| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773 |
- #include <ggml.h>
- #include <ggml-alloc.h>
- #include <ggml-backend.h>
- #include <ggml-backend-impl.h>
- #include <algorithm>
- #include <array>
- #include <cfloat>
- #include <cstring>
- #include <functional>
- #include <memory>
- #include <random>
- #include <stdio.h>
- #include <stdlib.h>
- #include <string>
- #include <thread>
- #include <vector>
- static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
- // static RNG initialization (revisit if n_threads stops being constant)
- static const size_t n_threads = std::thread::hardware_concurrency();
- static std::vector<std::default_random_engine> generators = []() {
- std::random_device rd;
- std::vector<std::default_random_engine> vec;
- vec.reserve(n_threads);
- //for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
- for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
- return vec;
- }();
- size_t size = ggml_nelements(tensor);
- std::vector<float> data(size);
- auto init_thread = [&](size_t ith, size_t start, size_t end) {
- std::uniform_real_distribution<float> distribution(min, max);
- for (size_t i = start; i < end; i++) {
- data[i] = distribution(generators[ith]);
- }
- };
- std::vector<std::thread> threads;
- threads.reserve(n_threads);
- for (size_t i = 0; i < n_threads; i++) {
- size_t start = i*size/n_threads;
- size_t end = (i+1)*size/n_threads;
- threads.emplace_back(init_thread, i, start, end);
- }
- for (auto & t : threads) {
- t.join();
- }
- if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
- ggml_backend_tensor_set(tensor, data.data(), 0, size * sizeof(float));
- } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16) {
- GGML_ASSERT(size % ggml_blck_size(tensor->type) == 0);
- std::vector<uint8_t> dataq(ggml_row_size(tensor->type, size));
- int64_t hist[16];
- std::vector<float> imatrix(tensor->ne[0], 1.0f); // dummy importance matrix
- const float * im = imatrix.data();
- if (!ggml_quantize_requires_imatrix(tensor->type)) {
- // when the imatrix is optional, we want to test both quantization with and without imatrix
- // use one of the random numbers to decide
- if (data[0] > 0.5f*(min + max)) {
- im = nullptr;
- }
- }
- ggml_quantize_chunk(tensor->type, data.data(), dataq.data(), 0, size/tensor->ne[0], tensor->ne[0], hist, im);
- ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
- } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
- // This is going to create some weird integers though.
- ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
- } else {
- GGML_ASSERT(false);
- }
- }
- static std::vector<float> tensor_to_float(const ggml_tensor * t) {
- std::vector<float> tv;
- tv.reserve(ggml_nelements(t));
- std::vector<uint8_t> buf(ggml_nbytes(t));
- ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
- ggml_type_traits_t tt = ggml_internal_get_type_traits(t->type);
- size_t bs = ggml_blck_size(t->type);
- std::vector<float> vq(ggml_blck_size(t->type));
- bool quantized = ggml_is_quantized(t->type);
- // access elements by index to avoid gaps in views
- for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
- for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
- for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
- for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
- size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
- if (t->type == GGML_TYPE_F16) {
- tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
- } else if (t->type == GGML_TYPE_F32) {
- tv.push_back(*(float *) &buf[i]);
- } else if (t->type == GGML_TYPE_I32) {
- tv.push_back((float)*(int32_t *) &buf[i]);
- } else if (t->type == GGML_TYPE_I16) {
- tv.push_back((float)*(int16_t *) &buf[i]);
- } else if (t->type == GGML_TYPE_I8) {
- tv.push_back((float)*(int8_t *) &buf[i]);
- } else if (quantized) {
- tt.to_float(&buf[i], vq.data(), ggml_blck_size(t->type));
- tv.insert(tv.end(), vq.begin(), vq.end());
- } else {
- GGML_ASSERT(false);
- }
- }
- }
- }
- }
- return tv;
- }
- /*
- static double cosine_similarity(const float * v1, const float * v2, size_t n) {
- double dot = 0.0;
- double mag1 = 0.0;
- double mag2 = 0.0;
- for (size_t i = 0; i < n; i++) {
- if (std::isnan(v1[i]) || std::isnan(v2[i])) {
- return -1.0f;
- }
- if (std::isinf(v1[i]) && std::isinf(v2[i])) {
- continue;
- }
- dot += v1[i]*v2[i];
- mag1 += v1[i]*v1[i];
- mag2 += v2[i]*v2[i];
- }
- return dot/sqrt(mag1*mag2);
- }
- static float distance(const float * v1, const float * v2, size_t n) {
- double d = 0.0;
- for (size_t i = 0; i < n; i++) {
- if (std::isnan(v1[i]) || std::isnan(v2[i])) {
- return INFINITY;
- }
- if (std::isinf(v1[i]) && std::isinf(v2[i])) {
- continue;
- }
- d += (v1[i] - v2[i])*(v1[i] - v2[i]);
- }
- return sqrt(d);
- }
- static float vec_len(const float * v, size_t n) {
- double d = 0.0;
- for (size_t i = 0; i < n; i++) {
- if (std::isnan(v[i])) {
- return INFINITY;
- }
- if (std::isinf(v[i])) {
- continue;
- }
- d += v[i]*v[i];
- }
- return sqrt(d);
- }
- */
- // normalized mean squared error = mse(a, b) / mse(a, 0)
- static double nmse(const float * a, const float * b, size_t n) {
- double mse_a_b = 0.0;
- double mse_a_0 = 0.0;
- for (size_t i = 0; i < n; i++) {
- float a_i = a[i];
- float b_i = b[i];
- mse_a_b += (a_i - b_i) * (a_i - b_i);
- mse_a_0 += a_i * a_i;
- }
- return mse_a_b / mse_a_0;
- }
- // utils for printing the variables of the test cases
- #define VAR_TO_STR(x) (#x "=" + var_to_str(x))
- template<typename T>
- static std::string var_to_str(const T & x) {
- return std::to_string(x);
- }
- template<typename T, size_t N>
- static std::string var_to_str(const T (&x)[N]) {
- std::string s = "[";
- for (size_t i = 0; i < N; i++) {
- if (i > 0) {
- s += ",";
- }
- s += var_to_str(x[i]);
- }
- s += "]";
- return s;
- }
- template<typename T, size_t N>
- static std::string var_to_str(const std::array<T, N> & x) {
- std::string s = "[";
- for (size_t i = 0; i < N; i++) {
- if (i > 0) {
- s += ",";
- }
- s += var_to_str(x[i]);
- }
- s += "]";
- return s;
- }
- //static std::string var_to_str(ggml_unary_op unary_op) {
- // return ggml_unary_op_name(unary_op);
- //}
- static std::string var_to_str(ggml_type type) {
- return ggml_type_name(type);
- }
- #define VARS_TO_STR1(a) VAR_TO_STR(a)
- #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
- #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
- #define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
- #define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
- #define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
- #define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
- #define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
- #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
- #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
- #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
- #ifdef GGML_USE_SYCL
- static bool inline _isinf(float f) {
- return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000;
- }
- #else
- static bool inline _isinf(float f) { return std::isinf(f); }
- #endif
- // accept FLT_MAX as infinity
- static bool isinf_or_max(float f) {
- return _isinf(f) || f == FLT_MAX || f == -FLT_MAX;
- }
- static bool ggml_is_view_op(enum ggml_op op) {
- return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
- }
- enum test_mode {
- MODE_TEST,
- MODE_PERF,
- };
- struct test_case {
- virtual ~test_case() {}
- virtual std::string op_desc(ggml_tensor * t) {
- return ggml_op_desc(t);
- }
- virtual std::string vars() {
- return "";
- }
- virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
- virtual double max_nmse_err() {
- return 1e-7;
- }
- virtual void initialize_tensors(ggml_context * ctx) {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
- init_tensor_uniform(t);
- }
- }
- virtual size_t op_size(ggml_tensor * t) {
- size_t size = ggml_nbytes(t);
- // add source tensors
- for (int i = 0; i < GGML_MAX_SRC; i++) {
- if (t->src[i] != NULL) {
- size += ggml_nbytes(t->src[i]);
- }
- }
- return size;
- }
- ggml_cgraph * gf = nullptr;
- static const int sentinel_size = 1024;
- test_mode mode;
- std::vector<ggml_tensor *> sentinels;
- void add_sentinel(ggml_context * ctx) {
- if (mode == MODE_PERF) {
- return;
- }
- ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size);
- ggml_format_name(sentinel, "sent_%zu", sentinels.size());
- sentinels.push_back(sentinel);
- }
- // hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend
- ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) {
- ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne);
- add_sentinel(ctx);
- return t;
- }
- ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) {
- ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0);
- add_sentinel(ctx);
- return t;
- }
- ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) {
- ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1);
- add_sentinel(ctx);
- return t;
- }
- ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) {
- ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2);
- add_sentinel(ctx);
- return t;
- }
- ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
- ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
- add_sentinel(ctx);
- return t;
- }
- bool eval(ggml_backend_t backend1, ggml_backend_t backend2, const char * op_name) {
- mode = MODE_TEST;
- ggml_init_params params = {
- /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
- /* .mem_base = */ NULL,
- /* .no_alloc = */ true,
- };
- ggml_context * ctx = ggml_init(params);
- gf = ggml_new_graph(ctx);
- // pre-graph sentinel
- add_sentinel(ctx);
- ggml_tensor * out = build_graph(ctx);
- if (op_name != nullptr && op_desc(out) != op_name) {
- //printf(" %s: skipping\n", op_desc(out).c_str());
- ggml_free(ctx);
- return true;
- }
- printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
- fflush(stdout);
- // check if backends support op
- bool supported = true;
- for (ggml_backend_t backend : {backend1, backend2}) {
- if (!ggml_backend_supports_op(backend, out)) {
- printf("not supported [%s] ", ggml_backend_name(backend));
- supported = false;
- }
- }
- if (!supported) {
- printf("\n");
- ggml_free(ctx);
- return true;
- }
- // post-graph sentinel
- add_sentinel(ctx);
- // allocate
- ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
- if (buf == NULL) {
- printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
- ggml_free(ctx);
- return false;
- }
- // build graph
- ggml_build_forward_expand(gf, out);
- // add sentinels as graph nodes so that they are checked in the callback
- for (ggml_tensor * sentinel : sentinels) {
- gf->nodes[gf->n_nodes++] = sentinel;
- }
- // randomize tensors
- initialize_tensors(ctx);
- // compare
- struct callback_userdata {
- bool ok;
- double max_err;
- ggml_backend_t backend1;
- ggml_backend_t backend2;
- };
- callback_userdata ud {
- true,
- max_nmse_err(),
- backend1,
- backend2
- };
- auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
- callback_userdata * ud = (callback_userdata *) user_data;
- const char * bn1 = ggml_backend_name(ud->backend1);
- const char * bn2 = ggml_backend_name(ud->backend2);
- if (t1->op == GGML_OP_NONE) {
- // sentinels must be unchanged
- std::vector<uint8_t> t1_data(ggml_nbytes(t1));
- std::vector<uint8_t> t2_data(ggml_nbytes(t2));
- ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1));
- ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2));
- if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) {
- printf("sentinel mismatch: %s ", t1->name);
- ud->ok = false;
- return true;
- }
- }
- std::vector<float> f1 = tensor_to_float(t1);
- std::vector<float> f2 = tensor_to_float(t2);
- for (size_t i = 0; i < f1.size(); i++) {
- // check for nans
- if (std::isnan(f1[i]) || std::isnan(f2[i])) {
- printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]);
- ud->ok = false;
- return true;
- }
- // check for infs: both must be inf of the same sign, or both must be finite
- if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
- if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
- if (std::signbit(f1[i]) != std::signbit(f2[i])) {
- printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
- ud->ok = false;
- return true;
- }
- } else {
- printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
- ud->ok = false;
- return true;
- }
- }
- }
- double err = nmse(f1.data(), f2.data(), f1.size());
- if (err > ud->max_err) {
- printf("[%s] NMSE = %.9f > %.9f ", ggml_op_desc(t1), err, ud->max_err);
- //for (int i = 0; i < (int) f1.size(); i++) {
- // printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
- //}
- //printf("\n");
- //exit(1);
- ud->ok = false;
- }
- return true;
- GGML_UNUSED(index);
- };
- const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud);
- if (!cmp_ok) {
- printf("compare failed ");
- }
- ggml_backend_buffer_free(buf);
- ggml_free(ctx);
- if (ud.ok && cmp_ok) {
- printf("\033[1;32mOK\033[0m\n");
- return true;
- }
- printf("\033[1;31mFAIL\033[0m\n");
- return false;
- }
- bool eval_perf(ggml_backend_t backend, const char * op_name) {
- mode = MODE_PERF;
- static const size_t graph_nodes = 8192;
- ggml_init_params params = {
- /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
- /* .mem_base = */ NULL,
- /* .no_alloc = */ true,
- };
- ggml_context * ctx = ggml_init(params);
- ggml_tensor * out = build_graph(ctx);
- if (op_name != nullptr && op_desc(out) != op_name) {
- //printf(" %s: skipping\n", op_desc(out).c_str());
- ggml_free(ctx);
- return true;
- }
- int len = printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
- fflush(stdout);
- // check if backends support op
- if (!ggml_backend_supports_op(backend, out)) {
- printf("not supported\n");
- ggml_free(ctx);
- return true;
- }
- // align while also leaving some margin for variations in parameters
- int align = 20;
- int last = (len + align - 1) / align * align;
- if (last - len < 5) {
- last += align;
- }
- last = std::max(last, 60);
- printf("%*s", last - len, "");
- // allocate
- ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend);
- if (buf == NULL) {
- printf("failed to allocate tensors\n");
- ggml_free(ctx);
- return false;
- }
- // randomize tensors
- initialize_tensors(ctx);
- // build graph
- ggml_cgraph * gf = ggml_new_graph_custom(ctx, graph_nodes, false);
- ggml_build_forward_expand(gf, out);
- // warmup run
- ggml_backend_graph_compute(backend, gf);
- // duplicate the op
- size_t target_size = ggml_backend_is_cpu(backend) ? 1ULL << 33 : 1ULL << 35; // 8 GB CPU, 32 GB GPU
- int n_runs = std::min((size_t)gf->size - gf->n_nodes, target_size / op_size(out)) + 1;
- for (int i = 1; i < n_runs; i++) {
- gf->nodes[gf->n_nodes++] = out;
- }
- // calculate memory
- size_t mem = n_runs * op_size(out);
- auto tensor_op_size = [](ggml_tensor * t) {
- size_t size = ggml_nbytes(t);
- // add source tensors
- for (int i = 0; i < GGML_MAX_SRC; i++) {
- if (t->src[i] != NULL) {
- size += ggml_nbytes(t->src[i]);
- }
- }
- return size;
- };
- for (int i = 0; i < gf->n_nodes; i++) {
- if (ggml_is_view_op(gf->nodes[i]->op) || gf->nodes[i] == out) {
- continue;
- }
- mem += tensor_op_size(gf->nodes[i]);
- }
- // run
- ggml_backend_synchronize(backend);
- int64_t start_time = ggml_time_us();
- ggml_backend_graph_compute(backend, gf);
- ggml_backend_synchronize(backend);
- int64_t end_time = ggml_time_us();
- double time_us = end_time - start_time;
- printf(" %5d runs - %8.2f us/run - %8zu kB/run - \033[1;34m%7.2f GB/s\033[0m\n",
- n_runs,
- time_us / n_runs,
- op_size(out) / 1024,
- mem / (time_us/1e6) / 1024.0 / 1024.0 / 1024.0);
- ggml_backend_buffer_free(buf);
- ggml_free(ctx);
- return true;
- }
- };
- // GGML_OP_UNARY
- struct test_unary : public test_case {
- const ggml_unary_op op;
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_unary(ggml_unary_op op,
- ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {128, 10, 10, 10})
- : op(op), type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * in = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_tensor * out = ggml_unary(ctx, in, op);
- return out;
- }
- };
- // GGML_OP_GET_ROWS
- struct test_get_rows : public test_case {
- const ggml_type type;
- const int n; // cols
- const int m; // rows
- const int r; // rows to get
- const int b; // batch size
- const bool v; // view (non-contiguous src1)
- std::string vars() override {
- return VARS_TO_STR6(type, n, m, r, b, v);
- }
- test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
- : type(type), n(n), m(m), r(r), b(b), v(v) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * in = ggml_new_tensor_3d(ctx, type, n, m, b);
- ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
- if (v) {
- rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
- }
- ggml_tensor * out = ggml_get_rows(ctx, in, rows);
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- if (t->type == GGML_TYPE_I32) {
- if (ggml_is_view_op(t->op)) { continue; }
- // rows
- std::vector<int> data(r*b);
- for (int i = 0; i < r*b; i++) {
- data[i] = rand() % m;
- }
- ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
- } else {
- init_tensor_uniform(t);
- }
- }
- }
- };
- // GGML_OP_REPEAT
- struct test_repeat : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const std::array<int, 4> nr;
- std::string vars() override {
- return VARS_TO_STR3(type, ne, nr);
- }
- size_t op_size(ggml_tensor * t) override {
- return ggml_nbytes(t) * 2;
- }
- test_repeat(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 10, 10, 10},
- std::array<int, 4> nr = {2, 2, 2, 2})
- : type(type), ne(ne), nr(nr) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
- ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_tensor * out = ggml_repeat(ctx, src, target);
- return out;
- }
- };
- // GGML_OP_DUP
- struct test_dup : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const std::array<int64_t, 4> permute;
- bool _use_permute;
- std::string vars() override {
- std::string v = VARS_TO_STR2(type, ne);
- if (_use_permute) v += "," + VAR_TO_STR(permute);
- return v;
- }
- test_dup(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 10, 10, 1},
- std::array<int64_t, 4> permute = {0, 0, 0, 0})
- : type(type), ne(ne), permute(permute),
- _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
- if (_use_permute) {
- src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
- }
- ggml_tensor * out = ggml_dup(ctx, src);
- return out;
- }
- };
- // GGML_OP_CPY
- struct test_cpy : public test_case {
- const ggml_type type_src;
- const ggml_type type_dst;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR3(type_src, type_dst, ne);
- }
- size_t op_size(ggml_tensor * t) override {
- return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
- }
- test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 10, 10, 1})
- : type_src(type_src), type_dst(type_dst), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
- ggml_tensor * dst = ggml_new_tensor(ctx, type_dst, 4, ne.data());
- ggml_tensor * out = ggml_cpy(ctx, src, dst);
- return out;
- }
- };
- // GGML_OP_CONT
- struct test_cont : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_cont(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 10, 10, 1})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
- src = ggml_transpose(ctx, src);
- ggml_tensor * out = ggml_cont(ctx, src);
- return out;
- }
- };
- // GGML_OP_ADD
- // GGML_OP_MUL
- // GGML_OP_DIV
- struct test_bin_bcast : public test_case {
- using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
- op_t op;
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const std::array<int, 4> nr;
- std::string vars() override {
- return VARS_TO_STR3(type, ne, nr);
- }
- size_t op_size(ggml_tensor * t) override {
- return ggml_nbytes(t) * 3;
- }
- test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 10, 1, 1},
- std::array<int, 4> nr = {1, 2, 1, 1})
- : op(op), type(type), ne(ne), nr(nr) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
- ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_tensor * out = op(ctx, a, b);
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- if (op == ggml_div) {
- // avoid division by zero
- init_tensor_uniform(t, 1.0f, 2.0f);
- } else {
- init_tensor_uniform(t);
- }
- }
- }
- };
- // GGML_OP_SCALE
- struct test_scale : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- float scale;
- std::string vars() override {
- return VARS_TO_STR3(type, ne, scale);
- }
- test_scale(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 10, 10, 10},
- float scale = 2.0f)
- : type(type), ne(ne), scale(scale) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_tensor * out = ggml_scale(ctx, a, scale);
- return out;
- }
- };
- // GGML_OP_NORM
- struct test_norm : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- float eps;
- std::string vars() override {
- return VARS_TO_STR3(type, ne, eps);
- }
- test_norm(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {64, 10, 10, 10},
- float eps = 1e-6f)
- : type(type), ne(ne), eps(eps) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_tensor * out = ggml_norm(ctx, a, eps);
- return out;
- }
- };
- // GGML_OP_RMS_NORM
- struct test_rms_norm : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- float eps;
- std::string vars() override {
- return VARS_TO_STR3(type, ne, eps);
- }
- test_rms_norm(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {64, 10, 10, 10},
- float eps = 1e-6f)
- : type(type), ne(ne), eps(eps) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_tensor * out = ggml_rms_norm(ctx, a, eps);
- return out;
- }
- };
- // GGML_OP_MUL_MAT
- struct test_mul_mat : public test_case {
- const ggml_type type_a;
- const ggml_type type_b;
- const int64_t m;
- const int64_t n;
- const int64_t k;
- const std::array<int64_t, 2> bs; // dims 3 and 4
- const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
- std::string vars() override {
- return VARS_TO_STR7(type_a, type_b, m, n, k, bs, nr);
- }
- double max_nmse_err() override {
- return 5e-4;
- }
- size_t op_size(ggml_tensor * t) override {
- size_t a = ggml_nbytes(t->src[0]) * n * nr[0] * nr[1];
- size_t b = ggml_nbytes(t->src[1]) * m;
- size_t c = ggml_nbytes(t);
- return a + b + c;
- GGML_UNUSED(t);
- }
- test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
- int64_t m = 32, int64_t n = 32, int64_t k = 32,
- std::array<int64_t, 2> bs = {10, 10},
- std::array<int64_t, 2> nr = {2, 2})
- : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- // C^T = A * B^T: (k, m) * (k, n) => (m, n)
- ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0] , bs[1]);
- ggml_tensor * b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
- ggml_tensor * out = ggml_mul_mat(ctx, a, b);
- return out;
- }
- };
- // GGML_OP_MUL_MAT_ID
- struct test_mul_mat_id : public test_case {
- const ggml_type type_a;
- const ggml_type type_b;
- const int n_mats;
- const int id;
- const int64_t m;
- const int64_t n;
- const int64_t k;
- const bool v; // view (non-contiguous ids)
- std::string vars() override {
- return VARS_TO_STR8(type_a, type_b, n_mats, id, m, n, k, v);
- }
- double max_nmse_err() override {
- return 5e-4;
- }
- size_t op_size(ggml_tensor * t) override {
- size_t a = ggml_nbytes(t->src[2]) * n;
- size_t b = ggml_nbytes(t->src[1]) * m;
- size_t c = ggml_nbytes(t);
- return a + b + c;
- GGML_UNUSED(t);
- }
- test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
- int n_mats = 2, int id = 0,
- int64_t m = 32, int64_t n = 32, int64_t k = 32, bool v = false)
- : type_a(type_a), type_b(type_b), n_mats(n_mats), id(id),
- m(m), n(n), k(k), v(v) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- // C^T = A * B^T: (k, m) * (k, n) => (m, n)
- std::vector<ggml_tensor *> mats;
- for (int i = 0; i < n_mats; i++) {
- ggml_tensor * a = ggml_new_tensor_2d(ctx, type_a, k, m);
- mats.push_back(a);
- }
- ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
- if (v) {
- ids = ggml_view_2d(ctx, ids, n_mats/2, ids->ne[1], ids->nb[1], 0);
- }
- ggml_tensor * b = ggml_new_tensor_2d(ctx, type_b, k, n);
- ggml_tensor * out = ggml_mul_mat_id(ctx, mats.data(), n_mats, ids, v ? id/2 : id, b);
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- std::random_device rd;
- std::default_random_engine rng(rd());
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- if (t->type == GGML_TYPE_I32) {
- if (ggml_is_view_op(t->op)) { continue; }
- // ids
- for (int64_t r = 0; r < ggml_nrows(t); r++) {
- std::vector<int32_t> data(t->ne[0]);
- for (int i = 0; i < t->ne[0]; i++) {
- data[i] = i % n_mats;
- }
- std::shuffle(data.begin(), data.end(), rng);
- ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
- }
- } else {
- init_tensor_uniform(t);
- }
- }
- }
- };
- // GGML_OP_SQR
- struct test_sqr : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_sqr(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 10, 10, 10})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_tensor * out = ggml_sqr(ctx, a);
- return out;
- }
- };
- // GGML_OP_CLAMP
- struct test_clamp : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- float min;
- float max;
- std::string vars() override {
- return VARS_TO_STR4(type, ne, min, max);
- }
- test_clamp(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 10, 10, 10},
- float min = -0.5f, float max = 0.5f)
- : type(type), ne(ne), min(min), max(max) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_tensor * out = ggml_clamp(ctx, a, min, max);
- return out;
- }
- };
- // GGML_OP_DIAG_MASK_INF
- struct test_diag_mask_inf : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const int n_past;
- std::string vars() override {
- return VARS_TO_STR3(type, ne, n_past);
- }
- test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 10, 10, 10},
- int n_past = 5)
- : type(type), ne(ne), n_past(n_past) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past);
- return out;
- }
- };
- // GGML_OP_SOFT_MAX
- struct test_soft_max : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_soft_max(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 10, 10, 10})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_tensor * out = ggml_soft_max(ctx, a);
- return out;
- }
- };
- // GGML_OP_ROPE
- struct test_rope : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- int n_dims;
- int mode;
- int n_ctx;
- std::string vars() override {
- return VARS_TO_STR5(type, ne, n_dims, mode, n_ctx);
- }
- test_rope(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 10, 10, 1},
- int n_dims = 10, int mode = 0, int n_ctx = 512)
- : type(type), ne(ne), n_dims(n_dims), mode(mode), n_ctx(n_ctx) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne[2]);
- ggml_tensor * out = ggml_rope(ctx, a, pos, n_dims, mode, n_ctx);
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- if (t->type == GGML_TYPE_I32) {
- // pos
- std::vector<int> data(ne[2]);
- for (int i = 0; i < ne[2]; i++) {
- data[i] = rand() % n_ctx;
- }
- ggml_backend_tensor_set(t, data.data(), 0, ne[2] * sizeof(int));
- } else {
- init_tensor_uniform(t);
- }
- }
- }
- };
- // GGML_OP_ALIBI
- struct test_alibi : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- int n_past;
- int n_head;
- float bias_max;
- std::string vars() override {
- return VARS_TO_STR5(type, ne, n_past, n_head, bias_max);
- }
- test_alibi(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 10, 10, 10},
- int n_past = 512, int n_head = 10, float bias_max = 0.5f)
- : type(type), ne(ne), n_past(n_past), n_head(n_head), bias_max(bias_max) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_tensor * out = ggml_alibi(ctx, a, n_past, n_head, bias_max);
- return out;
- }
- };
- // GGML_OP_IM2COL
- struct test_im2col : public test_case {
- const ggml_type type_input;
- const ggml_type type_kernel;
- const std::array<int64_t, 4> ne_input;
- const std::array<int64_t, 4> ne_kernel;
- // stride
- const int s0;
- const int s1;
- // padding
- const int p0;
- const int p1;
- // dilatation
- const int d0;
- const int d1;
- // mode
- const bool is_2D;
- std::string vars() override {
- return VARS_TO_STR11(type_input, type_kernel, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
- }
- test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16,
- std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
- std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
- int s0 = 1, int s1 = 1,
- int p0 = 1, int p1 = 1,
- int d0 = 1, int d1 = 1,
- bool is_2D = true)
- : type_input(type_input), type_kernel(type_kernel), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
- ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
- ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D);
- return out;
- }
- };
- // GGML_OP_CONCAT
- struct test_concat : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const int64_t b_ne2;
- std::string vars() override {
- return VARS_TO_STR3(type, ne, b_ne2);
- }
- test_concat(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 10, 10, 10},
- int64_t b_ne2 = 10)
- : type(type), ne(ne), b_ne2(b_ne2) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_tensor * b = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], b_ne2, ne[3]);
- ggml_tensor * out = ggml_concat(ctx, a, b);
- return out;
- }
- };
- // GGML_OP_ARGSORT
- struct test_argsort : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- ggml_sort_order order;
- std::string vars() override {
- return VARS_TO_STR3(type, ne, order);
- }
- test_argsort(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {16, 10, 10, 10},
- ggml_sort_order order = GGML_SORT_ASC)
- : type(type), ne(ne), order(order) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_tensor * out = ggml_argsort(ctx, a, order);
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- std::random_device rd;
- std::default_random_engine rng(rd());
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- if (t->type == GGML_TYPE_I32) {
- // indices
- std::vector<int> data(ggml_nelements(t));
- for (int i = 0; i < ggml_nelements(t); i++) {
- data[i] = rand();
- }
- std::shuffle(data.begin(), data.end(), rng);
- ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
- } else if (t->type == GGML_TYPE_F32) {
- // initialize with unique values to avoid ties
- for (int64_t r = 0; r < ggml_nrows(t); r++) {
- std::vector<float> data(t->ne[0]);
- for (int i = 0; i < t->ne[0]; i++) {
- data[i] = i;
- }
- std::shuffle(data.begin(), data.end(), rng);
- ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
- }
- } else {
- GGML_ASSERT(false);
- }
- }
- }
- };
- // GGML_OP_SUM_ROWS
- struct test_sum_rows : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_sum_rows(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 10, 10, 10})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_tensor * out = ggml_sum_rows(ctx, a);
- return out;
- }
- };
- // GGML_OP_UPSCALE
- struct test_upscale : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const int32_t scale_factor;
- std::string vars() override {
- return VARS_TO_STR3(type, ne, scale_factor);
- }
- test_upscale(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {512, 512, 3, 1},
- int32_t scale_factor = 2)
- : type(type), ne(ne), scale_factor(scale_factor) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_tensor * out = ggml_upscale(ctx, a, scale_factor);
- return out;
- }
- };
- // GGML_OP_GROUP_NORM
- struct test_group_norm : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const int32_t num_groups;
- std::string vars() override {
- return VARS_TO_STR3(type, ne, num_groups);
- }
- test_group_norm(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {64, 64, 320, 1},
- int32_t num_groups = 32)
- : type(type), ne(ne), num_groups(num_groups) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_tensor * out = ggml_group_norm(ctx, a, num_groups);
- return out;
- }
- };
- // GGML_OP_ACC
- struct test_acc : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne_a;
- const std::array<int64_t, 4> ne_b;
- std::string vars() override {
- return VARS_TO_STR3(type, ne_a, ne_b);
- }
- test_acc(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_a = {1024, 577, 1, 1},
- std::array<int64_t, 4> ne_b = {1024, 576, 1, 1})
- : type(type), ne_a(ne_a), ne_b(ne_b) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
- ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
- ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
- return out;
- }
- };
- // GGML_OP_PAD
- struct test_pad : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne_a;
- const int pad_0;
- const int pad_1;
- std::string vars() override {
- return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
- }
- test_pad(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_a = {512, 512, 1, 1},
- int pad_0 = 1, int pad_1 = 1)
- : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
- ggml_tensor * out = ggml_pad(ctx, a, pad_0, pad_1, 0, 0);
- return out;
- }
- };
- // GGML_OP_LEAKY_RELU
- struct test_leaky_relu : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne_a;
- const float negative_slope;
- std::string vars() override {
- return VARS_TO_STR3(type, ne_a, negative_slope);
- }
- test_leaky_relu(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_a = {10, 10, 10, 10},
- float negative_slope = 0.1f)
- : type(type), ne_a(ne_a), negative_slope(negative_slope) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
- ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true);
- return out;
- }
- };
- // Mixtral MOE
- struct test_moe : public test_case {
- const int n_experts;
- const int n_experts_per_tok;
- const int n_tokens;
- const int n_embd;
- const int n_ff;
- std::string op_desc(ggml_tensor * t) override {
- return "MOE";
- GGML_UNUSED(t);
- }
- std::string vars() override {
- return VARS_TO_STR5(n_experts, n_experts_per_tok, n_tokens, n_embd, n_ff);
- }
- test_moe(int n_experts = 8, int n_experts_per_tok = 2, int n_tokens = 1, int n_embd = 4096, int n_ff = 14336)
- : n_experts(n_experts), n_experts_per_tok(n_experts_per_tok), n_tokens(n_tokens), n_embd(n_embd), n_ff(n_ff) {
- }
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * ffn_gate_inp = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_experts);
- std::vector<ggml_tensor *> ffn_up_exp(n_experts);
- std::vector<ggml_tensor *> ffn_gate_exp(n_experts);
- std::vector<ggml_tensor *> ffn_down_exp(n_experts);
- for (int i = 0; i < n_experts; ++i) {
- ffn_up_exp[i] = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
- ffn_gate_exp[i] = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
- ffn_down_exp[i] = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd);
- }
- ggml_tensor * cur = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_tokens);
- ggml_tensor * logits = ggml_mul_mat(ctx, ffn_gate_inp, cur);
- ggml_tensor * probs = ggml_soft_max_ext(ctx, logits, nullptr, 1.0f/sqrtf(n_embd));
- // select experts
- ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_experts_per_tok);
- ggml_tensor * weights = ggml_get_rows(ctx,
- ggml_reshape_3d(ctx, probs, 1, n_experts, n_tokens), selected_experts);
- weights = ggml_reshape_2d(ctx, weights, n_experts_per_tok, n_tokens);
- ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights);
- weights = ggml_div(ctx, weights, weights_sum);
- // compute expert outputs
- ggml_tensor * moe_out = nullptr;
- for (int i = 0; i < n_experts_per_tok; ++i) {
- ggml_tensor * cur_expert;
- ggml_tensor * cur_up = ggml_mul_mat_id(ctx, ffn_up_exp.data(), n_experts, selected_experts, i, cur);
- ggml_tensor * cur_gate = ggml_mul_mat_id(ctx, ffn_gate_exp.data(), n_experts, selected_experts, i, cur);
- cur_gate = ggml_silu(ctx, cur_gate);
- cur_expert = ggml_mul(ctx, cur_up, cur_gate);
- cur_expert = ggml_mul_mat_id(ctx, ffn_down_exp.data(), n_experts, selected_experts, i, cur_expert);
- cur_expert = ggml_mul(ctx, cur_expert,
- ggml_view_2d(ctx, weights, 1, n_tokens, weights->nb[1], i*weights->nb[0]));
- if (i == 0) {
- moe_out = cur_expert;
- } else {
- moe_out = ggml_add(ctx, moe_out, cur_expert);
- }
- }
- cur = moe_out;
- return cur;
- }
- };
- static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name) {
- std::vector<std::unique_ptr<test_case>> test_cases;
- std::default_random_engine rng(0);
- const ggml_type all_types[] = {
- GGML_TYPE_F32, GGML_TYPE_F16,
- GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
- GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
- GGML_TYPE_Q8_0,
- GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
- GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
- GGML_TYPE_Q6_K,
- GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS,
- };
- // unary ops
- for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
- test_cases.emplace_back(new test_unary((ggml_unary_op) op));
- }
- test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, false));
- for (ggml_type type : all_types) {
- for (int b : {1, 7}) {
- for (bool v : {false, true}) {
- test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, v));
- }
- }
- }
- for (int b : {1, 7}) {
- for (bool v : {false, true}) {
- test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, v));
- }
- }
- test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 1, 1}));
- test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {2, 1, 1, 1}));
- test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 2, 1, 1}));
- test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 2, 1}));
- test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 1, 2}));
- test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 10, 10, 10}, {2, 1, 1, 1}));
- test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 10, 10, 10}, {1, 1, 1, 2}));
- test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
- test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
- test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
- test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
- test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
- test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
- for (ggml_type type : all_types) {
- test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, type, {256, 10, 10, 1}));
- }
- test_cases.emplace_back(new test_cont());
- auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
- for (auto op : {ggml_add, ggml_mul, ggml_div}) {
- test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
- }
- };
- add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 8, 1}, {1, 1, 1, 1});
- add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1, 1}, {32, 1, 1, 1});
- add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 320, 320}, {1, 1, 1, 1});
- add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 1, 1}, {1, 1, 1, 1});
- add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 1}, {1, 1, 1, 1});
- add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 1, 1});
- add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {2, 1, 1, 1});
- add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 2, 1, 1});
- add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 2, 1});
- add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 1, 2});
- add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 2, 2});
- add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 2, 2, 2});
- add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {2, 2, 2, 2});
- // stable diffusion
- add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 1, 1, 1});
- add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 16, 16, 1});
- add_test_bin_bcast(GGML_TYPE_F32, {1280, 16, 16, 1}, {1, 1, 1, 1});
- add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 256, 1, 1});
- add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1280, 1}, {16, 16, 1, 1});
- add_test_bin_bcast(GGML_TYPE_F32, {16, 16, 1280, 1}, {1, 1, 1, 1});
- add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1920, 1}, {16, 16, 1, 1});
- add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 2560, 1}, {16, 16, 1, 1});
- add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1280, 1}, {32, 32, 1, 1});
- add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1920, 1}, {32, 32, 1, 1});
- add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 640, 1}, {32, 32, 1, 1});
- add_test_bin_bcast(GGML_TYPE_F32, {5120, 1, 1, 1}, {1, 256, 1, 1});
- add_test_bin_bcast(GGML_TYPE_F32, {640, 1, 1, 1}, {1, 1, 1, 1});
- //add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {1, 1, 1, 1});
- //add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {2, 1, 1, 1});
- test_cases.emplace_back(new test_scale());
- for (float eps : {1e-6f, 1e-5f, 1e-3f, 1e-1f}) {
- test_cases.emplace_back(new test_norm(GGML_TYPE_F32, {64, 10, 10, 10}, eps));
- test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 10, 10, 10}, eps));
- }
- for (ggml_type type_a : all_types) {
- for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 1, 1}, {1, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {1, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {2, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {1, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {2, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {1, 2}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {2, 2}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, { 1, 1}, {1, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 1}, {1, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 1}, {2, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {1, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {1, 2}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 2}));
- }
- }
- for (ggml_type type_a : all_types) {
- for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
- for (int n_mats : {2, 4, 8}) {
- for (int id = 0; id < n_mats; id++) {
- for (bool v : {false, true}) {
- test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, id, 16, 16, 256, v));
- }
- }
- }
- }
- }
- test_cases.emplace_back(new test_sqr());
- test_cases.emplace_back(new test_clamp());
- test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
- test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 10, 1}, 5));
- test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 10, 10}, 5));
- std::uniform_int_distribution<> dist_ne1(1, 50);
- int exponent = 1;
- while (exponent < (1 << 17)) {
- std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent);
- for (int n = 0; n < 10; ++n) {
- int64_t ne0 = dist_ne0(rng);
- int64_t ne1 = dist_ne1(rng);
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}));
- }
- exponent <<= 1;
- }
- for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
- test_cases.emplace_back(new test_rope(type, {128, 32, 10, 1}, 128, 0, 512)); // llama 7B
- test_cases.emplace_back(new test_rope(type, {128, 40, 10, 1}, 128, 0, 512)); // llama 13B
- test_cases.emplace_back(new test_rope(type, {128, 52, 10, 1}, 128, 0, 512)); // llama 30B
- test_cases.emplace_back(new test_rope(type, {128, 64, 10, 1}, 128, 0, 512)); // llama 65B
- test_cases.emplace_back(new test_rope(type, { 64, 1, 10, 1}, 64, 2, 512)); // neox (falcon 7B)
- test_cases.emplace_back(new test_rope(type, { 64, 71, 10, 1}, 64, 2, 512)); // neox (falcon 7B)
- test_cases.emplace_back(new test_rope(type, { 64, 8, 10, 1}, 64, 2, 512)); // neox (falcon 40B)
- test_cases.emplace_back(new test_rope(type, { 64, 128, 10, 1}, 64, 2, 512)); // neox (falcon 40B)
- test_cases.emplace_back(new test_rope(type, { 80, 32, 10, 1}, 20, 2, 512)); // neox (stablelm)
- test_cases.emplace_back(new test_rope(type, { 80, 32, 10, 1}, 32, 2, 512)); // neox (phi-2)
- }
- test_cases.emplace_back(new test_alibi());
- test_cases.emplace_back(new test_im2col());
- test_cases.emplace_back(new test_concat(GGML_TYPE_F32));
- test_cases.emplace_back(new test_concat(GGML_TYPE_I32));
- for (ggml_sort_order order : {GGML_SORT_ASC, GGML_SORT_DESC}) {
- test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
- test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
- }
- test_cases.emplace_back(new test_sum_rows());
- test_cases.emplace_back(new test_upscale());
- test_cases.emplace_back(new test_group_norm());
- test_cases.emplace_back(new test_acc());
- test_cases.emplace_back(new test_pad());
- test_cases.emplace_back(new test_leaky_relu());
- #if !defined(__SANITIZE_THREAD__)
- // FIXME: these tests use too much memory with thread sanitizer
- test_cases.emplace_back(new test_moe(8, 2, 1, 4096, 8*1024));
- //test_cases.emplace_back(new test_moe(8, 2, 8, 4096, 14336));
- #endif
- // run tests
- if (mode == MODE_TEST) {
- ggml_backend_t backend_cpu = ggml_backend_cpu_init();
- size_t n_ok = 0;
- for (auto & test : test_cases) {
- if (test->eval(backend, backend_cpu, op_name)) {
- n_ok++;
- }
- }
- printf(" %zu/%zu tests passed\n", n_ok, test_cases.size());
- ggml_backend_free(backend_cpu);
- return n_ok == test_cases.size();
- }
- if (mode == MODE_PERF) {
- for (auto & test : test_cases) {
- test->eval_perf(backend, op_name);
- }
- return true;
- }
- GGML_ASSERT(false);
- return false;
- }
- static void usage(char ** argv) {
- printf("Usage: %s [mode] [-o op] [-b backend]\n", argv[0]);
- printf(" valid modes are: test (compare with CPU backend for correctness) or perf (performance evaluation)\n");
- printf(" op names are as given by ggml_op_desc()\n");
- }
- int main(int argc, char ** argv) {
- test_mode mode = MODE_TEST;
- const char * op_name = NULL;
- const char * backend = NULL;
- for (int i = 1; i < argc; i++) {
- if (strcmp(argv[i], "test") == 0) {
- mode = MODE_TEST;
- } else if (strcmp(argv[i], "perf") == 0) {
- mode = MODE_PERF;
- } else if (strcmp(argv[i], "-o") == 0) {
- if (i + 1 < argc) {
- op_name = argv[++i];
- } else {
- usage(argv);
- return 1;
- }
- } else if (strcmp(argv[i], "-b") == 0) {
- if (i + 1 < argc) {
- backend = argv[++i];
- } else {
- usage(argv);
- return 1;
- }
- } else {
- usage(argv);
- return 1;
- }
- }
- // enumerate backends
- printf("Testing %zu backends\n\n", ggml_backend_reg_get_count());
- size_t n_ok = 0;
- for (size_t i = 0; i < ggml_backend_reg_get_count(); i++) {
- printf("Backend %zu/%zu (%s)\n", i + 1, ggml_backend_reg_get_count(), ggml_backend_reg_get_name(i));
- if (backend != NULL && strcmp(backend, ggml_backend_reg_get_name(i)) != 0) {
- printf(" Skipping\n");
- n_ok++;
- continue;
- }
- ggml_backend_t backend = ggml_backend_reg_init_backend(i, NULL);
- GGML_ASSERT(backend != NULL);
- printf(" Backend name: %s\n", ggml_backend_name(backend));
- bool ok = test_backend(backend, mode, op_name);
- printf(" Backend %s: ", ggml_backend_name(backend));
- if (ok) {
- printf("\033[1;32mOK\033[0m\n");
- n_ok++;
- } else {
- printf("\033[1;31mFAIL\033[0m\n");
- }
- printf("\n");
- ggml_backend_free(backend);
- }
- printf("%zu/%zu backends passed\n", n_ok, ggml_backend_reg_get_count());
- if (n_ok != ggml_backend_reg_get_count()) {
- printf("\033[1;31mFAIL\033[0m\n");
- return 1;
- }
- ggml_quantize_free();
- printf("\033[1;32mOK\033[0m\n");
- return 0;
- }
|