| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496 |
- #include "train.h"
- #include "common.h"
- #include <random>
- #include <sstream>
- #include <functional>
- struct random_normal_distribution {
- std::mt19937 gen;
- std::normal_distribution<float> rd;
- float min;
- float max;
- };
- struct random_uniform_distribution {
- std::mt19937 gen;
- std::uniform_real_distribution<float> rd;
- };
- struct train_state * init_train_state() {
- struct train_state * state = new struct train_state;
- state->train_its = 0;
- state->train_samples = 0;
- state->train_tokens = 0;
- state->train_epochs = 0;
- state->shuffle_samples_hash = 0;
- state->shuffle_sample_count = 0;
- state->shuffle_next_sample = 0;
- state->shuffle_rng_state_current = "";
- state->shuffle_rng_state_next = "";
- state->opt = new struct ggml_opt_context;
- state->opt->ctx = NULL;
- state->opt->params = ggml_opt_default_params(GGML_OPT_ADAM);
- state->opt->loss_after = 0.0f;
- return state;
- }
- void free_train_state(struct train_state * state) {
- delete state->opt;
- delete state;
- }
- struct random_normal_distribution * init_random_normal_distribution(
- int seed, float mean, float std, float min, float max
- ) {
- struct random_normal_distribution * rnd = (struct random_normal_distribution *) malloc(sizeof(struct random_normal_distribution));
- rnd->gen = std::mt19937(seed);
- rnd->rd = std::normal_distribution<float>{mean, std};
- rnd->min = min;
- rnd->max = max;
- return rnd;
- }
- struct random_uniform_distribution * init_random_uniform_distribution(int seed, float min, float max) {
- struct random_uniform_distribution * rnd = (struct random_uniform_distribution *) malloc(sizeof(struct random_uniform_distribution));
- rnd->gen = std::mt19937(seed);
- rnd->rd = std::uniform_real_distribution<float>{min, max};
- return rnd;
- }
- void free_random_normal_distribution (struct random_normal_distribution * rnd) {
- free(rnd);
- }
- void free_random_uniform_distribution(struct random_uniform_distribution * rnd) {
- free(rnd);
- }
- struct ggml_tensor * randomize_tensor_normal(struct ggml_tensor * tensor, struct random_normal_distribution * rnd) {
- float scale = 1.0f; // xavier
- switch (tensor->n_dims) {
- case 1:
- scale /= sqrtf((float) tensor->ne[0]);
- for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
- float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0]);
- *dst = scale * frand_normal(rnd);
- }
- break;
- case 2:
- scale /= sqrtf((float) tensor->ne[0]+tensor->ne[1]);
- for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
- for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
- float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
- *dst = scale * frand_normal(rnd);
- }
- }
- break;
- case 3:
- scale /= sqrtf((float) tensor->ne[0]+tensor->ne[1]);
- for (int i2 = 0; i2 < tensor->ne[2]; i2++) {
- for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
- for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
- float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]);
- *dst = scale * frand_normal(rnd);
- }
- }
- }
- break;
- case 4:
- scale /= sqrtf((float) tensor->ne[0]+tensor->ne[1]);
- for (int i3 = 0; i3 < tensor->ne[3]; i3++) {
- for (int i2 = 0; i2 < tensor->ne[2]; i2++) {
- for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
- for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
- float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]);
- *dst = scale * frand_normal(rnd);
- }
- }
- }
- }
- break;
- default:
- die("Unsupported tensor->n_dims");
- };
- return tensor;
- }
- struct ggml_tensor * randomize_tensor_uniform(struct ggml_tensor * tensor, struct random_uniform_distribution * rnd) {
- switch (tensor->n_dims) {
- case 1:
- for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
- float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0]);
- *dst = frand_uniform(rnd);
- }
- break;
- case 2:
- for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
- for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
- float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
- *dst = frand_uniform(rnd);
- }
- }
- break;
- case 3:
- for (int i2 = 0; i2 < tensor->ne[2]; i2++) {
- for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
- for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
- float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]);
- *dst = frand_uniform(rnd);
- }
- }
- }
- break;
- case 4:
- for (int i3 = 0; i3 < tensor->ne[3]; i3++) {
- for (int i2 = 0; i2 < tensor->ne[2]; i2++) {
- for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
- for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
- float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]);
- *dst = frand_uniform(rnd);
- }
- }
- }
- }
- break;
- default:
- die("Unsupported tensor->n_dims");
- };
- return tensor;
- }
- float frand() {
- return (float)rand()/((float)(RAND_MAX) + 1.0f);
- }
- float frand_normal(struct random_normal_distribution * rnd) {
- return fclamp(rnd->rd(rnd->gen), rnd->min, rnd->max);
- }
- float frand_uniform(struct random_uniform_distribution * rnd) {
- return rnd->rd(rnd->gen);
- }
- int clamp(const int v, const int min, const int max) {
- return ((v < min) ? (min) : (v > max) ? (max) : v);
- }
- float fclamp(const float v, const float min, const float max) {
- return ((v < min) ? (min) : (v > max) ? (max) : v);
- }
- void assert_shape_1d(struct ggml_tensor * tensor, int64_t ne0) {
- GGML_ASSERT(tensor->n_dims == 1);
- GGML_ASSERT(tensor->ne[0] == ne0);
- }
- void assert_shape_2d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1) {
- GGML_ASSERT(tensor->n_dims == 2);
- GGML_ASSERT(tensor->ne[0] == ne0);
- GGML_ASSERT(tensor->ne[1] == ne1);
- }
- void assert_shape_3d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2) {
- GGML_ASSERT(tensor->n_dims == 3);
- GGML_ASSERT(tensor->ne[0] == ne0);
- GGML_ASSERT(tensor->ne[1] == ne1);
- GGML_ASSERT(tensor->ne[2] == ne2);
- }
- void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
- GGML_ASSERT(tensor->n_dims == 4);
- GGML_ASSERT(tensor->ne[0] == ne0);
- GGML_ASSERT(tensor->ne[1] == ne1);
- GGML_ASSERT(tensor->ne[2] == ne2);
- GGML_ASSERT(tensor->ne[3] == ne3);
- }
- int64_t get_example_targets_batch(
- struct llama_context * lctx,
- struct ggml_tensor * tokens_input,
- struct ggml_tensor * target_probs,
- int64_t example_id,
- const size_t * samples_offs,
- const size_t * samples_begin,
- const size_t * samples_size,
- size_t samples_count,
- const llama_token * train_data,
- size_t n_train_data,
- bool separate_with_eos,
- bool separate_with_bos,
- bool fill_with_next_samples,
- bool sample_random_offsets
- ) {
- GGML_ASSERT(samples_count > 0);
- GGML_ASSERT(tokens_input->n_dims == 2);
- GGML_ASSERT(target_probs->n_dims == 3);
- int64_t n_vocab = target_probs->ne[0];
- int64_t n_tokens = tokens_input->ne[0];
- int64_t n_batch = tokens_input->ne[1];
- GGML_ASSERT(n_vocab == target_probs->ne[0]);
- GGML_ASSERT(n_tokens == target_probs->ne[1]);
- GGML_ASSERT(n_batch == target_probs->ne[2]);
- int64_t used_samples = 0;
- ggml_set_f32(target_probs, 0.0f);
- llama_token bos = llama_token_bos(lctx);
- llama_token eos = llama_token_eos(lctx);
- // printf("%s: example_id=%d n_batch=%d n_train_samples=%zu\n", __func__, example_id, n_batch, n_train_samples);
- for (int k=0; k<n_batch; ++k) {
- // printf("%s: batch %d\n", __func__, k);
- size_t sample_idx = (example_id + used_samples) % samples_count;
- size_t sample_offs = sample_random_offsets ? samples_offs[sample_idx] : 0;
- size_t sample_begin = samples_begin[sample_idx];
- size_t sample_size = samples_size[sample_idx];
- ++used_samples;
- // printf("%s: sample_idx=%zu sample=%zu\n", __func__, sample_idx, sample);
- GGML_ASSERT(sample_begin+sample_size-1 < n_train_data);
- ggml_set_i32_nd(tokens_input, 0, k, 0, 0, bos);
- bool sample_separation_eos = !separate_with_eos;
- bool sample_separation_bos = !separate_with_bos;
- for (int64_t i=0; i<n_tokens; ++i) {
- llama_token token = eos;
- if (sample_offs >= sample_size && fill_with_next_samples) {
- if (!sample_separation_eos) {
- // insert eos token to separate samples
- sample_separation_eos = true;
- } else if (!sample_separation_bos) {
- // insert bos token to separate samples
- sample_separation_bos = true;
- token = bos;
- } else {
- // sample separation is done, continue with next sample
- sample_separation_eos = !separate_with_eos;
- sample_separation_bos = !separate_with_bos;
- sample_offs = 0;
- sample_idx = (example_id + used_samples) % samples_count;
- sample_begin = samples_begin[sample_idx];
- sample_size = samples_size[sample_idx];
- ++used_samples;
- }
- }
- // note: no else-if here
- if (sample_offs < sample_size) {
- token = clamp(train_data[sample_begin+sample_offs], 0, (llama_token) (n_vocab - 1));
- ++sample_offs;
- }
- ggml_set_f32_nd(target_probs, token, (int) i, (int) k, 0, +1.0f);
- if (i+1<n_tokens) {
- ggml_set_i32_nd(tokens_input, (int) (i + 1), (int) k, 0, 0, token);
- }
- }
- }
- return used_samples;
- }
- void mt19937_set_state(std::mt19937& rng, const std::string& rng_state) {
- std::stringstream s_rng_state;
- s_rng_state.imbue(std::locale::classic());
- s_rng_state.exceptions(std::stringstream::failbit);
- s_rng_state.str(rng_state);
- s_rng_state >> rng;
- }
- std::string mt19937_get_state(const std::mt19937& rng) {
- std::stringstream s_rng_state;
- s_rng_state.imbue(std::locale::classic());
- s_rng_state << rng;
- return s_rng_state.str();
- }
- std::string mt19937_seed_to_state(unsigned seed) {
- std::mt19937 rng(seed);
- return mt19937_get_state(rng);
- }
- std::string shuffle_samples(
- const std::string & rng_state,
- size_t * shuffled_offs,
- size_t * shuffled_begins,
- size_t * shuffled_sizes,
- const size_t * begins,
- const size_t * sizes,
- size_t count) {
- if (count == 0) return rng_state;
- std::mt19937 rng;
- mt19937_set_state(rng, rng_state);
- // sort indices by random value for each index
- std::vector<size_t> idcs;
- {
- std::vector<unsigned> rnd;
- idcs.resize(count);
- rnd.resize(count);
- for (unsigned i=0; i<count; ++i) {
- idcs[i] = i;
- rnd[i] = rng();
- }
- std::sort(idcs.begin(), idcs.end(), [&rnd](size_t a, size_t b){
- // stable sort for reproducibility
- return (rnd[a] == rnd[b]) ? (a < b) : (rnd[a] < rnd[b]);
- });
- }
- // create random offsets
- for (unsigned i=0; i<count; ++i) {
- shuffled_offs[i] = (size_t) ((sizes[idcs[i]] - 1) * ((double) rng() / (double) (rng.max()-1)));
- }
- // reorder begins and sizes by sorted indices
- for (unsigned i=0; i<count; ++i) {
- shuffled_begins[i] = begins[idcs[i]];
- }
- for (unsigned i=0; i<count; ++i) {
- shuffled_sizes[i] = sizes[idcs[i]];
- }
- return mt19937_get_state(rng);
- }
- size_t hash_combine(size_t h1, size_t h2) {
- return h1 ^ (h2 << 1);
- }
- size_t compute_samples_hash(const char* fn, const size_t* samples_begin, const size_t* samples_size, size_t sample_count) {
- std::hash<std::string> h_string;
- std::hash<unsigned long long> h_ull;
- size_t h = h_string(std::string(fn));
- h = hash_combine(h, h_ull((unsigned long long) sample_count));
- for (size_t i=0; i< sample_count; ++i) {
- h = hash_combine(h, h_ull((unsigned long long) samples_begin[i]));
- h = hash_combine(h, h_ull((unsigned long long) samples_size[i]));
- }
- return h;
- }
- std::string replace_str(const char * s, const char * needle, const char * replacement) {
- std::string str = s;
- size_t pos = str.find(needle);
- if (pos != std::string::npos) {
- str.replace(pos, strlen(needle), replacement);
- }
- return str;
- }
- void print_duration(double fmillis) {
- if (fmillis < 1000.0f) {
- printf("%.1fms", (float) fmillis);
- return;
- }
- const int64_t one_sec = 1000;
- const int64_t one_min = one_sec * 60;
- const int64_t one_hour = one_min * 60;
- const int64_t one_day = one_hour * 24;
- int64_t millis = (int64_t) fmillis;
- int64_t days = millis/one_day;
- int64_t hours = (millis - days*one_day)/one_hour;
- int64_t minutes = (millis - days*one_day - hours*one_hour)/one_min;
- int64_t seconds = (millis - days*one_day - hours*one_hour - minutes*one_min)/one_sec;
- // to print int64_t either cast to (long long int) or use macro PRId64 from <inttypes.h>
- if (days > 0) {
- printf("%lldd ", (long long int) days);
- }
- printf("%02lld:%02lld:%02lld", (long long int) hours, (long long int) minutes, (long long int) seconds);
- }
- float cosine_decay(int64_t step, int64_t decay_steps, float minimum) {
- if (step > decay_steps) {
- step = decay_steps;
- }
- const float cosine_decay = 0.50f*(1.0f + cosf(3.14159265359f*step/decay_steps));
- const float decay = (1 - minimum)*cosine_decay + minimum;
- return decay;
- }
- float cosine_decay_restart(int64_t step, int64_t decay_steps, float minimum, float restart_step_mult) {
- while (step > decay_steps) {
- step -= decay_steps;
- decay_steps = (int64_t) (restart_step_mult * decay_steps);
- }
- return cosine_decay(step, decay_steps, minimum);
- }
- float learning_schedule(
- int64_t step,
- int64_t warmup_steps,
- int64_t cos_decay_steps,
- float learning_rate,
- float overall_minimum,
- float cos_decay_minimum,
- float cos_decay_restart_step_mult,
- bool enable_restart) {
- float result =
- (step < warmup_steps)
- ? (float) step / (float) warmup_steps
- : enable_restart
- ? cosine_decay_restart(
- step - warmup_steps,
- cos_decay_steps,
- cos_decay_minimum,
- cos_decay_restart_step_mult)
- : cosine_decay(
- step,
- cos_decay_steps,
- cos_decay_minimum);
- float min = overall_minimum / learning_rate;
- result = min + result * (1.0f - min);
- return result;
- }
- static bool are_same_layout(struct ggml_tensor * a, struct ggml_tensor * b) {
- GGML_ASSERT(a != NULL);
- GGML_ASSERT(b != NULL);
- GGML_ASSERT(a->type == b->type);
- GGML_ASSERT(ggml_are_same_shape(a, b));
- GGML_ASSERT(ggml_is_contiguous(a) && ggml_is_contiguous(b));
- return true;
- }
- void copy_tensor_by_name(struct ggml_tensor * dst, struct ggml_context * ctx, const char * name) {
- if (dst == NULL) {
- return;
- }
- struct ggml_tensor * t = ggml_get_tensor(ctx, name);
- GGML_ASSERT(are_same_layout(dst, t));
- memcpy(dst->data, t->data, ggml_nbytes(t));
- if (strlen(ggml_get_name(dst)) == 0) {
- ggml_set_name(dst, name);
- }
- }
- // gguf constants
- static const char * LLM_KV_OPTIMIZER_TYPE = "optimizer.type";
- static const char * LLM_KV_OPTIMIZER_TYPE_ADAM = "adam";
- static const char * LLM_KV_OPTIMIZER_TYPE_LBFGS = "lbfgs";
- static const char * LLM_KV_OPTIMIZER_FILE_VERSION = "optimizer.file_version";
- static const char * LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT = "optimizer.convergence_past_count";
- static const char * LLM_KV_OPTIMIZER_PARAMETER_COUNT = "optimizer.parameter_count";
- static const char * LLM_KV_OPTIMIZER_ITERATION_COUNT = "optimizer.iteration_count";
- static const char * LLM_KV_OPTIMIZER_JUST_INITIALIZED = "optimizer.just_initialized";
- static const char * LLM_KV_OPTIMIZER_ADAM_BEST_LOSS = "optimizer.adam.best_loss";
- static const char * LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS = "optimizer.adam.previous_loss";
- static const char * LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT = "optimizer.adam.no_improvement_count";
- static const char * LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT = "optimizer.lbfgs.approx_hessian_count";
- static const char * LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS = "optimizer.lbfgs.best_loss";
- static const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP = "optimizer.lbfgs.line_search_step";
- static const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J = "optimizer.lbfgs.line_search_j";
- static const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K = "optimizer.lbfgs.line_search_k";
- static const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END = "optimizer.lbfgs.line_search_end";
- static const char * LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT = "optimizer.lbfgs.no_improvement_count";
- static const char * LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS = "optimizer.adam.first_moments";
- static const char * LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS = "optimizer.adam.second_moments";
- static const char * LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES = "optimizer.adam.past_loss_values";
- static const char * LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS = "optimizer.lbfgs.current_parameters";
- static const char * LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS = "optimizer.lbfgs.previous_parameters";
- static const char * LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS = "optimizer.lbfgs.current_gradients";
- static const char * LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS = "optimizer.lbfgs.previous_gradients";
- static const char * LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION = "optimizer.lbfgs.search_direction";
- static const char * LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES = "optimizer.lbfgs.past_loss_values";
- static const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA = "optimizer.lbfgs.memory_alpha";
- static const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS = "optimizer.lbfgs.memory_ys";
- static const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S = "optimizer.lbfgs.memory_s";
- static const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y = "optimizer.lbfgs.memory_y";
- static const char * LLM_KV_TRAINING_FILE_VERSION = "training.file_version";
- static const char * LLM_KV_TRAINING_ITERATION_COUNT = "training.iteration_count";
- static const char * LLM_KV_TRAINING_SAMPLE_COUNT = "training.sample_count";
- static const char * LLM_KV_TRAINING_TOKEN_COUNT = "training.token_count";
- static const char * LLM_KV_TRAINING_EPOCH_COUNT = "training.epoch_count";
- static const char * LLM_KV_TRAINING_SHUFFLE_SAMPLES_HASH = "training.shuffle.samples_hash";
- static const char * LLM_KV_TRAINING_SHUFFLE_RNG_STATE = "training.shuffle.rng_state";
- static const char * LLM_KV_TRAINING_SHUFFLE_SAMPLE_COUNT = "training.shuffle.sample_count";
- static const char * LLM_KV_TRAINING_SHUFFLE_NEXT_SAMPLE = "training.shuffle.next_sample";
- #define GGUF_GET_KEY(ctx, dst, func, type, req, key) \
- { \
- const std::string skey(key); \
- const int kid = gguf_find_key(ctx, skey.c_str()); \
- if (kid >= 0) { \
- enum gguf_type ktype = gguf_get_kv_type(ctx, kid); \
- if (ktype != (type)) { \
- die_fmt("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype)); \
- } \
- (dst) = func(ctx, kid); \
- } else if (req) { \
- die_fmt("key not found in model: %s", skey.c_str()); \
- } \
- }
- void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct ggml_opt_context * opt) {
- // NOTE: gguf_context must be initialized with f_ggml_ctx and no_alloc=false, otherwise tensor data can not be read
- uint32_t file_version;
- GGUF_GET_KEY(fctx, file_version, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_FILE_VERSION);
- GGML_ASSERT(file_version == 0);
- GGUF_GET_KEY(fctx, opt->params.past, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT);
- GGUF_GET_KEY(fctx, opt->iter, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_ITERATION_COUNT);
- GGUF_GET_KEY(fctx, opt->just_initialized, gguf_get_val_bool, GGUF_TYPE_BOOL, true, LLM_KV_OPTIMIZER_JUST_INITIALIZED);
- uint64_t nx;
- GGUF_GET_KEY(fctx, nx, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_OPTIMIZER_PARAMETER_COUNT);
- opt->nx = (size_t) nx;
- // don't call ggml_opt_init until optimizer type and optimizer specific parameters are know
- std::string opt_type;
- GGUF_GET_KEY(fctx, opt_type, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_OPTIMIZER_TYPE);
- if (opt_type == LLM_KV_OPTIMIZER_TYPE_ADAM) {
- opt->params.type = GGML_OPT_ADAM;
- GGUF_GET_KEY(fctx, opt->adam.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS);
- GGUF_GET_KEY(fctx, opt->adam.fx_prev, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS);
- GGUF_GET_KEY(fctx, opt->adam.n_no_improvement, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT);
- ggml_opt_init(opt->ctx, opt, opt->params, opt->nx);
- copy_tensor_by_name(opt->adam.m, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS);
- copy_tensor_by_name(opt->adam.v, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS);
- copy_tensor_by_name(opt->adam.pf, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES);
- } else if (opt_type == LLM_KV_OPTIMIZER_TYPE_LBFGS) {
- opt->params.type = GGML_OPT_LBFGS;
- GGUF_GET_KEY(fctx, opt->params.lbfgs.m, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT);
- GGUF_GET_KEY(fctx, opt->lbfgs.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS);
- GGUF_GET_KEY(fctx, opt->lbfgs.step, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP);
- GGUF_GET_KEY(fctx, opt->lbfgs.j, gguf_get_val_i32, GGUF_TYPE_INT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J);
- GGUF_GET_KEY(fctx, opt->lbfgs.k, gguf_get_val_i32, GGUF_TYPE_INT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K);
- GGUF_GET_KEY(fctx, opt->lbfgs.end, gguf_get_val_i32, GGUF_TYPE_INT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END);
- GGUF_GET_KEY(fctx, opt->lbfgs.n_no_improvement, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT);
- ggml_opt_init(opt->ctx, opt, opt->params, opt->nx);
- copy_tensor_by_name(opt->lbfgs.x, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS);
- copy_tensor_by_name(opt->lbfgs.xp, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS);
- copy_tensor_by_name(opt->lbfgs.g, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS);
- copy_tensor_by_name(opt->lbfgs.gp, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS);
- copy_tensor_by_name(opt->lbfgs.d, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION);
- copy_tensor_by_name(opt->lbfgs.pf, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES);
- copy_tensor_by_name(opt->lbfgs.lmal, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA);
- copy_tensor_by_name(opt->lbfgs.lmys, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS);
- copy_tensor_by_name(opt->lbfgs.lms, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S);
- copy_tensor_by_name(opt->lbfgs.lmy, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y);
- } else {
- die("unknown optimizer type\n");
- }
- }
- void save_opt_context_gguf(struct gguf_context * fctx, struct ggml_opt_context * opt) {
- gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_FILE_VERSION, 0);
- gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT, opt->params.past);
- gguf_set_val_u64(fctx, LLM_KV_OPTIMIZER_PARAMETER_COUNT, (uint64_t) opt->nx);
- gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_ITERATION_COUNT, opt->iter);
- gguf_set_val_bool(fctx, LLM_KV_OPTIMIZER_JUST_INITIALIZED, opt->just_initialized);
- switch (opt->params.type) {
- case GGML_OPT_ADAM:
- {
- gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_ADAM);
- gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS, opt->adam.fx_best);
- gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS, opt->adam.fx_prev);
- gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT, opt->adam.n_no_improvement);
- ggml_set_name(opt->adam.m, LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS);
- ggml_set_name(opt->adam.v, LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS);
- if (opt->adam.pf) {
- ggml_set_name(opt->adam.pf, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES);
- }
- gguf_add_tensor(fctx, opt->adam.m);
- gguf_add_tensor(fctx, opt->adam.v);
- if (opt->adam.pf) {
- gguf_add_tensor(fctx, opt->adam.pf);
- }
- } break;
- case GGML_OPT_LBFGS:
- {
- gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS);
- gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, opt->params.lbfgs.m);
- gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS, opt->lbfgs.fx_best);
- gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP, opt->lbfgs.step);
- gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J, opt->lbfgs.j);
- gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K, opt->lbfgs.k);
- gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END, opt->lbfgs.end);
- gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT, opt->lbfgs.n_no_improvement);
- ggml_set_name(opt->lbfgs.x, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS);
- ggml_set_name(opt->lbfgs.xp, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS);
- ggml_set_name(opt->lbfgs.g, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS);
- ggml_set_name(opt->lbfgs.gp, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS);
- ggml_set_name(opt->lbfgs.d, LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION);
- if (opt->lbfgs.pf) {
- ggml_set_name(opt->lbfgs.pf, LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES);
- }
- ggml_set_name(opt->lbfgs.lmal, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA);
- ggml_set_name(opt->lbfgs.lmys, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS);
- ggml_set_name(opt->lbfgs.lms, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S);
- ggml_set_name(opt->lbfgs.lmy, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y);
- gguf_add_tensor(fctx, opt->lbfgs.x);
- gguf_add_tensor(fctx, opt->lbfgs.xp);
- gguf_add_tensor(fctx, opt->lbfgs.g);
- gguf_add_tensor(fctx, opt->lbfgs.gp);
- gguf_add_tensor(fctx, opt->lbfgs.d);
- if (opt->lbfgs.pf) {
- gguf_add_tensor(fctx, opt->lbfgs.pf);
- }
- gguf_add_tensor(fctx, opt->lbfgs.lmal);
- gguf_add_tensor(fctx, opt->lbfgs.lmys);
- gguf_add_tensor(fctx, opt->lbfgs.lms);
- gguf_add_tensor(fctx, opt->lbfgs.lmy);
- } break;
- }
- }
- bool load_train_state_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct train_state * train) {
- if (gguf_find_key(fctx, LLM_KV_TRAINING_FILE_VERSION) < 0) {
- return false;
- }
- uint32_t file_version;
- GGUF_GET_KEY(fctx, file_version, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_FILE_VERSION);
- GGML_ASSERT(file_version <= 1);
- if (file_version == 0) {
- GGUF_GET_KEY(fctx, train->train_its, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_ITERATION_COUNT);
- GGUF_GET_KEY(fctx, train->train_samples, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_SAMPLE_COUNT);
- GGUF_GET_KEY(fctx, train->train_tokens, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_TOKEN_COUNT);
- } else if (file_version == 1) {
- GGUF_GET_KEY(fctx, train->train_its, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_TRAINING_ITERATION_COUNT);
- GGUF_GET_KEY(fctx, train->train_samples, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_TRAINING_SAMPLE_COUNT);
- GGUF_GET_KEY(fctx, train->train_tokens, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_TRAINING_TOKEN_COUNT);
- GGUF_GET_KEY(fctx, train->train_epochs, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_TRAINING_EPOCH_COUNT);
- GGUF_GET_KEY(fctx, train->shuffle_samples_hash, gguf_get_val_u64, GGUF_TYPE_UINT64, false, LLM_KV_TRAINING_SHUFFLE_SAMPLES_HASH);
- GGUF_GET_KEY(fctx, train->shuffle_rng_state_current, gguf_get_val_str, GGUF_TYPE_STRING, false, LLM_KV_TRAINING_SHUFFLE_RNG_STATE);
- GGUF_GET_KEY(fctx, train->shuffle_sample_count, gguf_get_val_u64, GGUF_TYPE_UINT64, false, LLM_KV_TRAINING_SHUFFLE_SAMPLE_COUNT);
- GGUF_GET_KEY(fctx, train->shuffle_next_sample, gguf_get_val_u64, GGUF_TYPE_UINT64, false, LLM_KV_TRAINING_SHUFFLE_NEXT_SAMPLE);
- }
- load_opt_context_gguf(fctx, f_ggml_ctx, train->opt);
- return true;
- }
- void save_train_state_gguf(struct gguf_context * fctx, struct train_state * train) {
- gguf_set_val_u32(fctx, LLM_KV_TRAINING_FILE_VERSION, 1);
- gguf_set_val_u64(fctx, LLM_KV_TRAINING_ITERATION_COUNT, train->train_its);
- gguf_set_val_u64(fctx, LLM_KV_TRAINING_SAMPLE_COUNT, train->train_samples);
- gguf_set_val_u64(fctx, LLM_KV_TRAINING_TOKEN_COUNT, train->train_tokens);
- gguf_set_val_u64(fctx, LLM_KV_TRAINING_EPOCH_COUNT, train->train_epochs);
- gguf_set_val_u64(fctx, LLM_KV_TRAINING_SHUFFLE_SAMPLES_HASH, (uint64_t) train->shuffle_samples_hash);
- gguf_set_val_str(fctx, LLM_KV_TRAINING_SHUFFLE_RNG_STATE, train->shuffle_rng_state_current.c_str());
- gguf_set_val_u64(fctx, LLM_KV_TRAINING_SHUFFLE_SAMPLE_COUNT, (uint64_t) train->shuffle_sample_count);
- gguf_set_val_u64(fctx, LLM_KV_TRAINING_SHUFFLE_NEXT_SAMPLE, (uint64_t) train->shuffle_next_sample);
- save_opt_context_gguf(fctx, train->opt);
- }
- struct llama_file {
- // use FILE * so we don't have to re-open the file to mmap
- FILE * fp;
- size_t size;
- llama_file(const char * fname, const char * mode) {
- fp = std::fopen(fname, mode);
- if (fp == NULL) {
- size = 0;
- } else {
- seek(0, SEEK_END);
- size = tell();
- seek(0, SEEK_SET);
- }
- }
- size_t tell() const {
- #ifdef _WIN32
- __int64 ret = _ftelli64(fp);
- #else
- long ret = std::ftell(fp);
- #endif
- GGML_ASSERT(ret != -1); // this really shouldn't fail
- return (size_t) ret;
- }
- void seek(size_t offset, int whence) {
- #ifdef _WIN32
- int ret = _fseeki64(fp, (__int64) offset, whence);
- #else
- int ret = std::fseek(fp, (long) offset, whence);
- #endif
- GGML_ASSERT(ret == 0); // same
- }
- void read_raw(void * ptr, size_t size) {
- if (size == 0) {
- return;
- }
- errno = 0;
- std::size_t ret = std::fread(ptr, size, 1, fp);
- if (ferror(fp)) {
- die_fmt("read error: %s", strerror(errno));
- }
- if (ret != 1) {
- die("unexpectedly reached end of file");
- }
- }
- std::uint32_t read_u32() {
- std::uint32_t ret;
- read_raw(&ret, sizeof(ret));
- return ret;
- }
- std::string read_string(std::uint32_t len) {
- std::vector<char> chars(len);
- read_raw(chars.data(), len);
- return std::string(chars.data(), len);
- }
- void write_raw(const void * ptr, size_t size) {
- if (size == 0) {
- return;
- }
- errno = 0;
- size_t ret = std::fwrite(ptr, size, 1, fp);
- if (ret != 1) {
- die_fmt("write error: %s", strerror(errno));
- }
- }
- void write_u32(std::uint32_t val) {
- write_raw(&val, sizeof(val));
- }
- ~llama_file() {
- if (fp) {
- std::fclose(fp);
- }
- }
- };
- static size_t utf8_len(char src) {
- const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
- uint8_t highbits = static_cast<uint8_t>(src) >> 4;
- return lookup[highbits];
- }
- // mark each byte with its utf8 unit number.
- // returns the number of utf8 characters.
- // e.g. when bytes == '\x61\xD0\xB0\x62',
- // then utf8_units will become [0,0,1,0]
- // utf8_nunits will become [1,2,2,1] and 3 is returned.
- // bytes where utf8_units is zero, are the begin of an utf8 character.
- static size_t mark_utf8_units(const char* bytes, int * utf8_units, int * utf8_nunits, size_t count) {
- size_t offs = 0;
- size_t count_utf8 = 0;
- while(offs < count) {
- int len = (int) utf8_len(bytes[offs]);
- for (int i=0; i<len; ++i) {
- utf8_units[offs+i] = i;
- utf8_nunits[offs+i] = len;
- }
- offs += len;
- ++count_utf8;
- }
- return count_utf8;
- }
- size_t tokenize_file(
- struct llama_context * lctx,
- const char * filename,
- const std::string & sample_start,
- bool include_sample_start,
- bool overlapping_samples,
- unsigned context_length,
- std::vector<llama_token> & out_tokens,
- std::vector<size_t> & out_samples_begin,
- std::vector<size_t> & out_samples_size) {
- struct llama_file f(filename, "rb");
- if (f.size == 0) {
- out_tokens.clear();
- out_samples_begin.clear();
- out_samples_size.clear();
- printf("%s: warning: empty or not existing training data file '%s'\n",
- __func__, filename);
- return out_tokens.size();
- }
- // account for possible leading whitespace that will be added by tokenizer
- // e.g. '\t' will be tokenized by llama spm tokenizer to [29871, 12]
- const int n_max_tokens_overhead = 1;
- std::vector<char> buf;
- buf.resize(f.size);
- f.read_raw(buf.data(), f.size);
- std::vector<int> utf8_units;
- std::vector<int> utf8_nunits;
- utf8_units.resize(buf.size());
- utf8_nunits.resize(buf.size());
- mark_utf8_units(buf.data(), utf8_units.data(), utf8_nunits.data(), buf.size());
- if (sample_start.size() == 0) {
- // tokenize all data at once
- out_tokens.resize(buf.size() + n_max_tokens_overhead);
- int n_tokens = llama_tokenize(
- llama_get_model(lctx),
- buf.data(),
- (int) buf.size(),
- out_tokens.data(),
- (int) out_tokens.size(),
- false, false);
- if (n_tokens < 0) {
- out_tokens.resize(-n_tokens);
- n_tokens = llama_tokenize(
- llama_get_model(lctx),
- buf.data(),
- (int) buf.size(),
- out_tokens.data(),
- (int) out_tokens.size(),
- false, false);
- }
- if (n_tokens >= 0) {
- out_tokens.resize(n_tokens);
- }
- // generate sample starts at all token positions
- out_samples_begin.clear();
- out_samples_begin.push_back(0);
- out_samples_size.push_back(std::min((size_t) context_length, out_tokens.size()));
- size_t end = (out_tokens.size() >= context_length) ? (out_tokens.size() - context_length) : 0;
- for (size_t sample_begin = 1; sample_begin < end; ++sample_begin) {
- out_samples_begin.push_back(sample_begin);
- out_samples_size.push_back(context_length);
- }
- } else {
- // split data into samples and tokenize each sample
- std::string data_str(buf.data(), buf.size());
- out_samples_begin.clear();
- out_samples_size.clear();
- out_tokens.clear();
- // find all positions of pattern sample_start
- size_t sample_begin = data_str.find(sample_start, 0);
- while (sample_begin != std::string::npos) {
- out_samples_begin.push_back(sample_begin);
- const size_t search_start = sample_begin + sample_start.size();
- sample_begin = data_str.find(sample_start, search_start);
- }
- if (out_samples_begin.size() == 0) {
- printf("%s: warning: sample start pattern '%s' not found. inserting single sample at data begin\n",
- __func__, sample_start.c_str());
- out_samples_begin.push_back(0);
- }
- out_samples_size.resize(out_samples_begin.size(), 0);
- std::vector<char> buf_sample;
- std::vector<llama_token> tok_sample;
- const size_t sample_begin_offset = (include_sample_start ? 0 : sample_start.size());
- size_t found_too_big_sample = 0;
- size_t found_too_small_sample = 0;
- size_t found_empty_sample = 0;
- size_t found_min_sample_size = SIZE_MAX;
- size_t found_max_sample_size = 0;
- size_t max_token_text_size = 0;
- int n_vocab = llama_n_vocab(llama_get_model(lctx));
- for (llama_token token=0; token < n_vocab; ++token) {
- max_token_text_size = std::max(
- max_token_text_size,
- strlen(llama_token_get_text(lctx, token)));
- }
- // upper bound of context byte length.
- // strings with this byte length should always tokenize to at least context_length tokens.
- size_t context_byte_len = max_token_text_size*context_length;
- for (unsigned i=0; i<out_samples_begin.size(); ++i) {
- // determine sample begin and end from pattern positions
- size_t sample_begin = out_samples_begin[i] + sample_begin_offset;
- size_t sample_end = overlapping_samples
- ? std::min(
- data_str.size(),
- sample_begin + context_byte_len)
- : (i+1 < out_samples_begin.size()
- ? out_samples_begin[i+1]
- : data_str.size());
- if (sample_end < utf8_units.size() && utf8_units[sample_end] > 0) {
- // sample end is in the middle of an utf8 character.
- // advance sample_end to the begin of the next utf8 character.
- sample_end += utf8_nunits[sample_end] - utf8_units[sample_end];
- }
- size_t sample_size = sample_end - sample_begin;
- if (sample_size == 0) {
- ++found_empty_sample;
- }
- if (sample_size > 0) {
- // llama_tokenize expects zero terminated string,
- // copy sample into buffer and zero terminate it.
- buf_sample.resize(sample_size);
- memcpy(buf_sample.data(), data_str.data() + sample_begin, sample_size);
- // printf("sample: '%s'\n", buf_sample.data());
- // tokenize the sample
- tok_sample.resize(buf_sample.size() + n_max_tokens_overhead);
- int n_tokens = llama_tokenize(llama_get_model(lctx),
- buf_sample.data(),
- (int) buf_sample.size(),
- tok_sample.data(),
- (int) tok_sample.size(),
- false, false);
- if (n_tokens < 0) {
- tok_sample.resize(-n_tokens);
- n_tokens = llama_tokenize(llama_get_model(lctx),
- buf_sample.data(),
- (int) buf_sample.size(),
- tok_sample.data(),
- (int) tok_sample.size(),
- false, false);
- GGML_ASSERT(n_tokens >= 0);
- }
- GGML_ASSERT(n_tokens <= (int) tok_sample.size());
- if ((size_t) n_tokens > context_length) {
- ++found_too_big_sample;
- } else if ((size_t) n_tokens < context_length) {
- ++found_too_small_sample;
- }
- found_max_sample_size = std::max(found_max_sample_size, (size_t) n_tokens);
- found_min_sample_size = std::min(found_min_sample_size, (size_t) n_tokens);
- // write out tokens, start and size of sample
- // overwrite the string start position with the token start position
- out_samples_begin[i] = out_tokens.size();
- out_samples_size[i] = (size_t) n_tokens;
- out_tokens.insert(out_tokens.end(), tok_sample.begin(), tok_sample.begin() + n_tokens);
- } else {
- out_samples_begin[i] = out_tokens.size();
- out_samples_size[i] = 0;
- }
- }
- if (found_too_big_sample > 0) {
- printf("%s: warning: found %zu samples (max length %zu) that exceed context length of %u. samples will be cut off.\n",
- __func__, found_too_big_sample, found_max_sample_size, context_length);
- }
- if (found_too_small_sample > 0) {
- printf("%s: warning: found %zu samples (min length %zu) that are shorter than context length of %u.\n",
- __func__, found_too_small_sample, found_min_sample_size, context_length);
- }
- if (found_empty_sample) {
- printf("%s: warning: found %zu empty samples.\n",
- __func__, found_empty_sample);
- }
- }
- printf("%s: total number of samples: %zu\n",
- __func__, out_samples_begin.size());
- GGML_ASSERT(out_samples_begin.size() == out_samples_size.size());
- return out_tokens.size();
- }
- std::string get_train_filename(const char * filename, const char * pattern_it, const char * latest, int64_t iteration) {
- std::string sit = (iteration >= 0) ? std::to_string(iteration) : std::string(latest);
- return replace_str(filename, pattern_it, sit.c_str());
- }
- struct train_params_common get_default_train_params_common() {
- struct train_params_common params;
- params.fn_train_data = "shakespeare.txt";
- params.fn_checkpoint_in = "checkpoint.gguf";
- params.fn_checkpoint_out = "checkpoint-ITERATION.gguf";
- params.pattern_fn_it = "ITERATION";
- params.fn_latest = "LATEST";
- params.print_usage = false;
- params.save_every = 10;
- params.seed = -1;
- params.n_ctx = 128;
- params.n_threads = 6;
- params.n_batch = 8;
- params.n_gradient_accumulation = 1;
- params.n_epochs = -1;
- params.custom_n_ctx = false;
- params.use_flash = true;
- params.use_checkpointing = true;
- params.sample_start = "";
- params.include_sample_start = false;
- params.escape = false;
- params.overlapping_samples = false;
- params.fill_with_next_samples = false;
- params.separate_with_eos = false;
- params.separate_with_bos = true;
- params.sample_random_offsets = false;
- params.force_reshuffle = false;
- params.opt_past = 0;
- params.opt_delta = 1e-5f;
- params.opt_max_no_improvement = 0;
- params.warmup = 100;
- params.cos_decay_steps = 1000;
- params.cos_decay_restart = 1.1f;
- params.cos_decay_min = 0.1f;
- params.enable_restart = false;
- params.adam_n_iter = 256;
- params.adam_alpha = 1e-3f;
- params.adam_min_alpha = 0;
- params.adam_decay = 1e-1f;
- params.adam_decay_min_ndim = 2;
- params.adam_beta1 = 0.9f;
- params.adam_beta2 = 0.999f;
- params.adam_gclip = 1.0f;
- params.adam_eps_f = 0.0f;
- return params;
- }
- void print_common_train_usage(int /*argc*/, char ** /*argv*/, const struct train_params_common * params) {
- // fprintf(stderr, "usage: %s [options]\n", argv[0]);
- // fprintf(stderr, "\n");
- // fprintf(stderr, "options:\n");
- // fprintf(stderr, " -h, --help show this help message and exit\n");
- fprintf(stderr, " --train-data FNAME path from which to load training data (default '%s')\n", params->fn_train_data);
- fprintf(stderr, " --checkpoint-in FNAME path from which to load training checkpoint (default '%s')\n", params->fn_checkpoint_in);
- fprintf(stderr, " --checkpoint-out FNAME path to save training checkpoint (default '%s')\n", params->fn_checkpoint_out);
- fprintf(stderr, " --pattern-fn-it STR pattern in output filenames to be replaced by iteration number (default '%s')\n", params->pattern_fn_it);
- fprintf(stderr, " --fn-latest STR string to use instead of iteration number for saving latest output (default '%s')\n", params->fn_latest);
- fprintf(stderr, " --save-every N save checkpoint and lora every N iterations. Disabled when N <= 0. (default '%d')\n", params->save_every);
- fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1, use random seed for -1)\n");
- fprintf(stderr, " -c N, --ctx N Context size used during training (default %d)\n", params->n_ctx);
- fprintf(stderr, " -t N, --threads N Number of threads (default %d)\n", params->n_threads);
- fprintf(stderr, " -b N, --batch N Parallel batch size (default %d)\n", params->n_batch);
- fprintf(stderr, " --grad-acc N Number of gradient accumulation steps (simulates larger batch size of batch*gradacc) (default %d)\n", params->n_gradient_accumulation);
- fprintf(stderr, " --sample-start STR Sets the starting point for samples after the specified pattern. If empty use every token position as sample start. (default '%s')\n", params->sample_start.c_str());
- fprintf(stderr, " --include-sample-start Include the sample start in the samples. (default off)\n");
- fprintf(stderr, " --escape process sample start escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n");
- fprintf(stderr, " --overlapping-samples Samples my overlap, will include sample-start of second and following samples. When off, samples will end at begin of next sample. (default off)\n");
- fprintf(stderr, " --fill-with-next-samples Samples shorter than context length will be followed by the next (shuffled) samples. (default off)\n");
- fprintf(stderr, " --separate-with-eos When fill-with-next-samples, insert end-of-sequence token between samples.%s\n", params->separate_with_eos ? " (default)" : "");
- fprintf(stderr, " --separate-with-bos When fill-with-next-samples, insert begin-of-sequence token between samples.%s\n", params->separate_with_bos ? " (default)" : "");
- fprintf(stderr, " --no-separate-with-eos When fill-with-next-samples, don't insert end-of-sequence token between samples.%s\n", !params->separate_with_eos ? " (default)" : "");
- fprintf(stderr, " --no-separate-with-bos When fill-with-next-samples, don't insert begin-of-sequence token between samples.%s\n", !params->separate_with_bos ? " (default)" : "");
- fprintf(stderr, " --sample-random-offsets Use samples beginning at random offsets. Together with fill-with-next-samples this may help for training endless text generation.%s\n", params->sample_random_offsets ? " (default)" : "");
- fprintf(stderr, " --force-reshuffle Force a reshuffling of data at program start, otherwise the shuffling of loaded checkpoint is resumed.\n");
- fprintf(stderr, " --no-flash Don't use flash attention \n");
- fprintf(stderr, " --use-flash Use flash attention (default)\n");
- fprintf(stderr, " --no-checkpointing Don't use gradient checkpointing\n");
- fprintf(stderr, " --use-checkpointing Use gradient checkpointing (default)\n");
- fprintf(stderr, " --warmup N Only for Adam optimizer. Number of warmup steps (default %d)\n", params->warmup);
- fprintf(stderr, " --cos-decay-steps N Only for Adam optimizer. Number of cosine decay steps (default %d)\n", params->cos_decay_steps);
- fprintf(stderr, " --cos-decay-restart N Only for Adam optimizer. Increase of cosine decay steps after restart (default %f)\n", params->cos_decay_restart);
- fprintf(stderr, " --cos-decay-min N Only for Adam optimizer. Cosine decay minimum (default %f)\n", params->cos_decay_min);
- fprintf(stderr, " --enable-restart N Only for Adam optimizer. Enable restarts of cos-decay %s\n", params->enable_restart ? "(default)" : "");
- fprintf(stderr, " --disable-restart N Only for Adam optimizer. Disable restarts of cos-decay %s\n", !params->enable_restart ? "(default)" : "");
- fprintf(stderr, " --opt-past N Number of optimization iterations to track for delta convergence test. Disabled when zero. (default %d)\n", params->opt_past);
- fprintf(stderr, " --opt-delta N Maximum delta for delta convergence test. Disabled when <= zero. (default %f)\n", params->opt_delta);
- fprintf(stderr, " --opt-max-no-improvement N Maximum number of optimization iterations with no improvement. Disabled when <= zero. (default %d)\n", params->opt_max_no_improvement);
- fprintf(stderr, " --epochs N Maximum number epochs to process. (default %d)\n", params->n_epochs);
- fprintf(stderr, " --adam-iter N Maximum number of Adam optimization iterations for each batch (default %d)\n", params->adam_n_iter);
- fprintf(stderr, " --adam-alpha N Adam learning rate alpha (default %f)\n", params->adam_alpha);
- fprintf(stderr, " --adam-min-alpha N Adam minimum learning rate alpha - including warmup phase (default %f)\n", params->adam_min_alpha);
- fprintf(stderr, " --adam-decay N AdamW weight decay. Values greater zero enable AdamW instead of regular Adam. (default %f)\n", params->adam_decay);
- fprintf(stderr, " --adam-decay-min-ndim N Minimum number of tensor dimensions to apply AdamW weight decay. Weight decay is not applied to tensors with less n_dims. (default %d)\n", params->adam_decay_min_ndim);
- fprintf(stderr, " --adam-beta1 N AdamW beta1 in interval [0,1). How much to smooth the first moment of gradients. (default %f)\n", params->adam_beta1);
- fprintf(stderr, " --adam-beta2 N AdamW beta2 in interval [0,1). How much to smooth the second moment of gradients. (default %f)\n", params->adam_beta2);
- fprintf(stderr, " --adam-gclip N AdamW gradient clipping. Disabled when zero. (default %f)\n", params->adam_gclip);
- fprintf(stderr, " --adam-epsf N AdamW epsilon for convergence test. Disabled when <= zero. (default %f)\n", params->adam_eps_f);
- fprintf(stderr, "\n");
- }
- bool consume_common_train_arg(
- int argc, char ** argv, int * idx, struct train_params_common * params, bool * invalid_param
- ) {
- int& i = *idx;
- std::string arg = argv[i];
- const std::string arg_prefix = "--";
- if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
- std::replace(arg.begin(), arg.end(), '_', '-');
- }
- if (arg == "--train-data") {
- if (++i >= argc) {
- *invalid_param = true;
- return true;
- }
- params->fn_train_data = argv[i];
- } else if (arg == "--checkpoint-in") {
- if (++i >= argc) {
- *invalid_param = true;
- return true;
- }
- params->fn_checkpoint_in = argv[i];
- } else if (arg == "--checkpoint-out") {
- if (++i >= argc) {
- *invalid_param = true;
- return true;
- }
- params->fn_checkpoint_out = argv[i];
- } else if (arg == "--pattern-fn-it") {
- if (++i >= argc) {
- *invalid_param = true;
- return true;
- }
- params->pattern_fn_it = argv[i];
- } else if (arg == "--fn-latest") {
- if (++i >= argc) {
- *invalid_param = true;
- return true;
- }
- params->fn_latest = argv[i];
- } else if (arg == "--save-every") {
- if (++i >= argc) {
- *invalid_param = true;
- return true;
- }
- params->save_every = std::stoi(argv[i]);
- } else if (arg == "-s" || arg == "--seed") {
- if (++i >= argc) {
- *invalid_param = true;
- return true;
- }
- params->seed = std::stoi(argv[i]);
- } else if (arg == "-c" || arg == "--ctx") {
- if (++i >= argc) {
- *invalid_param = true;
- return true;
- }
- params->n_ctx = std::stoi(argv[i]);
- params->custom_n_ctx = true;
- } else if (arg == "-t" || arg == "--threads") {
- if (++i >= argc) {
- *invalid_param = true;
- return true;
- }
- params->n_threads = std::stoi(argv[i]);
- } else if (arg == "-b" || arg == "--batch") {
- if (++i >= argc) {
- *invalid_param = true;
- return true;
- }
- params->n_batch = std::stoi(argv[i]);
- } else if (arg == "--grad-acc") {
- if (++i >= argc) {
- *invalid_param = true;
- return true;
- }
- params->n_gradient_accumulation = std::max(1, std::stoi(argv[i]));
- } else if (arg == "--sample-start") {
- if (++i >= argc) {
- *invalid_param = true;
- return true;
- }
- params->sample_start = std::string(argv[i]);
- } else if (arg == "--escape") {
- params->escape = true;
- } else if (arg == "--include-sample-start") {
- params->include_sample_start = true;
- } else if (arg == "--overlapping-samples") {
- params->overlapping_samples = true;
- } else if (arg == "--fill-with-next-samples") {
- params->fill_with_next_samples = true;
- } else if (arg == "--separate-with-eos") {
- params->separate_with_eos = true;
- } else if (arg == "--separate-with-bos") {
- params->separate_with_bos = true;
- } else if (arg == "--no-separate-with-eos") {
- params->separate_with_eos = false;
- } else if (arg == "--no-separate-with-bos") {
- params->separate_with_bos = false;
- } else if (arg == "--sample-random-offsets") {
- params->sample_random_offsets = true;
- } else if (arg == "--force-reshuffle") {
- params->force_reshuffle = true;
- } else if (arg == "--no-flash") {
- params->use_flash = false;
- } else if (arg == "--use-flash") {
- params->use_flash = true;
- } else if (arg == "--no-checkpointing") {
- params->use_checkpointing = false;
- } else if (arg == "--use-checkpointing") {
- params->use_checkpointing = true;
- } else if (arg == "--warmup") {
- if (++i >= argc) {
- *invalid_param = true;
- return true;
- }
- params->warmup = std::stoi(argv[i]);
- } else if (arg == "--cos-decay-steps") {
- if (++i >= argc) {
- *invalid_param = true;
- return true;
- }
- params->cos_decay_steps = std::stoi(argv[i]);
- } else if (arg == "--cos-decay-restart") {
- if (++i >= argc) {
- *invalid_param = true;
- return true;
- }
- params->cos_decay_restart = std::stof(argv[i]);
- } else if (arg == "--cos-decay-min") {
- if (++i >= argc) {
- *invalid_param = true;
- return true;
- }
- params->cos_decay_min = std::stof(argv[i]);
- } else if (arg == "--enable-restart") {
- params->enable_restart = true;
- } else if (arg == "--disable-restart") {
- params->enable_restart = false;
- } else if (arg == "--opt-past") {
- if (++i >= argc) {
- *invalid_param = true;
- return true;
- }
- params->opt_past = std::stoi(argv[i]);
- } else if (arg == "--opt-delta") {
- if (++i >= argc) {
- *invalid_param = true;
- return true;
- }
- params->opt_delta = std::stof(argv[i]);
- } else if (arg == "--opt-max-no-improvement") {
- if (++i >= argc) {
- *invalid_param = true;
- return true;
- }
- params->opt_max_no_improvement = std::stoi(argv[i]);
- } else if (arg == "--adam-epsf") {
- if (++i >= argc) {
- *invalid_param = true;
- return true;
- }
- params->adam_eps_f = std::stof(argv[i]);
- } else if (arg == "--epochs") {
- if (++i >= argc) {
- *invalid_param = true;
- return true;
- }
- params->n_epochs = std::stoi(argv[i]);
- } else if (arg == "--adam-iter") {
- if (++i >= argc) {
- *invalid_param = true;
- return true;
- }
- params->adam_n_iter = std::stoi(argv[i]);
- } else if (arg == "--adam-alpha") {
- if (++i >= argc) {
- *invalid_param = true;
- return true;
- }
- params->adam_alpha = std::stof(argv[i]);
- } else if (arg == "--adam-min-alpha") {
- if (++i >= argc) {
- *invalid_param = true;
- return true;
- }
- params->adam_min_alpha = std::stof(argv[i]);
- } else if (arg == "--adam-decay") {
- if (++i >= argc) {
- *invalid_param = true;
- return true;
- }
- params->adam_decay = std::stof(argv[i]);
- } else if (arg == "--adam-decay-min-ndim") {
- if (++i >= argc) {
- *invalid_param = true;
- return true;
- }
- params->adam_decay_min_ndim = std::stoi(argv[i]);
- } else if (arg == "--adam-beta1") {
- if (++i >= argc) {
- *invalid_param = true;
- return true;
- }
- params->adam_beta1 = std::stof(argv[i]);
- } else if (arg == "--adam-beta2") {
- if (++i >= argc) {
- *invalid_param = true;
- return true;
- }
- params->adam_beta2 = std::stof(argv[i]);
- } else if (arg == "--adam-gclip") {
- if (++i >= argc) {
- *invalid_param = true;
- return true;
- }
- params->adam_gclip = std::stof(argv[i]);
- } else if (arg == "-h" || arg == "--help") {
- params->print_usage = true;
- return true;
- } else {
- return false;
- }
- return true;
- }
- void finish_processing_train_args(struct train_params_common * params) {
- if (params->escape) {
- process_escapes(params->sample_start);
- }
- }
- void train_opt_callback(void * vdata, int accum_step, float * sched, bool * cancel) {
- struct train_opt_callback_data * data = (struct train_opt_callback_data *) vdata;
- struct train_params_common * params = data->params;
- struct train_state * train = data->train;
- struct ggml_opt_context * opt = train->opt;
- int n_batch = params->n_batch;
- int n_ctx = params->n_ctx;
- if (accum_step == 0) {
- // time measurement
- int64_t now = ggml_time_ms();
- if (now > data->last_time && opt->iter > data->first_iter) {
- double dt = (double) (now - data->last_time);
- if (data->millis_per_iter == 0.0) {
- data->millis_per_iter = dt;
- } else {
- const double gain = 0.7;
- data->millis_per_iter = data->millis_per_iter*(1.0-gain) + dt*gain;
- }
- }
- double remaining_millis = 0.0;
- if (data->millis_per_iter > 0.0) {
- const int n_iter = params->adam_n_iter;
- const int done_iter = opt->iter - data->first_iter;
- const int remaining_iter = n_iter - done_iter;
- remaining_millis = remaining_iter * data->millis_per_iter;
- }
- // file saving
- const bool save_now = (params->save_every > 0) && (opt->iter - data->last_save_iter >= params->save_every);
- if (save_now) {
- int new_iters = opt->iter - data->last_save_iter;
- train->train_its += new_iters;
- train->train_tokens += new_iters * opt->params.n_gradient_accumulation * n_batch * n_ctx;
- if (data->save_cb) {
- data->save_cb(data->save_data, train);
- }
- data->last_save_iter = opt->iter;
- }
- // exclude file saving from time measurement, by measuring last_time after saving
- data->last_time = ggml_time_ms();
- *sched = learning_schedule(
- opt->iter,
- params->warmup,
- params->cos_decay_steps,
- params->adam_alpha,
- params->adam_min_alpha,
- params->cos_decay_min,
- params->cos_decay_restart,
- params->enable_restart);
- int impr_plot = -(int)(1 + (opt->loss_before - opt->loss_after) * 10.0f + 0.5f);
- if (impr_plot > 0) impr_plot = 0;
- if (std::isnan(opt->loss_before) || std::isnan(opt->loss_before)) impr_plot = 0;
- printf("%s: iter=%6d sample=%zu/%zu sched=%f loss=%f",
- __func__, opt->iter, std::min(1+train->shuffle_next_sample, train->shuffle_sample_count), train->shuffle_sample_count,
- *sched, opt->loss_after);
- if (data->millis_per_iter > 0) {
- printf(" dt=");
- print_duration(data->millis_per_iter);
- printf(" eta=");
- print_duration(remaining_millis);
- }
- float improvement = opt->loss_before - opt->loss_after;
- const float plot_scale = 10.0f;
- int bar_len = (int)(1 + improvement*plot_scale + 0.5);
- printf(" |");
- for (int i=0; i<bar_len; ++i) {
- printf("-");
- }
- printf(">");
- printf("\n");
- }
- int64_t used_samples = get_example_targets_batch(
- data->lctx,
- data->tokens_input,
- data->target_probs,
- train->shuffle_next_sample,
- data->shuffled_samples_offs,
- data->shuffled_samples_begin,
- data->shuffled_samples_size,
- data->samples_count,
- data->tokens_data,
- data->tokens_size,
- params->separate_with_eos,
- params->separate_with_bos,
- params->fill_with_next_samples,
- params->sample_random_offsets);
- train->train_samples += used_samples;
- train->shuffle_next_sample += used_samples;
- if (train->shuffle_next_sample >= train->shuffle_sample_count) {
- ++train->train_epochs;
- printf("%s: reshuffle samples. completed epochs: %llu\n", __func__, (long long unsigned) train->train_epochs);
- // note: we may have used some samples from the current shuffling more than once
- train->shuffle_rng_state_current = train->shuffle_rng_state_next;
- train->shuffle_rng_state_next = shuffle_samples(
- train->shuffle_rng_state_current,
- data->shuffled_samples_offs,
- data->shuffled_samples_begin,
- data->shuffled_samples_size,
- data->samples_begin,
- data->samples_size,
- data->samples_count);
- train->shuffle_next_sample = 0;
- }
- const bool last_epoch_reached = (params->n_epochs > 0 && (int64_t) train->train_epochs - data->first_epoch >= params->n_epochs);
- if (last_epoch_reached) {
- // allow optimization iteration at last epoch to be completed before canceling
- if (data->iter_at_last_epoch < 0) {
- data->iter_at_last_epoch = opt->iter;
- } else if (opt->iter > data->iter_at_last_epoch) {
- *cancel = true;
- }
- }
- }
|