ggml.c 762 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788197891979019791197921979319794197951979619797197981979919800198011980219803198041980519806198071980819809198101981119812198131981419815198161981719818198191982019821198221982319824198251982619827198281982919830198311983219833198341983519836198371983819839198401984119842198431984419845198461984719848198491985019851198521985319854198551985619857198581985919860198611986219863198641986519866198671986819869198701987119872198731987419875198761987719878198791988019881198821988319884198851988619887198881988919890198911989219893198941989519896198971989819899199001990119902199031990419905199061990719908199091991019911199121991319914199151991619917199181991919920199211992219923199241992519926199271992819929199301993119932199331993419935199361993719938199391994019941199421994319944199451994619947199481994919950199511995219953199541995519956199571995819959199601996119962199631996419965199661996719968199691997019971199721997319974199751997619977199781997919980199811998219983199841998519986199871998819989199901999119992199931999419995199961999719998199992000020001200022000320004200052000620007200082000920010200112001220013200142001520016200172001820019200202002120022200232002420025200262002720028200292003020031200322003320034200352003620037200382003920040200412004220043200442004520046200472004820049200502005120052200532005420055200562005720058200592006020061200622006320064200652006620067200682006920070200712007220073200742007520076200772007820079200802008120082200832008420085200862008720088200892009020091200922009320094200952009620097200982009920100201012010220103201042010520106201072010820109201102011120112201132011420115201162011720118201192012020121201222012320124201252012620127201282012920130201312013220133201342013520136201372013820139201402014120142201432014420145201462014720148201492015020151201522015320154201552015620157201582015920160201612016220163201642016520166201672016820169201702017120172201732017420175201762017720178201792018020181201822018320184201852018620187201882018920190201912019220193201942019520196201972019820199202002020120202202032020420205202062020720208202092021020211202122021320214202152021620217202182021920220202212022220223202242022520226202272022820229202302023120232202332023420235202362023720238202392024020241202422024320244202452024620247202482024920250202512025220253202542025520256202572025820259202602026120262202632026420265202662026720268202692027020271202722027320274202752027620277202782027920280202812028220283202842028520286202872028820289202902029120292202932029420295202962029720298202992030020301203022030320304203052030620307203082030920310203112031220313203142031520316203172031820319203202032120322203232032420325203262032720328203292033020331203322033320334203352033620337203382033920340203412034220343203442034520346203472034820349203502035120352203532035420355203562035720358203592036020361203622036320364203652036620367203682036920370203712037220373203742037520376203772037820379203802038120382203832038420385203862038720388203892039020391203922039320394203952039620397203982039920400204012040220403204042040520406204072040820409204102041120412204132041420415204162041720418204192042020421204222042320424204252042620427204282042920430204312043220433204342043520436204372043820439204402044120442204432044420445204462044720448204492045020451204522045320454204552045620457204582045920460204612046220463204642046520466204672046820469204702047120472204732047420475204762047720478204792048020481204822048320484204852048620487204882048920490204912049220493204942049520496204972049820499205002050120502205032050420505205062050720508205092051020511205122051320514205152051620517205182051920520205212052220523205242052520526205272052820529205302053120532205332053420535205362053720538205392054020541205422054320544205452054620547205482054920550205512055220553205542055520556205572055820559205602056120562205632056420565205662056720568205692057020571205722057320574205752057620577205782057920580205812058220583205842058520586205872058820589205902059120592205932059420595205962059720598205992060020601206022060320604206052060620607206082060920610206112061220613206142061520616206172061820619206202062120622206232062420625206262062720628206292063020631206322063320634206352063620637206382063920640206412064220643206442064520646206472064820649206502065120652206532065420655206562065720658206592066020661206622066320664206652066620667206682066920670206712067220673206742067520676206772067820679206802068120682206832068420685206862068720688206892069020691206922069320694206952069620697206982069920700207012070220703207042070520706207072070820709207102071120712207132071420715207162071720718207192072020721207222072320724207252072620727207282072920730207312073220733207342073520736207372073820739207402074120742207432074420745207462074720748207492075020751207522075320754207552075620757207582075920760207612076220763207642076520766207672076820769207702077120772207732077420775207762077720778207792078020781207822078320784207852078620787207882078920790207912079220793207942079520796207972079820799208002080120802208032080420805208062080720808208092081020811208122081320814208152081620817208182081920820208212082220823208242082520826208272082820829208302083120832208332083420835208362083720838208392084020841208422084320844208452084620847208482084920850208512085220853208542085520856208572085820859208602086120862208632086420865208662086720868208692087020871208722087320874208752087620877208782087920880208812088220883208842088520886208872088820889208902089120892208932089420895208962089720898208992090020901209022090320904209052090620907209082090920910209112091220913209142091520916209172091820919209202092120922209232092420925209262092720928209292093020931209322093320934209352093620937209382093920940209412094220943209442094520946209472094820949209502095120952209532095420955209562095720958209592096020961209622096320964209652096620967209682096920970209712097220973209742097520976209772097820979209802098120982209832098420985209862098720988209892099020991209922099320994209952099620997209982099921000210012100221003210042100521006210072100821009210102101121012210132101421015210162101721018210192102021021210222102321024210252102621027210282102921030210312103221033210342103521036210372103821039210402104121042210432104421045210462104721048210492105021051210522105321054210552105621057210582105921060210612106221063210642106521066210672106821069210702107121072210732107421075210762107721078210792108021081210822108321084210852108621087210882108921090210912109221093210942109521096210972109821099211002110121102211032110421105211062110721108211092111021111211122111321114211152111621117211182111921120211212112221123211242112521126211272112821129211302113121132211332113421135211362113721138211392114021141211422114321144211452114621147211482114921150211512115221153211542115521156211572115821159211602116121162211632116421165211662116721168211692117021171211722117321174211752117621177211782117921180211812118221183211842118521186211872118821189211902119121192211932119421195211962119721198211992120021201212022120321204212052120621207212082120921210212112121221213212142121521216212172121821219212202122121222212232122421225212262122721228212292123021231212322123321234212352123621237212382123921240212412124221243212442124521246212472124821249212502125121252212532125421255212562125721258212592126021261212622126321264212652126621267212682126921270212712127221273212742127521276212772127821279212802128121282212832128421285212862128721288212892129021291212922129321294212952129621297212982129921300213012130221303213042130521306213072130821309213102131121312213132131421315213162131721318213192132021321213222132321324213252132621327213282132921330213312133221333213342133521336213372133821339213402134121342213432134421345213462134721348213492135021351213522135321354213552135621357213582135921360213612136221363213642136521366213672136821369213702137121372213732137421375213762137721378213792138021381213822138321384213852138621387213882138921390213912139221393213942139521396213972139821399214002140121402214032140421405214062140721408214092141021411214122141321414214152141621417214182141921420214212142221423214242142521426214272142821429214302143121432214332143421435214362143721438214392144021441214422144321444214452144621447214482144921450214512145221453214542145521456214572145821459214602146121462214632146421465214662146721468214692147021471214722147321474214752147621477214782147921480214812148221483214842148521486214872148821489214902149121492214932149421495214962149721498214992150021501215022150321504215052150621507215082150921510215112151221513215142151521516215172151821519215202152121522215232152421525215262152721528215292153021531215322153321534215352153621537215382153921540215412154221543215442154521546215472154821549215502155121552215532155421555215562155721558215592156021561215622156321564215652156621567215682156921570215712157221573215742157521576215772157821579215802158121582215832158421585215862158721588215892159021591215922159321594215952159621597215982159921600216012160221603216042160521606216072160821609216102161121612216132161421615216162161721618216192162021621216222162321624216252162621627216282162921630216312163221633216342163521636216372163821639216402164121642216432164421645216462164721648216492165021651216522165321654216552165621657216582165921660216612166221663216642166521666216672166821669216702167121672216732167421675216762167721678216792168021681216822168321684216852168621687216882168921690216912169221693216942169521696216972169821699217002170121702217032170421705217062170721708217092171021711217122171321714217152171621717217182171921720217212172221723217242172521726217272172821729217302173121732217332173421735217362173721738217392174021741217422174321744217452174621747217482174921750217512175221753217542175521756217572175821759217602176121762217632176421765217662176721768217692177021771217722177321774217752177621777217782177921780217812178221783217842178521786217872178821789217902179121792217932179421795217962179721798217992180021801218022180321804218052180621807218082180921810218112181221813218142181521816218172181821819218202182121822218232182421825218262182721828218292183021831218322183321834218352183621837218382183921840218412184221843218442184521846218472184821849218502185121852218532185421855218562185721858218592186021861218622186321864218652186621867218682186921870218712187221873218742187521876218772187821879218802188121882218832188421885218862188721888218892189021891218922189321894218952189621897218982189921900219012190221903219042190521906219072190821909219102191121912219132191421915219162191721918219192192021921219222192321924219252192621927219282192921930219312193221933219342193521936219372193821939219402194121942219432194421945219462194721948219492195021951219522195321954219552195621957219582195921960219612196221963219642196521966219672196821969219702197121972219732197421975219762197721978219792198021981219822198321984219852198621987219882198921990219912199221993219942199521996219972199821999220002200122002220032200422005220062200722008220092201022011220122201322014220152201622017220182201922020220212202222023220242202522026220272202822029220302203122032220332203422035220362203722038220392204022041220422204322044220452204622047220482204922050220512205222053220542205522056220572205822059220602206122062220632206422065220662206722068220692207022071220722207322074220752207622077220782207922080220812208222083220842208522086220872208822089220902209122092220932209422095220962209722098220992210022101221022210322104221052210622107221082210922110221112211222113221142211522116221172211822119221202212122122221232212422125221262212722128221292213022131221322213322134221352213622137221382213922140221412214222143221442214522146221472214822149221502215122152221532215422155221562215722158221592216022161221622216322164221652216622167221682216922170221712217222173221742217522176221772217822179221802218122182221832218422185221862218722188221892219022191221922219322194221952219622197221982219922200222012220222203222042220522206222072220822209222102221122212222132221422215222162221722218222192222022221222222222322224222252222622227222282222922230222312223222233222342223522236222372223822239222402224122242222432224422245222462224722248222492225022251222522225322254222552225622257222582225922260222612226222263222642226522266222672226822269222702227122272222732227422275222762227722278222792228022281222822228322284222852228622287222882228922290222912229222293222942229522296222972229822299223002230122302223032230422305223062230722308223092231022311223122231322314223152231622317223182231922320223212232222323223242232522326223272232822329223302233122332223332233422335223362233722338223392234022341223422234322344223452234622347223482234922350223512235222353223542235522356223572235822359223602236122362223632236422365223662236722368223692237022371223722237322374223752237622377223782237922380223812238222383223842238522386223872238822389223902239122392223932239422395223962239722398223992240022401224022240322404224052240622407224082240922410224112241222413224142241522416224172241822419224202242122422224232242422425224262242722428224292243022431224322243322434224352243622437224382243922440224412244222443224442244522446224472244822449224502245122452224532245422455224562245722458224592246022461224622246322464224652246622467224682246922470224712247222473224742247522476224772247822479224802248122482224832248422485224862248722488224892249022491224922249322494224952249622497224982249922500225012250222503225042250522506225072250822509225102251122512225132251422515225162251722518225192252022521225222252322524225252252622527225282252922530225312253222533225342253522536225372253822539225402254122542225432254422545225462254722548225492255022551225522255322554225552255622557225582255922560225612256222563225642256522566225672256822569225702257122572225732257422575225762257722578225792258022581225822258322584225852258622587225882258922590225912259222593225942259522596225972259822599226002260122602226032260422605226062260722608226092261022611226122261322614226152261622617226182261922620226212262222623226242262522626226272262822629226302263122632226332263422635226362263722638226392264022641226422264322644226452264622647226482264922650226512265222653226542265522656226572265822659226602266122662226632266422665226662266722668226692267022671226722267322674226752267622677226782267922680226812268222683226842268522686226872268822689226902269122692226932269422695226962269722698226992270022701227022270322704227052270622707227082270922710227112271222713227142271522716227172271822719227202272122722227232272422725227262272722728227292273022731227322273322734227352273622737227382273922740227412274222743227442274522746227472274822749227502275122752227532275422755227562275722758227592276022761227622276322764227652276622767227682276922770227712277222773227742277522776227772277822779227802278122782227832278422785227862278722788227892279022791227922279322794227952279622797227982279922800228012280222803228042280522806228072280822809228102281122812228132281422815228162281722818228192282022821228222282322824228252282622827228282282922830228312283222833228342283522836228372283822839228402284122842228432284422845228462284722848228492285022851228522285322854228552285622857228582285922860228612286222863228642286522866228672286822869228702287122872228732287422875228762287722878228792288022881228822288322884228852288622887228882288922890228912289222893228942289522896228972289822899229002290122902229032290422905229062290722908229092291022911229122291322914229152291622917229182291922920229212292222923229242292522926229272292822929229302293122932229332293422935229362293722938229392294022941229422294322944229452294622947229482294922950229512295222953229542295522956229572295822959229602296122962229632296422965229662296722968229692297022971229722297322974229752297622977229782297922980229812298222983229842298522986229872298822989229902299122992229932299422995229962299722998229992300023001230022300323004230052300623007230082300923010230112301223013230142301523016230172301823019230202302123022230232302423025230262302723028230292303023031230322303323034230352303623037230382303923040230412304223043230442304523046230472304823049230502305123052230532305423055230562305723058230592306023061230622306323064230652306623067230682306923070230712307223073230742307523076230772307823079230802308123082230832308423085230862308723088230892309023091230922309323094230952309623097230982309923100231012310223103231042310523106231072310823109231102311123112231132311423115231162311723118231192312023121231222312323124231252312623127231282312923130231312313223133231342313523136231372313823139231402314123142231432314423145231462314723148231492315023151231522315323154231552315623157231582315923160231612316223163231642316523166231672316823169231702317123172231732317423175231762317723178231792318023181231822318323184231852318623187231882318923190231912319223193231942319523196231972319823199232002320123202232032320423205232062320723208232092321023211232122321323214232152321623217232182321923220232212322223223232242322523226232272322823229232302323123232232332323423235232362323723238232392324023241232422324323244232452324623247232482324923250232512325223253232542325523256232572325823259232602326123262232632326423265232662326723268232692327023271232722327323274232752327623277232782327923280232812328223283232842328523286232872328823289232902329123292232932329423295232962329723298232992330023301233022330323304233052330623307233082330923310233112331223313233142331523316233172331823319233202332123322233232332423325233262332723328233292333023331233322333323334233352333623337233382333923340233412334223343233442334523346233472334823349233502335123352233532335423355233562335723358233592336023361233622336323364233652336623367233682336923370233712337223373233742337523376233772337823379233802338123382233832338423385233862338723388233892339023391233922339323394233952339623397233982339923400234012340223403234042340523406234072340823409234102341123412234132341423415234162341723418234192342023421234222342323424234252342623427234282342923430234312343223433234342343523436234372343823439234402344123442234432344423445234462344723448234492345023451234522345323454234552345623457234582345923460234612346223463234642346523466234672346823469234702347123472234732347423475234762347723478234792348023481234822348323484234852348623487234882348923490234912349223493234942349523496234972349823499235002350123502235032350423505235062350723508235092351023511235122351323514235152351623517235182351923520235212352223523235242352523526235272352823529235302353123532235332353423535235362353723538
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #include "ggml.h"
  6. #if defined(_MSC_VER) || defined(__MINGW32__)
  7. #include <malloc.h> // using malloc.h with MSC/MINGW
  8. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  9. #include <alloca.h>
  10. #endif
  11. #include <assert.h>
  12. #include <errno.h>
  13. #include <time.h>
  14. #include <math.h>
  15. #include <stdlib.h>
  16. #include <string.h>
  17. #include <stdint.h>
  18. #include <inttypes.h>
  19. #include <stdio.h>
  20. #include <float.h>
  21. #include <limits.h>
  22. #include <stdarg.h>
  23. #include <signal.h>
  24. #if defined(__gnu_linux__)
  25. #include <syscall.h>
  26. #endif
  27. #ifdef GGML_USE_METAL
  28. #include <unistd.h>
  29. #endif
  30. #ifdef __ARM_FEATURE_MATMUL_INT8
  31. #undef GGML_USE_LLAMAFILE
  32. #endif
  33. #ifdef GGML_USE_LLAMAFILE
  34. #include "sgemm.h"
  35. #endif
  36. #if defined(_MSC_VER)
  37. // disable "possible loss of data" to avoid hundreds of casts
  38. // we should just be careful :)
  39. #pragma warning(disable: 4244 4267)
  40. // disable POSIX deprecation warnings
  41. // these functions are never going away, anyway
  42. #pragma warning(disable: 4996)
  43. #endif
  44. #if defined(_WIN32)
  45. #define WIN32_LEAN_AND_MEAN
  46. #ifndef NOMINMAX
  47. #define NOMINMAX
  48. #endif
  49. #include <windows.h>
  50. typedef volatile LONG atomic_int;
  51. typedef atomic_int atomic_bool;
  52. static void atomic_store(atomic_int * ptr, LONG val) {
  53. InterlockedExchange(ptr, val);
  54. }
  55. static LONG atomic_load(atomic_int * ptr) {
  56. return InterlockedCompareExchange(ptr, 0, 0);
  57. }
  58. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  59. return InterlockedExchangeAdd(ptr, inc);
  60. }
  61. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  62. return atomic_fetch_add(ptr, -(dec));
  63. }
  64. typedef HANDLE pthread_t;
  65. typedef DWORD thread_ret_t;
  66. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  67. (void) unused;
  68. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  69. if (handle == NULL)
  70. {
  71. return EAGAIN;
  72. }
  73. *out = handle;
  74. return 0;
  75. }
  76. static int pthread_join(pthread_t thread, void * unused) {
  77. (void) unused;
  78. int ret = (int) WaitForSingleObject(thread, INFINITE);
  79. CloseHandle(thread);
  80. return ret;
  81. }
  82. static int sched_yield (void) {
  83. Sleep (0);
  84. return 0;
  85. }
  86. #else
  87. #include <pthread.h>
  88. #include <stdatomic.h>
  89. typedef void * thread_ret_t;
  90. #include <sys/types.h>
  91. #include <sys/stat.h>
  92. #include <unistd.h>
  93. #endif
  94. typedef pthread_t ggml_thread_t;
  95. #ifdef GGML_USE_CPU_HBM
  96. #include <hbwmalloc.h>
  97. #endif
  98. #if defined(__APPLE__)
  99. #include <TargetConditionals.h>
  100. #endif
  101. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  102. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  103. #include <sys/wait.h>
  104. void ggml_print_backtrace(void) {
  105. /*
  106. #include <execinfo.h>
  107. #include <dlfcn.h>
  108. void * trace[100];
  109. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  110. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  111. */
  112. // backtrack_symbols does not show line numbers, use gdb instead
  113. char attach[32];
  114. snprintf(attach, sizeof(attach), "attach %d", getpid());
  115. int pid = fork();
  116. if (pid == 0) {
  117. execlp("gdb", "gdb", "--batch",
  118. "-ex", "set style enabled on",
  119. "-ex", attach,
  120. "-ex", "bt -frame-info source-and-location",
  121. "-ex", "detach",
  122. "-ex", "quit",
  123. (char *) NULL);
  124. } else {
  125. waitpid(pid, NULL, 0);
  126. }
  127. }
  128. #else
  129. void ggml_print_backtrace(void) {
  130. // platform not supported
  131. }
  132. #endif
  133. /*#define GGML_PERF*/
  134. #define GGML_DEBUG 0
  135. #define GGML_GELU_FP16
  136. #define GGML_GELU_QUICK_FP16
  137. #define GGML_SOFT_MAX_UNROLL 4
  138. #define GGML_VEC_DOT_UNROLL 2
  139. #define GGML_VEC_MAD_UNROLL 32
  140. //
  141. // logging
  142. //
  143. #if (GGML_DEBUG >= 1)
  144. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  145. #else
  146. #define GGML_PRINT_DEBUG(...)
  147. #endif
  148. #if (GGML_DEBUG >= 5)
  149. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  150. #else
  151. #define GGML_PRINT_DEBUG_5(...)
  152. #endif
  153. #if (GGML_DEBUG >= 10)
  154. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  155. #else
  156. #define GGML_PRINT_DEBUG_10(...)
  157. #endif
  158. #define GGML_PRINT(...) printf(__VA_ARGS__)
  159. //
  160. // end of logging block
  161. //
  162. #ifdef GGML_USE_ACCELERATE
  163. // uncomment to use vDSP for soft max computation
  164. // note: not sure if it is actually faster
  165. //#define GGML_SOFT_MAX_ACCELERATE
  166. #endif
  167. #if defined(_MSC_VER) || defined(__MINGW32__)
  168. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  169. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  170. #else
  171. inline static void * ggml_aligned_malloc(size_t size) {
  172. if (size == 0) {
  173. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  174. return NULL;
  175. }
  176. void * aligned_memory = NULL;
  177. #ifdef GGML_USE_CPU_HBM
  178. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  179. #elif GGML_USE_METAL
  180. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  181. #else
  182. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  183. #endif
  184. if (result != 0) {
  185. // Handle allocation failure
  186. const char *error_desc = "unknown allocation error";
  187. switch (result) {
  188. case EINVAL:
  189. error_desc = "invalid alignment value";
  190. break;
  191. case ENOMEM:
  192. error_desc = "insufficient memory";
  193. break;
  194. }
  195. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  196. GGML_ASSERT(false);
  197. return NULL;
  198. }
  199. return aligned_memory;
  200. }
  201. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  202. #ifdef GGML_USE_CPU_HBM
  203. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  204. #else
  205. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  206. #endif
  207. #endif
  208. inline static void * ggml_malloc(size_t size) {
  209. if (size == 0) {
  210. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  211. return NULL;
  212. }
  213. void * result = malloc(size);
  214. if (result == NULL) {
  215. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  216. GGML_ASSERT(false);
  217. }
  218. return result;
  219. }
  220. // calloc
  221. inline static void * ggml_calloc(size_t num, size_t size) {
  222. if (num == 0 || size == 0) {
  223. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  224. return NULL;
  225. }
  226. void * result = calloc(num, size);
  227. if (result == NULL) {
  228. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  229. GGML_ASSERT(false);
  230. }
  231. return result;
  232. }
  233. #define GGML_MALLOC(size) ggml_malloc(size)
  234. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  235. #define GGML_FREE(ptr) free(ptr)
  236. #define UNUSED GGML_UNUSED
  237. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  238. #if defined(GGML_USE_ACCELERATE)
  239. #include <Accelerate/Accelerate.h>
  240. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  241. #include "ggml-opencl.h"
  242. #endif
  243. #elif defined(GGML_USE_OPENBLAS)
  244. #if defined(GGML_BLAS_USE_MKL)
  245. #include <mkl.h>
  246. #else
  247. #include <cblas.h>
  248. #endif
  249. #elif defined(GGML_USE_CLBLAST)
  250. #include "ggml-opencl.h"
  251. #endif
  252. // floating point type used to accumulate sums
  253. typedef double ggml_float;
  254. #undef MIN
  255. #undef MAX
  256. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  257. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  258. //
  259. // global data
  260. //
  261. // precomputed gelu table for f16 (128 KB)
  262. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  263. // precomputed quick gelu table for f16 (128 KB)
  264. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  265. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  266. float ggml_table_f32_f16[1 << 16];
  267. GGML_CALL const char * ggml_status_to_string(enum ggml_status status) {
  268. switch (status) {
  269. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  270. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  271. case GGML_STATUS_SUCCESS: return "GGML status: success";
  272. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  273. }
  274. return "GGML status: unknown";
  275. }
  276. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  277. #define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml
  278. return GGML_FP16_TO_FP32(x);
  279. }
  280. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  281. #define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml
  282. return GGML_FP32_TO_FP16(x);
  283. }
  284. float ggml_bf16_to_fp32(ggml_bf16_t x) {
  285. #define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml
  286. return GGML_BF16_TO_FP32(x); // it just left shifts
  287. }
  288. ggml_bf16_t ggml_fp32_to_bf16(float x) {
  289. #define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml
  290. return GGML_FP32_TO_BF16(x);
  291. }
  292. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
  293. for (int64_t i = 0; i < n; i++) {
  294. y[i] = GGML_FP16_TO_FP32(x[i]);
  295. }
  296. }
  297. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
  298. int64_t i = 0;
  299. #if defined(__F16C__)
  300. for (; i + 7 < n; i += 8) {
  301. __m256 x_vec = _mm256_loadu_ps(x + i);
  302. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  303. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  304. }
  305. for(; i + 3 < n; i += 4) {
  306. __m128 x_vec = _mm_loadu_ps(x + i);
  307. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  308. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  309. }
  310. #endif
  311. for (; i < n; i++) {
  312. y[i] = GGML_FP32_TO_FP16(x[i]);
  313. }
  314. }
  315. void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
  316. int64_t i = 0;
  317. #if defined(__AVX512F__)
  318. for (; i + 16 <= n; i += 16) {
  319. _mm512_storeu_ps(y + i,
  320. _mm512_castsi512_ps(
  321. _mm512_slli_epi32(
  322. _mm512_cvtepu16_epi32(
  323. _mm256_loadu_si256(
  324. (const __m256i *)(x + i))),
  325. 16)));
  326. }
  327. #elif defined(__AVX2__)
  328. for (; i + 8 <= n; i += 8) {
  329. _mm256_storeu_ps(y + i,
  330. _mm256_castsi256_ps(
  331. _mm256_slli_epi32(
  332. _mm256_cvtepu16_epi32(
  333. _mm_loadu_si128(
  334. (const __m128i *)(x + i))),
  335. 16)));
  336. }
  337. #endif
  338. for (; i < n; i++) {
  339. y[i] = GGML_BF16_TO_FP32(x[i]);
  340. }
  341. }
  342. void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
  343. int i = 0;
  344. #if defined(__AVX512BF16__)
  345. for (; i + 32 <= n; i += 32) {
  346. _mm512_storeu_si512(
  347. (__m512i *)(y + i),
  348. m512i(_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16),
  349. _mm512_loadu_ps(x + i))));
  350. }
  351. #endif
  352. for (; i < n; i++) {
  353. y[i] = GGML_FP32_TO_BF16(x[i]);
  354. }
  355. }
  356. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  357. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  358. }
  359. //
  360. // timing
  361. //
  362. #if defined(_MSC_VER) || defined(__MINGW32__)
  363. static int64_t timer_freq, timer_start;
  364. void ggml_time_init(void) {
  365. LARGE_INTEGER t;
  366. QueryPerformanceFrequency(&t);
  367. timer_freq = t.QuadPart;
  368. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  369. // and the uptime is high enough.
  370. // We subtract the program start time to reduce the likelihood of that happening.
  371. QueryPerformanceCounter(&t);
  372. timer_start = t.QuadPart;
  373. }
  374. int64_t ggml_time_ms(void) {
  375. LARGE_INTEGER t;
  376. QueryPerformanceCounter(&t);
  377. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  378. }
  379. int64_t ggml_time_us(void) {
  380. LARGE_INTEGER t;
  381. QueryPerformanceCounter(&t);
  382. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  383. }
  384. #else
  385. void ggml_time_init(void) {}
  386. int64_t ggml_time_ms(void) {
  387. struct timespec ts;
  388. clock_gettime(CLOCK_MONOTONIC, &ts);
  389. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  390. }
  391. int64_t ggml_time_us(void) {
  392. struct timespec ts;
  393. clock_gettime(CLOCK_MONOTONIC, &ts);
  394. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  395. }
  396. #endif
  397. int64_t ggml_cycles(void) {
  398. return clock();
  399. }
  400. int64_t ggml_cycles_per_ms(void) {
  401. return CLOCKS_PER_SEC/1000;
  402. }
  403. #ifdef GGML_PERF
  404. #define ggml_perf_time_ms() ggml_time_ms()
  405. #define ggml_perf_time_us() ggml_time_us()
  406. #define ggml_perf_cycles() ggml_cycles()
  407. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  408. #else
  409. #define ggml_perf_time_ms() 0
  410. #define ggml_perf_time_us() 0
  411. #define ggml_perf_cycles() 0
  412. #define ggml_perf_cycles_per_ms() 0
  413. #endif
  414. //
  415. // cross-platform UTF-8 file paths
  416. //
  417. #ifdef _WIN32
  418. static wchar_t * ggml_mbstowcs(const char * mbs) {
  419. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  420. if (!wlen) {
  421. errno = EINVAL;
  422. return NULL;
  423. }
  424. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  425. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  426. if (!wlen) {
  427. GGML_FREE(wbuf);
  428. errno = EINVAL;
  429. return NULL;
  430. }
  431. return wbuf;
  432. }
  433. #endif
  434. FILE * ggml_fopen(const char * fname, const char * mode) {
  435. #ifdef _WIN32
  436. FILE * file = NULL;
  437. // convert fname (UTF-8)
  438. wchar_t * wfname = ggml_mbstowcs(fname);
  439. if (wfname) {
  440. // convert mode (ANSI)
  441. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  442. wchar_t * wmode_p = wmode;
  443. do {
  444. *wmode_p++ = (wchar_t)*mode;
  445. } while (*mode++);
  446. // open file
  447. file = _wfopen(wfname, wmode);
  448. GGML_FREE(wfname);
  449. GGML_FREE(wmode);
  450. }
  451. return file;
  452. #else
  453. return fopen(fname, mode);
  454. #endif
  455. }
  456. //
  457. // cache line
  458. //
  459. #if defined(__cpp_lib_hardware_interference_size)
  460. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  461. #else
  462. #if defined(__POWER9_VECTOR__)
  463. #define CACHE_LINE_SIZE 128
  464. #else
  465. #define CACHE_LINE_SIZE 64
  466. #endif
  467. #endif
  468. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  469. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  470. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  471. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);
  472. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  473. [GGML_TYPE_I8] = {
  474. .type_name = "i8",
  475. .blck_size = 1,
  476. .type_size = sizeof(int8_t),
  477. .is_quantized = false,
  478. },
  479. [GGML_TYPE_I16] = {
  480. .type_name = "i16",
  481. .blck_size = 1,
  482. .type_size = sizeof(int16_t),
  483. .is_quantized = false,
  484. },
  485. [GGML_TYPE_I32] = {
  486. .type_name = "i32",
  487. .blck_size = 1,
  488. .type_size = sizeof(int32_t),
  489. .is_quantized = false,
  490. },
  491. [GGML_TYPE_I64] = {
  492. .type_name = "i64",
  493. .blck_size = 1,
  494. .type_size = sizeof(int64_t),
  495. .is_quantized = false,
  496. },
  497. [GGML_TYPE_F64] = {
  498. .type_name = "f64",
  499. .blck_size = 1,
  500. .type_size = sizeof(double),
  501. .is_quantized = false,
  502. .nrows = 1,
  503. },
  504. [GGML_TYPE_F32] = {
  505. .type_name = "f32",
  506. .blck_size = 1,
  507. .type_size = sizeof(float),
  508. .is_quantized = false,
  509. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  510. .vec_dot_type = GGML_TYPE_F32,
  511. .nrows = 1,
  512. },
  513. [GGML_TYPE_F16] = {
  514. .type_name = "f16",
  515. .blck_size = 1,
  516. .type_size = sizeof(ggml_fp16_t),
  517. .is_quantized = false,
  518. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  519. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  520. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  521. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  522. .vec_dot_type = GGML_TYPE_F16,
  523. .nrows = 1,
  524. },
  525. [GGML_TYPE_Q4_0] = {
  526. .type_name = "q4_0",
  527. .blck_size = QK4_0,
  528. .type_size = sizeof(block_q4_0),
  529. .is_quantized = true,
  530. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  531. .from_float = quantize_row_q4_0,
  532. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  533. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  534. .vec_dot_type = GGML_TYPE_Q8_0,
  535. #if defined (__ARM_FEATURE_MATMUL_INT8)
  536. .nrows = 2,
  537. #else
  538. .nrows = 1,
  539. #endif
  540. },
  541. [GGML_TYPE_Q4_1] = {
  542. .type_name = "q4_1",
  543. .blck_size = QK4_1,
  544. .type_size = sizeof(block_q4_1),
  545. .is_quantized = true,
  546. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  547. .from_float = quantize_row_q4_1,
  548. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  549. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  550. .vec_dot_type = GGML_TYPE_Q8_1,
  551. #if defined (__ARM_FEATURE_MATMUL_INT8)
  552. .nrows = 2,
  553. #else
  554. .nrows = 1,
  555. #endif
  556. },
  557. [4] = { // GGML_TYPE_Q4_2
  558. .type_name = "DEPRECATED",
  559. .blck_size = 0,
  560. .type_size = 0,
  561. .is_quantized = false,
  562. .to_float = NULL,
  563. .from_float = NULL,
  564. .from_float_reference = NULL,
  565. .vec_dot = NULL,
  566. .vec_dot_type = GGML_TYPE_COUNT,
  567. .nrows = 1,
  568. },
  569. [5] = { // GGML_TYPE_Q4_3
  570. .type_name = "DEPRECATED",
  571. .blck_size = 0,
  572. .type_size = 0,
  573. .is_quantized = false,
  574. .to_float = NULL,
  575. .from_float = NULL,
  576. .from_float_reference = NULL,
  577. .vec_dot = NULL,
  578. .vec_dot_type = GGML_TYPE_COUNT,
  579. .nrows = 1,
  580. },
  581. [GGML_TYPE_Q5_0] = {
  582. .type_name = "q5_0",
  583. .blck_size = QK5_0,
  584. .type_size = sizeof(block_q5_0),
  585. .is_quantized = true,
  586. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  587. .from_float = quantize_row_q5_0,
  588. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  589. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  590. .vec_dot_type = GGML_TYPE_Q8_0,
  591. .nrows = 1,
  592. },
  593. [GGML_TYPE_Q5_1] = {
  594. .type_name = "q5_1",
  595. .blck_size = QK5_1,
  596. .type_size = sizeof(block_q5_1),
  597. .is_quantized = true,
  598. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  599. .from_float = quantize_row_q5_1,
  600. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  601. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  602. .vec_dot_type = GGML_TYPE_Q8_1,
  603. .nrows = 1,
  604. },
  605. [GGML_TYPE_Q8_0] = {
  606. .type_name = "q8_0",
  607. .blck_size = QK8_0,
  608. .type_size = sizeof(block_q8_0),
  609. .is_quantized = true,
  610. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  611. .from_float = quantize_row_q8_0,
  612. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  613. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  614. .vec_dot_type = GGML_TYPE_Q8_0,
  615. #if defined (__ARM_FEATURE_MATMUL_INT8)
  616. .nrows = 2,
  617. #else
  618. .nrows = 1,
  619. #endif
  620. },
  621. [GGML_TYPE_Q8_1] = {
  622. .type_name = "q8_1",
  623. .blck_size = QK8_1,
  624. .type_size = sizeof(block_q8_1),
  625. .is_quantized = true,
  626. .from_float = quantize_row_q8_1,
  627. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  628. .vec_dot_type = GGML_TYPE_Q8_1,
  629. .nrows = 1,
  630. },
  631. [GGML_TYPE_Q2_K] = {
  632. .type_name = "q2_K",
  633. .blck_size = QK_K,
  634. .type_size = sizeof(block_q2_K),
  635. .is_quantized = true,
  636. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  637. .from_float = quantize_row_q2_K,
  638. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  639. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  640. .vec_dot_type = GGML_TYPE_Q8_K,
  641. .nrows = 1,
  642. },
  643. [GGML_TYPE_Q3_K] = {
  644. .type_name = "q3_K",
  645. .blck_size = QK_K,
  646. .type_size = sizeof(block_q3_K),
  647. .is_quantized = true,
  648. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  649. .from_float = quantize_row_q3_K,
  650. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  651. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  652. .vec_dot_type = GGML_TYPE_Q8_K,
  653. .nrows = 1,
  654. },
  655. [GGML_TYPE_Q4_K] = {
  656. .type_name = "q4_K",
  657. .blck_size = QK_K,
  658. .type_size = sizeof(block_q4_K),
  659. .is_quantized = true,
  660. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  661. .from_float = quantize_row_q4_K,
  662. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  663. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  664. .vec_dot_type = GGML_TYPE_Q8_K,
  665. .nrows = 1,
  666. },
  667. [GGML_TYPE_Q5_K] = {
  668. .type_name = "q5_K",
  669. .blck_size = QK_K,
  670. .type_size = sizeof(block_q5_K),
  671. .is_quantized = true,
  672. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  673. .from_float = quantize_row_q5_K,
  674. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  675. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  676. .vec_dot_type = GGML_TYPE_Q8_K,
  677. .nrows = 1,
  678. },
  679. [GGML_TYPE_Q6_K] = {
  680. .type_name = "q6_K",
  681. .blck_size = QK_K,
  682. .type_size = sizeof(block_q6_K),
  683. .is_quantized = true,
  684. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  685. .from_float = quantize_row_q6_K,
  686. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  687. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  688. .vec_dot_type = GGML_TYPE_Q8_K,
  689. .nrows = 1,
  690. },
  691. [GGML_TYPE_IQ2_XXS] = {
  692. .type_name = "iq2_xxs",
  693. .blck_size = QK_K,
  694. .type_size = sizeof(block_iq2_xxs),
  695. .is_quantized = true,
  696. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  697. .from_float = NULL,
  698. .from_float_reference = NULL,
  699. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  700. .vec_dot_type = GGML_TYPE_Q8_K,
  701. .nrows = 1,
  702. },
  703. [GGML_TYPE_IQ2_XS] = {
  704. .type_name = "iq2_xs",
  705. .blck_size = QK_K,
  706. .type_size = sizeof(block_iq2_xs),
  707. .is_quantized = true,
  708. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  709. .from_float = NULL,
  710. .from_float_reference = NULL,
  711. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  712. .vec_dot_type = GGML_TYPE_Q8_K,
  713. .nrows = 1,
  714. },
  715. [GGML_TYPE_IQ3_XXS] = {
  716. .type_name = "iq3_xxs",
  717. .blck_size = QK_K,
  718. .type_size = sizeof(block_iq3_xxs),
  719. .is_quantized = true,
  720. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  721. .from_float = quantize_row_iq3_xxs,
  722. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  723. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  724. .vec_dot_type = GGML_TYPE_Q8_K,
  725. .nrows = 1,
  726. },
  727. [GGML_TYPE_IQ3_S] = {
  728. .type_name = "iq3_s",
  729. .blck_size = QK_K,
  730. .type_size = sizeof(block_iq3_s),
  731. .is_quantized = true,
  732. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  733. .from_float = quantize_row_iq3_s,
  734. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  735. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  736. .vec_dot_type = GGML_TYPE_Q8_K,
  737. .nrows = 1,
  738. },
  739. [GGML_TYPE_IQ2_S] = {
  740. .type_name = "iq2_s",
  741. .blck_size = QK_K,
  742. .type_size = sizeof(block_iq2_s),
  743. .is_quantized = true,
  744. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  745. .from_float = quantize_row_iq2_s,
  746. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  747. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  748. .vec_dot_type = GGML_TYPE_Q8_K,
  749. .nrows = 1,
  750. },
  751. [GGML_TYPE_IQ1_S] = {
  752. .type_name = "iq1_s",
  753. .blck_size = QK_K,
  754. .type_size = sizeof(block_iq1_s),
  755. .is_quantized = true,
  756. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  757. .from_float = NULL,
  758. .from_float_reference = NULL,
  759. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  760. .vec_dot_type = GGML_TYPE_Q8_K,
  761. .nrows = 1,
  762. },
  763. [GGML_TYPE_IQ1_M] = {
  764. .type_name = "iq1_m",
  765. .blck_size = QK_K,
  766. .type_size = sizeof(block_iq1_m),
  767. .is_quantized = true,
  768. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  769. .from_float = NULL,
  770. .from_float_reference = NULL,
  771. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  772. .vec_dot_type = GGML_TYPE_Q8_K,
  773. .nrows = 1,
  774. },
  775. [GGML_TYPE_IQ4_NL] = {
  776. .type_name = "iq4_nl",
  777. .blck_size = QK4_NL,
  778. .type_size = sizeof(block_iq4_nl),
  779. .is_quantized = true,
  780. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  781. .from_float = quantize_row_iq4_nl,
  782. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  783. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  784. .vec_dot_type = GGML_TYPE_Q8_0,
  785. .nrows = 1,
  786. },
  787. [GGML_TYPE_IQ4_XS] = {
  788. .type_name = "iq4_xs",
  789. .blck_size = QK_K,
  790. .type_size = sizeof(block_iq4_xs),
  791. .is_quantized = true,
  792. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  793. .from_float = quantize_row_iq4_xs,
  794. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  795. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  796. .vec_dot_type = GGML_TYPE_Q8_K,
  797. .nrows = 1,
  798. },
  799. [GGML_TYPE_Q8_K] = {
  800. .type_name = "q8_K",
  801. .blck_size = QK_K,
  802. .type_size = sizeof(block_q8_K),
  803. .is_quantized = true,
  804. .from_float = quantize_row_q8_K,
  805. },
  806. [GGML_TYPE_BF16] = {
  807. .type_name = "bf16",
  808. .blck_size = 1,
  809. .type_size = sizeof(ggml_bf16_t),
  810. .is_quantized = false,
  811. .to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
  812. .from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  813. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  814. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
  815. .vec_dot_type = GGML_TYPE_BF16,
  816. .nrows = 1,
  817. }
  818. };
  819. // For internal test use
  820. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  821. GGML_ASSERT(type < GGML_TYPE_COUNT);
  822. return type_traits[type];
  823. }
  824. //
  825. // simd mappings
  826. //
  827. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  828. // we then implement the fundamental computation operations below using only these macros
  829. // adding support for new architectures requires to define the corresponding SIMD macros
  830. //
  831. // GGML_F32_STEP / GGML_F16_STEP
  832. // number of elements to process in a single step
  833. //
  834. // GGML_F32_EPR / GGML_F16_EPR
  835. // number of elements to fit in a single register
  836. //
  837. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  838. #define GGML_SIMD
  839. // F32 NEON
  840. #define GGML_F32_STEP 16
  841. #define GGML_F32_EPR 4
  842. #define GGML_F32x4 float32x4_t
  843. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  844. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  845. #define GGML_F32x4_LOAD vld1q_f32
  846. #define GGML_F32x4_STORE vst1q_f32
  847. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  848. #define GGML_F32x4_ADD vaddq_f32
  849. #define GGML_F32x4_MUL vmulq_f32
  850. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  851. #define GGML_F32x4_REDUCE(res, x) \
  852. { \
  853. int offset = GGML_F32_ARR >> 1; \
  854. for (int i = 0; i < offset; ++i) { \
  855. x[i] = vaddq_f32(x[i], x[offset+i]); \
  856. } \
  857. offset >>= 1; \
  858. for (int i = 0; i < offset; ++i) { \
  859. x[i] = vaddq_f32(x[i], x[offset+i]); \
  860. } \
  861. offset >>= 1; \
  862. for (int i = 0; i < offset; ++i) { \
  863. x[i] = vaddq_f32(x[i], x[offset+i]); \
  864. } \
  865. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  866. }
  867. #define GGML_F32_VEC GGML_F32x4
  868. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  869. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  870. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  871. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  872. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  873. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  874. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  875. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  876. // F16 NEON
  877. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  878. #define GGML_F16_STEP 32
  879. #define GGML_F16_EPR 8
  880. #define GGML_F16x8 float16x8_t
  881. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  882. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  883. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  884. #define GGML_F16x8_STORE vst1q_f16
  885. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  886. #define GGML_F16x8_ADD vaddq_f16
  887. #define GGML_F16x8_MUL vmulq_f16
  888. #define GGML_F16x8_REDUCE(res, x) \
  889. do { \
  890. int offset = GGML_F16_ARR >> 1; \
  891. for (int i = 0; i < offset; ++i) { \
  892. x[i] = vaddq_f16(x[i], x[offset+i]); \
  893. } \
  894. offset >>= 1; \
  895. for (int i = 0; i < offset; ++i) { \
  896. x[i] = vaddq_f16(x[i], x[offset+i]); \
  897. } \
  898. offset >>= 1; \
  899. for (int i = 0; i < offset; ++i) { \
  900. x[i] = vaddq_f16(x[i], x[offset+i]); \
  901. } \
  902. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  903. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  904. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  905. } while (0)
  906. #define GGML_F16_VEC GGML_F16x8
  907. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  908. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  909. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  910. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), r[i])
  911. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  912. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  913. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  914. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  915. #else
  916. // if FP16 vector arithmetic is not supported, we use FP32 instead
  917. // and take advantage of the vcvt_ functions to convert to/from FP16
  918. #define GGML_F16_STEP 16
  919. #define GGML_F16_EPR 4
  920. #define GGML_F32Cx4 float32x4_t
  921. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  922. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  923. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  924. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  925. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  926. #define GGML_F32Cx4_ADD vaddq_f32
  927. #define GGML_F32Cx4_MUL vmulq_f32
  928. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  929. #define GGML_F16_VEC GGML_F32Cx4
  930. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  931. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  932. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  933. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
  934. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  935. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  936. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  937. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  938. #endif
  939. #elif defined(__AVX512F__)
  940. #define GGML_SIMD
  941. // F32 AVX512
  942. #define GGML_F32_STEP 64
  943. #define GGML_F32_EPR 16
  944. #define GGML_F32x16 __m512
  945. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  946. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  947. #define GGML_F32x16_LOAD _mm512_loadu_ps
  948. #define GGML_F32x16_STORE _mm512_storeu_ps
  949. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  950. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  951. #define GGML_F32x16_ADD _mm512_add_ps
  952. #define GGML_F32x16_MUL _mm512_mul_ps
  953. #define GGML_F32x16_REDUCE(res, x) \
  954. do { \
  955. int offset = GGML_F32_ARR >> 1; \
  956. for (int i = 0; i < offset; ++i) { \
  957. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  958. } \
  959. offset >>= 1; \
  960. for (int i = 0; i < offset; ++i) { \
  961. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  962. } \
  963. offset >>= 1; \
  964. for (int i = 0; i < offset; ++i) { \
  965. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  966. } \
  967. res = _mm512_reduce_add_ps(x[0]); \
  968. } while (0)
  969. // TODO: is this optimal ?
  970. #define GGML_F32_VEC GGML_F32x16
  971. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  972. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  973. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  974. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  975. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  976. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  977. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  978. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  979. // F16 AVX512
  980. // F16 AVX
  981. #define GGML_F16_STEP 64
  982. #define GGML_F16_EPR 16
  983. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  984. #define GGML_F32Cx16 __m512
  985. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  986. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  987. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  988. // so F16C guard isn't required
  989. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
  990. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  991. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  992. #define GGML_F32Cx16_ADD _mm512_add_ps
  993. #define GGML_F32Cx16_MUL _mm512_mul_ps
  994. #define GGML_F32Cx16_REDUCE(res, x) \
  995. do { \
  996. int offset = GGML_F32_ARR >> 1; \
  997. for (int i = 0; i < offset; ++i) { \
  998. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  999. } \
  1000. offset >>= 1; \
  1001. for (int i = 0; i < offset; ++i) { \
  1002. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1003. } \
  1004. offset >>= 1; \
  1005. for (int i = 0; i < offset; ++i) { \
  1006. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1007. } \
  1008. res = _mm512_reduce_add_ps(x[0]); \
  1009. } while (0)
  1010. #define GGML_F16_VEC GGML_F32Cx16
  1011. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  1012. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  1013. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  1014. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  1015. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  1016. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  1017. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  1018. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  1019. #elif defined(__AVX__)
  1020. #define GGML_SIMD
  1021. // F32 AVX
  1022. #define GGML_F32_STEP 32
  1023. #define GGML_F32_EPR 8
  1024. #define GGML_F32x8 __m256
  1025. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1026. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1027. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1028. #define GGML_F32x8_STORE _mm256_storeu_ps
  1029. #if defined(__FMA__)
  1030. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1031. #else
  1032. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1033. #endif
  1034. #define GGML_F32x8_ADD _mm256_add_ps
  1035. #define GGML_F32x8_MUL _mm256_mul_ps
  1036. #define GGML_F32x8_REDUCE(res, x) \
  1037. do { \
  1038. int offset = GGML_F32_ARR >> 1; \
  1039. for (int i = 0; i < offset; ++i) { \
  1040. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1041. } \
  1042. offset >>= 1; \
  1043. for (int i = 0; i < offset; ++i) { \
  1044. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1045. } \
  1046. offset >>= 1; \
  1047. for (int i = 0; i < offset; ++i) { \
  1048. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1049. } \
  1050. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1051. _mm256_extractf128_ps(x[0], 1)); \
  1052. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1053. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1054. } while (0)
  1055. // TODO: is this optimal ?
  1056. #define GGML_F32_VEC GGML_F32x8
  1057. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1058. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1059. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1060. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1061. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1062. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1063. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1064. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1065. // F16 AVX
  1066. #define GGML_F16_STEP 32
  1067. #define GGML_F16_EPR 8
  1068. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1069. #define GGML_F32Cx8 __m256
  1070. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1071. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1072. #if defined(__F16C__)
  1073. // the _mm256_cvt intrinsics require F16C
  1074. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
  1075. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1076. #else
  1077. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1078. float tmp[8];
  1079. for (int i = 0; i < 8; i++) {
  1080. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1081. }
  1082. return _mm256_loadu_ps(tmp);
  1083. }
  1084. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1085. float arr[8];
  1086. _mm256_storeu_ps(arr, y);
  1087. for (int i = 0; i < 8; i++)
  1088. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1089. }
  1090. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1091. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1092. #endif
  1093. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1094. #define GGML_F32Cx8_ADD _mm256_add_ps
  1095. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1096. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1097. #define GGML_F16_VEC GGML_F32Cx8
  1098. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1099. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1100. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1101. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1102. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1103. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1104. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1105. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1106. #elif defined(__POWER9_VECTOR__)
  1107. #define GGML_SIMD
  1108. // F32 POWER9
  1109. #define GGML_F32_STEP 32
  1110. #define GGML_F32_EPR 4
  1111. #define GGML_F32x4 vector float
  1112. #define GGML_F32x4_ZERO 0.0f
  1113. #define GGML_F32x4_SET1 vec_splats
  1114. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1115. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1116. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1117. #define GGML_F32x4_ADD vec_add
  1118. #define GGML_F32x4_MUL vec_mul
  1119. #define GGML_F32x4_REDUCE(res, x) \
  1120. { \
  1121. int offset = GGML_F32_ARR >> 1; \
  1122. for (int i = 0; i < offset; ++i) { \
  1123. x[i] = vec_add(x[i], x[offset+i]); \
  1124. } \
  1125. offset >>= 1; \
  1126. for (int i = 0; i < offset; ++i) { \
  1127. x[i] = vec_add(x[i], x[offset+i]); \
  1128. } \
  1129. offset >>= 1; \
  1130. for (int i = 0; i < offset; ++i) { \
  1131. x[i] = vec_add(x[i], x[offset+i]); \
  1132. } \
  1133. res = vec_extract(x[0], 0) + \
  1134. vec_extract(x[0], 1) + \
  1135. vec_extract(x[0], 2) + \
  1136. vec_extract(x[0], 3); \
  1137. }
  1138. #define GGML_F32_VEC GGML_F32x4
  1139. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1140. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1141. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1142. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1143. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1144. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1145. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1146. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1147. // F16 POWER9
  1148. #define GGML_F16_STEP GGML_F32_STEP
  1149. #define GGML_F16_EPR GGML_F32_EPR
  1150. #define GGML_F16_VEC GGML_F32x4
  1151. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1152. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1153. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1154. #define GGML_F16_VEC_ADD GGML_F32x4_ADD
  1155. #define GGML_F16_VEC_MUL GGML_F32x4_MUL
  1156. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1157. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1158. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1159. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1160. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1161. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1162. #define GGML_F16_VEC_STORE(p, r, i) \
  1163. if (i & 0x1) \
  1164. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1165. r[i - GGML_ENDIAN_BYTE(0)]), \
  1166. 0, p - GGML_F16_EPR)
  1167. #elif defined(__wasm_simd128__)
  1168. #define GGML_SIMD
  1169. // F32 WASM
  1170. #define GGML_F32_STEP 16
  1171. #define GGML_F32_EPR 4
  1172. #define GGML_F32x4 v128_t
  1173. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1174. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1175. #define GGML_F32x4_LOAD wasm_v128_load
  1176. #define GGML_F32x4_STORE wasm_v128_store
  1177. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1178. #define GGML_F32x4_ADD wasm_f32x4_add
  1179. #define GGML_F32x4_MUL wasm_f32x4_mul
  1180. #define GGML_F32x4_REDUCE(res, x) \
  1181. { \
  1182. int offset = GGML_F32_ARR >> 1; \
  1183. for (int i = 0; i < offset; ++i) { \
  1184. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1185. } \
  1186. offset >>= 1; \
  1187. for (int i = 0; i < offset; ++i) { \
  1188. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1189. } \
  1190. offset >>= 1; \
  1191. for (int i = 0; i < offset; ++i) { \
  1192. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1193. } \
  1194. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1195. wasm_f32x4_extract_lane(x[0], 1) + \
  1196. wasm_f32x4_extract_lane(x[0], 2) + \
  1197. wasm_f32x4_extract_lane(x[0], 3); \
  1198. }
  1199. #define GGML_F32_VEC GGML_F32x4
  1200. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1201. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1202. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1203. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1204. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1205. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1206. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1207. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1208. // F16 WASM
  1209. #define GGML_F16_STEP 16
  1210. #define GGML_F16_EPR 4
  1211. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1212. float tmp[4];
  1213. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1214. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1215. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1216. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1217. return wasm_v128_load(tmp);
  1218. }
  1219. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1220. float tmp[4];
  1221. wasm_v128_store(tmp, x);
  1222. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1223. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1224. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1225. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1226. }
  1227. #define GGML_F16x4 v128_t
  1228. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1229. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1230. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1231. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1232. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1233. #define GGML_F16x4_ADD wasm_f32x4_add
  1234. #define GGML_F16x4_MUL wasm_f32x4_mul
  1235. #define GGML_F16x4_REDUCE(res, x) \
  1236. { \
  1237. int offset = GGML_F16_ARR >> 1; \
  1238. for (int i = 0; i < offset; ++i) { \
  1239. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1240. } \
  1241. offset >>= 1; \
  1242. for (int i = 0; i < offset; ++i) { \
  1243. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1244. } \
  1245. offset >>= 1; \
  1246. for (int i = 0; i < offset; ++i) { \
  1247. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1248. } \
  1249. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1250. wasm_f32x4_extract_lane(x[0], 1) + \
  1251. wasm_f32x4_extract_lane(x[0], 2) + \
  1252. wasm_f32x4_extract_lane(x[0], 3); \
  1253. }
  1254. #define GGML_F16_VEC GGML_F16x4
  1255. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1256. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1257. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1258. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1259. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1260. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1261. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1262. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1263. #elif defined(__SSE3__)
  1264. #define GGML_SIMD
  1265. // F32 SSE
  1266. #define GGML_F32_STEP 32
  1267. #define GGML_F32_EPR 4
  1268. #define GGML_F32x4 __m128
  1269. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1270. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1271. #define GGML_F32x4_LOAD _mm_loadu_ps
  1272. #define GGML_F32x4_STORE _mm_storeu_ps
  1273. #if defined(__FMA__)
  1274. // TODO: Does this work?
  1275. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1276. #else
  1277. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1278. #endif
  1279. #define GGML_F32x4_ADD _mm_add_ps
  1280. #define GGML_F32x4_MUL _mm_mul_ps
  1281. #define GGML_F32x4_REDUCE(res, x) \
  1282. { \
  1283. int offset = GGML_F32_ARR >> 1; \
  1284. for (int i = 0; i < offset; ++i) { \
  1285. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1286. } \
  1287. offset >>= 1; \
  1288. for (int i = 0; i < offset; ++i) { \
  1289. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1290. } \
  1291. offset >>= 1; \
  1292. for (int i = 0; i < offset; ++i) { \
  1293. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1294. } \
  1295. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1296. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1297. }
  1298. // TODO: is this optimal ?
  1299. #define GGML_F32_VEC GGML_F32x4
  1300. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1301. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1302. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1303. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1304. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1305. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1306. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1307. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1308. // F16 SSE
  1309. #define GGML_F16_STEP 32
  1310. #define GGML_F16_EPR 4
  1311. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1312. float tmp[4];
  1313. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1314. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1315. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1316. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1317. return _mm_loadu_ps(tmp);
  1318. }
  1319. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1320. float arr[4];
  1321. _mm_storeu_ps(arr, y);
  1322. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1323. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1324. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1325. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1326. }
  1327. #define GGML_F32Cx4 __m128
  1328. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1329. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1330. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1331. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1332. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1333. #define GGML_F32Cx4_ADD _mm_add_ps
  1334. #define GGML_F32Cx4_MUL _mm_mul_ps
  1335. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1336. #define GGML_F16_VEC GGML_F32Cx4
  1337. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1338. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1339. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1340. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1341. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1342. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1343. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1344. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1345. #elif defined(__loongarch_asx)
  1346. #define GGML_SIMD
  1347. // F32 LASX
  1348. #define GGML_F32_STEP 32
  1349. #define GGML_F32_EPR 8
  1350. #define GGML_F32x8 __m256
  1351. #define GGML_F32x8_ZERO (__m256)__lasx_xvldi(0)
  1352. #define GGML_F32x8_SET1(x) (__m256)__lasx_xvreplfr2vr_s((x))
  1353. #define GGML_F32x8_LOAD(x) (__m256)__lasx_xvld((x), 0)
  1354. #define GGML_F32x8_STORE(x,y) __lasx_xvst((y), (x), 0)
  1355. #define GGML_F32x8_FMA(a, b, c) __lasx_xvfmadd_s(b, c, a)
  1356. #define GGML_F32x8_ADD __lasx_xvfadd_s
  1357. #define GGML_F32x8_MUL __lasx_xvfmul_s
  1358. #define GGML_F32x8_REDUCE(res, x) \
  1359. do { \
  1360. int offset = GGML_F32_ARR >> 1; \
  1361. for (int i = 0; i < offset; ++i) { \
  1362. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1363. } \
  1364. offset >>= 1; \
  1365. for (int i = 0; i < offset; ++i) { \
  1366. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1367. } \
  1368. offset >>= 1; \
  1369. for (int i = 0; i < offset; ++i) { \
  1370. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1371. } \
  1372. float *tmp_p = (float *)&x[0]; \
  1373. res = tmp_p[0] + tmp_p[1] + tmp_p[2] + tmp_p[3] + tmp_p[4] + tmp_p[5] + tmp_p[6] + tmp_p[7]; \
  1374. } while (0)
  1375. // TODO: is this optimal ?
  1376. #define GGML_F32_VEC GGML_F32x8
  1377. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1378. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1379. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1380. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1381. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1382. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1383. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1384. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1385. // F16 LASX
  1386. #define GGML_F16_STEP 32
  1387. #define GGML_F16_EPR 8
  1388. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1389. #define GGML_F32Cx8 __m256
  1390. #define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0)
  1391. #define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x))
  1392. static inline __m256 __lasx_f32cx8_load(ggml_fp16_t *x) {
  1393. float tmp[8];
  1394. for (int i = 0; i < 8; i++) {
  1395. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1396. }
  1397. return (__m256)__lasx_xvld(tmp, 0);
  1398. }
  1399. static inline void __lasx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1400. float arr[8];
  1401. __lasx_xvst(y, arr, 0);
  1402. for (int i = 0; i < 8; i++)
  1403. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1404. }
  1405. #define GGML_F32Cx8_LOAD(x) __lasx_f32cx8_load(x)
  1406. #define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y)
  1407. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1408. #define GGML_F32Cx8_ADD __lasx_xvfadd_s
  1409. #define GGML_F32Cx8_MUL __lasx_xvfmul_s
  1410. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1411. #define GGML_F16_VEC GGML_F32Cx8
  1412. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1413. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1414. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1415. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1416. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1417. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1418. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1419. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1420. #elif defined(__loongarch_sx)
  1421. #define GGML_SIMD
  1422. // F32 LSX
  1423. #define GGML_F32_STEP 32
  1424. #define GGML_F32_EPR 4
  1425. #define GGML_F32x4 __m128
  1426. #define GGML_F32x4_ZERO __lsx_vldi(0)
  1427. #define GGML_F32x4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1428. #define GGML_F32x4_LOAD(x) __lsx_vld((x), 0)
  1429. #define GGML_F32x4_STORE((x),(y)) __lsx_vst((y), (x), 0)
  1430. #define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a)
  1431. #define GGML_F32x4_ADD __lsx_vfadd_s
  1432. #define GGML_F32x4_MUL __lsx_vfmul_s
  1433. #define GGML_F32x4_REDUCE(res, x) \
  1434. { \
  1435. int offset = GGML_F32_ARR >> 1; \
  1436. for (int i = 0; i < offset; ++i) { \
  1437. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1438. } \
  1439. offset >>= 1; \
  1440. for (int i = 0; i < offset; ++i) { \
  1441. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1442. } \
  1443. offset >>= 1; \
  1444. for (int i = 0; i < offset; ++i) { \
  1445. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1446. } \
  1447. __m128i tmp = __lsx_vsrli_d((__m128i)x[0], 32); \
  1448. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, x[0]); \
  1449. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1450. const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88); \
  1451. tmp = __lsx_vsrli_d((__m128i)t0, 32); \
  1452. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, t0); \
  1453. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1454. res = (ggml_float) __lsx_vpickve2gr_w(__lsx_vshuf4i_w(tmp, 0x88), 0); \
  1455. }
  1456. #define GGML_F32_VEC GGML_F32x4
  1457. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1458. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1459. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1460. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1461. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1462. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1463. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1464. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1465. // F16 LSX
  1466. #define GGML_F16_STEP 32
  1467. #define GGML_F16_EPR 4
  1468. static inline __m128 __lsx_f16x4_load(ggml_fp16_t *x) {
  1469. float tmp[4];
  1470. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1471. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1472. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1473. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1474. return __lsx_vld(tmp, 0);
  1475. }
  1476. static inline void __lsx_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1477. float arr[4];
  1478. __lsx_vst(y, arr, 0);
  1479. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1480. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1481. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1482. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1483. }
  1484. #define GGML_F32Cx4 __m128
  1485. #define GGML_F32Cx4_ZERO __lsx_vldi(0)
  1486. #define GGML_F32Cx4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1487. #define GGML_F32Cx4_LOAD(x) __lsx_f16x4_load(x)
  1488. #define GGML_F32Cx4_STORE(x, y) __lsx_f16x4_store(x, y)
  1489. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1490. #define GGML_F32Cx4_ADD __lsx_vfadd_s
  1491. #define GGML_F32Cx4_MUL __lsx_vfmul_s
  1492. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1493. #define GGML_F16_VEC GGML_F32Cx4
  1494. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1495. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1496. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1497. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1498. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1499. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1500. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1501. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1502. #endif
  1503. // GGML_F32_ARR / GGML_F16_ARR
  1504. // number of registers to use per step
  1505. #ifdef GGML_SIMD
  1506. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1507. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1508. #endif
  1509. //
  1510. // ggml context
  1511. //
  1512. struct ggml_context {
  1513. size_t mem_size;
  1514. void* mem_buffer;
  1515. bool mem_buffer_owned;
  1516. bool no_alloc;
  1517. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1518. int n_objects;
  1519. struct ggml_object* objects_begin;
  1520. struct ggml_object* objects_end;
  1521. struct ggml_scratch scratch;
  1522. struct ggml_scratch scratch_save;
  1523. };
  1524. struct ggml_context_container {
  1525. bool used;
  1526. struct ggml_context context;
  1527. };
  1528. struct ggml_compute_state_shared {
  1529. const struct ggml_cgraph* cgraph;
  1530. const struct ggml_cplan* cplan;
  1531. int64_t perf_node_start_cycles;
  1532. int64_t perf_node_start_time_us;
  1533. const int n_threads;
  1534. // synchronization primitives
  1535. atomic_int n_active; // num active threads
  1536. atomic_int node_n; // active graph node
  1537. atomic_int node_task; // active graph node task phase
  1538. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  1539. void* abort_callback_data;
  1540. atomic_int current_chunk; // currently processing chunk during Mat_Mul, shared between all the threads.
  1541. };
  1542. struct ggml_compute_state {
  1543. ggml_thread_t thrd;
  1544. int ith;
  1545. struct ggml_compute_state_shared* shared;
  1546. enum ggml_status ec;
  1547. };
  1548. //
  1549. // fundamental operations
  1550. //
  1551. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1552. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1553. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1554. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1555. inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1556. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1557. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1558. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1559. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1560. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1561. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1562. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1563. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1564. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1565. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1566. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1567. assert(nrc == 1);
  1568. UNUSED(nrc);
  1569. UNUSED(bx);
  1570. UNUSED(by);
  1571. UNUSED(bs);
  1572. #if defined(GGML_SIMD)
  1573. float sumf = 0.0f;
  1574. const int np = (n & ~(GGML_F32_STEP - 1));
  1575. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1576. GGML_F32_VEC ax[GGML_F32_ARR];
  1577. GGML_F32_VEC ay[GGML_F32_ARR];
  1578. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1579. for (int j = 0; j < GGML_F32_ARR; j++) {
  1580. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1581. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1582. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1583. }
  1584. }
  1585. // reduce sum0..sum3 to sum0
  1586. GGML_F32_VEC_REDUCE(sumf, sum);
  1587. // leftovers
  1588. for (int i = np; i < n; ++i) {
  1589. sumf += x[i]*y[i];
  1590. }
  1591. #else
  1592. // scalar
  1593. ggml_float sumf = 0.0;
  1594. for (int i = 0; i < n; ++i) {
  1595. sumf += (ggml_float)(x[i]*y[i]);
  1596. }
  1597. #endif
  1598. *s = sumf;
  1599. }
  1600. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc) {
  1601. assert(nrc == 1);
  1602. UNUSED(nrc);
  1603. UNUSED(bx);
  1604. UNUSED(by);
  1605. UNUSED(bs);
  1606. int i = 0;
  1607. ggml_float sumf = 0;
  1608. #if defined(__AVX512BF16__)
  1609. __m512 c1 = _mm512_setzero_ps();
  1610. __m512 c2 = _mm512_setzero_ps();
  1611. for (; i + 64 <= n; i += 64) {
  1612. c1 = _mm512_dpbf16_ps(c1, m512bh(_mm512_loadu_si512((x + i))),
  1613. m512bh(_mm512_loadu_si512((y + i))));
  1614. c2 = _mm512_dpbf16_ps(c2, m512bh(_mm512_loadu_si512((x + i + 32))),
  1615. m512bh(_mm512_loadu_si512((y + i + 32))));
  1616. }
  1617. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1618. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1619. #elif defined(__AVX512F__)
  1620. #define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
  1621. __m512 c1 = _mm512_setzero_ps();
  1622. __m512 c2 = _mm512_setzero_ps();
  1623. for (; i + 32 <= n; i += 32) {
  1624. c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1625. c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
  1626. }
  1627. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1628. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1629. #undef LOAD
  1630. #elif defined(__AVX2__)
  1631. #define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
  1632. __m256 c1 = _mm256_setzero_ps();
  1633. __m256 c2 = _mm256_setzero_ps();
  1634. __m256 c3 = _mm256_setzero_ps();
  1635. __m256 c4 = _mm256_setzero_ps();
  1636. for (; i + 32 <= n; i += 32) {
  1637. c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1638. c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
  1639. c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
  1640. c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
  1641. }
  1642. __m128 g;
  1643. c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
  1644. _mm256_add_ps(c2, c4));
  1645. g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
  1646. _mm256_castps256_ps128(c1));
  1647. g = _mm_add_ps(g, _mm_movehl_ps(g, g));
  1648. g = _mm_add_ss(g, _mm_movehdup_ps(g));
  1649. sumf += (ggml_float)_mm_cvtss_f32(g);
  1650. #undef LOAD
  1651. #endif
  1652. for (; i < n; ++i) {
  1653. sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
  1654. GGML_BF16_TO_FP32(y[i]));
  1655. }
  1656. *s = sumf;
  1657. }
  1658. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1659. assert(nrc == 1);
  1660. UNUSED(nrc);
  1661. UNUSED(bx);
  1662. UNUSED(by);
  1663. UNUSED(bs);
  1664. ggml_float sumf = 0.0;
  1665. #if defined(GGML_SIMD)
  1666. const int np = (n & ~(GGML_F16_STEP - 1));
  1667. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1668. GGML_F16_VEC ax[GGML_F16_ARR];
  1669. GGML_F16_VEC ay[GGML_F16_ARR];
  1670. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1671. for (int j = 0; j < GGML_F16_ARR; j++) {
  1672. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1673. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1674. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1675. }
  1676. }
  1677. // reduce sum0..sum3 to sum0
  1678. GGML_F16_VEC_REDUCE(sumf, sum);
  1679. // leftovers
  1680. for (int i = np; i < n; ++i) {
  1681. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1682. }
  1683. #else
  1684. for (int i = 0; i < n; ++i) {
  1685. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1686. }
  1687. #endif
  1688. *s = sumf;
  1689. }
  1690. // compute GGML_VEC_DOT_UNROLL dot products at once
  1691. // xs - x row stride in bytes
  1692. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1693. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1694. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1695. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1696. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1697. }
  1698. #if defined(GGML_SIMD)
  1699. const int np = (n & ~(GGML_F16_STEP - 1));
  1700. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1701. GGML_F16_VEC ax[GGML_F16_ARR];
  1702. GGML_F16_VEC ay[GGML_F16_ARR];
  1703. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1704. for (int j = 0; j < GGML_F16_ARR; j++) {
  1705. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1706. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1707. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1708. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1709. }
  1710. }
  1711. }
  1712. // reduce sum0..sum3 to sum0
  1713. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1714. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1715. }
  1716. // leftovers
  1717. for (int i = np; i < n; ++i) {
  1718. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1719. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1720. }
  1721. }
  1722. #else
  1723. for (int i = 0; i < n; ++i) {
  1724. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1725. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1726. }
  1727. }
  1728. #endif
  1729. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1730. s[i] = sumf[i];
  1731. }
  1732. }
  1733. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1734. #if defined(GGML_SIMD)
  1735. const int np = (n & ~(GGML_F32_STEP - 1));
  1736. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1737. GGML_F32_VEC ax[GGML_F32_ARR];
  1738. GGML_F32_VEC ay[GGML_F32_ARR];
  1739. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1740. for (int j = 0; j < GGML_F32_ARR; j++) {
  1741. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1742. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1743. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1744. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1745. }
  1746. }
  1747. // leftovers
  1748. for (int i = np; i < n; ++i) {
  1749. y[i] += x[i]*v;
  1750. }
  1751. #else
  1752. // scalar
  1753. for (int i = 0; i < n; ++i) {
  1754. y[i] += x[i]*v;
  1755. }
  1756. #endif
  1757. }
  1758. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
  1759. #if defined(GGML_SIMD)
  1760. const int np = (n & ~(GGML_F16_STEP - 1));
  1761. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1762. GGML_F16_VEC ax[GGML_F16_ARR];
  1763. GGML_F16_VEC ay[GGML_F16_ARR];
  1764. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1765. for (int j = 0; j < GGML_F16_ARR; j++) {
  1766. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1767. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1768. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  1769. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1770. }
  1771. }
  1772. // leftovers
  1773. for (int i = np; i < n; ++i) {
  1774. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1775. }
  1776. #else
  1777. // scalar
  1778. for (int i = 0; i < n; ++i) {
  1779. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1780. }
  1781. #endif
  1782. }
  1783. // xs and vs are byte strides of x and v
  1784. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1785. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1786. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1787. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1788. x[i] = (const float *) ((const char *) xv + i*xs);
  1789. v[i] = (const float *) ((const char *) vv + i*vs);
  1790. }
  1791. #if defined(GGML_SIMD)
  1792. const int np = (n & ~(GGML_F32_STEP - 1));
  1793. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1794. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1795. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1796. }
  1797. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1798. GGML_F32_VEC ay[GGML_F32_ARR];
  1799. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1800. for (int j = 0; j < GGML_F32_ARR; j++) {
  1801. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1802. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1803. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1804. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1805. }
  1806. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1807. }
  1808. }
  1809. // leftovers
  1810. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1811. for (int i = np; i < n; ++i) {
  1812. y[i] += x[k][i]*v[k][0];
  1813. }
  1814. }
  1815. #else
  1816. // scalar
  1817. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1818. for (int i = 0; i < n; ++i) {
  1819. y[i] += x[k][i]*v[k][0];
  1820. }
  1821. }
  1822. #endif
  1823. }
  1824. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1825. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1826. #if defined(GGML_USE_ACCELERATE)
  1827. vDSP_vsmul(y, 1, &v, y, 1, n);
  1828. #elif defined(GGML_SIMD)
  1829. const int np = (n & ~(GGML_F32_STEP - 1));
  1830. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1831. GGML_F32_VEC ay[GGML_F32_ARR];
  1832. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1833. for (int j = 0; j < GGML_F32_ARR; j++) {
  1834. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1835. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1836. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1837. }
  1838. }
  1839. // leftovers
  1840. for (int i = np; i < n; ++i) {
  1841. y[i] *= v;
  1842. }
  1843. #else
  1844. // scalar
  1845. for (int i = 0; i < n; ++i) {
  1846. y[i] *= v;
  1847. }
  1848. #endif
  1849. }
  1850. inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
  1851. #if defined(GGML_SIMD)
  1852. const int np = (n & ~(GGML_F16_STEP - 1));
  1853. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1854. GGML_F16_VEC ay[GGML_F16_ARR];
  1855. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1856. for (int j = 0; j < GGML_F16_ARR; j++) {
  1857. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1858. ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
  1859. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1860. }
  1861. }
  1862. // leftovers
  1863. for (int i = np; i < n; ++i) {
  1864. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1865. }
  1866. #else
  1867. // scalar
  1868. for (int i = 0; i < n; ++i) {
  1869. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1870. }
  1871. #endif
  1872. }
  1873. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1874. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1875. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1876. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1877. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1878. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1879. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1880. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1881. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1882. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1883. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1884. inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
  1885. // TODO: optimize performance
  1886. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1887. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1888. static const float GELU_COEF_A = 0.044715f;
  1889. static const float GELU_QUICK_COEF = -1.702f;
  1890. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1891. inline static float ggml_gelu_f32(float x) {
  1892. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1893. }
  1894. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1895. const uint16_t * i16 = (const uint16_t *) x;
  1896. for (int i = 0; i < n; ++i) {
  1897. y[i] = ggml_table_gelu_f16[i16[i]];
  1898. }
  1899. }
  1900. #ifdef GGML_GELU_FP16
  1901. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1902. uint16_t t;
  1903. for (int i = 0; i < n; ++i) {
  1904. if (x[i] <= -10.0f) {
  1905. y[i] = 0.0f;
  1906. } else if (x[i] >= 10.0f) {
  1907. y[i] = x[i];
  1908. } else {
  1909. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1910. memcpy(&t, &fp16, sizeof(uint16_t));
  1911. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1912. }
  1913. }
  1914. }
  1915. #else
  1916. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1917. for (int i = 0; i < n; ++i) {
  1918. y[i] = ggml_gelu_f32(x[i]);
  1919. }
  1920. }
  1921. #endif
  1922. inline static float ggml_gelu_quick_f32(float x) {
  1923. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1924. }
  1925. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1926. // const uint16_t * i16 = (const uint16_t *) x;
  1927. // for (int i = 0; i < n; ++i) {
  1928. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1929. // }
  1930. //}
  1931. #ifdef GGML_GELU_QUICK_FP16
  1932. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1933. uint16_t t;
  1934. for (int i = 0; i < n; ++i) {
  1935. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1936. memcpy(&t, &fp16, sizeof(uint16_t));
  1937. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1938. }
  1939. }
  1940. #else
  1941. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1942. for (int i = 0; i < n; ++i) {
  1943. y[i] = ggml_gelu_quick_f32(x[i]);
  1944. }
  1945. }
  1946. #endif
  1947. // Sigmoid Linear Unit (SiLU) function
  1948. inline static float ggml_silu_f32(float x) {
  1949. return x/(1.0f + expf(-x));
  1950. }
  1951. #if defined(__ARM_NEON) && defined(__aarch64__)
  1952. // adapted from arm limited optimized routine
  1953. // the maximum error is 1.45358 plus 0.5 ulps
  1954. // numbers above 88.38 will flush to infinity
  1955. // numbers beneath -103.97 will flush to zero
  1956. inline static float32x4_t ggml_v_expf(float32x4_t x) {
  1957. const float32x4_t r = vdupq_n_f32(0x1.8p23f);
  1958. const float32x4_t z = vfmaq_f32(r, x, vdupq_n_f32(0x1.715476p+0f));
  1959. const float32x4_t n = vsubq_f32(z, r);
  1960. const float32x4_t b = vfmsq_f32(vfmsq_f32(x, n, vdupq_n_f32(0x1.62e4p-1f)), n,
  1961. vdupq_n_f32(0x1.7f7d1cp-20f));
  1962. const uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_f32(z), 23);
  1963. const float32x4_t k = vreinterpretq_f32_u32(vaddq_u32(e, vreinterpretq_u32_f32(vdupq_n_f32(1))));
  1964. const uint32x4_t c = vcagtq_f32(n, vdupq_n_f32(126));
  1965. const float32x4_t u = vmulq_f32(b, b);
  1966. const float32x4_t j = vfmaq_f32(
  1967. vmulq_f32(vdupq_n_f32(0x1.ffffecp-1f), b),
  1968. vfmaq_f32(vfmaq_f32(vdupq_n_f32(0x1.fffdb6p-2f), vdupq_n_f32(0x1.555e66p-3f), b),
  1969. vfmaq_f32(vdupq_n_f32(0x1.573e2ep-5f), vdupq_n_f32(0x1.0e4020p-7f), b), u), u);
  1970. if (!vpaddd_u64(vreinterpretq_u64_u32(c)))
  1971. return vfmaq_f32(k, j, k);
  1972. const uint32x4_t d = vandq_u32(vclezq_f32(n), vdupq_n_u32(0x82000000));
  1973. const float32x4_t s1 = vreinterpretq_f32_u32(vaddq_u32(d, vdupq_n_u32(0x7f000000)));
  1974. const float32x4_t s2 = vreinterpretq_f32_u32(vsubq_u32(e, d));
  1975. return vbslq_f32(vcagtq_f32(n, vdupq_n_f32(192)), vmulq_f32(s1, s1),
  1976. vbslq_f32(c, vmulq_f32(vfmaq_f32(s2, s2, j), s1), vfmaq_f32(k, k, j)));
  1977. }
  1978. // computes silu x/(1+exp(-x)) in single precision vector
  1979. inline static float32x4_t ggml_v_silu(float32x4_t x) {
  1980. const float32x4_t one = vdupq_n_f32(1.0f);
  1981. const float32x4_t zero = vdupq_n_f32(0.0f);
  1982. const float32x4_t neg_x = vsubq_f32(zero, x);
  1983. const float32x4_t exp_neg_x = ggml_v_expf(neg_x);
  1984. const float32x4_t one_plus_exp_neg_x = vaddq_f32(one, exp_neg_x);
  1985. return vdivq_f32(x, one_plus_exp_neg_x);
  1986. }
  1987. #elif defined(__AVX512F__) && defined(__AVX512DQ__)
  1988. // adapted from arm limited optimized routine
  1989. // the maximum error is 1.45358 plus 0.5 ulps
  1990. // numbers above 88.38 will flush to infinity
  1991. // numbers beneath -103.97 will flush to zero
  1992. inline static __m512 ggml_v_expf(__m512 x) {
  1993. const __m512 r = _mm512_set1_ps(0x1.8p23f);
  1994. const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r);
  1995. const __m512 n = _mm512_sub_ps(z, r);
  1996. const __m512 b = _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
  1997. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
  1998. const __m512i e = _mm512_slli_epi32(_mm512_castps_si512(z), 23);
  1999. const __m512 k = _mm512_castsi512_ps(_mm512_add_epi32(e, _mm512_castps_si512(_mm512_set1_ps(1))));
  2000. const __mmask16 c = _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(126), _CMP_GT_OQ);
  2001. const __m512 u = _mm512_mul_ps(b, b);
  2002. const __m512 j = _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
  2003. _mm512_set1_ps(0x1.573e2ep-5f)), u,
  2004. _mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
  2005. _mm512_set1_ps(0x1.fffdb6p-2f))),
  2006. u, _mm512_mul_ps(_mm512_set1_ps(0x1.ffffecp-1f), b));
  2007. if (_mm512_kortestz(c, c))
  2008. return _mm512_fmadd_ps(j, k, k);
  2009. const __m512i g = _mm512_and_si512(
  2010. _mm512_movm_epi32(_mm512_cmp_ps_mask(n, _mm512_setzero_ps(), _CMP_LE_OQ)),
  2011. _mm512_set1_epi32(0x82000000u));
  2012. const __m512 s1 =
  2013. _mm512_castsi512_ps(_mm512_add_epi32(g, _mm512_set1_epi32(0x7f000000u)));
  2014. const __m512 s2 = _mm512_castsi512_ps(_mm512_sub_epi32(e, g));
  2015. const __mmask16 d =
  2016. _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ);
  2017. return _mm512_mask_blend_ps(
  2018. d, _mm512_mask_blend_ps(
  2019. c, _mm512_fmadd_ps(k, j, k),
  2020. _mm512_mul_ps(_mm512_fmadd_ps(s2, j, s2), s1)),
  2021. _mm512_mul_ps(s1, s1));
  2022. }
  2023. // computes silu x/(1+exp(-x)) in single precision vector
  2024. inline static __m512 ggml_v_silu(__m512 x) {
  2025. const __m512 one = _mm512_set1_ps(1);
  2026. const __m512 zero = _mm512_setzero_ps();
  2027. const __m512 neg_x = _mm512_sub_ps(zero, x);
  2028. const __m512 exp_neg_x = ggml_v_expf(neg_x);
  2029. const __m512 one_plus_exp_neg_x = _mm512_add_ps(one, exp_neg_x);
  2030. return _mm512_div_ps(x, one_plus_exp_neg_x);
  2031. }
  2032. #elif defined(__AVX2__) && defined(__FMA__)
  2033. // adapted from arm limited optimized routine
  2034. // the maximum error is 1.45358 plus 0.5 ulps
  2035. // numbers above 88.38 will flush to infinity
  2036. // numbers beneath -103.97 will flush to zero
  2037. inline static __m256 ggml_v_expf(__m256 x) {
  2038. const __m256 r = _mm256_set1_ps(0x1.8p23f);
  2039. const __m256 z = _mm256_fmadd_ps(x, _mm256_set1_ps(0x1.715476p+0f), r);
  2040. const __m256 n = _mm256_sub_ps(z, r);
  2041. const __m256 b = _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.7f7d1cp-20f),
  2042. _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.62e4p-1f), x));
  2043. const __m256i e = _mm256_slli_epi32(_mm256_castps_si256(z), 23);
  2044. const __m256 k = _mm256_castsi256_ps(
  2045. _mm256_add_epi32(e, _mm256_castps_si256(_mm256_set1_ps(1))));
  2046. const __m256i c = _mm256_castps_si256(
  2047. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2048. _mm256_set1_ps(126), _CMP_GT_OQ));
  2049. const __m256 u = _mm256_mul_ps(b, b);
  2050. const __m256 j = _mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_set1_ps(0x1.0e4020p-7f), b,
  2051. _mm256_set1_ps(0x1.573e2ep-5f)), u,
  2052. _mm256_fmadd_ps(_mm256_set1_ps(0x1.555e66p-3f), b,
  2053. _mm256_set1_ps(0x1.fffdb6p-2f))),
  2054. u, _mm256_mul_ps(_mm256_set1_ps(0x1.ffffecp-1f), b));
  2055. if (!_mm256_movemask_ps(_mm256_castsi256_ps(c)))
  2056. return _mm256_fmadd_ps(j, k, k);
  2057. const __m256i g = _mm256_and_si256(
  2058. _mm256_castps_si256(_mm256_cmp_ps(n, _mm256_setzero_ps(), _CMP_LE_OQ)),
  2059. _mm256_set1_epi32(0x82000000u));
  2060. const __m256 s1 =
  2061. _mm256_castsi256_ps(_mm256_add_epi32(g, _mm256_set1_epi32(0x7f000000u)));
  2062. const __m256 s2 = _mm256_castsi256_ps(_mm256_sub_epi32(e, g));
  2063. const __m256i d = _mm256_castps_si256(
  2064. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2065. _mm256_set1_ps(192), _CMP_GT_OQ));
  2066. return _mm256_or_ps(
  2067. _mm256_and_ps(_mm256_castsi256_ps(d), _mm256_mul_ps(s1, s1)),
  2068. _mm256_andnot_ps(
  2069. _mm256_castsi256_ps(d),
  2070. _mm256_or_ps(
  2071. _mm256_and_ps(_mm256_castsi256_ps(c),
  2072. _mm256_mul_ps(_mm256_fmadd_ps(s2, j, s2), s1)),
  2073. _mm256_andnot_ps(_mm256_castsi256_ps(c), _mm256_fmadd_ps(k, j, k)))));
  2074. }
  2075. // computes silu x/(1+exp(-x)) in single precision vector
  2076. inline static __m256 ggml_v_silu(__m256 x) {
  2077. const __m256 one = _mm256_set1_ps(1);
  2078. const __m256 zero = _mm256_setzero_ps();
  2079. const __m256 neg_x = _mm256_sub_ps(zero, x);
  2080. const __m256 exp_neg_x = ggml_v_expf(neg_x);
  2081. const __m256 one_plus_exp_neg_x = _mm256_add_ps(one, exp_neg_x);
  2082. return _mm256_div_ps(x, one_plus_exp_neg_x);
  2083. }
  2084. #elif defined(__SSE2__) // __AVX2__ / __ARM_NEON
  2085. #if defined(__FMA__)
  2086. #define MADD128(x, y, z) _mm_fmadd_ps(x, y, z)
  2087. #define NMADD128(x, y, z) _mm_fnmadd_ps(x, y, z)
  2088. #else
  2089. #define MADD128(x, y, z) _mm_add_ps(_mm_mul_ps(x, y), z)
  2090. #define NMADD128(x, y, z) _mm_sub_ps(z, _mm_mul_ps(x, y))
  2091. #endif
  2092. // adapted from arm limited optimized routine
  2093. // the maximum error is 1.45358 plus 0.5 ulps
  2094. // numbers above 88.38 will flush to infinity
  2095. // numbers beneath -103.97 will flush to zero
  2096. inline static __m128 ggml_v_expf(__m128 x) {
  2097. const __m128 r = _mm_set1_ps(0x1.8p23f);
  2098. const __m128 z = MADD128(x, _mm_set1_ps(0x1.715476p+0f), r);
  2099. const __m128 n = _mm_sub_ps(z, r);
  2100. const __m128 b =
  2101. NMADD128(n, _mm_set1_ps(0x1.7f7d1cp-20f), NMADD128(n, _mm_set1_ps(0x1.62e4p-1f), x));
  2102. const __m128i e = _mm_slli_epi32(_mm_castps_si128(z), 23);
  2103. const __m128 k = _mm_castsi128_ps(_mm_add_epi32(e, _mm_castps_si128(_mm_set1_ps(1))));
  2104. const __m128i c =
  2105. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(126)));
  2106. const __m128 u = _mm_mul_ps(b, b);
  2107. const __m128 j =
  2108. MADD128(MADD128(MADD128(_mm_set1_ps(0x1.0e4020p-7f), b, _mm_set1_ps(0x1.573e2ep-5f)), u,
  2109. MADD128(_mm_set1_ps(0x1.555e66p-3f), b, _mm_set1_ps(0x1.fffdb6p-2f))),
  2110. u, _mm_mul_ps(_mm_set1_ps(0x1.ffffecp-1f), b));
  2111. if (!_mm_movemask_epi8(c))
  2112. return MADD128(j, k, k);
  2113. const __m128i g = _mm_and_si128(_mm_castps_si128(_mm_cmple_ps(n, _mm_setzero_ps())),
  2114. _mm_set1_epi32(0x82000000u));
  2115. const __m128 s1 = _mm_castsi128_ps(_mm_add_epi32(g, _mm_set1_epi32(0x7f000000u)));
  2116. const __m128 s2 = _mm_castsi128_ps(_mm_sub_epi32(e, g));
  2117. const __m128i d =
  2118. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(192)));
  2119. return _mm_or_ps(
  2120. _mm_and_ps(_mm_castsi128_ps(d), _mm_mul_ps(s1, s1)),
  2121. _mm_andnot_ps(_mm_castsi128_ps(d),
  2122. _mm_or_ps(_mm_and_ps(_mm_castsi128_ps(c), _mm_mul_ps(MADD128(s2, j, s2), s1)),
  2123. _mm_andnot_ps(_mm_castsi128_ps(c), MADD128(k, j, k)))));
  2124. }
  2125. // computes silu x/(1+exp(-x)) in single precision vector
  2126. inline static __m128 ggml_v_silu(__m128 x) {
  2127. const __m128 one = _mm_set1_ps(1);
  2128. const __m128 zero = _mm_setzero_ps();
  2129. const __m128 neg_x = _mm_sub_ps(zero, x);
  2130. const __m128 exp_neg_x = ggml_v_expf(neg_x);
  2131. const __m128 one_plus_exp_neg_x = _mm_add_ps(one, exp_neg_x);
  2132. return _mm_div_ps(x, one_plus_exp_neg_x);
  2133. }
  2134. #endif // __ARM_NEON / __AVX2__ / __SSE2__
  2135. static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2136. int i = 0;
  2137. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2138. for (; i + 15 < n; i += 16) {
  2139. _mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i)));
  2140. }
  2141. #elif defined(__AVX2__) && defined(__FMA__)
  2142. for (; i + 7 < n; i += 8) {
  2143. _mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i)));
  2144. }
  2145. #elif defined(__SSE2__)
  2146. for (; i + 3 < n; i += 4) {
  2147. _mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
  2148. }
  2149. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2150. for (; i + 3 < n; i += 4) {
  2151. vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
  2152. }
  2153. #endif
  2154. for (; i < n; ++i) {
  2155. y[i] = ggml_silu_f32(x[i]);
  2156. }
  2157. }
  2158. static ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
  2159. int i = 0;
  2160. ggml_float sum = 0;
  2161. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2162. for (; i + 15 < n; i += 16) {
  2163. __m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i),
  2164. _mm512_set1_ps(max)));
  2165. _mm512_storeu_ps(y + i, val);
  2166. sum += (ggml_float)_mm512_reduce_add_ps(val);
  2167. }
  2168. #elif defined(__AVX2__) && defined(__FMA__)
  2169. for (; i + 7 < n; i += 8) {
  2170. __m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i),
  2171. _mm256_set1_ps(max)));
  2172. _mm256_storeu_ps(y + i, val);
  2173. __m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1),
  2174. _mm256_castps256_ps128(val));
  2175. val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2));
  2176. val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2));
  2177. sum += (ggml_float)_mm_cvtss_f32(val2);
  2178. }
  2179. #elif defined(__SSE2__)
  2180. for (; i + 3 < n; i += 4) {
  2181. __m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i),
  2182. _mm_set1_ps(max)));
  2183. _mm_storeu_ps(y + i, val);
  2184. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  2185. val = _mm_add_ps(val, _mm_movehl_ps(val, val));
  2186. val = _mm_add_ss(val, _mm_movehdup_ps(val));
  2187. #else
  2188. __m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));
  2189. val = _mm_add_ps(val, tmp);
  2190. tmp = _mm_movehl_ps(tmp, val);
  2191. val = _mm_add_ss(val, tmp);
  2192. #endif
  2193. sum += (ggml_float)_mm_cvtss_f32(val);
  2194. }
  2195. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2196. for (; i + 3 < n; i += 4) {
  2197. float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
  2198. vdupq_n_f32(max)));
  2199. vst1q_f32(y + i, val);
  2200. sum += (ggml_float)vaddvq_f32(val);
  2201. }
  2202. #endif
  2203. for (; i < n; ++i) {
  2204. float val = expf(x[i] - max);
  2205. sum += (ggml_float)val;
  2206. y[i] = val;
  2207. }
  2208. return sum;
  2209. }
  2210. inline static float ggml_silu_backward_f32(float x, float dy) {
  2211. const float s = 1.0f/(1.0f + expf(-x));
  2212. return dy*s*(1.0f + x*(1.0f - s));
  2213. }
  2214. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2215. for (int i = 0; i < n; ++i) {
  2216. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2217. }
  2218. }
  2219. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2220. #ifndef GGML_USE_ACCELERATE
  2221. ggml_float sum = 0.0;
  2222. for (int i = 0; i < n; ++i) {
  2223. sum += (ggml_float)x[i];
  2224. }
  2225. *s = sum;
  2226. #else
  2227. vDSP_sve(x, 1, s, n);
  2228. #endif
  2229. }
  2230. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  2231. ggml_float sum = 0.0;
  2232. for (int i = 0; i < n; ++i) {
  2233. sum += (ggml_float)x[i];
  2234. }
  2235. *s = sum;
  2236. }
  2237. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  2238. float sum = 0.0f;
  2239. for (int i = 0; i < n; ++i) {
  2240. sum += GGML_FP16_TO_FP32(x[i]);
  2241. }
  2242. *s = sum;
  2243. }
  2244. inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
  2245. float sum = 0.0f;
  2246. for (int i = 0; i < n; ++i) {
  2247. sum += GGML_BF16_TO_FP32(x[i]);
  2248. }
  2249. *s = sum;
  2250. }
  2251. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2252. #ifndef GGML_USE_ACCELERATE
  2253. float max = -INFINITY;
  2254. for (int i = 0; i < n; ++i) {
  2255. max = MAX(max, x[i]);
  2256. }
  2257. *s = max;
  2258. #else
  2259. vDSP_maxv(x, 1, s, n);
  2260. #endif
  2261. }
  2262. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2263. ggml_vec_norm_f32(n, s, x);
  2264. *s = 1.f/(*s);
  2265. }
  2266. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2267. float max = -INFINITY;
  2268. int idx = 0;
  2269. for (int i = 0; i < n; ++i) {
  2270. max = MAX(max, x[i]);
  2271. if (max == x[i]) { idx = i; }
  2272. }
  2273. *s = idx;
  2274. }
  2275. //
  2276. // data types
  2277. //
  2278. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2279. "NONE",
  2280. "DUP",
  2281. "ADD",
  2282. "ADD1",
  2283. "ACC",
  2284. "SUB",
  2285. "MUL",
  2286. "DIV",
  2287. "SQR",
  2288. "SQRT",
  2289. "LOG",
  2290. "SUM",
  2291. "SUM_ROWS",
  2292. "MEAN",
  2293. "ARGMAX",
  2294. "REPEAT",
  2295. "REPEAT_BACK",
  2296. "CONCAT",
  2297. "SILU_BACK",
  2298. "NORM",
  2299. "RMS_NORM",
  2300. "RMS_NORM_BACK",
  2301. "GROUP_NORM",
  2302. "MUL_MAT",
  2303. "MUL_MAT_ID",
  2304. "OUT_PROD",
  2305. "SCALE",
  2306. "SET",
  2307. "CPY",
  2308. "CONT",
  2309. "RESHAPE",
  2310. "VIEW",
  2311. "PERMUTE",
  2312. "TRANSPOSE",
  2313. "GET_ROWS",
  2314. "GET_ROWS_BACK",
  2315. "DIAG",
  2316. "DIAG_MASK_INF",
  2317. "DIAG_MASK_ZERO",
  2318. "SOFT_MAX",
  2319. "SOFT_MAX_BACK",
  2320. "ROPE",
  2321. "ROPE_BACK",
  2322. "CLAMP",
  2323. "CONV_TRANSPOSE_1D",
  2324. "IM2COL",
  2325. "CONV_TRANSPOSE_2D",
  2326. "POOL_1D",
  2327. "POOL_2D",
  2328. "UPSCALE",
  2329. "PAD",
  2330. "ARANGE",
  2331. "TIMESTEP_EMBEDDING",
  2332. "ARGSORT",
  2333. "LEAKY_RELU",
  2334. "FLASH_ATTN",
  2335. "FLASH_ATTN_EXT",
  2336. "FLASH_FF",
  2337. "FLASH_ATTN_BACK",
  2338. "SSM_CONV",
  2339. "SSM_SCAN",
  2340. "WIN_PART",
  2341. "WIN_UNPART",
  2342. "GET_REL_POS",
  2343. "ADD_REL_POS",
  2344. "UNARY",
  2345. "MAP_UNARY",
  2346. "MAP_BINARY",
  2347. "MAP_CUSTOM1_F32",
  2348. "MAP_CUSTOM2_F32",
  2349. "MAP_CUSTOM3_F32",
  2350. "MAP_CUSTOM1",
  2351. "MAP_CUSTOM2",
  2352. "MAP_CUSTOM3",
  2353. "CROSS_ENTROPY_LOSS",
  2354. "CROSS_ENTROPY_LOSS_BACK",
  2355. };
  2356. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  2357. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2358. "none",
  2359. "x",
  2360. "x+y",
  2361. "x+y",
  2362. "view(x,nb,offset)+=y->x",
  2363. "x-y",
  2364. "x*y",
  2365. "x/y",
  2366. "x^2",
  2367. "√x",
  2368. "log(x)",
  2369. "Σx",
  2370. "Σx_k",
  2371. "Σx/n",
  2372. "argmax(x)",
  2373. "repeat(x)",
  2374. "repeat_back(x)",
  2375. "concat(x, y)",
  2376. "silu_back(x)",
  2377. "norm(x)",
  2378. "rms_norm(x)",
  2379. "rms_norm_back(x)",
  2380. "group_norm(x)",
  2381. "X*Y",
  2382. "X[i]*Y",
  2383. "X*Y",
  2384. "x*v",
  2385. "y-\\>view(x)",
  2386. "x-\\>y",
  2387. "cont(x)",
  2388. "reshape(x)",
  2389. "view(x)",
  2390. "permute(x)",
  2391. "transpose(x)",
  2392. "get_rows(x)",
  2393. "get_rows_back(x)",
  2394. "diag(x)",
  2395. "diag_mask_inf(x)",
  2396. "diag_mask_zero(x)",
  2397. "soft_max(x)",
  2398. "soft_max_back(x)",
  2399. "rope(x)",
  2400. "rope_back(x)",
  2401. "clamp(x)",
  2402. "conv_transpose_1d(x)",
  2403. "im2col(x)",
  2404. "conv_transpose_2d(x)",
  2405. "pool_1d(x)",
  2406. "pool_2d(x)",
  2407. "upscale(x)",
  2408. "pad(x)",
  2409. "arange(start, stop, step)",
  2410. "timestep_embedding(timesteps, dim, max_period)",
  2411. "argsort(x)",
  2412. "leaky_relu(x)",
  2413. "flash_attn(x)",
  2414. "flash_attn_ext(x)",
  2415. "flash_ff(x)",
  2416. "flash_attn_back(x)",
  2417. "ssm_conv(x)",
  2418. "ssm_scan(x)",
  2419. "win_part(x)",
  2420. "win_unpart(x)",
  2421. "get_rel_pos(x)",
  2422. "add_rel_pos(x)",
  2423. "unary(x)",
  2424. "f(x)",
  2425. "f(x,y)",
  2426. "custom_f32(x)",
  2427. "custom_f32(x,y)",
  2428. "custom_f32(x,y,z)",
  2429. "custom(x)",
  2430. "custom(x,y)",
  2431. "custom(x,y,z)",
  2432. "cross_entropy_loss(x,y)",
  2433. "cross_entropy_loss_back(x,y)",
  2434. };
  2435. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  2436. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  2437. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  2438. "ABS",
  2439. "SGN",
  2440. "NEG",
  2441. "STEP",
  2442. "TANH",
  2443. "ELU",
  2444. "RELU",
  2445. "SIGMOID",
  2446. "GELU",
  2447. "GELU_QUICK",
  2448. "SILU",
  2449. "HARDSWISH",
  2450. "HARDSIGMOID",
  2451. };
  2452. static_assert(GGML_UNARY_OP_COUNT == 13, "GGML_UNARY_OP_COUNT != 13");
  2453. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2454. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2455. // WARN:
  2456. // Mis-configuration can lead to problem that's hard to reason about:
  2457. // * At best it crash or talks nosense.
  2458. // * At worst it talks slightly difference but hard to perceive.
  2459. //
  2460. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  2461. // Take care about compile options (e.g., GGML_USE_xxx).
  2462. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  2463. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  2464. static void ggml_setup_op_has_task_pass(void) {
  2465. { // INIT
  2466. bool * p = GGML_OP_HAS_INIT;
  2467. p[GGML_OP_ACC ] = true;
  2468. p[GGML_OP_MUL_MAT ] = true;
  2469. p[GGML_OP_MUL_MAT_ID ] = true;
  2470. p[GGML_OP_OUT_PROD ] = true;
  2471. p[GGML_OP_SET ] = true;
  2472. p[GGML_OP_GET_ROWS_BACK ] = true;
  2473. p[GGML_OP_DIAG_MASK_INF ] = true;
  2474. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  2475. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  2476. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  2477. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  2478. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2479. p[GGML_OP_ADD_REL_POS ] = true;
  2480. }
  2481. { // FINALIZE
  2482. bool * p = GGML_OP_HAS_FINALIZE;
  2483. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2484. }
  2485. }
  2486. //
  2487. // NUMA support
  2488. //
  2489. #define GGML_NUMA_MAX_NODES 8
  2490. #define GGML_NUMA_MAX_CPUS 512
  2491. struct ggml_numa_node {
  2492. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  2493. uint32_t n_cpus;
  2494. };
  2495. struct ggml_numa_nodes {
  2496. enum ggml_numa_strategy numa_strategy;
  2497. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  2498. uint32_t n_nodes;
  2499. uint32_t total_cpus; // hardware threads on system
  2500. uint32_t current_node; // node on which main process is execting
  2501. #if defined(__gnu_linux__)
  2502. cpu_set_t cpuset; // cpuset from numactl
  2503. #else
  2504. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  2505. #endif
  2506. };
  2507. //
  2508. // ggml state
  2509. //
  2510. struct ggml_state {
  2511. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2512. struct ggml_numa_nodes numa;
  2513. };
  2514. // global state
  2515. static struct ggml_state g_state;
  2516. static atomic_int g_state_barrier = 0;
  2517. // barrier via spin lock
  2518. inline static void ggml_critical_section_start(void) {
  2519. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2520. while (processing > 0) {
  2521. // wait for other threads to finish
  2522. atomic_fetch_sub(&g_state_barrier, 1);
  2523. sched_yield(); // TODO: reconsider this
  2524. processing = atomic_fetch_add(&g_state_barrier, 1);
  2525. }
  2526. }
  2527. // TODO: make this somehow automatically executed
  2528. // some sort of "sentry" mechanism
  2529. inline static void ggml_critical_section_end(void) {
  2530. atomic_fetch_sub(&g_state_barrier, 1);
  2531. }
  2532. #if defined(__gnu_linux__)
  2533. static cpu_set_t ggml_get_numa_affinity(void) {
  2534. cpu_set_t cpuset;
  2535. pthread_t thread;
  2536. thread = pthread_self();
  2537. CPU_ZERO(&cpuset);
  2538. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  2539. return cpuset;
  2540. }
  2541. #else
  2542. static uint32_t ggml_get_numa_affinity(void) {
  2543. return 0; // no NUMA support
  2544. }
  2545. #endif
  2546. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  2547. if (g_state.numa.n_nodes > 0) {
  2548. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  2549. return;
  2550. }
  2551. #if defined(__gnu_linux__)
  2552. struct stat st;
  2553. char path[256];
  2554. int rv;
  2555. // set numa scheme
  2556. g_state.numa.numa_strategy = numa_flag;
  2557. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  2558. g_state.numa.cpuset = ggml_get_numa_affinity();
  2559. // enumerate nodes
  2560. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  2561. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2562. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2563. if (stat(path, &st) != 0) { break; }
  2564. ++g_state.numa.n_nodes;
  2565. }
  2566. // enumerate CPUs
  2567. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2568. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2569. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2570. if (stat(path, &st) != 0) { break; }
  2571. ++g_state.numa.total_cpus;
  2572. }
  2573. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2574. // figure out which node we're on
  2575. uint current_cpu;
  2576. int getcpu_ret = 0;
  2577. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28) || defined(__COSMOPOLITAN__)
  2578. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2579. #else
  2580. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2581. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2582. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2583. # endif
  2584. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2585. #endif
  2586. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2587. g_state.numa.n_nodes = 0;
  2588. return;
  2589. }
  2590. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2591. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2592. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2593. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2594. node->n_cpus = 0;
  2595. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2596. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2597. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2598. if (stat(path, &st) == 0) {
  2599. node->cpus[node->n_cpus++] = c;
  2600. GGML_PRINT_DEBUG(" %u", c);
  2601. }
  2602. }
  2603. GGML_PRINT_DEBUG("\n");
  2604. }
  2605. if (ggml_is_numa()) {
  2606. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2607. if (fptr != NULL) {
  2608. char buf[42];
  2609. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2610. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2611. }
  2612. fclose(fptr);
  2613. }
  2614. }
  2615. #else
  2616. GGML_UNUSED(numa_flag);
  2617. // TODO
  2618. #endif
  2619. }
  2620. bool ggml_is_numa(void) {
  2621. return g_state.numa.n_nodes > 1;
  2622. }
  2623. ////////////////////////////////////////////////////////////////////////////////
  2624. void ggml_print_object(const struct ggml_object * obj) {
  2625. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2626. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2627. }
  2628. void ggml_print_objects(const struct ggml_context * ctx) {
  2629. struct ggml_object * obj = ctx->objects_begin;
  2630. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2631. while (obj != NULL) {
  2632. ggml_print_object(obj);
  2633. obj = obj->next;
  2634. }
  2635. GGML_PRINT("%s: --- end ---\n", __func__);
  2636. }
  2637. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2638. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2639. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2640. }
  2641. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2642. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2643. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2644. }
  2645. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2646. size_t nbytes;
  2647. size_t blck_size = ggml_blck_size(tensor->type);
  2648. if (blck_size == 1) {
  2649. nbytes = ggml_type_size(tensor->type);
  2650. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2651. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2652. }
  2653. }
  2654. else {
  2655. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2656. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2657. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2658. }
  2659. }
  2660. return nbytes;
  2661. }
  2662. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2663. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2664. }
  2665. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  2666. return type_traits[type].blck_size;
  2667. }
  2668. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2669. return type_traits[type].type_size;
  2670. }
  2671. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2672. assert(ne % ggml_blck_size(type) == 0);
  2673. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2674. }
  2675. double ggml_type_sizef(enum ggml_type type) {
  2676. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2677. }
  2678. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2679. return type_traits[type].type_name;
  2680. }
  2681. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2682. return type_traits[type].is_quantized;
  2683. }
  2684. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2685. return GGML_OP_NAME[op];
  2686. }
  2687. const char * ggml_op_symbol(enum ggml_op op) {
  2688. return GGML_OP_SYMBOL[op];
  2689. }
  2690. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2691. return GGML_UNARY_OP_NAME[op];
  2692. }
  2693. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2694. if (t->op == GGML_OP_UNARY) {
  2695. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2696. return ggml_unary_op_name(uop);
  2697. }
  2698. else {
  2699. return ggml_op_name(t->op);
  2700. }
  2701. }
  2702. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2703. return ggml_type_size(tensor->type);
  2704. }
  2705. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2706. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2707. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2708. }
  2709. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2710. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2711. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2712. }
  2713. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2714. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2715. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2716. }
  2717. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2718. return tensor->ne[3] == 1;
  2719. }
  2720. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2721. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2722. if (tensor->ne[i] > 1) {
  2723. return i + 1;
  2724. }
  2725. }
  2726. return 1;
  2727. }
  2728. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2729. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2730. return (t0->ne[0] == t1->ne[0]) &&
  2731. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2732. (t1->ne[3]%t0->ne[3] == 0);
  2733. }
  2734. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2735. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2736. return (t0->ne[1] == t1->ne[1]) &&
  2737. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2738. (t1->ne[3]%t0->ne[3] == 0);
  2739. }
  2740. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2741. enum ggml_type wtype = GGML_TYPE_COUNT;
  2742. switch (ftype) {
  2743. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2744. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2745. case GGML_FTYPE_MOSTLY_BF16: wtype = GGML_TYPE_BF16; break;
  2746. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2747. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2748. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2749. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2750. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2751. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2752. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2753. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2754. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2755. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2756. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2757. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2758. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2759. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2760. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  2761. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2762. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2763. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2764. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2765. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2766. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2767. }
  2768. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2769. return wtype;
  2770. }
  2771. size_t ggml_tensor_overhead(void) {
  2772. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2773. }
  2774. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2775. return tensor->nb[0] > tensor->nb[1];
  2776. }
  2777. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2778. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2779. return
  2780. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2781. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2782. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2783. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2784. }
  2785. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  2786. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2787. return
  2788. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2789. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2790. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2791. }
  2792. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2793. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2794. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2795. }
  2796. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2797. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2798. return
  2799. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2800. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2801. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2802. }
  2803. GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
  2804. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2805. if (tensor->ne[i] == 0) {
  2806. // empty if any dimension has no elements
  2807. return true;
  2808. }
  2809. }
  2810. return false;
  2811. }
  2812. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2813. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2814. return
  2815. (t0->ne[0] == t1->ne[0] ) &&
  2816. (t0->ne[1] == t1->ne[1] ) &&
  2817. (t0->ne[2] == t1->ne[2] ) &&
  2818. (t0->ne[3] == t1->ne[3] );
  2819. }
  2820. bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2821. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2822. return
  2823. (t0->nb[0] == t1->nb[0] ) &&
  2824. (t0->nb[1] == t1->nb[1] ) &&
  2825. (t0->nb[2] == t1->nb[2] ) &&
  2826. (t0->nb[3] == t1->nb[3] );
  2827. }
  2828. // check if t1 can be represented as a repeatition of t0
  2829. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2830. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2831. return ggml_is_empty(t0) ? ggml_is_empty(t1) :
  2832. (t1->ne[0]%t0->ne[0] == 0) &&
  2833. (t1->ne[1]%t0->ne[1] == 0) &&
  2834. (t1->ne[2]%t0->ne[2] == 0) &&
  2835. (t1->ne[3]%t0->ne[3] == 0);
  2836. }
  2837. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2838. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2839. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2840. }
  2841. static inline int ggml_up32(int n) {
  2842. return (n + 31) & ~31;
  2843. }
  2844. //static inline int ggml_up64(int n) {
  2845. // return (n + 63) & ~63;
  2846. //}
  2847. static inline int ggml_up(int n, int m) {
  2848. // assert m is a power of 2
  2849. GGML_ASSERT((m & (m - 1)) == 0);
  2850. return (n + m - 1) & ~(m - 1);
  2851. }
  2852. // assert that pointer is aligned to GGML_MEM_ALIGN
  2853. #define ggml_assert_aligned(ptr) \
  2854. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2855. ////////////////////////////////////////////////////////////////////////////////
  2856. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2857. // make this function thread safe
  2858. ggml_critical_section_start();
  2859. static bool is_first_call = true;
  2860. if (is_first_call) {
  2861. // initialize time system (required on Windows)
  2862. ggml_time_init();
  2863. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2864. {
  2865. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2866. for (int i = 0; i < (1 << 16); ++i) {
  2867. union {
  2868. uint16_t u16;
  2869. ggml_fp16_t fp16;
  2870. } u = {i};
  2871. float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
  2872. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2873. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2874. }
  2875. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2876. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2877. }
  2878. // initialize g_state
  2879. {
  2880. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2881. g_state = (struct ggml_state) {
  2882. /*.contexts =*/ { { 0 } },
  2883. /*.numa =*/ {
  2884. .n_nodes = 0,
  2885. .total_cpus = 0,
  2886. },
  2887. };
  2888. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2889. g_state.contexts[i].used = false;
  2890. }
  2891. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2892. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2893. }
  2894. #if defined(GGML_USE_CLBLAST)
  2895. ggml_cl_init();
  2896. #endif
  2897. ggml_setup_op_has_task_pass();
  2898. is_first_call = false;
  2899. }
  2900. // find non-used context in g_state
  2901. struct ggml_context * ctx = NULL;
  2902. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2903. if (!g_state.contexts[i].used) {
  2904. g_state.contexts[i].used = true;
  2905. ctx = &g_state.contexts[i].context;
  2906. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2907. break;
  2908. }
  2909. }
  2910. if (ctx == NULL) {
  2911. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2912. ggml_critical_section_end();
  2913. return NULL;
  2914. }
  2915. // allow to call ggml_init with 0 size
  2916. if (params.mem_size == 0) {
  2917. params.mem_size = GGML_MEM_ALIGN;
  2918. }
  2919. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2920. *ctx = (struct ggml_context) {
  2921. /*.mem_size =*/ mem_size,
  2922. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2923. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2924. /*.no_alloc =*/ params.no_alloc,
  2925. /*.no_alloc_save =*/ params.no_alloc,
  2926. /*.n_objects =*/ 0,
  2927. /*.objects_begin =*/ NULL,
  2928. /*.objects_end =*/ NULL,
  2929. /*.scratch =*/ { 0, 0, NULL, },
  2930. /*.scratch_save =*/ { 0, 0, NULL, },
  2931. };
  2932. GGML_ASSERT(ctx->mem_buffer != NULL);
  2933. ggml_assert_aligned(ctx->mem_buffer);
  2934. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2935. ggml_critical_section_end();
  2936. return ctx;
  2937. }
  2938. void ggml_free(struct ggml_context * ctx) {
  2939. if (ctx == NULL) {
  2940. return;
  2941. }
  2942. // make this function thread safe
  2943. ggml_critical_section_start();
  2944. bool found = false;
  2945. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2946. if (&g_state.contexts[i].context == ctx) {
  2947. g_state.contexts[i].used = false;
  2948. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2949. __func__, i, ggml_used_mem(ctx));
  2950. if (ctx->mem_buffer_owned) {
  2951. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2952. }
  2953. found = true;
  2954. break;
  2955. }
  2956. }
  2957. if (!found) {
  2958. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2959. }
  2960. ggml_critical_section_end();
  2961. }
  2962. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2963. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2964. }
  2965. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2966. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2967. ctx->scratch = scratch;
  2968. return result;
  2969. }
  2970. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2971. return ctx->no_alloc;
  2972. }
  2973. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2974. ctx->no_alloc = no_alloc;
  2975. }
  2976. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2977. return ctx->mem_buffer;
  2978. }
  2979. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2980. return ctx->mem_size;
  2981. }
  2982. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2983. size_t max_size = 0;
  2984. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2985. size_t bytes = ggml_nbytes(tensor);
  2986. max_size = MAX(max_size, bytes);
  2987. }
  2988. return max_size;
  2989. }
  2990. // IMPORTANT:
  2991. // when creating "opt" tensors, always save and load the scratch buffer
  2992. // this is an error prone process, but it is necessary to support inplace
  2993. // operators when using scratch buffers
  2994. // TODO: implement a better way
  2995. static void ggml_scratch_save(struct ggml_context * ctx) {
  2996. // this is needed to allow opt tensors to store their data
  2997. // TODO: again, need to find a better way
  2998. ctx->no_alloc_save = ctx->no_alloc;
  2999. ctx->no_alloc = false;
  3000. ctx->scratch_save = ctx->scratch;
  3001. ctx->scratch.data = NULL;
  3002. }
  3003. static void ggml_scratch_load(struct ggml_context * ctx) {
  3004. ctx->no_alloc = ctx->no_alloc_save;
  3005. ctx->scratch = ctx->scratch_save;
  3006. }
  3007. ////////////////////////////////////////////////////////////////////////////////
  3008. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3009. // always insert objects at the end of the context's memory pool
  3010. struct ggml_object * obj_cur = ctx->objects_end;
  3011. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3012. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3013. const size_t cur_end = cur_offs + cur_size;
  3014. // align to GGML_MEM_ALIGN
  3015. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3016. char * const mem_buffer = ctx->mem_buffer;
  3017. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3018. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3019. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3020. __func__, cur_end + size_needed, ctx->mem_size);
  3021. assert(false);
  3022. return NULL;
  3023. }
  3024. *obj_new = (struct ggml_object) {
  3025. .offs = cur_end + GGML_OBJECT_SIZE,
  3026. .size = size_needed,
  3027. .next = NULL,
  3028. .type = type,
  3029. };
  3030. ggml_assert_aligned(mem_buffer + obj_new->offs);
  3031. if (obj_cur != NULL) {
  3032. obj_cur->next = obj_new;
  3033. } else {
  3034. // this is the first object in this context
  3035. ctx->objects_begin = obj_new;
  3036. }
  3037. ctx->objects_end = obj_new;
  3038. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3039. return obj_new;
  3040. }
  3041. static struct ggml_tensor * ggml_new_tensor_impl(
  3042. struct ggml_context * ctx,
  3043. enum ggml_type type,
  3044. int n_dims,
  3045. const int64_t * ne,
  3046. struct ggml_tensor * view_src,
  3047. size_t view_offs) {
  3048. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3049. // find the base tensor and absolute offset
  3050. if (view_src != NULL && view_src->view_src != NULL) {
  3051. view_offs += view_src->view_offs;
  3052. view_src = view_src->view_src;
  3053. }
  3054. size_t data_size = ggml_row_size(type, ne[0]);
  3055. for (int i = 1; i < n_dims; i++) {
  3056. data_size *= ne[i];
  3057. }
  3058. GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
  3059. void * data = view_src != NULL ? view_src->data : NULL;
  3060. if (data != NULL) {
  3061. data = (char *) data + view_offs;
  3062. }
  3063. size_t obj_alloc_size = 0;
  3064. if (view_src == NULL && !ctx->no_alloc) {
  3065. if (ctx->scratch.data != NULL) {
  3066. // allocate tensor data in the scratch buffer
  3067. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3068. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3069. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3070. assert(false);
  3071. return NULL;
  3072. }
  3073. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3074. ctx->scratch.offs += data_size;
  3075. } else {
  3076. // allocate tensor data in the context's memory pool
  3077. obj_alloc_size = data_size;
  3078. }
  3079. }
  3080. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  3081. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3082. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3083. #ifdef __clang__
  3084. // temporary until ggml_tensor::backend is removed
  3085. #pragma clang diagnostic push
  3086. #pragma clang diagnostic ignored "-Wdeprecated-declarations"
  3087. #endif
  3088. *result = (struct ggml_tensor) {
  3089. /*.type =*/ type,
  3090. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  3091. /*.buffer =*/ NULL,
  3092. /*.ne =*/ { 1, 1, 1, 1 },
  3093. /*.nb =*/ { 0, 0, 0, 0 },
  3094. /*.op =*/ GGML_OP_NONE,
  3095. /*.op_params =*/ { 0 },
  3096. /*.flags =*/ 0,
  3097. /*.grad =*/ NULL,
  3098. /*.src =*/ { NULL },
  3099. /*.perf_runs =*/ 0,
  3100. /*.perf_cycles =*/ 0,
  3101. /*.perf_time_us =*/ 0,
  3102. /*.view_src =*/ view_src,
  3103. /*.view_offs =*/ view_offs,
  3104. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  3105. /*.name =*/ { 0 },
  3106. /*.extra =*/ NULL,
  3107. /*.padding =*/ { 0 },
  3108. };
  3109. #ifdef __clang__
  3110. #pragma clang diagnostic pop
  3111. #endif
  3112. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3113. //ggml_assert_aligned(result->data);
  3114. for (int i = 0; i < n_dims; i++) {
  3115. result->ne[i] = ne[i];
  3116. }
  3117. result->nb[0] = ggml_type_size(type);
  3118. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  3119. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3120. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3121. }
  3122. ctx->n_objects++;
  3123. return result;
  3124. }
  3125. struct ggml_tensor * ggml_new_tensor(
  3126. struct ggml_context * ctx,
  3127. enum ggml_type type,
  3128. int n_dims,
  3129. const int64_t * ne) {
  3130. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  3131. }
  3132. struct ggml_tensor * ggml_new_tensor_1d(
  3133. struct ggml_context * ctx,
  3134. enum ggml_type type,
  3135. int64_t ne0) {
  3136. return ggml_new_tensor(ctx, type, 1, &ne0);
  3137. }
  3138. struct ggml_tensor * ggml_new_tensor_2d(
  3139. struct ggml_context * ctx,
  3140. enum ggml_type type,
  3141. int64_t ne0,
  3142. int64_t ne1) {
  3143. const int64_t ne[2] = { ne0, ne1 };
  3144. return ggml_new_tensor(ctx, type, 2, ne);
  3145. }
  3146. struct ggml_tensor * ggml_new_tensor_3d(
  3147. struct ggml_context * ctx,
  3148. enum ggml_type type,
  3149. int64_t ne0,
  3150. int64_t ne1,
  3151. int64_t ne2) {
  3152. const int64_t ne[3] = { ne0, ne1, ne2 };
  3153. return ggml_new_tensor(ctx, type, 3, ne);
  3154. }
  3155. struct ggml_tensor * ggml_new_tensor_4d(
  3156. struct ggml_context * ctx,
  3157. enum ggml_type type,
  3158. int64_t ne0,
  3159. int64_t ne1,
  3160. int64_t ne2,
  3161. int64_t ne3) {
  3162. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3163. return ggml_new_tensor(ctx, type, 4, ne);
  3164. }
  3165. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3166. ggml_scratch_save(ctx);
  3167. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3168. ggml_scratch_load(ctx);
  3169. ggml_set_i32(result, value);
  3170. return result;
  3171. }
  3172. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3173. ggml_scratch_save(ctx);
  3174. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3175. ggml_scratch_load(ctx);
  3176. ggml_set_f32(result, value);
  3177. return result;
  3178. }
  3179. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3180. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  3181. }
  3182. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3183. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  3184. assert(params_size <= GGML_MAX_OP_PARAMS);
  3185. memcpy(tensor->op_params, params, params_size);
  3186. }
  3187. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3188. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3189. return ((const int32_t *)(tensor->op_params))[i];
  3190. }
  3191. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  3192. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3193. return ((const float *)(tensor->op_params))[i];
  3194. }
  3195. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3196. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3197. ((int32_t *)(tensor->op_params))[i] = value;
  3198. }
  3199. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  3200. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3201. ((float *)(tensor->op_params))[i] = value;
  3202. }
  3203. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3204. memset(tensor->data, 0, ggml_nbytes(tensor));
  3205. return tensor;
  3206. }
  3207. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3208. const int n = ggml_nrows(tensor);
  3209. const int nc = tensor->ne[0];
  3210. const size_t n1 = tensor->nb[1];
  3211. char * const data = tensor->data;
  3212. switch (tensor->type) {
  3213. case GGML_TYPE_I8:
  3214. {
  3215. assert(tensor->nb[0] == sizeof(int8_t));
  3216. for (int i = 0; i < n; i++) {
  3217. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3218. }
  3219. } break;
  3220. case GGML_TYPE_I16:
  3221. {
  3222. assert(tensor->nb[0] == sizeof(int16_t));
  3223. for (int i = 0; i < n; i++) {
  3224. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3225. }
  3226. } break;
  3227. case GGML_TYPE_I32:
  3228. {
  3229. assert(tensor->nb[0] == sizeof(int32_t));
  3230. for (int i = 0; i < n; i++) {
  3231. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3232. }
  3233. } break;
  3234. case GGML_TYPE_F16:
  3235. {
  3236. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3237. for (int i = 0; i < n; i++) {
  3238. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3239. }
  3240. } break;
  3241. case GGML_TYPE_BF16:
  3242. {
  3243. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3244. for (int i = 0; i < n; i++) {
  3245. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3246. }
  3247. } break;
  3248. case GGML_TYPE_F32:
  3249. {
  3250. assert(tensor->nb[0] == sizeof(float));
  3251. for (int i = 0; i < n; i++) {
  3252. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3253. }
  3254. } break;
  3255. default:
  3256. {
  3257. GGML_ASSERT(false);
  3258. } break;
  3259. }
  3260. return tensor;
  3261. }
  3262. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3263. const int n = ggml_nrows(tensor);
  3264. const int nc = tensor->ne[0];
  3265. const size_t n1 = tensor->nb[1];
  3266. char * const data = tensor->data;
  3267. switch (tensor->type) {
  3268. case GGML_TYPE_I8:
  3269. {
  3270. assert(tensor->nb[0] == sizeof(int8_t));
  3271. for (int i = 0; i < n; i++) {
  3272. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3273. }
  3274. } break;
  3275. case GGML_TYPE_I16:
  3276. {
  3277. assert(tensor->nb[0] == sizeof(int16_t));
  3278. for (int i = 0; i < n; i++) {
  3279. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3280. }
  3281. } break;
  3282. case GGML_TYPE_I32:
  3283. {
  3284. assert(tensor->nb[0] == sizeof(int32_t));
  3285. for (int i = 0; i < n; i++) {
  3286. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3287. }
  3288. } break;
  3289. case GGML_TYPE_F16:
  3290. {
  3291. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3292. for (int i = 0; i < n; i++) {
  3293. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3294. }
  3295. } break;
  3296. case GGML_TYPE_BF16:
  3297. {
  3298. assert(tensor->nb[0] == sizeof(ggml_bf16_t));
  3299. for (int i = 0; i < n; i++) {
  3300. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3301. }
  3302. } break;
  3303. case GGML_TYPE_F32:
  3304. {
  3305. assert(tensor->nb[0] == sizeof(float));
  3306. for (int i = 0; i < n; i++) {
  3307. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3308. }
  3309. } break;
  3310. default:
  3311. {
  3312. GGML_ASSERT(false);
  3313. } break;
  3314. }
  3315. return tensor;
  3316. }
  3317. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  3318. const int64_t ne2 = tensor->ne[2];
  3319. const int64_t ne1 = tensor->ne[1];
  3320. const int64_t ne0 = tensor->ne[0];
  3321. const int64_t i3_ = (i/(ne2*ne1*ne0));
  3322. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  3323. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  3324. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  3325. if (i0) {
  3326. * i0 = i0_;
  3327. }
  3328. if (i1) {
  3329. * i1 = i1_;
  3330. }
  3331. if (i2) {
  3332. * i2 = i2_;
  3333. }
  3334. if (i3) {
  3335. * i3 = i3_;
  3336. }
  3337. }
  3338. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3339. if (!ggml_is_contiguous(tensor)) {
  3340. int64_t id[4] = { 0, 0, 0, 0 };
  3341. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3342. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  3343. }
  3344. switch (tensor->type) {
  3345. case GGML_TYPE_I8:
  3346. {
  3347. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3348. return ((int8_t *)(tensor->data))[i];
  3349. }
  3350. case GGML_TYPE_I16:
  3351. {
  3352. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3353. return ((int16_t *)(tensor->data))[i];
  3354. }
  3355. case GGML_TYPE_I32:
  3356. {
  3357. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3358. return ((int32_t *)(tensor->data))[i];
  3359. }
  3360. case GGML_TYPE_F16:
  3361. {
  3362. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3363. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3364. }
  3365. case GGML_TYPE_BF16:
  3366. {
  3367. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3368. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3369. }
  3370. case GGML_TYPE_F32:
  3371. {
  3372. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3373. return ((float *)(tensor->data))[i];
  3374. }
  3375. default:
  3376. {
  3377. GGML_ASSERT(false);
  3378. }
  3379. }
  3380. return 0.0f;
  3381. }
  3382. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3383. if (!ggml_is_contiguous(tensor)) {
  3384. int64_t id[4] = { 0, 0, 0, 0 };
  3385. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3386. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3387. return;
  3388. }
  3389. switch (tensor->type) {
  3390. case GGML_TYPE_I8:
  3391. {
  3392. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3393. ((int8_t *)(tensor->data))[i] = value;
  3394. } break;
  3395. case GGML_TYPE_I16:
  3396. {
  3397. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3398. ((int16_t *)(tensor->data))[i] = value;
  3399. } break;
  3400. case GGML_TYPE_I32:
  3401. {
  3402. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3403. ((int32_t *)(tensor->data))[i] = value;
  3404. } break;
  3405. case GGML_TYPE_F16:
  3406. {
  3407. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3408. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3409. } break;
  3410. case GGML_TYPE_BF16:
  3411. {
  3412. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3413. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3414. } break;
  3415. case GGML_TYPE_F32:
  3416. {
  3417. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3418. ((float *)(tensor->data))[i] = value;
  3419. } break;
  3420. default:
  3421. {
  3422. GGML_ASSERT(false);
  3423. } break;
  3424. }
  3425. }
  3426. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3427. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3428. switch (tensor->type) {
  3429. case GGML_TYPE_I8:
  3430. return ((int8_t *) data)[0];
  3431. case GGML_TYPE_I16:
  3432. return ((int16_t *) data)[0];
  3433. case GGML_TYPE_I32:
  3434. return ((int32_t *) data)[0];
  3435. case GGML_TYPE_F16:
  3436. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3437. case GGML_TYPE_BF16:
  3438. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3439. case GGML_TYPE_F32:
  3440. return ((float *) data)[0];
  3441. default:
  3442. GGML_ASSERT(false);
  3443. }
  3444. return 0.0f;
  3445. }
  3446. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  3447. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3448. switch (tensor->type) {
  3449. case GGML_TYPE_I8:
  3450. {
  3451. ((int8_t *)(data))[0] = value;
  3452. } break;
  3453. case GGML_TYPE_I16:
  3454. {
  3455. ((int16_t *)(data))[0] = value;
  3456. } break;
  3457. case GGML_TYPE_I32:
  3458. {
  3459. ((int32_t *)(data))[0] = value;
  3460. } break;
  3461. case GGML_TYPE_F16:
  3462. {
  3463. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3464. } break;
  3465. case GGML_TYPE_BF16:
  3466. {
  3467. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3468. } break;
  3469. case GGML_TYPE_F32:
  3470. {
  3471. ((float *)(data))[0] = value;
  3472. } break;
  3473. default:
  3474. {
  3475. GGML_ASSERT(false);
  3476. } break;
  3477. }
  3478. }
  3479. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3480. if (!ggml_is_contiguous(tensor)) {
  3481. int64_t id[4] = { 0, 0, 0, 0 };
  3482. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3483. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  3484. }
  3485. switch (tensor->type) {
  3486. case GGML_TYPE_I8:
  3487. {
  3488. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3489. return ((int8_t *)(tensor->data))[i];
  3490. }
  3491. case GGML_TYPE_I16:
  3492. {
  3493. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3494. return ((int16_t *)(tensor->data))[i];
  3495. }
  3496. case GGML_TYPE_I32:
  3497. {
  3498. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3499. return ((int32_t *)(tensor->data))[i];
  3500. }
  3501. case GGML_TYPE_F16:
  3502. {
  3503. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3504. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3505. }
  3506. case GGML_TYPE_BF16:
  3507. {
  3508. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3509. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3510. }
  3511. case GGML_TYPE_F32:
  3512. {
  3513. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3514. return ((float *)(tensor->data))[i];
  3515. }
  3516. default:
  3517. {
  3518. GGML_ASSERT(false);
  3519. }
  3520. }
  3521. return 0.0f;
  3522. }
  3523. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3524. if (!ggml_is_contiguous(tensor)) {
  3525. int64_t id[4] = { 0, 0, 0, 0 };
  3526. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3527. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3528. return;
  3529. }
  3530. switch (tensor->type) {
  3531. case GGML_TYPE_I8:
  3532. {
  3533. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3534. ((int8_t *)(tensor->data))[i] = value;
  3535. } break;
  3536. case GGML_TYPE_I16:
  3537. {
  3538. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3539. ((int16_t *)(tensor->data))[i] = value;
  3540. } break;
  3541. case GGML_TYPE_I32:
  3542. {
  3543. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3544. ((int32_t *)(tensor->data))[i] = value;
  3545. } break;
  3546. case GGML_TYPE_F16:
  3547. {
  3548. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3549. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3550. } break;
  3551. case GGML_TYPE_BF16:
  3552. {
  3553. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3554. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3555. } break;
  3556. case GGML_TYPE_F32:
  3557. {
  3558. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3559. ((float *)(tensor->data))[i] = value;
  3560. } break;
  3561. default:
  3562. {
  3563. GGML_ASSERT(false);
  3564. } break;
  3565. }
  3566. }
  3567. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3568. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3569. switch (tensor->type) {
  3570. case GGML_TYPE_I8:
  3571. return ((int8_t *) data)[0];
  3572. case GGML_TYPE_I16:
  3573. return ((int16_t *) data)[0];
  3574. case GGML_TYPE_I32:
  3575. return ((int32_t *) data)[0];
  3576. case GGML_TYPE_F16:
  3577. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3578. case GGML_TYPE_BF16:
  3579. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3580. case GGML_TYPE_F32:
  3581. return ((float *) data)[0];
  3582. default:
  3583. GGML_ASSERT(false);
  3584. }
  3585. return 0.0f;
  3586. }
  3587. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  3588. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3589. switch (tensor->type) {
  3590. case GGML_TYPE_I8:
  3591. {
  3592. ((int8_t *)(data))[0] = value;
  3593. } break;
  3594. case GGML_TYPE_I16:
  3595. {
  3596. ((int16_t *)(data))[0] = value;
  3597. } break;
  3598. case GGML_TYPE_I32:
  3599. {
  3600. ((int32_t *)(data))[0] = value;
  3601. } break;
  3602. case GGML_TYPE_F16:
  3603. {
  3604. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3605. } break;
  3606. case GGML_TYPE_BF16:
  3607. {
  3608. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3609. } break;
  3610. case GGML_TYPE_F32:
  3611. {
  3612. ((float *)(data))[0] = value;
  3613. } break;
  3614. default:
  3615. {
  3616. GGML_ASSERT(false);
  3617. } break;
  3618. }
  3619. }
  3620. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3621. return tensor->data;
  3622. }
  3623. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3624. assert(tensor->type == GGML_TYPE_F32);
  3625. return (float *)(tensor->data);
  3626. }
  3627. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  3628. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  3629. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  3630. }
  3631. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3632. return tensor->name;
  3633. }
  3634. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3635. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  3636. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3637. return tensor;
  3638. }
  3639. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3640. va_list args;
  3641. va_start(args, fmt);
  3642. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3643. va_end(args);
  3644. return tensor;
  3645. }
  3646. struct ggml_tensor * ggml_view_tensor(
  3647. struct ggml_context * ctx,
  3648. struct ggml_tensor * src) {
  3649. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  3650. ggml_format_name(result, "%s (view)", src->name);
  3651. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  3652. result->nb[i] = src->nb[i];
  3653. }
  3654. return result;
  3655. }
  3656. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  3657. struct ggml_object * obj = ctx->objects_begin;
  3658. char * const mem_buffer = ctx->mem_buffer;
  3659. while (obj != NULL) {
  3660. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3661. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3662. }
  3663. obj = obj->next;
  3664. }
  3665. return NULL;
  3666. }
  3667. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  3668. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  3669. obj = obj->next;
  3670. char * const mem_buffer = ctx->mem_buffer;
  3671. while (obj != NULL) {
  3672. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3673. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3674. }
  3675. obj = obj->next;
  3676. }
  3677. return NULL;
  3678. }
  3679. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3680. struct ggml_object * obj = ctx->objects_begin;
  3681. char * const mem_buffer = ctx->mem_buffer;
  3682. while (obj != NULL) {
  3683. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3684. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3685. if (strcmp(cur->name, name) == 0) {
  3686. return cur;
  3687. }
  3688. }
  3689. obj = obj->next;
  3690. }
  3691. return NULL;
  3692. }
  3693. ////////////////////////////////////////////////////////////////////////////////
  3694. // ggml_dup
  3695. static struct ggml_tensor * ggml_dup_impl(
  3696. struct ggml_context * ctx,
  3697. struct ggml_tensor * a,
  3698. bool inplace) {
  3699. bool is_node = false;
  3700. if (!inplace && (a->grad)) {
  3701. is_node = true;
  3702. }
  3703. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3704. result->op = GGML_OP_DUP;
  3705. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3706. result->src[0] = a;
  3707. return result;
  3708. }
  3709. struct ggml_tensor * ggml_dup(
  3710. struct ggml_context * ctx,
  3711. struct ggml_tensor * a) {
  3712. return ggml_dup_impl(ctx, a, false);
  3713. }
  3714. struct ggml_tensor * ggml_dup_inplace(
  3715. struct ggml_context * ctx,
  3716. struct ggml_tensor * a) {
  3717. return ggml_dup_impl(ctx, a, true);
  3718. }
  3719. // ggml_add
  3720. static struct ggml_tensor * ggml_add_impl(
  3721. struct ggml_context * ctx,
  3722. struct ggml_tensor * a,
  3723. struct ggml_tensor * b,
  3724. bool inplace) {
  3725. GGML_ASSERT(ggml_can_repeat(b, a));
  3726. bool is_node = false;
  3727. if (!inplace && (a->grad || b->grad)) {
  3728. // TODO: support backward pass for broadcasting
  3729. GGML_ASSERT(ggml_are_same_shape(a, b));
  3730. is_node = true;
  3731. }
  3732. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3733. result->op = GGML_OP_ADD;
  3734. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3735. result->src[0] = a;
  3736. result->src[1] = b;
  3737. return result;
  3738. }
  3739. struct ggml_tensor * ggml_add(
  3740. struct ggml_context * ctx,
  3741. struct ggml_tensor * a,
  3742. struct ggml_tensor * b) {
  3743. return ggml_add_impl(ctx, a, b, false);
  3744. }
  3745. struct ggml_tensor * ggml_add_inplace(
  3746. struct ggml_context * ctx,
  3747. struct ggml_tensor * a,
  3748. struct ggml_tensor * b) {
  3749. return ggml_add_impl(ctx, a, b, true);
  3750. }
  3751. // ggml_add_cast
  3752. static struct ggml_tensor * ggml_add_cast_impl(
  3753. struct ggml_context * ctx,
  3754. struct ggml_tensor * a,
  3755. struct ggml_tensor * b,
  3756. enum ggml_type type) {
  3757. // TODO: support less-strict constraint
  3758. // GGML_ASSERT(ggml_can_repeat(b, a));
  3759. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3760. // currently only supported for quantized input and f16
  3761. GGML_ASSERT(ggml_is_quantized(a->type) ||
  3762. a->type == GGML_TYPE_F16 ||
  3763. a->type == GGML_TYPE_BF16);
  3764. bool is_node = false;
  3765. if (a->grad || b->grad) {
  3766. // TODO: support backward pass for broadcasting
  3767. GGML_ASSERT(ggml_are_same_shape(a, b));
  3768. is_node = true;
  3769. }
  3770. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3771. result->op = GGML_OP_ADD;
  3772. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3773. result->src[0] = a;
  3774. result->src[1] = b;
  3775. return result;
  3776. }
  3777. struct ggml_tensor * ggml_add_cast(
  3778. struct ggml_context * ctx,
  3779. struct ggml_tensor * a,
  3780. struct ggml_tensor * b,
  3781. enum ggml_type type) {
  3782. return ggml_add_cast_impl(ctx, a, b, type);
  3783. }
  3784. // ggml_add1
  3785. static struct ggml_tensor * ggml_add1_impl(
  3786. struct ggml_context * ctx,
  3787. struct ggml_tensor * a,
  3788. struct ggml_tensor * b,
  3789. bool inplace) {
  3790. GGML_ASSERT(ggml_is_scalar(b));
  3791. GGML_ASSERT(ggml_is_padded_1d(a));
  3792. bool is_node = false;
  3793. if (a->grad || b->grad) {
  3794. is_node = true;
  3795. }
  3796. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3797. result->op = GGML_OP_ADD1;
  3798. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3799. result->src[0] = a;
  3800. result->src[1] = b;
  3801. return result;
  3802. }
  3803. struct ggml_tensor * ggml_add1(
  3804. struct ggml_context * ctx,
  3805. struct ggml_tensor * a,
  3806. struct ggml_tensor * b) {
  3807. return ggml_add1_impl(ctx, a, b, false);
  3808. }
  3809. struct ggml_tensor * ggml_add1_inplace(
  3810. struct ggml_context * ctx,
  3811. struct ggml_tensor * a,
  3812. struct ggml_tensor * b) {
  3813. return ggml_add1_impl(ctx, a, b, true);
  3814. }
  3815. // ggml_acc
  3816. static struct ggml_tensor * ggml_acc_impl(
  3817. struct ggml_context * ctx,
  3818. struct ggml_tensor * a,
  3819. struct ggml_tensor * b,
  3820. size_t nb1,
  3821. size_t nb2,
  3822. size_t nb3,
  3823. size_t offset,
  3824. bool inplace) {
  3825. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3826. GGML_ASSERT(ggml_is_contiguous(a));
  3827. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3828. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3829. bool is_node = false;
  3830. if (!inplace && (a->grad || b->grad)) {
  3831. is_node = true;
  3832. }
  3833. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3834. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3835. ggml_set_op_params(result, params, sizeof(params));
  3836. result->op = GGML_OP_ACC;
  3837. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3838. result->src[0] = a;
  3839. result->src[1] = b;
  3840. return result;
  3841. }
  3842. struct ggml_tensor * ggml_acc(
  3843. struct ggml_context * ctx,
  3844. struct ggml_tensor * a,
  3845. struct ggml_tensor * b,
  3846. size_t nb1,
  3847. size_t nb2,
  3848. size_t nb3,
  3849. size_t offset) {
  3850. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3851. }
  3852. struct ggml_tensor * ggml_acc_inplace(
  3853. struct ggml_context * ctx,
  3854. struct ggml_tensor * a,
  3855. struct ggml_tensor * b,
  3856. size_t nb1,
  3857. size_t nb2,
  3858. size_t nb3,
  3859. size_t offset) {
  3860. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3861. }
  3862. // ggml_sub
  3863. static struct ggml_tensor * ggml_sub_impl(
  3864. struct ggml_context * ctx,
  3865. struct ggml_tensor * a,
  3866. struct ggml_tensor * b,
  3867. bool inplace) {
  3868. GGML_ASSERT(ggml_are_same_shape(a, b));
  3869. bool is_node = false;
  3870. if (!inplace && (a->grad || b->grad)) {
  3871. is_node = true;
  3872. }
  3873. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3874. result->op = GGML_OP_SUB;
  3875. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3876. result->src[0] = a;
  3877. result->src[1] = b;
  3878. return result;
  3879. }
  3880. struct ggml_tensor * ggml_sub(
  3881. struct ggml_context * ctx,
  3882. struct ggml_tensor * a,
  3883. struct ggml_tensor * b) {
  3884. return ggml_sub_impl(ctx, a, b, false);
  3885. }
  3886. struct ggml_tensor * ggml_sub_inplace(
  3887. struct ggml_context * ctx,
  3888. struct ggml_tensor * a,
  3889. struct ggml_tensor * b) {
  3890. return ggml_sub_impl(ctx, a, b, true);
  3891. }
  3892. // ggml_mul
  3893. static struct ggml_tensor * ggml_mul_impl(
  3894. struct ggml_context * ctx,
  3895. struct ggml_tensor * a,
  3896. struct ggml_tensor * b,
  3897. bool inplace) {
  3898. GGML_ASSERT(ggml_can_repeat(b, a));
  3899. bool is_node = false;
  3900. if (!inplace && (a->grad || b->grad)) {
  3901. // TODO: support backward pass for broadcasting
  3902. GGML_ASSERT(ggml_are_same_shape(a, b));
  3903. is_node = true;
  3904. }
  3905. if (inplace) {
  3906. GGML_ASSERT(!is_node);
  3907. }
  3908. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3909. result->op = GGML_OP_MUL;
  3910. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3911. result->src[0] = a;
  3912. result->src[1] = b;
  3913. return result;
  3914. }
  3915. struct ggml_tensor * ggml_mul(
  3916. struct ggml_context * ctx,
  3917. struct ggml_tensor * a,
  3918. struct ggml_tensor * b) {
  3919. return ggml_mul_impl(ctx, a, b, false);
  3920. }
  3921. struct ggml_tensor * ggml_mul_inplace(
  3922. struct ggml_context * ctx,
  3923. struct ggml_tensor * a,
  3924. struct ggml_tensor * b) {
  3925. return ggml_mul_impl(ctx, a, b, true);
  3926. }
  3927. // ggml_div
  3928. static struct ggml_tensor * ggml_div_impl(
  3929. struct ggml_context * ctx,
  3930. struct ggml_tensor * a,
  3931. struct ggml_tensor * b,
  3932. bool inplace) {
  3933. GGML_ASSERT(ggml_can_repeat(b, a));
  3934. bool is_node = false;
  3935. if (!inplace && (a->grad || b->grad)) {
  3936. is_node = true;
  3937. }
  3938. if (inplace) {
  3939. GGML_ASSERT(!is_node);
  3940. }
  3941. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3942. result->op = GGML_OP_DIV;
  3943. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3944. result->src[0] = a;
  3945. result->src[1] = b;
  3946. return result;
  3947. }
  3948. struct ggml_tensor * ggml_div(
  3949. struct ggml_context * ctx,
  3950. struct ggml_tensor * a,
  3951. struct ggml_tensor * b) {
  3952. return ggml_div_impl(ctx, a, b, false);
  3953. }
  3954. struct ggml_tensor * ggml_div_inplace(
  3955. struct ggml_context * ctx,
  3956. struct ggml_tensor * a,
  3957. struct ggml_tensor * b) {
  3958. return ggml_div_impl(ctx, a, b, true);
  3959. }
  3960. // ggml_sqr
  3961. static struct ggml_tensor * ggml_sqr_impl(
  3962. struct ggml_context * ctx,
  3963. struct ggml_tensor * a,
  3964. bool inplace) {
  3965. bool is_node = false;
  3966. if (!inplace && (a->grad)) {
  3967. is_node = true;
  3968. }
  3969. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3970. result->op = GGML_OP_SQR;
  3971. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3972. result->src[0] = a;
  3973. return result;
  3974. }
  3975. struct ggml_tensor * ggml_sqr(
  3976. struct ggml_context * ctx,
  3977. struct ggml_tensor * a) {
  3978. return ggml_sqr_impl(ctx, a, false);
  3979. }
  3980. struct ggml_tensor * ggml_sqr_inplace(
  3981. struct ggml_context * ctx,
  3982. struct ggml_tensor * a) {
  3983. return ggml_sqr_impl(ctx, a, true);
  3984. }
  3985. // ggml_sqrt
  3986. static struct ggml_tensor * ggml_sqrt_impl(
  3987. struct ggml_context * ctx,
  3988. struct ggml_tensor * a,
  3989. bool inplace) {
  3990. bool is_node = false;
  3991. if (!inplace && (a->grad)) {
  3992. is_node = true;
  3993. }
  3994. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3995. result->op = GGML_OP_SQRT;
  3996. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3997. result->src[0] = a;
  3998. return result;
  3999. }
  4000. struct ggml_tensor * ggml_sqrt(
  4001. struct ggml_context * ctx,
  4002. struct ggml_tensor * a) {
  4003. return ggml_sqrt_impl(ctx, a, false);
  4004. }
  4005. struct ggml_tensor * ggml_sqrt_inplace(
  4006. struct ggml_context * ctx,
  4007. struct ggml_tensor * a) {
  4008. return ggml_sqrt_impl(ctx, a, true);
  4009. }
  4010. // ggml_log
  4011. static struct ggml_tensor * ggml_log_impl(
  4012. struct ggml_context * ctx,
  4013. struct ggml_tensor * a,
  4014. bool inplace) {
  4015. bool is_node = false;
  4016. if (!inplace && (a->grad)) {
  4017. is_node = true;
  4018. }
  4019. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4020. result->op = GGML_OP_LOG;
  4021. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4022. result->src[0] = a;
  4023. return result;
  4024. }
  4025. struct ggml_tensor * ggml_log(
  4026. struct ggml_context * ctx,
  4027. struct ggml_tensor * a) {
  4028. return ggml_log_impl(ctx, a, false);
  4029. }
  4030. struct ggml_tensor * ggml_log_inplace(
  4031. struct ggml_context * ctx,
  4032. struct ggml_tensor * a) {
  4033. return ggml_log_impl(ctx, a, true);
  4034. }
  4035. // ggml_sum
  4036. struct ggml_tensor * ggml_sum(
  4037. struct ggml_context * ctx,
  4038. struct ggml_tensor * a) {
  4039. bool is_node = false;
  4040. if (a->grad) {
  4041. is_node = true;
  4042. }
  4043. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4044. result->op = GGML_OP_SUM;
  4045. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4046. result->src[0] = a;
  4047. return result;
  4048. }
  4049. // ggml_sum_rows
  4050. struct ggml_tensor * ggml_sum_rows(
  4051. struct ggml_context * ctx,
  4052. struct ggml_tensor * a) {
  4053. bool is_node = false;
  4054. if (a->grad) {
  4055. is_node = true;
  4056. }
  4057. int64_t ne[GGML_MAX_DIMS] = { 1 };
  4058. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  4059. ne[i] = a->ne[i];
  4060. }
  4061. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4062. result->op = GGML_OP_SUM_ROWS;
  4063. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4064. result->src[0] = a;
  4065. return result;
  4066. }
  4067. // ggml_mean
  4068. struct ggml_tensor * ggml_mean(
  4069. struct ggml_context * ctx,
  4070. struct ggml_tensor * a) {
  4071. bool is_node = false;
  4072. if (a->grad) {
  4073. GGML_ASSERT(false); // TODO: implement
  4074. is_node = true;
  4075. }
  4076. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4077. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4078. result->op = GGML_OP_MEAN;
  4079. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4080. result->src[0] = a;
  4081. return result;
  4082. }
  4083. // ggml_argmax
  4084. struct ggml_tensor * ggml_argmax(
  4085. struct ggml_context * ctx,
  4086. struct ggml_tensor * a) {
  4087. GGML_ASSERT(ggml_is_matrix(a));
  4088. bool is_node = false;
  4089. if (a->grad) {
  4090. GGML_ASSERT(false);
  4091. is_node = true;
  4092. }
  4093. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  4094. result->op = GGML_OP_ARGMAX;
  4095. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4096. result->src[0] = a;
  4097. return result;
  4098. }
  4099. // ggml_repeat
  4100. struct ggml_tensor * ggml_repeat(
  4101. struct ggml_context * ctx,
  4102. struct ggml_tensor * a,
  4103. struct ggml_tensor * b) {
  4104. GGML_ASSERT(ggml_can_repeat(a, b));
  4105. bool is_node = false;
  4106. if (a->grad) {
  4107. is_node = true;
  4108. }
  4109. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4110. result->op = GGML_OP_REPEAT;
  4111. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4112. result->src[0] = a;
  4113. return result;
  4114. }
  4115. // ggml_repeat_back
  4116. struct ggml_tensor * ggml_repeat_back(
  4117. struct ggml_context * ctx,
  4118. struct ggml_tensor * a,
  4119. struct ggml_tensor * b) {
  4120. GGML_ASSERT(ggml_can_repeat(b, a));
  4121. bool is_node = false;
  4122. if (a->grad) {
  4123. is_node = true;
  4124. }
  4125. if (ggml_are_same_shape(a, b) && !is_node) {
  4126. return a;
  4127. }
  4128. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4129. result->op = GGML_OP_REPEAT_BACK;
  4130. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4131. result->src[0] = a;
  4132. return result;
  4133. }
  4134. // ggml_concat
  4135. struct ggml_tensor * ggml_concat(
  4136. struct ggml_context* ctx,
  4137. struct ggml_tensor* a,
  4138. struct ggml_tensor* b) {
  4139. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  4140. bool is_node = false;
  4141. if (a->grad || b->grad) {
  4142. is_node = true;
  4143. }
  4144. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  4145. result->op = GGML_OP_CONCAT;
  4146. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4147. result->src[0] = a;
  4148. result->src[1] = b;
  4149. return result;
  4150. }
  4151. // ggml_abs
  4152. struct ggml_tensor * ggml_abs(
  4153. struct ggml_context * ctx,
  4154. struct ggml_tensor * a) {
  4155. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4156. }
  4157. struct ggml_tensor * ggml_abs_inplace(
  4158. struct ggml_context * ctx,
  4159. struct ggml_tensor * a) {
  4160. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4161. }
  4162. // ggml_sgn
  4163. struct ggml_tensor * ggml_sgn(
  4164. struct ggml_context * ctx,
  4165. struct ggml_tensor * a) {
  4166. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4167. }
  4168. struct ggml_tensor * ggml_sgn_inplace(
  4169. struct ggml_context * ctx,
  4170. struct ggml_tensor * a) {
  4171. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4172. }
  4173. // ggml_neg
  4174. struct ggml_tensor * ggml_neg(
  4175. struct ggml_context * ctx,
  4176. struct ggml_tensor * a) {
  4177. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4178. }
  4179. struct ggml_tensor * ggml_neg_inplace(
  4180. struct ggml_context * ctx,
  4181. struct ggml_tensor * a) {
  4182. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4183. }
  4184. // ggml_step
  4185. struct ggml_tensor * ggml_step(
  4186. struct ggml_context * ctx,
  4187. struct ggml_tensor * a) {
  4188. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4189. }
  4190. struct ggml_tensor * ggml_step_inplace(
  4191. struct ggml_context * ctx,
  4192. struct ggml_tensor * a) {
  4193. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4194. }
  4195. // ggml_tanh
  4196. struct ggml_tensor * ggml_tanh(
  4197. struct ggml_context * ctx,
  4198. struct ggml_tensor * a) {
  4199. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4200. }
  4201. struct ggml_tensor * ggml_tanh_inplace(
  4202. struct ggml_context * ctx,
  4203. struct ggml_tensor * a) {
  4204. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4205. }
  4206. // ggml_elu
  4207. struct ggml_tensor * ggml_elu(
  4208. struct ggml_context * ctx,
  4209. struct ggml_tensor * a) {
  4210. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4211. }
  4212. struct ggml_tensor * ggml_elu_inplace(
  4213. struct ggml_context * ctx,
  4214. struct ggml_tensor * a) {
  4215. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4216. }
  4217. // ggml_relu
  4218. struct ggml_tensor * ggml_relu(
  4219. struct ggml_context * ctx,
  4220. struct ggml_tensor * a) {
  4221. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4222. }
  4223. struct ggml_tensor * ggml_relu_inplace(
  4224. struct ggml_context * ctx,
  4225. struct ggml_tensor * a) {
  4226. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4227. }
  4228. // ggml_leaky_relu
  4229. struct ggml_tensor * ggml_leaky_relu(
  4230. struct ggml_context * ctx,
  4231. struct ggml_tensor * a, float negative_slope, bool inplace) {
  4232. bool is_node = false;
  4233. if (!inplace && (a->grad)) {
  4234. is_node = true;
  4235. }
  4236. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4237. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  4238. result->op = GGML_OP_LEAKY_RELU;
  4239. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4240. result->src[0] = a;
  4241. return result;
  4242. }
  4243. // ggml_sigmoid
  4244. struct ggml_tensor * ggml_sigmoid(
  4245. struct ggml_context * ctx,
  4246. struct ggml_tensor * a) {
  4247. return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID);
  4248. }
  4249. struct ggml_tensor * ggml_sigmoid_inplace(
  4250. struct ggml_context * ctx,
  4251. struct ggml_tensor * a) {
  4252. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID);
  4253. }
  4254. // ggml_gelu
  4255. struct ggml_tensor * ggml_gelu(
  4256. struct ggml_context * ctx,
  4257. struct ggml_tensor * a) {
  4258. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4259. }
  4260. struct ggml_tensor * ggml_gelu_inplace(
  4261. struct ggml_context * ctx,
  4262. struct ggml_tensor * a) {
  4263. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4264. }
  4265. // ggml_gelu_quick
  4266. struct ggml_tensor * ggml_gelu_quick(
  4267. struct ggml_context * ctx,
  4268. struct ggml_tensor * a) {
  4269. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4270. }
  4271. struct ggml_tensor * ggml_gelu_quick_inplace(
  4272. struct ggml_context * ctx,
  4273. struct ggml_tensor * a) {
  4274. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4275. }
  4276. // ggml_silu
  4277. struct ggml_tensor * ggml_silu(
  4278. struct ggml_context * ctx,
  4279. struct ggml_tensor * a) {
  4280. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4281. }
  4282. struct ggml_tensor * ggml_silu_inplace(
  4283. struct ggml_context * ctx,
  4284. struct ggml_tensor * a) {
  4285. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4286. }
  4287. // ggml_silu_back
  4288. struct ggml_tensor * ggml_silu_back(
  4289. struct ggml_context * ctx,
  4290. struct ggml_tensor * a,
  4291. struct ggml_tensor * b) {
  4292. bool is_node = false;
  4293. if (a->grad || b->grad) {
  4294. // TODO: implement backward
  4295. is_node = true;
  4296. }
  4297. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4298. result->op = GGML_OP_SILU_BACK;
  4299. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4300. result->src[0] = a;
  4301. result->src[1] = b;
  4302. return result;
  4303. }
  4304. // ggml hardswish
  4305. struct ggml_tensor * ggml_hardswish(
  4306. struct ggml_context * ctx,
  4307. struct ggml_tensor * a) {
  4308. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  4309. }
  4310. // ggml hardsigmoid
  4311. struct ggml_tensor * ggml_hardsigmoid(
  4312. struct ggml_context * ctx,
  4313. struct ggml_tensor * a) {
  4314. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  4315. }
  4316. // ggml_norm
  4317. static struct ggml_tensor * ggml_norm_impl(
  4318. struct ggml_context * ctx,
  4319. struct ggml_tensor * a,
  4320. float eps,
  4321. bool inplace) {
  4322. bool is_node = false;
  4323. if (!inplace && (a->grad)) {
  4324. GGML_ASSERT(false); // TODO: implement backward
  4325. is_node = true;
  4326. }
  4327. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4328. ggml_set_op_params(result, &eps, sizeof(eps));
  4329. result->op = GGML_OP_NORM;
  4330. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4331. result->src[0] = a;
  4332. return result;
  4333. }
  4334. struct ggml_tensor * ggml_norm(
  4335. struct ggml_context * ctx,
  4336. struct ggml_tensor * a,
  4337. float eps) {
  4338. return ggml_norm_impl(ctx, a, eps, false);
  4339. }
  4340. struct ggml_tensor * ggml_norm_inplace(
  4341. struct ggml_context * ctx,
  4342. struct ggml_tensor * a,
  4343. float eps) {
  4344. return ggml_norm_impl(ctx, a, eps, true);
  4345. }
  4346. // ggml_rms_norm
  4347. static struct ggml_tensor * ggml_rms_norm_impl(
  4348. struct ggml_context * ctx,
  4349. struct ggml_tensor * a,
  4350. float eps,
  4351. bool inplace) {
  4352. bool is_node = false;
  4353. if (!inplace && (a->grad)) {
  4354. is_node = true;
  4355. }
  4356. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4357. ggml_set_op_params(result, &eps, sizeof(eps));
  4358. result->op = GGML_OP_RMS_NORM;
  4359. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4360. result->src[0] = a;
  4361. return result;
  4362. }
  4363. struct ggml_tensor * ggml_rms_norm(
  4364. struct ggml_context * ctx,
  4365. struct ggml_tensor * a,
  4366. float eps) {
  4367. return ggml_rms_norm_impl(ctx, a, eps, false);
  4368. }
  4369. struct ggml_tensor * ggml_rms_norm_inplace(
  4370. struct ggml_context * ctx,
  4371. struct ggml_tensor * a,
  4372. float eps) {
  4373. return ggml_rms_norm_impl(ctx, a, eps, true);
  4374. }
  4375. // ggml_rms_norm_back
  4376. struct ggml_tensor * ggml_rms_norm_back(
  4377. struct ggml_context * ctx,
  4378. struct ggml_tensor * a,
  4379. struct ggml_tensor * b,
  4380. float eps) {
  4381. bool is_node = false;
  4382. if (a->grad) {
  4383. // TODO: implement backward
  4384. is_node = true;
  4385. }
  4386. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4387. ggml_set_op_params(result, &eps, sizeof(eps));
  4388. result->op = GGML_OP_RMS_NORM_BACK;
  4389. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4390. result->src[0] = a;
  4391. result->src[1] = b;
  4392. return result;
  4393. }
  4394. // ggml_group_norm
  4395. static struct ggml_tensor * ggml_group_norm_impl(
  4396. struct ggml_context * ctx,
  4397. struct ggml_tensor * a,
  4398. int n_groups,
  4399. bool inplace) {
  4400. bool is_node = false;
  4401. if (!inplace && (a->grad)) {
  4402. GGML_ASSERT(false); // TODO: implement backward
  4403. is_node = true;
  4404. }
  4405. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4406. result->op_params[0] = n_groups;
  4407. result->op = GGML_OP_GROUP_NORM;
  4408. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4409. result->src[0] = a;
  4410. return result;
  4411. }
  4412. struct ggml_tensor * ggml_group_norm(
  4413. struct ggml_context * ctx,
  4414. struct ggml_tensor * a,
  4415. int n_groups) {
  4416. return ggml_group_norm_impl(ctx, a, n_groups, false);
  4417. }
  4418. struct ggml_tensor * ggml_group_norm_inplace(
  4419. struct ggml_context * ctx,
  4420. struct ggml_tensor * a,
  4421. int n_groups) {
  4422. return ggml_group_norm_impl(ctx, a, n_groups, true);
  4423. }
  4424. // ggml_mul_mat
  4425. struct ggml_tensor * ggml_mul_mat(
  4426. struct ggml_context * ctx,
  4427. struct ggml_tensor * a,
  4428. struct ggml_tensor * b) {
  4429. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4430. GGML_ASSERT(!ggml_is_transposed(a));
  4431. bool is_node = false;
  4432. if (a->grad || b->grad) {
  4433. is_node = true;
  4434. }
  4435. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4436. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4437. result->op = GGML_OP_MUL_MAT;
  4438. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4439. result->src[0] = a;
  4440. result->src[1] = b;
  4441. return result;
  4442. }
  4443. void ggml_mul_mat_set_prec(
  4444. struct ggml_tensor * a,
  4445. enum ggml_prec prec) {
  4446. GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
  4447. const int32_t prec_i32 = (int32_t) prec;
  4448. ggml_set_op_params_i32(a, 0, prec_i32);
  4449. }
  4450. // ggml_mul_mat_id
  4451. /*
  4452. c = ggml_mul_mat_id(ctx, as, b, ids);
  4453. as -> [cols, rows, n_expert]
  4454. ids -> [n_experts_used, n_tokens] (i32)
  4455. b -> [cols, n_expert_used, n_tokens]
  4456. c -> [cols, n_expert_used, n_tokens]
  4457. in b, n_experts_used can be broadcasted to match the n_expert_used of ids
  4458. c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
  4459. */
  4460. struct ggml_tensor * ggml_mul_mat_id(
  4461. struct ggml_context * ctx,
  4462. struct ggml_tensor * as,
  4463. struct ggml_tensor * b,
  4464. struct ggml_tensor * ids) {
  4465. GGML_ASSERT(!ggml_is_transposed(as));
  4466. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  4467. GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
  4468. GGML_ASSERT(b->ne[3] == 1); // b is 3d
  4469. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
  4470. GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
  4471. GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
  4472. GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
  4473. bool is_node = false;
  4474. if (as->grad || b->grad) {
  4475. is_node = true;
  4476. }
  4477. const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
  4478. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4479. result->op = GGML_OP_MUL_MAT_ID;
  4480. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4481. result->src[0] = as;
  4482. result->src[1] = b;
  4483. result->src[2] = ids;
  4484. return result;
  4485. }
  4486. // ggml_out_prod
  4487. struct ggml_tensor * ggml_out_prod(
  4488. struct ggml_context * ctx,
  4489. struct ggml_tensor * a,
  4490. struct ggml_tensor * b) {
  4491. GGML_ASSERT(ggml_can_out_prod(a, b));
  4492. GGML_ASSERT(!ggml_is_transposed(a));
  4493. bool is_node = false;
  4494. if (a->grad || b->grad) {
  4495. is_node = true;
  4496. }
  4497. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  4498. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  4499. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4500. result->op = GGML_OP_OUT_PROD;
  4501. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4502. result->src[0] = a;
  4503. result->src[1] = b;
  4504. return result;
  4505. }
  4506. // ggml_scale
  4507. static struct ggml_tensor * ggml_scale_impl(
  4508. struct ggml_context * ctx,
  4509. struct ggml_tensor * a,
  4510. float s,
  4511. bool inplace) {
  4512. GGML_ASSERT(ggml_is_padded_1d(a));
  4513. bool is_node = false;
  4514. if (a->grad) {
  4515. is_node = true;
  4516. }
  4517. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4518. ggml_set_op_params(result, &s, sizeof(s));
  4519. result->op = GGML_OP_SCALE;
  4520. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4521. result->src[0] = a;
  4522. return result;
  4523. }
  4524. struct ggml_tensor * ggml_scale(
  4525. struct ggml_context * ctx,
  4526. struct ggml_tensor * a,
  4527. float s) {
  4528. return ggml_scale_impl(ctx, a, s, false);
  4529. }
  4530. struct ggml_tensor * ggml_scale_inplace(
  4531. struct ggml_context * ctx,
  4532. struct ggml_tensor * a,
  4533. float s) {
  4534. return ggml_scale_impl(ctx, a, s, true);
  4535. }
  4536. // ggml_set
  4537. static struct ggml_tensor * ggml_set_impl(
  4538. struct ggml_context * ctx,
  4539. struct ggml_tensor * a,
  4540. struct ggml_tensor * b,
  4541. size_t nb1,
  4542. size_t nb2,
  4543. size_t nb3,
  4544. size_t offset,
  4545. bool inplace) {
  4546. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4547. bool is_node = false;
  4548. if (a->grad || b->grad) {
  4549. is_node = true;
  4550. }
  4551. // make a view of the destination
  4552. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4553. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4554. ggml_set_op_params(result, params, sizeof(params));
  4555. result->op = GGML_OP_SET;
  4556. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4557. result->src[0] = a;
  4558. result->src[1] = b;
  4559. return result;
  4560. }
  4561. struct ggml_tensor * ggml_set(
  4562. struct ggml_context * ctx,
  4563. struct ggml_tensor * a,
  4564. struct ggml_tensor * b,
  4565. size_t nb1,
  4566. size_t nb2,
  4567. size_t nb3,
  4568. size_t offset) {
  4569. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4570. }
  4571. struct ggml_tensor * ggml_set_inplace(
  4572. struct ggml_context * ctx,
  4573. struct ggml_tensor * a,
  4574. struct ggml_tensor * b,
  4575. size_t nb1,
  4576. size_t nb2,
  4577. size_t nb3,
  4578. size_t offset) {
  4579. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4580. }
  4581. struct ggml_tensor * ggml_set_1d(
  4582. struct ggml_context * ctx,
  4583. struct ggml_tensor * a,
  4584. struct ggml_tensor * b,
  4585. size_t offset) {
  4586. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4587. }
  4588. struct ggml_tensor * ggml_set_1d_inplace(
  4589. struct ggml_context * ctx,
  4590. struct ggml_tensor * a,
  4591. struct ggml_tensor * b,
  4592. size_t offset) {
  4593. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4594. }
  4595. struct ggml_tensor * ggml_set_2d(
  4596. struct ggml_context * ctx,
  4597. struct ggml_tensor * a,
  4598. struct ggml_tensor * b,
  4599. size_t nb1,
  4600. size_t offset) {
  4601. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4602. }
  4603. struct ggml_tensor * ggml_set_2d_inplace(
  4604. struct ggml_context * ctx,
  4605. struct ggml_tensor * a,
  4606. struct ggml_tensor * b,
  4607. size_t nb1,
  4608. size_t offset) {
  4609. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  4610. }
  4611. // ggml_cpy
  4612. static struct ggml_tensor * ggml_cpy_impl(
  4613. struct ggml_context * ctx,
  4614. struct ggml_tensor * a,
  4615. struct ggml_tensor * b) {
  4616. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4617. bool is_node = false;
  4618. if (a->grad || b->grad) {
  4619. // inplace is false and either one have a grad
  4620. is_node = true;
  4621. }
  4622. // make a view of the destination
  4623. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4624. if (strlen(b->name) > 0) {
  4625. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4626. } else {
  4627. ggml_format_name(result, "%s (copy)", a->name);
  4628. }
  4629. result->op = GGML_OP_CPY;
  4630. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4631. result->src[0] = a;
  4632. result->src[1] = b;
  4633. return result;
  4634. }
  4635. struct ggml_tensor * ggml_cpy(
  4636. struct ggml_context * ctx,
  4637. struct ggml_tensor * a,
  4638. struct ggml_tensor * b) {
  4639. return ggml_cpy_impl(ctx, a, b);
  4640. }
  4641. struct ggml_tensor * ggml_cast(
  4642. struct ggml_context * ctx,
  4643. struct ggml_tensor * a,
  4644. enum ggml_type type) {
  4645. bool is_node = false;
  4646. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4647. ggml_format_name(result, "%s (copy)", a->name);
  4648. result->op = GGML_OP_CPY;
  4649. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4650. result->src[0] = a;
  4651. result->src[1] = result;
  4652. return result;
  4653. }
  4654. // ggml_cont
  4655. static struct ggml_tensor * ggml_cont_impl(
  4656. struct ggml_context * ctx,
  4657. struct ggml_tensor * a) {
  4658. bool is_node = false;
  4659. if (a->grad) {
  4660. is_node = true;
  4661. }
  4662. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4663. ggml_format_name(result, "%s (cont)", a->name);
  4664. result->op = GGML_OP_CONT;
  4665. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4666. result->src[0] = a;
  4667. return result;
  4668. }
  4669. struct ggml_tensor * ggml_cont(
  4670. struct ggml_context * ctx,
  4671. struct ggml_tensor * a) {
  4672. return ggml_cont_impl(ctx, a);
  4673. }
  4674. // make contiguous, with new shape
  4675. GGML_API struct ggml_tensor * ggml_cont_1d(
  4676. struct ggml_context * ctx,
  4677. struct ggml_tensor * a,
  4678. int64_t ne0) {
  4679. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  4680. }
  4681. GGML_API struct ggml_tensor * ggml_cont_2d(
  4682. struct ggml_context * ctx,
  4683. struct ggml_tensor * a,
  4684. int64_t ne0,
  4685. int64_t ne1) {
  4686. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  4687. }
  4688. GGML_API struct ggml_tensor * ggml_cont_3d(
  4689. struct ggml_context * ctx,
  4690. struct ggml_tensor * a,
  4691. int64_t ne0,
  4692. int64_t ne1,
  4693. int64_t ne2) {
  4694. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  4695. }
  4696. struct ggml_tensor * ggml_cont_4d(
  4697. struct ggml_context * ctx,
  4698. struct ggml_tensor * a,
  4699. int64_t ne0,
  4700. int64_t ne1,
  4701. int64_t ne2,
  4702. int64_t ne3) {
  4703. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  4704. bool is_node = false;
  4705. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  4706. ggml_format_name(result, "%s (cont)", a->name);
  4707. result->op = GGML_OP_CONT;
  4708. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4709. result->src[0] = a;
  4710. return result;
  4711. }
  4712. // ggml_reshape
  4713. struct ggml_tensor * ggml_reshape(
  4714. struct ggml_context * ctx,
  4715. struct ggml_tensor * a,
  4716. struct ggml_tensor * b) {
  4717. GGML_ASSERT(ggml_is_contiguous(a));
  4718. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  4719. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4720. bool is_node = false;
  4721. if (a->grad) {
  4722. is_node = true;
  4723. }
  4724. if (b->grad) {
  4725. // gradient propagation is not supported
  4726. //GGML_ASSERT(false);
  4727. }
  4728. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  4729. ggml_format_name(result, "%s (reshaped)", a->name);
  4730. result->op = GGML_OP_RESHAPE;
  4731. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4732. result->src[0] = a;
  4733. return result;
  4734. }
  4735. struct ggml_tensor * ggml_reshape_1d(
  4736. struct ggml_context * ctx,
  4737. struct ggml_tensor * a,
  4738. int64_t ne0) {
  4739. GGML_ASSERT(ggml_is_contiguous(a));
  4740. GGML_ASSERT(ggml_nelements(a) == ne0);
  4741. bool is_node = false;
  4742. if (a->grad) {
  4743. is_node = true;
  4744. }
  4745. const int64_t ne[1] = { ne0 };
  4746. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  4747. ggml_format_name(result, "%s (reshaped)", a->name);
  4748. result->op = GGML_OP_RESHAPE;
  4749. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4750. result->src[0] = a;
  4751. return result;
  4752. }
  4753. struct ggml_tensor * ggml_reshape_2d(
  4754. struct ggml_context * ctx,
  4755. struct ggml_tensor * a,
  4756. int64_t ne0,
  4757. int64_t ne1) {
  4758. GGML_ASSERT(ggml_is_contiguous(a));
  4759. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4760. bool is_node = false;
  4761. if (a->grad) {
  4762. is_node = true;
  4763. }
  4764. const int64_t ne[2] = { ne0, ne1 };
  4765. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  4766. ggml_format_name(result, "%s (reshaped)", a->name);
  4767. result->op = GGML_OP_RESHAPE;
  4768. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4769. result->src[0] = a;
  4770. return result;
  4771. }
  4772. struct ggml_tensor * ggml_reshape_3d(
  4773. struct ggml_context * ctx,
  4774. struct ggml_tensor * a,
  4775. int64_t ne0,
  4776. int64_t ne1,
  4777. int64_t ne2) {
  4778. GGML_ASSERT(ggml_is_contiguous(a));
  4779. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4780. bool is_node = false;
  4781. if (a->grad) {
  4782. is_node = true;
  4783. }
  4784. const int64_t ne[3] = { ne0, ne1, ne2 };
  4785. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4786. ggml_format_name(result, "%s (reshaped)", a->name);
  4787. result->op = GGML_OP_RESHAPE;
  4788. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4789. result->src[0] = a;
  4790. return result;
  4791. }
  4792. struct ggml_tensor * ggml_reshape_4d(
  4793. struct ggml_context * ctx,
  4794. struct ggml_tensor * a,
  4795. int64_t ne0,
  4796. int64_t ne1,
  4797. int64_t ne2,
  4798. int64_t ne3) {
  4799. GGML_ASSERT(ggml_is_contiguous(a));
  4800. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4801. bool is_node = false;
  4802. if (a->grad) {
  4803. is_node = true;
  4804. }
  4805. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4806. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4807. ggml_format_name(result, "%s (reshaped)", a->name);
  4808. result->op = GGML_OP_RESHAPE;
  4809. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4810. result->src[0] = a;
  4811. return result;
  4812. }
  4813. static struct ggml_tensor * ggml_view_impl(
  4814. struct ggml_context * ctx,
  4815. struct ggml_tensor * a,
  4816. int n_dims,
  4817. const int64_t * ne,
  4818. size_t offset) {
  4819. bool is_node = false;
  4820. if (a->grad) {
  4821. is_node = true;
  4822. }
  4823. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4824. ggml_format_name(result, "%s (view)", a->name);
  4825. ggml_set_op_params(result, &offset, sizeof(offset));
  4826. result->op = GGML_OP_VIEW;
  4827. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4828. result->src[0] = a;
  4829. return result;
  4830. }
  4831. // ggml_view_1d
  4832. struct ggml_tensor * ggml_view_1d(
  4833. struct ggml_context * ctx,
  4834. struct ggml_tensor * a,
  4835. int64_t ne0,
  4836. size_t offset) {
  4837. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4838. return result;
  4839. }
  4840. // ggml_view_2d
  4841. struct ggml_tensor * ggml_view_2d(
  4842. struct ggml_context * ctx,
  4843. struct ggml_tensor * a,
  4844. int64_t ne0,
  4845. int64_t ne1,
  4846. size_t nb1,
  4847. size_t offset) {
  4848. const int64_t ne[2] = { ne0, ne1 };
  4849. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4850. result->nb[1] = nb1;
  4851. result->nb[2] = result->nb[1]*ne1;
  4852. result->nb[3] = result->nb[2];
  4853. return result;
  4854. }
  4855. // ggml_view_3d
  4856. struct ggml_tensor * ggml_view_3d(
  4857. struct ggml_context * ctx,
  4858. struct ggml_tensor * a,
  4859. int64_t ne0,
  4860. int64_t ne1,
  4861. int64_t ne2,
  4862. size_t nb1,
  4863. size_t nb2,
  4864. size_t offset) {
  4865. const int64_t ne[3] = { ne0, ne1, ne2 };
  4866. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4867. result->nb[1] = nb1;
  4868. result->nb[2] = nb2;
  4869. result->nb[3] = result->nb[2]*ne2;
  4870. return result;
  4871. }
  4872. // ggml_view_4d
  4873. struct ggml_tensor * ggml_view_4d(
  4874. struct ggml_context * ctx,
  4875. struct ggml_tensor * a,
  4876. int64_t ne0,
  4877. int64_t ne1,
  4878. int64_t ne2,
  4879. int64_t ne3,
  4880. size_t nb1,
  4881. size_t nb2,
  4882. size_t nb3,
  4883. size_t offset) {
  4884. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4885. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4886. result->nb[1] = nb1;
  4887. result->nb[2] = nb2;
  4888. result->nb[3] = nb3;
  4889. return result;
  4890. }
  4891. // ggml_permute
  4892. struct ggml_tensor * ggml_permute(
  4893. struct ggml_context * ctx,
  4894. struct ggml_tensor * a,
  4895. int axis0,
  4896. int axis1,
  4897. int axis2,
  4898. int axis3) {
  4899. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4900. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4901. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4902. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4903. GGML_ASSERT(axis0 != axis1);
  4904. GGML_ASSERT(axis0 != axis2);
  4905. GGML_ASSERT(axis0 != axis3);
  4906. GGML_ASSERT(axis1 != axis2);
  4907. GGML_ASSERT(axis1 != axis3);
  4908. GGML_ASSERT(axis2 != axis3);
  4909. bool is_node = false;
  4910. if (a->grad) {
  4911. is_node = true;
  4912. }
  4913. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4914. ggml_format_name(result, "%s (permuted)", a->name);
  4915. int ne[GGML_MAX_DIMS];
  4916. int nb[GGML_MAX_DIMS];
  4917. ne[axis0] = a->ne[0];
  4918. ne[axis1] = a->ne[1];
  4919. ne[axis2] = a->ne[2];
  4920. ne[axis3] = a->ne[3];
  4921. nb[axis0] = a->nb[0];
  4922. nb[axis1] = a->nb[1];
  4923. nb[axis2] = a->nb[2];
  4924. nb[axis3] = a->nb[3];
  4925. result->ne[0] = ne[0];
  4926. result->ne[1] = ne[1];
  4927. result->ne[2] = ne[2];
  4928. result->ne[3] = ne[3];
  4929. result->nb[0] = nb[0];
  4930. result->nb[1] = nb[1];
  4931. result->nb[2] = nb[2];
  4932. result->nb[3] = nb[3];
  4933. result->op = GGML_OP_PERMUTE;
  4934. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4935. result->src[0] = a;
  4936. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4937. ggml_set_op_params(result, params, sizeof(params));
  4938. return result;
  4939. }
  4940. // ggml_transpose
  4941. struct ggml_tensor * ggml_transpose(
  4942. struct ggml_context * ctx,
  4943. struct ggml_tensor * a) {
  4944. bool is_node = false;
  4945. if (a->grad) {
  4946. is_node = true;
  4947. }
  4948. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4949. ggml_format_name(result, "%s (transposed)", a->name);
  4950. result->ne[0] = a->ne[1];
  4951. result->ne[1] = a->ne[0];
  4952. result->nb[0] = a->nb[1];
  4953. result->nb[1] = a->nb[0];
  4954. result->op = GGML_OP_TRANSPOSE;
  4955. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4956. result->src[0] = a;
  4957. return result;
  4958. }
  4959. // ggml_get_rows
  4960. struct ggml_tensor * ggml_get_rows(
  4961. struct ggml_context * ctx,
  4962. struct ggml_tensor * a,
  4963. struct ggml_tensor * b) {
  4964. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4965. GGML_ASSERT(b->ne[3] == 1);
  4966. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4967. bool is_node = false;
  4968. if (a->grad || b->grad) {
  4969. is_node = true;
  4970. }
  4971. // TODO: implement non F32 return
  4972. enum ggml_type type = GGML_TYPE_F32;
  4973. if (a->type == GGML_TYPE_I32) {
  4974. type = a->type;
  4975. }
  4976. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4977. result->op = GGML_OP_GET_ROWS;
  4978. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4979. result->src[0] = a;
  4980. result->src[1] = b;
  4981. return result;
  4982. }
  4983. // ggml_get_rows_back
  4984. struct ggml_tensor * ggml_get_rows_back(
  4985. struct ggml_context * ctx,
  4986. struct ggml_tensor * a,
  4987. struct ggml_tensor * b,
  4988. struct ggml_tensor * c) {
  4989. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4990. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4991. bool is_node = false;
  4992. if (a->grad || b->grad) {
  4993. is_node = true;
  4994. }
  4995. // TODO: implement non F32 return
  4996. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4997. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4998. result->op = GGML_OP_GET_ROWS_BACK;
  4999. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5000. result->src[0] = a;
  5001. result->src[1] = b;
  5002. return result;
  5003. }
  5004. // ggml_diag
  5005. struct ggml_tensor * ggml_diag(
  5006. struct ggml_context * ctx,
  5007. struct ggml_tensor * a) {
  5008. GGML_ASSERT(a->ne[1] == 1);
  5009. bool is_node = false;
  5010. if (a->grad) {
  5011. is_node = true;
  5012. }
  5013. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5014. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  5015. result->op = GGML_OP_DIAG;
  5016. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5017. result->src[0] = a;
  5018. return result;
  5019. }
  5020. // ggml_diag_mask_inf
  5021. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5022. struct ggml_context * ctx,
  5023. struct ggml_tensor * a,
  5024. int n_past,
  5025. bool inplace) {
  5026. bool is_node = false;
  5027. if (a->grad) {
  5028. is_node = true;
  5029. }
  5030. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5031. int32_t params[] = { n_past };
  5032. ggml_set_op_params(result, params, sizeof(params));
  5033. result->op = GGML_OP_DIAG_MASK_INF;
  5034. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5035. result->src[0] = a;
  5036. return result;
  5037. }
  5038. struct ggml_tensor * ggml_diag_mask_inf(
  5039. struct ggml_context * ctx,
  5040. struct ggml_tensor * a,
  5041. int n_past) {
  5042. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5043. }
  5044. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5045. struct ggml_context * ctx,
  5046. struct ggml_tensor * a,
  5047. int n_past) {
  5048. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5049. }
  5050. // ggml_diag_mask_zero
  5051. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5052. struct ggml_context * ctx,
  5053. struct ggml_tensor * a,
  5054. int n_past,
  5055. bool inplace) {
  5056. bool is_node = false;
  5057. if (a->grad) {
  5058. is_node = true;
  5059. }
  5060. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5061. int32_t params[] = { n_past };
  5062. ggml_set_op_params(result, params, sizeof(params));
  5063. result->op = GGML_OP_DIAG_MASK_ZERO;
  5064. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5065. result->src[0] = a;
  5066. return result;
  5067. }
  5068. struct ggml_tensor * ggml_diag_mask_zero(
  5069. struct ggml_context * ctx,
  5070. struct ggml_tensor * a,
  5071. int n_past) {
  5072. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5073. }
  5074. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5075. struct ggml_context * ctx,
  5076. struct ggml_tensor * a,
  5077. int n_past) {
  5078. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5079. }
  5080. // ggml_soft_max
  5081. static struct ggml_tensor * ggml_soft_max_impl(
  5082. struct ggml_context * ctx,
  5083. struct ggml_tensor * a,
  5084. struct ggml_tensor * mask,
  5085. float scale,
  5086. float max_bias,
  5087. bool inplace) {
  5088. GGML_ASSERT(ggml_is_contiguous(a));
  5089. if (mask) {
  5090. GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
  5091. GGML_ASSERT(ggml_is_contiguous(mask));
  5092. GGML_ASSERT(ggml_is_matrix(mask));
  5093. GGML_ASSERT(mask->ne[0] == a->ne[0]);
  5094. GGML_ASSERT(mask->ne[1] >= a->ne[1]);
  5095. }
  5096. if (max_bias > 0.0f) {
  5097. GGML_ASSERT(mask);
  5098. }
  5099. bool is_node = false;
  5100. if (a->grad) {
  5101. is_node = true;
  5102. }
  5103. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5104. float params[] = { scale, max_bias };
  5105. ggml_set_op_params(result, params, sizeof(params));
  5106. result->op = GGML_OP_SOFT_MAX;
  5107. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5108. result->src[0] = a;
  5109. result->src[1] = mask;
  5110. return result;
  5111. }
  5112. struct ggml_tensor * ggml_soft_max(
  5113. struct ggml_context * ctx,
  5114. struct ggml_tensor * a) {
  5115. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false);
  5116. }
  5117. struct ggml_tensor * ggml_soft_max_inplace(
  5118. struct ggml_context * ctx,
  5119. struct ggml_tensor * a) {
  5120. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true);
  5121. }
  5122. struct ggml_tensor * ggml_soft_max_ext(
  5123. struct ggml_context * ctx,
  5124. struct ggml_tensor * a,
  5125. struct ggml_tensor * mask,
  5126. float scale,
  5127. float max_bias) {
  5128. return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false);
  5129. }
  5130. // ggml_soft_max_back
  5131. static struct ggml_tensor * ggml_soft_max_back_impl(
  5132. struct ggml_context * ctx,
  5133. struct ggml_tensor * a,
  5134. struct ggml_tensor * b,
  5135. bool inplace) {
  5136. bool is_node = false;
  5137. if (a->grad || b->grad) {
  5138. is_node = true; // TODO : implement backward pass
  5139. }
  5140. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5141. result->op = GGML_OP_SOFT_MAX_BACK;
  5142. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5143. result->src[0] = a;
  5144. result->src[1] = b;
  5145. return result;
  5146. }
  5147. struct ggml_tensor * ggml_soft_max_back(
  5148. struct ggml_context * ctx,
  5149. struct ggml_tensor * a,
  5150. struct ggml_tensor * b) {
  5151. return ggml_soft_max_back_impl(ctx, a, b, false);
  5152. }
  5153. struct ggml_tensor * ggml_soft_max_back_inplace(
  5154. struct ggml_context * ctx,
  5155. struct ggml_tensor * a,
  5156. struct ggml_tensor * b) {
  5157. return ggml_soft_max_back_impl(ctx, a, b, true);
  5158. }
  5159. // ggml_rope
  5160. static struct ggml_tensor * ggml_rope_impl(
  5161. struct ggml_context * ctx,
  5162. struct ggml_tensor * a,
  5163. struct ggml_tensor * b,
  5164. struct ggml_tensor * c,
  5165. int n_dims,
  5166. int mode,
  5167. int n_ctx,
  5168. int n_orig_ctx,
  5169. float freq_base,
  5170. float freq_scale,
  5171. float ext_factor,
  5172. float attn_factor,
  5173. float beta_fast,
  5174. float beta_slow,
  5175. float xpos_base,
  5176. bool xpos_down,
  5177. bool inplace) {
  5178. GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported");
  5179. GGML_ASSERT(ggml_is_vector(b));
  5180. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5181. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5182. if (c) {
  5183. GGML_ASSERT(c->type == GGML_TYPE_F32);
  5184. GGML_ASSERT(c->ne[0] >= n_dims / 2);
  5185. }
  5186. bool is_node = false;
  5187. if (a->grad) {
  5188. is_node = true;
  5189. }
  5190. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5191. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  5192. memcpy(params + 5, &freq_base, sizeof(float));
  5193. memcpy(params + 6, &freq_scale, sizeof(float));
  5194. memcpy(params + 7, &ext_factor, sizeof(float));
  5195. memcpy(params + 8, &attn_factor, sizeof(float));
  5196. memcpy(params + 9, &beta_fast, sizeof(float));
  5197. memcpy(params + 10, &beta_slow, sizeof(float));
  5198. memcpy(params + 11, &xpos_base, sizeof(float));
  5199. memcpy(params + 12, &xpos_down, sizeof(bool));
  5200. ggml_set_op_params(result, params, sizeof(params));
  5201. result->op = GGML_OP_ROPE;
  5202. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5203. result->src[0] = a;
  5204. result->src[1] = b;
  5205. result->src[2] = c;
  5206. return result;
  5207. }
  5208. struct ggml_tensor * ggml_rope(
  5209. struct ggml_context * ctx,
  5210. struct ggml_tensor * a,
  5211. struct ggml_tensor * b,
  5212. int n_dims,
  5213. int mode,
  5214. int n_ctx) {
  5215. return ggml_rope_impl(
  5216. ctx, a, b, NULL, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  5217. );
  5218. }
  5219. struct ggml_tensor * ggml_rope_inplace(
  5220. struct ggml_context * ctx,
  5221. struct ggml_tensor * a,
  5222. struct ggml_tensor * b,
  5223. int n_dims,
  5224. int mode,
  5225. int n_ctx) {
  5226. return ggml_rope_impl(
  5227. ctx, a, b, NULL, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  5228. );
  5229. }
  5230. struct ggml_tensor * ggml_rope_ext(
  5231. struct ggml_context * ctx,
  5232. struct ggml_tensor * a,
  5233. struct ggml_tensor * b,
  5234. struct ggml_tensor * c,
  5235. int n_dims,
  5236. int mode,
  5237. int n_ctx,
  5238. int n_orig_ctx,
  5239. float freq_base,
  5240. float freq_scale,
  5241. float ext_factor,
  5242. float attn_factor,
  5243. float beta_fast,
  5244. float beta_slow) {
  5245. return ggml_rope_impl(
  5246. ctx, a, b, c, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5247. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  5248. );
  5249. }
  5250. struct ggml_tensor * ggml_rope_ext_inplace(
  5251. struct ggml_context * ctx,
  5252. struct ggml_tensor * a,
  5253. struct ggml_tensor * b,
  5254. struct ggml_tensor * c,
  5255. int n_dims,
  5256. int mode,
  5257. int n_ctx,
  5258. int n_orig_ctx,
  5259. float freq_base,
  5260. float freq_scale,
  5261. float ext_factor,
  5262. float attn_factor,
  5263. float beta_fast,
  5264. float beta_slow) {
  5265. return ggml_rope_impl(
  5266. ctx, a, b, c, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5267. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  5268. );
  5269. }
  5270. struct ggml_tensor * ggml_rope_custom(
  5271. struct ggml_context * ctx,
  5272. struct ggml_tensor * a,
  5273. struct ggml_tensor * b,
  5274. int n_dims,
  5275. int mode,
  5276. int n_ctx,
  5277. int n_orig_ctx,
  5278. float freq_base,
  5279. float freq_scale,
  5280. float ext_factor,
  5281. float attn_factor,
  5282. float beta_fast,
  5283. float beta_slow) {
  5284. return ggml_rope_impl(
  5285. ctx, a, b, NULL, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5286. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  5287. );
  5288. }
  5289. struct ggml_tensor * ggml_rope_custom_inplace(
  5290. struct ggml_context * ctx,
  5291. struct ggml_tensor * a,
  5292. struct ggml_tensor * b,
  5293. int n_dims,
  5294. int mode,
  5295. int n_ctx,
  5296. int n_orig_ctx,
  5297. float freq_base,
  5298. float freq_scale,
  5299. float ext_factor,
  5300. float attn_factor,
  5301. float beta_fast,
  5302. float beta_slow) {
  5303. return ggml_rope_impl(
  5304. ctx, a, b, NULL, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5305. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  5306. );
  5307. }
  5308. // ggml_rope_back
  5309. struct ggml_tensor * ggml_rope_back(
  5310. struct ggml_context * ctx,
  5311. struct ggml_tensor * a,
  5312. struct ggml_tensor * b,
  5313. struct ggml_tensor * c,
  5314. int n_dims,
  5315. int mode,
  5316. int n_ctx,
  5317. int n_orig_ctx,
  5318. float freq_base,
  5319. float freq_scale,
  5320. float ext_factor,
  5321. float attn_factor,
  5322. float beta_fast,
  5323. float beta_slow,
  5324. float xpos_base,
  5325. bool xpos_down) {
  5326. GGML_ASSERT(ggml_is_vector(b));
  5327. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5328. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5329. GGML_ASSERT(c == NULL && "freq factors not implemented yet");
  5330. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5331. bool is_node = false;
  5332. if (a->grad) {
  5333. is_node = false; // TODO: implement backward
  5334. }
  5335. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5336. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  5337. memcpy(params + 5, &freq_base, sizeof(float));
  5338. memcpy(params + 6, &freq_scale, sizeof(float));
  5339. memcpy(params + 7, &ext_factor, sizeof(float));
  5340. memcpy(params + 8, &attn_factor, sizeof(float));
  5341. memcpy(params + 9, &beta_fast, sizeof(float));
  5342. memcpy(params + 10, &beta_slow, sizeof(float));
  5343. memcpy(params + 11, &xpos_base, sizeof(float));
  5344. memcpy(params + 12, &xpos_down, sizeof(bool));
  5345. ggml_set_op_params(result, params, sizeof(params));
  5346. result->op = GGML_OP_ROPE_BACK;
  5347. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5348. result->src[0] = a;
  5349. result->src[1] = b;
  5350. return result;
  5351. }
  5352. // ggml_clamp
  5353. struct ggml_tensor * ggml_clamp(
  5354. struct ggml_context * ctx,
  5355. struct ggml_tensor * a,
  5356. float min,
  5357. float max) {
  5358. bool is_node = false;
  5359. if (a->grad) {
  5360. GGML_ASSERT(false); // TODO: implement backward
  5361. is_node = true;
  5362. }
  5363. // TODO: when implement backward, fix this:
  5364. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5365. float params[] = { min, max };
  5366. ggml_set_op_params(result, params, sizeof(params));
  5367. result->op = GGML_OP_CLAMP;
  5368. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5369. result->src[0] = a;
  5370. return result;
  5371. }
  5372. // ggml_conv_1d
  5373. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5374. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5375. }
  5376. GGML_API struct ggml_tensor * ggml_conv_1d(
  5377. struct ggml_context * ctx,
  5378. struct ggml_tensor * a,
  5379. struct ggml_tensor * b,
  5380. int s0,
  5381. int p0,
  5382. int d0) {
  5383. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  5384. struct ggml_tensor * result =
  5385. ggml_mul_mat(ctx,
  5386. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  5387. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  5388. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  5389. return result;
  5390. }
  5391. // ggml_conv_1d_ph
  5392. struct ggml_tensor* ggml_conv_1d_ph(
  5393. struct ggml_context * ctx,
  5394. struct ggml_tensor * a,
  5395. struct ggml_tensor * b,
  5396. int s,
  5397. int d) {
  5398. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5399. }
  5400. // ggml_conv_transpose_1d
  5401. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5402. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  5403. }
  5404. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  5405. struct ggml_context * ctx,
  5406. struct ggml_tensor * a,
  5407. struct ggml_tensor * b,
  5408. int s0,
  5409. int p0,
  5410. int d0) {
  5411. GGML_ASSERT(ggml_is_matrix(b));
  5412. GGML_ASSERT(a->ne[2] == b->ne[1]);
  5413. GGML_ASSERT(a->ne[3] == 1);
  5414. GGML_ASSERT(p0 == 0);
  5415. GGML_ASSERT(d0 == 1);
  5416. bool is_node = false;
  5417. if (a->grad || b->grad) {
  5418. GGML_ASSERT(false); // TODO: implement backward
  5419. is_node = true;
  5420. }
  5421. const int64_t ne[4] = {
  5422. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  5423. a->ne[1], b->ne[2], 1,
  5424. };
  5425. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5426. int32_t params[] = { s0, p0, d0 };
  5427. ggml_set_op_params(result, params, sizeof(params));
  5428. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  5429. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5430. result->src[0] = a;
  5431. result->src[1] = b;
  5432. return result;
  5433. }
  5434. // ggml_conv_depthwise
  5435. struct ggml_tensor * ggml_conv_depthwise_2d(
  5436. struct ggml_context * ctx,
  5437. struct ggml_tensor * a,
  5438. struct ggml_tensor * b,
  5439. int s0,
  5440. int s1,
  5441. int p0,
  5442. int p1,
  5443. int d0,
  5444. int d1) {
  5445. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  5446. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  5447. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  5448. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  5449. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  5450. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  5451. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  5452. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  5453. return result;
  5454. }
  5455. // ggml_conv_2d
  5456. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  5457. // a: [OC,IC, KH, KW]
  5458. // b: [N, IC, IH, IW]
  5459. // result: [N, OH, OW, IC*KH*KW]
  5460. struct ggml_tensor * ggml_im2col(
  5461. struct ggml_context * ctx,
  5462. struct ggml_tensor * a,
  5463. struct ggml_tensor * b,
  5464. int s0,
  5465. int s1,
  5466. int p0,
  5467. int p1,
  5468. int d0,
  5469. int d1,
  5470. bool is_2D,
  5471. enum ggml_type dst_type) {
  5472. if(is_2D) {
  5473. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5474. } else {
  5475. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5476. }
  5477. bool is_node = false;
  5478. if (a->grad || b->grad) {
  5479. GGML_ASSERT(false); // TODO: implement backward
  5480. is_node = true;
  5481. }
  5482. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  5483. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  5484. const int64_t ne[4] = {
  5485. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  5486. OW,
  5487. is_2D ? OH : b->ne[2],
  5488. is_2D ? b->ne[3] : 1,
  5489. };
  5490. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  5491. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  5492. ggml_set_op_params(result, params, sizeof(params));
  5493. result->op = GGML_OP_IM2COL;
  5494. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5495. result->src[0] = a;
  5496. result->src[1] = b;
  5497. return result;
  5498. }
  5499. // a: [OC,IC, KH, KW]
  5500. // b: [N, IC, IH, IW]
  5501. // result: [N, OC, OH, OW]
  5502. struct ggml_tensor * ggml_conv_2d(
  5503. struct ggml_context * ctx,
  5504. struct ggml_tensor * a,
  5505. struct ggml_tensor * b,
  5506. int s0,
  5507. int s1,
  5508. int p0,
  5509. int p1,
  5510. int d0,
  5511. int d1) {
  5512. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  5513. struct ggml_tensor * result =
  5514. ggml_mul_mat(ctx,
  5515. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  5516. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  5517. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  5518. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  5519. return result;
  5520. }
  5521. // ggml_conv_2d_sk_p0
  5522. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5523. struct ggml_context * ctx,
  5524. struct ggml_tensor * a,
  5525. struct ggml_tensor * b) {
  5526. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5527. }
  5528. // ggml_conv_2d_s1_ph
  5529. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5530. struct ggml_context * ctx,
  5531. struct ggml_tensor * a,
  5532. struct ggml_tensor * b) {
  5533. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5534. }
  5535. // ggml_conv_transpose_2d_p0
  5536. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5537. return (ins - 1) * s - 2 * p + ks;
  5538. }
  5539. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5540. struct ggml_context * ctx,
  5541. struct ggml_tensor * a,
  5542. struct ggml_tensor * b,
  5543. int stride) {
  5544. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5545. bool is_node = false;
  5546. if (a->grad || b->grad) {
  5547. GGML_ASSERT(false); // TODO: implement backward
  5548. is_node = true;
  5549. }
  5550. const int64_t ne[4] = {
  5551. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5552. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5553. a->ne[2], b->ne[3],
  5554. };
  5555. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5556. ggml_set_op_params_i32(result, 0, stride);
  5557. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5558. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5559. result->src[0] = a;
  5560. result->src[1] = b;
  5561. return result;
  5562. }
  5563. // ggml_pool_*
  5564. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  5565. return (ins + 2 * p - ks) / s + 1;
  5566. }
  5567. // ggml_pool_1d
  5568. struct ggml_tensor * ggml_pool_1d(
  5569. struct ggml_context * ctx,
  5570. struct ggml_tensor * a,
  5571. enum ggml_op_pool op,
  5572. int k0,
  5573. int s0,
  5574. int p0) {
  5575. bool is_node = false;
  5576. if (a->grad) {
  5577. GGML_ASSERT(false); // TODO: implement backward
  5578. is_node = true;
  5579. }
  5580. const int64_t ne[4] = {
  5581. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5582. a->ne[1],
  5583. a->ne[2],
  5584. a->ne[3],
  5585. };
  5586. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5587. int32_t params[] = { op, k0, s0, p0 };
  5588. ggml_set_op_params(result, params, sizeof(params));
  5589. result->op = GGML_OP_POOL_1D;
  5590. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5591. result->src[0] = a;
  5592. return result;
  5593. }
  5594. // ggml_pool_2d
  5595. struct ggml_tensor * ggml_pool_2d(
  5596. struct ggml_context * ctx,
  5597. struct ggml_tensor * a,
  5598. enum ggml_op_pool op,
  5599. int k0,
  5600. int k1,
  5601. int s0,
  5602. int s1,
  5603. float p0,
  5604. float p1) {
  5605. bool is_node = false;
  5606. if (a->grad) {
  5607. GGML_ASSERT(false); // TODO: implement backward
  5608. is_node = true;
  5609. }
  5610. struct ggml_tensor * result;
  5611. const int64_t ne[3] = {
  5612. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5613. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5614. a->ne[2],
  5615. };
  5616. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5617. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5618. ggml_set_op_params(result, params, sizeof(params));
  5619. result->op = GGML_OP_POOL_2D;
  5620. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5621. result->src[0] = a;
  5622. return result;
  5623. }
  5624. // ggml_upscale
  5625. static struct ggml_tensor * ggml_upscale_impl(
  5626. struct ggml_context * ctx,
  5627. struct ggml_tensor * a,
  5628. int ne0,
  5629. int ne1,
  5630. int ne2,
  5631. int ne3) {
  5632. bool is_node = false;
  5633. if (a->grad) {
  5634. GGML_ASSERT(false); // TODO: implement backward
  5635. is_node = true;
  5636. }
  5637. GGML_ASSERT(a->ne[0] <= ne0);
  5638. GGML_ASSERT(a->ne[1] <= ne1);
  5639. GGML_ASSERT(a->ne[2] <= ne2);
  5640. GGML_ASSERT(a->ne[3] <= ne3);
  5641. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5642. ne0,
  5643. ne1,
  5644. ne2,
  5645. ne3
  5646. );
  5647. result->op = GGML_OP_UPSCALE;
  5648. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5649. result->src[0] = a;
  5650. return result;
  5651. }
  5652. struct ggml_tensor * ggml_upscale(
  5653. struct ggml_context * ctx,
  5654. struct ggml_tensor * a,
  5655. int scale_factor) {
  5656. return ggml_upscale_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3]);
  5657. }
  5658. struct ggml_tensor * ggml_upscale_ext(
  5659. struct ggml_context * ctx,
  5660. struct ggml_tensor * a,
  5661. int ne0,
  5662. int ne1,
  5663. int ne2,
  5664. int ne3) {
  5665. return ggml_upscale_impl(ctx, a, ne0, ne1, ne2, ne3);
  5666. }
  5667. // ggml_pad
  5668. struct ggml_tensor * ggml_pad(
  5669. struct ggml_context * ctx,
  5670. struct ggml_tensor * a,
  5671. int p0, int p1, int p2, int p3) {
  5672. bool is_node = false;
  5673. if (a->grad) {
  5674. GGML_ASSERT(false); // TODO: implement backward
  5675. is_node = true;
  5676. }
  5677. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5678. a->ne[0] + p0,
  5679. a->ne[1] + p1,
  5680. a->ne[2] + p2,
  5681. a->ne[3] + p3);
  5682. result->op = GGML_OP_PAD;
  5683. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5684. result->src[0] = a;
  5685. return result;
  5686. }
  5687. // ggml_arange
  5688. struct ggml_tensor * ggml_arange(
  5689. struct ggml_context * ctx,
  5690. float start,
  5691. float stop,
  5692. float step) {
  5693. GGML_ASSERT(stop > start);
  5694. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5695. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5696. result->op = GGML_OP_ARANGE;
  5697. ggml_set_op_params_f32(result, 0, start);
  5698. ggml_set_op_params_f32(result, 1, stop);
  5699. ggml_set_op_params_f32(result, 2, step);
  5700. return result;
  5701. }
  5702. // ggml_timestep_embedding
  5703. struct ggml_tensor * ggml_timestep_embedding(
  5704. struct ggml_context * ctx,
  5705. struct ggml_tensor * timesteps,
  5706. int dim,
  5707. int max_period) {
  5708. bool is_node = false;
  5709. if (timesteps->grad) {
  5710. GGML_ASSERT(false); // TODO: implement backward
  5711. is_node = true;
  5712. }
  5713. int actual_dim = dim;
  5714. if (dim % 2 != 0) {
  5715. actual_dim = dim + 1;
  5716. }
  5717. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5718. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5719. ggml_set_op_params_i32(result, 0, dim);
  5720. ggml_set_op_params_i32(result, 1, max_period);
  5721. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5722. result->src[0] = timesteps;
  5723. return result;
  5724. }
  5725. // ggml_argsort
  5726. struct ggml_tensor * ggml_argsort(
  5727. struct ggml_context * ctx,
  5728. struct ggml_tensor * a,
  5729. enum ggml_sort_order order) {
  5730. bool is_node = false;
  5731. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5732. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5733. result->op = GGML_OP_ARGSORT;
  5734. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5735. result->src[0] = a;
  5736. return result;
  5737. }
  5738. // ggml_top_k
  5739. struct ggml_tensor * ggml_top_k(
  5740. struct ggml_context * ctx,
  5741. struct ggml_tensor * a,
  5742. int k) {
  5743. GGML_ASSERT(a->ne[0] >= k);
  5744. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5745. result = ggml_view_4d(ctx, result,
  5746. k, result->ne[1], result->ne[2], result->ne[3],
  5747. result->nb[1], result->nb[2], result->nb[3],
  5748. 0);
  5749. return result;
  5750. }
  5751. // ggml_flash_attn
  5752. struct ggml_tensor * ggml_flash_attn(
  5753. struct ggml_context * ctx,
  5754. struct ggml_tensor * q,
  5755. struct ggml_tensor * k,
  5756. struct ggml_tensor * v,
  5757. bool masked) {
  5758. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5759. // TODO: check if vT can be multiplied by (k*qT)
  5760. bool is_node = false;
  5761. if (q->grad || k->grad || v->grad) {
  5762. is_node = true;
  5763. }
  5764. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5765. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  5766. int32_t t = masked ? 1 : 0;
  5767. ggml_set_op_params(result, &t, sizeof(t));
  5768. result->op = GGML_OP_FLASH_ATTN;
  5769. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5770. result->src[0] = q;
  5771. result->src[1] = k;
  5772. result->src[2] = v;
  5773. return result;
  5774. }
  5775. // ggml_flash_attn_ext
  5776. struct ggml_tensor * ggml_flash_attn_ext(
  5777. struct ggml_context * ctx,
  5778. struct ggml_tensor * q,
  5779. struct ggml_tensor * k,
  5780. struct ggml_tensor * v,
  5781. struct ggml_tensor * mask,
  5782. float scale,
  5783. float max_bias) {
  5784. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5785. // TODO: check if vT can be multiplied by (k*qT)
  5786. if (mask) {
  5787. GGML_ASSERT(ggml_is_contiguous(mask));
  5788. GGML_ASSERT(mask->ne[2] == 1);
  5789. GGML_ASSERT(mask->ne[3] == 1);
  5790. GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
  5791. "the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
  5792. //GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
  5793. }
  5794. if (max_bias > 0.0f) {
  5795. GGML_ASSERT(mask);
  5796. }
  5797. bool is_node = false;
  5798. if (q->grad || k->grad || v->grad) {
  5799. is_node = true;
  5800. }
  5801. // permute(0, 2, 1, 3)
  5802. int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
  5803. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5804. float params[] = { scale, max_bias };
  5805. ggml_set_op_params(result, params, sizeof(params));
  5806. result->op = GGML_OP_FLASH_ATTN_EXT;
  5807. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5808. result->src[0] = q;
  5809. result->src[1] = k;
  5810. result->src[2] = v;
  5811. result->src[3] = mask;
  5812. return result;
  5813. }
  5814. void ggml_flash_attn_ext_set_prec(
  5815. struct ggml_tensor * a,
  5816. enum ggml_prec prec) {
  5817. GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
  5818. const int32_t prec_i32 = (int32_t) prec;
  5819. ggml_set_op_params_i32(a, 2, prec_i32); // scale is on first pos, max_bias on second
  5820. }
  5821. // ggml_flash_ff
  5822. struct ggml_tensor * ggml_flash_ff(
  5823. struct ggml_context * ctx,
  5824. struct ggml_tensor * a,
  5825. struct ggml_tensor * b0,
  5826. struct ggml_tensor * b1,
  5827. struct ggml_tensor * c0,
  5828. struct ggml_tensor * c1) {
  5829. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5830. // TODO: more checks
  5831. bool is_node = false;
  5832. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5833. is_node = true;
  5834. }
  5835. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5836. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  5837. result->op = GGML_OP_FLASH_FF;
  5838. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5839. result->src[0] = a;
  5840. result->src[1] = b0;
  5841. result->src[2] = b1;
  5842. result->src[3] = c0;
  5843. result->src[4] = c1;
  5844. return result;
  5845. }
  5846. // ggml_flash_attn_back
  5847. struct ggml_tensor * ggml_flash_attn_back(
  5848. struct ggml_context * ctx,
  5849. struct ggml_tensor * q,
  5850. struct ggml_tensor * k,
  5851. struct ggml_tensor * v,
  5852. struct ggml_tensor * d,
  5853. bool masked) {
  5854. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5855. // TODO: check if vT can be multiplied by (k*qT)
  5856. // d shape [D,N,ne2,ne3]
  5857. // q shape [D,N,ne2,ne3]
  5858. // k shape [D,M,kvne2,ne3]
  5859. // v shape [M,D,kvne2,ne3]
  5860. const int64_t D = q->ne[0];
  5861. const int64_t N = q->ne[1];
  5862. const int64_t M = k->ne[1];
  5863. const int64_t ne2 = q->ne[2];
  5864. const int64_t ne3 = q->ne[3];
  5865. const int64_t kvne2 = k->ne[2];
  5866. GGML_ASSERT(k->ne[0] == D);
  5867. GGML_ASSERT(v->ne[0] == M);
  5868. GGML_ASSERT(v->ne[1] == D);
  5869. GGML_ASSERT(d->ne[0] == D);
  5870. GGML_ASSERT(d->ne[1] == N);
  5871. GGML_ASSERT(k->ne[2] == kvne2);
  5872. GGML_ASSERT(k->ne[3] == ne3);
  5873. GGML_ASSERT(v->ne[2] == kvne2);
  5874. GGML_ASSERT(v->ne[3] == ne3);
  5875. GGML_ASSERT(d->ne[2] == ne2);
  5876. GGML_ASSERT(d->ne[3] == ne3);
  5877. GGML_ASSERT(ne2 % kvne2 == 0);
  5878. bool is_node = false;
  5879. if (q->grad || k->grad || v->grad) {
  5880. // when using this operation (in backwards pass) these grads are set.
  5881. // we don't want to create (big) grad of our result, so is_node is false.
  5882. is_node = false;
  5883. }
  5884. // store gradients of q, k and v as continuous tensors concatenated in result.
  5885. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5886. const int64_t elem_q = ggml_nelements(q);
  5887. const int64_t elem_k = ggml_nelements(k);
  5888. const int64_t elem_v = ggml_nelements(v);
  5889. enum ggml_type result_type = GGML_TYPE_F32;
  5890. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5891. const size_t tsize = ggml_type_size(result_type);
  5892. const size_t offs_q = 0;
  5893. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5894. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5895. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5896. const size_t nelements = (end + tsize - 1)/tsize;
  5897. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5898. int32_t masked_i = masked ? 1 : 0;
  5899. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5900. result->op = GGML_OP_FLASH_ATTN_BACK;
  5901. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5902. result->src[0] = q;
  5903. result->src[1] = k;
  5904. result->src[2] = v;
  5905. result->src[3] = d;
  5906. return result;
  5907. }
  5908. // ggml_ssm_conv
  5909. struct ggml_tensor * ggml_ssm_conv(
  5910. struct ggml_context * ctx,
  5911. struct ggml_tensor * s,
  5912. struct ggml_tensor * x,
  5913. struct ggml_tensor * c,
  5914. struct ggml_tensor * sq) {
  5915. GGML_ASSERT(ggml_is_3d(s));
  5916. GGML_ASSERT(ggml_is_matrix(x));
  5917. GGML_ASSERT(ggml_is_matrix(c));
  5918. GGML_ASSERT(ggml_is_matrix(sq));
  5919. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5920. const int64_t d_conv = c->ne[0];
  5921. const int64_t d_inner = c->ne[1];
  5922. const int64_t n_tokens = x->ne[1];
  5923. const int64_t n_kv = s->ne[2];
  5924. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5925. GGML_ASSERT( s->ne[1] == d_inner);
  5926. GGML_ASSERT( x->ne[0] == d_inner);
  5927. GGML_ASSERT(sq->ne[0] == n_kv);
  5928. GGML_ASSERT(sq->ne[1] == n_tokens);
  5929. bool is_node = false;
  5930. if (s->grad || x->grad || c->grad || sq->grad) {
  5931. GGML_ASSERT(false); // TODO: implement
  5932. is_node = true;
  5933. }
  5934. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  5935. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  5936. result->op = GGML_OP_SSM_CONV;
  5937. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5938. result->src[0] = s;
  5939. result->src[1] = x;
  5940. result->src[2] = c;
  5941. result->src[3] = sq;
  5942. return result;
  5943. }
  5944. // ggml_ssm_scan
  5945. struct ggml_tensor * ggml_ssm_scan(
  5946. struct ggml_context * ctx,
  5947. struct ggml_tensor * s,
  5948. struct ggml_tensor * x,
  5949. struct ggml_tensor * dt,
  5950. struct ggml_tensor * A,
  5951. struct ggml_tensor * B,
  5952. struct ggml_tensor * C,
  5953. struct ggml_tensor * sq) {
  5954. GGML_ASSERT(ggml_is_contiguous(s));
  5955. GGML_ASSERT(ggml_is_contiguous(x));
  5956. GGML_ASSERT(ggml_is_contiguous(dt));
  5957. GGML_ASSERT(ggml_is_contiguous(A));
  5958. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5959. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  5960. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  5961. GGML_ASSERT(ggml_are_same_shape(x, dt));
  5962. {
  5963. const int64_t d_state = s->ne[0];
  5964. const int64_t d_inner = s->ne[1];
  5965. const int64_t n_tokens = x->ne[1];
  5966. GGML_ASSERT(x->ne[0] == d_inner);
  5967. GGML_ASSERT(A->ne[0] == d_state);
  5968. GGML_ASSERT(A->ne[1] == d_inner);
  5969. GGML_ASSERT(B->ne[0] == d_state);
  5970. GGML_ASSERT(B->ne[1] == n_tokens);
  5971. GGML_ASSERT(C->ne[0] == d_state);
  5972. GGML_ASSERT(C->ne[1] == n_tokens);
  5973. }
  5974. bool is_node = false;
  5975. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  5976. GGML_ASSERT(false); // TODO: implement
  5977. is_node = true;
  5978. }
  5979. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  5980. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  5981. result->op = GGML_OP_SSM_SCAN;
  5982. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5983. result->src[0] = s;
  5984. result->src[1] = x;
  5985. result->src[2] = dt;
  5986. result->src[3] = A;
  5987. result->src[4] = B;
  5988. result->src[5] = C;
  5989. result->src[6] = sq;
  5990. return result;
  5991. }
  5992. // ggml_win_part
  5993. struct ggml_tensor * ggml_win_part(
  5994. struct ggml_context * ctx,
  5995. struct ggml_tensor * a,
  5996. int w) {
  5997. GGML_ASSERT(a->ne[3] == 1);
  5998. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5999. bool is_node = false;
  6000. if (a->grad) {
  6001. GGML_ASSERT(false); // TODO: implement backward
  6002. is_node = true;
  6003. }
  6004. // padding
  6005. const int px = (w - a->ne[1]%w)%w;
  6006. const int py = (w - a->ne[2]%w)%w;
  6007. const int npx = (px + a->ne[1])/w;
  6008. const int npy = (py + a->ne[2])/w;
  6009. const int np = npx*npy;
  6010. const int64_t ne[4] = { a->ne[0], w, w, np, };
  6011. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  6012. int32_t params[] = { npx, npy, w };
  6013. ggml_set_op_params(result, params, sizeof(params));
  6014. result->op = GGML_OP_WIN_PART;
  6015. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6016. result->src[0] = a;
  6017. return result;
  6018. }
  6019. // ggml_win_unpart
  6020. struct ggml_tensor * ggml_win_unpart(
  6021. struct ggml_context * ctx,
  6022. struct ggml_tensor * a,
  6023. int w0,
  6024. int h0,
  6025. int w) {
  6026. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6027. bool is_node = false;
  6028. if (a->grad) {
  6029. GGML_ASSERT(false); // TODO: implement backward
  6030. is_node = true;
  6031. }
  6032. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  6033. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  6034. int32_t params[] = { w };
  6035. ggml_set_op_params(result, params, sizeof(params));
  6036. result->op = GGML_OP_WIN_UNPART;
  6037. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6038. result->src[0] = a;
  6039. return result;
  6040. }
  6041. // ggml_get_rel_pos
  6042. struct ggml_tensor * ggml_get_rel_pos(
  6043. struct ggml_context * ctx,
  6044. struct ggml_tensor * a,
  6045. int qh,
  6046. int kh) {
  6047. GGML_ASSERT(qh == kh);
  6048. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  6049. bool is_node = false;
  6050. if (a->grad) {
  6051. GGML_ASSERT(false); // TODO: implement backward
  6052. is_node = true;
  6053. }
  6054. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  6055. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  6056. result->op = GGML_OP_GET_REL_POS;
  6057. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6058. result->src[0] = a;
  6059. return result;
  6060. }
  6061. // ggml_add_rel_pos
  6062. static struct ggml_tensor * ggml_add_rel_pos_impl(
  6063. struct ggml_context * ctx,
  6064. struct ggml_tensor * a,
  6065. struct ggml_tensor * pw,
  6066. struct ggml_tensor * ph,
  6067. bool inplace) {
  6068. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  6069. GGML_ASSERT(ggml_is_contiguous(a));
  6070. GGML_ASSERT(ggml_is_contiguous(pw));
  6071. GGML_ASSERT(ggml_is_contiguous(ph));
  6072. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  6073. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  6074. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  6075. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  6076. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  6077. bool is_node = false;
  6078. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  6079. is_node = true;
  6080. }
  6081. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6082. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  6083. result->op = GGML_OP_ADD_REL_POS;
  6084. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6085. result->src[0] = a;
  6086. result->src[1] = pw;
  6087. result->src[2] = ph;
  6088. return result;
  6089. }
  6090. struct ggml_tensor * ggml_add_rel_pos(
  6091. struct ggml_context * ctx,
  6092. struct ggml_tensor * a,
  6093. struct ggml_tensor * pw,
  6094. struct ggml_tensor * ph) {
  6095. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  6096. }
  6097. struct ggml_tensor * ggml_add_rel_pos_inplace(
  6098. struct ggml_context * ctx,
  6099. struct ggml_tensor * a,
  6100. struct ggml_tensor * pw,
  6101. struct ggml_tensor * ph) {
  6102. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  6103. }
  6104. // gmml_unary
  6105. static struct ggml_tensor * ggml_unary_impl(
  6106. struct ggml_context * ctx,
  6107. struct ggml_tensor * a,
  6108. enum ggml_unary_op op,
  6109. bool inplace) {
  6110. bool is_node = false;
  6111. if (!inplace && (a->grad)) {
  6112. is_node = true;
  6113. }
  6114. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6115. ggml_set_op_params_i32(result, 0, (int32_t) op);
  6116. result->op = GGML_OP_UNARY;
  6117. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6118. result->src[0] = a;
  6119. return result;
  6120. }
  6121. struct ggml_tensor * ggml_unary(
  6122. struct ggml_context * ctx,
  6123. struct ggml_tensor * a,
  6124. enum ggml_unary_op op) {
  6125. return ggml_unary_impl(ctx, a, op, false);
  6126. }
  6127. struct ggml_tensor * ggml_unary_inplace(
  6128. struct ggml_context * ctx,
  6129. struct ggml_tensor * a,
  6130. enum ggml_unary_op op) {
  6131. return ggml_unary_impl(ctx, a, op, true);
  6132. }
  6133. // ggml_map_unary
  6134. static struct ggml_tensor * ggml_map_unary_impl_f32(
  6135. struct ggml_context * ctx,
  6136. struct ggml_tensor * a,
  6137. const ggml_unary_op_f32_t fun,
  6138. bool inplace) {
  6139. bool is_node = false;
  6140. if (!inplace && a->grad) {
  6141. is_node = true;
  6142. }
  6143. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6144. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6145. result->op = GGML_OP_MAP_UNARY;
  6146. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6147. result->src[0] = a;
  6148. return result;
  6149. }
  6150. struct ggml_tensor * ggml_map_unary_f32(
  6151. struct ggml_context * ctx,
  6152. struct ggml_tensor * a,
  6153. const ggml_unary_op_f32_t fun) {
  6154. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  6155. }
  6156. struct ggml_tensor * ggml_map_unary_inplace_f32(
  6157. struct ggml_context * ctx,
  6158. struct ggml_tensor * a,
  6159. const ggml_unary_op_f32_t fun) {
  6160. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  6161. }
  6162. // ggml_map_binary
  6163. static struct ggml_tensor * ggml_map_binary_impl_f32(
  6164. struct ggml_context * ctx,
  6165. struct ggml_tensor * a,
  6166. struct ggml_tensor * b,
  6167. const ggml_binary_op_f32_t fun,
  6168. bool inplace) {
  6169. GGML_ASSERT(ggml_are_same_shape(a, b));
  6170. bool is_node = false;
  6171. if (!inplace && (a->grad || b->grad)) {
  6172. is_node = true;
  6173. }
  6174. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6175. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6176. result->op = GGML_OP_MAP_BINARY;
  6177. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6178. result->src[0] = a;
  6179. result->src[1] = b;
  6180. return result;
  6181. }
  6182. struct ggml_tensor * ggml_map_binary_f32(
  6183. struct ggml_context * ctx,
  6184. struct ggml_tensor * a,
  6185. struct ggml_tensor * b,
  6186. const ggml_binary_op_f32_t fun) {
  6187. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6188. }
  6189. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6190. struct ggml_context * ctx,
  6191. struct ggml_tensor * a,
  6192. struct ggml_tensor * b,
  6193. const ggml_binary_op_f32_t fun) {
  6194. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6195. }
  6196. // ggml_map_custom1_f32
  6197. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  6198. struct ggml_context * ctx,
  6199. struct ggml_tensor * a,
  6200. const ggml_custom1_op_f32_t fun,
  6201. bool inplace) {
  6202. bool is_node = false;
  6203. if (!inplace && a->grad) {
  6204. is_node = true;
  6205. }
  6206. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6207. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6208. result->op = GGML_OP_MAP_CUSTOM1_F32;
  6209. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6210. result->src[0] = a;
  6211. return result;
  6212. }
  6213. struct ggml_tensor * ggml_map_custom1_f32(
  6214. struct ggml_context * ctx,
  6215. struct ggml_tensor * a,
  6216. const ggml_custom1_op_f32_t fun) {
  6217. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6218. }
  6219. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6220. struct ggml_context * ctx,
  6221. struct ggml_tensor * a,
  6222. const ggml_custom1_op_f32_t fun) {
  6223. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6224. }
  6225. // ggml_map_custom2_f32
  6226. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  6227. struct ggml_context * ctx,
  6228. struct ggml_tensor * a,
  6229. struct ggml_tensor * b,
  6230. const ggml_custom2_op_f32_t fun,
  6231. bool inplace) {
  6232. bool is_node = false;
  6233. if (!inplace && (a->grad || b->grad)) {
  6234. is_node = true;
  6235. }
  6236. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6237. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6238. result->op = GGML_OP_MAP_CUSTOM2_F32;
  6239. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6240. result->src[0] = a;
  6241. result->src[1] = b;
  6242. return result;
  6243. }
  6244. struct ggml_tensor * ggml_map_custom2_f32(
  6245. struct ggml_context * ctx,
  6246. struct ggml_tensor * a,
  6247. struct ggml_tensor * b,
  6248. const ggml_custom2_op_f32_t fun) {
  6249. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6250. }
  6251. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6252. struct ggml_context * ctx,
  6253. struct ggml_tensor * a,
  6254. struct ggml_tensor * b,
  6255. const ggml_custom2_op_f32_t fun) {
  6256. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6257. }
  6258. // ggml_map_custom3_f32
  6259. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  6260. struct ggml_context * ctx,
  6261. struct ggml_tensor * a,
  6262. struct ggml_tensor * b,
  6263. struct ggml_tensor * c,
  6264. const ggml_custom3_op_f32_t fun,
  6265. bool inplace) {
  6266. bool is_node = false;
  6267. if (!inplace && (a->grad || b->grad || c->grad)) {
  6268. is_node = true;
  6269. }
  6270. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6271. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6272. result->op = GGML_OP_MAP_CUSTOM3_F32;
  6273. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6274. result->src[0] = a;
  6275. result->src[1] = b;
  6276. result->src[2] = c;
  6277. return result;
  6278. }
  6279. struct ggml_tensor * ggml_map_custom3_f32(
  6280. struct ggml_context * ctx,
  6281. struct ggml_tensor * a,
  6282. struct ggml_tensor * b,
  6283. struct ggml_tensor * c,
  6284. const ggml_custom3_op_f32_t fun) {
  6285. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6286. }
  6287. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6288. struct ggml_context * ctx,
  6289. struct ggml_tensor * a,
  6290. struct ggml_tensor * b,
  6291. struct ggml_tensor * c,
  6292. const ggml_custom3_op_f32_t fun) {
  6293. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6294. }
  6295. // ggml_map_custom1
  6296. struct ggml_map_custom1_op_params {
  6297. ggml_custom1_op_t fun;
  6298. int n_tasks;
  6299. void * userdata;
  6300. };
  6301. static struct ggml_tensor * ggml_map_custom1_impl(
  6302. struct ggml_context * ctx,
  6303. struct ggml_tensor * a,
  6304. const ggml_custom1_op_t fun,
  6305. int n_tasks,
  6306. void * userdata,
  6307. bool inplace) {
  6308. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6309. bool is_node = false;
  6310. if (!inplace && a->grad) {
  6311. is_node = true;
  6312. }
  6313. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6314. struct ggml_map_custom1_op_params params = {
  6315. /*.fun =*/ fun,
  6316. /*.n_tasks =*/ n_tasks,
  6317. /*.userdata =*/ userdata
  6318. };
  6319. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6320. result->op = GGML_OP_MAP_CUSTOM1;
  6321. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6322. result->src[0] = a;
  6323. return result;
  6324. }
  6325. struct ggml_tensor * ggml_map_custom1(
  6326. struct ggml_context * ctx,
  6327. struct ggml_tensor * a,
  6328. const ggml_custom1_op_t fun,
  6329. int n_tasks,
  6330. void * userdata) {
  6331. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6332. }
  6333. struct ggml_tensor * ggml_map_custom1_inplace(
  6334. struct ggml_context * ctx,
  6335. struct ggml_tensor * a,
  6336. const ggml_custom1_op_t fun,
  6337. int n_tasks,
  6338. void * userdata) {
  6339. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6340. }
  6341. // ggml_map_custom2
  6342. struct ggml_map_custom2_op_params {
  6343. ggml_custom2_op_t fun;
  6344. int n_tasks;
  6345. void * userdata;
  6346. };
  6347. static struct ggml_tensor * ggml_map_custom2_impl(
  6348. struct ggml_context * ctx,
  6349. struct ggml_tensor * a,
  6350. struct ggml_tensor * b,
  6351. const ggml_custom2_op_t fun,
  6352. int n_tasks,
  6353. void * userdata,
  6354. bool inplace) {
  6355. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6356. bool is_node = false;
  6357. if (!inplace && (a->grad || b->grad)) {
  6358. is_node = true;
  6359. }
  6360. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6361. struct ggml_map_custom2_op_params params = {
  6362. /*.fun =*/ fun,
  6363. /*.n_tasks =*/ n_tasks,
  6364. /*.userdata =*/ userdata
  6365. };
  6366. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6367. result->op = GGML_OP_MAP_CUSTOM2;
  6368. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6369. result->src[0] = a;
  6370. result->src[1] = b;
  6371. return result;
  6372. }
  6373. struct ggml_tensor * ggml_map_custom2(
  6374. struct ggml_context * ctx,
  6375. struct ggml_tensor * a,
  6376. struct ggml_tensor * b,
  6377. const ggml_custom2_op_t fun,
  6378. int n_tasks,
  6379. void * userdata) {
  6380. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6381. }
  6382. struct ggml_tensor * ggml_map_custom2_inplace(
  6383. struct ggml_context * ctx,
  6384. struct ggml_tensor * a,
  6385. struct ggml_tensor * b,
  6386. const ggml_custom2_op_t fun,
  6387. int n_tasks,
  6388. void * userdata) {
  6389. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6390. }
  6391. // ggml_map_custom3
  6392. struct ggml_map_custom3_op_params {
  6393. ggml_custom3_op_t fun;
  6394. int n_tasks;
  6395. void * userdata;
  6396. };
  6397. static struct ggml_tensor * ggml_map_custom3_impl(
  6398. struct ggml_context * ctx,
  6399. struct ggml_tensor * a,
  6400. struct ggml_tensor * b,
  6401. struct ggml_tensor * c,
  6402. const ggml_custom3_op_t fun,
  6403. int n_tasks,
  6404. void * userdata,
  6405. bool inplace) {
  6406. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6407. bool is_node = false;
  6408. if (!inplace && (a->grad || b->grad || c->grad)) {
  6409. is_node = true;
  6410. }
  6411. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6412. struct ggml_map_custom3_op_params params = {
  6413. /*.fun =*/ fun,
  6414. /*.n_tasks =*/ n_tasks,
  6415. /*.userdata =*/ userdata
  6416. };
  6417. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6418. result->op = GGML_OP_MAP_CUSTOM3;
  6419. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6420. result->src[0] = a;
  6421. result->src[1] = b;
  6422. result->src[2] = c;
  6423. return result;
  6424. }
  6425. struct ggml_tensor * ggml_map_custom3(
  6426. struct ggml_context * ctx,
  6427. struct ggml_tensor * a,
  6428. struct ggml_tensor * b,
  6429. struct ggml_tensor * c,
  6430. const ggml_custom3_op_t fun,
  6431. int n_tasks,
  6432. void * userdata) {
  6433. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6434. }
  6435. struct ggml_tensor * ggml_map_custom3_inplace(
  6436. struct ggml_context * ctx,
  6437. struct ggml_tensor * a,
  6438. struct ggml_tensor * b,
  6439. struct ggml_tensor * c,
  6440. const ggml_custom3_op_t fun,
  6441. int n_tasks,
  6442. void * userdata) {
  6443. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6444. }
  6445. // ggml_cross_entropy_loss
  6446. struct ggml_tensor * ggml_cross_entropy_loss(
  6447. struct ggml_context * ctx,
  6448. struct ggml_tensor * a,
  6449. struct ggml_tensor * b) {
  6450. GGML_ASSERT(ggml_are_same_shape(a, b));
  6451. bool is_node = false;
  6452. if (a->grad || b->grad) {
  6453. is_node = true;
  6454. }
  6455. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6456. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6457. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6458. result->src[0] = a;
  6459. result->src[1] = b;
  6460. return result;
  6461. }
  6462. // ggml_cross_entropy_loss_back
  6463. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6464. struct ggml_context * ctx,
  6465. struct ggml_tensor * a,
  6466. struct ggml_tensor * b,
  6467. struct ggml_tensor * c) {
  6468. GGML_ASSERT(ggml_are_same_shape(a, b));
  6469. GGML_ASSERT(ggml_is_scalar(c));
  6470. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6471. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6472. result->grad = NULL;
  6473. result->src[0] = a;
  6474. result->src[1] = b;
  6475. result->src[2] = c;
  6476. return result;
  6477. }
  6478. ////////////////////////////////////////////////////////////////////////////////
  6479. void ggml_set_param(
  6480. struct ggml_context * ctx,
  6481. struct ggml_tensor * tensor) {
  6482. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  6483. GGML_ASSERT(tensor->grad == NULL);
  6484. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6485. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  6486. }
  6487. // ggml_compute_forward_dup
  6488. static void ggml_compute_forward_dup_same_cont(
  6489. const struct ggml_compute_params * params,
  6490. struct ggml_tensor * dst) {
  6491. const struct ggml_tensor * src0 = dst->src[0];
  6492. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6493. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6494. GGML_ASSERT(src0->type == dst->type);
  6495. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6496. return;
  6497. }
  6498. const size_t nb00 = src0->nb[0];
  6499. const size_t nb0 = dst->nb[0];
  6500. const int ith = params->ith; // thread index
  6501. const int nth = params->nth; // number of threads
  6502. // parallelize by elements
  6503. const int ne = ggml_nelements(dst);
  6504. const int dr = (ne + nth - 1) / nth;
  6505. const int ie0 = dr * ith;
  6506. const int ie1 = MIN(ie0 + dr, ne);
  6507. if (ie0 < ie1) {
  6508. memcpy(
  6509. ((char *) dst->data + ie0*nb0),
  6510. ((char *) src0->data + ie0*nb00),
  6511. (ie1 - ie0) * ggml_type_size(src0->type));
  6512. }
  6513. }
  6514. static void ggml_compute_forward_dup_f16(
  6515. const struct ggml_compute_params * params,
  6516. struct ggml_tensor * dst) {
  6517. const struct ggml_tensor * src0 = dst->src[0];
  6518. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6519. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6520. return;
  6521. }
  6522. GGML_TENSOR_UNARY_OP_LOCALS
  6523. const int ith = params->ith; // thread index
  6524. const int nth = params->nth; // number of threads
  6525. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6526. ggml_compute_forward_dup_same_cont(params, dst);
  6527. return;
  6528. }
  6529. // parallelize by rows
  6530. const int nr = ne01;
  6531. // number of rows per thread
  6532. const int dr = (nr + nth - 1) / nth;
  6533. // row range for this thread
  6534. const int ir0 = dr * ith;
  6535. const int ir1 = MIN(ir0 + dr, nr);
  6536. if (src0->type == dst->type &&
  6537. ne00 == ne0 &&
  6538. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6539. // copy by rows
  6540. const size_t rs = ne00*nb00;
  6541. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6542. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6543. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6544. memcpy(
  6545. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6546. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6547. rs);
  6548. }
  6549. }
  6550. }
  6551. return;
  6552. }
  6553. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6554. if (ggml_is_contiguous(dst)) {
  6555. if (nb00 == sizeof(ggml_fp16_t)) {
  6556. if (dst->type == GGML_TYPE_F16) {
  6557. size_t id = 0;
  6558. const size_t rs = ne00 * nb00;
  6559. char * dst_ptr = (char *) dst->data;
  6560. for (int i03 = 0; i03 < ne03; i03++) {
  6561. for (int i02 = 0; i02 < ne02; i02++) {
  6562. id += rs * ir0;
  6563. for (int i01 = ir0; i01 < ir1; i01++) {
  6564. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6565. memcpy(dst_ptr + id, src0_ptr, rs);
  6566. id += rs;
  6567. }
  6568. id += rs * (ne01 - ir1);
  6569. }
  6570. }
  6571. } else if (dst->type == GGML_TYPE_F32) {
  6572. size_t id = 0;
  6573. float * dst_ptr = (float *) dst->data;
  6574. for (int i03 = 0; i03 < ne03; i03++) {
  6575. for (int i02 = 0; i02 < ne02; i02++) {
  6576. id += ne00 * ir0;
  6577. for (int i01 = ir0; i01 < ir1; i01++) {
  6578. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6579. for (int i00 = 0; i00 < ne00; i00++) {
  6580. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6581. id++;
  6582. }
  6583. }
  6584. id += ne00 * (ne01 - ir1);
  6585. }
  6586. }
  6587. } else if (type_traits[dst->type].from_float) {
  6588. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6589. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6590. size_t id = 0;
  6591. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6592. char * dst_ptr = (char *) dst->data;
  6593. for (int i03 = 0; i03 < ne03; i03++) {
  6594. for (int i02 = 0; i02 < ne02; i02++) {
  6595. id += rs * ir0;
  6596. for (int i01 = ir0; i01 < ir1; i01++) {
  6597. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6598. for (int i00 = 0; i00 < ne00; i00++) {
  6599. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6600. }
  6601. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6602. id += rs;
  6603. }
  6604. id += rs * (ne01 - ir1);
  6605. }
  6606. }
  6607. } else {
  6608. GGML_ASSERT(false); // TODO: implement
  6609. }
  6610. } else {
  6611. //printf("%s: this is not optimal - fix me\n", __func__);
  6612. if (dst->type == GGML_TYPE_F32) {
  6613. size_t id = 0;
  6614. float * dst_ptr = (float *) dst->data;
  6615. for (int i03 = 0; i03 < ne03; i03++) {
  6616. for (int i02 = 0; i02 < ne02; i02++) {
  6617. id += ne00 * ir0;
  6618. for (int i01 = ir0; i01 < ir1; i01++) {
  6619. for (int i00 = 0; i00 < ne00; i00++) {
  6620. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6621. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6622. id++;
  6623. }
  6624. }
  6625. id += ne00 * (ne01 - ir1);
  6626. }
  6627. }
  6628. } else if (dst->type == GGML_TYPE_F16) {
  6629. size_t id = 0;
  6630. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6631. for (int i03 = 0; i03 < ne03; i03++) {
  6632. for (int i02 = 0; i02 < ne02; i02++) {
  6633. id += ne00 * ir0;
  6634. for (int i01 = ir0; i01 < ir1; i01++) {
  6635. for (int i00 = 0; i00 < ne00; i00++) {
  6636. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6637. dst_ptr[id] = *src0_ptr;
  6638. id++;
  6639. }
  6640. }
  6641. id += ne00 * (ne01 - ir1);
  6642. }
  6643. }
  6644. } else {
  6645. GGML_ASSERT(false); // TODO: implement
  6646. }
  6647. }
  6648. return;
  6649. }
  6650. // dst counters
  6651. int64_t i10 = 0;
  6652. int64_t i11 = 0;
  6653. int64_t i12 = 0;
  6654. int64_t i13 = 0;
  6655. if (dst->type == GGML_TYPE_F16) {
  6656. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6657. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6658. i10 += ne00 * ir0;
  6659. while (i10 >= ne0) {
  6660. i10 -= ne0;
  6661. if (++i11 == ne1) {
  6662. i11 = 0;
  6663. if (++i12 == ne2) {
  6664. i12 = 0;
  6665. if (++i13 == ne3) {
  6666. i13 = 0;
  6667. }
  6668. }
  6669. }
  6670. }
  6671. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6672. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6673. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6674. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6675. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6676. if (++i10 == ne00) {
  6677. i10 = 0;
  6678. if (++i11 == ne01) {
  6679. i11 = 0;
  6680. if (++i12 == ne02) {
  6681. i12 = 0;
  6682. if (++i13 == ne03) {
  6683. i13 = 0;
  6684. }
  6685. }
  6686. }
  6687. }
  6688. }
  6689. }
  6690. i10 += ne00 * (ne01 - ir1);
  6691. while (i10 >= ne0) {
  6692. i10 -= ne0;
  6693. if (++i11 == ne1) {
  6694. i11 = 0;
  6695. if (++i12 == ne2) {
  6696. i12 = 0;
  6697. if (++i13 == ne3) {
  6698. i13 = 0;
  6699. }
  6700. }
  6701. }
  6702. }
  6703. }
  6704. }
  6705. } else if (dst->type == GGML_TYPE_F32) {
  6706. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6707. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6708. i10 += ne00 * ir0;
  6709. while (i10 >= ne0) {
  6710. i10 -= ne0;
  6711. if (++i11 == ne1) {
  6712. i11 = 0;
  6713. if (++i12 == ne2) {
  6714. i12 = 0;
  6715. if (++i13 == ne3) {
  6716. i13 = 0;
  6717. }
  6718. }
  6719. }
  6720. }
  6721. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6722. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6723. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6724. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6725. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6726. if (++i10 == ne0) {
  6727. i10 = 0;
  6728. if (++i11 == ne1) {
  6729. i11 = 0;
  6730. if (++i12 == ne2) {
  6731. i12 = 0;
  6732. if (++i13 == ne3) {
  6733. i13 = 0;
  6734. }
  6735. }
  6736. }
  6737. }
  6738. }
  6739. }
  6740. i10 += ne00 * (ne01 - ir1);
  6741. while (i10 >= ne0) {
  6742. i10 -= ne0;
  6743. if (++i11 == ne1) {
  6744. i11 = 0;
  6745. if (++i12 == ne2) {
  6746. i12 = 0;
  6747. if (++i13 == ne3) {
  6748. i13 = 0;
  6749. }
  6750. }
  6751. }
  6752. }
  6753. }
  6754. }
  6755. } else {
  6756. GGML_ASSERT(false); // TODO: implement
  6757. }
  6758. }
  6759. static void ggml_compute_forward_dup_bf16(
  6760. const struct ggml_compute_params * params,
  6761. struct ggml_tensor * dst) {
  6762. const struct ggml_tensor * src0 = dst->src[0];
  6763. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6764. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6765. return;
  6766. }
  6767. GGML_TENSOR_UNARY_OP_LOCALS
  6768. const int ith = params->ith; // thread index
  6769. const int nth = params->nth; // number of threads
  6770. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6771. ggml_compute_forward_dup_same_cont(params, dst);
  6772. return;
  6773. }
  6774. // parallelize by rows
  6775. const int nr = ne01;
  6776. // number of rows per thread
  6777. const int dr = (nr + nth - 1) / nth;
  6778. // row range for this thread
  6779. const int ir0 = dr * ith;
  6780. const int ir1 = MIN(ir0 + dr, nr);
  6781. if (src0->type == dst->type &&
  6782. ne00 == ne0 &&
  6783. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6784. // copy by rows
  6785. const size_t rs = ne00*nb00;
  6786. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6787. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6788. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6789. memcpy(
  6790. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6791. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6792. rs);
  6793. }
  6794. }
  6795. }
  6796. return;
  6797. }
  6798. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6799. if (ggml_is_contiguous(dst)) {
  6800. if (nb00 == sizeof(ggml_bf16_t)) {
  6801. if (dst->type == GGML_TYPE_BF16) {
  6802. size_t id = 0;
  6803. const size_t rs = ne00 * nb00;
  6804. char * dst_ptr = (char *) dst->data;
  6805. for (int i03 = 0; i03 < ne03; i03++) {
  6806. for (int i02 = 0; i02 < ne02; i02++) {
  6807. id += rs * ir0;
  6808. for (int i01 = ir0; i01 < ir1; i01++) {
  6809. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6810. memcpy(dst_ptr + id, src0_ptr, rs);
  6811. id += rs;
  6812. }
  6813. id += rs * (ne01 - ir1);
  6814. }
  6815. }
  6816. } else if (dst->type == GGML_TYPE_F16) {
  6817. size_t id = 0;
  6818. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6819. for (int i03 = 0; i03 < ne03; i03++) {
  6820. for (int i02 = 0; i02 < ne02; i02++) {
  6821. id += ne00 * ir0;
  6822. for (int i01 = ir0; i01 < ir1; i01++) {
  6823. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6824. for (int i00 = 0; i00 < ne00; i00++) {
  6825. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
  6826. id++;
  6827. }
  6828. }
  6829. id += ne00 * (ne01 - ir1);
  6830. }
  6831. }
  6832. } else if (dst->type == GGML_TYPE_F32) {
  6833. size_t id = 0;
  6834. float * dst_ptr = (float *) dst->data;
  6835. for (int i03 = 0; i03 < ne03; i03++) {
  6836. for (int i02 = 0; i02 < ne02; i02++) {
  6837. id += ne00 * ir0;
  6838. for (int i01 = ir0; i01 < ir1; i01++) {
  6839. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6840. for (int i00 = 0; i00 < ne00; i00++) {
  6841. dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6842. id++;
  6843. }
  6844. }
  6845. id += ne00 * (ne01 - ir1);
  6846. }
  6847. }
  6848. } else if (type_traits[dst->type].from_float) {
  6849. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6850. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6851. size_t id = 0;
  6852. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6853. char * dst_ptr = (char *) dst->data;
  6854. for (int i03 = 0; i03 < ne03; i03++) {
  6855. for (int i02 = 0; i02 < ne02; i02++) {
  6856. id += rs * ir0;
  6857. for (int i01 = ir0; i01 < ir1; i01++) {
  6858. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6859. for (int i00 = 0; i00 < ne00; i00++) {
  6860. src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6861. }
  6862. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6863. id += rs;
  6864. }
  6865. id += rs * (ne01 - ir1);
  6866. }
  6867. }
  6868. } else {
  6869. GGML_ASSERT(false); // TODO: implement
  6870. }
  6871. } else {
  6872. //printf("%s: this is not optimal - fix me\n", __func__);
  6873. if (dst->type == GGML_TYPE_F32) {
  6874. size_t id = 0;
  6875. float * dst_ptr = (float *) dst->data;
  6876. for (int i03 = 0; i03 < ne03; i03++) {
  6877. for (int i02 = 0; i02 < ne02; i02++) {
  6878. id += ne00 * ir0;
  6879. for (int i01 = ir0; i01 < ir1; i01++) {
  6880. for (int i00 = 0; i00 < ne00; i00++) {
  6881. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6882. dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
  6883. id++;
  6884. }
  6885. }
  6886. id += ne00 * (ne01 - ir1);
  6887. }
  6888. }
  6889. } else if (dst->type == GGML_TYPE_BF16) {
  6890. size_t id = 0;
  6891. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  6892. for (int i03 = 0; i03 < ne03; i03++) {
  6893. for (int i02 = 0; i02 < ne02; i02++) {
  6894. id += ne00 * ir0;
  6895. for (int i01 = ir0; i01 < ir1; i01++) {
  6896. for (int i00 = 0; i00 < ne00; i00++) {
  6897. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6898. dst_ptr[id] = *src0_ptr;
  6899. id++;
  6900. }
  6901. }
  6902. id += ne00 * (ne01 - ir1);
  6903. }
  6904. }
  6905. } else if (dst->type == GGML_TYPE_F16) {
  6906. size_t id = 0;
  6907. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6908. for (int i03 = 0; i03 < ne03; i03++) {
  6909. for (int i02 = 0; i02 < ne02; i02++) {
  6910. id += ne00 * ir0;
  6911. for (int i01 = ir0; i01 < ir1; i01++) {
  6912. for (int i00 = 0; i00 < ne00; i00++) {
  6913. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6914. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
  6915. id++;
  6916. }
  6917. }
  6918. id += ne00 * (ne01 - ir1);
  6919. }
  6920. }
  6921. } else {
  6922. GGML_ASSERT(false); // TODO: implement
  6923. }
  6924. }
  6925. return;
  6926. }
  6927. // dst counters
  6928. int64_t i10 = 0;
  6929. int64_t i11 = 0;
  6930. int64_t i12 = 0;
  6931. int64_t i13 = 0;
  6932. if (dst->type == GGML_TYPE_BF16) {
  6933. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6934. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6935. i10 += ne00 * ir0;
  6936. while (i10 >= ne0) {
  6937. i10 -= ne0;
  6938. if (++i11 == ne1) {
  6939. i11 = 0;
  6940. if (++i12 == ne2) {
  6941. i12 = 0;
  6942. if (++i13 == ne3) {
  6943. i13 = 0;
  6944. }
  6945. }
  6946. }
  6947. }
  6948. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6949. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6950. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6951. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6952. memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
  6953. if (++i10 == ne00) {
  6954. i10 = 0;
  6955. if (++i11 == ne01) {
  6956. i11 = 0;
  6957. if (++i12 == ne02) {
  6958. i12 = 0;
  6959. if (++i13 == ne03) {
  6960. i13 = 0;
  6961. }
  6962. }
  6963. }
  6964. }
  6965. }
  6966. }
  6967. i10 += ne00 * (ne01 - ir1);
  6968. while (i10 >= ne0) {
  6969. i10 -= ne0;
  6970. if (++i11 == ne1) {
  6971. i11 = 0;
  6972. if (++i12 == ne2) {
  6973. i12 = 0;
  6974. if (++i13 == ne3) {
  6975. i13 = 0;
  6976. }
  6977. }
  6978. }
  6979. }
  6980. }
  6981. }
  6982. } else if (dst->type == GGML_TYPE_F16) {
  6983. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6984. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6985. i10 += ne00 * ir0;
  6986. while (i10 >= ne0) {
  6987. i10 -= ne0;
  6988. if (++i11 == ne1) {
  6989. i11 = 0;
  6990. if (++i12 == ne2) {
  6991. i12 = 0;
  6992. if (++i13 == ne3) {
  6993. i13 = 0;
  6994. }
  6995. }
  6996. }
  6997. }
  6998. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6999. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7000. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7001. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7002. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
  7003. if (++i10 == ne0) {
  7004. i10 = 0;
  7005. if (++i11 == ne1) {
  7006. i11 = 0;
  7007. if (++i12 == ne2) {
  7008. i12 = 0;
  7009. if (++i13 == ne3) {
  7010. i13 = 0;
  7011. }
  7012. }
  7013. }
  7014. }
  7015. }
  7016. }
  7017. i10 += ne00 * (ne01 - ir1);
  7018. while (i10 >= ne0) {
  7019. i10 -= ne0;
  7020. if (++i11 == ne1) {
  7021. i11 = 0;
  7022. if (++i12 == ne2) {
  7023. i12 = 0;
  7024. if (++i13 == ne3) {
  7025. i13 = 0;
  7026. }
  7027. }
  7028. }
  7029. }
  7030. }
  7031. }
  7032. } else if (dst->type == GGML_TYPE_F32) {
  7033. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7034. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7035. i10 += ne00 * ir0;
  7036. while (i10 >= ne0) {
  7037. i10 -= ne0;
  7038. if (++i11 == ne1) {
  7039. i11 = 0;
  7040. if (++i12 == ne2) {
  7041. i12 = 0;
  7042. if (++i13 == ne3) {
  7043. i13 = 0;
  7044. }
  7045. }
  7046. }
  7047. }
  7048. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7049. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7050. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7051. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7052. *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
  7053. if (++i10 == ne0) {
  7054. i10 = 0;
  7055. if (++i11 == ne1) {
  7056. i11 = 0;
  7057. if (++i12 == ne2) {
  7058. i12 = 0;
  7059. if (++i13 == ne3) {
  7060. i13 = 0;
  7061. }
  7062. }
  7063. }
  7064. }
  7065. }
  7066. }
  7067. i10 += ne00 * (ne01 - ir1);
  7068. while (i10 >= ne0) {
  7069. i10 -= ne0;
  7070. if (++i11 == ne1) {
  7071. i11 = 0;
  7072. if (++i12 == ne2) {
  7073. i12 = 0;
  7074. if (++i13 == ne3) {
  7075. i13 = 0;
  7076. }
  7077. }
  7078. }
  7079. }
  7080. }
  7081. }
  7082. } else {
  7083. GGML_ASSERT(false); // TODO: implement
  7084. }
  7085. }
  7086. static void ggml_compute_forward_dup_f32(
  7087. const struct ggml_compute_params * params,
  7088. struct ggml_tensor * dst) {
  7089. const struct ggml_tensor * src0 = dst->src[0];
  7090. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7091. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7092. return;
  7093. }
  7094. GGML_TENSOR_UNARY_OP_LOCALS
  7095. const int ith = params->ith; // thread index
  7096. const int nth = params->nth; // number of threads
  7097. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  7098. ggml_compute_forward_dup_same_cont(params, dst);
  7099. return;
  7100. }
  7101. // parallelize by rows
  7102. const int nr = ne01;
  7103. // number of rows per thread
  7104. const int dr = (nr + nth - 1) / nth;
  7105. // row range for this thread
  7106. const int ir0 = dr * ith;
  7107. const int ir1 = MIN(ir0 + dr, nr);
  7108. if (src0->type == dst->type &&
  7109. ne00 == ne0 &&
  7110. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  7111. // copy by rows
  7112. const size_t rs = ne00*nb00;
  7113. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7114. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7115. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7116. memcpy(
  7117. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7118. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7119. rs);
  7120. }
  7121. }
  7122. }
  7123. return;
  7124. }
  7125. if (ggml_is_contiguous(dst)) {
  7126. // TODO: simplify
  7127. if (nb00 == sizeof(float)) {
  7128. if (dst->type == GGML_TYPE_F32) {
  7129. size_t id = 0;
  7130. const size_t rs = ne00 * nb00;
  7131. char * dst_ptr = (char *) dst->data;
  7132. for (int i03 = 0; i03 < ne03; i03++) {
  7133. for (int i02 = 0; i02 < ne02; i02++) {
  7134. id += rs * ir0;
  7135. for (int i01 = ir0; i01 < ir1; i01++) {
  7136. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7137. memcpy(dst_ptr + id, src0_ptr, rs);
  7138. id += rs;
  7139. }
  7140. id += rs * (ne01 - ir1);
  7141. }
  7142. }
  7143. } else if (type_traits[dst->type].from_float) {
  7144. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  7145. size_t id = 0;
  7146. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  7147. char * dst_ptr = (char *) dst->data;
  7148. for (int i03 = 0; i03 < ne03; i03++) {
  7149. for (int i02 = 0; i02 < ne02; i02++) {
  7150. id += rs * ir0;
  7151. for (int i01 = ir0; i01 < ir1; i01++) {
  7152. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7153. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  7154. id += rs;
  7155. }
  7156. id += rs * (ne01 - ir1);
  7157. }
  7158. }
  7159. } else {
  7160. GGML_ASSERT(false); // TODO: implement
  7161. }
  7162. } else {
  7163. //printf("%s: this is not optimal - fix me\n", __func__);
  7164. if (dst->type == GGML_TYPE_F32) {
  7165. size_t id = 0;
  7166. float * dst_ptr = (float *) dst->data;
  7167. for (int i03 = 0; i03 < ne03; i03++) {
  7168. for (int i02 = 0; i02 < ne02; i02++) {
  7169. id += ne00 * ir0;
  7170. for (int i01 = ir0; i01 < ir1; i01++) {
  7171. for (int i00 = 0; i00 < ne00; i00++) {
  7172. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7173. dst_ptr[id] = *src0_ptr;
  7174. id++;
  7175. }
  7176. }
  7177. id += ne00 * (ne01 - ir1);
  7178. }
  7179. }
  7180. } else if (dst->type == GGML_TYPE_F16) {
  7181. size_t id = 0;
  7182. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  7183. for (int i03 = 0; i03 < ne03; i03++) {
  7184. for (int i02 = 0; i02 < ne02; i02++) {
  7185. id += ne00 * ir0;
  7186. for (int i01 = ir0; i01 < ir1; i01++) {
  7187. for (int i00 = 0; i00 < ne00; i00++) {
  7188. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7189. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  7190. id++;
  7191. }
  7192. }
  7193. id += ne00 * (ne01 - ir1);
  7194. }
  7195. }
  7196. } else if (dst->type == GGML_TYPE_BF16) {
  7197. size_t id = 0;
  7198. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  7199. for (int i03 = 0; i03 < ne03; i03++) {
  7200. for (int i02 = 0; i02 < ne02; i02++) {
  7201. id += ne00 * ir0;
  7202. for (int i01 = ir0; i01 < ir1; i01++) {
  7203. for (int i00 = 0; i00 < ne00; i00++) {
  7204. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7205. dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
  7206. id++;
  7207. }
  7208. }
  7209. id += ne00 * (ne01 - ir1);
  7210. }
  7211. }
  7212. } else {
  7213. GGML_ASSERT(false); // TODO: implement
  7214. }
  7215. }
  7216. return;
  7217. }
  7218. // dst counters
  7219. int64_t i10 = 0;
  7220. int64_t i11 = 0;
  7221. int64_t i12 = 0;
  7222. int64_t i13 = 0;
  7223. if (dst->type == GGML_TYPE_F32) {
  7224. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7225. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7226. i10 += ne00 * ir0;
  7227. while (i10 >= ne0) {
  7228. i10 -= ne0;
  7229. if (++i11 == ne1) {
  7230. i11 = 0;
  7231. if (++i12 == ne2) {
  7232. i12 = 0;
  7233. if (++i13 == ne3) {
  7234. i13 = 0;
  7235. }
  7236. }
  7237. }
  7238. }
  7239. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7240. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7241. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7242. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7243. memcpy(dst_ptr, src0_ptr, sizeof(float));
  7244. if (++i10 == ne0) {
  7245. i10 = 0;
  7246. if (++i11 == ne1) {
  7247. i11 = 0;
  7248. if (++i12 == ne2) {
  7249. i12 = 0;
  7250. if (++i13 == ne3) {
  7251. i13 = 0;
  7252. }
  7253. }
  7254. }
  7255. }
  7256. }
  7257. }
  7258. i10 += ne00 * (ne01 - ir1);
  7259. while (i10 >= ne0) {
  7260. i10 -= ne0;
  7261. if (++i11 == ne1) {
  7262. i11 = 0;
  7263. if (++i12 == ne2) {
  7264. i12 = 0;
  7265. if (++i13 == ne3) {
  7266. i13 = 0;
  7267. }
  7268. }
  7269. }
  7270. }
  7271. }
  7272. }
  7273. } else if (dst->type == GGML_TYPE_F16) {
  7274. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7275. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7276. i10 += ne00 * ir0;
  7277. while (i10 >= ne0) {
  7278. i10 -= ne0;
  7279. if (++i11 == ne1) {
  7280. i11 = 0;
  7281. if (++i12 == ne2) {
  7282. i12 = 0;
  7283. if (++i13 == ne3) {
  7284. i13 = 0;
  7285. }
  7286. }
  7287. }
  7288. }
  7289. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7290. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7291. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7292. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7293. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  7294. if (++i10 == ne0) {
  7295. i10 = 0;
  7296. if (++i11 == ne1) {
  7297. i11 = 0;
  7298. if (++i12 == ne2) {
  7299. i12 = 0;
  7300. if (++i13 == ne3) {
  7301. i13 = 0;
  7302. }
  7303. }
  7304. }
  7305. }
  7306. }
  7307. }
  7308. i10 += ne00 * (ne01 - ir1);
  7309. while (i10 >= ne0) {
  7310. i10 -= ne0;
  7311. if (++i11 == ne1) {
  7312. i11 = 0;
  7313. if (++i12 == ne2) {
  7314. i12 = 0;
  7315. if (++i13 == ne3) {
  7316. i13 = 0;
  7317. }
  7318. }
  7319. }
  7320. }
  7321. }
  7322. }
  7323. } else if (dst->type == GGML_TYPE_BF16) {
  7324. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7325. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7326. i10 += ne00 * ir0;
  7327. while (i10 >= ne0) {
  7328. i10 -= ne0;
  7329. if (++i11 == ne1) {
  7330. i11 = 0;
  7331. if (++i12 == ne2) {
  7332. i12 = 0;
  7333. if (++i13 == ne3) {
  7334. i13 = 0;
  7335. }
  7336. }
  7337. }
  7338. }
  7339. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7340. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7341. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7342. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7343. *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
  7344. if (++i10 == ne0) {
  7345. i10 = 0;
  7346. if (++i11 == ne1) {
  7347. i11 = 0;
  7348. if (++i12 == ne2) {
  7349. i12 = 0;
  7350. if (++i13 == ne3) {
  7351. i13 = 0;
  7352. }
  7353. }
  7354. }
  7355. }
  7356. }
  7357. }
  7358. i10 += ne00 * (ne01 - ir1);
  7359. while (i10 >= ne0) {
  7360. i10 -= ne0;
  7361. if (++i11 == ne1) {
  7362. i11 = 0;
  7363. if (++i12 == ne2) {
  7364. i12 = 0;
  7365. if (++i13 == ne3) {
  7366. i13 = 0;
  7367. }
  7368. }
  7369. }
  7370. }
  7371. }
  7372. }
  7373. } else {
  7374. GGML_ASSERT(false); // TODO: implement
  7375. }
  7376. }
  7377. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  7378. static void ggml_compute_forward_dup_bytes(
  7379. const struct ggml_compute_params * params,
  7380. struct ggml_tensor * dst) {
  7381. const struct ggml_tensor * src0 = dst->src[0];
  7382. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7383. GGML_ASSERT(src0->type == dst->type);
  7384. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7385. return;
  7386. }
  7387. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  7388. ggml_compute_forward_dup_same_cont(params, dst);
  7389. return;
  7390. }
  7391. GGML_TENSOR_UNARY_OP_LOCALS;
  7392. const size_t type_size = ggml_type_size(src0->type);
  7393. const int ith = params->ith; // thread index
  7394. const int nth = params->nth; // number of threads
  7395. // parallelize by rows
  7396. const int nr = ne01;
  7397. // number of rows per thread
  7398. const int dr = (nr + nth - 1) / nth;
  7399. // row range for this thread
  7400. const int ir0 = dr * ith;
  7401. const int ir1 = MIN(ir0 + dr, nr);
  7402. if (src0->type == dst->type &&
  7403. ne00 == ne0 &&
  7404. nb00 == type_size && nb0 == type_size) {
  7405. // copy by rows
  7406. const size_t rs = ne00 * type_size;
  7407. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7408. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7409. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7410. memcpy(
  7411. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7412. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7413. rs);
  7414. }
  7415. }
  7416. }
  7417. return;
  7418. }
  7419. if (ggml_is_contiguous(dst)) {
  7420. size_t id = 0;
  7421. char * dst_ptr = (char *) dst->data;
  7422. const size_t rs = ne00 * type_size;
  7423. if (nb00 == type_size) {
  7424. // src0 is contigous on first dimension, copy by rows
  7425. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7426. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7427. id += rs * ir0;
  7428. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7429. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7430. memcpy(dst_ptr + id, src0_ptr, rs);
  7431. id += rs;
  7432. }
  7433. id += rs * (ne01 - ir1);
  7434. }
  7435. }
  7436. } else {
  7437. //printf("%s: this is not optimal - fix me\n", __func__);
  7438. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7439. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7440. id += rs * ir0;
  7441. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7442. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7443. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  7444. memcpy(dst_ptr + id, src0_ptr, type_size);
  7445. id += type_size;
  7446. }
  7447. }
  7448. id += rs * (ne01 - ir1);
  7449. }
  7450. }
  7451. }
  7452. return;
  7453. }
  7454. // dst counters
  7455. int64_t i10 = 0;
  7456. int64_t i11 = 0;
  7457. int64_t i12 = 0;
  7458. int64_t i13 = 0;
  7459. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7460. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7461. i10 += ne00 * ir0;
  7462. while (i10 >= ne0) {
  7463. i10 -= ne0;
  7464. if (++i11 == ne1) {
  7465. i11 = 0;
  7466. if (++i12 == ne2) {
  7467. i12 = 0;
  7468. if (++i13 == ne3) {
  7469. i13 = 0;
  7470. }
  7471. }
  7472. }
  7473. }
  7474. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7475. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7476. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7477. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7478. memcpy(dst_ptr, src0_ptr, type_size);
  7479. if (++i10 == ne0) {
  7480. i10 = 0;
  7481. if (++i11 == ne1) {
  7482. i11 = 0;
  7483. if (++i12 == ne2) {
  7484. i12 = 0;
  7485. if (++i13 == ne3) {
  7486. i13 = 0;
  7487. }
  7488. }
  7489. }
  7490. }
  7491. }
  7492. }
  7493. i10 += ne00 * (ne01 - ir1);
  7494. while (i10 >= ne0) {
  7495. i10 -= ne0;
  7496. if (++i11 == ne1) {
  7497. i11 = 0;
  7498. if (++i12 == ne2) {
  7499. i12 = 0;
  7500. if (++i13 == ne3) {
  7501. i13 = 0;
  7502. }
  7503. }
  7504. }
  7505. }
  7506. }
  7507. }
  7508. }
  7509. static void ggml_compute_forward_dup(
  7510. const struct ggml_compute_params * params,
  7511. struct ggml_tensor * dst) {
  7512. const struct ggml_tensor * src0 = dst->src[0];
  7513. if (src0->type == dst->type) {
  7514. ggml_compute_forward_dup_bytes(params, dst);
  7515. return;
  7516. }
  7517. switch (src0->type) {
  7518. case GGML_TYPE_F16:
  7519. {
  7520. ggml_compute_forward_dup_f16(params, dst);
  7521. } break;
  7522. case GGML_TYPE_BF16:
  7523. {
  7524. ggml_compute_forward_dup_bf16(params, dst);
  7525. } break;
  7526. case GGML_TYPE_F32:
  7527. {
  7528. ggml_compute_forward_dup_f32(params, dst);
  7529. } break;
  7530. default:
  7531. {
  7532. GGML_ASSERT(false);
  7533. } break;
  7534. }
  7535. }
  7536. // ggml_compute_forward_add
  7537. static void ggml_compute_forward_add_f32(
  7538. const struct ggml_compute_params * params,
  7539. struct ggml_tensor * dst) {
  7540. const struct ggml_tensor * src0 = dst->src[0];
  7541. const struct ggml_tensor * src1 = dst->src[1];
  7542. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7543. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7544. return;
  7545. }
  7546. const int ith = params->ith;
  7547. const int nth = params->nth;
  7548. #ifdef GGML_USE_CLBLAST
  7549. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  7550. // TODO: OpenCL kernel support full broadcast
  7551. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  7552. if (ith == 0) {
  7553. ggml_cl_add(src0, src1, dst);
  7554. }
  7555. return;
  7556. }
  7557. #endif
  7558. const int nr = ggml_nrows(src0);
  7559. GGML_TENSOR_BINARY_OP_LOCALS
  7560. GGML_ASSERT( nb0 == sizeof(float));
  7561. GGML_ASSERT(nb00 == sizeof(float));
  7562. // rows per thread
  7563. const int dr = (nr + nth - 1)/nth;
  7564. // row range for this thread
  7565. const int ir0 = dr*ith;
  7566. const int ir1 = MIN(ir0 + dr, nr);
  7567. if (nb10 == sizeof(float)) {
  7568. for (int ir = ir0; ir < ir1; ++ir) {
  7569. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7570. const int64_t i03 = ir/(ne02*ne01);
  7571. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7572. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7573. const int64_t i13 = i03 % ne13;
  7574. const int64_t i12 = i02 % ne12;
  7575. const int64_t i11 = i01 % ne11;
  7576. const int64_t nr0 = ne00 / ne10;
  7577. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7578. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7579. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7580. for (int64_t r = 0; r < nr0; ++r) {
  7581. #ifdef GGML_USE_ACCELERATE
  7582. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7583. #else
  7584. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7585. #endif
  7586. }
  7587. }
  7588. } else {
  7589. // src1 is not contiguous
  7590. for (int ir = ir0; ir < ir1; ++ir) {
  7591. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7592. const int64_t i03 = ir/(ne02*ne01);
  7593. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7594. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7595. const int64_t i13 = i03 % ne13;
  7596. const int64_t i12 = i02 % ne12;
  7597. const int64_t i11 = i01 % ne11;
  7598. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7599. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7600. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  7601. const int64_t i10 = i0 % ne10;
  7602. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7603. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  7604. }
  7605. }
  7606. }
  7607. }
  7608. static void ggml_compute_forward_add_f16_f32(
  7609. const struct ggml_compute_params * params,
  7610. struct ggml_tensor * dst) {
  7611. const struct ggml_tensor * src0 = dst->src[0];
  7612. const struct ggml_tensor * src1 = dst->src[1];
  7613. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7614. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7615. return;
  7616. }
  7617. const int ith = params->ith;
  7618. const int nth = params->nth;
  7619. const int nr = ggml_nrows(src0);
  7620. GGML_TENSOR_BINARY_OP_LOCALS
  7621. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7622. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7623. if (dst->type == GGML_TYPE_F32) {
  7624. GGML_ASSERT( nb0 == sizeof(float));
  7625. }
  7626. else {
  7627. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7628. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7629. }
  7630. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7631. // rows per thread
  7632. const int dr = (nr + nth - 1)/nth;
  7633. // row range for this thread
  7634. const int ir0 = dr*ith;
  7635. const int ir1 = MIN(ir0 + dr, nr);
  7636. if (nb10 == sizeof(float)) {
  7637. if (dst->type == GGML_TYPE_F16) {
  7638. for (int ir = ir0; ir < ir1; ++ir) {
  7639. // src0, src1 and dst are same shape => same indices
  7640. const int i3 = ir/(ne2*ne1);
  7641. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7642. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7643. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7644. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7645. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7646. for (int i = 0; i < ne0; i++) {
  7647. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7648. }
  7649. }
  7650. } else {
  7651. for (int ir = ir0; ir < ir1; ++ir) {
  7652. // src0, src1 and dst are same shape => same indices
  7653. const int i3 = ir/(ne2*ne1);
  7654. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7655. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7656. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7657. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7658. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7659. for (int i = 0; i < ne0; i++) {
  7660. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7661. }
  7662. }
  7663. }
  7664. }
  7665. else {
  7666. // src1 is not contiguous
  7667. GGML_ASSERT(false);
  7668. }
  7669. }
  7670. static void ggml_compute_forward_add_bf16_f32(
  7671. const struct ggml_compute_params * params,
  7672. struct ggml_tensor * dst) {
  7673. const struct ggml_tensor * src0 = dst->src[0];
  7674. const struct ggml_tensor * src1 = dst->src[1];
  7675. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7676. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7677. return;
  7678. }
  7679. const int ith = params->ith;
  7680. const int nth = params->nth;
  7681. const int nr = ggml_nrows(src0);
  7682. GGML_TENSOR_BINARY_OP_LOCALS
  7683. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7684. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7685. if (dst->type == GGML_TYPE_F32) {
  7686. GGML_ASSERT( nb0 == sizeof(float));
  7687. }
  7688. else {
  7689. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7690. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7691. }
  7692. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7693. // rows per thread
  7694. const int dr = (nr + nth - 1)/nth;
  7695. // row range for this thread
  7696. const int ir0 = dr*ith;
  7697. const int ir1 = MIN(ir0 + dr, nr);
  7698. if (nb10 == sizeof(float)) {
  7699. if (dst->type == GGML_TYPE_BF16) {
  7700. for (int ir = ir0; ir < ir1; ++ir) {
  7701. // src0, src1 and dst are same shape => same indices
  7702. const int i3 = ir/(ne2*ne1);
  7703. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7704. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7705. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7706. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7707. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7708. for (int i = 0; i < ne0; i++) {
  7709. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7710. }
  7711. }
  7712. } else {
  7713. for (int ir = ir0; ir < ir1; ++ir) {
  7714. // src0, src1 and dst are same shape => same indices
  7715. const int i3 = ir/(ne2*ne1);
  7716. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7717. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7718. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7719. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7720. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7721. for (int i = 0; i < ne0; i++) {
  7722. dst_ptr[i] = GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7723. }
  7724. }
  7725. }
  7726. }
  7727. else {
  7728. // src1 is not contiguous
  7729. GGML_ASSERT(false);
  7730. }
  7731. }
  7732. static void ggml_compute_forward_add_f16_f16(
  7733. const struct ggml_compute_params * params,
  7734. struct ggml_tensor * dst) {
  7735. const struct ggml_tensor * src0 = dst->src[0];
  7736. const struct ggml_tensor * src1 = dst->src[1];
  7737. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7738. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7739. return;
  7740. }
  7741. const int ith = params->ith;
  7742. const int nth = params->nth;
  7743. const int nr = ggml_nrows(src0);
  7744. GGML_TENSOR_BINARY_OP_LOCALS
  7745. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7746. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7747. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7748. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7749. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7750. // rows per thread
  7751. const int dr = (nr + nth - 1)/nth;
  7752. // row range for this thread
  7753. const int ir0 = dr*ith;
  7754. const int ir1 = MIN(ir0 + dr, nr);
  7755. if (nb10 == sizeof(ggml_fp16_t)) {
  7756. for (int ir = ir0; ir < ir1; ++ir) {
  7757. // src0, src1 and dst are same shape => same indices
  7758. const int i3 = ir/(ne2*ne1);
  7759. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7760. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7761. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7762. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7763. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7764. for (int i = 0; i < ne0; i++) {
  7765. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7766. }
  7767. }
  7768. }
  7769. else {
  7770. // src1 is not contiguous
  7771. GGML_ASSERT(false);
  7772. }
  7773. }
  7774. static void ggml_compute_forward_add_bf16_bf16(
  7775. const struct ggml_compute_params * params,
  7776. struct ggml_tensor * dst) {
  7777. const struct ggml_tensor * src0 = dst->src[0];
  7778. const struct ggml_tensor * src1 = dst->src[1];
  7779. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7780. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7781. return;
  7782. }
  7783. const int ith = params->ith;
  7784. const int nth = params->nth;
  7785. const int nr = ggml_nrows(src0);
  7786. GGML_TENSOR_BINARY_OP_LOCALS
  7787. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7788. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  7789. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7790. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7791. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7792. // rows per thread
  7793. const int dr = (nr + nth - 1)/nth;
  7794. // row range for this thread
  7795. const int ir0 = dr*ith;
  7796. const int ir1 = MIN(ir0 + dr, nr);
  7797. if (nb10 == sizeof(ggml_bf16_t)) {
  7798. for (int ir = ir0; ir < ir1; ++ir) {
  7799. // src0, src1 and dst are same shape => same indices
  7800. const int i3 = ir/(ne2*ne1);
  7801. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7802. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7803. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7804. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7805. ggml_bf16_t * src1_ptr = (ggml_bf16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7806. for (int i = 0; i < ne0; i++) {
  7807. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + GGML_BF16_TO_FP32(src1_ptr[i]));
  7808. }
  7809. }
  7810. }
  7811. else {
  7812. // src1 is not contiguous
  7813. GGML_ASSERT(false);
  7814. }
  7815. }
  7816. static void ggml_compute_forward_add_q_f32(
  7817. const struct ggml_compute_params * params,
  7818. struct ggml_tensor * dst) {
  7819. const struct ggml_tensor * src0 = dst->src[0];
  7820. const struct ggml_tensor * src1 = dst->src[1];
  7821. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7822. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7823. return;
  7824. }
  7825. const int nr = ggml_nrows(src0);
  7826. GGML_TENSOR_BINARY_OP_LOCALS
  7827. const int ith = params->ith;
  7828. const int nth = params->nth;
  7829. const enum ggml_type type = src0->type;
  7830. const enum ggml_type dtype = dst->type;
  7831. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7832. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  7833. // we don't support permuted src0 or src1
  7834. GGML_ASSERT(nb00 == ggml_type_size(type));
  7835. GGML_ASSERT(nb10 == sizeof(float));
  7836. // dst cannot be transposed or permuted
  7837. GGML_ASSERT(nb0 <= nb1);
  7838. GGML_ASSERT(nb1 <= nb2);
  7839. GGML_ASSERT(nb2 <= nb3);
  7840. GGML_ASSERT(ggml_is_quantized(src0->type));
  7841. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7842. // rows per thread
  7843. const int dr = (nr + nth - 1)/nth;
  7844. // row range for this thread
  7845. const int ir0 = dr*ith;
  7846. const int ir1 = MIN(ir0 + dr, nr);
  7847. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7848. for (int ir = ir0; ir < ir1; ++ir) {
  7849. // src0 indices
  7850. const int i03 = ir/(ne02*ne01);
  7851. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7852. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7853. // src1 and dst are same shape as src0 => same indices
  7854. const int i13 = i03;
  7855. const int i12 = i02;
  7856. const int i11 = i01;
  7857. const int i3 = i03;
  7858. const int i2 = i02;
  7859. const int i1 = i01;
  7860. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7861. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7862. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7863. assert(ne00 % 32 == 0);
  7864. // unquantize row from src0 to temp buffer
  7865. dequantize_row_q(src0_row, wdata, ne00);
  7866. // add src1
  7867. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7868. // quantize row to dst
  7869. if (quantize_row_q != NULL) {
  7870. quantize_row_q(wdata, dst_row, ne00);
  7871. } else {
  7872. memcpy(dst_row, wdata, ne0*nb0);
  7873. }
  7874. }
  7875. }
  7876. static void ggml_compute_forward_add(
  7877. const struct ggml_compute_params * params,
  7878. struct ggml_tensor * dst) {
  7879. const struct ggml_tensor * src0 = dst->src[0];
  7880. const struct ggml_tensor * src1 = dst->src[1];
  7881. switch (src0->type) {
  7882. case GGML_TYPE_F32:
  7883. {
  7884. if (src1->type == GGML_TYPE_F32) {
  7885. ggml_compute_forward_add_f32(params, dst);
  7886. }
  7887. else {
  7888. GGML_ASSERT(false);
  7889. }
  7890. } break;
  7891. case GGML_TYPE_F16:
  7892. {
  7893. if (src1->type == GGML_TYPE_F16) {
  7894. ggml_compute_forward_add_f16_f16(params, dst);
  7895. }
  7896. else if (src1->type == GGML_TYPE_F32) {
  7897. ggml_compute_forward_add_f16_f32(params, dst);
  7898. }
  7899. else {
  7900. GGML_ASSERT(false);
  7901. }
  7902. } break;
  7903. case GGML_TYPE_BF16:
  7904. {
  7905. if (src1->type == GGML_TYPE_BF16) {
  7906. ggml_compute_forward_add_bf16_bf16(params, dst);
  7907. }
  7908. else if (src1->type == GGML_TYPE_F32) {
  7909. ggml_compute_forward_add_bf16_f32(params, dst);
  7910. }
  7911. else {
  7912. GGML_ASSERT(false);
  7913. }
  7914. } break;
  7915. case GGML_TYPE_Q4_0:
  7916. case GGML_TYPE_Q4_1:
  7917. case GGML_TYPE_Q5_0:
  7918. case GGML_TYPE_Q5_1:
  7919. case GGML_TYPE_Q8_0:
  7920. case GGML_TYPE_Q2_K:
  7921. case GGML_TYPE_Q3_K:
  7922. case GGML_TYPE_Q4_K:
  7923. case GGML_TYPE_Q5_K:
  7924. case GGML_TYPE_Q6_K:
  7925. case GGML_TYPE_IQ2_XXS:
  7926. case GGML_TYPE_IQ2_XS:
  7927. case GGML_TYPE_IQ3_XXS:
  7928. case GGML_TYPE_IQ1_S:
  7929. case GGML_TYPE_IQ1_M:
  7930. case GGML_TYPE_IQ4_NL:
  7931. case GGML_TYPE_IQ4_XS:
  7932. case GGML_TYPE_IQ3_S:
  7933. case GGML_TYPE_IQ2_S:
  7934. {
  7935. ggml_compute_forward_add_q_f32(params, dst);
  7936. } break;
  7937. default:
  7938. {
  7939. GGML_ASSERT(false);
  7940. } break;
  7941. }
  7942. }
  7943. // ggml_compute_forward_add1
  7944. static void ggml_compute_forward_add1_f32(
  7945. const struct ggml_compute_params * params,
  7946. struct ggml_tensor * dst) {
  7947. const struct ggml_tensor * src0 = dst->src[0];
  7948. const struct ggml_tensor * src1 = dst->src[1];
  7949. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7950. GGML_ASSERT(ggml_is_scalar(src1));
  7951. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7952. return;
  7953. }
  7954. const int ith = params->ith;
  7955. const int nth = params->nth;
  7956. const int nr = ggml_nrows(src0);
  7957. GGML_TENSOR_UNARY_OP_LOCALS
  7958. GGML_ASSERT( nb0 == sizeof(float));
  7959. GGML_ASSERT(nb00 == sizeof(float));
  7960. // rows per thread
  7961. const int dr = (nr + nth - 1)/nth;
  7962. // row range for this thread
  7963. const int ir0 = dr*ith;
  7964. const int ir1 = MIN(ir0 + dr, nr);
  7965. for (int ir = ir0; ir < ir1; ++ir) {
  7966. // src0 and dst are same shape => same indices
  7967. const int i3 = ir/(ne2*ne1);
  7968. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7969. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7970. #ifdef GGML_USE_ACCELERATE
  7971. UNUSED(ggml_vec_add1_f32);
  7972. vDSP_vadd(
  7973. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7974. (float *) ((char *) src1->data), 0,
  7975. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7976. ne0);
  7977. #else
  7978. ggml_vec_add1_f32(ne0,
  7979. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7980. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7981. *(float *) src1->data);
  7982. #endif
  7983. }
  7984. }
  7985. static void ggml_compute_forward_add1_f16_f32(
  7986. const struct ggml_compute_params * params,
  7987. struct ggml_tensor * dst) {
  7988. const struct ggml_tensor * src0 = dst->src[0];
  7989. const struct ggml_tensor * src1 = dst->src[1];
  7990. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7991. GGML_ASSERT(ggml_is_scalar(src1));
  7992. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7993. return;
  7994. }
  7995. // scalar to add
  7996. const float v = *(float *) src1->data;
  7997. const int ith = params->ith;
  7998. const int nth = params->nth;
  7999. const int nr = ggml_nrows(src0);
  8000. GGML_TENSOR_UNARY_OP_LOCALS
  8001. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8002. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8003. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  8004. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  8005. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8006. // rows per thread
  8007. const int dr = (nr + nth - 1)/nth;
  8008. // row range for this thread
  8009. const int ir0 = dr*ith;
  8010. const int ir1 = MIN(ir0 + dr, nr);
  8011. for (int ir = ir0; ir < ir1; ++ir) {
  8012. // src0 and dst are same shape => same indices
  8013. const int i3 = ir/(ne2*ne1);
  8014. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8015. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8016. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8017. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8018. for (int i = 0; i < ne0; i++) {
  8019. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  8020. }
  8021. }
  8022. }
  8023. static void ggml_compute_forward_add1_f16_f16(
  8024. const struct ggml_compute_params * params,
  8025. struct ggml_tensor * dst) {
  8026. const struct ggml_tensor * src0 = dst->src[0];
  8027. const struct ggml_tensor * src1 = dst->src[1];
  8028. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8029. GGML_ASSERT(ggml_is_scalar(src1));
  8030. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8031. return;
  8032. }
  8033. // scalar to add
  8034. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  8035. const int ith = params->ith;
  8036. const int nth = params->nth;
  8037. const int nr = ggml_nrows(src0);
  8038. GGML_TENSOR_UNARY_OP_LOCALS
  8039. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8040. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  8041. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  8042. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  8043. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8044. // rows per thread
  8045. const int dr = (nr + nth - 1)/nth;
  8046. // row range for this thread
  8047. const int ir0 = dr*ith;
  8048. const int ir1 = MIN(ir0 + dr, nr);
  8049. for (int ir = ir0; ir < ir1; ++ir) {
  8050. // src0 and dst are same shape => same indices
  8051. const int i3 = ir/(ne2*ne1);
  8052. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8053. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8054. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8055. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8056. for (int i = 0; i < ne0; i++) {
  8057. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  8058. }
  8059. }
  8060. }
  8061. static void ggml_compute_forward_add1_q_f32(
  8062. const struct ggml_compute_params * params,
  8063. struct ggml_tensor * dst) {
  8064. const struct ggml_tensor * src0 = dst->src[0];
  8065. const struct ggml_tensor * src1 = dst->src[1];
  8066. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8067. GGML_ASSERT(ggml_is_scalar(src1));
  8068. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8069. return;
  8070. }
  8071. // scalar to add
  8072. const float v = *(float *) src1->data;
  8073. const int ith = params->ith;
  8074. const int nth = params->nth;
  8075. const int nr = ggml_nrows(src0);
  8076. GGML_TENSOR_UNARY_OP_LOCALS
  8077. const enum ggml_type type = src0->type;
  8078. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8079. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  8080. // we don't support permuted src0
  8081. GGML_ASSERT(nb00 == ggml_type_size(type));
  8082. // dst cannot be transposed or permuted
  8083. GGML_ASSERT(nb0 <= nb1);
  8084. GGML_ASSERT(nb1 <= nb2);
  8085. GGML_ASSERT(nb2 <= nb3);
  8086. GGML_ASSERT(ggml_is_quantized(src0->type));
  8087. GGML_ASSERT(dst->type == src0->type);
  8088. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8089. // rows per thread
  8090. const int dr = (nr + nth - 1)/nth;
  8091. // row range for this thread
  8092. const int ir0 = dr*ith;
  8093. const int ir1 = MIN(ir0 + dr, nr);
  8094. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8095. for (int ir = ir0; ir < ir1; ++ir) {
  8096. // src0 and dst are same shape => same indices
  8097. const int i3 = ir/(ne2*ne1);
  8098. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8099. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8100. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  8101. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  8102. assert(ne0 % 32 == 0);
  8103. // unquantize row from src0 to temp buffer
  8104. dequantize_row_q(src0_row, wdata, ne0);
  8105. // add src1
  8106. ggml_vec_acc1_f32(ne0, wdata, v);
  8107. // quantize row to dst
  8108. quantize_row_q(wdata, dst_row, ne0);
  8109. }
  8110. }
  8111. static void ggml_compute_forward_add1_bf16_f32(
  8112. const struct ggml_compute_params * params,
  8113. struct ggml_tensor * dst) {
  8114. const struct ggml_tensor * src0 = dst->src[0];
  8115. const struct ggml_tensor * src1 = dst->src[1];
  8116. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8117. GGML_ASSERT(ggml_is_scalar(src1));
  8118. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8119. return;
  8120. }
  8121. // scalar to add
  8122. const float v = *(float *) src1->data;
  8123. const int ith = params->ith;
  8124. const int nth = params->nth;
  8125. const int nr = ggml_nrows(src0);
  8126. GGML_TENSOR_UNARY_OP_LOCALS
  8127. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8128. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8129. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8130. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8131. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8132. // rows per thread
  8133. const int dr = (nr + nth - 1)/nth;
  8134. // row range for this thread
  8135. const int ir0 = dr*ith;
  8136. const int ir1 = MIN(ir0 + dr, nr);
  8137. for (int ir = ir0; ir < ir1; ++ir) {
  8138. // src0 and dst are same shape => same indices
  8139. const int i3 = ir/(ne2*ne1);
  8140. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8141. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8142. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8143. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8144. for (int i = 0; i < ne0; i++) {
  8145. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8146. }
  8147. }
  8148. }
  8149. static void ggml_compute_forward_add1_bf16_bf16(
  8150. const struct ggml_compute_params * params,
  8151. struct ggml_tensor * dst) {
  8152. const struct ggml_tensor * src0 = dst->src[0];
  8153. const struct ggml_tensor * src1 = dst->src[1];
  8154. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8155. GGML_ASSERT(ggml_is_scalar(src1));
  8156. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8157. return;
  8158. }
  8159. // scalar to add
  8160. const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
  8161. const int ith = params->ith;
  8162. const int nth = params->nth;
  8163. const int nr = ggml_nrows(src0);
  8164. GGML_TENSOR_UNARY_OP_LOCALS
  8165. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8166. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  8167. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8168. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8169. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8170. // rows per thread
  8171. const int dr = (nr + nth - 1)/nth;
  8172. // row range for this thread
  8173. const int ir0 = dr*ith;
  8174. const int ir1 = MIN(ir0 + dr, nr);
  8175. for (int ir = ir0; ir < ir1; ++ir) {
  8176. // src0 and dst are same shape => same indices
  8177. const int i3 = ir/(ne2*ne1);
  8178. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8179. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8180. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8181. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8182. for (int i = 0; i < ne0; i++) {
  8183. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8184. }
  8185. }
  8186. }
  8187. static void ggml_compute_forward_add1(
  8188. const struct ggml_compute_params * params,
  8189. struct ggml_tensor * dst) {
  8190. const struct ggml_tensor * src0 = dst->src[0];
  8191. const struct ggml_tensor * src1 = dst->src[1];
  8192. switch (src0->type) {
  8193. case GGML_TYPE_F32:
  8194. {
  8195. ggml_compute_forward_add1_f32(params, dst);
  8196. } break;
  8197. case GGML_TYPE_F16:
  8198. {
  8199. if (src1->type == GGML_TYPE_F16) {
  8200. ggml_compute_forward_add1_f16_f16(params, dst);
  8201. }
  8202. else if (src1->type == GGML_TYPE_F32) {
  8203. ggml_compute_forward_add1_f16_f32(params, dst);
  8204. }
  8205. else {
  8206. GGML_ASSERT(false);
  8207. }
  8208. } break;
  8209. case GGML_TYPE_BF16:
  8210. {
  8211. if (src1->type == GGML_TYPE_BF16) {
  8212. ggml_compute_forward_add1_bf16_bf16(params, dst);
  8213. }
  8214. else if (src1->type == GGML_TYPE_F32) {
  8215. ggml_compute_forward_add1_bf16_f32(params, dst);
  8216. }
  8217. else {
  8218. GGML_ASSERT(false);
  8219. }
  8220. } break;
  8221. case GGML_TYPE_Q4_0:
  8222. case GGML_TYPE_Q4_1:
  8223. case GGML_TYPE_Q5_0:
  8224. case GGML_TYPE_Q5_1:
  8225. case GGML_TYPE_Q8_0:
  8226. case GGML_TYPE_Q8_1:
  8227. case GGML_TYPE_Q2_K:
  8228. case GGML_TYPE_Q3_K:
  8229. case GGML_TYPE_Q4_K:
  8230. case GGML_TYPE_Q5_K:
  8231. case GGML_TYPE_Q6_K:
  8232. case GGML_TYPE_IQ2_XXS:
  8233. case GGML_TYPE_IQ2_XS:
  8234. case GGML_TYPE_IQ3_XXS:
  8235. case GGML_TYPE_IQ1_S:
  8236. case GGML_TYPE_IQ1_M:
  8237. case GGML_TYPE_IQ4_NL:
  8238. case GGML_TYPE_IQ4_XS:
  8239. case GGML_TYPE_IQ3_S:
  8240. case GGML_TYPE_IQ2_S:
  8241. {
  8242. ggml_compute_forward_add1_q_f32(params, dst);
  8243. } break;
  8244. default:
  8245. {
  8246. GGML_ASSERT(false);
  8247. } break;
  8248. }
  8249. }
  8250. // ggml_compute_forward_acc
  8251. static void ggml_compute_forward_acc_f32(
  8252. const struct ggml_compute_params * params,
  8253. struct ggml_tensor * dst) {
  8254. const struct ggml_tensor * src0 = dst->src[0];
  8255. const struct ggml_tensor * src1 = dst->src[1];
  8256. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8257. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8258. // view src0 and dst with these strides and data offset inbytes during acc
  8259. // nb0 is implicitly element_size because src0 and dst are contiguous
  8260. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8261. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8262. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8263. size_t offset = ((int32_t *) dst->op_params)[3];
  8264. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8265. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  8266. if (params->ith != 0) {
  8267. return;
  8268. }
  8269. // memcpy needs to be synchronized across threads to avoid race conditions.
  8270. // => do it in INIT phase
  8271. memcpy(
  8272. ((char *) dst->data),
  8273. ((char *) src0->data),
  8274. ggml_nbytes(dst));
  8275. }
  8276. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8277. return;
  8278. }
  8279. const int ith = params->ith;
  8280. const int nth = params->nth;
  8281. const int nr = ggml_nrows(src1);
  8282. const int nc = src1->ne[0];
  8283. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8284. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8285. // src0 and dst as viewed during acc
  8286. const size_t nb0 = ggml_element_size(src0);
  8287. const size_t nb00 = nb0;
  8288. const size_t nb01 = nb1;
  8289. const size_t nb02 = nb2;
  8290. const size_t nb03 = nb3;
  8291. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  8292. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  8293. GGML_ASSERT(nb10 == sizeof(float));
  8294. // rows per thread
  8295. const int dr = (nr + nth - 1)/nth;
  8296. // row range for this thread
  8297. const int ir0 = dr*ith;
  8298. const int ir1 = MIN(ir0 + dr, nr);
  8299. for (int ir = ir0; ir < ir1; ++ir) {
  8300. // src0 and dst are viewed with shape of src1 and offset
  8301. // => same indices
  8302. const int i3 = ir/(ne12*ne11);
  8303. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8304. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8305. #ifdef GGML_USE_ACCELERATE
  8306. vDSP_vadd(
  8307. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  8308. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8309. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  8310. #else
  8311. ggml_vec_add_f32(nc,
  8312. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8313. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  8314. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8315. #endif
  8316. }
  8317. }
  8318. static void ggml_compute_forward_acc(
  8319. const struct ggml_compute_params * params,
  8320. struct ggml_tensor * dst) {
  8321. const struct ggml_tensor * src0 = dst->src[0];
  8322. switch (src0->type) {
  8323. case GGML_TYPE_F32:
  8324. {
  8325. ggml_compute_forward_acc_f32(params, dst);
  8326. } break;
  8327. case GGML_TYPE_F16:
  8328. case GGML_TYPE_BF16:
  8329. case GGML_TYPE_Q4_0:
  8330. case GGML_TYPE_Q4_1:
  8331. case GGML_TYPE_Q5_0:
  8332. case GGML_TYPE_Q5_1:
  8333. case GGML_TYPE_Q8_0:
  8334. case GGML_TYPE_Q8_1:
  8335. case GGML_TYPE_Q2_K:
  8336. case GGML_TYPE_Q3_K:
  8337. case GGML_TYPE_Q4_K:
  8338. case GGML_TYPE_Q5_K:
  8339. case GGML_TYPE_Q6_K:
  8340. case GGML_TYPE_IQ2_XXS:
  8341. case GGML_TYPE_IQ2_XS:
  8342. case GGML_TYPE_IQ3_XXS:
  8343. case GGML_TYPE_IQ1_S:
  8344. case GGML_TYPE_IQ1_M:
  8345. case GGML_TYPE_IQ4_NL:
  8346. case GGML_TYPE_IQ4_XS:
  8347. case GGML_TYPE_IQ3_S:
  8348. case GGML_TYPE_IQ2_S:
  8349. default:
  8350. {
  8351. GGML_ASSERT(false);
  8352. } break;
  8353. }
  8354. }
  8355. // ggml_compute_forward_sub
  8356. static void ggml_compute_forward_sub_f32(
  8357. const struct ggml_compute_params * params,
  8358. struct ggml_tensor * dst) {
  8359. const struct ggml_tensor * src0 = dst->src[0];
  8360. const struct ggml_tensor * src1 = dst->src[1];
  8361. assert(params->ith == 0);
  8362. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8363. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8364. return;
  8365. }
  8366. const int nr = ggml_nrows(src0);
  8367. GGML_TENSOR_BINARY_OP_LOCALS
  8368. GGML_ASSERT( nb0 == sizeof(float));
  8369. GGML_ASSERT(nb00 == sizeof(float));
  8370. if (nb10 == sizeof(float)) {
  8371. for (int ir = 0; ir < nr; ++ir) {
  8372. // src0, src1 and dst are same shape => same indices
  8373. const int i3 = ir/(ne2*ne1);
  8374. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8375. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8376. #ifdef GGML_USE_ACCELERATE
  8377. vDSP_vsub(
  8378. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8379. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  8380. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  8381. ne0);
  8382. #else
  8383. ggml_vec_sub_f32(ne0,
  8384. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  8385. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  8386. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8387. #endif
  8388. // }
  8389. // }
  8390. }
  8391. } else {
  8392. // src1 is not contiguous
  8393. for (int ir = 0; ir < nr; ++ir) {
  8394. // src0, src1 and dst are same shape => same indices
  8395. const int i3 = ir/(ne2*ne1);
  8396. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8397. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8398. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8399. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8400. for (int i0 = 0; i0 < ne0; i0++) {
  8401. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  8402. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  8403. }
  8404. }
  8405. }
  8406. }
  8407. static void ggml_compute_forward_sub(
  8408. const struct ggml_compute_params * params,
  8409. struct ggml_tensor * dst) {
  8410. const struct ggml_tensor * src0 = dst->src[0];
  8411. switch (src0->type) {
  8412. case GGML_TYPE_F32:
  8413. {
  8414. ggml_compute_forward_sub_f32(params, dst);
  8415. } break;
  8416. default:
  8417. {
  8418. GGML_ASSERT(false);
  8419. } break;
  8420. }
  8421. }
  8422. // ggml_compute_forward_mul
  8423. static void ggml_compute_forward_mul_f32(
  8424. const struct ggml_compute_params * params,
  8425. struct ggml_tensor * dst) {
  8426. const struct ggml_tensor * src0 = dst->src[0];
  8427. const struct ggml_tensor * src1 = dst->src[1];
  8428. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8429. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8430. return;
  8431. }
  8432. const int ith = params->ith;
  8433. const int nth = params->nth;
  8434. #if defined(GGML_USE_CLBLAST)
  8435. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  8436. // TODO: OpenCL kernel support full broadcast
  8437. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  8438. if (ith == 0) {
  8439. ggml_cl_mul(src0, src1, dst);
  8440. }
  8441. return;
  8442. }
  8443. #endif
  8444. const int64_t nr = ggml_nrows(src0);
  8445. GGML_TENSOR_BINARY_OP_LOCALS
  8446. GGML_ASSERT( nb0 == sizeof(float));
  8447. GGML_ASSERT(nb00 == sizeof(float));
  8448. if (nb10 == sizeof(float)) {
  8449. for (int64_t ir = ith; ir < nr; ir += nth) {
  8450. // src0 and dst are same shape => same indices
  8451. const int64_t i03 = ir/(ne02*ne01);
  8452. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8453. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8454. const int64_t i13 = i03 % ne13;
  8455. const int64_t i12 = i02 % ne12;
  8456. const int64_t i11 = i01 % ne11;
  8457. const int64_t nr0 = ne00 / ne10;
  8458. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8459. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8460. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8461. for (int64_t r = 0 ; r < nr0; ++r) {
  8462. #ifdef GGML_USE_ACCELERATE
  8463. UNUSED(ggml_vec_mul_f32);
  8464. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  8465. #else
  8466. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8467. #endif
  8468. }
  8469. }
  8470. } else {
  8471. // src1 is not contiguous
  8472. for (int64_t ir = ith; ir < nr; ir += nth) {
  8473. // src0 and dst are same shape => same indices
  8474. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8475. const int64_t i03 = ir/(ne02*ne01);
  8476. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8477. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8478. const int64_t i13 = i03 % ne13;
  8479. const int64_t i12 = i02 % ne12;
  8480. const int64_t i11 = i01 % ne11;
  8481. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8482. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8483. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8484. const int64_t i10 = i0 % ne10;
  8485. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8486. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  8487. }
  8488. }
  8489. }
  8490. }
  8491. static void ggml_compute_forward_mul(
  8492. const struct ggml_compute_params * params,
  8493. struct ggml_tensor * dst) {
  8494. const struct ggml_tensor * src0 = dst->src[0];
  8495. const struct ggml_tensor * src1 = dst->src[1];
  8496. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  8497. switch (src0->type) {
  8498. case GGML_TYPE_F32:
  8499. {
  8500. ggml_compute_forward_mul_f32(params, dst);
  8501. } break;
  8502. default:
  8503. {
  8504. GGML_ASSERT(false);
  8505. } break;
  8506. }
  8507. }
  8508. // ggml_compute_forward_div
  8509. static void ggml_compute_forward_div_f32(
  8510. const struct ggml_compute_params * params,
  8511. struct ggml_tensor * dst) {
  8512. const struct ggml_tensor * src0 = dst->src[0];
  8513. const struct ggml_tensor * src1 = dst->src[1];
  8514. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8515. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8516. return;
  8517. }
  8518. const int ith = params->ith;
  8519. const int nth = params->nth;
  8520. const int64_t nr = ggml_nrows(src0);
  8521. GGML_TENSOR_BINARY_OP_LOCALS
  8522. GGML_ASSERT( nb0 == sizeof(float));
  8523. GGML_ASSERT(nb00 == sizeof(float));
  8524. if (nb10 == sizeof(float)) {
  8525. for (int64_t ir = ith; ir < nr; ir += nth) {
  8526. // src0 and dst are same shape => same indices
  8527. const int64_t i03 = ir/(ne02*ne01);
  8528. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8529. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8530. const int64_t i13 = i03 % ne13;
  8531. const int64_t i12 = i02 % ne12;
  8532. const int64_t i11 = i01 % ne11;
  8533. const int64_t nr0 = ne00 / ne10;
  8534. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8535. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8536. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8537. for (int64_t r = 0; r < nr0; ++r) {
  8538. #ifdef GGML_USE_ACCELERATE
  8539. UNUSED(ggml_vec_div_f32);
  8540. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  8541. #else
  8542. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8543. #endif
  8544. }
  8545. }
  8546. } else {
  8547. // src1 is not contiguous
  8548. for (int64_t ir = ith; ir < nr; ir += nth) {
  8549. // src0 and dst are same shape => same indices
  8550. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8551. const int64_t i03 = ir/(ne02*ne01);
  8552. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8553. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8554. const int64_t i13 = i03 % ne13;
  8555. const int64_t i12 = i02 % ne12;
  8556. const int64_t i11 = i01 % ne11;
  8557. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8558. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8559. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8560. const int64_t i10 = i0 % ne10;
  8561. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8562. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  8563. }
  8564. }
  8565. }
  8566. }
  8567. static void ggml_compute_forward_div(
  8568. const struct ggml_compute_params * params,
  8569. struct ggml_tensor * dst) {
  8570. const struct ggml_tensor * src0 = dst->src[0];
  8571. switch (src0->type) {
  8572. case GGML_TYPE_F32:
  8573. {
  8574. ggml_compute_forward_div_f32(params, dst);
  8575. } break;
  8576. default:
  8577. {
  8578. GGML_ASSERT(false);
  8579. } break;
  8580. }
  8581. }
  8582. // ggml_compute_forward_sqr
  8583. static void ggml_compute_forward_sqr_f32(
  8584. const struct ggml_compute_params * params,
  8585. struct ggml_tensor * dst) {
  8586. const struct ggml_tensor * src0 = dst->src[0];
  8587. assert(params->ith == 0);
  8588. assert(ggml_are_same_shape(src0, dst));
  8589. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8590. return;
  8591. }
  8592. const int n = ggml_nrows(src0);
  8593. const int nc = src0->ne[0];
  8594. assert( dst->nb[0] == sizeof(float));
  8595. assert(src0->nb[0] == sizeof(float));
  8596. for (int i = 0; i < n; i++) {
  8597. ggml_vec_sqr_f32(nc,
  8598. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8599. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8600. }
  8601. }
  8602. static void ggml_compute_forward_sqr(
  8603. const struct ggml_compute_params * params,
  8604. struct ggml_tensor * dst) {
  8605. const struct ggml_tensor * src0 = dst->src[0];
  8606. switch (src0->type) {
  8607. case GGML_TYPE_F32:
  8608. {
  8609. ggml_compute_forward_sqr_f32(params, dst);
  8610. } break;
  8611. default:
  8612. {
  8613. GGML_ASSERT(false);
  8614. } break;
  8615. }
  8616. }
  8617. // ggml_compute_forward_sqrt
  8618. static void ggml_compute_forward_sqrt_f32(
  8619. const struct ggml_compute_params * params,
  8620. struct ggml_tensor * dst) {
  8621. const struct ggml_tensor * src0 = dst->src[0];
  8622. assert(params->ith == 0);
  8623. assert(ggml_are_same_shape(src0, dst));
  8624. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8625. return;
  8626. }
  8627. const int n = ggml_nrows(src0);
  8628. const int nc = src0->ne[0];
  8629. assert( dst->nb[0] == sizeof(float));
  8630. assert(src0->nb[0] == sizeof(float));
  8631. for (int i = 0; i < n; i++) {
  8632. ggml_vec_sqrt_f32(nc,
  8633. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8634. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8635. }
  8636. }
  8637. static void ggml_compute_forward_sqrt(
  8638. const struct ggml_compute_params * params,
  8639. struct ggml_tensor * dst) {
  8640. const struct ggml_tensor * src0 = dst->src[0];
  8641. switch (src0->type) {
  8642. case GGML_TYPE_F32:
  8643. {
  8644. ggml_compute_forward_sqrt_f32(params, dst);
  8645. } break;
  8646. default:
  8647. {
  8648. GGML_ASSERT(false);
  8649. } break;
  8650. }
  8651. }
  8652. // ggml_compute_forward_log
  8653. static void ggml_compute_forward_log_f32(
  8654. const struct ggml_compute_params * params,
  8655. struct ggml_tensor * dst) {
  8656. const struct ggml_tensor * src0 = dst->src[0];
  8657. GGML_ASSERT(params->ith == 0);
  8658. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8659. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8660. return;
  8661. }
  8662. const int n = ggml_nrows(src0);
  8663. const int nc = src0->ne[0];
  8664. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8665. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8666. for (int i = 0; i < n; i++) {
  8667. ggml_vec_log_f32(nc,
  8668. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8669. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8670. }
  8671. }
  8672. static void ggml_compute_forward_log(
  8673. const struct ggml_compute_params * params,
  8674. struct ggml_tensor * dst) {
  8675. const struct ggml_tensor * src0 = dst->src[0];
  8676. switch (src0->type) {
  8677. case GGML_TYPE_F32:
  8678. {
  8679. ggml_compute_forward_log_f32(params, dst);
  8680. } break;
  8681. default:
  8682. {
  8683. GGML_ASSERT(false);
  8684. } break;
  8685. }
  8686. }
  8687. // ggml_compute_forward_sum
  8688. static void ggml_compute_forward_sum_f32(
  8689. const struct ggml_compute_params * params,
  8690. struct ggml_tensor * dst) {
  8691. const struct ggml_tensor * src0 = dst->src[0];
  8692. assert(params->ith == 0);
  8693. assert(ggml_is_scalar(dst));
  8694. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8695. return;
  8696. }
  8697. assert(ggml_is_scalar(dst));
  8698. assert(src0->nb[0] == sizeof(float));
  8699. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8700. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8701. ggml_float sum = 0;
  8702. ggml_float row_sum = 0;
  8703. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8704. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8705. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8706. ggml_vec_sum_f32_ggf(ne00,
  8707. &row_sum,
  8708. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8709. sum += row_sum;
  8710. }
  8711. }
  8712. }
  8713. ((float *) dst->data)[0] = sum;
  8714. }
  8715. static void ggml_compute_forward_sum_f16(
  8716. const struct ggml_compute_params * params,
  8717. struct ggml_tensor * dst) {
  8718. const struct ggml_tensor * src0 = dst->src[0];
  8719. assert(params->ith == 0);
  8720. assert(ggml_is_scalar(dst));
  8721. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8722. return;
  8723. }
  8724. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8725. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8726. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8727. float sum = 0;
  8728. float row_sum = 0;
  8729. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8730. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8731. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8732. ggml_vec_sum_f16_ggf(ne00,
  8733. &row_sum,
  8734. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8735. sum += row_sum;
  8736. }
  8737. }
  8738. }
  8739. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  8740. }
  8741. static void ggml_compute_forward_sum_bf16(
  8742. const struct ggml_compute_params * params,
  8743. struct ggml_tensor * dst) {
  8744. const struct ggml_tensor * src0 = dst->src[0];
  8745. assert(params->ith == 0);
  8746. assert(ggml_is_scalar(dst));
  8747. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8748. return;
  8749. }
  8750. assert(src0->nb[0] == sizeof(ggml_bf16_t));
  8751. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8752. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8753. float sum = 0;
  8754. float row_sum = 0;
  8755. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8756. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8757. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8758. ggml_vec_sum_bf16_ggf(ne00,
  8759. &row_sum,
  8760. (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8761. sum += row_sum;
  8762. }
  8763. }
  8764. }
  8765. ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
  8766. }
  8767. static void ggml_compute_forward_sum(
  8768. const struct ggml_compute_params * params,
  8769. struct ggml_tensor * dst) {
  8770. const struct ggml_tensor * src0 = dst->src[0];
  8771. switch (src0->type) {
  8772. case GGML_TYPE_F32:
  8773. {
  8774. ggml_compute_forward_sum_f32(params, dst);
  8775. } break;
  8776. case GGML_TYPE_F16:
  8777. {
  8778. ggml_compute_forward_sum_f16(params, dst);
  8779. } break;
  8780. case GGML_TYPE_BF16:
  8781. {
  8782. ggml_compute_forward_sum_bf16(params, dst);
  8783. } break;
  8784. default:
  8785. {
  8786. GGML_ASSERT(false);
  8787. } break;
  8788. }
  8789. }
  8790. // ggml_compute_forward_sum_rows
  8791. static void ggml_compute_forward_sum_rows_f32(
  8792. const struct ggml_compute_params * params,
  8793. struct ggml_tensor * dst) {
  8794. const struct ggml_tensor * src0 = dst->src[0];
  8795. GGML_ASSERT(params->ith == 0);
  8796. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8797. return;
  8798. }
  8799. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8800. GGML_ASSERT(dst->nb[0] == sizeof(float));
  8801. GGML_TENSOR_UNARY_OP_LOCALS
  8802. GGML_ASSERT(ne0 == 1);
  8803. GGML_ASSERT(ne1 == ne01);
  8804. GGML_ASSERT(ne2 == ne02);
  8805. GGML_ASSERT(ne3 == ne03);
  8806. for (int64_t i3 = 0; i3 < ne03; i3++) {
  8807. for (int64_t i2 = 0; i2 < ne02; i2++) {
  8808. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8809. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  8810. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  8811. float row_sum = 0;
  8812. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  8813. dst_row[0] = row_sum;
  8814. }
  8815. }
  8816. }
  8817. }
  8818. static void ggml_compute_forward_sum_rows(
  8819. const struct ggml_compute_params * params,
  8820. struct ggml_tensor * dst) {
  8821. const struct ggml_tensor * src0 = dst->src[0];
  8822. switch (src0->type) {
  8823. case GGML_TYPE_F32:
  8824. {
  8825. ggml_compute_forward_sum_rows_f32(params, dst);
  8826. } break;
  8827. default:
  8828. {
  8829. GGML_ASSERT(false);
  8830. } break;
  8831. }
  8832. }
  8833. // ggml_compute_forward_mean
  8834. static void ggml_compute_forward_mean_f32(
  8835. const struct ggml_compute_params * params,
  8836. struct ggml_tensor * dst) {
  8837. const struct ggml_tensor * src0 = dst->src[0];
  8838. assert(params->ith == 0);
  8839. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8840. return;
  8841. }
  8842. assert(src0->nb[0] == sizeof(float));
  8843. GGML_TENSOR_UNARY_OP_LOCALS
  8844. assert(ne0 == 1);
  8845. assert(ne1 == ne01);
  8846. assert(ne2 == ne02);
  8847. assert(ne3 == ne03);
  8848. UNUSED(ne0);
  8849. UNUSED(ne1);
  8850. UNUSED(ne2);
  8851. UNUSED(ne3);
  8852. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8853. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8854. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8855. ggml_vec_sum_f32(ne00,
  8856. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  8857. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8858. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  8859. }
  8860. }
  8861. }
  8862. }
  8863. static void ggml_compute_forward_mean(
  8864. const struct ggml_compute_params * params,
  8865. struct ggml_tensor * dst) {
  8866. const struct ggml_tensor * src0 = dst->src[0];
  8867. switch (src0->type) {
  8868. case GGML_TYPE_F32:
  8869. {
  8870. ggml_compute_forward_mean_f32(params, dst);
  8871. } break;
  8872. default:
  8873. {
  8874. GGML_ASSERT(false);
  8875. } break;
  8876. }
  8877. }
  8878. // ggml_compute_forward_argmax
  8879. static void ggml_compute_forward_argmax_f32(
  8880. const struct ggml_compute_params * params,
  8881. struct ggml_tensor * dst) {
  8882. const struct ggml_tensor * src0 = dst->src[0];
  8883. assert(params->ith == 0);
  8884. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8885. return;
  8886. }
  8887. assert(src0->nb[0] == sizeof(float));
  8888. assert(dst->nb[0] == sizeof(float));
  8889. const int64_t ne00 = src0->ne[0];
  8890. const int64_t ne01 = src0->ne[1];
  8891. const size_t nb01 = src0->nb[1];
  8892. const size_t nb0 = dst->nb[0];
  8893. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8894. float * src = (float *) ((char *) src0->data + i1*nb01);
  8895. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  8896. int v = 0;
  8897. ggml_vec_argmax_f32(ne00, &v, src);
  8898. dst_[0] = v;
  8899. }
  8900. }
  8901. static void ggml_compute_forward_argmax(
  8902. const struct ggml_compute_params * params,
  8903. struct ggml_tensor * dst) {
  8904. const struct ggml_tensor * src0 = dst->src[0];
  8905. switch (src0->type) {
  8906. case GGML_TYPE_F32:
  8907. {
  8908. ggml_compute_forward_argmax_f32(params, dst);
  8909. } break;
  8910. default:
  8911. {
  8912. GGML_ASSERT(false);
  8913. } break;
  8914. }
  8915. }
  8916. // ggml_compute_forward_repeat
  8917. static void ggml_compute_forward_repeat_f32(
  8918. const struct ggml_compute_params * params,
  8919. struct ggml_tensor * dst) {
  8920. const struct ggml_tensor * src0 = dst->src[0];
  8921. GGML_ASSERT(params->ith == 0);
  8922. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8923. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8924. return;
  8925. }
  8926. GGML_TENSOR_UNARY_OP_LOCALS
  8927. // guaranteed to be an integer due to the check in ggml_can_repeat
  8928. const int nr0 = (int)(ne0/ne00);
  8929. const int nr1 = (int)(ne1/ne01);
  8930. const int nr2 = (int)(ne2/ne02);
  8931. const int nr3 = (int)(ne3/ne03);
  8932. // TODO: support for transposed / permuted tensors
  8933. GGML_ASSERT(nb0 == sizeof(float));
  8934. GGML_ASSERT(nb00 == sizeof(float));
  8935. // TODO: maybe this is not optimal?
  8936. for (int i3 = 0; i3 < nr3; i3++) {
  8937. for (int k3 = 0; k3 < ne03; k3++) {
  8938. for (int i2 = 0; i2 < nr2; i2++) {
  8939. for (int k2 = 0; k2 < ne02; k2++) {
  8940. for (int i1 = 0; i1 < nr1; i1++) {
  8941. for (int k1 = 0; k1 < ne01; k1++) {
  8942. for (int i0 = 0; i0 < nr0; i0++) {
  8943. ggml_vec_cpy_f32(ne00,
  8944. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  8945. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  8946. }
  8947. }
  8948. }
  8949. }
  8950. }
  8951. }
  8952. }
  8953. }
  8954. static void ggml_compute_forward_repeat_f16(
  8955. const struct ggml_compute_params * params,
  8956. struct ggml_tensor * dst) {
  8957. const struct ggml_tensor * src0 = dst->src[0];
  8958. GGML_ASSERT(params->ith == 0);
  8959. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8960. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8961. return;
  8962. }
  8963. GGML_TENSOR_UNARY_OP_LOCALS
  8964. // guaranteed to be an integer due to the check in ggml_can_repeat
  8965. const int nr0 = (int)(ne0/ne00);
  8966. const int nr1 = (int)(ne1/ne01);
  8967. const int nr2 = (int)(ne2/ne02);
  8968. const int nr3 = (int)(ne3/ne03);
  8969. // TODO: support for transposed / permuted tensors
  8970. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8971. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8972. // TODO: maybe this is not optimal?
  8973. for (int i3 = 0; i3 < nr3; i3++) {
  8974. for (int k3 = 0; k3 < ne03; k3++) {
  8975. for (int i2 = 0; i2 < nr2; i2++) {
  8976. for (int k2 = 0; k2 < ne02; k2++) {
  8977. for (int i1 = 0; i1 < nr1; i1++) {
  8978. for (int k1 = 0; k1 < ne01; k1++) {
  8979. for (int i0 = 0; i0 < nr0; i0++) {
  8980. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  8981. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  8982. // ggml_vec_cpy_f16(ne00, y, x)
  8983. for (int i = 0; i < ne00; ++i) {
  8984. y[i] = x[i];
  8985. }
  8986. }
  8987. }
  8988. }
  8989. }
  8990. }
  8991. }
  8992. }
  8993. }
  8994. static void ggml_compute_forward_repeat(
  8995. const struct ggml_compute_params * params,
  8996. struct ggml_tensor * dst) {
  8997. const struct ggml_tensor * src0 = dst->src[0];
  8998. switch (src0->type) {
  8999. case GGML_TYPE_F16:
  9000. case GGML_TYPE_BF16:
  9001. case GGML_TYPE_I16:
  9002. {
  9003. ggml_compute_forward_repeat_f16(params, dst);
  9004. } break;
  9005. case GGML_TYPE_F32:
  9006. case GGML_TYPE_I32:
  9007. {
  9008. ggml_compute_forward_repeat_f32(params, dst);
  9009. } break;
  9010. default:
  9011. {
  9012. GGML_ASSERT(false);
  9013. } break;
  9014. }
  9015. }
  9016. // ggml_compute_forward_repeat_back
  9017. static void ggml_compute_forward_repeat_back_f32(
  9018. const struct ggml_compute_params * params,
  9019. struct ggml_tensor * dst) {
  9020. const struct ggml_tensor * src0 = dst->src[0];
  9021. GGML_ASSERT(params->ith == 0);
  9022. GGML_ASSERT(ggml_can_repeat(dst, src0));
  9023. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9024. return;
  9025. }
  9026. GGML_TENSOR_UNARY_OP_LOCALS
  9027. // guaranteed to be an integer due to the check in ggml_can_repeat
  9028. const int nr0 = (int)(ne00/ne0);
  9029. const int nr1 = (int)(ne01/ne1);
  9030. const int nr2 = (int)(ne02/ne2);
  9031. const int nr3 = (int)(ne03/ne3);
  9032. // TODO: support for transposed / permuted tensors
  9033. GGML_ASSERT(nb0 == sizeof(float));
  9034. GGML_ASSERT(nb00 == sizeof(float));
  9035. if (ggml_is_contiguous(dst)) {
  9036. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9037. } else {
  9038. for (int k3 = 0; k3 < ne3; k3++) {
  9039. for (int k2 = 0; k2 < ne2; k2++) {
  9040. for (int k1 = 0; k1 < ne1; k1++) {
  9041. ggml_vec_set_f32(ne0,
  9042. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  9043. 0);
  9044. }
  9045. }
  9046. }
  9047. }
  9048. // TODO: maybe this is not optimal?
  9049. for (int i3 = 0; i3 < nr3; i3++) {
  9050. for (int k3 = 0; k3 < ne3; k3++) {
  9051. for (int i2 = 0; i2 < nr2; i2++) {
  9052. for (int k2 = 0; k2 < ne2; k2++) {
  9053. for (int i1 = 0; i1 < nr1; i1++) {
  9054. for (int k1 = 0; k1 < ne1; k1++) {
  9055. for (int i0 = 0; i0 < nr0; i0++) {
  9056. ggml_vec_acc_f32(ne0,
  9057. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  9058. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  9059. }
  9060. }
  9061. }
  9062. }
  9063. }
  9064. }
  9065. }
  9066. }
  9067. static void ggml_compute_forward_repeat_back(
  9068. const struct ggml_compute_params * params,
  9069. struct ggml_tensor * dst) {
  9070. const struct ggml_tensor * src0 = dst->src[0];
  9071. switch (src0->type) {
  9072. case GGML_TYPE_F32:
  9073. {
  9074. ggml_compute_forward_repeat_back_f32(params, dst);
  9075. } break;
  9076. default:
  9077. {
  9078. GGML_ASSERT(false);
  9079. } break;
  9080. }
  9081. }
  9082. // ggml_compute_forward_concat
  9083. static void ggml_compute_forward_concat_f32(
  9084. const struct ggml_compute_params * params,
  9085. struct ggml_tensor * dst) {
  9086. const struct ggml_tensor * src0 = dst->src[0];
  9087. const struct ggml_tensor * src1 = dst->src[1];
  9088. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9089. return;
  9090. }
  9091. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9092. const int ith = params->ith;
  9093. const int nth = params->nth;
  9094. GGML_TENSOR_BINARY_OP_LOCALS
  9095. // TODO: support for transposed / permuted tensors
  9096. GGML_ASSERT(nb0 == sizeof(float));
  9097. GGML_ASSERT(nb00 == sizeof(float));
  9098. GGML_ASSERT(nb10 == sizeof(float));
  9099. for (int i3 = 0; i3 < ne3; i3++) {
  9100. for (int i2 = ith; i2 < ne2; i2 += nth) {
  9101. if (i2 < ne02) { // src0
  9102. for (int i1 = 0; i1 < ne1; i1++) {
  9103. for (int i0 = 0; i0 < ne0; i0++) {
  9104. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  9105. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  9106. *y = *x;
  9107. }
  9108. }
  9109. } // src1
  9110. else {
  9111. for (int i1 = 0; i1 < ne1; i1++) {
  9112. for (int i0 = 0; i0 < ne0; i0++) {
  9113. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  9114. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  9115. *y = *x;
  9116. }
  9117. }
  9118. }
  9119. }
  9120. }
  9121. }
  9122. static void ggml_compute_forward_concat(
  9123. const struct ggml_compute_params* params,
  9124. struct ggml_tensor* dst) {
  9125. const struct ggml_tensor * src0 = dst->src[0];
  9126. switch (src0->type) {
  9127. case GGML_TYPE_F32:
  9128. case GGML_TYPE_I32:
  9129. {
  9130. ggml_compute_forward_concat_f32(params, dst);
  9131. } break;
  9132. default:
  9133. {
  9134. GGML_ASSERT(false);
  9135. } break;
  9136. }
  9137. }
  9138. // ggml_compute_forward_abs
  9139. static void ggml_compute_forward_abs_f32(
  9140. const struct ggml_compute_params * params,
  9141. struct ggml_tensor * dst) {
  9142. const struct ggml_tensor * src0 = dst->src[0];
  9143. assert(params->ith == 0);
  9144. assert(ggml_are_same_shape(src0, dst));
  9145. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9146. return;
  9147. }
  9148. const int n = ggml_nrows(src0);
  9149. const int nc = src0->ne[0];
  9150. assert(dst->nb[0] == sizeof(float));
  9151. assert(src0->nb[0] == sizeof(float));
  9152. for (int i = 0; i < n; i++) {
  9153. ggml_vec_abs_f32(nc,
  9154. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9155. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9156. }
  9157. }
  9158. static void ggml_compute_forward_abs(
  9159. const struct ggml_compute_params * params,
  9160. struct ggml_tensor * dst) {
  9161. const struct ggml_tensor * src0 = dst->src[0];
  9162. switch (src0->type) {
  9163. case GGML_TYPE_F32:
  9164. {
  9165. ggml_compute_forward_abs_f32(params, dst);
  9166. } break;
  9167. default:
  9168. {
  9169. GGML_ASSERT(false);
  9170. } break;
  9171. }
  9172. }
  9173. // ggml_compute_forward_sgn
  9174. static void ggml_compute_forward_sgn_f32(
  9175. const struct ggml_compute_params * params,
  9176. struct ggml_tensor * dst) {
  9177. const struct ggml_tensor * src0 = dst->src[0];
  9178. assert(params->ith == 0);
  9179. assert(ggml_are_same_shape(src0, dst));
  9180. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9181. return;
  9182. }
  9183. const int n = ggml_nrows(src0);
  9184. const int nc = src0->ne[0];
  9185. assert(dst->nb[0] == sizeof(float));
  9186. assert(src0->nb[0] == sizeof(float));
  9187. for (int i = 0; i < n; i++) {
  9188. ggml_vec_sgn_f32(nc,
  9189. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9190. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9191. }
  9192. }
  9193. static void ggml_compute_forward_sgn(
  9194. const struct ggml_compute_params * params,
  9195. struct ggml_tensor * dst) {
  9196. const struct ggml_tensor * src0 = dst->src[0];
  9197. switch (src0->type) {
  9198. case GGML_TYPE_F32:
  9199. {
  9200. ggml_compute_forward_sgn_f32(params, dst);
  9201. } break;
  9202. default:
  9203. {
  9204. GGML_ASSERT(false);
  9205. } break;
  9206. }
  9207. }
  9208. // ggml_compute_forward_neg
  9209. static void ggml_compute_forward_neg_f32(
  9210. const struct ggml_compute_params * params,
  9211. struct ggml_tensor * dst) {
  9212. const struct ggml_tensor * src0 = dst->src[0];
  9213. assert(params->ith == 0);
  9214. assert(ggml_are_same_shape(src0, dst));
  9215. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9216. return;
  9217. }
  9218. const int n = ggml_nrows(src0);
  9219. const int nc = src0->ne[0];
  9220. assert(dst->nb[0] == sizeof(float));
  9221. assert(src0->nb[0] == sizeof(float));
  9222. for (int i = 0; i < n; i++) {
  9223. ggml_vec_neg_f32(nc,
  9224. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9225. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9226. }
  9227. }
  9228. static void ggml_compute_forward_neg(
  9229. const struct ggml_compute_params * params,
  9230. struct ggml_tensor * dst) {
  9231. const struct ggml_tensor * src0 = dst->src[0];
  9232. switch (src0->type) {
  9233. case GGML_TYPE_F32:
  9234. {
  9235. ggml_compute_forward_neg_f32(params, dst);
  9236. } break;
  9237. default:
  9238. {
  9239. GGML_ASSERT(false);
  9240. } break;
  9241. }
  9242. }
  9243. // ggml_compute_forward_step
  9244. static void ggml_compute_forward_step_f32(
  9245. const struct ggml_compute_params * params,
  9246. struct ggml_tensor * dst) {
  9247. const struct ggml_tensor * src0 = dst->src[0];
  9248. assert(params->ith == 0);
  9249. assert(ggml_are_same_shape(src0, dst));
  9250. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9251. return;
  9252. }
  9253. const int n = ggml_nrows(src0);
  9254. const int nc = src0->ne[0];
  9255. assert(dst->nb[0] == sizeof(float));
  9256. assert(src0->nb[0] == sizeof(float));
  9257. for (int i = 0; i < n; i++) {
  9258. ggml_vec_step_f32(nc,
  9259. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9260. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9261. }
  9262. }
  9263. static void ggml_compute_forward_step(
  9264. const struct ggml_compute_params * params,
  9265. struct ggml_tensor * dst) {
  9266. const struct ggml_tensor * src0 = dst->src[0];
  9267. switch (src0->type) {
  9268. case GGML_TYPE_F32:
  9269. {
  9270. ggml_compute_forward_step_f32(params, dst);
  9271. } break;
  9272. default:
  9273. {
  9274. GGML_ASSERT(false);
  9275. } break;
  9276. }
  9277. }
  9278. // ggml_compute_forward_tanh
  9279. static void ggml_compute_forward_tanh_f32(
  9280. const struct ggml_compute_params * params,
  9281. struct ggml_tensor * dst) {
  9282. const struct ggml_tensor * src0 = dst->src[0];
  9283. assert(params->ith == 0);
  9284. assert(ggml_are_same_shape(src0, dst));
  9285. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9286. return;
  9287. }
  9288. const int n = ggml_nrows(src0);
  9289. const int nc = src0->ne[0];
  9290. assert(dst->nb[0] == sizeof(float));
  9291. assert(src0->nb[0] == sizeof(float));
  9292. for (int i = 0; i < n; i++) {
  9293. ggml_vec_tanh_f32(nc,
  9294. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9295. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9296. }
  9297. }
  9298. static void ggml_compute_forward_tanh(
  9299. const struct ggml_compute_params * params,
  9300. struct ggml_tensor * dst) {
  9301. const struct ggml_tensor * src0 = dst->src[0];
  9302. switch (src0->type) {
  9303. case GGML_TYPE_F32:
  9304. {
  9305. ggml_compute_forward_tanh_f32(params, dst);
  9306. } break;
  9307. default:
  9308. {
  9309. GGML_ASSERT(false);
  9310. } break;
  9311. }
  9312. }
  9313. // ggml_compute_forward_elu
  9314. static void ggml_compute_forward_elu_f32(
  9315. const struct ggml_compute_params * params,
  9316. struct ggml_tensor * dst) {
  9317. const struct ggml_tensor * src0 = dst->src[0];
  9318. assert(params->ith == 0);
  9319. assert(ggml_are_same_shape(src0, dst));
  9320. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9321. return;
  9322. }
  9323. const int n = ggml_nrows(src0);
  9324. const int nc = src0->ne[0];
  9325. assert(dst->nb[0] == sizeof(float));
  9326. assert(src0->nb[0] == sizeof(float));
  9327. for (int i = 0; i < n; i++) {
  9328. ggml_vec_elu_f32(nc,
  9329. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9330. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9331. }
  9332. }
  9333. static void ggml_compute_forward_elu(
  9334. const struct ggml_compute_params * params,
  9335. struct ggml_tensor * dst) {
  9336. const struct ggml_tensor * src0 = dst->src[0];
  9337. switch (src0->type) {
  9338. case GGML_TYPE_F32:
  9339. {
  9340. ggml_compute_forward_elu_f32(params, dst);
  9341. } break;
  9342. default:
  9343. {
  9344. GGML_ASSERT(false);
  9345. } break;
  9346. }
  9347. }
  9348. // ggml_compute_forward_relu
  9349. static void ggml_compute_forward_relu_f32(
  9350. const struct ggml_compute_params * params,
  9351. struct ggml_tensor * dst) {
  9352. const struct ggml_tensor * src0 = dst->src[0];
  9353. assert(params->ith == 0);
  9354. assert(ggml_are_same_shape(src0, dst));
  9355. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9356. return;
  9357. }
  9358. const int n = ggml_nrows(src0);
  9359. const int nc = src0->ne[0];
  9360. assert(dst->nb[0] == sizeof(float));
  9361. assert(src0->nb[0] == sizeof(float));
  9362. for (int i = 0; i < n; i++) {
  9363. ggml_vec_relu_f32(nc,
  9364. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9365. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9366. }
  9367. }
  9368. static void ggml_compute_forward_relu(
  9369. const struct ggml_compute_params * params,
  9370. struct ggml_tensor * dst) {
  9371. const struct ggml_tensor * src0 = dst->src[0];
  9372. switch (src0->type) {
  9373. case GGML_TYPE_F32:
  9374. {
  9375. ggml_compute_forward_relu_f32(params, dst);
  9376. } break;
  9377. default:
  9378. {
  9379. GGML_ASSERT(false);
  9380. } break;
  9381. }
  9382. }
  9383. // ggml_compute_forward_sigmoid
  9384. static void ggml_compute_forward_sigmoid_f32(
  9385. const struct ggml_compute_params * params,
  9386. struct ggml_tensor * dst) {
  9387. const struct ggml_tensor * src0 = dst->src[0];
  9388. assert(params->ith == 0);
  9389. assert(ggml_are_same_shape(src0, dst));
  9390. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9391. return;
  9392. }
  9393. const int n = ggml_nrows(src0);
  9394. const int nc = src0->ne[0];
  9395. assert(dst->nb[0] == sizeof(float));
  9396. assert(src0->nb[0] == sizeof(float));
  9397. for (int i = 0; i < n; i++) {
  9398. ggml_vec_sigmoid_f32(nc,
  9399. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9400. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9401. }
  9402. }
  9403. static void ggml_compute_forward_sigmoid(
  9404. const struct ggml_compute_params * params,
  9405. struct ggml_tensor * dst) {
  9406. const struct ggml_tensor * src0 = dst->src[0];
  9407. switch (src0->type) {
  9408. case GGML_TYPE_F32:
  9409. {
  9410. ggml_compute_forward_sigmoid_f32(params, dst);
  9411. } break;
  9412. default:
  9413. {
  9414. GGML_ASSERT(false);
  9415. } break;
  9416. }
  9417. }
  9418. // ggml_compute_forward_gelu
  9419. static void ggml_compute_forward_gelu_f32(
  9420. const struct ggml_compute_params * params,
  9421. struct ggml_tensor * dst) {
  9422. const struct ggml_tensor * src0 = dst->src[0];
  9423. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9424. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9425. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9426. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9427. return;
  9428. }
  9429. const int ith = params->ith;
  9430. const int nth = params->nth;
  9431. const int nc = src0->ne[0];
  9432. const int nr = ggml_nrows(src0);
  9433. // rows per thread
  9434. const int dr = (nr + nth - 1)/nth;
  9435. // row range for this thread
  9436. const int ir0 = dr*ith;
  9437. const int ir1 = MIN(ir0 + dr, nr);
  9438. for (int i1 = ir0; i1 < ir1; i1++) {
  9439. ggml_vec_gelu_f32(nc,
  9440. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9441. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9442. #ifndef NDEBUG
  9443. for (int k = 0; k < nc; k++) {
  9444. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9445. UNUSED(x);
  9446. assert(!isnan(x));
  9447. assert(!isinf(x));
  9448. }
  9449. #endif
  9450. }
  9451. }
  9452. static void ggml_compute_forward_gelu(
  9453. const struct ggml_compute_params * params,
  9454. struct ggml_tensor * dst) {
  9455. const struct ggml_tensor * src0 = dst->src[0];
  9456. switch (src0->type) {
  9457. case GGML_TYPE_F32:
  9458. {
  9459. ggml_compute_forward_gelu_f32(params, dst);
  9460. } break;
  9461. default:
  9462. {
  9463. GGML_ASSERT(false);
  9464. } break;
  9465. }
  9466. }
  9467. // ggml_compute_forward_gelu_quick
  9468. static void ggml_compute_forward_gelu_quick_f32(
  9469. const struct ggml_compute_params * params,
  9470. struct ggml_tensor * dst) {
  9471. const struct ggml_tensor * src0 = dst->src[0];
  9472. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9473. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9474. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9475. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9476. return;
  9477. }
  9478. const int ith = params->ith;
  9479. const int nth = params->nth;
  9480. const int nc = src0->ne[0];
  9481. const int nr = ggml_nrows(src0);
  9482. // rows per thread
  9483. const int dr = (nr + nth - 1)/nth;
  9484. // row range for this thread
  9485. const int ir0 = dr*ith;
  9486. const int ir1 = MIN(ir0 + dr, nr);
  9487. for (int i1 = ir0; i1 < ir1; i1++) {
  9488. ggml_vec_gelu_quick_f32(nc,
  9489. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9490. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9491. #ifndef NDEBUG
  9492. for (int k = 0; k < nc; k++) {
  9493. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9494. UNUSED(x);
  9495. assert(!isnan(x));
  9496. assert(!isinf(x));
  9497. }
  9498. #endif
  9499. }
  9500. }
  9501. static void ggml_compute_forward_gelu_quick(
  9502. const struct ggml_compute_params * params,
  9503. struct ggml_tensor * dst) {
  9504. const struct ggml_tensor * src0 = dst->src[0];
  9505. switch (src0->type) {
  9506. case GGML_TYPE_F32:
  9507. {
  9508. ggml_compute_forward_gelu_quick_f32(params, dst);
  9509. } break;
  9510. default:
  9511. {
  9512. GGML_ASSERT(false);
  9513. } break;
  9514. }
  9515. }
  9516. // ggml_compute_forward_silu
  9517. static void ggml_compute_forward_silu_f32(
  9518. const struct ggml_compute_params * params,
  9519. struct ggml_tensor * dst) {
  9520. const struct ggml_tensor * src0 = dst->src[0];
  9521. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9522. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9523. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9524. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9525. return;
  9526. }
  9527. const int ith = params->ith;
  9528. const int nth = params->nth;
  9529. const int nc = src0->ne[0];
  9530. const int nr = ggml_nrows(src0);
  9531. // rows per thread
  9532. const int dr = (nr + nth - 1)/nth;
  9533. // row range for this thread
  9534. const int ir0 = dr*ith;
  9535. const int ir1 = MIN(ir0 + dr, nr);
  9536. for (int i1 = ir0; i1 < ir1; i1++) {
  9537. ggml_vec_silu_f32(nc,
  9538. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9539. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9540. #ifndef NDEBUG
  9541. for (int k = 0; k < nc; k++) {
  9542. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  9543. UNUSED(x);
  9544. assert(!isnan(x));
  9545. assert(!isinf(x));
  9546. }
  9547. #endif
  9548. }
  9549. }
  9550. static void ggml_compute_forward_silu(
  9551. const struct ggml_compute_params * params,
  9552. struct ggml_tensor * dst) {
  9553. const struct ggml_tensor * src0 = dst->src[0];
  9554. switch (src0->type) {
  9555. case GGML_TYPE_F32:
  9556. {
  9557. ggml_compute_forward_silu_f32(params, dst);
  9558. } break;
  9559. default:
  9560. {
  9561. GGML_ASSERT(false);
  9562. } break;
  9563. }
  9564. }
  9565. // ggml_compute_forward_leaky_relu
  9566. static void ggml_compute_forward_leaky_relu_f32(
  9567. const struct ggml_compute_params * params,
  9568. struct ggml_tensor * dst) {
  9569. const struct ggml_tensor * src0 = dst->src[0];
  9570. assert(params->ith == 0);
  9571. assert(ggml_are_same_shape(src0, dst));
  9572. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9573. return;
  9574. }
  9575. const int n = ggml_nrows(src0);
  9576. const int nc = src0->ne[0];
  9577. float negative_slope;
  9578. memcpy(&negative_slope, dst->op_params, sizeof(float));
  9579. assert(dst->nb[0] == sizeof(float));
  9580. assert(src0->nb[0] == sizeof(float));
  9581. for (int i = 0; i < n; i++) {
  9582. ggml_vec_leaky_relu_f32(nc,
  9583. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9584. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  9585. }
  9586. }
  9587. static void ggml_compute_forward_leaky_relu(
  9588. const struct ggml_compute_params * params,
  9589. struct ggml_tensor * dst) {
  9590. const struct ggml_tensor * src0 = dst->src[0];
  9591. switch (src0->type) {
  9592. case GGML_TYPE_F32:
  9593. {
  9594. ggml_compute_forward_leaky_relu_f32(params, dst);
  9595. } break;
  9596. default:
  9597. {
  9598. GGML_ASSERT(false);
  9599. } break;
  9600. }
  9601. }
  9602. // ggml_compute_forward_silu_back
  9603. static void ggml_compute_forward_silu_back_f32(
  9604. const struct ggml_compute_params * params,
  9605. struct ggml_tensor * dst) {
  9606. const struct ggml_tensor * src0 = dst->src[0];
  9607. const struct ggml_tensor * grad = dst->src[1];
  9608. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  9609. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9610. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9611. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9612. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  9613. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9614. return;
  9615. }
  9616. const int ith = params->ith;
  9617. const int nth = params->nth;
  9618. const int nc = src0->ne[0];
  9619. const int nr = ggml_nrows(src0);
  9620. // rows per thread
  9621. const int dr = (nr + nth - 1)/nth;
  9622. // row range for this thread
  9623. const int ir0 = dr*ith;
  9624. const int ir1 = MIN(ir0 + dr, nr);
  9625. for (int i1 = ir0; i1 < ir1; i1++) {
  9626. ggml_vec_silu_backward_f32(nc,
  9627. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9628. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  9629. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  9630. #ifndef NDEBUG
  9631. for (int k = 0; k < nc; k++) {
  9632. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9633. UNUSED(x);
  9634. assert(!isnan(x));
  9635. assert(!isinf(x));
  9636. }
  9637. #endif
  9638. }
  9639. }
  9640. static void ggml_compute_forward_silu_back(
  9641. const struct ggml_compute_params * params,
  9642. struct ggml_tensor * dst) {
  9643. const struct ggml_tensor * src0 = dst->src[0];
  9644. switch (src0->type) {
  9645. case GGML_TYPE_F32:
  9646. {
  9647. ggml_compute_forward_silu_back_f32(params, dst);
  9648. } break;
  9649. default:
  9650. {
  9651. GGML_ASSERT(false);
  9652. } break;
  9653. }
  9654. }
  9655. static void ggml_compute_forward_hardswish_f32(
  9656. const struct ggml_compute_params * params,
  9657. struct ggml_tensor * dst) {
  9658. const struct ggml_tensor * src0 = dst->src[0];
  9659. assert(params->ith == 0);
  9660. assert(ggml_are_same_shape(src0, dst));
  9661. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9662. return;
  9663. }
  9664. const int n = ggml_nrows(src0);
  9665. const int nc = src0->ne[0];
  9666. assert(dst->nb[0] == sizeof(float));
  9667. assert(src0->nb[0] == sizeof(float));
  9668. for (int i = 0; i < n; i++) {
  9669. ggml_vec_hardswish_f32(nc,
  9670. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9671. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9672. }
  9673. }
  9674. static void ggml_compute_forward_hardswish(
  9675. const struct ggml_compute_params * params,
  9676. struct ggml_tensor * dst) {
  9677. const struct ggml_tensor * src0 = dst->src[0];
  9678. switch (src0->type) {
  9679. case GGML_TYPE_F32:
  9680. {
  9681. ggml_compute_forward_hardswish_f32(params, dst);
  9682. } break;
  9683. default:
  9684. {
  9685. GGML_ASSERT(false);
  9686. } break;
  9687. }
  9688. }
  9689. static void ggml_compute_forward_hardsigmoid_f32(
  9690. const struct ggml_compute_params * params,
  9691. struct ggml_tensor * dst) {
  9692. const struct ggml_tensor * src0 = dst->src[0];
  9693. assert(params->ith == 0);
  9694. assert(ggml_are_same_shape(src0, dst));
  9695. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9696. return;
  9697. }
  9698. const int n = ggml_nrows(src0);
  9699. const int nc = src0->ne[0];
  9700. assert(dst->nb[0] == sizeof(float));
  9701. assert(src0->nb[0] == sizeof(float));
  9702. for (int i = 0; i < n; i++) {
  9703. ggml_vec_hardsigmoid_f32(nc,
  9704. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9705. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9706. }
  9707. }
  9708. static void ggml_compute_forward_hardsigmoid(
  9709. const struct ggml_compute_params * params,
  9710. struct ggml_tensor * dst) {
  9711. const struct ggml_tensor * src0 = dst->src[0];
  9712. switch (src0->type) {
  9713. case GGML_TYPE_F32:
  9714. {
  9715. ggml_compute_forward_hardsigmoid_f32(params, dst);
  9716. } break;
  9717. default:
  9718. {
  9719. GGML_ASSERT(false);
  9720. } break;
  9721. }
  9722. }
  9723. // ggml_compute_forward_norm
  9724. static void ggml_compute_forward_norm_f32(
  9725. const struct ggml_compute_params * params,
  9726. struct ggml_tensor * dst) {
  9727. const struct ggml_tensor * src0 = dst->src[0];
  9728. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9729. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9730. return;
  9731. }
  9732. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9733. const int ith = params->ith;
  9734. const int nth = params->nth;
  9735. GGML_TENSOR_UNARY_OP_LOCALS
  9736. float eps;
  9737. memcpy(&eps, dst->op_params, sizeof(float));
  9738. GGML_ASSERT(eps > 0.0f);
  9739. // TODO: optimize
  9740. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9741. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9742. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9743. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9744. ggml_float sum = 0.0;
  9745. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9746. sum += (ggml_float)x[i00];
  9747. }
  9748. float mean = sum/ne00;
  9749. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9750. ggml_float sum2 = 0.0;
  9751. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9752. float v = x[i00] - mean;
  9753. y[i00] = v;
  9754. sum2 += (ggml_float)(v*v);
  9755. }
  9756. float variance = sum2/ne00;
  9757. const float scale = 1.0f/sqrtf(variance + eps);
  9758. ggml_vec_scale_f32(ne00, y, scale);
  9759. }
  9760. }
  9761. }
  9762. }
  9763. static void ggml_compute_forward_norm(
  9764. const struct ggml_compute_params * params,
  9765. struct ggml_tensor * dst) {
  9766. const struct ggml_tensor * src0 = dst->src[0];
  9767. switch (src0->type) {
  9768. case GGML_TYPE_F32:
  9769. {
  9770. ggml_compute_forward_norm_f32(params, dst);
  9771. } break;
  9772. default:
  9773. {
  9774. GGML_ASSERT(false);
  9775. } break;
  9776. }
  9777. }
  9778. // ggml_compute_forward_group_rms_norm
  9779. static void ggml_compute_forward_rms_norm_f32(
  9780. const struct ggml_compute_params * params,
  9781. struct ggml_tensor * dst) {
  9782. const struct ggml_tensor * src0 = dst->src[0];
  9783. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9784. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9785. return;
  9786. }
  9787. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9788. const int ith = params->ith;
  9789. const int nth = params->nth;
  9790. GGML_TENSOR_UNARY_OP_LOCALS
  9791. float eps;
  9792. memcpy(&eps, dst->op_params, sizeof(float));
  9793. GGML_ASSERT(eps > 0.0f);
  9794. // TODO: optimize
  9795. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9796. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9797. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9798. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9799. ggml_float sum = 0.0;
  9800. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9801. sum += (ggml_float)(x[i00] * x[i00]);
  9802. }
  9803. const float mean = sum/ne00;
  9804. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9805. memcpy(y, x, ne00 * sizeof(float));
  9806. // for (int i00 = 0; i00 < ne00; i00++) {
  9807. // y[i00] = x[i00];
  9808. // }
  9809. const float scale = 1.0f/sqrtf(mean + eps);
  9810. ggml_vec_scale_f32(ne00, y, scale);
  9811. }
  9812. }
  9813. }
  9814. }
  9815. static void ggml_compute_forward_rms_norm(
  9816. const struct ggml_compute_params * params,
  9817. struct ggml_tensor * dst) {
  9818. const struct ggml_tensor * src0 = dst->src[0];
  9819. switch (src0->type) {
  9820. case GGML_TYPE_F32:
  9821. {
  9822. ggml_compute_forward_rms_norm_f32(params, dst);
  9823. } break;
  9824. default:
  9825. {
  9826. GGML_ASSERT(false);
  9827. } break;
  9828. }
  9829. }
  9830. static void ggml_compute_forward_rms_norm_back_f32(
  9831. const struct ggml_compute_params * params,
  9832. struct ggml_tensor * dst) {
  9833. const struct ggml_tensor * src0 = dst->src[0];
  9834. const struct ggml_tensor * src1 = dst->src[1];
  9835. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  9836. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9837. return;
  9838. }
  9839. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9840. const int ith = params->ith;
  9841. const int nth = params->nth;
  9842. GGML_TENSOR_BINARY_OP_LOCALS
  9843. float eps;
  9844. memcpy(&eps, dst->op_params, sizeof(float));
  9845. // TODO: optimize
  9846. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9847. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9848. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9849. // src1 is same shape as src0 => same indices
  9850. const int64_t i11 = i01;
  9851. const int64_t i12 = i02;
  9852. const int64_t i13 = i03;
  9853. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9854. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  9855. ggml_float sum_xx = 0.0;
  9856. ggml_float sum_xdz = 0.0;
  9857. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9858. sum_xx += (ggml_float)(x[i00] * x[i00]);
  9859. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  9860. }
  9861. //const float mean = (float)(sum_xx)/ne00;
  9862. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  9863. const float sum_eps = (float)(sum_xx) + eps*ne00;
  9864. //const float mean_xdz = (float)(sum_xdz)/ne00;
  9865. // we could cache rms from forward pass to improve performance.
  9866. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  9867. //const float rms = sqrtf(mean_eps);
  9868. const float rrms = 1.0f / sqrtf(mean_eps);
  9869. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  9870. {
  9871. // z = rms_norm(x)
  9872. //
  9873. // rms_norm(src0) =
  9874. // scale(
  9875. // src0,
  9876. // div(
  9877. // 1,
  9878. // sqrt(
  9879. // add(
  9880. // scale(
  9881. // sum(
  9882. // sqr(
  9883. // src0)),
  9884. // (1.0/N)),
  9885. // eps))));
  9886. // postorder:
  9887. // ## op args grad
  9888. // 00 param src0 grad[#00]
  9889. // 01 const 1
  9890. // 02 sqr (#00) grad[#02]
  9891. // 03 sum (#02) grad[#03]
  9892. // 04 const 1/N
  9893. // 05 scale (#03, #04) grad[#05]
  9894. // 06 const eps
  9895. // 07 add (#05, #06) grad[#07]
  9896. // 08 sqrt (#07) grad[#08]
  9897. // 09 div (#01,#08) grad[#09]
  9898. // 10 scale (#00,#09) grad[#10]
  9899. //
  9900. // backward pass, given grad[#10]
  9901. // #10: scale
  9902. // grad[#00] += scale(grad[#10],#09)
  9903. // grad[#09] += sum(mul(grad[#10],#00))
  9904. // #09: div
  9905. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  9906. // #08: sqrt
  9907. // grad[#07] += mul(grad[#08], div(0.5, #08))
  9908. // #07: add
  9909. // grad[#05] += grad[#07]
  9910. // #05: scale
  9911. // grad[#03] += scale(grad[#05],#04)
  9912. // #03: sum
  9913. // grad[#02] += repeat(grad[#03], #02)
  9914. // #02:
  9915. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  9916. //
  9917. // substitute and simplify:
  9918. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9919. // grad[#02] = repeat(grad[#03], #02)
  9920. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  9921. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  9922. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  9923. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  9924. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  9925. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  9926. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  9927. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  9928. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  9929. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9930. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  9931. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  9932. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  9933. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9934. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9935. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  9936. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  9937. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  9938. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  9939. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  9940. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  9941. // a = b*c + d*e
  9942. // a = b*c*f/f + d*e*f/f
  9943. // a = (b*c*f + d*e*f)*(1/f)
  9944. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  9945. // a = (b + d*e/c)*c
  9946. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  9947. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  9948. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  9949. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  9950. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  9951. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  9952. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  9953. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  9954. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9955. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9956. }
  9957. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9958. // post-order:
  9959. // dx := x
  9960. // dx := scale(dx,-mean_xdz/mean_eps)
  9961. // dx := add(dx, dz)
  9962. // dx := scale(dx, rrms)
  9963. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9964. ggml_vec_cpy_f32 (ne00, dx, x);
  9965. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  9966. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  9967. ggml_vec_acc_f32 (ne00, dx, dz);
  9968. ggml_vec_scale_f32(ne00, dx, rrms);
  9969. }
  9970. }
  9971. }
  9972. }
  9973. static void ggml_compute_forward_rms_norm_back(
  9974. const struct ggml_compute_params * params,
  9975. struct ggml_tensor * dst) {
  9976. const struct ggml_tensor * src0 = dst->src[0];
  9977. switch (src0->type) {
  9978. case GGML_TYPE_F32:
  9979. {
  9980. ggml_compute_forward_rms_norm_back_f32(params, dst);
  9981. } break;
  9982. default:
  9983. {
  9984. GGML_ASSERT(false);
  9985. } break;
  9986. }
  9987. }
  9988. // ggml_compute_forward_group_norm
  9989. static void ggml_compute_forward_group_norm_f32(
  9990. const struct ggml_compute_params * params,
  9991. struct ggml_tensor * dst) {
  9992. const struct ggml_tensor * src0 = dst->src[0];
  9993. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9994. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9995. return;
  9996. }
  9997. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9998. const int ith = params->ith;
  9999. const int nth = params->nth;
  10000. GGML_TENSOR_UNARY_OP_LOCALS
  10001. const float eps = 1e-6f; // TODO: make this a parameter
  10002. // TODO: optimize
  10003. int n_channels = src0->ne[2];
  10004. int n_groups = dst->op_params[0];
  10005. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  10006. for (int i = ith; i < n_groups; i += nth) {
  10007. int start = i * n_channels_per_group;
  10008. int end = start + n_channels_per_group;
  10009. if (end > n_channels) {
  10010. end = n_channels;
  10011. }
  10012. int step = end - start;
  10013. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10014. ggml_float sum = 0.0;
  10015. for (int64_t i02 = start; i02 < end; i02++) {
  10016. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10017. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  10018. ggml_float sumr = 0.0;
  10019. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10020. sumr += (ggml_float)x[i00];
  10021. }
  10022. sum += sumr;
  10023. }
  10024. }
  10025. const float mean = sum / (ne00 * ne01 * step);
  10026. ggml_float sum2 = 0.0;
  10027. for (int64_t i02 = start; i02 < end; i02++) {
  10028. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10029. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  10030. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  10031. ggml_float sumr = 0.0;
  10032. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10033. float v = x[i00] - mean;
  10034. y[i00] = v;
  10035. sumr += (ggml_float)(v * v);
  10036. }
  10037. sum2 += sumr;
  10038. }
  10039. }
  10040. const float variance = sum2 / (ne00 * ne01 * step);
  10041. const float scale = 1.0f / sqrtf(variance + eps);
  10042. for (int64_t i02 = start; i02 < end; i02++) {
  10043. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10044. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  10045. ggml_vec_scale_f32(ne00, y, scale);
  10046. }
  10047. }
  10048. }
  10049. }
  10050. }
  10051. static void ggml_compute_forward_group_norm(
  10052. const struct ggml_compute_params * params,
  10053. struct ggml_tensor * dst) {
  10054. const struct ggml_tensor * src0 = dst->src[0];
  10055. switch (src0->type) {
  10056. case GGML_TYPE_F32:
  10057. {
  10058. ggml_compute_forward_group_norm_f32(params, dst);
  10059. } break;
  10060. default:
  10061. {
  10062. GGML_ASSERT(false);
  10063. } break;
  10064. }
  10065. }
  10066. // ggml_compute_forward_mul_mat
  10067. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10068. // helper function to determine if it is better to use BLAS or not
  10069. // for large matrices, BLAS is faster
  10070. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  10071. const struct ggml_tensor * src0 = dst->src[0];
  10072. const struct ggml_tensor * src1 = dst->src[1];
  10073. //const int64_t ne00 = src0->ne[0];
  10074. //const int64_t ne01 = src0->ne[1];
  10075. const int64_t ne10 = src1->ne[0];
  10076. const int64_t ne0 = dst->ne[0];
  10077. const int64_t ne1 = dst->ne[1];
  10078. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  10079. // all the experts for each batch element and the processing would become incredibly slow
  10080. // TODO: find the optimal values for these
  10081. if (dst->op != GGML_OP_MUL_MAT_ID &&
  10082. ggml_is_contiguous(src0) &&
  10083. ggml_is_contiguous(src1) &&
  10084. //src0->type == GGML_TYPE_F32 &&
  10085. src1->type == GGML_TYPE_F32 &&
  10086. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  10087. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  10088. return true;
  10089. }
  10090. return false;
  10091. }
  10092. #endif
  10093. static void ggml_compute_forward_mul_mat_one_chunk(
  10094. const struct ggml_compute_params * params,
  10095. struct ggml_tensor * dst,
  10096. const int64_t num_rows_per_vec_dot,
  10097. const int64_t ir0_start,
  10098. const int64_t ir0_end,
  10099. const int64_t ir1_start,
  10100. const int64_t ir1_end) {
  10101. const struct ggml_tensor * src0 = dst->src[0];
  10102. const struct ggml_tensor * src1 = dst->src[1];
  10103. GGML_TENSOR_BINARY_OP_LOCALS
  10104. const enum ggml_type type = src0->type;
  10105. const bool src1_cont = ggml_is_contiguous(src1);
  10106. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10107. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10108. // broadcast factors
  10109. const int64_t r2 = ne12 / ne02;
  10110. const int64_t r3 = ne13 / ne03;
  10111. //printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end);
  10112. // threads with no work simply yield (not sure if it helps)
  10113. if (ir0_start >= ir0_end || ir1_start >= ir1_end) {
  10114. return;
  10115. }
  10116. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10117. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10118. assert(ne12 % ne02 == 0);
  10119. assert(ne13 % ne03 == 0);
  10120. // block-tiling attempt
  10121. const int64_t blck_0 = 16;
  10122. const int64_t blck_1 = 16;
  10123. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  10124. // attempt to reduce false-sharing (does not seem to make a difference)
  10125. // 16 * 2, accounting for mmla kernels
  10126. float tmp[32];
  10127. for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
  10128. for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
  10129. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) {
  10130. const int64_t i13 = (ir1 / (ne12 * ne1));
  10131. const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1;
  10132. const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1);
  10133. // broadcast src0 into src1
  10134. const int64_t i03 = i13 / r3;
  10135. const int64_t i02 = i12 / r2;
  10136. const int64_t i1 = i11;
  10137. const int64_t i2 = i12;
  10138. const int64_t i3 = i13;
  10139. const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03);
  10140. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10141. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10142. // the original src1 data pointer, so we should index using the indices directly
  10143. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10144. const char * src1_col = (const char*)wdata +
  10145. (src1_cont || src1->type != vec_dot_type
  10146. ? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size
  10147. : (i11 * nb11 + i12 * nb12 + i13 * nb13));
  10148. float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3));
  10149. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
  10150. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10151. //}
  10152. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) {
  10153. vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot);
  10154. }
  10155. for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) {
  10156. memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float));
  10157. }
  10158. }
  10159. }
  10160. }
  10161. }
  10162. static void ggml_compute_forward_mul_mat(
  10163. const struct ggml_compute_params * params,
  10164. struct ggml_tensor * dst,
  10165. struct ggml_compute_state * state) {
  10166. const struct ggml_tensor * src0 = dst->src[0];
  10167. const struct ggml_tensor * src1 = dst->src[1];
  10168. int64_t t0 = ggml_perf_time_us();
  10169. UNUSED(t0);
  10170. GGML_TENSOR_BINARY_OP_LOCALS
  10171. const int ith = params->ith;
  10172. const int nth = params->nth;
  10173. const enum ggml_type type = src0->type;
  10174. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10175. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  10176. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  10177. GGML_ASSERT(ne0 == ne01);
  10178. GGML_ASSERT(ne1 == ne11);
  10179. GGML_ASSERT(ne2 == ne12);
  10180. GGML_ASSERT(ne3 == ne13);
  10181. // we don't support permuted src0 or src1
  10182. GGML_ASSERT(nb00 == ggml_type_size(type));
  10183. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10184. // dst cannot be transposed or permuted
  10185. GGML_ASSERT(nb0 == sizeof(float));
  10186. GGML_ASSERT(nb0 <= nb1);
  10187. GGML_ASSERT(nb1 <= nb2);
  10188. GGML_ASSERT(nb2 <= nb3);
  10189. // broadcast factors
  10190. const int64_t r2 = ne12 / ne02;
  10191. const int64_t r3 = ne13 / ne03;
  10192. UNUSED(r2);
  10193. UNUSED(r3);
  10194. // nb01 >= nb00 - src0 is not transposed
  10195. // compute by src0 rows
  10196. #if defined(GGML_USE_CLBLAST)
  10197. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  10198. if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
  10199. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  10200. }
  10201. return;
  10202. }
  10203. #endif
  10204. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10205. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  10206. const int64_t ne_plane = ne01*ne00;
  10207. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  10208. UNUSED(desired_wsize);
  10209. if (params->type == GGML_TASK_TYPE_INIT) {
  10210. if (type != GGML_TYPE_F32) {
  10211. assert(params->wsize >= desired_wsize);
  10212. // parallelize by src0 rows
  10213. for (int64_t i13 = 0; i13 < ne13; i13++) {
  10214. for (int64_t i12 = 0; i12 < ne12; i12++) {
  10215. // broadcast src0 into src1 across 2nd,3rd dimension
  10216. const int64_t i03 = i13/r3;
  10217. const int64_t i02 = i12/r2;
  10218. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  10219. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  10220. ggml_to_float_t const to_float = type_traits[type].to_float;
  10221. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  10222. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  10223. }
  10224. }
  10225. }
  10226. }
  10227. return;
  10228. }
  10229. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10230. return;
  10231. }
  10232. // perform sgemm, parallelization controlled by blas lib
  10233. if (ith != 0) {
  10234. return;
  10235. }
  10236. //const int64_t tgemm0 = ggml_perf_time_us();
  10237. for (int64_t i13 = 0; i13 < ne13; i13++) {
  10238. for (int64_t i12 = 0; i12 < ne12; i12++) {
  10239. const int64_t i03 = i13/r3;
  10240. const int64_t i02 = i12/r2;
  10241. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  10242. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  10243. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  10244. if (type != GGML_TYPE_F32) {
  10245. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  10246. }
  10247. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  10248. ne1, ne01, ne10,
  10249. 1.0f, y, ne10,
  10250. x, ne00,
  10251. 0.0f, d, ne01);
  10252. }
  10253. }
  10254. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  10255. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  10256. return;
  10257. }
  10258. #endif
  10259. #if GGML_USE_LLAMAFILE
  10260. const bool src1_cont = ggml_is_contiguous(src1);
  10261. if (src1_cont) {
  10262. for (int64_t i13 = 0; i13 < ne13; i13++)
  10263. for (int64_t i12 = 0; i12 < ne12; i12++)
  10264. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10265. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10266. nb01/ggml_type_size(src0->type),
  10267. (const char *)src1->data + i12*nb12 + i13*nb13,
  10268. nb11/ggml_type_size(src1->type),
  10269. (char *)dst->data + i12*nb2 + i13*nb3,
  10270. nb1/ggml_type_size(dst->type),
  10271. ith, nth,
  10272. params->type,
  10273. src0->type,
  10274. src1->type,
  10275. dst->type))
  10276. goto UseGgmlGemm1;
  10277. return;
  10278. }
  10279. UseGgmlGemm1:;
  10280. #endif
  10281. if (params->type == GGML_TASK_TYPE_INIT) {
  10282. if (ith != 0) {
  10283. return;
  10284. }
  10285. // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
  10286. atomic_store(&state->shared->current_chunk, nth);
  10287. if (src1->type != vec_dot_type) {
  10288. char * wdata = params->wdata;
  10289. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10290. assert(params->wsize >= ne11*ne12*ne13*row_size);
  10291. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10292. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10293. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10294. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  10295. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  10296. wdata += row_size;
  10297. }
  10298. }
  10299. }
  10300. }
  10301. return;
  10302. }
  10303. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10304. return;
  10305. }
  10306. #if GGML_USE_LLAMAFILE
  10307. if (src1->type != vec_dot_type) {
  10308. const void* wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10309. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10310. for (int64_t i13 = 0; i13 < ne13; i13++)
  10311. for (int64_t i12 = 0; i12 < ne12; i12++)
  10312. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10313. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10314. nb01/ggml_type_size(src0->type),
  10315. (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
  10316. row_size/ggml_type_size(vec_dot_type),
  10317. (char *)dst->data + i12*nb2 + i13*nb3,
  10318. nb1/ggml_type_size(dst->type),
  10319. ith, nth,
  10320. params->type,
  10321. src0->type,
  10322. vec_dot_type,
  10323. dst->type))
  10324. goto UseGgmlGemm2;
  10325. return;
  10326. }
  10327. UseGgmlGemm2:;
  10328. #endif
  10329. #ifdef GGML_PERF
  10330. int chunks_executed = 0;
  10331. UNUSED(chunks_executed);
  10332. #endif
  10333. // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers)
  10334. const int64_t nr0 = ne0;
  10335. // This is the size of the rest of the dimensions of the result
  10336. const int64_t nr1 = ne1 * ne2 * ne3;
  10337. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  10338. int64_t num_rows_per_vec_dot = vec_dot_num_rows;
  10339. // TODO: currently the mmla kernels support only even numbered rows/cols.
  10340. // this check can be removed once they are extended to support odd numbered rows/cols too
  10341. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  10342. num_rows_per_vec_dot = 1;
  10343. }
  10344. // Now select a reasonable chunk size.
  10345. int chunk_size = 16;
  10346. // We need to step up the size if it's small
  10347. if (nr0 == 1 || nr1 == 1) {
  10348. chunk_size = 64;
  10349. }
  10350. // distribute the work across the inner or outer loop based on which one is larger
  10351. // The number of chunks in the 0/1 dim.
  10352. // CEIL(nr0/chunk_size)
  10353. int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
  10354. int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
  10355. // If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread.
  10356. // Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggerganov/llama.cpp/pull/6915
  10357. // In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that.
  10358. if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) {
  10359. // distribute the thread work across the inner or outer loop based on which one is larger
  10360. nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10361. nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10362. }
  10363. // The number of elements in each chunk
  10364. const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
  10365. const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
  10366. //if (ith == 0)
  10367. // printf("MUL_MAT = [%d, %d, %d, %d] x [%d, %d, %d, %d] = %d x %d = %d. Fp Ops/Ch %d\n", ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, nchunk0, nchunk1, nchunk0 * nchunk1, ne00 * nr0 * nr1 / nchunk0 / nchunk1);
  10368. // The first chunk comes from our thread_id, the rest will get auto-assigned.
  10369. int current_chunk = ith;
  10370. while (current_chunk < nchunk0 * nchunk1) {
  10371. const int64_t ith0 = current_chunk % nchunk0;
  10372. const int64_t ith1 = current_chunk / nchunk0;
  10373. const int64_t ir0_start = dr0 * ith0;
  10374. const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
  10375. const int64_t ir1_start = dr1 * ith1;
  10376. const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
  10377. ggml_compute_forward_mul_mat_one_chunk(params, dst, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
  10378. #ifdef GGML_PERF
  10379. chunks_executed++;
  10380. #endif
  10381. if (nth >= nchunk0 * nchunk1) {
  10382. break;
  10383. }
  10384. current_chunk = atomic_fetch_add(&state->shared->current_chunk, 1);
  10385. }
  10386. #ifdef GGML_PERF
  10387. // These numbers are useful when trying to measure how well the threading scheduling works.
  10388. //int64_t workSize = (ne01 * ne11 * ne12 * ne13 * ne00) / nchunk0 / nchunk1;
  10389. //float time = (ggml_perf_time_us() - t0);
  10390. //printf("MUL_MAT = %f ms, [%d, %d, %d, %d] x [%d, %d, %d, %d] = %I64u, %f ops/usec in %d chunks.\n", time / 1000.0, ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, workSize, (float)workSize/time, chunks_executed);
  10391. #endif
  10392. }
  10393. // ggml_compute_forward_mul_mat_id
  10394. static void ggml_compute_forward_mul_mat_id(
  10395. const struct ggml_compute_params * params,
  10396. struct ggml_tensor * dst) {
  10397. const struct ggml_tensor * src0 = dst->src[0];
  10398. const struct ggml_tensor * src1 = dst->src[1];
  10399. const struct ggml_tensor * ids = dst->src[2];
  10400. GGML_TENSOR_BINARY_OP_LOCALS
  10401. const int ith = params->ith;
  10402. const int nth = params->nth;
  10403. const enum ggml_type type = src0->type;
  10404. const bool src1_cont = ggml_is_contiguous(src1);
  10405. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10406. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10407. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  10408. // we don't support permuted src0 or src1
  10409. GGML_ASSERT(nb00 == ggml_type_size(type));
  10410. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10411. // dst cannot be transposed or permuted
  10412. GGML_ASSERT(nb0 == sizeof(float));
  10413. GGML_ASSERT(nb0 <= nb1);
  10414. GGML_ASSERT(nb1 <= nb2);
  10415. GGML_ASSERT(nb2 <= nb3);
  10416. // row groups
  10417. const int n_ids = ids->ne[0]; // n_expert_used
  10418. const int n_as = ne02; // n_expert
  10419. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  10420. (char *) params->wdata :
  10421. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  10422. struct mmid_row_mapping {
  10423. int32_t i1;
  10424. int32_t i2;
  10425. };
  10426. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  10427. struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
  10428. if (params->type == GGML_TASK_TYPE_INIT) {
  10429. if (ith != 0) {
  10430. return;
  10431. }
  10432. char * wdata = params->wdata;
  10433. if (src1->type != vec_dot_type) {
  10434. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10435. assert(params->wsize >= ne11*ne12*ne13*row_size);
  10436. assert(src1->type == GGML_TYPE_F32);
  10437. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10438. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10439. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  10440. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  10441. wdata += row_size;
  10442. }
  10443. }
  10444. }
  10445. }
  10446. // initialize matrix_row_counts
  10447. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  10448. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
  10449. // group rows by src0 matrix
  10450. for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
  10451. for (int id = 0; id < n_ids; ++id) {
  10452. const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
  10453. assert(i02 >= 0 && i02 < n_as);
  10454. MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
  10455. matrix_row_counts[i02] += 1;
  10456. }
  10457. }
  10458. return;
  10459. }
  10460. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10461. return;
  10462. }
  10463. // compute each matrix multiplication in sequence
  10464. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  10465. const int64_t cne1 = matrix_row_counts[cur_a];
  10466. if (cne1 == 0) {
  10467. continue;
  10468. }
  10469. const char * src0_cur = (const char *) src0->data + cur_a*nb02;
  10470. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10471. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10472. const int64_t nr0 = ne01; // src0 rows
  10473. const int64_t nr1 = cne1; // src1 rows
  10474. // distribute the thread work across the inner or outer loop based on which one is larger
  10475. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10476. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10477. const int64_t ith0 = ith % nth0;
  10478. const int64_t ith1 = ith / nth0;
  10479. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  10480. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  10481. const int64_t ir010 = dr0*ith0;
  10482. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  10483. const int64_t ir110 = dr1*ith1;
  10484. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  10485. // threads with no work simply yield (not sure if it helps)
  10486. //if (ir010 >= ir011 || ir110 >= ir111) {
  10487. // sched_yield();
  10488. // continue;
  10489. //}
  10490. // block-tiling attempt
  10491. const int64_t blck_0 = 16;
  10492. const int64_t blck_1 = 16;
  10493. // attempt to reduce false-sharing (does not seem to make a difference)
  10494. float tmp[16];
  10495. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  10496. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  10497. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  10498. const int64_t _i12 = ir1; // logical row index for this expert
  10499. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
  10500. const int id = row_mapping.i1; // selected expert index
  10501. const int64_t i11 = id % ne11;
  10502. const int64_t i12 = row_mapping.i2; // row index in src1
  10503. const int64_t i1 = id; // selected expert index
  10504. const int64_t i2 = i12; // row
  10505. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10506. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10507. // the original src1 data pointer, so we should index using the indices directly
  10508. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10509. const char * src1_col = (const char *) wdata +
  10510. (src1_cont || src1->type != vec_dot_type
  10511. ? (i11 + i12*ne11)*row_size
  10512. : (i11*nb11 + i12*nb12));
  10513. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
  10514. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10515. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10516. //}
  10517. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10518. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
  10519. }
  10520. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  10521. }
  10522. }
  10523. }
  10524. }
  10525. #undef MMID_MATRIX_ROW
  10526. }
  10527. // ggml_compute_forward_out_prod
  10528. static void ggml_compute_forward_out_prod_f32(
  10529. const struct ggml_compute_params * params,
  10530. struct ggml_tensor * dst) {
  10531. const struct ggml_tensor * src0 = dst->src[0];
  10532. const struct ggml_tensor * src1 = dst->src[1];
  10533. // int64_t t0 = ggml_perf_time_us();
  10534. // UNUSED(t0);
  10535. GGML_TENSOR_BINARY_OP_LOCALS
  10536. const int ith = params->ith;
  10537. const int nth = params->nth;
  10538. GGML_ASSERT(ne0 == ne00);
  10539. GGML_ASSERT(ne1 == ne10);
  10540. GGML_ASSERT(ne2 == ne02);
  10541. GGML_ASSERT(ne02 == ne12);
  10542. GGML_ASSERT(ne3 == ne13);
  10543. GGML_ASSERT(ne03 == ne13);
  10544. // we don't support permuted src0 or src1
  10545. GGML_ASSERT(nb00 == sizeof(float));
  10546. // dst cannot be transposed or permuted
  10547. GGML_ASSERT(nb0 == sizeof(float));
  10548. // GGML_ASSERT(nb0 <= nb1);
  10549. // GGML_ASSERT(nb1 <= nb2);
  10550. // GGML_ASSERT(nb2 <= nb3);
  10551. // nb01 >= nb00 - src0 is not transposed
  10552. // compute by src0 rows
  10553. // TODO: #if defined(GGML_USE_CLBLAST)
  10554. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10555. bool use_blas = ggml_is_matrix(src0) &&
  10556. ggml_is_matrix(src1) &&
  10557. ggml_is_contiguous(src0) &&
  10558. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  10559. #endif
  10560. if (params->type == GGML_TASK_TYPE_INIT) {
  10561. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  10562. if (use_blas) {
  10563. return;
  10564. }
  10565. #endif
  10566. if (ith != 0) {
  10567. return;
  10568. }
  10569. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10570. return;
  10571. }
  10572. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10573. return;
  10574. }
  10575. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10576. if (use_blas) {
  10577. if (params->ith != 0) { // All threads other than the first do no work.
  10578. return;
  10579. }
  10580. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  10581. // src0: (k,n)
  10582. // src1: (k,m)
  10583. // dst: (m,n)
  10584. //
  10585. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  10586. // Also expressed as (major,minor)
  10587. // a: (m,k): so src1 transposed
  10588. // b: (k,n): so src0
  10589. // c: (m,n)
  10590. //
  10591. // However, if ggml_is_transposed(src1) is true, then
  10592. // src1->data already contains a transposed version, so sgemm mustn't
  10593. // transpose it further.
  10594. int n = src0->ne[0];
  10595. int k = src0->ne[1];
  10596. int m = src1->ne[0];
  10597. int transposeA, lda;
  10598. if (!ggml_is_transposed(src1)) {
  10599. transposeA = CblasTrans;
  10600. lda = m;
  10601. } else {
  10602. transposeA = CblasNoTrans;
  10603. lda = k;
  10604. }
  10605. float * a = (float *) ((char *) src1->data);
  10606. float * b = (float *) ((char *) src0->data);
  10607. float * c = (float *) ((char *) dst->data);
  10608. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  10609. return;
  10610. }
  10611. #endif
  10612. // dst[:,:,:,:] = 0
  10613. // for i2,i3:
  10614. // for i1:
  10615. // for i01:
  10616. // for i0:
  10617. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10618. // parallelize by last three dimensions
  10619. // total rows in dst
  10620. const int64_t nr = ne1*ne2*ne3;
  10621. // rows per thread
  10622. const int64_t dr = (nr + nth - 1)/nth;
  10623. // row range for this thread
  10624. const int64_t ir0 = dr*ith;
  10625. const int64_t ir1 = MIN(ir0 + dr, nr);
  10626. // block-tiling attempt
  10627. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  10628. const int64_t blck_1 = 16;
  10629. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  10630. const int64_t bir1 = MIN(bir + blck_1, ir1);
  10631. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  10632. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  10633. for (int64_t ir = bir; ir < bir1; ++ir) {
  10634. // dst indices
  10635. const int64_t i3 = ir/(ne2*ne1);
  10636. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10637. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10638. const int64_t i02 = i2;
  10639. const int64_t i03 = i3;
  10640. //const int64_t i10 = i1;
  10641. const int64_t i12 = i2;
  10642. const int64_t i13 = i3;
  10643. #if GGML_VEC_MAD_UNROLL > 2
  10644. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  10645. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  10646. const int64_t i11 = i01;
  10647. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10648. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10649. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10650. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  10651. }
  10652. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  10653. const int64_t i11 = i01;
  10654. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10655. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10656. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10657. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10658. }
  10659. #else
  10660. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  10661. const int64_t i11 = i01;
  10662. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10663. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10664. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10665. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10666. }
  10667. #endif
  10668. }
  10669. }
  10670. }
  10671. //int64_t t1 = ggml_perf_time_us();
  10672. //static int64_t acc = 0;
  10673. //acc += t1 - t0;
  10674. //if (t1 - t0 > 10) {
  10675. // printf("\n");
  10676. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10677. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10678. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10679. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10680. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10681. //}
  10682. }
  10683. static void ggml_compute_forward_out_prod_q_f32(
  10684. const struct ggml_compute_params * params,
  10685. struct ggml_tensor * dst) {
  10686. const struct ggml_tensor * src0 = dst->src[0];
  10687. const struct ggml_tensor * src1 = dst->src[1];
  10688. // int64_t t0 = ggml_perf_time_us();
  10689. // UNUSED(t0);
  10690. GGML_TENSOR_BINARY_OP_LOCALS;
  10691. const int ith = params->ith;
  10692. const int nth = params->nth;
  10693. const enum ggml_type type = src0->type;
  10694. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10695. GGML_ASSERT(ne02 == ne12);
  10696. GGML_ASSERT(ne03 == ne13);
  10697. GGML_ASSERT(ne2 == ne12);
  10698. GGML_ASSERT(ne3 == ne13);
  10699. // we don't support permuted src0 dim0
  10700. GGML_ASSERT(nb00 == ggml_type_size(type));
  10701. // dst dim0 cannot be transposed or permuted
  10702. GGML_ASSERT(nb0 == sizeof(float));
  10703. // GGML_ASSERT(nb0 <= nb1);
  10704. // GGML_ASSERT(nb1 <= nb2);
  10705. // GGML_ASSERT(nb2 <= nb3);
  10706. GGML_ASSERT(ne0 == ne00);
  10707. GGML_ASSERT(ne1 == ne10);
  10708. GGML_ASSERT(ne2 == ne02);
  10709. GGML_ASSERT(ne3 == ne03);
  10710. // nb01 >= nb00 - src0 is not transposed
  10711. // compute by src0 rows
  10712. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  10713. if (params->type == GGML_TASK_TYPE_INIT) {
  10714. if (ith != 0) {
  10715. return;
  10716. }
  10717. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10718. return;
  10719. }
  10720. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10721. return;
  10722. }
  10723. // parallelize by last three dimensions
  10724. // total rows in dst
  10725. const int64_t nr = ne1*ne2*ne3;
  10726. // rows per thread
  10727. const int64_t dr = (nr + nth - 1)/nth;
  10728. // row range for this thread
  10729. const int64_t ir0 = dr*ith;
  10730. const int64_t ir1 = MIN(ir0 + dr, nr);
  10731. // dst[:,:,:,:] = 0
  10732. // for i2,i3:
  10733. // for i1:
  10734. // for i01:
  10735. // for i0:
  10736. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10737. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  10738. for (int64_t ir = ir0; ir < ir1; ++ir) {
  10739. // dst indices
  10740. const int64_t i3 = ir/(ne2*ne1);
  10741. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10742. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10743. const int64_t i02 = i2;
  10744. const int64_t i03 = i3;
  10745. //const int64_t i10 = i1;
  10746. const int64_t i12 = i2;
  10747. const int64_t i13 = i3;
  10748. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  10749. const int64_t i11 = i01;
  10750. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10751. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10752. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10753. dequantize_row_q(s0, wdata, ne0);
  10754. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  10755. }
  10756. }
  10757. //int64_t t1 = ggml_perf_time_us();
  10758. //static int64_t acc = 0;
  10759. //acc += t1 - t0;
  10760. //if (t1 - t0 > 10) {
  10761. // printf("\n");
  10762. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10763. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10764. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10765. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10766. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10767. //}
  10768. }
  10769. static void ggml_compute_forward_out_prod(
  10770. const struct ggml_compute_params * params,
  10771. struct ggml_tensor * dst) {
  10772. const struct ggml_tensor * src0 = dst->src[0];
  10773. switch (src0->type) {
  10774. case GGML_TYPE_Q4_0:
  10775. case GGML_TYPE_Q4_1:
  10776. case GGML_TYPE_Q5_0:
  10777. case GGML_TYPE_Q5_1:
  10778. case GGML_TYPE_Q8_0:
  10779. case GGML_TYPE_Q2_K:
  10780. case GGML_TYPE_Q3_K:
  10781. case GGML_TYPE_Q4_K:
  10782. case GGML_TYPE_Q5_K:
  10783. case GGML_TYPE_Q6_K:
  10784. case GGML_TYPE_IQ2_XXS:
  10785. case GGML_TYPE_IQ2_XS:
  10786. case GGML_TYPE_IQ3_XXS:
  10787. case GGML_TYPE_IQ1_S:
  10788. case GGML_TYPE_IQ1_M:
  10789. case GGML_TYPE_IQ4_NL:
  10790. case GGML_TYPE_IQ4_XS:
  10791. case GGML_TYPE_IQ3_S:
  10792. case GGML_TYPE_IQ2_S:
  10793. {
  10794. ggml_compute_forward_out_prod_q_f32(params, dst);
  10795. } break;
  10796. case GGML_TYPE_F16:
  10797. {
  10798. GGML_ASSERT(false); // todo
  10799. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  10800. } break;
  10801. case GGML_TYPE_F32:
  10802. {
  10803. ggml_compute_forward_out_prod_f32(params, dst);
  10804. } break;
  10805. default:
  10806. {
  10807. GGML_ASSERT(false);
  10808. } break;
  10809. }
  10810. }
  10811. // ggml_compute_forward_scale
  10812. static void ggml_compute_forward_scale_f32(
  10813. const struct ggml_compute_params * params,
  10814. struct ggml_tensor * dst) {
  10815. const struct ggml_tensor * src0 = dst->src[0];
  10816. GGML_ASSERT(ggml_is_contiguous(src0));
  10817. GGML_ASSERT(ggml_is_contiguous(dst));
  10818. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10819. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10820. return;
  10821. }
  10822. // scale factor
  10823. float v;
  10824. memcpy(&v, dst->op_params, sizeof(float));
  10825. const int ith = params->ith;
  10826. const int nth = params->nth;
  10827. const int nc = src0->ne[0];
  10828. const int nr = ggml_nrows(src0);
  10829. // rows per thread
  10830. const int dr = (nr + nth - 1)/nth;
  10831. // row range for this thread
  10832. const int ir0 = dr*ith;
  10833. const int ir1 = MIN(ir0 + dr, nr);
  10834. const size_t nb01 = src0->nb[1];
  10835. const size_t nb1 = dst->nb[1];
  10836. for (int i1 = ir0; i1 < ir1; i1++) {
  10837. if (dst->data != src0->data) {
  10838. // src0 is same shape as dst => same indices
  10839. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  10840. }
  10841. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  10842. }
  10843. }
  10844. static void ggml_compute_forward_scale(
  10845. const struct ggml_compute_params * params,
  10846. struct ggml_tensor * dst) {
  10847. const struct ggml_tensor * src0 = dst->src[0];
  10848. switch (src0->type) {
  10849. case GGML_TYPE_F32:
  10850. {
  10851. ggml_compute_forward_scale_f32(params, dst);
  10852. } break;
  10853. default:
  10854. {
  10855. GGML_ASSERT(false);
  10856. } break;
  10857. }
  10858. }
  10859. // ggml_compute_forward_set
  10860. static void ggml_compute_forward_set_f32(
  10861. const struct ggml_compute_params * params,
  10862. struct ggml_tensor * dst) {
  10863. const struct ggml_tensor * src0 = dst->src[0];
  10864. const struct ggml_tensor * src1 = dst->src[1];
  10865. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10866. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  10867. // view src0 and dst with these strides and data offset inbytes during set
  10868. // nb0 is implicitly element_size because src0 and dst are contiguous
  10869. size_t nb1 = ((int32_t *) dst->op_params)[0];
  10870. size_t nb2 = ((int32_t *) dst->op_params)[1];
  10871. size_t nb3 = ((int32_t *) dst->op_params)[2];
  10872. size_t offset = ((int32_t *) dst->op_params)[3];
  10873. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  10874. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  10875. if (params->ith != 0) {
  10876. return;
  10877. }
  10878. // memcpy needs to be synchronized across threads to avoid race conditions.
  10879. // => do it in INIT phase
  10880. memcpy(
  10881. ((char *) dst->data),
  10882. ((char *) src0->data),
  10883. ggml_nbytes(dst));
  10884. }
  10885. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10886. return;
  10887. }
  10888. const int ith = params->ith;
  10889. const int nth = params->nth;
  10890. const int nr = ggml_nrows(src1);
  10891. const int nc = src1->ne[0];
  10892. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  10893. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  10894. // src0 and dst as viewed during set
  10895. const size_t nb0 = ggml_element_size(src0);
  10896. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  10897. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  10898. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  10899. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  10900. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  10901. GGML_ASSERT(nb10 == sizeof(float));
  10902. // rows per thread
  10903. const int dr = (nr + nth - 1)/nth;
  10904. // row range for this thread
  10905. const int ir0 = dr*ith;
  10906. const int ir1 = MIN(ir0 + dr, nr);
  10907. for (int ir = ir0; ir < ir1; ++ir) {
  10908. // src0 and dst are viewed with shape of src1 and offset
  10909. // => same indices
  10910. const int i3 = ir/(ne12*ne11);
  10911. const int i2 = (ir - i3*ne12*ne11)/ne11;
  10912. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  10913. ggml_vec_cpy_f32(nc,
  10914. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  10915. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  10916. }
  10917. }
  10918. static void ggml_compute_forward_set(
  10919. const struct ggml_compute_params * params,
  10920. struct ggml_tensor * dst) {
  10921. const struct ggml_tensor * src0 = dst->src[0];
  10922. switch (src0->type) {
  10923. case GGML_TYPE_F32:
  10924. {
  10925. ggml_compute_forward_set_f32(params, dst);
  10926. } break;
  10927. case GGML_TYPE_F16:
  10928. case GGML_TYPE_BF16:
  10929. case GGML_TYPE_Q4_0:
  10930. case GGML_TYPE_Q4_1:
  10931. case GGML_TYPE_Q5_0:
  10932. case GGML_TYPE_Q5_1:
  10933. case GGML_TYPE_Q8_0:
  10934. case GGML_TYPE_Q8_1:
  10935. case GGML_TYPE_Q2_K:
  10936. case GGML_TYPE_Q3_K:
  10937. case GGML_TYPE_Q4_K:
  10938. case GGML_TYPE_Q5_K:
  10939. case GGML_TYPE_Q6_K:
  10940. case GGML_TYPE_IQ2_XXS:
  10941. case GGML_TYPE_IQ2_XS:
  10942. case GGML_TYPE_IQ3_XXS:
  10943. case GGML_TYPE_IQ1_S:
  10944. case GGML_TYPE_IQ1_M:
  10945. case GGML_TYPE_IQ4_NL:
  10946. case GGML_TYPE_IQ4_XS:
  10947. case GGML_TYPE_IQ3_S:
  10948. case GGML_TYPE_IQ2_S:
  10949. default:
  10950. {
  10951. GGML_ASSERT(false);
  10952. } break;
  10953. }
  10954. }
  10955. // ggml_compute_forward_cpy
  10956. static void ggml_compute_forward_cpy(
  10957. const struct ggml_compute_params * params,
  10958. struct ggml_tensor * dst) {
  10959. ggml_compute_forward_dup(params, dst);
  10960. }
  10961. // ggml_compute_forward_cont
  10962. static void ggml_compute_forward_cont(
  10963. const struct ggml_compute_params * params,
  10964. struct ggml_tensor * dst) {
  10965. ggml_compute_forward_dup(params, dst);
  10966. }
  10967. // ggml_compute_forward_reshape
  10968. static void ggml_compute_forward_reshape(
  10969. const struct ggml_compute_params * params,
  10970. struct ggml_tensor * dst) {
  10971. // NOP
  10972. UNUSED(params);
  10973. UNUSED(dst);
  10974. }
  10975. // ggml_compute_forward_view
  10976. static void ggml_compute_forward_view(
  10977. const struct ggml_compute_params * params,
  10978. const struct ggml_tensor * dst) {
  10979. // NOP
  10980. UNUSED(params);
  10981. UNUSED(dst);
  10982. }
  10983. // ggml_compute_forward_permute
  10984. static void ggml_compute_forward_permute(
  10985. const struct ggml_compute_params * params,
  10986. const struct ggml_tensor * dst) {
  10987. // NOP
  10988. UNUSED(params);
  10989. UNUSED(dst);
  10990. }
  10991. // ggml_compute_forward_transpose
  10992. static void ggml_compute_forward_transpose(
  10993. const struct ggml_compute_params * params,
  10994. const struct ggml_tensor * dst) {
  10995. // NOP
  10996. UNUSED(params);
  10997. UNUSED(dst);
  10998. }
  10999. // ggml_compute_forward_get_rows
  11000. static void ggml_compute_forward_get_rows_q(
  11001. const struct ggml_compute_params * params,
  11002. struct ggml_tensor * dst) {
  11003. const struct ggml_tensor * src0 = dst->src[0];
  11004. const struct ggml_tensor * src1 = dst->src[1];
  11005. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11006. return;
  11007. }
  11008. GGML_TENSOR_BINARY_OP_LOCALS
  11009. const int64_t nc = ne00;
  11010. const int64_t nr = ggml_nelements(src1);
  11011. const enum ggml_type type = src0->type;
  11012. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  11013. assert(ne0 == nc);
  11014. assert(ne02 == ne11);
  11015. assert(nb00 == ggml_type_size(type));
  11016. assert(ggml_nrows(dst) == nr);
  11017. const int ith = params->ith;
  11018. const int nth = params->nth;
  11019. // rows per thread
  11020. const int dr = (nr + nth - 1)/nth;
  11021. // row range for this thread
  11022. const int ir0 = dr*ith;
  11023. const int ir1 = MIN(ir0 + dr, nr);
  11024. for (int64_t i = ir0; i < ir1; ++i) {
  11025. const int64_t i12 = i/(ne11*ne10);
  11026. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11027. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11028. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11029. dequantize_row_q(
  11030. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11031. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11032. }
  11033. }
  11034. static void ggml_compute_forward_get_rows_f16(
  11035. const struct ggml_compute_params * params,
  11036. struct ggml_tensor * dst) {
  11037. const struct ggml_tensor * src0 = dst->src[0];
  11038. const struct ggml_tensor * src1 = dst->src[1];
  11039. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11040. return;
  11041. }
  11042. GGML_TENSOR_BINARY_OP_LOCALS
  11043. const int64_t nc = ne00;
  11044. const int64_t nr = ggml_nelements(src1);
  11045. assert(ne0 == nc);
  11046. assert(ne02 == ne11);
  11047. assert(nb00 == sizeof(ggml_fp16_t));
  11048. assert(ggml_nrows(dst) == nr);
  11049. const int ith = params->ith;
  11050. const int nth = params->nth;
  11051. // rows per thread
  11052. const int dr = (nr + nth - 1)/nth;
  11053. // row range for this thread
  11054. const int ir0 = dr*ith;
  11055. const int ir1 = MIN(ir0 + dr, nr);
  11056. for (int64_t i = ir0; i < ir1; ++i) {
  11057. const int64_t i12 = i/(ne11*ne10);
  11058. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11059. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11060. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11061. ggml_fp16_to_fp32_row(
  11062. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11063. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11064. }
  11065. }
  11066. static void ggml_compute_forward_get_rows_bf16(
  11067. const struct ggml_compute_params * params,
  11068. struct ggml_tensor * dst) {
  11069. const struct ggml_tensor * src0 = dst->src[0];
  11070. const struct ggml_tensor * src1 = dst->src[1];
  11071. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11072. return;
  11073. }
  11074. GGML_TENSOR_BINARY_OP_LOCALS
  11075. const int64_t nc = ne00;
  11076. const int64_t nr = ggml_nelements(src1);
  11077. assert(ne0 == nc);
  11078. assert(ne02 == ne11);
  11079. assert(nb00 == sizeof(ggml_bf16_t));
  11080. assert(ggml_nrows(dst) == nr);
  11081. const int ith = params->ith;
  11082. const int nth = params->nth;
  11083. // rows per thread
  11084. const int dr = (nr + nth - 1)/nth;
  11085. // row range for this thread
  11086. const int ir0 = dr*ith;
  11087. const int ir1 = MIN(ir0 + dr, nr);
  11088. for (int64_t i = ir0; i < ir1; ++i) {
  11089. const int64_t i12 = i/(ne11*ne10);
  11090. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11091. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11092. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11093. ggml_bf16_to_fp32_row(
  11094. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11095. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11096. }
  11097. }
  11098. static void ggml_compute_forward_get_rows_f32(
  11099. const struct ggml_compute_params * params,
  11100. struct ggml_tensor * dst) {
  11101. const struct ggml_tensor * src0 = dst->src[0];
  11102. const struct ggml_tensor * src1 = dst->src[1];
  11103. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11104. return;
  11105. }
  11106. GGML_TENSOR_BINARY_OP_LOCALS
  11107. const int64_t nc = ne00;
  11108. const int64_t nr = ggml_nelements(src1);
  11109. assert(ne0 == nc);
  11110. assert(ne02 == ne11);
  11111. assert(nb00 == sizeof(float));
  11112. assert(ggml_nrows(dst) == nr);
  11113. const int ith = params->ith;
  11114. const int nth = params->nth;
  11115. // rows per thread
  11116. const int dr = (nr + nth - 1)/nth;
  11117. // row range for this thread
  11118. const int ir0 = dr*ith;
  11119. const int ir1 = MIN(ir0 + dr, nr);
  11120. for (int64_t i = ir0; i < ir1; ++i) {
  11121. const int64_t i12 = i/(ne11*ne10);
  11122. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11123. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11124. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11125. ggml_vec_cpy_f32(nc,
  11126. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  11127. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  11128. }
  11129. }
  11130. static void ggml_compute_forward_get_rows(
  11131. const struct ggml_compute_params * params,
  11132. struct ggml_tensor * dst) {
  11133. const struct ggml_tensor * src0 = dst->src[0];
  11134. switch (src0->type) {
  11135. case GGML_TYPE_Q4_0:
  11136. case GGML_TYPE_Q4_1:
  11137. case GGML_TYPE_Q5_0:
  11138. case GGML_TYPE_Q5_1:
  11139. case GGML_TYPE_Q8_0:
  11140. case GGML_TYPE_Q8_1:
  11141. case GGML_TYPE_Q2_K:
  11142. case GGML_TYPE_Q3_K:
  11143. case GGML_TYPE_Q4_K:
  11144. case GGML_TYPE_Q5_K:
  11145. case GGML_TYPE_Q6_K:
  11146. case GGML_TYPE_IQ2_XXS:
  11147. case GGML_TYPE_IQ2_XS:
  11148. case GGML_TYPE_IQ3_XXS:
  11149. case GGML_TYPE_IQ1_S:
  11150. case GGML_TYPE_IQ1_M:
  11151. case GGML_TYPE_IQ4_NL:
  11152. case GGML_TYPE_IQ4_XS:
  11153. case GGML_TYPE_IQ3_S:
  11154. case GGML_TYPE_IQ2_S:
  11155. {
  11156. ggml_compute_forward_get_rows_q(params, dst);
  11157. } break;
  11158. case GGML_TYPE_F16:
  11159. {
  11160. ggml_compute_forward_get_rows_f16(params, dst);
  11161. } break;
  11162. case GGML_TYPE_BF16:
  11163. {
  11164. ggml_compute_forward_get_rows_bf16(params, dst);
  11165. } break;
  11166. case GGML_TYPE_F32:
  11167. case GGML_TYPE_I32:
  11168. {
  11169. ggml_compute_forward_get_rows_f32(params, dst);
  11170. } break;
  11171. default:
  11172. {
  11173. GGML_ASSERT(false);
  11174. } break;
  11175. }
  11176. //static bool first = true;
  11177. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11178. //if (first) {
  11179. // first = false;
  11180. //} else {
  11181. // for (int k = 0; k < dst->ne[1]; ++k) {
  11182. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11183. // for (int i = 0; i < 16; ++i) {
  11184. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11185. // }
  11186. // printf("\n");
  11187. // }
  11188. // printf("\n");
  11189. // }
  11190. // printf("\n");
  11191. // exit(0);
  11192. //}
  11193. }
  11194. // ggml_compute_forward_get_rows_back
  11195. static void ggml_compute_forward_get_rows_back_f32_f16(
  11196. const struct ggml_compute_params * params,
  11197. struct ggml_tensor * dst) {
  11198. const struct ggml_tensor * src0 = dst->src[0];
  11199. const struct ggml_tensor * src1 = dst->src[1];
  11200. GGML_ASSERT(params->ith == 0);
  11201. GGML_ASSERT(ggml_is_contiguous(dst));
  11202. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11203. if (params->type == GGML_TASK_TYPE_INIT) {
  11204. if (params->ith != 0) {
  11205. return;
  11206. }
  11207. memset(dst->data, 0, ggml_nbytes(dst));
  11208. }
  11209. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11210. return;
  11211. }
  11212. const int nc = src0->ne[0];
  11213. const int nr = ggml_nelements(src1);
  11214. GGML_ASSERT( dst->ne[0] == nc);
  11215. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  11216. for (int i = 0; i < nr; ++i) {
  11217. const int r = ((int32_t *) src1->data)[i];
  11218. for (int j = 0; j < nc; ++j) {
  11219. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  11220. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  11221. }
  11222. }
  11223. }
  11224. static void ggml_compute_forward_get_rows_back_f32(
  11225. const struct ggml_compute_params * params,
  11226. struct ggml_tensor * dst) {
  11227. const struct ggml_tensor * src0 = dst->src[0];
  11228. const struct ggml_tensor * src1 = dst->src[1];
  11229. GGML_ASSERT(params->ith == 0);
  11230. GGML_ASSERT(ggml_is_contiguous(dst));
  11231. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11232. if (params->type == GGML_TASK_TYPE_INIT) {
  11233. if (params->ith != 0) {
  11234. return;
  11235. }
  11236. memset(dst->data, 0, ggml_nbytes(dst));
  11237. }
  11238. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11239. return;
  11240. }
  11241. const int nc = src0->ne[0];
  11242. const int nr = ggml_nelements(src1);
  11243. GGML_ASSERT( dst->ne[0] == nc);
  11244. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11245. for (int i = 0; i < nr; ++i) {
  11246. const int r = ((int32_t *) src1->data)[i];
  11247. ggml_vec_add_f32(nc,
  11248. (float *) ((char *) dst->data + r*dst->nb[1]),
  11249. (float *) ((char *) dst->data + r*dst->nb[1]),
  11250. (float *) ((char *) src0->data + i*src0->nb[1]));
  11251. }
  11252. }
  11253. static void ggml_compute_forward_get_rows_back(
  11254. const struct ggml_compute_params * params,
  11255. struct ggml_tensor * dst) {
  11256. const struct ggml_tensor * src0 = dst->src[0];
  11257. switch (src0->type) {
  11258. case GGML_TYPE_F16:
  11259. {
  11260. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  11261. } break;
  11262. case GGML_TYPE_F32:
  11263. {
  11264. ggml_compute_forward_get_rows_back_f32(params, dst);
  11265. } break;
  11266. default:
  11267. {
  11268. GGML_ASSERT(false);
  11269. } break;
  11270. }
  11271. //static bool first = true;
  11272. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11273. //if (first) {
  11274. // first = false;
  11275. //} else {
  11276. // for (int k = 0; k < dst->ne[1]; ++k) {
  11277. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11278. // for (int i = 0; i < 16; ++i) {
  11279. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11280. // }
  11281. // printf("\n");
  11282. // }
  11283. // printf("\n");
  11284. // }
  11285. // printf("\n");
  11286. // exit(0);
  11287. //}
  11288. }
  11289. // ggml_compute_forward_diag
  11290. static void ggml_compute_forward_diag_f32(
  11291. const struct ggml_compute_params * params,
  11292. struct ggml_tensor * dst) {
  11293. const struct ggml_tensor * src0 = dst->src[0];
  11294. GGML_ASSERT(params->ith == 0);
  11295. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11296. return;
  11297. }
  11298. // TODO: handle transposed/permuted matrices
  11299. GGML_TENSOR_UNARY_OP_LOCALS
  11300. GGML_ASSERT(ne00 == ne0);
  11301. GGML_ASSERT(ne00 == ne1);
  11302. GGML_ASSERT(ne01 == 1);
  11303. GGML_ASSERT(ne02 == ne2);
  11304. GGML_ASSERT(ne03 == ne3);
  11305. GGML_ASSERT(nb00 == sizeof(float));
  11306. GGML_ASSERT(nb0 == sizeof(float));
  11307. for (int i3 = 0; i3 < ne3; i3++) {
  11308. for (int i2 = 0; i2 < ne2; i2++) {
  11309. for (int i1 = 0; i1 < ne1; i1++) {
  11310. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  11311. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  11312. for (int i0 = 0; i0 < i1; i0++) {
  11313. d[i0] = 0;
  11314. }
  11315. d[i1] = s[i1];
  11316. for (int i0 = i1+1; i0 < ne0; i0++) {
  11317. d[i0] = 0;
  11318. }
  11319. }
  11320. }
  11321. }
  11322. }
  11323. static void ggml_compute_forward_diag(
  11324. const struct ggml_compute_params * params,
  11325. struct ggml_tensor * dst) {
  11326. const struct ggml_tensor * src0 = dst->src[0];
  11327. switch (src0->type) {
  11328. case GGML_TYPE_F32:
  11329. {
  11330. ggml_compute_forward_diag_f32(params, dst);
  11331. } break;
  11332. default:
  11333. {
  11334. GGML_ASSERT(false);
  11335. } break;
  11336. }
  11337. }
  11338. // ggml_compute_forward_diag_mask_inf
  11339. static void ggml_compute_forward_diag_mask_f32(
  11340. const struct ggml_compute_params * params,
  11341. struct ggml_tensor * dst,
  11342. const float value) {
  11343. const struct ggml_tensor * src0 = dst->src[0];
  11344. const int ith = params->ith;
  11345. const int nth = params->nth;
  11346. const int n_past = ((int32_t *) dst->op_params)[0];
  11347. const bool inplace = src0->data == dst->data;
  11348. GGML_ASSERT(n_past >= 0);
  11349. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  11350. if (ith != 0) {
  11351. return;
  11352. }
  11353. // memcpy needs to be synchronized across threads to avoid race conditions.
  11354. // => do it in INIT phase
  11355. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  11356. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  11357. memcpy(
  11358. ((char *) dst->data),
  11359. ((char *) src0->data),
  11360. ggml_nbytes(dst));
  11361. }
  11362. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11363. return;
  11364. }
  11365. // TODO: handle transposed/permuted matrices
  11366. const int n = ggml_nrows(src0);
  11367. const int nc = src0->ne[0];
  11368. const int nr = src0->ne[1];
  11369. const int nz = n/nr;
  11370. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11371. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11372. for (int k = 0; k < nz; k++) {
  11373. for (int j = ith; j < nr; j += nth) {
  11374. for (int i = n_past; i < nc; i++) {
  11375. if (i > n_past + j) {
  11376. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  11377. }
  11378. }
  11379. }
  11380. }
  11381. }
  11382. static void ggml_compute_forward_diag_mask_inf(
  11383. const struct ggml_compute_params * params,
  11384. struct ggml_tensor * dst) {
  11385. const struct ggml_tensor * src0 = dst->src[0];
  11386. switch (src0->type) {
  11387. case GGML_TYPE_F32:
  11388. {
  11389. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  11390. } break;
  11391. default:
  11392. {
  11393. GGML_ASSERT(false);
  11394. } break;
  11395. }
  11396. }
  11397. static void ggml_compute_forward_diag_mask_zero(
  11398. const struct ggml_compute_params * params,
  11399. struct ggml_tensor * dst) {
  11400. const struct ggml_tensor * src0 = dst->src[0];
  11401. switch (src0->type) {
  11402. case GGML_TYPE_F32:
  11403. {
  11404. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  11405. } break;
  11406. default:
  11407. {
  11408. GGML_ASSERT(false);
  11409. } break;
  11410. }
  11411. }
  11412. // ggml_compute_forward_soft_max
  11413. static void ggml_compute_forward_soft_max_f32(
  11414. const struct ggml_compute_params * params,
  11415. struct ggml_tensor * dst) {
  11416. const struct ggml_tensor * src0 = dst->src[0];
  11417. const struct ggml_tensor * src1 = dst->src[1];
  11418. assert(ggml_is_contiguous(dst));
  11419. assert(ggml_are_same_shape(src0, dst));
  11420. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11421. return;
  11422. }
  11423. float scale = 1.0f;
  11424. float max_bias = 0.0f;
  11425. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  11426. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  11427. // TODO: handle transposed/permuted matrices
  11428. const int ith = params->ith;
  11429. const int nth = params->nth;
  11430. GGML_TENSOR_UNARY_OP_LOCALS
  11431. //const int64_t ne11 = src1 ? src1->ne[1] : 1;
  11432. // TODO: is this supposed to be ceil instead of floor?
  11433. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  11434. const uint32_t n_head = ne02;
  11435. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  11436. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  11437. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  11438. const int nc = src0->ne[0];
  11439. const int nr = ggml_nrows(src0);
  11440. // rows per thread
  11441. const int dr = (nr + nth - 1)/nth;
  11442. // row range for this thread
  11443. const int ir0 = dr*ith;
  11444. const int ir1 = MIN(ir0 + dr, nr);
  11445. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  11446. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  11447. for (int i1 = ir0; i1 < ir1; i1++) {
  11448. // ALiBi
  11449. const uint32_t h = (i1/ne01)%ne02; // head
  11450. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  11451. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  11452. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  11453. // broadcast the mask across rows
  11454. ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11455. float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11456. ggml_vec_cpy_f32 (nc, wp, sp);
  11457. ggml_vec_scale_f32(nc, wp, scale);
  11458. if (mp_f32) {
  11459. if (use_f16) {
  11460. for (int i = 0; i < nc; ++i) {
  11461. wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
  11462. }
  11463. } else {
  11464. for (int i = 0; i < nc; ++i) {
  11465. wp[i] += slope*mp_f32[i];
  11466. }
  11467. }
  11468. }
  11469. #ifndef NDEBUG
  11470. for (int i = 0; i < nc; ++i) {
  11471. //printf("p[%d] = %f\n", i, p[i]);
  11472. assert(!isnan(wp[i]));
  11473. }
  11474. #endif
  11475. float max = -INFINITY;
  11476. ggml_vec_max_f32(nc, &max, wp);
  11477. ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
  11478. assert(sum > 0.0);
  11479. sum = 1.0/sum;
  11480. ggml_vec_scale_f32(nc, dp, sum);
  11481. #ifndef NDEBUG
  11482. for (int i = 0; i < nc; ++i) {
  11483. assert(!isnan(dp[i]));
  11484. assert(!isinf(dp[i]));
  11485. }
  11486. #endif
  11487. }
  11488. }
  11489. static void ggml_compute_forward_soft_max(
  11490. const struct ggml_compute_params * params,
  11491. struct ggml_tensor * dst) {
  11492. const struct ggml_tensor * src0 = dst->src[0];
  11493. switch (src0->type) {
  11494. case GGML_TYPE_F32:
  11495. {
  11496. ggml_compute_forward_soft_max_f32(params, dst);
  11497. } break;
  11498. default:
  11499. {
  11500. GGML_ASSERT(false);
  11501. } break;
  11502. }
  11503. }
  11504. // ggml_compute_forward_soft_max_back
  11505. static void ggml_compute_forward_soft_max_back_f32(
  11506. const struct ggml_compute_params * params,
  11507. struct ggml_tensor * dst) {
  11508. const struct ggml_tensor * src0 = dst->src[0];
  11509. const struct ggml_tensor * src1 = dst->src[1];
  11510. GGML_ASSERT(ggml_is_contiguous(src0));
  11511. GGML_ASSERT(ggml_is_contiguous(src1));
  11512. GGML_ASSERT(ggml_is_contiguous(dst));
  11513. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11514. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  11515. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11516. return;
  11517. }
  11518. // TODO: handle transposed/permuted matrices
  11519. const int ith = params->ith;
  11520. const int nth = params->nth;
  11521. const int nc = src0->ne[0];
  11522. const int nr = ggml_nrows(src0);
  11523. // rows per thread
  11524. const int dr = (nr + nth - 1)/nth;
  11525. // row range for this thread
  11526. const int ir0 = dr*ith;
  11527. const int ir1 = MIN(ir0 + dr, nr);
  11528. for (int i1 = ir0; i1 < ir1; i1++) {
  11529. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  11530. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  11531. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  11532. #ifndef NDEBUG
  11533. for (int i = 0; i < nc; ++i) {
  11534. //printf("p[%d] = %f\n", i, p[i]);
  11535. assert(!isnan(dy[i]));
  11536. assert(!isnan(y[i]));
  11537. }
  11538. #endif
  11539. // Jii = yi - yi*yi
  11540. // Jij = -yi*yj
  11541. // J = diag(y)-y.T*y
  11542. // dx = J * dy
  11543. // dxk = sum_i(Jki * dyi)
  11544. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  11545. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  11546. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  11547. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  11548. // dxk = -yk * dot(y, dy) + yk*dyk
  11549. // dxk = yk * (- dot(y, dy) + dyk)
  11550. // dxk = yk * (dyk - dot(y, dy))
  11551. //
  11552. // post-order:
  11553. // dot_y_dy := dot(y, dy)
  11554. // dx := dy
  11555. // dx := dx - dot_y_dy
  11556. // dx := dx * y
  11557. // linear runtime, no additional memory
  11558. float dot_y_dy = 0;
  11559. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  11560. ggml_vec_cpy_f32 (nc, dx, dy);
  11561. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  11562. ggml_vec_mul_f32 (nc, dx, dx, y);
  11563. #ifndef NDEBUG
  11564. for (int i = 0; i < nc; ++i) {
  11565. assert(!isnan(dx[i]));
  11566. assert(!isinf(dx[i]));
  11567. }
  11568. #endif
  11569. }
  11570. }
  11571. static void ggml_compute_forward_soft_max_back(
  11572. const struct ggml_compute_params * params,
  11573. struct ggml_tensor * dst) {
  11574. const struct ggml_tensor * src0 = dst->src[0];
  11575. switch (src0->type) {
  11576. case GGML_TYPE_F32:
  11577. {
  11578. ggml_compute_forward_soft_max_back_f32(params, dst);
  11579. } break;
  11580. default:
  11581. {
  11582. GGML_ASSERT(false);
  11583. } break;
  11584. }
  11585. }
  11586. // ggml_compute_forward_clamp
  11587. static void ggml_compute_forward_clamp_f32(
  11588. const struct ggml_compute_params * params,
  11589. struct ggml_tensor * dst) {
  11590. const struct ggml_tensor * src0 = dst->src[0];
  11591. assert(params->ith == 0);
  11592. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11593. return;
  11594. }
  11595. float min;
  11596. float max;
  11597. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  11598. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  11599. const int ith = params->ith;
  11600. const int nth = params->nth;
  11601. const int n = ggml_nrows(src0);
  11602. const int nc = src0->ne[0];
  11603. const size_t nb00 = src0->nb[0];
  11604. const size_t nb01 = src0->nb[1];
  11605. const size_t nb0 = dst->nb[0];
  11606. const size_t nb1 = dst->nb[1];
  11607. GGML_ASSERT( nb0 == sizeof(float));
  11608. GGML_ASSERT(nb00 == sizeof(float));
  11609. for (int j = ith; j < n; j += nth) {
  11610. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  11611. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  11612. for (int i = 0; i < nc; i++) {
  11613. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  11614. }
  11615. }
  11616. }
  11617. static void ggml_compute_forward_clamp(
  11618. const struct ggml_compute_params * params,
  11619. struct ggml_tensor * dst) {
  11620. const struct ggml_tensor * src0 = dst->src[0];
  11621. switch (src0->type) {
  11622. case GGML_TYPE_F32:
  11623. {
  11624. ggml_compute_forward_clamp_f32(params, dst);
  11625. } break;
  11626. case GGML_TYPE_F16:
  11627. case GGML_TYPE_BF16:
  11628. case GGML_TYPE_Q4_0:
  11629. case GGML_TYPE_Q4_1:
  11630. case GGML_TYPE_Q5_0:
  11631. case GGML_TYPE_Q5_1:
  11632. case GGML_TYPE_Q8_0:
  11633. case GGML_TYPE_Q8_1:
  11634. case GGML_TYPE_Q2_K:
  11635. case GGML_TYPE_Q3_K:
  11636. case GGML_TYPE_Q4_K:
  11637. case GGML_TYPE_Q5_K:
  11638. case GGML_TYPE_Q6_K:
  11639. case GGML_TYPE_IQ2_XXS:
  11640. case GGML_TYPE_IQ2_XS:
  11641. case GGML_TYPE_IQ3_XXS:
  11642. case GGML_TYPE_IQ1_S:
  11643. case GGML_TYPE_IQ1_M:
  11644. case GGML_TYPE_IQ4_NL:
  11645. case GGML_TYPE_IQ4_XS:
  11646. case GGML_TYPE_IQ3_S:
  11647. case GGML_TYPE_IQ2_S:
  11648. case GGML_TYPE_Q8_K:
  11649. case GGML_TYPE_I8:
  11650. case GGML_TYPE_I16:
  11651. case GGML_TYPE_I32:
  11652. case GGML_TYPE_I64:
  11653. case GGML_TYPE_F64:
  11654. case GGML_TYPE_COUNT:
  11655. {
  11656. GGML_ASSERT(false);
  11657. } break;
  11658. }
  11659. }
  11660. // ggml_compute_forward_rope
  11661. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  11662. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  11663. return 1 - MIN(1, MAX(0, y));
  11664. }
  11665. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  11666. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  11667. static void rope_yarn(
  11668. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  11669. float * cos_theta, float * sin_theta
  11670. ) {
  11671. // Get n-d rotational scaling corrected for extrapolation
  11672. float theta_interp = freq_scale * theta_extrap;
  11673. float theta = theta_interp;
  11674. if (ext_factor != 0.0f) {
  11675. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  11676. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  11677. // Get n-d magnitude scaling corrected for interpolation
  11678. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  11679. }
  11680. *cos_theta = cosf(theta) * mscale;
  11681. *sin_theta = sinf(theta) * mscale;
  11682. }
  11683. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  11684. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  11685. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  11686. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  11687. }
  11688. static void ggml_rope_cache_init(
  11689. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  11690. float * cache, float sin_sign, float theta_scale
  11691. ) {
  11692. float theta = theta_base;
  11693. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11694. rope_yarn(
  11695. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  11696. );
  11697. cache[i0 + 1] *= sin_sign;
  11698. theta *= theta_scale;
  11699. }
  11700. }
  11701. GGML_CALL void ggml_rope_yarn_corr_dims(
  11702. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  11703. ) {
  11704. // start and end correction dims
  11705. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  11706. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  11707. dims[0] = MAX(0, start);
  11708. dims[1] = MIN(n_dims - 1, end);
  11709. }
  11710. static void ggml_compute_forward_rope_f32(
  11711. const struct ggml_compute_params * params,
  11712. struct ggml_tensor * dst,
  11713. const bool forward) {
  11714. const struct ggml_tensor * src0 = dst->src[0];
  11715. const struct ggml_tensor * src1 = dst->src[1];
  11716. const struct ggml_tensor * src2 = dst->src[2];
  11717. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11718. return;
  11719. }
  11720. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11721. // these two only relevant for xPos RoPE:
  11722. float xpos_base;
  11723. bool xpos_down;
  11724. //const int n_past = ((int32_t *) dst->op_params)[0];
  11725. const int n_dims = ((int32_t *) dst->op_params)[1];
  11726. const int mode = ((int32_t *) dst->op_params)[2];
  11727. const int n_ctx = ((int32_t *) dst->op_params)[3];
  11728. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  11729. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11730. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11731. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11732. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11733. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11734. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11735. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  11736. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  11737. GGML_TENSOR_UNARY_OP_LOCALS
  11738. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11739. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11740. GGML_ASSERT(nb00 == sizeof(float));
  11741. const int ith = params->ith;
  11742. const int nth = params->nth;
  11743. const int nr = ggml_nrows(dst);
  11744. GGML_ASSERT(n_dims <= ne0);
  11745. GGML_ASSERT(n_dims % 2 == 0);
  11746. // rows per thread
  11747. const int dr = (nr + nth - 1)/nth;
  11748. // row range for this thread
  11749. const int ir0 = dr*ith;
  11750. const int ir1 = MIN(ir0 + dr, nr);
  11751. // row index used to determine which thread to use
  11752. int ir = 0;
  11753. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11754. const float inv_ndims = -1.f/n_dims;
  11755. float corr_dims[2];
  11756. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  11757. const bool is_neox = mode & 2;
  11758. const bool is_glm = mode & 4;
  11759. const float * freq_factors = NULL;
  11760. if (is_neox) {
  11761. if (src2 != NULL) {
  11762. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11763. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11764. freq_factors = (const float *) src2->data;
  11765. }
  11766. } else {
  11767. GGML_ASSERT(src2 == NULL && "TODO: freq_factors not implemented for !is_neox");
  11768. }
  11769. // backward process uses inverse rotation by cos and sin.
  11770. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11771. // this essentially just switches the sign of sin.
  11772. const float sin_sign = forward ? 1.0f : -1.0f;
  11773. const int32_t * pos = (const int32_t *) src1->data;
  11774. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11775. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11776. const int64_t p = pos[i2];
  11777. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11778. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  11779. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11780. }
  11781. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11782. if (ir++ < ir0) continue;
  11783. if (ir > ir1) break;
  11784. float theta_base = (float)p;
  11785. if (is_glm) {
  11786. theta_base = MIN(p, n_ctx - 2);
  11787. float block_theta = MAX(p - (n_ctx - 2), 0);
  11788. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  11789. const float cos_theta = cosf(theta_base);
  11790. const float sin_theta = sinf(theta_base) * sin_sign;
  11791. const float cos_block_theta = cosf(block_theta);
  11792. const float sin_block_theta = sinf(block_theta) * sin_sign;
  11793. theta_base *= theta_scale;
  11794. block_theta *= theta_scale;
  11795. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11796. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11797. const float x0 = src[0];
  11798. const float x1 = src[n_dims/2];
  11799. const float x2 = src[n_dims];
  11800. const float x3 = src[n_dims/2*3];
  11801. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11802. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11803. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  11804. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  11805. }
  11806. } else if (!is_neox) {
  11807. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11808. const float cos_theta = cache[i0 + 0];
  11809. const float sin_theta = cache[i0 + 1];
  11810. // zeta scaling for xPos only:
  11811. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  11812. if (xpos_down) zeta = 1.0f / zeta;
  11813. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11814. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11815. const float x0 = src[0];
  11816. const float x1 = src[1];
  11817. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  11818. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  11819. }
  11820. } else {
  11821. // TODO: this might be wrong for ne0 != n_dims - need double check
  11822. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  11823. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  11824. theta_base *= freq_scale;
  11825. for (int64_t ic = 0; ic < ne0; ic += 2) {
  11826. if (ic < n_dims) {
  11827. const int64_t ib = 0;
  11828. // simplified from `(ib * n_dims + ic) * inv_ndims`
  11829. float cur_rot = inv_ndims * ic - ib;
  11830. float freq_factor = freq_factors ? freq_factors[ic/2] : 1.0f;
  11831. float cos_theta, sin_theta;
  11832. rope_yarn(
  11833. theta_base/freq_factor, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  11834. &cos_theta, &sin_theta
  11835. );
  11836. sin_theta *= sin_sign;
  11837. theta_base *= theta_scale;
  11838. const int64_t i0 = ib*n_dims + ic/2;
  11839. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11840. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11841. const float x0 = src[0];
  11842. const float x1 = src[n_dims/2];
  11843. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11844. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11845. } else {
  11846. const int64_t i0 = ic;
  11847. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11848. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11849. dst_data[0] = src[0];
  11850. dst_data[1] = src[1];
  11851. }
  11852. }
  11853. }
  11854. }
  11855. }
  11856. }
  11857. }
  11858. // TODO: deduplicate f16/f32 code
  11859. static void ggml_compute_forward_rope_f16(
  11860. const struct ggml_compute_params * params,
  11861. struct ggml_tensor * dst,
  11862. const bool forward) {
  11863. const struct ggml_tensor * src0 = dst->src[0];
  11864. const struct ggml_tensor * src1 = dst->src[1];
  11865. const struct ggml_tensor * src2 = dst->src[2];
  11866. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11867. return;
  11868. }
  11869. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11870. //const int n_past = ((int32_t *) dst->op_params)[0];
  11871. const int n_dims = ((int32_t *) dst->op_params)[1];
  11872. const int mode = ((int32_t *) dst->op_params)[2];
  11873. const int n_ctx = ((int32_t *) dst->op_params)[3];
  11874. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  11875. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11876. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11877. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11878. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11879. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11880. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11881. GGML_TENSOR_UNARY_OP_LOCALS
  11882. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11883. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11884. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  11885. const int ith = params->ith;
  11886. const int nth = params->nth;
  11887. const int nr = ggml_nrows(dst);
  11888. GGML_ASSERT(n_dims <= ne0);
  11889. GGML_ASSERT(n_dims % 2 == 0);
  11890. // rows per thread
  11891. const int dr = (nr + nth - 1)/nth;
  11892. // row range for this thread
  11893. const int ir0 = dr*ith;
  11894. const int ir1 = MIN(ir0 + dr, nr);
  11895. // row index used to determine which thread to use
  11896. int ir = 0;
  11897. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11898. const float inv_ndims = -1.f/n_dims;
  11899. float corr_dims[2];
  11900. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  11901. const bool is_neox = mode & 2;
  11902. const bool is_glm = mode & 4;
  11903. const float * freq_factors = NULL;
  11904. if (is_neox) {
  11905. if (src2 != NULL) {
  11906. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11907. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11908. freq_factors = (const float *) src2->data;
  11909. }
  11910. } else {
  11911. GGML_ASSERT(src2 == NULL && "TODO: freq_factors not implemented for !is_neox");
  11912. }
  11913. // backward process uses inverse rotation by cos and sin.
  11914. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11915. // this essentially just switches the sign of sin.
  11916. const float sin_sign = forward ? 1.0f : -1.0f;
  11917. const int32_t * pos = (const int32_t *) src1->data;
  11918. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11919. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11920. const int64_t p = pos[i2];
  11921. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11922. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  11923. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11924. }
  11925. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11926. if (ir++ < ir0) continue;
  11927. if (ir > ir1) break;
  11928. float theta_base = (float)p;
  11929. if (is_glm) {
  11930. theta_base = MIN(p, n_ctx - 2);
  11931. float block_theta = MAX(p - (n_ctx - 2), 0);
  11932. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  11933. const float cos_theta = cosf(theta_base);
  11934. const float sin_theta = sinf(theta_base) * sin_sign;
  11935. const float cos_block_theta = cosf(block_theta);
  11936. const float sin_block_theta = sinf(block_theta) * sin_sign;
  11937. theta_base *= theta_scale;
  11938. block_theta *= theta_scale;
  11939. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11940. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11941. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11942. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11943. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  11944. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  11945. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11946. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11947. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  11948. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  11949. }
  11950. } else if (!is_neox) {
  11951. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11952. const float cos_theta = cache[i0 + 0];
  11953. const float sin_theta = cache[i0 + 1];
  11954. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11955. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11956. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11957. const float x1 = GGML_FP16_TO_FP32(src[1]);
  11958. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11959. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11960. }
  11961. } else {
  11962. // TODO: this might be wrong for ne0 != n_dims - need double check
  11963. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  11964. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  11965. theta_base *= freq_scale;
  11966. for (int64_t ic = 0; ic < ne0; ic += 2) {
  11967. if (ic < n_dims) {
  11968. const int64_t ib = 0;
  11969. // simplified from `(ib * n_dims + ic) * inv_ndims`
  11970. float cur_rot = inv_ndims * ic - ib;
  11971. float freq_factor = freq_factors ? freq_factors[ic/2] : 1.0f;
  11972. float cos_theta, sin_theta;
  11973. rope_yarn(
  11974. theta_base/freq_factor, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  11975. &cos_theta, &sin_theta
  11976. );
  11977. sin_theta *= sin_sign;
  11978. theta_base *= theta_scale;
  11979. const int64_t i0 = ib*n_dims + ic/2;
  11980. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11981. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11982. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11983. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11984. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11985. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11986. } else {
  11987. const int64_t i0 = ic;
  11988. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11989. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11990. dst_data[0] = src[0];
  11991. dst_data[1] = src[1];
  11992. }
  11993. }
  11994. }
  11995. }
  11996. }
  11997. }
  11998. }
  11999. static void ggml_compute_forward_rope(
  12000. const struct ggml_compute_params * params,
  12001. struct ggml_tensor * dst) {
  12002. const struct ggml_tensor * src0 = dst->src[0];
  12003. switch (src0->type) {
  12004. case GGML_TYPE_F16:
  12005. {
  12006. ggml_compute_forward_rope_f16(params, dst, true);
  12007. } break;
  12008. case GGML_TYPE_F32:
  12009. {
  12010. ggml_compute_forward_rope_f32(params, dst, true);
  12011. } break;
  12012. default:
  12013. {
  12014. GGML_ASSERT(false);
  12015. } break;
  12016. }
  12017. }
  12018. // ggml_compute_forward_rope_back
  12019. static void ggml_compute_forward_rope_back(
  12020. const struct ggml_compute_params * params,
  12021. struct ggml_tensor * dst) {
  12022. const struct ggml_tensor * src0 = dst->src[0];
  12023. switch (src0->type) {
  12024. case GGML_TYPE_F16:
  12025. {
  12026. ggml_compute_forward_rope_f16(params, dst, false);
  12027. } break;
  12028. case GGML_TYPE_F32:
  12029. {
  12030. ggml_compute_forward_rope_f32(params, dst, false);
  12031. } break;
  12032. default:
  12033. {
  12034. GGML_ASSERT(false);
  12035. } break;
  12036. }
  12037. }
  12038. // ggml_compute_forward_conv_transpose_1d
  12039. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  12040. const struct ggml_compute_params * params,
  12041. struct ggml_tensor * dst) {
  12042. const struct ggml_tensor * src0 = dst->src[0];
  12043. const struct ggml_tensor * src1 = dst->src[1];
  12044. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12045. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12046. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12047. int64_t t0 = ggml_perf_time_us();
  12048. UNUSED(t0);
  12049. GGML_TENSOR_BINARY_OP_LOCALS
  12050. const int ith = params->ith;
  12051. const int nth = params->nth;
  12052. const int nk = ne00*ne01*ne02;
  12053. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12054. GGML_ASSERT(nb10 == sizeof(float));
  12055. if (params->type == GGML_TASK_TYPE_INIT) {
  12056. if (ith != 0) {
  12057. return;
  12058. }
  12059. memset(params->wdata, 0, params->wsize);
  12060. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  12061. {
  12062. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12063. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12064. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12065. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  12066. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  12067. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12068. dst_data[i00*ne02 + i02] = src[i00];
  12069. }
  12070. }
  12071. }
  12072. }
  12073. // permute source data (src1) from (L x Cin) to (Cin x L)
  12074. {
  12075. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  12076. ggml_fp16_t * dst_data = wdata;
  12077. for (int64_t i11 = 0; i11 < ne11; i11++) {
  12078. const float * const src = (float *)((char *) src1->data + i11*nb11);
  12079. for (int64_t i10 = 0; i10 < ne10; i10++) {
  12080. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  12081. }
  12082. }
  12083. }
  12084. // need to zero dst since we are accumulating into it
  12085. memset(dst->data, 0, ggml_nbytes(dst));
  12086. return;
  12087. }
  12088. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12089. return;
  12090. }
  12091. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  12092. // total rows in dst
  12093. const int nr = ne1;
  12094. // rows per thread
  12095. const int dr = (nr + nth - 1)/nth;
  12096. // row range for this thread
  12097. const int ir0 = dr*ith;
  12098. const int ir1 = MIN(ir0 + dr, nr);
  12099. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12100. ggml_fp16_t * const wdata_src = wdata + nk;
  12101. for (int i1 = ir0; i1 < ir1; i1++) {
  12102. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  12103. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  12104. for (int i10 = 0; i10 < ne10; i10++) {
  12105. const int i1n = i10*ne11;
  12106. for (int i00 = 0; i00 < ne00; i00++) {
  12107. float v = 0;
  12108. ggml_vec_dot_f16(ne02, &v, 0,
  12109. (ggml_fp16_t *) wdata_src + i1n, 0,
  12110. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  12111. dst_data[i10*s0 + i00] += v;
  12112. }
  12113. }
  12114. }
  12115. }
  12116. static void ggml_compute_forward_conv_transpose_1d_f32(
  12117. const struct ggml_compute_params * params,
  12118. struct ggml_tensor * dst) {
  12119. const struct ggml_tensor * src0 = dst->src[0];
  12120. const struct ggml_tensor * src1 = dst->src[1];
  12121. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12122. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12123. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12124. int64_t t0 = ggml_perf_time_us();
  12125. UNUSED(t0);
  12126. GGML_TENSOR_BINARY_OP_LOCALS
  12127. const int ith = params->ith;
  12128. const int nth = params->nth;
  12129. const int nk = ne00*ne01*ne02;
  12130. GGML_ASSERT(nb00 == sizeof(float));
  12131. GGML_ASSERT(nb10 == sizeof(float));
  12132. if (params->type == GGML_TASK_TYPE_INIT) {
  12133. if (ith != 0) {
  12134. return;
  12135. }
  12136. memset(params->wdata, 0, params->wsize);
  12137. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  12138. {
  12139. float * const wdata = (float *) params->wdata + 0;
  12140. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12141. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12142. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  12143. float * dst_data = wdata + i01*ne00*ne02;
  12144. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12145. dst_data[i00*ne02 + i02] = src[i00];
  12146. }
  12147. }
  12148. }
  12149. }
  12150. // prepare source data (src1)
  12151. {
  12152. float * const wdata = (float *) params->wdata + nk;
  12153. float * dst_data = wdata;
  12154. for (int64_t i11 = 0; i11 < ne11; i11++) {
  12155. const float * const src = (float *)((char *) src1->data + i11*nb11);
  12156. for (int64_t i10 = 0; i10 < ne10; i10++) {
  12157. dst_data[i10*ne11 + i11] = src[i10];
  12158. }
  12159. }
  12160. }
  12161. // need to zero dst since we are accumulating into it
  12162. memset(dst->data, 0, ggml_nbytes(dst));
  12163. return;
  12164. }
  12165. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12166. return;
  12167. }
  12168. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  12169. // total rows in dst
  12170. const int nr = ne1;
  12171. // rows per thread
  12172. const int dr = (nr + nth - 1)/nth;
  12173. // row range for this thread
  12174. const int ir0 = dr*ith;
  12175. const int ir1 = MIN(ir0 + dr, nr);
  12176. float * const wdata = (float *) params->wdata + 0;
  12177. float * const wdata_src = wdata + nk;
  12178. for (int i1 = ir0; i1 < ir1; i1++) {
  12179. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  12180. float * wdata_kernel = wdata + i1*ne02*ne00;
  12181. for (int i10 = 0; i10 < ne10; i10++) {
  12182. const int i1n = i10*ne11;
  12183. for (int i00 = 0; i00 < ne00; i00++) {
  12184. float v = 0;
  12185. ggml_vec_dot_f32(ne02, &v, 0,
  12186. wdata_src + i1n, 0,
  12187. wdata_kernel + i00*ne02, 0, 1);
  12188. dst_data[i10*s0 + i00] += v;
  12189. }
  12190. }
  12191. }
  12192. }
  12193. static void ggml_compute_forward_conv_transpose_1d(
  12194. const struct ggml_compute_params * params,
  12195. struct ggml_tensor * dst) {
  12196. const struct ggml_tensor * src0 = dst->src[0];
  12197. switch (src0->type) {
  12198. case GGML_TYPE_F16:
  12199. {
  12200. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  12201. } break;
  12202. case GGML_TYPE_F32:
  12203. {
  12204. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  12205. } break;
  12206. default:
  12207. {
  12208. GGML_ASSERT(false);
  12209. } break;
  12210. }
  12211. }
  12212. // src0: kernel [OC, IC, KH, KW]
  12213. // src1: image [N, IC, IH, IW]
  12214. // dst: result [N, OH, OW, IC*KH*KW]
  12215. static void ggml_compute_forward_im2col_f32(
  12216. const struct ggml_compute_params * params,
  12217. struct ggml_tensor * dst) {
  12218. const struct ggml_tensor * src0 = dst->src[0];
  12219. const struct ggml_tensor * src1 = dst->src[1];
  12220. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12221. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12222. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12223. int64_t t0 = ggml_perf_time_us();
  12224. UNUSED(t0);
  12225. GGML_TENSOR_BINARY_OP_LOCALS;
  12226. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12227. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12228. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12229. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12230. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12231. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12232. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12233. const int ith = params->ith;
  12234. const int nth = params->nth;
  12235. const int64_t N = is_2D ? ne13 : ne12;
  12236. const int64_t IC = is_2D ? ne12 : ne11;
  12237. const int64_t IH = is_2D ? ne11 : 1;
  12238. const int64_t IW = ne10;
  12239. const int64_t KH = is_2D ? ne01 : 1;
  12240. const int64_t KW = ne00;
  12241. const int64_t OH = is_2D ? ne2 : 1;
  12242. const int64_t OW = ne1;
  12243. int ofs0 = is_2D ? nb13 : nb12;
  12244. int ofs1 = is_2D ? nb12 : nb11;
  12245. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12246. GGML_ASSERT(nb10 == sizeof(float));
  12247. if (params->type == GGML_TASK_TYPE_INIT) {
  12248. return;
  12249. }
  12250. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12251. return;
  12252. }
  12253. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12254. {
  12255. float * const wdata = (float *) dst->data;
  12256. for (int64_t in = 0; in < N; in++) {
  12257. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  12258. for (int64_t iow = 0; iow < OW; iow++) {
  12259. for (int64_t iic = ith; iic < IC; iic += nth) {
  12260. // micro kernel
  12261. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12262. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  12263. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  12264. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12265. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  12266. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  12267. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  12268. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  12269. } else {
  12270. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  12271. }
  12272. }
  12273. }
  12274. }
  12275. }
  12276. }
  12277. }
  12278. }
  12279. }
  12280. // src0: kernel [OC, IC, KH, KW]
  12281. // src1: image [N, IC, IH, IW]
  12282. // dst: result [N, OH, OW, IC*KH*KW]
  12283. static void ggml_compute_forward_im2col_f16(
  12284. const struct ggml_compute_params * params,
  12285. struct ggml_tensor * dst) {
  12286. const struct ggml_tensor * src0 = dst->src[0];
  12287. const struct ggml_tensor * src1 = dst->src[1];
  12288. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12289. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12290. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  12291. int64_t t0 = ggml_perf_time_us();
  12292. UNUSED(t0);
  12293. GGML_TENSOR_BINARY_OP_LOCALS;
  12294. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12295. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12296. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12297. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12298. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12299. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12300. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12301. const int ith = params->ith;
  12302. const int nth = params->nth;
  12303. const int64_t N = is_2D ? ne13 : ne12;
  12304. const int64_t IC = is_2D ? ne12 : ne11;
  12305. const int64_t IH = is_2D ? ne11 : 1;
  12306. const int64_t IW = ne10;
  12307. const int64_t KH = is_2D ? ne01 : 1;
  12308. const int64_t KW = ne00;
  12309. const int64_t OH = is_2D ? ne2 : 1;
  12310. const int64_t OW = ne1;
  12311. int ofs0 = is_2D ? nb13 : nb12;
  12312. int ofs1 = is_2D ? nb12 : nb11;
  12313. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12314. GGML_ASSERT(nb10 == sizeof(float));
  12315. if (params->type == GGML_TASK_TYPE_INIT) {
  12316. return;
  12317. }
  12318. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12319. return;
  12320. }
  12321. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12322. {
  12323. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  12324. for (int64_t in = 0; in < N; in++) {
  12325. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  12326. for (int64_t iow = 0; iow < OW; iow++) {
  12327. for (int64_t iic = ith; iic < IC; iic += nth) {
  12328. // micro kernel
  12329. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12330. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  12331. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  12332. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12333. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  12334. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  12335. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  12336. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  12337. } else {
  12338. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  12339. }
  12340. }
  12341. }
  12342. }
  12343. }
  12344. }
  12345. }
  12346. }
  12347. }
  12348. static void ggml_compute_forward_im2col(
  12349. const struct ggml_compute_params * params,
  12350. struct ggml_tensor * dst) {
  12351. switch (dst->type) {
  12352. case GGML_TYPE_F16:
  12353. {
  12354. ggml_compute_forward_im2col_f16(params, dst);
  12355. } break;
  12356. case GGML_TYPE_F32:
  12357. {
  12358. ggml_compute_forward_im2col_f32(params, dst);
  12359. } break;
  12360. default:
  12361. {
  12362. GGML_ASSERT(false);
  12363. } break;
  12364. }
  12365. }
  12366. // ggml_compute_forward_conv_transpose_2d
  12367. static void ggml_compute_forward_conv_transpose_2d(
  12368. const struct ggml_compute_params * params,
  12369. struct ggml_tensor * dst) {
  12370. const struct ggml_tensor * src0 = dst->src[0];
  12371. const struct ggml_tensor * src1 = dst->src[1];
  12372. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12373. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12374. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12375. int64_t t0 = ggml_perf_time_us();
  12376. UNUSED(t0);
  12377. GGML_TENSOR_BINARY_OP_LOCALS
  12378. const int ith = params->ith;
  12379. const int nth = params->nth;
  12380. const int nk = ne00*ne01*ne02*ne03;
  12381. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12382. GGML_ASSERT(nb10 == sizeof(float));
  12383. if (params->type == GGML_TASK_TYPE_INIT) {
  12384. if (ith != 0) {
  12385. return;
  12386. }
  12387. memset(params->wdata, 0, params->wsize);
  12388. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  12389. {
  12390. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12391. for (int64_t i03 = 0; i03 < ne03; i03++) {
  12392. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12393. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  12394. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  12395. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12396. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12397. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  12398. }
  12399. }
  12400. }
  12401. }
  12402. }
  12403. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  12404. {
  12405. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  12406. for (int i12 = 0; i12 < ne12; i12++) {
  12407. for (int i11 = 0; i11 < ne11; i11++) {
  12408. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  12409. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  12410. for (int i10 = 0; i10 < ne10; i10++) {
  12411. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  12412. }
  12413. }
  12414. }
  12415. }
  12416. memset(dst->data, 0, ggml_nbytes(dst));
  12417. return;
  12418. }
  12419. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12420. return;
  12421. }
  12422. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  12423. // total patches in dst
  12424. const int np = ne2;
  12425. // patches per thread
  12426. const int dp = (np + nth - 1)/nth;
  12427. // patch range for this thread
  12428. const int ip0 = dp*ith;
  12429. const int ip1 = MIN(ip0 + dp, np);
  12430. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12431. ggml_fp16_t * const wdata_src = wdata + nk;
  12432. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  12433. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  12434. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  12435. for (int i11 = 0; i11 < ne11; i11++) {
  12436. for (int i10 = 0; i10 < ne10; i10++) {
  12437. const int i1n = i11*ne10*ne12 + i10*ne12;
  12438. for (int i01 = 0; i01 < ne01; i01++) {
  12439. for (int i00 = 0; i00 < ne00; i00++) {
  12440. float v = 0;
  12441. ggml_vec_dot_f16(ne03, &v, 0,
  12442. wdata_src + i1n, 0,
  12443. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  12444. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  12445. }
  12446. }
  12447. }
  12448. }
  12449. }
  12450. }
  12451. // ggml_compute_forward_pool_1d_sk_p0
  12452. static void ggml_compute_forward_pool_1d_sk_p0(
  12453. const struct ggml_compute_params * params,
  12454. const enum ggml_op_pool op,
  12455. const int k,
  12456. struct ggml_tensor * dst) {
  12457. const struct ggml_tensor * src = dst->src[0];
  12458. assert(src->type == GGML_TYPE_F32);
  12459. assert(params->ith == 0);
  12460. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12461. return;
  12462. }
  12463. const char * cdata = (const char *)src->data;
  12464. const char * const data_end = cdata + ggml_nbytes(src);
  12465. float * drow = (float *)dst->data;
  12466. const int64_t rs = dst->ne[0];
  12467. while (cdata < data_end) {
  12468. const float * const srow = (const float *)cdata;
  12469. int j = 0;
  12470. for (int64_t i = 0; i < rs; ++i) {
  12471. switch (op) {
  12472. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  12473. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  12474. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12475. }
  12476. for (int ki = 0; ki < k; ++ki) {
  12477. switch (op) {
  12478. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  12479. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  12480. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12481. }
  12482. ++j;
  12483. }
  12484. switch (op) {
  12485. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  12486. case GGML_OP_POOL_MAX: break;
  12487. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12488. }
  12489. }
  12490. cdata += src->nb[1];
  12491. drow += rs;
  12492. }
  12493. }
  12494. // ggml_compute_forward_pool_1d
  12495. static void ggml_compute_forward_pool_1d(
  12496. const struct ggml_compute_params * params,
  12497. struct ggml_tensor * dst) {
  12498. const int32_t * opts = (const int32_t *)dst->op_params;
  12499. enum ggml_op_pool op = opts[0];
  12500. const int k0 = opts[1];
  12501. const int s0 = opts[2];
  12502. const int p0 = opts[3];
  12503. GGML_ASSERT(p0 == 0); // padding not supported
  12504. GGML_ASSERT(k0 == s0); // only s = k supported
  12505. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  12506. }
  12507. // ggml_compute_forward_pool_2d
  12508. static void ggml_compute_forward_pool_2d(
  12509. const struct ggml_compute_params * params,
  12510. struct ggml_tensor * dst) {
  12511. const struct ggml_tensor * src = dst->src[0];
  12512. GGML_ASSERT(src->type == GGML_TYPE_F32);
  12513. GGML_ASSERT(params->ith == 0);
  12514. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12515. return;
  12516. }
  12517. const int32_t * opts = (const int32_t *)dst->op_params;
  12518. enum ggml_op_pool op = opts[0];
  12519. const int k0 = opts[1];
  12520. const int k1 = opts[2];
  12521. const int s0 = opts[3];
  12522. const int s1 = opts[4];
  12523. const int p0 = opts[5];
  12524. const int p1 = opts[6];
  12525. const char * cdata = (const char*)src->data;
  12526. const char * const data_end = cdata + ggml_nbytes(src);
  12527. const int64_t px = dst->ne[0];
  12528. const int64_t py = dst->ne[1];
  12529. const int64_t pa = px * py;
  12530. float * dplane = (float *)dst->data;
  12531. const int ka = k0 * k1;
  12532. const int offset0 = -p0;
  12533. const int offset1 = -p1;
  12534. while (cdata < data_end) {
  12535. for (int oy = 0; oy < py; ++oy) {
  12536. float * const drow = dplane + oy * px;
  12537. for (int ox = 0; ox < px; ++ox) {
  12538. float * const out = drow + ox;
  12539. switch (op) {
  12540. case GGML_OP_POOL_AVG: *out = 0; break;
  12541. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  12542. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12543. }
  12544. const int ix = offset0 + ox * s0;
  12545. const int iy = offset1 + oy * s1;
  12546. for (int ky = 0; ky < k1; ++ky) {
  12547. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  12548. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  12549. for (int kx = 0; kx < k0; ++kx) {
  12550. int j = ix + kx;
  12551. if (j < 0 || j >= src->ne[0]) continue;
  12552. switch (op) {
  12553. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  12554. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  12555. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12556. }
  12557. }
  12558. }
  12559. switch (op) {
  12560. case GGML_OP_POOL_AVG: *out /= ka; break;
  12561. case GGML_OP_POOL_MAX: break;
  12562. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12563. }
  12564. }
  12565. }
  12566. cdata += src->nb[2];
  12567. dplane += pa;
  12568. }
  12569. }
  12570. // ggml_compute_forward_upscale
  12571. static void ggml_compute_forward_upscale_f32(
  12572. const struct ggml_compute_params * params,
  12573. struct ggml_tensor * dst) {
  12574. const struct ggml_tensor * src0 = dst->src[0];
  12575. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12576. return;
  12577. }
  12578. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12579. const int ith = params->ith;
  12580. const int nth = params->nth;
  12581. GGML_TENSOR_UNARY_OP_LOCALS
  12582. const float sf0 = (float)ne0/src0->ne[0];
  12583. const float sf1 = (float)ne1/src0->ne[1];
  12584. const float sf2 = (float)ne2/src0->ne[2];
  12585. const float sf3 = (float)ne3/src0->ne[3];
  12586. // TODO: optimize
  12587. for (int64_t i3 = 0; i3 < ne3; i3++) {
  12588. const int64_t i03 = i3 / sf3;
  12589. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  12590. const int64_t i02 = i2 / sf2;
  12591. for (int64_t i1 = 0; i1 < ne1; i1++) {
  12592. const int64_t i01 = i1 / sf1;
  12593. for (int64_t i0 = 0; i0 < ne0; i0++) {
  12594. const int64_t i00 = i0 / sf0;
  12595. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  12596. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  12597. *y = *x;
  12598. }
  12599. }
  12600. }
  12601. }
  12602. }
  12603. static void ggml_compute_forward_upscale(
  12604. const struct ggml_compute_params * params,
  12605. struct ggml_tensor * dst) {
  12606. const struct ggml_tensor * src0 = dst->src[0];
  12607. switch (src0->type) {
  12608. case GGML_TYPE_F32:
  12609. {
  12610. ggml_compute_forward_upscale_f32(params, dst);
  12611. } break;
  12612. default:
  12613. {
  12614. GGML_ASSERT(false);
  12615. } break;
  12616. }
  12617. }
  12618. // ggml_compute_forward_pad
  12619. static void ggml_compute_forward_pad_f32(
  12620. const struct ggml_compute_params * params,
  12621. struct ggml_tensor * dst) {
  12622. const struct ggml_tensor * src0 = dst->src[0];
  12623. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12624. return;
  12625. }
  12626. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12627. GGML_ASSERT( dst->nb[0] == sizeof(float));
  12628. const int ith = params->ith;
  12629. const int nth = params->nth;
  12630. GGML_TENSOR_UNARY_OP_LOCALS
  12631. float * dst_ptr = (float *) dst->data;
  12632. // TODO: optimize
  12633. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12634. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  12635. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12636. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  12637. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  12638. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  12639. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  12640. dst_ptr[dst_idx] = *src_ptr;
  12641. } else {
  12642. dst_ptr[dst_idx] = 0;
  12643. }
  12644. }
  12645. }
  12646. }
  12647. }
  12648. }
  12649. static void ggml_compute_forward_pad(
  12650. const struct ggml_compute_params * params,
  12651. struct ggml_tensor * dst) {
  12652. const struct ggml_tensor * src0 = dst->src[0];
  12653. switch (src0->type) {
  12654. case GGML_TYPE_F32:
  12655. {
  12656. ggml_compute_forward_pad_f32(params, dst);
  12657. } break;
  12658. default:
  12659. {
  12660. GGML_ASSERT(false);
  12661. } break;
  12662. }
  12663. }
  12664. // ggml_compute_forward_arange
  12665. static void ggml_compute_forward_arange_f32(
  12666. const struct ggml_compute_params * params,
  12667. struct ggml_tensor * dst) {
  12668. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12669. return;
  12670. }
  12671. GGML_ASSERT(dst->nb[0] == sizeof(float));
  12672. const int ith = params->ith;
  12673. const int nth = params->nth;
  12674. const float start = ggml_get_op_params_f32(dst, 0);
  12675. const float stop = ggml_get_op_params_f32(dst, 1);
  12676. const float step = ggml_get_op_params_f32(dst, 2);
  12677. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  12678. GGML_ASSERT(ggml_nelements(dst) == steps);
  12679. for (int64_t i = ith; i < steps; i+= nth) {
  12680. float value = start + step * i;
  12681. ((float *)dst->data)[i] = value;
  12682. }
  12683. }
  12684. static void ggml_compute_forward_arange(
  12685. const struct ggml_compute_params * params,
  12686. struct ggml_tensor * dst) {
  12687. switch (dst->type) {
  12688. case GGML_TYPE_F32:
  12689. {
  12690. ggml_compute_forward_arange_f32(params, dst);
  12691. } break;
  12692. default:
  12693. {
  12694. GGML_ASSERT(false);
  12695. } break;
  12696. }
  12697. }
  12698. static void ggml_compute_forward_timestep_embedding_f32(
  12699. const struct ggml_compute_params * params,
  12700. struct ggml_tensor * dst) {
  12701. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12702. return;
  12703. }
  12704. const struct ggml_tensor * src0 = dst->src[0];
  12705. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12706. const int ith = params->ith;
  12707. const int nth = params->nth;
  12708. GGML_TENSOR_UNARY_OP_LOCALS
  12709. const int dim = ggml_get_op_params_i32(dst, 0);
  12710. const int max_period = ggml_get_op_params_i32(dst, 1);
  12711. int half = dim / 2;
  12712. for (int64_t i = 0; i < ne00; i++) {
  12713. float * embed_data = (float *)((char *) dst->data + i*nb1);
  12714. for (int64_t j = ith; j < half; j += nth) {
  12715. float timestep = ((float *)src0->data)[i];
  12716. float freq = (float)expf(-logf(max_period) * j / half);
  12717. float arg = timestep * freq;
  12718. embed_data[j] = cosf(arg);
  12719. embed_data[j + half] = sinf(arg);
  12720. }
  12721. if (dim % 2 != 0 && ith == 0) {
  12722. embed_data[dim] = 0.f;
  12723. }
  12724. }
  12725. }
  12726. static void ggml_compute_forward_timestep_embedding(
  12727. const struct ggml_compute_params * params,
  12728. struct ggml_tensor * dst) {
  12729. const struct ggml_tensor * src0 = dst->src[0];
  12730. switch (src0->type) {
  12731. case GGML_TYPE_F32:
  12732. {
  12733. ggml_compute_forward_timestep_embedding_f32(params, dst);
  12734. } break;
  12735. default:
  12736. {
  12737. GGML_ASSERT(false);
  12738. } break;
  12739. }
  12740. }
  12741. // ggml_compute_forward_argsort
  12742. static void ggml_compute_forward_argsort_f32(
  12743. const struct ggml_compute_params * params,
  12744. struct ggml_tensor * dst) {
  12745. const struct ggml_tensor * src0 = dst->src[0];
  12746. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12747. return;
  12748. }
  12749. GGML_TENSOR_UNARY_OP_LOCALS
  12750. GGML_ASSERT(nb0 == sizeof(float));
  12751. const int ith = params->ith;
  12752. const int nth = params->nth;
  12753. const int64_t nr = ggml_nrows(src0);
  12754. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  12755. for (int64_t i = ith; i < nr; i += nth) {
  12756. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  12757. const float * src_data = (float *)((char *) src0->data + i*nb01);
  12758. for (int64_t j = 0; j < ne0; j++) {
  12759. dst_data[j] = j;
  12760. }
  12761. // C doesn't have a functional sort, so we do a bubble sort instead
  12762. for (int64_t j = 0; j < ne0; j++) {
  12763. for (int64_t k = j + 1; k < ne0; k++) {
  12764. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  12765. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  12766. int32_t tmp = dst_data[j];
  12767. dst_data[j] = dst_data[k];
  12768. dst_data[k] = tmp;
  12769. }
  12770. }
  12771. }
  12772. }
  12773. }
  12774. static void ggml_compute_forward_argsort(
  12775. const struct ggml_compute_params * params,
  12776. struct ggml_tensor * dst) {
  12777. const struct ggml_tensor * src0 = dst->src[0];
  12778. switch (src0->type) {
  12779. case GGML_TYPE_F32:
  12780. {
  12781. ggml_compute_forward_argsort_f32(params, dst);
  12782. } break;
  12783. default:
  12784. {
  12785. GGML_ASSERT(false);
  12786. } break;
  12787. }
  12788. }
  12789. // ggml_compute_forward_flash_attn
  12790. static void ggml_compute_forward_flash_attn_f32(
  12791. const struct ggml_compute_params * params,
  12792. const bool masked,
  12793. struct ggml_tensor * dst) {
  12794. const struct ggml_tensor * q = dst->src[0];
  12795. const struct ggml_tensor * k = dst->src[1];
  12796. const struct ggml_tensor * v = dst->src[2];
  12797. int64_t t0 = ggml_perf_time_us();
  12798. UNUSED(t0);
  12799. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12800. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12801. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12802. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12803. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12804. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12805. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12806. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12807. const int ith = params->ith;
  12808. const int nth = params->nth;
  12809. const int64_t D = neq0;
  12810. const int64_t N = neq1;
  12811. const int64_t P = nek1 - N;
  12812. const int64_t M = P + N;
  12813. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12814. GGML_ASSERT(ne0 == D);
  12815. GGML_ASSERT(ne1 == N);
  12816. GGML_ASSERT(P >= 0);
  12817. GGML_ASSERT(nbq0 == sizeof(float));
  12818. GGML_ASSERT(nbk0 == sizeof(float));
  12819. GGML_ASSERT(nbv0 == sizeof(float));
  12820. GGML_ASSERT(neq0 == D);
  12821. GGML_ASSERT(nek0 == D);
  12822. GGML_ASSERT(nev1 == D);
  12823. GGML_ASSERT(neq1 == N);
  12824. GGML_ASSERT(nek1 == N + P);
  12825. GGML_ASSERT(nev1 == D);
  12826. // dst cannot be transposed or permuted
  12827. GGML_ASSERT(nb0 == sizeof(float));
  12828. GGML_ASSERT(nb0 <= nb1);
  12829. GGML_ASSERT(nb1 <= nb2);
  12830. GGML_ASSERT(nb2 <= nb3);
  12831. if (params->type == GGML_TASK_TYPE_INIT) {
  12832. return;
  12833. }
  12834. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12835. return;
  12836. }
  12837. // parallelize by q rows using ggml_vec_dot_f32
  12838. // total rows in q
  12839. const int nr = neq1*neq2*neq3;
  12840. // rows per thread
  12841. const int dr = (nr + nth - 1)/nth;
  12842. // row range for this thread
  12843. const int ir0 = dr*ith;
  12844. const int ir1 = MIN(ir0 + dr, nr);
  12845. const float scale = 1.0f/sqrtf(D);
  12846. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  12847. for (int ir = ir0; ir < ir1; ++ir) {
  12848. // q indices
  12849. const int iq3 = ir/(neq2*neq1);
  12850. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12851. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12852. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  12853. for (int i = M; i < Mup; ++i) {
  12854. S[i] = -INFINITY;
  12855. }
  12856. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  12857. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12858. // k indices
  12859. const int ik3 = iq3;
  12860. const int ik2 = iq2 % nek2;
  12861. const int ik1 = ic;
  12862. // S indices
  12863. const int i1 = ik1;
  12864. ggml_vec_dot_f32(neq0,
  12865. S + i1, 0,
  12866. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12867. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  12868. }
  12869. // scale
  12870. ggml_vec_scale_f32(masked_begin, S, scale);
  12871. for (int64_t i = masked_begin; i < M; i++) {
  12872. S[i] = -INFINITY;
  12873. }
  12874. // softmax
  12875. // exclude known -INF S[..] values from max and loop
  12876. // dont forget to set their SW values to zero
  12877. {
  12878. float max = -INFINITY;
  12879. ggml_vec_max_f32(masked_begin, &max, S);
  12880. ggml_float sum = 0.0;
  12881. {
  12882. #ifdef GGML_SOFT_MAX_ACCELERATE
  12883. max = -max;
  12884. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  12885. vvexpf(S, S, &Mup);
  12886. ggml_vec_sum_f32(Mup, &sum, S);
  12887. #else
  12888. sum = ggml_vec_soft_max_f32(Mup, S, S, max);
  12889. #endif
  12890. }
  12891. assert(sum > 0.0);
  12892. sum = 1.0/sum;
  12893. ggml_vec_scale_f32(masked_begin, S, sum);
  12894. #ifndef NDEBUG
  12895. for (int i = 0; i < masked_begin; ++i) {
  12896. assert(!isnan(S[i]));
  12897. assert(!isinf(S[i]));
  12898. }
  12899. #endif
  12900. }
  12901. for (int64_t ic = 0; ic < nev1; ++ic) {
  12902. // dst indices
  12903. const int i1 = iq1;
  12904. const int i2 = iq2;
  12905. const int i3 = iq3;
  12906. // v indices
  12907. const int iv2 = iq2 % nev2;
  12908. const int iv3 = iq3;
  12909. ggml_vec_dot_f32(masked_begin,
  12910. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  12911. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  12912. S, 0, 1);
  12913. }
  12914. }
  12915. }
  12916. static void ggml_compute_forward_flash_attn_f16(
  12917. const struct ggml_compute_params * params,
  12918. const bool masked,
  12919. struct ggml_tensor * dst) {
  12920. const struct ggml_tensor * q = dst->src[0];
  12921. const struct ggml_tensor * k = dst->src[1];
  12922. const struct ggml_tensor * v = dst->src[2];
  12923. int64_t t0 = ggml_perf_time_us();
  12924. UNUSED(t0);
  12925. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12926. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12927. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12928. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12929. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12930. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12931. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12932. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12933. const int ith = params->ith;
  12934. const int nth = params->nth;
  12935. const int64_t D = neq0;
  12936. const int64_t N = neq1;
  12937. const int64_t P = nek1 - N;
  12938. const int64_t M = P + N;
  12939. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12940. GGML_ASSERT(ne0 == D);
  12941. GGML_ASSERT(ne1 == N);
  12942. GGML_ASSERT(P >= 0);
  12943. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  12944. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  12945. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  12946. GGML_ASSERT(neq0 == D);
  12947. GGML_ASSERT(nek0 == D);
  12948. GGML_ASSERT(nev1 == D);
  12949. GGML_ASSERT(neq1 == N);
  12950. GGML_ASSERT(nek1 == N + P);
  12951. GGML_ASSERT(nev1 == D);
  12952. // dst cannot be transposed or permuted
  12953. GGML_ASSERT(nb0 == sizeof(float));
  12954. GGML_ASSERT(nb0 <= nb1);
  12955. GGML_ASSERT(nb1 <= nb2);
  12956. GGML_ASSERT(nb2 <= nb3);
  12957. if (params->type == GGML_TASK_TYPE_INIT) {
  12958. return;
  12959. }
  12960. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12961. return;
  12962. }
  12963. // parallelize by q rows using ggml_vec_dot_f32
  12964. // total rows in q
  12965. const int nr = neq1*neq2*neq3;
  12966. // rows per thread
  12967. const int dr = (nr + nth - 1)/nth;
  12968. // row range for this thread
  12969. const int ir0 = dr*ith;
  12970. const int ir1 = MIN(ir0 + dr, nr);
  12971. const float scale = 1.0f/sqrtf(D);
  12972. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  12973. for (int ir = ir0; ir < ir1; ++ir) {
  12974. // q indices
  12975. const int iq3 = ir/(neq2*neq1);
  12976. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12977. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12978. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  12979. for (int i = M; i < Mup; ++i) {
  12980. S[i] = -INFINITY;
  12981. }
  12982. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  12983. for (int64_t ic = 0; ic < nek1; ++ic) {
  12984. // k indices
  12985. const int ik3 = iq3;
  12986. const int ik2 = iq2 % nek2;
  12987. const int ik1 = ic;
  12988. // S indices
  12989. const int i1 = ik1;
  12990. ggml_vec_dot_f16(neq0,
  12991. S + i1, 0,
  12992. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12993. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  12994. }
  12995. } else {
  12996. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  12997. // k indices
  12998. const int ik3 = iq3;
  12999. const int ik2 = iq2 % nek2;
  13000. const int ik1 = ic;
  13001. // S indices
  13002. const int i1 = ik1;
  13003. ggml_vec_dot_f16_unroll(neq0, nbk1,
  13004. S + i1,
  13005. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  13006. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  13007. }
  13008. }
  13009. // scale
  13010. ggml_vec_scale_f32(nek1, S, scale);
  13011. if (masked) {
  13012. for (int64_t i = P; i < M; i++) {
  13013. if (i > P + iq1) {
  13014. S[i] = -INFINITY;
  13015. }
  13016. }
  13017. }
  13018. // softmax
  13019. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  13020. // dont forget to set their S values to zero
  13021. {
  13022. float max = -INFINITY;
  13023. ggml_vec_max_f32(M, &max, S);
  13024. ggml_float sum = 0.0;
  13025. {
  13026. #ifdef GGML_SOFT_MAX_ACCELERATE
  13027. max = -max;
  13028. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  13029. vvexpf(S, S, &Mup);
  13030. ggml_vec_sum_f32(Mup, &sum, S);
  13031. #else
  13032. sum = ggml_vec_soft_max_f32(Mup, S, S, max);
  13033. #endif
  13034. }
  13035. assert(sum > 0.0);
  13036. sum = 1.0/sum;
  13037. ggml_vec_scale_f32(M, S, sum);
  13038. #ifndef NDEBUG
  13039. for (int i = 0; i < M; ++i) {
  13040. assert(!isnan(S[i]));
  13041. assert(!isinf(S[i]));
  13042. }
  13043. #endif
  13044. }
  13045. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  13046. for (int64_t i = 0; i < M; i++) {
  13047. S16[i] = GGML_FP32_TO_FP16(S[i]);
  13048. }
  13049. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  13050. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  13051. for (int64_t ic = 0; ic < nev1; ++ic) {
  13052. // dst indices
  13053. const int i1 = iq1;
  13054. const int i2 = iq2;
  13055. const int i3 = iq3;
  13056. // v indices
  13057. const int iv2 = iq2 % nev2;
  13058. const int iv3 = iq3;
  13059. ggml_vec_dot_f16(nev0,
  13060. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  13061. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  13062. S16, 0, 1);
  13063. }
  13064. } else {
  13065. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  13066. // dst indices
  13067. const int i1 = iq1;
  13068. const int i2 = iq2;
  13069. const int i3 = iq3;
  13070. // v indices
  13071. const int iv2 = iq2 % nev2;
  13072. const int iv3 = iq3;
  13073. ggml_vec_dot_f16_unroll(nev0, nbv1,
  13074. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  13075. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  13076. S16);
  13077. }
  13078. }
  13079. }
  13080. }
  13081. static void ggml_compute_forward_flash_attn(
  13082. const struct ggml_compute_params * params,
  13083. const bool masked,
  13084. struct ggml_tensor * dst) {
  13085. const struct ggml_tensor * q = dst->src[0];
  13086. switch (q->type) {
  13087. case GGML_TYPE_F16:
  13088. {
  13089. ggml_compute_forward_flash_attn_f16(params, masked, dst);
  13090. } break;
  13091. case GGML_TYPE_F32:
  13092. {
  13093. ggml_compute_forward_flash_attn_f32(params, masked, dst);
  13094. } break;
  13095. default:
  13096. {
  13097. GGML_ASSERT(false);
  13098. } break;
  13099. }
  13100. }
  13101. // ggml_compute_forward_flash_attn_ext
  13102. static void ggml_compute_forward_flash_attn_ext_f16(
  13103. const struct ggml_compute_params * params,
  13104. const struct ggml_tensor * q,
  13105. const struct ggml_tensor * k,
  13106. const struct ggml_tensor * v,
  13107. const struct ggml_tensor * mask,
  13108. struct ggml_tensor * dst) {
  13109. int64_t t0 = ggml_perf_time_us();
  13110. UNUSED(t0);
  13111. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  13112. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  13113. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  13114. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  13115. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  13116. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  13117. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13118. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  13119. const int ith = params->ith;
  13120. const int nth = params->nth;
  13121. const int64_t D = neq0;
  13122. const int64_t N = neq1;
  13123. GGML_ASSERT(ne0 == D);
  13124. GGML_ASSERT(ne2 == N);
  13125. // input tensor rows must be contiguous
  13126. GGML_ASSERT(nbq0 == ggml_type_size(q->type));
  13127. GGML_ASSERT(nbk0 == ggml_type_size(k->type));
  13128. GGML_ASSERT(nbv0 == ggml_type_size(v->type));
  13129. GGML_ASSERT(neq0 == D);
  13130. GGML_ASSERT(nek0 == D);
  13131. GGML_ASSERT(nev0 == D);
  13132. GGML_ASSERT(neq1 == N);
  13133. GGML_ASSERT(nev0 == D);
  13134. // dst cannot be transposed or permuted
  13135. GGML_ASSERT(nb0 == sizeof(float));
  13136. GGML_ASSERT(nb0 <= nb1);
  13137. GGML_ASSERT(nb1 <= nb2);
  13138. GGML_ASSERT(nb2 <= nb3);
  13139. // broadcast factors
  13140. const int64_t rk2 = neq2/nek2;
  13141. const int64_t rk3 = neq3/nek3;
  13142. const int64_t rv2 = neq2/nev2;
  13143. const int64_t rv3 = neq3/nev3;
  13144. if (params->type == GGML_TASK_TYPE_INIT) {
  13145. return;
  13146. }
  13147. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  13148. return;
  13149. }
  13150. // parallelize by q rows using ggml_vec_dot_f32
  13151. // total rows in q
  13152. const int nr = neq1*neq2*neq3;
  13153. // rows per thread
  13154. const int dr = (nr + nth - 1)/nth;
  13155. // row range for this thread
  13156. const int ir0 = dr*ith;
  13157. const int ir1 = MIN(ir0 + dr, nr);
  13158. float scale = 1.0f;
  13159. float max_bias = 0.0f;
  13160. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  13161. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  13162. const uint32_t n_head = neq2;
  13163. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  13164. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  13165. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  13166. enum ggml_type const k_vec_dot_type = type_traits[k->type].vec_dot_type;
  13167. ggml_from_float_t const q_to_vec_dot = type_traits[k_vec_dot_type].from_float;
  13168. ggml_vec_dot_t const kq_vec_dot = type_traits[k->type].vec_dot;
  13169. ggml_to_float_t const v_to_float = type_traits[v->type].to_float;
  13170. // loop over n_batch and n_head
  13171. for (int ir = ir0; ir < ir1; ++ir) {
  13172. // q indices
  13173. const int iq3 = ir/(neq2*neq1);
  13174. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  13175. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  13176. const uint32_t h = iq2; // head index
  13177. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  13178. float S = 0.0f; // sum
  13179. float M = -INFINITY; // maximum KQ value
  13180. float * VKQ32 = (float *) params->wdata + ith*(3*D + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
  13181. float * V32 = (VKQ32 + 1*D); // (temporary) FP32 V buffer
  13182. ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*D); // (temporary) FP16 VKQ accumulator
  13183. ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*D); // (temporary) buffer for Q converted to quantized/FP16
  13184. if (v->type == GGML_TYPE_F16) {
  13185. memset(VKQ16, 0, D*sizeof(ggml_fp16_t));
  13186. } else {
  13187. memset(VKQ32, 0, D*sizeof(float));
  13188. }
  13189. const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
  13190. // k indices
  13191. const int ik3 = iq3 / rk3;
  13192. const int ik2 = iq2 / rk2;
  13193. // v indices
  13194. const int iv3 = iq3 / rv3;
  13195. const int iv2 = iq2 / rv2;
  13196. const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
  13197. q_to_vec_dot(pq, Q_q, D);
  13198. // online softmax / attention
  13199. // loop over n_kv and n_head_kv
  13200. // ref: https://arxiv.org/pdf/2112.05682.pdf
  13201. for (int64_t ic = 0; ic < nek1; ++ic) {
  13202. const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
  13203. if (mv == -INFINITY) {
  13204. continue;
  13205. }
  13206. float s; // KQ value
  13207. const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
  13208. kq_vec_dot(D, &s, 0, k_data, 0, Q_q, 0, 1);
  13209. s = s*scale + mv; // scale KQ value and apply mask
  13210. const float Mold = M;
  13211. float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
  13212. float vs = 1.0f; // post-softmax KQ value, expf(s - M)
  13213. const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
  13214. if (v->type== GGML_TYPE_F16) {
  13215. if (s > M) {
  13216. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  13217. M = s;
  13218. ms = expf(Mold - M);
  13219. // V = V*expf(Mold - M)
  13220. ggml_vec_scale_f16(D, VKQ16, ms);
  13221. } else {
  13222. // no new maximum, ms == 1.0f, vs != 1.0f
  13223. vs = expf(s - M);
  13224. }
  13225. // V += v*expf(s - M)
  13226. ggml_vec_mad_f16(D, VKQ16, (const ggml_fp16_t *) v_data, vs);
  13227. } else {
  13228. if (s > M) {
  13229. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  13230. M = s;
  13231. ms = expf(Mold - M);
  13232. // V = V*expf(Mold - M)
  13233. ggml_vec_scale_f32(D, VKQ32, ms);
  13234. } else {
  13235. // no new maximum, ms == 1.0f, vs != 1.0f
  13236. vs = expf(s - M);
  13237. }
  13238. v_to_float(v_data, V32, D);
  13239. // V += v*expf(s - M)
  13240. ggml_vec_mad_f32(D, VKQ32, V32, vs);
  13241. }
  13242. S = S*ms + vs; // scale and increment sum with partial sum
  13243. }
  13244. if (v->type == GGML_TYPE_F16) {
  13245. for (int64_t d = 0; d < D; ++d) {
  13246. VKQ32[d] = GGML_FP16_TO_FP32(VKQ16[d]);
  13247. }
  13248. }
  13249. // V /= S
  13250. const float S_inv = 1.0f/S;
  13251. ggml_vec_scale_f32(D, VKQ32, S_inv);
  13252. // dst indices
  13253. const int i1 = iq1;
  13254. const int i2 = iq2;
  13255. const int i3 = iq3;
  13256. // original
  13257. //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
  13258. // permute(0, 2, 1, 3)
  13259. memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
  13260. }
  13261. }
  13262. static void ggml_compute_forward_flash_attn_ext(
  13263. const struct ggml_compute_params * params,
  13264. const struct ggml_tensor * q,
  13265. const struct ggml_tensor * k,
  13266. const struct ggml_tensor * v,
  13267. const struct ggml_tensor * mask,
  13268. struct ggml_tensor * dst) {
  13269. switch (dst->op_params[2]) {
  13270. case GGML_PREC_DEFAULT:
  13271. case GGML_PREC_F32:
  13272. {
  13273. // uses F32 accumulators
  13274. ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
  13275. } break;
  13276. default:
  13277. {
  13278. GGML_ASSERT(false);
  13279. } break;
  13280. }
  13281. }
  13282. // ggml_compute_forward_flash_ff
  13283. static void ggml_compute_forward_flash_ff_f16(
  13284. const struct ggml_compute_params * params,
  13285. struct ggml_tensor * dst) {
  13286. const struct ggml_tensor * a = dst->src[0]; // F16
  13287. const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w
  13288. const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b
  13289. const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w
  13290. const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b
  13291. int64_t t0 = ggml_perf_time_us();
  13292. UNUSED(t0);
  13293. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  13294. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  13295. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  13296. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  13297. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  13298. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  13299. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  13300. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  13301. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  13302. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  13303. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13304. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  13305. const int ith = params->ith;
  13306. const int nth = params->nth;
  13307. const int64_t D = nea0;
  13308. //const int64_t N = nea1;
  13309. const int64_t M = neb01;
  13310. GGML_ASSERT(ne0 == nea0);
  13311. GGML_ASSERT(ne1 == nea1);
  13312. GGML_ASSERT(ne2 == nea2);
  13313. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  13314. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  13315. GGML_ASSERT(nbb10 == sizeof(float));
  13316. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  13317. GGML_ASSERT(nbc10 == sizeof(float));
  13318. GGML_ASSERT(neb00 == D);
  13319. GGML_ASSERT(neb01 == M);
  13320. GGML_ASSERT(neb10 == M);
  13321. GGML_ASSERT(neb11 == 1);
  13322. GGML_ASSERT(nec00 == M);
  13323. GGML_ASSERT(nec01 == D);
  13324. GGML_ASSERT(nec10 == D);
  13325. GGML_ASSERT(nec11 == 1);
  13326. // dst cannot be transposed or permuted
  13327. GGML_ASSERT(nb0 == sizeof(float));
  13328. GGML_ASSERT(nb0 <= nb1);
  13329. GGML_ASSERT(nb1 <= nb2);
  13330. GGML_ASSERT(nb2 <= nb3);
  13331. if (params->type == GGML_TASK_TYPE_INIT) {
  13332. return;
  13333. }
  13334. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  13335. return;
  13336. }
  13337. // parallelize by a rows using ggml_vec_dot_f32
  13338. // total rows in a
  13339. const int nr = nea1*nea2*nea3;
  13340. // rows per thread
  13341. const int dr = (nr + nth - 1)/nth;
  13342. // row range for this thread
  13343. const int ir0 = dr*ith;
  13344. const int ir1 = MIN(ir0 + dr, nr);
  13345. for (int ir = ir0; ir < ir1; ++ir) {
  13346. // a indices
  13347. const int ia3 = ir/(nea2*nea1);
  13348. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  13349. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  13350. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  13351. for (int64_t ic = 0; ic < neb01; ++ic) {
  13352. // b0 indices
  13353. const int ib03 = ia3;
  13354. const int ib02 = ia2;
  13355. const int ib01 = ic;
  13356. // S indices
  13357. const int i1 = ib01;
  13358. ggml_vec_dot_f16(nea0,
  13359. S + i1, 0,
  13360. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
  13361. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
  13362. }
  13363. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  13364. //ggml_vec_gelu_f32(neb01, S, S);
  13365. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  13366. for (int64_t i = 0; i < M; i++) {
  13367. S16[i] = GGML_FP32_TO_FP16(S[i]);
  13368. }
  13369. ggml_vec_gelu_f16(neb01, S16, S16);
  13370. {
  13371. // dst indices
  13372. const int i1 = ia1;
  13373. const int i2 = ia2;
  13374. const int i3 = ia3;
  13375. for (int64_t ic = 0; ic < nec01; ++ic) {
  13376. ggml_vec_dot_f16(neb01,
  13377. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  13378. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
  13379. S16, 0, 1);
  13380. }
  13381. ggml_vec_add_f32(nec01,
  13382. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  13383. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  13384. (float *) c1->data);
  13385. }
  13386. }
  13387. }
  13388. static void ggml_compute_forward_flash_ff(
  13389. const struct ggml_compute_params * params,
  13390. struct ggml_tensor * dst) {
  13391. const struct ggml_tensor * b0 = dst->src[1];
  13392. switch (b0->type) {
  13393. case GGML_TYPE_F16:
  13394. {
  13395. ggml_compute_forward_flash_ff_f16(params, dst);
  13396. } break;
  13397. case GGML_TYPE_F32:
  13398. {
  13399. GGML_ASSERT(false); // TODO
  13400. } break;
  13401. default:
  13402. {
  13403. GGML_ASSERT(false);
  13404. } break;
  13405. }
  13406. }
  13407. // ggml_compute_forward_flash_attn_back
  13408. static void ggml_compute_forward_flash_attn_back_f32(
  13409. const struct ggml_compute_params * params,
  13410. const bool masked,
  13411. struct ggml_tensor * dst) {
  13412. const struct ggml_tensor * q = dst->src[0];
  13413. const struct ggml_tensor * k = dst->src[1];
  13414. const struct ggml_tensor * v = dst->src[2];
  13415. const struct ggml_tensor * d = dst->src[3];
  13416. int64_t t0 = ggml_perf_time_us();
  13417. UNUSED(t0);
  13418. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  13419. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  13420. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  13421. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  13422. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  13423. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  13424. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  13425. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  13426. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13427. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  13428. const int ith = params->ith;
  13429. const int nth = params->nth;
  13430. const int64_t D = neq0;
  13431. const int64_t N = neq1;
  13432. const int64_t P = nek1 - N;
  13433. const int64_t M = P + N;
  13434. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  13435. const int mxDM = MAX(D, Mup);
  13436. // GGML_ASSERT(ne0 == D);
  13437. // GGML_ASSERT(ne1 == N);
  13438. GGML_ASSERT(P >= 0);
  13439. GGML_ASSERT(nbq0 == sizeof(float));
  13440. GGML_ASSERT(nbk0 == sizeof(float));
  13441. GGML_ASSERT(nbv0 == sizeof(float));
  13442. GGML_ASSERT(neq0 == D);
  13443. GGML_ASSERT(nek0 == D);
  13444. GGML_ASSERT(nev1 == D);
  13445. GGML_ASSERT(ned0 == D);
  13446. GGML_ASSERT(neq1 == N);
  13447. GGML_ASSERT(nek1 == N + P);
  13448. GGML_ASSERT(nev1 == D);
  13449. GGML_ASSERT(ned1 == N);
  13450. // dst cannot be transposed or permuted
  13451. GGML_ASSERT(nb0 == sizeof(float));
  13452. GGML_ASSERT(nb0 <= nb1);
  13453. GGML_ASSERT(nb1 <= nb2);
  13454. GGML_ASSERT(nb2 <= nb3);
  13455. if (params->type == GGML_TASK_TYPE_INIT) {
  13456. if (ith == 0) {
  13457. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  13458. }
  13459. return;
  13460. }
  13461. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  13462. return;
  13463. }
  13464. const int64_t elem_q = ggml_nelements(q);
  13465. const int64_t elem_k = ggml_nelements(k);
  13466. enum ggml_type result_type = dst->type;
  13467. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13468. const size_t tsize = ggml_type_size(result_type);
  13469. const size_t offs_q = 0;
  13470. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13471. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13472. void * grad_q = (char *) dst->data;
  13473. void * grad_k = (char *) dst->data + offs_k;
  13474. void * grad_v = (char *) dst->data + offs_v;
  13475. const size_t nbgq1 = nb0*neq0;
  13476. const size_t nbgq2 = nb0*neq0*neq1;
  13477. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  13478. const size_t nbgk1 = nb0*nek0;
  13479. const size_t nbgk2 = nb0*nek0*nek1;
  13480. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  13481. const size_t nbgv1 = nb0*nev0;
  13482. const size_t nbgv2 = nb0*nev0*nev1;
  13483. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  13484. // parallelize by k rows using ggml_vec_dot_f32
  13485. // total rows in k
  13486. const int nr = nek2*nek3;
  13487. // rows per thread
  13488. const int dr = (nr + nth - 1)/nth;
  13489. // row range for this thread
  13490. const int ir0 = dr*ith;
  13491. const int ir1 = MIN(ir0 + dr, nr);
  13492. const float scale = 1.0f/sqrtf(D);
  13493. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  13494. // how often k2 (and v2) is repeated in q2
  13495. int nrep = neq2/nek2;
  13496. for (int ir = ir0; ir < ir1; ++ir) {
  13497. // q indices
  13498. const int ik3 = ir/(nek2);
  13499. const int ik2 = ir - ik3*nek2;
  13500. const int iq3 = ik3;
  13501. const int id3 = ik3;
  13502. const int iv3 = ik3;
  13503. const int iv2 = ik2;
  13504. for (int irep = 0; irep < nrep; ++irep) {
  13505. const int iq2 = ik2 + irep*nek2;
  13506. const int id2 = iq2;
  13507. // (ik2 + irep*nek2) % nek2 == ik2
  13508. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  13509. const int id1 = iq1;
  13510. // not sure about CACHE_LINE_SIZE_F32..
  13511. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  13512. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  13513. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  13514. for (int i = M; i < Mup; ++i) {
  13515. S[i] = -INFINITY;
  13516. }
  13517. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  13518. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13519. // k indices
  13520. const int ik1 = ic;
  13521. // S indices
  13522. const int i1 = ik1;
  13523. ggml_vec_dot_f32(neq0,
  13524. S + i1, 0,
  13525. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  13526. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  13527. }
  13528. // scale
  13529. ggml_vec_scale_f32(masked_begin, S, scale);
  13530. for (int64_t i = masked_begin; i < M; i++) {
  13531. S[i] = -INFINITY;
  13532. }
  13533. // softmax
  13534. // exclude known -INF S[..] values from max and loop
  13535. // dont forget to set their SM values to zero
  13536. {
  13537. float max = -INFINITY;
  13538. ggml_vec_max_f32(masked_begin, &max, S);
  13539. ggml_float sum = 0.0;
  13540. {
  13541. #ifdef GGML_SOFT_MAX_ACCELERATE
  13542. max = -max;
  13543. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  13544. vvexpf(SM, SM, &Mup);
  13545. ggml_vec_sum_f32(Mup, &sum, SM);
  13546. #else
  13547. sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
  13548. #endif
  13549. }
  13550. assert(sum > 0.0);
  13551. sum = 1.0/sum;
  13552. ggml_vec_scale_f32(masked_begin, SM, sum);
  13553. }
  13554. // step-by-step explanation
  13555. {
  13556. // forward-process shape grads from backward process
  13557. // parallel_for ik2,ik3:
  13558. // for irep:
  13559. // iq2 = ik2 + irep*nek2
  13560. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  13561. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  13562. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  13563. // for iq1:
  13564. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  13565. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  13566. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  13567. // S0 = -Inf [D,1,1,1]
  13568. // ~S1[i] = dot(kcur[:D,i], qcur)
  13569. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  13570. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  13571. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13572. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  13573. // ~S5[i] = dot(vcur[:,i], S4)
  13574. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  13575. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  13576. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  13577. // dst backward-/ grad[dst] = d
  13578. //
  13579. // output gradients with their dependencies:
  13580. //
  13581. // grad[kcur] = grad[S1].T @ qcur
  13582. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13583. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13584. // grad[S4] = grad[S5] @ vcur
  13585. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13586. // grad[qcur] = grad[S1] @ kcur
  13587. // grad[vcur] = grad[S5].T @ S4
  13588. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13589. //
  13590. // in post-order:
  13591. //
  13592. // S1 = qcur @ kcur.T
  13593. // S2 = S1 * scale
  13594. // S3 = diag_mask_inf(S2, P)
  13595. // S4 = softmax(S3)
  13596. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13597. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13598. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13599. // grad[qcur] = grad[S1] @ kcur
  13600. // grad[kcur] = grad[S1].T @ qcur
  13601. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13602. //
  13603. // using less variables (SM=S4):
  13604. //
  13605. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  13606. // SM = softmax(S)
  13607. // S = d[:D,iq1,iq2,iq3] @ vcur
  13608. // dot_SM_gradSM = dot(SM, S)
  13609. // S = SM * (S - dot(SM, S))
  13610. // S = diag_mask_zero(S, P) * scale
  13611. //
  13612. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13613. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  13614. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13615. }
  13616. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13617. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13618. // for ic:
  13619. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  13620. // exclude known future zero S[..] values from operation
  13621. ggml_vec_set_f32(masked_begin, S, 0);
  13622. for (int64_t ic = 0; ic < D; ++ic) {
  13623. ggml_vec_mad_f32(masked_begin,
  13624. S,
  13625. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  13626. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13627. }
  13628. // S = SM * (S - dot(SM, S))
  13629. float dot_SM_gradSM = 0;
  13630. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  13631. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  13632. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  13633. // S = diag_mask_zero(S, P) * scale
  13634. // already done by above ggml_vec_set_f32
  13635. // exclude known zero S[..] values from operation
  13636. ggml_vec_scale_f32(masked_begin, S, scale);
  13637. // S shape [M,1]
  13638. // SM shape [M,1]
  13639. // kcur shape [D,M]
  13640. // qcur shape [D,1]
  13641. // vcur shape [M,D]
  13642. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13643. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  13644. // for ic:
  13645. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  13646. // exclude known zero S[..] values from loop
  13647. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13648. ggml_vec_mad_f32(D,
  13649. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  13650. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  13651. S[ic]);
  13652. }
  13653. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  13654. // for ic:
  13655. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  13656. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  13657. // exclude known zero S[..] values from loop
  13658. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13659. ggml_vec_mad_f32(D,
  13660. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  13661. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  13662. S[ic]);
  13663. }
  13664. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13665. // for ic:
  13666. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  13667. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  13668. // exclude known zero SM[..] values from mad
  13669. for (int64_t ic = 0; ic < D; ++ic) {
  13670. ggml_vec_mad_f32(masked_begin,
  13671. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  13672. SM,
  13673. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13674. }
  13675. }
  13676. }
  13677. }
  13678. }
  13679. static void ggml_compute_forward_flash_attn_back(
  13680. const struct ggml_compute_params * params,
  13681. const bool masked,
  13682. struct ggml_tensor * dst) {
  13683. const struct ggml_tensor * q = dst->src[0];
  13684. switch (q->type) {
  13685. case GGML_TYPE_F32:
  13686. {
  13687. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  13688. } break;
  13689. default:
  13690. {
  13691. GGML_ASSERT(false);
  13692. } break;
  13693. }
  13694. }
  13695. // ggml_compute_forward_ssm_conv
  13696. static void ggml_compute_forward_ssm_conv_f32(
  13697. const struct ggml_compute_params * params,
  13698. struct ggml_tensor * dst) {
  13699. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13700. return;
  13701. }
  13702. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  13703. const struct ggml_tensor * src1 = dst->src[1]; // x
  13704. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  13705. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  13706. const int ith = params->ith;
  13707. const int nth = params->nth;
  13708. const int nc = src2->ne[0]; // d_conv
  13709. const int nr = src0->ne[1]; // d_inner
  13710. const int n_t = src1->ne[1]; // n_tokens
  13711. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  13712. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  13713. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13714. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13715. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13716. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  13717. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13718. // for use with the destination state offset between sequences
  13719. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  13720. // rows per thread
  13721. const int dr = (nr + nth - 1)/nth;
  13722. // row range for this thread
  13723. const int ir0 = dr*ith;
  13724. const int ir1 = MIN(ir0 + dr, nr);
  13725. const int ir = ir1 - ir0;
  13726. if (n_kv > 1) {
  13727. // multiple sequences means it's hard to know when it's the first time a state is read,
  13728. // so copy them all over to the destination, just to be sure.
  13729. for (int i3 = 0; i3 < n_kv; ++i3) {
  13730. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13731. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  13732. // can't use memcpy because of d_conv vs d_conv - 1
  13733. for (int i1 = 0; i1 < ir; ++i1) {
  13734. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13735. // copy s0 to last (d_conv - 1) columns of s
  13736. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  13737. }
  13738. }
  13739. }
  13740. }
  13741. for (int i2 = 0; i2 < n_t; ++i2) {
  13742. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  13743. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  13744. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  13745. float * s0; // {d_conv - 1, d_inner, n_kv}
  13746. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13747. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  13748. int ne0s0;
  13749. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13750. // avoid needing to copy the state for the first token
  13751. if (i2 == 0) {
  13752. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  13753. ne0s0 = src0->ne[0];
  13754. } else {
  13755. // the source is the last (d_conv - 1) columns of the destination
  13756. s0 = s + 1;
  13757. ne0s0 = nc;
  13758. }
  13759. // d_inner
  13760. for (int i1 = 0; i1 < ir; ++i1) {
  13761. // shift state left
  13762. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13763. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  13764. }
  13765. // insert x on the last column
  13766. s[(nc - 1) + i1*nc] = x0[i1];
  13767. }
  13768. // handle copies when there are multiple output states
  13769. for (int i3 = 1; i3 < n_kv; ++i3) {
  13770. int32_t seq = sq[i3];
  13771. if (0 <= seq && seq < n_kv) {
  13772. float * s1 = s + (seq - sq[0])*nc*nr;
  13773. memcpy(s1, s, nc*ir*sizeof(float));
  13774. } else {
  13775. // stop at negative or too big seq_ids
  13776. break;
  13777. }
  13778. }
  13779. // it seems a little faster when this is separate from the state shift
  13780. for (int i1 = 0; i1 < ir; ++i1) {
  13781. // rowwise dot product
  13782. float sumf = 0.0f;
  13783. for (int i0 = 0; i0 < nc; ++i0) {
  13784. int i = i0 + i1*nc;
  13785. sumf += s[i] * c[i];
  13786. }
  13787. x[i1] = sumf;
  13788. }
  13789. }
  13790. }
  13791. static void ggml_compute_forward_ssm_conv(
  13792. const struct ggml_compute_params * params,
  13793. struct ggml_tensor * dst) {
  13794. switch (dst->src[0]->type) {
  13795. case GGML_TYPE_F32:
  13796. {
  13797. ggml_compute_forward_ssm_conv_f32(params, dst);
  13798. } break;
  13799. default:
  13800. {
  13801. GGML_ASSERT(false);
  13802. } break;
  13803. }
  13804. }
  13805. // ggml_compute_forward_ssm_scan
  13806. static void ggml_compute_forward_ssm_scan_f32(
  13807. const struct ggml_compute_params * params,
  13808. struct ggml_tensor * dst) {
  13809. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13810. return;
  13811. }
  13812. const struct ggml_tensor * src0 = dst->src[0]; // s
  13813. const struct ggml_tensor * src1 = dst->src[1]; // x
  13814. const struct ggml_tensor * src2 = dst->src[2]; // dt
  13815. const struct ggml_tensor * src3 = dst->src[3]; // A
  13816. const struct ggml_tensor * src4 = dst->src[4]; // B
  13817. const struct ggml_tensor * src5 = dst->src[5]; // C
  13818. const struct ggml_tensor * src6 = dst->src[6]; // sq
  13819. const int ith = params->ith;
  13820. const int nth = params->nth;
  13821. const int64_t nc = src0->ne[0]; // d_state
  13822. const int64_t nr = src0->ne[1]; // d_inner
  13823. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  13824. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  13825. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  13826. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13827. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13828. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13829. GGML_ASSERT(src3->nb[0] == sizeof(float));
  13830. GGML_ASSERT(src4->nb[0] == sizeof(float));
  13831. GGML_ASSERT(src5->nb[0] == sizeof(float));
  13832. // required for the dot product between s and C, and when copying the states
  13833. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13834. // required for per-sequence offsets for states
  13835. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  13836. // required to get correct offset for state destination (i.e. src1->nb[2])
  13837. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  13838. // rows per thread
  13839. const int dr = (nr + nth - 1)/nth;
  13840. // row range for this thread
  13841. const int ir0 = dr*ith;
  13842. const int ir1 = MIN(ir0 + dr, nr);
  13843. const int ir = ir1 - ir0;
  13844. if (n_kv > 1) {
  13845. // it's hard to know if the source states have already been copied
  13846. // when there are multiple, so copy them already.
  13847. for (int i3 = 0; i3 < n_kv; ++i3) {
  13848. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13849. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  13850. memcpy(s, s0, nc*ir*sizeof(float));
  13851. }
  13852. }
  13853. for (int i2 = 0; i2 < n_t; ++i2) {
  13854. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  13855. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13856. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  13857. float * s0;
  13858. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13859. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  13860. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  13861. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  13862. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  13863. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13864. // avoid needing to copy the state for the first token
  13865. if (i2 == 0) {
  13866. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  13867. } else {
  13868. // otherwise the source is the same as the destination
  13869. s0 = s;
  13870. }
  13871. // d_inner
  13872. for (int i1 = 0; i1 < ir; ++i1) {
  13873. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  13874. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  13875. float x_dt = x[i1] * dt_soft_plus;
  13876. float sumf = 0.0f;
  13877. // d_state
  13878. for (int i0 = 0; i0 < nc; ++i0) {
  13879. int i = i0 + i1*nc;
  13880. // state = prev_state * dA + dB * x
  13881. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  13882. // y = rowwise_dotprod(state, C)
  13883. sumf += state * C[i0];
  13884. s[i] = state;
  13885. }
  13886. y[i1] = sumf;
  13887. }
  13888. // handle copies when there are multiple output states
  13889. for (int i3 = 1; i3 < n_kv; ++i3) {
  13890. int32_t seq = sq[i3];
  13891. if (0 <= seq && seq < n_kv) {
  13892. float * s1 = s + (seq - sq[0])*nc*nr;
  13893. memcpy(s1, s, nc*ir*sizeof(float));
  13894. } else {
  13895. // stop at negative or too big seq_ids
  13896. break;
  13897. }
  13898. }
  13899. }
  13900. }
  13901. static void ggml_compute_forward_ssm_scan(
  13902. const struct ggml_compute_params * params,
  13903. struct ggml_tensor * dst) {
  13904. switch (dst->src[0]->type) {
  13905. case GGML_TYPE_F32:
  13906. {
  13907. ggml_compute_forward_ssm_scan_f32(params, dst);
  13908. } break;
  13909. default:
  13910. {
  13911. GGML_ASSERT(false);
  13912. } break;
  13913. }
  13914. }
  13915. // ggml_compute_forward_win_part
  13916. static void ggml_compute_forward_win_part_f32(
  13917. const struct ggml_compute_params * params,
  13918. struct ggml_tensor * dst) {
  13919. const struct ggml_tensor * src0 = dst->src[0];
  13920. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13921. return;
  13922. }
  13923. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13924. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13925. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  13926. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  13927. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  13928. assert(ne00 == ne0);
  13929. assert(ne3 == nep0*nep1);
  13930. // TODO: optimize / multi-thread
  13931. for (int py = 0; py < nep1; ++py) {
  13932. for (int px = 0; px < nep0; ++px) {
  13933. const int64_t i3 = py*nep0 + px;
  13934. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13935. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13936. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13937. const int64_t i02 = py*w + i2;
  13938. const int64_t i01 = px*w + i1;
  13939. const int64_t i00 = i0;
  13940. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  13941. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  13942. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  13943. ((float *) dst->data)[i] = 0.0f;
  13944. } else {
  13945. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  13946. }
  13947. }
  13948. }
  13949. }
  13950. }
  13951. }
  13952. }
  13953. static void ggml_compute_forward_win_part(
  13954. const struct ggml_compute_params * params,
  13955. struct ggml_tensor * dst) {
  13956. const struct ggml_tensor * src0 = dst->src[0];
  13957. switch (src0->type) {
  13958. case GGML_TYPE_F32:
  13959. {
  13960. ggml_compute_forward_win_part_f32(params, dst);
  13961. } break;
  13962. default:
  13963. {
  13964. GGML_ASSERT(false);
  13965. } break;
  13966. }
  13967. }
  13968. // ggml_compute_forward_win_unpart
  13969. static void ggml_compute_forward_win_unpart_f32(
  13970. const struct ggml_compute_params * params,
  13971. struct ggml_tensor * dst) {
  13972. const struct ggml_tensor * src0 = dst->src[0];
  13973. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13974. return;
  13975. }
  13976. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13977. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13978. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  13979. // padding
  13980. const int px = (w - ne1%w)%w;
  13981. //const int py = (w - ne2%w)%w;
  13982. const int npx = (px + ne1)/w;
  13983. //const int npy = (py + ne2)/w;
  13984. assert(ne0 == ne00);
  13985. // TODO: optimize / multi-thread
  13986. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13987. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13988. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13989. const int ip2 = i2/w;
  13990. const int ip1 = i1/w;
  13991. const int64_t i02 = i2%w;
  13992. const int64_t i01 = i1%w;
  13993. const int64_t i00 = i0;
  13994. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  13995. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  13996. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  13997. }
  13998. }
  13999. }
  14000. }
  14001. static void ggml_compute_forward_win_unpart(
  14002. const struct ggml_compute_params * params,
  14003. struct ggml_tensor * dst) {
  14004. const struct ggml_tensor * src0 = dst->src[0];
  14005. switch (src0->type) {
  14006. case GGML_TYPE_F32:
  14007. {
  14008. ggml_compute_forward_win_unpart_f32(params, dst);
  14009. } break;
  14010. default:
  14011. {
  14012. GGML_ASSERT(false);
  14013. } break;
  14014. }
  14015. }
  14016. //gmml_compute_forward_unary
  14017. static void ggml_compute_forward_unary(
  14018. const struct ggml_compute_params * params,
  14019. struct ggml_tensor * dst) {
  14020. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  14021. switch (op) {
  14022. case GGML_UNARY_OP_ABS:
  14023. {
  14024. ggml_compute_forward_abs(params, dst);
  14025. } break;
  14026. case GGML_UNARY_OP_SGN:
  14027. {
  14028. ggml_compute_forward_sgn(params, dst);
  14029. } break;
  14030. case GGML_UNARY_OP_NEG:
  14031. {
  14032. ggml_compute_forward_neg(params, dst);
  14033. } break;
  14034. case GGML_UNARY_OP_STEP:
  14035. {
  14036. ggml_compute_forward_step(params, dst);
  14037. } break;
  14038. case GGML_UNARY_OP_TANH:
  14039. {
  14040. ggml_compute_forward_tanh(params, dst);
  14041. } break;
  14042. case GGML_UNARY_OP_ELU:
  14043. {
  14044. ggml_compute_forward_elu(params, dst);
  14045. } break;
  14046. case GGML_UNARY_OP_RELU:
  14047. {
  14048. ggml_compute_forward_relu(params, dst);
  14049. } break;
  14050. case GGML_UNARY_OP_SIGMOID:
  14051. {
  14052. ggml_compute_forward_sigmoid(params, dst);
  14053. } break;
  14054. case GGML_UNARY_OP_GELU:
  14055. {
  14056. ggml_compute_forward_gelu(params, dst);
  14057. } break;
  14058. case GGML_UNARY_OP_GELU_QUICK:
  14059. {
  14060. ggml_compute_forward_gelu_quick(params, dst);
  14061. } break;
  14062. case GGML_UNARY_OP_SILU:
  14063. {
  14064. ggml_compute_forward_silu(params, dst);
  14065. } break;
  14066. case GGML_UNARY_OP_HARDSWISH:
  14067. {
  14068. ggml_compute_forward_hardswish(params, dst);
  14069. } break;
  14070. case GGML_UNARY_OP_HARDSIGMOID:
  14071. {
  14072. ggml_compute_forward_hardsigmoid(params, dst);
  14073. } break;
  14074. default:
  14075. {
  14076. GGML_ASSERT(false);
  14077. } break;
  14078. }
  14079. }
  14080. // ggml_compute_forward_get_rel_pos
  14081. static void ggml_compute_forward_get_rel_pos_f16(
  14082. const struct ggml_compute_params * params,
  14083. struct ggml_tensor * dst) {
  14084. const struct ggml_tensor * src0 = dst->src[0];
  14085. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14086. return;
  14087. }
  14088. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  14089. GGML_TENSOR_UNARY_OP_LOCALS
  14090. const int64_t w = ne1;
  14091. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  14092. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  14093. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  14094. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  14095. const int64_t pos = (w - i1 - 1) + i2;
  14096. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  14097. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  14098. }
  14099. }
  14100. }
  14101. }
  14102. static void ggml_compute_forward_get_rel_pos(
  14103. const struct ggml_compute_params * params,
  14104. struct ggml_tensor * dst) {
  14105. const struct ggml_tensor * src0 = dst->src[0];
  14106. switch (src0->type) {
  14107. case GGML_TYPE_F16:
  14108. case GGML_TYPE_BF16:
  14109. {
  14110. ggml_compute_forward_get_rel_pos_f16(params, dst);
  14111. } break;
  14112. default:
  14113. {
  14114. GGML_ASSERT(false);
  14115. } break;
  14116. }
  14117. }
  14118. // ggml_compute_forward_add_rel_pos
  14119. static void ggml_compute_forward_add_rel_pos_f32(
  14120. const struct ggml_compute_params * params,
  14121. struct ggml_tensor * dst) {
  14122. const struct ggml_tensor * src0 = dst->src[0];
  14123. const struct ggml_tensor * src1 = dst->src[1];
  14124. const struct ggml_tensor * src2 = dst->src[2];
  14125. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  14126. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  14127. if (params->ith != 0) {
  14128. return;
  14129. }
  14130. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  14131. return;
  14132. }
  14133. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14134. return;
  14135. }
  14136. int64_t t0 = ggml_perf_time_us();
  14137. UNUSED(t0);
  14138. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  14139. float * src1_data = (float *) src1->data;
  14140. float * src2_data = (float *) src2->data;
  14141. float * dst_data = (float *) dst->data;
  14142. const int64_t ne10 = src1->ne[0];
  14143. const int64_t ne11 = src1->ne[1];
  14144. const int64_t ne12 = src1->ne[2];
  14145. const int64_t ne13 = src1->ne[3];
  14146. const int ith = params->ith;
  14147. const int nth = params->nth;
  14148. // total patches in dst
  14149. const int np = ne13;
  14150. // patches per thread
  14151. const int dp = (np + nth - 1)/nth;
  14152. // patch range for this thread
  14153. const int ip0 = dp*ith;
  14154. const int ip1 = MIN(ip0 + dp, np);
  14155. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  14156. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  14157. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  14158. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  14159. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  14160. const int64_t jp0 = jp1 + i10;
  14161. const float src1_e = src1_data[jp0];
  14162. const float src2_e = src2_data[jp0];
  14163. const int64_t jdh = jp0 * ne10;
  14164. const int64_t jdw = jdh - (ne10 - 1) * i10;
  14165. for (int64_t j = 0; j < ne10; ++j) {
  14166. dst_data[jdh + j ] += src2_e;
  14167. dst_data[jdw + j*ne10] += src1_e;
  14168. }
  14169. }
  14170. }
  14171. }
  14172. }
  14173. }
  14174. static void ggml_compute_forward_add_rel_pos(
  14175. const struct ggml_compute_params * params,
  14176. struct ggml_tensor * dst) {
  14177. const struct ggml_tensor * src0 = dst->src[0];
  14178. switch (src0->type) {
  14179. case GGML_TYPE_F32:
  14180. {
  14181. ggml_compute_forward_add_rel_pos_f32(params, dst);
  14182. } break;
  14183. default:
  14184. {
  14185. GGML_ASSERT(false);
  14186. } break;
  14187. }
  14188. }
  14189. // ggml_compute_forward_map_unary
  14190. static void ggml_compute_forward_map_unary_f32(
  14191. const struct ggml_compute_params * params,
  14192. struct ggml_tensor * dst,
  14193. const ggml_unary_op_f32_t fun) {
  14194. const struct ggml_tensor * src0 = dst->src[0];
  14195. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  14196. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14197. return;
  14198. }
  14199. const int n = ggml_nrows(src0);
  14200. const int nc = src0->ne[0];
  14201. assert( dst->nb[0] == sizeof(float));
  14202. assert(src0->nb[0] == sizeof(float));
  14203. for (int i = 0; i < n; i++) {
  14204. fun(nc,
  14205. (float *) ((char *) dst->data + i*( dst->nb[1])),
  14206. (float *) ((char *) src0->data + i*(src0->nb[1])));
  14207. }
  14208. }
  14209. static void ggml_compute_forward_map_unary(
  14210. const struct ggml_compute_params * params,
  14211. struct ggml_tensor * dst,
  14212. const ggml_unary_op_f32_t fun) {
  14213. const struct ggml_tensor * src0 = dst->src[0];
  14214. switch (src0->type) {
  14215. case GGML_TYPE_F32:
  14216. {
  14217. ggml_compute_forward_map_unary_f32(params, dst, fun);
  14218. } break;
  14219. default:
  14220. {
  14221. GGML_ASSERT(false);
  14222. } break;
  14223. }
  14224. }
  14225. // ggml_compute_forward_map_binary
  14226. static void ggml_compute_forward_map_binary_f32(
  14227. const struct ggml_compute_params * params,
  14228. struct ggml_tensor * dst,
  14229. const ggml_binary_op_f32_t fun) {
  14230. const struct ggml_tensor * src0 = dst->src[0];
  14231. const struct ggml_tensor * src1 = dst->src[1];
  14232. assert(params->ith == 0);
  14233. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  14234. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14235. return;
  14236. }
  14237. const int n = ggml_nrows(src0);
  14238. const int nc = src0->ne[0];
  14239. assert( dst->nb[0] == sizeof(float));
  14240. assert(src0->nb[0] == sizeof(float));
  14241. assert(src1->nb[0] == sizeof(float));
  14242. for (int i = 0; i < n; i++) {
  14243. fun(nc,
  14244. (float *) ((char *) dst->data + i*( dst->nb[1])),
  14245. (float *) ((char *) src0->data + i*(src0->nb[1])),
  14246. (float *) ((char *) src1->data + i*(src1->nb[1])));
  14247. }
  14248. }
  14249. static void ggml_compute_forward_map_binary(
  14250. const struct ggml_compute_params * params,
  14251. struct ggml_tensor * dst,
  14252. const ggml_binary_op_f32_t fun) {
  14253. const struct ggml_tensor * src0 = dst->src[0];
  14254. switch (src0->type) {
  14255. case GGML_TYPE_F32:
  14256. {
  14257. ggml_compute_forward_map_binary_f32(params, dst, fun);
  14258. } break;
  14259. default:
  14260. {
  14261. GGML_ASSERT(false);
  14262. } break;
  14263. }
  14264. }
  14265. // ggml_compute_forward_map_custom1
  14266. static void ggml_compute_forward_map_custom1_f32(
  14267. const struct ggml_compute_params * params,
  14268. struct ggml_tensor * dst,
  14269. const ggml_custom1_op_f32_t fun) {
  14270. const struct ggml_tensor * a = dst->src[0];
  14271. assert(params->ith == 0);
  14272. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14273. return;
  14274. }
  14275. fun(dst, a);
  14276. }
  14277. // ggml_compute_forward_map_custom2
  14278. static void ggml_compute_forward_map_custom2_f32(
  14279. const struct ggml_compute_params * params,
  14280. struct ggml_tensor * dst,
  14281. const ggml_custom2_op_f32_t fun) {
  14282. const struct ggml_tensor * a = dst->src[0];
  14283. const struct ggml_tensor * b = dst->src[1];
  14284. assert(params->ith == 0);
  14285. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14286. return;
  14287. }
  14288. fun(dst, a, b);
  14289. }
  14290. // ggml_compute_forward_map_custom3
  14291. static void ggml_compute_forward_map_custom3_f32(
  14292. const struct ggml_compute_params * params,
  14293. struct ggml_tensor * dst,
  14294. const ggml_custom3_op_f32_t fun) {
  14295. const struct ggml_tensor * a = dst->src[0];
  14296. const struct ggml_tensor * b = dst->src[1];
  14297. const struct ggml_tensor * c = dst->src[1];
  14298. assert(params->ith == 0);
  14299. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14300. return;
  14301. }
  14302. fun(dst, a, b, c);
  14303. }
  14304. // ggml_compute_forward_map_custom1
  14305. static void ggml_compute_forward_map_custom1(
  14306. const struct ggml_compute_params * params,
  14307. struct ggml_tensor * dst) {
  14308. const struct ggml_tensor * a = dst->src[0];
  14309. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14310. return;
  14311. }
  14312. struct ggml_map_custom1_op_params p;
  14313. memcpy(&p, dst->op_params, sizeof(p));
  14314. p.fun(dst, a, params->ith, params->nth, p.userdata);
  14315. }
  14316. // ggml_compute_forward_map_custom2
  14317. static void ggml_compute_forward_map_custom2(
  14318. const struct ggml_compute_params * params,
  14319. struct ggml_tensor * dst) {
  14320. const struct ggml_tensor * a = dst->src[0];
  14321. const struct ggml_tensor * b = dst->src[1];
  14322. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14323. return;
  14324. }
  14325. struct ggml_map_custom2_op_params p;
  14326. memcpy(&p, dst->op_params, sizeof(p));
  14327. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  14328. }
  14329. // ggml_compute_forward_map_custom3
  14330. static void ggml_compute_forward_map_custom3(
  14331. const struct ggml_compute_params * params,
  14332. struct ggml_tensor * dst) {
  14333. const struct ggml_tensor * a = dst->src[0];
  14334. const struct ggml_tensor * b = dst->src[1];
  14335. const struct ggml_tensor * c = dst->src[2];
  14336. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14337. return;
  14338. }
  14339. struct ggml_map_custom3_op_params p;
  14340. memcpy(&p, dst->op_params, sizeof(p));
  14341. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  14342. }
  14343. // ggml_compute_forward_cross_entropy_loss
  14344. static void ggml_compute_forward_cross_entropy_loss_f32(
  14345. const struct ggml_compute_params * params,
  14346. struct ggml_tensor * dst) {
  14347. const struct ggml_tensor * src0 = dst->src[0];
  14348. const struct ggml_tensor * src1 = dst->src[1];
  14349. GGML_ASSERT(ggml_is_contiguous(src0));
  14350. GGML_ASSERT(ggml_is_contiguous(src1));
  14351. GGML_ASSERT(ggml_is_scalar(dst));
  14352. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  14353. const int ith = params->ith;
  14354. const int nth = params->nth;
  14355. float * sums = (float *) params->wdata;
  14356. // TODO: handle transposed/permuted matrices
  14357. const int nc = src0->ne[0];
  14358. const int nr = ggml_nrows(src0);
  14359. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  14360. if (params->type == GGML_TASK_TYPE_INIT) {
  14361. if (ith == 0) {
  14362. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  14363. }
  14364. return;
  14365. }
  14366. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  14367. if (ith == 0) {
  14368. float * dp = (float *) dst->data;
  14369. ggml_vec_sum_f32(nth, dp, sums);
  14370. dp[0] *= -1.0f / (float) nr;
  14371. }
  14372. return;
  14373. }
  14374. const double eps = 1e-9;
  14375. // rows per thread
  14376. const int dr = (nr + nth - 1)/nth;
  14377. // row range for this thread
  14378. const int ir0 = dr*ith;
  14379. const int ir1 = MIN(ir0 + dr, nr);
  14380. for (int i1 = ir0; i1 < ir1; i1++) {
  14381. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  14382. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  14383. float * st = ((float *) params->wdata) + nth + ith*nc;
  14384. #ifndef NDEBUG
  14385. for (int i = 0; i < nc; ++i) {
  14386. //printf("p[%d] = %f\n", i, p[i]);
  14387. assert(!isnan(s0[i]));
  14388. assert(!isnan(s1[i]));
  14389. }
  14390. #endif
  14391. // soft_max
  14392. float max = -INFINITY;
  14393. ggml_vec_max_f32(nc, &max, s0);
  14394. ggml_float sum = ggml_vec_soft_max_f32(nc, st, s0, max);
  14395. assert(sum > 0.0);
  14396. sum = (1.0 - eps) / sum;
  14397. // avoid log(0) by rescaling from [0..1] to [eps..1]
  14398. ggml_vec_scale_f32(nc, st, sum);
  14399. ggml_vec_add1_f32(nc, st, st, eps);
  14400. ggml_vec_log_f32(nc, st, st);
  14401. ggml_vec_mul_f32(nc, st, st, s1);
  14402. float st_sum = 0;
  14403. ggml_vec_sum_f32(nc, &st_sum, st);
  14404. sums[ith] += st_sum;
  14405. #ifndef NDEBUG
  14406. for (int i = 0; i < nc; ++i) {
  14407. assert(!isnan(st[i]));
  14408. assert(!isinf(st[i]));
  14409. }
  14410. #endif
  14411. }
  14412. }
  14413. static void ggml_compute_forward_cross_entropy_loss(
  14414. const struct ggml_compute_params * params,
  14415. struct ggml_tensor * dst) {
  14416. const struct ggml_tensor * src0 = dst->src[0];
  14417. switch (src0->type) {
  14418. case GGML_TYPE_F32:
  14419. {
  14420. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  14421. } break;
  14422. default:
  14423. {
  14424. GGML_ASSERT(false);
  14425. } break;
  14426. }
  14427. }
  14428. // ggml_compute_forward_cross_entropy_loss_back
  14429. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  14430. const struct ggml_compute_params * params,
  14431. struct ggml_tensor * dst) {
  14432. const struct ggml_tensor * src0 = dst->src[0];
  14433. const struct ggml_tensor * src1 = dst->src[1];
  14434. const struct ggml_tensor * opt0 = dst->src[2];
  14435. GGML_ASSERT(ggml_is_contiguous(dst));
  14436. GGML_ASSERT(ggml_is_contiguous(src0));
  14437. GGML_ASSERT(ggml_is_contiguous(src1));
  14438. GGML_ASSERT(ggml_is_contiguous(opt0));
  14439. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  14440. const int64_t ith = params->ith;
  14441. const int64_t nth = params->nth;
  14442. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14443. return;
  14444. }
  14445. const double eps = 1e-9;
  14446. // TODO: handle transposed/permuted matrices
  14447. const int64_t nc = src0->ne[0];
  14448. const int64_t nr = ggml_nrows(src0);
  14449. // rows per thread
  14450. const int64_t dr = (nr + nth - 1)/nth;
  14451. // row range for this thread
  14452. const int64_t ir0 = dr*ith;
  14453. const int64_t ir1 = MIN(ir0 + dr, nr);
  14454. float * d = (float *) opt0->data;
  14455. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  14456. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  14457. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  14458. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  14459. #ifndef NDEBUG
  14460. for (int i = 0; i < nc; ++i) {
  14461. //printf("p[%d] = %f\n", i, p[i]);
  14462. assert(!isnan(s0[i]));
  14463. assert(!isnan(s1[i]));
  14464. }
  14465. #endif
  14466. // soft_max
  14467. float max = -INFINITY;
  14468. ggml_vec_max_f32(nc, &max, s0);
  14469. ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
  14470. assert(sum > 0.0);
  14471. sum = (1.0 - eps) / sum;
  14472. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  14473. ggml_vec_scale_f32(nc, ds0, sum);
  14474. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  14475. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  14476. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  14477. #ifndef NDEBUG
  14478. for (int i = 0; i < nc; ++i) {
  14479. assert(!isnan(ds0[i]));
  14480. assert(!isinf(ds0[i]));
  14481. }
  14482. #endif
  14483. }
  14484. }
  14485. static void ggml_compute_forward_cross_entropy_loss_back(
  14486. const struct ggml_compute_params * params,
  14487. struct ggml_tensor * dst) {
  14488. const struct ggml_tensor * src0 = dst->src[0];
  14489. switch (src0->type) {
  14490. case GGML_TYPE_F32:
  14491. {
  14492. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  14493. } break;
  14494. default:
  14495. {
  14496. GGML_ASSERT(false);
  14497. } break;
  14498. }
  14499. }
  14500. /////////////////////////////////
  14501. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor, struct ggml_compute_state * state) {
  14502. GGML_ASSERT(params);
  14503. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  14504. return;
  14505. }
  14506. switch (tensor->op) {
  14507. case GGML_OP_DUP:
  14508. {
  14509. ggml_compute_forward_dup(params, tensor);
  14510. } break;
  14511. case GGML_OP_ADD:
  14512. {
  14513. ggml_compute_forward_add(params, tensor);
  14514. } break;
  14515. case GGML_OP_ADD1:
  14516. {
  14517. ggml_compute_forward_add1(params, tensor);
  14518. } break;
  14519. case GGML_OP_ACC:
  14520. {
  14521. ggml_compute_forward_acc(params, tensor);
  14522. } break;
  14523. case GGML_OP_SUB:
  14524. {
  14525. ggml_compute_forward_sub(params, tensor);
  14526. } break;
  14527. case GGML_OP_MUL:
  14528. {
  14529. ggml_compute_forward_mul(params, tensor);
  14530. } break;
  14531. case GGML_OP_DIV:
  14532. {
  14533. ggml_compute_forward_div(params, tensor);
  14534. } break;
  14535. case GGML_OP_SQR:
  14536. {
  14537. ggml_compute_forward_sqr(params, tensor);
  14538. } break;
  14539. case GGML_OP_SQRT:
  14540. {
  14541. ggml_compute_forward_sqrt(params, tensor);
  14542. } break;
  14543. case GGML_OP_LOG:
  14544. {
  14545. ggml_compute_forward_log(params, tensor);
  14546. } break;
  14547. case GGML_OP_SUM:
  14548. {
  14549. ggml_compute_forward_sum(params, tensor);
  14550. } break;
  14551. case GGML_OP_SUM_ROWS:
  14552. {
  14553. ggml_compute_forward_sum_rows(params, tensor);
  14554. } break;
  14555. case GGML_OP_MEAN:
  14556. {
  14557. ggml_compute_forward_mean(params, tensor);
  14558. } break;
  14559. case GGML_OP_ARGMAX:
  14560. {
  14561. ggml_compute_forward_argmax(params, tensor);
  14562. } break;
  14563. case GGML_OP_REPEAT:
  14564. {
  14565. ggml_compute_forward_repeat(params, tensor);
  14566. } break;
  14567. case GGML_OP_REPEAT_BACK:
  14568. {
  14569. ggml_compute_forward_repeat_back(params, tensor);
  14570. } break;
  14571. case GGML_OP_CONCAT:
  14572. {
  14573. ggml_compute_forward_concat(params, tensor);
  14574. } break;
  14575. case GGML_OP_SILU_BACK:
  14576. {
  14577. ggml_compute_forward_silu_back(params, tensor);
  14578. } break;
  14579. case GGML_OP_NORM:
  14580. {
  14581. ggml_compute_forward_norm(params, tensor);
  14582. } break;
  14583. case GGML_OP_RMS_NORM:
  14584. {
  14585. ggml_compute_forward_rms_norm(params, tensor);
  14586. } break;
  14587. case GGML_OP_RMS_NORM_BACK:
  14588. {
  14589. ggml_compute_forward_rms_norm_back(params, tensor);
  14590. } break;
  14591. case GGML_OP_GROUP_NORM:
  14592. {
  14593. ggml_compute_forward_group_norm(params, tensor);
  14594. } break;
  14595. case GGML_OP_MUL_MAT:
  14596. {
  14597. ggml_compute_forward_mul_mat(params, tensor, state);
  14598. } break;
  14599. case GGML_OP_MUL_MAT_ID:
  14600. {
  14601. ggml_compute_forward_mul_mat_id(params, tensor);
  14602. } break;
  14603. case GGML_OP_OUT_PROD:
  14604. {
  14605. ggml_compute_forward_out_prod(params, tensor);
  14606. } break;
  14607. case GGML_OP_SCALE:
  14608. {
  14609. ggml_compute_forward_scale(params, tensor);
  14610. } break;
  14611. case GGML_OP_SET:
  14612. {
  14613. ggml_compute_forward_set(params, tensor);
  14614. } break;
  14615. case GGML_OP_CPY:
  14616. {
  14617. ggml_compute_forward_cpy(params, tensor);
  14618. } break;
  14619. case GGML_OP_CONT:
  14620. {
  14621. ggml_compute_forward_cont(params, tensor);
  14622. } break;
  14623. case GGML_OP_RESHAPE:
  14624. {
  14625. ggml_compute_forward_reshape(params, tensor);
  14626. } break;
  14627. case GGML_OP_VIEW:
  14628. {
  14629. ggml_compute_forward_view(params, tensor);
  14630. } break;
  14631. case GGML_OP_PERMUTE:
  14632. {
  14633. ggml_compute_forward_permute(params, tensor);
  14634. } break;
  14635. case GGML_OP_TRANSPOSE:
  14636. {
  14637. ggml_compute_forward_transpose(params, tensor);
  14638. } break;
  14639. case GGML_OP_GET_ROWS:
  14640. {
  14641. ggml_compute_forward_get_rows(params, tensor);
  14642. } break;
  14643. case GGML_OP_GET_ROWS_BACK:
  14644. {
  14645. ggml_compute_forward_get_rows_back(params, tensor);
  14646. } break;
  14647. case GGML_OP_DIAG:
  14648. {
  14649. ggml_compute_forward_diag(params, tensor);
  14650. } break;
  14651. case GGML_OP_DIAG_MASK_INF:
  14652. {
  14653. ggml_compute_forward_diag_mask_inf(params, tensor);
  14654. } break;
  14655. case GGML_OP_DIAG_MASK_ZERO:
  14656. {
  14657. ggml_compute_forward_diag_mask_zero(params, tensor);
  14658. } break;
  14659. case GGML_OP_SOFT_MAX:
  14660. {
  14661. ggml_compute_forward_soft_max(params, tensor);
  14662. } break;
  14663. case GGML_OP_SOFT_MAX_BACK:
  14664. {
  14665. ggml_compute_forward_soft_max_back(params, tensor);
  14666. } break;
  14667. case GGML_OP_ROPE:
  14668. {
  14669. ggml_compute_forward_rope(params, tensor);
  14670. } break;
  14671. case GGML_OP_ROPE_BACK:
  14672. {
  14673. ggml_compute_forward_rope_back(params, tensor);
  14674. } break;
  14675. case GGML_OP_CLAMP:
  14676. {
  14677. ggml_compute_forward_clamp(params, tensor);
  14678. } break;
  14679. case GGML_OP_CONV_TRANSPOSE_1D:
  14680. {
  14681. ggml_compute_forward_conv_transpose_1d(params, tensor);
  14682. } break;
  14683. case GGML_OP_IM2COL:
  14684. {
  14685. ggml_compute_forward_im2col(params, tensor);
  14686. } break;
  14687. case GGML_OP_CONV_TRANSPOSE_2D:
  14688. {
  14689. ggml_compute_forward_conv_transpose_2d(params, tensor);
  14690. } break;
  14691. case GGML_OP_POOL_1D:
  14692. {
  14693. ggml_compute_forward_pool_1d(params, tensor);
  14694. } break;
  14695. case GGML_OP_POOL_2D:
  14696. {
  14697. ggml_compute_forward_pool_2d(params, tensor);
  14698. } break;
  14699. case GGML_OP_UPSCALE:
  14700. {
  14701. ggml_compute_forward_upscale(params, tensor);
  14702. } break;
  14703. case GGML_OP_PAD:
  14704. {
  14705. ggml_compute_forward_pad(params, tensor);
  14706. } break;
  14707. case GGML_OP_ARANGE:
  14708. {
  14709. ggml_compute_forward_arange(params, tensor);
  14710. } break;
  14711. case GGML_OP_TIMESTEP_EMBEDDING:
  14712. {
  14713. ggml_compute_forward_timestep_embedding(params, tensor);
  14714. } break;
  14715. case GGML_OP_ARGSORT:
  14716. {
  14717. ggml_compute_forward_argsort(params, tensor);
  14718. } break;
  14719. case GGML_OP_LEAKY_RELU:
  14720. {
  14721. ggml_compute_forward_leaky_relu(params, tensor);
  14722. } break;
  14723. case GGML_OP_FLASH_ATTN:
  14724. {
  14725. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  14726. GGML_ASSERT(t == 0 || t == 1);
  14727. const bool masked = t != 0;
  14728. ggml_compute_forward_flash_attn(params, masked, tensor);
  14729. } break;
  14730. case GGML_OP_FLASH_ATTN_EXT:
  14731. {
  14732. ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
  14733. } break;
  14734. case GGML_OP_FLASH_FF:
  14735. {
  14736. ggml_compute_forward_flash_ff(params, tensor);
  14737. } break;
  14738. case GGML_OP_FLASH_ATTN_BACK:
  14739. {
  14740. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14741. GGML_ASSERT(t == 0 || t == 1);
  14742. bool masked = t != 0;
  14743. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  14744. } break;
  14745. case GGML_OP_SSM_CONV:
  14746. {
  14747. ggml_compute_forward_ssm_conv(params, tensor);
  14748. } break;
  14749. case GGML_OP_SSM_SCAN:
  14750. {
  14751. ggml_compute_forward_ssm_scan(params, tensor);
  14752. } break;
  14753. case GGML_OP_WIN_PART:
  14754. {
  14755. ggml_compute_forward_win_part(params, tensor);
  14756. } break;
  14757. case GGML_OP_WIN_UNPART:
  14758. {
  14759. ggml_compute_forward_win_unpart(params, tensor);
  14760. } break;
  14761. case GGML_OP_UNARY:
  14762. {
  14763. ggml_compute_forward_unary(params, tensor);
  14764. } break;
  14765. case GGML_OP_GET_REL_POS:
  14766. {
  14767. ggml_compute_forward_get_rel_pos(params, tensor);
  14768. } break;
  14769. case GGML_OP_ADD_REL_POS:
  14770. {
  14771. ggml_compute_forward_add_rel_pos(params, tensor);
  14772. } break;
  14773. case GGML_OP_MAP_UNARY:
  14774. {
  14775. ggml_unary_op_f32_t fun;
  14776. memcpy(&fun, tensor->op_params, sizeof(fun));
  14777. ggml_compute_forward_map_unary(params, tensor, fun);
  14778. }
  14779. break;
  14780. case GGML_OP_MAP_BINARY:
  14781. {
  14782. ggml_binary_op_f32_t fun;
  14783. memcpy(&fun, tensor->op_params, sizeof(fun));
  14784. ggml_compute_forward_map_binary(params, tensor, fun);
  14785. }
  14786. break;
  14787. case GGML_OP_MAP_CUSTOM1_F32:
  14788. {
  14789. ggml_custom1_op_f32_t fun;
  14790. memcpy(&fun, tensor->op_params, sizeof(fun));
  14791. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  14792. }
  14793. break;
  14794. case GGML_OP_MAP_CUSTOM2_F32:
  14795. {
  14796. ggml_custom2_op_f32_t fun;
  14797. memcpy(&fun, tensor->op_params, sizeof(fun));
  14798. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  14799. }
  14800. break;
  14801. case GGML_OP_MAP_CUSTOM3_F32:
  14802. {
  14803. ggml_custom3_op_f32_t fun;
  14804. memcpy(&fun, tensor->op_params, sizeof(fun));
  14805. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  14806. }
  14807. break;
  14808. case GGML_OP_MAP_CUSTOM1:
  14809. {
  14810. ggml_compute_forward_map_custom1(params, tensor);
  14811. }
  14812. break;
  14813. case GGML_OP_MAP_CUSTOM2:
  14814. {
  14815. ggml_compute_forward_map_custom2(params, tensor);
  14816. }
  14817. break;
  14818. case GGML_OP_MAP_CUSTOM3:
  14819. {
  14820. ggml_compute_forward_map_custom3(params, tensor);
  14821. }
  14822. break;
  14823. case GGML_OP_CROSS_ENTROPY_LOSS:
  14824. {
  14825. ggml_compute_forward_cross_entropy_loss(params, tensor);
  14826. }
  14827. break;
  14828. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14829. {
  14830. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  14831. }
  14832. break;
  14833. case GGML_OP_NONE:
  14834. {
  14835. // nop
  14836. } break;
  14837. case GGML_OP_COUNT:
  14838. {
  14839. GGML_ASSERT(false);
  14840. } break;
  14841. }
  14842. }
  14843. ////////////////////////////////////////////////////////////////////////////////
  14844. static size_t ggml_hash_size(size_t min_sz) {
  14845. // next primes after powers of two
  14846. static const size_t primes[] = {
  14847. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  14848. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  14849. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  14850. 16777259, 33554467, 67108879, 134217757, 268435459,
  14851. 536870923, 1073741827, 2147483659
  14852. };
  14853. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  14854. // find the smallest prime that is larger or equal to min_sz
  14855. size_t l = 0;
  14856. size_t r = n_primes;
  14857. while (l < r) {
  14858. size_t m = (l + r)/2;
  14859. if (primes[m] < min_sz) {
  14860. l = m + 1;
  14861. } else {
  14862. r = m;
  14863. }
  14864. }
  14865. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  14866. return sz;
  14867. }
  14868. static size_t ggml_hash(const void * p) {
  14869. return (size_t)p;
  14870. }
  14871. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14872. size_t h = ggml_hash(key) % hash_set.size;
  14873. // linear probing
  14874. size_t i = h;
  14875. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  14876. i = (i + 1) % hash_set.size;
  14877. if (i == h) {
  14878. // visited all hash table entries -> not found
  14879. return GGML_HASHTABLE_FULL;
  14880. }
  14881. }
  14882. return i;
  14883. }
  14884. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14885. size_t i = ggml_hash_find(hash_set, key);
  14886. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  14887. }
  14888. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14889. size_t i = ggml_hash_find(hash_set, key);
  14890. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14891. if (hash_set.keys[i] == key) {
  14892. return GGML_HASHTABLE_ALREADY_EXISTS;
  14893. }
  14894. // insert
  14895. GGML_ASSERT(hash_set.keys[i] == NULL);
  14896. hash_set.keys[i] = key;
  14897. return i;
  14898. }
  14899. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14900. size_t i = ggml_hash_find(hash_set, key);
  14901. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14902. hash_set.keys[i] = key;
  14903. return i;
  14904. }
  14905. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  14906. size = ggml_hash_size(size);
  14907. struct ggml_hash_set result;
  14908. result.size = size;
  14909. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  14910. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  14911. return result;
  14912. }
  14913. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  14914. GGML_FREE(hash_set.keys);
  14915. }
  14916. struct hash_map {
  14917. struct ggml_hash_set set;
  14918. struct ggml_tensor ** vals;
  14919. };
  14920. static struct hash_map * ggml_new_hash_map(size_t size) {
  14921. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  14922. result->set = ggml_hash_set_new(size);
  14923. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  14924. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  14925. return result;
  14926. }
  14927. static void ggml_hash_map_free(struct hash_map * map) {
  14928. ggml_hash_set_free(map->set);
  14929. GGML_FREE(map->vals);
  14930. GGML_FREE(map);
  14931. }
  14932. // gradient checkpointing
  14933. static struct ggml_tensor * ggml_recompute_graph_node(
  14934. struct ggml_context * ctx,
  14935. struct ggml_cgraph * graph,
  14936. struct hash_map * replacements,
  14937. struct ggml_tensor * node) {
  14938. if (node == NULL) {
  14939. return NULL;
  14940. }
  14941. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14942. return node;
  14943. }
  14944. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  14945. return node;
  14946. }
  14947. int count_children = 0;
  14948. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14949. if (node->src[k]) {
  14950. ++count_children;
  14951. }
  14952. }
  14953. if (count_children == 0) {
  14954. return node;
  14955. }
  14956. size_t i = ggml_hash_find(replacements->set, node);
  14957. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  14958. if (replacements->set.keys[i] == node) {
  14959. return replacements->vals[i];
  14960. }
  14961. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  14962. // insert clone into replacements
  14963. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  14964. replacements->set.keys[i] = node;
  14965. replacements->vals[i] = clone;
  14966. clone->op = node->op;
  14967. clone->grad = node->grad;
  14968. clone->flags = node->flags;
  14969. clone->extra = node->extra;
  14970. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  14971. clone->nb[k] = node->nb[k];
  14972. }
  14973. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14974. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  14975. }
  14976. if (node->view_src != NULL) {
  14977. clone->data = (node->view_src->data == NULL)
  14978. ? NULL // view_src not yet allocated
  14979. : (char *) node->view_src->data // view_src already allocated
  14980. + node->view_offs;
  14981. clone->view_src = node->view_src;
  14982. clone->view_offs = node->view_offs;
  14983. }
  14984. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  14985. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  14986. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  14987. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  14988. return clone;
  14989. }
  14990. void ggml_build_backward_gradient_checkpointing(
  14991. struct ggml_context * ctx,
  14992. struct ggml_cgraph * gf,
  14993. struct ggml_cgraph * gb,
  14994. struct ggml_cgraph * gb_tmp,
  14995. struct ggml_tensor * * checkpoints,
  14996. int n_checkpoints) {
  14997. ggml_graph_cpy(gf, gb_tmp);
  14998. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  14999. if (n_checkpoints <= 0) {
  15000. ggml_graph_cpy(gb_tmp, gb);
  15001. return;
  15002. }
  15003. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  15004. // insert checkpoints in replacements
  15005. for (int i = 0; i < n_checkpoints; ++i) {
  15006. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  15007. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  15008. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  15009. replacements->set.keys[k] = checkpoints[i];
  15010. replacements->vals[k] = checkpoints[i];
  15011. }
  15012. ggml_graph_cpy(gf, gb);
  15013. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  15014. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  15015. // by recomputing them from checkpoints
  15016. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  15017. struct ggml_tensor * node = gb_tmp->nodes[i];
  15018. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  15019. // insert new tensors recomputing src, reusing already made replacements,
  15020. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  15021. // recurse for input tensors,
  15022. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  15023. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  15024. }
  15025. // insert rewritten backward node with replacements made into resulting backward graph gb
  15026. ggml_build_forward_expand(gb, node);
  15027. }
  15028. ggml_hash_map_free(replacements);
  15029. }
  15030. // functions to change gradients considering the case that input a might be initial gradient with zero value
  15031. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  15032. if (ggml_hash_contains(zero_table, a)) {
  15033. return b;
  15034. } else {
  15035. return ggml_add_impl(ctx, a, b, false);
  15036. }
  15037. }
  15038. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  15039. if (ggml_hash_contains(zero_table, a)) {
  15040. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  15041. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  15042. } else {
  15043. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  15044. }
  15045. }
  15046. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  15047. if (ggml_hash_contains(zero_table, a)) {
  15048. return ggml_repeat(ctx, b, a);
  15049. } else {
  15050. return ggml_add1_impl(ctx, a, b, false);
  15051. }
  15052. }
  15053. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  15054. if (ggml_hash_contains(zero_table, a)) {
  15055. return ggml_neg(ctx, b);
  15056. } else {
  15057. return ggml_sub_impl(ctx, a, b, false);
  15058. }
  15059. }
  15060. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  15061. struct ggml_tensor * src0 = tensor->src[0];
  15062. struct ggml_tensor * src1 = tensor->src[1];
  15063. struct ggml_tensor * src2 = tensor->src[2];
  15064. switch (tensor->op) {
  15065. case GGML_OP_DUP:
  15066. {
  15067. if (src0->grad) {
  15068. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15069. }
  15070. } break;
  15071. case GGML_OP_ADD:
  15072. {
  15073. if (src0->grad) {
  15074. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15075. }
  15076. if (src1->grad) {
  15077. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  15078. }
  15079. } break;
  15080. case GGML_OP_ADD1:
  15081. {
  15082. if (src0->grad) {
  15083. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15084. }
  15085. if (src1->grad) {
  15086. src1->grad = ggml_add_or_set(ctx,
  15087. src1->grad,
  15088. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  15089. zero_table);
  15090. }
  15091. } break;
  15092. case GGML_OP_ACC:
  15093. {
  15094. if (src0->grad) {
  15095. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15096. }
  15097. if (src1->grad) {
  15098. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  15099. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  15100. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  15101. const size_t offset = ((int32_t *) tensor->op_params)[3];
  15102. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  15103. tensor->grad,
  15104. src1->grad->ne[0],
  15105. src1->grad->ne[1],
  15106. src1->grad->ne[2],
  15107. src1->grad->ne[3],
  15108. nb1, nb2, nb3, offset);
  15109. src1->grad =
  15110. ggml_add_or_set(ctx,
  15111. src1->grad,
  15112. ggml_reshape(ctx,
  15113. ggml_cont(ctx, tensor_grad_view),
  15114. src1->grad),
  15115. zero_table);
  15116. }
  15117. } break;
  15118. case GGML_OP_SUB:
  15119. {
  15120. if (src0->grad) {
  15121. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15122. }
  15123. if (src1->grad) {
  15124. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  15125. }
  15126. } break;
  15127. case GGML_OP_MUL:
  15128. {
  15129. if (src0->grad) {
  15130. src0->grad =
  15131. ggml_add_or_set(ctx,
  15132. src0->grad,
  15133. ggml_mul(ctx, src1, tensor->grad),
  15134. zero_table);
  15135. }
  15136. if (src1->grad) {
  15137. src1->grad =
  15138. ggml_add_or_set(ctx,
  15139. src1->grad,
  15140. ggml_mul(ctx, src0, tensor->grad),
  15141. zero_table);
  15142. }
  15143. } break;
  15144. case GGML_OP_DIV:
  15145. {
  15146. if (src0->grad) {
  15147. src0->grad =
  15148. ggml_add_or_set(ctx,
  15149. src0->grad,
  15150. ggml_div(ctx, tensor->grad, src1),
  15151. zero_table);
  15152. }
  15153. if (src1->grad) {
  15154. src1->grad =
  15155. ggml_sub_or_set(ctx,
  15156. src1->grad,
  15157. ggml_mul(ctx,
  15158. tensor->grad,
  15159. ggml_div(ctx, tensor, src1)),
  15160. zero_table);
  15161. }
  15162. } break;
  15163. case GGML_OP_SQR:
  15164. {
  15165. if (src0->grad) {
  15166. src0->grad =
  15167. ggml_add_or_set(ctx,
  15168. src0->grad,
  15169. ggml_scale(ctx,
  15170. ggml_mul(ctx, src0, tensor->grad),
  15171. 2.0f),
  15172. zero_table);
  15173. }
  15174. } break;
  15175. case GGML_OP_SQRT:
  15176. {
  15177. if (src0->grad) {
  15178. src0->grad =
  15179. ggml_add_or_set(ctx,
  15180. src0->grad,
  15181. ggml_scale(ctx,
  15182. ggml_div(ctx,
  15183. tensor->grad,
  15184. tensor),
  15185. 0.5f),
  15186. zero_table);
  15187. }
  15188. } break;
  15189. case GGML_OP_LOG:
  15190. {
  15191. if (src0->grad) {
  15192. src0->grad =
  15193. ggml_add_or_set(ctx,
  15194. src0->grad,
  15195. ggml_div(ctx,
  15196. tensor->grad,
  15197. src0),
  15198. zero_table);
  15199. }
  15200. } break;
  15201. case GGML_OP_SUM:
  15202. {
  15203. if (src0->grad) {
  15204. src0->grad =
  15205. ggml_add1_or_set(ctx,
  15206. src0->grad,
  15207. tensor->grad,
  15208. zero_table);
  15209. }
  15210. } break;
  15211. case GGML_OP_SUM_ROWS:
  15212. {
  15213. if (src0->grad) {
  15214. src0->grad =
  15215. ggml_add_or_set(ctx,
  15216. src0->grad,
  15217. ggml_repeat(ctx,
  15218. tensor->grad,
  15219. src0->grad),
  15220. zero_table);
  15221. }
  15222. } break;
  15223. case GGML_OP_MEAN:
  15224. case GGML_OP_ARGMAX:
  15225. {
  15226. GGML_ASSERT(false); // TODO: implement
  15227. } break;
  15228. case GGML_OP_REPEAT:
  15229. {
  15230. // necessary for llama
  15231. if (src0->grad) {
  15232. src0->grad = ggml_add_or_set(ctx,
  15233. src0->grad,
  15234. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  15235. zero_table);
  15236. }
  15237. } break;
  15238. case GGML_OP_REPEAT_BACK:
  15239. {
  15240. if (src0->grad) {
  15241. // TODO: test this
  15242. src0->grad = ggml_add_or_set(ctx,
  15243. src0->grad,
  15244. ggml_repeat(ctx, tensor->grad, src0->grad),
  15245. zero_table);
  15246. }
  15247. } break;
  15248. case GGML_OP_CONCAT:
  15249. {
  15250. GGML_ASSERT(false); // TODO: implement
  15251. } break;
  15252. case GGML_OP_SILU_BACK:
  15253. {
  15254. GGML_ASSERT(false); // TODO: not implemented
  15255. } break;
  15256. case GGML_OP_NORM:
  15257. {
  15258. GGML_ASSERT(false); // TODO: not implemented
  15259. } break;
  15260. case GGML_OP_RMS_NORM:
  15261. {
  15262. // necessary for llama
  15263. if (src0->grad) {
  15264. float eps;
  15265. memcpy(&eps, tensor->op_params, sizeof(float));
  15266. src0->grad = ggml_add_or_set(ctx,
  15267. src0->grad,
  15268. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  15269. zero_table);
  15270. }
  15271. } break;
  15272. case GGML_OP_RMS_NORM_BACK:
  15273. {
  15274. GGML_ASSERT(false); // TODO: not implemented
  15275. } break;
  15276. case GGML_OP_GROUP_NORM:
  15277. {
  15278. GGML_ASSERT(false); // TODO: not implemented
  15279. } break;
  15280. case GGML_OP_MUL_MAT:
  15281. {
  15282. // https://cs231n.github.io/optimization-2/#staged
  15283. // # forward pass
  15284. // s0 = np.random.randn(5, 10)
  15285. // s1 = np.random.randn(10, 3)
  15286. // t = s0.dot(s1)
  15287. // # now suppose we had the gradient on t from above in the circuit
  15288. // dt = np.random.randn(*t.shape) # same shape as t
  15289. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  15290. // ds1 = t.T.dot(dt)
  15291. // tensor.shape [m,p,qq,rr]
  15292. // src0.shape [n,m,q1,r1]
  15293. // src1.shape [n,p,qq,rr]
  15294. // necessary for llama
  15295. if (src0->grad) {
  15296. struct ggml_tensor * s1_tg =
  15297. ggml_out_prod(ctx, // [n,m,qq,rr]
  15298. src1, // [n,p,qq,rr]
  15299. tensor->grad); // [m,p,qq,rr]
  15300. const int64_t qq = s1_tg->ne[2];
  15301. const int64_t rr = s1_tg->ne[3];
  15302. const int64_t q1 = src0->ne[2];
  15303. const int64_t r1 = src0->ne[3];
  15304. const bool ne2_broadcasted = qq > q1;
  15305. const bool ne3_broadcasted = rr > r1;
  15306. if (ne2_broadcasted || ne3_broadcasted) {
  15307. // sum broadcast repetitions of s1_tg into shape of src0
  15308. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  15309. }
  15310. src0->grad =
  15311. ggml_add_or_set(ctx,
  15312. src0->grad, // [n,m,q1,r1]
  15313. s1_tg, // [n,m,q1,r1]
  15314. zero_table);
  15315. }
  15316. if (src1->grad) {
  15317. src1->grad =
  15318. ggml_add_or_set(ctx,
  15319. src1->grad, // [n,p,qq,rr]
  15320. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  15321. // ggml_cont(ctx, // [m,n,q1,r1]
  15322. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  15323. // tensor->grad), // [m,p,qq,rr]
  15324. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  15325. // // avoid transpose of src0, rather transpose smaller tensor->grad
  15326. // // and then use ggml_out_prod
  15327. ggml_out_prod(ctx, // [n,p,qq,rr]
  15328. src0, // [n,m,q1,r1]
  15329. ggml_transpose(ctx, // [p,m,qq,rr]
  15330. tensor->grad)), // [m,p,qq,rr]
  15331. zero_table);
  15332. }
  15333. } break;
  15334. case GGML_OP_MUL_MAT_ID:
  15335. {
  15336. GGML_ASSERT(false); // TODO: not implemented
  15337. } break;
  15338. case GGML_OP_OUT_PROD:
  15339. {
  15340. GGML_ASSERT(false); // TODO: not implemented
  15341. } break;
  15342. case GGML_OP_SCALE:
  15343. {
  15344. // necessary for llama
  15345. if (src0->grad) {
  15346. float s;
  15347. memcpy(&s, tensor->op_params, sizeof(float));
  15348. src0->grad =
  15349. ggml_add_or_set(ctx,
  15350. src0->grad,
  15351. ggml_scale_impl(ctx, tensor->grad, s, false),
  15352. zero_table);
  15353. }
  15354. } break;
  15355. case GGML_OP_SET:
  15356. {
  15357. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  15358. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  15359. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  15360. const size_t offset = ((int32_t *) tensor->op_params)[3];
  15361. struct ggml_tensor * tensor_grad_view = NULL;
  15362. if (src0->grad || src1->grad) {
  15363. GGML_ASSERT(src0->type == tensor->type);
  15364. GGML_ASSERT(tensor->grad->type == tensor->type);
  15365. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  15366. tensor_grad_view = ggml_view_4d(ctx,
  15367. tensor->grad,
  15368. src1->grad->ne[0],
  15369. src1->grad->ne[1],
  15370. src1->grad->ne[2],
  15371. src1->grad->ne[3],
  15372. nb1, nb2, nb3, offset);
  15373. }
  15374. if (src0->grad) {
  15375. src0->grad = ggml_add_or_set(ctx,
  15376. src0->grad,
  15377. ggml_acc_impl(ctx,
  15378. tensor->grad,
  15379. ggml_neg(ctx, tensor_grad_view),
  15380. nb1, nb2, nb3, offset, false),
  15381. zero_table);
  15382. }
  15383. if (src1->grad) {
  15384. src1->grad =
  15385. ggml_add_or_set(ctx,
  15386. src1->grad,
  15387. ggml_reshape(ctx,
  15388. ggml_cont(ctx, tensor_grad_view),
  15389. src1->grad),
  15390. zero_table);
  15391. }
  15392. } break;
  15393. case GGML_OP_CPY:
  15394. {
  15395. // necessary for llama
  15396. // cpy overwrites value of src1 by src0 and returns view(src1)
  15397. // the overwriting is mathematically equivalent to:
  15398. // tensor = src0 * 1 + src1 * 0
  15399. if (src0->grad) {
  15400. // dsrc0 = dtensor * 1
  15401. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15402. }
  15403. if (src1->grad) {
  15404. // dsrc1 = dtensor * 0 -> noop
  15405. }
  15406. } break;
  15407. case GGML_OP_CONT:
  15408. {
  15409. // same as cpy
  15410. if (src0->grad) {
  15411. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  15412. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  15413. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15414. }
  15415. } break;
  15416. case GGML_OP_RESHAPE:
  15417. {
  15418. // necessary for llama
  15419. if (src0->grad) {
  15420. src0->grad =
  15421. ggml_add_or_set(ctx, src0->grad,
  15422. ggml_reshape(ctx,
  15423. ggml_is_contiguous(tensor->grad)
  15424. ? tensor->grad
  15425. : ggml_cont(ctx, tensor->grad),
  15426. src0->grad),
  15427. zero_table);
  15428. }
  15429. } break;
  15430. case GGML_OP_VIEW:
  15431. {
  15432. // necessary for llama
  15433. if (src0->grad) {
  15434. size_t offset;
  15435. memcpy(&offset, tensor->op_params, sizeof(offset));
  15436. size_t nb1 = tensor->nb[1];
  15437. size_t nb2 = tensor->nb[2];
  15438. size_t nb3 = tensor->nb[3];
  15439. if (src0->type != src0->grad->type) {
  15440. // gradient is typically F32, but src0 could be other type
  15441. size_t ng = ggml_element_size(src0->grad);
  15442. size_t n0 = ggml_element_size(src0);
  15443. GGML_ASSERT(offset % n0 == 0);
  15444. GGML_ASSERT(nb1 % n0 == 0);
  15445. GGML_ASSERT(nb2 % n0 == 0);
  15446. GGML_ASSERT(nb3 % n0 == 0);
  15447. offset = (offset / n0) * ng;
  15448. nb1 = (nb1 / n0) * ng;
  15449. nb2 = (nb2 / n0) * ng;
  15450. nb3 = (nb3 / n0) * ng;
  15451. }
  15452. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  15453. }
  15454. } break;
  15455. case GGML_OP_PERMUTE:
  15456. {
  15457. // necessary for llama
  15458. if (src0->grad) {
  15459. int32_t * axes = (int32_t *) tensor->op_params;
  15460. int axis0 = axes[0] & 0x3;
  15461. int axis1 = axes[1] & 0x3;
  15462. int axis2 = axes[2] & 0x3;
  15463. int axis3 = axes[3] & 0x3;
  15464. int axes_backward[4] = {0,0,0,0};
  15465. axes_backward[axis0] = 0;
  15466. axes_backward[axis1] = 1;
  15467. axes_backward[axis2] = 2;
  15468. axes_backward[axis3] = 3;
  15469. src0->grad =
  15470. ggml_add_or_set(ctx, src0->grad,
  15471. ggml_permute(ctx,
  15472. tensor->grad,
  15473. axes_backward[0],
  15474. axes_backward[1],
  15475. axes_backward[2],
  15476. axes_backward[3]),
  15477. zero_table);
  15478. }
  15479. } break;
  15480. case GGML_OP_TRANSPOSE:
  15481. {
  15482. // necessary for llama
  15483. if (src0->grad) {
  15484. src0->grad =
  15485. ggml_add_or_set(ctx, src0->grad,
  15486. ggml_transpose(ctx, tensor->grad),
  15487. zero_table);
  15488. }
  15489. } break;
  15490. case GGML_OP_GET_ROWS:
  15491. {
  15492. // necessary for llama (only for tokenizer)
  15493. if (src0->grad) {
  15494. src0->grad =
  15495. ggml_add_or_set(ctx, src0->grad,
  15496. // last ggml_get_rows_back argument src0->grad is only
  15497. // necessary to setup correct output shape
  15498. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  15499. zero_table);
  15500. }
  15501. if (src1->grad) {
  15502. // noop
  15503. }
  15504. } break;
  15505. case GGML_OP_GET_ROWS_BACK:
  15506. {
  15507. GGML_ASSERT(false); // TODO: not implemented
  15508. } break;
  15509. case GGML_OP_DIAG:
  15510. {
  15511. GGML_ASSERT(false); // TODO: not implemented
  15512. } break;
  15513. case GGML_OP_DIAG_MASK_INF:
  15514. {
  15515. // necessary for llama
  15516. if (src0->grad) {
  15517. const int n_past = ((int32_t *) tensor->op_params)[0];
  15518. src0->grad =
  15519. ggml_add_or_set(ctx, src0->grad,
  15520. /* ggml_diag_mask_inf_impl() shouldn't be here */
  15521. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  15522. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15523. zero_table);
  15524. }
  15525. } break;
  15526. case GGML_OP_DIAG_MASK_ZERO:
  15527. {
  15528. // necessary for llama
  15529. if (src0->grad) {
  15530. const int n_past = ((int32_t *) tensor->op_params)[0];
  15531. src0->grad =
  15532. ggml_add_or_set(ctx, src0->grad,
  15533. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15534. zero_table);
  15535. }
  15536. } break;
  15537. case GGML_OP_SOFT_MAX:
  15538. {
  15539. // necessary for llama
  15540. if (src0->grad) {
  15541. src0->grad =
  15542. ggml_add_or_set(ctx, src0->grad,
  15543. ggml_soft_max_back(ctx, tensor->grad, tensor),
  15544. zero_table);
  15545. }
  15546. } break;
  15547. case GGML_OP_SOFT_MAX_BACK:
  15548. {
  15549. GGML_ASSERT(false); // TODO: not implemented
  15550. } break;
  15551. case GGML_OP_ROPE:
  15552. {
  15553. // necessary for llama
  15554. if (src0->grad) {
  15555. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15556. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15557. const int mode = ((int32_t *) tensor->op_params)[2];
  15558. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15559. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  15560. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  15561. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15562. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15563. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15564. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15565. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15566. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15567. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  15568. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  15569. src0->grad = ggml_add_or_set(ctx,
  15570. src0->grad,
  15571. ggml_rope_back(ctx,
  15572. tensor->grad,
  15573. src1,
  15574. src2,
  15575. n_dims,
  15576. mode,
  15577. n_ctx,
  15578. n_orig_ctx,
  15579. freq_base,
  15580. freq_scale,
  15581. ext_factor,
  15582. attn_factor,
  15583. beta_fast,
  15584. beta_slow,
  15585. xpos_base,
  15586. xpos_down),
  15587. zero_table);
  15588. }
  15589. } break;
  15590. case GGML_OP_ROPE_BACK:
  15591. {
  15592. if (src0->grad) {
  15593. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15594. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15595. const int mode = ((int32_t *) tensor->op_params)[2];
  15596. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15597. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  15598. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  15599. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15600. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15601. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15602. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15603. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15604. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15605. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  15606. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  15607. src0->grad = ggml_add_or_set(ctx,
  15608. src0->grad,
  15609. ggml_rope_impl(ctx,
  15610. tensor->grad,
  15611. src1,
  15612. src2,
  15613. n_dims,
  15614. mode,
  15615. n_ctx,
  15616. n_orig_ctx,
  15617. freq_base,
  15618. freq_scale,
  15619. ext_factor,
  15620. attn_factor,
  15621. beta_fast,
  15622. beta_slow,
  15623. xpos_base,
  15624. xpos_down,
  15625. false),
  15626. zero_table);
  15627. }
  15628. } break;
  15629. case GGML_OP_CLAMP:
  15630. {
  15631. GGML_ASSERT(false); // TODO: not implemented
  15632. } break;
  15633. case GGML_OP_CONV_TRANSPOSE_1D:
  15634. {
  15635. GGML_ASSERT(false); // TODO: not implemented
  15636. } break;
  15637. case GGML_OP_IM2COL:
  15638. {
  15639. GGML_ASSERT(false); // TODO: not implemented
  15640. } break;
  15641. case GGML_OP_CONV_TRANSPOSE_2D:
  15642. {
  15643. GGML_ASSERT(false); // TODO: not implemented
  15644. } break;
  15645. case GGML_OP_POOL_1D:
  15646. {
  15647. GGML_ASSERT(false); // TODO: not implemented
  15648. } break;
  15649. case GGML_OP_POOL_2D:
  15650. {
  15651. GGML_ASSERT(false); // TODO: not implemented
  15652. } break;
  15653. case GGML_OP_UPSCALE:
  15654. {
  15655. GGML_ASSERT(false); // TODO: not implemented
  15656. } break;
  15657. case GGML_OP_PAD:
  15658. {
  15659. GGML_ASSERT(false); // TODO: not implemented
  15660. } break;
  15661. case GGML_OP_ARANGE:
  15662. {
  15663. GGML_ASSERT(false); // TODO: not implemented
  15664. } break;
  15665. case GGML_OP_TIMESTEP_EMBEDDING:
  15666. {
  15667. GGML_ASSERT(false); // TODO: not implemented
  15668. } break;
  15669. case GGML_OP_ARGSORT:
  15670. {
  15671. GGML_ASSERT(false); // TODO: not implemented
  15672. } break;
  15673. case GGML_OP_LEAKY_RELU:
  15674. {
  15675. GGML_ASSERT(false); // TODO: not implemented
  15676. } break;
  15677. case GGML_OP_FLASH_ATTN:
  15678. case GGML_OP_FLASH_ATTN_EXT:
  15679. {
  15680. struct ggml_tensor * flash_grad = NULL;
  15681. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  15682. int32_t t = ggml_get_op_params_i32(tensor, 0);
  15683. GGML_ASSERT(t == 0 || t == 1);
  15684. bool masked = t != 0;
  15685. flash_grad =
  15686. ggml_flash_attn_back(ctx,
  15687. src0,
  15688. src1,
  15689. tensor->src[2],
  15690. tensor->grad,
  15691. masked);
  15692. }
  15693. const int64_t elem_q = ggml_nelements(src0);
  15694. const int64_t elem_k = ggml_nelements(src1);
  15695. const int64_t elem_v = ggml_nelements(src2);
  15696. enum ggml_type result_type = flash_grad->type;
  15697. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  15698. const size_t tsize = ggml_type_size(result_type);
  15699. const size_t offs_q = 0;
  15700. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  15701. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  15702. if (src0->grad) {
  15703. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  15704. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  15705. src0->grad = ggml_add_or_set(ctx,
  15706. src0->grad,
  15707. grad_q,
  15708. zero_table);
  15709. }
  15710. if (src1->grad) {
  15711. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  15712. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  15713. src1->grad = ggml_add_or_set(ctx,
  15714. src1->grad,
  15715. grad_k,
  15716. zero_table);
  15717. }
  15718. if (src2->grad) {
  15719. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  15720. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  15721. src2->grad = ggml_add_or_set(ctx,
  15722. src2->grad,
  15723. grad_v,
  15724. zero_table);
  15725. }
  15726. } break;
  15727. case GGML_OP_FLASH_FF:
  15728. {
  15729. GGML_ASSERT(false); // not supported
  15730. } break;
  15731. case GGML_OP_FLASH_ATTN_BACK:
  15732. {
  15733. GGML_ASSERT(false); // not supported
  15734. } break;
  15735. case GGML_OP_SSM_CONV:
  15736. case GGML_OP_SSM_SCAN:
  15737. {
  15738. GGML_ASSERT(false); // TODO: not implemented
  15739. } break;
  15740. case GGML_OP_WIN_PART:
  15741. case GGML_OP_WIN_UNPART:
  15742. case GGML_OP_UNARY:
  15743. {
  15744. switch (ggml_get_unary_op(tensor)) {
  15745. case GGML_UNARY_OP_ABS:
  15746. {
  15747. if (src0->grad) {
  15748. src0->grad =
  15749. ggml_add_or_set(ctx,
  15750. src0->grad,
  15751. ggml_mul(ctx,
  15752. ggml_sgn(ctx, src0),
  15753. tensor->grad),
  15754. zero_table);
  15755. }
  15756. } break;
  15757. case GGML_UNARY_OP_SGN:
  15758. {
  15759. if (src0->grad) {
  15760. // noop
  15761. }
  15762. } break;
  15763. case GGML_UNARY_OP_NEG:
  15764. {
  15765. if (src0->grad) {
  15766. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15767. }
  15768. } break;
  15769. case GGML_UNARY_OP_STEP:
  15770. {
  15771. if (src0->grad) {
  15772. // noop
  15773. }
  15774. } break;
  15775. case GGML_UNARY_OP_TANH:
  15776. {
  15777. GGML_ASSERT(false); // TODO: not implemented
  15778. } break;
  15779. case GGML_UNARY_OP_ELU:
  15780. {
  15781. GGML_ASSERT(false); // TODO: not implemented
  15782. } break;
  15783. case GGML_UNARY_OP_RELU:
  15784. {
  15785. if (src0->grad) {
  15786. src0->grad = ggml_add_or_set(ctx,
  15787. src0->grad,
  15788. ggml_mul(ctx,
  15789. ggml_step(ctx, src0),
  15790. tensor->grad),
  15791. zero_table);
  15792. }
  15793. } break;
  15794. case GGML_UNARY_OP_SIGMOID:
  15795. {
  15796. GGML_ASSERT(false); // TODO: not implemented
  15797. } break;
  15798. case GGML_UNARY_OP_GELU:
  15799. {
  15800. GGML_ASSERT(false); // TODO: not implemented
  15801. } break;
  15802. case GGML_UNARY_OP_GELU_QUICK:
  15803. {
  15804. GGML_ASSERT(false); // TODO: not implemented
  15805. } break;
  15806. case GGML_UNARY_OP_SILU:
  15807. {
  15808. // necessary for llama
  15809. if (src0->grad) {
  15810. src0->grad = ggml_add_or_set(ctx,
  15811. src0->grad,
  15812. ggml_silu_back(ctx, src0, tensor->grad),
  15813. zero_table);
  15814. }
  15815. } break;
  15816. default:
  15817. GGML_ASSERT(false);
  15818. }
  15819. } break;
  15820. case GGML_OP_GET_REL_POS:
  15821. case GGML_OP_ADD_REL_POS:
  15822. case GGML_OP_MAP_UNARY:
  15823. case GGML_OP_MAP_BINARY:
  15824. case GGML_OP_MAP_CUSTOM1_F32:
  15825. case GGML_OP_MAP_CUSTOM2_F32:
  15826. case GGML_OP_MAP_CUSTOM3_F32:
  15827. case GGML_OP_MAP_CUSTOM1:
  15828. case GGML_OP_MAP_CUSTOM2:
  15829. case GGML_OP_MAP_CUSTOM3:
  15830. {
  15831. GGML_ASSERT(false); // not supported
  15832. } break;
  15833. case GGML_OP_CROSS_ENTROPY_LOSS:
  15834. {
  15835. if (src0->grad) {
  15836. src0->grad = ggml_add_or_set(ctx,
  15837. src0->grad,
  15838. ggml_cross_entropy_loss_back(ctx,
  15839. src0,
  15840. src1,
  15841. tensor->grad),
  15842. zero_table);
  15843. }
  15844. } break;
  15845. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15846. {
  15847. GGML_ASSERT(false); // not supported
  15848. } break;
  15849. case GGML_OP_NONE:
  15850. {
  15851. // nop
  15852. } break;
  15853. case GGML_OP_COUNT:
  15854. {
  15855. GGML_ASSERT(false);
  15856. } break;
  15857. }
  15858. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15859. if (tensor->src[i] && tensor->src[i]->grad) {
  15860. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  15861. }
  15862. }
  15863. }
  15864. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  15865. if (node->grad == NULL) {
  15866. // this usually happens when we generate intermediate nodes from constants in the backward pass
  15867. // it can also happen during forward pass, if the user performs computations with constants
  15868. if (node->op != GGML_OP_NONE) {
  15869. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  15870. }
  15871. }
  15872. // check if already visited
  15873. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  15874. return;
  15875. }
  15876. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15877. const int k =
  15878. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  15879. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  15880. /* unknown order, just fall back to using i*/ i;
  15881. if (node->src[k]) {
  15882. ggml_visit_parents(cgraph, node->src[k]);
  15883. }
  15884. }
  15885. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  15886. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  15887. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  15888. if (strlen(node->name) == 0) {
  15889. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  15890. }
  15891. cgraph->leafs[cgraph->n_leafs] = node;
  15892. cgraph->n_leafs++;
  15893. } else {
  15894. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  15895. if (strlen(node->name) == 0) {
  15896. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  15897. }
  15898. cgraph->nodes[cgraph->n_nodes] = node;
  15899. if (cgraph->grads) {
  15900. cgraph->grads[cgraph->n_nodes] = node->grad;
  15901. }
  15902. cgraph->n_nodes++;
  15903. }
  15904. }
  15905. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  15906. if (!expand) {
  15907. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  15908. ggml_graph_clear(cgraph);
  15909. }
  15910. const int n0 = cgraph->n_nodes;
  15911. UNUSED(n0);
  15912. ggml_visit_parents(cgraph, tensor);
  15913. const int n_new = cgraph->n_nodes - n0;
  15914. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  15915. if (n_new > 0) {
  15916. // the last added node should always be starting point
  15917. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  15918. }
  15919. }
  15920. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  15921. ggml_build_forward_impl(cgraph, tensor, true);
  15922. }
  15923. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  15924. GGML_ASSERT(gf->n_nodes > 0);
  15925. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  15926. if (keep) {
  15927. for (int i = 0; i < gf->n_nodes; i++) {
  15928. struct ggml_tensor * node = gf->nodes[i];
  15929. if (node->grad) {
  15930. node->grad = ggml_dup_tensor(ctx, node);
  15931. gf->grads[i] = node->grad;
  15932. }
  15933. }
  15934. }
  15935. // remember original gradients which start with zero values
  15936. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  15937. for (int i = 0; i < gf->n_nodes; i++) {
  15938. if (gf->grads[i]) {
  15939. ggml_hash_insert(zero_table, gf->grads[i]);
  15940. }
  15941. }
  15942. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  15943. struct ggml_tensor * node = gf->nodes[i];
  15944. // inplace operations to add gradients are not created by ggml_compute_backward
  15945. // use allocator to automatically make inplace operations
  15946. if (node->grad) {
  15947. ggml_compute_backward(ctx, node, zero_table);
  15948. }
  15949. }
  15950. for (int i = 0; i < gf->n_nodes; i++) {
  15951. struct ggml_tensor * node = gf->nodes[i];
  15952. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15953. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  15954. ggml_build_forward_expand(gb, node->grad);
  15955. }
  15956. }
  15957. ggml_hash_set_free(zero_table);
  15958. }
  15959. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  15960. size_t nbytes = sizeof(struct ggml_cgraph);
  15961. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  15962. if (grads) {
  15963. nbytes += size * sizeof(struct ggml_tensor *); // grads
  15964. }
  15965. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  15966. return nbytes;
  15967. }
  15968. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  15969. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  15970. }
  15971. size_t ggml_graph_overhead(void) {
  15972. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  15973. }
  15974. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  15975. const size_t obj_size = ggml_graph_nbytes(size, grads);
  15976. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  15977. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  15978. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  15979. size_t hash_size = ggml_hash_size(size * 2);
  15980. struct ggml_tensor ** nodes_ptr = data_start;
  15981. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  15982. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  15983. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  15984. // check that we allocated the correct amount of memory
  15985. assert(obj_size == (size_t) (
  15986. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  15987. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  15988. *cgraph = (struct ggml_cgraph) {
  15989. /*.size =*/ size,
  15990. /*.n_nodes =*/ 0,
  15991. /*.n_leafs =*/ 0,
  15992. /*.nodes =*/ nodes_ptr,
  15993. /*.grads =*/ grads_ptr,
  15994. /*.leafs =*/ leafs_ptr,
  15995. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  15996. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  15997. /*.perf_runs =*/ 0,
  15998. /*.perf_cycles =*/ 0,
  15999. /*.perf_time_us =*/ 0,
  16000. };
  16001. return cgraph;
  16002. }
  16003. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  16004. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  16005. }
  16006. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  16007. struct ggml_cgraph cgraph = {
  16008. /*.size =*/ 0,
  16009. /*.n_nodes =*/ i1 - i0,
  16010. /*.n_leafs =*/ 0,
  16011. /*.nodes =*/ cgraph0->nodes + i0,
  16012. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  16013. /*.leafs =*/ NULL,
  16014. /*.hash_table =*/ { 0, NULL },
  16015. /*.order =*/ cgraph0->order,
  16016. /*.perf_runs =*/ 0,
  16017. /*.perf_cycles =*/ 0,
  16018. /*.perf_time_us =*/ 0,
  16019. };
  16020. return cgraph;
  16021. }
  16022. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  16023. GGML_ASSERT(dst->size >= src->n_leafs);
  16024. GGML_ASSERT(dst->size >= src->n_nodes);
  16025. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  16026. dst->n_leafs = src->n_leafs;
  16027. dst->n_nodes = src->n_nodes;
  16028. dst->order = src->order;
  16029. for (int i = 0; i < src->n_leafs; ++i) {
  16030. dst->leafs[i] = src->leafs[i];
  16031. }
  16032. for (int i = 0; i < src->n_nodes; ++i) {
  16033. dst->nodes[i] = src->nodes[i];
  16034. }
  16035. if (src->grads) {
  16036. GGML_ASSERT(dst->grads != NULL);
  16037. for (int i = 0; i < src->n_nodes; ++i) {
  16038. dst->grads[i] = src->grads[i];
  16039. }
  16040. }
  16041. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  16042. if (src->visited_hash_table.keys[i]) {
  16043. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  16044. }
  16045. }
  16046. }
  16047. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  16048. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  16049. ggml_graph_cpy(cgraph, result);
  16050. return result;
  16051. }
  16052. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  16053. GGML_ASSERT(cgraph->grads != NULL);
  16054. for (int i = 0; i < cgraph->n_nodes; i++) {
  16055. struct ggml_tensor * grad = cgraph->grads[i];
  16056. if (grad) {
  16057. ggml_set_zero(grad);
  16058. }
  16059. }
  16060. }
  16061. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  16062. cgraph->n_leafs = 0;
  16063. cgraph->n_nodes = 0;
  16064. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  16065. }
  16066. //
  16067. // thread data
  16068. //
  16069. // synchronization is done via busy loops
  16070. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  16071. //
  16072. #ifdef __APPLE__
  16073. //#include <os/lock.h>
  16074. //
  16075. //typedef os_unfair_lock ggml_lock_t;
  16076. //
  16077. //#define ggml_lock_init(x) UNUSED(x)
  16078. //#define ggml_lock_destroy(x) UNUSED(x)
  16079. //#define ggml_lock_lock os_unfair_lock_lock
  16080. //#define ggml_lock_unlock os_unfair_lock_unlock
  16081. //
  16082. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  16083. typedef int ggml_lock_t;
  16084. #define ggml_lock_init(x) UNUSED(x)
  16085. #define ggml_lock_destroy(x) UNUSED(x)
  16086. #define ggml_lock_lock(x) UNUSED(x)
  16087. #define ggml_lock_unlock(x) UNUSED(x)
  16088. #define GGML_LOCK_INITIALIZER 0
  16089. #define ggml_thread_create pthread_create
  16090. #define ggml_thread_join pthread_join
  16091. #else
  16092. //typedef pthread_spinlock_t ggml_lock_t;
  16093. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  16094. //#define ggml_lock_destroy pthread_spin_destroy
  16095. //#define ggml_lock_lock pthread_spin_lock
  16096. //#define ggml_lock_unlock pthread_spin_unlock
  16097. typedef int ggml_lock_t;
  16098. #define ggml_lock_init(x) UNUSED(x)
  16099. #define ggml_lock_destroy(x) UNUSED(x)
  16100. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  16101. #define ggml_lock_lock(x) _mm_pause()
  16102. #else
  16103. #define ggml_lock_lock(x) UNUSED(x)
  16104. #endif
  16105. #define ggml_lock_unlock(x) UNUSED(x)
  16106. #define GGML_LOCK_INITIALIZER 0
  16107. #define ggml_thread_create pthread_create
  16108. #define ggml_thread_join pthread_join
  16109. #endif
  16110. // Android's libc implementation "bionic" does not support setting affinity
  16111. #if defined(__gnu_linux__)
  16112. static void set_numa_thread_affinity(int thread_n) {
  16113. if (!ggml_is_numa()) {
  16114. return;
  16115. }
  16116. int node_num;
  16117. int rv;
  16118. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  16119. switch(g_state.numa.numa_strategy) {
  16120. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  16121. // run thread on node_num thread_n / (threads per node)
  16122. node_num = thread_n % g_state.numa.n_nodes;
  16123. break;
  16124. case GGML_NUMA_STRATEGY_ISOLATE:
  16125. // run thread on current_node
  16126. node_num = g_state.numa.current_node;
  16127. break;
  16128. case GGML_NUMA_STRATEGY_NUMACTL:
  16129. // use the cpuset that numactl gave us
  16130. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  16131. if (rv) {
  16132. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  16133. }
  16134. return;
  16135. default:
  16136. return;
  16137. }
  16138. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  16139. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  16140. CPU_ZERO_S(setsize, cpus);
  16141. for (size_t i = 0; i < node->n_cpus; ++i) {
  16142. CPU_SET_S(node->cpus[i], setsize, cpus);
  16143. }
  16144. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  16145. if (rv) {
  16146. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  16147. }
  16148. CPU_FREE(cpus);
  16149. }
  16150. static void clear_numa_thread_affinity(void) {
  16151. if (!ggml_is_numa()) {
  16152. return;
  16153. }
  16154. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  16155. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  16156. CPU_ZERO_S(setsize, cpus);
  16157. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  16158. CPU_SET_S(i, setsize, cpus);
  16159. }
  16160. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  16161. if (rv) {
  16162. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  16163. }
  16164. CPU_FREE(cpus);
  16165. }
  16166. #else
  16167. // TODO: Windows etc.
  16168. // (the linux implementation may also work on BSD, someone should test)
  16169. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  16170. static void clear_numa_thread_affinity(void) {}
  16171. #endif
  16172. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  16173. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  16174. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  16175. node->perf_runs++;
  16176. node->perf_cycles += cycles_cur;
  16177. node->perf_time_us += time_us_cur;
  16178. }
  16179. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
  16180. int n_tasks = 0;
  16181. if (ggml_is_empty(node)) {
  16182. // no need to multi-thread a no-op
  16183. n_tasks = 1;
  16184. return n_tasks;
  16185. }
  16186. switch (node->op) {
  16187. case GGML_OP_CPY:
  16188. case GGML_OP_DUP:
  16189. case GGML_OP_ADD:
  16190. case GGML_OP_ADD1:
  16191. case GGML_OP_ACC:
  16192. {
  16193. n_tasks = n_threads;
  16194. } break;
  16195. case GGML_OP_SUB:
  16196. case GGML_OP_SQR:
  16197. case GGML_OP_SQRT:
  16198. case GGML_OP_LOG:
  16199. case GGML_OP_SUM:
  16200. case GGML_OP_SUM_ROWS:
  16201. case GGML_OP_MEAN:
  16202. case GGML_OP_ARGMAX:
  16203. case GGML_OP_REPEAT:
  16204. case GGML_OP_REPEAT_BACK:
  16205. case GGML_OP_LEAKY_RELU:
  16206. {
  16207. n_tasks = 1;
  16208. } break;
  16209. case GGML_OP_UNARY:
  16210. switch (ggml_get_unary_op(node)) {
  16211. case GGML_UNARY_OP_ABS:
  16212. case GGML_UNARY_OP_SGN:
  16213. case GGML_UNARY_OP_NEG:
  16214. case GGML_UNARY_OP_STEP:
  16215. case GGML_UNARY_OP_TANH:
  16216. case GGML_UNARY_OP_ELU:
  16217. case GGML_UNARY_OP_RELU:
  16218. case GGML_UNARY_OP_SIGMOID:
  16219. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  16220. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  16221. {
  16222. n_tasks = 1;
  16223. } break;
  16224. case GGML_UNARY_OP_GELU:
  16225. case GGML_UNARY_OP_GELU_QUICK:
  16226. case GGML_UNARY_OP_SILU:
  16227. {
  16228. n_tasks = n_threads;
  16229. } break;
  16230. default:
  16231. GGML_ASSERT(false);
  16232. }
  16233. break;
  16234. case GGML_OP_SILU_BACK:
  16235. case GGML_OP_MUL:
  16236. case GGML_OP_DIV:
  16237. case GGML_OP_NORM:
  16238. case GGML_OP_RMS_NORM:
  16239. case GGML_OP_RMS_NORM_BACK:
  16240. case GGML_OP_GROUP_NORM:
  16241. case GGML_OP_CONCAT:
  16242. {
  16243. n_tasks = n_threads;
  16244. } break;
  16245. case GGML_OP_MUL_MAT:
  16246. {
  16247. n_tasks = n_threads;
  16248. // TODO: use different scheduling for different matrix sizes
  16249. //const int nr0 = ggml_nrows(node->src[0]);
  16250. //const int nr1 = ggml_nrows(node->src[1]);
  16251. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  16252. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  16253. } break;
  16254. case GGML_OP_MUL_MAT_ID:
  16255. {
  16256. n_tasks = n_threads;
  16257. } break;
  16258. case GGML_OP_OUT_PROD:
  16259. {
  16260. n_tasks = n_threads;
  16261. } break;
  16262. case GGML_OP_GET_ROWS:
  16263. {
  16264. // FIXME: the cost of launching additional threads decreases performance with GPU offloading
  16265. //n_tasks = MIN(n_threads, ggml_nelements(node->src[1]));
  16266. n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1]));
  16267. } break;
  16268. case GGML_OP_SCALE:
  16269. case GGML_OP_SET:
  16270. case GGML_OP_CONT:
  16271. case GGML_OP_RESHAPE:
  16272. case GGML_OP_VIEW:
  16273. case GGML_OP_PERMUTE:
  16274. case GGML_OP_TRANSPOSE:
  16275. case GGML_OP_GET_ROWS_BACK:
  16276. case GGML_OP_DIAG:
  16277. {
  16278. n_tasks = 1;
  16279. } break;
  16280. case GGML_OP_DIAG_MASK_ZERO:
  16281. case GGML_OP_DIAG_MASK_INF:
  16282. case GGML_OP_SOFT_MAX_BACK:
  16283. case GGML_OP_ROPE:
  16284. case GGML_OP_ROPE_BACK:
  16285. case GGML_OP_ADD_REL_POS:
  16286. {
  16287. n_tasks = n_threads;
  16288. } break;
  16289. case GGML_OP_CLAMP:
  16290. {
  16291. n_tasks = 1; //TODO
  16292. } break;
  16293. case GGML_OP_SOFT_MAX:
  16294. {
  16295. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  16296. } break;
  16297. case GGML_OP_CONV_TRANSPOSE_1D:
  16298. {
  16299. n_tasks = n_threads;
  16300. } break;
  16301. case GGML_OP_IM2COL:
  16302. {
  16303. n_tasks = n_threads;
  16304. } break;
  16305. case GGML_OP_CONV_TRANSPOSE_2D:
  16306. {
  16307. n_tasks = n_threads;
  16308. } break;
  16309. case GGML_OP_POOL_1D:
  16310. case GGML_OP_POOL_2D:
  16311. {
  16312. n_tasks = 1;
  16313. } break;
  16314. case GGML_OP_UPSCALE:
  16315. {
  16316. n_tasks = n_threads;
  16317. } break;
  16318. case GGML_OP_PAD:
  16319. {
  16320. n_tasks = n_threads;
  16321. } break;
  16322. case GGML_OP_ARANGE:
  16323. {
  16324. n_tasks = n_threads;
  16325. } break;
  16326. case GGML_OP_TIMESTEP_EMBEDDING:
  16327. {
  16328. n_tasks = n_threads;
  16329. } break;
  16330. case GGML_OP_ARGSORT:
  16331. {
  16332. n_tasks = n_threads;
  16333. } break;
  16334. case GGML_OP_FLASH_ATTN:
  16335. case GGML_OP_FLASH_ATTN_EXT:
  16336. {
  16337. n_tasks = n_threads;
  16338. } break;
  16339. case GGML_OP_FLASH_FF:
  16340. {
  16341. n_tasks = n_threads;
  16342. } break;
  16343. case GGML_OP_FLASH_ATTN_BACK:
  16344. {
  16345. n_tasks = n_threads;
  16346. } break;
  16347. case GGML_OP_SSM_CONV:
  16348. case GGML_OP_SSM_SCAN:
  16349. {
  16350. n_tasks = n_threads;
  16351. } break;
  16352. case GGML_OP_WIN_PART:
  16353. case GGML_OP_WIN_UNPART:
  16354. case GGML_OP_GET_REL_POS:
  16355. case GGML_OP_MAP_UNARY:
  16356. case GGML_OP_MAP_BINARY:
  16357. case GGML_OP_MAP_CUSTOM1_F32:
  16358. case GGML_OP_MAP_CUSTOM2_F32:
  16359. case GGML_OP_MAP_CUSTOM3_F32:
  16360. {
  16361. n_tasks = 1;
  16362. } break;
  16363. case GGML_OP_MAP_CUSTOM1:
  16364. {
  16365. struct ggml_map_custom1_op_params p;
  16366. memcpy(&p, node->op_params, sizeof(p));
  16367. if (p.n_tasks == GGML_N_TASKS_MAX) {
  16368. n_tasks = n_threads;
  16369. } else {
  16370. n_tasks = MIN(p.n_tasks, n_threads);
  16371. }
  16372. } break;
  16373. case GGML_OP_MAP_CUSTOM2:
  16374. {
  16375. struct ggml_map_custom2_op_params p;
  16376. memcpy(&p, node->op_params, sizeof(p));
  16377. if (p.n_tasks == GGML_N_TASKS_MAX) {
  16378. n_tasks = n_threads;
  16379. } else {
  16380. n_tasks = MIN(p.n_tasks, n_threads);
  16381. }
  16382. } break;
  16383. case GGML_OP_MAP_CUSTOM3:
  16384. {
  16385. struct ggml_map_custom3_op_params p;
  16386. memcpy(&p, node->op_params, sizeof(p));
  16387. if (p.n_tasks == GGML_N_TASKS_MAX) {
  16388. n_tasks = n_threads;
  16389. } else {
  16390. n_tasks = MIN(p.n_tasks, n_threads);
  16391. }
  16392. } break;
  16393. case GGML_OP_CROSS_ENTROPY_LOSS:
  16394. {
  16395. n_tasks = n_threads;
  16396. } break;
  16397. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  16398. {
  16399. n_tasks = n_threads;
  16400. } break;
  16401. case GGML_OP_NONE:
  16402. {
  16403. n_tasks = 1;
  16404. } break;
  16405. case GGML_OP_COUNT:
  16406. {
  16407. GGML_ASSERT(false);
  16408. } break;
  16409. default:
  16410. {
  16411. fprintf(stderr, "%s: op not implemented: ", __func__);
  16412. if (node->op < GGML_OP_COUNT) {
  16413. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  16414. } else {
  16415. fprintf(stderr, "%d\n", node->op);
  16416. }
  16417. GGML_ASSERT(false);
  16418. } break;
  16419. }
  16420. assert(n_tasks > 0);
  16421. return n_tasks;
  16422. }
  16423. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  16424. // wait for other threads to finish
  16425. const int last_node_n = * node_n;
  16426. while (true) {
  16427. if (do_yield) {
  16428. sched_yield();
  16429. }
  16430. * node_n = atomic_load(&state->shared->node_n);
  16431. if (* node_n != last_node_n) break;
  16432. #if defined(__SSE3__)
  16433. // Tell the processor we're spinning. It's a processor hint for spinlocks.
  16434. _mm_pause();
  16435. #endif
  16436. }
  16437. }
  16438. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  16439. // wait for other threads to finish
  16440. const int last_task_phase = * task_phase;
  16441. while (true) {
  16442. if (do_yield) {
  16443. sched_yield();
  16444. }
  16445. * task_phase = atomic_load(&state->shared->node_task);
  16446. if (* task_phase != last_task_phase) break;
  16447. #if defined(__SSE3__)
  16448. // Tell the processor we're spinning. It's a processor hint for spinlocks.
  16449. _mm_pause();
  16450. #endif
  16451. }
  16452. }
  16453. static thread_ret_t ggml_graph_compute_thread(void * data) {
  16454. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  16455. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  16456. const struct ggml_cplan * cplan = state->shared->cplan;
  16457. const int n_threads = state->shared->n_threads;
  16458. set_numa_thread_affinity(state->ith);
  16459. int node_n = -1;
  16460. int task_phase = GGML_TASK_TYPE_FINALIZE;
  16461. while (true) {
  16462. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  16463. state->shared->node_n += 1;
  16464. state->ec = GGML_STATUS_ABORTED;
  16465. return 0;
  16466. }
  16467. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16468. // all other threads are finished and spinning
  16469. // do finalize and init here so we don't have synchronize again
  16470. struct ggml_compute_params params = {
  16471. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  16472. /*.ith =*/ 0,
  16473. /*.nth =*/ 0,
  16474. /*.wsize =*/ cplan->work_size,
  16475. /*.wdata =*/ cplan->work_data,
  16476. };
  16477. if (node_n != -1) {
  16478. /* FINALIZE */
  16479. struct ggml_tensor * node = cgraph->nodes[node_n];
  16480. if (GGML_OP_HAS_FINALIZE[node->op]) {
  16481. params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16482. ggml_compute_forward(&params, node, state);
  16483. }
  16484. ggml_graph_compute_perf_stats_node(node, state->shared);
  16485. }
  16486. // distribute new work or execute it direct if 1T
  16487. while (++node_n < cgraph->n_nodes) {
  16488. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  16489. struct ggml_tensor * node = cgraph->nodes[node_n];
  16490. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16491. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  16492. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  16493. params.nth = n_tasks;
  16494. if (n_tasks == 1) {
  16495. /* INIT */
  16496. if (GGML_OP_HAS_INIT[node->op]) {
  16497. params.type = GGML_TASK_TYPE_INIT;
  16498. ggml_compute_forward(&params, node, state);
  16499. }
  16500. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  16501. // they do something more efficient than spinning (?)
  16502. params.type = GGML_TASK_TYPE_COMPUTE;
  16503. ggml_compute_forward(&params, node, state);
  16504. if (GGML_OP_HAS_FINALIZE[node->op]) {
  16505. params.type = GGML_TASK_TYPE_FINALIZE;
  16506. ggml_compute_forward(&params, node, state);
  16507. }
  16508. ggml_graph_compute_perf_stats_node(node, state->shared);
  16509. } else {
  16510. break;
  16511. }
  16512. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  16513. break;
  16514. }
  16515. }
  16516. task_phase = GGML_TASK_TYPE_INIT;
  16517. atomic_store(&state->shared->n_active, n_threads);
  16518. atomic_store(&state->shared->node_n, node_n);
  16519. atomic_store(&state->shared->node_task, task_phase);
  16520. } else {
  16521. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  16522. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  16523. }
  16524. // check if we should stop
  16525. if (node_n >= cgraph->n_nodes) break;
  16526. /* INIT & COMPUTE */
  16527. struct ggml_tensor * node = cgraph->nodes[node_n];
  16528. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16529. struct ggml_compute_params params = {
  16530. /*.type =*/ GGML_TASK_TYPE_INIT,
  16531. /*.ith =*/ state->ith,
  16532. /*.nth =*/ n_tasks,
  16533. /*.wsize =*/ cplan->work_size,
  16534. /*.wdata =*/ cplan->work_data,
  16535. };
  16536. if (state->ith < n_tasks) {
  16537. if (GGML_OP_HAS_INIT[node->op]) {
  16538. ggml_compute_forward(&params, node, state);
  16539. }
  16540. }
  16541. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16542. task_phase = GGML_TASK_TYPE_COMPUTE;
  16543. atomic_store(&state->shared->n_active, n_threads);
  16544. atomic_store(&state->shared->node_task, task_phase);
  16545. }
  16546. else {
  16547. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  16548. // depending on the workload and the operating system.
  16549. // since it is not clear what is the best approach, it should potentially become user-configurable
  16550. // ref: https://github.com/ggerganov/ggml/issues/291
  16551. // UPD: adding the do_yield flag seems to resolve the issue universally
  16552. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  16553. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  16554. }
  16555. if (state->ith < n_tasks) {
  16556. params.type = GGML_TASK_TYPE_COMPUTE;
  16557. ggml_compute_forward(&params, node, state);
  16558. }
  16559. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16560. task_phase = GGML_TASK_TYPE_FINALIZE;
  16561. atomic_store(&state->shared->n_active, n_threads);
  16562. atomic_store(&state->shared->node_task, task_phase);
  16563. }
  16564. else {
  16565. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  16566. }
  16567. }
  16568. return 0;
  16569. }
  16570. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  16571. if (n_threads <= 0) {
  16572. n_threads = GGML_DEFAULT_N_THREADS;
  16573. }
  16574. size_t work_size = 0;
  16575. struct ggml_cplan cplan;
  16576. memset(&cplan, 0, sizeof(struct ggml_cplan));
  16577. int max_tasks = 1;
  16578. // thread scheduling for the different operations + work buffer size estimation
  16579. for (int i = 0; i < cgraph->n_nodes; i++) {
  16580. struct ggml_tensor * node = cgraph->nodes[i];
  16581. const int n_tasks = ggml_get_n_tasks(node, n_threads, 1);
  16582. max_tasks = MAX(max_tasks, n_tasks);
  16583. size_t cur = 0;
  16584. switch (node->op) {
  16585. case GGML_OP_CPY:
  16586. case GGML_OP_DUP:
  16587. {
  16588. if (ggml_is_quantized(node->type) ||
  16589. // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
  16590. (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
  16591. (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
  16592. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16593. }
  16594. } break;
  16595. case GGML_OP_ADD:
  16596. case GGML_OP_ADD1:
  16597. {
  16598. if (ggml_is_quantized(node->src[0]->type)) {
  16599. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16600. }
  16601. } break;
  16602. case GGML_OP_ACC:
  16603. {
  16604. if (ggml_is_quantized(node->src[0]->type)) {
  16605. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  16606. }
  16607. } break;
  16608. case GGML_OP_MUL_MAT:
  16609. {
  16610. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  16611. #if defined(GGML_USE_CLBLAST)
  16612. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  16613. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  16614. } else
  16615. #endif
  16616. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  16617. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  16618. if (node->src[0]->type != GGML_TYPE_F32) {
  16619. // here we need memory for fully dequantized matrix from src0
  16620. // take into account that src0 can be broadcasted into src1[2,3]
  16621. cur = ggml_type_size(GGML_TYPE_F32)
  16622. * node->src[0]->ne[0]*node->src[0]->ne[1]
  16623. * node->src[1]->ne[2]*node->src[1]->ne[3];
  16624. }
  16625. } else
  16626. #endif
  16627. if (node->src[1]->type != vec_dot_type) {
  16628. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  16629. }
  16630. } break;
  16631. case GGML_OP_MUL_MAT_ID:
  16632. {
  16633. cur = 0;
  16634. const struct ggml_tensor * src0 = node->src[0];
  16635. const struct ggml_tensor * src1 = node->src[1];
  16636. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  16637. if (src1->type != vec_dot_type) {
  16638. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  16639. }
  16640. const int n_as = src0->ne[2];
  16641. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  16642. cur += n_as * sizeof(int64_t); // matrix_row_counts
  16643. cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
  16644. } break;
  16645. case GGML_OP_OUT_PROD:
  16646. {
  16647. if (ggml_is_quantized(node->src[0]->type)) {
  16648. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16649. }
  16650. } break;
  16651. case GGML_OP_SOFT_MAX:
  16652. case GGML_OP_ROPE:
  16653. {
  16654. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16655. } break;
  16656. case GGML_OP_CONV_TRANSPOSE_1D:
  16657. {
  16658. GGML_ASSERT(node->src[0]->ne[3] == 1);
  16659. GGML_ASSERT(node->src[1]->ne[2] == 1);
  16660. GGML_ASSERT(node->src[1]->ne[3] == 1);
  16661. const int64_t ne00 = node->src[0]->ne[0]; // K
  16662. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  16663. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  16664. const int64_t ne10 = node->src[1]->ne[0]; // L
  16665. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  16666. if ((node->src[0]->type == GGML_TYPE_F16 ||
  16667. node->src[0]->type == GGML_TYPE_BF16) &&
  16668. node->src[1]->type == GGML_TYPE_F32) {
  16669. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  16670. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  16671. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  16672. node->src[1]->type == GGML_TYPE_F32) {
  16673. cur += sizeof(float)*ne00*ne01*ne02;
  16674. cur += sizeof(float)*ne10*ne11;
  16675. } else {
  16676. GGML_ASSERT(false);
  16677. }
  16678. } break;
  16679. case GGML_OP_CONV_TRANSPOSE_2D:
  16680. {
  16681. const int64_t ne00 = node->src[0]->ne[0]; // W
  16682. const int64_t ne01 = node->src[0]->ne[1]; // H
  16683. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  16684. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  16685. const int64_t ne10 = node->src[1]->ne[0]; // W
  16686. const int64_t ne11 = node->src[1]->ne[1]; // H
  16687. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  16688. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  16689. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  16690. } break;
  16691. case GGML_OP_FLASH_ATTN:
  16692. {
  16693. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  16694. if (node->src[1]->type == GGML_TYPE_F32) {
  16695. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  16696. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  16697. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16698. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  16699. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  16700. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16701. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  16702. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  16703. }
  16704. } break;
  16705. case GGML_OP_FLASH_ATTN_EXT:
  16706. {
  16707. const int64_t ne00 = node->src[0]->ne[0]; // D
  16708. cur = 3*sizeof(float)*ne00*n_tasks; // 3x head size/thread
  16709. } break;
  16710. case GGML_OP_FLASH_FF:
  16711. {
  16712. if (node->src[1]->type == GGML_TYPE_F32) {
  16713. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  16714. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  16715. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16716. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  16717. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  16718. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16719. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  16720. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  16721. }
  16722. } break;
  16723. case GGML_OP_FLASH_ATTN_BACK:
  16724. {
  16725. const int64_t D = node->src[0]->ne[0];
  16726. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  16727. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  16728. if (node->src[1]->type == GGML_TYPE_F32) {
  16729. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16730. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16731. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16732. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16733. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16734. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16735. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16736. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16737. }
  16738. } break;
  16739. case GGML_OP_CROSS_ENTROPY_LOSS:
  16740. {
  16741. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  16742. } break;
  16743. case GGML_OP_COUNT:
  16744. {
  16745. GGML_ASSERT(false);
  16746. } break;
  16747. default:
  16748. break;
  16749. }
  16750. work_size = MAX(work_size, cur);
  16751. }
  16752. if (work_size > 0) {
  16753. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  16754. }
  16755. cplan.n_threads = MIN(max_tasks, n_threads);
  16756. cplan.work_size = work_size;
  16757. cplan.work_data = NULL;
  16758. return cplan;
  16759. }
  16760. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  16761. {
  16762. GGML_ASSERT(cplan);
  16763. GGML_ASSERT(cplan->n_threads > 0);
  16764. if (cplan->work_size > 0) {
  16765. GGML_ASSERT(cplan->work_data);
  16766. }
  16767. }
  16768. const int n_threads = cplan->n_threads;
  16769. struct ggml_compute_state_shared state_shared = {
  16770. /*.cgraph =*/ cgraph,
  16771. /*.cgraph_plan =*/ cplan,
  16772. /*.perf_node_start_cycles =*/ 0,
  16773. /*.perf_node_start_time_us =*/ 0,
  16774. /*.n_threads =*/ n_threads,
  16775. /*.n_active =*/ n_threads,
  16776. /*.node_n =*/ -1,
  16777. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  16778. /*.abort_callback =*/ NULL,
  16779. /*.abort_callback_data =*/ NULL,
  16780. /*.current_chunk; =*/ 0,
  16781. };
  16782. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  16783. // create thread pool
  16784. if (n_threads > 1) {
  16785. for (int j = 1; j < n_threads; ++j) {
  16786. workers[j] = (struct ggml_compute_state) {
  16787. .thrd = 0,
  16788. .ith = j,
  16789. .shared = &state_shared,
  16790. .ec = GGML_STATUS_SUCCESS,
  16791. };
  16792. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  16793. GGML_ASSERT(rc == 0);
  16794. UNUSED(rc);
  16795. }
  16796. }
  16797. workers[0].ith = 0;
  16798. workers[0].shared = &state_shared;
  16799. workers[0].ec = GGML_STATUS_SUCCESS;
  16800. const int64_t perf_start_cycles = ggml_perf_cycles();
  16801. const int64_t perf_start_time_us = ggml_perf_time_us();
  16802. // this is a work thread too
  16803. ggml_graph_compute_thread(&workers[0]);
  16804. enum ggml_status compute_status = workers[0].ec;
  16805. // don't leave affinity set on the main thread
  16806. clear_numa_thread_affinity();
  16807. // join or kill thread pool
  16808. if (n_threads > 1) {
  16809. for (int j = 1; j < n_threads; j++) {
  16810. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  16811. GGML_ASSERT(rc == 0);
  16812. if (workers[j].ec != GGML_STATUS_SUCCESS)
  16813. compute_status = workers[j].ec;
  16814. }
  16815. }
  16816. // performance stats (graph)
  16817. {
  16818. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  16819. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  16820. cgraph->perf_runs++;
  16821. cgraph->perf_cycles += perf_cycles_cur;
  16822. cgraph->perf_time_us += perf_time_us_cur;
  16823. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  16824. __func__, cgraph->perf_runs,
  16825. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  16826. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  16827. (double) perf_time_us_cur / 1000.0,
  16828. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  16829. }
  16830. return compute_status;
  16831. }
  16832. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  16833. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  16834. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16835. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16836. return ggml_graph_compute(cgraph, &cplan);
  16837. }
  16838. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  16839. for (int i = 0; i < cgraph->n_leafs; i++) {
  16840. struct ggml_tensor * leaf = cgraph->leafs[i];
  16841. if (strcmp(leaf->name, name) == 0) {
  16842. return leaf;
  16843. }
  16844. }
  16845. for (int i = 0; i < cgraph->n_nodes; i++) {
  16846. struct ggml_tensor * node = cgraph->nodes[i];
  16847. if (strcmp(node->name, name) == 0) {
  16848. return node;
  16849. }
  16850. }
  16851. return NULL;
  16852. }
  16853. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  16854. const int64_t * ne = tensor->ne;
  16855. const size_t * nb = tensor->nb;
  16856. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16857. ggml_type_name(tensor->type),
  16858. ggml_op_name (tensor->op),
  16859. ggml_n_dims(tensor),
  16860. ne[0], ne[1], ne[2], ne[3],
  16861. nb[0], nb[1], nb[2], nb[3],
  16862. tensor->data,
  16863. tensor->name);
  16864. }
  16865. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  16866. const int64_t * ne = tensor->ne;
  16867. const size_t * nb = tensor->nb;
  16868. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16869. arg,
  16870. ggml_type_name(tensor->type),
  16871. ggml_op_name (tensor->op),
  16872. ggml_n_dims(tensor),
  16873. ne[0], ne[1], ne[2], ne[3],
  16874. nb[0], nb[1], nb[2], nb[3],
  16875. tensor->data,
  16876. tensor->name);
  16877. }
  16878. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  16879. uint64_t size_eval = 0;
  16880. // compute size of intermediate results
  16881. // TODO: does not take into account scratch buffers !!!!
  16882. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16883. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  16884. }
  16885. // print
  16886. {
  16887. FILE * fout = stdout;
  16888. fprintf(fout, "\n");
  16889. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  16890. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  16891. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  16892. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  16893. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  16894. // header
  16895. fprintf(fout, "\n");
  16896. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  16897. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  16898. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16899. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  16900. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  16901. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  16902. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  16903. }
  16904. // header
  16905. fprintf(fout, "\n");
  16906. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  16907. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  16908. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16909. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  16910. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16911. if (cgraph->nodes[i]->src[j]) {
  16912. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  16913. }
  16914. }
  16915. fprintf(fout, "\n");
  16916. }
  16917. fprintf(fout, "\n");
  16918. }
  16919. // write binary data
  16920. {
  16921. FILE * fout = ggml_fopen(fname, "wb");
  16922. if (!fout) {
  16923. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16924. return;
  16925. }
  16926. // header
  16927. {
  16928. const uint32_t magic = GGML_FILE_MAGIC;
  16929. const uint32_t version = GGML_FILE_VERSION;
  16930. const uint32_t n_leafs = cgraph->n_leafs;
  16931. const uint32_t n_nodes = cgraph->n_nodes;
  16932. fwrite(&magic, sizeof(uint32_t), 1, fout);
  16933. fwrite(&version, sizeof(uint32_t), 1, fout);
  16934. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  16935. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  16936. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  16937. }
  16938. // leafs
  16939. {
  16940. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16941. const struct ggml_tensor * tensor = cgraph->leafs[i];
  16942. const uint32_t type = tensor->type;
  16943. const uint32_t op = tensor->op;
  16944. fwrite(&type, sizeof(uint32_t), 1, fout);
  16945. fwrite(&op, sizeof(uint32_t), 1, fout);
  16946. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16947. const uint64_t ne = tensor->ne[j];
  16948. const uint64_t nb = tensor->nb[j];
  16949. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16950. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16951. }
  16952. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16953. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16954. // dump the data
  16955. // TODO: pad this to 32 byte boundary
  16956. {
  16957. const size_t size = ggml_nbytes(tensor);
  16958. fwrite(tensor->data, sizeof(char), size, fout);
  16959. }
  16960. }
  16961. }
  16962. // nodes
  16963. {
  16964. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16965. const struct ggml_tensor * tensor = cgraph->nodes[i];
  16966. const uint32_t type = tensor->type;
  16967. const uint32_t op = tensor->op;
  16968. fwrite(&type, sizeof(uint32_t), 1, fout);
  16969. fwrite(&op, sizeof(uint32_t), 1, fout);
  16970. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16971. const uint64_t ne = tensor->ne[j];
  16972. const uint64_t nb = tensor->nb[j];
  16973. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16974. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16975. }
  16976. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16977. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16978. // output the op arguments
  16979. {
  16980. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16981. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16982. args[j] = tensor->src[j];
  16983. }
  16984. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16985. if (args[j]) {
  16986. int32_t idx = -1;
  16987. // check if leaf
  16988. {
  16989. for (int k = 0; k < cgraph->n_leafs; ++k) {
  16990. if (args[j] == cgraph->leafs[k]) {
  16991. idx = k;
  16992. break;
  16993. }
  16994. }
  16995. }
  16996. // check if node
  16997. if (idx == -1) {
  16998. for (int k = 0; k < cgraph->n_nodes; ++k) {
  16999. if (args[j] == cgraph->nodes[k]) {
  17000. idx = cgraph->n_leafs + k;
  17001. break;
  17002. }
  17003. }
  17004. }
  17005. if (idx == -1) {
  17006. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  17007. fclose(fout);
  17008. return;
  17009. }
  17010. fwrite(&idx, sizeof(int32_t), 1, fout);
  17011. } else {
  17012. const int32_t nul = -1;
  17013. fwrite(&nul, sizeof(int32_t), 1, fout);
  17014. }
  17015. }
  17016. }
  17017. }
  17018. }
  17019. fclose(fout);
  17020. }
  17021. }
  17022. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  17023. assert(*ctx_data == NULL);
  17024. assert(*ctx_eval == NULL);
  17025. struct ggml_cgraph * result = NULL;
  17026. struct ggml_tensor * data = NULL;
  17027. // read file into data
  17028. {
  17029. FILE * fin = ggml_fopen(fname, "rb");
  17030. if (!fin) {
  17031. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  17032. return result;
  17033. }
  17034. size_t fsize = 0;
  17035. fseek(fin, 0, SEEK_END);
  17036. fsize = ftell(fin);
  17037. fseek(fin, 0, SEEK_SET);
  17038. // create the data context
  17039. {
  17040. const size_t overhead = 1*ggml_tensor_overhead();
  17041. struct ggml_init_params params = {
  17042. .mem_size = fsize + overhead,
  17043. .mem_buffer = NULL,
  17044. .no_alloc = false,
  17045. };
  17046. *ctx_data = ggml_init(params);
  17047. if (!*ctx_data) {
  17048. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  17049. fclose(fin);
  17050. return result;
  17051. }
  17052. }
  17053. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  17054. {
  17055. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  17056. if (ret != fsize) {
  17057. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  17058. fclose(fin);
  17059. return result;
  17060. }
  17061. }
  17062. fclose(fin);
  17063. }
  17064. // populate result
  17065. {
  17066. char * ptr = (char *) data->data;
  17067. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  17068. if (magic != GGML_FILE_MAGIC) {
  17069. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  17070. return result;
  17071. }
  17072. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  17073. if (version != GGML_FILE_VERSION) {
  17074. fprintf(stderr, "%s: invalid version number\n", __func__);
  17075. return result;
  17076. }
  17077. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  17078. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  17079. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  17080. const int graph_size = MAX(n_leafs, n_nodes);
  17081. // create the data context
  17082. {
  17083. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  17084. struct ggml_init_params params = {
  17085. .mem_size = size_eval + overhead,
  17086. .mem_buffer = NULL,
  17087. .no_alloc = true,
  17088. };
  17089. *ctx_eval = ggml_init(params);
  17090. if (!*ctx_eval) {
  17091. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  17092. return result;
  17093. }
  17094. }
  17095. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  17096. result->n_leafs = n_leafs;
  17097. result->n_nodes = n_nodes;
  17098. // leafs
  17099. {
  17100. uint32_t type;
  17101. uint32_t op;
  17102. for (uint32_t i = 0; i < n_leafs; ++i) {
  17103. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  17104. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  17105. int64_t ne[GGML_MAX_DIMS];
  17106. size_t nb[GGML_MAX_DIMS];
  17107. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17108. uint64_t ne_cur;
  17109. uint64_t nb_cur;
  17110. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  17111. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  17112. ne[j] = ne_cur;
  17113. nb[j] = nb_cur;
  17114. }
  17115. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  17116. tensor->op = (enum ggml_op) op;
  17117. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  17118. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  17119. tensor->data = (void *) ptr;
  17120. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17121. tensor->nb[j] = nb[j];
  17122. }
  17123. result->leafs[i] = tensor;
  17124. ptr += ggml_nbytes(tensor);
  17125. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  17126. }
  17127. }
  17128. ggml_set_no_alloc(*ctx_eval, false);
  17129. // nodes
  17130. {
  17131. uint32_t type;
  17132. uint32_t op;
  17133. for (uint32_t i = 0; i < n_nodes; ++i) {
  17134. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  17135. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  17136. enum ggml_op eop = (enum ggml_op) op;
  17137. int64_t ne[GGML_MAX_DIMS];
  17138. size_t nb[GGML_MAX_DIMS];
  17139. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17140. uint64_t ne_cur;
  17141. uint64_t nb_cur;
  17142. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  17143. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  17144. ne[j] = ne_cur;
  17145. nb[j] = nb_cur;
  17146. }
  17147. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  17148. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  17149. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  17150. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  17151. // parse args
  17152. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  17153. const int32_t arg_idx = ptr_arg_idx[j];
  17154. if (arg_idx == -1) {
  17155. continue;
  17156. }
  17157. if (arg_idx < result->n_leafs) {
  17158. args[j] = result->leafs[arg_idx];
  17159. } else {
  17160. args[j] = result->nodes[arg_idx - result->n_leafs];
  17161. }
  17162. }
  17163. // create the tensor
  17164. // "view" operations are handled differently
  17165. // TODO: handle inplace ops - currently a copy is always made
  17166. struct ggml_tensor * tensor = NULL;
  17167. switch (eop) {
  17168. // TODO: implement other view ops
  17169. case GGML_OP_RESHAPE:
  17170. {
  17171. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  17172. } break;
  17173. case GGML_OP_VIEW:
  17174. {
  17175. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  17176. size_t offs;
  17177. memcpy(&offs, ptr_op_params, sizeof(offs));
  17178. tensor->data = ((char *) tensor->data) + offs;
  17179. } break;
  17180. case GGML_OP_TRANSPOSE:
  17181. {
  17182. tensor = ggml_transpose(*ctx_eval, args[0]);
  17183. } break;
  17184. case GGML_OP_PERMUTE:
  17185. {
  17186. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  17187. } break;
  17188. default:
  17189. {
  17190. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  17191. tensor->op = eop;
  17192. } break;
  17193. }
  17194. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  17195. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  17196. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17197. tensor->nb[j] = nb[j];
  17198. }
  17199. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  17200. tensor->src[j] = args[j];
  17201. }
  17202. result->nodes[i] = tensor;
  17203. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  17204. }
  17205. }
  17206. }
  17207. return result;
  17208. }
  17209. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  17210. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  17211. GGML_PRINT("=== GRAPH ===\n");
  17212. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  17213. for (int i = 0; i < cgraph->n_nodes; i++) {
  17214. struct ggml_tensor * node = cgraph->nodes[i];
  17215. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  17216. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  17217. i,
  17218. node->ne[0], node->ne[1], node->ne[2],
  17219. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  17220. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  17221. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  17222. (double) node->perf_time_us / 1000.0,
  17223. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  17224. }
  17225. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  17226. for (int i = 0; i < cgraph->n_leafs; i++) {
  17227. struct ggml_tensor * node = cgraph->leafs[i];
  17228. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  17229. i,
  17230. node->ne[0], node->ne[1],
  17231. ggml_op_name(node->op),
  17232. ggml_get_name(node));
  17233. }
  17234. for (int i = 0; i < GGML_OP_COUNT; i++) {
  17235. if (perf_total_per_op_us[i] == 0) {
  17236. continue;
  17237. }
  17238. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  17239. }
  17240. GGML_PRINT("========================================\n");
  17241. }
  17242. // check if node is part of the graph
  17243. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  17244. if (cgraph == NULL) {
  17245. return true;
  17246. }
  17247. for (int i = 0; i < cgraph->n_nodes; i++) {
  17248. if (cgraph->nodes[i] == node) {
  17249. return true;
  17250. }
  17251. }
  17252. return false;
  17253. }
  17254. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  17255. for (int i = 0; i < cgraph->n_nodes; i++) {
  17256. struct ggml_tensor * parent = cgraph->nodes[i];
  17257. if (parent->grad == node) {
  17258. return parent;
  17259. }
  17260. }
  17261. return NULL;
  17262. }
  17263. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  17264. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  17265. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  17266. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  17267. gparent0 ? (void *) gparent0 : (void *) parent,
  17268. gparent0 ? "g" : "x",
  17269. gparent ? (void *) gparent : (void *) node,
  17270. gparent ? "g" : "x",
  17271. gparent ? "empty" : "vee",
  17272. gparent ? "dashed" : "solid",
  17273. label);
  17274. }
  17275. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  17276. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  17277. (void *) parent, "x",
  17278. (void *) node, "x",
  17279. label);
  17280. }
  17281. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  17282. char color[16];
  17283. FILE * fp = ggml_fopen(filename, "w");
  17284. GGML_ASSERT(fp);
  17285. fprintf(fp, "digraph G {\n");
  17286. fprintf(fp, " newrank = true;\n");
  17287. fprintf(fp, " rankdir = LR;\n");
  17288. for (int i = 0; i < gb->n_nodes; i++) {
  17289. struct ggml_tensor * node = gb->nodes[i];
  17290. if (ggml_graph_get_parent(gb, node) != NULL) {
  17291. continue;
  17292. }
  17293. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  17294. snprintf(color, sizeof(color), "yellow");
  17295. } else if (node->grad) {
  17296. if (ggml_graph_find(gf, node)) {
  17297. snprintf(color, sizeof(color), "green");
  17298. } else {
  17299. snprintf(color, sizeof(color), "lightblue");
  17300. }
  17301. } else {
  17302. snprintf(color, sizeof(color), "white");
  17303. }
  17304. fprintf(fp, " \"%p\" [ "
  17305. "style = filled; fillcolor = %s; shape = record; "
  17306. "label=\"",
  17307. (void *) node, color);
  17308. if (strlen(node->name) > 0) {
  17309. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  17310. } else {
  17311. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  17312. }
  17313. if (ggml_is_matrix(node)) {
  17314. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  17315. } else {
  17316. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  17317. }
  17318. if (node->grad) {
  17319. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  17320. } else {
  17321. fprintf(fp, "\"; ]\n");
  17322. }
  17323. }
  17324. for (int i = 0; i < gb->n_leafs; i++) {
  17325. struct ggml_tensor * node = gb->leafs[i];
  17326. snprintf(color, sizeof(color), "pink");
  17327. fprintf(fp, " \"%p\" [ "
  17328. "style = filled; fillcolor = %s; shape = record; "
  17329. "label=\"<x>",
  17330. (void *) node, color);
  17331. if (strlen(node->name) > 0) {
  17332. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  17333. } else {
  17334. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  17335. }
  17336. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  17337. if (ggml_nelements(node) < 5) {
  17338. fprintf(fp, " | (");
  17339. for (int j = 0; j < ggml_nelements(node); j++) {
  17340. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  17341. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  17342. }
  17343. else if (node->type == GGML_TYPE_F32 ||
  17344. node->type == GGML_TYPE_F16 ||
  17345. node->type == GGML_TYPE_BF16) {
  17346. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  17347. }
  17348. else {
  17349. fprintf(fp, "#");
  17350. }
  17351. if (j < ggml_nelements(node) - 1) {
  17352. fprintf(fp, ", ");
  17353. }
  17354. }
  17355. fprintf(fp, ")");
  17356. }
  17357. fprintf(fp, "\"; ]\n");
  17358. }
  17359. for (int i = 0; i < gb->n_nodes; i++) {
  17360. struct ggml_tensor * node = gb->nodes[i];
  17361. for (int j = 0; j < GGML_MAX_SRC; j++) {
  17362. if (node->src[j]) {
  17363. char label[16];
  17364. snprintf(label, sizeof(label), "src %d", j);
  17365. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  17366. }
  17367. }
  17368. }
  17369. for (int i = 0; i < gb->n_leafs; i++) {
  17370. struct ggml_tensor * node = gb->leafs[i];
  17371. for (int j = 0; j < GGML_MAX_SRC; j++) {
  17372. if (node->src[j]) {
  17373. char label[16];
  17374. snprintf(label, sizeof(label), "src %d", j);
  17375. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  17376. }
  17377. }
  17378. }
  17379. fprintf(fp, "}\n");
  17380. fclose(fp);
  17381. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  17382. }
  17383. ////////////////////////////////////////////////////////////////////////////////
  17384. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  17385. int i = 0;
  17386. for (int p = 0; p < np; ++p) {
  17387. const int64_t ne = ggml_nelements(ps[p]) ;
  17388. // TODO: add function to set tensor from array
  17389. for (int64_t j = 0; j < ne; ++j) {
  17390. ggml_set_f32_1d(ps[p], j, x[i++]);
  17391. }
  17392. }
  17393. }
  17394. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  17395. int i = 0;
  17396. for (int p = 0; p < np; ++p) {
  17397. const int64_t ne = ggml_nelements(ps[p]) ;
  17398. // TODO: add function to get all elements at once
  17399. for (int64_t j = 0; j < ne; ++j) {
  17400. x[i++] = ggml_get_f32_1d(ps[p], j);
  17401. }
  17402. }
  17403. }
  17404. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  17405. int64_t i = 0;
  17406. for (int p = 0; p < np; ++p) {
  17407. const int64_t ne = ggml_nelements(ps[p]) ;
  17408. // TODO: add function to get all elements at once
  17409. for (int64_t j = 0; j < ne; ++j) {
  17410. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  17411. }
  17412. }
  17413. }
  17414. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  17415. int64_t i = 0;
  17416. for (int p = 0; p < np; ++p) {
  17417. const int64_t ne = ggml_nelements(ps[p]) ;
  17418. // TODO: add function to get all elements at once
  17419. for (int64_t j = 0; j < ne; ++j) {
  17420. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  17421. }
  17422. }
  17423. }
  17424. //
  17425. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  17426. //
  17427. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  17428. //
  17429. static enum ggml_opt_result ggml_opt_adam(
  17430. struct ggml_context * ctx,
  17431. struct ggml_opt_context * opt,
  17432. struct ggml_opt_params params,
  17433. struct ggml_tensor * f,
  17434. struct ggml_cgraph * gf,
  17435. struct ggml_cgraph * gb,
  17436. ggml_opt_callback callback,
  17437. void * callback_data) {
  17438. GGML_ASSERT(ggml_is_scalar(f));
  17439. // these will store the parameters we want to optimize
  17440. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  17441. int np = 0;
  17442. int64_t nx = 0;
  17443. for (int i = 0; i < gf->n_nodes; ++i) {
  17444. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  17445. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  17446. GGML_ASSERT(np < GGML_MAX_PARAMS);
  17447. ps[np++] = gf->nodes[i];
  17448. nx += ggml_nelements(gf->nodes[i]);
  17449. }
  17450. }
  17451. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  17452. int iter = opt->iter;
  17453. ggml_opt_init(opt->ctx, opt, params, nx);
  17454. opt->iter = iter;
  17455. }
  17456. // constants
  17457. float sched = params.adam.sched;
  17458. const float alpha = params.adam.alpha;
  17459. const float decay = params.adam.decay * alpha;
  17460. const float beta1 = params.adam.beta1;
  17461. const float beta2 = params.adam.beta2;
  17462. const float eps = params.adam.eps;
  17463. const float gclip = params.adam.gclip;
  17464. const int decay_min_ndim = params.adam.decay_min_ndim;
  17465. const int n_accum = MAX(1, params.n_gradient_accumulation);
  17466. const float accum_norm = 1.0f / (float) n_accum;
  17467. float * g = opt->adam.g->data; // gradients
  17468. float * m = opt->adam.m->data; // first moment
  17469. float * v = opt->adam.v->data; // second moment
  17470. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  17471. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  17472. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  17473. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  17474. bool cancel = false;
  17475. // compute the function value
  17476. float fx = 0;
  17477. ggml_set_zero(opt->adam.g);
  17478. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17479. if (callback) {
  17480. callback(callback_data, accum_step, &sched, &cancel);
  17481. if (cancel) {
  17482. return GGML_OPT_RESULT_CANCEL;
  17483. }
  17484. }
  17485. // ggml_graph_reset (gf);
  17486. ggml_set_f32 (f->grad, 1.0f);
  17487. ggml_graph_compute(gb, &cplan);
  17488. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17489. fx += ggml_get_f32_1d(f, 0);
  17490. }
  17491. fx *= accum_norm;
  17492. opt->adam.fx_prev = fx;
  17493. opt->adam.fx_best = opt->adam.fx_prev;
  17494. if (pf) {
  17495. pf[opt->iter % params.past] = opt->adam.fx_prev;
  17496. }
  17497. opt->loss_before = opt->adam.fx_prev;
  17498. opt->loss_after = opt->adam.fx_prev;
  17499. // initialize
  17500. if (opt->just_initialized) {
  17501. opt->adam.n_no_improvement = 0;
  17502. opt->just_initialized = false;
  17503. }
  17504. float * fx_best = &opt->adam.fx_best;
  17505. float * fx_prev = &opt->adam.fx_prev;
  17506. int * n_no_improvement = &opt->adam.n_no_improvement;
  17507. int iter0 = opt->iter;
  17508. // run the optimizer
  17509. for (int t = 0; t < params.adam.n_iter; ++t) {
  17510. opt->iter = iter0 + t + 1;
  17511. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  17512. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17513. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  17514. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  17515. for (int i = 0; i < np; ++i) {
  17516. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  17517. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  17518. }
  17519. const int64_t t_start_wall = ggml_time_us();
  17520. const int64_t t_start_cpu = ggml_cycles();
  17521. UNUSED(t_start_wall);
  17522. UNUSED(t_start_cpu);
  17523. {
  17524. float gnorm = 1.0f;
  17525. if (gclip > 0.0f) {
  17526. // gradient clipping
  17527. ggml_float sum = 0.0;
  17528. for (int64_t i = 0; i < nx; ++i) {
  17529. sum += (ggml_float)(g[i]*g[i]);
  17530. }
  17531. ggml_float norm = sqrt(sum);
  17532. if (norm > (ggml_float) gclip) {
  17533. gnorm = (float) ((ggml_float) gclip / norm);
  17534. }
  17535. }
  17536. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  17537. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  17538. int64_t i = 0;
  17539. for (int p = 0; p < np; ++p) {
  17540. const int64_t ne = ggml_nelements(ps[p]);
  17541. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  17542. for (int64_t j = 0; j < ne; ++j) {
  17543. float x = ggml_get_f32_1d(ps[p], j);
  17544. float g_ = g[i]*gnorm;
  17545. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  17546. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  17547. float mh = m[i]*beta1h;
  17548. float vh = v[i]*beta2h;
  17549. vh = sqrtf(vh) + eps;
  17550. x = x*(1.0f - p_decay) - mh/vh;
  17551. ggml_set_f32_1d(ps[p], j, x);
  17552. ++i;
  17553. }
  17554. }
  17555. }
  17556. fx = 0;
  17557. ggml_set_zero(opt->adam.g);
  17558. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17559. if (callback) {
  17560. callback(callback_data, accum_step, &sched, &cancel);
  17561. if (cancel) {
  17562. return GGML_OPT_RESULT_CANCEL;;
  17563. }
  17564. }
  17565. // ggml_graph_reset (gf);
  17566. ggml_set_f32 (f->grad, 1.0f);
  17567. ggml_graph_compute(gb, &cplan);
  17568. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17569. fx += ggml_get_f32_1d(f, 0);
  17570. }
  17571. fx *= accum_norm;
  17572. opt->loss_after = fx;
  17573. // check convergence
  17574. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  17575. GGML_PRINT_DEBUG("converged\n");
  17576. return GGML_OPT_RESULT_OK;
  17577. }
  17578. // delta-based convergence test
  17579. if (pf != NULL) {
  17580. // need at least params.past iterations to start checking for convergence
  17581. if (params.past <= iter0 + t) {
  17582. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  17583. if (fabsf(rate) < params.delta) {
  17584. return GGML_OPT_RESULT_OK;
  17585. }
  17586. }
  17587. pf[(iter0 + t)%params.past] = fx;
  17588. }
  17589. // check for improvement
  17590. if (params.max_no_improvement > 0) {
  17591. if (fx_best[0] > fx) {
  17592. fx_best[0] = fx;
  17593. n_no_improvement[0] = 0;
  17594. } else {
  17595. ++n_no_improvement[0];
  17596. if (n_no_improvement[0] >= params.max_no_improvement) {
  17597. return GGML_OPT_RESULT_OK;
  17598. }
  17599. }
  17600. }
  17601. fx_prev[0] = fx;
  17602. {
  17603. const int64_t t_end_cpu = ggml_cycles();
  17604. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  17605. UNUSED(t_end_cpu);
  17606. const int64_t t_end_wall = ggml_time_us();
  17607. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  17608. UNUSED(t_end_wall);
  17609. }
  17610. }
  17611. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17612. }
  17613. //
  17614. // L-BFGS
  17615. //
  17616. // the L-BFGS implementation below is based on the following implementation:
  17617. //
  17618. // https://github.com/chokkan/liblbfgs
  17619. //
  17620. struct ggml_lbfgs_iteration_data {
  17621. float alpha;
  17622. float ys;
  17623. float * s;
  17624. float * y;
  17625. };
  17626. static enum ggml_opt_result linesearch_backtracking(
  17627. const struct ggml_opt_params * params,
  17628. int nx,
  17629. float * x,
  17630. float * fx,
  17631. float * g,
  17632. float * d,
  17633. float * step,
  17634. const float * xp,
  17635. struct ggml_tensor * f,
  17636. struct ggml_cgraph * gb,
  17637. struct ggml_cplan * cplan,
  17638. const int np,
  17639. struct ggml_tensor * ps[],
  17640. bool * cancel,
  17641. ggml_opt_callback callback,
  17642. void * callback_data) {
  17643. int count = 0;
  17644. float width = 0.0f;
  17645. float dg = 0.0f;
  17646. float finit = 0.0f;
  17647. float dginit = 0.0f;
  17648. float dgtest = 0.0f;
  17649. const float dec = 0.5f;
  17650. const float inc = 2.1f;
  17651. const int n_accum = MAX(1, params->n_gradient_accumulation);
  17652. const float accum_norm = 1.0f / (float) n_accum;
  17653. if (*step <= 0.f) {
  17654. return GGML_LINESEARCH_INVALID_PARAMETERS;
  17655. }
  17656. // compute the initial gradient in the search direction
  17657. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  17658. // make sure that d points to a descent direction
  17659. if (0 < dginit) {
  17660. return GGML_LINESEARCH_FAIL;
  17661. }
  17662. // initialize local variables
  17663. finit = *fx;
  17664. dgtest = params->lbfgs.ftol*dginit;
  17665. while (true) {
  17666. ggml_vec_cpy_f32(nx, x, xp);
  17667. ggml_vec_mad_f32(nx, x, d, *step);
  17668. // evaluate the function and gradient values
  17669. {
  17670. ggml_opt_set_params(np, ps, x);
  17671. *fx = 0;
  17672. memset(g, 0, sizeof(float)*nx);
  17673. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17674. if (callback) {
  17675. // LBFG-S does not support learning rate -> ignore learning schedule
  17676. float sched = 0;
  17677. callback(callback_data, accum_step, &sched, cancel);
  17678. if (*cancel) {
  17679. return GGML_OPT_RESULT_CANCEL;
  17680. }
  17681. }
  17682. // ggml_graph_reset (gf);
  17683. ggml_set_f32 (f->grad, 1.0f);
  17684. ggml_graph_compute(gb, cplan);
  17685. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17686. *fx += ggml_get_f32_1d(f, 0);
  17687. }
  17688. *fx *= accum_norm;
  17689. }
  17690. ++count;
  17691. if (*fx > finit + (*step)*dgtest) {
  17692. width = dec;
  17693. } else {
  17694. // Armijo condition is satisfied
  17695. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  17696. return count;
  17697. }
  17698. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  17699. // check the Wolfe condition
  17700. if (dg < params->lbfgs.wolfe * dginit) {
  17701. width = inc;
  17702. } else {
  17703. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  17704. // regular Wolfe conditions
  17705. return count;
  17706. }
  17707. if(dg > -params->lbfgs.wolfe*dginit) {
  17708. width = dec;
  17709. } else {
  17710. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  17711. return count;
  17712. }
  17713. }
  17714. }
  17715. if (*step < params->lbfgs.min_step) {
  17716. return GGML_LINESEARCH_MINIMUM_STEP;
  17717. }
  17718. if (*step > params->lbfgs.max_step) {
  17719. return GGML_LINESEARCH_MAXIMUM_STEP;
  17720. }
  17721. if (params->lbfgs.max_linesearch <= count) {
  17722. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  17723. }
  17724. (*step) *= width;
  17725. }
  17726. GGML_ASSERT(false && "line search failed");
  17727. return GGML_LINESEARCH_FAIL;
  17728. }
  17729. static enum ggml_opt_result ggml_opt_lbfgs(
  17730. struct ggml_context * ctx,
  17731. struct ggml_opt_context * opt,
  17732. struct ggml_opt_params params,
  17733. struct ggml_tensor * f,
  17734. struct ggml_cgraph * gf,
  17735. struct ggml_cgraph * gb,
  17736. ggml_opt_callback callback,
  17737. void * callback_data) {
  17738. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  17739. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  17740. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  17741. return GGML_OPT_RESULT_INVALID_WOLFE;
  17742. }
  17743. }
  17744. const int m = params.lbfgs.m;
  17745. // these will store the parameters we want to optimize
  17746. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  17747. int np = 0;
  17748. int nx = 0;
  17749. for (int i = 0; i < gf->n_nodes; ++i) {
  17750. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  17751. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  17752. GGML_ASSERT(np < GGML_MAX_PARAMS);
  17753. ps[np++] = gf->nodes[i];
  17754. nx += ggml_nelements(gf->nodes[i]);
  17755. }
  17756. }
  17757. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  17758. int iter = opt->iter;
  17759. ggml_opt_init(ctx, opt, params, nx);
  17760. opt->iter = iter;
  17761. }
  17762. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  17763. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  17764. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  17765. float * x = opt->lbfgs.x->data; // current parameters
  17766. float * xp = opt->lbfgs.xp->data; // previous parameters
  17767. float * g = opt->lbfgs.g->data; // current gradient
  17768. float * gp = opt->lbfgs.gp->data; // previous gradient
  17769. float * d = opt->lbfgs.d->data; // search direction
  17770. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  17771. const int n_accum = MAX(1, params.n_gradient_accumulation);
  17772. const float accum_norm = 1.0f / (float) n_accum;
  17773. float fx = 0.0f; // cost function value
  17774. float xnorm = 0.0f; // ||x||
  17775. float gnorm = 0.0f; // ||g||
  17776. // initialize x from the graph nodes
  17777. ggml_opt_get_params(np, ps, x);
  17778. // the L-BFGS memory
  17779. float * lm_alpha = opt->lbfgs.lmal->data;
  17780. float * lm_ys = opt->lbfgs.lmys->data;
  17781. float * lm_s = opt->lbfgs.lms->data;
  17782. float * lm_y = opt->lbfgs.lmy->data;
  17783. bool cancel = false;
  17784. // evaluate the function value and its gradient
  17785. {
  17786. ggml_opt_set_params(np, ps, x);
  17787. fx = 0;
  17788. memset(g, 0, sizeof(float)*nx);
  17789. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17790. if (callback) {
  17791. // LBFG-S does not support learning rate -> ignore learning schedule
  17792. float sched = 0;
  17793. callback(callback_data, accum_step, &sched, &cancel);
  17794. if (cancel) {
  17795. return GGML_OPT_RESULT_CANCEL;
  17796. }
  17797. }
  17798. // ggml_graph_reset (gf);
  17799. ggml_set_f32 (f->grad, 1.0f);
  17800. ggml_graph_compute(gb, &cplan);
  17801. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17802. fx += ggml_get_f32_1d(f, 0);
  17803. }
  17804. fx *= accum_norm;
  17805. opt->loss_before = fx;
  17806. opt->loss_after = fx;
  17807. }
  17808. // search direction = -gradient
  17809. ggml_vec_neg_f32(nx, d, g);
  17810. // ||x||, ||g||
  17811. ggml_vec_norm_f32(nx, &xnorm, x);
  17812. ggml_vec_norm_f32(nx, &gnorm, g);
  17813. if (xnorm < 1.0f) {
  17814. xnorm = 1.0f;
  17815. }
  17816. // already optimized
  17817. if (gnorm/xnorm <= params.lbfgs.eps) {
  17818. return GGML_OPT_RESULT_OK;
  17819. }
  17820. if (opt->just_initialized) {
  17821. if (pf) {
  17822. pf[0] = fx;
  17823. }
  17824. opt->lbfgs.fx_best = fx;
  17825. // initial step
  17826. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  17827. opt->lbfgs.j = 0;
  17828. opt->lbfgs.k = 1;
  17829. opt->lbfgs.end = 0;
  17830. opt->lbfgs.n_no_improvement = 0;
  17831. opt->just_initialized = false;
  17832. }
  17833. float * fx_best = &opt->lbfgs.fx_best;
  17834. float * step = &opt->lbfgs.step;
  17835. int * j = &opt->lbfgs.j;
  17836. int * k = &opt->lbfgs.k;
  17837. int * end = &opt->lbfgs.end;
  17838. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  17839. int ls = 0;
  17840. int bound = 0;
  17841. float ys = 0.0f;
  17842. float yy = 0.0f;
  17843. float beta = 0.0f;
  17844. int it = 0;
  17845. while (true) {
  17846. // store the current position and gradient vectors
  17847. ggml_vec_cpy_f32(nx, xp, x);
  17848. ggml_vec_cpy_f32(nx, gp, g);
  17849. // TODO: instead of passing &cancel here, use the return code of the linesearch
  17850. // to determine if the optimization should be cancelled
  17851. // this is a simple change, but not doing this atm, since I don't have a nice
  17852. // way to test and don't want to break something with so many changes lined up
  17853. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  17854. if (cancel) {
  17855. return GGML_OPT_RESULT_CANCEL;
  17856. }
  17857. if (ls < 0) {
  17858. // linesearch failed - go back to the previous point and return
  17859. ggml_vec_cpy_f32(nx, x, xp);
  17860. ggml_vec_cpy_f32(nx, g, gp);
  17861. return ls;
  17862. }
  17863. opt->loss_after = fx;
  17864. ggml_vec_norm_f32(nx, &xnorm, x);
  17865. ggml_vec_norm_f32(nx, &gnorm, g);
  17866. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17867. if (xnorm < 1.0f) {
  17868. xnorm = 1.0f;
  17869. }
  17870. if (gnorm/xnorm <= params.lbfgs.eps) {
  17871. // converged
  17872. return GGML_OPT_RESULT_OK;
  17873. }
  17874. // delta-based convergence test
  17875. if (pf != NULL) {
  17876. // need at least params.past iterations to start checking for convergence
  17877. if (params.past <= k[0]) {
  17878. const float rate = (pf[k[0]%params.past] - fx)/fx;
  17879. if (fabsf(rate) < params.delta) {
  17880. return GGML_OPT_RESULT_OK;
  17881. }
  17882. }
  17883. pf[k[0]%params.past] = fx;
  17884. }
  17885. // check for improvement
  17886. if (params.max_no_improvement > 0) {
  17887. if (fx < fx_best[0]) {
  17888. fx_best[0] = fx;
  17889. n_no_improvement[0] = 0;
  17890. } else {
  17891. n_no_improvement[0]++;
  17892. if (n_no_improvement[0] >= params.max_no_improvement) {
  17893. return GGML_OPT_RESULT_OK;
  17894. }
  17895. }
  17896. }
  17897. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  17898. // reached the maximum number of iterations
  17899. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17900. }
  17901. // update vectors s and y:
  17902. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  17903. // y_{k+1} = g_{k+1} - g_{k}.
  17904. //
  17905. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  17906. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  17907. // compute scalars ys and yy:
  17908. // ys = y^t \cdot s -> 1 / \rho.
  17909. // yy = y^t \cdot y.
  17910. //
  17911. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  17912. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  17913. lm_ys[end[0]] = ys;
  17914. // find new search direction
  17915. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  17916. bound = (m <= k[0]) ? m : k[0];
  17917. k[0]++;
  17918. it++;
  17919. end[0] = (end[0] + 1)%m;
  17920. // initialize search direction with -g
  17921. ggml_vec_neg_f32(nx, d, g);
  17922. j[0] = end[0];
  17923. for (int i = 0; i < bound; ++i) {
  17924. j[0] = (j[0] + m - 1) % m;
  17925. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  17926. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  17927. lm_alpha[j[0]] /= lm_ys[j[0]];
  17928. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  17929. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  17930. }
  17931. ggml_vec_scale_f32(nx, d, ys/yy);
  17932. for (int i = 0; i < bound; ++i) {
  17933. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  17934. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  17935. beta /= lm_ys[j[0]];
  17936. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  17937. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  17938. j[0] = (j[0] + 1)%m;
  17939. }
  17940. step[0] = 1.0;
  17941. }
  17942. GGML_ASSERT(false && "lbfgs failed");
  17943. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17944. }
  17945. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  17946. struct ggml_opt_params result;
  17947. switch (type) {
  17948. case GGML_OPT_TYPE_ADAM:
  17949. {
  17950. result = (struct ggml_opt_params) {
  17951. .type = GGML_OPT_TYPE_ADAM,
  17952. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17953. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  17954. .past = 0,
  17955. .delta = 1e-5f,
  17956. .max_no_improvement = 100,
  17957. .print_forward_graph = true,
  17958. .print_backward_graph = true,
  17959. .n_gradient_accumulation = 1,
  17960. .adam = {
  17961. .n_iter = 10000,
  17962. .sched = 1.000f,
  17963. .decay = 0.0f,
  17964. .decay_min_ndim = 2,
  17965. .alpha = 0.001f,
  17966. .beta1 = 0.9f,
  17967. .beta2 = 0.999f,
  17968. .eps = 1e-8f,
  17969. .eps_f = 1e-5f,
  17970. .eps_g = 1e-3f,
  17971. .gclip = 0.0f,
  17972. },
  17973. };
  17974. } break;
  17975. case GGML_OPT_TYPE_LBFGS:
  17976. {
  17977. result = (struct ggml_opt_params) {
  17978. .type = GGML_OPT_TYPE_LBFGS,
  17979. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17980. .n_threads = 1,
  17981. .past = 0,
  17982. .delta = 1e-5f,
  17983. .max_no_improvement = 0,
  17984. .print_forward_graph = true,
  17985. .print_backward_graph = true,
  17986. .n_gradient_accumulation = 1,
  17987. .lbfgs = {
  17988. .m = 6,
  17989. .n_iter = 100,
  17990. .max_linesearch = 20,
  17991. .eps = 1e-5f,
  17992. .ftol = 1e-4f,
  17993. .wolfe = 0.9f,
  17994. .min_step = 1e-20f,
  17995. .max_step = 1e+20f,
  17996. .linesearch = GGML_LINESEARCH_DEFAULT,
  17997. },
  17998. };
  17999. } break;
  18000. }
  18001. return result;
  18002. }
  18003. GGML_API void ggml_opt_init(
  18004. struct ggml_context * ctx,
  18005. struct ggml_opt_context * opt,
  18006. struct ggml_opt_params params,
  18007. int64_t nx) {
  18008. opt->ctx = ctx;
  18009. opt->params = params;
  18010. opt->iter = 0;
  18011. opt->nx = nx;
  18012. opt->just_initialized = true;
  18013. if (opt->ctx == NULL) {
  18014. struct ggml_init_params ctx_opt_params;
  18015. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  18016. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  18017. if (opt->params.past > 0) {
  18018. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  18019. }
  18020. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  18021. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  18022. if (opt->params.past > 0) {
  18023. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  18024. }
  18025. }
  18026. ctx_opt_params.mem_buffer = NULL;
  18027. ctx_opt_params.no_alloc = false;
  18028. opt->ctx = ggml_init(ctx_opt_params);
  18029. }
  18030. switch (opt->params.type) {
  18031. case GGML_OPT_TYPE_ADAM:
  18032. {
  18033. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  18034. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  18035. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  18036. opt->adam.pf = params.past > 0
  18037. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  18038. : NULL;
  18039. ggml_set_zero(opt->adam.m);
  18040. ggml_set_zero(opt->adam.v);
  18041. if (opt->adam.pf) {
  18042. ggml_set_zero(opt->adam.pf);
  18043. }
  18044. } break;
  18045. case GGML_OPT_TYPE_LBFGS:
  18046. {
  18047. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  18048. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  18049. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  18050. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  18051. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  18052. opt->lbfgs.pf = params.past > 0
  18053. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  18054. : NULL;
  18055. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  18056. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  18057. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  18058. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  18059. ggml_set_zero(opt->lbfgs.x);
  18060. ggml_set_zero(opt->lbfgs.xp);
  18061. ggml_set_zero(opt->lbfgs.g);
  18062. ggml_set_zero(opt->lbfgs.gp);
  18063. ggml_set_zero(opt->lbfgs.d);
  18064. if (opt->lbfgs.pf) {
  18065. ggml_set_zero(opt->lbfgs.pf);
  18066. }
  18067. ggml_set_zero(opt->lbfgs.lmal);
  18068. ggml_set_zero(opt->lbfgs.lmys);
  18069. ggml_set_zero(opt->lbfgs.lms);
  18070. ggml_set_zero(opt->lbfgs.lmy);
  18071. } break;
  18072. }
  18073. }
  18074. enum ggml_opt_result ggml_opt(
  18075. struct ggml_context * ctx,
  18076. struct ggml_opt_params params,
  18077. struct ggml_tensor * f) {
  18078. bool free_ctx = false;
  18079. if (ctx == NULL) {
  18080. struct ggml_init_params params_ctx = {
  18081. .mem_size = 16*1024*1024,
  18082. .mem_buffer = NULL,
  18083. .no_alloc = false,
  18084. };
  18085. ctx = ggml_init(params_ctx);
  18086. if (ctx == NULL) {
  18087. return GGML_OPT_RESULT_NO_CONTEXT;
  18088. }
  18089. free_ctx = true;
  18090. }
  18091. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  18092. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  18093. ggml_opt_init(ctx, opt, params, 0);
  18094. result = ggml_opt_resume(ctx, opt, f);
  18095. if (free_ctx) {
  18096. ggml_free(ctx);
  18097. }
  18098. return result;
  18099. }
  18100. enum ggml_opt_result ggml_opt_resume(
  18101. struct ggml_context * ctx,
  18102. struct ggml_opt_context * opt,
  18103. struct ggml_tensor * f) {
  18104. // build forward + backward compute graphs
  18105. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  18106. ggml_build_forward_expand(gf, f);
  18107. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  18108. ggml_build_backward_expand(ctx, gf, gb, true);
  18109. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  18110. }
  18111. enum ggml_opt_result ggml_opt_resume_g(
  18112. struct ggml_context * ctx,
  18113. struct ggml_opt_context * opt,
  18114. struct ggml_tensor * f,
  18115. struct ggml_cgraph * gf,
  18116. struct ggml_cgraph * gb,
  18117. ggml_opt_callback callback,
  18118. void * callback_data) {
  18119. // build forward + backward compute graphs
  18120. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  18121. switch (opt->params.type) {
  18122. case GGML_OPT_TYPE_ADAM:
  18123. {
  18124. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  18125. } break;
  18126. case GGML_OPT_TYPE_LBFGS:
  18127. {
  18128. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  18129. } break;
  18130. }
  18131. if (opt->params.print_forward_graph) {
  18132. ggml_graph_print (gf);
  18133. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  18134. }
  18135. if (opt->params.print_backward_graph) {
  18136. ggml_graph_print (gb);
  18137. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  18138. }
  18139. return result;
  18140. }
  18141. ////////////////////////////////////////////////////////////////////////////////
  18142. void ggml_set_input(struct ggml_tensor * tensor) {
  18143. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  18144. }
  18145. void ggml_set_output(struct ggml_tensor * tensor) {
  18146. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  18147. }
  18148. ////////////////////////////////////////////////////////////////////////////////
  18149. void ggml_quantize_init(enum ggml_type type) {
  18150. ggml_critical_section_start();
  18151. switch (type) {
  18152. case GGML_TYPE_IQ2_XXS:
  18153. case GGML_TYPE_IQ2_XS:
  18154. case GGML_TYPE_IQ2_S:
  18155. case GGML_TYPE_IQ1_S:
  18156. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  18157. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  18158. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  18159. default: // nothing
  18160. break;
  18161. }
  18162. ggml_critical_section_end();
  18163. }
  18164. void ggml_quantize_free(void) {
  18165. ggml_critical_section_start();
  18166. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  18167. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  18168. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  18169. iq3xs_free_impl(256);
  18170. ggml_critical_section_end();
  18171. }
  18172. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  18173. return
  18174. type == GGML_TYPE_IQ2_XXS ||
  18175. type == GGML_TYPE_IQ2_XS ||
  18176. type == GGML_TYPE_IQ1_S;// ||
  18177. //type == GGML_TYPE_IQ1_M;
  18178. }
  18179. size_t ggml_quantize_chunk(
  18180. enum ggml_type type,
  18181. const float * src,
  18182. void * dst,
  18183. int64_t start,
  18184. int64_t nrows,
  18185. int64_t n_per_row,
  18186. const float * imatrix) {
  18187. const int64_t n = (int64_t) nrows * n_per_row;
  18188. if (ggml_quantize_requires_imatrix(type)) {
  18189. GGML_ASSERT(imatrix != NULL);
  18190. }
  18191. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  18192. GGML_ASSERT(start % n_per_row == 0);
  18193. ggml_quantize_init(type); // this is noop if already initialized
  18194. const size_t start_row = start / n_per_row;
  18195. const size_t row_size = ggml_row_size(type, n_per_row);
  18196. size_t result = 0;
  18197. switch (type) {
  18198. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18199. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18200. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18201. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18202. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18203. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18204. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18205. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18206. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18207. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18208. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18209. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18210. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18211. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18212. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18213. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18214. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18215. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18216. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18217. case GGML_TYPE_F16:
  18218. {
  18219. size_t elemsize = sizeof(ggml_fp16_t);
  18220. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  18221. result = n * elemsize;
  18222. } break;
  18223. case GGML_TYPE_BF16:
  18224. {
  18225. size_t elemsize = sizeof(ggml_bf16_t);
  18226. ggml_fp32_to_bf16_row(src + start, (ggml_bf16_t *)dst + start, n);
  18227. result = n * elemsize;
  18228. } break;
  18229. case GGML_TYPE_F32:
  18230. {
  18231. size_t elemsize = sizeof(float);
  18232. result = n * elemsize;
  18233. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  18234. } break;
  18235. default:
  18236. assert(false);
  18237. }
  18238. GGML_ASSERT(result == nrows * row_size);
  18239. return result;
  18240. }
  18241. ////////////////////////////////////////////////////////////////////////////////
  18242. struct gguf_str {
  18243. uint64_t n; // GGUFv2
  18244. char * data;
  18245. };
  18246. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  18247. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  18248. [GGUF_TYPE_INT8] = sizeof(int8_t),
  18249. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  18250. [GGUF_TYPE_INT16] = sizeof(int16_t),
  18251. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  18252. [GGUF_TYPE_INT32] = sizeof(int32_t),
  18253. [GGUF_TYPE_FLOAT32] = sizeof(float),
  18254. [GGUF_TYPE_BOOL] = sizeof(bool),
  18255. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  18256. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  18257. [GGUF_TYPE_INT64] = sizeof(int64_t),
  18258. [GGUF_TYPE_FLOAT64] = sizeof(double),
  18259. [GGUF_TYPE_ARRAY] = 0, // undefined
  18260. };
  18261. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  18262. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  18263. [GGUF_TYPE_UINT8] = "u8",
  18264. [GGUF_TYPE_INT8] = "i8",
  18265. [GGUF_TYPE_UINT16] = "u16",
  18266. [GGUF_TYPE_INT16] = "i16",
  18267. [GGUF_TYPE_UINT32] = "u32",
  18268. [GGUF_TYPE_INT32] = "i32",
  18269. [GGUF_TYPE_FLOAT32] = "f32",
  18270. [GGUF_TYPE_BOOL] = "bool",
  18271. [GGUF_TYPE_STRING] = "str",
  18272. [GGUF_TYPE_ARRAY] = "arr",
  18273. [GGUF_TYPE_UINT64] = "u64",
  18274. [GGUF_TYPE_INT64] = "i64",
  18275. [GGUF_TYPE_FLOAT64] = "f64",
  18276. };
  18277. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  18278. union gguf_value {
  18279. uint8_t uint8;
  18280. int8_t int8;
  18281. uint16_t uint16;
  18282. int16_t int16;
  18283. uint32_t uint32;
  18284. int32_t int32;
  18285. float float32;
  18286. uint64_t uint64;
  18287. int64_t int64;
  18288. double float64;
  18289. bool bool_;
  18290. struct gguf_str str;
  18291. struct {
  18292. enum gguf_type type;
  18293. uint64_t n; // GGUFv2
  18294. void * data;
  18295. } arr;
  18296. };
  18297. struct gguf_kv {
  18298. struct gguf_str key;
  18299. enum gguf_type type;
  18300. union gguf_value value;
  18301. };
  18302. struct gguf_header {
  18303. char magic[4];
  18304. uint32_t version;
  18305. uint64_t n_tensors; // GGUFv2
  18306. uint64_t n_kv; // GGUFv2
  18307. };
  18308. struct gguf_tensor_info {
  18309. struct gguf_str name;
  18310. uint32_t n_dims;
  18311. uint64_t ne[GGML_MAX_DIMS];
  18312. enum ggml_type type;
  18313. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  18314. // for writing API
  18315. const void * data;
  18316. size_t size;
  18317. };
  18318. struct gguf_context {
  18319. struct gguf_header header;
  18320. struct gguf_kv * kv;
  18321. struct gguf_tensor_info * infos;
  18322. size_t alignment;
  18323. size_t offset; // offset of `data` from beginning of file
  18324. size_t size; // size of `data` in bytes
  18325. //uint8_t * padding;
  18326. void * data;
  18327. };
  18328. static size_t gguf_type_size(enum gguf_type type) {
  18329. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  18330. return GGUF_TYPE_SIZE[type];
  18331. }
  18332. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  18333. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  18334. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  18335. for (uint32_t i = 0; i < info->n_dims; ++i) {
  18336. GGML_ASSERT(info->ne[i] > 0);
  18337. }
  18338. // prevent overflow for total number of elements
  18339. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  18340. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  18341. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  18342. }
  18343. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  18344. const size_t n = fread(dst, 1, size, file);
  18345. *offset += n;
  18346. return n == size;
  18347. }
  18348. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  18349. p->n = 0;
  18350. p->data = NULL;
  18351. bool ok = true;
  18352. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  18353. // early exit if string length is invalid, prevents from integer overflow
  18354. if (p->n == SIZE_MAX) {
  18355. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  18356. return false;
  18357. }
  18358. p->data = GGML_CALLOC(p->n + 1, 1);
  18359. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  18360. return ok;
  18361. }
  18362. static void gguf_free_kv(struct gguf_kv * kv) {
  18363. if (kv->key.data) {
  18364. GGML_FREE(kv->key.data);
  18365. }
  18366. if (kv->type == GGUF_TYPE_STRING) {
  18367. if (kv->value.str.data) {
  18368. GGML_FREE(kv->value.str.data);
  18369. }
  18370. }
  18371. if (kv->type == GGUF_TYPE_ARRAY) {
  18372. if (kv->value.arr.data) {
  18373. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  18374. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  18375. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  18376. if (str->data) {
  18377. GGML_FREE(str->data);
  18378. }
  18379. }
  18380. }
  18381. GGML_FREE(kv->value.arr.data);
  18382. }
  18383. }
  18384. }
  18385. struct gguf_context * gguf_init_empty(void) {
  18386. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  18387. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  18388. ctx->header.version = GGUF_VERSION;
  18389. ctx->header.n_tensors = 0;
  18390. ctx->header.n_kv = 0;
  18391. ctx->kv = NULL;
  18392. ctx->infos = NULL;
  18393. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  18394. ctx->offset = 0;
  18395. ctx->size = 0;
  18396. ctx->data = NULL;
  18397. return ctx;
  18398. }
  18399. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  18400. FILE * file = ggml_fopen(fname, "rb");
  18401. if (!file) {
  18402. return NULL;
  18403. }
  18404. // offset from start of file
  18405. size_t offset = 0;
  18406. char magic[4];
  18407. // check the magic before making allocations
  18408. {
  18409. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  18410. for (uint32_t i = 0; i < sizeof(magic); i++) {
  18411. if (magic[i] != GGUF_MAGIC[i]) {
  18412. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  18413. fclose(file);
  18414. return NULL;
  18415. }
  18416. }
  18417. }
  18418. bool ok = true;
  18419. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  18420. // read the header
  18421. {
  18422. strncpy(ctx->header.magic, magic, 4);
  18423. ctx->kv = NULL;
  18424. ctx->infos = NULL;
  18425. ctx->data = NULL;
  18426. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  18427. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  18428. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  18429. if (ctx->header.version == 1) {
  18430. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  18431. fclose(file);
  18432. gguf_free(ctx);
  18433. return NULL;
  18434. }
  18435. // sanity-checks to prevent from integer/buffer overflows
  18436. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  18437. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  18438. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  18439. if (!ok) {
  18440. fprintf(stderr, "%s: failed to read header\n", __func__);
  18441. fclose(file);
  18442. gguf_free(ctx);
  18443. return NULL;
  18444. }
  18445. }
  18446. // read the kv pairs
  18447. {
  18448. const uint64_t n_kv = ctx->header.n_kv;
  18449. // header.n_kv will hold the actual value of pairs that were successfully read in the loop below
  18450. ctx->header.n_kv = 0;
  18451. ctx->kv = GGML_CALLOC(n_kv, sizeof(struct gguf_kv));
  18452. for (uint64_t i = 0; i < n_kv; ++i) {
  18453. struct gguf_kv * kv = &ctx->kv[i];
  18454. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  18455. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  18456. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  18457. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  18458. switch (kv->type) {
  18459. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  18460. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  18461. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  18462. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  18463. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  18464. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  18465. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  18466. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  18467. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  18468. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  18469. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  18470. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  18471. case GGUF_TYPE_ARRAY:
  18472. {
  18473. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  18474. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  18475. switch (kv->value.arr.type) {
  18476. case GGUF_TYPE_UINT8:
  18477. case GGUF_TYPE_INT8:
  18478. case GGUF_TYPE_UINT16:
  18479. case GGUF_TYPE_INT16:
  18480. case GGUF_TYPE_UINT32:
  18481. case GGUF_TYPE_INT32:
  18482. case GGUF_TYPE_FLOAT32:
  18483. case GGUF_TYPE_UINT64:
  18484. case GGUF_TYPE_INT64:
  18485. case GGUF_TYPE_FLOAT64:
  18486. case GGUF_TYPE_BOOL:
  18487. {
  18488. // prevent from integer overflow in the malloc below
  18489. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  18490. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  18491. fclose(file);
  18492. gguf_free(ctx);
  18493. return NULL;
  18494. }
  18495. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
  18496. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  18497. } break;
  18498. case GGUF_TYPE_STRING:
  18499. {
  18500. // prevent from integer overflow in the malloc below
  18501. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  18502. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  18503. fclose(file);
  18504. gguf_free(ctx);
  18505. return NULL;
  18506. }
  18507. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, sizeof(struct gguf_str));
  18508. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  18509. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  18510. }
  18511. } break;
  18512. case GGUF_TYPE_ARRAY:
  18513. default: GGML_ASSERT(false && "invalid type"); break;
  18514. }
  18515. } break;
  18516. default: GGML_ASSERT(false && "invalid type");
  18517. }
  18518. if (!ok) {
  18519. break;
  18520. }
  18521. ctx->header.n_kv++;
  18522. }
  18523. if (!ok) {
  18524. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  18525. fclose(file);
  18526. gguf_free(ctx);
  18527. return NULL;
  18528. }
  18529. }
  18530. // read the tensor infos
  18531. if (ctx->header.n_tensors > 0) {
  18532. ctx->infos = GGML_CALLOC(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
  18533. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18534. struct gguf_tensor_info * info = &ctx->infos[i];
  18535. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  18536. info->ne[j] = 1;
  18537. }
  18538. ok = ok && gguf_fread_str(file, &info->name, &offset);
  18539. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  18540. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  18541. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18542. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  18543. }
  18544. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  18545. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  18546. // TODO: return an error instead of crashing with GGML_ASSERT
  18547. gguf_tensor_info_sanitize(info);
  18548. // make sure there is no duplicated tensor names
  18549. for (uint64_t j = 0; j < i; ++j) {
  18550. if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
  18551. fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
  18552. ok = false;
  18553. }
  18554. }
  18555. if (!ok) {
  18556. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  18557. fclose(file);
  18558. gguf_free(ctx);
  18559. return NULL;
  18560. }
  18561. }
  18562. }
  18563. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  18564. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  18565. if (alignment_idx != -1) {
  18566. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  18567. }
  18568. // we require the data section to be aligned, so take into account any padding
  18569. {
  18570. const size_t offset_pad = offset % ctx->alignment;
  18571. if (offset_pad != 0) {
  18572. offset += ctx->alignment - offset_pad;
  18573. fseek(file, offset, SEEK_SET);
  18574. }
  18575. }
  18576. // store the current file offset - this is where the data section starts
  18577. ctx->offset = offset;
  18578. // compute the total size of the data section, taking into account the alignment
  18579. {
  18580. ctx->size = 0;
  18581. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18582. struct gguf_tensor_info * info = &ctx->infos[i];
  18583. const int64_t ne =
  18584. (int64_t) info->ne[0] *
  18585. (int64_t) info->ne[1] *
  18586. (int64_t) info->ne[2] *
  18587. (int64_t) info->ne[3];
  18588. if (ne % ggml_blck_size(info->type) != 0) {
  18589. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  18590. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  18591. fclose(file);
  18592. gguf_free(ctx);
  18593. return NULL;
  18594. }
  18595. const size_t size_cur = ggml_row_size(info->type, ne);
  18596. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  18597. }
  18598. }
  18599. // load the tensor data only if requested
  18600. if (params.ctx != NULL) {
  18601. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  18602. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  18603. // the ggml_tensor structs to the appropriate locations in the binary blob
  18604. // compute the exact size needed for the new ggml_context
  18605. const size_t mem_size =
  18606. params.no_alloc ?
  18607. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  18608. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  18609. struct ggml_init_params pdata = {
  18610. .mem_size = mem_size,
  18611. .mem_buffer = NULL,
  18612. .no_alloc = params.no_alloc,
  18613. };
  18614. *params.ctx = ggml_init(pdata);
  18615. struct ggml_context * ctx_data = *params.ctx;
  18616. struct ggml_tensor * data = NULL;
  18617. if (!params.no_alloc) {
  18618. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  18619. ok = ok && data != NULL;
  18620. // read the binary blob with the tensor data
  18621. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  18622. if (!ok) {
  18623. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  18624. fclose(file);
  18625. ggml_free(ctx_data);
  18626. gguf_free(ctx);
  18627. return NULL;
  18628. }
  18629. ctx->data = data->data;
  18630. }
  18631. ggml_set_no_alloc(ctx_data, true);
  18632. // create the tensors
  18633. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18634. const int64_t ne[GGML_MAX_DIMS] = {
  18635. ctx->infos[i].ne[0],
  18636. ctx->infos[i].ne[1],
  18637. ctx->infos[i].ne[2],
  18638. ctx->infos[i].ne[3],
  18639. };
  18640. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  18641. ok = ok && cur != NULL;
  18642. if (!ok) {
  18643. break;
  18644. }
  18645. ggml_set_name(cur, ctx->infos[i].name.data);
  18646. // point the data member to the appropriate location in the binary blob using the tensor infos
  18647. if (!params.no_alloc) {
  18648. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  18649. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  18650. }
  18651. }
  18652. if (!ok) {
  18653. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  18654. fclose(file);
  18655. ggml_free(ctx_data);
  18656. gguf_free(ctx);
  18657. return NULL;
  18658. }
  18659. ggml_set_no_alloc(ctx_data, params.no_alloc);
  18660. }
  18661. fclose(file);
  18662. return ctx;
  18663. }
  18664. void gguf_free(struct gguf_context * ctx) {
  18665. if (ctx == NULL) {
  18666. return;
  18667. }
  18668. if (ctx->kv) {
  18669. // free string memory - not great..
  18670. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  18671. gguf_free_kv(&ctx->kv[i]);
  18672. }
  18673. GGML_FREE(ctx->kv);
  18674. }
  18675. if (ctx->infos) {
  18676. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18677. struct gguf_tensor_info * info = &ctx->infos[i];
  18678. if (info->name.data) {
  18679. GGML_FREE(info->name.data);
  18680. }
  18681. }
  18682. GGML_FREE(ctx->infos);
  18683. }
  18684. GGML_FREE(ctx);
  18685. }
  18686. const char * gguf_type_name(enum gguf_type type) {
  18687. return GGUF_TYPE_NAME[type];
  18688. }
  18689. int gguf_get_version(const struct gguf_context * ctx) {
  18690. return ctx->header.version;
  18691. }
  18692. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  18693. return ctx->alignment;
  18694. }
  18695. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  18696. return ctx->offset;
  18697. }
  18698. void * gguf_get_data(const struct gguf_context * ctx) {
  18699. return ctx->data;
  18700. }
  18701. int gguf_get_n_kv(const struct gguf_context * ctx) {
  18702. return ctx->header.n_kv;
  18703. }
  18704. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  18705. // return -1 if key not found
  18706. int keyfound = -1;
  18707. const int n_kv = gguf_get_n_kv(ctx);
  18708. for (int i = 0; i < n_kv; ++i) {
  18709. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  18710. keyfound = i;
  18711. break;
  18712. }
  18713. }
  18714. return keyfound;
  18715. }
  18716. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  18717. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18718. return ctx->kv[key_id].key.data;
  18719. }
  18720. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  18721. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18722. return ctx->kv[key_id].type;
  18723. }
  18724. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  18725. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18726. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18727. return ctx->kv[key_id].value.arr.type;
  18728. }
  18729. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  18730. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18731. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18732. return ctx->kv[key_id].value.arr.data;
  18733. }
  18734. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  18735. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18736. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18737. struct gguf_kv * kv = &ctx->kv[key_id];
  18738. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  18739. return str->data;
  18740. }
  18741. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  18742. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18743. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18744. return ctx->kv[key_id].value.arr.n;
  18745. }
  18746. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  18747. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18748. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  18749. return ctx->kv[key_id].value.uint8;
  18750. }
  18751. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  18752. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18753. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  18754. return ctx->kv[key_id].value.int8;
  18755. }
  18756. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  18757. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18758. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  18759. return ctx->kv[key_id].value.uint16;
  18760. }
  18761. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  18762. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18763. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  18764. return ctx->kv[key_id].value.int16;
  18765. }
  18766. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  18767. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18768. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  18769. return ctx->kv[key_id].value.uint32;
  18770. }
  18771. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  18772. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18773. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  18774. return ctx->kv[key_id].value.int32;
  18775. }
  18776. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  18777. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18778. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  18779. return ctx->kv[key_id].value.float32;
  18780. }
  18781. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  18782. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18783. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  18784. return ctx->kv[key_id].value.uint64;
  18785. }
  18786. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  18787. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18788. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  18789. return ctx->kv[key_id].value.int64;
  18790. }
  18791. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  18792. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18793. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  18794. return ctx->kv[key_id].value.float64;
  18795. }
  18796. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  18797. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18798. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  18799. return ctx->kv[key_id].value.bool_;
  18800. }
  18801. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  18802. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18803. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  18804. return ctx->kv[key_id].value.str.data;
  18805. }
  18806. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  18807. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18808. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  18809. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  18810. return &ctx->kv[key_id].value;
  18811. }
  18812. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  18813. return ctx->header.n_tensors;
  18814. }
  18815. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  18816. // return -1 if tensor not found
  18817. int tensorfound = -1;
  18818. const int n_tensors = gguf_get_n_tensors(ctx);
  18819. for (int i = 0; i < n_tensors; ++i) {
  18820. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  18821. tensorfound = i;
  18822. break;
  18823. }
  18824. }
  18825. return tensorfound;
  18826. }
  18827. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  18828. return ctx->infos[i].offset;
  18829. }
  18830. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  18831. return ctx->infos[i].name.data;
  18832. }
  18833. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  18834. return ctx->infos[i].type;
  18835. }
  18836. // returns the index
  18837. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  18838. const int idx = gguf_find_key(ctx, key);
  18839. if (idx >= 0) {
  18840. return idx;
  18841. }
  18842. const int n_kv = gguf_get_n_kv(ctx);
  18843. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  18844. ctx->kv[n_kv].key.n = strlen(key);
  18845. ctx->kv[n_kv].key.data = strdup(key);
  18846. ctx->header.n_kv++;
  18847. return n_kv;
  18848. }
  18849. void gguf_remove_key(struct gguf_context * ctx, const char * key) {
  18850. const int idx = gguf_find_key(ctx, key);
  18851. if (idx >= 0) {
  18852. const int n_kv = gguf_get_n_kv(ctx);
  18853. gguf_free_kv(&ctx->kv[idx]);
  18854. for (int i = idx; i < n_kv-1; ++i) {
  18855. ctx->kv[i] = ctx->kv[i+1];
  18856. }
  18857. ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
  18858. ctx->header.n_kv--;
  18859. }
  18860. }
  18861. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  18862. const int idx = gguf_get_or_add_key(ctx, key);
  18863. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  18864. ctx->kv[idx].value.uint8 = val;
  18865. }
  18866. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  18867. const int idx = gguf_get_or_add_key(ctx, key);
  18868. ctx->kv[idx].type = GGUF_TYPE_INT8;
  18869. ctx->kv[idx].value.int8 = val;
  18870. }
  18871. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  18872. const int idx = gguf_get_or_add_key(ctx, key);
  18873. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  18874. ctx->kv[idx].value.uint16 = val;
  18875. }
  18876. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  18877. const int idx = gguf_get_or_add_key(ctx, key);
  18878. ctx->kv[idx].type = GGUF_TYPE_INT16;
  18879. ctx->kv[idx].value.int16 = val;
  18880. }
  18881. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  18882. const int idx = gguf_get_or_add_key(ctx, key);
  18883. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  18884. ctx->kv[idx].value.uint32 = val;
  18885. }
  18886. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  18887. const int idx = gguf_get_or_add_key(ctx, key);
  18888. ctx->kv[idx].type = GGUF_TYPE_INT32;
  18889. ctx->kv[idx].value.int32 = val;
  18890. }
  18891. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  18892. const int idx = gguf_get_or_add_key(ctx, key);
  18893. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  18894. ctx->kv[idx].value.float32 = val;
  18895. }
  18896. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  18897. const int idx = gguf_get_or_add_key(ctx, key);
  18898. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  18899. ctx->kv[idx].value.uint64 = val;
  18900. }
  18901. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  18902. const int idx = gguf_get_or_add_key(ctx, key);
  18903. ctx->kv[idx].type = GGUF_TYPE_INT64;
  18904. ctx->kv[idx].value.int64 = val;
  18905. }
  18906. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  18907. const int idx = gguf_get_or_add_key(ctx, key);
  18908. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  18909. ctx->kv[idx].value.float64 = val;
  18910. }
  18911. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  18912. const int idx = gguf_get_or_add_key(ctx, key);
  18913. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  18914. ctx->kv[idx].value.bool_ = val;
  18915. }
  18916. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  18917. const int idx = gguf_get_or_add_key(ctx, key);
  18918. ctx->kv[idx].type = GGUF_TYPE_STRING;
  18919. ctx->kv[idx].value.str.n = strlen(val);
  18920. ctx->kv[idx].value.str.data = strdup(val);
  18921. }
  18922. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  18923. const int idx = gguf_get_or_add_key(ctx, key);
  18924. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18925. ctx->kv[idx].value.arr.type = type;
  18926. ctx->kv[idx].value.arr.n = n;
  18927. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
  18928. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  18929. }
  18930. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  18931. const int idx = gguf_get_or_add_key(ctx, key);
  18932. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18933. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  18934. ctx->kv[idx].value.arr.n = n;
  18935. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
  18936. for (int i = 0; i < n; i++) {
  18937. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  18938. str->n = strlen(data[i]);
  18939. str->data = strdup(data[i]);
  18940. }
  18941. }
  18942. // set or add KV pairs from another context
  18943. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  18944. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  18945. switch (src->kv[i].type) {
  18946. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  18947. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  18948. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  18949. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  18950. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  18951. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  18952. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  18953. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  18954. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  18955. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  18956. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  18957. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  18958. case GGUF_TYPE_ARRAY:
  18959. {
  18960. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  18961. const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
  18962. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  18963. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  18964. }
  18965. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  18966. GGML_FREE((void *)data);
  18967. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  18968. GGML_ASSERT(false && "nested arrays not supported");
  18969. } else {
  18970. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  18971. }
  18972. } break;
  18973. default: GGML_ASSERT(false && "invalid type"); break;
  18974. }
  18975. }
  18976. }
  18977. void gguf_add_tensor(
  18978. struct gguf_context * ctx,
  18979. const struct ggml_tensor * tensor) {
  18980. if (gguf_find_tensor(ctx, tensor->name) != -1) {
  18981. GGML_ASSERT(false && "duplicated tensor name");
  18982. }
  18983. const int idx = ctx->header.n_tensors;
  18984. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  18985. ctx->infos[idx].name.n = strlen(tensor->name);
  18986. ctx->infos[idx].name.data = strdup(tensor->name);
  18987. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  18988. ctx->infos[idx].ne[i] = 1;
  18989. }
  18990. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  18991. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  18992. ctx->infos[idx].ne[i] = tensor->ne[i];
  18993. }
  18994. ctx->infos[idx].type = tensor->type;
  18995. ctx->infos[idx].offset = 0;
  18996. ctx->infos[idx].data = tensor->data;
  18997. ctx->infos[idx].size = ggml_nbytes(tensor);
  18998. if (ctx->header.n_tensors > 0) {
  18999. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  19000. }
  19001. ctx->header.n_tensors++;
  19002. }
  19003. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  19004. const int idx = gguf_find_tensor(ctx, name);
  19005. if (idx < 0) {
  19006. GGML_ASSERT(false && "tensor not found");
  19007. }
  19008. ctx->infos[idx].type = type;
  19009. }
  19010. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  19011. const int idx = gguf_find_tensor(ctx, name);
  19012. if (idx < 0) {
  19013. GGML_ASSERT(false && "tensor not found");
  19014. }
  19015. ctx->infos[idx].data = data;
  19016. ctx->infos[idx].size = size;
  19017. // update offsets
  19018. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  19019. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  19020. }
  19021. }
  19022. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  19023. // fwrite(&val->n, sizeof(val->n), 1, file);
  19024. // fwrite(val->data, sizeof(char), val->n, file);
  19025. //}
  19026. //
  19027. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  19028. // fwrite(val, sizeof(char), size, file);
  19029. //}
  19030. struct gguf_buf {
  19031. void * data;
  19032. size_t size;
  19033. size_t offset;
  19034. };
  19035. static struct gguf_buf gguf_buf_init(size_t size) {
  19036. struct gguf_buf buf = {
  19037. /*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
  19038. /*buf.size =*/ size,
  19039. /*buf.offset =*/ 0,
  19040. };
  19041. return buf;
  19042. }
  19043. static void gguf_buf_free(struct gguf_buf buf) {
  19044. if (buf.data) {
  19045. GGML_FREE(buf.data);
  19046. }
  19047. }
  19048. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  19049. if (buf->offset + size > buf->size) {
  19050. buf->size = 1.5*(buf->offset + size);
  19051. if (buf->data) {
  19052. buf->data = realloc(buf->data, buf->size);
  19053. }
  19054. }
  19055. }
  19056. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  19057. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  19058. if (buf->data) {
  19059. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  19060. }
  19061. buf->offset += sizeof(val->n);
  19062. if (buf->data) {
  19063. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  19064. }
  19065. buf->offset += val->n;
  19066. }
  19067. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  19068. gguf_buf_grow(buf, el_size);
  19069. if (buf->data) {
  19070. memcpy((char *) buf->data + buf->offset, val, el_size);
  19071. }
  19072. buf->offset += el_size;
  19073. }
  19074. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  19075. // write header
  19076. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  19077. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  19078. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  19079. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  19080. // write key-value pairs
  19081. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  19082. struct gguf_kv * kv = &ctx->kv[i];
  19083. gguf_bwrite_str(buf, &kv->key);
  19084. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  19085. switch (kv->type) {
  19086. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  19087. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  19088. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  19089. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  19090. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  19091. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  19092. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  19093. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  19094. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  19095. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  19096. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  19097. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  19098. case GGUF_TYPE_ARRAY:
  19099. {
  19100. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  19101. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  19102. switch (kv->value.arr.type) {
  19103. case GGUF_TYPE_UINT8:
  19104. case GGUF_TYPE_INT8:
  19105. case GGUF_TYPE_UINT16:
  19106. case GGUF_TYPE_INT16:
  19107. case GGUF_TYPE_UINT32:
  19108. case GGUF_TYPE_INT32:
  19109. case GGUF_TYPE_FLOAT32:
  19110. case GGUF_TYPE_UINT64:
  19111. case GGUF_TYPE_INT64:
  19112. case GGUF_TYPE_FLOAT64:
  19113. case GGUF_TYPE_BOOL:
  19114. {
  19115. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  19116. } break;
  19117. case GGUF_TYPE_STRING:
  19118. {
  19119. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  19120. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  19121. }
  19122. } break;
  19123. case GGUF_TYPE_ARRAY:
  19124. default: GGML_ASSERT(false && "invalid type"); break;
  19125. }
  19126. } break;
  19127. default: GGML_ASSERT(false && "invalid type");
  19128. }
  19129. }
  19130. // write tensor infos
  19131. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  19132. struct gguf_tensor_info * info = &ctx->infos[i];
  19133. gguf_bwrite_str(buf, &info->name);
  19134. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  19135. for (uint32_t j = 0; j < info->n_dims; ++j) {
  19136. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  19137. }
  19138. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  19139. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  19140. }
  19141. // we require the data section to be aligned, so take into account any padding
  19142. {
  19143. const size_t offset = buf->offset;
  19144. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  19145. if (offset_pad != offset) {
  19146. uint8_t pad = 0;
  19147. for (size_t i = 0; i < offset_pad - offset; ++i) {
  19148. gguf_bwrite_el(buf, &pad, sizeof(pad));
  19149. }
  19150. }
  19151. }
  19152. if (only_meta) {
  19153. return;
  19154. }
  19155. size_t offset = 0;
  19156. // write tensor data
  19157. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  19158. struct gguf_tensor_info * info = &ctx->infos[i];
  19159. const size_t size = info->size;
  19160. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  19161. gguf_bwrite_el(buf, info->data, size);
  19162. if (size_pad != size) {
  19163. uint8_t pad = 0;
  19164. for (size_t j = 0; j < size_pad - size; ++j) {
  19165. gguf_bwrite_el(buf, &pad, sizeof(pad));
  19166. }
  19167. }
  19168. GGML_ASSERT(offset == info->offset);
  19169. offset += size_pad;
  19170. }
  19171. }
  19172. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  19173. FILE * file = ggml_fopen(fname, "wb");
  19174. if (!file) {
  19175. GGML_ASSERT(false && "failed to open file for writing");
  19176. }
  19177. struct gguf_buf buf = gguf_buf_init(16*1024);
  19178. gguf_write_to_buf(ctx, &buf, only_meta);
  19179. fwrite(buf.data, 1, buf.offset, file);
  19180. gguf_buf_free(buf);
  19181. fclose(file);
  19182. }
  19183. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  19184. // no allocs - only compute size
  19185. struct gguf_buf buf = gguf_buf_init(0);
  19186. gguf_write_to_buf(ctx, &buf, true);
  19187. return buf.offset;
  19188. }
  19189. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  19190. struct gguf_buf buf = gguf_buf_init(16*1024);
  19191. gguf_write_to_buf(ctx, &buf, true);
  19192. memcpy(data, buf.data, buf.offset);
  19193. gguf_buf_free(buf);
  19194. }
  19195. ////////////////////////////////////////////////////////////////////////////////
  19196. int ggml_cpu_has_avx(void) {
  19197. #if defined(__AVX__)
  19198. return 1;
  19199. #else
  19200. return 0;
  19201. #endif
  19202. }
  19203. int ggml_cpu_has_avx_vnni(void) {
  19204. #if defined(__AVXVNNI__)
  19205. return 1;
  19206. #else
  19207. return 0;
  19208. #endif
  19209. }
  19210. int ggml_cpu_has_avx2(void) {
  19211. #if defined(__AVX2__)
  19212. return 1;
  19213. #else
  19214. return 0;
  19215. #endif
  19216. }
  19217. int ggml_cpu_has_avx512(void) {
  19218. #if defined(__AVX512F__)
  19219. return 1;
  19220. #else
  19221. return 0;
  19222. #endif
  19223. }
  19224. int ggml_cpu_has_avx512_vbmi(void) {
  19225. #if defined(__AVX512VBMI__)
  19226. return 1;
  19227. #else
  19228. return 0;
  19229. #endif
  19230. }
  19231. int ggml_cpu_has_avx512_vnni(void) {
  19232. #if defined(__AVX512VNNI__)
  19233. return 1;
  19234. #else
  19235. return 0;
  19236. #endif
  19237. }
  19238. int ggml_cpu_has_avx512_bf16(void) {
  19239. #if defined(__AVX512BF16__)
  19240. return 1;
  19241. #else
  19242. return 0;
  19243. #endif
  19244. }
  19245. int ggml_cpu_has_fma(void) {
  19246. #if defined(__FMA__)
  19247. return 1;
  19248. #else
  19249. return 0;
  19250. #endif
  19251. }
  19252. int ggml_cpu_has_neon(void) {
  19253. #if defined(__ARM_NEON)
  19254. return 1;
  19255. #else
  19256. return 0;
  19257. #endif
  19258. }
  19259. int ggml_cpu_has_arm_fma(void) {
  19260. #if defined(__ARM_FEATURE_FMA)
  19261. return 1;
  19262. #else
  19263. return 0;
  19264. #endif
  19265. }
  19266. int ggml_cpu_has_metal(void) {
  19267. #if defined(GGML_USE_METAL)
  19268. return 1;
  19269. #else
  19270. return 0;
  19271. #endif
  19272. }
  19273. int ggml_cpu_has_f16c(void) {
  19274. #if defined(__F16C__)
  19275. return 1;
  19276. #else
  19277. return 0;
  19278. #endif
  19279. }
  19280. int ggml_cpu_has_fp16_va(void) {
  19281. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  19282. return 1;
  19283. #else
  19284. return 0;
  19285. #endif
  19286. }
  19287. int ggml_cpu_has_wasm_simd(void) {
  19288. #if defined(__wasm_simd128__)
  19289. return 1;
  19290. #else
  19291. return 0;
  19292. #endif
  19293. }
  19294. int ggml_cpu_has_blas(void) {
  19295. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  19296. return 1;
  19297. #else
  19298. return 0;
  19299. #endif
  19300. }
  19301. int ggml_cpu_has_cuda(void) {
  19302. #if defined(GGML_USE_CUDA)
  19303. return 1;
  19304. #else
  19305. return 0;
  19306. #endif
  19307. }
  19308. int ggml_cpu_has_clblast(void) {
  19309. #if defined(GGML_USE_CLBLAST)
  19310. return 1;
  19311. #else
  19312. return 0;
  19313. #endif
  19314. }
  19315. int ggml_cpu_has_vulkan(void) {
  19316. #if defined(GGML_USE_VULKAN)
  19317. return 1;
  19318. #else
  19319. return 0;
  19320. #endif
  19321. }
  19322. int ggml_cpu_has_kompute(void) {
  19323. #if defined(GGML_USE_KOMPUTE)
  19324. return 1;
  19325. #else
  19326. return 0;
  19327. #endif
  19328. }
  19329. int ggml_cpu_has_sycl(void) {
  19330. #if defined(GGML_USE_SYCL)
  19331. return 1;
  19332. #else
  19333. return 0;
  19334. #endif
  19335. }
  19336. int ggml_cpu_has_gpublas(void) {
  19337. return ggml_cpu_has_cuda() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  19338. ggml_cpu_has_sycl();
  19339. }
  19340. int ggml_cpu_has_sse3(void) {
  19341. #if defined(__SSE3__)
  19342. return 1;
  19343. #else
  19344. return 0;
  19345. #endif
  19346. }
  19347. int ggml_cpu_has_ssse3(void) {
  19348. #if defined(__SSSE3__)
  19349. return 1;
  19350. #else
  19351. return 0;
  19352. #endif
  19353. }
  19354. int ggml_cpu_has_vsx(void) {
  19355. #if defined(__POWER9_VECTOR__)
  19356. return 1;
  19357. #else
  19358. return 0;
  19359. #endif
  19360. }
  19361. int ggml_cpu_has_matmul_int8(void) {
  19362. #if defined(__ARM_FEATURE_MATMUL_INT8)
  19363. return 1;
  19364. #else
  19365. return 0;
  19366. #endif
  19367. }
  19368. ////////////////////////////////////////////////////////////////////////////////