| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450 |
- #define LLAMA_API_INTERNAL
- #include "llama.h"
- #include "unicode.h"
- #include "ggml.h"
- #include "ggml-alloc.h"
- #include "ggml-backend.h"
- #ifdef GGML_USE_CUBLAS
- # include "ggml-cuda.h"
- #elif defined(GGML_USE_CLBLAST)
- # include "ggml-opencl.h"
- #elif defined(GGML_USE_VULKAN)
- # include "ggml-vulkan.h"
- #elif defined(GGML_USE_SYCL)
- # include "ggml-sycl.h"
- #endif
- #ifdef GGML_USE_METAL
- # include "ggml-metal.h"
- #endif
- #ifdef GGML_USE_MPI
- # include "ggml-mpi.h"
- #endif
- #ifndef QK_K
- # ifdef GGML_QKK_64
- # define QK_K 64
- # else
- # define QK_K 256
- # endif
- #endif
- #ifdef __has_include
- #if __has_include(<unistd.h>)
- #include <unistd.h>
- #if defined(_POSIX_MAPPED_FILES)
- #include <sys/mman.h>
- #include <fcntl.h>
- #endif
- #if defined(_POSIX_MEMLOCK_RANGE)
- #include <sys/resource.h>
- #endif
- #endif
- #endif
- #if defined(_WIN32)
- #define WIN32_LEAN_AND_MEAN
- #ifndef NOMINMAX
- #define NOMINMAX
- #endif
- #include <windows.h>
- #include <io.h>
- #endif
- #include <algorithm>
- #include <array>
- #include <cassert>
- #include <cfloat>
- #include <cinttypes>
- #include <climits>
- #include <cmath>
- #include <cstdarg>
- #include <cstddef>
- #include <cstdint>
- #include <cstdio>
- #include <cstring>
- #include <ctime>
- #include <forward_list>
- #include <fstream>
- #include <functional>
- #include <initializer_list>
- #include <map>
- #include <memory>
- #include <mutex>
- #include <numeric>
- #include <queue>
- #include <random>
- #include <regex>
- #include <set>
- #include <sstream>
- #include <thread>
- #include <type_traits>
- #include <unordered_map>
- #if defined(_MSC_VER)
- #pragma warning(disable: 4244 4267) // possible loss of data
- #endif
- #ifdef __GNUC__
- #ifdef __MINGW32__
- #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
- #else
- #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
- #endif
- #else
- #define LLAMA_ATTRIBUTE_FORMAT(...)
- #endif
- #define LLAMA_MAX_NODES 8192
- #define LLAMA_MAX_EXPERTS 8
- //
- // logging
- //
- LLAMA_ATTRIBUTE_FORMAT(2, 3)
- static void llama_log_internal (ggml_log_level level, const char* format, ...);
- static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
- #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
- #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
- #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
- //
- // helpers
- //
- static size_t utf8_len(char src) {
- const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
- uint8_t highbits = static_cast<uint8_t>(src) >> 4;
- return lookup[highbits];
- }
- static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
- std::string result;
- for (size_t pos = 0; ; pos += search.length()) {
- auto new_pos = s.find(search, pos);
- if (new_pos == std::string::npos) {
- result += s.substr(pos, s.size() - pos);
- break;
- }
- result += s.substr(pos, new_pos - pos) + replace;
- pos = new_pos;
- }
- s = std::move(result);
- }
- static bool is_float_close(float a, float b, float abs_tol) {
- // Check for non-negative tolerance
- if (abs_tol < 0.0) {
- throw std::invalid_argument("Tolerance must be non-negative");
- }
- // Exact equality check
- if (a == b) {
- return true;
- }
- // Check for infinities
- if (std::isinf(a) || std::isinf(b)) {
- return false;
- }
- // Regular comparison using the provided absolute tolerance
- return std::fabs(b - a) <= abs_tol;
- }
- static void zeros(std::ofstream & file, size_t n) {
- char zero = 0;
- for (size_t i = 0; i < n; ++i) {
- file.write(&zero, 1);
- }
- }
- LLAMA_ATTRIBUTE_FORMAT(1, 2)
- static std::string format(const char * fmt, ...) {
- va_list ap;
- va_list ap2;
- va_start(ap, fmt);
- va_copy(ap2, ap);
- int size = vsnprintf(NULL, 0, fmt, ap);
- GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
- std::vector<char> buf(size + 1);
- int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
- GGML_ASSERT(size2 == size);
- va_end(ap2);
- va_end(ap);
- return std::string(buf.data(), size);
- }
- //
- // gguf constants (sync with gguf.py)
- //
- enum llm_arch {
- LLM_ARCH_LLAMA,
- LLM_ARCH_FALCON,
- LLM_ARCH_BAICHUAN,
- LLM_ARCH_GPT2,
- LLM_ARCH_GPTJ,
- LLM_ARCH_GPTNEOX,
- LLM_ARCH_MPT,
- LLM_ARCH_STARCODER,
- LLM_ARCH_PERSIMMON,
- LLM_ARCH_REFACT,
- LLM_ARCH_BLOOM,
- LLM_ARCH_STABLELM,
- LLM_ARCH_QWEN,
- LLM_ARCH_QWEN2,
- LLM_ARCH_PHI2,
- LLM_ARCH_PLAMO,
- LLM_ARCH_CODESHELL,
- LLM_ARCH_ORION,
- LLM_ARCH_UNKNOWN,
- };
- static std::map<llm_arch, std::string> LLM_ARCH_NAMES = {
- { LLM_ARCH_LLAMA, "llama" },
- { LLM_ARCH_FALCON, "falcon" },
- { LLM_ARCH_GPT2, "gpt2" },
- { LLM_ARCH_GPTJ, "gptj" },
- { LLM_ARCH_GPTNEOX, "gptneox" },
- { LLM_ARCH_MPT, "mpt" },
- { LLM_ARCH_BAICHUAN, "baichuan" },
- { LLM_ARCH_STARCODER, "starcoder" },
- { LLM_ARCH_PERSIMMON, "persimmon" },
- { LLM_ARCH_REFACT, "refact" },
- { LLM_ARCH_BLOOM, "bloom" },
- { LLM_ARCH_STABLELM, "stablelm" },
- { LLM_ARCH_QWEN, "qwen" },
- { LLM_ARCH_QWEN2, "qwen2" },
- { LLM_ARCH_PHI2, "phi2" },
- { LLM_ARCH_PLAMO, "plamo" },
- { LLM_ARCH_CODESHELL, "codeshell" },
- { LLM_ARCH_ORION, "orion" },
- };
- enum llm_kv {
- LLM_KV_GENERAL_ARCHITECTURE,
- LLM_KV_GENERAL_QUANTIZATION_VERSION,
- LLM_KV_GENERAL_ALIGNMENT,
- LLM_KV_GENERAL_NAME,
- LLM_KV_GENERAL_AUTHOR,
- LLM_KV_GENERAL_URL,
- LLM_KV_GENERAL_DESCRIPTION,
- LLM_KV_GENERAL_LICENSE,
- LLM_KV_GENERAL_SOURCE_URL,
- LLM_KV_GENERAL_SOURCE_HF_REPO,
- LLM_KV_CONTEXT_LENGTH,
- LLM_KV_EMBEDDING_LENGTH,
- LLM_KV_BLOCK_COUNT,
- LLM_KV_FEED_FORWARD_LENGTH,
- LLM_KV_USE_PARALLEL_RESIDUAL,
- LLM_KV_TENSOR_DATA_LAYOUT,
- LLM_KV_EXPERT_COUNT,
- LLM_KV_EXPERT_USED_COUNT,
- LLM_KV_ATTENTION_HEAD_COUNT,
- LLM_KV_ATTENTION_HEAD_COUNT_KV,
- LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
- LLM_KV_ATTENTION_CLAMP_KQV,
- LLM_KV_ATTENTION_KEY_LENGTH,
- LLM_KV_ATTENTION_VALUE_LENGTH,
- LLM_KV_ATTENTION_LAYERNORM_EPS,
- LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
- LLM_KV_ROPE_DIMENSION_COUNT,
- LLM_KV_ROPE_FREQ_BASE,
- LLM_KV_ROPE_SCALE_LINEAR,
- LLM_KV_ROPE_SCALING_TYPE,
- LLM_KV_ROPE_SCALING_FACTOR,
- LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
- LLM_KV_ROPE_SCALING_FINETUNED,
- LLM_KV_TOKENIZER_MODEL,
- LLM_KV_TOKENIZER_LIST,
- LLM_KV_TOKENIZER_TOKEN_TYPE,
- LLM_KV_TOKENIZER_SCORES,
- LLM_KV_TOKENIZER_MERGES,
- LLM_KV_TOKENIZER_BOS_ID,
- LLM_KV_TOKENIZER_EOS_ID,
- LLM_KV_TOKENIZER_UNK_ID,
- LLM_KV_TOKENIZER_SEP_ID,
- LLM_KV_TOKENIZER_PAD_ID,
- LLM_KV_TOKENIZER_ADD_BOS,
- LLM_KV_TOKENIZER_ADD_EOS,
- LLM_KV_TOKENIZER_HF_JSON,
- LLM_KV_TOKENIZER_RWKV,
- };
- static std::map<llm_kv, std::string> LLM_KV_NAMES = {
- { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
- { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
- { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
- { LLM_KV_GENERAL_NAME, "general.name" },
- { LLM_KV_GENERAL_AUTHOR, "general.author" },
- { LLM_KV_GENERAL_URL, "general.url" },
- { LLM_KV_GENERAL_DESCRIPTION, "general.description" },
- { LLM_KV_GENERAL_LICENSE, "general.license" },
- { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
- { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
- { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
- { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
- { LLM_KV_BLOCK_COUNT, "%s.block_count" },
- { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
- { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
- { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
- { LLM_KV_EXPERT_COUNT, "%s.expert_count" },
- { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
- { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
- { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
- { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
- { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
- { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
- { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
- { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
- { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
- { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
- { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
- { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
- { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
- { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
- { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
- { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
- { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
- { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
- { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
- { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
- { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
- { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
- { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
- { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
- { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
- { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
- { LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
- { LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
- { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
- { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
- };
- struct LLM_KV {
- LLM_KV(llm_arch arch) : arch(arch) {}
- llm_arch arch;
- std::string operator()(llm_kv kv) const {
- return ::format(LLM_KV_NAMES[kv].c_str(), LLM_ARCH_NAMES[arch].c_str());
- }
- };
- enum llm_tensor {
- LLM_TENSOR_TOKEN_EMBD,
- LLM_TENSOR_TOKEN_EMBD_NORM,
- LLM_TENSOR_POS_EMBD,
- LLM_TENSOR_OUTPUT,
- LLM_TENSOR_OUTPUT_NORM,
- LLM_TENSOR_ROPE_FREQS,
- LLM_TENSOR_ATTN_Q,
- LLM_TENSOR_ATTN_K,
- LLM_TENSOR_ATTN_V,
- LLM_TENSOR_ATTN_QKV,
- LLM_TENSOR_ATTN_OUT,
- LLM_TENSOR_ATTN_NORM,
- LLM_TENSOR_ATTN_NORM_2,
- LLM_TENSOR_ATTN_ROT_EMBD,
- LLM_TENSOR_FFN_GATE_INP,
- LLM_TENSOR_FFN_NORM,
- LLM_TENSOR_FFN_GATE,
- LLM_TENSOR_FFN_DOWN,
- LLM_TENSOR_FFN_UP,
- LLM_TENSOR_FFN_ACT,
- LLM_TENSOR_FFN_DOWN_EXP,
- LLM_TENSOR_FFN_GATE_EXP,
- LLM_TENSOR_FFN_UP_EXP,
- LLM_TENSOR_ATTN_Q_NORM,
- LLM_TENSOR_ATTN_K_NORM,
- };
- static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
- {
- LLM_ARCH_LLAMA,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
- { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
- { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
- { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
- },
- },
- {
- LLM_ARCH_BAICHUAN,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_FALCON,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
- { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_GPT2,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_POS_EMBD, "position_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- },
- },
- {
- LLM_ARCH_GPTJ,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- },
- },
- {
- LLM_ARCH_GPTNEOX,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_PERSIMMON,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd"},
- { LLM_TENSOR_OUTPUT_NORM, "output_norm"},
- { LLM_TENSOR_OUTPUT, "output"},
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm"},
- { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv"},
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output"},
- { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
- { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm"},
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down"},
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up"},
- { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd"},
- },
- },
- {
- LLM_ARCH_MPT,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- { LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" },
- },
- },
- {
- LLM_ARCH_STARCODER,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_POS_EMBD, "position_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- },
- },
- {
- LLM_ARCH_REFACT,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_BLOOM,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- },
- },
- {
- LLM_ARCH_STABLELM,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_QWEN,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_QWEN2,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_PHI2,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_PLAMO,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
- { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_CODESHELL,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_ORION,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_UNKNOWN,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- },
- },
- };
- static llm_arch llm_arch_from_string(const std::string & name) {
- for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
- if (kv.second == name) {
- return kv.first;
- }
- }
- return LLM_ARCH_UNKNOWN;
- }
- // helper to handle gguf constants
- // usage:
- //
- // const auto tn = LLM_TN(LLM_ARCH_LLAMA);
- //
- // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
- // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
- // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
- //
- struct LLM_TN {
- LLM_TN(llm_arch arch) : arch(arch) {}
- llm_arch arch;
- std::string operator()(llm_tensor tensor) const {
- return LLM_TENSOR_NAMES[arch].at(tensor);
- }
- std::string operator()(llm_tensor tensor, const std::string & suffix) const {
- return LLM_TENSOR_NAMES[arch].at(tensor) + "." + suffix;
- }
- std::string operator()(llm_tensor tensor, int bid) const {
- return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid);
- }
- std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
- return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid) + "." + suffix;
- }
- std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const {
- return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid, xid) + "." + suffix;
- }
- };
- //
- // gguf helpers
- //
- static std::map<int8_t, std::string> LLAMA_ROPE_SCALING_TYPES = {
- { LLAMA_ROPE_SCALING_NONE, "none" },
- { LLAMA_ROPE_SCALING_LINEAR, "linear" },
- { LLAMA_ROPE_SCALING_YARN, "yarn" },
- };
- static int8_t llama_rope_scaling_type_from_string(const std::string & name) {
- for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
- if (kv.second == name) {
- return kv.first;
- }
- }
- return LLAMA_ROPE_SCALING_UNSPECIFIED;
- }
- static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
- switch (type) {
- case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
- case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
- case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
- case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
- case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
- case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
- case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
- case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
- case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
- case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
- case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
- default: return format("unknown type %d", type);
- }
- }
- static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
- const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
- switch (type) {
- case GGUF_TYPE_STRING:
- return gguf_get_val_str(ctx_gguf, i);
- case GGUF_TYPE_ARRAY:
- {
- const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
- int arr_n = gguf_get_arr_n(ctx_gguf, i);
- const void * data = gguf_get_arr_data(ctx_gguf, i);
- std::stringstream ss;
- ss << "[";
- for (int j = 0; j < arr_n; j++) {
- if (arr_type == GGUF_TYPE_STRING) {
- std::string val = gguf_get_arr_str(ctx_gguf, i, j);
- // escape quotes
- replace_all(val, "\\", "\\\\");
- replace_all(val, "\"", "\\\"");
- ss << '"' << val << '"';
- } else if (arr_type == GGUF_TYPE_ARRAY) {
- ss << "???";
- } else {
- ss << gguf_data_to_str(arr_type, data, j);
- }
- if (j < arr_n - 1) {
- ss << ", ";
- }
- }
- ss << "]";
- return ss.str();
- }
- default:
- return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
- }
- }
- //
- // ggml helpers
- //
- static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
- struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
- if (plan.work_size > 0) {
- buf.resize(plan.work_size);
- plan.work_data = buf.data();
- }
- ggml_graph_compute(graph, &plan);
- }
- //
- // llama helpers
- //
- #if defined(_WIN32)
- static std::string llama_format_win_err(DWORD err) {
- LPSTR buf;
- size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
- NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
- if (!size) {
- return "FormatMessageA failed";
- }
- std::string ret(buf, size);
- LocalFree(buf);
- return ret;
- }
- #endif
- template <typename T>
- struct no_init {
- T value;
- no_init() { /* do nothing */ }
- };
- struct llama_file {
- // use FILE * so we don't have to re-open the file to mmap
- FILE * fp;
- size_t size;
- llama_file(const char * fname, const char * mode) {
- fp = std::fopen(fname, mode);
- if (fp == NULL) {
- throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
- }
- seek(0, SEEK_END);
- size = tell();
- seek(0, SEEK_SET);
- }
- size_t tell() const {
- #ifdef _WIN32
- __int64 ret = _ftelli64(fp);
- #else
- long ret = std::ftell(fp);
- #endif
- GGML_ASSERT(ret != -1); // this really shouldn't fail
- return (size_t) ret;
- }
- void seek(size_t offset, int whence) const {
- #ifdef _WIN32
- int ret = _fseeki64(fp, (__int64) offset, whence);
- #else
- int ret = std::fseek(fp, (long) offset, whence);
- #endif
- GGML_ASSERT(ret == 0); // same
- }
- void read_raw(void * ptr, size_t len) const {
- if (len == 0) {
- return;
- }
- errno = 0;
- std::size_t ret = std::fread(ptr, len, 1, fp);
- if (ferror(fp)) {
- throw std::runtime_error(format("read error: %s", strerror(errno)));
- }
- if (ret != 1) {
- throw std::runtime_error("unexpectedly reached end of file");
- }
- }
- uint32_t read_u32() const {
- uint32_t ret;
- read_raw(&ret, sizeof(ret));
- return ret;
- }
- void write_raw(const void * ptr, size_t len) const {
- if (len == 0) {
- return;
- }
- errno = 0;
- size_t ret = std::fwrite(ptr, len, 1, fp);
- if (ret != 1) {
- throw std::runtime_error(format("write error: %s", strerror(errno)));
- }
- }
- void write_u32(std::uint32_t val) const {
- write_raw(&val, sizeof(val));
- }
- ~llama_file() {
- if (fp) {
- std::fclose(fp);
- }
- }
- };
- struct llama_mmap {
- void * addr;
- size_t size;
- llama_mmap(const llama_mmap &) = delete;
- #ifdef _POSIX_MAPPED_FILES
- static constexpr bool SUPPORTED = true;
- // list of mapped fragments (first_offset, last_offset)
- std::vector<std::pair<size_t, size_t>> mapped_fragments;
- llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
- size = file->size;
- int fd = fileno(file->fp);
- int flags = MAP_SHARED;
- // prefetch/readahead impairs performance on NUMA systems
- if (numa) { prefetch = 0; }
- #ifdef __linux__
- // advise the kernel to read the file sequentially (increases readahead)
- if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) {
- LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n",
- strerror(errno));
- }
- if (prefetch) { flags |= MAP_POPULATE; }
- #endif
- addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
- if (addr == MAP_FAILED) { // NOLINT
- throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
- }
- if (prefetch > 0) {
- // advise the kernel to preload the mapped memory
- if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
- LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
- strerror(errno));
- }
- }
- if (numa) {
- // advise the kernel not to use readahead
- // (because the next page might not belong on the same node)
- if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
- LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
- strerror(errno));
- }
- }
- // initialize list of mapped_fragments
- mapped_fragments.emplace_back(0, file->size);
- }
- static void align_range(size_t * first, size_t * last, size_t page_size) {
- // align first to the next page
- size_t offset_in_page = *first & (page_size - 1);
- size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page;
- *first += offset_to_page;
- // align last to the previous page
- *last = *last & ~(page_size - 1);
- if (*last <= *first) {
- *last = *first;
- }
- }
- // partially unmap the file in the range [first, last)
- void unmap_fragment(size_t first, size_t last) {
- // note: this function must not be called multiple times with overlapping ranges
- // otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings
- int page_size = sysconf(_SC_PAGESIZE);
- align_range(&first, &last, page_size);
- size_t len = last - first;
- if (len == 0) {
- return;
- }
- GGML_ASSERT(first % page_size == 0);
- GGML_ASSERT(last % page_size == 0);
- GGML_ASSERT(last > first);
- void * next_page_start = (uint8_t *) addr + first;
- // unmap the range
- if (munmap(next_page_start, len)) {
- LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
- }
- // update the list of mapped fragments to avoid unmapping the same range again in the destructor
- std::vector<std::pair<size_t, size_t>> new_mapped_fragments;
- for (const auto & frag : mapped_fragments) {
- if (frag.first < first && frag.second > last) {
- // the range is in the middle of the fragment, split it
- new_mapped_fragments.emplace_back(frag.first, first);
- new_mapped_fragments.emplace_back(last, frag.second);
- } else if (frag.first < first && frag.second > first) {
- // the range starts in the middle of the fragment
- new_mapped_fragments.emplace_back(frag.first, first);
- } else if (frag.first < last && frag.second > last) {
- // the range ends in the middle of the fragment
- new_mapped_fragments.emplace_back(last, frag.second);
- } else if (frag.first >= first && frag.second <= last) {
- // the range covers the entire fragment
- } else {
- // the range is outside the fragment
- new_mapped_fragments.push_back(frag);
- }
- }
- mapped_fragments = std::move(new_mapped_fragments);
- }
- ~llama_mmap() {
- for (const auto & frag : mapped_fragments) {
- if (munmap((char *) addr + frag.first, frag.second - frag.first)) {
- LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
- }
- }
- }
- #elif defined(_WIN32)
- static constexpr bool SUPPORTED = true;
- llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) {
- GGML_UNUSED(numa);
- size = file->size;
- HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
- HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
- if (hMapping == NULL) {
- DWORD error = GetLastError();
- throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
- }
- addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
- DWORD error = GetLastError();
- CloseHandle(hMapping);
- if (addr == NULL) {
- throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
- }
- if (prefetch > 0) {
- #if _WIN32_WINNT >= 0x602
- // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
- BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
- HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
- // may fail on pre-Windows 8 systems
- pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
- if (pPrefetchVirtualMemory) {
- // advise the kernel to preload the mapped memory
- WIN32_MEMORY_RANGE_ENTRY range;
- range.VirtualAddress = addr;
- range.NumberOfBytes = (SIZE_T) std::min(size, prefetch);
- if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
- LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n",
- llama_format_win_err(GetLastError()).c_str());
- }
- }
- #else
- throw std::runtime_error("PrefetchVirtualMemory unavailable");
- #endif
- }
- }
- void unmap_fragment(size_t first, size_t last) {
- // not supported
- GGML_UNUSED(first);
- GGML_UNUSED(last);
- }
- ~llama_mmap() {
- if (!UnmapViewOfFile(addr)) {
- LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n",
- llama_format_win_err(GetLastError()).c_str());
- }
- }
- #else
- static constexpr bool SUPPORTED = false;
- llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) {
- GGML_UNUSED(file);
- GGML_UNUSED(prefetch);
- GGML_UNUSED(numa);
- throw std::runtime_error("mmap not supported");
- }
- void unmap_fragment(size_t first, size_t last) {
- GGML_UNUSED(first);
- GGML_UNUSED(last);
- throw std::runtime_error("mmap not supported");
- }
- #endif
- };
- // Represents some region of memory being locked using mlock or VirtualLock;
- // will automatically unlock on destruction.
- struct llama_mlock {
- void * addr = NULL;
- size_t size = 0;
- bool failed_already = false;
- llama_mlock() {}
- llama_mlock(const llama_mlock &) = delete;
- ~llama_mlock() {
- if (size) {
- raw_unlock(addr, size);
- }
- }
- void init(void * ptr) {
- GGML_ASSERT(addr == NULL && size == 0); // NOLINT
- addr = ptr;
- }
- void grow_to(size_t target_size) {
- GGML_ASSERT(addr);
- if (failed_already) {
- return;
- }
- size_t granularity = lock_granularity();
- target_size = (target_size + granularity - 1) & ~(granularity - 1);
- if (target_size > size) {
- if (raw_lock((uint8_t *) addr + size, target_size - size)) {
- size = target_size;
- } else {
- failed_already = true;
- }
- }
- }
- #ifdef _POSIX_MEMLOCK_RANGE
- static constexpr bool SUPPORTED = true;
- static size_t lock_granularity() {
- return (size_t) sysconf(_SC_PAGESIZE);
- }
- #ifdef __APPLE__
- #define MLOCK_SUGGESTION \
- "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
- "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l).\n"
- #else
- #define MLOCK_SUGGESTION \
- "Try increasing RLIMIT_MLOCK ('ulimit -l' as root).\n"
- #endif
- bool raw_lock(const void * addr, size_t size) const {
- if (!mlock(addr, size)) {
- return true;
- }
- char* errmsg = std::strerror(errno);
- bool suggest = (errno == ENOMEM);
- // Check if the resource limit is fine after all
- struct rlimit lock_limit;
- if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
- suggest = false;
- }
- if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
- suggest = false;
- }
- LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
- size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
- return false;
- }
- #undef MLOCK_SUGGESTION
- static void raw_unlock(void * addr, size_t size) {
- if (munlock(addr, size)) {
- LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
- }
- }
- #elif defined(_WIN32)
- static constexpr bool SUPPORTED = true;
- static size_t lock_granularity() {
- SYSTEM_INFO si;
- GetSystemInfo(&si);
- return (size_t) si.dwPageSize;
- }
- bool raw_lock(void * ptr, size_t len) const {
- for (int tries = 1; ; tries++) {
- if (VirtualLock(ptr, len)) {
- return true;
- }
- if (tries == 2) {
- LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
- len, size, llama_format_win_err(GetLastError()).c_str());
- return false;
- }
- // It failed but this was only the first try; increase the working
- // set size and try again.
- SIZE_T min_ws_size, max_ws_size;
- if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
- LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
- llama_format_win_err(GetLastError()).c_str());
- return false;
- }
- // Per MSDN: "The maximum number of pages that a process can lock
- // is equal to the number of pages in its minimum working set minus
- // a small overhead."
- // Hopefully a megabyte is enough overhead:
- size_t increment = len + 1048576;
- // The minimum must be <= the maximum, so we need to increase both:
- min_ws_size += increment;
- max_ws_size += increment;
- if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
- LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
- llama_format_win_err(GetLastError()).c_str());
- return false;
- }
- }
- }
- static void raw_unlock(void * ptr, size_t len) {
- if (!VirtualUnlock(ptr, len)) {
- LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
- llama_format_win_err(GetLastError()).c_str());
- }
- }
- #else
- static constexpr bool SUPPORTED = false;
- static size_t lock_granularity() {
- return (size_t) 65536;
- }
- bool raw_lock(const void * addr, size_t len) const {
- LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
- return false;
- }
- static void raw_unlock(const void * addr, size_t len) {}
- #endif
- };
- static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
- std::vector<char> result(8, 0);
- const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
- if (n_tokens < 0) {
- result.resize(-n_tokens);
- int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
- GGML_ASSERT(check == -n_tokens);
- }
- else {
- result.resize(n_tokens);
- }
- return std::string(result.data(), result.size());
- }
- static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) {
- ggml_backend_buffer_type_t buft = nullptr;
- #if defined(GGML_USE_CUBLAS)
- // host buffers should only be used when data is expected to be copied to/from the GPU
- if (host_buffer) {
- buft = ggml_backend_cuda_host_buffer_type();
- }
- #elif defined(GGML_USE_SYCL)
- buft = ggml_backend_sycl_host_buffer_type();
- #elif defined(GGML_USE_CPU_HBM)
- buft = ggml_backend_cpu_hbm_buffer_type();
- #elif defined(GGML_USE_VULKAN)
- if (host_buffer) {
- buft = ggml_backend_vk_host_buffer_type();
- }
- #endif
- if (buft == nullptr) {
- buft = ggml_backend_cpu_buffer_type();
- }
- return buft;
- GGML_UNUSED(host_buffer);
- }
- static ggml_backend_buffer_type_t llama_default_buffer_type_offload(int gpu) {
- ggml_backend_buffer_type_t buft = nullptr;
- #ifdef GGML_USE_METAL
- buft = ggml_backend_metal_buffer_type();
- #elif defined(GGML_USE_CUBLAS)
- buft = ggml_backend_cuda_buffer_type(gpu);
- #elif defined(GGML_USE_VULKAN)
- buft = ggml_backend_vk_buffer_type();
- #elif defined(GGML_USE_SYCL)
- buft = ggml_backend_sycl_buffer_type(gpu);
- #elif defined(GGML_USE_CLBLAST)
- buft = ggml_backend_opencl_buffer_type();
- #endif
- if (buft == nullptr) {
- buft = llama_default_buffer_type_cpu(true);
- }
- return buft;
- GGML_UNUSED(gpu);
- }
- static ggml_backend_buffer_type_t llama_default_buffer_type_split(int fallback_gpu, const float * tensor_split) {
- ggml_backend_buffer_type_t buft = nullptr;
- #ifdef GGML_USE_CUBLAS
- if (ggml_backend_cuda_get_device_count() > 1) {
- buft = ggml_backend_cuda_split_buffer_type(tensor_split);
- }
- #endif
- if (buft == nullptr) {
- buft = llama_default_buffer_type_offload(fallback_gpu);
- }
- return buft;
- GGML_UNUSED(tensor_split);
- }
- //
- // globals
- //
- struct llama_state {
- llama_state() {
- #ifdef GGML_USE_METAL
- ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data);
- #endif
- }
- // We save the log callback globally
- ggml_log_callback log_callback = llama_log_callback_default;
- void * log_callback_user_data = nullptr;
- };
- static llama_state g_state;
- // available llama models
- enum e_model {
- MODEL_UNKNOWN,
- MODEL_0_5B,
- MODEL_1B,
- MODEL_3B,
- MODEL_4B,
- MODEL_7B,
- MODEL_8B,
- MODEL_13B,
- MODEL_14B,
- MODEL_15B,
- MODEL_30B,
- MODEL_34B,
- MODEL_40B,
- MODEL_65B,
- MODEL_70B,
- MODEL_SMALL,
- MODEL_MEDIUM,
- MODEL_LARGE,
- MODEL_XL,
- };
- static const size_t kiB = 1024;
- static const size_t MiB = 1024*kiB;
- static const size_t GiB = 1024*MiB;
- struct llama_hparams {
- bool vocab_only;
- uint32_t n_vocab;
- uint32_t n_ctx_train; // context size the model was trained on
- uint32_t n_embd;
- uint32_t n_head;
- uint32_t n_head_kv;
- uint32_t n_layer;
- uint32_t n_rot;
- uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
- uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
- uint32_t n_ff;
- uint32_t n_expert = 0;
- uint32_t n_expert_used = 0;
- float f_norm_eps;
- float f_norm_rms_eps;
- float rope_freq_base_train;
- float rope_freq_scale_train;
- uint32_t n_yarn_orig_ctx;
- int8_t rope_scaling_type_train : 3;
- bool rope_finetuned : 1;
- float f_clamp_kqv;
- float f_max_alibi_bias;
- bool operator!=(const llama_hparams & other) const {
- if (this->vocab_only != other.vocab_only) return true;
- if (this->n_vocab != other.n_vocab) return true;
- if (this->n_ctx_train != other.n_ctx_train) return true;
- if (this->n_embd != other.n_embd) return true;
- if (this->n_head != other.n_head) return true;
- if (this->n_head_kv != other.n_head_kv) return true;
- if (this->n_layer != other.n_layer) return true;
- if (this->n_rot != other.n_rot) return true;
- if (this->n_embd_head_k != other.n_embd_head_k) return true;
- if (this->n_embd_head_v != other.n_embd_head_v) return true;
- if (this->n_ff != other.n_ff) return true;
- if (this->n_expert != other.n_expert) return true;
- if (this->n_expert_used != other.n_expert_used) return true;
- if (this->rope_finetuned != other.rope_finetuned) return true;
- if (this->n_yarn_orig_ctx != other.n_yarn_orig_ctx) return true;
- const float EPSILON = 1e-9f;
- if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
- if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
- if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
- if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
- return false;
- }
- uint32_t n_gqa() const {
- return n_head/n_head_kv;
- }
- uint32_t n_embd_k_gqa() const { // dimension of key embeddings across all k-v heads
- return n_embd_head_k * n_head_kv;
- }
- uint32_t n_embd_v_gqa() const { // dimension of value embeddings across all k-v heads
- return n_embd_head_v * n_head_kv;
- }
- };
- struct llama_cparams {
- uint32_t n_ctx; // context size used during inference
- uint32_t n_batch;
- uint32_t n_threads; // number of threads to use for generation
- uint32_t n_threads_batch; // number of threads to use for batch processing
- float rope_freq_base;
- float rope_freq_scale;
- uint32_t n_yarn_orig_ctx;
- // These hyperparameters are not exposed in GGUF, because all
- // existing YaRN models use the same values for them.
- float yarn_ext_factor;
- float yarn_attn_factor;
- float yarn_beta_fast;
- float yarn_beta_slow;
- bool mul_mat_q;
- bool offload_kqv;
- ggml_backend_sched_eval_callback cb_eval;
- void * cb_eval_user_data;
- };
- struct llama_layer {
- // normalization
- struct ggml_tensor * attn_norm;
- struct ggml_tensor * attn_norm_b;
- struct ggml_tensor * attn_norm_2;
- struct ggml_tensor * attn_norm_2_b;
- struct ggml_tensor * attn_q_norm;
- struct ggml_tensor * attn_q_norm_b;
- struct ggml_tensor * attn_k_norm;
- struct ggml_tensor * attn_k_norm_b;
- // attention
- struct ggml_tensor * wq;
- struct ggml_tensor * wk;
- struct ggml_tensor * wv;
- struct ggml_tensor * wo;
- struct ggml_tensor * wqkv;
- // attention bias
- struct ggml_tensor * bq;
- struct ggml_tensor * bk;
- struct ggml_tensor * bv;
- struct ggml_tensor * bo;
- struct ggml_tensor * bqkv;
- // normalization
- struct ggml_tensor * ffn_norm;
- struct ggml_tensor * ffn_norm_b;
- // ff
- struct ggml_tensor * ffn_gate; // w1
- struct ggml_tensor * ffn_down; // w2
- struct ggml_tensor * ffn_up; // w3
- // ff MoE
- struct ggml_tensor * ffn_gate_inp;
- struct ggml_tensor * ffn_gate_exp[LLAMA_MAX_EXPERTS];
- struct ggml_tensor * ffn_down_exp[LLAMA_MAX_EXPERTS];
- struct ggml_tensor * ffn_up_exp [LLAMA_MAX_EXPERTS];
- // ff bias
- struct ggml_tensor * ffn_down_b; // b2
- struct ggml_tensor * ffn_up_b; // b3
- struct ggml_tensor * ffn_act;
- };
- struct llama_kv_cell {
- llama_pos pos = -1;
- llama_pos delta = 0;
- std::set<llama_seq_id> seq_id;
- bool has_seq_id(const llama_seq_id & id) const {
- return seq_id.find(id) != seq_id.end();
- }
- };
- // ring-buffer of cached KV data
- struct llama_kv_cache {
- bool has_shift = false;
- // Note: The value of head isn't only used to optimize searching
- // for a free KV slot. llama_decode_internal also uses it, so it
- // cannot be freely changed after a slot has been allocated.
- uint32_t head = 0;
- uint32_t size = 0;
- uint32_t used = 0; // used cells (i.e. at least one seq_id)
- // computed before each graph build
- uint32_t n = 0;
- std::vector<llama_kv_cell> cells;
- std::vector<struct ggml_tensor *> k_l; // per layer
- std::vector<struct ggml_tensor *> v_l;
- std::vector<struct ggml_context *> ctxs;
- std::vector<ggml_backend_buffer_t> bufs;
- size_t total_size() const {
- size_t size = 0;
- for (ggml_backend_buffer_t buf : bufs) {
- size += ggml_backend_buffer_get_size(buf);
- }
- return size;
- }
- ~llama_kv_cache() {
- for (struct ggml_context * ctx : ctxs) {
- ggml_free(ctx);
- }
- for (ggml_backend_buffer_t buf : bufs) {
- ggml_backend_buffer_free(buf);
- }
- }
- };
- struct llama_vocab {
- using id = int32_t;
- using token = std::string;
- using ttype = llama_token_type;
- struct token_data {
- token text;
- float score;
- ttype type;
- };
- enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
- std::unordered_map<token, id> token_to_id;
- std::vector<token_data> id_to_token;
- std::unordered_map<token, id> special_tokens_cache;
- std::map<std::pair<std::string, std::string>, int> bpe_ranks;
- // default LLaMA special tokens
- id special_bos_id = 1;
- id special_eos_id = 2;
- id special_unk_id = 0;
- id special_sep_id = -1;
- id special_pad_id = -1;
- int special_add_bos = -1; // -1 unknown, 1 add, 0 don't add.
- int special_add_eos = -1; // -1 unknown, 1 add, 0 don't add.
- id linefeed_id = 13;
- id special_prefix_id = 32007;
- id special_middle_id = 32009;
- id special_suffix_id = 32008;
- id special_eot_id = 32010;
- int find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
- GGML_ASSERT(token_left.find(' ') == std::string::npos);
- GGML_ASSERT(token_left.find('\n') == std::string::npos);
- GGML_ASSERT(token_right.find(' ') == std::string::npos);
- GGML_ASSERT(token_right.find('\n') == std::string::npos);
- auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
- if (it == bpe_ranks.end()) {
- return -1;
- }
- return it->second;
- }
- };
- struct llama_model {
- e_model type = MODEL_UNKNOWN;
- llm_arch arch = LLM_ARCH_UNKNOWN;
- llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
- std::string name = "n/a";
- llama_hparams hparams = {};
- llama_vocab vocab;
- struct ggml_tensor * tok_embd;
- struct ggml_tensor * pos_embd;
- struct ggml_tensor * tok_norm;
- struct ggml_tensor * tok_norm_b;
- struct ggml_tensor * output_norm;
- struct ggml_tensor * output_norm_b;
- struct ggml_tensor * output;
- struct ggml_tensor * output_b;
- std::vector<llama_layer> layers;
- llama_split_mode split_mode;
- int main_gpu;
- int n_gpu_layers;
- // gguf metadata
- std::unordered_map<std::string, std::string> gguf_kv;
- // layer -> buffer type mapping
- struct layer_buft {
- layer_buft() : buft_matrix(nullptr), buft(nullptr) {}
- layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {}
- layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {}
- ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication
- ggml_backend_buffer_type_t buft; // everything else
- };
- layer_buft buft_input;
- layer_buft buft_output;
- std::vector<layer_buft> buft_layer;
- // contexts where the model tensors metadata is stored
- std::vector<struct ggml_context *> ctxs;
- // the model memory buffers for the tensor data
- std::vector<ggml_backend_buffer_t> bufs;
- // model memory mapped file
- std::unique_ptr<llama_mmap> mapping;
- // objects representing data potentially being locked in memory
- std::vector<std::unique_ptr<llama_mlock>> mlock_bufs;
- llama_mlock mlock_mmap;
- // for quantize-stats only
- std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
- int64_t t_load_us = 0;
- int64_t t_start_us = 0;
- ~llama_model() {
- for (struct ggml_context * ctx : ctxs) {
- ggml_free(ctx);
- }
- for (ggml_backend_buffer_t buf : bufs) {
- ggml_backend_buffer_free(buf);
- }
- }
- };
- struct llama_context {
- llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {}
- ~llama_context() {
- ggml_backend_sched_free(sched);
- for (ggml_backend_t backend : backends) {
- ggml_backend_free(backend);
- }
- ggml_backend_buffer_free(buf_input);
- ggml_free(ctx_input);
- }
- llama_cparams cparams;
- std::vector<ggml_backend_t> backends;
- #ifdef GGML_USE_METAL
- ggml_backend_t backend_metal = nullptr;
- #endif
- ggml_backend_t backend_cpu = nullptr;
- const llama_model & model;
- // key + value cache for the self attention
- struct llama_kv_cache kv_self;
- std::mt19937 rng;
- bool has_evaluated_once = false;
- int64_t t_start_us;
- int64_t t_load_us;
- int64_t t_sample_us = 0;
- int64_t t_p_eval_us = 0;
- int64_t t_eval_us = 0;
- int32_t n_sample = 0; // number of tokens sampled
- int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
- int32_t n_eval = 0; // number of eval calls
- // decode output (2-dimensional array: [n_tokens][n_vocab])
- std::vector<float> logits;
- #ifndef NDEBUG
- // guard against access to unset logits
- std::vector<bool> logits_valid;
- #endif
- bool logits_all = false;
- // input embedding (1-dimensional array: [n_embd])
- std::vector<float> embedding;
- // memory buffers used to evaluate the model
- std::vector<uint8_t> buf_compute_meta;
- ggml_backend_sched_t sched = nullptr;
- // allocator for the input tensors
- ggml_tallocr * alloc = nullptr;
- // input tensors
- ggml_backend_buffer_t buf_input = nullptr;
- ggml_context * ctx_input = nullptr;
- struct ggml_tensor * inp_tokens; // I32 [n_batch]
- struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
- struct ggml_tensor * inp_pos; // I32 [n_batch]
- struct ggml_tensor * inp_KQ_mask; // F32 [n_ctx, n_batch]
- struct ggml_tensor * inp_K_shift; // I32 [n_ctx]
- #ifdef GGML_USE_MPI
- ggml_mpi_context * ctx_mpi = NULL;
- #endif
- };
- //
- // kv cache helpers
- //
- static bool llama_kv_cache_init(
- struct llama_kv_cache & cache,
- const llama_model & model,
- ggml_type ktype,
- ggml_type vtype,
- uint32_t n_ctx,
- bool offload) {
- const struct llama_hparams & hparams = model.hparams;
- const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
- const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
- const int64_t n_layer = hparams.n_layer;
- cache.has_shift = false;
- cache.head = 0;
- cache.size = n_ctx;
- cache.used = 0;
- cache.cells.clear();
- cache.cells.resize(n_ctx);
- #ifdef GGML_USE_CLBLAST
- offload = false;
- #endif
- // count used buffer types
- std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
- if (offload) {
- for (int64_t i = 0; i < n_layer; ++i) {
- buft_layer_count[model.buft_layer[i].buft]++;
- }
- } else {
- buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer;
- }
- // create a context for each buffer type
- std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
- for (auto & it : buft_layer_count) {
- int n_layers = it.second;
- struct ggml_init_params params = {
- /*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(),
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ true,
- };
- ggml_context * ctx = ggml_init(params);
- if (!ctx) {
- LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__);
- return false;
- }
- ctx_map[it.first] = ctx;
- cache.ctxs.push_back(ctx);
- }
- cache.k_l.reserve(n_layer);
- cache.v_l.reserve(n_layer);
- for (int i = 0; i < (int) n_layer; i++) {
- struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
- ggml_tensor * k = ggml_new_tensor_1d(ctx, ktype, n_embd_k_gqa*n_ctx);
- ggml_tensor * v = ggml_new_tensor_1d(ctx, vtype, n_embd_v_gqa*n_ctx);
- ggml_format_name(k, "cache_k_l%d", i);
- ggml_format_name(v, "cache_v_l%d", i);
- cache.k_l.push_back(k);
- cache.v_l.push_back(v);
- }
- // allocate tensors and initialize the buffers to avoid NaNs in the padding
- for (auto it : ctx_map) {
- ggml_backend_buffer_type_t buft = it.first;
- ggml_context * ctx = it.second;
- ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
- if (!buf) {
- LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
- return false;
- }
- ggml_backend_buffer_clear(buf, 0);
- LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
- cache.bufs.push_back(buf);
- }
- return true;
- }
- // find an empty slot of size "n_tokens" in the cache
- // updates the cache head
- // Note: On success, it's important that cache.head points
- // to the first cell of the slot.
- static bool llama_kv_cache_find_slot(
- struct llama_kv_cache & cache,
- const struct llama_batch & batch) {
- const uint32_t n_ctx = cache.size;
- const uint32_t n_tokens = batch.n_tokens;
- if (n_tokens > n_ctx) {
- LLAMA_LOG_ERROR("%s: n_tokens=%d > n_ctx=%d\n", __func__, n_tokens, n_ctx);
- return false;
- }
- uint32_t n_tested = 0;
- while (true) {
- if (cache.head + n_tokens > n_ctx) {
- n_tested += n_ctx - cache.head;
- cache.head = 0;
- continue;
- }
- bool found = true;
- for (uint32_t i = 0; i < n_tokens; i++) {
- if (cache.cells[cache.head + i].pos >= 0) {
- found = false;
- cache.head += i + 1;
- n_tested += i + 1;
- break;
- }
- }
- if (found) {
- break;
- }
- if (n_tested >= n_ctx) {
- //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
- return false;
- }
- }
- for (uint32_t i = 0; i < n_tokens; i++) {
- cache.cells[cache.head + i].pos = batch.pos[i];
- for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
- cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]);
- }
- }
- cache.used += n_tokens;
- return true;
- }
- // find how many cells are currently in use
- static int32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
- for (uint32_t i = cache.size - 1; i > 0; --i) {
- if (cache.cells[i].pos >= 0 && !cache.cells[i].seq_id.empty()) {
- return i + 1;
- }
- }
- return 0;
- }
- static void llama_kv_cache_clear(struct llama_kv_cache & cache) {
- for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
- cache.cells[i].pos = -1;
- cache.cells[i].seq_id.clear();
- }
- cache.head = 0;
- cache.used = 0;
- }
- static void llama_kv_cache_seq_rm(
- struct llama_kv_cache & cache,
- llama_seq_id seq_id,
- llama_pos p0,
- llama_pos p1) {
- uint32_t new_head = cache.size;
- if (p0 < 0) p0 = 0;
- if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
- for (uint32_t i = 0; i < cache.size; ++i) {
- if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
- if (seq_id < 0) {
- cache.cells[i].seq_id.clear();
- } else if (cache.cells[i].has_seq_id(seq_id)) {
- cache.cells[i].seq_id.erase(seq_id);
- } else {
- continue;
- }
- if (cache.cells[i].seq_id.empty()) {
- // keep count of the number of used cells
- if (cache.cells[i].pos >= 0) cache.used--;
- cache.cells[i].pos = -1;
- if (new_head == cache.size) new_head = i;
- }
- }
- }
- // If we freed up a slot, set head to it so searching can start there.
- if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
- }
- static void llama_kv_cache_seq_cp(
- struct llama_kv_cache & cache,
- llama_seq_id seq_id_src,
- llama_seq_id seq_id_dst,
- llama_pos p0,
- llama_pos p1) {
- if (p0 < 0) p0 = 0;
- if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
- cache.head = 0;
- for (uint32_t i = 0; i < cache.size; ++i) {
- if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
- cache.cells[i].seq_id.insert(seq_id_dst);
- }
- }
- }
- static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
- uint32_t new_head = cache.size;
- for (uint32_t i = 0; i < cache.size; ++i) {
- if (!cache.cells[i].has_seq_id(seq_id)) {
- if (cache.cells[i].pos >= 0) cache.used--;
- cache.cells[i].pos = -1;
- cache.cells[i].seq_id.clear();
- if (new_head == cache.size) new_head = i;
- } else {
- cache.cells[i].seq_id.clear();
- cache.cells[i].seq_id.insert(seq_id);
- }
- }
- // If we freed up a slot, set head to it so searching can start there.
- if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
- }
- static void llama_kv_cache_seq_shift(
- struct llama_kv_cache & cache,
- llama_seq_id seq_id,
- llama_pos p0,
- llama_pos p1,
- llama_pos delta) {
- uint32_t new_head = cache.size;
- if (p0 < 0) p0 = 0;
- if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
- for (uint32_t i = 0; i < cache.size; ++i) {
- if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
- cache.has_shift = true;
- cache.cells[i].pos += delta;
- cache.cells[i].delta += delta;
- if (cache.cells[i].pos < 0) {
- if (!cache.cells[i].seq_id.empty()) cache.used--;
- cache.cells[i].pos = -1;
- cache.cells[i].seq_id.clear();
- if (new_head == cache.size) new_head = i;
- }
- }
- }
- // If we freed up a slot, set head to it so searching can start there.
- // Otherwise we just start the next search from the beginning.
- cache.head = new_head != cache.size ? new_head : 0;
- }
- static void llama_kv_cache_seq_div(
- struct llama_kv_cache & cache,
- llama_seq_id seq_id,
- llama_pos p0,
- llama_pos p1,
- int d) {
- if (p0 < 0) p0 = 0;
- if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
- for (uint32_t i = 0; i < cache.size; ++i) {
- if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
- cache.has_shift = true;
- {
- llama_pos p_old = cache.cells[i].pos;
- cache.cells[i].pos /= d;
- cache.cells[i].delta += cache.cells[i].pos - p_old;
- }
- }
- }
- }
- //
- // model loading and saving
- //
- enum llama_fver {
- GGUF_FILE_VERSION_V1 = 1,
- GGUF_FILE_VERSION_V2 = 2,
- GGUF_FILE_VERSION_V3 = 3,
- };
- static const char * llama_file_version_name(llama_fver version) {
- switch (version) {
- case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
- case GGUF_FILE_VERSION_V2: return "GGUF V2";
- case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)";
- }
- return "unknown";
- }
- static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
- char buf[256];
- snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
- for (size_t i = 1; i < ne.size(); i++) {
- snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
- }
- return buf;
- }
- static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
- char buf[256];
- snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
- for (int i = 1; i < GGML_MAX_DIMS; i++) {
- snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
- }
- return buf;
- }
- namespace GGUFMeta {
- template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)>
- struct GKV_Base_Type {
- static constexpr gguf_type gt = gt_;
- static T getter(const gguf_context * ctx, const int kid) {
- return gfun(ctx, kid);
- }
- };
- template<typename T> struct GKV_Base;
- template<> struct GKV_Base<bool >: GKV_Base_Type<bool, GGUF_TYPE_BOOL, gguf_get_val_bool> {};
- template<> struct GKV_Base<uint8_t >: GKV_Base_Type<uint8_t, GGUF_TYPE_UINT8, gguf_get_val_u8 > {};
- template<> struct GKV_Base<uint16_t >: GKV_Base_Type<uint16_t, GGUF_TYPE_UINT16, gguf_get_val_u16 > {};
- template<> struct GKV_Base<uint32_t >: GKV_Base_Type<uint32_t, GGUF_TYPE_UINT32, gguf_get_val_u32 > {};
- template<> struct GKV_Base<uint64_t >: GKV_Base_Type<uint64_t, GGUF_TYPE_UINT64, gguf_get_val_u64 > {};
- template<> struct GKV_Base<int8_t >: GKV_Base_Type<int8_t, GGUF_TYPE_INT8, gguf_get_val_i8 > {};
- template<> struct GKV_Base<int16_t >: GKV_Base_Type<int16_t, GGUF_TYPE_INT16, gguf_get_val_i16 > {};
- template<> struct GKV_Base<int32_t >: GKV_Base_Type<int32_t, GGUF_TYPE_INT32, gguf_get_val_i32 > {};
- template<> struct GKV_Base<int64_t >: GKV_Base_Type<int64_t, GGUF_TYPE_INT64, gguf_get_val_i64 > {};
- template<> struct GKV_Base<float >: GKV_Base_Type<float, GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {};
- template<> struct GKV_Base<double >: GKV_Base_Type<double, GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {};
- template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING, gguf_get_val_str > {};
- template<> struct GKV_Base<std::string> {
- static constexpr gguf_type gt = GGUF_TYPE_STRING;
- static std::string getter(const gguf_context * ctx, const int kid) {
- return gguf_get_val_str(ctx, kid);
- }
- };
- struct ArrayInfo{
- const gguf_type gt;
- const size_t length;
- const void * data;
- };
- template<> struct GKV_Base<ArrayInfo> {
- public:
- static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
- static ArrayInfo getter(const gguf_context *ctx, const int k) {
- return ArrayInfo {
- gguf_get_arr_type(ctx, k),
- size_t(gguf_get_arr_n(ctx, k)),
- gguf_get_arr_data(ctx, k),
- };
- }
- };
- template<typename T>
- class GKV: public GKV_Base<T> {
- GKV() = delete;
- public:
- static T get_kv(const gguf_context * ctx, const int k) {
- const enum gguf_type kt = gguf_get_kv_type(ctx, k);
- if (kt != GKV::gt) {
- throw std::runtime_error(format("key %s has wrong type %s but expected type %s",
- gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt)));
- }
- return GKV::getter(ctx, k);
- }
- static const char * override_type_to_str(const llama_model_kv_override_type ty) {
- switch (ty) {
- case LLAMA_KV_OVERRIDE_BOOL: return "bool";
- case LLAMA_KV_OVERRIDE_INT: return "int";
- case LLAMA_KV_OVERRIDE_FLOAT: return "float";
- }
- return "unknown";
- }
- static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override *override) {
- if (!override) { return false; }
- if (override->tag == expected_type) {
- LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
- __func__, override_type_to_str(override->tag), override->key);
- switch (override->tag) {
- case LLAMA_KV_OVERRIDE_BOOL: {
- LLAMA_LOG_INFO("%s\n", override->bool_value ? "true" : "false");
- } break;
- case LLAMA_KV_OVERRIDE_INT: {
- LLAMA_LOG_INFO("%" PRId64 "\n", override->int_value);
- } break;
- case LLAMA_KV_OVERRIDE_FLOAT: {
- LLAMA_LOG_INFO("%.6f\n", override->float_value);
- } break;
- default:
- // Shouldn't be possible to end up here, but just in case...
- throw std::runtime_error(
- format("Unsupported attempt to override %s type for metadata key %s\n",
- override_type_to_str(override->tag), override->key));
- }
- return true;
- }
- LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n",
- __func__, override->key, override_type_to_str(expected_type), override_type_to_str(override->tag));
- return false;
- }
- template<typename OT>
- static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
- try_override(OT & target, const struct llama_model_kv_override *override) {
- if (validate_override(LLAMA_KV_OVERRIDE_BOOL, override)) {
- target = override->bool_value;
- return true;
- }
- return false;
- }
- template<typename OT>
- static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
- try_override(OT & target, const struct llama_model_kv_override *override) {
- if (validate_override(LLAMA_KV_OVERRIDE_INT, override)) {
- target = override->int_value;
- return true;
- }
- return false;
- }
- template<typename OT>
- static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
- try_override(T & target, const struct llama_model_kv_override *override) {
- if (validate_override(LLAMA_KV_OVERRIDE_FLOAT, override)) {
- target = override->float_value;
- return true;
- }
- return false;
- }
- template<typename OT>
- static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type
- try_override(T & target, const struct llama_model_kv_override *override) {
- (void)target;
- (void)override;
- if (!override) { return false; }
- // Currently, we should never end up here so it would be a bug if we do.
- throw std::runtime_error(format("Unsupported attempt to override string type for metadata key %s\n",
- override ? override->key : "NULL"));
- }
- static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override *override = nullptr) {
- if (try_override<T>(target, override)) {
- return true;
- }
- if (k < 0) { return false; }
- target = get_kv(ctx, k);
- return true;
- }
- static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override *override = nullptr) {
- return set(ctx, gguf_find_key(ctx, key), target, override);
- }
- static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override *override = nullptr) {
- return set(ctx, key.c_str(), target, override);
- }
- };
- }
- struct llama_model_loader {
- int n_kv = 0;
- int n_tensors = 0;
- int n_created = 0;
- int64_t n_elements = 0;
- size_t n_bytes = 0;
- bool use_mmap = false;
- llama_file file;
- llama_ftype ftype;
- llama_fver fver;
- std::unique_ptr<llama_mmap> mapping;
- std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
- struct gguf_context * ctx_gguf = NULL;
- struct ggml_context * ctx_meta = NULL;
- std::string arch_name;
- LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
- llama_model_loader(const std::string & fname, bool use_mmap, const struct llama_model_kv_override * param_overrides_p) : file(fname.c_str(), "rb") {
- int trace = 0;
- if (getenv("LLAMA_TRACE")) {
- trace = atoi(getenv("LLAMA_TRACE"));
- }
- struct gguf_init_params params = {
- /*.no_alloc = */ true,
- /*.ctx = */ &ctx_meta,
- };
- if (param_overrides_p != nullptr) {
- for (const struct llama_model_kv_override *p = param_overrides_p; p->key[0] != 0; p++) {
- kv_overrides.insert({std::string(p->key), *p});
- }
- }
- ctx_gguf = gguf_init_from_file(fname.c_str(), params);
- if (!ctx_gguf) {
- throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
- }
- get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
- llm_kv = LLM_KV(llm_arch_from_string(arch_name));
- n_kv = gguf_get_n_kv(ctx_gguf);
- n_tensors = gguf_get_n_tensors(ctx_gguf);
- fver = (enum llama_fver ) gguf_get_version(ctx_gguf);
- for (int i = 0; i < n_tensors; i++) {
- const char * name = gguf_get_tensor_name(ctx_gguf, i);
- struct ggml_tensor * t = ggml_get_tensor(ctx_meta, name);
- n_elements += ggml_nelements(t);
- n_bytes += ggml_nbytes(t);
- }
- LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
- __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
- // determine file type based on the number of tensors for each quantization and print meta data
- // TODO: make optional
- {
- std::map<enum ggml_type, uint32_t> n_type;
- uint32_t n_type_max = 0;
- enum ggml_type type_max = GGML_TYPE_F32;
- for (int i = 0; i < n_tensors; i++) {
- enum ggml_type type = gguf_get_tensor_type(ctx_gguf, i);
- n_type[type]++;
- if (n_type_max < n_type[type]) {
- n_type_max = n_type[type];
- type_max = type;
- }
- if (trace > 0) {
- struct ggml_tensor * meta = ggml_get_tensor(ctx_meta, gguf_get_tensor_name(ctx_gguf, i));
- LLAMA_LOG_INFO("%s: - tensor %4d: %32s %-8s [ %s ]\n", __func__, i, ggml_get_name(meta), ggml_type_name(type), llama_format_tensor_shape(meta).c_str());
- }
- }
- switch (type_max) {
- case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
- case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
- case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
- case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
- case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
- case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
- case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
- case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
- case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
- case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
- case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
- case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
- case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
- case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
- default:
- {
- LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
- ftype = LLAMA_FTYPE_ALL_F32;
- } break;
- }
- // this is a way to mark that we have "guessed" the file type
- ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
- {
- const int kid = gguf_find_key(ctx_gguf, "general.file_type");
- if (kid >= 0) {
- ftype = (llama_ftype) gguf_get_val_u32(ctx_gguf, kid);
- }
- }
- LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
- for (int i = 0; i < n_kv; i++) {
- const char * name = gguf_get_key(ctx_gguf, i);
- const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
- const std::string type_name =
- type == GGUF_TYPE_ARRAY
- ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(ctx_gguf, i)), gguf_get_arr_n(ctx_gguf, i))
- : gguf_type_name(type);
- std::string value = gguf_kv_to_str(ctx_gguf, i);
- const size_t MAX_VALUE_LEN = 40;
- if (value.size() > MAX_VALUE_LEN) {
- value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
- }
- replace_all(value, "\n", "\\n");
- LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
- }
- // print type counts
- for (auto & kv : n_type) {
- if (kv.second == 0) {
- continue;
- }
- LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
- }
- }
- if (!llama_mmap::SUPPORTED) {
- LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
- use_mmap = false;
- }
- this->use_mmap = use_mmap;
- }
- ~llama_model_loader() {
- if (ctx_gguf) {
- gguf_free(ctx_gguf);
- }
- if (ctx_meta) {
- ggml_free(ctx_meta);
- }
- }
- template<typename T>
- typename std::enable_if<std::is_integral<T>::value, bool>::type
- get_arr_n(const std::string & key, T & result, const bool required = true) {
- const int kid = gguf_find_key(ctx_gguf, key.c_str());
- if (kid < 0) {
- if (required) {
- throw std::runtime_error(format("key not found in model: %s", key.c_str()));
- }
- return false;
- }
- struct GGUFMeta::ArrayInfo arr_info =
- GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(ctx_gguf, kid);
- result = arr_info.length;
- return true;
- }
- template<typename T>
- typename std::enable_if<std::is_integral<T>::value, bool>::type
- get_arr_n(const enum llm_kv kid, T & result, const bool required = true) {
- return get_arr_n(llm_kv(kid), result, required);
- }
- template<typename T>
- bool get_key(const std::string & key, T & result, const bool required = true) {
- auto it = kv_overrides.find(key);
- const struct llama_model_kv_override * override =
- it != kv_overrides.end() ? &it->second : nullptr;
- const bool found = GGUFMeta::GKV<T>::set(ctx_gguf, key, result, override);
- if (required && !found) {
- throw std::runtime_error(format("key not found in model: %s", key.c_str()));
- }
- return found;
- }
- template<typename T>
- bool get_key(const enum llm_kv kid, T & result, const bool required = true) {
- return get_key(llm_kv(kid), result, required);
- }
- std::string get_arch_name() const {
- return arch_name;
- }
- enum llm_arch get_arch() const {
- return llm_kv.arch;
- }
- const char * get_tensor_name(int i) const {
- return gguf_get_tensor_name(ctx_gguf, i);
- }
- struct ggml_tensor * get_tensor_meta(const char * name) const {
- return ggml_get_tensor(ctx_meta, name);
- }
- struct ggml_tensor * get_tensor_meta(int i) const {
- return get_tensor_meta(get_tensor_name(i));
- }
- struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, struct ggml_tensor * meta) {
- struct ggml_tensor * tensor = ggml_dup_tensor(ctx, meta);
- ggml_set_name(tensor, ggml_get_name(meta));
- n_created++;
- return tensor;
- }
- struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, bool required = true) {
- struct ggml_tensor * cur = ggml_get_tensor(ctx_meta, name.c_str());
- if (cur == NULL) {
- if (!required) {
- return NULL;
- }
- throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
- }
- {
- bool is_ok = true;
- for (size_t i = 0; i < ne.size(); ++i) {
- if (ne[i] != cur->ne[i]) {
- is_ok = false;
- break;
- }
- }
- if (!is_ok) {
- throw std::runtime_error(
- format("%s: tensor '%s' has wrong shape; expected %s, got %s",
- __func__, name.c_str(),
- llama_format_tensor_shape(ne).c_str(),
- llama_format_tensor_shape(cur).c_str()));
- }
- }
- return create_tensor_for(ctx, cur);
- }
- void done_getting_tensors() const {
- if (n_created != n_tensors) {
- throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
- }
- }
- size_t file_offset(const char * name) const {
- const int idx = gguf_find_tensor(ctx_gguf, name);
- if (idx < 0) {
- throw std::runtime_error(format("%s: tensor '%s' not found in the file", __func__, name));
- }
- return gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, idx);
- }
- void init_mapping(bool prefetch = true, llama_mlock * lmlock = nullptr) {
- // prefetch the whole file - all the data is needed anyway
- if (use_mmap) {
- mapping.reset(new llama_mmap(&file, prefetch ? -1 : 0, ggml_is_numa()));
- }
- // compute the total size of all tensors for progress reporting
- for (int i = 0; i < gguf_get_n_tensors(ctx_gguf); i++) {
- struct ggml_tensor * cur = ggml_get_tensor(ctx_meta, gguf_get_tensor_name(ctx_gguf, i));
- size_data += ggml_nbytes(cur);
- }
- if (use_mmap && mapping) {
- if (lmlock) {
- lmlock->init(mapping->addr);
- }
- mmap_used_first = mapping->size;
- }
- }
- void get_mapping_range(size_t * first, size_t * last, ggml_context * ctx) const {
- GGML_ASSERT(mapping);
- *first = mapping->size;
- *last = 0;
- for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
- const size_t offs = file_offset(ggml_get_name(tensor));
- *first = std::min(*first, offs);
- *last = std::max(*last, offs + ggml_nbytes(tensor));
- }
- }
- // for backwards compatibility, does not support ggml-backend
- void load_data_for(struct ggml_tensor * cur) const {
- const size_t offs = file_offset(ggml_get_name(cur));
- if (use_mmap && mapping) {
- if (cur->data == nullptr) {
- cur->data = (uint8_t *)mapping->addr + offs;
- } else {
- memcpy(cur->data, (uint8_t *)mapping->addr + offs, ggml_nbytes(cur));
- }
- } else {
- GGML_ASSERT(cur->data != nullptr);
- file.seek(offs, SEEK_SET);
- file.read_raw(cur->data, ggml_nbytes(cur));
- }
- }
- size_t size_done = 0;
- size_t size_data = 0;
- size_t mmap_used_first = -1;
- size_t mmap_used_last = 0;
- // Returns false if cancelled by progress_callback
- bool load_all_data(struct ggml_context * ctx, llama_progress_callback progress_callback, void * progress_callback_user_data, ggml_backend_buffer_t buf_mmap, llama_mlock * lmlock) {
- GGML_ASSERT(size_data != 0 && "call init_mapping() first");
- std::vector<no_init<uint8_t>> read_buf;
- for (int i = 0; i < gguf_get_n_tensors(ctx_gguf); i++) {
- struct ggml_tensor * cur = ggml_get_tensor(ctx, gguf_get_tensor_name(ctx_gguf, i));
- if (!cur) {
- // some tensors may be allocated in a different context
- continue;
- }
- if (progress_callback) {
- if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
- return false;
- }
- }
- const size_t offs = file_offset(ggml_get_name(cur));
- if (use_mmap && mapping) {
- if (buf_mmap && cur->data == nullptr) {
- ggml_backend_tensor_alloc(buf_mmap, cur, (uint8_t *) mapping->addr + offs);
- if (lmlock) {
- lmlock->grow_to(offs + ggml_nbytes(cur));
- }
- mmap_used_first = std::min(mmap_used_first, offs);
- mmap_used_last = std::max(mmap_used_last, offs + ggml_nbytes(cur));
- } else {
- ggml_backend_tensor_set(cur, (uint8_t *) mapping->addr + offs, 0, ggml_nbytes(cur));
- }
- } else {
- if (ggml_backend_buffer_is_host(cur->buffer)) {
- file.seek(offs, SEEK_SET);
- file.read_raw(cur->data, ggml_nbytes(cur));
- } else {
- read_buf.resize(ggml_nbytes(cur));
- file.seek(offs, SEEK_SET);
- file.read_raw(read_buf.data(), ggml_nbytes(cur));
- ggml_backend_tensor_set(cur, read_buf.data(), 0, ggml_nbytes(cur));
- }
- }
- size_done += ggml_nbytes(cur);
- }
- // check if this is the last call and do final cleanup
- if (size_done >= size_data) {
- // unmap offloaded tensors and metadata
- if (use_mmap && mapping) {
- mapping->unmap_fragment(0, mmap_used_first);
- if (mmap_used_last != 0) {
- mapping->unmap_fragment(mmap_used_last, mapping->size);
- }
- }
- if (progress_callback) {
- // Even though the model is done loading, we still honor
- // cancellation since we need to free allocations.
- return progress_callback(1.0f, progress_callback_user_data);
- }
- }
- return true;
- }
- };
- //
- // load LLaMA models
- //
- static std::string llama_model_arch_name(llm_arch arch) {
- auto it = LLM_ARCH_NAMES.find(arch);
- if (it == LLM_ARCH_NAMES.end()) {
- return "unknown";
- }
- return it->second;
- }
- static std::string llama_model_ftype_name(llama_ftype ftype) {
- if (ftype & LLAMA_FTYPE_GUESSED) {
- return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
- }
- switch (ftype) {
- case LLAMA_FTYPE_ALL_F32: return "all F32";
- case LLAMA_FTYPE_MOSTLY_F16: return "F16";
- case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
- case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
- case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
- return "Q4_1, some F16";
- case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
- case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
- case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
- // K-quants
- case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium";
- case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
- case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
- case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
- case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
- case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
- case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
- case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
- case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
- case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
- case LLAMA_FTYPE_MOSTLY_IQ2_XXS:return "IQ2_XSS - 2.0625 bpw";
- case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
- case LLAMA_FTYPE_MOSTLY_Q3_K_XS:return "Q3_K - Extra small";
- default: return "unknown, may not work";
- }
- }
- static const char * llama_model_type_name(e_model type) {
- switch (type) {
- case MODEL_1B: return "1B";
- case MODEL_3B: return "3B";
- case MODEL_7B: return "7B";
- case MODEL_8B: return "8B";
- case MODEL_13B: return "13B";
- case MODEL_14B: return "14B";
- case MODEL_15B: return "15B";
- case MODEL_30B: return "30B";
- case MODEL_34B: return "34B";
- case MODEL_40B: return "40B";
- case MODEL_65B: return "65B";
- case MODEL_70B: return "70B";
- case MODEL_SMALL: return "0.1B";
- case MODEL_MEDIUM: return "0.4B";
- case MODEL_LARGE: return "0.8B";
- case MODEL_XL: return "1.5B";
- default: return "?B";
- }
- }
- static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
- model.arch = ml.get_arch();
- if (model.arch == LLM_ARCH_UNKNOWN) {
- throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
- }
- }
- static void llm_load_hparams(
- llama_model_loader & ml,
- llama_model & model) {
- auto & hparams = model.hparams;
- const gguf_context * ctx = ml.ctx_gguf;
- // get metadata as string
- for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
- enum gguf_type type = gguf_get_kv_type(ctx, i);
- if (type == GGUF_TYPE_ARRAY) {
- continue;
- }
- const char * name = gguf_get_key(ctx, i);
- const std::string value = gguf_kv_to_str(ctx, i);
- model.gguf_kv.emplace(name, value);
- }
- // get general kv
- ml.get_key(LLM_KV_GENERAL_NAME, model.name, false);
- // get hparams kv
- ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab);
- ml.get_key (LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
- ml.get_key (LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
- ml.get_key (LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff);
- ml.get_key (LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head);
- ml.get_key (LLM_KV_BLOCK_COUNT, hparams.n_layer);
- ml.get_key (LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
- ml.get_key (LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
- GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
- GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
- if (hparams.n_expert > 0) {
- GGML_ASSERT(hparams.n_expert_used > 0);
- } else {
- GGML_ASSERT(hparams.n_expert_used == 0);
- }
- // n_head_kv is optional, default to n_head
- hparams.n_head_kv = hparams.n_head;
- ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv, false);
- bool rope_finetuned = false;
- ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
- hparams.rope_finetuned = rope_finetuned;
- hparams.n_yarn_orig_ctx = hparams.n_ctx_train;
- ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_yarn_orig_ctx, false);
- // rope_freq_base (optional)
- hparams.rope_freq_base_train = 10000.0f;
- ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
- std::string rope_scaling("linear");
- ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
- hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
- GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_UNSPECIFIED);
- // rope_freq_scale (inverse of the kv) is optional
- float ropescale = 0.0f;
- if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
- // try the old key name
- ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
- }
- hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
- // sanity check for n_rot (optional)
- {
- hparams.n_rot = hparams.n_embd / hparams.n_head;
- ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
- if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
- if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
- throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
- }
- }
- // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
- // gpt-j n_rot = rotary_dim
- }
- hparams.n_embd_head_k = hparams.n_embd / hparams.n_head;
- ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
- hparams.n_embd_head_v = hparams.n_embd / hparams.n_head;
- ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
- // arch-specific KVs
- switch (model.arch) {
- case LLM_ARCH_LLAMA:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 22: model.type = e_model::MODEL_1B; break;
- case 26: model.type = e_model::MODEL_3B; break;
- case 32: model.type = e_model::MODEL_7B; break;
- case 40: model.type = e_model::MODEL_13B; break;
- case 48: model.type = e_model::MODEL_34B; break;
- case 60: model.type = e_model::MODEL_30B; break;
- case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_FALCON:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 32: model.type = e_model::MODEL_7B; break;
- case 60: model.type = e_model::MODEL_40B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_BAICHUAN:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 32: model.type = e_model::MODEL_7B; break;
- case 40: model.type = e_model::MODEL_13B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_STARCODER:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 24: model.type = e_model::MODEL_1B; break;
- case 36: model.type = e_model::MODEL_3B; break;
- case 42: model.type = e_model::MODEL_7B; break;
- case 40: model.type = e_model::MODEL_15B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_PERSIMMON:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 36: model.type = e_model::MODEL_8B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_REFACT:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 32: model.type = e_model::MODEL_1B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_BLOOM:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 24: model.type = e_model::MODEL_1B; break;
- case 30:
- switch (hparams.n_embd) {
- case 2560: model.type = e_model::MODEL_3B; break;
- case 4096: model.type = e_model::MODEL_7B; break;
- } break;
- }
- } break;
- case LLM_ARCH_MPT:
- {
- hparams.f_clamp_kqv = 0.0f;
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
- ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
- switch (hparams.n_layer) {
- case 32: model.type = e_model::MODEL_7B; break;
- case 48: model.type = e_model::MODEL_30B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_STABLELM:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 24: model.type = e_model::MODEL_1B; break;
- case 32: model.type = e_model::MODEL_3B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_QWEN:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 32: model.type = e_model::MODEL_7B; break;
- case 40: model.type = e_model::MODEL_13B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_QWEN2:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break;
- case 32: model.type = e_model::MODEL_7B; break;
- case 40: model.type = hparams.n_head == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break;
- case 80: model.type = e_model::MODEL_70B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_PHI2:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 24: model.type = e_model::MODEL_1B; break;
- case 32: model.type = e_model::MODEL_3B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_PLAMO:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 40: model.type = e_model::MODEL_13B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_GPT2:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 12: model.type = e_model::MODEL_SMALL; break;
- case 24: model.type = e_model::MODEL_MEDIUM; break;
- case 36: model.type = e_model::MODEL_LARGE; break;
- case 48: model.type = e_model::MODEL_XL; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_CODESHELL:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 42: model.type = e_model::MODEL_SMALL; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_ORION:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 40: model.type = e_model::MODEL_14B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- default: (void)0;
- }
- model.ftype = ml.ftype;
- }
- // TODO: This should probably be in llama.h
- static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos, bool special = false);
- static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
- static void llm_load_vocab(
- llama_model_loader & ml,
- llama_model & model) {
- auto & vocab = model.vocab;
- struct gguf_context * ctx = ml.ctx_gguf;
- const auto kv = LLM_KV(model.arch);
- const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
- if (token_idx == -1) {
- throw std::runtime_error("cannot find tokenizer vocab in model file\n");
- }
- const float * scores = nullptr;
- const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
- if (score_idx != -1) {
- scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
- }
- const int * toktypes = nullptr;
- const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
- if (toktype_idx != -1) {
- toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
- }
- // determine vocab type
- {
- std::string tokenizer_name;
- ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_name);
- if (tokenizer_name == "llama") {
- vocab.type = LLAMA_VOCAB_TYPE_SPM;
- // default special tokens
- vocab.special_bos_id = 1;
- vocab.special_eos_id = 2;
- vocab.special_unk_id = 0;
- vocab.special_sep_id = -1;
- vocab.special_pad_id = -1;
- } else if (tokenizer_name == "gpt2") {
- vocab.type = LLAMA_VOCAB_TYPE_BPE;
- // read bpe merges and populate bpe ranks
- const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
- if (merges_keyidx == -1) {
- throw std::runtime_error("cannot find tokenizer merges in model file\n");
- }
- const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
- for (int i = 0; i < n_merges; i++) {
- const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
- GGML_ASSERT(codepoints_from_utf8(word).size() > 0);
- std::string first;
- std::string second;
- const size_t pos = word.find(' ', 1);
- if (pos != std::string::npos) {
- first = word.substr(0, pos);
- second = word.substr(pos + 1);
- }
- vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
- }
- // default special tokens
- vocab.special_bos_id = 11;
- vocab.special_eos_id = 11;
- vocab.special_unk_id = -1;
- vocab.special_sep_id = -1;
- vocab.special_pad_id = -1;
- } else {
- LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_name.c_str());
- LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__);
- vocab.type = LLAMA_VOCAB_TYPE_SPM;
- }
- }
- const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
- vocab.id_to_token.resize(n_vocab);
- for (uint32_t i = 0; i < n_vocab; i++) {
- std::string word = gguf_get_arr_str(ctx, token_idx, i);
- GGML_ASSERT(codepoints_from_utf8(word).size() > 0);
- vocab.token_to_id[word] = i;
- auto & token_data = vocab.id_to_token[i];
- token_data.text = std::move(word);
- token_data.score = scores ? scores[i] : 0.0f;
- token_data.type = toktypes ? (llama_token_type) toktypes[i] : LLAMA_TOKEN_TYPE_NORMAL;
- }
- GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
- // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
- if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
- vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
- } else {
- const std::vector<int> ids = llama_tokenize_internal(vocab, "\u010A", false);
- GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
- vocab.linefeed_id = ids[0];
- }
- // special tokens
- {
- const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
- { LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id },
- { LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id },
- { LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id },
- { LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id },
- { LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id },
- };
- for (const auto & it : special_token_types) {
- const std::string & key = kv(std::get<0>(it));
- int32_t & id = std::get<1>(it);
- uint32_t new_id;
- if (!ml.get_key(std::get<0>(it), new_id, false)) {
- continue;
- }
- if (new_id >= vocab.id_to_token.size()) {
- LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n",
- __func__, key.c_str(), new_id, id);
- } else {
- id = new_id;
- }
- }
- // Handle add_bos_token and add_eos_token
- {
- bool temp = true;
- if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
- vocab.special_add_bos = int(temp);
- }
- if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
- vocab.special_add_eos = int(temp);
- }
- }
- }
- // build special tokens cache
- {
- // TODO: It is unclear (to me) at this point, whether special tokes are guaranteed to be of a deterministic type,
- // and will always be correctly labeled in 'added_tokens.json' etc.
- // The assumption is, since special tokens aren't meant to be exposed to end user, they are designed
- // to be unmatchable by the tokenizer, therefore tokens from the vocab, which are unmatchable by the tokenizer
- // are special tokens.
- // From testing, this appears to correlate 1:1 with special tokens.
- //
- // Counting special tokens and verifying in only one direction
- // is sufficient to detect difference in those two sets.
- //
- uint32_t special_tokens_count_by_type = 0;
- uint32_t special_tokens_count_from_verification = 0;
- bool special_tokens_definition_mismatch = false;
- for (const auto & t : vocab.token_to_id) {
- const auto & token = t.first;
- const auto & id = t.second;
- // Count all non-normal tokens in the vocab while iterating
- if (vocab.id_to_token[id].type != LLAMA_TOKEN_TYPE_NORMAL) {
- special_tokens_count_by_type++;
- }
- // Skip single character tokens
- if (token.length() > 1) {
- bool is_tokenizable = false;
- // Split token string representation in two, in all possible ways
- // and check if both halves can be matched to a valid token
- for (unsigned i = 1; i < token.length();) {
- const auto left = token.substr(0, i);
- const auto right = token.substr(i);
- // check if we didnt partition in the middle of a utf sequence
- auto utf = utf8_len(left.at(left.length() - 1));
- if (utf == 1) {
- if (vocab.token_to_id.find(left) != vocab.token_to_id.end() &&
- vocab.token_to_id.find(right) != vocab.token_to_id.end() ) {
- is_tokenizable = true;
- break;
- }
- i++;
- } else {
- // skip over the rest of multibyte utf sequence
- i += utf - 1;
- }
- }
- if (!is_tokenizable) {
- // Some tokens are multibyte, but they are utf sequences with equivalent text length of 1
- // it's faster to re-filter them here, since there are way less candidates now
- // Calculate a total "utf" length of a token string representation
- size_t utf8_str_len = 0;
- for (unsigned i = 0; i < token.length();) {
- utf8_str_len++;
- i += utf8_len(token.at(i));
- }
- // And skip the ones which are one character
- if (utf8_str_len > 1) {
- // At this point what we have left are special tokens only
- vocab.special_tokens_cache[token] = id;
- // Count manually found special tokens
- special_tokens_count_from_verification++;
- // If this manually found special token is not marked as such, flag a mismatch
- if (vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL) {
- special_tokens_definition_mismatch = true;
- }
- }
- }
- }
- }
- if (special_tokens_definition_mismatch || special_tokens_count_from_verification != special_tokens_count_by_type) {
- LLAMA_LOG_WARN("%s: mismatch in special tokens definition ( %u/%zu vs %u/%zu ).\n",
- __func__,
- special_tokens_count_from_verification, vocab.id_to_token.size(),
- special_tokens_count_by_type, vocab.id_to_token.size()
- );
- } else {
- LLAMA_LOG_INFO("%s: special tokens definition check successful ( %u/%zu ).\n",
- __func__,
- special_tokens_count_from_verification, vocab.id_to_token.size()
- );
- }
- }
- }
- static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
- const auto & hparams = model.hparams;
- const auto & vocab = model.vocab;
- const auto rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
- // hparams
- LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
- LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch).c_str());
- LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, vocab.type == LLAMA_VOCAB_TYPE_SPM ? "SPM" : "BPE"); // TODO: fix
- LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
- LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
- LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
- LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
- LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
- LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
- LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
- LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
- LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
- LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
- LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
- LLAMA_LOG_INFO("%s: n_embd_k_gqa = %u\n", __func__, hparams.n_embd_k_gqa());
- LLAMA_LOG_INFO("%s: n_embd_v_gqa = %u\n", __func__, hparams.n_embd_v_gqa());
- LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
- LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
- LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
- LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
- LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
- LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
- LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
- LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type.c_str());
- LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
- LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
- LLAMA_LOG_INFO("%s: n_yarn_orig_ctx = %u\n", __func__, hparams.n_yarn_orig_ctx);
- LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
- LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
- LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
- if (ml.n_elements >= 1e12) {
- LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, ml.n_elements*1e-12);
- } else if (ml.n_elements >= 1e9) {
- LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
- } else if (ml.n_elements >= 1e6) {
- LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, ml.n_elements*1e-6);
- } else {
- LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, ml.n_elements*1e-3);
- }
- if (ml.n_bytes < GiB) {
- LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
- } else {
- LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
- }
- // general kv
- LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
- // special tokens
- if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
- if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
- if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
- if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
- if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
- if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
- }
- // Returns false if cancelled by progress_callback
- static bool llm_load_tensors(
- llama_model_loader & ml,
- llama_model & model,
- int n_gpu_layers,
- enum llama_split_mode split_mode,
- int main_gpu,
- const float * tensor_split,
- bool use_mlock,
- llama_progress_callback progress_callback,
- void * progress_callback_user_data) {
- model.t_start_us = ggml_time_us();
- auto & hparams = model.hparams;
- model.split_mode = split_mode;
- model.main_gpu = main_gpu;
- model.n_gpu_layers = n_gpu_layers;
- const int64_t n_layer = hparams.n_layer;
- const int64_t i_gpu_start = std::max((int64_t) hparams.n_layer - n_gpu_layers, (int64_t) 0);
- // there is very little benefit to offloading the input layer, so always keep it on the CPU
- model.buft_input = llama_default_buffer_type_cpu(true);
- model.buft_layer.resize(n_layer);
- // assign cpu layers
- for (int64_t i = 0; i < i_gpu_start; ++i) {
- model.buft_layer[i] = llama_default_buffer_type_cpu(true);
- }
- #ifdef GGML_USE_CUBLAS
- if (split_mode == LLAMA_SPLIT_LAYER) {
- // calculate the split points
- int device_count = ggml_backend_cuda_get_device_count();
- bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
- float splits[GGML_CUDA_MAX_DEVICES];
- if (all_zero) {
- // default split, by free memory
- for (int i = 0; i < device_count; ++i) {
- size_t total;
- size_t free;
- ggml_backend_cuda_get_device_memory(i, &total, &free);
- splits[i] = free;
- }
- } else {
- std::copy(tensor_split, tensor_split + device_count, splits);
- }
- // sum and normalize the splits to get the split points
- float split_sum = 0.0f;
- for (int i = 0; i < device_count; ++i) {
- split_sum += splits[i];
- splits[i] = split_sum;
- }
- for (int i = 0; i < device_count; ++i) {
- splits[i] /= split_sum;
- }
- // assign the repeating layers to the devices according to the splits
- int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1);
- for (int64_t i = i_gpu_start; i < n_layer; ++i) {
- int layer_gpu = std::upper_bound(splits, splits + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits;
- model.buft_layer[i] = llama_default_buffer_type_offload(layer_gpu);
- }
- // assign the output layer
- if (n_gpu_layers > n_layer) {
- int layer_gpu = std::upper_bound(splits, splits + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits;
- model.buft_output = llama_default_buffer_type_offload(layer_gpu);
- } else {
- model.buft_output = llama_default_buffer_type_cpu(true);
- }
- } else
- #endif
- {
- ggml_backend_buffer_type_t split_buft;
- if (split_mode == LLAMA_SPLIT_ROW) {
- split_buft = llama_default_buffer_type_split(main_gpu, tensor_split);
- } else {
- // LLAMA_SPLIT_NONE or LLAMA_SPLIT_LAYER in backends where it is not supported
- split_buft = llama_default_buffer_type_offload(main_gpu);
- }
- // assign the repeating layers
- for (int64_t i = i_gpu_start; i < n_layer; ++i) {
- model.buft_layer[i] = {
- split_buft,
- llama_default_buffer_type_offload(main_gpu)
- };
- }
- // assign the output layer
- if (n_gpu_layers > n_layer) {
- model.buft_output = {
- split_buft,
- llama_default_buffer_type_offload(main_gpu)
- };
- } else {
- model.buft_output = llama_default_buffer_type_cpu(true);
- }
- }
- // count used buffer types
- std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
- buft_layer_count[model.buft_input.buft]++;
- buft_layer_count[model.buft_input.buft_matrix]++;
- buft_layer_count[model.buft_output.buft]++;
- buft_layer_count[model.buft_output.buft_matrix]++;
- for (int64_t i = 0; i < n_layer; ++i) {
- buft_layer_count[model.buft_layer[i].buft]++;
- buft_layer_count[model.buft_layer[i].buft_matrix]++;
- }
- // create one context per buffer type
- size_t ctx_size = ggml_tensor_overhead()*ml.n_tensors;
- std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
- for (auto & it : buft_layer_count) {
- struct ggml_init_params params = {
- /*.mem_size =*/ ctx_size,
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ true,
- };
- ggml_context * ctx = ggml_init(params);
- if (!ctx) {
- throw std::runtime_error(format("failed to create context"));
- }
- ctx_map[it.first] = ctx;
- model.ctxs.push_back(ctx);
- }
- LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0);
- // create tensors for the weights
- {
- const int64_t n_embd = hparams.n_embd;
- const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
- const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
- const int64_t n_embd_gqa = n_embd_v_gqa;
- const int64_t n_vocab = hparams.n_vocab;
- const int64_t n_ff = hparams.n_ff;
- GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
- ggml_context * ctx_input = ctx_map.at(model.buft_input.buft);
- ggml_context * ctx_output = ctx_map.at(model.buft_output.buft);
- ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix);
- auto ctx_for_layer = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); };
- auto ctx_for_layer_split = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); };
- model.layers.resize(n_layer);
- const auto tn = LLM_TN(model.arch);
- switch (model.arch) {
- case LLM_ARCH_LLAMA:
- case LLM_ARCH_REFACT:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- // output
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
- layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
- layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- // optional bias tensors
- layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false);
- layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false);
- layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false);
- layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false);
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd}, false);
- if (layer.ffn_gate_inp == nullptr) {
- GGML_ASSERT(hparams.n_expert == 0);
- GGML_ASSERT(hparams.n_expert_used == 0);
- layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- } else {
- GGML_ASSERT(hparams.n_expert > 0);
- GGML_ASSERT(hparams.n_expert_used > 0);
- // MoE branch
- for (uint32_t x = 0; x < hparams.n_expert; ++x) {
- layer.ffn_gate_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), {n_embd, n_ff});
- layer.ffn_down_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd});
- layer.ffn_up_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), {n_embd, n_ff});
- }
- }
- }
- } break;
- case LLM_ARCH_BAICHUAN:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
- layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
- layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- }
- } break;
- case LLM_ARCH_FALCON:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- // output
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
- if (gguf_find_tensor(ml.ctx_gguf, tn(LLM_TENSOR_OUTPUT, "weight").c_str()) >= 0) {
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- } else {
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
- ml.n_created--; // artificial tensor
- }
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
- if (gguf_find_tensor(ml.ctx_gguf, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i).c_str()) >= 0) {
- layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd});
- layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd});
- }
- layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- }
- } break;
- case LLM_ARCH_STARCODER:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
- // output
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
- layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
- layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
- layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
- }
- } break;
- case LLM_ARCH_PERSIMMON:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
- layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
- layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
- layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
- layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {64});
- layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {64});
- layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {64});
- layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {64});
- }
- } break;
- case LLM_ARCH_BLOOM:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- model.tok_norm = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
- model.tok_norm_b = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
- // output
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
- layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
- layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
- layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
- }
- } break;
- case LLM_ARCH_MPT:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- // output
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- // AWQ ScaleActivation layer
- layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, false);
- }
- } break;
- case LLM_ARCH_STABLELM:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- // output
- {
- model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
- layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
- layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
- layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- // optional bias tensors, present in Stable LM 2 1.6B
- layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false);
- layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false);
- layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false);
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
- layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- }
- } break;
- case LLM_ARCH_QWEN:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- // output
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3});
- layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2});
- }
- } break;
- case LLM_ARCH_QWEN2:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- // output
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
- layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
- layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- // optional bias tensors
- layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
- layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
- layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- }
- } break;
- case LLM_ARCH_PHI2:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- // output
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- model.output_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab});
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
- layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, false);
- layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false);
- if (layer.wqkv == nullptr) {
- layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
- layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
- layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
- layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
- layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
- layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
- }
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
- layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
- }
- } break;
- case LLM_ARCH_PLAMO:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- // output
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
- layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
- layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- }
- } break;
- case LLM_ARCH_GPT2:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
- // output
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
- layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
- layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
- layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
- }
- } break;
- case LLM_ARCH_CODESHELL:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- // output
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
- layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
- layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
- layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
- }
- } break;
- case LLM_ARCH_ORION:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
- layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
- layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
- layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
- layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- }
- } break;
- default:
- throw std::runtime_error("unknown architecture");
- }
- }
- ml.done_getting_tensors();
- ml.init_mapping(true, use_mlock ? &model.mlock_mmap : nullptr);
- // create the backend buffers
- std::vector<std::pair<ggml_context *, ggml_backend_buffer_t>> ctx_bufs;
- for (auto & it : ctx_map) {
- ggml_backend_buffer_type_t buft = it.first;
- ggml_context * ctx = it.second;
- ggml_backend_buffer_t buf = nullptr;
- // only the mmap region containing the tensors in the model is mapped to the backend buffer
- // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
- // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
- if (ml.use_mmap && buft == llama_default_buffer_type_cpu(true)) {
- size_t first, last;
- ml.get_mapping_range(&first, &last, ctx);
- buf = ggml_backend_cpu_buffer_from_ptr((char *) ml.mapping->addr + first, last - first);
- }
- #ifdef GGML_USE_METAL
- else if (ml.use_mmap && buft == ggml_backend_metal_buffer_type()) {
- const size_t max_size = ggml_get_max_tensor_size(ctx);
- size_t first, last;
- ml.get_mapping_range(&first, &last, ctx);
- buf = ggml_backend_metal_buffer_from_ptr((char *) ml.mapping->addr + first, last - first, max_size);
- }
- #endif
- else {
- buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
- if (buf != nullptr && use_mlock && ggml_backend_buffer_is_host(buf)) {
- model.mlock_bufs.emplace_back(new llama_mlock);
- auto & mlock_buf = model.mlock_bufs.back();
- mlock_buf->init (ggml_backend_buffer_get_base(buf));
- mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
- }
- }
- if (buf == nullptr) {
- throw std::runtime_error("failed to allocate buffer");
- }
- // indicate that this buffer contains weights
- // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
- ggml_backend_buffer_set_usage(buf, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
- model.bufs.push_back(buf);
- ctx_bufs.emplace_back(ctx, buf);
- }
- // print memory requirements
- {
- const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
- LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
- if (n_gpu_layers > (int) hparams.n_layer) {
- LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
- }
- const int max_backend_supported_layers = hparams.n_layer + 1;
- const int max_offloadable_layers = hparams.n_layer + 1;
- LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
- for (ggml_backend_buffer_t buf : model.bufs) {
- LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
- }
- }
- // populate tensors_by_name
- for (ggml_context * ctx : model.ctxs) {
- for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
- model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
- }
- }
- // load tensor data
- for (auto & it : ctx_bufs) {
- ggml_context * ctx = it.first;
- ggml_backend_buffer_t buf = it.second;
- if (!ml.load_all_data(ctx, progress_callback, progress_callback_user_data, buf, use_mlock ? &model.mlock_mmap : NULL)) {
- return false;
- }
- }
- model.mapping = std::move(ml.mapping);
- // loading time will be recalculate after the first eval, so
- // we take page faults deferred by mmap() into consideration
- model.t_load_us = ggml_time_us() - model.t_start_us;
- return true;
- }
- // Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
- static int llama_model_load(const std::string & fname, llama_model & model, const llama_model_params & params) {
- try {
- llama_model_loader ml(fname, params.use_mmap, params.kv_overrides);
- model.hparams.vocab_only = params.vocab_only;
- llm_load_arch (ml, model);
- llm_load_hparams(ml, model);
- llm_load_vocab (ml, model);
- llm_load_print_meta(ml, model);
- if (model.hparams.n_vocab != model.vocab.id_to_token.size()) {
- throw std::runtime_error("vocab size mismatch");
- }
- if (params.vocab_only) {
- LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
- return 0;
- }
- if (!llm_load_tensors(
- ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.use_mlock,
- params.progress_callback, params.progress_callback_user_data
- )) {
- return -2;
- }
- } catch (const std::exception & err) {
- LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
- return -1;
- }
- return 0;
- }
- //
- // llm_build
- //
- using llm_build_cb = std::function<void(struct ggml_tensor * cur, const char * name, int nl)>;
- enum llm_rope_type {
- LLM_ROPE,
- LLM_ROPE_NEOX,
- LLM_ROPE_GLM,
- };
- enum llm_ffn_op_type {
- LLM_FFN_SILU,
- LLM_FFN_GELU,
- LLM_FFN_RELU,
- LLM_FFN_RELU_SQR,
- };
- enum llm_ffn_gate_type {
- LLM_FFN_SEQ,
- LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
- };
- enum llm_norm_type {
- LLM_NORM,
- LLM_NORM_RMS,
- };
- static struct ggml_tensor * llm_build_inp_embd(
- struct ggml_context * ctx,
- const llama_hparams & hparams,
- const llama_batch & batch,
- struct ggml_tensor * tok_embd,
- struct ggml_tensor * inp_tokens,
- struct ggml_tensor * inp_embd,
- const llm_build_cb & cb) {
- const int64_t n_embd = hparams.n_embd;
- struct ggml_tensor * inpL;
- if (batch.token) {
- struct ggml_tensor * inp_tokens_v = ggml_view_1d(ctx, inp_tokens, batch.n_tokens, 0);
- cb(inp_tokens, "inp_tokens", -1);
- inpL = ggml_get_rows(ctx, tok_embd, inp_tokens_v);
- } else {
- #ifdef GGML_USE_MPI
- GGML_ASSERT(false && "not implemented");
- #endif
- inpL = ggml_view_2d(ctx, inp_embd, n_embd, batch.n_tokens, inp_embd->nb[1], 0);
- }
- return inpL;
- }
- // Persimmon: n_rot = n_embd_head_k/2
- // Other: n_rot = n_embd_head_k
- static void llm_build_k_shift(
- struct ggml_context * ctx,
- const llama_hparams & hparams,
- const llama_cparams & cparams,
- const llama_kv_cache & kv,
- struct ggml_cgraph * graph,
- struct ggml_tensor * K_shift,
- llm_rope_type type,
- int64_t n_ctx,
- float freq_base,
- float freq_scale,
- const llm_build_cb & cb) {
- const int64_t n_layer = hparams.n_layer;
- const int64_t n_head_kv = hparams.n_head_kv;
- const int64_t n_embd_head_k = hparams.n_embd_head_k;
- const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
- const int32_t n_rot = hparams.n_rot;
- const int32_t n_orig_ctx = cparams.n_yarn_orig_ctx;
- const float ext_factor = cparams.yarn_ext_factor;
- const float attn_factor = cparams.yarn_attn_factor;
- const float beta_fast = cparams.yarn_beta_fast;
- const float beta_slow = cparams.yarn_beta_slow;
- int rope_type = 0;
- switch (type) {
- case LLM_ROPE: rope_type = 0; break;
- case LLM_ROPE_NEOX: rope_type = 2; break;
- case LLM_ROPE_GLM: rope_type = 4; break;
- }
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * tmp =
- // we rotate only the first n_rot dimensions
- ggml_rope_custom_inplace(ctx,
- ggml_view_3d(ctx, kv.k_l[il],
- n_embd_head_k, n_head_kv, n_ctx,
- ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
- ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
- 0),
- K_shift, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow);
- cb(tmp, "K_shifted", il);
- ggml_build_forward_expand(graph, tmp);
- }
- }
- static void llm_build_kv_store(
- struct ggml_context * ctx,
- const llama_hparams & hparams,
- const llama_kv_cache & kv,
- struct ggml_cgraph * graph,
- struct ggml_tensor * k_cur,
- struct ggml_tensor * v_cur,
- int64_t n_ctx,
- int32_t n_tokens,
- int32_t kv_head,
- const llm_build_cb & cb,
- int64_t il) {
- const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
- const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
- // compute the transposed [n_tokens, n_embd] V matrix
- struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, n_embd_v_gqa, n_tokens));
- //struct ggml_tensor * v_cur_t = ggml_transpose(ctx, v_cur); // TODO: reshape above is likely not needed
- cb(v_cur_t, "v_cur_t", il);
- struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa,
- (ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head);
- cb(k_cache_view, "k_cache_view", il);
- struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa,
- ( n_ctx)*ggml_element_size(kv.v_l[il]),
- (kv_head)*ggml_element_size(kv.v_l[il]));
- cb(v_cache_view, "v_cache_view", il);
- // important: storing RoPE-ed version of K in the KV cache!
- ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));
- ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur_t, v_cache_view));
- }
- static struct ggml_tensor * llm_build_norm(
- struct ggml_context * ctx,
- struct ggml_tensor * cur,
- const llama_hparams & hparams,
- struct ggml_tensor * mw,
- struct ggml_tensor * mb,
- llm_norm_type type,
- const llm_build_cb & cb,
- int il) {
- switch (type) {
- case LLM_NORM: cur = ggml_norm (ctx, cur, hparams.f_norm_eps); break;
- case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hparams.f_norm_rms_eps); break;
- }
- if (mw || mb) {
- cb(cur, "norm", il);
- }
- if (mw) {
- cur = ggml_mul(ctx, cur, mw);
- if (mb) {
- cb(cur, "norm_w", il);
- }
- }
- if (mb) {
- cur = ggml_add(ctx, cur, mb);
- }
- return cur;
- }
- static struct ggml_tensor * llm_build_ffn(
- struct ggml_context * ctx,
- struct ggml_tensor * cur,
- struct ggml_tensor * up,
- struct ggml_tensor * up_b,
- struct ggml_tensor * gate,
- struct ggml_tensor * gate_b,
- struct ggml_tensor * down,
- struct ggml_tensor * down_b,
- struct ggml_tensor * act_scales,
- llm_ffn_op_type type_op,
- llm_ffn_gate_type type_gate,
- const llm_build_cb & cb,
- int il) {
- struct ggml_tensor * tmp = ggml_mul_mat(ctx, up, cur);
- cb(tmp, "ffn_up", il);
- if (up_b) {
- tmp = ggml_add(ctx, tmp, up_b);
- cb(tmp, "ffn_up_b", il);
- }
- if (gate) {
- switch (type_gate) {
- case LLM_FFN_SEQ:
- {
- cur = ggml_mul_mat(ctx, gate, tmp);
- cb(cur, "ffn_gate", il);
- } break;
- case LLM_FFN_PAR:
- {
- cur = ggml_mul_mat(ctx, gate, cur);
- cb(cur, "ffn_gate", il);
- } break;
- }
- if (gate_b) {
- cur = ggml_add(ctx, cur, gate_b);
- cb(cur, "ffn_gate_b", il);
- }
- } else {
- cur = tmp;
- }
- switch (type_op) {
- case LLM_FFN_SILU:
- {
- cur = ggml_silu(ctx, cur);
- cb(cur, "ffn_silu", il);
- } break;
- case LLM_FFN_GELU:
- {
- cur = ggml_gelu(ctx, cur);
- cb(cur, "ffn_gelu", il);
- if (act_scales != NULL) {
- cur = ggml_div(ctx, cur, act_scales);
- cb(cur, "ffn_act", il);
- }
- } break;
- case LLM_FFN_RELU:
- {
- cur = ggml_relu(ctx, cur);
- cb(cur, "ffn_relu", il);
- } break;
- case LLM_FFN_RELU_SQR:
- {
- cur = ggml_relu(ctx, cur);
- cb(cur, "ffn_relu", il);
- cur = ggml_sqr(ctx, cur);
- cb(cur, "ffn_sqr(relu)", il);
- } break;
- }
- if (type_gate == LLM_FFN_PAR) {
- cur = ggml_mul(ctx, cur, tmp);
- cb(cur, "ffn_gate_par", il);
- }
- cur = ggml_mul_mat(ctx, down, cur);
- if (down_b) {
- cb(cur, "ffn_down", il);
- }
- if (down_b) {
- cur = ggml_add(ctx, cur, down_b);
- }
- return cur;
- }
- // if max_alibi_bias > 0 then apply ALiBi
- static struct ggml_tensor * llm_build_kqv(
- struct ggml_context * ctx,
- const llama_model & model,
- const llama_hparams & hparams,
- const llama_kv_cache & kv,
- struct ggml_cgraph * graph,
- struct ggml_tensor * wo,
- struct ggml_tensor * wo_b,
- struct ggml_tensor * q_cur,
- struct ggml_tensor * kq_mask,
- int64_t n_ctx,
- int32_t n_tokens,
- int32_t n_kv,
- float max_alibi_bias,
- float kq_scale,
- const llm_build_cb & cb,
- int il) {
- const int64_t n_head = hparams.n_head;
- const int64_t n_head_kv = hparams.n_head_kv;
- const int64_t n_embd_head_k = hparams.n_embd_head_k;
- const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
- const int64_t n_embd_head_v = hparams.n_embd_head_v;
- struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
- cb(q, "q", il);
- struct ggml_tensor * k =
- ggml_view_3d(ctx, kv.k_l[il],
- n_embd_head_k, n_kv, n_head_kv,
- ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
- ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
- 0);
- cb(k, "k", il);
- struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
- cb(kq, "kq", il);
- if (model.arch == LLM_ARCH_PHI2) {
- // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
- // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
- ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
- }
- if (max_alibi_bias > 0.0f) {
- // temporary branch until we figure out how to handle ggml_alibi through ggml_add
- kq = ggml_scale(ctx, kq, kq_scale);
- cb(kq, "kq_scaled", il);
- if (max_alibi_bias > 0.0f) {
- // TODO: n_head or n_head_kv
- // TODO: K-shift is likely not working
- // TODO: change to ggml_add
- kq = ggml_alibi(ctx, kq, /*n_past*/ 0, n_head, max_alibi_bias);
- cb(kq, "kq_scaled_alibi", il);
- }
- kq = ggml_add(ctx, kq, kq_mask);
- cb(kq, "kq_masked", il);
- kq = ggml_soft_max(ctx, kq);
- cb(kq, "kq_soft_max", il);
- } else {
- kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale);
- cb(kq, "kq_soft_max_ext", il);
- }
- // split cached v into n_head heads
- struct ggml_tensor * v =
- ggml_view_3d(ctx, kv.v_l[il],
- n_kv, n_embd_head_v, n_head_kv,
- ggml_element_size(kv.v_l[il])*n_ctx,
- ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v,
- 0);
- cb(v, "v", il);
- struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
- cb(kqv, "kqv", il);
- struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
- cb(kqv_merged, "kqv_merged", il);
- struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_k*n_head, n_tokens);
- cb(cur, "kqv_merged_cont", il);
- ggml_build_forward_expand(graph, cur);
- cur = ggml_mul_mat(ctx, wo, cur);
- if (wo_b) {
- cb(cur, "kqv_wo", il);
- }
- if (wo_b) {
- cur = ggml_add(ctx, cur, wo_b);
- }
- return cur;
- }
- static struct ggml_tensor * llm_build_kv(
- struct ggml_context * ctx,
- const llama_model & model,
- const llama_hparams & hparams,
- const llama_kv_cache & kv,
- struct ggml_cgraph * graph,
- struct ggml_tensor * wo,
- struct ggml_tensor * wo_b,
- struct ggml_tensor * k_cur,
- struct ggml_tensor * v_cur,
- struct ggml_tensor * q_cur,
- struct ggml_tensor * kq_mask,
- int64_t n_ctx,
- int32_t n_tokens,
- int32_t kv_head,
- int32_t n_kv,
- float max_alibi_bias,
- float kq_scale,
- const llm_build_cb & cb,
- int il) {
- // these nodes are added to the graph together so that they are not reordered
- // by doing so, the number of splits in the graph is reduced
- ggml_build_forward_expand(graph, q_cur);
- ggml_build_forward_expand(graph, k_cur);
- ggml_build_forward_expand(graph, v_cur);
- llm_build_kv_store(ctx, hparams, kv, graph, k_cur, v_cur, n_ctx, n_tokens, kv_head, cb, il);
- struct ggml_tensor * cur;
- cur = llm_build_kqv(ctx, model, hparams, kv, graph,
- wo, wo_b,
- q_cur, kq_mask, n_ctx, n_tokens, n_kv, max_alibi_bias, kq_scale, cb, il);
- cb(cur, "kqv_out", il);
- return cur;
- }
- struct llm_build_context {
- const llama_model & model;
- const llama_context & lctx;
- const llama_hparams & hparams;
- const llama_cparams & cparams;
- const llama_batch & batch;
- const llama_kv_cache & kv_self;
- const int64_t n_embd;
- const int64_t n_layer;
- const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
- const int64_t n_head;
- const int64_t n_head_kv;
- const int64_t n_embd_head_k;
- const int64_t n_embd_k_gqa;
- const int64_t n_embd_head_v;
- const int64_t n_embd_v_gqa;
- const int64_t n_expert;
- const int64_t n_expert_used;
- const float freq_base;
- const float freq_scale;
- const float ext_factor;
- const float attn_factor;
- const float beta_fast;
- const float beta_slow;
- const float norm_eps;
- const float norm_rms_eps;
- const int32_t n_tokens;
- const int32_t n_kv; // size of KV cache to consider (n_kv <= n_ctx)
- const int32_t kv_head; // index of where we store new KV data in the cache
- const int32_t n_orig_ctx;
- const bool do_rope_shift;
- const llm_build_cb & cb;
- std::vector<uint8_t> & buf_compute_meta;
- struct ggml_context * ctx0 = nullptr;
- // TODO: consider making the entire interface noexcept
- llm_build_context(
- llama_context & lctx,
- const llama_batch & batch,
- const llm_build_cb & cb,
- bool worst_case) :
- model (lctx.model),
- lctx (lctx),
- hparams (model.hparams),
- cparams (lctx.cparams),
- batch (batch),
- kv_self (lctx.kv_self),
- n_embd (hparams.n_embd),
- n_layer (hparams.n_layer),
- n_ctx (cparams.n_ctx),
- n_head (hparams.n_head),
- n_head_kv (hparams.n_head_kv),
- n_embd_head_k (hparams.n_embd_head_k),
- n_embd_k_gqa (hparams.n_embd_k_gqa()),
- n_embd_head_v (hparams.n_embd_head_v),
- n_embd_v_gqa (hparams.n_embd_v_gqa()),
- n_expert (hparams.n_expert),
- n_expert_used (hparams.n_expert_used),
- freq_base (cparams.rope_freq_base),
- freq_scale (cparams.rope_freq_scale),
- ext_factor (cparams.yarn_ext_factor),
- attn_factor (cparams.yarn_attn_factor),
- beta_fast (cparams.yarn_beta_fast),
- beta_slow (cparams.yarn_beta_slow),
- norm_eps (hparams.f_norm_eps),
- norm_rms_eps (hparams.f_norm_rms_eps),
- n_tokens (batch.n_tokens),
- n_kv (worst_case ? n_ctx : kv_self.n),
- kv_head (worst_case ? n_ctx - n_tokens : kv_self.head),
- n_orig_ctx (cparams.n_yarn_orig_ctx),
- do_rope_shift (worst_case || kv_self.has_shift),
- cb (cb),
- buf_compute_meta (lctx.buf_compute_meta) {
- // all initializations should be done in init()
- }
- void init() {
- struct ggml_init_params params = {
- /*.mem_size =*/ buf_compute_meta.size(),
- /*.mem_buffer =*/ buf_compute_meta.data(),
- /*.no_alloc =*/ true,
- };
- ctx0 = ggml_init(params);
- }
- void free() {
- if (ctx0) {
- ggml_free(ctx0);
- ctx0 = nullptr;
- }
- }
- struct ggml_cgraph * build_orion() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
- cb(inpL, "inp_embd", -1);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
- cb(inp_pos, "inp_pos", -1);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
- cb(KQ_mask, "KQ_mask", -1);
- // shift the entire K-cache if needed
- if (do_rope_shift) {
- llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb);
- }
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- // norm
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm, model.layers[il].attn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // compute Q and K and RoPE them
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- // if (model.layers[il].bq) {
- // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- // cb(Qcur, "Qcur", il);
- // }
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- // if (model.layers[il].bk) {
- // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- // cb(Kcur, "Kcur", il);
- // }
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- // if (model.layers[il].bv) {
- // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- // cb(Vcur, "Vcur", il);
- // }
- Qcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
- hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- Kcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
- hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
- model.layers[il].wo, NULL,
- Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- cb(cur, "kqv_out", il);
- }
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, NULL,
- model.layers[il].ffn_gate, NULL,
- model.layers[il].ffn_down, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
- cb(cur, "ffn_out", il);
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm, model.output_norm_b,
- LLM_NORM, cb, -1);
- cb(cur, "result_norm", -1);
- // lm_head
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_llama() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
- cb(inpL, "inp_embd", -1);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
- cb(inp_pos, "inp_pos", -1);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
- cb(KQ_mask, "KQ_mask", -1);
- // shift the entire K-cache if needed
- if (do_rope_shift) {
- llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb);
- }
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- // norm
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // compute Q and K and RoPE them
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- }
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- }
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- }
- Qcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
- hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- Kcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
- hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
- model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- cb(cur, "kqv_out", il);
- }
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- if (model.layers[il].ffn_gate_inp == nullptr) {
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, NULL,
- model.layers[il].ffn_gate, NULL,
- model.layers[il].ffn_down, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
- cb(cur, "ffn_out", il);
- } else {
- // MoE branch
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "ffn_norm", il);
- ggml_tensor * logits = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp, cur); // [n_tokens, num_experts]
- cb(logits, "ffn_moe_logits", il);
- ggml_tensor * probs = ggml_soft_max(ctx0, logits); // [n_tokens, num_experts]
- cb(probs, "ffn_moe_probs", il);
- // select experts
- ggml_tensor * selected_experts = ggml_top_k(ctx0, probs, n_expert_used); // [n_tokens, num_experts_per_tok]
- cb(selected_experts->src[0], "ffn_moe_argsort", il);
- ggml_tensor * weights = ggml_get_rows(ctx0,
- ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens), selected_experts);
- cb(weights, "ffn_moe_weights", il);
- weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens); // [n_tokens, num_experts_per_tok]
- ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights);
- cb(weights_sum, "ffn_moe_weights_sum", il);
- weights = ggml_div(ctx0, weights, weights_sum); // [n_tokens, num_experts_per_tok]
- cb(weights, "ffn_moe_weights_norm", il);
- // compute expert outputs
- ggml_tensor * moe_out = nullptr;
- for (int i = 0; i < n_expert_used; ++i) {
- ggml_tensor * cur_expert;
- ggml_tensor * cur_up = ggml_mul_mat_id(ctx0, model.layers[il].ffn_up_exp, n_expert, selected_experts, i, cur);
- cb(cur_up, "ffn_moe_up", il);
- ggml_tensor * cur_gate = ggml_mul_mat_id(ctx0, model.layers[il].ffn_gate_exp, n_expert, selected_experts, i, cur);
- cb(cur_gate, "ffn_moe_gate", il);
- cur_gate = ggml_silu(ctx0, cur_gate);
- cb(cur_gate, "ffn_moe_silu", il);
- cur_expert = ggml_mul(ctx0, cur_up, cur_gate); // [n_tokens, n_embd]
- cb(cur_expert, "ffn_moe_gate_par", il);
- cur_expert = ggml_mul_mat_id(ctx0, model.layers[il].ffn_down_exp, n_expert, selected_experts, i, cur_expert); // [n_tokens, n_embd]
- cb(cur_expert, "ffn_moe_down", il);
- cur_expert = ggml_mul(ctx0, cur_expert,
- ggml_view_2d(ctx0, weights, 1, n_tokens, weights->nb[1], i*weights->nb[0]));
- cb(cur_expert, "ffn_moe_weighted", il);
- if (i == 0) {
- moe_out = cur_expert;
- } else {
- moe_out = ggml_add(ctx0, moe_out, cur_expert);
- cb(moe_out, "ffn_moe_out", il);
- }
- }
- cur = moe_out;
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm, NULL,
- LLM_NORM_RMS, cb, -1);
- cb(cur, "result_norm", -1);
- // lm_head
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_baichuan() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
- cb(inpL, "inp_embd", -1);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
- cb(inp_pos, "inp_pos", -1);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
- cb(KQ_mask, "KQ_mask", -1);
- // shift the entire K-cache if needed
- if (do_rope_shift) {
- llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb);
- }
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- switch (model.type) {
- case MODEL_7B:
- Qcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
- hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
- hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- break;
- case MODEL_13B:
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens);
- break;
- default:
- GGML_ASSERT(false);
- }
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- // apply ALiBi for 13B model
- const float max_alibi_bias = model.type == MODEL_13B ? 8.0f : -1.0f;
- cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
- model.layers[il].wo, NULL,
- Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, max_alibi_bias, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- cb(cur, "kqv_out", il);
- }
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- {
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, NULL,
- model.layers[il].ffn_gate, NULL,
- model.layers[il].ffn_down, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm, NULL,
- LLM_NORM_RMS, cb, -1);
- cb(cur, "result_norm", -1);
- // lm_head
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_falcon() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
- cb(inpL, "inp_embd", -1);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
- cb(inp_pos, "inp_pos", -1);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
- cb(KQ_mask, "KQ_mask", -1);
- // shift the entire K-cache if needed
- if (do_rope_shift) {
- llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE_NEOX, n_ctx, freq_base, freq_scale, cb);
- }
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * attn_norm;
- attn_norm = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm,
- model.layers[il].attn_norm_b,
- LLM_NORM, cb, il);
- cb(attn_norm, "attn_norm", il);
- // self-attention
- {
- if (model.layers[il].attn_norm_2) {
- // Falcon-40B
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm_2,
- model.layers[il].attn_norm_2_b,
- LLM_NORM, cb, il);
- cb(cur, "attn_norm_2", il);
- } else {
- cur = attn_norm;
- }
- cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
- struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
- struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- // using mode = 2 for neox mode
- Qcur = ggml_rope_custom(
- ctx0, Qcur, inp_pos, hparams.n_rot, 2, 0, n_orig_ctx,
- freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- Kcur = ggml_rope_custom(
- ctx0, Kcur, inp_pos, hparams.n_rot, 2, 0, n_orig_ctx,
- freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
- model.layers[il].wo, NULL,
- Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- cb(cur, "kqv_out", il);
- }
- struct ggml_tensor * ffn_inp = cur;
- // feed forward
- {
- cur = llm_build_ffn(ctx0, attn_norm, // !! use the attn norm, not the result
- model.layers[il].ffn_up, NULL,
- NULL, NULL,
- model.layers[il].ffn_down, NULL,
- NULL,
- LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "l_out", il);
- cur = ggml_add(ctx0, cur, inpL);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- // norm
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm,
- model.output_norm_b,
- LLM_NORM, cb, -1);
- cb(cur, "result_norm", -1);
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_starcoder() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- struct ggml_tensor * cur;
- struct ggml_tensor * pos;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
- cb(inpL, "inp_embd", -1);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
- cb(inp_pos, "inp_pos", -1);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
- cb(KQ_mask, "KQ_mask", -1);
- pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
- cb(pos, "pos_embd", -1);
- inpL = ggml_add(ctx0, inpL, pos);
- cb(inpL, "inpL", -1);
- for (int il = 0; il < n_layer; ++il) {
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm,
- model.layers[il].attn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
- cb(cur, "bqkv", il);
- struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
- struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
- struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
- model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- cb(cur, "kqv_out", il);
- }
- // add the input
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
- cb(ffn_inp, "ffn_inp", il);
- // FF
- {
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm,
- model.layers[il].ffn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b,
- NULL, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b,
- NULL,
- LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
- cb(cur, "ffn_out", il);
- }
- inpL = ggml_add(ctx0, cur, ffn_inp);
- cb(inpL, "l_out", il);
- }
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.output_norm,
- model.output_norm_b,
- LLM_NORM, cb, -1);
- cb(cur, "result_norm", -1);
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_persimmon() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head/2 == hparams.n_rot);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
- cb(inpL, "inp_embd", -1);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
- cb(inp_pos, "inp_pos", -1);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
- cb(KQ_mask, "KQ_mask", -1);
- if (do_rope_shift) {
- llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE_NEOX, n_ctx, freq_base, freq_scale, cb);
- }
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * residual = inpL;
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm,
- model.layers[il].attn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "attn_norm", il);
- // self attention
- {
- cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
- cb(cur, "bqkv", il);
- // split qkv
- GGML_ASSERT(n_head_kv == n_head);
- struct ggml_tensor * tmpqkv = ggml_reshape_4d(ctx0, cur, n_embd_head, 3, n_head, n_tokens);
- cb(tmpqkv, "tmpqkv", il);
- struct ggml_tensor * tmpqkv_perm = ggml_cont(ctx0, ggml_permute(ctx0, tmpqkv, 0, 3, 1, 2));
- cb(tmpqkv_perm, "tmpqkv", il);
- struct ggml_tensor * tmpq = ggml_view_3d(
- ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
- ggml_element_size(tmpqkv_perm) * n_embd_head,
- ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
- 0
- );
- cb(tmpq, "tmpq", il);
- struct ggml_tensor * tmpk = ggml_view_3d(
- ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
- ggml_element_size(tmpqkv_perm) * n_embd_head,
- ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
- ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens
- );
- cb(tmpk, "tmpk", il);
- // Q/K Layernorm
- tmpq = llm_build_norm(ctx0, tmpq, hparams,
- model.layers[il].attn_q_norm,
- model.layers[il].attn_q_norm_b,
- LLM_NORM, cb, il);
- cb(tmpq, "tmpq", il);
- tmpk = llm_build_norm(ctx0, tmpk, hparams,
- model.layers[il].attn_k_norm,
- model.layers[il].attn_k_norm_b,
- LLM_NORM, cb, il);
- cb(tmpk, "tmpk", il);
- // RoPE the first n_rot of q/k, pass the other half, and concat.
- struct ggml_tensor * qrot = ggml_view_3d(
- ctx0, tmpq, hparams.n_rot, n_head, n_tokens,
- ggml_element_size(tmpq) * n_embd_head,
- ggml_element_size(tmpq) * n_embd_head * n_head,
- 0
- );
- cb(qrot, "qrot", il);
- struct ggml_tensor * krot = ggml_view_3d(
- ctx0, tmpk, hparams.n_rot, n_head, n_tokens,
- ggml_element_size(tmpk) * n_embd_head,
- ggml_element_size(tmpk) * n_embd_head * n_head,
- 0
- );
- cb(krot, "krot", il);
- // get the second half of tmpq, e.g tmpq[n_rot:, :, :]
- struct ggml_tensor * qpass = ggml_view_3d(
- ctx0, tmpq, hparams.n_rot, n_head, n_tokens,
- ggml_element_size(tmpq) * n_embd_head,
- ggml_element_size(tmpq) * n_embd_head * n_head,
- ggml_element_size(tmpq) * hparams.n_rot
- );
- cb(qpass, "qpass", il);
- struct ggml_tensor * kpass = ggml_view_3d(
- ctx0, tmpk, hparams.n_rot, n_head, n_tokens,
- ggml_element_size(tmpk) * n_embd_head,
- ggml_element_size(tmpk) * n_embd_head * n_head,
- ggml_element_size(tmpk) * hparams.n_rot
- );
- cb(kpass, "kpass", il);
- struct ggml_tensor * qrotated = ggml_rope_custom(
- ctx0, qrot, inp_pos, hparams.n_rot, 2, 0, n_orig_ctx,
- freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(qrotated, "qrotated", il);
- struct ggml_tensor * krotated = ggml_rope_custom(
- ctx0, krot, inp_pos, hparams.n_rot, 2, 0, n_orig_ctx,
- freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(krotated, "krotated", il);
- // ggml currently only supports concatenation on dim=2
- // so we need to permute qrot, qpass, concat, then permute back.
- qrotated = ggml_cont(ctx0, ggml_permute(ctx0, qrotated, 2, 1, 0, 3));
- cb(qrotated, "qrotated", il);
- krotated = ggml_cont(ctx0, ggml_permute(ctx0, krotated, 2, 1, 0, 3));
- cb(krotated, "krotated", il);
- qpass = ggml_cont(ctx0, ggml_permute(ctx0, qpass, 2, 1, 0, 3));
- cb(qpass, "qpass", il);
- kpass = ggml_cont(ctx0, ggml_permute(ctx0, kpass, 2, 1, 0, 3));
- cb(kpass, "kpass", il);
- struct ggml_tensor * Qcur = ggml_concat(ctx0, qrotated, qpass);
- cb(Qcur, "Qcur", il);
- struct ggml_tensor * Kcur = ggml_concat(ctx0, krotated, kpass);
- cb(Kcur, "Kcur", il);
- struct ggml_tensor * Q = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 2, 1, 0, 3));
- cb(Q, "Q", il);
- Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 2, 1, 0, 3));
- cb(Kcur, "Kcur", il);
- struct ggml_tensor * Vcur = ggml_view_3d(
- ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
- ggml_element_size(tmpqkv_perm) * n_embd_head,
- ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
- ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens * 2
- );
- cb(Vcur, "Vcur", il);
- cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
- model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Q, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- cb(cur, "kqv_out", il);
- }
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- {
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm,
- model.layers[il].ffn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b,
- NULL, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b,
- NULL,
- LLM_FFN_RELU_SQR, LLM_FFN_SEQ, cb, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "l_out", il);
- inpL = cur;
- }
- cur = inpL;
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm,
- model.output_norm_b,
- LLM_NORM, cb, -1);
- cb(cur, "result_norm", -1);
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_refact() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
- cb(inpL, "inp_embd", -1);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
- cb(KQ_mask, "KQ_mask", -1);
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- cb(Kcur, "Kcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- cb(Qcur, "Qcur", il);
- cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
- model.layers[il].wo, NULL,
- Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, 8.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- cb(cur, "kqv_out", il);
- }
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- {
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, NULL,
- model.layers[il].ffn_gate, NULL,
- model.layers[il].ffn_down, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm, NULL,
- LLM_NORM_RMS, cb, -1);
- cb(cur, "result_norm", -1);
- // lm_head
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_bloom() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
- cb(inpL, "inp_embd", -1);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
- cb(KQ_mask, "KQ_mask", -1);
- inpL = llm_build_norm(ctx0, inpL, hparams,
- model.tok_norm,
- model.tok_norm_b,
- LLM_NORM, cb, -1);
- cb(inpL, "inp_norm", -1);
- for (int il = 0; il < n_layer; ++il) {
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm,
- model.layers[il].attn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
- cb(cur, "bqkv", il);
- struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
- struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
- struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
- model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, 8.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- cb(cur, "kqv_out", il);
- }
- // Add the input
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
- cb(ffn_inp, "ffn_inp", il);
- // FF
- {
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm,
- model.layers[il].ffn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b,
- NULL, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b,
- NULL,
- LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
- cb(cur, "ffn_out", il);
- }
- inpL = ggml_add(ctx0, cur, ffn_inp);
- cb(inpL, "l_out", il);
- }
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.output_norm,
- model.output_norm_b,
- LLM_NORM, cb, -1);
- cb(cur, "result_norm", -1);
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_mpt() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
- cb(inpL, "inp_embd", -1);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
- cb(KQ_mask, "KQ_mask", -1);
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * attn_norm;
- attn_norm = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm,
- NULL,
- LLM_NORM, cb, il);
- cb(attn_norm, "attn_norm", il);
- // self-attention
- {
- cur = attn_norm;
- cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- if (hparams.f_clamp_kqv > 0.0f) {
- cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
- cb(cur, "wqkv_clamped", il);
- }
- struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
- struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
- struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
- model.layers[il].wo, NULL,
- Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, hparams.f_max_alibi_bias, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- cb(cur, "kqv_out", il);
- }
- // Add the input
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
- cb(ffn_inp, "ffn_inp", il);
- // feed forward
- {
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm,
- NULL,
- LLM_NORM, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, NULL,
- NULL, NULL,
- model.layers[il].ffn_down, NULL,
- model.layers[il].ffn_act,
- LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm,
- NULL,
- LLM_NORM, cb, -1);
- cb(cur, "result_norm", -1);
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_stablelm() {
- struct ggml_cgraph * gf = ggml_new_graph(ctx0);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
- cb(inpL, "inp_embd", -1);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
- cb(inp_pos, "inp_pos", -1);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
- cb(KQ_mask, "KQ_mask", -1);
- // shift the entire K-cache if needed
- if (do_rope_shift) {
- llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE_NEOX, n_ctx, freq_base, freq_scale, cb);
- }
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- // norm
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm,
- model.layers[il].attn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // compute Q and K and RoPE them
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- }
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- }
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- }
- Qcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
- hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- Kcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
- hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
- model.layers[il].wo, NULL,
- Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- cb(cur, "kqv_out", il);
- }
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- {
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm,
- model.layers[il].ffn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, NULL,
- model.layers[il].ffn_gate, NULL,
- model.layers[il].ffn_down, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm,
- model.output_norm_b,
- LLM_NORM, cb, -1);
- cb(cur, "result_norm", -1);
- // lm_head
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_qwen() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
- cb(inpL, "inp_embd", -1);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
- cb(inp_pos, "inp_pos", -1);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
- cb(KQ_mask, "KQ_mask", -1);
- // shift the entire K-cache if needed
- if (do_rope_shift) {
- llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE_NEOX, n_ctx, freq_base, freq_scale, cb);
- }
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
- cb(cur, "bqkv", il);
- struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
- struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
- struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- // using mode = 2 for neox mode
- Qcur = ggml_rope_custom(
- ctx0, Qcur, inp_pos, hparams.n_rot, 2, 0, n_orig_ctx,
- freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- Kcur = ggml_rope_custom(
- ctx0, Kcur, inp_pos, hparams.n_rot, 2, 0, n_orig_ctx,
- freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
- model.layers[il].wo, NULL,
- Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- cb(cur, "kqv_out", il);
- }
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward forward
- {
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, NULL,
- model.layers[il].ffn_gate, NULL,
- model.layers[il].ffn_down, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm, NULL,
- LLM_NORM_RMS, cb, -1);
- cb(cur, "result_norm", -1);
- // lm_head
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_qwen2() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
- cb(inpL, "inp_embd", -1);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
- cb(inp_pos, "inp_pos", -1);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
- cb(KQ_mask, "KQ_mask", -1);
- // shift the entire K-cache if needed
- if (do_rope_shift) {
- llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE_NEOX, n_ctx, freq_base, freq_scale, cb);
- }
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- // norm
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // compute Q and K and RoPE them
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- // these nodes are added to the graph together so that they are not reordered
- // by doing so, the number of splits in the graph is reduced
- ggml_build_forward_expand(gf, Qcur);
- ggml_build_forward_expand(gf, Kcur);
- ggml_build_forward_expand(gf, Vcur);
- Qcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
- hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- Kcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
- hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
- model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- cb(cur, "kqv_out", il);
- }
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, NULL,
- model.layers[il].ffn_gate, NULL,
- model.layers[il].ffn_down, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
- cb(cur, "ffn_out", il);
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm, NULL,
- LLM_NORM_RMS, cb, -1);
- cb(cur, "result_norm", -1);
- // lm_head
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_phi2() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- struct ggml_tensor * cur;
- struct ggml_tensor * attn_norm_output;
- struct ggml_tensor * ffn_output;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
- cb(inpL, "inp_embd", -1);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
- cb(inp_pos, "inp_pos", -1);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
- cb(KQ_mask, "KQ_mask", -1);
- // shift the entire K-cache if needed
- if (do_rope_shift) {
- llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE_NEOX, n_ctx, freq_base, freq_scale, cb);
- }
- for (int il = 0; il < n_layer; ++il) {
- attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm,
- model.layers[il].attn_norm_b,
- LLM_NORM, cb, il);
- cb(attn_norm_output, "attn_norm", il);
- // self-attention
- {
- struct ggml_tensor * Qcur = nullptr;
- struct ggml_tensor * Kcur = nullptr;
- struct ggml_tensor * Vcur = nullptr;
- if (model.layers[il].wqkv) {
- cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
- cb(cur, "wqkv", il);
- cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
- cb(cur, "bqkv", il);
- Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
- Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
- Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
- } else {
- Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
- Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
- Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
- }
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = ggml_rope_custom(
- ctx0, Qcur, inp_pos, hparams.n_rot, 2, 0, n_orig_ctx,
- freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- // with phi2, we scale the Q to avoid precision issues
- // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
- Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
- cb(Qcur, "Qcur", il);
- Kcur = ggml_rope_custom(
- ctx0, Kcur, inp_pos, hparams.n_rot, 2, 0, n_orig_ctx,
- freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
- model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f, cb, il);
- cb(cur, "kqv_out", il);
- }
- // FF
- {
- ffn_output = llm_build_ffn(ctx0, attn_norm_output,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b,
- NULL, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b,
- NULL,
- LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
- cb(ffn_output, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_output);
- cb(cur, "l_out", il);
- cur = ggml_add(ctx0, cur, inpL);
- cb(cur, "l_out", il);
- inpL = cur;
- }
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.output_norm,
- model.output_norm_b,
- LLM_NORM, cb, -1);
- cb(cur, "result_norm", -1);
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output_no_bias", -1);
- cur = ggml_add(ctx0, cur, model.output_b);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_plamo() {
- struct ggml_cgraph * gf = ggml_new_graph(ctx0);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
- cb(inpL, "inp_embd", -1);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
- cb(inp_pos, "inp_pos", -1);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
- cb(KQ_mask, "KQ_mask", -1);
- // shift the entire K-cache if needed
- if (do_rope_shift) {
- llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb);
- }
- for (int il = 0; il < n_layer; ++il) {
- // norm
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "attn_norm", il);
- struct ggml_tensor * attention_norm = cur;
- // self-attention
- {
- // compute Q and K and RoPE them
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Qcur, hparams.n_rot, n_head, n_tokens), inp_pos,
- n_embd_head, 2, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow);
- cb(Qcur, "Qcur", il);
- Kcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Kcur, hparams.n_rot, n_head_kv, n_tokens), inp_pos,
- n_embd_head, 2, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow);
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
- model.layers[il].wo, NULL,
- Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- cb(cur, "kqv_out", il);
- }
- struct ggml_tensor * sa_out = cur;
- cur = attention_norm;
- // feed-forward network
- {
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, NULL,
- model.layers[il].ffn_gate, NULL,
- model.layers[il].ffn_down, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, sa_out);
- cb(cur, "l_out", il);
- cur = ggml_add(ctx0, cur, inpL);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm, NULL,
- LLM_NORM_RMS, cb, -1);
- cb(cur, "result_norm", -1);
- // lm_head
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_gpt2() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- struct ggml_tensor * cur;
- struct ggml_tensor * pos;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
- cb(inpL, "inp_embd", -1);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
- cb(inp_pos, "inp_pos", -1);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
- cb(KQ_mask, "KQ_mask", -1);
- pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
- cb(pos, "pos_embd", -1);
- inpL = ggml_add(ctx0, inpL, pos);
- cb(inpL, "inpL", -1);
- for (int il = 0; il < n_layer; ++il) {
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm,
- model.layers[il].attn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
- cb(cur, "bqkv", il);
- struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
- struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
- struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
- model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- cb(cur, "kqv_out", il);
- }
- // add the input
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
- cb(ffn_inp, "ffn_inp", il);
- // FF
- {
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm,
- model.layers[il].ffn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b,
- NULL, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b,
- NULL,
- LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
- cb(cur, "ffn_out", il);
- }
- inpL = ggml_add(ctx0, cur, ffn_inp);
- cb(inpL, "l_out", il);
- }
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.output_norm,
- model.output_norm_b,
- LLM_NORM, cb, -1);
- cb(cur, "result_norm", -1);
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_codeshell() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
- cb(inpL, "inp_embd", -1);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
- cb(inp_pos, "inp_pos", -1);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
- cb(KQ_mask, "KQ_mask", -1);
- // shift the entire K-cache if needed
- if (do_rope_shift) {
- llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb);
- }
- for (int il = 0; il < n_layer; ++il) {
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm,
- model.layers[il].attn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
- cb(cur, "bqkv", il);
- struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
- struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
- struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
- cb(tmpq, "tmpq", il);
- cb(tmpk, "tmpk", il);
- cb(Vcur, "Vcur", il);
- struct ggml_tensor * Qcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos,
- hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- struct ggml_tensor * Kcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos,
- hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
- model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- cb(cur, "kqv_out", il);
- }
- // add the input
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
- cb(ffn_inp, "ffn_inp", il);
- // FF
- {
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm,
- model.layers[il].ffn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b,
- NULL, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b,
- NULL,
- LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
- cb(cur, "ffn_out", il);
- }
- inpL = ggml_add(ctx0, cur, ffn_inp);
- cb(inpL, "l_out", il);
- }
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.output_norm,
- model.output_norm_b,
- LLM_NORM, cb, -1);
- cb(cur, "result_norm", -1);
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- };
- static struct ggml_cgraph * llama_build_graph(
- llama_context & lctx,
- const llama_batch & batch) {
- const auto & model = lctx.model;
- // check if we should build the worst-case graph (for memory measurement)
- const bool worst_case = ggml_tallocr_is_measure(lctx.alloc);
- // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
- llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
- if (il >= 0) {
- ggml_format_name(cur, "%s-%d", name, il);
- } else {
- ggml_set_name(cur, name);
- }
- if (!lctx.cparams.offload_kqv) {
- if (strcmp(name, "kqv_merged_cont") == 0) {
- // all nodes between the KV store and the attention output are run on the CPU
- ggml_backend_sched_set_node_backend(lctx.sched, cur, lctx.backend_cpu);
- }
- }
- };
- struct ggml_cgraph * result = NULL;
- struct llm_build_context llm(lctx, batch, cb, worst_case);
- //
- // set input data
- //
- if (!ggml_tallocr_is_measure(lctx.alloc)) {
- if (batch.token) {
- const int64_t n_tokens = batch.n_tokens;
- ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
- }
- if (batch.embd) {
- const int64_t n_embd = llm.n_embd;
- const int64_t n_tokens = batch.n_tokens;
- ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
- }
- if (batch.pos) {
- const int64_t n_tokens = batch.n_tokens;
- ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
- }
- {
- const int64_t n_kv = llm.n_kv;
- const int64_t n_tokens = batch.n_tokens;
- GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
- float * data = (float *) lctx.inp_KQ_mask->data;
- for (int h = 0; h < 1; ++h) {
- for (int j = 0; j < n_tokens; ++j) {
- const llama_pos pos = batch.pos[j];
- const llama_seq_id seq_id = batch.seq_id[j][0];
- for (int i = 0; i < n_kv; ++i) {
- float f;
- if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) {
- f = -INFINITY;
- } else {
- f = 0;
- }
- data[h*(n_kv*n_tokens) + j*n_kv + i] = f;
- }
- }
- }
- }
- if (llm.do_rope_shift) {
- const int64_t n_ctx = llm.n_ctx;
- GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));
- int32_t * data = (int32_t *) lctx.inp_K_shift->data;
- for (int i = 0; i < n_ctx; ++i) {
- data[i] = lctx.kv_self.cells[i].delta;
- }
- }
- }
- llm.init();
- switch (model.arch) {
- case LLM_ARCH_LLAMA:
- {
- result = llm.build_llama();
- } break;
- case LLM_ARCH_BAICHUAN:
- {
- result = llm.build_baichuan();
- } break;
- case LLM_ARCH_FALCON:
- {
- result = llm.build_falcon();
- } break;
- case LLM_ARCH_STARCODER:
- {
- result = llm.build_starcoder();
- } break;
- case LLM_ARCH_PERSIMMON:
- {
- result = llm.build_persimmon();
- } break;
- case LLM_ARCH_REFACT:
- {
- result = llm.build_refact();
- } break;
- case LLM_ARCH_BLOOM:
- {
- result = llm.build_bloom();
- } break;
- case LLM_ARCH_MPT:
- {
- result = llm.build_mpt();
- } break;
- case LLM_ARCH_STABLELM:
- {
- result = llm.build_stablelm();
- } break;
- case LLM_ARCH_QWEN:
- {
- result = llm.build_qwen();
- } break;
- case LLM_ARCH_QWEN2:
- {
- result = llm.build_qwen2();
- } break;
- case LLM_ARCH_PHI2:
- {
- result = llm.build_phi2();
- } break;
- case LLM_ARCH_PLAMO:
- {
- result = llm.build_plamo();
- } break;
- case LLM_ARCH_GPT2:
- {
- result = llm.build_gpt2();
- } break;
- case LLM_ARCH_CODESHELL:
- {
- result = llm.build_codeshell();
- } break;
- case LLM_ARCH_ORION:
- {
- result = llm.build_orion();
- } break;
- default:
- GGML_ASSERT(false);
- }
- llm.free();
- return result;
- }
- // decode a batch of tokens by evaluating the transformer
- //
- // - lctx: llama context
- // - batch: batch to evaluate
- //
- // return 0 on success
- // return positive int on warning
- // return negative int on error
- //
- static int llama_decode_internal(
- llama_context & lctx,
- llama_batch batch) {
- const uint32_t n_tokens = batch.n_tokens;
- if (n_tokens == 0) {
- LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
- return -1;
- }
- const auto & model = lctx.model;
- const auto & hparams = model.hparams;
- const auto & cparams = lctx.cparams;
- const auto n_batch = cparams.n_batch;
- GGML_ASSERT(n_tokens <= n_batch);
- int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
- GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT
- const int64_t t_start_us = ggml_time_us();
- #ifdef GGML_USE_MPI
- // TODO: needs fix after #3228
- GGML_ASSERT(false && "not implemented");
- //ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads);
- #endif
- GGML_ASSERT(n_threads > 0);
- auto & kv_self = lctx.kv_self;
- const int64_t n_embd = hparams.n_embd;
- const int64_t n_vocab = hparams.n_vocab;
- // helpers for smoother batch API transition
- // after deprecating the llama_eval calls, these will be removed
- std::vector<llama_pos> pos;
- std::vector<int32_t> n_seq_id;
- std::vector<llama_seq_id *> seq_id_arr;
- std::vector<std::vector<llama_seq_id>> seq_id;
- if (batch.pos == nullptr) {
- pos.resize(n_tokens);
- for (uint32_t i = 0; i < n_tokens; i++) {
- pos[i] = batch.all_pos_0 + i*batch.all_pos_1;
- }
- batch.pos = pos.data();
- }
- if (batch.seq_id == nullptr) {
- n_seq_id.resize(n_tokens);
- seq_id.resize(n_tokens);
- seq_id_arr.resize(n_tokens);
- for (uint32_t i = 0; i < n_tokens; i++) {
- n_seq_id[i] = 1;
- seq_id[i].resize(1);
- seq_id[i][0] = batch.all_seq_id;
- seq_id_arr[i] = seq_id[i].data();
- }
- batch.n_seq_id = n_seq_id.data();
- batch.seq_id = seq_id_arr.data();
- }
- // if we have enough unused cells before the current head ->
- // better to start searching from the beginning of the cache, hoping to fill it
- if (kv_self.head > kv_self.used + 2*n_tokens) {
- kv_self.head = 0;
- }
- if (!llama_kv_cache_find_slot(kv_self, batch)) {
- return 1;
- }
- // a heuristic, to avoid attending the full cache if it is not yet utilized
- // after enough generations, the benefit from this heuristic disappears
- // if we start defragmenting the cache, the benefit from this will be more important
- kv_self.n = std::min((int32_t) cparams.n_ctx, std::max(32, GGML_PAD(llama_kv_cache_cell_max(kv_self), 32)));
- //kv_self.n = llama_kv_cache_cell_max(kv_self);
- //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
- ggml_backend_sched_reset(lctx.sched);
- ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
- ggml_cgraph * gf = llama_build_graph(lctx, batch);
- // the output is always the last tensor in the graph
- struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
- GGML_ASSERT(strcmp(res->name, "result_output") == 0);
- // the embeddings could be the second to last tensor, or the third to last tensor
- struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 2];
- if (strcmp(embeddings->name, "result_norm") != 0) {
- embeddings = gf->nodes[gf->n_nodes - 3];
- GGML_ASSERT(strcmp(embeddings->name, "result_norm") == 0);
- }
- // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
- // for big prompts, if BLAS is enabled, it is better to use only one thread
- // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
- // TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well
- // we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering
- // with the BLAS calls. need a better solution
- if (n_tokens >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) {
- n_threads = std::min(4, n_threads);
- }
- const bool fully_offloaded = model.n_gpu_layers >= (int) hparams.n_layer + 1;
- if ((ggml_cpu_has_cublas() || ggml_cpu_has_vulkan()) && fully_offloaded) {
- n_threads = 1;
- }
- #ifdef GGML_USE_MPI
- const int64_t n_layer = hparams.n_layer;
- ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer);
- #endif
- #ifdef GGML_USE_METAL
- if (ggml_backend_is_metal(lctx.backend_metal)) {
- ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads);
- }
- #endif
- if (lctx.backend_cpu != nullptr) {
- ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
- }
- ggml_backend_sched_graph_compute(lctx.sched, gf);
- // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
- #ifdef GGML_USE_MPI
- ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer);
- #endif
- // update the kv ring buffer
- {
- if (kv_self.has_shift) {
- kv_self.has_shift = false;
- for (uint32_t i = 0; i < kv_self.size; ++i) {
- kv_self.cells[i].delta = 0;
- }
- }
- kv_self.head += n_tokens;
- // Ensure kv cache head points to a valid index.
- if (kv_self.head >= kv_self.size) {
- kv_self.head = 0;
- }
- }
- #ifdef GGML_PERF
- // print timing information per ggml operation (for debugging purposes)
- // requires GGML_PERF to be defined
- ggml_graph_print(gf);
- #endif
- // plot the computation graph in dot format (for debugging purposes)
- //if (n_past%100 == 0) {
- // ggml_graph_dump_dot(gf, NULL, "llama.dot");
- //}
- // extract logits
- // TODO: do not compute and extract logits if only embeddings are needed
- // need to update the graphs to skip "result_output"
- {
- auto & logits_out = lctx.logits;
- #ifndef NDEBUG
- auto & logits_valid = lctx.logits_valid;
- logits_valid.clear();
- logits_valid.resize(n_tokens);
- logits_out.clear();
- #endif
- ggml_backend_t res_backend = ggml_backend_sched_get_node_backend(lctx.sched, res);
- GGML_ASSERT(res_backend != nullptr);
- if (batch.logits) {
- logits_out.resize(n_vocab * n_tokens);
- for (uint32_t i = 0; i < n_tokens; i++) {
- if (batch.logits[i] == 0) {
- continue;
- }
- ggml_backend_tensor_get_async(res_backend, res, logits_out.data() + (n_vocab*i), (n_vocab*i)*sizeof(float), n_vocab*sizeof(float));
- #ifndef NDEBUG
- logits_valid[i] = true;
- #endif
- }
- } else if (lctx.logits_all) {
- logits_out.resize(n_vocab * n_tokens);
- ggml_backend_tensor_get_async(res_backend, res, logits_out.data(), 0, n_vocab*n_tokens*sizeof(float));
- #ifndef NDEBUG
- std::fill(logits_valid.begin(), logits_valid.end(), true);
- #endif
- } else {
- logits_out.resize(n_vocab);
- ggml_backend_tensor_get_async(res_backend, res, logits_out.data(), (n_vocab*(n_tokens - 1))*sizeof(float), n_vocab*sizeof(float));
- #ifndef NDEBUG
- logits_valid[0] = true;
- #endif
- }
- ggml_backend_synchronize(res_backend);
- }
- // extract embeddings
- if (!lctx.embedding.empty()) {
- auto & embedding_out = lctx.embedding;
- embedding_out.resize(n_embd);
- ggml_backend_t embeddings_backend = ggml_backend_sched_get_node_backend(lctx.sched, embeddings);
- ggml_backend_tensor_get_async(embeddings_backend, embeddings, embedding_out.data(), (n_embd*(n_tokens - 1))*sizeof(float), n_embd*sizeof(float));
- ggml_backend_synchronize(embeddings_backend);
- }
- // measure the performance only for the single-token evals
- if (n_tokens == 1) {
- lctx.t_eval_us += ggml_time_us() - t_start_us;
- lctx.n_eval++;
- }
- else if (n_tokens > 1) {
- lctx.t_p_eval_us += ggml_time_us() - t_start_us;
- lctx.n_p_eval += n_tokens;
- }
- // get a more accurate load time, upon first eval
- // TODO: fix this
- if (!lctx.has_evaluated_once) {
- lctx.t_load_us = ggml_time_us() - lctx.t_start_us;
- lctx.has_evaluated_once = true;
- }
- return 0;
- }
- //
- // tokenizer
- //
- static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
- return vocab.type;
- }
- static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
- return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL;
- }
- static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
- return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNKNOWN;
- }
- static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
- return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_CONTROL;
- }
- static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
- return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE;
- }
- static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) {
- return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_USER_DEFINED;
- }
- static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
- GGML_ASSERT(llama_is_byte_token(vocab, id));
- const auto& token_data = vocab.id_to_token.at(id);
- switch (llama_vocab_get_type(vocab)) {
- case LLAMA_VOCAB_TYPE_SPM: {
- auto buf = token_data.text.substr(3, 2);
- return strtol(buf.c_str(), NULL, 16);
- }
- case LLAMA_VOCAB_TYPE_BPE: {
- GGML_ASSERT(false);
- return unicode_to_bytes_bpe(token_data.text);
- }
- default:
- GGML_ASSERT(false);
- }
- }
- static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
- static const char * hex = "0123456789ABCDEF";
- switch (llama_vocab_get_type(vocab)) {
- case LLAMA_VOCAB_TYPE_SPM: {
- const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
- return vocab.token_to_id.at(buf);
- }
- case LLAMA_VOCAB_TYPE_BPE: {
- return vocab.token_to_id.at(bytes_to_unicode_bpe(ch));
- }
- default:
- GGML_ASSERT(false);
- }
- }
- static void llama_escape_whitespace(std::string & text) {
- replace_all(text, " ", "\xe2\x96\x81");
- }
- static void llama_unescape_whitespace(std::string & word) {
- replace_all(word, "\xe2\x96\x81", " ");
- }
- struct llm_symbol {
- using index = int;
- index prev;
- index next;
- const char * text;
- size_t n;
- };
- static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
- // SPM tokenizer
- // original implementation:
- // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
- struct llm_bigram_spm {
- struct comparator {
- bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
- return (l.score < r.score) || (l.score == r.score && l.left > r.left);
- }
- };
- using queue_storage = std::vector<llm_bigram_spm>;
- using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
- llm_symbol::index left;
- llm_symbol::index right;
- float score;
- size_t size;
- };
- struct llm_tokenizer_spm {
- llm_tokenizer_spm(const llama_vocab & vocab): vocab(vocab) {}
- void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
- // split string into utf8 chars
- int index = 0;
- size_t offs = 0;
- while (offs < text.size()) {
- llm_symbol sym;
- size_t len = utf8_len(text[offs]);
- sym.text = text.c_str() + offs;
- sym.n = std::min(len, text.size() - offs);
- offs += sym.n;
- sym.prev = index - 1;
- sym.next = offs == text.size() ? -1 : index + 1;
- index++;
- symbols.emplace_back(sym);
- }
- // seed the work queue with all possible 2-character tokens.
- for (size_t i = 1; i < symbols.size(); ++i) {
- try_add_bigram(i - 1, i);
- }
- // keep substituting the highest frequency pairs for as long as we can.
- while (!work_queue.empty()) {
- auto bigram = work_queue.top();
- work_queue.pop();
- auto & left_sym = symbols[bigram.left];
- auto & right_sym = symbols[bigram.right];
- // if one of the symbols already got merged, skip it.
- if (left_sym.n == 0 || right_sym.n == 0 ||
- left_sym.n + right_sym.n != bigram.size) {
- continue;
- }
- // merge the right sym into the left one
- left_sym.n += right_sym.n;
- right_sym.n = 0;
- //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
- // remove the right sym from the chain
- left_sym.next = right_sym.next;
- if (right_sym.next >= 0) {
- symbols[right_sym.next].prev = bigram.left;
- }
- // find more substitutions
- try_add_bigram(left_sym.prev, bigram.left);
- try_add_bigram(bigram.left, left_sym.next);
- }
- for (int i = 0; i != -1; i = symbols[i].next) {
- auto & symbol = symbols[i];
- resegment(symbol, output);
- }
- }
- private:
- void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
- auto text = std::string(symbol.text, symbol.n);
- auto token = vocab.token_to_id.find(text);
- // Do we need to support is_unused?
- if (token != vocab.token_to_id.end()) {
- output.push_back((*token).second);
- return;
- }
- const auto p = rev_merge.find(text);
- if (p == rev_merge.end()) {
- // output any symbols that did not form tokens as bytes.
- for (int j = 0; j < (int)symbol.n; ++j) {
- llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
- output.push_back(token_id);
- }
- return;
- }
- resegment(symbols[p->second.first], output);
- resegment(symbols[p->second.second], output);
- }
- void try_add_bigram(int left, int right) {
- if (left == -1 || right == -1) {
- return;
- }
- const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
- auto token = vocab.token_to_id.find(text);
- if (token == vocab.token_to_id.end()) {
- return;
- }
- if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
- return;
- }
- const auto & tok_data = vocab.id_to_token[(*token).second];
- llm_bigram_spm bigram;
- bigram.left = left;
- bigram.right = right;
- bigram.score = tok_data.score;
- bigram.size = text.size();
- work_queue.push(bigram);
- // Do we need to support is_unused?
- rev_merge[text] = std::make_pair(left, right);
- }
- const llama_vocab & vocab;
- std::vector<llm_symbol> symbols;
- llm_bigram_spm::queue work_queue;
- std::map<std::string, std::pair<int, int>> rev_merge;
- };
- // BPE tokenizer
- // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
- // tried to simplify unicode stuff, so most likely does not work 100% correctly!
- // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
- struct llm_bigram_bpe {
- struct comparator {
- bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
- return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
- }
- };
- using queue_storage = std::vector<llm_bigram_bpe>;
- using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
- llm_symbol::index left;
- llm_symbol::index right;
- std::string text;
- int rank;
- size_t size;
- };
- struct llm_tokenizer_bpe {
- llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {}
- void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
- int final_prev_index = -1;
- auto word_collection = bpe_gpt2_preprocess(text);
- symbols_final.clear();
- for (auto & word : word_collection) {
- work_queue = llm_bigram_bpe::queue();
- symbols.clear();
- int index = 0;
- size_t offset = 0;
- while (offset < word.size()) {
- llm_symbol sym;
- size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
- sym.text = word.c_str() + offset;
- sym.n = char_len;
- offset += sym.n;
- sym.prev = index - 1;
- sym.next = offset == word.size() ? -1 : index + 1;
- index++;
- symbols.emplace_back(sym);
- }
- for (size_t i = 1; i < symbols.size(); ++i) {
- add_new_bigram(i - 1, i);
- }
- // build token(s)
- while (!work_queue.empty()) {
- auto bigram = work_queue.top();
- work_queue.pop();
- auto & left_symbol = symbols[bigram.left];
- auto & right_symbol = symbols[bigram.right];
- if (left_symbol.n == 0 || right_symbol.n == 0) {
- continue;
- }
- std::string left_token = std::string(left_symbol.text, left_symbol.n);
- std::string right_token = std::string(right_symbol.text, right_symbol.n);
- if (left_token + right_token != bigram.text) {
- continue; // Skip this bigram if it's outdated
- }
- // merge the right sym into the left one
- left_symbol.n += right_symbol.n;
- right_symbol.n = 0;
- // remove the right sym from the chain
- left_symbol.next = right_symbol.next;
- if (right_symbol.next >= 0) {
- symbols[right_symbol.next].prev = bigram.left;
- }
- add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
- add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
- }
- // add the fnished tokens to the final list keeping correct order for next and prev
- for (auto & sym : symbols) {
- if (sym.n > 0) {
- sym.prev = final_prev_index;
- sym.next = -1;
- if (final_prev_index != -1) {
- symbols_final[final_prev_index].next = symbols_final.size();
- }
- symbols_final.emplace_back(sym);
- final_prev_index = symbols_final.size() - 1;
- }
- }
- }
- symbols = symbols_final;
- if (!symbols.empty()) {
- for (int i = 0; i != -1; i = symbols[i].next) {
- auto & symbol = symbols[i];
- if (symbol.n == 0) {
- continue;
- }
- const std::string str = std::string(symbol.text, symbol.n);
- const auto token = vocab.token_to_id.find(str);
- if (token == vocab.token_to_id.end()) {
- for (auto j = str.begin(); j != str.end(); ++j) {
- std::string byte_str(1, *j);
- auto token_multibyte = vocab.token_to_id.find(byte_str);
- if (token_multibyte == vocab.token_to_id.end()) {
- throw std::runtime_error("ERROR: byte not found in vocab");
- }
- output.push_back((*token_multibyte).second);
- }
- } else {
- output.push_back((*token).second);
- }
- }
- }
- }
- private:
- void add_new_bigram(int left, int right) {
- if (left == -1 || right == -1) {
- return;
- }
- std::string left_token = std::string(symbols[left].text, symbols[left].n);
- std::string right_token = std::string(symbols[right].text, symbols[right].n);
- int rank_found = -1;
- rank_found = vocab.find_bpe_rank(left_token, right_token);
- if (rank_found < 0) {
- return;
- }
- llm_bigram_bpe bigram;
- bigram.left = left;
- bigram.right = right;
- bigram.text = left_token + right_token;
- bigram.size = left_token.size() + right_token.size();
- bigram.rank = rank_found;
- work_queue.push(bigram);
- }
- std::vector<std::string> bpe_gpt2_preprocess(const std::string & text) {
- std::vector<std::string> bpe_words;
- std::vector<std::string> bpe_encoded_words;
- std::string token = "";
- // GPT2 system regex: 's|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+
- bool collecting_numeric = false;
- bool collecting_letter = false;
- bool collecting_special = false;
- bool collecting_whitespace_lookahead = false;
- bool collecting = false;
- std::vector<std::string> text_utf;
- text_utf.reserve(text.size());
- bpe_words.reserve(text.size());
- bpe_encoded_words.reserve(text.size());
- auto cps = codepoints_from_utf8(text);
- for (size_t i = 0; i < cps.size(); ++i)
- text_utf.emplace_back(codepoint_to_utf8(cps[i]));
- for (int i = 0; i < (int)text_utf.size(); i++) {
- const std::string & utf_char = text_utf[i];
- bool split_condition = false;
- int bytes_remain = text_utf.size() - i;
- // forward backward lookups
- const std::string & utf_char_next = (i + 1 < (int)text_utf.size()) ? text_utf[i + 1] : "";
- const std::string & utf_char_next_next = (i + 2 < (int)text_utf.size()) ? text_utf[i + 2] : "";
- // handling contractions
- if (!split_condition && bytes_remain >= 2) {
- // 's|'t|'m|'d
- if (utf_char == "\'" && (utf_char_next == "s" || utf_char_next == "t" || utf_char_next == "m" || utf_char_next == "d")) {
- split_condition = true;
- }
- if (split_condition) {
- if (token.size()) {
- bpe_words.emplace_back(token); // push previous content as token
- }
- token = utf_char + utf_char_next;
- bpe_words.emplace_back(token);
- token = "";
- i++;
- continue;
- }
- }
- if (!split_condition && bytes_remain >= 3) {
- // 're|'ve|'ll
- if (utf_char == "\'" && (
- (utf_char_next == "r" && utf_char_next_next == "e") ||
- (utf_char_next == "v" && utf_char_next_next == "e") ||
- (utf_char_next == "l" && utf_char_next_next == "l"))
- ) {
- split_condition = true;
- }
- if (split_condition) {
- // current token + next token can be defined
- if (token.size()) {
- bpe_words.emplace_back(token); // push previous content as token
- }
- token = utf_char + utf_char_next + utf_char_next_next;
- bpe_words.emplace_back(token); // the contraction
- token = "";
- i += 2;
- continue;
- }
- }
- if (!split_condition && !collecting) {
- if (codepoint_type(utf_char) == CODEPOINT_TYPE_LETTER || (!token.size() && utf_char == " " && codepoint_type(utf_char_next) == CODEPOINT_TYPE_LETTER)) {
- collecting_letter = true;
- collecting = true;
- }
- else if (codepoint_type(utf_char) == CODEPOINT_TYPE_DIGIT || (!token.size() && utf_char == " " && codepoint_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) {
- collecting_numeric = true;
- collecting = true;
- }
- else if (
- ((codepoint_type(utf_char) != CODEPOINT_TYPE_LETTER && codepoint_type(utf_char) != CODEPOINT_TYPE_DIGIT) && (codepoint_type(utf_char) != CODEPOINT_TYPE_WHITESPACE)) ||
- (!token.size() && utf_char == " " && codepoint_type(utf_char_next) != CODEPOINT_TYPE_LETTER && codepoint_type(utf_char_next) != CODEPOINT_TYPE_DIGIT && codepoint_type(utf_char_next) != CODEPOINT_TYPE_WHITESPACE)
- ) {
- collecting_special = true;
- collecting = true;
- }
- else if (codepoint_type(utf_char) == CODEPOINT_TYPE_WHITESPACE && codepoint_type(utf_char_next) == CODEPOINT_TYPE_WHITESPACE) {
- collecting_whitespace_lookahead = true;
- collecting = true;
- }
- else if (codepoint_type(utf_char) == CODEPOINT_TYPE_WHITESPACE) {
- split_condition = true;
- }
- }
- else if (!split_condition && collecting) {
- if (collecting_letter && codepoint_type(utf_char) != CODEPOINT_TYPE_LETTER) {
- split_condition = true;
- }
- else if (collecting_numeric && codepoint_type(utf_char) != CODEPOINT_TYPE_DIGIT) {
- split_condition = true;
- }
- else if (collecting_special && (codepoint_type(utf_char) == CODEPOINT_TYPE_LETTER || codepoint_type(utf_char) == CODEPOINT_TYPE_DIGIT || codepoint_type(utf_char) == CODEPOINT_TYPE_WHITESPACE)) {
- split_condition = true;
- }
- else if (collecting_whitespace_lookahead && (codepoint_type(utf_char_next) == CODEPOINT_TYPE_LETTER || codepoint_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) {
- split_condition = true;
- }
- }
- if (utf_char_next == "") {
- split_condition = true; // final
- token += utf_char;
- }
- if (split_condition) {
- if (token.size()) {
- bpe_words.emplace_back(token);
- }
- token = utf_char;
- collecting = false;
- collecting_letter = false;
- collecting_numeric = false;
- collecting_special = false;
- collecting_whitespace_lookahead = false;
- }
- else {
- token += utf_char;
- }
- }
- for (std::string & word : bpe_words) {
- std::string encoded_token = "";
- for (char & c : word) {
- encoded_token += bytes_to_unicode_bpe(c);
- }
- bpe_encoded_words.emplace_back(encoded_token);
- }
- return bpe_encoded_words;
- }
- const llama_vocab & vocab;
- std::vector<llm_symbol> symbols;
- std::vector<llm_symbol> symbols_final;
- llm_bigram_bpe::queue work_queue;
- };
- typedef enum FRAGMENT_BUFFER_VARIANT_TYPE{
- FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
- FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
- } FRAGMENT_BUFFER_VARIANT_TYPE;
- struct fragment_buffer_variant{
- fragment_buffer_variant(llama_vocab::id _token)
- :
- type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
- token(_token),
- raw_text(_dummy),
- offset(0),
- length(0){}
- fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
- :
- type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
- token((llama_vocab::id)-1),
- raw_text(_raw_text),
- offset(_offset),
- length(_length){
- GGML_ASSERT( _offset >= 0 );
- GGML_ASSERT( _length >= 1 );
- GGML_ASSERT( offset + length <= raw_text.length() );
- }
- const FRAGMENT_BUFFER_VARIANT_TYPE type;
- const llama_vocab::id token;
- const std::string _dummy;
- const std::string & raw_text;
- const uint64_t offset;
- const uint64_t length;
- };
- // #define PRETOKENIZERDEBUG
- static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer)
- {
- // for each special token
- for (const auto & st: vocab.special_tokens_cache) {
- const auto & special_token = st.first;
- const auto & special_id = st.second;
- // for each text fragment
- std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
- while (it != buffer.end()) {
- auto & fragment = (*it);
- // if a fragment is text ( not yet processed )
- if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
- auto * raw_text = &(fragment.raw_text);
- auto raw_text_base_offset = fragment.offset;
- auto raw_text_base_length = fragment.length;
- // loop over the text
- while (true) {
- // find the first occurrence of a given special token in this fragment
- // passing offset argument only limit the "search area" but match coordinates
- // are still relative to the source full raw_text
- auto match = raw_text->find(special_token, raw_text_base_offset);
- // no occurrences found, stop processing this fragment for a given special token
- if (match == std::string::npos) break;
- // check if match is within bounds of offset <-> length
- if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
- #ifdef PRETOKENIZERDEBUG
- LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
- #endif
- auto source = std::distance(buffer.begin(), it);
- // if match is further than base offset
- // then we have some text to the left of it
- if (match > raw_text_base_offset) {
- // left
- const int64_t left_reminder_offset = raw_text_base_offset + 0;
- const int64_t left_reminder_length = match - raw_text_base_offset;
- buffer.emplace_after(it, (*raw_text), left_reminder_offset, left_reminder_length);
- #ifdef PRETOKENIZERDEBUG
- LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
- #endif
- it++;
- }
- // special token
- buffer.emplace_after(it, special_id);
- it++;
- // right
- if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
- const int64_t right_reminder_offset = match + special_token.length();
- const int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
- buffer.emplace_after(it, (*raw_text), right_reminder_offset, right_reminder_length);
- #ifdef PRETOKENIZERDEBUG
- LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
- #endif
- it++;
- if (source == 0) {
- buffer.erase_after(buffer.before_begin());
- } else {
- buffer.erase_after(std::next(buffer.begin(), (source-1)));
- }
- // repeat for the right side
- raw_text_base_offset = right_reminder_offset;
- raw_text_base_length = right_reminder_length;
- #ifdef PRETOKENIZERDEBUG
- LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
- #endif
- } else {
- if (source == 0) {
- buffer.erase_after(buffer.before_begin());
- } else {
- buffer.erase_after(std::next(buffer.begin(), (source-1)));
- }
- break;
- }
- }
- }
- it++;
- }
- }
- }
- static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos, bool special) {
- std::vector<llama_vocab::id> output;
- // OG tokenizer behavior:
- //
- // tokenizer.encode('', add_bos=True) returns [1]
- // tokenizer.encode('', add_bos=False) returns []
- if (bos && vocab.special_bos_id != -1) {
- output.push_back(vocab.special_bos_id);
- }
- if (raw_text.empty()) {
- return output;
- }
- std::forward_list<fragment_buffer_variant> fragment_buffer;
- fragment_buffer.emplace_front( raw_text, 0, raw_text.length() );
- if (special) tokenizer_st_partition( vocab, fragment_buffer );
- switch (vocab.type) {
- case LLAMA_VOCAB_TYPE_SPM:
- {
- for (const auto & fragment: fragment_buffer)
- {
- if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT)
- {
- // without adding this leading whitespace, we do not get the same results as the original tokenizer
- // TODO: It's likely possible to get rid of this string copy entirely
- // by modifying llm_tokenizer_x to operate with string offsets like pre-tokenizer
- // and passing 'add space prefix' as bool argument
- //
- auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
- if (&fragment == &fragment_buffer.front()) {
- raw_text = " " + raw_text; // prefix with space if the first token is not special
- }
- #ifdef PRETOKENIZERDEBUG
- LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
- #endif
- llm_tokenizer_spm tokenizer(vocab);
- llama_escape_whitespace(raw_text);
- tokenizer.tokenize(raw_text, output);
- }
- else // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
- {
- output.push_back(fragment.token);
- }
- }
- } break;
- case LLAMA_VOCAB_TYPE_BPE:
- {
- for (const auto & fragment: fragment_buffer)
- {
- if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT)
- {
- auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
- #ifdef PRETOKENIZERDEBUG
- LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
- #endif
- llm_tokenizer_bpe tokenizer(vocab);
- tokenizer.tokenize(raw_text, output);
- }
- else // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
- {
- output.push_back(fragment.token);
- }
- }
- } break;
- }
- return output;
- }
- //
- // grammar - internal
- //
- struct llama_partial_utf8 {
- uint32_t value; // bit value so far (unshifted)
- int n_remain; // num bytes remaining; -1 indicates invalid sequence
- };
- struct llama_grammar {
- const std::vector<std::vector<llama_grammar_element>> rules;
- std::vector<std::vector<const llama_grammar_element *>> stacks;
- // buffer for partially generated UTF-8 sequence from accepted tokens
- llama_partial_utf8 partial_utf8;
- };
- struct llama_grammar_candidate {
- size_t index;
- const uint32_t * code_points;
- llama_partial_utf8 partial_utf8;
- };
- // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
- // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
- static std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
- const std::string & src,
- llama_partial_utf8 partial_start) {
- static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
- const char * pos = src.c_str();
- std::vector<uint32_t> code_points;
- // common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0.
- code_points.reserve(src.size() + 1);
- uint32_t value = partial_start.value;
- int n_remain = partial_start.n_remain;
- // continue previous decode, if applicable
- while (*pos != 0 && n_remain > 0) {
- uint8_t next_byte = static_cast<uint8_t>(*pos);
- if ((next_byte >> 6) != 2) {
- // invalid sequence, abort
- code_points.push_back(0);
- return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
- }
- value = (value << 6) + (next_byte & 0x3F);
- ++pos;
- --n_remain;
- }
- if (partial_start.n_remain > 0 && n_remain == 0) {
- code_points.push_back(value);
- }
- // decode any subsequent utf-8 sequences, which may end in an incomplete one
- while (*pos != 0) {
- uint8_t first_byte = static_cast<uint8_t>(*pos);
- uint8_t highbits = first_byte >> 4;
- n_remain = lookup[highbits] - 1;
- if (n_remain < 0) {
- // invalid sequence, abort
- code_points.clear();
- code_points.push_back(0);
- return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
- }
- uint8_t mask = (1 << (7 - n_remain)) - 1;
- value = first_byte & mask;
- ++pos;
- while (*pos != 0 && n_remain > 0) {
- value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
- ++pos;
- --n_remain;
- }
- if (n_remain == 0) {
- code_points.push_back(value);
- }
- }
- code_points.push_back(0);
- return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
- }
- // returns true iff pos points to the end of one of the definitions of a rule
- static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
- switch (pos->type) {
- case LLAMA_GRETYPE_END: return true; // NOLINT
- case LLAMA_GRETYPE_ALT: return true; // NOLINT
- default: return false;
- }
- }
- // returns true iff chr satisfies the char range at pos (regular or inverse range)
- // asserts that pos is pointing to a char range element
- static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
- const llama_grammar_element * pos,
- const uint32_t chr) {
- bool found = false;
- bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
- GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
- do {
- if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
- // inclusive range, e.g. [a-z]
- found = found || (pos->value <= chr && chr <= pos[1].value);
- pos += 2;
- } else {
- // exact char match, e.g. [a] or "a"
- found = found || pos->value == chr;
- pos += 1;
- }
- } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
- return std::make_pair(found == is_positive_char, pos);
- }
- // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
- // range at pos (regular or inverse range)
- // asserts that pos is pointing to a char range element
- static bool llama_grammar_match_partial_char(
- const llama_grammar_element * pos,
- const llama_partial_utf8 partial_utf8) {
- bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
- GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
- uint32_t partial_value = partial_utf8.value;
- int n_remain = partial_utf8.n_remain;
- // invalid sequence or 7-bit char split across 2 bytes (overlong)
- if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
- return false;
- }
- // range of possible code points this partial UTF-8 sequence could complete to
- uint32_t low = partial_value << (n_remain * 6);
- uint32_t high = low | ((1 << (n_remain * 6)) - 1);
- if (low == 0) {
- if (n_remain == 2) {
- low = 1 << 11;
- } else if (n_remain == 3) {
- low = 1 << 16;
- }
- }
- do {
- if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
- // inclusive range, e.g. [a-z]
- if (pos->value <= high && low <= pos[1].value) {
- return is_positive_char;
- }
- pos += 2;
- } else {
- // exact char match, e.g. [a] or "a"
- if (low <= pos->value && pos->value <= high) {
- return is_positive_char;
- }
- pos += 1;
- }
- } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
- return !is_positive_char;
- }
- // transforms a grammar pushdown stack into N possible stacks, all ending
- // at a character range (terminal element)
- static void llama_grammar_advance_stack(
- const std::vector<std::vector<llama_grammar_element>> & rules,
- const std::vector<const llama_grammar_element *> & stack,
- std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
- if (stack.empty()) {
- new_stacks.emplace_back(stack);
- return;
- }
- const llama_grammar_element * pos = stack.back();
- switch (pos->type) {
- case LLAMA_GRETYPE_RULE_REF: {
- const size_t rule_id = static_cast<size_t>(pos->value);
- const llama_grammar_element * subpos = rules[rule_id].data();
- do {
- // init new stack without the top (pos)
- std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
- if (!llama_grammar_is_end_of_sequence(pos + 1)) {
- // if this rule ref is followed by another element, add that to stack
- new_stack.push_back(pos + 1);
- }
- if (!llama_grammar_is_end_of_sequence(subpos)) {
- // if alternate is nonempty, add to stack
- new_stack.push_back(subpos);
- }
- llama_grammar_advance_stack(rules, new_stack, new_stacks);
- while (!llama_grammar_is_end_of_sequence(subpos)) {
- // scan to end of alternate def
- subpos++;
- }
- if (subpos->type == LLAMA_GRETYPE_ALT) {
- // there's another alternate def of this rule to process
- subpos++;
- } else {
- break;
- }
- } while (true);
- break;
- }
- case LLAMA_GRETYPE_CHAR:
- case LLAMA_GRETYPE_CHAR_NOT:
- new_stacks.emplace_back(stack);
- break;
- default:
- // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
- // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
- // those
- GGML_ASSERT(false);
- }
- }
- // takes a set of possible pushdown stacks on a grammar, which are required to
- // be positioned at a character range (see `llama_grammar_advance_stack`), and
- // produces the N possible stacks if the given char is accepted at those
- // positions
- static std::vector<std::vector<const llama_grammar_element *>> llama_grammar_accept(
- const std::vector<std::vector<llama_grammar_element>> & rules,
- const std::vector<std::vector<const llama_grammar_element *>> & stacks,
- const uint32_t chr) {
- std::vector<std::vector<const llama_grammar_element *>> new_stacks;
- for (const auto & stack : stacks) {
- if (stack.empty()) {
- continue;
- }
- auto match = llama_grammar_match_char(stack.back(), chr);
- if (match.first) {
- const llama_grammar_element * pos = match.second;
- // update top of stack to next element, if any
- std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
- if (!llama_grammar_is_end_of_sequence(pos)) {
- new_stack.push_back(pos);
- }
- llama_grammar_advance_stack(rules, new_stack, new_stacks);
- }
- }
- return new_stacks;
- }
- static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
- const std::vector<std::vector<llama_grammar_element>> & rules,
- const std::vector<std::vector<const llama_grammar_element *>> & stacks,
- const std::vector<llama_grammar_candidate> & candidates);
- static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
- const std::vector<std::vector<llama_grammar_element>> & rules,
- const std::vector<const llama_grammar_element *> & stack,
- const std::vector<llama_grammar_candidate> & candidates) {
- std::vector<llama_grammar_candidate> rejects;
- if (stack.empty()) {
- for (const auto & tok : candidates) {
- if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
- rejects.push_back(tok);
- }
- }
- return rejects;
- }
- const llama_grammar_element * stack_pos = stack.back();
- std::vector<llama_grammar_candidate> next_candidates;
- for (const auto & tok : candidates) {
- if (*tok.code_points == 0) {
- // reached end of full codepoints in token, reject iff it ended in a partial sequence
- // that cannot satisfy this position in grammar
- if (tok.partial_utf8.n_remain != 0 &&
- !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
- rejects.push_back(tok);
- }
- } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
- next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
- } else {
- rejects.push_back(tok);
- }
- }
- const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
- // update top of stack to next element, if any
- std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
- if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
- stack_after.push_back(stack_pos_after);
- }
- std::vector<std::vector<const llama_grammar_element *>> next_stacks;
- llama_grammar_advance_stack(rules, stack_after, next_stacks);
- auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
- for (const auto & tok : next_rejects) {
- rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
- }
- return rejects;
- }
- static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
- const std::vector<std::vector<llama_grammar_element>> & rules,
- const std::vector<std::vector<const llama_grammar_element *>> & stacks,
- const std::vector<llama_grammar_candidate> & candidates) {
- GGML_ASSERT(!stacks.empty()); // REVIEW
- if (candidates.empty()) {
- return std::vector<llama_grammar_candidate>();
- }
- auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
- for (size_t i = 1, size = stacks.size(); i < size; ++i) {
- rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
- }
- return rejects;
- }
- //
- // grammar - external
- //
- struct llama_grammar * llama_grammar_init(
- const llama_grammar_element ** rules,
- size_t n_rules,
- size_t start_rule_index) {
- const llama_grammar_element * pos;
- // copy rule definitions into vectors
- std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
- for (size_t i = 0; i < n_rules; i++) {
- for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
- vec_rules[i].push_back(*pos);
- }
- vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
- }
- // loop over alternates of start rule to build initial stacks
- std::vector<std::vector<const llama_grammar_element *>> stacks;
- pos = rules[start_rule_index];
- do {
- std::vector<const llama_grammar_element *> stack;
- if (!llama_grammar_is_end_of_sequence(pos)) {
- // if alternate is nonempty, add to stack
- stack.push_back(pos);
- }
- llama_grammar_advance_stack(vec_rules, stack, stacks);
- while (!llama_grammar_is_end_of_sequence(pos)) {
- // scan to end of alternate def
- pos++;
- }
- if (pos->type == LLAMA_GRETYPE_ALT) {
- // there's another alternate def of this rule to process
- pos++;
- } else {
- break;
- }
- } while (true);
- return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
- }
- void llama_grammar_free(struct llama_grammar * grammar) {
- delete grammar;
- }
- struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
- llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
- // redirect elements in stacks to point to new rules
- for (size_t is = 0; is < result->stacks.size(); is++) {
- for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
- for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
- for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
- if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
- result->stacks[is][ie] = &result->rules[ir0][ir1];
- }
- }
- }
- }
- }
- return result;
- }
- //
- // sampling
- //
- void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
- if (seed == LLAMA_DEFAULT_SEED) {
- seed = time(NULL);
- }
- ctx->rng.seed(seed);
- }
- void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
- GGML_ASSERT(candidates->size > 0);
- const int64_t t_start_sample_us = ggml_time_us();
- // Sort the logits in descending order
- if (!candidates->sorted) {
- std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
- return a.logit > b.logit;
- });
- candidates->sorted = true;
- }
- float max_l = candidates->data[0].logit;
- float cum_sum = 0.0f;
- for (size_t i = 0; i < candidates->size; ++i) {
- float p = expf(candidates->data[i].logit - max_l);
- candidates->data[i].p = p;
- cum_sum += p;
- }
- for (size_t i = 0; i < candidates->size; ++i) {
- candidates->data[i].p /= cum_sum;
- }
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
- // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
- // if (k >= (int32_t)candidates->size) {
- // return;
- // }
- const int64_t t_start_sample_us = ggml_time_us();
- k = std::max(k, (int) min_keep);
- k = std::min(k, (int) candidates->size);
- // Sort scores in descending order
- if (!candidates->sorted) {
- auto comp = [](const llama_token_data & a, const llama_token_data & b) {
- return a.logit > b.logit;
- };
- if (k <= 128) {
- std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
- } else {
- constexpr int nbuckets = 128;
- constexpr float bucket_low = -10.0f;
- constexpr float bucket_high = 10.0f;
- constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
- constexpr float bucker_inter = -bucket_low * bucket_scale;
- std::vector<int> bucket_idx(candidates->size);
- std::vector<int> histo(nbuckets, 0);
- for (int i = 0; i < (int)candidates->size; ++i) {
- const float val = candidates->data[i].logit;
- int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
- ib = std::max(0, std::min(nbuckets-1, ib));
- bucket_idx[i] = ib;
- ++histo[ib];
- }
- int nhave = 0;
- int ib = nbuckets - 1;
- for ( ; ib >= 0; --ib) {
- nhave += histo[ib];
- if (nhave >= k) break;
- }
- std::vector<llama_token_data> tmp_tokens(nhave);
- auto ptr = tmp_tokens.data();
- std::vector<llama_token_data*> bucket_ptrs;
- bucket_ptrs.reserve(nbuckets - ib);
- for (int j = nbuckets - 1; j >= ib; --j) {
- bucket_ptrs.push_back(ptr);
- ptr += histo[j];
- }
- for (int i = 0; i < (int)candidates->size; ++i) {
- int j = bucket_idx[i];
- if (j >= ib) {
- *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i];
- }
- }
- ptr = tmp_tokens.data();
- int ndone = 0;
- for (int j = nbuckets-1; j > ib; --j) {
- std::sort(ptr, ptr + histo[j], comp);
- ptr += histo[j];
- ndone += histo[j];
- }
- std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
- std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data));
- }
- candidates->sorted = true;
- }
- candidates->size = k;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
- if (p >= 1.0f) {
- return;
- }
- llama_sample_softmax(ctx, candidates);
- const int64_t t_start_sample_us = ggml_time_us();
- // Compute the cumulative probabilities
- float cum_sum = 0.0f;
- size_t last_idx = candidates->size;
- for (size_t i = 0; i < candidates->size; ++i) {
- cum_sum += candidates->data[i].p;
- // Check if the running sum is at least p or if we have kept at least min_keep tokens
- // we set the last index to i+1 to indicate that the current iterate should be included in the set
- if (cum_sum >= p && i + 1 >= min_keep) {
- last_idx = i + 1;
- break;
- }
- }
- // Resize the output vector to keep only the top-p tokens
- candidates->size = last_idx;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
- if (p <= 0.0f || !candidates->size) {
- return;
- }
- const int64_t t_start_sample_us = ggml_time_us();
- bool min_p_applied = false;
- // if the candidates aren't sorted, try the unsorted implementation first
- if (!candidates->sorted) {
- std::vector<llama_token_data> filtered_tokens;
- float max_logit = -FLT_MAX;
- for (size_t i = 0; i < candidates->size; ++i) {
- max_logit = std::max(max_logit, candidates->data[i].logit);
- }
- const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max
- for (size_t i = 0; i < candidates->size; ++i) {
- if (candidates->data[i].logit >= min_logit) {
- filtered_tokens.push_back(candidates->data[i]);
- }
- }
- // if we have enough values the operation was a success
- if (filtered_tokens.size() >= min_keep) {
- memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
- candidates->size = filtered_tokens.size();
- min_p_applied = true;
- }
- }
- // if the candidates are sorted or the unsorted implementation failed, use this implementation
- if (!min_p_applied) {
- // Sort the logits in descending order
- if (!candidates->sorted) {
- std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
- return a.logit > b.logit;
- });
- candidates->sorted = true;
- }
- const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max
- size_t i = 1; // first token always matches
- for (; i < candidates->size; ++i) {
- if (candidates->data[i].logit < min_logit && i >= min_keep) {
- break; // prob too small
- }
- }
- // Resize the output vector to keep only the matching tokens
- candidates->size = i;
- }
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
- if (z >= 1.0f || candidates->size <= 2) {
- return;
- }
- llama_sample_softmax(nullptr, candidates);
- const int64_t t_start_sample_us = ggml_time_us();
- // Compute the first and second derivatives
- std::vector<float> first_derivatives(candidates->size - 1);
- std::vector<float> second_derivatives(candidates->size - 2);
- for (size_t i = 0; i < first_derivatives.size(); ++i) {
- first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
- }
- for (size_t i = 0; i < second_derivatives.size(); ++i) {
- second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
- }
- // Calculate absolute value of second derivatives
- for (size_t i = 0; i < second_derivatives.size(); ++i) {
- second_derivatives[i] = std::abs(second_derivatives[i]);
- }
- // Normalize the second derivatives
- {
- const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
- if (second_derivatives_sum > 1e-6f) {
- for (float & value : second_derivatives) {
- value /= second_derivatives_sum;
- }
- } else {
- for (float & value : second_derivatives) {
- value = 1.0f / second_derivatives.size();
- }
- }
- }
- float cum_sum = 0.0f;
- size_t last_idx = candidates->size;
- for (size_t i = 0; i < second_derivatives.size(); ++i) {
- cum_sum += second_derivatives[i];
- // Check if the running sum is greater than z or if we have kept at least min_keep tokens
- if (cum_sum > z && i >= min_keep) {
- last_idx = i;
- break;
- }
- }
- // Resize the output vector to keep only the tokens above the tail location
- candidates->size = last_idx;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
- // Reference implementation:
- // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
- if (p >= 1.0f) {
- return;
- }
- // Compute the softmax of logits and calculate entropy
- llama_sample_softmax(nullptr, candidates);
- const int64_t t_start_sample_us = ggml_time_us();
- float entropy = 0.0f;
- for (size_t i = 0; i < candidates->size; ++i) {
- entropy += -candidates->data[i].p * logf(candidates->data[i].p);
- }
- // Compute the absolute difference between negative log probability and entropy for each candidate
- std::vector<float> shifted_scores;
- for (size_t i = 0; i < candidates->size; ++i) {
- float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
- shifted_scores.push_back(shifted_score);
- }
- // Sort tokens based on the shifted_scores and their corresponding indices
- std::vector<size_t> indices(candidates->size);
- std::iota(indices.begin(), indices.end(), 0);
- std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
- return shifted_scores[a] < shifted_scores[b];
- });
- // Compute the cumulative probabilities
- float cum_sum = 0.0f;
- size_t last_idx = indices.size();
- for (size_t i = 0; i < indices.size(); ++i) {
- size_t idx = indices[i];
- cum_sum += candidates->data[idx].p;
- // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
- if (cum_sum > p && i >= min_keep - 1) {
- last_idx = i + 1;
- break;
- }
- }
- // Resize the output vector to keep only the locally typical tokens
- std::vector<llama_token_data> new_candidates;
- for (size_t i = 0; i < last_idx; ++i) {
- size_t idx = indices[i];
- new_candidates.push_back(candidates->data[idx]);
- }
- // Replace the data in candidates with the new_candidates data
- std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
- candidates->size = new_candidates.size();
- candidates->sorted = false;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) {
- const int64_t t_start_sample_us = ggml_time_us();
- // no need to do anything if there is only one (or zero) candidates
- if(candidates_p->size <= 1) {
- return;
- }
- // Calculate maximum possible entropy
- float max_entropy = -logf(1.0f / candidates_p->size);
- llama_sample_softmax(nullptr, candidates_p);
- // Calculate entropy of the softmax probabilities
- float entropy = 0.0f;
- for (size_t i = 0; i < candidates_p->size; ++i) {
- float prob = candidates_p->data[i].p;
- if (prob > 0.0f) { // Ensure no log(0)
- entropy -= prob * logf(prob);
- }
- }
- // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates_p->size != 1 above)
- float normalized_entropy = entropy / max_entropy;
- // Map the normalized entropy to the desired temperature range using the power function
- float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
- #ifdef DEBUG
- LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
- LLAMA_LOG_INFO("Entropy: %f\n", entropy);
- LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
- LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
- LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
- LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
- #endif
- // Apply the dynamically calculated temperature scaling
- for (size_t i = 0; i < candidates_p->size; ++i) {
- candidates_p->data[i].logit /= dyn_temp;
- }
- // Re-compute softmax probabilities after scaling logits with dynamic temperature
- double max_l_double = candidates_p->data[0].logit;
- double cum_sum_double = 0.0;
- for (size_t i = 0; i < candidates_p->size; ++i) {
- double p = exp(candidates_p->data[i].logit - max_l_double);
- candidates_p->data[i].p = p; // Store the scaled probability
- cum_sum_double += p;
- }
- for (size_t i = 0; i < candidates_p->size; ++i) {
- candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
- }
- #ifdef DEBUG
- // Print the updated top 25 probabilities after temperature scaling
- LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
- for (size_t i = 0; i < 25 && i < candidates_p->size; ++i) {
- LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates_p->data[i].p * 100.0f);
- }
- #endif
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
- const int64_t t_start_sample_us = ggml_time_us();
- for (size_t i = 0; i < candidates_p->size; ++i) {
- candidates_p->data[i].logit /= temp;
- }
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
- llama_sample_temp(ctx, candidates_p, temp);
- }
- void llama_sample_repetition_penalties(
- struct llama_context * ctx,
- llama_token_data_array * candidates,
- const llama_token * last_tokens,
- size_t penalty_last_n,
- float penalty_repeat,
- float penalty_freq,
- float penalty_present) {
- if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
- return;
- }
- const int64_t t_start_sample_us = ggml_time_us();
- // Create a frequency map to count occurrences of each token in last_tokens
- std::unordered_map<llama_token, int> token_count;
- for (size_t i = 0; i < penalty_last_n; ++i) {
- token_count[last_tokens[i]]++;
- }
- // Apply frequency and presence penalties to the candidates
- for (size_t i = 0; i < candidates->size; ++i) {
- const auto token_iter = token_count.find(candidates->data[i].id);
- if (token_iter == token_count.end()) {
- continue;
- }
- const int count = token_iter->second;
- // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
- // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
- if (candidates->data[i].logit <= 0) {
- candidates->data[i].logit *= penalty_repeat;
- } else {
- candidates->data[i].logit /= penalty_repeat;
- }
- candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
- }
- candidates->sorted = false;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
- GGML_ASSERT(ctx);
- const int64_t t_start_sample_us = ggml_time_us();
- bool allow_eos = false;
- for (const auto & stack : grammar->stacks) {
- if (stack.empty()) {
- allow_eos = true;
- break;
- }
- }
- const llama_token eos = llama_token_eos(&ctx->model);
- std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
- candidates_decoded.reserve(candidates->size);
- std::vector<llama_grammar_candidate> candidates_grammar;
- candidates_grammar.reserve(candidates->size);
- for (size_t i = 0; i < candidates->size; ++i) {
- const llama_token id = candidates->data[i].id;
- const std::string piece = llama_token_to_piece(ctx, id);
- if (id == eos) {
- if (!allow_eos) {
- candidates->data[i].logit = -INFINITY;
- }
- } else if (piece.empty() || piece[0] == 0) {
- candidates->data[i].logit = -INFINITY;
- } else {
- candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8));
- candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
- }
- }
- const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
- for (const auto & reject : rejects) {
- candidates->data[reject.index].logit = -INFINITY;
- }
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- static void llama_log_softmax(float * array, size_t size) {
- float max_l = *std::max_element(array, array + size);
- float sum = 0.f;
- for (size_t i = 0; i < size; ++i) {
- float p = expf(array[i] - max_l);
- sum += p;
- array[i] = p;
- }
- for (size_t i = 0; i < size; ++i) {
- array[i] = logf(array[i] / sum);
- }
- }
- void llama_sample_apply_guidance(
- struct llama_context * ctx,
- float * logits,
- float * logits_guidance,
- float scale) {
- GGML_ASSERT(ctx);
- const auto t_start_sample_us = ggml_time_us();
- const auto n_vocab = llama_n_vocab(llama_get_model(ctx));
- llama_log_softmax(logits, n_vocab);
- llama_log_softmax(logits_guidance, n_vocab);
- for (int i = 0; i < n_vocab; ++i) {
- auto & l = logits[i];
- const auto & g = logits_guidance[i];
- l = scale * (l - g) + g;
- }
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- void llama_sample_classifier_free_guidance(
- struct llama_context * ctx,
- llama_token_data_array * candidates,
- struct llama_context * guidance_ctx,
- float scale) {
- GGML_ASSERT(ctx);
- int64_t t_start_sample_us;
- t_start_sample_us = ggml_time_us();
- const size_t n_vocab = llama_n_vocab(llama_get_model(ctx));
- GGML_ASSERT(n_vocab == candidates->size);
- GGML_ASSERT(!candidates->sorted);
- std::vector<float> logits_base(n_vocab);
- for (size_t i = 0; i < n_vocab; ++i) {
- logits_base[i] = candidates->data[i].logit;
- }
- float * logits_guidance = llama_get_logits(guidance_ctx);
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- llama_sample_apply_guidance(ctx, logits_base.data(), logits_guidance, scale);
- t_start_sample_us = ggml_time_us();
- for (size_t i = 0; i < n_vocab; ++i) {
- candidates->data[i].logit = logits_base[i];
- }
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
- GGML_ASSERT(ctx);
- auto N = float(llama_n_vocab(llama_get_model(ctx)));
- int64_t t_start_sample_us;
- t_start_sample_us = ggml_time_us();
- llama_sample_softmax(nullptr, candidates);
- // Estimate s_hat using the most probable m tokens
- float s_hat = 0.0;
- float sum_ti_bi = 0.0;
- float sum_ti_sq = 0.0;
- for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
- float t_i = logf(float(i + 2) / float(i + 1));
- float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
- sum_ti_bi += t_i * b_i;
- sum_ti_sq += t_i * t_i;
- }
- s_hat = sum_ti_bi / sum_ti_sq;
- // Compute k from the estimated s_hat and target surprise value
- float epsilon_hat = s_hat - 1;
- float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
- // Sample the next word X using top-k sampling
- llama_sample_top_k(nullptr, candidates, int(k), 1);
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- llama_token X = llama_sample_token(ctx, candidates);
- t_start_sample_us = ggml_time_us();
- // Compute error as the difference between observed surprise and target surprise value
- size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
- return candidate.id == X;
- }));
- float observed_surprise = -log2f(candidates->data[X_idx].p);
- float e = observed_surprise - tau;
- // Update mu using the learning rate and error
- *mu = *mu - eta * e;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- return X;
- }
- llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
- int64_t t_start_sample_us;
- t_start_sample_us = ggml_time_us();
- llama_sample_softmax(ctx, candidates);
- // Truncate the words with surprise values greater than mu
- candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
- return -log2f(candidate.p) > *mu;
- }));
- if (candidates->size == 0) {
- candidates->size = 1;
- }
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- // Normalize the probabilities of the remaining words
- llama_sample_softmax(ctx, candidates);
- // Sample the next word X from the remaining words
- llama_token X = llama_sample_token(ctx, candidates);
- t_start_sample_us = ggml_time_us();
- // Compute error as the difference between observed surprise and target surprise value
- size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
- return candidate.id == X;
- }));
- float observed_surprise = -log2f(candidates->data[X_idx].p);
- float e = observed_surprise - tau;
- // Update mu using the learning rate and error
- *mu = *mu - eta * e;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- return X;
- }
- llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
- const int64_t t_start_sample_us = ggml_time_us();
- // Find max element
- auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
- return a.logit < b.logit;
- });
- llama_token result = max_iter->id;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- ctx->n_sample++;
- }
- return result;
- }
- llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
- GGML_ASSERT(ctx);
- const int64_t t_start_sample_us = ggml_time_us();
- llama_sample_softmax(nullptr, candidates);
- std::vector<float> probs;
- probs.reserve(candidates->size);
- for (size_t i = 0; i < candidates->size; ++i) {
- probs.push_back(candidates->data[i].p);
- }
- std::discrete_distribution<> dist(probs.begin(), probs.end());
- auto & rng = ctx->rng;
- int idx = dist(rng);
- llama_token result = candidates->data[idx].id;
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- ctx->n_sample++;
- return result;
- }
- void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
- const int64_t t_start_sample_us = ggml_time_us();
- if (token == llama_token_eos(&ctx->model)) {
- for (const auto & stack : grammar->stacks) {
- if (stack.empty()) {
- return;
- }
- }
- GGML_ASSERT(false);
- }
- const std::string piece = llama_token_to_piece(ctx, token);
- // Note terminating 0 in decoded string
- const auto decoded = decode_utf8(piece, grammar->partial_utf8);
- const auto & code_points = decoded.first;
- for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
- grammar->stacks = llama_grammar_accept(grammar->rules, grammar->stacks, *it);
- }
- grammar->partial_utf8 = decoded.second;
- GGML_ASSERT(!grammar->stacks.empty());
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- //
- // Beam search
- //
- struct llama_beam {
- std::vector<llama_token> tokens;
- float p; // Cumulative beam probability (renormalized relative to all beams)
- bool eob; // Initialize end-of-beam to false. Callback sets this to true.
- // Sort beams by probability. In case of ties, prefer beams at eob.
- bool operator<(const llama_beam & rhs) const {
- return std::make_pair(p, eob) < std::make_pair(rhs.p, rhs.eob);
- }
- // Shift off first n tokens and discard them.
- void shift_tokens(const size_t n) {
- if (n) {
- std::copy(tokens.begin() + n, tokens.end(), tokens.begin());
- tokens.resize(tokens.size() - n);
- }
- }
- llama_beam_view view() const { return {tokens.data(), tokens.size(), p, eob}; }
- };
- // A struct for calculating logit-related info.
- struct llama_logit_info {
- const float * const logits;
- const int n_vocab;
- const float max_l;
- const float normalizer;
- struct sum_exp {
- float max_l;
- float operator()(float sum, float l) const { return sum + std::exp(l - max_l); }
- };
- llama_logit_info(llama_context * ctx)
- : logits(llama_get_logits(ctx))
- , n_vocab(llama_n_vocab(llama_get_model(ctx)))
- , max_l(*std::max_element(logits, logits + n_vocab))
- , normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l}))
- { }
- llama_token_data get_token_data(const llama_token token_id) const {
- constexpr auto p = std::numeric_limits<float>::quiet_NaN(); // never used
- return {token_id, logits[token_id], p};
- }
- // Return top k token_data by logit.
- std::vector<llama_token_data> top_k(size_t k) {
- std::vector<llama_token_data> min_heap; // min-heap by logit
- const llama_token k_min = std::min(static_cast<llama_token>(k), n_vocab);
- min_heap.reserve(k_min);
- for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) {
- min_heap.push_back(get_token_data(token_id));
- }
- auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; };
- std::make_heap(min_heap.begin(), min_heap.end(), comp);
- for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) {
- if (min_heap.front().logit < logits[token_id]) {
- std::pop_heap(min_heap.begin(), min_heap.end(), comp);
- min_heap.back().id = token_id;
- min_heap.back().logit = logits[token_id];
- std::push_heap(min_heap.begin(), min_heap.end(), comp);
- }
- }
- return min_heap;
- }
- float probability_from_logit(float logit) const {
- return normalizer * std::exp(logit - max_l);
- }
- };
- struct llama_beam_search_data {
- llama_context * ctx;
- size_t n_beams;
- int n_past;
- int n_predict;
- std::vector<llama_beam> beams;
- std::vector<llama_beam> next_beams;
- // Re-calculated on each loop iteration
- size_t common_prefix_length;
- // Used to communicate to/from callback on beams state.
- std::vector<llama_beam_view> beam_views;
- llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict)
- : ctx(ctx)
- , n_beams(n_beams)
- , n_past(n_past)
- , n_predict(n_predict)
- , beam_views(n_beams) {
- beams.reserve(n_beams);
- next_beams.reserve(n_beams);
- }
- // Collapse beams to a single beam given by index.
- void collapse_beams(const size_t beam_idx) {
- if (0u < beam_idx) {
- std::swap(beams[0], beams[beam_idx]);
- }
- beams.resize(1);
- }
- // Min-heaps are used to efficiently collect the top-k elements (k=n_beams).
- // The repetitive patterns below reflect the 2 stages of heaps:
- // * Gather elements until the vector is full, then call std::make_heap() on it.
- // * If the heap is full and a new element is found that should be included, pop the
- // least element to the back(), replace it with the new, then push it into the heap.
- void fill_next_beams_by_top_probabilities(llama_beam & beam) {
- // Min-heaps use a greater-than comparator.
- const auto comp = [](const llama_beam & a, const llama_beam & b) { return a.p > b.p; };
- if (beam.eob) {
- // beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough.
- if (next_beams.size() < n_beams) {
- next_beams.push_back(std::move(beam));
- if (next_beams.size() == n_beams) {
- std::make_heap(next_beams.begin(), next_beams.end(), comp);
- }
- } else if (next_beams.front().p < beam.p) {
- std::pop_heap(next_beams.begin(), next_beams.end(), comp);
- next_beams.back() = std::move(beam);
- std::push_heap(next_beams.begin(), next_beams.end(), comp);
- }
- } else {
- // beam is not at end-of-sentence, so branch with next top_k tokens.
- if (!beam.tokens.empty()) {
- llama_decode(ctx, llama_batch_get_one(beam.tokens.data(), beam.tokens.size(), n_past, 0));
- }
- llama_logit_info logit_info(ctx);
- std::vector<llama_token_data> next_tokens = logit_info.top_k(n_beams);
- size_t i=0;
- if (next_beams.size() < n_beams) {
- for (; next_beams.size() < n_beams ; ++i) {
- llama_beam next_beam = beam;
- next_beam.tokens.push_back(next_tokens[i].id);
- next_beam.p *= logit_info.probability_from_logit(next_tokens[i].logit);
- next_beams.push_back(std::move(next_beam));
- }
- std::make_heap(next_beams.begin(), next_beams.end(), comp);
- } else {
- for (; next_beams.front().p == 0.0f ; ++i) {
- std::pop_heap(next_beams.begin(), next_beams.end(), comp);
- next_beams.back() = beam;
- next_beams.back().tokens.push_back(next_tokens[i].id);
- next_beams.back().p *= logit_info.probability_from_logit(next_tokens[i].logit);
- std::push_heap(next_beams.begin(), next_beams.end(), comp);
- }
- }
- for (; i < n_beams ; ++i) {
- const float next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit);
- if (next_beams.front().p < next_p) {
- std::pop_heap(next_beams.begin(), next_beams.end(), comp);
- next_beams.back() = beam;
- next_beams.back().tokens.push_back(next_tokens[i].id);
- next_beams.back().p = next_p;
- std::push_heap(next_beams.begin(), next_beams.end(), comp);
- }
- }
- }
- }
- // Find common_prefix_length based on beams.
- // Requires beams is not empty.
- size_t find_common_prefix_length() {
- size_t common_prefix_length = beams[0].tokens.size();
- for (size_t i = 1 ; i < beams.size() ; ++i) {
- common_prefix_length = std::min(common_prefix_length, beams[i].tokens.size());
- for (size_t j = 0 ; j < common_prefix_length ; ++j) {
- if (beams[0].tokens[j] != beams[i].tokens[j]) {
- common_prefix_length = j;
- break;
- }
- }
- }
- return common_prefix_length;
- }
- // Construct beams_state to send back to caller via the callback function.
- // Side effect: set common_prefix_length = find_common_prefix_length();
- llama_beams_state get_beams_state(const bool last_call) {
- for (size_t i = 0 ; i < beams.size() ; ++i) {
- beam_views[i] = beams[i].view();
- }
- common_prefix_length = find_common_prefix_length();
- return {beam_views.data(), beams.size(), common_prefix_length, last_call};
- }
- // Loop:
- // * while i < n_predict, AND
- // * any of the beams have not yet reached end-of-beam (eob), AND
- // * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence
- // (since all other beam probabilities can only decrease)
- void loop(const llama_beam_search_callback_fn_t callback, void * const callback_data) {
- beams.push_back({{}, 1.0f, false}); // Start with one empty beam w/ probability = 1.0 and !eob.
- const auto not_eob = [](const llama_beam & beam) { return !beam.eob; };
- for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eob) &&
- !beams[top_beam_index()].eob ; ++i) {
- callback(callback_data, get_beams_state(false)); // Sets common_prefix_length
- update_beams_from_beam_views(); // Update values (p,eob) that callback may have changed.
- if (common_prefix_length) {
- llama_decode(ctx, llama_batch_get_one(beams[0].tokens.data(), common_prefix_length, n_past, 0));
- n_past += common_prefix_length;
- }
- // Zero-out next_beam probabilities to place them last in following min-heap.
- std::for_each(next_beams.begin(), next_beams.end(), [](llama_beam & beam) { beam.p = 0.0f; });
- for (llama_beam & beam : beams) {
- beam.shift_tokens(common_prefix_length);
- fill_next_beams_by_top_probabilities(beam);
- }
- // next_beams become the beams of next/final iteration. Swap them to re-use memory.
- beams.swap(next_beams);
- renormalize_beam_probabilities(beams);
- }
- collapse_beams(top_beam_index());
- callback(callback_data, get_beams_state(true));
- }
- // As beams grow, the cumulative probabilities decrease.
- // Renormalize them to avoid floating point underflow.
- static void renormalize_beam_probabilities(std::vector<llama_beam> & beams) {
- const auto sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; };
- const float inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p);
- std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; });
- }
- // Assumes beams is non-empty. Uses llama_beam::operator<() for ordering.
- size_t top_beam_index() {
- return std::max_element(beams.begin(), beams.end()) - beams.begin();
- }
- // Copy (p,eob) for each beam which may have been changed by the callback.
- void update_beams_from_beam_views() {
- for (size_t i = 0 ; i < beams.size() ; ++i) {
- beams[i].p = beam_views[i].p;
- beams[i].eob = beam_views[i].eob;
- }
- }
- };
- void llama_beam_search(llama_context * ctx,
- llama_beam_search_callback_fn_t callback, void * callback_data,
- size_t n_beams, int n_past, int n_predict) {
- assert(ctx);
- const int64_t t_start_sample_us = ggml_time_us();
- llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict);
- beam_search_data.loop(callback, callback_data);
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- ctx->n_sample++;
- }
- //
- // quantization
- //
- struct quantize_state_internal {
- const llama_model & model;
- const llama_model_quantize_params * params;
- int n_attention_wv = 0;
- int n_ffn_down = 0;
- int n_ffn_gate = 0;
- int n_ffn_up = 0;
- int i_attention_wv = 0;
- int i_ffn_down = 0;
- int i_ffn_gate = 0;
- int i_ffn_up = 0;
- int n_k_quantized = 0;
- int n_fallback = 0;
- bool has_imatrix = false;
- quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
- : model(model)
- , params(params)
- {}
- };
- static void llama_convert_tensor_internal(
- struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
- const size_t nelements, const int nthread
- ) {
- if (output.size() < nelements) {
- output.resize(nelements);
- }
- float * f32_output = (float *) output.data();
- ggml_type_traits_t qtype;
- if (ggml_is_quantized(tensor->type)) {
- qtype = ggml_internal_get_type_traits(tensor->type);
- if (qtype.to_float == NULL) {
- throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
- }
- } else if (tensor->type != GGML_TYPE_F16) {
- throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
- }
- if (nthread < 2) {
- if (tensor->type == GGML_TYPE_F16) {
- ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
- } else if (ggml_is_quantized(tensor->type)) {
- qtype.to_float(tensor->data, f32_output, nelements);
- } else {
- GGML_ASSERT(false); // unreachable
- }
- return;
- }
- size_t block_size = tensor->type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor->type);
- size_t block_size_bytes = ggml_type_size(tensor->type);
- GGML_ASSERT(nelements % block_size == 0);
- size_t nblocks = nelements / block_size;
- size_t blocks_per_thread = nblocks / nthread;
- size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
- size_t in_buff_offs = 0;
- size_t out_buff_offs = 0;
- for (int tnum = 0; tnum < nthread; tnum++) {
- size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
- size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
- size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
- auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
- if (typ == GGML_TYPE_F16) {
- ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
- } else {
- qtype.to_float(inbuf, outbuf, nels);
- }
- };
- workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
- in_buff_offs += thr_block_bytes;
- out_buff_offs += thr_elems;
- }
- for (auto & w : workers) { w.join(); }
- workers.clear();
- }
- static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
- const std::string name = ggml_get_name(tensor);
- // TODO: avoid hardcoded tensor names - use the TN_* constants
- const llm_arch arch = qs.model.arch;
- const auto tn = LLM_TN(arch);
- auto use_more_bits = [](int i_layer, int num_layers) -> bool {
- return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
- };
- const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
- auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
- if (n_expert > 1) {
- // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly
- // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
- // for getting the current layer as I initially thought, and we need to resort to parsing the
- // tensor name.
- n_layer /= n_expert;
- if (sscanf(name, "blk.%d.", &i_layer) != 1) {
- throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
- }
- if (i_layer < 0 || i_layer >= n_layer) {
- throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
- }
- }
- return std::make_pair(i_layer, n_layer);
- };
- if (name == tn(LLM_TENSOR_OUTPUT, "weight")) {
- int nx = tensor->ne[0];
- if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
- new_type = GGML_TYPE_Q8_0;
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS) {
- new_type = GGML_TYPE_Q5_K;
- }
- else if (new_type != GGML_TYPE_Q8_0) {
- new_type = GGML_TYPE_Q6_K;
- }
- } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS) {
- if (name.find("attn_v.weight") != std::string::npos) {
- if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
- else new_type = GGML_TYPE_Q2_K;
- ++qs.i_attention_wv;
- }
- else if (name.find("ffn_down") != std::string::npos) {
- if (qs.i_ffn_down < qs.n_ffn_down/8) new_type = GGML_TYPE_Q2_K;
- ++qs.i_ffn_down;
- }
- else if (name == "token_embd.weight") new_type = GGML_TYPE_Q2_K;
- } else if (name.find("attn_v.weight") != std::string::npos) {
- if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
- new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
- new_type = GGML_TYPE_Q4_K;
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
- new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
- else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
- use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
- else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
- (qs.i_attention_wv < qs.n_attention_wv/8 || qs.i_attention_wv >= 7*qs.n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
- if (qs.model.type == MODEL_70B) {
- // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
- // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
- // nearly negligible increase in model size by quantizing this tensor with more bits:
- if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
- }
- if (qs.model.hparams.n_expert == 8) {
- // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
- // TODO: explore better strategies
- new_type = GGML_TYPE_Q8_0;
- }
- ++qs.i_attention_wv;
- } else if (name.find("attn_k.weight") != std::string::npos) {
- if (qs.model.hparams.n_expert == 8) {
- // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
- // TODO: explore better strategies
- new_type = GGML_TYPE_Q8_0;
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS) {
- new_type = GGML_TYPE_Q2_K;
- }
- } else if (name.find("ffn_down") != std::string::npos) {
- auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
- int i_layer = info.first, n_layer = info.second;
- if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS) {
- if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
- new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
- : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
- : GGML_TYPE_Q3_K;
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
- new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
- if (arch == LLM_ARCH_FALCON) {
- new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
- use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
- } else {
- if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
- }
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
- new_type = GGML_TYPE_Q5_K;
- }
- else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
- && qs.has_imatrix && i_layer < n_layer/8) {
- // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
- // We only do it when an imatrix is provided because a) we want to make sure that one can always get the
- // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
- new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
- }
- ++qs.i_ffn_down;
- } else if (name.find("attn_output.weight") != std::string::npos) {
- if (arch != LLM_ARCH_FALCON) {
- if (qs.model.hparams.n_expert == 8) {
- if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS ||
- ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ||
- ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
- new_type = GGML_TYPE_Q5_K;
- }
- } else {
- if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) new_type = GGML_TYPE_Q4_K;
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
- }
- } else {
- if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
- }
- }
- else if (name.find("attn_qkv.weight") != std::string::npos) {
- if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
- }
- else if (name.find("ffn_gate") != std::string::npos) {
- auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
- int i_layer = info.first, n_layer = info.second;
- if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS && !use_more_bits(i_layer, n_layer)) {
- new_type = GGML_TYPE_Q2_K;
- }
- ++qs.i_ffn_gate;
- }
- else if (name.find("ffn_up") != std::string::npos) {
- auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
- int i_layer = info.first, n_layer = info.second;
- if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS && !use_more_bits(i_layer, n_layer)) {
- new_type = GGML_TYPE_Q2_K;
- }
- ++qs.i_ffn_up;
- }
- // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
- //}
- // IK: let's remove this, else Q2_K is almost the same as Q3_K_S
- //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
- // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
- //}
- // This can be used to reduce the size of the Q5_K_S model.
- // The associated PPL increase is fully in line with the size reduction
- //else {
- // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
- //}
- bool convert_incompatible_tensor = false;
- if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
- new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K ||
- new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS) {
- int nx = tensor->ne[0];
- int ny = tensor->ne[1];
- if (nx % QK_K != 0) {
- LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
- convert_incompatible_tensor = true;
- } else {
- ++qs.n_k_quantized;
- }
- }
- if (convert_incompatible_tensor) {
- switch (new_type) {
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_Q2_K: new_type = GGML_TYPE_Q4_0; break;
- case GGML_TYPE_Q3_K: new_type = GGML_TYPE_Q4_1; break;
- case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
- case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
- case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
- default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
- }
- LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
- ++qs.n_fallback;
- }
- return new_type;
- }
- static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
- ggml_type quantized_type;
- llama_ftype ftype = params->ftype;
- switch (params->ftype) {
- case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break;
- case LLAMA_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_TYPE_Q4_1; break;
- case LLAMA_FTYPE_MOSTLY_Q5_0: quantized_type = GGML_TYPE_Q5_0; break;
- case LLAMA_FTYPE_MOSTLY_Q5_1: quantized_type = GGML_TYPE_Q5_1; break;
- case LLAMA_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_TYPE_Q8_0; break;
- case LLAMA_FTYPE_MOSTLY_F16: quantized_type = GGML_TYPE_F16; break;
- case LLAMA_FTYPE_ALL_F32: quantized_type = GGML_TYPE_F32; break;
- // K-quants
- case LLAMA_FTYPE_MOSTLY_Q2_K_S:
- case LLAMA_FTYPE_MOSTLY_Q2_K: quantized_type = GGML_TYPE_Q2_K; break;
- case LLAMA_FTYPE_MOSTLY_Q3_K_XS:
- case LLAMA_FTYPE_MOSTLY_Q3_K_S:
- case LLAMA_FTYPE_MOSTLY_Q3_K_M:
- case LLAMA_FTYPE_MOSTLY_Q3_K_L: quantized_type = GGML_TYPE_Q3_K; break;
- case LLAMA_FTYPE_MOSTLY_Q4_K_S:
- case LLAMA_FTYPE_MOSTLY_Q4_K_M: quantized_type = GGML_TYPE_Q4_K; break;
- case LLAMA_FTYPE_MOSTLY_Q5_K_S:
- case LLAMA_FTYPE_MOSTLY_Q5_K_M: quantized_type = GGML_TYPE_Q5_K; break;
- case LLAMA_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_TYPE_Q6_K; break;
- case LLAMA_FTYPE_MOSTLY_IQ2_XXS:quantized_type = GGML_TYPE_IQ2_XXS; break;
- case LLAMA_FTYPE_MOSTLY_IQ2_XS :quantized_type = GGML_TYPE_IQ2_XS; break;
- default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
- }
- int nthread = params->nthread;
- if (nthread <= 0) {
- nthread = std::thread::hardware_concurrency();
- }
- // mmap consistently increases speed Linux, and also increases speed on Windows with
- // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
- #if defined(__linux__) || defined(_WIN32)
- constexpr bool use_mmap = true;
- #else
- constexpr bool use_mmap = false;
- #endif
- llama_model_loader ml(fname_inp, use_mmap, NULL);
- ml.init_mapping(false); // no prefetching?
- llama_model model;
- llm_load_arch(ml, model);
- llm_load_hparams(ml, model);
- struct quantize_state_internal qs(model, params);
- if (params->only_copy) {
- ftype = model.ftype;
- }
- const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
- if (params->imatrix) {
- imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
- if (imatrix_data) {
- LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
- qs.has_imatrix = true;
- }
- }
- const size_t align = GGUF_DEFAULT_ALIGNMENT;
- struct gguf_context * ctx_out = gguf_init_empty();
- // copy the KV pairs from the input file
- gguf_set_kv (ctx_out, ml.ctx_gguf);
- gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
- gguf_set_val_u32(ctx_out, "general.file_type", ftype);
- for (int i = 0; i < ml.n_tensors; ++i) {
- struct ggml_tensor * meta = ml.get_tensor_meta(i);
- const std::string name = ggml_get_name(meta);
- // TODO: avoid hardcoded tensor names - use the TN_* constants
- if (name.find("attn_v.weight") != std::string::npos || name.find("attn_qkv.weight") != std::string::npos) {
- ++qs.n_attention_wv;
- }
- else if (name.find("ffn_down") != std::string::npos) {
- ++qs.n_ffn_down;
- }
- else if (name.find("ffn_gate") != std::string::npos) {
- ++qs.n_ffn_gate;
- }
- else if (name.find("ffn_up") != std::string::npos) {
- ++qs.n_ffn_up;
- }
- }
- if (qs.n_attention_wv != qs.n_ffn_down || (uint32_t)qs.n_attention_wv != model.hparams.n_layer) {
- LLAMA_LOG_WARN("%s ============ Strange model: n_attention_wv = %d, n_ffn_down = %d, hparams.n_layer = %d\n",
- __func__, qs.n_attention_wv, qs.n_ffn_down, model.hparams.n_layer);
- }
- size_t total_size_org = 0;
- size_t total_size_new = 0;
- std::vector<int64_t> hist_all(1 << 4, 0);
- std::vector<std::thread> workers;
- workers.reserve(nthread);
- std::mutex mutex;
- int idx = 0;
- std::vector<no_init<uint8_t>> read_data;
- std::vector<no_init<uint8_t>> work;
- std::vector<no_init<float>> f32_conv_buf;
- // populate the original tensors so we get an initial meta data
- for (int i = 0; i < ml.n_tensors; ++i) {
- struct ggml_tensor * meta = ml.get_tensor_meta(i);
- gguf_add_tensor(ctx_out, meta);
- }
- std::ofstream fout(fname_out, std::ios::binary);
- fout.exceptions(std::ofstream::failbit); // fail fast on write errors
- const size_t meta_size = gguf_get_meta_size(ctx_out);
- LLAMA_LOG_INFO("%s: meta size = %zu bytes\n", __func__, meta_size);
- // placeholder for the meta data
- ::zeros(fout, meta_size);
- for (int i = 0; i < ml.n_tensors; ++i) {
- struct ggml_tensor * tensor = ml.get_tensor_meta(i);
- const std::string name = ggml_get_name(tensor);
- if (!ml.use_mmap) {
- if (read_data.size() < ggml_nbytes(tensor)) {
- read_data.resize(ggml_nbytes(tensor));
- }
- tensor->data = read_data.data();
- }
- ml.load_data_for(tensor);
- LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
- ++idx, ml.n_tensors,
- ggml_get_name(tensor),
- llama_format_tensor_shape(tensor).c_str(),
- ggml_type_name(tensor->type));
- // This used to be a regex, but <regex> has an extreme cost to compile times.
- bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
- // quantize only 2D tensors
- quantize &= (ggml_n_dims(tensor) == 2);
- quantize &= params->quantize_output_tensor || name != "output.weight";
- quantize &= !params->only_copy;
- // do not quantize expert gating tensors
- quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;
- enum ggml_type new_type;
- void * new_data;
- size_t new_size;
- if (quantize) {
- new_type = quantized_type;
- if (!params->pure) {
- new_type = get_k_quant_type(qs, new_type, tensor, ftype);
- }
- // If we've decided to quantize to the same type the tensor is already
- // in then there's nothing to do.
- quantize = tensor->type != new_type;
- }
- if (!quantize) {
- new_type = tensor->type;
- new_data = tensor->data;
- new_size = ggml_nbytes(tensor);
- LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
- } else {
- const size_t nelements = ggml_nelements(tensor);
- const float * imatrix = nullptr;
- if (imatrix_data) {
- auto it = imatrix_data->find(tensor->name);
- if (it == imatrix_data->end()) {
- LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
- } else {
- if (it->second.size() == (size_t)tensor->ne[0]) {
- imatrix = it->second.data();
- } else {
- LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
- int(it->second.size()), int(tensor->ne[0]), tensor->name);
- }
- }
- }
- if ((new_type == GGML_TYPE_IQ2_XXS ||
- new_type == GGML_TYPE_IQ2_XS ||
- (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
- LLAMA_LOG_ERROR("\n\n============================================================\n");
- LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
- LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
- LLAMA_LOG_ERROR("============================================================\n\n");
- throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
- }
- float * f32_data;
- if (tensor->type == GGML_TYPE_F32) {
- f32_data = (float *) tensor->data;
- } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
- throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
- } else {
- llama_convert_tensor_internal(tensor, f32_conv_buf, workers, nelements, nthread);
- f32_data = (float *) f32_conv_buf.data();
- }
- LLAMA_LOG_INFO("quantizing to %s .. ", ggml_type_name(new_type));
- fflush(stdout);
- if (work.size() < nelements * 4) {
- work.resize(nelements * 4); // upper bound on size
- }
- new_data = work.data();
- std::array<int64_t, 1 << 4> hist_cur = {};
- const int n_per_row = tensor->ne[0];
- const int nrows = nelements / n_per_row;
- static const int min_chunk_size = 32 * 512;
- const int chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row);
- const int nchunk = (nelements + chunk_size - 1)/chunk_size;
- const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
- if (nthread_use < 2) {
- new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, hist_cur.data(), imatrix);
- } else {
- int counter = 0;
- new_size = 0;
- auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, chunk_size,
- nrows, n_per_row, imatrix]() {
- std::array<int64_t, 1 << 4> local_hist = {};
- const int nrows_per_chunk = chunk_size / n_per_row;
- size_t local_size = 0;
- while (true) {
- std::unique_lock<std::mutex> lock(mutex);
- int first_row = counter; counter += nrows_per_chunk;
- if (first_row >= nrows) {
- if (local_size > 0) {
- for (int j=0; j<int(local_hist.size()); ++j) {
- hist_cur[j] += local_hist[j];
- }
- new_size += local_size;
- }
- break;
- }
- lock.unlock();
- const int this_nrow = std::min(nrows - first_row, nrows_per_chunk);
- local_size += ggml_quantize_chunk(new_type, f32_data, new_data,
- first_row * n_per_row, this_nrow, n_per_row, local_hist.data(), imatrix);
- }
- };
- for (int it = 0; it < nthread_use - 1; ++it) {
- workers.emplace_back(compute);
- }
- compute();
- for (auto & w : workers) { w.join(); }
- workers.clear();
- }
- LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
- int64_t tot_count = 0;
- for (size_t i = 0; i < hist_cur.size(); i++) {
- hist_all[i] += hist_cur[i];
- tot_count += hist_cur[i];
- }
- if (tot_count > 0) {
- LLAMA_LOG_INFO(" | hist: ");
- for (size_t i = 0; i < hist_cur.size(); i++) {
- LLAMA_LOG_INFO("%5.3f ", hist_cur[i] / float(nelements));
- }
- }
- LLAMA_LOG_INFO("\n");
- }
- total_size_org += ggml_nbytes(tensor);
- total_size_new += new_size;
- // update the gguf meta data as we go
- gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
- gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size);
- // write tensor data + padding
- fout.write((const char *) new_data, new_size);
- zeros(fout, GGML_PAD(new_size, align) - new_size);
- }
- // go back to beginning of file and write the updated meta data
- {
- fout.seekp(0);
- std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
- gguf_get_meta_data(ctx_out, data.data());
- fout.write((const char *) data.data(), data.size());
- }
- fout.close();
- gguf_free(ctx_out);
- LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
- LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
- // print histogram for all tensors
- {
- int64_t sum_all = 0;
- for (size_t i = 0; i < hist_all.size(); i++) {
- sum_all += hist_all[i];
- }
- if (sum_all > 0) {
- LLAMA_LOG_INFO("%s: hist: ", __func__);
- for (size_t i = 0; i < hist_all.size(); i++) {
- LLAMA_LOG_INFO("%5.3f ", hist_all[i] / float(sum_all));
- }
- LLAMA_LOG_INFO("\n");
- }
- }
- if (qs.n_fallback > 0) {
- LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) incompatible with k-quants and required fallback quantization\n",
- __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
- }
- }
- static int llama_apply_lora_from_file_internal(
- const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
- ) {
- LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
- const int64_t t_start_lora_us = ggml_time_us();
- llama_file fin(path_lora, "rb");
- // verify magic and version
- {
- uint32_t magic = fin.read_u32();
- if (magic != LLAMA_FILE_MAGIC_GGLA) {
- LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
- return 1;
- }
- uint32_t format_version = fin.read_u32();
- if (format_version != 1) {
- LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
- return 1;
- }
- }
- int32_t lora_r = fin.read_u32();
- int32_t lora_alpha = fin.read_u32();
- float scaling = scale * (float)lora_alpha / (float)lora_r;
- LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
- // load base model
- std::unique_ptr<llama_model_loader> ml;
- if (path_base_model) {
- LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
- ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*kv_overrides*/ nullptr));
- ml->init_mapping(/*prefetch*/ false); // no prefetching
- }
- struct tensor_meta {
- std::string name;
- ggml_type type;
- int32_t ne[2];
- size_t offset;
- };
- std::map<std::string, tensor_meta> tensor_meta_map;
- // load all tensor meta
- while (true) {
- if (fin.tell() == fin.size) {
- // eof
- break;
- }
- int32_t n_dims;
- int32_t name_len;
- int32_t ftype;
- fin.read_raw(&n_dims, sizeof(n_dims));
- fin.read_raw(&name_len, sizeof(name_len));
- fin.read_raw(&ftype, sizeof(ftype));
- if (n_dims != 1 && n_dims != 2) {
- LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
- return 1;
- }
- int32_t ne[2] = { 1, 1 };
- for (int i = 0; i < n_dims; ++i) {
- fin.read_raw(&ne[i], sizeof(ne[i]));
- }
- std::string name;
- {
- GGML_ASSERT(name_len < GGML_MAX_NAME);
- char buf[GGML_MAX_NAME];
- fin.read_raw(buf, name_len);
- name = std::string(buf, name_len);
- }
- // check for lora suffix
- std::string lora_suffix;
- if (name.length() > 6) {
- lora_suffix = name.substr(name.length() - 6);
- }
- if (lora_suffix != ".loraA" && lora_suffix != ".loraB") {
- LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
- return 1;
- }
- // tensor type
- ggml_type wtype;
- switch (ftype) {
- case 0: wtype = GGML_TYPE_F32; break;
- case 1: wtype = GGML_TYPE_F16; break;
- default:
- {
- LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
- __func__, ftype);
- return false;
- }
- }
- // data offset
- size_t offset = fin.tell();
- offset = (offset + 31) & -32;
- // skip tensor data
- fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET);
- tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset });
- }
- bool warned = false;
- int n_tensors = 0;
- // apply
- ggml_backend_t backend_cpu = ggml_backend_cpu_init();
- if (backend_cpu == nullptr) {
- LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__);
- return 1;
- }
- ggml_backend_cpu_set_n_threads(backend_cpu, n_threads);
- std::vector<no_init<uint8_t>> read_buf;
- for (const auto & it : model.tensors_by_name) {
- const std::string & base_name = it.first;
- ggml_tensor * model_t = it.second;
- if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() ||
- tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) {
- continue;
- }
- tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA");
- tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB");
- ggml_init_params lora_init_params = {
- /* .mem_size */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
- /* .mem_buffer */ nullptr,
- /* .no_alloc */ true,
- };
- ggml_context * lora_ctx = ggml_init(lora_init_params);
- if (lora_ctx == nullptr) {
- LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__);
- ggml_backend_free(backend_cpu);
- return 1;
- }
- // create tensors
- ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]);
- ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]);
- ggml_set_name(loraA, metaA.name.c_str());
- ggml_set_name(loraB, metaB.name.c_str());
- ggml_tensor * base_t;
- if (ml) {
- if (gguf_find_tensor(ml->ctx_gguf, base_name.c_str()) < 0) {
- LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
- return 1;
- }
- base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str()));
- } else {
- base_t = ggml_dup_tensor(lora_ctx, model_t);
- }
- ggml_set_name(base_t, base_name.c_str());
- // allocate in backend buffer
- ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
- if (lora_buf == nullptr) {
- LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__);
- return 1;
- }
- // load tensor data
- auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
- read_buf.resize(ggml_nbytes(tensor));
- fin.seek(tensor_meta.offset, SEEK_SET);
- fin.read_raw(read_buf.data(), ggml_nbytes(tensor));
- ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size());
- };
- load_tensor(metaA, loraA);
- load_tensor(metaB, loraB);
- // load base model tensor data
- if (ml) {
- ml->load_data_for(base_t);
- } else {
- ggml_backend_tensor_copy(model_t, base_t);
- }
- if (ggml_is_quantized(base_t->type) && !warned) {
- LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
- "use a f16 or f32 base model with --lora-base\n", __func__);
- warned = true;
- }
- if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
- LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
- " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
- ggml_free(lora_ctx);
- ggml_backend_buffer_free(lora_buf);
- ggml_backend_free(backend_cpu);
- return 1;
- }
- auto build_lora_graph = [&]() {
- // w = w + BA*s
- ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
- ggml_set_name(BA, "BA");
- if (scaling != 1.0f) {
- BA = ggml_scale(lora_ctx, BA, scaling);
- ggml_set_name(BA, "BA_scaled");
- }
- ggml_tensor * r;
- r = ggml_add_inplace(lora_ctx, base_t, BA);
- ggml_set_name(r, "r_add");
- if (base_t->type != model_t->type) {
- // convert the result to the model type
- r = ggml_cast(lora_ctx, r, model_t->type);
- ggml_set_name(r, "r_cast");
- }
- return r;
- };
- ggml_cgraph * gf = ggml_new_graph(lora_ctx);
- ggml_tensor * r = build_lora_graph();
- ggml_build_forward_expand(gf, r);
- ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
- if (graph_buf == nullptr) {
- LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__);
- ggml_free(lora_ctx);
- ggml_backend_buffer_free(lora_buf);
- ggml_backend_free(backend_cpu);
- return 1;
- }
- ggml_backend_graph_compute(backend_cpu, gf);
- ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r));
- #if 0
- // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU
- //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE);
- // sched compute
- ggml_build_forward_expand(gf, build_graph());
- ggml_backend_sched_init_measure(sched, gf);
- // create the graph again, since the previous one was destroyed by the measure
- ggml_graph_clear(gf);
- ggml_build_forward_expand(gf, build_graph());
- ggml_backend_sched_graph_compute(sched, gf);
- ggml_backend_sched_free(sched);
- #endif
- ggml_backend_buffer_free(lora_buf);
- ggml_backend_buffer_free(graph_buf);
- ggml_free(lora_ctx);
- n_tensors++;
- if (n_tensors % 4 == 0) {
- LLAMA_LOG_INFO(".");
- }
- }
- ggml_backend_free(backend_cpu);
- const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
- LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
- return 0;
- }
- //
- // interface implementation
- //
- struct llama_model_params llama_model_default_params() {
- struct llama_model_params result = {
- /*.n_gpu_layers =*/ 0,
- /*.split_mode =*/ LLAMA_SPLIT_LAYER,
- /*.main_gpu =*/ 0,
- /*.tensor_split =*/ nullptr,
- /*.progress_callback =*/ nullptr,
- /*.progress_callback_user_data =*/ nullptr,
- /*.kv_overrides =*/ nullptr,
- /*.vocab_only =*/ false,
- /*.use_mmap =*/ true,
- /*.use_mlock =*/ false,
- };
- #ifdef GGML_USE_METAL
- // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
- result.n_gpu_layers = 999;
- #endif
- return result;
- }
- struct llama_context_params llama_context_default_params() {
- struct llama_context_params result = {
- /*.seed =*/ LLAMA_DEFAULT_SEED,
- /*.n_ctx =*/ 512,
- /*.n_batch =*/ 512,
- /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
- /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
- /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_UNSPECIFIED,
- /*.rope_freq_base =*/ 0.0f,
- /*.rope_freq_scale =*/ 0.0f,
- /*.yarn_ext_factor =*/ -1.0f,
- /*.yarn_attn_factor =*/ 1.0f,
- /*.yarn_beta_fast =*/ 32.0f,
- /*.yarn_beta_slow =*/ 1.0f,
- /*.yarn_orig_ctx =*/ 0,
- /*.cb_eval =*/ nullptr,
- /*.cb_eval_user_data =*/ nullptr,
- /*.type_k =*/ GGML_TYPE_F16,
- /*.type_v =*/ GGML_TYPE_F16,
- /*.mul_mat_q =*/ true,
- /*.logits_all =*/ false,
- /*.embedding =*/ false,
- /*.offload_kqv =*/ true,
- };
- return result;
- }
- struct llama_model_quantize_params llama_model_quantize_default_params() {
- struct llama_model_quantize_params result = {
- /*.nthread =*/ 0,
- /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
- /*.allow_requantize =*/ false,
- /*.quantize_output_tensor =*/ true,
- /*.only_copy =*/ false,
- /*.pure =*/ false,
- /*.imatrix =*/ nullptr,
- };
- return result;
- }
- int32_t llama_max_devices(void) {
- return LLAMA_MAX_DEVICES;
- }
- bool llama_mmap_supported(void) {
- return llama_mmap::SUPPORTED;
- }
- bool llama_mlock_supported(void) {
- return llama_mlock::SUPPORTED;
- }
- void llama_backend_init(bool numa) {
- ggml_time_init();
- // needed to initialize f16 tables
- {
- struct ggml_init_params params = { 0, NULL, false };
- struct ggml_context * ctx = ggml_init(params);
- ggml_free(ctx);
- }
- if (numa) {
- ggml_numa_init();
- }
- #ifdef GGML_USE_MPI
- ggml_mpi_backend_init();
- #endif
- }
- void llama_backend_free(void) {
- #ifdef GGML_USE_MPI
- ggml_mpi_backend_free();
- #endif
- ggml_quantize_free();
- }
- int64_t llama_time_us(void) {
- return ggml_time_us();
- }
- struct llama_model * llama_load_model_from_file(
- const char * path_model,
- struct llama_model_params params) {
- ggml_time_init();
- llama_model * model = new llama_model;
- unsigned cur_percentage = 0;
- if (params.progress_callback == NULL) {
- params.progress_callback_user_data = &cur_percentage;
- params.progress_callback = [](float progress, void * ctx) {
- unsigned * cur_percentage_p = (unsigned *) ctx;
- unsigned percentage = (unsigned) (100 * progress);
- while (percentage > *cur_percentage_p) {
- *cur_percentage_p = percentage;
- LLAMA_LOG_INFO(".");
- if (percentage >= 100) {
- LLAMA_LOG_INFO("\n");
- }
- }
- return true;
- };
- }
- int status = llama_model_load(path_model, *model, params);
- GGML_ASSERT(status <= 0);
- if (status < 0) {
- if (status == -1) {
- LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
- } else if (status == -2) {
- LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
- }
- delete model;
- return nullptr;
- }
- return model;
- }
- void llama_free_model(struct llama_model * model) {
- delete model;
- }
- struct llama_context * llama_new_context_with_model(
- struct llama_model * model,
- struct llama_context_params params) {
- if (!model) {
- return nullptr;
- }
- llama_context * ctx = new llama_context(*model);
- const auto & hparams = model->hparams;
- auto & cparams = ctx->cparams;
- cparams.n_batch = params.n_batch;
- cparams.n_threads = params.n_threads;
- cparams.n_threads_batch = params.n_threads_batch;
- cparams.yarn_ext_factor = params.yarn_ext_factor;
- cparams.yarn_attn_factor = params.yarn_attn_factor;
- cparams.yarn_beta_fast = params.yarn_beta_fast;
- cparams.yarn_beta_slow = params.yarn_beta_slow;
- cparams.mul_mat_q = params.mul_mat_q;
- cparams.offload_kqv = params.offload_kqv;
- cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
- cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base;
- cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;
- cparams.n_yarn_orig_ctx = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx :
- hparams.n_yarn_orig_ctx != 0 ? hparams.n_yarn_orig_ctx :
- hparams.n_ctx_train;
- cparams.cb_eval = params.cb_eval;
- cparams.cb_eval_user_data = params.cb_eval_user_data;
- auto rope_scaling_type = params.rope_scaling_type;
- if (rope_scaling_type == LLAMA_ROPE_SCALING_UNSPECIFIED) {
- rope_scaling_type = hparams.rope_scaling_type_train;
- }
- if (rope_scaling_type == LLAMA_ROPE_SCALING_NONE) {
- cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
- }
- if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
- cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_YARN ? 1.0f : 0.0f;
- }
- if (params.seed == LLAMA_DEFAULT_SEED) {
- params.seed = time(NULL);
- }
- LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
- LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
- LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
- ctx->rng = std::mt19937(params.seed);
- ctx->logits_all = params.logits_all;
- const ggml_type type_k = params.type_k;
- const ggml_type type_v = params.type_v;
- GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
- GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
- if (!hparams.vocab_only) {
- // initialize backends
- #ifdef GGML_USE_METAL
- if (model->n_gpu_layers > 0) {
- ctx->backend_metal = ggml_backend_metal_init();
- if (ctx->backend_metal == nullptr) {
- LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__);
- llama_free(ctx);
- return nullptr;
- }
- ctx->backends.push_back(ctx->backend_metal);
- }
- #elif defined(GGML_USE_CUBLAS)
- if (model->n_gpu_layers > 0) {
- // with split_mode LLAMA_SPLIT_NONE or LLAMA_SPLIT_ROW, only the main GPU backend is used
- if (model->split_mode == LLAMA_SPLIT_NONE || model->split_mode == LLAMA_SPLIT_ROW) {
- ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
- if (backend == nullptr) {
- LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
- llama_free(ctx);
- return nullptr;
- }
- ctx->backends.push_back(backend);
- } else {
- // LLAMA_SPLIT_LAYER requires a backend for each GPU
- for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
- ggml_backend_t backend = ggml_backend_cuda_init(device);
- if (backend == nullptr) {
- LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
- llama_free(ctx);
- return nullptr;
- }
- ctx->backends.push_back(backend);
- }
- }
- }
- #elif defined(GGML_USE_VULKAN)
- if (model->n_gpu_layers > 0) {
- ggml_backend_t backend = ggml_backend_vk_init();
- if (backend == nullptr) {
- LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__);
- llama_free(ctx);
- return nullptr;
- }
- ctx->backends.push_back(backend);
- }
- #elif defined(GGML_USE_SYCL)
- if (model->n_gpu_layers > 0) {
- ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
- if (backend == nullptr) {
- LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d backend\n", __func__, model->main_gpu);
- llama_free(ctx);
- return nullptr;
- }
- ctx->backends.push_back(backend);
- }
- #endif
- ctx->backend_cpu = ggml_backend_cpu_init();
- if (ctx->backend_cpu == nullptr) {
- LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__);
- llama_free(ctx);
- return nullptr;
- }
- ctx->backends.push_back(ctx->backend_cpu);
- if (!llama_kv_cache_init(ctx->kv_self, ctx->model, type_k, type_v,
- cparams.n_ctx, cparams.offload_kqv)) {
- LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
- llama_free(ctx);
- return nullptr;
- }
- {
- size_t memory_size_k = 0;
- size_t memory_size_v = 0;
- for (auto & k : ctx->kv_self.k_l) {
- memory_size_k += ggml_nbytes(k);
- }
- for (auto & v : ctx->kv_self.v_l) {
- memory_size_v += ggml_nbytes(v);
- }
- LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
- (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
- ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
- ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
- }
- // resized during inference, reserve maximum
- ctx->logits.reserve(hparams.n_vocab*cparams.n_batch);
- if (params.embedding){
- ctx->embedding.resize(hparams.n_embd);
- }
- // graph inputs
- {
- ggml_init_params init_params = {
- /* .mem_size */ ggml_tensor_overhead()*5,
- /* .mem_buffer */ nullptr,
- /* .no_alloc */ true,
- };
- ctx->ctx_input = ggml_init(init_params);
- ctx->inp_tokens = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, cparams.n_batch);
- ctx->inp_embd = ggml_new_tensor_2d(ctx->ctx_input, GGML_TYPE_F32, hparams.n_embd, cparams.n_batch);
- ctx->inp_pos = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, cparams.n_batch);
- ctx->inp_KQ_mask = ggml_new_tensor_2d(ctx->ctx_input, GGML_TYPE_F32, cparams.n_ctx, cparams.n_batch);
- ctx->inp_K_shift = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, cparams.n_ctx);
- ggml_set_name(ctx->inp_tokens, "inp_tokens");
- ggml_set_name(ctx->inp_embd, "inp_embd");
- ggml_set_name(ctx->inp_pos, "inp_pos");
- ggml_set_name(ctx->inp_KQ_mask, "inp_KQ_mask");
- ggml_set_name(ctx->inp_K_shift, "inp_K_shift");
- ctx->buf_input = ggml_backend_alloc_ctx_tensors_from_buft(ctx->ctx_input, llama_default_buffer_type_cpu(true));
- LLAMA_LOG_INFO("%s: %10s input buffer size = %8.2f MiB\n", __func__,
- ggml_backend_buffer_name(ctx->buf_input),
- ggml_backend_buffer_get_size(ctx->buf_input) / 1024.0 / 1024.0);
- }
- // scheduler and compute buffers
- {
- // buffer types used for the compute buffer of each backend
- std::vector<ggml_backend_buffer_type_t> backend_buft;
- for (auto * backend : ctx->backends) {
- if (ggml_backend_is_cpu(backend)) {
- // use host buffers for the CPU backend compute buffer
- backend_buft.push_back(llama_default_buffer_type_cpu(true));
- } else {
- backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
- }
- }
- // buffer used to store the computation graph and the tensor meta data
- ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead());
- ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES);
- ctx->alloc = ggml_backend_sched_get_tallocr(ctx->sched, ctx->backend_cpu);
- // build worst-case graph
- int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_batch);
- int n_past = cparams.n_ctx - n_tokens;
- llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
- ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0));
- // initialize scheduler with the worst-case graph
- ggml_backend_sched_init_measure(ctx->sched, gf);
- ctx->alloc = ggml_backend_sched_get_tallocr(ctx->sched, ctx->backend_cpu);
- for (ggml_backend_t backend : ctx->backends) {
- ggml_backend_buffer_t buf = ggml_backend_sched_get_buffer(ctx->sched, backend);
- LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
- ggml_backend_buffer_name(buf),
- ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
- }
- // note: the number of splits during measure is higher than during inference due to the kv shift
- int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
- LLAMA_LOG_INFO("%s: graph splits (measure): %d\n", __func__, n_splits);
- }
- }
- #ifdef GGML_USE_MPI
- ctx->ctx_mpi = ggml_mpi_init();
- if (ggml_mpi_rank(ctx->ctx_mpi) > 0) {
- // Enter a blocking eval loop with dummy input, letting rank=0 drive the process
- // TODO: needs fix after #3228
- GGML_ASSERT(false && "not implemented");
- //const std::vector<llama_token> tmp(ctx->model.hparams.n_ctx, llama_token_bos(ctx));
- //while (!llama_eval(ctx, tmp.data(), tmp.size(), 0, 0)) {};
- llama_backend_free();
- exit(1);
- }
- #endif
- return ctx;
- }
- void llama_free(struct llama_context * ctx) {
- delete ctx;
- }
- const llama_model * llama_get_model(const struct llama_context * ctx) {
- return &ctx->model;
- }
- uint32_t llama_n_ctx(const struct llama_context * ctx) {
- return ctx->cparams.n_ctx;
- }
- uint32_t llama_n_batch(const struct llama_context * ctx) {
- return ctx->cparams.n_batch;
- }
- enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
- return model->vocab.type;
- }
- int32_t llama_n_vocab(const struct llama_model * model) {
- return model->vocab.id_to_token.size();
- }
- int32_t llama_n_ctx_train(const struct llama_model * model) {
- return model->hparams.n_ctx_train;
- }
- int32_t llama_n_embd(const struct llama_model * model) {
- return model->hparams.n_embd;
- }
- float llama_rope_freq_scale_train(const struct llama_model * model) {
- return model->hparams.rope_freq_scale_train;
- }
- int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
- const auto & it = model->gguf_kv.find(key);
- if (it == model->gguf_kv.end()) {
- if (buf_size > 0) {
- buf[0] = '\0';
- }
- return -1;
- }
- return snprintf(buf, buf_size, "%s", it->second.c_str());
- }
- int32_t llama_model_meta_count(const struct llama_model * model) {
- return (int)model->gguf_kv.size();
- }
- int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
- if (i < 0 || i >= (int)model->gguf_kv.size()) {
- if (buf_size > 0) {
- buf[0] = '\0';
- }
- return -1;
- }
- auto it = model->gguf_kv.begin();
- std::advance(it, i);
- return snprintf(buf, buf_size, "%s", it->first.c_str());
- }
- int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
- if (i < 0 || i >= (int)model->gguf_kv.size()) {
- if (buf_size > 0) {
- buf[0] = '\0';
- }
- return -1;
- }
- auto it = model->gguf_kv.begin();
- std::advance(it, i);
- return snprintf(buf, buf_size, "%s", it->second.c_str());
- }
- int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
- return snprintf(buf, buf_size, "%s %s %s",
- llama_model_arch_name(model->arch).c_str(),
- llama_model_type_name(model->type),
- llama_model_ftype_name(model->ftype).c_str());
- }
- uint64_t llama_model_size(const struct llama_model * model) {
- uint64_t size = 0;
- for (const auto & it : model->tensors_by_name) {
- size += ggml_nbytes(it.second);
- }
- return size;
- }
- uint64_t llama_model_n_params(const struct llama_model * model) {
- uint64_t nparams = 0;
- for (const auto & it : model->tensors_by_name) {
- nparams += ggml_nelements(it.second);
- }
- return nparams;
- }
- struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
- auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(),
- [name](const std::pair<std::string, struct ggml_tensor *> & it) {
- return it.first == name;
- });
- if (it == model->tensors_by_name.end()) {
- return nullptr;
- }
- return it->second;
- }
- uint32_t llama_model_quantize(
- const char * fname_inp,
- const char * fname_out,
- const llama_model_quantize_params * params) {
- try {
- llama_model_quantize_internal(fname_inp, fname_out, params);
- return 0;
- } catch (const std::exception & err) {
- LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
- return 1;
- }
- }
- int32_t llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
- try {
- return llama_apply_lora_from_file_internal(ctx->model, path_lora, scale, path_base_model, n_threads);
- } catch (const std::exception & err) {
- LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
- return 1;
- }
- }
- int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
- try {
- return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
- } catch (const std::exception & err) {
- LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
- return 1;
- }
- }
- struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_max_seq) {
- struct llama_kv_cache_view result = {
- /*.n_cells = */ 0,
- /*.n_max_seq = */ n_max_seq,
- /*.token_count = */ 0,
- /*.used_cells = */ llama_get_kv_cache_used_cells(ctx),
- /*.max_contiguous = */ 0,
- /*.max_contiguous_idx = */ -1,
- /*.cells = */ nullptr,
- /*.cells_sequences = */ nullptr,
- };
- return result;
- }
- void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
- if (view->cells != nullptr) {
- free(view->cells);
- view->cells = nullptr;
- }
- if (view->cells_sequences != nullptr) {
- free(view->cells_sequences);
- view->cells_sequences = nullptr;
- }
- }
- void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) {
- if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) {
- view->n_cells = int32_t(ctx->kv_self.size);
- void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
- GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
- view->cells = (struct llama_kv_cache_view_cell *)p;
- p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_max_seq * view->n_cells);
- GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
- view->cells_sequences = (llama_seq_id *)p;
- }
- const std::vector<llama_kv_cell> & kv_cells = ctx->kv_self.cells;
- llama_kv_cache_view_cell * c_curr = view->cells;
- llama_seq_id * cs_curr = view->cells_sequences;
- int32_t used_cells = 0;
- int32_t token_count = 0;
- int32_t curr_contig_idx = -1;
- uint32_t max_contig = 0;
- int32_t max_contig_idx = -1;
- for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_max_seq) {
- const size_t curr_size = kv_cells[i].seq_id.size();
- token_count += curr_size;
- c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
- if (curr_size > 0) {
- if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
- max_contig = i - curr_contig_idx;
- max_contig_idx = curr_contig_idx;
- }
- curr_contig_idx = -1;
- } else if (curr_contig_idx < 0) {
- curr_contig_idx = i;
- }
- int seq_idx = 0;
- for (const llama_seq_id it : kv_cells[i].seq_id) {
- if (seq_idx >= view->n_max_seq) {
- break;
- }
- cs_curr[seq_idx] = it;
- seq_idx++;
- }
- if (seq_idx != 0) {
- used_cells++;
- }
- for (; seq_idx < view->n_max_seq; seq_idx++) {
- cs_curr[seq_idx] = -1;
- }
- }
- if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
- max_contig_idx = curr_contig_idx;
- max_contig = kv_cells.size() - curr_contig_idx;
- }
- view->max_contiguous = max_contig;
- view->max_contiguous_idx = max_contig_idx;
- view->token_count = token_count;
- view->used_cells = used_cells;
- if (uint32_t(used_cells) != ctx->kv_self.used) {
- LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
- __func__, ctx->kv_self.used, used_cells);
- }
- }
- int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx) {
- int result = 0;
- for (uint32_t i = 0; i < ctx->kv_self.size; i++) {
- result += ctx->kv_self.cells[i].seq_id.size();
- }
- return result;
- }
- int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx) {
- return ctx->kv_self.used;
- }
- void llama_kv_cache_clear(struct llama_context * ctx) {
- llama_kv_cache_clear(ctx->kv_self);
- }
- void llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
- llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
- }
- void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
- if (seq_id_src == seq_id_dst) {
- return;
- }
- llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
- }
- void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
- llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
- }
- void llama_kv_cache_seq_shift(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
- if (delta == 0) {
- return;
- }
- llama_kv_cache_seq_shift(ctx->kv_self, seq_id, p0, p1, delta);
- }
- void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
- if (d == 1) {
- return;
- }
- llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d);
- }
- // Returns the *maximum* size of the state
- size_t llama_get_state_size(const struct llama_context * ctx) {
- // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
- // for reference, std::mt19937(1337) serializes to 6701 bytes.
- const size_t s_rng_size = sizeof(size_t);
- const size_t s_rng = LLAMA_MAX_RNG_STATE;
- const size_t s_logits_size = sizeof(size_t);
- // assume worst case for logits although only currently set ones are serialized
- const size_t s_logits = ctx->logits.capacity() * sizeof(float);
- const size_t s_embedding_size = sizeof(size_t);
- const size_t s_embedding = ctx->embedding.size() * sizeof(float);
- const size_t s_kv_size = sizeof(size_t);
- const size_t s_kv_ntok = sizeof(int);
- const size_t s_kv = ctx->kv_self.total_size();
- const size_t s_total = (
- + s_rng_size
- + s_rng
- + s_logits_size
- + s_logits
- + s_embedding_size
- + s_embedding
- + s_kv_size
- + s_kv_ntok
- + s_kv
- );
- return s_total;
- }
- // llama_context_data
- struct llama_data_context {
- virtual void write(const void * src, size_t size) = 0;
- virtual size_t get_size_written() = 0;
- virtual ~llama_data_context() = default;
- };
- struct llama_data_buffer_context : llama_data_context {
- uint8_t * ptr;
- size_t size_written = 0;
- llama_data_buffer_context(uint8_t * p) : ptr(p) {}
- void write(const void * src, size_t size) override {
- memcpy(ptr, src, size);
- ptr += size;
- size_written += size;
- }
- size_t get_size_written() override {
- return size_written;
- }
- };
- struct llama_data_file_context : llama_data_context {
- llama_file * file;
- size_t size_written = 0;
- llama_data_file_context(llama_file * f) : file(f) {}
- void write(const void * src, size_t size) override {
- file->write_raw(src, size);
- size_written += size;
- }
- size_t get_size_written() override {
- return size_written;
- }
- };
- /** copy state data into either a buffer or file depending on the passed in context
- *
- * file context:
- * llama_file file("/path", "wb");
- * llama_data_file_context data_ctx(&file);
- * llama_copy_state_data(ctx, &data_ctx);
- *
- * buffer context:
- * std::vector<uint8_t> buf(max_size, 0);
- * llama_data_buffer_context data_ctx(&buf.data());
- * llama_copy_state_data(ctx, &data_ctx);
- *
- */
- static void llama_copy_state_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
- // copy rng
- {
- std::ostringstream rng_ss;
- rng_ss << ctx->rng;
- const std::string & rng_str = rng_ss.str();
- const size_t rng_size = rng_str.size();
- GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
- data_ctx->write(&rng_size, sizeof(rng_size));
- data_ctx->write(rng_str.data(), rng_size);
- }
- // copy logits
- {
- const size_t logits_size = ctx->logits.size();
- data_ctx->write(&logits_size, sizeof(logits_size));
- if (logits_size) {
- data_ctx->write(ctx->logits.data(), logits_size * sizeof(float));
- }
- }
- // copy embeddings
- {
- const size_t embedding_size = ctx->embedding.size();
- data_ctx->write(&embedding_size, sizeof(embedding_size));
- if (embedding_size) {
- data_ctx->write(ctx->embedding.data(), embedding_size * sizeof(float));
- }
- }
- // copy kv cache
- {
- const auto & kv_self = ctx->kv_self;
- const auto & hparams = ctx->model.hparams;
- const auto & cparams = ctx->cparams;
- const auto n_layer = hparams.n_layer;
- const auto n_embd_k_gqa = hparams.n_embd_k_gqa();
- const auto n_embd_v_gqa = hparams.n_embd_v_gqa();
- const auto n_ctx = cparams.n_ctx;
- const size_t kv_buf_size = kv_self.total_size();
- const uint32_t kv_head = kv_self.head;
- const uint32_t kv_size = kv_self.size;
- const uint32_t kv_used = kv_self.used;
- data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
- data_ctx->write(&kv_head, sizeof(kv_head));
- data_ctx->write(&kv_size, sizeof(kv_size));
- data_ctx->write(&kv_used, sizeof(kv_used));
- if (kv_buf_size) {
- const size_t elt_size = ggml_element_size(kv_self.k_l[0]);
- std::vector<uint8_t> tmp_buf;
- for (int il = 0; il < (int) n_layer; ++il) {
- tmp_buf.resize(elt_size*n_embd_k_gqa*kv_head);
- ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size());
- data_ctx->write(tmp_buf.data(), tmp_buf.size());
- // v is not contiguous, copy row by row
- tmp_buf.resize(elt_size*kv_head);
- for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
- ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*elt_size*n_ctx, tmp_buf.size());
- data_ctx->write(tmp_buf.data(), tmp_buf.size());
- }
- }
- }
- for (uint32_t i = 0; i < kv_size; ++i) {
- const auto & cell = kv_self.cells[i];
- const llama_pos pos = cell.pos;
- const size_t seq_id_size = cell.seq_id.size();
- data_ctx->write(&pos, sizeof(pos));
- data_ctx->write(&seq_id_size, sizeof(seq_id_size));
- for (auto seq_id : cell.seq_id) {
- data_ctx->write(&seq_id, sizeof(seq_id));
- }
- }
- }
- }
- size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
- llama_data_buffer_context data_ctx(dst);
- llama_copy_state_data_internal(ctx, &data_ctx);
- return data_ctx.get_size_written();
- }
- // Sets the state reading from the specified source address
- size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
- uint8_t * inp = src;
- // set rng
- {
- size_t rng_size;
- memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
- GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
- std::string rng_str((char *)inp, rng_size); inp += rng_size;
- std::istringstream rng_ss(rng_str);
- rng_ss >> ctx->rng;
- GGML_ASSERT(!rng_ss.fail());
- }
- // set logits
- {
- size_t logits_size;
- memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
- GGML_ASSERT(ctx->logits.capacity() >= logits_size);
- if (logits_size) {
- ctx->logits.resize(logits_size);
- memcpy(ctx->logits.data(), inp, logits_size * sizeof(float));
- inp += logits_size * sizeof(float);
- }
- }
- // set embeddings
- {
- size_t embedding_size;
- memcpy(&embedding_size, inp, sizeof(embedding_size)); inp += sizeof(embedding_size);
- GGML_ASSERT(ctx->embedding.capacity() == embedding_size);
- if (embedding_size) {
- memcpy(ctx->embedding.data(), inp, embedding_size * sizeof(float));
- inp += embedding_size * sizeof(float);
- }
- }
- // set kv cache
- {
- const auto & kv_self = ctx->kv_self;
- const auto & hparams = ctx->model.hparams;
- const auto & cparams = ctx->cparams;
- const int n_layer = hparams.n_layer;
- const int n_embd_k_gqa = hparams.n_embd_k_gqa();
- const int n_embd_v_gqa = hparams.n_embd_v_gqa();
- const int n_ctx = cparams.n_ctx;
- size_t kv_buf_size;
- uint32_t kv_head;
- uint32_t kv_size;
- uint32_t kv_used;
- memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
- memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
- memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
- memcpy(&kv_used, inp, sizeof(kv_used)); inp += sizeof(kv_used);
- if (kv_buf_size) {
- GGML_ASSERT(kv_self.total_size() == kv_buf_size);
- const size_t elt_size = ggml_element_size(kv_self.k_l[0]);
- for (int il = 0; il < (int) n_layer; ++il) {
- size_t k_size = elt_size*n_embd_k_gqa*kv_head;
- ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size);
- inp += k_size;
- // v is not contiguous, copy row by row
- size_t v_row_size = elt_size*kv_head;
- for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
- ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*elt_size*n_ctx, v_row_size);
- inp += v_row_size;
- }
- }
- }
- ctx->kv_self.head = kv_head;
- ctx->kv_self.size = kv_size;
- ctx->kv_self.used = kv_used;
- ctx->kv_self.cells.resize(kv_size);
- for (uint32_t i = 0; i < kv_size; ++i) {
- llama_pos pos;
- size_t seq_id_size;
- memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos);
- memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);
- ctx->kv_self.cells[i].pos = pos;
- llama_seq_id seq_id;
- for (size_t j = 0; j < seq_id_size; ++j) {
- memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
- ctx->kv_self.cells[i].seq_id.insert(seq_id);
- }
- }
- }
- const size_t nread = inp - src;
- const size_t max_size = llama_get_state_size(ctx);
- GGML_ASSERT(nread <= max_size);
- return nread;
- }
- static bool llama_load_session_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
- llama_file file(path_session, "rb");
- // sanity checks
- {
- const uint32_t magic = file.read_u32();
- const uint32_t version = file.read_u32();
- if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
- LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
- return false;
- }
- llama_hparams session_hparams;
- file.read_raw(&session_hparams, sizeof(llama_hparams));
- if (session_hparams != ctx->model.hparams) {
- LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
- return false;
- }
- }
- // load the prompt
- {
- const uint32_t n_token_count = file.read_u32();
- if (n_token_count > n_token_capacity) {
- LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
- return false;
- }
- file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
- *n_token_count_out = n_token_count;
- }
- // restore the context state
- {
- const size_t n_state_size_cur = file.size - file.tell();
- const size_t n_state_size_max = llama_get_state_size(ctx);
- if (n_state_size_cur > n_state_size_max) {
- LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
- return false;
- }
- std::vector<uint8_t> state_data(n_state_size_max);
- file.read_raw(state_data.data(), n_state_size_cur);
- llama_set_state_data(ctx, state_data.data());
- }
- return true;
- }
- bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
- try {
- return llama_load_session_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
- } catch (const std::exception & err) {
- LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
- return false;
- }
- }
- bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
- llama_file file(path_session, "wb");
- file.write_u32(LLAMA_SESSION_MAGIC);
- file.write_u32(LLAMA_SESSION_VERSION);
- file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
- // save the prompt
- file.write_u32((uint32_t) n_token_count);
- file.write_raw(tokens, sizeof(llama_token) * n_token_count);
- // save the context state using stream saving
- llama_data_file_context data_ctx(&file);
- llama_copy_state_data_internal(ctx, &data_ctx);
- return true;
- }
- int llama_eval(
- struct llama_context * ctx,
- llama_token * tokens,
- int32_t n_tokens,
- int32_t n_past) {
- llama_kv_cache_seq_rm(ctx->kv_self, -1, n_past, -1);
- const int ret = llama_decode_internal(*ctx, llama_batch_get_one(tokens, n_tokens, n_past, 0));
- if (ret < 0) {
- LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
- }
- return ret;
- }
- int llama_eval_embd(
- struct llama_context * ctx,
- float * embd,
- int32_t n_tokens,
- int32_t n_past) {
- llama_kv_cache_seq_rm(ctx->kv_self, -1, n_past, -1);
- llama_batch batch = { n_tokens, nullptr, embd, nullptr, nullptr, nullptr, nullptr, n_past, 1, 0, };
- const int ret = llama_decode_internal(*ctx, batch);
- if (ret < 0) {
- LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
- }
- return ret;
- }
- void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
- ctx->cparams.n_threads = n_threads;
- ctx->cparams.n_threads_batch = n_threads_batch;
- }
- struct llama_batch llama_batch_get_one(
- llama_token * tokens,
- int32_t n_tokens,
- llama_pos pos_0,
- llama_seq_id seq_id) {
- return {
- /*n_tokens =*/ n_tokens,
- /*tokens =*/ tokens,
- /*embd =*/ nullptr,
- /*pos =*/ nullptr,
- /*n_seq_id =*/ nullptr,
- /*seq_id =*/ nullptr,
- /*logits =*/ nullptr,
- /*all_pos_0 =*/ pos_0,
- /*all_pos_1 =*/ 1,
- /*all_seq_id =*/ seq_id,
- };
- }
- struct llama_batch llama_batch_init(int32_t n_tokens, int32_t embd, int32_t n_seq_max) {
- llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
- if (embd) {
- batch.embd = (float *) malloc(sizeof(float) * n_tokens * embd);
- } else {
- batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens);
- }
- batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens);
- batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens);
- batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * n_tokens);
- for (int i = 0; i < n_tokens; ++i) {
- batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
- }
- batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens);
- return batch;
- }
- void llama_batch_free(struct llama_batch batch) {
- if (batch.token) free(batch.token);
- if (batch.embd) free(batch.embd);
- if (batch.pos) free(batch.pos);
- if (batch.n_seq_id) free(batch.n_seq_id);
- if (batch.seq_id) {
- for (int i = 0; i < batch.n_tokens; ++i) {
- free(batch.seq_id[i]);
- }
- free(batch.seq_id);
- }
- if (batch.logits) free(batch.logits);
- }
- int32_t llama_decode(
- struct llama_context * ctx,
- struct llama_batch batch) {
- const int ret = llama_decode_internal(*ctx, batch);
- if (ret < 0) {
- LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
- }
- return ret;
- }
- float * llama_get_logits(struct llama_context * ctx) {
- return ctx->logits.data();
- }
- float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
- assert(ctx->logits_valid.at(i));
- return ctx->logits.data() + i*ctx->model.hparams.n_vocab;
- }
- float * llama_get_embeddings(struct llama_context * ctx) {
- return ctx->embedding.data();
- }
- const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
- return model->vocab.id_to_token[token].text.c_str();
- }
- float llama_token_get_score(const struct llama_model * model, llama_token token) {
- return model->vocab.id_to_token[token].score;
- }
- llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token) {
- return model->vocab.id_to_token[token].type;
- }
- llama_token llama_token_bos(const struct llama_model * model) {
- return model->vocab.special_bos_id;
- }
- llama_token llama_token_eos(const struct llama_model * model) {
- return model->vocab.special_eos_id;
- }
- llama_token llama_token_nl(const struct llama_model * model) {
- return model->vocab.linefeed_id;
- }
- int32_t llama_add_bos_token(const struct llama_model * model) {
- return model->vocab.special_add_bos;
- }
- int32_t llama_add_eos_token(const struct llama_model * model) {
- return model->vocab.special_add_eos;
- }
- llama_token llama_token_prefix(const struct llama_model * model) {
- return model->vocab.special_prefix_id;
- }
- llama_token llama_token_middle(const struct llama_model * model) {
- return model->vocab.special_middle_id;
- }
- llama_token llama_token_suffix(const struct llama_model * model) {
- return model->vocab.special_suffix_id;
- }
- llama_token llama_token_eot(const struct llama_model * model) {
- return model->vocab.special_eot_id;
- }
- int32_t llama_tokenize(
- const struct llama_model * model,
- const char * text,
- int32_t text_len,
- llama_token * tokens,
- int32_t n_max_tokens,
- bool add_bos,
- bool special) {
- auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_bos, special);
- if (n_max_tokens < (int) res.size()) {
- // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
- return -((int) res.size());
- }
- for (size_t i = 0; i < res.size(); i++) {
- tokens[i] = res[i];
- }
- return res.size();
- }
- static std::string llama_decode_text(const std::string & text) {
- std::string decoded_text;
- auto unicode_sequences = codepoints_from_utf8(text);
- for (auto& unicode_sequence : unicode_sequences) {
- decoded_text += unicode_to_bytes_bpe(codepoint_to_utf8(unicode_sequence));
- }
- return decoded_text;
- }
- // does not write null-terminator to buf
- int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length) {
- if (0 <= token && token < llama_n_vocab(model)) {
- switch (llama_vocab_get_type(model->vocab)) {
- case LLAMA_VOCAB_TYPE_SPM: {
- // NOTE: we accept all unsupported token types,
- // suppressing them like CONTROL tokens.
- if (llama_is_normal_token(model->vocab, token)) {
- std::string result = model->vocab.id_to_token[token].text;
- llama_unescape_whitespace(result);
- if (length < (int) result.length()) {
- return -(int) result.length();
- }
- memcpy(buf, result.c_str(), result.length());
- return result.length();
- } else if (llama_is_user_defined_token(model->vocab, token)) {
- std::string result = model->vocab.id_to_token[token].text;
- if (length < (int) result.length()) {
- return -result.length();
- }
- memcpy(buf, result.c_str(), result.length());
- return result.length();
- } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
- if (length < 3) {
- return -3;
- }
- memcpy(buf, "\xe2\x96\x85", 3);
- return 3;
- } else if (llama_is_control_token(model->vocab, token)) {
- ;
- } else if (llama_is_byte_token(model->vocab, token)) {
- if (length < 1) {
- return -1;
- }
- buf[0] = llama_token_to_byte(model->vocab, token);
- return 1;
- }
- break;
- }
- case LLAMA_VOCAB_TYPE_BPE: {
- // NOTE: we accept all unsupported token types,
- // suppressing them like CONTROL tokens.
- if (llama_is_normal_token(model->vocab, token)) {
- std::string result = model->vocab.id_to_token[token].text;
- result = llama_decode_text(result);
- if (length < (int) result.length()) {
- return -(int) result.length();
- }
- memcpy(buf, result.c_str(), result.length());
- return result.length();
- } else if (llama_is_user_defined_token(model->vocab, token)) {
- std::string result = model->vocab.id_to_token[token].text;
- if (length < (int) result.length()) {
- return -result.length();
- }
- memcpy(buf, result.c_str(), result.length());
- return result.length();
- } else if (llama_is_control_token(model->vocab, token)) {
- ;
- }
- break;
- }
- default:
- GGML_ASSERT(false);
- }
- }
- return 0;
- }
- struct llama_timings llama_get_timings(struct llama_context * ctx) {
- struct llama_timings result = {
- /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
- /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
- /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
- /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
- /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
- /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
- /*.n_sample =*/ std::max(1, ctx->n_sample),
- /*.n_p_eval =*/ std::max(1, ctx->n_p_eval),
- /*.n_eval =*/ std::max(1, ctx->n_eval),
- };
- return result;
- }
- void llama_print_timings(struct llama_context * ctx) {
- const llama_timings timings = llama_get_timings(ctx);
- LLAMA_LOG_INFO("\n");
- LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms);
- LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
- __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
- LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
- __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
- LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
- __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
- LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval));
- }
- void llama_reset_timings(struct llama_context * ctx) {
- ctx->t_start_us = ggml_time_us();
- ctx->t_sample_us = ctx->n_sample = 0;
- ctx->t_eval_us = ctx->n_eval = 0;
- ctx->t_p_eval_us = ctx->n_p_eval = 0;
- }
- const char * llama_print_system_info(void) {
- static std::string s;
- s = "";
- s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
- s += "AVX_VNNI = " + std::to_string(ggml_cpu_has_avx_vnni()) + " | ";
- s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
- s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
- s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
- s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
- s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
- s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
- s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
- s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
- s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
- s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
- s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
- s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
- s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
- s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
- return s.c_str();
- }
- void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
- fprintf(stream, "\n");
- fprintf(stream, "###########\n");
- fprintf(stream, "# Timings #\n");
- fprintf(stream, "###########\n");
- fprintf(stream, "\n");
- fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
- 1.0e-3 * ctx->t_eval_us / ctx->n_eval);
- fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
- 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
- fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
- 1.0e-3 * ctx->t_sample_us / ctx->n_sample);
- fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
- fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
- fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample);
- fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
- fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
- fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
- fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us);
- fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
- 1.0e6 * ctx->n_eval / ctx->t_eval_us);
- fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
- 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
- fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
- 1.0e6 * ctx->n_sample / ctx->t_sample_us);
- }
- // For internal test use
- const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
- struct llama_context * ctx
- ) {
- return ctx->model.tensors_by_name;
- }
- void llama_log_set(ggml_log_callback log_callback, void * user_data) {
- g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
- g_state.log_callback_user_data = user_data;
- #ifdef GGML_USE_METAL
- ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
- #endif
- }
- static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
- va_list args_copy;
- va_copy(args_copy, args);
- char buffer[128];
- int len = vsnprintf(buffer, 128, format, args);
- if (len < 128) {
- g_state.log_callback(level, buffer, g_state.log_callback_user_data);
- } else {
- char* buffer2 = new char[len+1];
- vsnprintf(buffer2, len+1, format, args_copy);
- buffer2[len] = 0;
- g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
- delete[] buffer2;
- }
- va_end(args_copy);
- }
- static void llama_log_internal(ggml_log_level level, const char * format, ...) {
- va_list args;
- va_start(args, format);
- llama_log_internal_v(level, format, args);
- va_end(args);
- }
- static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
- (void) level;
- (void) user_data;
- fputs(text, stderr);
- fflush(stderr);
- }
|