common.h 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252
  1. // Various helper functions and utilities
  2. #pragma once
  3. #include "llama.h"
  4. #include "sampling.h"
  5. #define LOG_NO_FILE_LINE_FUNCTION
  6. #include "log.h"
  7. #include <cmath>
  8. #include <string>
  9. #include <vector>
  10. #include <random>
  11. #include <thread>
  12. #include <unordered_map>
  13. #include <tuple>
  14. #ifdef _WIN32
  15. #define DIRECTORY_SEPARATOR '\\'
  16. #else
  17. #define DIRECTORY_SEPARATOR '/'
  18. #endif // _WIN32
  19. #define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
  20. #define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
  21. #define print_build_info() do { \
  22. fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \
  23. fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
  24. } while(0)
  25. // build info
  26. extern int LLAMA_BUILD_NUMBER;
  27. extern char const *LLAMA_COMMIT;
  28. extern char const *LLAMA_COMPILER;
  29. extern char const *LLAMA_BUILD_TARGET;
  30. //
  31. // CLI argument parsing
  32. //
  33. int32_t get_num_physical_cores();
  34. struct gpt_params {
  35. uint32_t seed = -1; // RNG seed
  36. int32_t n_threads = get_num_physical_cores();
  37. int32_t n_threads_draft = -1;
  38. int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
  39. int32_t n_threads_batch_draft = -1;
  40. int32_t n_predict = -1; // new tokens to predict
  41. int32_t n_ctx = 512; // context size
  42. int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
  43. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  44. int32_t n_draft = 8; // number of tokens to draft during speculative decoding
  45. int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
  46. int32_t n_parallel = 1; // number of parallel sequences to decode
  47. int32_t n_sequences = 1; // number of sequences to decode
  48. float p_accept = 0.5f; // speculative decoding accept probability
  49. float p_split = 0.1f; // speculative decoding split probability
  50. int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
  51. int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
  52. llama_split_mode split_mode = LLAMA_SPLIT_LAYER; // how to split the model across GPUs
  53. int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
  54. float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
  55. int32_t n_beams = 0; // if non-zero then use beam search of given width.
  56. int32_t grp_attn_n = 1; // group-attention factor
  57. int32_t grp_attn_w = 512; // group-attention width
  58. int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
  59. float rope_freq_base = 0.0f; // RoPE base frequency
  60. float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
  61. float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
  62. float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
  63. float yarn_beta_fast = 32.0f; // YaRN low correction dim
  64. float yarn_beta_slow = 1.0f; // YaRN high correction dim
  65. int32_t yarn_orig_ctx = 0; // YaRN original context length
  66. int8_t rope_scaling_type = LLAMA_ROPE_SCALING_UNSPECIFIED; // TODO: better to be int32_t for alignment
  67. // pinging @cebtenzzre
  68. // // sampling parameters
  69. struct llama_sampling_params sparams;
  70. std::string model = "models/7B/ggml-model-f16.gguf"; // model path
  71. std::string model_draft = ""; // draft model for speculative decoding
  72. std::string model_alias = "unknown"; // model alias
  73. std::string prompt = "";
  74. std::string prompt_file = ""; // store the external prompt file name
  75. std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
  76. std::string input_prefix = ""; // string to prefix user inputs with
  77. std::string input_suffix = ""; // string to suffix user inputs with
  78. std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
  79. std::string logdir = ""; // directory in which to save YAML log files
  80. std::vector<llama_model_kv_override> kv_overrides;
  81. // TODO: avoid tuple, use struct
  82. std::vector<std::tuple<std::string, float>> lora_adapter; // lora adapter path with user defined scale
  83. std::string lora_base = ""; // base model path for the lora adapter
  84. int ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
  85. int ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
  86. // (which is more convenient to use for plotting)
  87. //
  88. bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
  89. size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
  90. bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt
  91. size_t winogrande_tasks= 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
  92. bool mul_mat_q = true; // if true, use mul_mat_q kernels instead of cuBLAS
  93. bool random_prompt = false; // do not randomize prompt if none provided
  94. bool use_color = false; // use color to distinguish generations and inputs
  95. bool interactive = false; // interactive mode
  96. bool chatml = false; // chatml mode (used for models trained on chatml syntax)
  97. bool prompt_cache_all = false; // save user input and generations to prompt cache
  98. bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
  99. bool embedding = false; // get only sentence embedding
  100. bool escape = false; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
  101. bool interactive_first = false; // wait for user input immediately
  102. bool multiline_input = false; // reverse the usage of `\`
  103. bool simple_io = false; // improves compatibility with subprocesses and limited consoles
  104. bool cont_batching = false; // insert new sequences for decoding on-the-fly
  105. bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
  106. bool ignore_eos = false; // ignore generated EOS tokens
  107. bool instruct = false; // instruction mode (used for Alpaca models)
  108. bool logits_all = false; // return logits for all tokens in the batch
  109. bool use_mmap = true; // use mmap for faster loads
  110. bool use_mlock = false; // use mlock to keep model in memory
  111. bool numa = false; // attempt optimizations that help on some NUMA systems
  112. bool verbose_prompt = false; // print prompt tokens before generation
  113. bool display_prompt = true; // print prompt before generation
  114. bool infill = false; // use infill mode
  115. bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
  116. bool no_kv_offload = false; // disable KV offloading
  117. std::string cache_type_k = "f16"; // KV cache data type for the K
  118. std::string cache_type_v = "f16"; // KV cache data type for the V
  119. // multimodal models (see examples/llava)
  120. std::string mmproj = ""; // path to multimodal projector
  121. std::string image = ""; // path to an image file
  122. };
  123. bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params);
  124. bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
  125. void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
  126. std::string get_system_info(const gpt_params & params);
  127. std::string gpt_random_prompt(std::mt19937 & rng);
  128. void process_escapes(std::string& input);
  129. //
  130. // String parsing
  131. //
  132. std::string parse_samplers_input(std::string input);
  133. //
  134. // Model utils
  135. //
  136. // TODO: avoid tuplue, use struct
  137. std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params);
  138. struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params);
  139. struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);
  140. // Batch utils
  141. void llama_batch_clear(struct llama_batch & batch);
  142. void llama_batch_add(
  143. struct llama_batch & batch,
  144. llama_token id,
  145. llama_pos pos,
  146. const std::vector<llama_seq_id> & seq_ids,
  147. bool logits);
  148. //
  149. // Vocab utils
  150. //
  151. // tokenizes a string into a vector of tokens
  152. // should work similar to Python's `tokenizer.encode`
  153. std::vector<llama_token> llama_tokenize(
  154. const struct llama_context * ctx,
  155. const std::string & text,
  156. bool add_bos,
  157. bool special = false);
  158. std::vector<llama_token> llama_tokenize(
  159. const struct llama_model * model,
  160. const std::string & text,
  161. bool add_bos,
  162. bool special = false);
  163. // tokenizes a token into a piece
  164. // should work similar to Python's `tokenizer.id_to_piece`
  165. std::string llama_token_to_piece(
  166. const struct llama_context * ctx,
  167. llama_token token);
  168. // TODO: these should be moved in llama.h C-style API under single `llama_detokenize` function
  169. // that takes into account the tokenizer type and decides how to handle the leading space
  170. //
  171. // detokenizes a vector of tokens into a string
  172. // should work similar to Python's `tokenizer.decode`
  173. // removes the leading space from the first non-BOS token
  174. std::string llama_detokenize_spm(
  175. llama_context * ctx,
  176. const std::vector<llama_token> & tokens);
  177. // detokenizes a vector of tokens into a string
  178. // should work similar to Python's `tokenizer.decode`
  179. std::string llama_detokenize_bpe(
  180. llama_context * ctx,
  181. const std::vector<llama_token> & tokens);
  182. // Uses the value from the model metadata if possible, otherwise
  183. // defaults to true when model type is SPM, otherwise false.
  184. bool llama_should_add_bos_token(const llama_model * model);
  185. //
  186. // YAML utils
  187. //
  188. bool create_directory_with_parents(const std::string & path);
  189. void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector<float> & data);
  190. void dump_vector_int_yaml(FILE * stream, const char * prop_name, const std::vector<int> & data);
  191. void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const char * data);
  192. std::string get_sortable_timestamp();
  193. void dump_non_result_info_yaml(
  194. FILE * stream, const gpt_params & params, const llama_context * lctx,
  195. const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);
  196. //
  197. // KV cache utils
  198. //
  199. // Dump the KV cache view with the number of sequences per cell.
  200. void dump_kv_cache_view(const llama_kv_cache_view & view, int row_size = 80);
  201. // Dump the KV cache view showing individual sequences in each cell (long output).
  202. void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size = 40);