| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683 |
- #include "arg.h"
- #include "chat.h"
- #include "common.h"
- #include "llama.h"
- #include "log.h"
- #include <limits.h>
- #include <algorithm>
- #include <cmath>
- #include <cstring>
- #include <limits>
- #include <random>
- #include <string>
- #include <vector>
- enum diffusion_algorithm { ORIGIN = 0, ENTROPY_BASED = 1, MARGIN_BASED = 2, RANDOM = 3, CONFIDENCE_BASED = 4 };
- // Unified transfer scheduling methods
- enum transfer_schedule {
- TIMESTEP_BASED = 0, // Dream-style: (1.0 - s/t) * remaining
- BLOCK_BASED = 1, // LLaDA-style: process in blocks with get_num_transfer_tokens
- };
- typedef bool (*diffusion_step_callback_t)(int32_t step,
- int32_t total_steps,
- const llama_token * tokens,
- int32_t n_tokens,
- void * user_data);
- struct diffusion_params {
- int32_t steps = 0;
- float temperature = 0;
- llama_token mask_token_id = LLAMA_TOKEN_NULL;
- diffusion_step_callback_t step_callback = nullptr;
- void * step_callback_user_data = nullptr;
- int32_t seed = 0;
- bool visual_mode = false;
- bool shift_logits = false; // Shift logits by -1 after decode
- float top_p = 0.;
- int32_t top_k = 0.;
- diffusion_algorithm algorithm = CONFIDENCE_BASED;
- transfer_schedule schedule = TIMESTEP_BASED;
- float cfg_scale = 0.; // Config scale for classifier-free guidance
- float eps = 0.; // Timestep scheduling
- int32_t block_length = 0; // Block size (for block scheduling)
- float alg_temp = 0; // algorithm temperature (0.0 = deterministic)
- bool add_gumbel_noise = false; // Add gumbel noise to the logits if temp > 0.0
- int32_t max_length = 0; // Maximum sequence length
- };
- struct callback_data {
- diffusion_params * diff_params;
- const llama_vocab * vocab;
- int32_t n_input;
- };
- static float calculate_confidence(const llama_token_data_array & cur_p,
- diffusion_algorithm algorithm,
- std::mt19937 & rng) {
- switch (algorithm) {
- case CONFIDENCE_BASED:
- return cur_p.data[cur_p.selected].p; // Selected token probability
- case ENTROPY_BASED:
- {
- float entropy = 0.0f;
- const float epsilon = 1e-10f;
- for (size_t i = 0; i < cur_p.size; i++) {
- float prob = cur_p.data[i].p;
- entropy += prob * logf(prob + epsilon);
- }
- return -entropy; // Higher entropy = lower confidence
- }
- case MARGIN_BASED:
- return (cur_p.size > 1) ? cur_p.data[0].p - cur_p.data[1].p : cur_p.data[0].p;
- case RANDOM:
- {
- std::uniform_real_distribution<float> uniform(0.0f, 1.0f);
- return uniform(rng); // Random confidence
- }
- case ORIGIN:
- return cur_p.data[cur_p.selected].p;
- default:
- return 0.0f;
- }
- }
- // Unified transfer count calculation function
- static int32_t calculate_transfer_count(int32_t step,
- int32_t total_steps,
- int32_t remaining_masked,
- transfer_schedule schedule,
- float eps,
- const std::vector<int32_t> & num_transfer_tokens = {}) {
- switch (schedule) {
- case TIMESTEP_BASED:
- {
- float t = 1.0f - (float) step / total_steps * (1.0f - eps);
- float s = 1.0f - (float) (step + 1) / total_steps * (1.0f - eps);
- float p_transfer = (step < total_steps - 1) ? (1.0f - s / t) : 1.0f;
- return (int32_t) (remaining_masked * p_transfer);
- }
- case BLOCK_BASED:
- if (!num_transfer_tokens.empty() && step < (int32_t) num_transfer_tokens.size()) {
- return num_transfer_tokens[step];
- }
- return remaining_masked / (total_steps - step); // Fallback
- default:
- return remaining_masked / (total_steps - step);
- }
- }
- static bool diffusion_step_callback(int32_t step,
- int32_t total_steps,
- const llama_token * tokens,
- int32_t n_tokens,
- void * user_data) {
- (void) user_data;
- callback_data * data = static_cast<callback_data *>(user_data);
- auto print_progress_bar = [](int32_t step, int32_t total_steps) {
- int progress_percent = (step * 100) / total_steps;
- int progress_bars = (step * 50) / total_steps;
- LOG_INF("\rdiffusion step: %d/%d [%s%s] %d%%",
- step,
- total_steps,
- std::string(progress_bars, '=').c_str(),
- std::string(50 - progress_bars, ' ').c_str(),
- progress_percent);
- };
- if (data->diff_params->visual_mode) {
- // Visual mode: clear
- LOG_INF("\033[2J\033[H"); // Clear screen and move cursor to top-left
- print_progress_bar(step, total_steps);
- LOG_INF("\n");
- std::string current_text = " ";
- for (int32_t i = data->n_input; i < n_tokens; i++) {
- std::string token_str;
- if (tokens[i] != llama_vocab_mask(data->vocab)) {
- char piece[256];
- int n_chars = llama_token_to_piece(data->vocab, tokens[i], piece, sizeof(piece), 0, false);
- if (n_chars > 0) {
- piece[n_chars] = '\0';
- token_str = piece;
- }
- } else {
- token_str = " ";
- }
- current_text += token_str;
- }
- LOG_INF("%s\n", current_text.c_str());
- } else {
- print_progress_bar(step, total_steps);
- }
- return true;
- }
- static void add_gumbel_noise(float * logits, int32_t n_vocab, float temperature, std::mt19937 & rng) {
- if (temperature == 0.0f) {
- return;
- }
- std::uniform_real_distribution<double> uniform(0.0, 1.0);
- for (int32_t i = 0; i < n_vocab; i++) {
- double noise = uniform(rng);
- // Prevent log(0)
- noise = std::max(noise, 1e-20);
- double gumbel_noise = std::pow(-std::log(noise), temperature);
- logits[i] = std::exp(logits[i]) / gumbel_noise;
- }
- }
- static std::vector<int32_t> get_num_transfer_tokens(int32_t mask_count, int32_t steps) {
- std::vector<int32_t> num_transfer_tokens(steps);
- int32_t base = mask_count / steps;
- int32_t remainder = mask_count % steps;
- for (int32_t i = 0; i < steps; i++) {
- num_transfer_tokens[i] = base + (i < remainder ? 1 : 0);
- }
- return num_transfer_tokens;
- }
- static void diffusion_generate(llama_context * ctx,
- const llama_token * input_tokens,
- llama_token * output_tokens,
- int32_t n_input,
- const diffusion_params & params,
- int32_t & n_generated) {
- n_generated = 0;
- if (!ctx || !input_tokens || !output_tokens || n_input <= 0 || params.max_length <= n_input) {
- return;
- }
- const llama_model * model = llama_get_model(ctx);
- // Initialize with input and pad with mask tokens
- std::copy(input_tokens, input_tokens + n_input, output_tokens);
- std::fill(output_tokens + n_input, output_tokens + params.max_length, params.mask_token_id);
- std::mt19937 rng(params.seed);
- llama_set_causal_attn(ctx, false);
- int32_t n_vocab = llama_vocab_n_tokens(llama_model_get_vocab(model));
- std::vector<llama_token_data> candidates(n_vocab);
- std::vector<llama_token_data> conf_candidates;
- conf_candidates.reserve(params.max_length);
- std::vector<int32_t> mask_positions;
- mask_positions.reserve(params.max_length);
- // Setup sampler chain
- struct llama_sampler * sampler = llama_sampler_chain_init(llama_sampler_chain_default_params());
- if (params.top_k > 0) {
- llama_sampler_chain_add(sampler, llama_sampler_init_top_k(params.top_k));
- }
- if (params.top_p < 1.0f) {
- llama_sampler_chain_add(sampler, llama_sampler_init_top_p(params.top_p, 1));
- }
- if (params.temperature > 0.0f) {
- llama_sampler_chain_add(sampler, llama_sampler_init_temp(params.temperature));
- }
- llama_sampler_chain_add(sampler, llama_sampler_init_dist(params.seed));
- struct llama_sampler * dist_sampler = llama_sampler_init_dist(params.seed);
- llama_batch batch = llama_batch_init(params.max_length, 0, 1);
- batch.n_tokens = params.max_length;
- // Pre-allocate buffers for CFG if needed
- int32_t logits_size = n_vocab * params.max_length;
- std::vector<float> cond_logits_buffer;
- std::vector<llama_token> un_x_buffer;
- if (params.cfg_scale > 0.0f) {
- cond_logits_buffer.resize(logits_size);
- un_x_buffer.resize(params.max_length);
- }
- // For block-based processing
- std::vector<int32_t> num_transfer_tokens;
- int32_t num_blocks = 1;
- int32_t steps_per_block = params.steps;
- if (params.schedule == BLOCK_BASED) {
- GGML_ASSERT(params.max_length % params.block_length == 0);
- num_blocks = params.max_length / params.block_length;
- GGML_ASSERT(params.steps % num_blocks == 0);
- steps_per_block = params.steps / num_blocks;
- }
- std::vector<float> confidence(params.max_length);
- int64_t total_sampling_time = 0;
- int64_t total_time = 0;
- int64_t time_start = ggml_time_us();
- for (int block_num = 0; block_num < num_blocks; block_num++) {
- int32_t block_start = (params.schedule == BLOCK_BASED) ? n_input + block_num * params.block_length : 0;
- int32_t block_end = (params.schedule == BLOCK_BASED) ?
- std::min(n_input + (block_num + 1) * params.block_length, params.max_length) :
- params.max_length;
- // Count masked tokens in current block for block-based processing
- if (params.schedule == BLOCK_BASED) {
- int32_t block_mask_count = 0;
- for (int i = block_start; i < block_end; i++) {
- if (output_tokens[i] == params.mask_token_id) {
- block_mask_count++;
- }
- }
- num_transfer_tokens = get_num_transfer_tokens(block_mask_count, steps_per_block);
- }
- for (int32_t step = 0; step < steps_per_block; step++) {
- int32_t global_step = block_num * steps_per_block + step;
- if (params.step_callback) {
- if (!params.step_callback(
- global_step, params.steps, output_tokens, params.max_length, params.step_callback_user_data)) {
- break;
- }
- }
- // Setup batch
- for (int32_t i = 0; i < params.max_length; i++) {
- batch.token[i] = output_tokens[i];
- batch.pos[i] = i;
- batch.n_seq_id[i] = 1;
- batch.seq_id[i][0] = 0;
- batch.logits[i] = 1;
- }
- float * logits = nullptr;
- if (params.cfg_scale > 0.0f) {
- int ret = llama_decode(ctx, batch);
- if (ret != 0) {
- LOG_ERR("Failed to generate conditional");
- break;
- }
- float * cond_logits_ptr = llama_get_logits(ctx);
- std::memcpy(cond_logits_buffer.data(), cond_logits_ptr, logits_size * sizeof(float));
- // Unconditional generation (mask input)
- std::copy(output_tokens, output_tokens + params.max_length, un_x_buffer.begin());
- for (int32_t i = 0; i < n_input; i++) {
- un_x_buffer[i] = params.mask_token_id;
- }
- for (int32_t i = 0; i < params.max_length; i++) {
- batch.token[i] = un_x_buffer[i];
- }
- ret = llama_decode(ctx, batch);
- if (ret != 0) {
- LOG_ERR("Failed to generate unconditional");
- break;
- }
- float * uncond_logits = llama_get_logits(ctx);
- // Apply CFG
- for (int32_t i = 0; i < logits_size; i++) {
- cond_logits_buffer[i] =
- uncond_logits[i] + (params.cfg_scale + 1.0f) * (cond_logits_buffer[i] - uncond_logits[i]);
- }
- logits = cond_logits_buffer.data();
- } else {
- int ret = llama_decode(ctx, batch);
- if (ret != 0) {
- LOG_ERR("%s: failed to decode at step %d, ret = %d\n", __func__, global_step, ret);
- break;
- }
- logits = llama_get_logits(ctx);
- }
- if (!logits) {
- LOG_ERR("%s: failed to get logits at step %d\n", __func__, global_step);
- break;
- }
- auto get_logits_for_pos = [&](int32_t pos) -> const float * {
- if (params.shift_logits) {
- return pos == 0 ? logits : logits + (pos - 1) * n_vocab;
- }
- return logits + (pos) *n_vocab;
- };
- int64_t time_start_sampling = ggml_time_us();
- mask_positions.clear();
- for (int32_t i = 0; i < params.max_length; i++) {
- if (output_tokens[i] == params.mask_token_id) {
- // For block-based, only consider current block
- if (params.schedule != BLOCK_BASED || (i >= block_start && i < block_end)) {
- mask_positions.push_back(i);
- }
- }
- }
- if (mask_positions.empty()) {
- break;
- }
- if (params.add_gumbel_noise && params.temperature > 0.0f) {
- add_gumbel_noise(logits, n_vocab, params.temperature, rng);
- }
- if (params.algorithm == ORIGIN) {
- int32_t transfer_count = calculate_transfer_count(
- step, steps_per_block, mask_positions.size(), params.schedule, params.eps, num_transfer_tokens);
- float p_transfer = (float) transfer_count / mask_positions.size();
- for (int32_t pos : mask_positions) {
- if (std::uniform_real_distribution<float>(0.0f, 1.0f)(rng) < p_transfer) {
- const float * pos_logits = get_logits_for_pos(pos);
- for (int32_t token_id = 0; token_id < n_vocab; token_id++) {
- candidates[token_id].id = token_id;
- candidates[token_id].logit = pos_logits[token_id];
- candidates[token_id].p = 0.0f;
- }
- llama_token_data_array cur_p = {
- candidates.data(),
- (size_t) n_vocab,
- -1,
- false,
- };
- llama_sampler_apply(sampler, &cur_p);
- output_tokens[pos] = cur_p.data[cur_p.selected].id;
- }
- }
- } else {
- std::vector<std::pair<float, int32_t>> confidences;
- std::vector<llama_token> sampled_tokens(mask_positions.size());
- for (size_t i = 0; i < mask_positions.size(); i++) {
- int32_t pos = mask_positions[i];
- const float * pos_logits = get_logits_for_pos(pos);
- for (int32_t token_id = 0; token_id < n_vocab; token_id++) {
- candidates[token_id].logit = pos_logits[token_id];
- candidates[token_id].p = 0.0f;
- candidates[token_id].id = token_id;
- }
- llama_token_data_array cur_p = {
- candidates.data(),
- candidates.size(),
- -1,
- false,
- };
- llama_sampler_apply(sampler, &cur_p);
- llama_token sampled_token = cur_p.data[cur_p.selected].id;
- float conf = calculate_confidence(cur_p, params.algorithm, rng);
- sampled_tokens[i] = sampled_token;
- confidences.emplace_back(conf, i);
- }
- int32_t transfer_count = calculate_transfer_count(
- step, steps_per_block, mask_positions.size(), params.schedule, params.eps, num_transfer_tokens);
- if (transfer_count > 0) {
- if (params.alg_temp == 0.0f) {
- std::partial_sort(confidences.begin(),
- confidences.begin() + std::min(transfer_count, (int32_t) confidences.size()),
- confidences.end(),
- [](const std::pair<float, int32_t> & a, const std::pair<float, int32_t> & b) {
- if (a.first != b.first) {
- return a.first > b.first;
- }
- return a.second < b.second;
- });
- for (int32_t i = 0; i < std::min(transfer_count, (int32_t) confidences.size()); i++) {
- int32_t mask_idx = confidences[i].second;
- int32_t pos = mask_positions[mask_idx];
- output_tokens[pos] = sampled_tokens[mask_idx];
- }
- } else {
- conf_candidates.clear();
- for (size_t i = 0; i < confidences.size(); i++) {
- float conf_logit = confidences[i].first / params.alg_temp;
- conf_candidates.emplace_back(llama_token_data{ (int32_t) i, conf_logit, 0.0f });
- }
- llama_token_data_array conf_array = {
- conf_candidates.data(),
- conf_candidates.size(),
- -1,
- false,
- };
- for (int32_t i = 0; i < std::min(transfer_count, (int32_t) confidences.size()); i++) {
- llama_sampler_apply(dist_sampler, &conf_array);
- int32_t selected_idx = conf_array.selected;
- int32_t mask_idx = selected_idx;
- int32_t pos = mask_positions[mask_idx];
- output_tokens[pos] = sampled_tokens[mask_idx];
- conf_candidates[selected_idx].p = 0.0f;
- conf_array.selected = -1;
- }
- }
- }
- }
- int64_t time_end_sampling = ggml_time_us();
- total_sampling_time += time_end_sampling - time_start_sampling;
- }
- }
- int64_t time_end = ggml_time_us();
- total_time += time_end - time_start;
- LOG_INF("\ntotal time: %0.2fms, time per step: %0.2fms, sampling time per step: %0.2fms\n",
- total_time / 1000.0,
- total_time / 1000.0 / params.steps,
- total_sampling_time / 1000.0 / params.steps);
- llama_batch_free(batch);
- llama_sampler_free(sampler);
- llama_sampler_free(dist_sampler);
- n_generated = params.max_length;
- }
- static std::string format_input_text(const std::string & prompt, bool use_chat_template, llama_model * model) {
- if (!use_chat_template) {
- return prompt;
- }
- auto chat_templates = common_chat_templates_init(model, "");
- common_chat_templates_inputs inputs;
- common_chat_msg user_msg;
- user_msg.role = "user";
- user_msg.content = prompt;
- inputs.add_generation_prompt = true;
- inputs.messages.push_back(user_msg);
- auto result = common_chat_templates_apply(chat_templates.get(), inputs);
- return result.prompt;
- }
- int main(int argc, char ** argv) {
- ggml_time_init();
- common_params params;
- if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_DIFFUSION)) {
- return 1;
- }
- common_init();
- llama_backend_init();
- llama_model_params model_params = llama_model_default_params();
- model_params.n_gpu_layers = params.n_gpu_layers;
- model_params.devices = params.devices.data();
- model_params.use_mmap = params.use_mmap;
- model_params.use_mlock = params.use_mlock;
- model_params.check_tensors = params.check_tensors;
- llama_model * model = llama_model_load_from_file(params.model.path.c_str(), model_params);
- if (!model) {
- LOG_ERR("error: failed to load model '%s'\n", params.model.path.c_str());
- return 1;
- }
- if (!llama_model_is_diffusion(model)) {
- LOG_ERR("error: unsupported model for diffusion");
- llama_model_free(model);
- return 1;
- }
- llama_context_params ctx_params = llama_context_default_params();
- ctx_params.n_ctx = params.n_ctx;
- ctx_params.n_batch = params.n_batch;
- ctx_params.n_ubatch = params.n_ubatch;
- ctx_params.flash_attn_type = params.flash_attn_type;
- ctx_params.no_perf = params.no_perf;
- ctx_params.type_k = params.cache_type_k;
- ctx_params.type_v = params.cache_type_v;
- llama_context * ctx = llama_init_from_model(model, ctx_params);
- if (!ctx) {
- LOG_ERR("error: failed to create context\n");
- llama_model_free(model);
- return 1;
- }
- llama_set_n_threads(ctx, params.cpuparams.n_threads, params.cpuparams_batch.n_threads);
- const llama_vocab * vocab = llama_model_get_vocab(model);
- std::string formatted_prompt = format_input_text(params.prompt, params.enable_chat_template, model);
- std::vector<llama_token> input_tokens = common_tokenize(vocab,
- formatted_prompt,
- /*add special tokens*/ true,
- /*parse special*/ true);
- int n_input = input_tokens.size();
- if (n_input >= params.n_ctx) {
- LOG_ERR("error: input too long (%d tokens), max context is %d\n", n_input, params.n_ctx);
- llama_free(ctx);
- llama_model_free(model);
- return 1;
- }
- llama_token mask_token_id = llama_vocab_mask(vocab);
- GGML_ASSERT(mask_token_id != LLAMA_TOKEN_NULL);
- bool visual_mode = params.diffusion.visual_mode;
- int32_t n_generated = 0;
- std::vector<llama_token> output_tokens(params.n_ubatch);
- struct diffusion_params diff_params;
- char shift_logits_str[8];
- if (llama_model_meta_val_str(model, "diffusion.shift_logits", shift_logits_str, sizeof(shift_logits_str)) >= 0) {
- diff_params.shift_logits = (strcmp(shift_logits_str, "true") == 0);
- } else {
- diff_params.shift_logits = true;
- }
- //Use either eps or block length, but not both
- GGML_ASSERT((params.diffusion.eps == 0) ^ (params.diffusion.block_length == 0));
- if (params.diffusion.eps) {
- diff_params.schedule = TIMESTEP_BASED;
- diff_params.eps = params.diffusion.eps;
- } else if (params.diffusion.block_length) {
- diff_params.schedule = BLOCK_BASED;
- diff_params.block_length = params.diffusion.block_length;
- }
- diff_params.mask_token_id = mask_token_id;
- diff_params.seed = params.sampling.seed;
- diff_params.temperature = params.sampling.temp;
- diff_params.steps = params.diffusion.steps;
- diff_params.algorithm = static_cast<diffusion_algorithm>(params.diffusion.algorithm);
- diff_params.max_length = params.n_ubatch;
- diff_params.top_p = params.sampling.top_p;
- diff_params.top_k = params.sampling.top_k;
- diff_params.visual_mode = params.diffusion.visual_mode;
- diff_params.add_gumbel_noise = params.diffusion.add_gumbel_noise;
- diff_params.step_callback = diffusion_step_callback;
- callback_data cb_data = { &diff_params, vocab, n_input };
- diff_params.step_callback_user_data = &cb_data;
- const char * alg_names[] = { "ORIGIN", "ENTROPY_BASED", "MARGIN_BASED", "RANDOM", "CONFIDENCE_BASED" };
- const char * sched_names[] = { "TIMESTEP_BASED", "BLOCK_BASED" };
- const char * alg_name =
- (diff_params.algorithm >= 0 && diff_params.algorithm <= 4) ? alg_names[diff_params.algorithm] : "UNKNOWN";
- const char * sched_name =
- (diff_params.schedule >= 0 && diff_params.schedule <= 1) ? sched_names[diff_params.schedule] : "UNKNOWN";
- LOG_INF("diffusion_params: - %-25s llama_token = %d\n", "mask_token_id", mask_token_id);
- LOG_INF("diffusion_params: - %-25s u32 = %d\n", "steps", diff_params.steps);
- LOG_INF("diffusion_params: - %-25s u32 = %d\n", "max_length", diff_params.max_length);
- LOG_INF("diffusion_params: - %-25s enum = %d (%s)\n", "algorithm", diff_params.algorithm, alg_name);
- LOG_INF("diffusion_params: - %-25s enum = %d (%s)\n", "schedule", diff_params.schedule, sched_name);
- LOG_INF("diffusion_params: - %-25s f32 = %.3f\n", "temperature", diff_params.temperature);
- if (diff_params.schedule == TIMESTEP_BASED) {
- LOG_INF("diffusion_params: - %-25s f32 = %.6f\n", "eps", diff_params.eps);
- LOG_INF("diffusion_params: - %-25s f32 = %.3f\n", "alg_temp", diff_params.alg_temp);
- }
- if (diff_params.schedule == BLOCK_BASED) {
- LOG_INF("diffusion_params: - %-25s u32 = %d\n", "block_length", diff_params.block_length);
- LOG_INF("diffusion_params: - %-25s f32 = %.3f\n", "cfg_scale", diff_params.cfg_scale);
- }
- diffusion_generate(ctx, input_tokens.data(), output_tokens.data(), n_input, diff_params, n_generated);
- if (n_generated > 0) {
- if (visual_mode) {
- //clear screen and move cursor to top-left
- LOG_INF("\033[2J\033[H");
- }
- output_tokens.erase(output_tokens.begin(), output_tokens.begin() + n_input);
- std::string output_data = common_detokenize(vocab, output_tokens, false);
- LOG_INF("\n%s\n", output_data.c_str());
- } else {
- LOG_INF("Error: diffusion generation failed\n");
- }
- llama_free(ctx);
- llama_model_free(model);
- llama_backend_free();
- return 0;
- }
|