uint32_t)tensor->nb[1] / tensor_type_size, (uint32_t)tensor->nb[2] / tensor_type_size,
  1697. (uint32_t)tensor->ne[0], (uint32_t)tensor->ne[1], 1 , (uint32_t)tensor->ne[0] , nb2,
  1698. 0,
  1699. };
  1700. ggml_vk_sync_buffers(ctx);
  1701. ggml_vk_dispatch_pipeline(ctx, *pipeline, { in, out }, sizeof(vk_op_cpy_push_constants), &pc, { ne, 1, 1 });
  1702. }
  1703. static void ggml_vk_mul_mat_q_f16(vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  1704. #ifdef VK_DEBUG
  1705. std::cerr << "ggml_vk_mul_mat_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", backend=" << src0->backend << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
  1706. std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", backend=" << src1->backend << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
  1707. std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", backend=" << dst->backend << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)" << std::endl;
  1708. #endif
  1709. GGML_ASSERT(ggml_vk_dim01_contiguous(src0) || src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); // NOLINT
  1710. GGML_ASSERT(ggml_vk_dim01_contiguous(src1) || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16); // NOLINT
  1711. const uint64_t ne00 = src0->ne[0];
  1712. const uint64_t ne01 = src0->ne[1];
  1713. const uint64_t ne02 = src0->ne[2];
  1714. const uint64_t ne03 = src0->ne[3];
  1715. const uint64_t ne10 = src1->ne[0];
  1716. const uint64_t ne11 = src1->ne[1];
  1717. const uint64_t ne12 = src1->ne[2];
  1718. const uint64_t ne13 = src1->ne[3];
  1719. const uint64_t ne20 = dst->ne[0];
  1720. const uint64_t ne21 = dst->ne[1];
  1721. const uint64_t r2 = ne12 / ne02;
  1722. const uint64_t r3 = ne13 / ne03;
  1723. ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
  1724. ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
  1725. ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra;
  1726. vk_buffer * d_Qx = nullptr;
  1727. size_t qx_buf_offset = 0;
  1728. vk_buffer * d_Qy = nullptr;
  1729. size_t qy_buf_offset = 0;
  1730. bool src0_uma = false;
  1731. bool src1_uma = false;
  1732. if (vk_device.uma) {
  1733. ggml_vk_host_get(src0->data, d_Qx, qx_buf_offset);
  1734. ggml_vk_host_get(src1->data, d_Qy, qy_buf_offset);
  1735. src0_uma = d_Qx != nullptr;
  1736. src1_uma = d_Qy != nullptr;
  1737. }
  1738. const bool load_x = src0->backend != GGML_BACKEND_GPU && !src0_uma;
  1739. const bool load_y = src1->backend != GGML_BACKEND_GPU && !src1_uma;
  1740. const bool x_non_contig = !load_x && !ggml_vk_dim01_contiguous(src0);
  1741. const bool y_non_contig = !load_y && !ggml_vk_dim01_contiguous(src1);
  1742. const bool f16_f32_kernel = src1->type == GGML_TYPE_F32 && !y_non_contig;
  1743. const bool qx_needs_dequant = src0->type != GGML_TYPE_F16 || x_non_contig;
  1744. const bool qy_needs_dequant = (src1->type != GGML_TYPE_F16 && !f16_f32_kernel) || y_non_contig;
  1745. // Not implemented
  1746. GGML_ASSERT(y_non_contig || !qy_needs_dequant); // NOLINT
  1747. const int x_ne = ne01 * ne00;
  1748. const int y_ne = ne11 * ne10;
  1749. const int d_ne = ne11 * ne01;
  1750. const uint32_t kpad = ggml_vk_align_size(ne10, ggml_vk_guess_matmul_pipeline_align(ne01, ne11));
  1751. const bool aligned = ne10 == kpad;
  1752. const uint32_t split_k = ggml_vk_guess_split_k(ne01, ne11, ne10);
  1753. vk_pipeline * pipeline = ggml_vk_guess_matmul_pipeline(true, !f16_f32_kernel, ne01, ne11, aligned);
  1754. const uint64_t qx_sz = ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type);
  1755. const uint64_t qy_sz = ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type);
  1756. const uint64_t x_sz = sizeof(ggml_fp16_t) * x_ne;
  1757. const uint64_t y_sz = f16_f32_kernel ? sizeof(float) * y_ne : sizeof(ggml_fp16_t) * y_ne;
  1758. const uint64_t d_sz = sizeof(float) * d_ne;
  1759. vk_buffer* d_D = &extra->buffer_gpu;
  1760. const uint64_t d_buf_offset = extra->offset;
  1761. GGML_ASSERT(d_D != nullptr);
  1762. GGML_ASSERT(d_D->size >= d_buf_offset + d_sz * ne02 * ne03);
  1763. vk_buffer* d_X;
  1764. uint64_t x_buf_offset = 0;
  1765. vk_buffer* d_Y;
  1766. uint64_t y_buf_offset = 0;
  1767. if (load_x) {
  1768. d_Qx = &vk_prealloc_qx;
  1769. } else if (!src0_uma) {
  1770. d_Qx = &extra_src0->buffer_gpu;
  1771. qx_buf_offset = extra_src0->offset;
  1772. GGML_ASSERT(d_Qx != nullptr);
  1773. }
  1774. if (load_y) {
  1775. d_Qy = &vk_prealloc_qy;
  1776. } else if (!src1_uma) {
  1777. d_Qy = &extra_src1->buffer_gpu;
  1778. qy_buf_offset = extra_src1->offset;
  1779. GGML_ASSERT(d_Qy != nullptr);
  1780. }
  1781. if (qx_needs_dequant) {
  1782. d_X = &vk_prealloc_x;
  1783. GGML_ASSERT(d_X->size >= x_sz * ne02 * ne03);
  1784. } else {
  1785. d_X = d_Qx;
  1786. x_buf_offset = qx_buf_offset;
  1787. GGML_ASSERT(qx_sz == x_sz); // NOLINT
  1788. }
  1789. if (qy_needs_dequant) {
  1790. d_Y = &vk_prealloc_y;
  1791. GGML_ASSERT(d_Y->size >= y_sz * ne02 * ne03);
  1792. } else {
  1793. d_Y = d_Qy;
  1794. y_buf_offset = qy_buf_offset;
  1795. GGML_ASSERT(qy_sz == y_sz);
  1796. }
  1797. vk_pipeline * to_fp16_vk_0 = nullptr;
  1798. vk_pipeline * to_fp16_vk_1 = nullptr;
  1799. if (x_non_contig) {
  1800. to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(src0->type, GGML_TYPE_F16);
  1801. } else {
  1802. to_fp16_vk_0 = ggml_vk_get_to_fp16(src0->type);
  1803. }
  1804. if (y_non_contig) {
  1805. to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(src1->type, GGML_TYPE_F16);
  1806. } else {
  1807. to_fp16_vk_1 = ggml_vk_get_to_fp16(src1->type);
  1808. }
  1809. GGML_ASSERT(!qx_needs_dequant || to_fp16_vk_0 != nullptr); // NOLINT
  1810. GGML_ASSERT(!qy_needs_dequant || to_fp16_vk_1 != nullptr); // NOLINT
  1811. // Allocate descriptor sets
  1812. ggml_vk_pipeline_allocate_descriptor_sets(*pipeline, ne12 * ne13);
  1813. if (qx_needs_dequant) {
  1814. ggml_vk_pipeline_allocate_descriptor_sets(*to_fp16_vk_0, x_non_contig ? 1 : ne12 * ne13);
  1815. }
  1816. if (qy_needs_dequant) {
  1817. ggml_vk_pipeline_allocate_descriptor_sets(*to_fp16_vk_1, y_non_contig ? 1 : ne12 * ne13);
  1818. }
  1819. if (split_k > 1) {
  1820. ggml_vk_pipeline_allocate_descriptor_sets(vk_pipeline_matmul_split_k_reduce, ne12 * ne13);
  1821. }
  1822. if (x_non_contig) {
  1823. ggml_vk_cpy_to_contiguous(ctx, to_fp16_vk_0, src0, { *d_Qx, qx_buf_offset, VK_WHOLE_SIZE }, { *d_X, 0, VK_WHOLE_SIZE }, dst->type, false);
  1824. } else if (load_x || qx_needs_dequant) {
  1825. if (load_x) {
  1826. // copy data to device
  1827. ggml_vk_h2d_tensor_2d(ctx, d_Qx, 0, src0, 0, 0, ggml_nrows(src0));
  1828. vk_staging_offset = qx_sz * ne02 * ne03;
  1829. }
  1830. if (qx_needs_dequant) {
  1831. const std::vector<int> pc = { (int)ne01, (int)ne10, (int)ne10, (int)ne10 };
  1832. ggml_vk_sync_buffers(ctx);
  1833. ggml_vk_dispatch_pipeline(ctx, *to_fp16_vk_0, { { *d_Qx, qx_buf_offset, qx_sz * ne02 * ne03 }, { *d_X, 0, x_sz * ne02 * ne03 } }, pc.size() * sizeof(int), pc.data(), { (uint32_t)(x_ne * ne02 * ne03), 1, 1});
  1834. }
  1835. }
  1836. if (y_non_contig) {
  1837. ggml_vk_cpy_to_contiguous(ctx, to_fp16_vk_1, src1, { *d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { *d_Y, 0, VK_WHOLE_SIZE }, dst->type);
  1838. } else if (load_y) {
  1839. ggml_vk_h2d_tensor_2d(ctx, d_Qy, 0, src1, 0, 0, ggml_nrows(src1));
  1840. }
  1841. uint32_t stride_batch_x = ne00*ne01;
  1842. uint32_t stride_batch_y = ne10*ne11;
  1843. if (!ggml_vk_dim01_contiguous(src0) && !load_x && !qx_needs_dequant) {
  1844. stride_batch_x = src0->nb[0] / ggml_type_size(src0->type);
  1845. }
  1846. if (!ggml_vk_dim01_contiguous(src1) && !load_y && !qy_needs_dequant) {
  1847. stride_batch_y = src1->nb[0] / ggml_type_size(src1->type);
  1848. }
  1849. // compute
  1850. ggml_vk_matmul(ctx, *pipeline, { *d_X, x_buf_offset, x_sz * ne02 * ne03 }, { *d_Y, y_buf_offset, y_sz * ne12 * ne13 }, { *d_D, d_buf_offset, d_sz * ne12 * ne13 }, { vk_prealloc_split_k, 0, d_sz * ne12 * ne13 * split_k }, ne01, ne11, ne10, ne10, ne10, ne01, split_k, ne12*ne13, ne02, ne12, r2, r3, stride_batch_x, stride_batch_y, ne20*ne21); // NOLINT
  1851. if (dst->backend == GGML_BACKEND_CPU) {
  1852. // copy dst to host
  1853. float * d = (float *) ((char *) dst->data);
  1854. ggml_vk_buffer_read_async(ctx, d_D, 0, d, sizeof(float) * d_ne * ne12 * ne13);
  1855. }
  1856. }
  1857. static void ggml_vk_mul_mat_vec_q_f16(vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  1858. #ifdef VK_DEBUG
  1859. std::cerr << "ggml_vk_mul_mat_vec_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", backend=" << src0->backend << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
  1860. std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", backend=" << src1->backend << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
  1861. std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", backend=" << dst->backend << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)" << std::endl;
  1862. #endif
  1863. GGML_ASSERT(ggml_vk_dim01_contiguous(src0) || src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); // NOLINT
  1864. GGML_ASSERT(ggml_vk_dim01_contiguous(src1) || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16); // NOLINT
  1865. const uint64_t ne00 = src0->ne[0];
  1866. const uint64_t ne01 = src0->ne[1];
  1867. const uint64_t ne02 = src0->ne[2];
  1868. const uint64_t ne03 = src0->ne[3];
  1869. const uint64_t ne10 = src1->ne[0];
  1870. const uint64_t ne11 = src1->ne[1];
  1871. const uint64_t ne12 = src1->ne[2];
  1872. const uint64_t ne13 = src1->ne[3];
  1873. GGML_ASSERT(ne11 == 1);
  1874. const uint64_t nb2 = dst->nb[2];
  1875. const uint64_t nb3 = dst->nb[3];
  1876. const uint64_t r2 = ne12 / ne02;
  1877. const uint64_t r3 = ne13 / ne03;
  1878. ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
  1879. ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
  1880. ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra;
  1881. vk_buffer * d_Qx = nullptr;
  1882. size_t qx_buf_offset = 0;
  1883. vk_buffer * d_Qy = nullptr;
  1884. size_t qy_buf_offset = 0;
  1885. bool src0_uma = false;
  1886. bool src1_uma = false;
  1887. if (vk_device.uma) {
  1888. ggml_vk_host_get(src0->data, d_Qx, qx_buf_offset);
  1889. ggml_vk_host_get(src1->data, d_Qy, qy_buf_offset);
  1890. src0_uma = d_Qx != nullptr;
  1891. src1_uma = d_Qy != nullptr;
  1892. }
  1893. const bool load_x = src0->backend != GGML_BACKEND_GPU && !src0_uma;
  1894. const bool load_y = src1->backend != GGML_BACKEND_GPU && !src1_uma;
  1895. const bool x_non_contig = !load_x && !ggml_vk_dim01_contiguous(src0);
  1896. const bool y_non_contig = !load_y && !ggml_vk_dim01_contiguous(src1);
  1897. const bool f16_f32_kernel = src1->type == GGML_TYPE_F32;
  1898. const bool qx_needs_dequant = x_non_contig;
  1899. const bool qy_needs_dequant = (src1->type != GGML_TYPE_F16 && !f16_f32_kernel) || y_non_contig;
  1900. const uint64_t x_ne = ne01 * ne00;
  1901. const uint64_t y_ne = ne11 * ne10;
  1902. const uint64_t d_ne = ne11 * ne01;
  1903. const uint64_t qx_sz = ggml_vk_align_size(ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type), vk_device.properties.limits.minStorageBufferOffsetAlignment);
  1904. const uint64_t qy_sz = ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type);
  1905. const uint64_t x_sz = x_non_contig ? ggml_vk_align_size(ggml_type_size(src0->type) * x_ne, vk_device.properties.limits.minStorageBufferOffsetAlignment) : qx_sz;
  1906. const uint64_t y_sz = f16_f32_kernel ? sizeof(float) * y_ne : sizeof(ggml_fp16_t) * y_ne;
  1907. const uint64_t d_sz = sizeof(float) * d_ne;
  1908. vk_buffer* d_D = &extra->buffer_gpu;
  1909. const uint64_t d_buf_offset = extra->offset;
  1910. GGML_ASSERT(d_D != nullptr);
  1911. vk_buffer* d_X;
  1912. uint64_t x_buf_offset = 0;
  1913. vk_buffer* d_Y;
  1914. uint64_t y_buf_offset = 0;
  1915. if (load_x) {
  1916. d_Qx = &vk_prealloc_qx;
  1917. } else if(!src1_uma) {
  1918. d_Qx = &extra_src0->buffer_gpu;
  1919. qx_buf_offset = extra_src0->offset;
  1920. GGML_ASSERT(d_Qx != nullptr);
  1921. }
  1922. if (load_y) {
  1923. d_Qy = &vk_prealloc_qy;
  1924. } else if(!src1_uma) {
  1925. d_Qy = &extra_src1->buffer_gpu;
  1926. qy_buf_offset = extra_src1->offset;
  1927. GGML_ASSERT(d_Qy != nullptr);
  1928. }
  1929. if (qx_needs_dequant) {
  1930. d_X = &vk_prealloc_x;
  1931. } else {
  1932. d_X = d_Qx;
  1933. x_buf_offset = qx_buf_offset;
  1934. GGML_ASSERT(qx_sz == x_sz);
  1935. }
  1936. if (qy_needs_dequant) {
  1937. d_Y = &vk_prealloc_y;
  1938. } else {
  1939. d_Y = d_Qy;
  1940. y_buf_offset = qy_buf_offset;
  1941. GGML_ASSERT(qy_sz == y_sz);
  1942. }
  1943. vk_pipeline * to_fp16_vk_0 = nullptr;
  1944. vk_pipeline* to_fp16_vk_1 = nullptr;
  1945. if (x_non_contig) {
  1946. to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(src0->type, src0->type);
  1947. }
  1948. if (y_non_contig) {
  1949. to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(src1->type, src1->type);
  1950. } else {
  1951. to_fp16_vk_1 = ggml_vk_get_to_fp16(src1->type);
  1952. }
  1953. vk_pipeline* dmmv = ggml_vk_get_dequantize_mul_mat_vec(src0->type);
  1954. GGML_ASSERT(!qx_needs_dequant || to_fp16_vk_0 != nullptr); // NOLINT
  1955. GGML_ASSERT(!qy_needs_dequant || to_fp16_vk_1 != nullptr); // NOLINT
  1956. GGML_ASSERT(dmmv != nullptr);
  1957. // Allocate descriptor sets
  1958. if (qx_needs_dequant) {
  1959. ggml_vk_pipeline_allocate_descriptor_sets(*to_fp16_vk_0, 1);
  1960. }
  1961. if (qy_needs_dequant) {
  1962. ggml_vk_pipeline_allocate_descriptor_sets(*to_fp16_vk_1, y_non_contig ? 1 : ne12 * ne13);
  1963. }
  1964. ggml_vk_pipeline_allocate_descriptor_sets(*dmmv, ne12 * ne13);
  1965. if (x_non_contig) {
  1966. GGML_ASSERT(x_sz == ggml_vk_align_size(ggml_type_size(src0->type) * x_ne, vk_device.properties.limits.minStorageBufferOffsetAlignment));
  1967. ggml_vk_cpy_to_contiguous(ctx, to_fp16_vk_0, src0, { *d_Qx, qx_buf_offset, VK_WHOLE_SIZE }, { *d_X, 0, VK_WHOLE_SIZE }, src0->type);
  1968. } else if (load_x) {
  1969. // copy data to device
  1970. ggml_vk_h2d_tensor_2d(ctx, d_Qx, 0, src0, 0, 0, ggml_nrows(src0));
  1971. }
  1972. if (y_non_contig) {
  1973. GGML_ASSERT(y_sz == ggml_type_size(src1->type) * y_ne);
  1974. ggml_vk_cpy_to_contiguous(ctx, to_fp16_vk_1, src1, { *d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { *d_Y, 0, VK_WHOLE_SIZE }, src1->type);
  1975. } else if (load_y) {
  1976. ggml_vk_h2d_tensor_2d(ctx, d_Qy, 0, src1, 0, 0, ggml_nrows(src1));
  1977. }
  1978. for (uint64_t i13 = 0; i13 < ne13; i13++) {
  1979. const uint64_t i03 = i13 / r3;
  1980. for (uint64_t i12 = 0; i12 < ne12; i12++) {
  1981. const uint64_t i02 = i12 / r2;
  1982. const uint64_t it_idx0 = (i03 * ne02 + i02);
  1983. const uint64_t it_idx1 = (i13 * ne12 + i12);
  1984. const uint64_t x_offset = x_buf_offset + x_sz * it_idx0;
  1985. const uint64_t qy_offset = qy_buf_offset + qy_sz * it_idx1;
  1986. const uint64_t y_offset = y_buf_offset + y_sz * it_idx1;
  1987. const uint64_t d_offset = d_buf_offset + d_sz * it_idx1;
  1988. const uint64_t y_buffer_offset = (y_offset / vk_device.properties.limits.minStorageBufferOffsetAlignment) * vk_device.properties.limits.minStorageBufferOffsetAlignment;
  1989. const uint64_t y_shader_offset = y_offset - y_buffer_offset;
  1990. const uint64_t d_buffer_offset = (d_offset / vk_device.properties.limits.minStorageBufferOffsetAlignment) * vk_device.properties.limits.minStorageBufferOffsetAlignment;
  1991. const uint64_t d_shader_offset = d_offset - d_buffer_offset;
  1992. if (!y_non_contig && qy_needs_dequant) {
  1993. const std::vector<int> pc = { (int)ne11, (int)ne10, (int)ne10, (int)ne10 };
  1994. ggml_vk_sync_buffers(ctx);
  1995. ggml_vk_dispatch_pipeline(ctx, *to_fp16_vk_1, { { *d_Qy, qy_offset, qy_sz }, { *d_Y, y_offset, y_sz } }, pc.size() * sizeof(int), pc.data(), { (uint32_t)y_ne, 1, 1});
  1996. }
  1997. // compute
  1998. const std::array<int, 3> pc = { (int)ne00, (int)(y_shader_offset / ggml_type_size(src1->type)), (int)(d_shader_offset / ggml_type_size(dst->type))};
  1999. ggml_vk_sync_buffers(ctx);
  2000. ggml_vk_dispatch_pipeline(ctx, *dmmv, { { *d_X, x_offset, x_sz }, { *d_Y, y_buffer_offset, y_sz + y_shader_offset }, { *d_D, d_buffer_offset, d_sz + d_shader_offset } }, 3 * sizeof(int), &pc, { (uint32_t)ne01, 1, 1});
  2001. if (dst->backend == GGML_BACKEND_CPU) {
  2002. // copy dst to host
  2003. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  2004. ggml_vk_sync_buffers(ctx);
  2005. ggml_vk_buffer_read_async(ctx, d_D, d_offset, d, sizeof(float) * d_ne);
  2006. }
  2007. }
  2008. }
  2009. }
  2010. static void ggml_vk_mul_mat_vec_p021_f16_f32(vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  2011. #ifdef VK_DEBUG
  2012. std::cerr << "ggml_vk_mul_mat_p021_f16_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", backend=" << src0->backend << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
  2013. std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", backend=" << src1->backend << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
  2014. std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", backend=" << dst->backend << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)" << std::endl;
  2015. #endif
  2016. GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
  2017. GGML_ASSERT(src0->backend == GGML_BACKEND_GPU);
  2018. GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // NOLINT
  2019. GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // NOLINT
  2020. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  2021. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  2022. const uint64_t ne00 = src0->ne[0];
  2023. const uint64_t ne01 = src0->ne[1];
  2024. const uint64_t ne02 = src0->ne[2];
  2025. // const uint64_t ne03 = src0->ne[3];
  2026. const uint64_t ne10 = src1->ne[0];
  2027. const uint64_t ne11 = src1->ne[1];
  2028. const uint64_t ne12 = src1->ne[2];
  2029. // const uint64_t ne13 = src1->ne[3];
  2030. GGML_ASSERT(ne11 == 1);
  2031. ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
  2032. ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
  2033. ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra;
  2034. vk_buffer * d_Qy = nullptr;
  2035. size_t qy_buf_offset = 0;
  2036. bool src1_uma = false;
  2037. if (vk_device.uma) {
  2038. ggml_vk_host_get(src1->data, d_Qy, qy_buf_offset);
  2039. src1_uma = d_Qy != nullptr;
  2040. }
  2041. const bool load_y = src1->backend != GGML_BACKEND_GPU && !src1_uma;
  2042. const uint64_t x_ne = ne00 * ne01 * ne02;
  2043. const uint64_t y_ne = ne10 * ne11 * ne12;
  2044. const uint64_t d_ne = ne01 * ne11 * ne12;
  2045. const uint64_t qx_sz = ggml_vk_align_size(ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type), vk_device.properties.limits.minStorageBufferOffsetAlignment);
  2046. const uint64_t qy_sz = ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type);
  2047. const uint64_t d_sz = sizeof(float) * d_ne;
  2048. vk_buffer* d_D = &extra->buffer_gpu;
  2049. const uint64_t d_buf_offset = extra->offset;
  2050. GGML_ASSERT(d_D != nullptr);
  2051. vk_buffer* d_Qx = &extra_src0->buffer_gpu;
  2052. const uint64_t qx_buf_offset = extra_src0->offset;
  2053. GGML_ASSERT(d_Qx != nullptr);
  2054. if (load_y) {
  2055. d_Qy = &vk_prealloc_qy;
  2056. } else if (!src1_uma) {
  2057. d_Qy = &extra_src1->buffer_gpu;
  2058. qy_buf_offset = extra_src1->offset;
  2059. GGML_ASSERT(d_Qx != nullptr);
  2060. }
  2061. // Allocate descriptor sets
  2062. ggml_vk_pipeline_allocate_descriptor_sets(vk_pipeline_mul_mat_vec_p021_f16_f32, 1);
  2063. const uint64_t qy_buffer_offset = (qy_buf_offset / vk_device.properties.limits.minStorageBufferOffsetAlignment) * vk_device.properties.limits.minStorageBufferOffsetAlignment;
  2064. const uint64_t qy_shader_offset = qy_buf_offset - qy_buffer_offset;
  2065. const uint64_t d_buffer_offset = (d_buf_offset / vk_device.properties.limits.minStorageBufferOffsetAlignment) * vk_device.properties.limits.minStorageBufferOffsetAlignment;
  2066. const uint64_t d_shader_offset = d_buf_offset - d_buffer_offset;
  2067. if (load_y) {
  2068. ggml_vk_h2d_tensor_2d(ctx, d_Qy, qy_buf_offset, src1, 0, 0, ggml_nrows(src1));
  2069. }
  2070. // compute
  2071. const std::array<uint32_t, 6> pc = { (uint32_t)ne00, (uint32_t)ne01, (uint32_t)ne02, (uint32_t)ne12, (uint32_t)(qy_shader_offset / ggml_type_size(src1->type)), (uint32_t)(d_shader_offset / ggml_type_size(dst->type)) };
  2072. ggml_vk_sync_buffers(ctx);
  2073. ggml_vk_dispatch_pipeline(ctx, vk_pipeline_mul_mat_vec_p021_f16_f32, { { *d_Qx, qx_buf_offset, qx_sz }, { *d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, { *d_D, d_buffer_offset, d_sz + d_shader_offset } }, 6 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 });
  2074. if (dst->backend == GGML_BACKEND_CPU) {
  2075. // copy dst to host
  2076. float * d = (float *) dst->data;
  2077. ggml_vk_sync_buffers(ctx);
  2078. ggml_vk_buffer_read_async(ctx, d_D, d_buf_offset, d, sizeof(float) * d_ne);
  2079. }
  2080. }
  2081. static void ggml_vk_mul_mat_vec_nc_f16_f32(vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  2082. #ifdef VK_DEBUG
  2083. std::cerr << "ggml_vk_mul_mat_nc_f16_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", backend=" << src0->backend << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
  2084. std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", backend=" << src1->backend << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
  2085. std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", backend=" << dst->backend << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)" << std::endl;
  2086. #endif
  2087. GGML_ASSERT(!ggml_is_transposed(src0));
  2088. GGML_ASSERT(!ggml_is_transposed(src1));
  2089. GGML_ASSERT(!ggml_is_permuted(src0));
  2090. GGML_ASSERT(src0->backend == GGML_BACKEND_GPU);
  2091. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  2092. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  2093. const uint64_t ne00 = src0->ne[0];
  2094. const uint64_t ne01 = src0->ne[1];
  2095. const uint64_t ne02 = src0->ne[2];
  2096. // const uint64_t ne03 = src0->ne[3];
  2097. const uint64_t nb01 = src0->nb[1];
  2098. const uint64_t nb02 = src0->nb[2];
  2099. // const uint64_t ne10 = src1->ne[0];
  2100. const uint64_t ne11 = src1->ne[1];
  2101. const uint64_t ne12 = src1->ne[2];
  2102. // const uint64_t ne13 = src1->ne[3];
  2103. GGML_ASSERT(ne11 == 1);
  2104. ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
  2105. ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
  2106. ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra;
  2107. vk_buffer * d_Qy = nullptr;
  2108. size_t qy_buf_offset = 0;
  2109. bool src1_uma = false;
  2110. if (vk_device.uma) {
  2111. ggml_vk_host_get(src1->data, d_Qy, qy_buf_offset);
  2112. src1_uma = d_Qy != nullptr;
  2113. }
  2114. const bool load_y = src1->backend != GGML_BACKEND_GPU && !src1_uma;
  2115. const uint64_t d_ne = ne01 * ne11 * ne12;
  2116. const uint32_t row_stride_x = nb01 / sizeof(ggml_fp16_t);
  2117. const uint32_t channel_stride_x = nb02 / sizeof(ggml_fp16_t);
  2118. const uint64_t qx_sz = ggml_nbytes(src0);
  2119. const uint64_t qy_sz = ggml_nbytes(src1);
  2120. const uint64_t d_sz = sizeof(float) * d_ne;
  2121. vk_buffer* d_D = &extra->buffer_gpu;
  2122. const uint64_t d_buf_offset = extra->offset;
  2123. GGML_ASSERT(d_D != nullptr);
  2124. vk_buffer* d_Qx = &extra_src0->buffer_gpu;
  2125. const uint64_t qx_buf_offset = extra_src0->offset;
  2126. GGML_ASSERT(d_Qx != nullptr);
  2127. if (load_y) {
  2128. d_Qy = &vk_prealloc_qy;
  2129. } else {
  2130. d_Qy = &extra_src1->buffer_gpu;
  2131. qy_buf_offset = extra_src1->offset;
  2132. GGML_ASSERT(d_Qx != nullptr);
  2133. }
  2134. // Allocate descriptor sets
  2135. ggml_vk_pipeline_allocate_descriptor_sets(vk_pipeline_mul_mat_vec_nc_f16_f32, 1);
  2136. const uint64_t qy_buffer_offset = (qy_buf_offset / vk_device.properties.limits.minStorageBufferOffsetAlignment) * vk_device.properties.limits.minStorageBufferOffsetAlignment;
  2137. const uint64_t qy_shader_offset = qy_buf_offset - qy_buffer_offset;
  2138. const uint64_t d_buffer_offset = (d_buf_offset / vk_device.properties.limits.minStorageBufferOffsetAlignment) * vk_device.properties.limits.minStorageBufferOffsetAlignment;
  2139. const uint64_t d_shader_offset = d_buf_offset - d_buffer_offset;
  2140. if (load_y) {
  2141. ggml_vk_h2d_tensor_2d(ctx, d_Qy, qy_buf_offset, src1, 0, 0, ggml_nrows(src1));
  2142. }
  2143. // compute
  2144. const std::array<uint32_t, 7> pc = { (uint32_t)ne00, (uint32_t)ne01, row_stride_x, channel_stride_x, (uint32_t)(ne12 / ne02), (uint32_t)(qy_shader_offset / ggml_type_size(src1->type)), (uint32_t)(d_shader_offset / ggml_type_size(dst->type)) };
  2145. ggml_vk_sync_buffers(ctx);
  2146. ggml_vk_dispatch_pipeline(ctx, vk_pipeline_mul_mat_vec_nc_f16_f32, { { *d_Qx, qx_buf_offset, qx_sz }, { *d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, { *d_D, d_buffer_offset, d_sz + d_shader_offset } }, 7 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 });
  2147. if (dst->backend == GGML_BACKEND_CPU) {
  2148. // copy dst to host
  2149. float * d = (float *) dst->data;
  2150. ggml_vk_sync_buffers(ctx);
  2151. ggml_vk_buffer_read_async(ctx, d_D, d_buf_offset, d, sizeof(float) * d_ne);
  2152. }
  2153. }
  2154. static bool ggml_vk_can_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * dst) {
  2155. const uint64_t ne10 = src1->ne[0];
  2156. const uint64_t ne0 = dst->ne[0];
  2157. const uint64_t ne1 = dst->ne[1];
  2158. // TODO: find the optimal values for these
  2159. return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
  2160. (src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16 || ggml_is_quantized(src1->type)) &&
  2161. dst->type == GGML_TYPE_F32 &&
  2162. ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_GPU);
  2163. }
  2164. static void ggml_vk_mul_mat(vk_context * ctx, const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
  2165. #ifdef VK_DEBUG
  2166. std::cerr << "ggml_vk_mul_mat(" << src0 << ", " << src1 << ", " << dst << ")" << std::endl;
  2167. #endif
  2168. if (src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
  2169. ggml_vk_mul_mat_vec_p021_f16_f32(ctx, src0, src1, dst);
  2170. } else if (src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
  2171. ggml_vk_mul_mat_vec_nc_f16_f32(ctx, src0, src1, dst);
  2172. } else if (src1->ne[1] == 1 && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type))) {
  2173. ggml_vk_mul_mat_vec_q_f16(ctx, src0, src1, dst);
  2174. } else {
  2175. ggml_vk_mul_mat_q_f16(ctx, src0, src1, dst);
  2176. }
  2177. }
  2178. static void ggml_vk_op_repeat(vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  2179. // guaranteed to be an integer due to the check in ggml_can_repeat
  2180. const uint64_t ne0 = dst->ne[0];
  2181. const uint64_t ne1 = dst->ne[1];
  2182. const uint64_t ne2 = dst->ne[2];
  2183. const uint64_t ne3 = dst->ne[3];
  2184. const uint64_t ne00 = src0->ne[0];
  2185. const uint64_t ne01 = src0->ne[1];
  2186. const uint64_t ne02 = src0->ne[2];
  2187. const uint64_t ne03 = src0->ne[3];
  2188. const uint64_t nb0 = dst->nb[0];
  2189. const uint64_t nb1 = dst->nb[1];
  2190. const uint64_t nb2 = dst->nb[2];
  2191. const uint64_t nb3 = dst->nb[3];
  2192. const uint64_t nb00 = src0->nb[0];
  2193. const uint64_t nb01 = src0->nb[1];
  2194. const uint64_t nb02 = src0->nb[2];
  2195. const uint64_t nb03 = src0->nb[3];
  2196. const uint64_t nr0 = ne0/ne00;
  2197. const uint64_t nr1 = ne1/ne01;
  2198. const uint64_t nr2 = ne2/ne02;
  2199. const uint64_t nr3 = ne3/ne03;
  2200. // TODO: support for transposed / permuted tensors
  2201. GGML_ASSERT(nb0 == sizeof(float));
  2202. GGML_ASSERT(nb00 == sizeof(float));
  2203. GGML_ASSERT(src0->backend == GGML_BACKEND_GPU);
  2204. GGML_ASSERT(dst->backend == GGML_BACKEND_GPU);
  2205. ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
  2206. ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
  2207. const vk_buffer* src_buf = &extra_src0->buffer_gpu;
  2208. const uint64_t src_offset = extra_src0->offset;
  2209. vk_buffer* dst_buf = &extra->buffer_gpu;
  2210. const uint64_t dst_offset = extra->offset;
  2211. std::vector<vk::BufferCopy> copies;
  2212. for (uint64_t i3 = 0; i3 < nr3; i3++) {
  2213. for (uint64_t k3 = 0; k3 < ne03; k3++) {
  2214. for (uint64_t i2 = 0; i2 < nr2; i2++) {
  2215. for (uint64_t k2 = 0; k2 < ne02; k2++) {
  2216. for (uint64_t i1 = 0; i1 < nr1; i1++) {
  2217. for (uint64_t k1 = 0; k1 < ne01; k1++) {
  2218. for (uint64_t i0 = 0; i0 < nr0; i0++) {
  2219. copies.push_back({
  2220. src_offset + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0,
  2221. dst_offset + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01,
  2222. ne00*nb0,
  2223. });
  2224. }
  2225. }
  2226. }
  2227. }
  2228. }
  2229. }
  2230. }
  2231. ggml_vk_sync_buffers(ctx);
  2232. ctx->s->buffer.copyBuffer(src_buf->buffer, dst_buf->buffer, copies);
  2233. (void) src1;
  2234. }
  2235. static vk_pipeline* ggml_vk_op_get_pipeline(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_op op) {
  2236. switch (op) {
  2237. case GGML_OP_ADD:
  2238. if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
  2239. return &vk_pipeline_add_f32;
  2240. }
  2241. return nullptr;
  2242. case GGML_OP_GET_ROWS:
  2243. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  2244. if (dst->type == GGML_TYPE_F16) {
  2245. return &vk_pipeline_get_rows[src0->type];
  2246. }
  2247. if (dst->type == GGML_TYPE_F32) {
  2248. return &vk_pipeline_get_rows_f32[src0->type];
  2249. }
  2250. return nullptr;
  2251. case GGML_OP_MUL:
  2252. if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
  2253. return &vk_pipeline_mul_f32;
  2254. }
  2255. return nullptr;
  2256. case GGML_OP_SCALE:
  2257. if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
  2258. return &vk_pipeline_scale_f32;
  2259. }
  2260. return nullptr;
  2261. case GGML_OP_SQR:
  2262. if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
  2263. return &vk_pipeline_sqr_f32;
  2264. }
  2265. return nullptr;
  2266. case GGML_OP_CLAMP:
  2267. if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
  2268. return &vk_pipeline_clamp_f32;
  2269. }
  2270. return nullptr;
  2271. case GGML_OP_CPY:
  2272. case GGML_OP_CONT:
  2273. case GGML_OP_DUP:
  2274. return ggml_vk_get_cpy_pipeline(src0->type, dst->type);
  2275. case GGML_OP_NORM:
  2276. if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
  2277. return &vk_pipeline_norm_f32;
  2278. }
  2279. return nullptr;
  2280. case GGML_OP_RMS_NORM:
  2281. if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
  2282. return &vk_pipeline_rms_norm_f32;
  2283. }
  2284. return nullptr;
  2285. case GGML_OP_UNARY:
  2286. switch (ggml_get_unary_op(dst)) {
  2287. case GGML_UNARY_OP_SILU:
  2288. if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
  2289. return &vk_pipeline_silu_f32;
  2290. }
  2291. break;
  2292. case GGML_UNARY_OP_GELU:
  2293. if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
  2294. return &vk_pipeline_gelu_f32;
  2295. }
  2296. break;
  2297. case GGML_UNARY_OP_RELU:
  2298. if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
  2299. return &vk_pipeline_relu_f32;
  2300. }
  2301. break;
  2302. default:
  2303. break;
  2304. }
  2305. return nullptr;
  2306. case GGML_OP_DIAG_MASK_INF:
  2307. if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
  2308. return &vk_pipeline_diag_mask_inf_f32;
  2309. }
  2310. return nullptr;
  2311. case GGML_OP_SOFT_MAX:
  2312. if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
  2313. return &vk_pipeline_soft_max_f32;
  2314. }
  2315. return nullptr;
  2316. case GGML_OP_ROPE:
  2317. {
  2318. const int mode = ((const int32_t *) dst->op_params)[2];
  2319. const bool is_neox = mode & 2;
  2320. const bool is_glm = mode & 4;
  2321. if (is_glm) {
  2322. return nullptr;
  2323. }
  2324. if (is_neox) {
  2325. if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
  2326. return &vk_pipeline_rope_neox_f32;
  2327. }
  2328. if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
  2329. return &vk_pipeline_rope_neox_f16;
  2330. }
  2331. } else {
  2332. if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
  2333. return &vk_pipeline_rope_f32;
  2334. }
  2335. if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
  2336. return &vk_pipeline_rope_f16;
  2337. }
  2338. }
  2339. return nullptr;
  2340. }
  2341. default:
  2342. return nullptr;
  2343. }
  2344. }
  2345. static ggml_vk_func_t ggml_vk_op_get_func(ggml_op op) {
  2346. switch(op) {
  2347. case GGML_OP_REPEAT:
  2348. return ggml_vk_op_repeat;
  2349. default:
  2350. return nullptr;
  2351. }
  2352. }
  2353. #ifdef GGML_VULKAN_CHECK_RESULTS
  2354. static void ggml_vk_print_tensor(const ggml_tensor * tensor, const char * name);
  2355. static void ggml_vk_check_results_0(ggml_compute_params * params, ggml_tensor * tensor);
  2356. #endif
  2357. template<typename PC>
  2358. static void ggml_vk_op_f32(vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_op op, const PC&& pc) {
  2359. #ifdef VK_DEBUG
  2360. std::cerr << "ggml_vk_op_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", backend=" << src0->backend << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
  2361. if (src1 != nullptr) {
  2362. std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", backend=" << src1->backend << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
  2363. }
  2364. std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", backend=" << dst->backend << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "), " << ggml_op_name(op) << ")" << std::endl;
  2365. #endif
  2366. GGML_ASSERT(!ggml_is_quantized(src0->type) && (src1 == nullptr || !ggml_is_quantized(src1->type))); // NOLINT
  2367. GGML_ASSERT(op == GGML_OP_CPY || ggml_vk_dim01_contiguous(src0)); // NOLINT
  2368. GGML_ASSERT(src1 == nullptr || ggml_vk_dim01_contiguous(src1)); // NOLINT
  2369. GGML_ASSERT(dst->extra != nullptr);
  2370. const uint64_t ne00 = src0->ne[0];
  2371. const uint64_t ne01 = src0->ne[1];
  2372. const uint64_t ne02 = src0->ne[2];
  2373. const uint64_t ne03 = src0->ne[3];
  2374. const uint64_t ne0 = ne00 * ne01;
  2375. const bool use_src1 = src1 != nullptr;
  2376. const uint64_t ne10 = use_src1 ? src1->ne[0] : 0;
  2377. const uint64_t ne11 = use_src1 ? src1->ne[1] : 0;
  2378. const uint64_t ne12 = use_src1 ? src1->ne[2] : 0;
  2379. const uint64_t ne13 = use_src1 ? src1->ne[3] : 0;
  2380. const uint64_t ne1 = ne10 * ne11;
  2381. // const uint64_t nb10 = use_src1 ? src1->nb[0] : 0;
  2382. const uint64_t nb2 = dst->nb[2];
  2383. const uint64_t nb3 = dst->nb[3];
  2384. vk_pipeline * pipeline = ggml_vk_op_get_pipeline(src0, src1, dst, op);
  2385. ggml_vk_func_t op_func;
  2386. if (pipeline == nullptr) {
  2387. op_func = ggml_vk_op_get_func(op);
  2388. if (op_func == nullptr) {
  2389. std::cerr << "ggml_vulkan: Error: Missing op: " << ggml_op_name(op) << " for " << ggml_type_name(src0->type);
  2390. if (src1 != nullptr) {
  2391. std::cerr << " and " << ggml_type_name(src1->type);
  2392. }
  2393. std::cerr << " to " << ggml_type_name(dst->type) << std::endl;
  2394. GGML_ASSERT(false);
  2395. }
  2396. op_func(ctx, src0, src1, dst);
  2397. return;
  2398. }
  2399. ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
  2400. ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
  2401. ggml_tensor_extra_gpu * extra_src1 = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
  2402. vk_buffer * d_X = nullptr;
  2403. size_t x_buf_offset = 0;
  2404. vk_buffer * d_Y = nullptr;
  2405. size_t y_buf_offset = 0;
  2406. bool src0_uma = false;
  2407. bool src1_uma = false;
  2408. if (vk_device.uma) {
  2409. ggml_vk_host_get(src0->data, d_X, x_buf_offset);
  2410. src0_uma = d_X != nullptr;
  2411. if (use_src1) {
  2412. ggml_vk_host_get(src1->data, d_Y, y_buf_offset);
  2413. src1_uma = d_Y != nullptr;
  2414. }
  2415. }
  2416. const bool transfer_src0 = src0->backend != GGML_BACKEND_GPU && !src0_uma;
  2417. const bool transfer_src1 = use_src1 && src1->backend != GGML_BACKEND_GPU && !src1_uma;
  2418. uint64_t x_sz = ggml_vk_align_size(ggml_type_size(src0->type) * ne0, vk_device.properties.limits.minStorageBufferOffsetAlignment);
  2419. uint64_t y_sz = use_src1 ? ggml_vk_align_size(ggml_type_size(src1->type) * ne1, vk_device.properties.limits.minStorageBufferOffsetAlignment) : 0;
  2420. uint64_t d_sz = ggml_type_size(dst->type) * ne0;
  2421. // Workaround for tiny tensor inputs on ROPE
  2422. if (use_src1 && src1->backend == GGML_BACKEND_GPU && y_sz > extra_src1->buffer_gpu.size) {
  2423. y_sz = VK_WHOLE_SIZE;
  2424. }
  2425. vk_buffer* d_D = &extra->buffer_gpu;
  2426. GGML_ASSERT(d_D != nullptr);
  2427. uint64_t d_buf_offset = (extra->offset / vk_device.properties.limits.minStorageBufferOffsetAlignment) * vk_device.properties.limits.minStorageBufferOffsetAlignment;
  2428. GGML_ASSERT(d_buf_offset == extra->offset || op == GGML_OP_CPY); // NOLINT
  2429. if (transfer_src0) {
  2430. d_X = &vk_prealloc_qx;
  2431. } else if(!src0_uma) {
  2432. d_X = &extra_src0->buffer_gpu;
  2433. x_buf_offset = extra_src0->offset;
  2434. GGML_ASSERT(d_X != nullptr);
  2435. }
  2436. if (transfer_src1) {
  2437. d_Y = &vk_prealloc_qy;
  2438. } else if (use_src1 && !src1_uma) {
  2439. d_Y = &extra_src1->buffer_gpu;
  2440. y_buf_offset = extra_src1->offset;
  2441. GGML_ASSERT(d_Y != nullptr);
  2442. }
  2443. if (op == GGML_OP_CPY) {
  2444. GGML_ASSERT(!transfer_src0);
  2445. GGML_ASSERT(!transfer_src1);
  2446. d_sz = dst->ne[1] * dst->nb[1];
  2447. if (extra->offset + d_sz >= d_D->size) {
  2448. d_sz = VK_WHOLE_SIZE;
  2449. }
  2450. }
  2451. std::array<uint32_t, 3> elements;
  2452. // copy src0 to device
  2453. if (transfer_src0) {
  2454. ggml_vk_h2d_tensor_2d(ctx, d_X, 0, src0, 0, 0, ggml_nrows(src0));
  2455. vk_staging_offset = x_sz * ne02 * ne03;
  2456. }
  2457. if (transfer_src1) {
  2458. ggml_vk_h2d_tensor_2d(ctx, d_Y, 0, src1, 0, 0, ggml_nrows(src1));
  2459. }
  2460. // Single call if dimension 2 is contiguous
  2461. if (op == GGML_OP_CPY || (ggml_is_contiguous(src0) && (src1 == nullptr || ggml_is_contiguous(src1)))) {
  2462. ggml_vk_pipeline_allocate_descriptor_sets(*pipeline, 1);
  2463. switch (dst->op) {
  2464. case GGML_OP_NORM:
  2465. case GGML_OP_RMS_NORM:
  2466. case GGML_OP_SOFT_MAX:
  2467. elements = { (uint32_t)ggml_nrows(src0), 1, 1 };
  2468. break;
  2469. case GGML_OP_DIAG_MASK_INF:
  2470. case GGML_OP_ROPE:
  2471. elements = { (uint32_t)ggml_nrows(src0), (uint32_t)ne00, 1 };
  2472. break;
  2473. default:
  2474. elements = { (uint32_t)ggml_nelements(src0), 1, 1 };
  2475. break;
  2476. }
  2477. x_sz *= ne02 * ne03;
  2478. if (y_sz != VK_WHOLE_SIZE) {
  2479. y_sz *= ne12 * ne13;
  2480. }
  2481. if (op != GGML_OP_CPY) {
  2482. d_sz *= ne02 * ne03;
  2483. }
  2484. if (!use_src1 && op == GGML_OP_SOFT_MAX) {
  2485. // Empty src1 is possible on soft_max, but the shader needs a buffer
  2486. ggml_vk_sync_buffers(ctx);
  2487. ggml_vk_dispatch_pipeline(ctx, *pipeline, { { *d_X, x_buf_offset, x_sz }, { vk_prealloc_y, 0, vk_prealloc_y.size }, { *d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
  2488. } else if (use_src1) {
  2489. ggml_vk_sync_buffers(ctx);
  2490. ggml_vk_dispatch_pipeline(ctx, *pipeline, { { *d_X, x_buf_offset, x_sz }, { *d_Y, y_buf_offset, y_sz }, { *d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
  2491. } else {
  2492. ggml_vk_sync_buffers(ctx);
  2493. ggml_vk_dispatch_pipeline(ctx, *pipeline, { { *d_X, x_buf_offset, x_sz }, { *d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
  2494. }
  2495. if (dst->backend == GGML_BACKEND_CPU && op == GGML_OP_CPY) {
  2496. ggml_vk_d2h_tensor_2d(ctx, d_D, 0, dst);
  2497. } else if(dst->backend == GGML_BACKEND_CPU) {
  2498. // copy dst to host
  2499. float * d = (float *) dst->data;
  2500. ggml_vk_buffer_read_async(ctx, d_D, 0, d, d_sz);
  2501. }
  2502. } else {
  2503. ggml_vk_pipeline_allocate_descriptor_sets(*pipeline, ne02 * ne03);
  2504. switch (dst->op) {
  2505. case GGML_OP_NORM:
  2506. case GGML_OP_RMS_NORM:
  2507. case GGML_OP_SOFT_MAX:
  2508. elements = { (uint32_t)ne01, 1, 1 };
  2509. break;
  2510. case GGML_OP_DIAG_MASK_INF:
  2511. case GGML_OP_ROPE:
  2512. elements = { (uint32_t)ne01, (uint32_t)ne00, 1 };
  2513. break;
  2514. default:
  2515. elements = { (uint32_t)ne0, 1, 1 };
  2516. break;
  2517. }
  2518. for (uint64_t i03 = 0; i03 < ne03; i03++) {
  2519. for (uint64_t i02 = 0; i02 < ne02; i02++) {
  2520. const uint32_t it_idx0 = (i03 * ne02 + i02);
  2521. const uint32_t it_idx1 = use_src1 ? ((i03 % ne13) * ne12 + (i02 % ne12)) : 0;
  2522. const uint32_t x_offset = x_sz * it_idx0;
  2523. const uint32_t y_offset = y_sz * it_idx1;
  2524. const uint32_t d_offset = d_sz * it_idx0;
  2525. if (!use_src1 && op == GGML_OP_SOFT_MAX) {
  2526. // Empty src1 is possible on soft_max, but the shader needs a buffer
  2527. ggml_vk_sync_buffers(ctx);
  2528. ggml_vk_dispatch_pipeline(ctx, *pipeline, { { *d_X, x_buf_offset, x_sz }, { vk_prealloc_y, 0, vk_prealloc_y.size }, { *d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
  2529. } else if (use_src1) {
  2530. ggml_vk_sync_buffers(ctx);
  2531. ggml_vk_dispatch_pipeline(ctx, *pipeline, { { *d_X, x_buf_offset + x_offset, x_sz }, { *d_Y, y_buf_offset + y_offset, y_sz }, { *d_D, d_buf_offset + d_offset, d_sz } }, sizeof(PC), &pc, elements);
  2532. } else {
  2533. ggml_vk_sync_buffers(ctx);
  2534. ggml_vk_dispatch_pipeline(ctx, *pipeline, { { *d_X, x_buf_offset + x_offset, x_sz }, { *d_D, d_buf_offset + d_offset, d_sz } }, sizeof(PC), &pc, elements);
  2535. }
  2536. if (dst->backend == GGML_BACKEND_CPU) {
  2537. // copy dst to host
  2538. ggml_vk_buffer_read_async(ctx, d_D, d_buf_offset + d_offset, (char *) dst->data + i02*nb2 + i03*nb3, d_sz);
  2539. }
  2540. }
  2541. }
  2542. }
  2543. }
  2544. static void ggml_vk_repeat(vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  2545. ggml_vk_op_f32<vk_op_push_constants>(ctx, src0, src1, dst, GGML_OP_REPEAT, { (uint32_t)ggml_nelements(src0), (uint32_t)ggml_nelements(src1), 0.0f, 0.0f });
  2546. }
  2547. static void ggml_vk_get_rows(vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  2548. ggml_vk_op_f32<vk_op_push_constants>(ctx, src0, src1, dst, GGML_OP_GET_ROWS, { (uint32_t)ggml_nelements(src0), (uint32_t)ggml_nelements(src1), 0.0f, 0.0f });
  2549. }
  2550. static void ggml_vk_add(vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  2551. ggml_vk_op_f32<vk_op_push_constants>(ctx, src0, src1, dst, GGML_OP_ADD, { (uint32_t)ggml_nelements(src0), (uint32_t)ggml_nelements(src1), 0.0f, 0.0f });
  2552. }
  2553. static void ggml_vk_mul(vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  2554. ggml_vk_op_f32<vk_op_push_constants>(ctx, src0, src1, dst, GGML_OP_MUL, { (uint32_t)ggml_nelements(src0), (uint32_t)ggml_nelements(src1), 0.0f, 0.0f });
  2555. }
  2556. static void ggml_vk_scale(vk_context * ctx, const ggml_tensor * src0, ggml_tensor * dst) {
  2557. float * op_params = (float *)dst->op_params;
  2558. ggml_vk_op_f32<vk_op_push_constants>(ctx, src0, nullptr, dst, GGML_OP_SCALE, { (uint32_t)ggml_nelements(src0), 0, op_params[0], 0.0f });
  2559. }
  2560. static void ggml_vk_sqr(vk_context * ctx, const ggml_tensor * src0, ggml_tensor * dst) {
  2561. ggml_vk_op_f32<vk_op_push_constants>(ctx, src0, nullptr, dst, GGML_OP_SQR, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f });
  2562. }
  2563. static void ggml_vk_clamp(vk_context * ctx, const ggml_tensor * src0, ggml_tensor * dst) {
  2564. float * op_params = (float *)dst->op_params;
  2565. ggml_vk_op_f32<vk_op_push_constants>(ctx, src0, nullptr, dst, GGML_OP_CLAMP, { (uint32_t)ggml_nelements(src0), 0, op_params[0], op_params[1] });
  2566. }
  2567. static void ggml_vk_cpy(vk_context * ctx, const ggml_tensor * src0, ggml_tensor * dst) {
  2568. ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
  2569. const int src0_type_size = ggml_type_size(src0->type);
  2570. const int dst_type_size = ggml_type_size(dst->type);
  2571. const uint32_t d_offset = (extra->offset % vk_device.properties.limits.minStorageBufferOffsetAlignment) / dst_type_size;
  2572. ggml_vk_op_f32<vk_op_cpy_push_constants>(ctx, src0, nullptr, dst, GGML_OP_CPY, {
  2573. (uint32_t)ggml_nelements(src0),
  2574. (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size,
  2575. (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size,
  2576. d_offset,
  2577. });
  2578. }
  2579. static void ggml_vk_norm(vk_context * ctx, const ggml_tensor * src0, ggml_tensor * dst) {
  2580. ggml_vk_op_f32<vk_op_push_constants>(ctx, src0, nullptr, dst, GGML_OP_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], 0.0f, 0.0f });
  2581. }
  2582. static void ggml_vk_rms_norm(vk_context * ctx, const ggml_tensor * src0, ggml_tensor * dst) {
  2583. float * op_params = (float *)dst->op_params;
  2584. ggml_vk_op_f32<vk_op_push_constants>(ctx, src0, nullptr, dst, GGML_OP_RMS_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f });
  2585. }
  2586. static void ggml_vk_unary(vk_context * ctx, const ggml_tensor * src0, ggml_tensor * dst) {
  2587. ggml_vk_op_f32<vk_op_push_constants>(ctx, src0, nullptr, dst, GGML_OP_UNARY, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f });
  2588. }
  2589. static void ggml_vk_diag_mask_inf(vk_context * ctx, const ggml_tensor * src0, ggml_tensor * dst) {
  2590. int32_t * op_params = (int32_t *)dst->op_params;
  2591. ggml_vk_op_f32<vk_op_diag_mask_push_constants>(ctx, src0, nullptr, dst, GGML_OP_DIAG_MASK_INF, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0] });
  2592. }
  2593. static void ggml_vk_soft_max(vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  2594. float * op_params = (float *)dst->op_params;
  2595. ggml_vk_op_f32<vk_op_push_constants>(ctx, src0, src1, dst, GGML_OP_SOFT_MAX, { (uint32_t)src0->ne[0], (uint32_t)(src1 != nullptr ? ggml_nrows(src1) : 0), op_params[0], 0.0f });
  2596. }
  2597. static void ggml_vk_rope(vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  2598. const int n_dims = ((int32_t *) dst->op_params)[1];
  2599. const int mode = ((int32_t *) dst->op_params)[2];
  2600. // const int n_ctx = ((int32_t *) dst->op_params)[3];
  2601. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  2602. const float freq_base = ((float *) dst->op_params)[5];
  2603. const float freq_scale = ((float *) dst->op_params)[6];
  2604. const float ext_factor = ((float *) dst->op_params)[7];
  2605. const float attn_factor = ((float *) dst->op_params)[8];
  2606. const float beta_fast = ((float *) dst->op_params)[9];
  2607. const float beta_slow = ((float *) dst->op_params)[10];
  2608. const bool is_neox = mode & 2;
  2609. const bool is_glm = mode & 4;
  2610. GGML_ASSERT(!is_glm);
  2611. float corr_dims[2];
  2612. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  2613. if (is_neox) {
  2614. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  2615. const float inv_ndims = -1.0f / n_dims;
  2616. ggml_vk_op_f32<vk_op_rope_neox_push_constants>(ctx, src0, src1, dst, GGML_OP_ROPE, { (uint32_t)src0->ne[0], (uint32_t)n_dims, freq_scale, (uint32_t)src0->ne[1], freq_base, ext_factor, attn_factor, corr_dims[0], corr_dims[1], 0.0f, 0.0f, theta_scale, inv_ndims });
  2617. } else {
  2618. ggml_vk_op_f32<vk_op_rope_push_constants>(ctx, src0, src1, dst, GGML_OP_ROPE, { (uint32_t)src0->ne[0], freq_scale, (uint32_t)src0->ne[1], freq_base, ext_factor, attn_factor, corr_dims[0], corr_dims[1], 0.0f, 0.0f });
  2619. }
  2620. }
  2621. static void ggml_vk_nop(vk_context * ctx, const ggml_tensor * src0, ggml_tensor * dst) {
  2622. // If backend is CPU, data from src0 has to be copied off the device
  2623. if (dst->backend == GGML_BACKEND_CPU) {
  2624. ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
  2625. vk_buffer * d_D = &extra_src0->buffer_gpu;
  2626. ggml_vk_sync_buffers(ctx);
  2627. ggml_vk_buffer_read_async(ctx, d_D, 0, dst->data, d_D->size);
  2628. }
  2629. }
  2630. #ifdef VK_RUN_TESTS
  2631. static void ggml_vk_print_matrix_area(const void * data, ggml_type type, int ne0, int ne1, int i0, int i1, int i2) {
  2632. if (type != GGML_TYPE_F32 && type != GGML_TYPE_F16) {
  2633. return;
  2634. }
  2635. i0 = std::max(i0, 5);
  2636. i1 = std::max(i1, 5);
  2637. i2 = std::max(i2, 0);
  2638. fprintf(stderr, " ");
  2639. for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) {
  2640. fprintf(stderr, "%7d ", idx1);
  2641. }
  2642. fprintf(stderr, "\n");
  2643. for (int idx0 = i0 - 5; idx0 < i0 + 5; idx0++) {
  2644. fprintf(stderr, "%7d: ", idx0);
  2645. for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) {
  2646. if (idx0 >= 0 && idx0 < ne0 && idx1 >= 0 && idx1 < ne1) {
  2647. float val;
  2648. if (type == GGML_TYPE_F32) {
  2649. val = *((const float *) data + i2*ne1*ne0 + idx1*ne0 + idx0);
  2650. } else if (type == GGML_TYPE_F16) {
  2651. val = ggml_fp16_to_fp32(*((const ggml_fp16_t *) data + i2*ne1*ne0 + idx1*ne0 + idx0));
  2652. }
  2653. fprintf(stderr, "% 7.2f ", val);
  2654. } else {
  2655. fprintf(stderr, " ");
  2656. }
  2657. }
  2658. fprintf(stderr, "\n");
  2659. }
  2660. }
  2661. template <typename X_TYPE, typename Y_TYPE>
  2662. static void ggml_vk_test_matmul(size_t m, size_t n, size_t k, size_t batch, size_t num_it, int split_k, int shader_size) {
  2663. #ifdef VK_DEBUG
  2664. std::cerr << "ggml_vk_test_matmul(" << m << ", " << n << ", " << k << ", " << batch << ", " << num_it << ", " << split_k << ", " << shader_size << ")" << std::endl;
  2665. #endif
  2666. const size_t x_ne = m * k * batch;
  2667. const size_t y_ne = k * n * batch;
  2668. const size_t d_ne = m * n * batch;
  2669. vk_pipeline * p;
  2670. std::string shname;
  2671. if (shader_size == 0) {
  2672. if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
  2673. p = &vk_pipeline_matmul_f32_aligned_s;
  2674. shname = "F32_ALIGNED_S";
  2675. } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
  2676. p = &vk_pipeline_matmul_f16_f32_aligned_s;
  2677. shname = "F16_F32_ALIGNED_S";
  2678. } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
  2679. p = &vk_pipeline_matmul_f16_aligned_s;
  2680. shname = "F16_ALIGNED_S";
  2681. } else {
  2682. GGML_ASSERT(false);
  2683. }
  2684. } else if (shader_size == 1) {
  2685. if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
  2686. p = &vk_pipeline_matmul_f32_aligned_m;
  2687. shname = "F32_ALIGNED_M";
  2688. } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
  2689. p = &vk_pipeline_matmul_f16_f32_aligned_m;
  2690. shname = "F16_F32_ALIGNED_M";
  2691. } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
  2692. p = &vk_pipeline_matmul_f16_aligned_m;
  2693. shname = "F16_ALIGNED_M";
  2694. } else {
  2695. GGML_ASSERT(false);
  2696. }
  2697. } else if (shader_size == 2) {
  2698. if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
  2699. p = &vk_pipeline_matmul_f32_aligned_l;
  2700. shname = "F32_ALIGNED_L";
  2701. } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
  2702. p = &vk_pipeline_matmul_f16_f32_aligned_l;
  2703. shname = "F16_F32_ALIGNED_L";
  2704. } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
  2705. p = &vk_pipeline_matmul_f16_aligned_l;
  2706. shname = "F16_ALIGNED_L";
  2707. } else {
  2708. GGML_ASSERT(false);
  2709. }
  2710. } else {
  2711. GGML_ASSERT(0);
  2712. }
  2713. const size_t kpad = ggml_vk_align_size(k, p->align);
  2714. if (k != kpad) {
  2715. if (shader_size == 0) {
  2716. if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
  2717. p = &vk_pipeline_matmul_f32_s;
  2718. shname = "F32_S";
  2719. } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
  2720. p = &vk_pipeline_matmul_f16_f32_s;
  2721. shname = "F16_F32_S";
  2722. } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
  2723. p = &vk_pipeline_matmul_f16_s;
  2724. shname = "F16_S";
  2725. }
  2726. } else if (shader_size == 1) {
  2727. if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
  2728. p = &vk_pipeline_matmul_f32_m;
  2729. shname = "F32_M";
  2730. } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
  2731. p = &vk_pipeline_matmul_f16_f32_m;
  2732. shname = "F16_F32_M";
  2733. } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
  2734. p = &vk_pipeline_matmul_f16_m;
  2735. shname = "F16_M";
  2736. }
  2737. } else if (shader_size == 2) {
  2738. if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
  2739. p = &vk_pipeline_matmul_f32_l;
  2740. shname = "F32_L";
  2741. } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
  2742. p = &vk_pipeline_matmul_f16_f32_l;
  2743. shname = "F16_F32_L";
  2744. } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
  2745. p = &vk_pipeline_matmul_f16_l;
  2746. shname = "F16_L";
  2747. }
  2748. }
  2749. }
  2750. ggml_vk_pipeline_allocate_descriptor_sets(*p, num_it);
  2751. if (split_k > 1) {
  2752. ggml_vk_pipeline_allocate_descriptor_sets(vk_pipeline_matmul_split_k_reduce, num_it);
  2753. if (vk_prealloc_split_k.size < sizeof(float) * d_ne * split_k) {
  2754. // Resize buffer
  2755. if (vk_prealloc_split_k.size > 0) {
  2756. ggml_vk_destroy_buffer(vk_prealloc_split_k);
  2757. }
  2758. vk_prealloc_split_k = ggml_vk_create_buffer_check(sizeof(float) * d_ne * split_k, vk::MemoryPropertyFlagBits::eDeviceLocal);
  2759. }
  2760. }
  2761. vk_buffer d_X = ggml_vk_create_buffer_check(sizeof(X_TYPE) * x_ne, vk::MemoryPropertyFlagBits::eDeviceLocal);
  2762. vk_buffer d_Y = ggml_vk_create_buffer_check(sizeof(Y_TYPE) * y_ne, vk::MemoryPropertyFlagBits::eDeviceLocal);
  2763. vk_buffer d_D = ggml_vk_create_buffer_check(sizeof(float) * d_ne, vk::MemoryPropertyFlagBits::eDeviceLocal);
  2764. X_TYPE* x = (X_TYPE *) malloc(sizeof(X_TYPE) * x_ne);
  2765. Y_TYPE* y = (Y_TYPE *) malloc(sizeof(Y_TYPE) * y_ne);
  2766. float* d = (float *) malloc(sizeof(float) * d_ne);
  2767. for (size_t i = 0; i < x_ne; i++) {
  2768. if (std::is_same<float, X_TYPE>()) {
  2769. x[i] = (rand() / (float)RAND_MAX) * 2.0f - 1.0f;
  2770. } else if (std::is_same<ggml_fp16_t, X_TYPE>()) {
  2771. x[i] = ggml_fp32_to_fp16((rand() / (float)RAND_MAX) * 2.0f - 1.0f);
  2772. } else {
  2773. GGML_ASSERT(false);
  2774. }
  2775. }
  2776. for (size_t i = 0; i < y_ne; i++) {
  2777. if (std::is_same<float, Y_TYPE>()) {
  2778. y[i] = (rand() / (float)RAND_MAX) * 2.0f - 1.0f;
  2779. } else if (std::is_same<ggml_fp16_t, Y_TYPE>()) {
  2780. y[i] = ggml_fp32_to_fp16((rand() / (float)RAND_MAX) * 2.0f - 1.0f);
  2781. } else {
  2782. GGML_ASSERT(false);
  2783. }
  2784. }
  2785. ggml_vk_buffer_write(&d_X, 0, x, sizeof(X_TYPE) * k * m * batch);
  2786. ggml_vk_buffer_write(&d_Y, 0, y, sizeof(Y_TYPE) * k * n * batch);
  2787. vk_context * ctx = ggml_vk_create_context(vk_device.compute_queue);
  2788. for (size_t i = 0; i < num_it; i++) {
  2789. ggml_vk_ctx_begin(ctx);
  2790. ggml_vk_matmul(ctx, *p, ggml_vk_subbuffer(d_X), ggml_vk_subbuffer(d_Y), ggml_vk_subbuffer(d_D), ggml_vk_subbuffer(vk_prealloc_split_k), m, n, k, k, k, m, split_k, batch, batch, batch, 1, 1, k*m, k*n, m*n);
  2791. ggml_vk_ctx_end(ctx);
  2792. }
  2793. auto begin = std::chrono::high_resolution_clock::now();
  2794. ggml_vk_submit(ctx, vk_fence);
  2795. VK_CHECK(vk_device.device.waitForFences({ vk_fence }, true, UINT64_MAX), "ggml_vk_test_matmul waitForFences");
  2796. vk_device.device.resetFences({ vk_fence });
  2797. auto end = std::chrono::high_resolution_clock::now();
  2798. double time = std::chrono::duration_cast<std::chrono::microseconds>(end-begin).count() / 1000.0;
  2799. // copy dst to host
  2800. ggml_vk_buffer_read(&d_D, 0, d, sizeof(float) * d_ne);
  2801. float * d_chk = (float *) malloc(sizeof(float) * d_ne);
  2802. ggml_init_params iparams = {
  2803. /*.mem_size =*/ 1024*1024*1024,
  2804. /*.mem_buffer =*/ NULL,
  2805. /*.no_alloc =*/ true,
  2806. };
  2807. ggml_context * ggml_ctx = ggml_init(iparams);
  2808. ggml_type src0_type;
  2809. ggml_type src1_type;
  2810. if (std::is_same<float, X_TYPE>()) {
  2811. src0_type = GGML_TYPE_F32;
  2812. } else if (std::is_same<ggml_fp16_t, X_TYPE>()) {
  2813. src0_type = GGML_TYPE_F16;
  2814. } else {
  2815. GGML_ASSERT(false);
  2816. }
  2817. if (std::is_same<float, Y_TYPE>()) {
  2818. src1_type = GGML_TYPE_F32;
  2819. } else if (std::is_same<ggml_fp16_t, Y_TYPE>()) {
  2820. src1_type = GGML_TYPE_F16;
  2821. } else {
  2822. GGML_ASSERT(false);
  2823. }
  2824. ggml_tensor * src0_ggml = ggml_new_tensor_3d(ggml_ctx, src0_type, k, m, batch);
  2825. ggml_tensor * src1_ggml = ggml_new_tensor_3d(ggml_ctx, src1_type, k, n, batch);
  2826. ggml_tensor * tensor_ggml = ggml_mul_mat(ggml_ctx, src0_ggml, src1_ggml);
  2827. src0_ggml->data = x;
  2828. src1_ggml->data = y;
  2829. tensor_ggml->data = d_chk;
  2830. vk_disable = true;
  2831. ggml_cgraph * cgraph = ggml_new_graph(ggml_ctx);
  2832. ggml_build_forward_expand(cgraph, tensor_ggml);
  2833. ggml_graph_compute_with_ctx(ggml_ctx, cgraph, 1);
  2834. vk_disable = false;
  2835. ggml_free(ggml_ctx);
  2836. double avg_err = 0.0;
  2837. int first_err_n = -1;
  2838. int first_err_m = -1;
  2839. int first_err_b = -1;
  2840. for (size_t i = 0; i < m*n*batch; i++) {
  2841. double err = std::fabs(d[i] - d_chk[i]);
  2842. avg_err += err;
  2843. if (err > 0.05f && first_err_n == -1) {
  2844. first_err_b = i / (m * n);
  2845. first_err_n = (i % (m * n)) / m;
  2846. first_err_m = (i % (m * n)) % m;
  2847. }
  2848. }
  2849. avg_err /= m * n;
  2850. std::cerr << "TEST " << shname << " m=" << m << " n=" << n << " k=" << k << " batch=" << batch << " split_k=" << split_k << " matmul " << time / num_it << "ms avg_err=" << avg_err << std::endl;
  2851. if (avg_err > 0.1) {
  2852. std::cerr << "m = " << first_err_m << " n = " << first_err_n << " b = " << first_err_b << std::endl;
  2853. std::cerr << "Actual result: " << std::endl << std::endl;
  2854. ggml_vk_print_matrix_area(d, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
  2855. std::cerr << "Expected result: " << std::endl << std::endl;
  2856. ggml_vk_print_matrix_area(d_chk, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
  2857. if (split_k > 1) {
  2858. float * split_k_buf = (float *) malloc(sizeof(float) * d_ne * split_k);
  2859. ggml_vk_buffer_read(&vk_prealloc_split_k, 0, split_k_buf, sizeof(float) * d_ne * split_k);
  2860. std::cerr << "d_buf0: " << std::endl << std::endl;
  2861. ggml_vk_print_matrix_area(split_k_buf, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
  2862. std::cerr << "d_buf1: " << std::endl << std::endl;
  2863. ggml_vk_print_matrix_area(split_k_buf + d_ne, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
  2864. std::cerr << "d_buf2: " << std::endl << std::endl;
  2865. ggml_vk_print_matrix_area(split_k_buf + 2 * d_ne, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
  2866. std::cerr << "d_buf3: " << std::endl << std::endl;
  2867. ggml_vk_print_matrix_area(split_k_buf + 3 * d_ne, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
  2868. free(split_k_buf);
  2869. }
  2870. }
  2871. free(d_chk);
  2872. ggml_vk_queue_cleanup(vk_device.transfer_queue);
  2873. ggml_vk_queue_cleanup(vk_device.compute_queue);
  2874. ggml_vk_destroy_buffer(d_X);
  2875. ggml_vk_destroy_buffer(d_Y);
  2876. ggml_vk_destroy_buffer(d_D);
  2877. ggml_vk_pipeline_cleanup(*p);
  2878. ggml_vk_pipeline_cleanup(vk_pipeline_matmul_split_k_reduce);
  2879. free(x);
  2880. free(y);
  2881. free(d);
  2882. }
  2883. static void ggml_vk_print_tensor_area(const ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2884. if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16) {
  2885. return;
  2886. }
  2887. i0 = std::max(i0, 5);
  2888. i1 = std::max(i1, 5);
  2889. i2 = std::max(i2, 0);
  2890. i3 = std::max(i3, 0);
  2891. fprintf(stderr, " ");
  2892. for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) {
  2893. fprintf(stderr, "%7d ", idx1);
  2894. }
  2895. fprintf(stderr, "\n");
  2896. for (int idx0 = i0 - 5; idx0 < i0 + 5; idx0++) {
  2897. fprintf(stderr, "%7d: ", idx0);
  2898. for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) {
  2899. if (idx0 >= 0 && idx0 < tensor->ne[0] && idx1 >= 0 && idx1 < tensor->ne[1] && i2 >= 0 && i2 < tensor->ne[2] && i3 >= 0 && i3 < tensor->ne[3]) {
  2900. float val;
  2901. if (tensor->type == GGML_TYPE_F32) {
  2902. val = *(float *) ((char *) tensor->data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]);
  2903. } else if (tensor->type == GGML_TYPE_F16) {
  2904. val = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) tensor->data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]));
  2905. }
  2906. fprintf(stderr, "% 7.2f ", val);
  2907. } else {
  2908. fprintf(stderr, " ");
  2909. }
  2910. }
  2911. fprintf(stderr, "\n");
  2912. }
  2913. }
  2914. static void ggml_vk_test_h2d_nc(size_t ne0, size_t ne1, size_t ne2, size_t ne3) {
  2915. const size_t ne = ne0 * ne1 * ne2 * ne3;
  2916. ggml_init_params iparams = {
  2917. /*.mem_size =*/ 1024*1024*1024,
  2918. /*.mem_buffer =*/ NULL,
  2919. /*.no_alloc =*/ true,
  2920. };
  2921. ggml_context * ggml_ctx = ggml_init(iparams);
  2922. ggml_tensor * tensor = ggml_new_tensor_4d(ggml_ctx, GGML_TYPE_F32, ne0, ne2, ne1, ne3); // NOLINT
  2923. ggml_tensor * result_tensor = ggml_new_tensor_4d(ggml_ctx, GGML_TYPE_F32, ne0, ne1, ne2, ne3);
  2924. float * data = (float *) ggml_vk_host_malloc(ggml_nbytes(tensor));
  2925. tensor->data = data;
  2926. float * result_data = (float *) malloc(ggml_nbytes(tensor));
  2927. result_tensor->data = result_data;
  2928. // Permute
  2929. {
  2930. size_t tmp = tensor->nb[2];
  2931. tensor->nb[2] = tensor->nb[1];
  2932. tensor->nb[1] = tmp;
  2933. tensor->ne[2] = ne2;
  2934. tensor->ne[1] = ne1;
  2935. }
  2936. for (size_t i = 0; i < ne; i++) {
  2937. data[i] = (rand() / (float)RAND_MAX) * 2.0f - 1.0f;
  2938. }
  2939. vk_context * ctx = ggml_vk_create_context(vk_device.compute_queue);
  2940. ggml_vk_ctx_begin(ctx);
  2941. vk_buffer buffer = ggml_vk_create_buffer_check(ggml_nbytes(tensor), vk::MemoryPropertyFlagBits::eDeviceLocal);
  2942. ggml_vk_h2d_tensor_2d(ctx, &buffer, 0, tensor, 0, 0, ggml_nrows(tensor));
  2943. ggml_vk_ctx_end(ctx);
  2944. ggml_vk_submit(ctx, vk_fence);
  2945. VK_CHECK(vk_device.device.waitForFences({ vk_fence }, true, UINT64_MAX), "ggml_vk_compute_forward waitForFences");
  2946. vk_device.device.resetFences({ vk_fence });
  2947. ggml_vk_buffer_read(&buffer, 0, result_data, ggml_nbytes(tensor));
  2948. double avg_err = 0.0;
  2949. int first_err_i0 = -1;
  2950. int first_err_i1 = -1;
  2951. int first_err_i2 = -1;
  2952. int first_err_i3 = -1;
  2953. for (size_t i3 = 0; i3 < ne3; i3++) {
  2954. for (size_t i2 = 0; i2 < ne2; i2++) {
  2955. for (size_t i1 = 0; i1 < ne1; i1++) {
  2956. for (size_t i0 = 0; i0 < ne0; i0++) {
  2957. float correct = *(float *) ((char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]);
  2958. float result = *(float *) ((char *) result_data + i3*ne2*ne1*ne0*sizeof(float) + i2*ne1*ne0*sizeof(float) + i1*ne0*sizeof(float) + i0*sizeof(float));
  2959. double err = std::fabs(result - correct);
  2960. avg_err += err;
  2961. if (err > 0.05f && first_err_i0 == -1) {
  2962. first_err_i0 = i0;
  2963. first_err_i1 = i1;
  2964. first_err_i2 = i2;
  2965. first_err_i3 = i3;
  2966. }
  2967. }
  2968. }
  2969. }
  2970. }
  2971. avg_err /= ne;
  2972. std::cerr << "TEST nc copy ne0=" << ne0 << " ne1=" << ne1 << " ne2=" << ne2 << " ne3=" << ne3 << " avg_err=" << avg_err << std::endl;
  2973. if (avg_err > 0.1) {
  2974. std::cerr << "i0 = " << first_err_i0 << " i1 = " << first_err_i1 << " i2 = " << first_err_i2 << " i3 = " << first_err_i3 << std::endl;
  2975. std::cerr << "Actual result: " << std::endl << std::endl;
  2976. ggml_vk_print_tensor_area(result_tensor, first_err_i0, first_err_i1, first_err_i2, first_err_i3);
  2977. std::cerr << "Expected result: " << std::endl << std::endl;
  2978. ggml_vk_print_tensor_area(tensor, first_err_i0, first_err_i1, first_err_i2, first_err_i3);
  2979. }
  2980. ggml_free(ggml_ctx);
  2981. ggml_vk_destroy_buffer(buffer);
  2982. ggml_vk_host_free(data);
  2983. free(result_data);
  2984. }
  2985. static void ggml_vk_test_transfer(size_t ne, bool pinned) {
  2986. #ifdef VK_DEBUG
  2987. std::cerr << "ggml_vk_test_transfer(" << ne << ")" << std::endl;
  2988. #endif
  2989. // Check transfers are correct
  2990. vk_buffer buffer = ggml_vk_create_buffer_check(sizeof(float) * ne, vk::MemoryPropertyFlagBits::eDeviceLocal);
  2991. float * x;
  2992. float * y;
  2993. if (pinned) {
  2994. x = (float *) ggml_vk_host_malloc(sizeof(float) * ne);
  2995. y = (float *) ggml_vk_host_malloc(sizeof(float) * ne);
  2996. } else {
  2997. x = (float *) malloc(sizeof(float) * ne);
  2998. y = (float *) malloc(sizeof(float) * ne);
  2999. }
  3000. for (size_t i = 0; i < ne; i++) {
  3001. x[i] = rand() / (float)RAND_MAX;
  3002. }
  3003. vk_context * ctx = ggml_vk_create_context(vk_device.compute_queue);
  3004. ggml_vk_ctx_begin(ctx);
  3005. auto begin = std::chrono::high_resolution_clock::now();
  3006. ggml_vk_buffer_write_async(ctx, &buffer, 0, x, sizeof(float) * ne);
  3007. for (auto& cpy : ctx->in_memcpys) {
  3008. memcpy(cpy.dst, cpy.src, cpy.n);
  3009. }
  3010. ctx->in_memcpys.clear();
  3011. ggml_vk_ctx_end(ctx);
  3012. ggml_vk_submit(ctx, vk_fence);
  3013. VK_CHECK(vk_device.device.waitForFences({ vk_fence }, true, UINT64_MAX), "ggml_vk_compute_forward waitForFences");
  3014. vk_device.device.resetFences({ vk_fence });
  3015. auto end = std::chrono::high_resolution_clock::now();
  3016. double ms_to_gpu = std::chrono::duration_cast<std::chrono::microseconds>(end-begin).count() / 1000.0;
  3017. ggml_vk_ctx_begin(ctx);
  3018. begin = std::chrono::high_resolution_clock::now();
  3019. ggml_vk_buffer_read_async(ctx, &buffer, 0, y, sizeof(float) * ne);
  3020. ggml_vk_ctx_end(ctx);
  3021. ggml_vk_submit(ctx, vk_fence);
  3022. VK_CHECK(vk_device.device.waitForFences({ vk_fence }, true, UINT64_MAX), "ggml_vk_compute_forward waitForFences");
  3023. vk_device.device.resetFences({ vk_fence });
  3024. for (auto& cpy : ctx->out_memcpys) {
  3025. memcpy(cpy.dst, cpy.src, cpy.n);
  3026. }
  3027. ctx->out_memcpys.clear();
  3028. end = std::chrono::high_resolution_clock::now();
  3029. double ms_from_gpu = std::chrono::duration_cast<std::chrono::microseconds>(end-begin).count() / 1000.0;
  3030. double avg_err = 0.0;
  3031. for (size_t i = 0; i < ne; i++) {
  3032. avg_err += std::fabs(x[i] - y[i]);
  3033. }
  3034. double kb = ne * sizeof(float) / 1024.0;
  3035. std::cerr << "TEST TRANSFER " << kb << " KB to_gpu " << ms_to_gpu << "ms (" << kb / ms_to_gpu * 1000.0 / 1024.0 << " MB/s) from_gpu " << ms_from_gpu << "ms (" << kb / ms_from_gpu * 1000.0 / 1024.0 << " MB/s) avg_err=" << avg_err / ne << std::endl;
  3036. ggml_vk_destroy_buffer(buffer);
  3037. if (pinned) {
  3038. ggml_vk_host_free(x);
  3039. ggml_vk_host_free(y);
  3040. } else {
  3041. free(x);
  3042. free(y);
  3043. }
  3044. }
  3045. #endif
  3046. static ggml_tensor_extra_gpu * ggml_vk_tensor_create_extra(ggml_tensor * tensor) {
  3047. #ifdef VK_DEBUG
  3048. std::cerr << "ggml_vk_create_extra(" << tensor << " (" << tensor->name << ", " << ggml_op_name(tensor->op) << "))" << std::endl;
  3049. #endif
  3050. ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu;
  3051. extra->reset();
  3052. tensor->extra = extra;
  3053. return extra;
  3054. }
  3055. static ggml_tensor * ggml_vk_find_last_use(const ggml_tensor * node, ggml_cgraph * graph) {
  3056. GGML_ASSERT(node != nullptr);
  3057. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  3058. for (int j = 0; j < GGML_MAX_SRC; j++) {
  3059. if (graph->nodes[i]->src[j] == node) {
  3060. return graph->nodes[i];
  3061. }
  3062. }
  3063. }
  3064. return nullptr;
  3065. }
  3066. void ggml_vk_preallocate_buffers_graph(ggml_tensor * node){
  3067. #ifdef VK_DEBUG
  3068. std::cerr << "ggml_vk_preallocate_buffers_graph(" << node << ")" << std::endl;
  3069. #endif
  3070. const bool any_on_device = node->backend == GGML_BACKEND_GPU
  3071. || (node->src[0] != nullptr && (node->src[0]->backend == GGML_BACKEND_GPU || node->src[0]->backend == GGML_BACKEND_GPU_SPLIT))
  3072. || (node->src[1] != nullptr && (node->src[1]->backend == GGML_BACKEND_GPU));
  3073. if (vk_disable || (!any_on_device && node->op != GGML_OP_MUL_MAT)) {
  3074. return;
  3075. }
  3076. ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) node->extra;
  3077. if (extra == nullptr) {
  3078. // Workaround for CPU backend BLAS matmul calls
  3079. extra = ggml_vk_tensor_create_extra(node);
  3080. }
  3081. ggml_tensor * src0 = node->src[0];
  3082. ggml_tensor * src1 = node->src[1];
  3083. const bool use_src0 = src0 != nullptr;
  3084. const int64_t ne00 = use_src0 ? src0->ne[0] : 0;
  3085. const int64_t ne01 = use_src0 ? src0->ne[1] : 0;
  3086. const int64_t ne02 = use_src0 ? src0->ne[2] : 0;
  3087. const int64_t ne03 = use_src0 ? src0->ne[3] : 0;
  3088. const bool use_src1 = src1 != nullptr && node->op != GGML_OP_CPY && node->op != GGML_OP_CONT && node->op != GGML_OP_DUP;
  3089. const int64_t ne10 = use_src1 ? src1->ne[0] : 0;
  3090. const int64_t ne11 = use_src1 ? src1->ne[1] : 0;
  3091. const int64_t ne12 = use_src1 ? src1->ne[2] : 0;
  3092. const int64_t ne13 = use_src1 ? src1->ne[3] : 0;
  3093. const int64_t ne20 = node->ne[0];
  3094. const int64_t ne21 = node->ne[1];
  3095. const int64_t ne22 = node->ne[2];
  3096. const int64_t ne23 = node->ne[3];
  3097. const bool f16_f32_kernel = use_src1 && src1->type == GGML_TYPE_F32;
  3098. int split_k;
  3099. if (node->op == GGML_OP_MUL_MAT) {
  3100. split_k = ggml_vk_guess_split_k(ne01, ne11, ne10);
  3101. } else {
  3102. split_k = 1;
  3103. }
  3104. const uint32_t x_ne = ne00 * ne01;
  3105. const uint32_t y_ne = ne10 * ne11;
  3106. const uint32_t d_ne = ne20 * ne21;
  3107. const uint64_t qx_sz = use_src0 ? ggml_vk_align_size(ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type), vk_device.properties.limits.minStorageBufferOffsetAlignment) * ne02 * ne03 : 0;
  3108. const uint64_t qy_sz = use_src1 ? ggml_vk_align_size(ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type), vk_device.properties.limits.minStorageBufferOffsetAlignment) * ne12 * ne13 : 0;
  3109. const uint64_t x_sz = use_src0 ? ggml_vk_align_size(sizeof(ggml_fp16_t) * x_ne, vk_device.properties.limits.minStorageBufferOffsetAlignment) * ne02 * ne03 : 0;
  3110. const uint64_t y_sz = use_src1 ? ggml_vk_align_size(f16_f32_kernel ? sizeof(float) * y_ne : sizeof(ggml_fp16_t) * y_ne, vk_device.properties.limits.minStorageBufferOffsetAlignment) * ne12 * ne13 : 0;
  3111. uint64_t d_sz = ggml_vk_align_size(ggml_type_size(node->type) * d_ne, vk_device.properties.limits.minStorageBufferOffsetAlignment) * ne22 * ne23;
  3112. const uint64_t split_k_size = split_k > 1 ? d_sz * 4 : 0;
  3113. if (extra->buffer_gpu.size == 0) {
  3114. // Workaround for CPU backend BLAS matmul calls
  3115. extra->buffer_gpu = ggml_vk_create_buffer_temp(d_sz);
  3116. }
  3117. switch (node->op) {
  3118. case GGML_OP_REPEAT:
  3119. case GGML_OP_GET_ROWS:
  3120. case GGML_OP_RESHAPE:
  3121. case GGML_OP_VIEW:
  3122. case GGML_OP_PERMUTE:
  3123. case GGML_OP_TRANSPOSE:
  3124. case GGML_OP_ADD:
  3125. case GGML_OP_SCALE:
  3126. case GGML_OP_SQR:
  3127. case GGML_OP_CLAMP:
  3128. case GGML_OP_CPY:
  3129. case GGML_OP_CONT:
  3130. case GGML_OP_DUP:
  3131. case GGML_OP_MUL:
  3132. case GGML_OP_NORM:
  3133. case GGML_OP_RMS_NORM:
  3134. case GGML_OP_DIAG_MASK_INF:
  3135. case GGML_OP_SOFT_MAX:
  3136. case GGML_OP_ROPE:
  3137. break;
  3138. case GGML_OP_UNARY:
  3139. switch (ggml_get_unary_op(node)) {
  3140. case GGML_UNARY_OP_SILU:
  3141. case GGML_UNARY_OP_GELU:
  3142. case GGML_UNARY_OP_RELU:
  3143. break;
  3144. default:
  3145. return;
  3146. }
  3147. break;
  3148. case GGML_OP_MUL_MAT:
  3149. if (vk_prealloc_size_qx < qx_sz) {
  3150. vk_prealloc_size_qx = qx_sz;
  3151. }
  3152. if (vk_prealloc_size_qy < qy_sz) {
  3153. vk_prealloc_size_qy = qy_sz;
  3154. }
  3155. if (vk_prealloc_size_x < x_sz) {
  3156. vk_prealloc_size_x = x_sz;
  3157. }
  3158. if (vk_prealloc_size_y < y_sz) {
  3159. vk_prealloc_size_y = y_sz;
  3160. }
  3161. if (vk_prealloc_size_split_k < split_k_size) {
  3162. vk_prealloc_size_split_k = split_k_size;
  3163. }
  3164. if (vk_staging_size < x_sz + y_sz) {
  3165. vk_staging_size = x_sz + y_sz;
  3166. }
  3167. break;
  3168. default:
  3169. return;
  3170. }
  3171. }
  3172. void ggml_vk_preallocate_buffers() {
  3173. if (vk_disable) {
  3174. return;
  3175. }
  3176. #ifdef VK_DEBUG
  3177. std::cerr << "ggml_vk_preallocate_buffers()" << std::endl;
  3178. std::cerr << "qx_size: " << vk_prealloc_size_qx << " qy_size: " << vk_prealloc_size_qy << " x_size: " << vk_prealloc_size_x << " y_size: " << vk_prealloc_size_y << " split_k_size: " << vk_prealloc_size_split_k << std::endl;
  3179. #endif
  3180. #if defined(VK_RUN_TESTS)
  3181. vk_staging = ggml_vk_create_buffer_check(100ul * 1024ul * 1024ul, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached);
  3182. ggml_vk_test_transfer(8192 * 1000, false);
  3183. ggml_vk_test_transfer(8192 * 1000, true);
  3184. const std::vector<size_t> vals {
  3185. 8, 8, 8,
  3186. 100, 46, 576,
  3187. 623, 111, 128,
  3188. 100, 46, 558,
  3189. 512, 1, 256,
  3190. 128, 110, 622,
  3191. 511, 511, 127,
  3192. 511, 511, 7,
  3193. 511, 511, 17,
  3194. 49, 49, 128,
  3195. 128, 49, 49,
  3196. 4096, 49, 4096,
  3197. 11008, 49, 4096,
  3198. 4096, 49, 11008,
  3199. 32000, 49, 4096,
  3200. 512, 512, 128,
  3201. 128, 512, 512,
  3202. 4096, 512, 4096,
  3203. 11008, 512, 4096,
  3204. 4096, 512, 11008,
  3205. 32000, 512, 4096,
  3206. };
  3207. const size_t num_it = 1;
  3208. for (size_t i = 0; i < vals.size(); i += 3) {
  3209. ggml_vk_test_matmul<ggml_fp16_t, float>(vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 0);
  3210. ggml_vk_test_matmul<ggml_fp16_t, float>(vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 1);
  3211. ggml_vk_test_matmul<ggml_fp16_t, float>(vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 2);
  3212. ggml_vk_test_matmul<ggml_fp16_t, float>(vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 0);
  3213. ggml_vk_test_matmul<ggml_fp16_t, float>(vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 1);
  3214. ggml_vk_test_matmul<ggml_fp16_t, float>(vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 2);
  3215. std::cerr << std::endl;
  3216. }
  3217. GGML_ASSERT(false);
  3218. #endif
  3219. if (vk_prealloc_size_qx > 0 && vk_prealloc_qx.size < vk_prealloc_size_qx) {
  3220. // Resize buffer
  3221. if (vk_prealloc_qx.size > 0) {
  3222. ggml_vk_destroy_buffer(vk_prealloc_qx);
  3223. }
  3224. vk_prealloc_qx = ggml_vk_create_buffer_device(vk_prealloc_size_qx);
  3225. }
  3226. if (vk_prealloc_size_qy > 0 && vk_prealloc_qy.size < vk_prealloc_size_qy) {
  3227. // Resize buffer
  3228. if (vk_prealloc_qy.size > 0) {
  3229. ggml_vk_destroy_buffer(vk_prealloc_qy);
  3230. }
  3231. vk_prealloc_qy = ggml_vk_create_buffer_device(vk_prealloc_size_qy);
  3232. }
  3233. if (vk_prealloc_size_x > 0 && vk_prealloc_x.size < vk_prealloc_size_x) {
  3234. // Resize buffer
  3235. if (vk_prealloc_x.size > 0) {
  3236. ggml_vk_destroy_buffer(vk_prealloc_x);
  3237. }
  3238. vk_prealloc_x = ggml_vk_create_buffer_device(vk_prealloc_size_x);
  3239. }
  3240. if (vk_prealloc_size_y > 0 && vk_prealloc_y.size < vk_prealloc_size_y) {
  3241. // Resize buffer
  3242. if (vk_prealloc_y.size > 0) {
  3243. ggml_vk_destroy_buffer(vk_prealloc_y);
  3244. }
  3245. vk_prealloc_y = ggml_vk_create_buffer_device(vk_prealloc_size_y);
  3246. }
  3247. if (vk_prealloc_size_split_k > 0 && vk_prealloc_split_k.size < vk_prealloc_size_split_k) {
  3248. // Resize buffer
  3249. if (vk_prealloc_split_k.size > 0) {
  3250. ggml_vk_destroy_buffer(vk_prealloc_split_k);
  3251. }
  3252. vk_prealloc_split_k = ggml_vk_create_buffer_device(vk_prealloc_size_split_k);
  3253. }
  3254. if (vk_staging_size > 0 && vk_staging.size < vk_staging_size) {
  3255. // Resize buffer
  3256. if (vk_staging.size > 0) {
  3257. ggml_vk_destroy_buffer(vk_staging);
  3258. }
  3259. vk_staging = ggml_vk_create_buffer_check(vk_staging_size, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached);
  3260. }
  3261. }
  3262. void ggml_vk_build_graph(ggml_tensor * node, bool last_node){
  3263. const bool any_on_device = node->backend == GGML_BACKEND_GPU
  3264. || (node->src[0] != nullptr && (node->src[0]->backend == GGML_BACKEND_GPU || node->src[0]->backend == GGML_BACKEND_GPU_SPLIT))
  3265. || (node->src[1] != nullptr && node->src[1]->backend == GGML_BACKEND_GPU);
  3266. if (vk_disable || (!any_on_device && node->op != GGML_OP_MUL_MAT) || (node->op == GGML_OP_MUL_MAT && !any_on_device && !ggml_vk_can_mul_mat(node->src[0], node->src[1], node))) {
  3267. return;
  3268. }
  3269. #ifdef VK_DEBUG
  3270. std::cerr << "ggml_vk_build_graph(" << node << ", " << ggml_op_name(node->op) << ")" << std::endl;
  3271. #endif
  3272. vk_semaphore_idx = 0;
  3273. vk_staging_offset = 0;
  3274. const ggml_tensor * src0 = node->src[0];
  3275. const ggml_tensor * src1 = node->src[1];
  3276. ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) node->extra;
  3277. switch (node->op) {
  3278. case GGML_OP_UNARY:
  3279. switch (ggml_get_unary_op(node)) {
  3280. case GGML_UNARY_OP_SILU:
  3281. case GGML_UNARY_OP_GELU:
  3282. case GGML_UNARY_OP_RELU:
  3283. break;
  3284. default:
  3285. return;
  3286. }
  3287. break;
  3288. case GGML_OP_REPEAT:
  3289. // case GGML_OP_GET_ROWS:
  3290. case GGML_OP_ADD:
  3291. case GGML_OP_MUL:
  3292. case GGML_OP_SCALE:
  3293. case GGML_OP_SQR:
  3294. case GGML_OP_CLAMP:
  3295. case GGML_OP_CPY:
  3296. case GGML_OP_CONT:
  3297. case GGML_OP_DUP:
  3298. case GGML_OP_RESHAPE:
  3299. case GGML_OP_VIEW:
  3300. case GGML_OP_PERMUTE:
  3301. case GGML_OP_TRANSPOSE:
  3302. case GGML_OP_NORM:
  3303. case GGML_OP_RMS_NORM:
  3304. case GGML_OP_DIAG_MASK_INF:
  3305. case GGML_OP_SOFT_MAX:
  3306. case GGML_OP_ROPE:
  3307. case GGML_OP_MUL_MAT:
  3308. case GGML_OP_NONE:
  3309. break;
  3310. default:
  3311. if (any_on_device) {
  3312. std::cerr << "ggml_vulkan: Error: Missing op: " << ggml_op_name(node->op) << std::endl;
  3313. GGML_ASSERT(false);
  3314. }
  3315. return;
  3316. }
  3317. if (vk_ctx == nullptr) {
  3318. vk_ctx = ggml_vk_create_context(vk_device.compute_queue);
  3319. ggml_vk_ctx_begin(vk_ctx);
  3320. }
  3321. switch (node->op) {
  3322. case GGML_OP_REPEAT:
  3323. ggml_vk_repeat(vk_ctx, src0, src1, node);
  3324. break;
  3325. case GGML_OP_GET_ROWS:
  3326. ggml_vk_get_rows(vk_ctx, src0, src1, node);
  3327. break;
  3328. case GGML_OP_ADD:
  3329. ggml_vk_add(vk_ctx, src0, src1, node);
  3330. break;
  3331. case GGML_OP_MUL:
  3332. ggml_vk_mul(vk_ctx, src0, src1, node);
  3333. break;
  3334. case GGML_OP_SCALE:
  3335. ggml_vk_scale(vk_ctx, src0, node);
  3336. break;
  3337. case GGML_OP_SQR:
  3338. ggml_vk_sqr(vk_ctx, src0, node);
  3339. break;
  3340. case GGML_OP_CLAMP:
  3341. ggml_vk_clamp(vk_ctx, src0, node);
  3342. break;
  3343. case GGML_OP_CPY:
  3344. case GGML_OP_CONT:
  3345. case GGML_OP_DUP:
  3346. ggml_vk_cpy(vk_ctx, src0, node);
  3347. break;
  3348. case GGML_OP_RESHAPE:
  3349. case GGML_OP_VIEW:
  3350. case GGML_OP_PERMUTE:
  3351. case GGML_OP_TRANSPOSE:
  3352. case GGML_OP_NONE:
  3353. ggml_vk_nop(vk_ctx, src0, node);
  3354. break;
  3355. case GGML_OP_NORM:
  3356. ggml_vk_norm(vk_ctx, src0, node);
  3357. break;
  3358. case GGML_OP_RMS_NORM:
  3359. ggml_vk_rms_norm(vk_ctx, src0, node);
  3360. break;
  3361. case GGML_OP_UNARY:
  3362. switch (ggml_get_unary_op(node)) {
  3363. case GGML_UNARY_OP_SILU:
  3364. case GGML_UNARY_OP_GELU:
  3365. case GGML_UNARY_OP_RELU:
  3366. ggml_vk_unary(vk_ctx, src0, node);
  3367. break;
  3368. default:
  3369. return;
  3370. }
  3371. break;
  3372. case GGML_OP_DIAG_MASK_INF:
  3373. ggml_vk_diag_mask_inf(vk_ctx, src0, node);
  3374. break;
  3375. case GGML_OP_SOFT_MAX:
  3376. ggml_vk_soft_max(vk_ctx, src0, src1, node);
  3377. break;
  3378. case GGML_OP_ROPE:
  3379. ggml_vk_rope(vk_ctx, src0, src1, node);
  3380. break;
  3381. case GGML_OP_MUL_MAT:
  3382. ggml_vk_mul_mat(vk_ctx, src0, src1, node);
  3383. break;
  3384. default:
  3385. return;
  3386. }
  3387. extra->ready = true;
  3388. extra->ctx_idx = vk_ctx->idx;
  3389. #ifdef GGML_VULKAN_CHECK_RESULTS
  3390. // Force context reset on each node so that each tensor ends up in its own context
  3391. // and can be run and compared to its CPU equivalent separately
  3392. last_node = true;
  3393. #endif
  3394. if (node->backend == GGML_BACKEND_CPU || last_node) {
  3395. ggml_vk_ctx_end(vk_ctx);
  3396. vk_ctx->exit_tensor = node;
  3397. vk_ctx = nullptr;
  3398. }
  3399. }
  3400. bool ggml_vk_compute_forward(ggml_compute_params * params, ggml_tensor * tensor){
  3401. const bool any_on_device = tensor->backend == GGML_BACKEND_GPU
  3402. || (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT))
  3403. || (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_GPU);
  3404. if (vk_disable || (!any_on_device && tensor->op != GGML_OP_MUL_MAT)) {
  3405. return false;
  3406. }
  3407. ggml_tensor_extra_gpu * extra = nullptr;
  3408. switch (tensor->op) {
  3409. case GGML_OP_ADD:
  3410. case GGML_OP_GET_ROWS:
  3411. case GGML_OP_MUL:
  3412. case GGML_OP_SCALE:
  3413. case GGML_OP_SQR:
  3414. case GGML_OP_CLAMP:
  3415. case GGML_OP_CPY:
  3416. case GGML_OP_CONT:
  3417. case GGML_OP_DUP:
  3418. case GGML_OP_NORM:
  3419. case GGML_OP_RMS_NORM:
  3420. case GGML_OP_DIAG_MASK_INF:
  3421. case GGML_OP_SOFT_MAX:
  3422. case GGML_OP_ROPE:
  3423. case GGML_OP_RESHAPE:
  3424. case GGML_OP_VIEW:
  3425. case GGML_OP_PERMUTE:
  3426. case GGML_OP_TRANSPOSE:
  3427. case GGML_OP_NONE:
  3428. extra = (ggml_tensor_extra_gpu *) tensor->extra;
  3429. break;
  3430. case GGML_OP_UNARY:
  3431. switch (ggml_get_unary_op(tensor)) {
  3432. case GGML_UNARY_OP_SILU:
  3433. case GGML_UNARY_OP_GELU:
  3434. case GGML_UNARY_OP_RELU:
  3435. extra = (ggml_tensor_extra_gpu *) tensor->extra;
  3436. break;
  3437. default:
  3438. return false;
  3439. }
  3440. break;
  3441. case GGML_OP_MUL_MAT:
  3442. if (!any_on_device && !ggml_vk_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) {
  3443. return false;
  3444. }
  3445. extra = (ggml_tensor_extra_gpu *) tensor->extra;
  3446. break;
  3447. default:
  3448. return false;
  3449. }
  3450. if (extra == nullptr) {
  3451. return false;
  3452. }
  3453. if (params->ith != 0) {
  3454. return true;
  3455. }
  3456. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3457. return true;
  3458. }
  3459. #ifdef VK_DEBUG
  3460. std::cerr << "ggml_vk_compute_forward(" << tensor << ", name=" << tensor->name << ", op=" << ggml_op_name(tensor->op) << ", type=" << tensor->type << ", backend=" << tensor->backend << ", ne0=" << tensor->ne[0] << ", ne1=" << tensor->ne[1] << ", ne2=" << tensor->ne[2] << ", ne3=" << tensor->ne[3] << ", nb0=" << tensor->nb[0] << ", nb1=" << tensor->nb[1] << ", nb2=" << tensor->nb[2] << ", nb3=" << tensor->nb[3] << ", view_src=" << tensor->view_src << ", view_offs=" << tensor->view_offs << ")" << std::endl;
  3461. #endif
  3462. #ifdef GGML_VULKAN_CHECK_RESULTS
  3463. ggml_vk_check_results_0(params, tensor);
  3464. #endif
  3465. GGML_ASSERT(extra->ready);
  3466. vk_context& ctx = vk_gc.contexts[extra->ctx_idx];
  3467. // Only run if ctx hasn't been submitted yet
  3468. if (!ctx.seqs.empty()) {
  3469. // Do staging buffer copies
  3470. for (auto& cpy : ctx.in_memcpys) {
  3471. memcpy(cpy.dst, cpy.src, cpy.n);
  3472. }
  3473. ggml_vk_submit(&ctx, vk_fence);
  3474. }
  3475. if (tensor == ctx.exit_tensor) {
  3476. VK_CHECK(vk_device.device.waitForFences({ vk_fence }, true, UINT64_MAX), "ggml_vk_compute_forward waitForFences");
  3477. vk_device.device.resetFences({ vk_fence });
  3478. // Do staging buffer copies
  3479. for (auto& cpy : ctx.out_memcpys) {
  3480. memcpy(cpy.dst, cpy.src, cpy.n);
  3481. }
  3482. ctx.in_memcpys.clear();
  3483. ctx.out_memcpys.clear();
  3484. }
  3485. extra->ready = false;
  3486. return true;
  3487. }
  3488. void ggml_vk_graph_cleanup() {
  3489. if (vk_disable) {
  3490. return;
  3491. }
  3492. #ifdef VK_DEBUG
  3493. std::cerr << "ggml_vk_graph_cleanup()" << std::endl;
  3494. #endif
  3495. for (auto& buffer : vk_gc.temp_buffers) {
  3496. ggml_vk_pool_free(buffer);
  3497. }
  3498. vk_gc.temp_buffers.clear();
  3499. for (auto * pipeline : vk_gc.pipelines) {
  3500. ggml_vk_pipeline_cleanup(*pipeline);
  3501. }
  3502. vk_gc.pipelines.clear();
  3503. ggml_vk_queue_cleanup(vk_device.compute_queue);
  3504. ggml_vk_queue_cleanup(vk_device.transfer_queue);
  3505. for (size_t i = 0; i < vk_gc.semaphores.size(); i++) {
  3506. vk_device.device.destroySemaphore({ vk_gc.semaphores[i].s });
  3507. }
  3508. vk_gc.semaphores.clear();
  3509. for (size_t i = 0; i < vk_gc.tl_semaphores.size(); i++) {
  3510. vk_device.device.destroySemaphore({ vk_gc.tl_semaphores[i].s });
  3511. }
  3512. vk_gc.tl_semaphores.clear();
  3513. vk_event_idx = 0;
  3514. for (auto& event : vk_gc.events) {
  3515. vk_device.device.resetEvent(event);
  3516. }
  3517. vk_staging_offset = 0;
  3518. vk_ctx = nullptr;
  3519. vk_gc.contexts.clear();
  3520. }
  3521. static void ggml_vk_cleanup() {
  3522. #ifdef VK_DEBUG
  3523. std::cerr << "ggml_vk_cleanup()" << std::endl;
  3524. #endif
  3525. ggml_vk_destroy_buffer(vk_prealloc_x);
  3526. ggml_vk_destroy_buffer(vk_prealloc_y);
  3527. ggml_vk_destroy_buffer(vk_prealloc_split_k);
  3528. ggml_vk_destroy_buffer(vk_staging);
  3529. ggml_vk_destroy_buffer(vk_sync_staging);
  3530. vk_prealloc_size_x = 0;
  3531. vk_prealloc_size_y = 0;
  3532. vk_prealloc_size_split_k = 0;
  3533. vk_staging_size = 0;
  3534. for (auto& event : vk_gc.events) {
  3535. vk_device.device.destroyEvent(event);
  3536. }
  3537. vk_gc.events.clear();
  3538. }
  3539. // backend interface
  3540. #define UNUSED GGML_UNUSED
  3541. struct ggml_backend_vk_context {
  3542. std::string name;
  3543. };
  3544. // device backend
  3545. static void * const vk_ptr_base = (void *)(uintptr_t) 0x1000; // NOLINT
  3546. struct ggml_backend_vk_buffer_context {
  3547. vk_buffer dev_buffer;
  3548. ggml_tensor_extra_gpu * temp_tensor_extras = nullptr;
  3549. size_t temp_tensor_extra_index = 0;
  3550. std::string name;
  3551. ggml_backend_vk_buffer_context(vk_buffer dev_buffer) :
  3552. dev_buffer(dev_buffer),
  3553. name(GGML_VK_NAME) {
  3554. }
  3555. ~ggml_backend_vk_buffer_context() {
  3556. ggml_vk_destroy_buffer(dev_buffer);
  3557. delete[] temp_tensor_extras;
  3558. }
  3559. ggml_tensor_extra_gpu * ggml_vk_alloc_temp_tensor_extra() {
  3560. if (temp_tensor_extras == nullptr) {
  3561. temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_VK_MAX_NODES];
  3562. }
  3563. size_t alloc_index = temp_tensor_extra_index;
  3564. temp_tensor_extra_index = (temp_tensor_extra_index + 1) % GGML_VK_MAX_NODES;
  3565. ggml_tensor_extra_gpu * extra = &temp_tensor_extras[alloc_index];
  3566. extra->reset();
  3567. return extra;
  3568. }
  3569. };
  3570. GGML_CALL static const char * ggml_backend_vk_buffer_get_name(ggml_backend_buffer_t buffer) {
  3571. ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
  3572. return ctx->name.c_str();
  3573. }
  3574. GGML_CALL static bool ggml_backend_buffer_is_vk(ggml_backend_buffer_t buffer) {
  3575. return buffer->iface.get_name == ggml_backend_vk_buffer_get_name;
  3576. }
  3577. GGML_CALL static void ggml_backend_vk_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  3578. ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
  3579. ggml_vk_destroy_buffer(ctx->dev_buffer);
  3580. delete ctx;
  3581. }
  3582. GGML_CALL static void * ggml_backend_vk_buffer_get_base(ggml_backend_buffer_t buffer) {
  3583. return vk_ptr_base;
  3584. UNUSED(buffer);
  3585. }
  3586. GGML_CALL static void ggml_backend_vk_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
  3587. #ifdef VK_DEBUG
  3588. std::cerr << "ggml_backend_vk_buffer_init_tensor(" << buffer << " (" << buffer->context << "), " << tensor << ")" << std::endl;
  3589. #endif
  3590. ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
  3591. ggml_tensor_extra_gpu * extra = ctx->ggml_vk_alloc_temp_tensor_extra();
  3592. if (tensor->view_src != nullptr && tensor->view_src->extra != nullptr) {
  3593. ggml_tensor_extra_gpu * extra_view = (ggml_tensor_extra_gpu *) tensor->view_src->extra;
  3594. extra->buffer_gpu = extra_view->buffer_gpu;
  3595. extra->offset = extra_view->offset + tensor->view_offs;
  3596. } else {
  3597. extra->buffer_gpu = ctx->dev_buffer;
  3598. extra->offset = (uint8_t *) tensor->data - (uint8_t *) vk_ptr_base;
  3599. }
  3600. tensor->backend = GGML_BACKEND_GPU;
  3601. tensor->extra = extra;
  3602. }
  3603. GGML_CALL static void ggml_backend_vk_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  3604. #ifdef VK_DEBUG
  3605. std::cerr << "ggml_backend_vk_buffer_set_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")" << std::endl;
  3606. #endif
  3607. GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
  3608. ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
  3609. ggml_vk_buffer_write(&extra->buffer_gpu, extra->offset + offset, data, size);
  3610. UNUSED(buffer);
  3611. }
  3612. GGML_CALL static void ggml_backend_vk_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  3613. #ifdef VK_DEBUG
  3614. std::cerr << "ggml_backend_vk_buffer_get_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")" << std::endl;
  3615. #endif
  3616. GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
  3617. ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
  3618. ggml_vk_buffer_read(&extra->buffer_gpu, extra->offset + offset, data, size);
  3619. UNUSED(buffer);
  3620. }
  3621. GGML_CALL static bool ggml_backend_vk_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
  3622. if (ggml_backend_buffer_is_vk(src->buffer)) {
  3623. ggml_tensor_extra_gpu * src_extra = (ggml_tensor_extra_gpu *) src->extra;
  3624. ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
  3625. ggml_vk_buffer_copy(&src_extra->buffer_gpu, src_extra->offset, &dst_extra->buffer_gpu, dst_extra->offset, ggml_nbytes(src));
  3626. return true;
  3627. }
  3628. return false;
  3629. UNUSED(buffer);
  3630. }
  3631. GGML_CALL static void ggml_backend_vk_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  3632. ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
  3633. ggml_vk_buffer_memset(&ctx->dev_buffer, 0, value, buffer->size);
  3634. }
  3635. static ggml_backend_buffer_i ggml_backend_vk_buffer_interface = {
  3636. /* .get_name = */ ggml_backend_vk_buffer_get_name,
  3637. /* .free_buffer = */ ggml_backend_vk_buffer_free_buffer,
  3638. /* .get_base = */ ggml_backend_vk_buffer_get_base,
  3639. /* .init_tensor = */ ggml_backend_vk_buffer_init_tensor,
  3640. /* .set_tensor = */ ggml_backend_vk_buffer_set_tensor,
  3641. /* .get_tensor = */ ggml_backend_vk_buffer_get_tensor,
  3642. /* .cpy_tensor = */ ggml_backend_vk_buffer_cpy_tensor,
  3643. /* .clear = */ ggml_backend_vk_buffer_clear,
  3644. /* .reset = */ NULL,
  3645. };
  3646. // vk buffer type
  3647. struct ggml_backend_vk_buffer_type_context {
  3648. std::string name;
  3649. };
  3650. GGML_CALL static const char * ggml_backend_vk_buffer_type_name(ggml_backend_buffer_type_t buft) {
  3651. ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *)buft->context;
  3652. return ctx->name.c_str();
  3653. }
  3654. GGML_CALL static ggml_backend_buffer_t ggml_backend_vk_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  3655. #ifdef VK_DEBUG
  3656. std::cerr << "ggml_backend_vk_buffer_type_alloc_buffer(" << size << ")" << std::endl;
  3657. #endif
  3658. vk_buffer dev_buffer = ggml_vk_create_buffer_device(size);
  3659. ggml_backend_vk_buffer_context * ctx = new ggml_backend_vk_buffer_context(dev_buffer);
  3660. return ggml_backend_buffer_init(buft, ggml_backend_vk_buffer_interface, ctx, size);
  3661. UNUSED(buft);
  3662. }
  3663. GGML_CALL static size_t ggml_backend_vk_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  3664. return vk_device.properties.limits.minStorageBufferOffsetAlignment;
  3665. UNUSED(buft);
  3666. }
  3667. GGML_CALL static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
  3668. return vk_device.max_memory_allocation_size;
  3669. UNUSED(buft);
  3670. }
  3671. GGML_CALL static size_t ggml_backend_vk_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
  3672. return ggml_nbytes(tensor);
  3673. UNUSED(buft);
  3674. }
  3675. GGML_CALL static bool ggml_backend_vk_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
  3676. return ggml_backend_is_vk(backend);
  3677. UNUSED(buft);
  3678. }
  3679. static ggml_backend_buffer_type_i ggml_backend_vk_buffer_type_interface = {
  3680. /* .get_name = */ ggml_backend_vk_buffer_type_name,
  3681. /* .alloc_buffer = */ ggml_backend_vk_buffer_type_alloc_buffer,
  3682. /* .get_alignment = */ ggml_backend_vk_buffer_type_get_alignment,
  3683. /* .get_max_size = */ ggml_backend_vk_buffer_type_get_max_size,
  3684. /* .get_alloc_size = */ ggml_backend_vk_buffer_type_get_alloc_size,
  3685. /* .supports_backend = */ ggml_backend_vk_buffer_type_supports_backend,
  3686. /* .is_host = */ NULL,
  3687. };
  3688. GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_buffer_type() {
  3689. static ggml_backend_buffer_type ggml_backend_vk_buffer_type;
  3690. static bool ggml_backend_vk_buffer_type_initialized = false;
  3691. if (!ggml_backend_vk_buffer_type_initialized) {
  3692. ggml_backend_vk_buffer_type = {
  3693. /* .iface = */ ggml_backend_vk_buffer_type_interface,
  3694. /* .context = */ new ggml_backend_vk_buffer_type_context{GGML_VK_NAME},
  3695. };
  3696. ggml_backend_vk_buffer_type_initialized = true;
  3697. }
  3698. return &ggml_backend_vk_buffer_type;
  3699. }
  3700. // host buffer type
  3701. GGML_CALL static const char * ggml_backend_vk_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
  3702. return GGML_VK_NAME "_Host";
  3703. UNUSED(buft);
  3704. }
  3705. GGML_CALL static const char * ggml_backend_vk_host_buffer_name(ggml_backend_buffer_t buffer) {
  3706. return GGML_VK_NAME "_Host";
  3707. UNUSED(buffer);
  3708. }
  3709. GGML_CALL static void ggml_backend_vk_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  3710. ggml_vk_host_free(buffer->context);
  3711. }
  3712. GGML_CALL static ggml_backend_buffer_t ggml_backend_vk_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  3713. void * ptr = nullptr;
  3714. try {
  3715. ptr = ggml_vk_host_malloc(size);
  3716. } catch (vk::SystemError& e) {
  3717. std::cerr << "ggml_vulkan: Failed to allocate pinned memory." << std::endl;
  3718. std::cerr << "ggml_vulkan: " << e.what() << std::endl;
  3719. // fallback to cpu buffer
  3720. return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
  3721. }
  3722. ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
  3723. buffer->buft = buft;
  3724. buffer->iface.get_name = ggml_backend_vk_host_buffer_name;
  3725. buffer->iface.free_buffer = ggml_backend_vk_host_buffer_free_buffer;
  3726. return buffer;
  3727. }
  3728. GGML_CALL static size_t ggml_backend_vk_host_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  3729. return vk_device.properties.limits.minMemoryMapAlignment;
  3730. UNUSED(buft);
  3731. }
  3732. GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type() {
  3733. static struct ggml_backend_buffer_type ggml_backend_vk_buffer_type_host = {
  3734. /* .iface = */ {
  3735. /* .get_name = */ ggml_backend_vk_host_buffer_type_name,
  3736. /* .alloc_buffer = */ ggml_backend_vk_host_buffer_type_alloc_buffer,
  3737. /* .get_alignment = */ ggml_backend_vk_host_buffer_type_get_alignment,
  3738. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  3739. /* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
  3740. /* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend,
  3741. /* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
  3742. },
  3743. /* .context = */ nullptr,
  3744. };
  3745. return &ggml_backend_vk_buffer_type_host;
  3746. }
  3747. // backend
  3748. GGML_CALL static const char * ggml_backend_vk_name(ggml_backend_t backend) {
  3749. ggml_backend_vk_context * vk_ctx = (ggml_backend_vk_context *)backend->context;
  3750. return vk_ctx->name.c_str();
  3751. }
  3752. GGML_CALL static void ggml_backend_vk_free(ggml_backend_t backend) {
  3753. ggml_backend_vk_context * vk_ctx = (ggml_backend_vk_context *)backend->context;
  3754. delete vk_ctx;
  3755. delete backend;
  3756. }
  3757. GGML_CALL static ggml_backend_buffer_type_t ggml_backend_vk_get_default_buffer_type(ggml_backend_t backend) {
  3758. return ggml_backend_vk_buffer_type();
  3759. UNUSED(backend);
  3760. }
  3761. GGML_CALL static void ggml_backend_vk_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  3762. #ifdef VK_DEBUG
  3763. std::cerr << "ggml_backend_vk_set_tensor_async(" << size << ")" << std::endl;
  3764. #endif
  3765. GGML_ASSERT((tensor->buffer->buft == ggml_backend_vk_buffer_type() || tensor->buffer->buft == ggml_backend_vk_host_buffer_type()) && "unsupported buffer type");
  3766. GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
  3767. ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
  3768. if (vk_ctx == nullptr) {
  3769. // Initialize new transfer context
  3770. vk_ctx = ggml_vk_create_context(vk_device.transfer_queue);
  3771. ggml_vk_ctx_begin(vk_ctx);
  3772. }
  3773. ggml_vk_buffer_write_async(vk_ctx, &extra->buffer_gpu, extra->offset + offset, data, size);
  3774. UNUSED(backend);
  3775. }
  3776. GGML_CALL static void ggml_backend_vk_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  3777. #ifdef VK_DEBUG
  3778. std::cerr << "ggml_backend_vk_get_tensor_async(" << size << ")" << std::endl;
  3779. #endif
  3780. GGML_ASSERT((tensor->buffer->buft == ggml_backend_vk_buffer_type() || tensor->buffer->buft == ggml_backend_vk_host_buffer_type()) && "unsupported buffer type");
  3781. GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
  3782. ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
  3783. if (vk_ctx == nullptr) {
  3784. // Initialize new transfer context
  3785. vk_ctx = ggml_vk_create_context(vk_device.transfer_queue);
  3786. ggml_vk_ctx_begin(vk_ctx);
  3787. }
  3788. ggml_vk_buffer_read_async(vk_ctx, &extra->buffer_gpu, extra->offset + offset, data, size);
  3789. UNUSED(backend);
  3790. }
  3791. GGML_CALL static bool ggml_backend_vk_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) {
  3792. #ifdef VK_DEBUG
  3793. std::cerr << "ggml_backend_vk_cpy_tensor_async()" << std::endl;
  3794. #endif
  3795. if ((dst->buffer->buft == ggml_backend_vk_buffer_type() || dst->buffer->buft == ggml_backend_vk_host_buffer_type()) && ggml_backend_buffer_is_vk(src->buffer)) {
  3796. ggml_tensor_extra_gpu * src_extra = (ggml_tensor_extra_gpu *) src->extra;
  3797. ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
  3798. if (vk_ctx == nullptr) {
  3799. // Initialize new transfer context
  3800. vk_ctx = ggml_vk_create_context(vk_device.transfer_queue);
  3801. ggml_vk_ctx_begin(vk_ctx);
  3802. }
  3803. ggml_vk_buffer_copy_async(vk_ctx, &src_extra->buffer_gpu, src_extra->offset, &dst_extra->buffer_gpu, dst_extra->offset, ggml_nbytes(src));
  3804. return true;
  3805. }
  3806. return false;
  3807. UNUSED(backend);
  3808. }
  3809. GGML_CALL static void ggml_backend_vk_synchronize(ggml_backend_t backend) {
  3810. #ifdef VK_DEBUG
  3811. std::cerr << "ggml_backend_vk_synchronize()" << std::endl;
  3812. #endif
  3813. if(vk_ctx == nullptr) {
  3814. return;
  3815. }
  3816. ggml_vk_ctx_end(vk_ctx);
  3817. for (auto& cpy : vk_ctx->in_memcpys) {
  3818. memcpy(cpy.dst, cpy.src, cpy.n);
  3819. }
  3820. ggml_vk_submit(vk_ctx, vk_fence);
  3821. VK_CHECK(vk_device.device.waitForFences({ vk_fence }, true, UINT64_MAX), "ggml_backend_vk_synchronize waitForFences");
  3822. vk_device.device.resetFences({ vk_fence });
  3823. for (auto& cpy : vk_ctx->out_memcpys) {
  3824. memcpy(cpy.dst, cpy.src, cpy.n);
  3825. }
  3826. vk_ctx = nullptr;
  3827. UNUSED(backend);
  3828. }
  3829. GGML_CALL static bool ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
  3830. // ggml_backend_vk_context * vk_ctx = (ggml_backend_vk_context *)backend->context;
  3831. for (int i = 0; i < cgraph->n_nodes; i++) {
  3832. ggml_vk_preallocate_buffers_graph(cgraph->nodes[i]);
  3833. }
  3834. ggml_vk_preallocate_buffers();
  3835. for (int i = 0; i < cgraph->n_nodes; i++) {
  3836. ggml_vk_build_graph(cgraph->nodes[i], i == cgraph->n_nodes - 1);
  3837. }
  3838. ggml_compute_params params = {};
  3839. params.type = GGML_TASK_COMPUTE;
  3840. params.ith = 0;
  3841. for (int i = 0; i < cgraph->n_nodes; i++) {
  3842. ggml_tensor * node = cgraph->nodes[i];
  3843. if (node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
  3844. continue;
  3845. }
  3846. bool ok = ggml_vk_compute_forward(&params, node);
  3847. if (!ok) {
  3848. fprintf(stderr, "%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
  3849. }
  3850. #ifdef GGML_VULKAN_CHECK_RESULTS
  3851. else {
  3852. ggml_vk_check_results_1(&params, node);
  3853. }
  3854. #endif
  3855. GGML_ASSERT(ok);
  3856. }
  3857. ggml_vk_graph_cleanup();
  3858. return true;
  3859. UNUSED(backend);
  3860. }
  3861. GGML_CALL static bool ggml_backend_vk_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
  3862. switch (op->op) {
  3863. case GGML_OP_UNARY:
  3864. switch (ggml_get_unary_op(op)) {
  3865. case GGML_UNARY_OP_GELU:
  3866. case GGML_UNARY_OP_SILU:
  3867. case GGML_UNARY_OP_RELU:
  3868. return true;
  3869. default:
  3870. return false;
  3871. }
  3872. break;
  3873. case GGML_OP_MUL_MAT:
  3874. {
  3875. struct ggml_tensor * a;
  3876. struct ggml_tensor * b;
  3877. if (op->op == GGML_OP_MUL_MAT) {
  3878. a = op->src[0];
  3879. b = op->src[1];
  3880. } else {
  3881. a = op->src[2];
  3882. b = op->src[1];
  3883. }
  3884. if (a->ne[3] != b->ne[3]) {
  3885. return false;
  3886. }
  3887. return true;
  3888. } break;
  3889. // case GGML_OP_GET_ROWS:
  3890. // {
  3891. // switch (op->src[0]->type) {
  3892. // case GGML_TYPE_F16:
  3893. // case GGML_TYPE_F32:
  3894. // case GGML_TYPE_Q4_0:
  3895. // case GGML_TYPE_Q4_1:
  3896. // case GGML_TYPE_Q5_0:
  3897. // case GGML_TYPE_Q5_1:
  3898. // case GGML_TYPE_Q8_0:
  3899. // return true;
  3900. // default:
  3901. // return false;
  3902. // }
  3903. // } break;
  3904. case GGML_OP_CPY:
  3905. {
  3906. ggml_type src0_type = op->src[0]->type;
  3907. ggml_type src1_type = op->src[1]->type;
  3908. if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
  3909. return true;
  3910. }
  3911. if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) {
  3912. return true;
  3913. }
  3914. if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
  3915. return true;
  3916. }
  3917. return false;
  3918. } break;
  3919. // case GGML_OP_DUP:
  3920. // case GGML_OP_REPEAT:
  3921. // {
  3922. // ggml_type src0_type = op->src[0]->type;
  3923. // return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16;
  3924. // } break;
  3925. case GGML_OP_ROPE:
  3926. {
  3927. const int mode = ((const int32_t *) op->op_params)[2];
  3928. const bool is_glm = mode & 4;
  3929. return !is_glm;
  3930. } break;
  3931. case GGML_OP_NONE:
  3932. case GGML_OP_RESHAPE:
  3933. case GGML_OP_VIEW:
  3934. case GGML_OP_PERMUTE:
  3935. case GGML_OP_TRANSPOSE:
  3936. case GGML_OP_NORM:
  3937. case GGML_OP_ADD:
  3938. case GGML_OP_MUL:
  3939. case GGML_OP_RMS_NORM:
  3940. case GGML_OP_SCALE:
  3941. case GGML_OP_SQR:
  3942. case GGML_OP_CLAMP:
  3943. case GGML_OP_CONT:
  3944. case GGML_OP_DIAG_MASK_INF:
  3945. case GGML_OP_SOFT_MAX:
  3946. return true;
  3947. default:
  3948. return false;
  3949. }
  3950. UNUSED(backend);
  3951. }
  3952. // TODO: enable async and synchronize
  3953. static ggml_backend_i ggml_backend_vk_interface = {
  3954. /* .get_name = */ ggml_backend_vk_name,
  3955. /* .free = */ ggml_backend_vk_free,
  3956. /* .get_default_buffer_type = */ ggml_backend_vk_get_default_buffer_type,
  3957. /* .set_tensor_async = */ NULL, // ggml_backend_vk_set_tensor_async,
  3958. /* .get_tensor_async = */ NULL, // ggml_backend_vk_get_tensor_async,
  3959. /* .cpy_tensor_async = */ NULL, // ggml_backend_vk_cpy_tensor_async,
  3960. /* .synchronize = */ NULL, // ggml_backend_vk_synchronize,
  3961. /* .graph_plan_create = */ NULL,
  3962. /* .graph_plan_free = */ NULL,
  3963. /* .graph_plan_compute = */ NULL,
  3964. /* .graph_compute = */ ggml_backend_vk_graph_compute,
  3965. /* .supports_op = */ ggml_backend_vk_supports_op,
  3966. };
  3967. GGML_CALL ggml_backend_t ggml_backend_vk_init() {
  3968. ggml_vk_init(); // TODO: remove from ggml.c
  3969. ggml_backend_vk_context * ctx = new ggml_backend_vk_context {
  3970. /* .name = */ GGML_VK_NAME,
  3971. };
  3972. ggml_backend_t vk_backend = new ggml_backend {
  3973. /* .interface = */ ggml_backend_vk_interface,
  3974. /* .context = */ ctx
  3975. };
  3976. return vk_backend;
  3977. }
  3978. GGML_CALL bool ggml_backend_is_vk(ggml_backend_t backend) {
  3979. return backend && backend->iface.get_name == ggml_backend_vk_name;
  3980. }
  3981. // backend registry
  3982. GGML_CALL static ggml_backend_t ggml_backend_reg_vk_init(const char * params, void * user_data) {
  3983. ggml_backend_t vk_backend = ggml_backend_vk_init();
  3984. return vk_backend;
  3985. UNUSED(params);
  3986. UNUSED(user_data);
  3987. }
  3988. extern "C" GGML_CALL int ggml_backend_vk_reg_devices();
  3989. GGML_CALL int ggml_backend_vk_reg_devices() {
  3990. ggml_backend_register(GGML_VK_NAME, ggml_backend_reg_vk_init, ggml_backend_vk_buffer_type(), nullptr);
  3991. return 1;
  3992. }
  3993. // checks
  3994. #ifdef GGML_VULKAN_CHECK_RESULTS
  3995. static void ggml_vk_print_graph_origin(const ggml_tensor * tensor, std::vector<const ggml_tensor *>& done, int level = 0) {
  3996. if (std::find(done.begin(), done.end(), tensor) != done.end() || level > 10) {
  3997. return;
  3998. }
  3999. for (int j = 0; j < level; j++) {
  4000. std::cerr << " ";
  4001. }
  4002. std::cerr << ggml_op_name(tensor->op) << " gpu=" << (tensor->extra != nullptr) << " backend=" << tensor->backend << std::endl;
  4003. done.push_back(tensor);
  4004. for (int i = 0; i < GGML_MAX_SRC; i++) {
  4005. if (tensor->src[i] != nullptr) {
  4006. ggml_vk_print_graph_origin(tensor->src[i], done, level + 1);
  4007. }
  4008. }
  4009. }
  4010. static void ggml_vk_print_tensor_area(const ggml_tensor * tensor, const void * data, int i0, int i1, int i2, int i3) {
  4011. if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16) {
  4012. return;
  4013. }
  4014. i0 = std::max(i0, 5);
  4015. i1 = std::max(i1, 5);
  4016. i2 = std::max(i2, 0);
  4017. i3 = std::max(i3, 0);
  4018. fprintf(stderr, " ");
  4019. for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) {
  4020. fprintf(stderr, "%7d ", idx1);
  4021. }
  4022. fprintf(stderr, "\n");
  4023. for (int idx0 = i0 - 5; idx0 < i0 + 5; idx0++) {
  4024. fprintf(stderr, "%7d: ", idx0);
  4025. for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) {
  4026. if (idx0 >= 0 && idx0 < tensor->ne[0] && idx1 >= 0 && idx1 < tensor->ne[1] && i2 >= 0 && i2 < tensor->ne[2] && i3 >= 0 && i3 < tensor->ne[3]) {
  4027. float val;
  4028. if (tensor->type == GGML_TYPE_F32) {
  4029. val = *(const float *) ((const char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]);
  4030. } else if (tensor->type == GGML_TYPE_F16) {
  4031. val = ggml_fp16_to_fp32(*(const ggml_fp16_t *) ((const char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]));
  4032. }
  4033. fprintf(stderr, "% 7.2f ", val);
  4034. } else {
  4035. fprintf(stderr, " ");
  4036. }
  4037. }
  4038. fprintf(stderr, "\n");
  4039. }
  4040. }
  4041. static void ggml_vk_print_tensor(const ggml_tensor * tensor, const char * name) {
  4042. void * tensor_data = tensor->data;
  4043. if (tensor->backend == GGML_BACKEND_GPU) {
  4044. const size_t tensor_size = ggml_nbytes(tensor);
  4045. tensor_data = malloc(tensor_size);
  4046. ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
  4047. ggml_vk_buffer_read(&extra->buffer_gpu, extra->offset, tensor_data, tensor_size);
  4048. }
  4049. std::cerr << "TENSOR CHECK " << name << " (" << tensor->name << "): " << ggml_op_name(tensor->op) << std::endl;
  4050. std::cerr << "tensor=" << tensor << " tensor->backend: " << tensor->backend << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << std::endl;
  4051. if (tensor->src[0] != nullptr) {
  4052. std::cerr << "tensor->src[0]=" << tensor->src[0] << " name=" << tensor->src[0]->name << " op=" << ggml_op_name(tensor->src[0]->op) << " type=" << ggml_type_name(tensor->src[0]->type) << " backend=" << tensor->src[0]->backend << " ne0=" << tensor->src[0]->ne[0] << " nb0=" << tensor->src[0]->nb[0] << " ne1=" << tensor->src[0]->ne[1] << " nb1=" << tensor->src[0]->nb[1] << " ne2=" << tensor->src[0]->ne[2] << " nb2=" << tensor->src[0]->nb[2] << " ne3=" << tensor->src[0]->ne[3] << " nb3=" << tensor->src[0]->nb[3] << std::endl;
  4053. }
  4054. if (tensor->src[1] != nullptr) {
  4055. std::cerr << "tensor->src[1]=" << tensor->src[1] << " name=" << tensor->src[1]->name << " op=" << ggml_op_name(tensor->src[1]->op) << " type=" << ggml_type_name(tensor->src[1]->type) << " backend=" << tensor->src[1]->backend << " ne0=" << tensor->src[1]->ne[0] << " nb0=" << tensor->src[1]->nb[0] << " ne1=" << tensor->src[1]->ne[1] << " nb1=" << tensor->src[1]->nb[1] << " ne2=" << tensor->src[1]->ne[2] << " nb2=" << tensor->src[1]->nb[2] << " ne3=" << tensor->src[1]->ne[3] << " nb3=" << tensor->src[1]->nb[3] << std::endl;
  4056. }
  4057. std::cerr << std::endl << "Result:" << std::endl;
  4058. ggml_vk_print_tensor_area(tensor, tensor_data, 5, 5, 0, 0);
  4059. std::cerr << std::endl;
  4060. std::cerr << std::endl << "Result:" << std::endl;
  4061. ggml_vk_print_tensor_area(tensor, tensor_data, 5, 5, 1, 0);
  4062. std::cerr << std::endl;
  4063. std::vector<const ggml_tensor *> done;
  4064. ggml_vk_print_graph_origin(tensor, done);
  4065. if (tensor->backend == GGML_BACKEND_GPU) {
  4066. free(tensor_data);
  4067. }
  4068. }
  4069. static void ggml_vk_check_tensor(const std::string& name, const ggml_tensor * tensor) {
  4070. return;
  4071. GGML_ASSERT(tensor->backend == GGML_BACKEND_CPU);
  4072. if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16) {
  4073. return;
  4074. }
  4075. for (int i3 = 0; i3 < tensor->ne[3]; i3++) {
  4076. for (int i2 = 0; i2 < tensor->ne[2]; i2++) {
  4077. for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
  4078. for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
  4079. float val = 0.0f;
  4080. if (tensor->type == GGML_TYPE_F32) {
  4081. val = *(float *) ((char *) tensor->data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]);
  4082. } else if (tensor->type == GGML_TYPE_F16) {
  4083. val = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) tensor->data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]));
  4084. }
  4085. if (std::isnan(val)) {
  4086. std::cerr << "ERROR: TENSOR CHECK " << name << ": Invalid value in " << ggml_op_name(tensor->op) << " i3=" << i3 << " i2=" << i2 << " i1=" << i1 << " i0=" << i0 << " val=" << val << std::endl;
  4087. std::cerr << "tensor=" << tensor << " tensor->type=" << ggml_type_name(tensor->type) << " tensor->backend: " << tensor->backend << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << std::endl;
  4088. std::cerr << std::endl;
  4089. ggml_vk_print_tensor_area(tensor, tensor->data, i0, i1, i2, i3);
  4090. std::cerr << std::endl;
  4091. std::vector<const ggml_tensor *> done;
  4092. ggml_vk_print_graph_origin(tensor, done);
  4093. GGML_ASSERT(false);
  4094. }
  4095. }
  4096. }
  4097. }
  4098. }
  4099. }
  4100. void * comp_result;
  4101. size_t comp_size;
  4102. size_t comp_nb[GGML_MAX_DIMS];
  4103. size_t check_counter = 0;
  4104. static void ggml_vk_check_results_0(ggml_compute_params * params, ggml_tensor * tensor) {
  4105. if (params->ith != 0) {
  4106. return;
  4107. }
  4108. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE || tensor->op == GGML_OP_TRANSPOSE) {
  4109. return;
  4110. }
  4111. check_counter++;
  4112. if (!(vk_output_tensor > 0 && vk_output_tensor == check_counter) && check_counter <= vk_skip_checks) {
  4113. return;
  4114. }
  4115. ggml_tensor * src0 = tensor->src[0];
  4116. ggml_tensor * src1 = tensor->src[1];
  4117. struct ggml_init_params iparams = {
  4118. /*.mem_size =*/ 1024*1024*1024,
  4119. /*.mem_buffer =*/ NULL,
  4120. /*.no_alloc =*/ false,
  4121. };
  4122. struct ggml_context * ctx = ggml_init(iparams);
  4123. struct ggml_tensor * src0_clone = nullptr;
  4124. struct ggml_tensor * src1_clone = nullptr;
  4125. struct ggml_tensor * tensor_clone = nullptr;
  4126. size_t src0_size;
  4127. size_t src1_size;
  4128. void * src0_buffer;
  4129. void * src1_buffer;
  4130. if (src0 != nullptr) {
  4131. src0_clone = ggml_dup_tensor(ctx, src0);
  4132. src0_size = ggml_nbytes(src0);
  4133. src0_buffer = malloc(src0_size);
  4134. src0_clone->data = src0_buffer;
  4135. if (src0->backend == GGML_BACKEND_CPU) {
  4136. memcpy(src0_clone->data, src0->data, src0_size);
  4137. memcpy(src0_clone->nb, src0->nb, sizeof(size_t) * GGML_MAX_DIMS);
  4138. } else if (src0->backend == GGML_BACKEND_GPU) {
  4139. ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src0->extra;
  4140. uint64_t offset = extra->offset;
  4141. if (!ggml_is_contiguous(src0) && ggml_vk_dim01_contiguous(src0)) {
  4142. for (int i3 = 0; i3 < src0->ne[3]; i3++) {
  4143. for (int i2 = 0; i2 < src0->ne[2]; i2++) {
  4144. const int idx = i3*src0->ne[2] + i2;
  4145. ggml_vk_buffer_read(&extra->buffer_gpu, offset + idx * src0->nb[2], ((char *)src0_clone->data + idx * src0_clone->nb[2]), src0->ne[1] * src0->nb[1]);
  4146. }
  4147. }
  4148. src0_clone->nb[0] = src0->nb[0];
  4149. src0_clone->nb[1] = src0->nb[1];
  4150. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  4151. src0_clone->nb[i] = src0_clone->nb[i - 1]*src0_clone->ne[i - 1];
  4152. }
  4153. } else {
  4154. if (offset + src0_size >= extra->buffer_gpu.size) {
  4155. src0_size = extra->buffer_gpu.size - offset;
  4156. }
  4157. ggml_vk_buffer_read(&extra->buffer_gpu, offset, src0_clone->data, src0_size);
  4158. memcpy(src0_clone->nb, src0->nb, sizeof(size_t) * GGML_MAX_DIMS);
  4159. }
  4160. } else {
  4161. GGML_ASSERT(false);
  4162. }
  4163. if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
  4164. ggml_vk_print_tensor(src0, "src0");
  4165. }
  4166. ggml_vk_check_tensor(std::string(ggml_op_name(tensor->op)) + "->src0", src0_clone);
  4167. }
  4168. if (src1 != nullptr) {
  4169. src1_clone = ggml_dup_tensor(ctx, src1);
  4170. src1_size = ggml_nbytes(src1);
  4171. src1_buffer = malloc(src1_size);
  4172. src1_clone->data = src1_buffer;
  4173. if (src1->backend == GGML_BACKEND_CPU) {
  4174. memcpy(src1_clone->data, src1->data, src1_size);
  4175. memcpy(src1_clone->nb, src1->nb, sizeof(size_t) * GGML_MAX_DIMS);
  4176. } else if (src1->backend == GGML_BACKEND_GPU) {
  4177. ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src1->extra;
  4178. uint64_t offset = extra->offset;
  4179. if (!ggml_is_contiguous(src1) && ggml_vk_dim01_contiguous(src1)) {
  4180. for (int i3 = 0; i3 < src1->ne[3]; i3++) {
  4181. for (int i2 = 0; i2 < src1->ne[2]; i2++) {
  4182. const int idx = i3*src1->ne[2] + i2;
  4183. ggml_vk_buffer_read(&extra->buffer_gpu, offset + idx * src1->nb[2], ((char *)src1_clone->data + idx * src1_clone->nb[2]), src1->ne[1] * src1->nb[1]);
  4184. }
  4185. }
  4186. src1_clone->nb[0] = src1->nb[0];
  4187. src1_clone->nb[1] = src1->nb[1];
  4188. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  4189. src1_clone->nb[i] = src1_clone->nb[i - 1]*src1_clone->ne[i - 1];
  4190. }
  4191. } else {
  4192. if (offset + src1_size >= extra->buffer_gpu.size) {
  4193. src1_size = extra->buffer_gpu.size - offset;
  4194. }
  4195. ggml_vk_buffer_read(&extra->buffer_gpu, offset, src1_clone->data, src1_size);
  4196. memcpy(src1_clone->nb, src1->nb, sizeof(size_t) * GGML_MAX_DIMS);
  4197. }
  4198. } else {
  4199. GGML_ASSERT(false);
  4200. }
  4201. if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
  4202. ggml_vk_print_tensor(src1, "src1");
  4203. std::cerr << "TENSOR CHECK: " << ggml_op_name(src1_clone->op) << " (check " << check_counter << ")" << std::endl;
  4204. std::cerr << "src1_clone=" << tensor << " src1_clone->backend: " << src1_clone->backend << " src1_clone->type: " << ggml_type_name(src1_clone->type) << " ne0=" << src1_clone->ne[0] << " nb0=" << src1_clone->nb[0] << " ne1=" << src1_clone->ne[1] << " nb1=" << src1_clone->nb[1] << " ne2=" << src1_clone->ne[2] << " nb2=" << src1_clone->nb[2] << " ne3=" << src1_clone->ne[3] << " nb3=" << src1_clone->nb[3] << std::endl;
  4205. if (src1->src[0] != nullptr) {
  4206. std::cerr << "src1->src[0]=" << src1->src[0] << " op=" << ggml_op_name(src1->src[0]->op) << " type=" << ggml_type_name(src1->src[0]->type) << " backend=" << src1->src[0]->backend << " ne0=" << src1->src[0]->ne[0] << " nb0=" << src1->src[0]->nb[0] << " ne1=" << src1->src[0]->ne[1] << " nb1=" << src1->src[0]->nb[1] << " ne2=" << src1->src[0]->ne[2] << " nb2=" << src1->src[0]->nb[2] << " ne3=" << src1->src[0]->ne[3] << " nb3=" << src1->src[0]->nb[3] << std::endl;
  4207. }
  4208. if (src1->src[1] != nullptr) {
  4209. std::cerr << "src1->src[1]=" << src1->src[1] << " op=" << ggml_op_name(src1->src[1]->op) << " type=" << ggml_type_name(src1->src[1]->type) << " backend=" << src1->src[1]->backend << " ne0=" << src1->src[1]->ne[0] << " nb0=" << src1->src[1]->nb[0] << " ne1=" << src1->src[1]->ne[1] << " nb1=" << src1->src[1]->nb[1] << " ne2=" << src1->src[1]->ne[2] << " nb2=" << src1->src[1]->nb[2] << " ne3=" << src1->src[1]->ne[3] << " nb3=" << src1->src[1]->nb[3] << std::endl;
  4210. }
  4211. std::cerr << std::endl << "Result:" << std::endl;
  4212. ggml_vk_print_tensor_area(src1_clone, src1_clone->data, 5, 5, 0, 0);
  4213. std::cerr << std::endl;
  4214. std::cerr << std::endl << "Result:" << std::endl;
  4215. ggml_vk_print_tensor_area(src1_clone, src1_clone->data, 5, 5, 1, 0);
  4216. std::cerr << std::endl;
  4217. std::vector<const ggml_tensor *> done;
  4218. ggml_vk_print_graph_origin(src1_clone, done);
  4219. }
  4220. ggml_vk_check_tensor(std::string(ggml_op_name(tensor->op)) + "->src1", src1_clone);
  4221. }
  4222. if (tensor->op == GGML_OP_MUL_MAT) {
  4223. tensor_clone = ggml_mul_mat(ctx, src0_clone, src1_clone);
  4224. } else if (tensor->op == GGML_OP_MUL) {
  4225. tensor_clone = ggml_mul(ctx, src0_clone, src1_clone);
  4226. } else if (tensor->op == GGML_OP_SCALE) {
  4227. tensor_clone = ggml_scale(ctx, src0_clone, ((float *)tensor->op_params)[0]);
  4228. } else if (tensor->op == GGML_OP_SQR) {
  4229. tensor_clone = ggml_sqr(ctx, src0_clone);
  4230. } else if (tensor->op == GGML_OP_CLAMP) {
  4231. tensor_clone = ggml_clamp(ctx, src0_clone, ((float *)tensor->op_params)[0], ((float *)tensor->op_params)[1]);
  4232. } else if (tensor->op == GGML_OP_ADD) {
  4233. tensor_clone = ggml_add(ctx, src0_clone, src1_clone);
  4234. } else if (tensor->op == GGML_OP_NORM) {
  4235. tensor_clone = ggml_norm(ctx, src0_clone, *(float *)tensor->op_params);
  4236. } else if (tensor->op == GGML_OP_RMS_NORM) {
  4237. tensor_clone = ggml_rms_norm(ctx, src0_clone, *(float *)tensor->op_params);
  4238. } else if (tensor->op == GGML_OP_SOFT_MAX) {
  4239. if (src1 != nullptr) {
  4240. tensor_clone = ggml_soft_max_ext(ctx, src0_clone, src1_clone, *(float *)tensor->op_params);
  4241. } else {
  4242. tensor_clone = ggml_soft_max(ctx, src0_clone);
  4243. }
  4244. } else if (tensor->op == GGML_OP_DIAG_MASK_INF) {
  4245. tensor_clone = ggml_diag_mask_inf(ctx, src0_clone, *(float *)tensor->op_params);
  4246. } else if (tensor->op == GGML_OP_ROPE) {
  4247. const int n_dims = ((int32_t *) tensor->op_params)[1];
  4248. const int mode = ((int32_t *) tensor->op_params)[2];
  4249. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  4250. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  4251. float freq_base = ((float *) tensor->op_params)[5];
  4252. float freq_scale = ((float *) tensor->op_params)[6];
  4253. float ext_factor = ((float *) tensor->op_params)[7];
  4254. float attn_factor = ((float *) tensor->op_params)[8];
  4255. float beta_fast = ((float *) tensor->op_params)[9];
  4256. float beta_slow = ((float *) tensor->op_params)[10];
  4257. tensor_clone = ggml_rope_custom(ctx, src0_clone, src1_clone, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
  4258. } else if (tensor->op == GGML_OP_UNARY) {
  4259. switch (ggml_get_unary_op(tensor)) {
  4260. case GGML_UNARY_OP_SILU:
  4261. tensor_clone = ggml_silu(ctx, src0_clone);
  4262. break;
  4263. case GGML_UNARY_OP_GELU:
  4264. tensor_clone = ggml_gelu(ctx, src0_clone);
  4265. break;
  4266. case GGML_UNARY_OP_RELU:
  4267. tensor_clone = ggml_relu(ctx, src0_clone);
  4268. break;
  4269. default:
  4270. std::cerr << "Missing vk_check_results OP: " << ggml_op_name(tensor->op) << std::endl;
  4271. GGML_ASSERT(false);
  4272. }
  4273. } else if (tensor->op == GGML_OP_CPY || tensor->op == GGML_OP_DUP) {
  4274. if (src1 == nullptr) {
  4275. tensor_clone = ggml_dup(ctx, src0_clone);
  4276. tensor_clone->type = tensor->type;
  4277. } else {
  4278. tensor_clone = ggml_cpy(ctx, src0_clone, src1_clone);
  4279. }
  4280. } else if (tensor->op == GGML_OP_CONT) {
  4281. tensor_clone = ggml_cont_4d(ctx, src0_clone, tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
  4282. } else if (tensor->op == GGML_OP_RESHAPE) {
  4283. tensor_clone = ggml_reshape_4d(ctx, src0_clone, tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
  4284. } else if (tensor->op == GGML_OP_VIEW) {
  4285. tensor_clone = ggml_view_4d(ctx, src0_clone, tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], tensor->nb[1], tensor->nb[2], tensor->nb[3], ((int32_t *) tensor->op_params)[0]);
  4286. } else if (tensor->op == GGML_OP_PERMUTE) {
  4287. int32_t * params = (int32_t *)tensor->op_params;
  4288. tensor_clone = ggml_permute(ctx, src0_clone, params[0], params[1], params[2], params[3]);
  4289. } else if (tensor->op == GGML_OP_TRANSPOSE) {
  4290. tensor_clone = ggml_transpose(ctx, src0_clone);
  4291. } else {
  4292. std::cerr << "Missing vk_check_results OP: " << ggml_op_name(tensor->op) << std::endl;
  4293. GGML_ASSERT(false);
  4294. }
  4295. // Disable vulkan here to avoid the hooks in ggml.c
  4296. vk_disable = true;
  4297. ggml_cgraph * cgraph = ggml_new_graph(ctx);
  4298. ggml_build_forward_expand(cgraph, tensor_clone);
  4299. ggml_graph_compute_with_ctx(ctx, cgraph, 8);
  4300. vk_disable = false;
  4301. ggml_vk_check_tensor(ggml_op_name(tensor->op), tensor_clone);
  4302. if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
  4303. ggml_vk_print_tensor(tensor_clone, "tensor_clone");
  4304. }
  4305. comp_size = ggml_nbytes(tensor_clone);
  4306. comp_result = malloc(comp_size);
  4307. memcpy(comp_result, tensor_clone->data, comp_size);
  4308. memcpy(comp_nb, tensor_clone->nb, sizeof(size_t) * GGML_MAX_DIMS);
  4309. if (src0 != nullptr) {
  4310. free(src0_buffer);
  4311. }
  4312. if (src1 != nullptr) {
  4313. free(src1_buffer);
  4314. }
  4315. ggml_free(ctx);
  4316. }
  4317. void ggml_vk_check_results_1(ggml_compute_params * params, ggml_tensor * tensor) {
  4318. if (params->ith != 0) {
  4319. return;
  4320. }
  4321. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE || tensor->op == GGML_OP_TRANSPOSE) {
  4322. return;
  4323. }
  4324. if (!(vk_output_tensor > 0 && vk_output_tensor == check_counter) && check_counter <= vk_skip_checks) {
  4325. return;
  4326. }
  4327. ggml_tensor * src0 = tensor->src[0];
  4328. ggml_tensor * src1 = tensor->src[1];
  4329. void * tensor_data = tensor->data;
  4330. if (tensor->backend == GGML_BACKEND_GPU) {
  4331. size_t tensor_size = ggml_nbytes(tensor);
  4332. tensor_data = malloc(tensor_size);
  4333. ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
  4334. if (extra->offset + tensor_size >= extra->buffer_gpu.size) {
  4335. tensor_size = extra->buffer_gpu.size - (extra->offset);
  4336. }
  4337. ggml_vk_buffer_read(&extra->buffer_gpu, extra->offset, tensor_data, tensor_size);
  4338. }
  4339. float first_error_result = -1.0f;
  4340. float first_error_correct = -1.0f;
  4341. std::array<int, 4> first_error = { -1, -1, -1, -1 };
  4342. double avg_err = 0.0;
  4343. size_t counter = 0;
  4344. for (int i3 = 0; i3 < tensor->ne[3]; i3++) {
  4345. for (int i2 = 0; i2 < tensor->ne[2]; i2++) {
  4346. for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
  4347. for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
  4348. const bool buffer_size_fit = i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0] < comp_size;
  4349. float correct = 0.0f;
  4350. float result = 0.0f;
  4351. if (buffer_size_fit) {
  4352. if (tensor->type == GGML_TYPE_F32) {
  4353. correct = *(float *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]);
  4354. result = *(float *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]);
  4355. } else if (tensor->type == GGML_TYPE_F16) {
  4356. correct = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]));
  4357. result = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]));
  4358. } else {
  4359. std::cerr << "comp_size=" << comp_size << " but required is " << (i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]) << std::endl;
  4360. }
  4361. } else {
  4362. std::cerr << "Missing debug code for type " << ggml_type_name(tensor->type) << std::endl;
  4363. GGML_ASSERT(false);
  4364. }
  4365. if ((std::isnan(correct) != std::isnan(result)) || (std::isinf(correct) != std::isinf(result)) || !buffer_size_fit) {
  4366. std::cerr << "ERROR: Invalid value in " << ggml_op_name(tensor->op) << " i3=" << i3 << " i2=" << i2 << " i1=" << i1 << " i0=" << i0 << " result=" << result << " correct=" << correct << " avg_err=" << (avg_err / counter) << std::endl;
  4367. std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->backend: " << tensor->backend << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl;
  4368. if (src0 != nullptr) {
  4369. std::cerr << "src0=" << src0 << " src0->name=" << src0->name << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " backend=" << src0->backend << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl;
  4370. }
  4371. if (src1 != nullptr) {
  4372. std::cerr << "src1=" << src1 << " src1->name=" << src1->name << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " backend=" << src1->backend << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl;
  4373. }
  4374. std::cerr << "First error: result=" << first_error_result << " correct=" << first_error_correct << " i3=" << first_error[3] << " i2=" << first_error[2] << " i1=" << first_error[1] << " i0=" << first_error[0] << std::endl;
  4375. std::cerr << std::endl << "Result:" << std::endl;
  4376. ggml_vk_print_tensor_area(tensor, tensor_data, i0, i1, i2, i3);
  4377. std::cerr << std::endl << "Correct:" << std::endl;
  4378. ggml_vk_print_tensor_area(tensor, comp_result, i0, i1, i2, i3);
  4379. std::cerr << std::endl;
  4380. std::vector<const ggml_tensor *> done;
  4381. ggml_vk_print_graph_origin(tensor, done);
  4382. GGML_ASSERT(false);
  4383. }
  4384. if (first_error[0] == -1 && std::fabs(correct - result) > 0.1f) {
  4385. first_error[0] = i0;
  4386. first_error[1] = i1;
  4387. first_error[2] = i2;
  4388. first_error[3] = i3;
  4389. first_error_result = result;
  4390. first_error_correct = correct;
  4391. }
  4392. // Special case, value is infinite, avoid NaN result in avg_err
  4393. // NaN also appears in results, if both are nan error is 0
  4394. if (!std::isinf(correct) && !std::isinf(result) && !std::isnan(correct) && !std::isnan(result)) {
  4395. avg_err += std::fabs(correct - result);
  4396. }
  4397. counter++;
  4398. }
  4399. }
  4400. }
  4401. }
  4402. avg_err /= counter;
  4403. if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
  4404. std::cerr << "TENSOR CHECK: avg_err=" << avg_err << " in " << ggml_op_name(tensor->op) << " (check " << check_counter << ")" << std::endl;
  4405. std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->backend: " << tensor->backend << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl;
  4406. if (src0 != nullptr) {
  4407. std::cerr << "src0=" << src0 << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " backend=" << src0->backend << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl;
  4408. }
  4409. if (src1 != nullptr) {
  4410. std::cerr << "src1=" << src1 << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " backend=" << src1->backend << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl;
  4411. }
  4412. std::cerr << "First error: result=" << first_error_result << " correct=" << first_error_correct << " i3=" << first_error[3] << " i2=" << first_error[2] << " i1=" << first_error[1] << " i0=" << first_error[0] << std::endl;
  4413. std::cerr << std::endl << "Result:" << std::endl;
  4414. ggml_vk_print_tensor_area(tensor, tensor_data, 5, 5, 0, 0);
  4415. std::cerr << std::endl << "Correct:" << std::endl;
  4416. ggml_vk_print_tensor_area(tensor, comp_result, 5, 5, 0, 0);
  4417. std::cerr << std::endl;
  4418. std::cerr << std::endl << "Result:" << std::endl;
  4419. ggml_vk_print_tensor_area(tensor, tensor_data, 5, 5, 1, 0);
  4420. std::cerr << std::endl << "Correct:" << std::endl;
  4421. ggml_vk_print_tensor_area(tensor, comp_result, 5, 5, 1, 0);
  4422. std::cerr << std::endl;
  4423. std::vector<const ggml_tensor *> done;
  4424. ggml_vk_print_graph_origin(tensor, done);
  4425. }
  4426. if (avg_err > 0.05 || std::isnan(avg_err)) {
  4427. std::cerr << "ERROR: avg_err=" << avg_err << " in " << ggml_op_name(tensor->op) << " (check " << check_counter << ")" << std::endl;
  4428. std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->backend: " << tensor->backend << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl;
  4429. if (src0 != nullptr) {
  4430. std::cerr << "src0=" << src0 << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " backend=" << src0->backend << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl;
  4431. }
  4432. if (src1 != nullptr) {
  4433. std::cerr << "src1=" << src1 << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " backend=" << src1->backend << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl;
  4434. }
  4435. std::cerr << "First error: result=" << first_error_result << " correct=" << first_error_correct << " i3=" << first_error[3] << " i2=" << first_error[2] << " i1=" << first_error[1] << " i0=" << first_error[0] << std::endl;
  4436. std::cerr << std::endl << "Result:" << std::endl;
  4437. ggml_vk_print_tensor_area(tensor, tensor_data, first_error[0], first_error[1], first_error[2], first_error[3]);
  4438. std::cerr << std::endl << "Correct:" << std::endl;
  4439. ggml_vk_print_tensor_area(tensor, comp_result, first_error[0], first_error[1], first_error[2], first_error[3]);
  4440. std::cerr << std::endl;
  4441. std::vector<const ggml_tensor *> done;
  4442. ggml_vk_print_graph_origin(tensor, done);
  4443. GGML_ASSERT(false);
  4444. } else {
  4445. std::cerr << check_counter << " " << tensor->name << " op=" << ggml_op_name(tensor->op) << " backend=" << tensor->backend << " avg_err=" << avg_err << std::endl;
  4446. }
  4447. free(comp_result);
  4448. comp_result = nullptr;
  4449. comp_size = 0;
  4450. if (tensor->backend == GGML_BACKEND_GPU) {
  4451. free(tensor_data);
  4452. }
  4453. }
  4454. #endif