llama-bench.cpp 78 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020
  1. #include <algorithm>
  2. #include <array>
  3. #include <cassert>
  4. #include <chrono>
  5. #include <cinttypes>
  6. #include <clocale>
  7. #include <cmath>
  8. #include <cstdio>
  9. #include <cstdlib>
  10. #include <cstring>
  11. #include <ctime>
  12. #include <iterator>
  13. #include <map>
  14. #include <numeric>
  15. #include <regex>
  16. #include <sstream>
  17. #include <string>
  18. #include <thread>
  19. #include <vector>
  20. #include "common.h"
  21. #include "ggml.h"
  22. #include "llama.h"
  23. #ifdef _WIN32
  24. # define WIN32_LEAN_AND_MEAN
  25. # ifndef NOMINMAX
  26. # define NOMINMAX
  27. # endif
  28. # include <windows.h>
  29. #endif
  30. // utils
  31. static uint64_t get_time_ns() {
  32. using clock = std::chrono::high_resolution_clock;
  33. return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
  34. }
  35. static bool tensor_buft_override_equal(const llama_model_tensor_buft_override& a, const llama_model_tensor_buft_override& b) {
  36. if (a.pattern != b.pattern) {
  37. // cString comparison that may be null
  38. if (a.pattern == nullptr || b.pattern == nullptr) {
  39. return false;
  40. }
  41. if (strcmp(a.pattern, b.pattern) != 0) {
  42. return false;
  43. }
  44. }
  45. if (a.buft != b.buft) {
  46. return false;
  47. }
  48. return true;
  49. }
  50. static bool vec_tensor_buft_override_equal(const std::vector<llama_model_tensor_buft_override>& a, const std::vector<llama_model_tensor_buft_override>& b) {
  51. if (a.size() != b.size()) {
  52. return false;
  53. }
  54. for (size_t i = 0; i < a.size(); i++) {
  55. if (!tensor_buft_override_equal(a[i], b[i])) {
  56. return false;
  57. }
  58. }
  59. return true;
  60. }
  61. static bool vec_vec_tensor_buft_override_equal(const std::vector<std::vector<llama_model_tensor_buft_override>>& a, const std::vector<std::vector<llama_model_tensor_buft_override>>& b) {
  62. if (a.size() != b.size()) {
  63. return false;
  64. }
  65. for (size_t i = 0; i < a.size(); i++) {
  66. if (!vec_tensor_buft_override_equal(a[i], b[i])) {
  67. return false;
  68. }
  69. }
  70. return true;
  71. }
  72. template <class T> static std::string join(const std::vector<T> & values, const std::string & delim) {
  73. std::ostringstream str;
  74. for (size_t i = 0; i < values.size(); i++) {
  75. str << values[i];
  76. if (i < values.size() - 1) {
  77. str << delim;
  78. }
  79. }
  80. return str.str();
  81. }
  82. template <typename T, typename F> static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
  83. std::vector<std::string> str_values;
  84. std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
  85. return str_values;
  86. }
  87. template <typename T> static T avg(const std::vector<T> & v) {
  88. if (v.empty()) {
  89. return 0;
  90. }
  91. T sum = std::accumulate(v.begin(), v.end(), T(0));
  92. return sum / (T) v.size();
  93. }
  94. template <typename T> static T stdev(const std::vector<T> & v) {
  95. if (v.size() <= 1) {
  96. return 0;
  97. }
  98. T mean = avg(v);
  99. T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
  100. T stdev = std::sqrt(sq_sum / (T) (v.size() - 1) - mean * mean * (T) v.size() / (T) (v.size() - 1));
  101. return stdev;
  102. }
  103. static std::string get_cpu_info() {
  104. std::vector<std::string> cpu_list;
  105. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  106. auto * dev = ggml_backend_dev_get(i);
  107. auto dev_type = ggml_backend_dev_type(dev);
  108. if (dev_type == GGML_BACKEND_DEVICE_TYPE_CPU || dev_type == GGML_BACKEND_DEVICE_TYPE_ACCEL) {
  109. cpu_list.push_back(ggml_backend_dev_description(dev));
  110. }
  111. }
  112. return join(cpu_list, ", ");
  113. }
  114. static std::string get_gpu_info() {
  115. std::vector<std::string> gpu_list;
  116. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  117. auto * dev = ggml_backend_dev_get(i);
  118. auto dev_type = ggml_backend_dev_type(dev);
  119. if (dev_type == GGML_BACKEND_DEVICE_TYPE_GPU) {
  120. gpu_list.push_back(ggml_backend_dev_description(dev));
  121. }
  122. }
  123. return join(gpu_list, ", ");
  124. }
  125. // command line params
  126. enum output_formats { NONE, CSV, JSON, JSONL, MARKDOWN, SQL };
  127. static const char * output_format_str(output_formats format) {
  128. switch (format) {
  129. case NONE:
  130. return "none";
  131. case CSV:
  132. return "csv";
  133. case JSON:
  134. return "json";
  135. case JSONL:
  136. return "jsonl";
  137. case MARKDOWN:
  138. return "md";
  139. case SQL:
  140. return "sql";
  141. default:
  142. GGML_ABORT("invalid output format");
  143. }
  144. }
  145. static bool output_format_from_str(const std::string & s, output_formats & format) {
  146. if (s == "none") {
  147. format = NONE;
  148. } else if (s == "csv") {
  149. format = CSV;
  150. } else if (s == "json") {
  151. format = JSON;
  152. } else if (s == "jsonl") {
  153. format = JSONL;
  154. } else if (s == "md") {
  155. format = MARKDOWN;
  156. } else if (s == "sql") {
  157. format = SQL;
  158. } else {
  159. return false;
  160. }
  161. return true;
  162. }
  163. static const char * split_mode_str(llama_split_mode mode) {
  164. switch (mode) {
  165. case LLAMA_SPLIT_MODE_NONE:
  166. return "none";
  167. case LLAMA_SPLIT_MODE_LAYER:
  168. return "layer";
  169. case LLAMA_SPLIT_MODE_ROW:
  170. return "row";
  171. default:
  172. GGML_ABORT("invalid split mode");
  173. }
  174. }
  175. static std::string pair_str(const std::pair<int, int> & p) {
  176. static char buf[32];
  177. snprintf(buf, sizeof(buf), "%d,%d", p.first, p.second);
  178. return buf;
  179. }
  180. static std::vector<int> parse_int_range(const std::string & s) {
  181. // first[-last[(+|*)step]]
  182. std::regex range_regex(R"(^(\d+)(?:-(\d+)(?:([\+|\*])(\d+))?)?(?:,|$))");
  183. std::smatch match;
  184. std::string::const_iterator search_start(s.cbegin());
  185. std::vector<int> result;
  186. while (std::regex_search(search_start, s.cend(), match, range_regex)) {
  187. int first = std::stoi(match[1]);
  188. int last = match[2].matched ? std::stoi(match[2]) : first;
  189. char op = match[3].matched ? match[3].str()[0] : '+';
  190. int step = match[4].matched ? std::stoi(match[4]) : 1;
  191. for (int i = first; i <= last;) {
  192. result.push_back(i);
  193. int prev_i = i;
  194. if (op == '+') {
  195. i += step;
  196. } else if (op == '*') {
  197. i *= step;
  198. } else {
  199. throw std::invalid_argument("invalid range format");
  200. }
  201. if (i <= prev_i) {
  202. throw std::invalid_argument("invalid range");
  203. }
  204. }
  205. search_start = match.suffix().first;
  206. }
  207. if (search_start != s.cend()) {
  208. throw std::invalid_argument("invalid range format");
  209. }
  210. return result;
  211. }
  212. struct cmd_params {
  213. std::vector<std::string> model;
  214. std::vector<int> n_prompt;
  215. std::vector<int> n_gen;
  216. std::vector<std::pair<int, int>> n_pg;
  217. std::vector<int> n_depth;
  218. std::vector<int> n_batch;
  219. std::vector<int> n_ubatch;
  220. std::vector<ggml_type> type_k;
  221. std::vector<ggml_type> type_v;
  222. std::vector<int> n_threads;
  223. std::vector<std::string> cpu_mask;
  224. std::vector<bool> cpu_strict;
  225. std::vector<int> poll;
  226. std::vector<int> n_gpu_layers;
  227. std::vector<std::string> rpc_servers;
  228. std::vector<llama_split_mode> split_mode;
  229. std::vector<int> main_gpu;
  230. std::vector<bool> no_kv_offload;
  231. std::vector<bool> flash_attn;
  232. std::vector<std::vector<float>> tensor_split;
  233. std::vector<std::vector<llama_model_tensor_buft_override>> tensor_buft_overrides;
  234. std::vector<bool> use_mmap;
  235. std::vector<bool> embeddings;
  236. std::vector<bool> no_op_offload;
  237. ggml_numa_strategy numa;
  238. int reps;
  239. ggml_sched_priority prio;
  240. int delay;
  241. bool verbose;
  242. bool progress;
  243. bool no_warmup;
  244. output_formats output_format;
  245. output_formats output_format_stderr;
  246. };
  247. static const cmd_params cmd_params_defaults = {
  248. /* model */ { "models/7B/ggml-model-q4_0.gguf" },
  249. /* n_prompt */ { 512 },
  250. /* n_gen */ { 128 },
  251. /* n_pg */ {},
  252. /* n_depth */ { 0 },
  253. /* n_batch */ { 2048 },
  254. /* n_ubatch */ { 512 },
  255. /* type_k */ { GGML_TYPE_F16 },
  256. /* type_v */ { GGML_TYPE_F16 },
  257. /* n_threads */ { cpu_get_num_math() },
  258. /* cpu_mask */ { "0x0" },
  259. /* cpu_strict */ { false },
  260. /* poll */ { 50 },
  261. /* n_gpu_layers */ { 99 },
  262. /* rpc_servers */ { "" },
  263. /* split_mode */ { LLAMA_SPLIT_MODE_LAYER },
  264. /* main_gpu */ { 0 },
  265. /* no_kv_offload */ { false },
  266. /* flash_attn */ { false },
  267. /* tensor_split */ { std::vector<float>(llama_max_devices(), 0.0f) },
  268. /* tensor_buft_overrides*/ { std::vector<llama_model_tensor_buft_override>{ { nullptr, nullptr } } },
  269. /* use_mmap */ { true },
  270. /* embeddings */ { false },
  271. /* no_op_offload */ { false },
  272. /* numa */ GGML_NUMA_STRATEGY_DISABLED,
  273. /* reps */ 5,
  274. /* prio */ GGML_SCHED_PRIO_NORMAL,
  275. /* delay */ 0,
  276. /* verbose */ false,
  277. /* progress */ false,
  278. /* no_warmup */ false,
  279. /* output_format */ MARKDOWN,
  280. /* output_format_stderr */ NONE,
  281. };
  282. static void print_usage(int /* argc */, char ** argv) {
  283. printf("usage: %s [options]\n", argv[0]);
  284. printf("\n");
  285. printf("options:\n");
  286. printf(" -h, --help\n");
  287. printf(" --numa <distribute|isolate|numactl> numa mode (default: disabled)\n");
  288. printf(" -r, --repetitions <n> number of times to repeat each test (default: %d)\n",
  289. cmd_params_defaults.reps);
  290. printf(" --prio <-1|0|1|2|3> process/thread priority (default: %d)\n",
  291. cmd_params_defaults.prio);
  292. printf(" --delay <0...N> (seconds) delay between each test (default: %d)\n",
  293. cmd_params_defaults.delay);
  294. printf(" -o, --output <csv|json|jsonl|md|sql> output format printed to stdout (default: %s)\n",
  295. output_format_str(cmd_params_defaults.output_format));
  296. printf(" -oe, --output-err <csv|json|jsonl|md|sql> output format printed to stderr (default: %s)\n",
  297. output_format_str(cmd_params_defaults.output_format_stderr));
  298. printf(" -v, --verbose verbose output\n");
  299. printf(" --progress print test progress indicators\n");
  300. printf(" --no-warmup skip warmup runs before benchmarking\n");
  301. printf("\n");
  302. printf("test parameters:\n");
  303. printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
  304. printf(" -p, --n-prompt <n> (default: %s)\n",
  305. join(cmd_params_defaults.n_prompt, ",").c_str());
  306. printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
  307. printf(" -pg <pp,tg> (default: %s)\n",
  308. join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str());
  309. printf(" -d, --n-depth <n> (default: %s)\n",
  310. join(cmd_params_defaults.n_depth, ",").c_str());
  311. printf(" -b, --batch-size <n> (default: %s)\n",
  312. join(cmd_params_defaults.n_batch, ",").c_str());
  313. printf(" -ub, --ubatch-size <n> (default: %s)\n",
  314. join(cmd_params_defaults.n_ubatch, ",").c_str());
  315. printf(" -ctk, --cache-type-k <t> (default: %s)\n",
  316. join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
  317. printf(" -ctv, --cache-type-v <t> (default: %s)\n",
  318. join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
  319. printf(" -t, --threads <n> (default: %s)\n",
  320. join(cmd_params_defaults.n_threads, ",").c_str());
  321. printf(" -C, --cpu-mask <hex,hex> (default: %s)\n",
  322. join(cmd_params_defaults.cpu_mask, ",").c_str());
  323. printf(" --cpu-strict <0|1> (default: %s)\n",
  324. join(cmd_params_defaults.cpu_strict, ",").c_str());
  325. printf(" --poll <0...100> (default: %s)\n", join(cmd_params_defaults.poll, ",").c_str());
  326. printf(" -ngl, --n-gpu-layers <n> (default: %s)\n",
  327. join(cmd_params_defaults.n_gpu_layers, ",").c_str());
  328. if (llama_supports_rpc()) {
  329. printf(" -rpc, --rpc <rpc_servers> (default: %s)\n",
  330. join(cmd_params_defaults.rpc_servers, ",").c_str());
  331. }
  332. printf(" -sm, --split-mode <none|layer|row> (default: %s)\n",
  333. join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
  334. printf(" -mg, --main-gpu <i> (default: %s)\n",
  335. join(cmd_params_defaults.main_gpu, ",").c_str());
  336. printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n",
  337. join(cmd_params_defaults.no_kv_offload, ",").c_str());
  338. printf(" -fa, --flash-attn <0|1> (default: %s)\n",
  339. join(cmd_params_defaults.flash_attn, ",").c_str());
  340. printf(" -mmp, --mmap <0|1> (default: %s)\n",
  341. join(cmd_params_defaults.use_mmap, ",").c_str());
  342. printf(" -embd, --embeddings <0|1> (default: %s)\n",
  343. join(cmd_params_defaults.embeddings, ",").c_str());
  344. printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
  345. printf(" -ot --override-tensor <tensor name pattern>=<buffer type>;...\n");
  346. printf(" (default: disabled)\n");
  347. printf(" -nopo, --no-op-offload <0|1> (default: 0)\n");
  348. printf("\n");
  349. printf(
  350. "Multiple values can be given for each parameter by separating them with ','\n"
  351. "or by specifying the parameter multiple times. Ranges can be given as\n"
  352. "'first-last' or 'first-last+step' or 'first-last*mult'.\n");
  353. }
  354. static ggml_type ggml_type_from_name(const std::string & s) {
  355. if (s == "f16") {
  356. return GGML_TYPE_F16;
  357. }
  358. if (s == "bf16") {
  359. return GGML_TYPE_BF16;
  360. }
  361. if (s == "q8_0") {
  362. return GGML_TYPE_Q8_0;
  363. }
  364. if (s == "q4_0") {
  365. return GGML_TYPE_Q4_0;
  366. }
  367. if (s == "q4_1") {
  368. return GGML_TYPE_Q4_1;
  369. }
  370. if (s == "q5_0") {
  371. return GGML_TYPE_Q5_0;
  372. }
  373. if (s == "q5_1") {
  374. return GGML_TYPE_Q5_1;
  375. }
  376. if (s == "iq4_nl") {
  377. return GGML_TYPE_IQ4_NL;
  378. }
  379. return GGML_TYPE_COUNT;
  380. }
  381. static cmd_params parse_cmd_params(int argc, char ** argv) {
  382. cmd_params params;
  383. std::string arg;
  384. bool invalid_param = false;
  385. const std::string arg_prefix = "--";
  386. const char split_delim = ',';
  387. params.verbose = cmd_params_defaults.verbose;
  388. params.output_format = cmd_params_defaults.output_format;
  389. params.output_format_stderr = cmd_params_defaults.output_format_stderr;
  390. params.reps = cmd_params_defaults.reps;
  391. params.numa = cmd_params_defaults.numa;
  392. params.prio = cmd_params_defaults.prio;
  393. params.delay = cmd_params_defaults.delay;
  394. params.progress = cmd_params_defaults.progress;
  395. params.no_warmup = cmd_params_defaults.no_warmup;
  396. for (int i = 1; i < argc; i++) {
  397. arg = argv[i];
  398. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  399. std::replace(arg.begin(), arg.end(), '_', '-');
  400. }
  401. try {
  402. if (arg == "-h" || arg == "--help") {
  403. print_usage(argc, argv);
  404. exit(0);
  405. } else if (arg == "-m" || arg == "--model") {
  406. if (++i >= argc) {
  407. invalid_param = true;
  408. break;
  409. }
  410. auto p = string_split<std::string>(argv[i], split_delim);
  411. params.model.insert(params.model.end(), p.begin(), p.end());
  412. } else if (arg == "-p" || arg == "--n-prompt") {
  413. if (++i >= argc) {
  414. invalid_param = true;
  415. break;
  416. }
  417. auto p = parse_int_range(argv[i]);
  418. params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
  419. } else if (arg == "-n" || arg == "--n-gen") {
  420. if (++i >= argc) {
  421. invalid_param = true;
  422. break;
  423. }
  424. auto p = parse_int_range(argv[i]);
  425. params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
  426. } else if (arg == "-pg") {
  427. if (++i >= argc) {
  428. invalid_param = true;
  429. break;
  430. }
  431. auto p = string_split<std::string>(argv[i], ',');
  432. if (p.size() != 2) {
  433. invalid_param = true;
  434. break;
  435. }
  436. params.n_pg.push_back({ std::stoi(p[0]), std::stoi(p[1]) });
  437. } else if (arg == "-d" || arg == "--n-depth") {
  438. if (++i >= argc) {
  439. invalid_param = true;
  440. break;
  441. }
  442. auto p = parse_int_range(argv[i]);
  443. params.n_depth.insert(params.n_depth.end(), p.begin(), p.end());
  444. } else if (arg == "-b" || arg == "--batch-size") {
  445. if (++i >= argc) {
  446. invalid_param = true;
  447. break;
  448. }
  449. auto p = parse_int_range(argv[i]);
  450. params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
  451. } else if (arg == "-ub" || arg == "--ubatch-size") {
  452. if (++i >= argc) {
  453. invalid_param = true;
  454. break;
  455. }
  456. auto p = parse_int_range(argv[i]);
  457. params.n_ubatch.insert(params.n_ubatch.end(), p.begin(), p.end());
  458. } else if (arg == "-ctk" || arg == "--cache-type-k") {
  459. if (++i >= argc) {
  460. invalid_param = true;
  461. break;
  462. }
  463. auto p = string_split<std::string>(argv[i], split_delim);
  464. std::vector<ggml_type> types;
  465. for (const auto & t : p) {
  466. ggml_type gt = ggml_type_from_name(t);
  467. if (gt == GGML_TYPE_COUNT) {
  468. invalid_param = true;
  469. break;
  470. }
  471. types.push_back(gt);
  472. }
  473. if (invalid_param) {
  474. break;
  475. }
  476. params.type_k.insert(params.type_k.end(), types.begin(), types.end());
  477. } else if (arg == "-ctv" || arg == "--cache-type-v") {
  478. if (++i >= argc) {
  479. invalid_param = true;
  480. break;
  481. }
  482. auto p = string_split<std::string>(argv[i], split_delim);
  483. std::vector<ggml_type> types;
  484. for (const auto & t : p) {
  485. ggml_type gt = ggml_type_from_name(t);
  486. if (gt == GGML_TYPE_COUNT) {
  487. invalid_param = true;
  488. break;
  489. }
  490. types.push_back(gt);
  491. }
  492. if (invalid_param) {
  493. break;
  494. }
  495. params.type_v.insert(params.type_v.end(), types.begin(), types.end());
  496. } else if (arg == "-t" || arg == "--threads") {
  497. if (++i >= argc) {
  498. invalid_param = true;
  499. break;
  500. }
  501. auto p = parse_int_range(argv[i]);
  502. params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
  503. } else if (arg == "-C" || arg == "--cpu-mask") {
  504. if (++i >= argc) {
  505. invalid_param = true;
  506. break;
  507. }
  508. auto p = string_split<std::string>(argv[i], split_delim);
  509. params.cpu_mask.insert(params.cpu_mask.end(), p.begin(), p.end());
  510. } else if (arg == "--cpu-strict") {
  511. if (++i >= argc) {
  512. invalid_param = true;
  513. break;
  514. }
  515. auto p = string_split<bool>(argv[i], split_delim);
  516. params.cpu_strict.insert(params.cpu_strict.end(), p.begin(), p.end());
  517. } else if (arg == "--poll") {
  518. if (++i >= argc) {
  519. invalid_param = true;
  520. break;
  521. }
  522. auto p = parse_int_range(argv[i]);
  523. params.poll.insert(params.poll.end(), p.begin(), p.end());
  524. } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
  525. if (++i >= argc) {
  526. invalid_param = true;
  527. break;
  528. }
  529. auto p = parse_int_range(argv[i]);
  530. params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
  531. } else if (llama_supports_rpc() && (arg == "-rpc" || arg == "--rpc")) {
  532. if (++i >= argc) {
  533. invalid_param = true;
  534. break;
  535. }
  536. params.rpc_servers.push_back(argv[i]);
  537. } else if (arg == "-sm" || arg == "--split-mode") {
  538. if (++i >= argc) {
  539. invalid_param = true;
  540. break;
  541. }
  542. auto p = string_split<std::string>(argv[i], split_delim);
  543. std::vector<llama_split_mode> modes;
  544. for (const auto & m : p) {
  545. llama_split_mode mode;
  546. if (m == "none") {
  547. mode = LLAMA_SPLIT_MODE_NONE;
  548. } else if (m == "layer") {
  549. mode = LLAMA_SPLIT_MODE_LAYER;
  550. } else if (m == "row") {
  551. mode = LLAMA_SPLIT_MODE_ROW;
  552. } else {
  553. invalid_param = true;
  554. break;
  555. }
  556. modes.push_back(mode);
  557. }
  558. if (invalid_param) {
  559. break;
  560. }
  561. params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
  562. } else if (arg == "-mg" || arg == "--main-gpu") {
  563. if (++i >= argc) {
  564. invalid_param = true;
  565. break;
  566. }
  567. params.main_gpu = parse_int_range(argv[i]);
  568. } else if (arg == "-nkvo" || arg == "--no-kv-offload") {
  569. if (++i >= argc) {
  570. invalid_param = true;
  571. break;
  572. }
  573. auto p = string_split<bool>(argv[i], split_delim);
  574. params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
  575. } else if (arg == "--numa") {
  576. if (++i >= argc) {
  577. invalid_param = true;
  578. break;
  579. }
  580. std::string value(argv[i]);
  581. if (value == "distribute" || value == "") {
  582. params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE;
  583. } else if (value == "isolate") {
  584. params.numa = GGML_NUMA_STRATEGY_ISOLATE;
  585. } else if (value == "numactl") {
  586. params.numa = GGML_NUMA_STRATEGY_NUMACTL;
  587. } else {
  588. invalid_param = true;
  589. break;
  590. }
  591. } else if (arg == "-fa" || arg == "--flash-attn") {
  592. if (++i >= argc) {
  593. invalid_param = true;
  594. break;
  595. }
  596. auto p = string_split<bool>(argv[i], split_delim);
  597. params.flash_attn.insert(params.flash_attn.end(), p.begin(), p.end());
  598. } else if (arg == "-mmp" || arg == "--mmap") {
  599. if (++i >= argc) {
  600. invalid_param = true;
  601. break;
  602. }
  603. auto p = string_split<bool>(argv[i], split_delim);
  604. params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
  605. } else if (arg == "-embd" || arg == "--embeddings") {
  606. if (++i >= argc) {
  607. invalid_param = true;
  608. break;
  609. }
  610. auto p = string_split<bool>(argv[i], split_delim);
  611. params.embeddings.insert(params.embeddings.end(), p.begin(), p.end());
  612. } else if (arg == "-nopo" || arg == "--no-op-offload") {
  613. if (++i >= argc) {
  614. invalid_param = true;
  615. break;
  616. }
  617. auto p = string_split<bool>(argv[i], split_delim);
  618. params.no_op_offload.insert(params.no_op_offload.end(), p.begin(), p.end());
  619. } else if (arg == "-ts" || arg == "--tensor-split") {
  620. if (++i >= argc) {
  621. invalid_param = true;
  622. break;
  623. }
  624. for (auto ts : string_split<std::string>(argv[i], split_delim)) {
  625. // split string by ; and /
  626. const std::regex regex{ R"([;/]+)" };
  627. std::sregex_token_iterator it{ ts.begin(), ts.end(), regex, -1 };
  628. std::vector<std::string> split_arg{ it, {} };
  629. GGML_ASSERT(split_arg.size() <= llama_max_devices());
  630. std::vector<float> tensor_split(llama_max_devices());
  631. for (size_t i = 0; i < llama_max_devices(); ++i) {
  632. if (i < split_arg.size()) {
  633. tensor_split[i] = std::stof(split_arg[i]);
  634. } else {
  635. tensor_split[i] = 0.0f;
  636. }
  637. }
  638. params.tensor_split.push_back(tensor_split);
  639. }
  640. } else if (arg == "-ot" || arg == "--override-tensor") {
  641. if (++i >= argc) {
  642. invalid_param = true;
  643. break;
  644. }
  645. auto * value = argv[i];
  646. /* static */ std::map<std::string, ggml_backend_buffer_type_t> buft_list;
  647. if (buft_list.empty()) {
  648. // enumerate all the devices and add their buffer types to the list
  649. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  650. auto * dev = ggml_backend_dev_get(i);
  651. auto * buft = ggml_backend_dev_buffer_type(dev);
  652. if (buft) {
  653. buft_list[ggml_backend_buft_name(buft)] = buft;
  654. }
  655. }
  656. }
  657. auto override_group_span_len = std::strcspn(value, ",");
  658. bool last_group = false;
  659. do {
  660. if (override_group_span_len == 0) {
  661. // Adds an empty override-tensors for an empty span
  662. params.tensor_buft_overrides.push_back({{}});
  663. if (value[override_group_span_len] == '\0') {
  664. value = &value[override_group_span_len];
  665. last_group = true;
  666. } else {
  667. value = &value[override_group_span_len + 1];
  668. override_group_span_len = std::strcspn(value, ",");
  669. }
  670. continue;
  671. }
  672. // Stamps null terminators into the argv
  673. // value for this option to avoid the
  674. // memory leak present in the implementation
  675. // over in arg.cpp. Acceptable because we
  676. // only parse these args once in this program.
  677. auto * override_group = value;
  678. if (value[override_group_span_len] == '\0') {
  679. value = &value[override_group_span_len];
  680. last_group = true;
  681. } else {
  682. value[override_group_span_len] = '\0';
  683. value = &value[override_group_span_len + 1];
  684. }
  685. std::vector<llama_model_tensor_buft_override> group_tensor_buft_overrides{};
  686. auto override_span_len = std::strcspn(override_group, ";");
  687. while (override_span_len > 0) {
  688. auto * override = override_group;
  689. if (override_group[override_span_len] != '\0') {
  690. override_group[override_span_len] = '\0';
  691. override_group = &override_group[override_span_len + 1];
  692. } else {
  693. override_group = &override_group[override_span_len];
  694. }
  695. auto tensor_name_span_len = std::strcspn(override, "=");
  696. if (tensor_name_span_len >= override_span_len) {
  697. invalid_param = true;
  698. break;
  699. }
  700. override[tensor_name_span_len] = '\0';
  701. auto * tensor_name = override;
  702. auto * buffer_type = &override[tensor_name_span_len + 1];
  703. if (buft_list.find(buffer_type) == buft_list.end()) {
  704. printf("error: unrecognized buffer type '%s'\n", buffer_type);
  705. printf("Available buffer types:\n");
  706. for (const auto & it : buft_list) {
  707. printf(" %s\n", ggml_backend_buft_name(it.second));
  708. }
  709. invalid_param = true;
  710. break;
  711. }
  712. group_tensor_buft_overrides.push_back({tensor_name, buft_list.at(buffer_type)});
  713. override_span_len = std::strcspn(override_group, ";");
  714. }
  715. if (invalid_param) {
  716. break;
  717. }
  718. group_tensor_buft_overrides.push_back({nullptr,nullptr});
  719. params.tensor_buft_overrides.push_back(group_tensor_buft_overrides);
  720. override_group_span_len = std::strcspn(value, ",");
  721. } while (!last_group);
  722. } else if (arg == "-r" || arg == "--repetitions") {
  723. if (++i >= argc) {
  724. invalid_param = true;
  725. break;
  726. }
  727. params.reps = std::stoi(argv[i]);
  728. } else if (arg == "--prio") {
  729. if (++i >= argc) {
  730. invalid_param = true;
  731. break;
  732. }
  733. params.prio = (enum ggml_sched_priority) std::stoi(argv[i]);
  734. } else if (arg == "--delay") {
  735. if (++i >= argc) {
  736. invalid_param = true;
  737. break;
  738. }
  739. params.delay = std::stoi(argv[i]);
  740. } else if (arg == "-o" || arg == "--output") {
  741. if (++i >= argc) {
  742. invalid_param = true;
  743. break;
  744. }
  745. invalid_param = !output_format_from_str(argv[i], params.output_format);
  746. } else if (arg == "-oe" || arg == "--output-err") {
  747. if (++i >= argc) {
  748. invalid_param = true;
  749. break;
  750. }
  751. invalid_param = !output_format_from_str(argv[i], params.output_format_stderr);
  752. } else if (arg == "-v" || arg == "--verbose") {
  753. params.verbose = true;
  754. } else if (arg == "--progress") {
  755. params.progress = true;
  756. } else if (arg == "--no-warmup") {
  757. params.no_warmup = true;
  758. } else {
  759. invalid_param = true;
  760. break;
  761. }
  762. } catch (const std::exception & e) {
  763. fprintf(stderr, "error: %s\n", e.what());
  764. invalid_param = true;
  765. break;
  766. }
  767. }
  768. if (invalid_param) {
  769. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  770. print_usage(argc, argv);
  771. exit(1);
  772. }
  773. // set defaults
  774. if (params.model.empty()) {
  775. params.model = cmd_params_defaults.model;
  776. }
  777. if (params.n_prompt.empty()) {
  778. params.n_prompt = cmd_params_defaults.n_prompt;
  779. }
  780. if (params.n_gen.empty()) {
  781. params.n_gen = cmd_params_defaults.n_gen;
  782. }
  783. if (params.n_pg.empty()) {
  784. params.n_pg = cmd_params_defaults.n_pg;
  785. }
  786. if (params.n_depth.empty()) {
  787. params.n_depth = cmd_params_defaults.n_depth;
  788. }
  789. if (params.n_batch.empty()) {
  790. params.n_batch = cmd_params_defaults.n_batch;
  791. }
  792. if (params.n_ubatch.empty()) {
  793. params.n_ubatch = cmd_params_defaults.n_ubatch;
  794. }
  795. if (params.type_k.empty()) {
  796. params.type_k = cmd_params_defaults.type_k;
  797. }
  798. if (params.type_v.empty()) {
  799. params.type_v = cmd_params_defaults.type_v;
  800. }
  801. if (params.n_gpu_layers.empty()) {
  802. params.n_gpu_layers = cmd_params_defaults.n_gpu_layers;
  803. }
  804. if (params.rpc_servers.empty()) {
  805. params.rpc_servers = cmd_params_defaults.rpc_servers;
  806. }
  807. if (params.split_mode.empty()) {
  808. params.split_mode = cmd_params_defaults.split_mode;
  809. }
  810. if (params.main_gpu.empty()) {
  811. params.main_gpu = cmd_params_defaults.main_gpu;
  812. }
  813. if (params.no_kv_offload.empty()) {
  814. params.no_kv_offload = cmd_params_defaults.no_kv_offload;
  815. }
  816. if (params.flash_attn.empty()) {
  817. params.flash_attn = cmd_params_defaults.flash_attn;
  818. }
  819. if (params.tensor_split.empty()) {
  820. params.tensor_split = cmd_params_defaults.tensor_split;
  821. }
  822. if (params.tensor_buft_overrides.empty()) {
  823. params.tensor_buft_overrides = cmd_params_defaults.tensor_buft_overrides;
  824. }
  825. if (params.use_mmap.empty()) {
  826. params.use_mmap = cmd_params_defaults.use_mmap;
  827. }
  828. if (params.embeddings.empty()) {
  829. params.embeddings = cmd_params_defaults.embeddings;
  830. }
  831. if (params.no_op_offload.empty()) {
  832. params.no_op_offload = cmd_params_defaults.no_op_offload;
  833. }
  834. if (params.n_threads.empty()) {
  835. params.n_threads = cmd_params_defaults.n_threads;
  836. }
  837. if (params.cpu_mask.empty()) {
  838. params.cpu_mask = cmd_params_defaults.cpu_mask;
  839. }
  840. if (params.cpu_strict.empty()) {
  841. params.cpu_strict = cmd_params_defaults.cpu_strict;
  842. }
  843. if (params.poll.empty()) {
  844. params.poll = cmd_params_defaults.poll;
  845. }
  846. return params;
  847. }
  848. struct cmd_params_instance {
  849. std::string model;
  850. int n_prompt;
  851. int n_gen;
  852. int n_depth;
  853. int n_batch;
  854. int n_ubatch;
  855. ggml_type type_k;
  856. ggml_type type_v;
  857. int n_threads;
  858. std::string cpu_mask;
  859. bool cpu_strict;
  860. int poll;
  861. int n_gpu_layers;
  862. std::string rpc_servers_str;
  863. llama_split_mode split_mode;
  864. int main_gpu;
  865. bool no_kv_offload;
  866. bool flash_attn;
  867. std::vector<float> tensor_split;
  868. std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
  869. bool use_mmap;
  870. bool embeddings;
  871. bool no_op_offload;
  872. llama_model_params to_llama_mparams() const {
  873. llama_model_params mparams = llama_model_default_params();
  874. mparams.n_gpu_layers = n_gpu_layers;
  875. if (!rpc_servers_str.empty()) {
  876. auto rpc_servers = string_split<std::string>(rpc_servers_str, ',');
  877. // add RPC devices
  878. if (!rpc_servers.empty()) {
  879. ggml_backend_reg_t rpc_reg = ggml_backend_reg_by_name("RPC");
  880. if (!rpc_reg) {
  881. fprintf(stderr, "%s: failed to find RPC backend\n", __func__);
  882. exit(1);
  883. }
  884. typedef ggml_backend_dev_t (*ggml_backend_rpc_add_device_t)(const char * endpoint);
  885. ggml_backend_rpc_add_device_t ggml_backend_rpc_add_device_fn = (ggml_backend_rpc_add_device_t) ggml_backend_reg_get_proc_address(rpc_reg, "ggml_backend_rpc_add_device");
  886. if (!ggml_backend_rpc_add_device_fn) {
  887. fprintf(stderr, "%s: failed to find RPC device add function\n", __func__);
  888. exit(1);
  889. }
  890. static std::vector<ggml_backend_dev_t> devices;
  891. devices.clear();
  892. // RPC devices should always come first for performance reasons
  893. for (const std::string & server : rpc_servers) {
  894. ggml_backend_dev_t dev = ggml_backend_rpc_add_device_fn(server.c_str());
  895. if (dev) {
  896. devices.push_back(dev);
  897. } else {
  898. fprintf(stderr, "%s: failed to add RPC device for server '%s'\n", __func__, server.c_str());
  899. exit(1);
  900. }
  901. }
  902. // add local GPU devices if any
  903. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  904. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  905. switch (ggml_backend_dev_type(dev)) {
  906. case GGML_BACKEND_DEVICE_TYPE_CPU:
  907. case GGML_BACKEND_DEVICE_TYPE_ACCEL:
  908. // skip CPU backends since they are handled separately
  909. break;
  910. case GGML_BACKEND_DEVICE_TYPE_GPU:
  911. devices.push_back(dev);
  912. break;
  913. }
  914. }
  915. devices.push_back(nullptr);
  916. mparams.devices = devices.data();
  917. }
  918. }
  919. mparams.split_mode = split_mode;
  920. mparams.main_gpu = main_gpu;
  921. mparams.tensor_split = tensor_split.data();
  922. mparams.use_mmap = use_mmap;
  923. if (tensor_buft_overrides.empty()) {
  924. mparams.tensor_buft_overrides = nullptr;
  925. } else {
  926. GGML_ASSERT(tensor_buft_overrides.back().pattern == nullptr && "Tensor buffer overrides not terminated with empty pattern");
  927. mparams.tensor_buft_overrides = tensor_buft_overrides.data();
  928. }
  929. return mparams;
  930. }
  931. bool equal_mparams(const cmd_params_instance & other) const {
  932. return model == other.model && n_gpu_layers == other.n_gpu_layers && rpc_servers_str == other.rpc_servers_str &&
  933. split_mode == other.split_mode && main_gpu == other.main_gpu && use_mmap == other.use_mmap &&
  934. tensor_split == other.tensor_split && vec_tensor_buft_override_equal(tensor_buft_overrides, other.tensor_buft_overrides);
  935. }
  936. llama_context_params to_llama_cparams() const {
  937. llama_context_params cparams = llama_context_default_params();
  938. cparams.n_ctx = n_prompt + n_gen + n_depth;
  939. cparams.n_batch = n_batch;
  940. cparams.n_ubatch = n_ubatch;
  941. cparams.type_k = type_k;
  942. cparams.type_v = type_v;
  943. cparams.offload_kqv = !no_kv_offload;
  944. cparams.flash_attn_type = flash_attn ? LLAMA_FLASH_ATTN_TYPE_ENABLED : LLAMA_FLASH_ATTN_TYPE_DISABLED;
  945. cparams.embeddings = embeddings;
  946. cparams.op_offload = !no_op_offload;
  947. cparams.swa_full = false;
  948. return cparams;
  949. }
  950. };
  951. static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
  952. std::vector<cmd_params_instance> instances;
  953. // this ordering minimizes the number of times that each model needs to be reloaded
  954. // clang-format off
  955. for (const auto & m : params.model)
  956. for (const auto & nl : params.n_gpu_layers)
  957. for (const auto & rpc : params.rpc_servers)
  958. for (const auto & sm : params.split_mode)
  959. for (const auto & mg : params.main_gpu)
  960. for (const auto & ts : params.tensor_split)
  961. for (const auto & ot : params.tensor_buft_overrides)
  962. for (const auto & mmp : params.use_mmap)
  963. for (const auto & embd : params.embeddings)
  964. for (const auto & nopo : params.no_op_offload)
  965. for (const auto & nb : params.n_batch)
  966. for (const auto & nub : params.n_ubatch)
  967. for (const auto & tk : params.type_k)
  968. for (const auto & tv : params.type_v)
  969. for (const auto & nkvo : params.no_kv_offload)
  970. for (const auto & fa : params.flash_attn)
  971. for (const auto & nt : params.n_threads)
  972. for (const auto & cm : params.cpu_mask)
  973. for (const auto & cs : params.cpu_strict)
  974. for (const auto & nd : params.n_depth)
  975. for (const auto & pl : params.poll) {
  976. for (const auto & n_prompt : params.n_prompt) {
  977. if (n_prompt == 0) {
  978. continue;
  979. }
  980. cmd_params_instance instance = {
  981. /* .model = */ m,
  982. /* .n_prompt = */ n_prompt,
  983. /* .n_gen = */ 0,
  984. /* .n_depth = */ nd,
  985. /* .n_batch = */ nb,
  986. /* .n_ubatch = */ nub,
  987. /* .type_k = */ tk,
  988. /* .type_v = */ tv,
  989. /* .n_threads = */ nt,
  990. /* .cpu_mask = */ cm,
  991. /* .cpu_strict = */ cs,
  992. /* .poll = */ pl,
  993. /* .n_gpu_layers = */ nl,
  994. /* .rpc_servers = */ rpc,
  995. /* .split_mode = */ sm,
  996. /* .main_gpu = */ mg,
  997. /* .no_kv_offload= */ nkvo,
  998. /* .flash_attn = */ fa,
  999. /* .tensor_split = */ ts,
  1000. /* .tensor_buft_overrides = */ ot,
  1001. /* .use_mmap = */ mmp,
  1002. /* .embeddings = */ embd,
  1003. /* .no_op_offload= */ nopo,
  1004. };
  1005. instances.push_back(instance);
  1006. }
  1007. for (const auto & n_gen : params.n_gen) {
  1008. if (n_gen == 0) {
  1009. continue;
  1010. }
  1011. cmd_params_instance instance = {
  1012. /* .model = */ m,
  1013. /* .n_prompt = */ 0,
  1014. /* .n_gen = */ n_gen,
  1015. /* .n_depth = */ nd,
  1016. /* .n_batch = */ nb,
  1017. /* .n_ubatch = */ nub,
  1018. /* .type_k = */ tk,
  1019. /* .type_v = */ tv,
  1020. /* .n_threads = */ nt,
  1021. /* .cpu_mask = */ cm,
  1022. /* .cpu_strict = */ cs,
  1023. /* .poll = */ pl,
  1024. /* .n_gpu_layers = */ nl,
  1025. /* .rpc_servers = */ rpc,
  1026. /* .split_mode = */ sm,
  1027. /* .main_gpu = */ mg,
  1028. /* .no_kv_offload= */ nkvo,
  1029. /* .flash_attn = */ fa,
  1030. /* .tensor_split = */ ts,
  1031. /* .tensor_buft_overrides = */ ot,
  1032. /* .use_mmap = */ mmp,
  1033. /* .embeddings = */ embd,
  1034. /* .no_op_offload= */ nopo,
  1035. };
  1036. instances.push_back(instance);
  1037. }
  1038. for (const auto & n_pg : params.n_pg) {
  1039. if (n_pg.first == 0 && n_pg.second == 0) {
  1040. continue;
  1041. }
  1042. cmd_params_instance instance = {
  1043. /* .model = */ m,
  1044. /* .n_prompt = */ n_pg.first,
  1045. /* .n_gen = */ n_pg.second,
  1046. /* .n_depth = */ nd,
  1047. /* .n_batch = */ nb,
  1048. /* .n_ubatch = */ nub,
  1049. /* .type_k = */ tk,
  1050. /* .type_v = */ tv,
  1051. /* .n_threads = */ nt,
  1052. /* .cpu_mask = */ cm,
  1053. /* .cpu_strict = */ cs,
  1054. /* .poll = */ pl,
  1055. /* .n_gpu_layers = */ nl,
  1056. /* .rpc_servers = */ rpc,
  1057. /* .split_mode = */ sm,
  1058. /* .main_gpu = */ mg,
  1059. /* .no_kv_offload= */ nkvo,
  1060. /* .flash_attn = */ fa,
  1061. /* .tensor_split = */ ts,
  1062. /* .tensor_buft_overrides = */ ot,
  1063. /* .use_mmap = */ mmp,
  1064. /* .embeddings = */ embd,
  1065. /* .no_op_offload= */ nopo,
  1066. };
  1067. instances.push_back(instance);
  1068. }
  1069. }
  1070. // clang-format on
  1071. return instances;
  1072. }
  1073. struct test {
  1074. static const std::string build_commit;
  1075. static const int build_number;
  1076. const std::string cpu_info;
  1077. const std::string gpu_info;
  1078. std::string model_filename;
  1079. std::string model_type;
  1080. uint64_t model_size;
  1081. uint64_t model_n_params;
  1082. int n_batch;
  1083. int n_ubatch;
  1084. int n_threads;
  1085. std::string cpu_mask;
  1086. bool cpu_strict;
  1087. int poll;
  1088. ggml_type type_k;
  1089. ggml_type type_v;
  1090. int n_gpu_layers;
  1091. llama_split_mode split_mode;
  1092. int main_gpu;
  1093. bool no_kv_offload;
  1094. bool flash_attn;
  1095. std::vector<float> tensor_split;
  1096. std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
  1097. bool use_mmap;
  1098. bool embeddings;
  1099. bool no_op_offload;
  1100. int n_prompt;
  1101. int n_gen;
  1102. int n_depth;
  1103. std::string test_time;
  1104. std::vector<uint64_t> samples_ns;
  1105. test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) :
  1106. cpu_info(get_cpu_info()),
  1107. gpu_info(get_gpu_info()) {
  1108. model_filename = inst.model;
  1109. char buf[128];
  1110. llama_model_desc(lmodel, buf, sizeof(buf));
  1111. model_type = buf;
  1112. model_size = llama_model_size(lmodel);
  1113. model_n_params = llama_model_n_params(lmodel);
  1114. n_batch = inst.n_batch;
  1115. n_ubatch = inst.n_ubatch;
  1116. n_threads = inst.n_threads;
  1117. cpu_mask = inst.cpu_mask;
  1118. cpu_strict = inst.cpu_strict;
  1119. poll = inst.poll;
  1120. type_k = inst.type_k;
  1121. type_v = inst.type_v;
  1122. n_gpu_layers = inst.n_gpu_layers;
  1123. split_mode = inst.split_mode;
  1124. main_gpu = inst.main_gpu;
  1125. no_kv_offload = inst.no_kv_offload;
  1126. flash_attn = inst.flash_attn;
  1127. tensor_split = inst.tensor_split;
  1128. tensor_buft_overrides = inst.tensor_buft_overrides;
  1129. use_mmap = inst.use_mmap;
  1130. embeddings = inst.embeddings;
  1131. no_op_offload = inst.no_op_offload;
  1132. n_prompt = inst.n_prompt;
  1133. n_gen = inst.n_gen;
  1134. n_depth = inst.n_depth;
  1135. // RFC 3339 date-time format
  1136. time_t t = time(NULL);
  1137. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  1138. test_time = buf;
  1139. (void) ctx;
  1140. }
  1141. uint64_t avg_ns() const { return ::avg(samples_ns); }
  1142. uint64_t stdev_ns() const { return ::stdev(samples_ns); }
  1143. std::vector<double> get_ts() const {
  1144. int n_tokens = n_prompt + n_gen;
  1145. std::vector<double> ts;
  1146. std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts),
  1147. [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
  1148. return ts;
  1149. }
  1150. double avg_ts() const { return ::avg(get_ts()); }
  1151. double stdev_ts() const { return ::stdev(get_ts()); }
  1152. static std::string get_backend() {
  1153. std::vector<std::string> backends;
  1154. for (size_t i = 0; i < ggml_backend_reg_count(); i++) {
  1155. auto * reg = ggml_backend_reg_get(i);
  1156. std::string name = ggml_backend_reg_name(reg);
  1157. if (name != "CPU") {
  1158. backends.push_back(ggml_backend_reg_name(reg));
  1159. }
  1160. }
  1161. return backends.empty() ? "CPU" : join(backends, ",");
  1162. }
  1163. static const std::vector<std::string> & get_fields() {
  1164. static const std::vector<std::string> fields = {
  1165. "build_commit", "build_number", "cpu_info", "gpu_info", "backends", "model_filename",
  1166. "model_type", "model_size", "model_n_params", "n_batch", "n_ubatch", "n_threads",
  1167. "cpu_mask", "cpu_strict", "poll", "type_k", "type_v", "n_gpu_layers",
  1168. "split_mode", "main_gpu", "no_kv_offload", "flash_attn", "tensor_split", "tensor_buft_overrides",
  1169. "use_mmap", "embeddings", "no_op_offload", "n_prompt", "n_gen", "n_depth", "test_time",
  1170. "avg_ns", "stddev_ns", "avg_ts", "stddev_ts",
  1171. };
  1172. return fields;
  1173. }
  1174. enum field_type { STRING, BOOL, INT, FLOAT };
  1175. static field_type get_field_type(const std::string & field) {
  1176. if (field == "build_number" || field == "n_batch" || field == "n_ubatch" || field == "n_threads" ||
  1177. field == "poll" || field == "model_size" || field == "model_n_params" || field == "n_gpu_layers" ||
  1178. field == "main_gpu" || field == "n_prompt" || field == "n_gen" || field == "n_depth" ||
  1179. field == "avg_ns" || field == "stddev_ns" || field == "no_op_offload") {
  1180. return INT;
  1181. }
  1182. if (field == "f16_kv" || field == "no_kv_offload" || field == "cpu_strict" || field == "flash_attn" ||
  1183. field == "use_mmap" || field == "embeddings") {
  1184. return BOOL;
  1185. }
  1186. if (field == "avg_ts" || field == "stddev_ts") {
  1187. return FLOAT;
  1188. }
  1189. return STRING;
  1190. }
  1191. std::vector<std::string> get_values() const {
  1192. std::string tensor_split_str;
  1193. std::string tensor_buft_overrides_str;
  1194. int max_nonzero = 0;
  1195. for (size_t i = 0; i < llama_max_devices(); i++) {
  1196. if (tensor_split[i] > 0) {
  1197. max_nonzero = i;
  1198. }
  1199. }
  1200. for (int i = 0; i <= max_nonzero; i++) {
  1201. char buf[32];
  1202. snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
  1203. tensor_split_str += buf;
  1204. if (i < max_nonzero) {
  1205. tensor_split_str += "/";
  1206. }
  1207. }
  1208. if (tensor_buft_overrides.size() == 1) {
  1209. // Last element of tensor_buft_overrides is always a null pattern
  1210. // so if it is only one element long, it must be a null pattern.
  1211. GGML_ASSERT(tensor_buft_overrides[0].pattern == nullptr);
  1212. tensor_buft_overrides_str += "none";
  1213. } else {
  1214. for (size_t i = 0; i < tensor_buft_overrides.size()-1; i++) {
  1215. // Last element of tensor_buft_overrides is always a null pattern
  1216. if (tensor_buft_overrides[i].pattern == nullptr) {
  1217. tensor_buft_overrides_str += "none";
  1218. } else {
  1219. tensor_buft_overrides_str += tensor_buft_overrides[i].pattern;
  1220. tensor_buft_overrides_str += "=";
  1221. tensor_buft_overrides_str += ggml_backend_buft_name(tensor_buft_overrides[i].buft);
  1222. }
  1223. if (i + 2 < tensor_buft_overrides.size()) {
  1224. tensor_buft_overrides_str += ";";
  1225. }
  1226. }
  1227. }
  1228. std::vector<std::string> values = { build_commit,
  1229. std::to_string(build_number),
  1230. cpu_info,
  1231. gpu_info,
  1232. get_backend(),
  1233. model_filename,
  1234. model_type,
  1235. std::to_string(model_size),
  1236. std::to_string(model_n_params),
  1237. std::to_string(n_batch),
  1238. std::to_string(n_ubatch),
  1239. std::to_string(n_threads),
  1240. cpu_mask,
  1241. std::to_string(cpu_strict),
  1242. std::to_string(poll),
  1243. ggml_type_name(type_k),
  1244. ggml_type_name(type_v),
  1245. std::to_string(n_gpu_layers),
  1246. split_mode_str(split_mode),
  1247. std::to_string(main_gpu),
  1248. std::to_string(no_kv_offload),
  1249. std::to_string(flash_attn),
  1250. tensor_split_str,
  1251. tensor_buft_overrides_str,
  1252. std::to_string(use_mmap),
  1253. std::to_string(embeddings),
  1254. std::to_string(no_op_offload),
  1255. std::to_string(n_prompt),
  1256. std::to_string(n_gen),
  1257. std::to_string(n_depth),
  1258. test_time,
  1259. std::to_string(avg_ns()),
  1260. std::to_string(stdev_ns()),
  1261. std::to_string(avg_ts()),
  1262. std::to_string(stdev_ts()) };
  1263. return values;
  1264. }
  1265. std::map<std::string, std::string> get_map() const {
  1266. std::map<std::string, std::string> map;
  1267. auto fields = get_fields();
  1268. auto values = get_values();
  1269. std::transform(fields.begin(), fields.end(), values.begin(), std::inserter(map, map.end()),
  1270. std::make_pair<const std::string &, const std::string &>);
  1271. return map;
  1272. }
  1273. };
  1274. const std::string test::build_commit = LLAMA_COMMIT;
  1275. const int test::build_number = LLAMA_BUILD_NUMBER;
  1276. struct printer {
  1277. virtual ~printer() {}
  1278. FILE * fout;
  1279. virtual void print_header(const cmd_params & params) { (void) params; }
  1280. virtual void print_test(const test & t) = 0;
  1281. virtual void print_footer() {}
  1282. };
  1283. struct csv_printer : public printer {
  1284. static std::string escape_csv(const std::string & field) {
  1285. std::string escaped = "\"";
  1286. for (auto c : field) {
  1287. if (c == '"') {
  1288. escaped += "\"";
  1289. }
  1290. escaped += c;
  1291. }
  1292. escaped += "\"";
  1293. return escaped;
  1294. }
  1295. void print_header(const cmd_params & params) override {
  1296. std::vector<std::string> fields = test::get_fields();
  1297. fprintf(fout, "%s\n", join(fields, ",").c_str());
  1298. (void) params;
  1299. }
  1300. void print_test(const test & t) override {
  1301. std::vector<std::string> values = t.get_values();
  1302. std::transform(values.begin(), values.end(), values.begin(), escape_csv);
  1303. fprintf(fout, "%s\n", join(values, ",").c_str());
  1304. }
  1305. };
  1306. static std::string escape_json(const std::string & value) {
  1307. std::string escaped;
  1308. for (auto c : value) {
  1309. if (c == '"') {
  1310. escaped += "\\\"";
  1311. } else if (c == '\\') {
  1312. escaped += "\\\\";
  1313. } else if (c <= 0x1f) {
  1314. char buf[8];
  1315. snprintf(buf, sizeof(buf), "\\u%04x", c);
  1316. escaped += buf;
  1317. } else {
  1318. escaped += c;
  1319. }
  1320. }
  1321. return escaped;
  1322. }
  1323. static std::string format_json_value(const std::string & field, const std::string & value) {
  1324. switch (test::get_field_type(field)) {
  1325. case test::STRING:
  1326. return "\"" + escape_json(value) + "\"";
  1327. case test::BOOL:
  1328. return value == "0" ? "false" : "true";
  1329. default:
  1330. return value;
  1331. }
  1332. }
  1333. struct json_printer : public printer {
  1334. bool first = true;
  1335. void print_header(const cmd_params & params) override {
  1336. fprintf(fout, "[\n");
  1337. (void) params;
  1338. }
  1339. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  1340. assert(fields.size() == values.size());
  1341. for (size_t i = 0; i < fields.size(); i++) {
  1342. fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(),
  1343. format_json_value(fields.at(i), values.at(i)).c_str());
  1344. }
  1345. }
  1346. void print_test(const test & t) override {
  1347. if (first) {
  1348. first = false;
  1349. } else {
  1350. fprintf(fout, ",\n");
  1351. }
  1352. fprintf(fout, " {\n");
  1353. print_fields(test::get_fields(), t.get_values());
  1354. fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
  1355. fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
  1356. fprintf(fout, " }");
  1357. fflush(fout);
  1358. }
  1359. void print_footer() override { fprintf(fout, "\n]\n"); }
  1360. };
  1361. struct jsonl_printer : public printer {
  1362. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  1363. assert(fields.size() == values.size());
  1364. for (size_t i = 0; i < fields.size(); i++) {
  1365. fprintf(fout, "\"%s\": %s, ", fields.at(i).c_str(), format_json_value(fields.at(i), values.at(i)).c_str());
  1366. }
  1367. }
  1368. void print_test(const test & t) override {
  1369. fprintf(fout, "{");
  1370. print_fields(test::get_fields(), t.get_values());
  1371. fprintf(fout, "\"samples_ns\": [ %s ],", join(t.samples_ns, ", ").c_str());
  1372. fprintf(fout, "\"samples_ts\": [ %s ]", join(t.get_ts(), ", ").c_str());
  1373. fprintf(fout, "}\n");
  1374. fflush(fout);
  1375. }
  1376. };
  1377. struct markdown_printer : public printer {
  1378. std::vector<std::string> fields;
  1379. static int get_field_width(const std::string & field) {
  1380. if (field == "model") {
  1381. return -30;
  1382. }
  1383. if (field == "t/s") {
  1384. return 20;
  1385. }
  1386. if (field == "size" || field == "params") {
  1387. return 10;
  1388. }
  1389. if (field == "n_gpu_layers") {
  1390. return 3;
  1391. }
  1392. if (field == "n_threads") {
  1393. return 7;
  1394. }
  1395. if (field == "n_batch") {
  1396. return 7;
  1397. }
  1398. if (field == "n_ubatch") {
  1399. return 8;
  1400. }
  1401. if (field == "type_k" || field == "type_v") {
  1402. return 6;
  1403. }
  1404. if (field == "split_mode") {
  1405. return 5;
  1406. }
  1407. if (field == "flash_attn") {
  1408. return 2;
  1409. }
  1410. if (field == "use_mmap") {
  1411. return 4;
  1412. }
  1413. if (field == "test") {
  1414. return 15;
  1415. }
  1416. if (field == "no_op_offload") {
  1417. return 4;
  1418. }
  1419. int width = std::max((int) field.length(), 10);
  1420. if (test::get_field_type(field) == test::STRING) {
  1421. return -width;
  1422. }
  1423. return width;
  1424. }
  1425. static std::string get_field_display_name(const std::string & field) {
  1426. if (field == "n_gpu_layers") {
  1427. return "ngl";
  1428. }
  1429. if (field == "split_mode") {
  1430. return "sm";
  1431. }
  1432. if (field == "n_threads") {
  1433. return "threads";
  1434. }
  1435. if (field == "no_kv_offload") {
  1436. return "nkvo";
  1437. }
  1438. if (field == "flash_attn") {
  1439. return "fa";
  1440. }
  1441. if (field == "use_mmap") {
  1442. return "mmap";
  1443. }
  1444. if (field == "embeddings") {
  1445. return "embd";
  1446. }
  1447. if (field == "no_op_offload") {
  1448. return "nopo";
  1449. }
  1450. if (field == "tensor_split") {
  1451. return "ts";
  1452. }
  1453. if (field == "tensor_buft_overrides") {
  1454. return "ot";
  1455. }
  1456. return field;
  1457. }
  1458. void print_header(const cmd_params & params) override {
  1459. // select fields to print
  1460. fields.emplace_back("model");
  1461. fields.emplace_back("size");
  1462. fields.emplace_back("params");
  1463. fields.emplace_back("backend");
  1464. bool is_cpu_backend = test::get_backend().find("CPU") != std::string::npos ||
  1465. test::get_backend().find("BLAS") != std::string::npos;
  1466. if (!is_cpu_backend) {
  1467. fields.emplace_back("n_gpu_layers");
  1468. }
  1469. if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
  1470. fields.emplace_back("n_threads");
  1471. }
  1472. if (params.cpu_mask.size() > 1 || params.cpu_mask != cmd_params_defaults.cpu_mask) {
  1473. fields.emplace_back("cpu_mask");
  1474. }
  1475. if (params.cpu_strict.size() > 1 || params.cpu_strict != cmd_params_defaults.cpu_strict) {
  1476. fields.emplace_back("cpu_strict");
  1477. }
  1478. if (params.poll.size() > 1 || params.poll != cmd_params_defaults.poll) {
  1479. fields.emplace_back("poll");
  1480. }
  1481. if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
  1482. fields.emplace_back("n_batch");
  1483. }
  1484. if (params.n_ubatch.size() > 1 || params.n_ubatch != cmd_params_defaults.n_ubatch) {
  1485. fields.emplace_back("n_ubatch");
  1486. }
  1487. if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
  1488. fields.emplace_back("type_k");
  1489. }
  1490. if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
  1491. fields.emplace_back("type_v");
  1492. }
  1493. if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
  1494. fields.emplace_back("main_gpu");
  1495. }
  1496. if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
  1497. fields.emplace_back("split_mode");
  1498. }
  1499. if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
  1500. fields.emplace_back("no_kv_offload");
  1501. }
  1502. if (params.flash_attn.size() > 1 || params.flash_attn != cmd_params_defaults.flash_attn) {
  1503. fields.emplace_back("flash_attn");
  1504. }
  1505. if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
  1506. fields.emplace_back("tensor_split");
  1507. }
  1508. if (params.tensor_buft_overrides.size() > 1 || !vec_vec_tensor_buft_override_equal(params.tensor_buft_overrides, cmd_params_defaults.tensor_buft_overrides)) {
  1509. fields.emplace_back("tensor_buft_overrides");
  1510. }
  1511. if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
  1512. fields.emplace_back("use_mmap");
  1513. }
  1514. if (params.embeddings.size() > 1 || params.embeddings != cmd_params_defaults.embeddings) {
  1515. fields.emplace_back("embeddings");
  1516. }
  1517. if (params.no_op_offload.size() > 1 || params.no_op_offload != cmd_params_defaults.no_op_offload) {
  1518. fields.emplace_back("no_op_offload");
  1519. }
  1520. fields.emplace_back("test");
  1521. fields.emplace_back("t/s");
  1522. fprintf(fout, "|");
  1523. for (const auto & field : fields) {
  1524. fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
  1525. }
  1526. fprintf(fout, "\n");
  1527. fprintf(fout, "|");
  1528. for (const auto & field : fields) {
  1529. int width = get_field_width(field);
  1530. fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
  1531. }
  1532. fprintf(fout, "\n");
  1533. }
  1534. void print_test(const test & t) override {
  1535. std::map<std::string, std::string> vmap = t.get_map();
  1536. fprintf(fout, "|");
  1537. for (const auto & field : fields) {
  1538. std::string value;
  1539. char buf[128];
  1540. if (field == "model") {
  1541. value = t.model_type;
  1542. } else if (field == "size") {
  1543. if (t.model_size < 1024 * 1024 * 1024) {
  1544. snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
  1545. } else {
  1546. snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
  1547. }
  1548. value = buf;
  1549. } else if (field == "params") {
  1550. if (t.model_n_params < 1000 * 1000 * 1000) {
  1551. snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
  1552. } else {
  1553. snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
  1554. }
  1555. value = buf;
  1556. } else if (field == "backend") {
  1557. value = test::get_backend();
  1558. } else if (field == "test") {
  1559. if (t.n_prompt > 0 && t.n_gen == 0) {
  1560. snprintf(buf, sizeof(buf), "pp%d", t.n_prompt);
  1561. } else if (t.n_gen > 0 && t.n_prompt == 0) {
  1562. snprintf(buf, sizeof(buf), "tg%d", t.n_gen);
  1563. } else {
  1564. snprintf(buf, sizeof(buf), "pp%d+tg%d", t.n_prompt, t.n_gen);
  1565. }
  1566. if (t.n_depth > 0) {
  1567. int len = strlen(buf);
  1568. snprintf(buf + len, sizeof(buf) - len, " @ d%d", t.n_depth);
  1569. }
  1570. value = buf;
  1571. } else if (field == "t/s") {
  1572. snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
  1573. value = buf;
  1574. } else if (vmap.find(field) != vmap.end()) {
  1575. value = vmap.at(field);
  1576. } else {
  1577. assert(false);
  1578. exit(1);
  1579. }
  1580. int width = get_field_width(field);
  1581. if (field == "t/s") {
  1582. // HACK: the utf-8 character is 2 bytes
  1583. width += 1;
  1584. }
  1585. fprintf(fout, " %*s |", width, value.c_str());
  1586. }
  1587. fprintf(fout, "\n");
  1588. }
  1589. void print_footer() override {
  1590. fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
  1591. }
  1592. };
  1593. struct sql_printer : public printer {
  1594. static std::string get_sql_field_type(const std::string & field) {
  1595. switch (test::get_field_type(field)) {
  1596. case test::STRING:
  1597. return "TEXT";
  1598. case test::BOOL:
  1599. case test::INT:
  1600. return "INTEGER";
  1601. case test::FLOAT:
  1602. return "REAL";
  1603. default:
  1604. assert(false);
  1605. exit(1);
  1606. }
  1607. }
  1608. void print_header(const cmd_params & params) override {
  1609. std::vector<std::string> fields = test::get_fields();
  1610. fprintf(fout, "CREATE TABLE IF NOT EXISTS llama_bench (\n");
  1611. for (size_t i = 0; i < fields.size(); i++) {
  1612. fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(),
  1613. i < fields.size() - 1 ? "," : "");
  1614. }
  1615. fprintf(fout, ");\n");
  1616. fprintf(fout, "\n");
  1617. (void) params;
  1618. }
  1619. void print_test(const test & t) override {
  1620. fprintf(fout, "INSERT INTO llama_bench (%s) ", join(test::get_fields(), ", ").c_str());
  1621. fprintf(fout, "VALUES (");
  1622. std::vector<std::string> values = t.get_values();
  1623. for (size_t i = 0; i < values.size(); i++) {
  1624. fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
  1625. }
  1626. fprintf(fout, ");\n");
  1627. }
  1628. };
  1629. static bool test_prompt(llama_context * ctx, int n_prompt, int n_batch, int n_threads) {
  1630. llama_set_n_threads(ctx, n_threads, n_threads);
  1631. const llama_model * model = llama_get_model(ctx);
  1632. const llama_vocab * vocab = llama_model_get_vocab(model);
  1633. const int32_t n_vocab = llama_vocab_n_tokens(vocab);
  1634. std::vector<llama_token> tokens(n_batch);
  1635. int n_processed = 0;
  1636. while (n_processed < n_prompt) {
  1637. int n_tokens = std::min(n_prompt - n_processed, n_batch);
  1638. tokens[0] = n_processed == 0 && llama_vocab_get_add_bos(vocab) ? llama_vocab_bos(vocab) : std::rand() % n_vocab;
  1639. for (int i = 1; i < n_tokens; i++) {
  1640. tokens[i] = std::rand() % n_vocab;
  1641. }
  1642. int res = llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens));
  1643. if (res != 0) {
  1644. fprintf(stderr, "%s: failed to decode prompt batch, res = %d\n", __func__, res);
  1645. return false;
  1646. }
  1647. n_processed += n_tokens;
  1648. }
  1649. llama_synchronize(ctx);
  1650. return true;
  1651. }
  1652. static bool test_gen(llama_context * ctx, int n_gen, int n_threads) {
  1653. llama_set_n_threads(ctx, n_threads, n_threads);
  1654. const llama_model * model = llama_get_model(ctx);
  1655. const llama_vocab * vocab = llama_model_get_vocab(model);
  1656. const int32_t n_vocab = llama_vocab_n_tokens(vocab);
  1657. llama_token token = llama_vocab_get_add_bos(vocab) ? llama_vocab_bos(vocab) : std::rand() % n_vocab;
  1658. for (int i = 0; i < n_gen; i++) {
  1659. int res = llama_decode(ctx, llama_batch_get_one(&token, 1));
  1660. if (res != 0) {
  1661. fprintf(stderr, "%s: failed to decode generation batch, res = %d\n", __func__, res);
  1662. return false;
  1663. }
  1664. llama_synchronize(ctx);
  1665. token = std::rand() % n_vocab;
  1666. }
  1667. return true;
  1668. }
  1669. static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
  1670. (void) level;
  1671. (void) text;
  1672. (void) user_data;
  1673. }
  1674. static std::unique_ptr<printer> create_printer(output_formats format) {
  1675. switch (format) {
  1676. case NONE:
  1677. return nullptr;
  1678. case CSV:
  1679. return std::unique_ptr<printer>(new csv_printer());
  1680. case JSON:
  1681. return std::unique_ptr<printer>(new json_printer());
  1682. case JSONL:
  1683. return std::unique_ptr<printer>(new jsonl_printer());
  1684. case MARKDOWN:
  1685. return std::unique_ptr<printer>(new markdown_printer());
  1686. case SQL:
  1687. return std::unique_ptr<printer>(new sql_printer());
  1688. }
  1689. GGML_ABORT("fatal error");
  1690. }
  1691. int main(int argc, char ** argv) {
  1692. // try to set locale for unicode characters in markdown
  1693. setlocale(LC_CTYPE, ".UTF-8");
  1694. #if !defined(NDEBUG)
  1695. fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
  1696. #endif
  1697. #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
  1698. fprintf(stderr, "warning: debug build, performance may be affected\n");
  1699. #endif
  1700. #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
  1701. fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
  1702. #endif
  1703. // initialize backends
  1704. ggml_backend_load_all();
  1705. cmd_params params = parse_cmd_params(argc, argv);
  1706. auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  1707. if (!cpu_dev) {
  1708. fprintf(stderr, "%s: error: CPU backend is not loaded\n", __func__);
  1709. return 1;
  1710. }
  1711. auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
  1712. auto * ggml_threadpool_new_fn = (decltype(ggml_threadpool_new) *) ggml_backend_reg_get_proc_address(cpu_reg, "ggml_threadpool_new");
  1713. auto * ggml_threadpool_free_fn = (decltype(ggml_threadpool_free) *) ggml_backend_reg_get_proc_address(cpu_reg, "ggml_threadpool_free");
  1714. // initialize llama.cpp
  1715. if (!params.verbose) {
  1716. llama_log_set(llama_null_log_callback, NULL);
  1717. }
  1718. llama_backend_init();
  1719. llama_numa_init(params.numa);
  1720. set_process_priority(params.prio);
  1721. // initialize printer
  1722. std::unique_ptr<printer> p = create_printer(params.output_format);
  1723. std::unique_ptr<printer> p_err = create_printer(params.output_format_stderr);
  1724. if (p) {
  1725. p->fout = stdout;
  1726. p->print_header(params);
  1727. }
  1728. if (p_err) {
  1729. p_err->fout = stderr;
  1730. p_err->print_header(params);
  1731. }
  1732. std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
  1733. llama_model * lmodel = nullptr;
  1734. const cmd_params_instance * prev_inst = nullptr;
  1735. int params_idx = 0;
  1736. auto params_count = params_instances.size();
  1737. for (const auto & inst : params_instances) {
  1738. params_idx++;
  1739. if (params.progress) {
  1740. fprintf(stderr, "llama-bench: benchmark %d/%zu: starting\n", params_idx, params_count);
  1741. }
  1742. // keep the same model between tests when possible
  1743. if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
  1744. if (lmodel) {
  1745. llama_model_free(lmodel);
  1746. }
  1747. lmodel = llama_model_load_from_file(inst.model.c_str(), inst.to_llama_mparams());
  1748. if (lmodel == NULL) {
  1749. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
  1750. return 1;
  1751. }
  1752. prev_inst = &inst;
  1753. }
  1754. llama_context * ctx = llama_init_from_model(lmodel, inst.to_llama_cparams());
  1755. if (ctx == NULL) {
  1756. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
  1757. llama_model_free(lmodel);
  1758. return 1;
  1759. }
  1760. test t(inst, lmodel, ctx);
  1761. llama_memory_clear(llama_get_memory(ctx), false);
  1762. // cool off before the test
  1763. if (params.delay) {
  1764. std::this_thread::sleep_for(std::chrono::seconds(params.delay));
  1765. }
  1766. struct ggml_threadpool_params tpp = ggml_threadpool_params_default(t.n_threads);
  1767. if (!parse_cpu_mask(t.cpu_mask, tpp.cpumask)) {
  1768. fprintf(stderr, "%s: failed to parse cpu-mask: %s\n", __func__, t.cpu_mask.c_str());
  1769. exit(1);
  1770. }
  1771. tpp.strict_cpu = t.cpu_strict;
  1772. tpp.poll = t.poll;
  1773. tpp.prio = params.prio;
  1774. struct ggml_threadpool * threadpool = ggml_threadpool_new_fn(&tpp);
  1775. if (!threadpool) {
  1776. fprintf(stderr, "%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads);
  1777. exit(1);
  1778. }
  1779. llama_attach_threadpool(ctx, threadpool, NULL);
  1780. // warmup run
  1781. if (!params.no_warmup) {
  1782. if (t.n_prompt > 0) {
  1783. if (params.progress) {
  1784. fprintf(stderr, "llama-bench: benchmark %d/%zu: warmup prompt run\n", params_idx, params_count);
  1785. }
  1786. //test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
  1787. bool res = test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads);
  1788. if (!res) {
  1789. fprintf(stderr, "%s: error: failed to run prompt warmup\n", __func__);
  1790. exit(1);
  1791. }
  1792. }
  1793. if (t.n_gen > 0) {
  1794. if (params.progress) {
  1795. fprintf(stderr, "llama-bench: benchmark %d/%zu: warmup generation run\n", params_idx, params_count);
  1796. }
  1797. bool res = test_gen(ctx, 1, t.n_threads);
  1798. if (!res) {
  1799. fprintf(stderr, "%s: error: failed to run gen warmup\n", __func__);
  1800. exit(1);
  1801. }
  1802. }
  1803. }
  1804. for (int i = 0; i < params.reps; i++) {
  1805. llama_memory_clear(llama_get_memory(ctx), false);
  1806. if (t.n_depth > 0) {
  1807. if (params.progress) {
  1808. fprintf(stderr, "llama-bench: benchmark %d/%zu: depth run %d/%d\n", params_idx, params_count,
  1809. i + 1, params.reps);
  1810. }
  1811. bool res = test_prompt(ctx, t.n_depth, t.n_batch, t.n_threads);
  1812. if (!res) {
  1813. fprintf(stderr, "%s: error: failed to run depth\n", __func__);
  1814. exit(1);
  1815. }
  1816. }
  1817. uint64_t t_start = get_time_ns();
  1818. if (t.n_prompt > 0) {
  1819. if (params.progress) {
  1820. fprintf(stderr, "llama-bench: benchmark %d/%zu: prompt run %d/%d\n", params_idx, params_count,
  1821. i + 1, params.reps);
  1822. }
  1823. bool res = test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads);
  1824. if (!res) {
  1825. fprintf(stderr, "%s: error: failed to run prompt\n", __func__);
  1826. exit(1);
  1827. }
  1828. }
  1829. if (t.n_gen > 0) {
  1830. if (params.progress) {
  1831. fprintf(stderr, "llama-bench: benchmark %d/%zu: generation run %d/%d\n", params_idx, params_count,
  1832. i + 1, params.reps);
  1833. }
  1834. bool res = test_gen(ctx, t.n_gen, t.n_threads);
  1835. if (!res) {
  1836. fprintf(stderr, "%s: error: failed to run gen\n", __func__);
  1837. exit(1);
  1838. }
  1839. }
  1840. uint64_t t_ns = get_time_ns() - t_start;
  1841. t.samples_ns.push_back(t_ns);
  1842. }
  1843. if (p) {
  1844. p->print_test(t);
  1845. fflush(p->fout);
  1846. }
  1847. if (p_err) {
  1848. p_err->print_test(t);
  1849. fflush(p_err->fout);
  1850. }
  1851. llama_perf_context_print(ctx);
  1852. llama_free(ctx);
  1853. ggml_threadpool_free_fn(threadpool);
  1854. }
  1855. llama_model_free(lmodel);
  1856. if (p) {
  1857. p->print_footer();
  1858. }
  1859. if (p_err) {
  1860. p_err->print_footer();
  1861. }
  1862. llama_backend_free();
  1863. return 0;
  1864. }