1
0

arg.cpp 156 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644
  1. #include "arg.h"
  2. #include "chat.h"
  3. #include "common.h"
  4. #include "gguf.h" // for reading GGUF splits
  5. #include "json-schema-to-grammar.h"
  6. #include "log.h"
  7. #include "sampling.h"
  8. // fix problem with std::min and std::max
  9. #if defined(_WIN32)
  10. #define WIN32_LEAN_AND_MEAN
  11. #ifndef NOMINMAX
  12. # define NOMINMAX
  13. #endif
  14. #include <windows.h>
  15. #endif
  16. #define JSON_ASSERT GGML_ASSERT
  17. #include <nlohmann/json.hpp>
  18. #include <algorithm>
  19. #include <climits>
  20. #include <cstdarg>
  21. #include <filesystem>
  22. #include <fstream>
  23. #include <list>
  24. #include <regex>
  25. #include <set>
  26. #include <string>
  27. #include <thread>
  28. #include <vector>
  29. //#define LLAMA_USE_CURL
  30. #if defined(LLAMA_USE_CURL)
  31. #include <curl/curl.h>
  32. #include <curl/easy.h>
  33. #include <future>
  34. #endif
  35. using json = nlohmann::ordered_json;
  36. std::initializer_list<enum llama_example> mmproj_examples = {
  37. LLAMA_EXAMPLE_MTMD,
  38. LLAMA_EXAMPLE_SERVER,
  39. };
  40. static std::string read_file(const std::string & fname) {
  41. std::ifstream file(fname);
  42. if (!file) {
  43. throw std::runtime_error(string_format("error: failed to open file '%s'\n", fname.c_str()));
  44. }
  45. std::string content((std::istreambuf_iterator<char>(file)), std::istreambuf_iterator<char>());
  46. file.close();
  47. return content;
  48. }
  49. static void write_file(const std::string & fname, const std::string & content) {
  50. std::ofstream file(fname);
  51. if (!file) {
  52. throw std::runtime_error(string_format("error: failed to open file '%s'\n", fname.c_str()));
  53. }
  54. file << content;
  55. file.close();
  56. }
  57. common_arg & common_arg::set_examples(std::initializer_list<enum llama_example> examples) {
  58. this->examples = std::move(examples);
  59. return *this;
  60. }
  61. common_arg & common_arg::set_excludes(std::initializer_list<enum llama_example> excludes) {
  62. this->excludes = std::move(excludes);
  63. return *this;
  64. }
  65. common_arg & common_arg::set_env(const char * env) {
  66. help = help + "\n(env: " + env + ")";
  67. this->env = env;
  68. return *this;
  69. }
  70. common_arg & common_arg::set_sparam() {
  71. is_sparam = true;
  72. return *this;
  73. }
  74. bool common_arg::in_example(enum llama_example ex) {
  75. return examples.find(ex) != examples.end();
  76. }
  77. bool common_arg::is_exclude(enum llama_example ex) {
  78. return excludes.find(ex) != excludes.end();
  79. }
  80. bool common_arg::get_value_from_env(std::string & output) {
  81. if (env == nullptr) return false;
  82. char * value = std::getenv(env);
  83. if (value) {
  84. output = value;
  85. return true;
  86. }
  87. return false;
  88. }
  89. bool common_arg::has_value_from_env() {
  90. return env != nullptr && std::getenv(env);
  91. }
  92. static std::vector<std::string> break_str_into_lines(std::string input, size_t max_char_per_line) {
  93. std::vector<std::string> result;
  94. std::istringstream iss(input);
  95. std::string line;
  96. auto add_line = [&](const std::string& l) {
  97. if (l.length() <= max_char_per_line) {
  98. result.push_back(l);
  99. } else {
  100. std::istringstream line_stream(l);
  101. std::string word, current_line;
  102. while (line_stream >> word) {
  103. if (current_line.length() + !current_line.empty() + word.length() > max_char_per_line) {
  104. if (!current_line.empty()) result.push_back(current_line);
  105. current_line = word;
  106. } else {
  107. current_line += (!current_line.empty() ? " " : "") + word;
  108. }
  109. }
  110. if (!current_line.empty()) result.push_back(current_line);
  111. }
  112. };
  113. while (std::getline(iss, line)) {
  114. add_line(line);
  115. }
  116. return result;
  117. }
  118. std::string common_arg::to_string() {
  119. // params for printing to console
  120. const static int n_leading_spaces = 40;
  121. const static int n_char_per_line_help = 70; // TODO: detect this based on current console
  122. std::string leading_spaces(n_leading_spaces, ' ');
  123. std::ostringstream ss;
  124. for (const auto arg : args) {
  125. if (arg == args.front()) {
  126. if (args.size() == 1) {
  127. ss << arg;
  128. } else {
  129. // first arg is usually abbreviation, we need padding to make it more beautiful
  130. auto tmp = std::string(arg) + ", ";
  131. auto spaces = std::string(std::max(0, 7 - (int)tmp.size()), ' ');
  132. ss << tmp << spaces;
  133. }
  134. } else {
  135. ss << arg << (arg != args.back() ? ", " : "");
  136. }
  137. }
  138. if (value_hint) ss << " " << value_hint;
  139. if (value_hint_2) ss << " " << value_hint_2;
  140. if (ss.tellp() > n_leading_spaces - 3) {
  141. // current line is too long, add new line
  142. ss << "\n" << leading_spaces;
  143. } else {
  144. // padding between arg and help, same line
  145. ss << std::string(leading_spaces.size() - ss.tellp(), ' ');
  146. }
  147. const auto help_lines = break_str_into_lines(help, n_char_per_line_help);
  148. for (const auto & line : help_lines) {
  149. ss << (&line == &help_lines.front() ? "" : leading_spaces) << line << "\n";
  150. }
  151. return ss.str();
  152. }
  153. //
  154. // downloader
  155. //
  156. struct common_hf_file_res {
  157. std::string repo; // repo name with ":tag" removed
  158. std::string ggufFile;
  159. std::string mmprojFile;
  160. };
  161. #ifdef LLAMA_USE_CURL
  162. bool common_has_curl() {
  163. return true;
  164. }
  165. #ifdef __linux__
  166. #include <linux/limits.h>
  167. #elif defined(_WIN32)
  168. # if !defined(PATH_MAX)
  169. # define PATH_MAX MAX_PATH
  170. # endif
  171. #elif defined(_AIX)
  172. #include <sys/limits.h>
  173. #else
  174. #include <sys/syslimits.h>
  175. #endif
  176. #define LLAMA_CURL_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
  177. //
  178. // CURL utils
  179. //
  180. using curl_ptr = std::unique_ptr<CURL, decltype(&curl_easy_cleanup)>;
  181. // cannot use unique_ptr for curl_slist, because we cannot update without destroying the old one
  182. struct curl_slist_ptr {
  183. struct curl_slist * ptr = nullptr;
  184. ~curl_slist_ptr() {
  185. if (ptr) {
  186. curl_slist_free_all(ptr);
  187. }
  188. }
  189. };
  190. #define CURL_MAX_RETRY 3
  191. #define CURL_RETRY_DELAY_SECONDS 2
  192. static bool curl_perform_with_retry(const std::string & url, CURL * curl, int max_attempts, int retry_delay_seconds, const char * method_name) {
  193. int remaining_attempts = max_attempts;
  194. while (remaining_attempts > 0) {
  195. LOG_INF("%s: %s %s (attempt %d of %d)...\n", __func__ , method_name, url.c_str(), max_attempts - remaining_attempts + 1, max_attempts);
  196. CURLcode res = curl_easy_perform(curl);
  197. if (res == CURLE_OK) {
  198. return true;
  199. }
  200. int exponential_backoff_delay = std::pow(retry_delay_seconds, max_attempts - remaining_attempts) * 1000;
  201. LOG_WRN("%s: curl_easy_perform() failed: %s, retrying after %d milliseconds...\n", __func__, curl_easy_strerror(res), exponential_backoff_delay);
  202. remaining_attempts--;
  203. if (remaining_attempts == 0) break;
  204. std::this_thread::sleep_for(std::chrono::milliseconds(exponential_backoff_delay));
  205. }
  206. LOG_ERR("%s: curl_easy_perform() failed after %d attempts\n", __func__, max_attempts);
  207. return false;
  208. }
  209. // download one single file from remote URL to local path
  210. static bool common_download_file_single(const std::string & url, const std::string & path, const std::string & bearer_token, bool offline) {
  211. // Check if the file already exists locally
  212. auto file_exists = std::filesystem::exists(path);
  213. // If the file exists, check its JSON metadata companion file.
  214. std::string metadata_path = path + ".json";
  215. nlohmann::json metadata; // TODO @ngxson : get rid of this json, use regex instead
  216. std::string etag;
  217. std::string last_modified;
  218. if (file_exists) {
  219. if (offline) {
  220. LOG_INF("%s: using cached file (offline mode): %s\n", __func__, path.c_str());
  221. return true; // skip verification/downloading
  222. }
  223. // Try and read the JSON metadata file (note: stream autoclosed upon exiting this block).
  224. std::ifstream metadata_in(metadata_path);
  225. if (metadata_in.good()) {
  226. try {
  227. metadata_in >> metadata;
  228. LOG_DBG("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
  229. if (metadata.contains("etag") && metadata.at("etag").is_string()) {
  230. etag = metadata.at("etag");
  231. }
  232. if (metadata.contains("lastModified") && metadata.at("lastModified").is_string()) {
  233. last_modified = metadata.at("lastModified");
  234. }
  235. } catch (const nlohmann::json::exception & e) {
  236. LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
  237. }
  238. }
  239. // if we cannot open the metadata file, we assume that the downloaded file is not valid (etag and last-modified are left empty, so we will download it again)
  240. } else {
  241. if (offline) {
  242. LOG_ERR("%s: required file is not available in cache (offline mode): %s\n", __func__, path.c_str());
  243. return false;
  244. }
  245. LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str());
  246. }
  247. // Send a HEAD request to retrieve the etag and last-modified headers
  248. struct common_load_model_from_url_headers {
  249. std::string etag;
  250. std::string last_modified;
  251. };
  252. common_load_model_from_url_headers headers;
  253. bool head_request_ok = false;
  254. bool should_download = !file_exists; // by default, we should download if the file does not exist
  255. // Initialize libcurl
  256. curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
  257. curl_slist_ptr http_headers;
  258. if (!curl) {
  259. LOG_ERR("%s: error initializing libcurl\n", __func__);
  260. return false;
  261. }
  262. // Set the URL, allow to follow http redirection
  263. curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
  264. curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
  265. http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
  266. // Check if hf-token or bearer-token was specified
  267. if (!bearer_token.empty()) {
  268. std::string auth_header = "Authorization: Bearer " + bearer_token;
  269. http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
  270. }
  271. curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
  272. #if defined(_WIN32)
  273. // CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of
  274. // operating system. Currently implemented under MS-Windows.
  275. curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
  276. #endif
  277. typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
  278. auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
  279. common_load_model_from_url_headers * headers = (common_load_model_from_url_headers *) userdata;
  280. static std::regex header_regex("([^:]+): (.*)\r\n");
  281. static std::regex etag_regex("ETag", std::regex_constants::icase);
  282. static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase);
  283. std::string header(buffer, n_items);
  284. std::smatch match;
  285. if (std::regex_match(header, match, header_regex)) {
  286. const std::string & key = match[1];
  287. const std::string & value = match[2];
  288. if (std::regex_match(key, match, etag_regex)) {
  289. headers->etag = value;
  290. } else if (std::regex_match(key, match, last_modified_regex)) {
  291. headers->last_modified = value;
  292. }
  293. }
  294. return n_items;
  295. };
  296. curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 1L); // will trigger the HEAD verb
  297. curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L); // hide head request progress
  298. curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
  299. curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
  300. // we only allow retrying once for HEAD requests
  301. // this is for the use case of using running offline (no internet), retrying can be annoying
  302. bool was_perform_successful = curl_perform_with_retry(url, curl.get(), 1, 0, "HEAD");
  303. if (!was_perform_successful) {
  304. head_request_ok = false;
  305. }
  306. long http_code = 0;
  307. curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
  308. if (http_code == 200) {
  309. head_request_ok = true;
  310. } else {
  311. LOG_WRN("%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
  312. head_request_ok = false;
  313. }
  314. // if head_request_ok is false, we don't have the etag or last-modified headers
  315. // we leave should_download as-is, which is true if the file does not exist
  316. if (head_request_ok) {
  317. // check if ETag or Last-Modified headers are different
  318. // if it is, we need to download the file again
  319. if (!etag.empty() && etag != headers.etag) {
  320. LOG_WRN("%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(), headers.etag.c_str());
  321. should_download = true;
  322. } else if (!last_modified.empty() && last_modified != headers.last_modified) {
  323. LOG_WRN("%s: Last-Modified header is different (%s != %s): triggering a new download\n", __func__, last_modified.c_str(), headers.last_modified.c_str());
  324. should_download = true;
  325. }
  326. }
  327. if (should_download) {
  328. std::string path_temporary = path + ".downloadInProgress";
  329. if (file_exists) {
  330. LOG_WRN("%s: deleting previous downloaded file: %s\n", __func__, path.c_str());
  331. if (remove(path.c_str()) != 0) {
  332. LOG_ERR("%s: unable to delete file: %s\n", __func__, path.c_str());
  333. return false;
  334. }
  335. }
  336. // Set the output file
  337. struct FILE_deleter {
  338. void operator()(FILE * f) const {
  339. fclose(f);
  340. }
  341. };
  342. std::unique_ptr<FILE, FILE_deleter> outfile(fopen(path_temporary.c_str(), "wb"));
  343. if (!outfile) {
  344. LOG_ERR("%s: error opening local file for writing: %s\n", __func__, path.c_str());
  345. return false;
  346. }
  347. typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * data, size_t size, size_t nmemb, void * fd);
  348. auto write_callback = [](void * data, size_t size, size_t nmemb, void * fd) -> size_t {
  349. return fwrite(data, size, nmemb, (FILE *)fd);
  350. };
  351. curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 0L);
  352. curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
  353. curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, outfile.get());
  354. // display download progress
  355. curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 0L);
  356. // helper function to hide password in URL
  357. auto llama_download_hide_password_in_url = [](const std::string & url) -> std::string {
  358. std::size_t protocol_pos = url.find("://");
  359. if (protocol_pos == std::string::npos) {
  360. return url; // Malformed URL
  361. }
  362. std::size_t at_pos = url.find('@', protocol_pos + 3);
  363. if (at_pos == std::string::npos) {
  364. return url; // No password in URL
  365. }
  366. return url.substr(0, protocol_pos + 3) + "********" + url.substr(at_pos);
  367. };
  368. // start the download
  369. LOG_INF("%s: trying to download model from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
  370. llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
  371. bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS, "GET");
  372. if (!was_perform_successful) {
  373. return false;
  374. }
  375. long http_code = 0;
  376. curl_easy_getinfo (curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
  377. if (http_code < 200 || http_code >= 400) {
  378. LOG_ERR("%s: invalid http status code received: %ld\n", __func__, http_code);
  379. return false;
  380. }
  381. // Causes file to be closed explicitly here before we rename it.
  382. outfile.reset();
  383. // Write the updated JSON metadata file.
  384. metadata.update({
  385. {"url", url},
  386. {"etag", headers.etag},
  387. {"lastModified", headers.last_modified}
  388. });
  389. write_file(metadata_path, metadata.dump(4));
  390. LOG_DBG("%s: file metadata saved: %s\n", __func__, metadata_path.c_str());
  391. if (rename(path_temporary.c_str(), path.c_str()) != 0) {
  392. LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
  393. return false;
  394. }
  395. } else {
  396. LOG_INF("%s: using cached file: %s\n", __func__, path.c_str());
  397. }
  398. return true;
  399. }
  400. // download multiple files from remote URLs to local paths
  401. // the input is a vector of pairs <url, path>
  402. static bool common_download_file_multiple(const std::vector<std::pair<std::string, std::string>> & urls, const std::string & bearer_token, bool offline) {
  403. // Prepare download in parallel
  404. std::vector<std::future<bool>> futures_download;
  405. for (auto const & item : urls) {
  406. futures_download.push_back(std::async(std::launch::async, [bearer_token, offline](const std::pair<std::string, std::string> & it) -> bool {
  407. return common_download_file_single(it.first, it.second, bearer_token, offline);
  408. }, item));
  409. }
  410. // Wait for all downloads to complete
  411. for (auto & f : futures_download) {
  412. if (!f.get()) {
  413. return false;
  414. }
  415. }
  416. return true;
  417. }
  418. static bool common_download_model(
  419. const common_params_model & model,
  420. const std::string & bearer_token,
  421. bool offline) {
  422. // Basic validation of the model.url
  423. if (model.url.empty()) {
  424. LOG_ERR("%s: invalid model url\n", __func__);
  425. return false;
  426. }
  427. if (!common_download_file_single(model.url, model.path, bearer_token, offline)) {
  428. return false;
  429. }
  430. // check for additional GGUFs split to download
  431. int n_split = 0;
  432. {
  433. struct gguf_init_params gguf_params = {
  434. /*.no_alloc = */ true,
  435. /*.ctx = */ NULL,
  436. };
  437. auto * ctx_gguf = gguf_init_from_file(model.path.c_str(), gguf_params);
  438. if (!ctx_gguf) {
  439. LOG_ERR("\n%s: failed to load input GGUF from %s\n", __func__, model.path.c_str());
  440. return false;
  441. }
  442. auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT);
  443. if (key_n_split >= 0) {
  444. n_split = gguf_get_val_u16(ctx_gguf, key_n_split);
  445. }
  446. gguf_free(ctx_gguf);
  447. }
  448. if (n_split > 1) {
  449. char split_prefix[PATH_MAX] = {0};
  450. char split_url_prefix[LLAMA_CURL_MAX_URL_LENGTH] = {0};
  451. // Verify the first split file format
  452. // and extract split URL and PATH prefixes
  453. {
  454. if (!llama_split_prefix(split_prefix, sizeof(split_prefix), model.path.c_str(), 0, n_split)) {
  455. LOG_ERR("\n%s: unexpected model file name: %s n_split=%d\n", __func__, model.path.c_str(), n_split);
  456. return false;
  457. }
  458. if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model.url.c_str(), 0, n_split)) {
  459. LOG_ERR("\n%s: unexpected model url: %s n_split=%d\n", __func__, model.url.c_str(), n_split);
  460. return false;
  461. }
  462. }
  463. std::vector<std::pair<std::string, std::string>> urls;
  464. for (int idx = 1; idx < n_split; idx++) {
  465. char split_path[PATH_MAX] = {0};
  466. llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
  467. char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0};
  468. llama_split_path(split_url, sizeof(split_url), split_url_prefix, idx, n_split);
  469. if (std::string(split_path) == model.path) {
  470. continue; // skip the already downloaded file
  471. }
  472. urls.push_back({split_url, split_path});
  473. }
  474. // Download in parallel
  475. common_download_file_multiple(urls, bearer_token, offline);
  476. }
  477. return true;
  478. }
  479. std::pair<long, std::vector<char>> common_remote_get_content(const std::string & url, const common_remote_params & params) {
  480. curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
  481. curl_slist_ptr http_headers;
  482. std::vector<char> res_buffer;
  483. curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
  484. curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L);
  485. curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
  486. typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * ptr, size_t size, size_t nmemb, void * data);
  487. auto write_callback = [](void * ptr, size_t size, size_t nmemb, void * data) -> size_t {
  488. auto data_vec = static_cast<std::vector<char> *>(data);
  489. data_vec->insert(data_vec->end(), (char *)ptr, (char *)ptr + size * nmemb);
  490. return size * nmemb;
  491. };
  492. curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
  493. curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, &res_buffer);
  494. #if defined(_WIN32)
  495. curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
  496. #endif
  497. if (params.timeout > 0) {
  498. curl_easy_setopt(curl.get(), CURLOPT_TIMEOUT, params.timeout);
  499. }
  500. if (params.max_size > 0) {
  501. curl_easy_setopt(curl.get(), CURLOPT_MAXFILESIZE, params.max_size);
  502. }
  503. http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
  504. for (const auto & header : params.headers) {
  505. http_headers.ptr = curl_slist_append(http_headers.ptr, header.c_str());
  506. }
  507. curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
  508. CURLcode res = curl_easy_perform(curl.get());
  509. if (res != CURLE_OK) {
  510. std::string error_msg = curl_easy_strerror(res);
  511. throw std::runtime_error("error: cannot make GET request: " + error_msg);
  512. }
  513. long res_code;
  514. curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &res_code);
  515. return { res_code, std::move(res_buffer) };
  516. }
  517. /**
  518. * Allow getting the HF file from the HF repo with tag (like ollama), for example:
  519. * - bartowski/Llama-3.2-3B-Instruct-GGUF:q4
  520. * - bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M
  521. * - bartowski/Llama-3.2-3B-Instruct-GGUF:q5_k_s
  522. * Tag is optional, default to "latest" (meaning it checks for Q4_K_M first, then Q4, then if not found, return the first GGUF file in repo)
  523. *
  524. * Return pair of <repo, file> (with "repo" already having tag removed)
  525. *
  526. * Note: we use the Ollama-compatible HF API, but not using the blobId. Instead, we use the special "ggufFile" field which returns the value for "hf_file". This is done to be backward-compatible with existing cache files.
  527. */
  528. static struct common_hf_file_res common_get_hf_file(const std::string & hf_repo_with_tag, const std::string & bearer_token, bool offline) {
  529. auto parts = string_split<std::string>(hf_repo_with_tag, ':');
  530. std::string tag = parts.size() > 1 ? parts.back() : "latest";
  531. std::string hf_repo = parts[0];
  532. if (string_split<std::string>(hf_repo, '/').size() != 2) {
  533. throw std::invalid_argument("error: invalid HF repo format, expected <user>/<model>[:quant]\n");
  534. }
  535. std::string url = get_model_endpoint() + "v2/" + hf_repo + "/manifests/" + tag;
  536. // headers
  537. std::vector<std::string> headers;
  538. headers.push_back("Accept: application/json");
  539. if (!bearer_token.empty()) {
  540. headers.push_back("Authorization: Bearer " + bearer_token);
  541. }
  542. // Important: the User-Agent must be "llama-cpp" to get the "ggufFile" field in the response
  543. // User-Agent header is already set in common_remote_get_content, no need to set it here
  544. // we use "=" to avoid clashing with other component, while still being allowed on windows
  545. std::string cached_response_fname = "manifest=" + hf_repo + "=" + tag + ".json";
  546. string_replace_all(cached_response_fname, "/", "_");
  547. std::string cached_response_path = fs_get_cache_file(cached_response_fname);
  548. // make the request
  549. common_remote_params params;
  550. params.headers = headers;
  551. long res_code = 0;
  552. std::string res_str;
  553. bool use_cache = false;
  554. if (!offline) {
  555. try {
  556. auto res = common_remote_get_content(url, params);
  557. res_code = res.first;
  558. res_str = std::string(res.second.data(), res.second.size());
  559. } catch (const std::exception & e) {
  560. LOG_WRN("error: failed to get manifest at %s: %s\n", url.c_str(), e.what());
  561. }
  562. }
  563. if (res_code == 0) {
  564. if (std::filesystem::exists(cached_response_path)) {
  565. LOG_WRN("trying to read manifest from cache: %s\n", cached_response_path.c_str());
  566. res_str = read_file(cached_response_path);
  567. res_code = 200;
  568. use_cache = true;
  569. } else {
  570. throw std::runtime_error(
  571. offline ? "error: failed to get manifest (offline mode)"
  572. : "error: failed to get manifest (check your internet connection)");
  573. }
  574. }
  575. std::string ggufFile;
  576. std::string mmprojFile;
  577. if (res_code == 200 || res_code == 304) {
  578. // extract ggufFile.rfilename in json, using regex
  579. {
  580. std::regex pattern("\"ggufFile\"[\\s\\S]*?\"rfilename\"\\s*:\\s*\"([^\"]+)\"");
  581. std::smatch match;
  582. if (std::regex_search(res_str, match, pattern)) {
  583. ggufFile = match[1].str();
  584. }
  585. }
  586. // extract mmprojFile.rfilename in json, using regex
  587. {
  588. std::regex pattern("\"mmprojFile\"[\\s\\S]*?\"rfilename\"\\s*:\\s*\"([^\"]+)\"");
  589. std::smatch match;
  590. if (std::regex_search(res_str, match, pattern)) {
  591. mmprojFile = match[1].str();
  592. }
  593. }
  594. if (!use_cache) {
  595. // if not using cached response, update the cache file
  596. write_file(cached_response_path, res_str);
  597. }
  598. } else if (res_code == 401) {
  599. throw std::runtime_error("error: model is private or does not exist; if you are accessing a gated model, please provide a valid HF token");
  600. } else {
  601. throw std::runtime_error(string_format("error from HF API, response code: %ld, data: %s", res_code, res_str.c_str()));
  602. }
  603. // check response
  604. if (ggufFile.empty()) {
  605. throw std::runtime_error("error: model does not have ggufFile");
  606. }
  607. return { hf_repo, ggufFile, mmprojFile };
  608. }
  609. #else
  610. bool common_has_curl() {
  611. return false;
  612. }
  613. static bool common_download_file_single(const std::string &, const std::string &, const std::string &, bool) {
  614. LOG_ERR("error: built without CURL, cannot download model from internet\n");
  615. return false;
  616. }
  617. static bool common_download_file_multiple(const std::vector<std::pair<std::string, std::string>> &, const std::string &, bool) {
  618. LOG_ERR("error: built without CURL, cannot download model from the internet\n");
  619. return false;
  620. }
  621. static bool common_download_model(
  622. const common_params_model &,
  623. const std::string &,
  624. bool) {
  625. LOG_ERR("error: built without CURL, cannot download model from the internet\n");
  626. return false;
  627. }
  628. static struct common_hf_file_res common_get_hf_file(const std::string &, const std::string &, bool) {
  629. LOG_ERR("error: built without CURL, cannot download model from the internet\n");
  630. return {};
  631. }
  632. std::pair<long, std::vector<char>> common_remote_get_content(const std::string & url, const common_remote_params &) {
  633. if (!url.empty()) {
  634. throw std::runtime_error("error: built without CURL, cannot download model from the internet");
  635. }
  636. return {};
  637. }
  638. #endif // LLAMA_USE_CURL
  639. //
  640. // utils
  641. //
  642. // Helper function to parse tensor buffer override strings
  643. static void parse_tensor_buffer_overrides(const std::string & value, std::vector<llama_model_tensor_buft_override> & overrides) {
  644. std::map<std::string, ggml_backend_buffer_type_t> buft_list;
  645. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  646. auto * dev = ggml_backend_dev_get(i);
  647. auto * buft = ggml_backend_dev_buffer_type(dev);
  648. if (buft) {
  649. buft_list[ggml_backend_buft_name(buft)] = buft;
  650. }
  651. }
  652. for (const auto & override : string_split<std::string>(value, ',')) {
  653. std::string::size_type pos = override.find('=');
  654. if (pos == std::string::npos) {
  655. throw std::invalid_argument("invalid value");
  656. }
  657. std::string tensor_name = override.substr(0, pos);
  658. std::string buffer_type = override.substr(pos + 1);
  659. if (buft_list.find(buffer_type) == buft_list.end()) {
  660. printf("Available buffer types:\n");
  661. for (const auto & it : buft_list) {
  662. printf(" %s\n", ggml_backend_buft_name(it.second));
  663. }
  664. throw std::invalid_argument("unknown buffer type");
  665. }
  666. // keep strings alive and avoid leaking memory by storing them in a static vector
  667. static std::list<std::string> buft_overrides;
  668. buft_overrides.push_back(tensor_name);
  669. overrides.push_back({buft_overrides.back().c_str(), buft_list.at(buffer_type)});
  670. }
  671. }
  672. struct handle_model_result {
  673. bool found_mmproj = false;
  674. common_params_model mmproj;
  675. };
  676. static handle_model_result common_params_handle_model(
  677. struct common_params_model & model,
  678. const std::string & bearer_token,
  679. const std::string & model_path_default,
  680. bool offline) {
  681. handle_model_result result;
  682. // handle pre-fill default model path and url based on hf_repo and hf_file
  683. {
  684. if (!model.hf_repo.empty()) {
  685. // short-hand to avoid specifying --hf-file -> default it to --model
  686. if (model.hf_file.empty()) {
  687. if (model.path.empty()) {
  688. auto auto_detected = common_get_hf_file(model.hf_repo, bearer_token, offline);
  689. if (auto_detected.repo.empty() || auto_detected.ggufFile.empty()) {
  690. exit(1); // built without CURL, error message already printed
  691. }
  692. model.hf_repo = auto_detected.repo;
  693. model.hf_file = auto_detected.ggufFile;
  694. if (!auto_detected.mmprojFile.empty()) {
  695. result.found_mmproj = true;
  696. result.mmproj.hf_repo = model.hf_repo;
  697. result.mmproj.hf_file = auto_detected.mmprojFile;
  698. }
  699. } else {
  700. model.hf_file = model.path;
  701. }
  702. }
  703. std::string model_endpoint = get_model_endpoint();
  704. model.url = model_endpoint + model.hf_repo + "/resolve/main/" + model.hf_file;
  705. // make sure model path is present (for caching purposes)
  706. if (model.path.empty()) {
  707. // this is to avoid different repo having same file name, or same file name in different subdirs
  708. std::string filename = model.hf_repo + "_" + model.hf_file;
  709. // to make sure we don't have any slashes in the filename
  710. string_replace_all(filename, "/", "_");
  711. model.path = fs_get_cache_file(filename);
  712. }
  713. } else if (!model.url.empty()) {
  714. if (model.path.empty()) {
  715. auto f = string_split<std::string>(model.url, '#').front();
  716. f = string_split<std::string>(f, '?').front();
  717. model.path = fs_get_cache_file(string_split<std::string>(f, '/').back());
  718. }
  719. } else if (model.path.empty()) {
  720. model.path = model_path_default;
  721. }
  722. }
  723. // then, download it if needed
  724. if (!model.url.empty()) {
  725. bool ok = common_download_model(model, bearer_token, offline);
  726. if (!ok) {
  727. LOG_ERR("error: failed to download model from %s\n", model.url.c_str());
  728. exit(1);
  729. }
  730. }
  731. return result;
  732. }
  733. const std::vector<ggml_type> kv_cache_types = {
  734. GGML_TYPE_F32,
  735. GGML_TYPE_F16,
  736. GGML_TYPE_BF16,
  737. GGML_TYPE_Q8_0,
  738. GGML_TYPE_Q4_0,
  739. GGML_TYPE_Q4_1,
  740. GGML_TYPE_IQ4_NL,
  741. GGML_TYPE_Q5_0,
  742. GGML_TYPE_Q5_1,
  743. };
  744. static ggml_type kv_cache_type_from_str(const std::string & s) {
  745. for (const auto & type : kv_cache_types) {
  746. if (ggml_type_name(type) == s) {
  747. return type;
  748. }
  749. }
  750. throw std::runtime_error("Unsupported cache type: " + s);
  751. }
  752. static std::string get_all_kv_cache_types() {
  753. std::ostringstream msg;
  754. for (const auto & type : kv_cache_types) {
  755. msg << ggml_type_name(type) << (&type == &kv_cache_types.back() ? "" : ", ");
  756. }
  757. return msg.str();
  758. }
  759. //
  760. // CLI argument parsing functions
  761. //
  762. static bool common_params_parse_ex(int argc, char ** argv, common_params_context & ctx_arg) {
  763. std::string arg;
  764. const std::string arg_prefix = "--";
  765. common_params & params = ctx_arg.params;
  766. std::unordered_map<std::string, common_arg *> arg_to_options;
  767. for (auto & opt : ctx_arg.options) {
  768. for (const auto & arg : opt.args) {
  769. arg_to_options[arg] = &opt;
  770. }
  771. }
  772. // handle environment variables
  773. for (auto & opt : ctx_arg.options) {
  774. std::string value;
  775. if (opt.get_value_from_env(value)) {
  776. try {
  777. if (opt.handler_void && (value == "1" || value == "true")) {
  778. opt.handler_void(params);
  779. }
  780. if (opt.handler_int) {
  781. opt.handler_int(params, std::stoi(value));
  782. }
  783. if (opt.handler_string) {
  784. opt.handler_string(params, value);
  785. continue;
  786. }
  787. } catch (std::exception & e) {
  788. throw std::invalid_argument(string_format(
  789. "error while handling environment variable \"%s\": %s\n\n", opt.env, e.what()));
  790. }
  791. }
  792. }
  793. // handle command line arguments
  794. auto check_arg = [&](int i) {
  795. if (i+1 >= argc) {
  796. throw std::invalid_argument("expected value for argument");
  797. }
  798. };
  799. for (int i = 1; i < argc; i++) {
  800. const std::string arg_prefix = "--";
  801. std::string arg = argv[i];
  802. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  803. std::replace(arg.begin(), arg.end(), '_', '-');
  804. }
  805. if (arg_to_options.find(arg) == arg_to_options.end()) {
  806. throw std::invalid_argument(string_format("error: invalid argument: %s", arg.c_str()));
  807. }
  808. auto opt = *arg_to_options[arg];
  809. if (opt.has_value_from_env()) {
  810. fprintf(stderr, "warn: %s environment variable is set, but will be overwritten by command line argument %s\n", opt.env, arg.c_str());
  811. }
  812. try {
  813. if (opt.handler_void) {
  814. opt.handler_void(params);
  815. continue;
  816. }
  817. // arg with single value
  818. check_arg(i);
  819. std::string val = argv[++i];
  820. if (opt.handler_int) {
  821. opt.handler_int(params, std::stoi(val));
  822. continue;
  823. }
  824. if (opt.handler_string) {
  825. opt.handler_string(params, val);
  826. continue;
  827. }
  828. // arg with 2 values
  829. check_arg(i);
  830. std::string val2 = argv[++i];
  831. if (opt.handler_str_str) {
  832. opt.handler_str_str(params, val, val2);
  833. continue;
  834. }
  835. } catch (std::exception & e) {
  836. throw std::invalid_argument(string_format(
  837. "error while handling argument \"%s\": %s\n\n"
  838. "usage:\n%s\n\nto show complete usage, run with -h",
  839. arg.c_str(), e.what(), arg_to_options[arg]->to_string().c_str()));
  840. }
  841. }
  842. postprocess_cpu_params(params.cpuparams, nullptr);
  843. postprocess_cpu_params(params.cpuparams_batch, &params.cpuparams);
  844. postprocess_cpu_params(params.speculative.cpuparams, &params.cpuparams);
  845. postprocess_cpu_params(params.speculative.cpuparams_batch, &params.cpuparams_batch);
  846. if (params.prompt_cache_all && (params.interactive || params.interactive_first)) {
  847. throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
  848. }
  849. // handle model and download
  850. {
  851. auto res = common_params_handle_model(params.model, params.hf_token, DEFAULT_MODEL_PATH, params.offline);
  852. if (params.no_mmproj) {
  853. params.mmproj = {};
  854. } else if (res.found_mmproj && params.mmproj.path.empty() && params.mmproj.url.empty()) {
  855. // optionally, handle mmproj model when -hf is specified
  856. params.mmproj = res.mmproj;
  857. }
  858. // only download mmproj if the current example is using it
  859. for (auto & ex : mmproj_examples) {
  860. if (ctx_arg.ex == ex) {
  861. common_params_handle_model(params.mmproj, params.hf_token, "", params.offline);
  862. break;
  863. }
  864. }
  865. common_params_handle_model(params.speculative.model, params.hf_token, "", params.offline);
  866. common_params_handle_model(params.vocoder.model, params.hf_token, "", params.offline);
  867. }
  868. if (params.escape) {
  869. string_process_escapes(params.prompt);
  870. string_process_escapes(params.input_prefix);
  871. string_process_escapes(params.input_suffix);
  872. for (auto & antiprompt : params.antiprompt) {
  873. string_process_escapes(antiprompt);
  874. }
  875. for (auto & seq_breaker : params.sampling.dry_sequence_breakers) {
  876. string_process_escapes(seq_breaker);
  877. }
  878. for (auto & pair : params.speculative.replacements) {
  879. string_process_escapes(pair.first);
  880. string_process_escapes(pair.second);
  881. }
  882. }
  883. if (!params.kv_overrides.empty()) {
  884. params.kv_overrides.emplace_back();
  885. params.kv_overrides.back().key[0] = 0;
  886. }
  887. if (!params.tensor_buft_overrides.empty()) {
  888. params.tensor_buft_overrides.push_back({nullptr, nullptr});
  889. }
  890. if (!params.speculative.tensor_buft_overrides.empty()) {
  891. params.speculative.tensor_buft_overrides.push_back({nullptr, nullptr});
  892. }
  893. if (!params.chat_template.empty() && !common_chat_verify_template(params.chat_template, params.use_jinja)) {
  894. throw std::runtime_error(string_format(
  895. "error: the supplied chat template is not supported: %s%s\n",
  896. params.chat_template.c_str(),
  897. params.use_jinja ? "" : "\nnote: llama.cpp was started without --jinja, we only support commonly used templates"
  898. ));
  899. }
  900. return true;
  901. }
  902. static void common_params_print_usage(common_params_context & ctx_arg) {
  903. auto print_options = [](std::vector<common_arg *> & options) {
  904. for (common_arg * opt : options) {
  905. printf("%s", opt->to_string().c_str());
  906. }
  907. };
  908. std::vector<common_arg *> common_options;
  909. std::vector<common_arg *> sparam_options;
  910. std::vector<common_arg *> specific_options;
  911. for (auto & opt : ctx_arg.options) {
  912. // in case multiple LLAMA_EXAMPLE_* are set, we prioritize the LLAMA_EXAMPLE_* matching current example
  913. if (opt.is_sparam) {
  914. sparam_options.push_back(&opt);
  915. } else if (opt.in_example(ctx_arg.ex)) {
  916. specific_options.push_back(&opt);
  917. } else {
  918. common_options.push_back(&opt);
  919. }
  920. }
  921. printf("----- common params -----\n\n");
  922. print_options(common_options);
  923. printf("\n\n----- sampling params -----\n\n");
  924. print_options(sparam_options);
  925. // TODO: maybe convert enum llama_example to string
  926. printf("\n\n----- example-specific params -----\n\n");
  927. print_options(specific_options);
  928. }
  929. static void common_params_print_completion(common_params_context & ctx_arg) {
  930. std::vector<common_arg *> common_options;
  931. std::vector<common_arg *> sparam_options;
  932. std::vector<common_arg *> specific_options;
  933. for (auto & opt : ctx_arg.options) {
  934. if (opt.is_sparam) {
  935. sparam_options.push_back(&opt);
  936. } else if (opt.in_example(ctx_arg.ex)) {
  937. specific_options.push_back(&opt);
  938. } else {
  939. common_options.push_back(&opt);
  940. }
  941. }
  942. printf("_llama_completions() {\n");
  943. printf(" local cur prev opts\n");
  944. printf(" COMPREPLY=()\n");
  945. printf(" cur=\"${COMP_WORDS[COMP_CWORD]}\"\n");
  946. printf(" prev=\"${COMP_WORDS[COMP_CWORD-1]}\"\n\n");
  947. printf(" opts=\"");
  948. auto print_options = [](const std::vector<common_arg *> & options) {
  949. for (const common_arg * opt : options) {
  950. for (const char * arg : opt->args) {
  951. printf("%s ", arg);
  952. }
  953. }
  954. };
  955. print_options(common_options);
  956. print_options(sparam_options);
  957. print_options(specific_options);
  958. printf("\"\n\n");
  959. printf(" case \"$prev\" in\n");
  960. printf(" --model|-m)\n");
  961. printf(" COMPREPLY=( $(compgen -f -X '!*.gguf' -- \"$cur\") $(compgen -d -- \"$cur\") )\n");
  962. printf(" return 0\n");
  963. printf(" ;;\n");
  964. printf(" --grammar-file)\n");
  965. printf(" COMPREPLY=( $(compgen -f -X '!*.gbnf' -- \"$cur\") $(compgen -d -- \"$cur\") )\n");
  966. printf(" return 0\n");
  967. printf(" ;;\n");
  968. printf(" --chat-template-file)\n");
  969. printf(" COMPREPLY=( $(compgen -f -X '!*.jinja' -- \"$cur\") $(compgen -d -- \"$cur\") )\n");
  970. printf(" return 0\n");
  971. printf(" ;;\n");
  972. printf(" *)\n");
  973. printf(" COMPREPLY=( $(compgen -W \"${opts}\" -- \"$cur\") )\n");
  974. printf(" return 0\n");
  975. printf(" ;;\n");
  976. printf(" esac\n");
  977. printf("}\n\n");
  978. std::set<std::string> executables = {
  979. "llama-batched",
  980. "llama-batched-bench",
  981. "llama-bench",
  982. "llama-cli",
  983. "llama-convert-llama2c-to-ggml",
  984. "llama-cvector-generator",
  985. "llama-embedding",
  986. "llama-eval-callback",
  987. "llama-export-lora",
  988. "llama-gen-docs",
  989. "llama-gguf",
  990. "llama-gguf-hash",
  991. "llama-gguf-split",
  992. "llama-gritlm",
  993. "llama-imatrix",
  994. "llama-infill",
  995. "llama-mtmd-cli",
  996. "llama-llava-clip-quantize-cli",
  997. "llama-lookahead",
  998. "llama-lookup",
  999. "llama-lookup-create",
  1000. "llama-lookup-merge",
  1001. "llama-lookup-stats",
  1002. "llama-parallel",
  1003. "llama-passkey",
  1004. "llama-perplexity",
  1005. "llama-q8dot",
  1006. "llama-quantize",
  1007. "llama-qwen2vl-cli",
  1008. "llama-retrieval",
  1009. "llama-run",
  1010. "llama-save-load-state",
  1011. "llama-server",
  1012. "llama-simple",
  1013. "llama-simple-chat",
  1014. "llama-speculative",
  1015. "llama-speculative-simple",
  1016. "llama-tokenize",
  1017. "llama-tts",
  1018. "llama-vdot"
  1019. };
  1020. for (const auto& exe : executables) {
  1021. printf("complete -F _llama_completions %s\n", exe.c_str());
  1022. }
  1023. }
  1024. static std::vector<ggml_backend_dev_t> parse_device_list(const std::string & value) {
  1025. std::vector<ggml_backend_dev_t> devices;
  1026. auto dev_names = string_split<std::string>(value, ',');
  1027. if (dev_names.empty()) {
  1028. throw std::invalid_argument("no devices specified");
  1029. }
  1030. if (dev_names.size() == 1 && dev_names[0] == "none") {
  1031. devices.push_back(nullptr);
  1032. } else {
  1033. for (const auto & device : dev_names) {
  1034. auto * dev = ggml_backend_dev_by_name(device.c_str());
  1035. if (!dev || ggml_backend_dev_type(dev) != GGML_BACKEND_DEVICE_TYPE_GPU) {
  1036. throw std::invalid_argument(string_format("invalid device: %s", device.c_str()));
  1037. }
  1038. devices.push_back(dev);
  1039. }
  1040. devices.push_back(nullptr);
  1041. }
  1042. return devices;
  1043. }
  1044. static void add_rpc_devices(std::string servers) {
  1045. auto rpc_servers = string_split<std::string>(servers, ',');
  1046. if (rpc_servers.empty()) {
  1047. throw std::invalid_argument("no RPC servers specified");
  1048. }
  1049. ggml_backend_reg_t rpc_reg = ggml_backend_reg_by_name("RPC");
  1050. if (!rpc_reg) {
  1051. throw std::invalid_argument("failed to find RPC backend");
  1052. }
  1053. typedef ggml_backend_dev_t (*ggml_backend_rpc_add_device_t)(const char * endpoint);
  1054. ggml_backend_rpc_add_device_t ggml_backend_rpc_add_device_fn = (ggml_backend_rpc_add_device_t) ggml_backend_reg_get_proc_address(rpc_reg, "ggml_backend_rpc_add_device");
  1055. if (!ggml_backend_rpc_add_device_fn) {
  1056. throw std::invalid_argument("failed to find RPC device add function");
  1057. }
  1058. for (const auto & server : rpc_servers) {
  1059. ggml_backend_dev_t dev = ggml_backend_rpc_add_device_fn(server.c_str());
  1060. if (dev) {
  1061. ggml_backend_device_register(dev);
  1062. } else {
  1063. throw std::invalid_argument("failed to register RPC device");
  1064. }
  1065. }
  1066. }
  1067. bool common_params_parse(int argc, char ** argv, common_params & params, llama_example ex, void(*print_usage)(int, char **)) {
  1068. auto ctx_arg = common_params_parser_init(params, ex, print_usage);
  1069. const common_params params_org = ctx_arg.params; // the example can modify the default params
  1070. try {
  1071. if (!common_params_parse_ex(argc, argv, ctx_arg)) {
  1072. ctx_arg.params = params_org;
  1073. return false;
  1074. }
  1075. if (ctx_arg.params.usage) {
  1076. common_params_print_usage(ctx_arg);
  1077. if (ctx_arg.print_usage) {
  1078. ctx_arg.print_usage(argc, argv);
  1079. }
  1080. exit(0);
  1081. }
  1082. if (ctx_arg.params.completion) {
  1083. common_params_print_completion(ctx_arg);
  1084. exit(0);
  1085. }
  1086. params.lr.init();
  1087. } catch (const std::invalid_argument & ex) {
  1088. fprintf(stderr, "%s\n", ex.what());
  1089. ctx_arg.params = params_org;
  1090. return false;
  1091. } catch (std::exception & ex) {
  1092. fprintf(stderr, "%s\n", ex.what());
  1093. exit(1); // for other exceptions, we exit with status code 1
  1094. }
  1095. return true;
  1096. }
  1097. static std::string list_builtin_chat_templates() {
  1098. std::vector<const char *> supported_tmpl;
  1099. int32_t res = llama_chat_builtin_templates(nullptr, 0);
  1100. supported_tmpl.resize(res);
  1101. res = llama_chat_builtin_templates(supported_tmpl.data(), supported_tmpl.size());
  1102. std::ostringstream msg;
  1103. for (auto & tmpl : supported_tmpl) {
  1104. msg << tmpl << (&tmpl == &supported_tmpl.back() ? "" : ", ");
  1105. }
  1106. return msg.str();
  1107. }
  1108. common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **)) {
  1109. // load dynamic backends
  1110. ggml_backend_load_all();
  1111. common_params_context ctx_arg(params);
  1112. ctx_arg.print_usage = print_usage;
  1113. ctx_arg.ex = ex;
  1114. std::string sampler_type_chars;
  1115. std::string sampler_type_names;
  1116. for (const auto & sampler : params.sampling.samplers) {
  1117. sampler_type_chars += common_sampler_type_to_chr(sampler);
  1118. sampler_type_names += common_sampler_type_to_str(sampler) + ";";
  1119. }
  1120. sampler_type_names.pop_back();
  1121. /**
  1122. * filter options by example
  1123. * rules:
  1124. * - all examples inherit options from LLAMA_EXAMPLE_COMMON
  1125. * - if LLAMA_EXAMPLE_* is set (other than COMMON), we only show the option in the corresponding example
  1126. * - if both {LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_*,} are set, we will prioritize the LLAMA_EXAMPLE_* matching current example
  1127. */
  1128. auto add_opt = [&](common_arg arg) {
  1129. if ((arg.in_example(ex) || arg.in_example(LLAMA_EXAMPLE_COMMON)) && !arg.is_exclude(ex)) {
  1130. ctx_arg.options.push_back(std::move(arg));
  1131. }
  1132. };
  1133. add_opt(common_arg(
  1134. {"-h", "--help", "--usage"},
  1135. "print usage and exit",
  1136. [](common_params & params) {
  1137. params.usage = true;
  1138. }
  1139. ));
  1140. add_opt(common_arg(
  1141. {"--version"},
  1142. "show version and build info",
  1143. [](common_params &) {
  1144. fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
  1145. fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET);
  1146. exit(0);
  1147. }
  1148. ));
  1149. add_opt(common_arg(
  1150. {"--completion-bash"},
  1151. "print source-able bash completion script for llama.cpp",
  1152. [](common_params & params) {
  1153. params.completion = true;
  1154. }
  1155. ));
  1156. add_opt(common_arg(
  1157. {"--verbose-prompt"},
  1158. string_format("print a verbose prompt before generation (default: %s)", params.verbose_prompt ? "true" : "false"),
  1159. [](common_params & params) {
  1160. params.verbose_prompt = true;
  1161. }
  1162. ));
  1163. add_opt(common_arg(
  1164. {"--no-display-prompt"},
  1165. string_format("don't print prompt at generation (default: %s)", !params.display_prompt ? "true" : "false"),
  1166. [](common_params & params) {
  1167. params.display_prompt = false;
  1168. }
  1169. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1170. add_opt(common_arg(
  1171. {"-co", "--color"},
  1172. string_format("colorise output to distinguish prompt and user input from generations (default: %s)", params.use_color ? "true" : "false"),
  1173. [](common_params & params) {
  1174. params.use_color = true;
  1175. }
  1176. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP}));
  1177. add_opt(common_arg(
  1178. {"-t", "--threads"}, "N",
  1179. string_format("number of threads to use during generation (default: %d)", params.cpuparams.n_threads),
  1180. [](common_params & params, int value) {
  1181. params.cpuparams.n_threads = value;
  1182. if (params.cpuparams.n_threads <= 0) {
  1183. params.cpuparams.n_threads = std::thread::hardware_concurrency();
  1184. }
  1185. }
  1186. ).set_env("LLAMA_ARG_THREADS"));
  1187. add_opt(common_arg(
  1188. {"-tb", "--threads-batch"}, "N",
  1189. "number of threads to use during batch and prompt processing (default: same as --threads)",
  1190. [](common_params & params, int value) {
  1191. params.cpuparams_batch.n_threads = value;
  1192. if (params.cpuparams_batch.n_threads <= 0) {
  1193. params.cpuparams_batch.n_threads = std::thread::hardware_concurrency();
  1194. }
  1195. }
  1196. ));
  1197. add_opt(common_arg(
  1198. {"-C", "--cpu-mask"}, "M",
  1199. "CPU affinity mask: arbitrarily long hex. Complements cpu-range (default: \"\")",
  1200. [](common_params & params, const std::string & mask) {
  1201. params.cpuparams.mask_valid = true;
  1202. if (!parse_cpu_mask(mask, params.cpuparams.cpumask)) {
  1203. throw std::invalid_argument("invalid cpumask");
  1204. }
  1205. }
  1206. ));
  1207. add_opt(common_arg(
  1208. {"-Cr", "--cpu-range"}, "lo-hi",
  1209. "range of CPUs for affinity. Complements --cpu-mask",
  1210. [](common_params & params, const std::string & range) {
  1211. params.cpuparams.mask_valid = true;
  1212. if (!parse_cpu_range(range, params.cpuparams.cpumask)) {
  1213. throw std::invalid_argument("invalid range");
  1214. }
  1215. }
  1216. ));
  1217. add_opt(common_arg(
  1218. {"--cpu-strict"}, "<0|1>",
  1219. string_format("use strict CPU placement (default: %u)\n", (unsigned) params.cpuparams.strict_cpu),
  1220. [](common_params & params, const std::string & value) {
  1221. params.cpuparams.strict_cpu = std::stoul(value);
  1222. }
  1223. ));
  1224. add_opt(common_arg(
  1225. {"--prio"}, "N",
  1226. string_format("set process/thread priority : low(-1), normal(0), medium(1), high(2), realtime(3) (default: %d)\n", params.cpuparams.priority),
  1227. [](common_params & params, int prio) {
  1228. if (prio < GGML_SCHED_PRIO_LOW || prio > GGML_SCHED_PRIO_REALTIME) {
  1229. throw std::invalid_argument("invalid value");
  1230. }
  1231. params.cpuparams.priority = (enum ggml_sched_priority) prio;
  1232. }
  1233. ));
  1234. add_opt(common_arg(
  1235. {"--poll"}, "<0...100>",
  1236. string_format("use polling level to wait for work (0 - no polling, default: %u)\n", (unsigned) params.cpuparams.poll),
  1237. [](common_params & params, const std::string & value) {
  1238. params.cpuparams.poll = std::stoul(value);
  1239. }
  1240. ));
  1241. add_opt(common_arg(
  1242. {"-Cb", "--cpu-mask-batch"}, "M",
  1243. "CPU affinity mask: arbitrarily long hex. Complements cpu-range-batch (default: same as --cpu-mask)",
  1244. [](common_params & params, const std::string & mask) {
  1245. params.cpuparams_batch.mask_valid = true;
  1246. if (!parse_cpu_mask(mask, params.cpuparams_batch.cpumask)) {
  1247. throw std::invalid_argument("invalid cpumask");
  1248. }
  1249. }
  1250. ));
  1251. add_opt(common_arg(
  1252. {"-Crb", "--cpu-range-batch"}, "lo-hi",
  1253. "ranges of CPUs for affinity. Complements --cpu-mask-batch",
  1254. [](common_params & params, const std::string & range) {
  1255. params.cpuparams_batch.mask_valid = true;
  1256. if (!parse_cpu_range(range, params.cpuparams_batch.cpumask)) {
  1257. throw std::invalid_argument("invalid range");
  1258. }
  1259. }
  1260. ));
  1261. add_opt(common_arg(
  1262. {"--cpu-strict-batch"}, "<0|1>",
  1263. "use strict CPU placement (default: same as --cpu-strict)",
  1264. [](common_params & params, int value) {
  1265. params.cpuparams_batch.strict_cpu = value;
  1266. }
  1267. ));
  1268. add_opt(common_arg(
  1269. {"--prio-batch"}, "N",
  1270. string_format("set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.cpuparams_batch.priority),
  1271. [](common_params & params, int prio) {
  1272. if (prio < 0 || prio > 3) {
  1273. throw std::invalid_argument("invalid value");
  1274. }
  1275. params.cpuparams_batch.priority = (enum ggml_sched_priority) prio;
  1276. }
  1277. ));
  1278. add_opt(common_arg(
  1279. {"--poll-batch"}, "<0|1>",
  1280. "use polling to wait for work (default: same as --poll)",
  1281. [](common_params & params, int value) {
  1282. params.cpuparams_batch.poll = value;
  1283. }
  1284. ));
  1285. add_opt(common_arg(
  1286. {"-lcs", "--lookup-cache-static"}, "FNAME",
  1287. "path to static lookup cache to use for lookup decoding (not updated by generation)",
  1288. [](common_params & params, const std::string & value) {
  1289. params.lookup_cache_static = value;
  1290. }
  1291. ).set_examples({LLAMA_EXAMPLE_LOOKUP}));
  1292. add_opt(common_arg(
  1293. {"-lcd", "--lookup-cache-dynamic"}, "FNAME",
  1294. "path to dynamic lookup cache to use for lookup decoding (updated by generation)",
  1295. [](common_params & params, const std::string & value) {
  1296. params.lookup_cache_dynamic = value;
  1297. }
  1298. ).set_examples({LLAMA_EXAMPLE_LOOKUP}));
  1299. add_opt(common_arg(
  1300. {"-c", "--ctx-size"}, "N",
  1301. string_format("size of the prompt context (default: %d, 0 = loaded from model)", params.n_ctx),
  1302. [](common_params & params, int value) {
  1303. params.n_ctx = value;
  1304. }
  1305. ).set_env("LLAMA_ARG_CTX_SIZE"));
  1306. add_opt(common_arg(
  1307. {"-n", "--predict", "--n-predict"}, "N",
  1308. string_format(
  1309. ex == LLAMA_EXAMPLE_MAIN
  1310. ? "number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)"
  1311. : "number of tokens to predict (default: %d, -1 = infinity)",
  1312. params.n_predict),
  1313. [](common_params & params, int value) {
  1314. params.n_predict = value;
  1315. }
  1316. ).set_env("LLAMA_ARG_N_PREDICT"));
  1317. add_opt(common_arg(
  1318. {"-b", "--batch-size"}, "N",
  1319. string_format("logical maximum batch size (default: %d)", params.n_batch),
  1320. [](common_params & params, int value) {
  1321. params.n_batch = value;
  1322. }
  1323. ).set_env("LLAMA_ARG_BATCH"));
  1324. add_opt(common_arg(
  1325. {"-ub", "--ubatch-size"}, "N",
  1326. string_format("physical maximum batch size (default: %d)", params.n_ubatch),
  1327. [](common_params & params, int value) {
  1328. params.n_ubatch = value;
  1329. }
  1330. ).set_env("LLAMA_ARG_UBATCH"));
  1331. add_opt(common_arg(
  1332. {"--keep"}, "N",
  1333. string_format("number of tokens to keep from the initial prompt (default: %d, -1 = all)", params.n_keep),
  1334. [](common_params & params, int value) {
  1335. params.n_keep = value;
  1336. }
  1337. ));
  1338. add_opt(common_arg(
  1339. {"--swa-full"},
  1340. string_format("use full-size SWA cache (default: %s)\n"
  1341. "[(more info)](https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)", params.swa_full ? "true" : "false"),
  1342. [](common_params & params) {
  1343. params.swa_full = true;
  1344. }
  1345. ).set_env("LLAMA_ARG_SWA_FULL"));
  1346. add_opt(common_arg(
  1347. {"--swa-checkpoints"}, "N",
  1348. string_format("max number of SWA checkpoints per slot to create (default: %d)\n"
  1349. "[(more info)](https://github.com/ggml-org/llama.cpp/pull/15293)", params.n_swa_checkpoints),
  1350. [](common_params & params, int value) {
  1351. params.n_swa_checkpoints = value;
  1352. }
  1353. ).set_env("LLAMA_ARG_SWA_CHECKPOINTS").set_examples({LLAMA_EXAMPLE_SERVER}));
  1354. add_opt(common_arg(
  1355. {"--kv-unified", "-kvu"},
  1356. string_format("use single unified KV buffer for the KV cache of all sequences (default: %s)\n"
  1357. "[(more info)](https://github.com/ggml-org/llama.cpp/pull/14363)", params.kv_unified ? "true" : "false"),
  1358. [](common_params & params) {
  1359. params.kv_unified = true;
  1360. }
  1361. ).set_env("LLAMA_ARG_KV_SPLIT"));
  1362. add_opt(common_arg(
  1363. {"--no-context-shift"},
  1364. string_format("disables context shift on infinite text generation (default: %s)", params.ctx_shift ? "disabled" : "enabled"),
  1365. [](common_params & params) {
  1366. params.ctx_shift = false;
  1367. }
  1368. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY}).set_env("LLAMA_ARG_NO_CONTEXT_SHIFT"));
  1369. add_opt(common_arg(
  1370. {"--context-shift"},
  1371. string_format("enables context shift on infinite text generation (default: %s)", params.ctx_shift ? "enabled" : "disabled"),
  1372. [](common_params & params) {
  1373. params.ctx_shift = true;
  1374. }
  1375. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY}).set_env("LLAMA_ARG_CONTEXT_SHIFT"));
  1376. add_opt(common_arg(
  1377. {"--chunks"}, "N",
  1378. string_format("max number of chunks to process (default: %d, -1 = all)", params.n_chunks),
  1379. [](common_params & params, int value) {
  1380. params.n_chunks = value;
  1381. }
  1382. ).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_RETRIEVAL}));
  1383. add_opt(common_arg(
  1384. {"-fa", "--flash-attn"}, "FA",
  1385. string_format("set Flash Attention use ('on', 'off', or 'auto', default: '%s')", llama_flash_attn_type_name(params.flash_attn_type)),
  1386. [](common_params & params, const std::string & value) {
  1387. if (value == "on" || value == "enabled") {
  1388. params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_ENABLED;
  1389. } else if (value == "off" || value == "disabled") {
  1390. params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_DISABLED;
  1391. } else if (value == "auto") {
  1392. params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_AUTO;
  1393. } else {
  1394. throw std::runtime_error(string_format("error: unkown value for --flash-attn: '%s'\n", value.c_str()));
  1395. }
  1396. }
  1397. ).set_env("LLAMA_ARG_FLASH_ATTN"));
  1398. add_opt(common_arg(
  1399. {"-p", "--prompt"}, "PROMPT",
  1400. "prompt to start generation with; for system message, use -sys",
  1401. [](common_params & params, const std::string & value) {
  1402. params.prompt = value;
  1403. }
  1404. ).set_excludes({LLAMA_EXAMPLE_SERVER}));
  1405. add_opt(common_arg(
  1406. {"-sys", "--system-prompt"}, "PROMPT",
  1407. "system prompt to use with model (if applicable, depending on chat template)",
  1408. [](common_params & params, const std::string & value) {
  1409. params.system_prompt = value;
  1410. }
  1411. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1412. add_opt(common_arg(
  1413. {"--no-perf"},
  1414. string_format("disable internal libllama performance timings (default: %s)", params.no_perf ? "true" : "false"),
  1415. [](common_params & params) {
  1416. params.no_perf = true;
  1417. params.sampling.no_perf = true;
  1418. }
  1419. ).set_env("LLAMA_ARG_NO_PERF"));
  1420. add_opt(common_arg(
  1421. {"-f", "--file"}, "FNAME",
  1422. "a file containing the prompt (default: none)",
  1423. [](common_params & params, const std::string & value) {
  1424. params.prompt = read_file(value);
  1425. // store the external file name in params
  1426. params.prompt_file = value;
  1427. if (!params.prompt.empty() && params.prompt.back() == '\n') {
  1428. params.prompt.pop_back();
  1429. }
  1430. }
  1431. ).set_excludes({LLAMA_EXAMPLE_SERVER}));
  1432. add_opt(common_arg(
  1433. {"-sysf", "--system-prompt-file"}, "FNAME",
  1434. "a file containing the system prompt (default: none)",
  1435. [](common_params & params, const std::string & value) {
  1436. params.system_prompt = read_file(value);
  1437. if (!params.system_prompt.empty() && params.system_prompt.back() == '\n') {
  1438. params.system_prompt.pop_back();
  1439. }
  1440. }
  1441. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1442. add_opt(common_arg(
  1443. {"--in-file"}, "FNAME",
  1444. "an input file (repeat to specify multiple files)",
  1445. [](common_params & params, const std::string & value) {
  1446. std::ifstream file(value);
  1447. if (!file) {
  1448. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  1449. }
  1450. params.in_files.push_back(value);
  1451. }
  1452. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  1453. add_opt(common_arg(
  1454. {"-bf", "--binary-file"}, "FNAME",
  1455. "binary file containing the prompt (default: none)",
  1456. [](common_params & params, const std::string & value) {
  1457. std::ifstream file(value, std::ios::binary);
  1458. if (!file) {
  1459. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  1460. }
  1461. // store the external file name in params
  1462. params.prompt_file = value;
  1463. std::ostringstream ss;
  1464. ss << file.rdbuf();
  1465. params.prompt = ss.str();
  1466. fprintf(stderr, "Read %zu bytes from binary file %s\n", params.prompt.size(), value.c_str());
  1467. }
  1468. ).set_excludes({LLAMA_EXAMPLE_SERVER}));
  1469. add_opt(common_arg(
  1470. {"-e", "--escape"},
  1471. string_format("process escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\) (default: %s)", params.escape ? "true" : "false"),
  1472. [](common_params & params) {
  1473. params.escape = true;
  1474. }
  1475. ));
  1476. add_opt(common_arg(
  1477. {"--no-escape"},
  1478. "do not process escape sequences",
  1479. [](common_params & params) {
  1480. params.escape = false;
  1481. }
  1482. ));
  1483. add_opt(common_arg(
  1484. {"-ptc", "--print-token-count"}, "N",
  1485. string_format("print token count every N tokens (default: %d)", params.n_print),
  1486. [](common_params & params, int value) {
  1487. params.n_print = value;
  1488. }
  1489. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1490. add_opt(common_arg(
  1491. {"--prompt-cache"}, "FNAME",
  1492. "file to cache prompt state for faster startup (default: none)",
  1493. [](common_params & params, const std::string & value) {
  1494. params.path_prompt_cache = value;
  1495. }
  1496. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1497. add_opt(common_arg(
  1498. {"--prompt-cache-all"},
  1499. "if specified, saves user input and generations to cache as well\n",
  1500. [](common_params & params) {
  1501. params.prompt_cache_all = true;
  1502. }
  1503. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1504. add_opt(common_arg(
  1505. {"--prompt-cache-ro"},
  1506. "if specified, uses the prompt cache but does not update it",
  1507. [](common_params & params) {
  1508. params.prompt_cache_ro = true;
  1509. }
  1510. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1511. add_opt(common_arg(
  1512. {"-r", "--reverse-prompt"}, "PROMPT",
  1513. "halt generation at PROMPT, return control in interactive mode\n",
  1514. [](common_params & params, const std::string & value) {
  1515. params.antiprompt.emplace_back(value);
  1516. }
  1517. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}));
  1518. add_opt(common_arg(
  1519. {"-sp", "--special"},
  1520. string_format("special tokens output enabled (default: %s)", params.special ? "true" : "false"),
  1521. [](common_params & params) {
  1522. params.special = true;
  1523. }
  1524. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}));
  1525. add_opt(common_arg(
  1526. {"-cnv", "--conversation"},
  1527. "run in conversation mode:\n"
  1528. "- does not print special tokens and suffix/prefix\n"
  1529. "- interactive mode is also enabled\n"
  1530. "(default: auto enabled if chat template is available)",
  1531. [](common_params & params) {
  1532. params.conversation_mode = COMMON_CONVERSATION_MODE_ENABLED;
  1533. }
  1534. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1535. add_opt(common_arg(
  1536. {"-no-cnv", "--no-conversation"},
  1537. "force disable conversation mode (default: false)",
  1538. [](common_params & params) {
  1539. params.conversation_mode = COMMON_CONVERSATION_MODE_DISABLED;
  1540. }
  1541. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1542. add_opt(common_arg(
  1543. {"-st", "--single-turn"},
  1544. "run conversation for a single turn only, then exit when done\n"
  1545. "will not be interactive if first turn is predefined with --prompt\n"
  1546. "(default: false)",
  1547. [](common_params & params) {
  1548. params.single_turn = true;
  1549. }
  1550. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1551. add_opt(common_arg(
  1552. {"-i", "--interactive"},
  1553. string_format("run in interactive mode (default: %s)", params.interactive ? "true" : "false"),
  1554. [](common_params & params) {
  1555. params.interactive = true;
  1556. }
  1557. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1558. add_opt(common_arg(
  1559. {"-if", "--interactive-first"},
  1560. string_format("run in interactive mode and wait for input right away (default: %s)", params.interactive_first ? "true" : "false"),
  1561. [](common_params & params) {
  1562. params.interactive_first = true;
  1563. }
  1564. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1565. add_opt(common_arg(
  1566. {"-mli", "--multiline-input"},
  1567. "allows you to write or paste multiple lines without ending each in '\\'",
  1568. [](common_params & params) {
  1569. params.multiline_input = true;
  1570. }
  1571. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1572. add_opt(common_arg(
  1573. {"--in-prefix-bos"},
  1574. "prefix BOS to user inputs, preceding the `--in-prefix` string",
  1575. [](common_params & params) {
  1576. params.input_prefix_bos = true;
  1577. params.enable_chat_template = false;
  1578. }
  1579. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1580. add_opt(common_arg(
  1581. {"--in-prefix"}, "STRING",
  1582. "string to prefix user inputs with (default: empty)",
  1583. [](common_params & params, const std::string & value) {
  1584. params.input_prefix = value;
  1585. params.enable_chat_template = false;
  1586. }
  1587. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1588. add_opt(common_arg(
  1589. {"--in-suffix"}, "STRING",
  1590. "string to suffix after user inputs with (default: empty)",
  1591. [](common_params & params, const std::string & value) {
  1592. params.input_suffix = value;
  1593. params.enable_chat_template = false;
  1594. }
  1595. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1596. add_opt(common_arg(
  1597. {"--no-warmup"},
  1598. "skip warming up the model with an empty run",
  1599. [](common_params & params) {
  1600. params.warmup = false;
  1601. }
  1602. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_PERPLEXITY}));
  1603. add_opt(common_arg(
  1604. {"--spm-infill"},
  1605. string_format(
  1606. "use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: %s)",
  1607. params.spm_infill ? "enabled" : "disabled"
  1608. ),
  1609. [](common_params & params) {
  1610. params.spm_infill = true;
  1611. }
  1612. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  1613. add_opt(common_arg(
  1614. {"--samplers"}, "SAMPLERS",
  1615. string_format("samplers that will be used for generation in the order, separated by \';\'\n(default: %s)", sampler_type_names.c_str()),
  1616. [](common_params & params, const std::string & value) {
  1617. const auto sampler_names = string_split<std::string>(value, ';');
  1618. params.sampling.samplers = common_sampler_types_from_names(sampler_names, true);
  1619. }
  1620. ).set_sparam());
  1621. add_opt(common_arg(
  1622. {"-s", "--seed"}, "SEED",
  1623. string_format("RNG seed (default: %d, use random seed for %d)", params.sampling.seed, LLAMA_DEFAULT_SEED),
  1624. [](common_params & params, const std::string & value) {
  1625. params.sampling.seed = std::stoul(value);
  1626. }
  1627. ).set_sparam());
  1628. add_opt(common_arg(
  1629. {"--sampling-seq", "--sampler-seq"}, "SEQUENCE",
  1630. string_format("simplified sequence for samplers that will be used (default: %s)", sampler_type_chars.c_str()),
  1631. [](common_params & params, const std::string & value) {
  1632. params.sampling.samplers = common_sampler_types_from_chars(value);
  1633. }
  1634. ).set_sparam());
  1635. add_opt(common_arg(
  1636. {"--ignore-eos"},
  1637. "ignore end of stream token and continue generating (implies --logit-bias EOS-inf)",
  1638. [](common_params & params) {
  1639. params.sampling.ignore_eos = true;
  1640. }
  1641. ).set_sparam());
  1642. add_opt(common_arg(
  1643. {"--temp"}, "N",
  1644. string_format("temperature (default: %.1f)", (double)params.sampling.temp),
  1645. [](common_params & params, const std::string & value) {
  1646. params.sampling.temp = std::stof(value);
  1647. params.sampling.temp = std::max(params.sampling.temp, 0.0f);
  1648. }
  1649. ).set_sparam());
  1650. add_opt(common_arg(
  1651. {"--top-k"}, "N",
  1652. string_format("top-k sampling (default: %d, 0 = disabled)", params.sampling.top_k),
  1653. [](common_params & params, int value) {
  1654. params.sampling.top_k = value;
  1655. }
  1656. ).set_sparam());
  1657. add_opt(common_arg(
  1658. {"--top-p"}, "N",
  1659. string_format("top-p sampling (default: %.1f, 1.0 = disabled)", (double)params.sampling.top_p),
  1660. [](common_params & params, const std::string & value) {
  1661. params.sampling.top_p = std::stof(value);
  1662. }
  1663. ).set_sparam());
  1664. add_opt(common_arg(
  1665. {"--min-p"}, "N",
  1666. string_format("min-p sampling (default: %.1f, 0.0 = disabled)", (double)params.sampling.min_p),
  1667. [](common_params & params, const std::string & value) {
  1668. params.sampling.min_p = std::stof(value);
  1669. }
  1670. ).set_sparam());
  1671. add_opt(common_arg(
  1672. {"--top-nsigma"}, "N",
  1673. string_format("top-n-sigma sampling (default: %.1f, -1.0 = disabled)", params.sampling.top_n_sigma),
  1674. [](common_params & params, const std::string & value) {
  1675. params.sampling.top_n_sigma = std::stof(value);
  1676. }
  1677. ).set_sparam());
  1678. add_opt(common_arg(
  1679. {"--xtc-probability"}, "N",
  1680. string_format("xtc probability (default: %.1f, 0.0 = disabled)", (double)params.sampling.xtc_probability),
  1681. [](common_params & params, const std::string & value) {
  1682. params.sampling.xtc_probability = std::stof(value);
  1683. }
  1684. ).set_sparam());
  1685. add_opt(common_arg(
  1686. {"--xtc-threshold"}, "N",
  1687. string_format("xtc threshold (default: %.1f, 1.0 = disabled)", (double)params.sampling.xtc_threshold),
  1688. [](common_params & params, const std::string & value) {
  1689. params.sampling.xtc_threshold = std::stof(value);
  1690. }
  1691. ).set_sparam());
  1692. add_opt(common_arg(
  1693. {"--typical"}, "N",
  1694. string_format("locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)", (double)params.sampling.typ_p),
  1695. [](common_params & params, const std::string & value) {
  1696. params.sampling.typ_p = std::stof(value);
  1697. }
  1698. ).set_sparam());
  1699. add_opt(common_arg(
  1700. {"--repeat-last-n"}, "N",
  1701. string_format("last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)", params.sampling.penalty_last_n),
  1702. [](common_params & params, int value) {
  1703. if (value < -1) {
  1704. throw std::runtime_error(string_format("error: invalid repeat-last-n = %d\n", value));
  1705. }
  1706. params.sampling.penalty_last_n = value;
  1707. params.sampling.n_prev = std::max(params.sampling.n_prev, params.sampling.penalty_last_n);
  1708. }
  1709. ).set_sparam());
  1710. add_opt(common_arg(
  1711. {"--repeat-penalty"}, "N",
  1712. string_format("penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)", (double)params.sampling.penalty_repeat),
  1713. [](common_params & params, const std::string & value) {
  1714. params.sampling.penalty_repeat = std::stof(value);
  1715. }
  1716. ).set_sparam());
  1717. add_opt(common_arg(
  1718. {"--presence-penalty"}, "N",
  1719. string_format("repeat alpha presence penalty (default: %.1f, 0.0 = disabled)", (double)params.sampling.penalty_present),
  1720. [](common_params & params, const std::string & value) {
  1721. params.sampling.penalty_present = std::stof(value);
  1722. }
  1723. ).set_sparam());
  1724. add_opt(common_arg(
  1725. {"--frequency-penalty"}, "N",
  1726. string_format("repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)", (double)params.sampling.penalty_freq),
  1727. [](common_params & params, const std::string & value) {
  1728. params.sampling.penalty_freq = std::stof(value);
  1729. }
  1730. ).set_sparam());
  1731. add_opt(common_arg(
  1732. {"--dry-multiplier"}, "N",
  1733. string_format("set DRY sampling multiplier (default: %.1f, 0.0 = disabled)", (double)params.sampling.dry_multiplier),
  1734. [](common_params & params, const std::string & value) {
  1735. params.sampling.dry_multiplier = std::stof(value);
  1736. }
  1737. ).set_sparam());
  1738. add_opt(common_arg(
  1739. {"--dry-base"}, "N",
  1740. string_format("set DRY sampling base value (default: %.2f)", (double)params.sampling.dry_base),
  1741. [](common_params & params, const std::string & value) {
  1742. float potential_base = std::stof(value);
  1743. if (potential_base >= 1.0f)
  1744. {
  1745. params.sampling.dry_base = potential_base;
  1746. }
  1747. }
  1748. ).set_sparam());
  1749. add_opt(common_arg(
  1750. {"--dry-allowed-length"}, "N",
  1751. string_format("set allowed length for DRY sampling (default: %d)", params.sampling.dry_allowed_length),
  1752. [](common_params & params, int value) {
  1753. params.sampling.dry_allowed_length = value;
  1754. }
  1755. ).set_sparam());
  1756. add_opt(common_arg(
  1757. {"--dry-penalty-last-n"}, "N",
  1758. string_format("set DRY penalty for the last n tokens (default: %d, 0 = disable, -1 = context size)", params.sampling.dry_penalty_last_n),
  1759. [](common_params & params, int value) {
  1760. if (value < -1) {
  1761. throw std::runtime_error(string_format("error: invalid dry-penalty-last-n = %d\n", value));
  1762. }
  1763. params.sampling.dry_penalty_last_n = value;
  1764. }
  1765. ).set_sparam());
  1766. add_opt(common_arg(
  1767. {"--dry-sequence-breaker"}, "STRING",
  1768. string_format("add sequence breaker for DRY sampling, clearing out default breakers (%s) in the process; use \"none\" to not use any sequence breakers\n",
  1769. params.sampling.dry_sequence_breakers.empty() ? "none" :
  1770. std::accumulate(std::next(params.sampling.dry_sequence_breakers.begin()),
  1771. params.sampling.dry_sequence_breakers.end(),
  1772. std::string("'") + (params.sampling.dry_sequence_breakers[0] == "\n" ? "\\n" : params.sampling.dry_sequence_breakers[0]) + "'",
  1773. [](const std::string& a, const std::string& b) {
  1774. std::string formatted_b = (b == "\n") ? "\\n" : b;
  1775. return a + ", '" + formatted_b + "'";
  1776. }).c_str()),
  1777. [](common_params & params, const std::string & value) {
  1778. static bool defaults_cleared = false;
  1779. if (!defaults_cleared) {
  1780. params.sampling.dry_sequence_breakers.clear();
  1781. defaults_cleared = true;
  1782. }
  1783. if (value == "none") {
  1784. params.sampling.dry_sequence_breakers.clear();
  1785. } else {
  1786. params.sampling.dry_sequence_breakers.emplace_back(value);
  1787. }
  1788. }
  1789. ).set_sparam());
  1790. add_opt(common_arg(
  1791. {"--dynatemp-range"}, "N",
  1792. string_format("dynamic temperature range (default: %.1f, 0.0 = disabled)", (double)params.sampling.dynatemp_range),
  1793. [](common_params & params, const std::string & value) {
  1794. params.sampling.dynatemp_range = std::stof(value);
  1795. }
  1796. ).set_sparam());
  1797. add_opt(common_arg(
  1798. {"--dynatemp-exp"}, "N",
  1799. string_format("dynamic temperature exponent (default: %.1f)", (double)params.sampling.dynatemp_exponent),
  1800. [](common_params & params, const std::string & value) {
  1801. params.sampling.dynatemp_exponent = std::stof(value);
  1802. }
  1803. ).set_sparam());
  1804. add_opt(common_arg(
  1805. {"--mirostat"}, "N",
  1806. string_format("use Mirostat sampling.\nTop K, Nucleus and Locally Typical samplers are ignored if used.\n"
  1807. "(default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)", params.sampling.mirostat),
  1808. [](common_params & params, int value) {
  1809. params.sampling.mirostat = value;
  1810. }
  1811. ).set_sparam());
  1812. add_opt(common_arg(
  1813. {"--mirostat-lr"}, "N",
  1814. string_format("Mirostat learning rate, parameter eta (default: %.1f)", (double)params.sampling.mirostat_eta),
  1815. [](common_params & params, const std::string & value) {
  1816. params.sampling.mirostat_eta = std::stof(value);
  1817. }
  1818. ).set_sparam());
  1819. add_opt(common_arg(
  1820. {"--mirostat-ent"}, "N",
  1821. string_format("Mirostat target entropy, parameter tau (default: %.1f)", (double)params.sampling.mirostat_tau),
  1822. [](common_params & params, const std::string & value) {
  1823. params.sampling.mirostat_tau = std::stof(value);
  1824. }
  1825. ).set_sparam());
  1826. add_opt(common_arg(
  1827. {"-l", "--logit-bias"}, "TOKEN_ID(+/-)BIAS",
  1828. "modifies the likelihood of token appearing in the completion,\n"
  1829. "i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n"
  1830. "or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'",
  1831. [](common_params & params, const std::string & value) {
  1832. std::stringstream ss(value);
  1833. llama_token key;
  1834. char sign;
  1835. std::string value_str;
  1836. try {
  1837. if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
  1838. const float bias = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
  1839. params.sampling.logit_bias.push_back({key, bias});
  1840. } else {
  1841. throw std::invalid_argument("invalid input format");
  1842. }
  1843. } catch (const std::exception&) {
  1844. throw std::invalid_argument("invalid input format");
  1845. }
  1846. }
  1847. ).set_sparam());
  1848. add_opt(common_arg(
  1849. {"--grammar"}, "GRAMMAR",
  1850. string_format("BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '%s')", params.sampling.grammar.c_str()),
  1851. [](common_params & params, const std::string & value) {
  1852. params.sampling.grammar = value;
  1853. }
  1854. ).set_sparam());
  1855. add_opt(common_arg(
  1856. {"--grammar-file"}, "FNAME",
  1857. "file to read grammar from",
  1858. [](common_params & params, const std::string & value) {
  1859. params.sampling.grammar = read_file(value);
  1860. }
  1861. ).set_sparam());
  1862. add_opt(common_arg(
  1863. {"-j", "--json-schema"}, "SCHEMA",
  1864. "JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\nFor schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead",
  1865. [](common_params & params, const std::string & value) {
  1866. params.sampling.grammar = json_schema_to_grammar(json::parse(value));
  1867. }
  1868. ).set_sparam());
  1869. add_opt(common_arg(
  1870. {"-jf", "--json-schema-file"}, "FILE",
  1871. "File containing a JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\nFor schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead",
  1872. [](common_params & params, const std::string & value) {
  1873. std::ifstream file(value);
  1874. if (!file) {
  1875. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  1876. }
  1877. std::string schema;
  1878. std::copy(
  1879. std::istreambuf_iterator<char>(file),
  1880. std::istreambuf_iterator<char>(),
  1881. std::back_inserter(schema)
  1882. );
  1883. params.sampling.grammar = json_schema_to_grammar(json::parse(schema));
  1884. }
  1885. ).set_sparam());
  1886. add_opt(common_arg(
  1887. {"--pooling"}, "{none,mean,cls,last,rank}",
  1888. "pooling type for embeddings, use model default if unspecified",
  1889. [](common_params & params, const std::string & value) {
  1890. /**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; }
  1891. else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
  1892. else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
  1893. else if (value == "last") { params.pooling_type = LLAMA_POOLING_TYPE_LAST; }
  1894. else if (value == "rank") { params.pooling_type = LLAMA_POOLING_TYPE_RANK; }
  1895. else { throw std::invalid_argument("invalid value"); }
  1896. }
  1897. ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_POOLING"));
  1898. add_opt(common_arg(
  1899. {"--attention"}, "{causal,non-causal}",
  1900. "attention type for embeddings, use model default if unspecified",
  1901. [](common_params & params, const std::string & value) {
  1902. /**/ if (value == "causal") { params.attention_type = LLAMA_ATTENTION_TYPE_CAUSAL; }
  1903. else if (value == "non-causal") { params.attention_type = LLAMA_ATTENTION_TYPE_NON_CAUSAL; }
  1904. else { throw std::invalid_argument("invalid value"); }
  1905. }
  1906. ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
  1907. add_opt(common_arg(
  1908. {"--rope-scaling"}, "{none,linear,yarn}",
  1909. "RoPE frequency scaling method, defaults to linear unless specified by the model",
  1910. [](common_params & params, const std::string & value) {
  1911. /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
  1912. else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
  1913. else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
  1914. else { throw std::invalid_argument("invalid value"); }
  1915. }
  1916. ).set_env("LLAMA_ARG_ROPE_SCALING_TYPE"));
  1917. add_opt(common_arg(
  1918. {"--rope-scale"}, "N",
  1919. "RoPE context scaling factor, expands context by a factor of N",
  1920. [](common_params & params, const std::string & value) {
  1921. params.rope_freq_scale = 1.0f / std::stof(value);
  1922. }
  1923. ).set_env("LLAMA_ARG_ROPE_SCALE"));
  1924. add_opt(common_arg(
  1925. {"--rope-freq-base"}, "N",
  1926. "RoPE base frequency, used by NTK-aware scaling (default: loaded from model)",
  1927. [](common_params & params, const std::string & value) {
  1928. params.rope_freq_base = std::stof(value);
  1929. }
  1930. ).set_env("LLAMA_ARG_ROPE_FREQ_BASE"));
  1931. add_opt(common_arg(
  1932. {"--rope-freq-scale"}, "N",
  1933. "RoPE frequency scaling factor, expands context by a factor of 1/N",
  1934. [](common_params & params, const std::string & value) {
  1935. params.rope_freq_scale = std::stof(value);
  1936. }
  1937. ).set_env("LLAMA_ARG_ROPE_FREQ_SCALE"));
  1938. add_opt(common_arg(
  1939. {"--yarn-orig-ctx"}, "N",
  1940. string_format("YaRN: original context size of model (default: %d = model training context size)", params.yarn_orig_ctx),
  1941. [](common_params & params, int value) {
  1942. params.yarn_orig_ctx = value;
  1943. }
  1944. ).set_env("LLAMA_ARG_YARN_ORIG_CTX"));
  1945. add_opt(common_arg(
  1946. {"--yarn-ext-factor"}, "N",
  1947. string_format("YaRN: extrapolation mix factor (default: %.1f, 0.0 = full interpolation)", (double)params.yarn_ext_factor),
  1948. [](common_params & params, const std::string & value) {
  1949. params.yarn_ext_factor = std::stof(value);
  1950. }
  1951. ).set_env("LLAMA_ARG_YARN_EXT_FACTOR"));
  1952. add_opt(common_arg(
  1953. {"--yarn-attn-factor"}, "N",
  1954. string_format("YaRN: scale sqrt(t) or attention magnitude (default: %.1f)", (double)params.yarn_attn_factor),
  1955. [](common_params & params, const std::string & value) {
  1956. params.yarn_attn_factor = std::stof(value);
  1957. }
  1958. ).set_env("LLAMA_ARG_YARN_ATTN_FACTOR"));
  1959. add_opt(common_arg(
  1960. {"--yarn-beta-slow"}, "N",
  1961. string_format("YaRN: high correction dim or alpha (default: %.1f)", (double)params.yarn_beta_slow),
  1962. [](common_params & params, const std::string & value) {
  1963. params.yarn_beta_slow = std::stof(value);
  1964. }
  1965. ).set_env("LLAMA_ARG_YARN_BETA_SLOW"));
  1966. add_opt(common_arg(
  1967. {"--yarn-beta-fast"}, "N",
  1968. string_format("YaRN: low correction dim or beta (default: %.1f)", (double)params.yarn_beta_fast),
  1969. [](common_params & params, const std::string & value) {
  1970. params.yarn_beta_fast = std::stof(value);
  1971. }
  1972. ).set_env("LLAMA_ARG_YARN_BETA_FAST"));
  1973. add_opt(common_arg(
  1974. {"-gan", "--grp-attn-n"}, "N",
  1975. string_format("group-attention factor (default: %d)", params.grp_attn_n),
  1976. [](common_params & params, int value) {
  1977. params.grp_attn_n = value;
  1978. }
  1979. ).set_env("LLAMA_ARG_GRP_ATTN_N").set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_PASSKEY}));
  1980. add_opt(common_arg(
  1981. {"-gaw", "--grp-attn-w"}, "N",
  1982. string_format("group-attention width (default: %d)", params.grp_attn_w),
  1983. [](common_params & params, int value) {
  1984. params.grp_attn_w = value;
  1985. }
  1986. ).set_env("LLAMA_ARG_GRP_ATTN_W").set_examples({LLAMA_EXAMPLE_MAIN}));
  1987. add_opt(common_arg(
  1988. {"-nkvo", "--no-kv-offload"},
  1989. "disable KV offload",
  1990. [](common_params & params) {
  1991. params.no_kv_offload = true;
  1992. }
  1993. ).set_env("LLAMA_ARG_NO_KV_OFFLOAD"));
  1994. add_opt(common_arg(
  1995. {"-nr", "--no-repack"},
  1996. "disable weight repacking",
  1997. [](common_params & params) {
  1998. params.no_extra_bufts = true;
  1999. }
  2000. ).set_env("LLAMA_ARG_NO_REPACK"));
  2001. add_opt(common_arg(
  2002. {"-ctk", "--cache-type-k"}, "TYPE",
  2003. string_format(
  2004. "KV cache data type for K\n"
  2005. "allowed values: %s\n"
  2006. "(default: %s)",
  2007. get_all_kv_cache_types().c_str(),
  2008. ggml_type_name(params.cache_type_k)
  2009. ),
  2010. [](common_params & params, const std::string & value) {
  2011. params.cache_type_k = kv_cache_type_from_str(value);
  2012. }
  2013. ).set_env("LLAMA_ARG_CACHE_TYPE_K"));
  2014. add_opt(common_arg(
  2015. {"-ctv", "--cache-type-v"}, "TYPE",
  2016. string_format(
  2017. "KV cache data type for V\n"
  2018. "allowed values: %s\n"
  2019. "(default: %s)",
  2020. get_all_kv_cache_types().c_str(),
  2021. ggml_type_name(params.cache_type_v)
  2022. ),
  2023. [](common_params & params, const std::string & value) {
  2024. params.cache_type_v = kv_cache_type_from_str(value);
  2025. }
  2026. ).set_env("LLAMA_ARG_CACHE_TYPE_V"));
  2027. add_opt(common_arg(
  2028. {"--hellaswag"},
  2029. "compute HellaSwag score over random tasks from datafile supplied with -f",
  2030. [](common_params & params) {
  2031. params.hellaswag = true;
  2032. }
  2033. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  2034. add_opt(common_arg(
  2035. {"--hellaswag-tasks"}, "N",
  2036. string_format("number of tasks to use when computing the HellaSwag score (default: %zu)", params.hellaswag_tasks),
  2037. [](common_params & params, int value) {
  2038. params.hellaswag_tasks = value;
  2039. }
  2040. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  2041. add_opt(common_arg(
  2042. {"--winogrande"},
  2043. "compute Winogrande score over random tasks from datafile supplied with -f",
  2044. [](common_params & params) {
  2045. params.winogrande = true;
  2046. }
  2047. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  2048. add_opt(common_arg(
  2049. {"--winogrande-tasks"}, "N",
  2050. string_format("number of tasks to use when computing the Winogrande score (default: %zu)", params.winogrande_tasks),
  2051. [](common_params & params, int value) {
  2052. params.winogrande_tasks = value;
  2053. }
  2054. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  2055. add_opt(common_arg(
  2056. {"--multiple-choice"},
  2057. "compute multiple choice score over random tasks from datafile supplied with -f",
  2058. [](common_params & params) {
  2059. params.multiple_choice = true;
  2060. }
  2061. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  2062. add_opt(common_arg(
  2063. {"--multiple-choice-tasks"}, "N",
  2064. string_format("number of tasks to use when computing the multiple choice score (default: %zu)", params.multiple_choice_tasks),
  2065. [](common_params & params, int value) {
  2066. params.multiple_choice_tasks = value;
  2067. }
  2068. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  2069. add_opt(common_arg(
  2070. {"--kl-divergence"},
  2071. "computes KL-divergence to logits provided via --kl-divergence-base",
  2072. [](common_params & params) {
  2073. params.kl_divergence = true;
  2074. }
  2075. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  2076. add_opt(common_arg(
  2077. {"--save-all-logits", "--kl-divergence-base"}, "FNAME",
  2078. "set logits file",
  2079. [](common_params & params, const std::string & value) {
  2080. params.logits_file = value;
  2081. }
  2082. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  2083. add_opt(common_arg(
  2084. {"--ppl-stride"}, "N",
  2085. string_format("stride for perplexity calculation (default: %d)", params.ppl_stride),
  2086. [](common_params & params, int value) {
  2087. params.ppl_stride = value;
  2088. }
  2089. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  2090. add_opt(common_arg(
  2091. {"--ppl-output-type"}, "<0|1>",
  2092. string_format("output type for perplexity calculation (default: %d)", params.ppl_output_type),
  2093. [](common_params & params, int value) {
  2094. params.ppl_output_type = value;
  2095. }
  2096. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  2097. add_opt(common_arg(
  2098. {"-dt", "--defrag-thold"}, "N",
  2099. string_format("KV cache defragmentation threshold (DEPRECATED)"),
  2100. [](common_params & params, const std::string & value) {
  2101. GGML_UNUSED(params);
  2102. GGML_UNUSED(value);
  2103. LOG_WRN("DEPRECATED: --defrag-thold is deprecated and no longer necessary to specify\n");
  2104. }
  2105. ).set_env("LLAMA_ARG_DEFRAG_THOLD"));
  2106. add_opt(common_arg(
  2107. {"-np", "--parallel"}, "N",
  2108. string_format("number of parallel sequences to decode (default: %d)", params.n_parallel),
  2109. [](common_params & params, int value) {
  2110. params.n_parallel = value;
  2111. }
  2112. ).set_env("LLAMA_ARG_N_PARALLEL"));
  2113. add_opt(common_arg(
  2114. {"-ns", "--sequences"}, "N",
  2115. string_format("number of sequences to decode (default: %d)", params.n_sequences),
  2116. [](common_params & params, int value) {
  2117. params.n_sequences = value;
  2118. }
  2119. ).set_examples({LLAMA_EXAMPLE_PARALLEL}));
  2120. add_opt(common_arg(
  2121. {"-cb", "--cont-batching"},
  2122. string_format("enable continuous batching (a.k.a dynamic batching) (default: %s)", params.cont_batching ? "enabled" : "disabled"),
  2123. [](common_params & params) {
  2124. params.cont_batching = true;
  2125. }
  2126. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CONT_BATCHING"));
  2127. add_opt(common_arg(
  2128. {"-nocb", "--no-cont-batching"},
  2129. "disable continuous batching",
  2130. [](common_params & params) {
  2131. params.cont_batching = false;
  2132. }
  2133. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_CONT_BATCHING"));
  2134. add_opt(common_arg(
  2135. {"--mmproj"}, "FILE",
  2136. "path to a multimodal projector file. see tools/mtmd/README.md\n"
  2137. "note: if -hf is used, this argument can be omitted",
  2138. [](common_params & params, const std::string & value) {
  2139. params.mmproj.path = value;
  2140. }
  2141. ).set_examples(mmproj_examples).set_env("LLAMA_ARG_MMPROJ"));
  2142. add_opt(common_arg(
  2143. {"--mmproj-url"}, "URL",
  2144. "URL to a multimodal projector file. see tools/mtmd/README.md",
  2145. [](common_params & params, const std::string & value) {
  2146. params.mmproj.url = value;
  2147. }
  2148. ).set_examples(mmproj_examples).set_env("LLAMA_ARG_MMPROJ_URL"));
  2149. add_opt(common_arg(
  2150. {"--no-mmproj"},
  2151. "explicitly disable multimodal projector, useful when using -hf",
  2152. [](common_params & params) {
  2153. params.no_mmproj = true;
  2154. }
  2155. ).set_examples(mmproj_examples).set_env("LLAMA_ARG_NO_MMPROJ"));
  2156. add_opt(common_arg(
  2157. {"--no-mmproj-offload"},
  2158. "do not offload multimodal projector to GPU",
  2159. [](common_params & params) {
  2160. params.mmproj_use_gpu = false;
  2161. }
  2162. ).set_examples(mmproj_examples).set_env("LLAMA_ARG_NO_MMPROJ_OFFLOAD"));
  2163. add_opt(common_arg(
  2164. {"--image", "--audio"}, "FILE",
  2165. "path to an image or audio file. use with multimodal models, can be repeated if you have multiple files\n",
  2166. [](common_params & params, const std::string & value) {
  2167. params.image.emplace_back(value);
  2168. }
  2169. ).set_examples({LLAMA_EXAMPLE_MTMD}));
  2170. if (llama_supports_rpc()) {
  2171. add_opt(common_arg(
  2172. {"--rpc"}, "SERVERS",
  2173. "comma separated list of RPC servers",
  2174. [](common_params & params, const std::string & value) {
  2175. add_rpc_devices(value);
  2176. GGML_UNUSED(params);
  2177. }
  2178. ).set_env("LLAMA_ARG_RPC"));
  2179. }
  2180. add_opt(common_arg(
  2181. {"--mlock"},
  2182. "force system to keep model in RAM rather than swapping or compressing",
  2183. [](common_params & params) {
  2184. params.use_mlock = true;
  2185. }
  2186. ).set_env("LLAMA_ARG_MLOCK"));
  2187. add_opt(common_arg(
  2188. {"--no-mmap"},
  2189. "do not memory-map model (slower load but may reduce pageouts if not using mlock)",
  2190. [](common_params & params) {
  2191. params.use_mmap = false;
  2192. }
  2193. ).set_env("LLAMA_ARG_NO_MMAP"));
  2194. add_opt(common_arg(
  2195. {"--numa"}, "TYPE",
  2196. "attempt optimizations that help on some NUMA systems\n"
  2197. "- distribute: spread execution evenly over all nodes\n"
  2198. "- isolate: only spawn threads on CPUs on the node that execution started on\n"
  2199. "- numactl: use the CPU map provided by numactl\n"
  2200. "if run without this previously, it is recommended to drop the system page cache before using this\n"
  2201. "see https://github.com/ggml-org/llama.cpp/issues/1437",
  2202. [](common_params & params, const std::string & value) {
  2203. /**/ if (value == "distribute" || value == "") { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
  2204. else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
  2205. else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
  2206. else { throw std::invalid_argument("invalid value"); }
  2207. }
  2208. ).set_env("LLAMA_ARG_NUMA"));
  2209. add_opt(common_arg(
  2210. {"-dev", "--device"}, "<dev1,dev2,..>",
  2211. "comma-separated list of devices to use for offloading (none = don't offload)\n"
  2212. "use --list-devices to see a list of available devices",
  2213. [](common_params & params, const std::string & value) {
  2214. params.devices = parse_device_list(value);
  2215. }
  2216. ).set_env("LLAMA_ARG_DEVICE"));
  2217. add_opt(common_arg(
  2218. {"--list-devices"},
  2219. "print list of available devices and exit",
  2220. [](common_params &) {
  2221. std::vector<ggml_backend_dev_t> rpc_devices;
  2222. std::vector<ggml_backend_dev_t> all_devices;
  2223. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  2224. auto * dev = ggml_backend_dev_get(i);
  2225. if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_GPU) {
  2226. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  2227. if (ggml_backend_reg_name(reg) == std::string("RPC")) {
  2228. rpc_devices.push_back(dev);
  2229. } else {
  2230. all_devices.push_back(dev);
  2231. }
  2232. }
  2233. }
  2234. // insert RPC devices in front
  2235. all_devices.insert(all_devices.begin(), rpc_devices.begin(), rpc_devices.end());
  2236. printf("Available devices:\n");
  2237. for (size_t i = 0; i < all_devices.size(); ++i) {
  2238. auto * dev = all_devices[i];
  2239. size_t free, total;
  2240. ggml_backend_dev_memory(dev, &free, &total);
  2241. printf(" %s: %s (%zu MiB, %zu MiB free)\n", ggml_backend_dev_name(dev), ggml_backend_dev_description(dev), total / 1024 / 1024, free / 1024 / 1024);
  2242. }
  2243. exit(0);
  2244. }
  2245. ));
  2246. add_opt(common_arg(
  2247. {"--override-tensor", "-ot"}, "<tensor name pattern>=<buffer type>,...",
  2248. "override tensor buffer type", [](common_params & params, const std::string & value) {
  2249. parse_tensor_buffer_overrides(value, params.tensor_buft_overrides);
  2250. }
  2251. ));
  2252. add_opt(common_arg(
  2253. {"--override-tensor-draft", "-otd"}, "<tensor name pattern>=<buffer type>,...",
  2254. "override tensor buffer type for draft model", [](common_params & params, const std::string & value) {
  2255. parse_tensor_buffer_overrides(value, params.speculative.tensor_buft_overrides);
  2256. }
  2257. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
  2258. add_opt(common_arg(
  2259. {"--cpu-moe", "-cmoe"},
  2260. "keep all Mixture of Experts (MoE) weights in the CPU",
  2261. [](common_params & params) {
  2262. params.tensor_buft_overrides.push_back({"\\.ffn_(up|down|gate)_exps", ggml_backend_cpu_buffer_type()});
  2263. }
  2264. ).set_env("LLAMA_ARG_CPU_MOE"));
  2265. add_opt(common_arg(
  2266. {"--n-cpu-moe", "-ncmoe"}, "N",
  2267. "keep the Mixture of Experts (MoE) weights of the first N layers in the CPU",
  2268. [](common_params & params, int value) {
  2269. if (value < 0) {
  2270. throw std::invalid_argument("invalid value");
  2271. }
  2272. for (int i = 0; i < value; ++i) {
  2273. // keep strings alive and avoid leaking memory by storing them in a static vector
  2274. static std::list<std::string> buft_overrides;
  2275. buft_overrides.push_back(string_format("blk\\.%d\\.ffn_(up|down|gate)_exps", i));
  2276. params.tensor_buft_overrides.push_back({buft_overrides.back().c_str(), ggml_backend_cpu_buffer_type()});
  2277. }
  2278. }
  2279. ).set_env("LLAMA_ARG_N_CPU_MOE"));
  2280. add_opt(common_arg(
  2281. {"--cpu-moe-draft", "-cmoed"},
  2282. "keep all Mixture of Experts (MoE) weights in the CPU for the draft model",
  2283. [](common_params & params) {
  2284. params.speculative.tensor_buft_overrides.push_back({"\\.ffn_(up|down|gate)_exps", ggml_backend_cpu_buffer_type()});
  2285. }
  2286. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CPU_MOE_DRAFT"));
  2287. add_opt(common_arg(
  2288. {"--n-cpu-moe-draft", "-ncmoed"}, "N",
  2289. "keep the Mixture of Experts (MoE) weights of the first N layers in the CPU for the draft model",
  2290. [](common_params & params, int value) {
  2291. if (value < 0) {
  2292. throw std::invalid_argument("invalid value");
  2293. }
  2294. for (int i = 0; i < value; ++i) {
  2295. static std::list<std::string> buft_overrides_draft;
  2296. buft_overrides_draft.push_back(string_format("blk\\.%d\\.ffn_(up|down|gate)_exps", i));
  2297. params.speculative.tensor_buft_overrides.push_back({buft_overrides_draft.back().c_str(), ggml_backend_cpu_buffer_type()});
  2298. }
  2299. }
  2300. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_N_CPU_MOE_DRAFT"));
  2301. add_opt(common_arg(
  2302. {"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N",
  2303. "number of layers to store in VRAM",
  2304. [](common_params & params, int value) {
  2305. params.n_gpu_layers = value;
  2306. if (!llama_supports_gpu_offload()) {
  2307. fprintf(stderr, "warning: no usable GPU found, --gpu-layers option will be ignored\n");
  2308. fprintf(stderr, "warning: one possible reason is that llama.cpp was compiled without GPU support\n");
  2309. fprintf(stderr, "warning: consult docs/build.md for compilation instructions\n");
  2310. }
  2311. }
  2312. ).set_env("LLAMA_ARG_N_GPU_LAYERS"));
  2313. add_opt(common_arg(
  2314. {"-sm", "--split-mode"}, "{none,layer,row}",
  2315. "how to split the model across multiple GPUs, one of:\n"
  2316. "- none: use one GPU only\n"
  2317. "- layer (default): split layers and KV across GPUs\n"
  2318. "- row: split rows across GPUs",
  2319. [](common_params & params, const std::string & value) {
  2320. std::string arg_next = value;
  2321. if (arg_next == "none") {
  2322. params.split_mode = LLAMA_SPLIT_MODE_NONE;
  2323. } else if (arg_next == "layer") {
  2324. params.split_mode = LLAMA_SPLIT_MODE_LAYER;
  2325. } else if (arg_next == "row") {
  2326. params.split_mode = LLAMA_SPLIT_MODE_ROW;
  2327. } else {
  2328. throw std::invalid_argument("invalid value");
  2329. }
  2330. if (!llama_supports_gpu_offload()) {
  2331. fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the split mode has no effect.\n");
  2332. }
  2333. }
  2334. ).set_env("LLAMA_ARG_SPLIT_MODE"));
  2335. add_opt(common_arg(
  2336. {"-ts", "--tensor-split"}, "N0,N1,N2,...",
  2337. "fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1",
  2338. [](common_params & params, const std::string & value) {
  2339. std::string arg_next = value;
  2340. // split string by , and /
  2341. const std::regex regex{ R"([,/]+)" };
  2342. std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 };
  2343. std::vector<std::string> split_arg{ it, {} };
  2344. if (split_arg.size() >= llama_max_devices()) {
  2345. throw std::invalid_argument(
  2346. string_format("got %d input configs, but system only has %d devices", (int)split_arg.size(), (int)llama_max_devices())
  2347. );
  2348. }
  2349. for (size_t i = 0; i < llama_max_devices(); ++i) {
  2350. if (i < split_arg.size()) {
  2351. params.tensor_split[i] = std::stof(split_arg[i]);
  2352. } else {
  2353. params.tensor_split[i] = 0.0f;
  2354. }
  2355. }
  2356. if (!llama_supports_gpu_offload()) {
  2357. fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting a tensor split has no effect.\n");
  2358. }
  2359. }
  2360. ).set_env("LLAMA_ARG_TENSOR_SPLIT"));
  2361. add_opt(common_arg(
  2362. {"-mg", "--main-gpu"}, "INDEX",
  2363. string_format("the GPU to use for the model (with split-mode = none), or for intermediate results and KV (with split-mode = row) (default: %d)", params.main_gpu),
  2364. [](common_params & params, int value) {
  2365. params.main_gpu = value;
  2366. if (!llama_supports_gpu_offload()) {
  2367. fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the main GPU has no effect.\n");
  2368. }
  2369. }
  2370. ).set_env("LLAMA_ARG_MAIN_GPU"));
  2371. add_opt(common_arg(
  2372. {"--check-tensors"},
  2373. string_format("check model tensor data for invalid values (default: %s)", params.check_tensors ? "true" : "false"),
  2374. [](common_params & params) {
  2375. params.check_tensors = true;
  2376. }
  2377. ));
  2378. add_opt(common_arg(
  2379. {"--override-kv"}, "KEY=TYPE:VALUE",
  2380. "advanced option to override model metadata by key. may be specified multiple times.\n"
  2381. "types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false",
  2382. [](common_params & params, const std::string & value) {
  2383. if (!string_parse_kv_override(value.c_str(), params.kv_overrides)) {
  2384. throw std::runtime_error(string_format("error: Invalid type for KV override: %s\n", value.c_str()));
  2385. }
  2386. }
  2387. ));
  2388. add_opt(common_arg(
  2389. {"--no-op-offload"},
  2390. string_format("disable offloading host tensor operations to device (default: %s)", params.no_op_offload ? "true" : "false"),
  2391. [](common_params & params) {
  2392. params.no_op_offload = true;
  2393. }
  2394. ));
  2395. add_opt(common_arg(
  2396. {"--lora"}, "FNAME",
  2397. "path to LoRA adapter (can be repeated to use multiple adapters)",
  2398. [](common_params & params, const std::string & value) {
  2399. params.lora_adapters.push_back({ std::string(value), 1.0, "", "", nullptr });
  2400. }
  2401. // we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg
  2402. ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}));
  2403. add_opt(common_arg(
  2404. {"--lora-scaled"}, "FNAME", "SCALE",
  2405. "path to LoRA adapter with user defined scaling (can be repeated to use multiple adapters)",
  2406. [](common_params & params, const std::string & fname, const std::string & scale) {
  2407. params.lora_adapters.push_back({ fname, std::stof(scale), "", "", nullptr });
  2408. }
  2409. // we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg
  2410. ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}));
  2411. add_opt(common_arg(
  2412. {"--control-vector"}, "FNAME",
  2413. "add a control vector\nnote: this argument can be repeated to add multiple control vectors",
  2414. [](common_params & params, const std::string & value) {
  2415. params.control_vectors.push_back({ 1.0f, value, });
  2416. }
  2417. ));
  2418. add_opt(common_arg(
  2419. {"--control-vector-scaled"}, "FNAME", "SCALE",
  2420. "add a control vector with user defined scaling SCALE\n"
  2421. "note: this argument can be repeated to add multiple scaled control vectors",
  2422. [](common_params & params, const std::string & fname, const std::string & scale) {
  2423. params.control_vectors.push_back({ std::stof(scale), fname });
  2424. }
  2425. ));
  2426. add_opt(common_arg(
  2427. {"--control-vector-layer-range"}, "START", "END",
  2428. "layer range to apply the control vector(s) to, start and end inclusive",
  2429. [](common_params & params, const std::string & start, const std::string & end) {
  2430. params.control_vector_layer_start = std::stoi(start);
  2431. params.control_vector_layer_end = std::stoi(end);
  2432. }
  2433. ));
  2434. add_opt(common_arg(
  2435. {"-a", "--alias"}, "STRING",
  2436. "set alias for model name (to be used by REST API)",
  2437. [](common_params & params, const std::string & value) {
  2438. params.model_alias = value;
  2439. }
  2440. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ALIAS"));
  2441. add_opt(common_arg(
  2442. {"-m", "--model"}, "FNAME",
  2443. ex == LLAMA_EXAMPLE_EXPORT_LORA
  2444. ? std::string("model path from which to load base model")
  2445. : string_format(
  2446. "model path (default: `models/$filename` with filename from `--hf-file` "
  2447. "or `--model-url` if set, otherwise %s)", DEFAULT_MODEL_PATH
  2448. ),
  2449. [](common_params & params, const std::string & value) {
  2450. params.model.path = value;
  2451. }
  2452. ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}).set_env("LLAMA_ARG_MODEL"));
  2453. add_opt(common_arg(
  2454. {"-mu", "--model-url"}, "MODEL_URL",
  2455. "model download url (default: unused)",
  2456. [](common_params & params, const std::string & value) {
  2457. params.model.url = value;
  2458. }
  2459. ).set_env("LLAMA_ARG_MODEL_URL"));
  2460. add_opt(common_arg(
  2461. {"-hf", "-hfr", "--hf-repo"}, "<user>/<model>[:quant]",
  2462. "Hugging Face model repository; quant is optional, case-insensitive, default to Q4_K_M, or falls back to the first file in the repo if Q4_K_M doesn't exist.\n"
  2463. "mmproj is also downloaded automatically if available. to disable, add --no-mmproj\n"
  2464. "example: unsloth/phi-4-GGUF:q4_k_m\n"
  2465. "(default: unused)",
  2466. [](common_params & params, const std::string & value) {
  2467. params.model.hf_repo = value;
  2468. }
  2469. ).set_env("LLAMA_ARG_HF_REPO"));
  2470. add_opt(common_arg(
  2471. {"-hfd", "-hfrd", "--hf-repo-draft"}, "<user>/<model>[:quant]",
  2472. "Same as --hf-repo, but for the draft model (default: unused)",
  2473. [](common_params & params, const std::string & value) {
  2474. params.speculative.model.hf_repo = value;
  2475. }
  2476. ).set_env("LLAMA_ARG_HFD_REPO"));
  2477. add_opt(common_arg(
  2478. {"-hff", "--hf-file"}, "FILE",
  2479. "Hugging Face model file. If specified, it will override the quant in --hf-repo (default: unused)",
  2480. [](common_params & params, const std::string & value) {
  2481. params.model.hf_file = value;
  2482. }
  2483. ).set_env("LLAMA_ARG_HF_FILE"));
  2484. add_opt(common_arg(
  2485. {"-hfv", "-hfrv", "--hf-repo-v"}, "<user>/<model>[:quant]",
  2486. "Hugging Face model repository for the vocoder model (default: unused)",
  2487. [](common_params & params, const std::string & value) {
  2488. params.vocoder.model.hf_repo = value;
  2489. }
  2490. ).set_env("LLAMA_ARG_HF_REPO_V"));
  2491. add_opt(common_arg(
  2492. {"-hffv", "--hf-file-v"}, "FILE",
  2493. "Hugging Face model file for the vocoder model (default: unused)",
  2494. [](common_params & params, const std::string & value) {
  2495. params.vocoder.model.hf_file = value;
  2496. }
  2497. ).set_env("LLAMA_ARG_HF_FILE_V"));
  2498. add_opt(common_arg(
  2499. {"-hft", "--hf-token"}, "TOKEN",
  2500. "Hugging Face access token (default: value from HF_TOKEN environment variable)",
  2501. [](common_params & params, const std::string & value) {
  2502. params.hf_token = value;
  2503. }
  2504. ).set_env("HF_TOKEN"));
  2505. add_opt(common_arg(
  2506. {"--context-file"}, "FNAME",
  2507. "file to load context from (repeat to specify multiple files)",
  2508. [](common_params & params, const std::string & value) {
  2509. std::ifstream file(value, std::ios::binary);
  2510. if (!file) {
  2511. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  2512. }
  2513. params.context_files.push_back(value);
  2514. }
  2515. ).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
  2516. add_opt(common_arg(
  2517. {"--chunk-size"}, "N",
  2518. string_format("minimum length of embedded text chunks (default: %d)", params.chunk_size),
  2519. [](common_params & params, int value) {
  2520. params.chunk_size = value;
  2521. }
  2522. ).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
  2523. add_opt(common_arg(
  2524. {"--chunk-separator"}, "STRING",
  2525. string_format("separator between chunks (default: '%s')", params.chunk_separator.c_str()),
  2526. [](common_params & params, const std::string & value) {
  2527. params.chunk_separator = value;
  2528. }
  2529. ).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
  2530. add_opt(common_arg(
  2531. {"--junk"}, "N",
  2532. string_format("number of times to repeat the junk text (default: %d)", params.n_junk),
  2533. [](common_params & params, int value) {
  2534. params.n_junk = value;
  2535. }
  2536. ).set_examples({LLAMA_EXAMPLE_PASSKEY, LLAMA_EXAMPLE_PARALLEL}));
  2537. add_opt(common_arg(
  2538. {"--pos"}, "N",
  2539. string_format("position of the passkey in the junk text (default: %d)", params.i_pos),
  2540. [](common_params & params, int value) {
  2541. params.i_pos = value;
  2542. }
  2543. ).set_examples({LLAMA_EXAMPLE_PASSKEY}));
  2544. add_opt(common_arg(
  2545. {"-o", "--output", "--output-file"}, "FNAME",
  2546. string_format("output file (default: '%s')", params.out_file.c_str()),
  2547. [](common_params & params, const std::string & value) {
  2548. params.out_file = value;
  2549. }
  2550. ).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_CVECTOR_GENERATOR, LLAMA_EXAMPLE_EXPORT_LORA, LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_FINETUNE}));
  2551. add_opt(common_arg(
  2552. {"-ofreq", "--output-frequency"}, "N",
  2553. string_format("output the imatrix every N iterations (default: %d)", params.n_out_freq),
  2554. [](common_params & params, int value) {
  2555. params.n_out_freq = value;
  2556. }
  2557. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2558. add_opt(common_arg(
  2559. {"--output-format"}, "{gguf,dat}",
  2560. string_format("output format for imatrix file (default: %s)", params.imat_dat > 0 ? "dat" : "gguf"),
  2561. [](common_params & params, const std::string & value) {
  2562. /**/ if (value == "gguf") { params.imat_dat = -1; }
  2563. else if (value == "dat") { params.imat_dat = 1; }
  2564. else { throw std::invalid_argument("invalid output format"); }
  2565. }
  2566. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2567. add_opt(common_arg(
  2568. {"--save-frequency"}, "N",
  2569. string_format("save an imatrix copy every N iterations (default: %d)", params.n_save_freq),
  2570. [](common_params & params, int value) {
  2571. params.n_save_freq = value;
  2572. }
  2573. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2574. add_opt(common_arg(
  2575. {"--process-output"},
  2576. string_format("collect data for the output tensor (default: %s)", params.process_output ? "true" : "false"),
  2577. [](common_params & params) {
  2578. params.process_output = true;
  2579. }
  2580. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2581. add_opt(common_arg(
  2582. {"--no-ppl"},
  2583. string_format("do not compute perplexity (default: %s)", params.compute_ppl ? "true" : "false"),
  2584. [](common_params & params) {
  2585. params.compute_ppl = false;
  2586. }
  2587. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2588. add_opt(common_arg(
  2589. {"--chunk", "--from-chunk"}, "N",
  2590. string_format("start processing the input from chunk N (default: %d)", params.i_chunk),
  2591. [](common_params & params, int value) {
  2592. params.i_chunk = value;
  2593. }
  2594. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2595. add_opt(common_arg(
  2596. {"--show-statistics"},
  2597. string_format("show imatrix statistics and then exit (default: %s)", params.show_statistics ? "true" : "false"),
  2598. [](common_params & params) {
  2599. params.show_statistics = true;
  2600. }
  2601. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2602. add_opt(common_arg(
  2603. {"--parse-special"},
  2604. string_format("prase special tokens (chat, tool, etc) (default: %s)", params.parse_special ? "true" : "false"),
  2605. [](common_params & params) {
  2606. params.parse_special = true;
  2607. }
  2608. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2609. add_opt(common_arg(
  2610. {"-pps"},
  2611. string_format("is the prompt shared across parallel sequences (default: %s)", params.is_pp_shared ? "true" : "false"),
  2612. [](common_params & params) {
  2613. params.is_pp_shared = true;
  2614. }
  2615. ).set_examples({LLAMA_EXAMPLE_BENCH, LLAMA_EXAMPLE_PARALLEL}));
  2616. add_opt(common_arg(
  2617. {"-npp"}, "n0,n1,...",
  2618. "number of prompt tokens",
  2619. [](common_params & params, const std::string & value) {
  2620. auto p = string_split<int>(value, ',');
  2621. params.n_pp.insert(params.n_pp.end(), p.begin(), p.end());
  2622. }
  2623. ).set_examples({LLAMA_EXAMPLE_BENCH}));
  2624. add_opt(common_arg(
  2625. {"-ntg"}, "n0,n1,...",
  2626. "number of text generation tokens",
  2627. [](common_params & params, const std::string & value) {
  2628. auto p = string_split<int>(value, ',');
  2629. params.n_tg.insert(params.n_tg.end(), p.begin(), p.end());
  2630. }
  2631. ).set_examples({LLAMA_EXAMPLE_BENCH}));
  2632. add_opt(common_arg(
  2633. {"-npl"}, "n0,n1,...",
  2634. "number of parallel prompts",
  2635. [](common_params & params, const std::string & value) {
  2636. auto p = string_split<int>(value, ',');
  2637. params.n_pl.insert(params.n_pl.end(), p.begin(), p.end());
  2638. }
  2639. ).set_examples({LLAMA_EXAMPLE_BENCH}));
  2640. add_opt(common_arg(
  2641. {"--embd-normalize"}, "N",
  2642. string_format("normalisation for embeddings (default: %d) (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)", params.embd_normalize),
  2643. [](common_params & params, int value) {
  2644. params.embd_normalize = value;
  2645. }
  2646. ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
  2647. add_opt(common_arg(
  2648. {"--embd-output-format"}, "FORMAT",
  2649. "empty = default, \"array\" = [[],[]...], \"json\" = openai style, \"json+\" = same \"json\" + cosine similarity matrix",
  2650. [](common_params & params, const std::string & value) {
  2651. params.embd_out = value;
  2652. }
  2653. ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
  2654. add_opt(common_arg(
  2655. {"--embd-separator"}, "STRING",
  2656. "separator of embeddings (default \\n) for example \"<#sep#>\"",
  2657. [](common_params & params, const std::string & value) {
  2658. params.embd_sep = value;
  2659. }
  2660. ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
  2661. add_opt(common_arg(
  2662. {"--cls-separator"}, "STRING",
  2663. "separator of classification sequences (default \\t) for example \"<#seq#>\"",
  2664. [](common_params & params, const std::string & value) {
  2665. params.cls_sep = value;
  2666. }
  2667. ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
  2668. add_opt(common_arg(
  2669. {"--host"}, "HOST",
  2670. string_format("ip address to listen, or bind to an UNIX socket if the address ends with .sock (default: %s)", params.hostname.c_str()),
  2671. [](common_params & params, const std::string & value) {
  2672. params.hostname = value;
  2673. }
  2674. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_HOST"));
  2675. add_opt(common_arg(
  2676. {"--port"}, "PORT",
  2677. string_format("port to listen (default: %d)", params.port),
  2678. [](common_params & params, int value) {
  2679. params.port = value;
  2680. }
  2681. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_PORT"));
  2682. add_opt(common_arg(
  2683. {"--path"}, "PATH",
  2684. string_format("path to serve static files from (default: %s)", params.public_path.c_str()),
  2685. [](common_params & params, const std::string & value) {
  2686. params.public_path = value;
  2687. }
  2688. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_STATIC_PATH"));
  2689. add_opt(common_arg(
  2690. {"--api-prefix"}, "PREFIX",
  2691. string_format("prefix path the server serves from, without the trailing slash (default: %s)", params.api_prefix.c_str()),
  2692. [](common_params & params, const std::string & value) {
  2693. params.api_prefix = value;
  2694. }
  2695. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_API_PREFIX"));
  2696. add_opt(common_arg(
  2697. {"--no-webui"},
  2698. string_format("Disable the Web UI (default: %s)", params.webui ? "enabled" : "disabled"),
  2699. [](common_params & params) {
  2700. params.webui = false;
  2701. }
  2702. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_WEBUI"));
  2703. add_opt(common_arg(
  2704. {"--embedding", "--embeddings"},
  2705. string_format("restrict to only support embedding use case; use only with dedicated embedding models (default: %s)", params.embedding ? "enabled" : "disabled"),
  2706. [](common_params & params) {
  2707. params.embedding = true;
  2708. }
  2709. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_EMBEDDINGS"));
  2710. add_opt(common_arg(
  2711. {"--reranking", "--rerank"},
  2712. string_format("enable reranking endpoint on server (default: %s)", "disabled"),
  2713. [](common_params & params) {
  2714. params.embedding = true;
  2715. params.pooling_type = LLAMA_POOLING_TYPE_RANK;
  2716. }
  2717. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_RERANKING"));
  2718. add_opt(common_arg(
  2719. {"--api-key"}, "KEY",
  2720. "API key to use for authentication (default: none)",
  2721. [](common_params & params, const std::string & value) {
  2722. params.api_keys.push_back(value);
  2723. }
  2724. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_API_KEY"));
  2725. add_opt(common_arg(
  2726. {"--api-key-file"}, "FNAME",
  2727. "path to file containing API keys (default: none)",
  2728. [](common_params & params, const std::string & value) {
  2729. std::ifstream key_file(value);
  2730. if (!key_file) {
  2731. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  2732. }
  2733. std::string key;
  2734. while (std::getline(key_file, key)) {
  2735. if (!key.empty()) {
  2736. params.api_keys.push_back(key);
  2737. }
  2738. }
  2739. key_file.close();
  2740. }
  2741. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2742. add_opt(common_arg(
  2743. {"--ssl-key-file"}, "FNAME",
  2744. "path to file a PEM-encoded SSL private key",
  2745. [](common_params & params, const std::string & value) {
  2746. params.ssl_file_key = value;
  2747. }
  2748. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_KEY_FILE"));
  2749. add_opt(common_arg(
  2750. {"--ssl-cert-file"}, "FNAME",
  2751. "path to file a PEM-encoded SSL certificate",
  2752. [](common_params & params, const std::string & value) {
  2753. params.ssl_file_cert = value;
  2754. }
  2755. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_CERT_FILE"));
  2756. add_opt(common_arg(
  2757. {"--chat-template-kwargs"}, "STRING",
  2758. string_format("sets additional params for the json template parser"),
  2759. [](common_params & params, const std::string & value) {
  2760. auto parsed = json::parse(value);
  2761. for (const auto & item : parsed.items()) {
  2762. params.default_template_kwargs[item.key()] = item.value().dump();
  2763. }
  2764. }
  2765. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_CHAT_TEMPLATE_KWARGS"));
  2766. add_opt(common_arg(
  2767. {"-to", "--timeout"}, "N",
  2768. string_format("server read/write timeout in seconds (default: %d)", params.timeout_read),
  2769. [](common_params & params, int value) {
  2770. params.timeout_read = value;
  2771. params.timeout_write = value;
  2772. }
  2773. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_TIMEOUT"));
  2774. add_opt(common_arg(
  2775. {"--threads-http"}, "N",
  2776. string_format("number of threads used to process HTTP requests (default: %d)", params.n_threads_http),
  2777. [](common_params & params, int value) {
  2778. params.n_threads_http = value;
  2779. }
  2780. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_THREADS_HTTP"));
  2781. add_opt(common_arg(
  2782. {"--cache-reuse"}, "N",
  2783. string_format(
  2784. "min chunk size to attempt reusing from the cache via KV shifting (default: %d)\n"
  2785. "[(card)](https://ggml.ai/f0.png)", params.n_cache_reuse
  2786. ),
  2787. [](common_params & params, int value) {
  2788. params.n_cache_reuse = value;
  2789. }
  2790. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CACHE_REUSE"));
  2791. add_opt(common_arg(
  2792. {"--metrics"},
  2793. string_format("enable prometheus compatible metrics endpoint (default: %s)", params.endpoint_metrics ? "enabled" : "disabled"),
  2794. [](common_params & params) {
  2795. params.endpoint_metrics = true;
  2796. }
  2797. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_METRICS"));
  2798. add_opt(common_arg(
  2799. {"--props"},
  2800. string_format("enable changing global properties via POST /props (default: %s)", params.endpoint_props ? "enabled" : "disabled"),
  2801. [](common_params & params) {
  2802. params.endpoint_props = true;
  2803. }
  2804. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_PROPS"));
  2805. add_opt(common_arg(
  2806. {"--slots"},
  2807. string_format("enable slots monitoring endpoint (default: %s)", params.endpoint_slots ? "enabled" : "disabled"),
  2808. [](common_params & params) {
  2809. params.endpoint_slots = true;
  2810. }
  2811. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_SLOTS"));
  2812. add_opt(common_arg(
  2813. {"--no-slots"},
  2814. "disables slots monitoring endpoint",
  2815. [](common_params & params) {
  2816. params.endpoint_slots = false;
  2817. }
  2818. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_ENDPOINT_SLOTS"));
  2819. add_opt(common_arg(
  2820. {"--slot-save-path"}, "PATH",
  2821. "path to save slot kv cache (default: disabled)",
  2822. [](common_params & params, const std::string & value) {
  2823. params.slot_save_path = value;
  2824. // if doesn't end with DIRECTORY_SEPARATOR, add it
  2825. if (!params.slot_save_path.empty() && params.slot_save_path[params.slot_save_path.size() - 1] != DIRECTORY_SEPARATOR) {
  2826. params.slot_save_path += DIRECTORY_SEPARATOR;
  2827. }
  2828. }
  2829. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2830. add_opt(common_arg(
  2831. {"--jinja"},
  2832. "use jinja template for chat (default: disabled)",
  2833. [](common_params & params) {
  2834. params.use_jinja = true;
  2835. }
  2836. ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_JINJA"));
  2837. add_opt(common_arg(
  2838. {"--reasoning-format"}, "FORMAT",
  2839. "controls whether thought tags are allowed and/or extracted from the response, and in which format they're returned; one of:\n"
  2840. "- none: leaves thoughts unparsed in `message.content`\n"
  2841. "- deepseek: puts thoughts in `message.reasoning_content` (except in streaming mode, which behaves as `none`)\n"
  2842. "(default: auto)",
  2843. [](common_params & params, const std::string & value) {
  2844. params.reasoning_format = common_reasoning_format_from_name(value);
  2845. }
  2846. ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_THINK"));
  2847. add_opt(common_arg(
  2848. {"--reasoning-budget"}, "N",
  2849. "controls the amount of thinking allowed; currently only one of: -1 for unrestricted thinking budget, or 0 to disable thinking (default: -1)",
  2850. [](common_params & params, int value) {
  2851. if (value != 0 && value != -1) { throw std::invalid_argument("invalid value"); }
  2852. params.reasoning_budget = value;
  2853. }
  2854. ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_THINK_BUDGET"));
  2855. add_opt(common_arg(
  2856. {"--chat-template"}, "JINJA_TEMPLATE",
  2857. string_format(
  2858. "set custom jinja chat template (default: template taken from model's metadata)\n"
  2859. "if suffix/prefix are specified, template will be disabled\n"
  2860. "only commonly used templates are accepted (unless --jinja is set before this flag):\n"
  2861. "list of built-in templates:\n%s", list_builtin_chat_templates().c_str()
  2862. ),
  2863. [](common_params & params, const std::string & value) {
  2864. params.chat_template = value;
  2865. }
  2866. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MTMD}).set_env("LLAMA_ARG_CHAT_TEMPLATE"));
  2867. add_opt(common_arg(
  2868. {"--chat-template-file"}, "JINJA_TEMPLATE_FILE",
  2869. string_format(
  2870. "set custom jinja chat template file (default: template taken from model's metadata)\n"
  2871. "if suffix/prefix are specified, template will be disabled\n"
  2872. "only commonly used templates are accepted (unless --jinja is set before this flag):\n"
  2873. "list of built-in templates:\n%s", list_builtin_chat_templates().c_str()
  2874. ),
  2875. [](common_params & params, const std::string & value) {
  2876. params.chat_template = read_file(value);
  2877. }
  2878. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CHAT_TEMPLATE_FILE"));
  2879. add_opt(common_arg(
  2880. {"--no-prefill-assistant"},
  2881. string_format(
  2882. "whether to prefill the assistant's response if the last message is an assistant message (default: prefill enabled)\n"
  2883. "when this flag is set, if the last message is an assistant message then it will be treated as a full message and not prefilled\n"
  2884. ),
  2885. [](common_params & params) {
  2886. params.prefill_assistant = false;
  2887. }
  2888. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_PREFILL_ASSISTANT"));
  2889. add_opt(common_arg(
  2890. {"-sps", "--slot-prompt-similarity"}, "SIMILARITY",
  2891. string_format("how much the prompt of a request must match the prompt of a slot in order to use that slot (default: %.2f, 0.0 = disabled)\n", params.slot_prompt_similarity),
  2892. [](common_params & params, const std::string & value) {
  2893. params.slot_prompt_similarity = std::stof(value);
  2894. }
  2895. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2896. add_opt(common_arg(
  2897. {"--lora-init-without-apply"},
  2898. string_format("load LoRA adapters without applying them (apply later via POST /lora-adapters) (default: %s)", params.lora_init_without_apply ? "enabled" : "disabled"),
  2899. [](common_params & params) {
  2900. params.lora_init_without_apply = true;
  2901. }
  2902. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2903. add_opt(common_arg(
  2904. {"--simple-io"},
  2905. "use basic IO for better compatibility in subprocesses and limited consoles",
  2906. [](common_params & params) {
  2907. params.simple_io = true;
  2908. }
  2909. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  2910. add_opt(common_arg(
  2911. {"--positive-file"}, "FNAME",
  2912. string_format("positive prompts file, one prompt per line (default: '%s')", params.cvector_positive_file.c_str()),
  2913. [](common_params & params, const std::string & value) {
  2914. params.cvector_positive_file = value;
  2915. }
  2916. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  2917. add_opt(common_arg(
  2918. {"--negative-file"}, "FNAME",
  2919. string_format("negative prompts file, one prompt per line (default: '%s')", params.cvector_negative_file.c_str()),
  2920. [](common_params & params, const std::string & value) {
  2921. params.cvector_negative_file = value;
  2922. }
  2923. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  2924. add_opt(common_arg(
  2925. {"--pca-batch"}, "N",
  2926. string_format("batch size used for PCA. Larger batch runs faster, but uses more memory (default: %d)", params.n_pca_batch),
  2927. [](common_params & params, int value) {
  2928. params.n_pca_batch = value;
  2929. }
  2930. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  2931. add_opt(common_arg(
  2932. {"--pca-iter"}, "N",
  2933. string_format("number of iterations used for PCA (default: %d)", params.n_pca_iterations),
  2934. [](common_params & params, int value) {
  2935. params.n_pca_iterations = value;
  2936. }
  2937. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  2938. add_opt(common_arg(
  2939. {"--method"}, "{pca, mean}",
  2940. "dimensionality reduction method to be used (default: pca)",
  2941. [](common_params & params, const std::string & value) {
  2942. /**/ if (value == "pca") { params.cvector_dimre_method = DIMRE_METHOD_PCA; }
  2943. else if (value == "mean") { params.cvector_dimre_method = DIMRE_METHOD_MEAN; }
  2944. else { throw std::invalid_argument("invalid value"); }
  2945. }
  2946. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  2947. add_opt(common_arg(
  2948. {"--output-format"}, "{md,jsonl}",
  2949. "output format for batched-bench results (default: md)",
  2950. [](common_params & params, const std::string & value) {
  2951. /**/ if (value == "jsonl") { params.batched_bench_output_jsonl = true; }
  2952. else if (value == "md") { params.batched_bench_output_jsonl = false; }
  2953. else { throw std::invalid_argument("invalid value"); }
  2954. }
  2955. ).set_examples({LLAMA_EXAMPLE_BENCH}));
  2956. add_opt(common_arg(
  2957. {"--log-disable"},
  2958. "Log disable",
  2959. [](common_params &) {
  2960. common_log_pause(common_log_main());
  2961. }
  2962. ));
  2963. add_opt(common_arg(
  2964. {"--log-file"}, "FNAME",
  2965. "Log to file",
  2966. [](common_params &, const std::string & value) {
  2967. common_log_set_file(common_log_main(), value.c_str());
  2968. }
  2969. ));
  2970. add_opt(common_arg(
  2971. {"--log-colors"},
  2972. "Enable colored logging",
  2973. [](common_params &) {
  2974. common_log_set_colors(common_log_main(), true);
  2975. }
  2976. ).set_env("LLAMA_LOG_COLORS"));
  2977. add_opt(common_arg(
  2978. {"-v", "--verbose", "--log-verbose"},
  2979. "Set verbosity level to infinity (i.e. log all messages, useful for debugging)",
  2980. [](common_params & params) {
  2981. params.verbosity = INT_MAX;
  2982. common_log_set_verbosity_thold(INT_MAX);
  2983. }
  2984. ));
  2985. add_opt(common_arg(
  2986. {"--offline"},
  2987. "Offline mode: forces use of cache, prevents network access",
  2988. [](common_params & params) {
  2989. params.offline = true;
  2990. }
  2991. ).set_env("LLAMA_OFFLINE"));
  2992. add_opt(common_arg(
  2993. {"-lv", "--verbosity", "--log-verbosity"}, "N",
  2994. "Set the verbosity threshold. Messages with a higher verbosity will be ignored.",
  2995. [](common_params & params, int value) {
  2996. params.verbosity = value;
  2997. common_log_set_verbosity_thold(value);
  2998. }
  2999. ).set_env("LLAMA_LOG_VERBOSITY"));
  3000. add_opt(common_arg(
  3001. {"--log-prefix"},
  3002. "Enable prefix in log messages",
  3003. [](common_params &) {
  3004. common_log_set_prefix(common_log_main(), true);
  3005. }
  3006. ).set_env("LLAMA_LOG_PREFIX"));
  3007. add_opt(common_arg(
  3008. {"--log-timestamps"},
  3009. "Enable timestamps in log messages",
  3010. [](common_params &) {
  3011. common_log_set_timestamps(common_log_main(), true);
  3012. }
  3013. ).set_env("LLAMA_LOG_TIMESTAMPS"));
  3014. // speculative parameters
  3015. add_opt(common_arg(
  3016. {"-td", "--threads-draft"}, "N",
  3017. "number of threads to use during generation (default: same as --threads)",
  3018. [](common_params & params, int value) {
  3019. params.speculative.cpuparams.n_threads = value;
  3020. if (params.speculative.cpuparams.n_threads <= 0) {
  3021. params.speculative.cpuparams.n_threads = std::thread::hardware_concurrency();
  3022. }
  3023. }
  3024. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
  3025. add_opt(common_arg(
  3026. {"-tbd", "--threads-batch-draft"}, "N",
  3027. "number of threads to use during batch and prompt processing (default: same as --threads-draft)",
  3028. [](common_params & params, int value) {
  3029. params.speculative.cpuparams_batch.n_threads = value;
  3030. if (params.speculative.cpuparams_batch.n_threads <= 0) {
  3031. params.speculative.cpuparams_batch.n_threads = std::thread::hardware_concurrency();
  3032. }
  3033. }
  3034. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
  3035. add_opt(common_arg(
  3036. {"-Cd", "--cpu-mask-draft"}, "M",
  3037. "Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)",
  3038. [](common_params & params, const std::string & mask) {
  3039. params.speculative.cpuparams.mask_valid = true;
  3040. if (!parse_cpu_mask(mask, params.speculative.cpuparams.cpumask)) {
  3041. throw std::invalid_argument("invalid cpumask");
  3042. }
  3043. }
  3044. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  3045. add_opt(common_arg(
  3046. {"-Crd", "--cpu-range-draft"}, "lo-hi",
  3047. "Ranges of CPUs for affinity. Complements --cpu-mask-draft",
  3048. [](common_params & params, const std::string & range) {
  3049. params.speculative.cpuparams.mask_valid = true;
  3050. if (!parse_cpu_range(range, params.speculative.cpuparams.cpumask)) {
  3051. throw std::invalid_argument("invalid range");
  3052. }
  3053. }
  3054. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  3055. add_opt(common_arg(
  3056. {"--cpu-strict-draft"}, "<0|1>",
  3057. "Use strict CPU placement for draft model (default: same as --cpu-strict)",
  3058. [](common_params & params, int value) {
  3059. params.speculative.cpuparams.strict_cpu = value;
  3060. }
  3061. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  3062. add_opt(common_arg(
  3063. {"--prio-draft"}, "N",
  3064. string_format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.speculative.cpuparams.priority),
  3065. [](common_params & params, int prio) {
  3066. if (prio < 0 || prio > 3) {
  3067. throw std::invalid_argument("invalid value");
  3068. }
  3069. params.speculative.cpuparams.priority = (enum ggml_sched_priority) prio;
  3070. }
  3071. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  3072. add_opt(common_arg(
  3073. {"--poll-draft"}, "<0|1>",
  3074. "Use polling to wait for draft model work (default: same as --poll])",
  3075. [](common_params & params, int value) {
  3076. params.speculative.cpuparams.poll = value;
  3077. }
  3078. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  3079. add_opt(common_arg(
  3080. {"-Cbd", "--cpu-mask-batch-draft"}, "M",
  3081. "Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)",
  3082. [](common_params & params, const std::string & mask) {
  3083. params.speculative.cpuparams_batch.mask_valid = true;
  3084. if (!parse_cpu_mask(mask, params.speculative.cpuparams_batch.cpumask)) {
  3085. throw std::invalid_argument("invalid cpumask");
  3086. }
  3087. }
  3088. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  3089. add_opt(common_arg(
  3090. {"-Crbd", "--cpu-range-batch-draft"}, "lo-hi",
  3091. "Ranges of CPUs for affinity. Complements --cpu-mask-draft-batch)",
  3092. [](common_params & params, const std::string & range) {
  3093. params.speculative.cpuparams_batch.mask_valid = true;
  3094. if (!parse_cpu_range(range, params.speculative.cpuparams_batch.cpumask)) {
  3095. throw std::invalid_argument("invalid cpumask");
  3096. }
  3097. }
  3098. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  3099. add_opt(common_arg(
  3100. {"--cpu-strict-batch-draft"}, "<0|1>",
  3101. "Use strict CPU placement for draft model (default: --cpu-strict-draft)",
  3102. [](common_params & params, int value) {
  3103. params.speculative.cpuparams_batch.strict_cpu = value;
  3104. }
  3105. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  3106. add_opt(common_arg(
  3107. {"--prio-batch-draft"}, "N",
  3108. string_format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.speculative.cpuparams_batch.priority),
  3109. [](common_params & params, int prio) {
  3110. if (prio < 0 || prio > 3) {
  3111. throw std::invalid_argument("invalid value");
  3112. }
  3113. params.speculative.cpuparams_batch.priority = (enum ggml_sched_priority) prio;
  3114. }
  3115. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  3116. add_opt(common_arg(
  3117. {"--poll-batch-draft"}, "<0|1>",
  3118. "Use polling to wait for draft model work (default: --poll-draft)",
  3119. [](common_params & params, int value) {
  3120. params.speculative.cpuparams_batch.poll = value;
  3121. }
  3122. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  3123. add_opt(common_arg(
  3124. {"--draft-max", "--draft", "--draft-n"}, "N",
  3125. string_format("number of tokens to draft for speculative decoding (default: %d)", params.speculative.n_max),
  3126. [](common_params & params, int value) {
  3127. params.speculative.n_max = value;
  3128. }
  3129. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_DRAFT_MAX"));
  3130. add_opt(common_arg(
  3131. {"--draft-min", "--draft-n-min"}, "N",
  3132. string_format("minimum number of draft tokens to use for speculative decoding (default: %d)", params.speculative.n_min),
  3133. [](common_params & params, int value) {
  3134. params.speculative.n_min = value;
  3135. }
  3136. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_DRAFT_MIN"));
  3137. add_opt(common_arg(
  3138. {"--draft-p-split"}, "P",
  3139. string_format("speculative decoding split probability (default: %.1f)", (double)params.speculative.p_split),
  3140. [](common_params & params, const std::string & value) {
  3141. params.speculative.p_split = std::stof(value);
  3142. }
  3143. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}).set_env("LLAMA_ARG_DRAFT_P_SPLIT"));
  3144. add_opt(common_arg(
  3145. {"--draft-p-min"}, "P",
  3146. string_format("minimum speculative decoding probability (greedy) (default: %.1f)", (double)params.speculative.p_min),
  3147. [](common_params & params, const std::string & value) {
  3148. params.speculative.p_min = std::stof(value);
  3149. }
  3150. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_DRAFT_P_MIN"));
  3151. add_opt(common_arg(
  3152. {"-cd", "--ctx-size-draft"}, "N",
  3153. string_format("size of the prompt context for the draft model (default: %d, 0 = loaded from model)", params.speculative.n_ctx),
  3154. [](common_params & params, int value) {
  3155. params.speculative.n_ctx = value;
  3156. }
  3157. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CTX_SIZE_DRAFT"));
  3158. add_opt(common_arg(
  3159. {"-devd", "--device-draft"}, "<dev1,dev2,..>",
  3160. "comma-separated list of devices to use for offloading the draft model (none = don't offload)\n"
  3161. "use --list-devices to see a list of available devices",
  3162. [](common_params & params, const std::string & value) {
  3163. params.speculative.devices = parse_device_list(value);
  3164. }
  3165. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
  3166. add_opt(common_arg(
  3167. {"-ngld", "--gpu-layers-draft", "--n-gpu-layers-draft"}, "N",
  3168. "number of layers to store in VRAM for the draft model",
  3169. [](common_params & params, int value) {
  3170. params.speculative.n_gpu_layers = value;
  3171. if (!llama_supports_gpu_offload()) {
  3172. fprintf(stderr, "warning: no usable GPU found, --gpu-layers-draft option will be ignored\n");
  3173. fprintf(stderr, "warning: one possible reason is that llama.cpp was compiled without GPU support\n");
  3174. fprintf(stderr, "warning: consult docs/build.md for compilation instructions\n");
  3175. }
  3176. }
  3177. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_N_GPU_LAYERS_DRAFT"));
  3178. add_opt(common_arg(
  3179. {"-md", "--model-draft"}, "FNAME",
  3180. "draft model for speculative decoding (default: unused)",
  3181. [](common_params & params, const std::string & value) {
  3182. params.speculative.model.path = value;
  3183. }
  3184. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODEL_DRAFT"));
  3185. add_opt(common_arg(
  3186. {"--spec-replace"}, "TARGET", "DRAFT",
  3187. "translate the string in TARGET into DRAFT if the draft model and main model are not compatible",
  3188. [](common_params & params, const std::string & tgt, const std::string & dft) {
  3189. params.speculative.replacements.push_back({ tgt, dft });
  3190. }
  3191. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
  3192. add_opt(common_arg(
  3193. {"-ctkd", "--cache-type-k-draft"}, "TYPE",
  3194. string_format(
  3195. "KV cache data type for K for the draft model\n"
  3196. "allowed values: %s\n"
  3197. "(default: %s)",
  3198. get_all_kv_cache_types().c_str(),
  3199. ggml_type_name(params.speculative.cache_type_k)
  3200. ),
  3201. [](common_params & params, const std::string & value) {
  3202. params.speculative.cache_type_k = kv_cache_type_from_str(value);
  3203. }
  3204. ).set_env("LLAMA_ARG_CACHE_TYPE_K_DRAFT"));
  3205. add_opt(common_arg(
  3206. {"-ctvd", "--cache-type-v-draft"}, "TYPE",
  3207. string_format(
  3208. "KV cache data type for V for the draft model\n"
  3209. "allowed values: %s\n"
  3210. "(default: %s)",
  3211. get_all_kv_cache_types().c_str(),
  3212. ggml_type_name(params.speculative.cache_type_v)
  3213. ),
  3214. [](common_params & params, const std::string & value) {
  3215. params.speculative.cache_type_v = kv_cache_type_from_str(value);
  3216. }
  3217. ).set_env("LLAMA_ARG_CACHE_TYPE_V_DRAFT"));
  3218. add_opt(common_arg(
  3219. {"-mv", "--model-vocoder"}, "FNAME",
  3220. "vocoder model for audio generation (default: unused)",
  3221. [](common_params & params, const std::string & value) {
  3222. params.vocoder.model.path = value;
  3223. }
  3224. ).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER}));
  3225. add_opt(common_arg(
  3226. {"--tts-use-guide-tokens"},
  3227. "Use guide tokens to improve TTS word recall",
  3228. [](common_params & params) {
  3229. params.vocoder.use_guide_tokens = true;
  3230. }
  3231. ).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER}));
  3232. add_opt(common_arg(
  3233. {"--tts-speaker-file"}, "FNAME",
  3234. "speaker file path for audio generation",
  3235. [](common_params & params, const std::string & value) {
  3236. params.vocoder.speaker_file = value;
  3237. }
  3238. ).set_examples({LLAMA_EXAMPLE_TTS}));
  3239. // model-specific
  3240. add_opt(common_arg(
  3241. {"--tts-oute-default"},
  3242. string_format("use default OuteTTS models (note: can download weights from the internet)"),
  3243. [](common_params & params) {
  3244. params.model.hf_repo = "OuteAI/OuteTTS-0.2-500M-GGUF";
  3245. params.model.hf_file = "OuteTTS-0.2-500M-Q8_0.gguf";
  3246. params.vocoder.model.hf_repo = "ggml-org/WavTokenizer";
  3247. params.vocoder.model.hf_file = "WavTokenizer-Large-75-F16.gguf";
  3248. }
  3249. ).set_examples({LLAMA_EXAMPLE_TTS}));
  3250. add_opt(common_arg(
  3251. {"--embd-bge-small-en-default"},
  3252. string_format("use default bge-small-en-v1.5 model (note: can download weights from the internet)"),
  3253. [](common_params & params) {
  3254. params.model.hf_repo = "ggml-org/bge-small-en-v1.5-Q8_0-GGUF";
  3255. params.model.hf_file = "bge-small-en-v1.5-q8_0.gguf";
  3256. params.pooling_type = LLAMA_POOLING_TYPE_NONE;
  3257. params.embd_normalize = 2;
  3258. params.n_ctx = 512;
  3259. params.verbose_prompt = true;
  3260. params.embedding = true;
  3261. }
  3262. ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_SERVER}));
  3263. add_opt(common_arg(
  3264. {"--embd-e5-small-en-default"},
  3265. string_format("use default e5-small-v2 model (note: can download weights from the internet)"),
  3266. [](common_params & params) {
  3267. params.model.hf_repo = "ggml-org/e5-small-v2-Q8_0-GGUF";
  3268. params.model.hf_file = "e5-small-v2-q8_0.gguf";
  3269. params.pooling_type = LLAMA_POOLING_TYPE_NONE;
  3270. params.embd_normalize = 2;
  3271. params.n_ctx = 512;
  3272. params.verbose_prompt = true;
  3273. params.embedding = true;
  3274. }
  3275. ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_SERVER}));
  3276. add_opt(common_arg(
  3277. {"--embd-gte-small-default"},
  3278. string_format("use default gte-small model (note: can download weights from the internet)"),
  3279. [](common_params & params) {
  3280. params.model.hf_repo = "ggml-org/gte-small-Q8_0-GGUF";
  3281. params.model.hf_file = "gte-small-q8_0.gguf";
  3282. params.pooling_type = LLAMA_POOLING_TYPE_NONE;
  3283. params.embd_normalize = 2;
  3284. params.n_ctx = 512;
  3285. params.verbose_prompt = true;
  3286. params.embedding = true;
  3287. }
  3288. ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_SERVER}));
  3289. add_opt(common_arg(
  3290. {"--fim-qwen-1.5b-default"},
  3291. string_format("use default Qwen 2.5 Coder 1.5B (note: can download weights from the internet)"),
  3292. [](common_params & params) {
  3293. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-1.5B-Q8_0-GGUF";
  3294. params.model.hf_file = "qwen2.5-coder-1.5b-q8_0.gguf";
  3295. params.port = 8012;
  3296. params.n_ubatch = 1024;
  3297. params.n_batch = 1024;
  3298. params.n_ctx = 0;
  3299. params.n_cache_reuse = 256;
  3300. }
  3301. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3302. add_opt(common_arg(
  3303. {"--fim-qwen-3b-default"},
  3304. string_format("use default Qwen 2.5 Coder 3B (note: can download weights from the internet)"),
  3305. [](common_params & params) {
  3306. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-3B-Q8_0-GGUF";
  3307. params.model.hf_file = "qwen2.5-coder-3b-q8_0.gguf";
  3308. params.port = 8012;
  3309. params.n_ubatch = 1024;
  3310. params.n_batch = 1024;
  3311. params.n_ctx = 0;
  3312. params.n_cache_reuse = 256;
  3313. }
  3314. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3315. add_opt(common_arg(
  3316. {"--fim-qwen-7b-default"},
  3317. string_format("use default Qwen 2.5 Coder 7B (note: can download weights from the internet)"),
  3318. [](common_params & params) {
  3319. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
  3320. params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
  3321. params.port = 8012;
  3322. params.n_ubatch = 1024;
  3323. params.n_batch = 1024;
  3324. params.n_ctx = 0;
  3325. params.n_cache_reuse = 256;
  3326. }
  3327. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3328. add_opt(common_arg(
  3329. {"--fim-qwen-7b-spec"},
  3330. string_format("use Qwen 2.5 Coder 7B + 0.5B draft for speculative decoding (note: can download weights from the internet)"),
  3331. [](common_params & params) {
  3332. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
  3333. params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
  3334. params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
  3335. params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
  3336. params.port = 8012;
  3337. params.n_ubatch = 1024;
  3338. params.n_batch = 1024;
  3339. params.n_ctx = 0;
  3340. params.n_cache_reuse = 256;
  3341. }
  3342. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3343. add_opt(common_arg(
  3344. {"--fim-qwen-14b-spec"},
  3345. string_format("use Qwen 2.5 Coder 14B + 0.5B draft for speculative decoding (note: can download weights from the internet)"),
  3346. [](common_params & params) {
  3347. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-14B-Q8_0-GGUF";
  3348. params.model.hf_file = "qwen2.5-coder-14b-q8_0.gguf";
  3349. params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
  3350. params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
  3351. params.port = 8012;
  3352. params.n_ubatch = 1024;
  3353. params.n_batch = 1024;
  3354. params.n_ctx = 0;
  3355. params.n_cache_reuse = 256;
  3356. }
  3357. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3358. add_opt(common_arg(
  3359. {"--fim-qwen-30b-default"},
  3360. string_format("use default Qwen 3 Coder 30B A3B Instruct (note: can download weights from the internet)"),
  3361. [](common_params & params) {
  3362. params.model.hf_repo = "ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF";
  3363. params.model.hf_file = "qwen3-coder-30b-a3b-instruct-q8_0.gguf";
  3364. params.port = 8012;
  3365. params.n_ubatch = 1024;
  3366. params.n_batch = 1024;
  3367. params.n_ctx = 0;
  3368. params.n_cache_reuse = 256;
  3369. }
  3370. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3371. add_opt(common_arg(
  3372. { "--diffusion-steps" }, "N",
  3373. string_format("number of diffusion steps (default: %d)", params.diffusion.steps),
  3374. [](common_params & params, int value) { params.diffusion.steps = value; }
  3375. ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
  3376. add_opt(common_arg(
  3377. { "--diffusion-visual" },
  3378. string_format("enable visual diffusion mode (show progressive generation) (default: %s)",
  3379. params.diffusion.visual_mode ? "true" : "false"),
  3380. [](common_params & params) { params.diffusion.visual_mode = true; }
  3381. ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
  3382. add_opt(common_arg(
  3383. { "--diffusion-eps" }, "F",
  3384. string_format("epsilon for timesteps (default: %.6f)", (double) params.diffusion.eps),
  3385. [](common_params & params, const std::string & value) { params.diffusion.eps = std::stof(value); }
  3386. ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
  3387. add_opt(common_arg(
  3388. { "--diffusion-algorithm" }, "N",
  3389. string_format("diffusion algorithm: 0=ORIGIN, 1=ENTROPY_BASED, 2=MARGIN_BASED, 3=RANDOM, 4=LOW_CONFIDENCE (default: %d)",
  3390. params.diffusion.algorithm),
  3391. [](common_params & params, int value) { params.diffusion.algorithm = value; }
  3392. ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
  3393. add_opt(common_arg(
  3394. { "--diffusion-alg-temp" }, "F",
  3395. string_format("dream algorithm temperature (default: %.3f)", (double) params.diffusion.alg_temp),
  3396. [](common_params & params, const std::string & value) { params.diffusion.alg_temp = std::stof(value); }
  3397. ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
  3398. add_opt(common_arg(
  3399. { "--diffusion-block-length" }, "N",
  3400. string_format("llada block length for generation (default: %d)", params.diffusion.block_length),
  3401. [](common_params & params, int value) { params.diffusion.block_length = value; }
  3402. ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
  3403. add_opt(common_arg(
  3404. { "--diffusion-cfg-scale" }, "F",
  3405. string_format("llada classifier-free guidance scale (default: %.3f)", (double) params.diffusion.cfg_scale),
  3406. [](common_params & params, const std::string & value) { params.diffusion.cfg_scale = std::stof(value); }
  3407. ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
  3408. add_opt(common_arg(
  3409. { "--diffusion-add-gumbel-noise" }, "F",
  3410. string_format("add gumbel noise to the logits if temp > 0.0 (default: %s)", params.diffusion.add_gumbel_noise ? "true" : "false"),
  3411. [](common_params & params, const std::string & value) { params.diffusion.add_gumbel_noise = std::stof(value); }
  3412. ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
  3413. add_opt(
  3414. common_arg({ "-lr", "--learning-rate" }, "ALPHA",
  3415. string_format(
  3416. "adamw or sgd optimizer alpha (default: %.2g); note: sgd alpha recommended ~10x (no momentum)",
  3417. (double) params.lr.lr0),
  3418. [](common_params & params, const std::string & value) { params.lr.lr0 = std::stof(value); })
  3419. .set_examples({ LLAMA_EXAMPLE_FINETUNE }));
  3420. add_opt(
  3421. common_arg({ "-lr-min", "--learning-rate-min" }, "ALPHA",
  3422. string_format(
  3423. "(if >0) final learning rate after decay (if -decay-epochs is set, default=%.2g)",
  3424. (double) params.lr.lr_min),
  3425. [](common_params & params, const std::string & value) { params.lr.lr_min = std::stof(value); })
  3426. .set_examples({ LLAMA_EXAMPLE_FINETUNE }));
  3427. add_opt(
  3428. common_arg({ "-decay-epochs", "--learning-rate-decay-epochs" }, "ALPHA",
  3429. string_format(
  3430. "(if >0) decay learning rate to -lr-min after this many epochs (exponential decay, default=%.2g)",
  3431. (double) params.lr.decay_epochs),
  3432. [](common_params & params, const std::string & value) { params.lr.decay_epochs = std::stof(value); })
  3433. .set_examples({ LLAMA_EXAMPLE_FINETUNE }));
  3434. add_opt(common_arg(
  3435. { "-wd", "--weight-decay" }, "WD",
  3436. string_format(
  3437. "adamw or sgd optimizer weight decay (0 is off; recommend very small e.g. 1e-9) (default: %.2g).",
  3438. (double) params.lr.wd),
  3439. [](common_params & params, const std::string & value) { params.lr.wd = std::stof(value); })
  3440. .set_examples({ LLAMA_EXAMPLE_FINETUNE }));
  3441. add_opt(common_arg({ "-val-split", "--val-split" }, "FRACTION",
  3442. string_format("fraction of data to use as validation set for training (default: %.2g).",
  3443. (double) params.val_split),
  3444. [](common_params & params, const std::string & value) { params.val_split = std::stof(value); })
  3445. .set_examples({ LLAMA_EXAMPLE_FINETUNE }));
  3446. add_opt(common_arg({ "-epochs", "--epochs" }, "N",
  3447. string_format("optimizer max # of epochs (default: %d)", params.lr.epochs),
  3448. [](common_params & params, int epochs) { params.lr.epochs = epochs; })
  3449. .set_examples({ LLAMA_EXAMPLE_FINETUNE }));
  3450. add_opt(common_arg({ "-opt", "--optimizer" }, "sgd|adamw", "adamw or sgd",
  3451. [](common_params & params, const std::string & name) {
  3452. params.optimizer = common_opt_get_optimizer(name.c_str());
  3453. if (params.optimizer == GGML_OPT_OPTIMIZER_TYPE_COUNT) {
  3454. throw std::invalid_argument("invalid --optimizer, valid options: adamw, sgd");
  3455. }
  3456. })
  3457. .set_examples({ LLAMA_EXAMPLE_FINETUNE }));
  3458. return ctx_arg;
  3459. }