server.cpp 208 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183
  1. #include "chat.h"
  2. #include "utils.hpp"
  3. #include "arg.h"
  4. #include "common.h"
  5. #include "json-schema-to-grammar.h"
  6. #include "llama.h"
  7. #include "log.h"
  8. #include "sampling.h"
  9. #include "speculative.h"
  10. #include "mtmd.h"
  11. #include "mtmd-helper.h"
  12. // mime type for sending response
  13. #define MIMETYPE_JSON "application/json; charset=utf-8"
  14. // auto generated files (see README.md for details)
  15. #include "index.html.gz.hpp"
  16. #include "loading.html.hpp"
  17. #include <atomic>
  18. #include <chrono>
  19. #include <condition_variable>
  20. #include <cstddef>
  21. #include <cinttypes>
  22. #include <deque>
  23. #include <memory>
  24. #include <mutex>
  25. #include <signal.h>
  26. #include <thread>
  27. #include <unordered_map>
  28. #include <unordered_set>
  29. using json = nlohmann::ordered_json;
  30. constexpr int HTTP_POLLING_SECONDS = 1;
  31. enum stop_type {
  32. STOP_TYPE_NONE,
  33. STOP_TYPE_EOS,
  34. STOP_TYPE_WORD,
  35. STOP_TYPE_LIMIT,
  36. };
  37. // state diagram: https://github.com/ggml-org/llama.cpp/pull/9283
  38. enum slot_state {
  39. SLOT_STATE_IDLE,
  40. SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future
  41. SLOT_STATE_PROCESSING_PROMPT,
  42. SLOT_STATE_DONE_PROMPT,
  43. SLOT_STATE_GENERATING,
  44. };
  45. enum server_state {
  46. SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
  47. SERVER_STATE_READY, // Server is ready and model is loaded
  48. };
  49. enum server_task_type {
  50. SERVER_TASK_TYPE_COMPLETION,
  51. SERVER_TASK_TYPE_EMBEDDING,
  52. SERVER_TASK_TYPE_RERANK,
  53. SERVER_TASK_TYPE_INFILL,
  54. SERVER_TASK_TYPE_CANCEL,
  55. SERVER_TASK_TYPE_NEXT_RESPONSE,
  56. SERVER_TASK_TYPE_METRICS,
  57. SERVER_TASK_TYPE_SLOT_SAVE,
  58. SERVER_TASK_TYPE_SLOT_RESTORE,
  59. SERVER_TASK_TYPE_SLOT_ERASE,
  60. SERVER_TASK_TYPE_SET_LORA,
  61. };
  62. enum oaicompat_type {
  63. OAICOMPAT_TYPE_NONE,
  64. OAICOMPAT_TYPE_CHAT,
  65. OAICOMPAT_TYPE_COMPLETION,
  66. OAICOMPAT_TYPE_EMBEDDING,
  67. };
  68. // https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
  69. enum error_type {
  70. ERROR_TYPE_INVALID_REQUEST,
  71. ERROR_TYPE_AUTHENTICATION,
  72. ERROR_TYPE_SERVER,
  73. ERROR_TYPE_NOT_FOUND,
  74. ERROR_TYPE_PERMISSION,
  75. ERROR_TYPE_UNAVAILABLE, // custom error
  76. ERROR_TYPE_NOT_SUPPORTED, // custom error
  77. };
  78. static bool server_task_type_need_embd(server_task_type task_type) {
  79. switch (task_type) {
  80. case SERVER_TASK_TYPE_EMBEDDING:
  81. case SERVER_TASK_TYPE_RERANK:
  82. return true;
  83. default:
  84. return false;
  85. }
  86. }
  87. static bool server_task_type_need_logits(server_task_type task_type) {
  88. switch (task_type) {
  89. case SERVER_TASK_TYPE_COMPLETION:
  90. case SERVER_TASK_TYPE_INFILL:
  91. return true;
  92. default:
  93. return false;
  94. }
  95. }
  96. struct slot_params {
  97. bool stream = true;
  98. bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
  99. bool return_tokens = false;
  100. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  101. int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
  102. int32_t n_predict = -1; // new tokens to predict
  103. int32_t n_indent = 0; // mininum line indentation for the generated text in number of whitespace characters
  104. int64_t t_max_prompt_ms = -1; // TODO: implement
  105. int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
  106. std::vector<common_adapter_lora_info> lora;
  107. std::vector<std::string> antiprompt;
  108. std::vector<std::string> response_fields;
  109. bool timings_per_token = false;
  110. bool post_sampling_probs = false;
  111. struct common_params_sampling sampling;
  112. struct common_params_speculative speculative;
  113. // OAI-compat fields
  114. bool verbose = false;
  115. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  116. std::string oaicompat_model;
  117. std::string oaicompat_cmpl_id;
  118. common_chat_syntax oaicompat_chat_syntax;
  119. // Embeddings
  120. int32_t embd_normalize = 2; // (-1=none, 0=max absolute int16, 1=taxicab, 2=Euclidean/L2, >2=p-norm)
  121. json to_json(bool only_metrics = false) const {
  122. std::vector<std::string> samplers;
  123. samplers.reserve(sampling.samplers.size());
  124. for (const auto & sampler : sampling.samplers) {
  125. samplers.emplace_back(common_sampler_type_to_str(sampler));
  126. }
  127. json lora = json::array();
  128. for (size_t i = 0; i < this->lora.size(); ++i) {
  129. lora.push_back({{"id", i}, {"scale", this->lora[i].scale}});
  130. }
  131. if (only_metrics) {
  132. return json {
  133. {"n_predict", n_predict}, // Server configured n_predict
  134. {"seed", sampling.seed},
  135. {"temperature", sampling.temp},
  136. {"dynatemp_range", sampling.dynatemp_range},
  137. {"dynatemp_exponent", sampling.dynatemp_exponent},
  138. {"top_k", sampling.top_k},
  139. {"top_p", sampling.top_p},
  140. {"min_p", sampling.min_p},
  141. {"top_n_sigma", sampling.top_n_sigma},
  142. {"xtc_probability", sampling.xtc_probability},
  143. {"xtc_threshold", sampling.xtc_threshold},
  144. {"typical_p", sampling.typ_p},
  145. {"repeat_last_n", sampling.penalty_last_n},
  146. {"repeat_penalty", sampling.penalty_repeat},
  147. {"presence_penalty", sampling.penalty_present},
  148. {"frequency_penalty", sampling.penalty_freq},
  149. {"dry_multiplier", sampling.dry_multiplier},
  150. {"dry_base", sampling.dry_base},
  151. {"dry_allowed_length", sampling.dry_allowed_length},
  152. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  153. {"mirostat", sampling.mirostat},
  154. {"mirostat_tau", sampling.mirostat_tau},
  155. {"mirostat_eta", sampling.mirostat_eta},
  156. {"max_tokens", n_predict}, // User configured n_predict
  157. {"n_keep", n_keep},
  158. {"n_discard", n_discard},
  159. {"ignore_eos", sampling.ignore_eos},
  160. {"stream", stream},
  161. {"n_probs", sampling.n_probs},
  162. {"min_keep", sampling.min_keep},
  163. {"chat_format", common_chat_format_name(oaicompat_chat_syntax.format)},
  164. {"reasoning_format", common_reasoning_format_name(oaicompat_chat_syntax.reasoning_format)},
  165. {"reasoning_in_content", oaicompat_chat_syntax.reasoning_in_content},
  166. {"thinking_forced_open", oaicompat_chat_syntax.thinking_forced_open},
  167. {"samplers", samplers},
  168. {"speculative.n_max", speculative.n_max},
  169. {"speculative.n_min", speculative.n_min},
  170. {"speculative.p_min", speculative.p_min},
  171. {"timings_per_token", timings_per_token},
  172. {"post_sampling_probs", post_sampling_probs},
  173. {"lora", lora},
  174. };
  175. }
  176. auto grammar_triggers = json::array();
  177. for (const auto & trigger : sampling.grammar_triggers) {
  178. server_grammar_trigger ct(trigger);
  179. grammar_triggers.push_back(ct.to_json());
  180. }
  181. return json {
  182. {"n_predict", n_predict}, // Server configured n_predict
  183. {"seed", sampling.seed},
  184. {"temperature", sampling.temp},
  185. {"dynatemp_range", sampling.dynatemp_range},
  186. {"dynatemp_exponent", sampling.dynatemp_exponent},
  187. {"top_k", sampling.top_k},
  188. {"top_p", sampling.top_p},
  189. {"min_p", sampling.min_p},
  190. {"top_n_sigma", sampling.top_n_sigma},
  191. {"xtc_probability", sampling.xtc_probability},
  192. {"xtc_threshold", sampling.xtc_threshold},
  193. {"typical_p", sampling.typ_p},
  194. {"repeat_last_n", sampling.penalty_last_n},
  195. {"repeat_penalty", sampling.penalty_repeat},
  196. {"presence_penalty", sampling.penalty_present},
  197. {"frequency_penalty", sampling.penalty_freq},
  198. {"dry_multiplier", sampling.dry_multiplier},
  199. {"dry_base", sampling.dry_base},
  200. {"dry_allowed_length", sampling.dry_allowed_length},
  201. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  202. {"dry_sequence_breakers", sampling.dry_sequence_breakers},
  203. {"mirostat", sampling.mirostat},
  204. {"mirostat_tau", sampling.mirostat_tau},
  205. {"mirostat_eta", sampling.mirostat_eta},
  206. {"stop", antiprompt},
  207. {"max_tokens", n_predict}, // User configured n_predict
  208. {"n_keep", n_keep},
  209. {"n_discard", n_discard},
  210. {"ignore_eos", sampling.ignore_eos},
  211. {"stream", stream},
  212. {"logit_bias", format_logit_bias(sampling.logit_bias)},
  213. {"n_probs", sampling.n_probs},
  214. {"min_keep", sampling.min_keep},
  215. {"grammar", sampling.grammar},
  216. {"grammar_lazy", sampling.grammar_lazy},
  217. {"grammar_triggers", grammar_triggers},
  218. {"preserved_tokens", sampling.preserved_tokens},
  219. {"chat_format", common_chat_format_name(oaicompat_chat_syntax.format)},
  220. {"reasoning_format", common_reasoning_format_name(oaicompat_chat_syntax.reasoning_format)},
  221. {"reasoning_in_content", oaicompat_chat_syntax.reasoning_in_content},
  222. {"thinking_forced_open", oaicompat_chat_syntax.thinking_forced_open},
  223. {"samplers", samplers},
  224. {"speculative.n_max", speculative.n_max},
  225. {"speculative.n_min", speculative.n_min},
  226. {"speculative.p_min", speculative.p_min},
  227. {"timings_per_token", timings_per_token},
  228. {"post_sampling_probs", post_sampling_probs},
  229. {"lora", lora},
  230. };
  231. }
  232. };
  233. struct server_task {
  234. int id = -1; // to be filled by server_queue
  235. int index = -1; // used when there are multiple prompts (batch request)
  236. server_task_type type;
  237. // used by SERVER_TASK_TYPE_CANCEL
  238. int id_target = -1;
  239. // used by SERVER_TASK_TYPE_INFERENCE
  240. slot_params params;
  241. server_tokens prompt_tokens;
  242. int id_selected_slot = -1;
  243. // used by SERVER_TASK_TYPE_SLOT_SAVE, SERVER_TASK_TYPE_SLOT_RESTORE, SERVER_TASK_TYPE_SLOT_ERASE
  244. struct slot_action {
  245. int slot_id;
  246. std::string filename;
  247. std::string filepath;
  248. };
  249. slot_action slot_action;
  250. // used by SERVER_TASK_TYPE_METRICS
  251. bool metrics_reset_bucket = false;
  252. // used by SERVER_TASK_TYPE_SET_LORA
  253. std::vector<common_adapter_lora_info> set_lora;
  254. server_task(server_task_type type) : type(type) {}
  255. static slot_params params_from_json_cmpl(
  256. const llama_context * ctx,
  257. const common_params & params_base,
  258. const json & data) {
  259. const llama_model * model = llama_get_model(ctx);
  260. const llama_vocab * vocab = llama_model_get_vocab(model);
  261. slot_params params;
  262. // Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
  263. slot_params defaults;
  264. defaults.sampling = params_base.sampling;
  265. defaults.speculative = params_base.speculative;
  266. defaults.n_keep = params_base.n_keep;
  267. defaults.antiprompt = params_base.antiprompt;
  268. // enabling this will output extra debug information in the HTTP responses from the server
  269. params.verbose = params_base.verbosity > 9;
  270. params.timings_per_token = json_value(data, "timings_per_token", false);
  271. params.stream = json_value(data, "stream", false);
  272. params.cache_prompt = json_value(data, "cache_prompt", true);
  273. params.return_tokens = json_value(data, "return_tokens", false);
  274. params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
  275. params.n_indent = json_value(data, "n_indent", defaults.n_indent);
  276. params.n_keep = json_value(data, "n_keep", defaults.n_keep);
  277. params.n_discard = json_value(data, "n_discard", defaults.n_discard);
  278. //params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
  279. params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
  280. params.response_fields = json_value(data, "response_fields", std::vector<std::string>());
  281. params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
  282. params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
  283. params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
  284. params.sampling.top_n_sigma = json_value(data, "top_n_sigma", defaults.sampling.top_n_sigma);
  285. params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
  286. params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
  287. params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);
  288. params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp);
  289. params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range);
  290. params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent);
  291. params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n);
  292. params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat);
  293. params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq);
  294. params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present);
  295. params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier);
  296. params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base);
  297. params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
  298. params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
  299. params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat);
  300. params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau);
  301. params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta);
  302. params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
  303. params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
  304. params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
  305. params.post_sampling_probs = json_value(data, "post_sampling_probs", defaults.post_sampling_probs);
  306. params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
  307. params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
  308. params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
  309. params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
  310. params.speculative.n_min = std::max(params.speculative.n_min, 0);
  311. params.speculative.n_max = std::max(params.speculative.n_max, 0);
  312. // Use OpenAI API logprobs only if n_probs wasn't provided
  313. if (data.contains("logprobs") && params.sampling.n_probs == defaults.sampling.n_probs){
  314. params.sampling.n_probs = json_value(data, "logprobs", defaults.sampling.n_probs);
  315. }
  316. if (data.contains("lora")) {
  317. if (data.at("lora").is_array()) {
  318. params.lora = parse_lora_request(params_base.lora_adapters, data.at("lora"));
  319. } else {
  320. throw std::runtime_error("Error: 'lora' must be an array of objects with 'id' and 'scale' fields");
  321. }
  322. } else {
  323. params.lora = params_base.lora_adapters;
  324. }
  325. // TODO: add more sanity checks for the input parameters
  326. if (params.sampling.penalty_last_n < -1) {
  327. throw std::runtime_error("Error: repeat_last_n must be >= -1");
  328. }
  329. if (params.sampling.dry_penalty_last_n < -1) {
  330. throw std::runtime_error("Error: dry_penalty_last_n must be >= -1");
  331. }
  332. if (params.sampling.penalty_last_n == -1) {
  333. // note: should be the slot's context and not the full context, but it's ok
  334. params.sampling.penalty_last_n = llama_n_ctx(ctx);
  335. }
  336. if (params.sampling.dry_penalty_last_n == -1) {
  337. params.sampling.dry_penalty_last_n = llama_n_ctx(ctx);
  338. }
  339. if (params.sampling.dry_base < 1.0f) {
  340. params.sampling.dry_base = defaults.sampling.dry_base;
  341. }
  342. // sequence breakers for DRY
  343. {
  344. // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
  345. // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
  346. if (data.contains("dry_sequence_breakers")) {
  347. params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
  348. if (params.sampling.dry_sequence_breakers.empty()) {
  349. throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings");
  350. }
  351. }
  352. }
  353. // process "json_schema" and "grammar"
  354. if (data.contains("json_schema") && !data.contains("grammar")) {
  355. try {
  356. auto schema = json_value(data, "json_schema", json::object());
  357. SRV_DBG("JSON schema: %s\n", schema.dump(2).c_str());
  358. params.sampling.grammar = json_schema_to_grammar(schema);
  359. SRV_DBG("Converted grammar: %s\n", params.sampling.grammar.c_str());
  360. } catch (const std::exception & e) {
  361. throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
  362. }
  363. } else {
  364. params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
  365. SRV_DBG("Grammar: %s\n", params.sampling.grammar.c_str());
  366. params.sampling.grammar_lazy = json_value(data, "grammar_lazy", defaults.sampling.grammar_lazy);
  367. SRV_DBG("Grammar lazy: %s\n", params.sampling.grammar_lazy ? "true" : "false");
  368. }
  369. {
  370. auto it = data.find("chat_format");
  371. if (it != data.end()) {
  372. params.oaicompat_chat_syntax.format = static_cast<common_chat_format>(it->get<int>());
  373. SRV_INF("Chat format: %s\n", common_chat_format_name(params.oaicompat_chat_syntax.format));
  374. } else {
  375. params.oaicompat_chat_syntax.format = defaults.oaicompat_chat_syntax.format;
  376. }
  377. common_reasoning_format reasoning_format = params_base.reasoning_format;
  378. if (data.contains("reasoning_format")) {
  379. reasoning_format = common_reasoning_format_from_name(data.at("reasoning_format").get<std::string>());
  380. }
  381. params.oaicompat_chat_syntax.reasoning_format = reasoning_format;
  382. params.oaicompat_chat_syntax.reasoning_in_content = params.stream && (reasoning_format == COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY);
  383. params.oaicompat_chat_syntax.thinking_forced_open = json_value(data, "thinking_forced_open", false);
  384. params.oaicompat_chat_syntax.parse_tool_calls = json_value(data, "parse_tool_calls", false);
  385. }
  386. {
  387. const auto preserved_tokens = data.find("preserved_tokens");
  388. if (preserved_tokens != data.end()) {
  389. for (const auto & t : *preserved_tokens) {
  390. auto ids = common_tokenize(vocab, t.get<std::string>(), /* add_special= */ false, /* parse_special= */ true);
  391. if (ids.size() == 1) {
  392. SRV_DBG("Preserved token: %d\n", ids[0]);
  393. params.sampling.preserved_tokens.insert(ids[0]);
  394. } else {
  395. // This may happen when using a tool call style meant for a model with special tokens to preserve on a model without said tokens.
  396. SRV_DBG("Not preserved because more than 1 token: %s\n", t.get<std::string>().c_str());
  397. }
  398. }
  399. }
  400. const auto grammar_triggers = data.find("grammar_triggers");
  401. if (grammar_triggers != data.end()) {
  402. for (const auto & t : *grammar_triggers) {
  403. server_grammar_trigger ct(t);
  404. if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_WORD) {
  405. const auto & word = ct.value.value;
  406. auto ids = common_tokenize(vocab, word, /* add_special= */ false, /* parse_special= */ true);
  407. if (ids.size() == 1) {
  408. auto token = ids[0];
  409. if (std::find(params.sampling.preserved_tokens.begin(), params.sampling.preserved_tokens.end(), (llama_token) token) == params.sampling.preserved_tokens.end()) {
  410. throw std::runtime_error("Grammar trigger word should be marked as preserved token: " + word);
  411. }
  412. SRV_DBG("Grammar trigger token: %d (`%s`)\n", token, word.c_str());
  413. common_grammar_trigger trigger;
  414. trigger.type = COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN;
  415. trigger.value = word;
  416. trigger.token = token;
  417. params.sampling.grammar_triggers.push_back(std::move(trigger));
  418. } else {
  419. SRV_DBG("Grammar trigger word: `%s`\n", word.c_str());
  420. params.sampling.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, word});
  421. }
  422. } else {
  423. if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN) {
  424. SRV_DBG("Grammar trigger pattern: `%s`\n", ct.value.value.c_str());
  425. } else if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL) {
  426. SRV_DBG("Grammar trigger pattern full: `%s`\n", ct.value.value.c_str());
  427. } else {
  428. throw std::runtime_error("Unknown grammar trigger type");
  429. }
  430. params.sampling.grammar_triggers.emplace_back(std::move(ct.value));
  431. }
  432. }
  433. }
  434. if (params.sampling.grammar_lazy && params.sampling.grammar_triggers.empty()) {
  435. throw std::runtime_error("Error: no triggers set for lazy grammar!");
  436. }
  437. }
  438. {
  439. params.sampling.logit_bias.clear();
  440. const auto & logit_bias = data.find("logit_bias");
  441. if (logit_bias != data.end() && logit_bias->is_array()) {
  442. const int n_vocab = llama_vocab_n_tokens(vocab);
  443. for (const auto & el : *logit_bias) {
  444. // TODO: we may want to throw errors here, in case "el" is incorrect
  445. if (el.is_array() && el.size() == 2) {
  446. float bias;
  447. if (el[1].is_number()) {
  448. bias = el[1].get<float>();
  449. } else if (el[1].is_boolean() && !el[1].get<bool>()) {
  450. bias = -INFINITY;
  451. } else {
  452. continue;
  453. }
  454. if (el[0].is_number_integer()) {
  455. llama_token tok = el[0].get<llama_token>();
  456. if (tok >= 0 && tok < n_vocab) {
  457. params.sampling.logit_bias.push_back({tok, bias});
  458. }
  459. } else if (el[0].is_string()) {
  460. auto toks = common_tokenize(vocab, el[0].get<std::string>(), false);
  461. for (auto tok : toks) {
  462. params.sampling.logit_bias.push_back({tok, bias});
  463. }
  464. }
  465. }
  466. }
  467. } else if (logit_bias != data.end() && logit_bias->is_object()) {
  468. const int n_vocab = llama_vocab_n_tokens(vocab);
  469. for (const auto & el : logit_bias->items()) {
  470. float bias;
  471. const auto & key = el.key();
  472. const auto & value = el.value();
  473. if (value.is_number()) {
  474. bias = value.get<float>();
  475. } else if (value.is_boolean() && !value.get<bool>()) {
  476. bias = -INFINITY;
  477. } else {
  478. continue;
  479. }
  480. char *end;
  481. llama_token tok = strtol(key.c_str(), &end, 10);
  482. if (*end == 0) {
  483. if (tok >= 0 && tok < n_vocab) {
  484. params.sampling.logit_bias.push_back({tok, bias});
  485. }
  486. } else {
  487. auto toks = common_tokenize(vocab, key, false);
  488. for (auto tok : toks) {
  489. params.sampling.logit_bias.push_back({tok, bias});
  490. }
  491. }
  492. }
  493. }
  494. params.sampling.ignore_eos = json_value(data, "ignore_eos", params_base.sampling.ignore_eos);
  495. if (params.sampling.ignore_eos) {
  496. params.sampling.logit_bias.insert(
  497. params.sampling.logit_bias.end(),
  498. defaults.sampling.logit_bias_eog.begin(), defaults.sampling.logit_bias_eog.end());
  499. }
  500. }
  501. {
  502. params.antiprompt.clear();
  503. const auto & stop = data.find("stop");
  504. if (stop != data.end() && stop->is_array()) {
  505. for (const auto & word : *stop) {
  506. if (!word.empty()) {
  507. params.antiprompt.push_back(word);
  508. }
  509. }
  510. }
  511. // set reverse prompt from cli args if not set in the request
  512. if (params.antiprompt.empty()) {
  513. params.antiprompt = defaults.antiprompt;
  514. }
  515. }
  516. {
  517. const auto samplers = data.find("samplers");
  518. if (samplers != data.end()) {
  519. if (samplers->is_array()) {
  520. params.sampling.samplers = common_sampler_types_from_names(*samplers, false);
  521. } else if (samplers->is_string()){
  522. params.sampling.samplers = common_sampler_types_from_chars(samplers->get<std::string>());
  523. }
  524. } else {
  525. params.sampling.samplers = defaults.sampling.samplers;
  526. }
  527. }
  528. std::string model_name = params_base.model_alias.empty() ? DEFAULT_OAICOMPAT_MODEL : params_base.model_alias;
  529. params.oaicompat_model = json_value(data, "model", model_name);
  530. return params;
  531. }
  532. // utility function
  533. static std::unordered_set<int> get_list_id(const std::vector<server_task> & tasks) {
  534. std::unordered_set<int> ids(tasks.size());
  535. for (size_t i = 0; i < tasks.size(); i++) {
  536. ids.insert(tasks[i].id);
  537. }
  538. return ids;
  539. }
  540. };
  541. struct result_timings {
  542. int32_t prompt_n = -1;
  543. double prompt_ms;
  544. double prompt_per_token_ms;
  545. double prompt_per_second;
  546. int32_t predicted_n = -1;
  547. double predicted_ms;
  548. double predicted_per_token_ms;
  549. double predicted_per_second;
  550. // Optional speculative metrics - only included when > 0
  551. int32_t draft_n = 0;
  552. int32_t draft_n_accepted = 0;
  553. json to_json() const {
  554. json base = {
  555. {"prompt_n", prompt_n},
  556. {"prompt_ms", prompt_ms},
  557. {"prompt_per_token_ms", prompt_per_token_ms},
  558. {"prompt_per_second", prompt_per_second},
  559. {"predicted_n", predicted_n},
  560. {"predicted_ms", predicted_ms},
  561. {"predicted_per_token_ms", predicted_per_token_ms},
  562. {"predicted_per_second", predicted_per_second},
  563. };
  564. if (draft_n > 0) {
  565. base["draft_n"] = draft_n;
  566. base["draft_n_accepted"] = draft_n_accepted;
  567. }
  568. return base;
  569. }
  570. };
  571. struct server_task_result {
  572. int id = -1;
  573. int id_slot = -1;
  574. virtual bool is_error() {
  575. // only used by server_task_result_error
  576. return false;
  577. }
  578. virtual bool is_stop() {
  579. // only used by server_task_result_cmpl_*
  580. return false;
  581. }
  582. virtual int get_index() {
  583. return -1;
  584. }
  585. virtual json to_json() = 0;
  586. virtual ~server_task_result() = default;
  587. };
  588. // using shared_ptr for polymorphism of server_task_result
  589. using server_task_result_ptr = std::unique_ptr<server_task_result>;
  590. inline std::string stop_type_to_str(stop_type type) {
  591. switch (type) {
  592. case STOP_TYPE_EOS: return "eos";
  593. case STOP_TYPE_WORD: return "word";
  594. case STOP_TYPE_LIMIT: return "limit";
  595. default: return "none";
  596. }
  597. }
  598. struct completion_token_output {
  599. llama_token tok;
  600. float prob;
  601. std::string text_to_send;
  602. struct prob_info {
  603. llama_token tok;
  604. std::string txt;
  605. float prob;
  606. };
  607. std::vector<prob_info> probs;
  608. json to_json(bool post_sampling_probs) const {
  609. json probs_for_token = json::array();
  610. for (const auto & p : probs) {
  611. std::string txt(p.txt);
  612. txt.resize(validate_utf8(txt));
  613. probs_for_token.push_back(json {
  614. {"id", p.tok},
  615. {"token", txt},
  616. {"bytes", str_to_bytes(p.txt)},
  617. {
  618. post_sampling_probs ? "prob" : "logprob",
  619. post_sampling_probs ? p.prob : logarithm(p.prob)
  620. },
  621. });
  622. }
  623. return probs_for_token;
  624. }
  625. static json probs_vector_to_json(const std::vector<completion_token_output> & probs, bool post_sampling_probs) {
  626. json out = json::array();
  627. for (const auto & p : probs) {
  628. std::string txt(p.text_to_send);
  629. txt.resize(validate_utf8(txt));
  630. out.push_back(json {
  631. {"id", p.tok},
  632. {"token", txt},
  633. {"bytes", str_to_bytes(p.text_to_send)},
  634. {
  635. post_sampling_probs ? "prob" : "logprob",
  636. post_sampling_probs ? p.prob : logarithm(p.prob)
  637. },
  638. {
  639. post_sampling_probs ? "top_probs" : "top_logprobs",
  640. p.to_json(post_sampling_probs)
  641. },
  642. });
  643. }
  644. return out;
  645. }
  646. static float logarithm(float x) {
  647. // nlohmann::json converts -inf to null, so we need to prevent that
  648. return x == 0.0f ? std::numeric_limits<float>::lowest() : std::log(x);
  649. }
  650. static std::vector<unsigned char> str_to_bytes(const std::string & str) {
  651. std::vector<unsigned char> bytes;
  652. for (unsigned char c : str) {
  653. bytes.push_back(c);
  654. }
  655. return bytes;
  656. }
  657. };
  658. struct swa_checkpoint {
  659. llama_pos pos_min;
  660. llama_pos pos_max;
  661. std::vector<uint8_t> data;
  662. };
  663. struct server_task_result_cmpl_final : server_task_result {
  664. int index = 0;
  665. std::string content;
  666. llama_tokens tokens;
  667. bool stream;
  668. result_timings timings;
  669. std::string prompt;
  670. bool truncated;
  671. int32_t n_decoded;
  672. int32_t n_prompt_tokens;
  673. int32_t n_tokens_cached;
  674. bool has_new_line;
  675. std::string stopping_word;
  676. stop_type stop = STOP_TYPE_NONE;
  677. bool post_sampling_probs;
  678. std::vector<completion_token_output> probs_output;
  679. std::vector<std::string> response_fields;
  680. slot_params generation_params;
  681. // OAI-compat fields
  682. bool verbose = false;
  683. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  684. std::string oaicompat_model;
  685. std::string oaicompat_cmpl_id;
  686. common_chat_msg oaicompat_msg;
  687. std::vector<common_chat_msg_diff> oaicompat_msg_diffs;
  688. virtual int get_index() override {
  689. return index;
  690. }
  691. virtual bool is_stop() override {
  692. return true; // in stream mode, final responses are considered stop
  693. }
  694. virtual json to_json() override {
  695. switch (oaicompat) {
  696. case OAICOMPAT_TYPE_NONE:
  697. return to_json_non_oaicompat();
  698. case OAICOMPAT_TYPE_COMPLETION:
  699. return to_json_oaicompat();
  700. case OAICOMPAT_TYPE_CHAT:
  701. return stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat();
  702. default:
  703. GGML_ASSERT(false && "Invalid oaicompat_type");
  704. }
  705. }
  706. json to_json_non_oaicompat() {
  707. json res = json {
  708. {"index", index},
  709. {"content", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  710. {"tokens", stream ? llama_tokens {} : tokens},
  711. {"id_slot", id_slot},
  712. {"stop", true},
  713. {"model", oaicompat_model},
  714. {"tokens_predicted", n_decoded},
  715. {"tokens_evaluated", n_prompt_tokens},
  716. {"generation_settings", generation_params.to_json()},
  717. {"prompt", prompt},
  718. {"has_new_line", has_new_line},
  719. {"truncated", truncated},
  720. {"stop_type", stop_type_to_str(stop)},
  721. {"stopping_word", stopping_word},
  722. {"tokens_cached", n_tokens_cached},
  723. {"timings", timings.to_json()},
  724. };
  725. if (!stream && !probs_output.empty()) {
  726. res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs);
  727. }
  728. return response_fields.empty() ? res : json_get_nested_values(response_fields, res);
  729. }
  730. json to_json_oaicompat() {
  731. std::time_t t = std::time(0);
  732. json logprobs = json(nullptr); // OAI default to null
  733. if (!stream && probs_output.size() > 0) {
  734. logprobs = json{
  735. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  736. };
  737. }
  738. json finish_reason = "length";
  739. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  740. finish_reason = "stop";
  741. }
  742. json res = json {
  743. {"choices", json::array({
  744. json{
  745. {"text", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  746. {"index", index},
  747. {"logprobs", logprobs},
  748. {"finish_reason", finish_reason},
  749. }
  750. })},
  751. {"created", t},
  752. {"model", oaicompat_model},
  753. {"system_fingerprint", build_info},
  754. {"object", "text_completion"},
  755. {"usage", json {
  756. {"completion_tokens", n_decoded},
  757. {"prompt_tokens", n_prompt_tokens},
  758. {"total_tokens", n_decoded + n_prompt_tokens}
  759. }},
  760. {"id", oaicompat_cmpl_id}
  761. };
  762. // extra fields for debugging purposes
  763. if (verbose) {
  764. res["__verbose"] = to_json_non_oaicompat();
  765. }
  766. if (timings.prompt_n >= 0) {
  767. res.push_back({"timings", timings.to_json()});
  768. }
  769. return res;
  770. }
  771. json to_json_oaicompat_chat() {
  772. std::string finish_reason = "length";
  773. common_chat_msg msg;
  774. if (!oaicompat_msg.empty()) {
  775. msg = oaicompat_msg;
  776. } else {
  777. msg.role = "assistant";
  778. msg.content = content;
  779. }
  780. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  781. finish_reason = msg.tool_calls.empty() ? "stop" : "tool_calls";
  782. }
  783. json choice {
  784. {"finish_reason", finish_reason},
  785. {"index", 0},
  786. {"message", msg.to_json_oaicompat<json>()},
  787. };
  788. if (!stream && probs_output.size() > 0) {
  789. choice["logprobs"] = json{
  790. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  791. };
  792. }
  793. std::time_t t = std::time(0);
  794. json res = json {
  795. {"choices", json::array({choice})},
  796. {"created", t},
  797. {"model", oaicompat_model},
  798. {"system_fingerprint", build_info},
  799. {"object", "chat.completion"},
  800. {"usage", json {
  801. {"completion_tokens", n_decoded},
  802. {"prompt_tokens", n_prompt_tokens},
  803. {"total_tokens", n_decoded + n_prompt_tokens}
  804. }},
  805. {"id", oaicompat_cmpl_id}
  806. };
  807. // extra fields for debugging purposes
  808. if (verbose) {
  809. res["__verbose"] = to_json_non_oaicompat();
  810. }
  811. if (timings.prompt_n >= 0) {
  812. res.push_back({"timings", timings.to_json()});
  813. }
  814. return res;
  815. }
  816. json to_json_oaicompat_chat_stream() {
  817. std::time_t t = std::time(0);
  818. std::string finish_reason = "length";
  819. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  820. finish_reason = oaicompat_msg.tool_calls.empty() ? "stop" : "tool_calls";
  821. }
  822. json deltas = json::array();
  823. for (const auto & diff : oaicompat_msg_diffs) {
  824. deltas.push_back({
  825. {"choices", json::array({
  826. json {
  827. {"finish_reason", nullptr},
  828. {"index", 0},
  829. {"delta", common_chat_msg_diff_to_json_oaicompat<json>(diff)},
  830. },
  831. })},
  832. {"created", t},
  833. {"id", oaicompat_cmpl_id},
  834. {"model", oaicompat_model},
  835. {"system_fingerprint", build_info},
  836. {"object", "chat.completion.chunk"},
  837. });
  838. }
  839. deltas.push_back({
  840. {"choices", json::array({
  841. json {
  842. {"finish_reason", finish_reason},
  843. {"index", 0},
  844. {"delta", json::object()},
  845. },
  846. })},
  847. {"created", t},
  848. {"id", oaicompat_cmpl_id},
  849. {"model", oaicompat_model},
  850. {"system_fingerprint", build_info},
  851. {"object", "chat.completion.chunk"},
  852. });
  853. // OpenAI API spec for chat.completion.chunks specifies an empty `choices` array for the last chunk when including usage
  854. // https://platform.openai.com/docs/api-reference/chat_streaming/streaming#chat_streaming/streaming-choices
  855. deltas.push_back({
  856. {"choices", json::array()},
  857. {"created", t},
  858. {"id", oaicompat_cmpl_id},
  859. {"model", oaicompat_model},
  860. {"system_fingerprint", build_info},
  861. {"object", "chat.completion.chunk"},
  862. {"usage", json {
  863. {"completion_tokens", n_decoded},
  864. {"prompt_tokens", n_prompt_tokens},
  865. {"total_tokens", n_decoded + n_prompt_tokens},
  866. }},
  867. });
  868. if (timings.prompt_n >= 0) {
  869. deltas.back().push_back({"timings", timings.to_json()});
  870. }
  871. // extra fields for debugging purposes
  872. if (verbose && !deltas.empty()) {
  873. deltas.front()["__verbose"] = to_json_non_oaicompat();
  874. }
  875. return deltas;
  876. }
  877. };
  878. struct server_task_result_cmpl_partial : server_task_result {
  879. int index = 0;
  880. std::string content;
  881. llama_tokens tokens;
  882. int32_t n_decoded;
  883. int32_t n_prompt_tokens;
  884. bool post_sampling_probs;
  885. completion_token_output prob_output;
  886. result_timings timings;
  887. // OAI-compat fields
  888. bool verbose = false;
  889. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  890. std::string oaicompat_model;
  891. std::string oaicompat_cmpl_id;
  892. std::vector<common_chat_msg_diff> oaicompat_msg_diffs;
  893. virtual int get_index() override {
  894. return index;
  895. }
  896. virtual bool is_stop() override {
  897. return false; // in stream mode, partial responses are not considered stop
  898. }
  899. virtual json to_json() override {
  900. switch (oaicompat) {
  901. case OAICOMPAT_TYPE_NONE:
  902. return to_json_non_oaicompat();
  903. case OAICOMPAT_TYPE_COMPLETION:
  904. return to_json_oaicompat();
  905. case OAICOMPAT_TYPE_CHAT:
  906. return to_json_oaicompat_chat();
  907. default:
  908. GGML_ASSERT(false && "Invalid oaicompat_type");
  909. }
  910. }
  911. json to_json_non_oaicompat() {
  912. // non-OAI-compat JSON
  913. json res = json {
  914. {"index", index},
  915. {"content", content},
  916. {"tokens", tokens},
  917. {"stop", false},
  918. {"id_slot", id_slot},
  919. {"tokens_predicted", n_decoded},
  920. {"tokens_evaluated", n_prompt_tokens},
  921. };
  922. // populate the timings object when needed (usually for the last response or with timings_per_token enabled)
  923. if (timings.prompt_n > 0) {
  924. res.push_back({"timings", timings.to_json()});
  925. }
  926. if (!prob_output.probs.empty()) {
  927. res["completion_probabilities"] = completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs);
  928. }
  929. return res;
  930. }
  931. json to_json_oaicompat() {
  932. std::time_t t = std::time(0);
  933. json logprobs = json(nullptr); // OAI default to null
  934. if (prob_output.probs.size() > 0) {
  935. logprobs = json{
  936. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  937. };
  938. }
  939. json res = json {
  940. {"choices", json::array({
  941. json{
  942. {"text", content},
  943. {"index", index},
  944. {"logprobs", logprobs},
  945. {"finish_reason", nullptr},
  946. }
  947. })},
  948. {"created", t},
  949. {"model", oaicompat_model},
  950. {"system_fingerprint", build_info},
  951. {"object", "text_completion"},
  952. {"id", oaicompat_cmpl_id}
  953. };
  954. // extra fields for debugging purposes
  955. if (verbose) {
  956. res["__verbose"] = to_json_non_oaicompat();
  957. }
  958. if (timings.prompt_n >= 0) {
  959. res.push_back({"timings", timings.to_json()});
  960. }
  961. return res;
  962. }
  963. json to_json_oaicompat_chat() {
  964. bool first = n_decoded == 1;
  965. std::time_t t = std::time(0);
  966. json choices;
  967. std::vector<json> deltas;
  968. auto add_delta = [&](const json & delta) {
  969. deltas.push_back({
  970. {"choices", json::array({
  971. json {
  972. {"finish_reason", nullptr},
  973. {"index", 0},
  974. {"delta", delta},
  975. },
  976. })},
  977. {"created", t},
  978. {"id", oaicompat_cmpl_id},
  979. {"model", oaicompat_model},
  980. {"system_fingerprint", build_info},
  981. {"object", "chat.completion.chunk"},
  982. });
  983. };
  984. // We have to send an initial update to conform to openai behavior
  985. if (first) {
  986. add_delta({
  987. {"role", "assistant"},
  988. {"content", nullptr},
  989. });
  990. }
  991. for (const auto & diff : oaicompat_msg_diffs) {
  992. add_delta(common_chat_msg_diff_to_json_oaicompat<json>(diff));
  993. }
  994. if (!deltas.empty()) {
  995. GGML_ASSERT(deltas[deltas.size() - 1].at("choices").size() >= 1);
  996. if (prob_output.probs.size() > 0) {
  997. deltas[deltas.size() - 1].at("choices").at(0)["logprobs"] = json {
  998. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  999. };
  1000. }
  1001. if (timings.prompt_n >= 0) {
  1002. deltas[deltas.size() - 1].push_back({"timings", timings.to_json()});
  1003. }
  1004. }
  1005. return deltas;
  1006. }
  1007. };
  1008. struct server_task_result_embd : server_task_result {
  1009. int index = 0;
  1010. std::vector<std::vector<float>> embedding;
  1011. int32_t n_tokens;
  1012. // OAI-compat fields
  1013. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  1014. virtual int get_index() override {
  1015. return index;
  1016. }
  1017. virtual json to_json() override {
  1018. return oaicompat == OAICOMPAT_TYPE_EMBEDDING
  1019. ? to_json_oaicompat()
  1020. : to_json_non_oaicompat();
  1021. }
  1022. json to_json_non_oaicompat() {
  1023. return json {
  1024. {"index", index},
  1025. {"embedding", embedding},
  1026. };
  1027. }
  1028. json to_json_oaicompat() {
  1029. return json {
  1030. {"index", index},
  1031. {"embedding", embedding[0]},
  1032. {"tokens_evaluated", n_tokens},
  1033. };
  1034. }
  1035. };
  1036. struct server_task_result_rerank : server_task_result {
  1037. int index = 0;
  1038. float score = -1e6;
  1039. int32_t n_tokens;
  1040. virtual int get_index() override {
  1041. return index;
  1042. }
  1043. virtual json to_json() override {
  1044. return json {
  1045. {"index", index},
  1046. {"score", score},
  1047. {"tokens_evaluated", n_tokens},
  1048. };
  1049. }
  1050. };
  1051. // this function maybe used outside of server_task_result_error
  1052. static json format_error_response(const std::string & message, const enum error_type type) {
  1053. std::string type_str;
  1054. int code = 500;
  1055. switch (type) {
  1056. case ERROR_TYPE_INVALID_REQUEST:
  1057. type_str = "invalid_request_error";
  1058. code = 400;
  1059. break;
  1060. case ERROR_TYPE_AUTHENTICATION:
  1061. type_str = "authentication_error";
  1062. code = 401;
  1063. break;
  1064. case ERROR_TYPE_NOT_FOUND:
  1065. type_str = "not_found_error";
  1066. code = 404;
  1067. break;
  1068. case ERROR_TYPE_SERVER:
  1069. type_str = "server_error";
  1070. code = 500;
  1071. break;
  1072. case ERROR_TYPE_PERMISSION:
  1073. type_str = "permission_error";
  1074. code = 403;
  1075. break;
  1076. case ERROR_TYPE_NOT_SUPPORTED:
  1077. type_str = "not_supported_error";
  1078. code = 501;
  1079. break;
  1080. case ERROR_TYPE_UNAVAILABLE:
  1081. type_str = "unavailable_error";
  1082. code = 503;
  1083. break;
  1084. }
  1085. return json {
  1086. {"code", code},
  1087. {"message", message},
  1088. {"type", type_str},
  1089. };
  1090. }
  1091. struct server_task_result_error : server_task_result {
  1092. int index = 0;
  1093. error_type err_type = ERROR_TYPE_SERVER;
  1094. std::string err_msg;
  1095. virtual bool is_error() override {
  1096. return true;
  1097. }
  1098. virtual json to_json() override {
  1099. return format_error_response(err_msg, err_type);
  1100. }
  1101. };
  1102. struct server_task_result_metrics : server_task_result {
  1103. int n_idle_slots;
  1104. int n_processing_slots;
  1105. int n_tasks_deferred;
  1106. int64_t t_start;
  1107. // TODO: somehow reuse server_metrics in the future, instead of duplicating the fields
  1108. uint64_t n_prompt_tokens_processed_total = 0;
  1109. uint64_t t_prompt_processing_total = 0;
  1110. uint64_t n_tokens_predicted_total = 0;
  1111. uint64_t t_tokens_generation_total = 0;
  1112. uint64_t n_past_max = 0;
  1113. uint64_t n_prompt_tokens_processed = 0;
  1114. uint64_t t_prompt_processing = 0;
  1115. uint64_t n_tokens_predicted = 0;
  1116. uint64_t t_tokens_generation = 0;
  1117. uint64_t n_decode_total = 0;
  1118. uint64_t n_busy_slots_total = 0;
  1119. // while we can also use std::vector<server_slot> this requires copying the slot object which can be quite messy
  1120. // therefore, we use json to temporarily store the slot.to_json() result
  1121. json slots_data = json::array();
  1122. virtual json to_json() override {
  1123. return json {
  1124. { "idle", n_idle_slots },
  1125. { "processing", n_processing_slots },
  1126. { "deferred", n_tasks_deferred },
  1127. { "t_start", t_start },
  1128. { "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total },
  1129. { "t_tokens_generation_total", t_tokens_generation_total },
  1130. { "n_tokens_predicted_total", n_tokens_predicted_total },
  1131. { "t_prompt_processing_total", t_prompt_processing_total },
  1132. { "n_past_max", n_past_max },
  1133. { "n_prompt_tokens_processed", n_prompt_tokens_processed },
  1134. { "t_prompt_processing", t_prompt_processing },
  1135. { "n_tokens_predicted", n_tokens_predicted },
  1136. { "t_tokens_generation", t_tokens_generation },
  1137. { "n_decode_total", n_decode_total },
  1138. { "n_busy_slots_total", n_busy_slots_total },
  1139. { "slots", slots_data },
  1140. };
  1141. }
  1142. };
  1143. struct server_task_result_slot_save_load : server_task_result {
  1144. std::string filename;
  1145. bool is_save; // true = save, false = load
  1146. size_t n_tokens;
  1147. size_t n_bytes;
  1148. double t_ms;
  1149. virtual json to_json() override {
  1150. if (is_save) {
  1151. return json {
  1152. { "id_slot", id_slot },
  1153. { "filename", filename },
  1154. { "n_saved", n_tokens },
  1155. { "n_written", n_bytes },
  1156. { "timings", {
  1157. { "save_ms", t_ms }
  1158. }},
  1159. };
  1160. } else {
  1161. return json {
  1162. { "id_slot", id_slot },
  1163. { "filename", filename },
  1164. { "n_restored", n_tokens },
  1165. { "n_read", n_bytes },
  1166. { "timings", {
  1167. { "restore_ms", t_ms }
  1168. }},
  1169. };
  1170. }
  1171. }
  1172. };
  1173. struct server_task_result_slot_erase : server_task_result {
  1174. size_t n_erased;
  1175. virtual json to_json() override {
  1176. return json {
  1177. { "id_slot", id_slot },
  1178. { "n_erased", n_erased },
  1179. };
  1180. }
  1181. };
  1182. struct server_task_result_apply_lora : server_task_result {
  1183. virtual json to_json() override {
  1184. return json {{ "success", true }};
  1185. }
  1186. };
  1187. struct server_slot {
  1188. int id;
  1189. int id_task = -1;
  1190. // only used for completion/embedding/infill/rerank
  1191. server_task_type task_type = SERVER_TASK_TYPE_COMPLETION;
  1192. llama_batch batch_spec = {};
  1193. llama_context * ctx = nullptr;
  1194. llama_context * ctx_dft = nullptr;
  1195. // multimodal
  1196. mtmd_context * mctx = nullptr;
  1197. common_speculative * spec = nullptr;
  1198. std::vector<common_adapter_lora_info> lora;
  1199. // the index relative to completion multi-task request
  1200. size_t index = 0;
  1201. struct slot_params params;
  1202. slot_state state = SLOT_STATE_IDLE;
  1203. // used to determine the slot that has been used the longest
  1204. int64_t t_last_used = -1;
  1205. // generation props
  1206. int32_t n_ctx = 0; // context size per slot
  1207. int32_t n_past = 0;
  1208. int32_t n_decoded = 0;
  1209. int32_t n_remaining = -1;
  1210. int32_t i_batch = -1;
  1211. int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
  1212. // n_prompt_tokens may not be equal to prompt_tokens.size(), because prompt maybe truncated
  1213. int32_t n_prompt_tokens = 0;
  1214. int32_t n_prompt_tokens_processed = 0;
  1215. // input prompt tokens
  1216. server_tokens prompt_tokens;
  1217. size_t last_nl_pos = 0;
  1218. std::string generated_text;
  1219. llama_tokens generated_tokens;
  1220. common_chat_msg chat_msg;
  1221. server_tokens cache_tokens;
  1222. std::vector<completion_token_output> generated_token_probs;
  1223. std::vector<swa_checkpoint> swa_checkpoints;
  1224. bool has_next_token = true;
  1225. bool has_new_line = false;
  1226. bool truncated = false;
  1227. stop_type stop;
  1228. std::string stopping_word;
  1229. // sampling
  1230. json json_schema;
  1231. struct common_sampler * smpl = nullptr;
  1232. llama_token sampled;
  1233. common_chat_format chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  1234. std::vector<std::string> generated_tool_call_ids;
  1235. // stats
  1236. size_t n_sent_text = 0; // number of sent text character
  1237. int64_t t_start_process_prompt;
  1238. int64_t t_start_generation;
  1239. double t_prompt_processing; // ms
  1240. double t_token_generation; // ms
  1241. std::function<void(int)> callback_on_release;
  1242. // Speculative decoding stats
  1243. int32_t n_draft_total = 0; // Total draft tokens generated
  1244. int32_t n_draft_accepted = 0; // Draft tokens actually accepted
  1245. void reset() {
  1246. SLT_DBG(*this, "%s", "\n");
  1247. n_prompt_tokens = 0;
  1248. last_nl_pos = 0;
  1249. generated_text = "";
  1250. has_new_line = false;
  1251. truncated = false;
  1252. stop = STOP_TYPE_NONE;
  1253. stopping_word = "";
  1254. n_past = 0;
  1255. n_sent_text = 0;
  1256. task_type = SERVER_TASK_TYPE_COMPLETION;
  1257. chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  1258. generated_tokens.clear();
  1259. generated_token_probs.clear();
  1260. chat_msg = {};
  1261. json_schema = json();
  1262. generated_tool_call_ids.clear();
  1263. // clear speculative decoding stats
  1264. n_draft_total = 0;
  1265. n_draft_accepted = 0;
  1266. }
  1267. bool need_embd() const {
  1268. return server_task_type_need_embd(task_type);
  1269. }
  1270. bool need_logits() const {
  1271. return server_task_type_need_logits(task_type);
  1272. }
  1273. // if the context does not have a memory module then all embeddings have to be computed within a single ubatch
  1274. // also we cannot split if the pooling would require any past tokens
  1275. bool can_split() const {
  1276. return
  1277. !need_embd() ||
  1278. (llama_get_memory(ctx) && llama_pooling_type(ctx) == LLAMA_POOLING_TYPE_LAST);
  1279. }
  1280. bool can_batch_with(server_slot & other_slot) const {
  1281. return task_type == other_slot.task_type && are_lora_equal(lora, other_slot.lora);
  1282. }
  1283. bool has_budget(const common_params & global_params) {
  1284. if (params.n_predict == -1 && global_params.n_predict == -1) {
  1285. return true; // limitless
  1286. }
  1287. n_remaining = -1;
  1288. if (params.n_predict != -1) {
  1289. n_remaining = params.n_predict - n_decoded;
  1290. } else if (global_params.n_predict != -1) {
  1291. n_remaining = global_params.n_predict - n_decoded;
  1292. }
  1293. return n_remaining > 0; // no budget
  1294. }
  1295. bool is_processing() const {
  1296. return state != SLOT_STATE_IDLE;
  1297. }
  1298. bool can_speculate() const {
  1299. return ctx_dft && params.speculative.n_max > 0 && params.cache_prompt;
  1300. }
  1301. void add_token(const completion_token_output & token) {
  1302. if (!is_processing()) {
  1303. SLT_WRN(*this, "%s", "slot is not processing\n");
  1304. return;
  1305. }
  1306. generated_token_probs.push_back(token);
  1307. }
  1308. void release() {
  1309. if (is_processing()) {
  1310. SLT_INF(*this, "stop processing: n_past = %d, truncated = %d\n", n_past, truncated);
  1311. t_last_used = ggml_time_us();
  1312. t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
  1313. state = SLOT_STATE_IDLE;
  1314. callback_on_release(id);
  1315. }
  1316. }
  1317. result_timings get_timings() const {
  1318. result_timings timings;
  1319. timings.prompt_n = n_prompt_tokens_processed;
  1320. timings.prompt_ms = t_prompt_processing;
  1321. timings.prompt_per_token_ms = t_prompt_processing / n_prompt_tokens_processed;
  1322. timings.prompt_per_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1323. timings.predicted_n = n_decoded;
  1324. timings.predicted_ms = t_token_generation;
  1325. timings.predicted_per_token_ms = t_token_generation / n_decoded;
  1326. timings.predicted_per_second = 1e3 / t_token_generation * n_decoded;
  1327. // Add speculative metrics
  1328. if (n_draft_total > 0) {
  1329. timings.draft_n = n_draft_total;
  1330. timings.draft_n_accepted = n_draft_accepted;
  1331. }
  1332. return timings;
  1333. }
  1334. const common_chat_msg & update_chat_msg(std::vector<common_chat_msg_diff> & diffs) {
  1335. auto previous_msg = chat_msg;
  1336. SRV_DBG("Parsing chat message: %s\n", generated_text.c_str());
  1337. auto new_msg = common_chat_parse(
  1338. generated_text,
  1339. /* is_partial= */ stop != STOP_TYPE_EOS,
  1340. params.oaicompat_chat_syntax);
  1341. if (!new_msg.empty()) {
  1342. new_msg.ensure_tool_call_ids_set(generated_tool_call_ids, gen_tool_call_id);
  1343. chat_msg = new_msg;
  1344. diffs = common_chat_msg_diff::compute_diffs(previous_msg, new_msg.empty() ? previous_msg : new_msg);
  1345. }
  1346. return chat_msg;
  1347. }
  1348. size_t find_stopping_strings(const std::string & text, const size_t last_token_size, bool is_full_stop) {
  1349. size_t stop_pos = std::string::npos;
  1350. for (const std::string & word : params.antiprompt) {
  1351. size_t pos;
  1352. if (is_full_stop) {
  1353. const size_t tmp = word.size() + last_token_size;
  1354. const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
  1355. pos = text.find(word, from_pos);
  1356. } else {
  1357. // otherwise, partial stop
  1358. pos = string_find_partial_stop(text, word);
  1359. }
  1360. if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
  1361. if (is_full_stop) {
  1362. stop = STOP_TYPE_WORD;
  1363. stopping_word = word;
  1364. has_next_token = false;
  1365. }
  1366. stop_pos = pos;
  1367. }
  1368. }
  1369. return stop_pos;
  1370. }
  1371. void print_timings() const {
  1372. const double t_prompt = t_prompt_processing / n_prompt_tokens_processed;
  1373. const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1374. const double t_gen = t_token_generation / n_decoded;
  1375. const double n_gen_second = 1e3 / t_token_generation * n_decoded;
  1376. SLT_INF(*this,
  1377. "\n"
  1378. "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1379. " eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1380. " total time = %10.2f ms / %5d tokens\n",
  1381. t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
  1382. t_token_generation, n_decoded, t_gen, n_gen_second,
  1383. t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
  1384. if (n_draft_total > 0) {
  1385. const float draft_ratio = (float) n_draft_accepted / n_draft_total;
  1386. SLT_INF(*this,
  1387. "\n"
  1388. "draft acceptance rate = %0.5f (%5d accepted / %5d generated)\n",
  1389. draft_ratio, n_draft_accepted, n_draft_total
  1390. );
  1391. }
  1392. }
  1393. json to_json(bool only_metrics = false) const {
  1394. if (only_metrics) {
  1395. return json {
  1396. {"id", id},
  1397. {"id_task", id_task},
  1398. {"n_ctx", n_ctx},
  1399. {"speculative", can_speculate()},
  1400. {"is_processing", is_processing()},
  1401. {"params", params.to_json(true)},
  1402. {"next_token",
  1403. {
  1404. {"has_next_token", has_next_token},
  1405. {"has_new_line", has_new_line},
  1406. {"n_remain", n_remaining},
  1407. {"n_decoded", n_decoded},
  1408. }
  1409. },
  1410. };
  1411. }
  1412. return json {
  1413. {"id", id},
  1414. {"id_task", id_task},
  1415. {"n_ctx", n_ctx},
  1416. {"speculative", can_speculate()},
  1417. {"is_processing", is_processing()},
  1418. {"params", params.to_json()},
  1419. {"prompt", prompt_tokens.detokenize(ctx, true)},
  1420. {"next_token",
  1421. {
  1422. {"has_next_token", has_next_token},
  1423. {"has_new_line", has_new_line},
  1424. {"n_remain", n_remaining},
  1425. {"n_decoded", n_decoded},
  1426. {"stopping_word", stopping_word},
  1427. }
  1428. },
  1429. };
  1430. }
  1431. };
  1432. struct server_metrics {
  1433. int64_t t_start = 0;
  1434. uint64_t n_prompt_tokens_processed_total = 0;
  1435. uint64_t t_prompt_processing_total = 0;
  1436. uint64_t n_tokens_predicted_total = 0;
  1437. uint64_t t_tokens_generation_total = 0;
  1438. uint64_t n_past_max = 0;
  1439. uint64_t n_prompt_tokens_processed = 0;
  1440. uint64_t t_prompt_processing = 0;
  1441. uint64_t n_tokens_predicted = 0;
  1442. uint64_t t_tokens_generation = 0;
  1443. uint64_t n_decode_total = 0;
  1444. uint64_t n_busy_slots_total = 0;
  1445. void init() {
  1446. t_start = ggml_time_us();
  1447. }
  1448. void on_prompt_eval(const server_slot & slot) {
  1449. n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
  1450. n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
  1451. t_prompt_processing += slot.t_prompt_processing;
  1452. t_prompt_processing_total += slot.t_prompt_processing;
  1453. if (slot.n_past > 0) {
  1454. n_past_max = std::max(n_past_max, (uint64_t) slot.n_past);
  1455. }
  1456. }
  1457. void on_prediction(const server_slot & slot) {
  1458. n_tokens_predicted_total += slot.n_decoded;
  1459. n_tokens_predicted += slot.n_decoded;
  1460. t_tokens_generation += slot.t_token_generation;
  1461. t_tokens_generation_total += slot.t_token_generation;
  1462. }
  1463. void on_decoded(const std::vector<server_slot> & slots) {
  1464. n_decode_total++;
  1465. for (const auto & slot : slots) {
  1466. if (slot.is_processing()) {
  1467. n_busy_slots_total++;
  1468. }
  1469. if (slot.n_past > 0) {
  1470. n_past_max = std::max(n_past_max, (uint64_t) slot.n_past);
  1471. }
  1472. }
  1473. }
  1474. void reset_bucket() {
  1475. n_prompt_tokens_processed = 0;
  1476. t_prompt_processing = 0;
  1477. n_tokens_predicted = 0;
  1478. t_tokens_generation = 0;
  1479. }
  1480. };
  1481. struct server_queue {
  1482. int id = 0;
  1483. bool running;
  1484. // queues
  1485. std::deque<server_task> queue_tasks;
  1486. std::deque<server_task> queue_tasks_deferred;
  1487. std::mutex mutex_tasks;
  1488. std::condition_variable condition_tasks;
  1489. // callback functions
  1490. std::function<void(server_task &&)> callback_new_task;
  1491. std::function<void(void)> callback_update_slots;
  1492. // Add a new task to the end of the queue
  1493. int post(server_task && task, bool front = false) {
  1494. std::unique_lock<std::mutex> lock(mutex_tasks);
  1495. GGML_ASSERT(task.id != -1);
  1496. // if this is cancel task make sure to clean up pending tasks
  1497. if (task.type == SERVER_TASK_TYPE_CANCEL) {
  1498. cleanup_pending_task(task.id_target);
  1499. }
  1500. const int task_id = task.id;
  1501. QUE_DBG("new task, id = %d, front = %d\n", task_id, front);
  1502. if (front) {
  1503. queue_tasks.push_front(std::move(task));
  1504. } else {
  1505. queue_tasks.push_back(std::move(task));
  1506. }
  1507. condition_tasks.notify_one();
  1508. return task_id;
  1509. }
  1510. // multi-task version of post()
  1511. int post(std::vector<server_task> && tasks, bool front = false) {
  1512. std::unique_lock<std::mutex> lock(mutex_tasks);
  1513. for (auto & task : tasks) {
  1514. if (task.id == -1) {
  1515. task.id = id++;
  1516. }
  1517. // if this is cancel task make sure to clean up pending tasks
  1518. if (task.type == SERVER_TASK_TYPE_CANCEL) {
  1519. cleanup_pending_task(task.id_target);
  1520. }
  1521. QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
  1522. if (front) {
  1523. queue_tasks.push_front(std::move(task));
  1524. } else {
  1525. queue_tasks.push_back(std::move(task));
  1526. }
  1527. }
  1528. condition_tasks.notify_one();
  1529. return 0;
  1530. }
  1531. // Add a new task, but defer until one slot is available
  1532. void defer(server_task && task) {
  1533. std::unique_lock<std::mutex> lock(mutex_tasks);
  1534. QUE_DBG("defer task, id = %d\n", task.id);
  1535. queue_tasks_deferred.push_back(std::move(task));
  1536. condition_tasks.notify_one();
  1537. }
  1538. // Get the next id for creating a new task
  1539. int get_new_id() {
  1540. std::unique_lock<std::mutex> lock(mutex_tasks);
  1541. int new_id = id++;
  1542. return new_id;
  1543. }
  1544. // Register function to process a new task
  1545. void on_new_task(std::function<void(server_task &&)> callback) {
  1546. callback_new_task = std::move(callback);
  1547. }
  1548. // Register the function to be called when all slots data is ready to be processed
  1549. void on_update_slots(std::function<void(void)> callback) {
  1550. callback_update_slots = std::move(callback);
  1551. }
  1552. // Call when the state of one slot is changed, it will move one task from deferred to main queue
  1553. void pop_deferred_task() {
  1554. std::unique_lock<std::mutex> lock(mutex_tasks);
  1555. if (!queue_tasks_deferred.empty()) {
  1556. queue_tasks.emplace_front(std::move(queue_tasks_deferred.front()));
  1557. queue_tasks_deferred.pop_front();
  1558. }
  1559. condition_tasks.notify_one();
  1560. }
  1561. // end the start_loop routine
  1562. void terminate() {
  1563. std::unique_lock<std::mutex> lock(mutex_tasks);
  1564. running = false;
  1565. condition_tasks.notify_all();
  1566. }
  1567. /**
  1568. * Main loop consists of these steps:
  1569. * - Wait until a new task arrives
  1570. * - Process the task (i.e. maybe copy data into slot)
  1571. * - Check if multitask is finished
  1572. * - Update all slots
  1573. */
  1574. void start_loop() {
  1575. running = true;
  1576. while (true) {
  1577. QUE_DBG("%s", "processing new tasks\n");
  1578. while (true) {
  1579. std::unique_lock<std::mutex> lock(mutex_tasks);
  1580. if (!running) {
  1581. QUE_DBG("%s", "terminate\n");
  1582. return;
  1583. }
  1584. if (queue_tasks.empty()) {
  1585. lock.unlock();
  1586. break;
  1587. }
  1588. server_task task = std::move(queue_tasks.front());
  1589. queue_tasks.pop_front();
  1590. lock.unlock();
  1591. QUE_DBG("processing task, id = %d\n", task.id);
  1592. callback_new_task(std::move(task));
  1593. }
  1594. // all tasks in the current loop is processed, slots data is now ready
  1595. QUE_DBG("%s", "update slots\n");
  1596. callback_update_slots();
  1597. QUE_DBG("%s", "waiting for new tasks\n");
  1598. {
  1599. std::unique_lock<std::mutex> lock(mutex_tasks);
  1600. if (!running) {
  1601. QUE_DBG("%s", "terminate\n");
  1602. return;
  1603. }
  1604. if (queue_tasks.empty()) {
  1605. condition_tasks.wait(lock, [&]{
  1606. return (!queue_tasks.empty() || !running);
  1607. });
  1608. }
  1609. }
  1610. }
  1611. }
  1612. private:
  1613. void cleanup_pending_task(int id_target) {
  1614. // no need lock because this is called exclusively by post()
  1615. auto rm_func = [id_target](const server_task & task) {
  1616. return task.id_target == id_target;
  1617. };
  1618. queue_tasks.erase(
  1619. std::remove_if(queue_tasks.begin(), queue_tasks.end(), rm_func),
  1620. queue_tasks.end());
  1621. queue_tasks_deferred.erase(
  1622. std::remove_if(queue_tasks_deferred.begin(), queue_tasks_deferred.end(), rm_func),
  1623. queue_tasks_deferred.end());
  1624. }
  1625. };
  1626. struct server_response {
  1627. bool running = true;
  1628. // for keeping track of all tasks waiting for the result
  1629. std::unordered_set<int> waiting_task_ids;
  1630. // the main result queue (using ptr for polymorphism)
  1631. std::vector<server_task_result_ptr> queue_results;
  1632. std::mutex mutex_results;
  1633. std::condition_variable condition_results;
  1634. // add the id_task to the list of tasks waiting for response
  1635. void add_waiting_task_id(int id_task) {
  1636. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size());
  1637. std::unique_lock<std::mutex> lock(mutex_results);
  1638. waiting_task_ids.insert(id_task);
  1639. }
  1640. void add_waiting_tasks(const std::vector<server_task> & tasks) {
  1641. std::unique_lock<std::mutex> lock(mutex_results);
  1642. for (const auto & task : tasks) {
  1643. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size());
  1644. waiting_task_ids.insert(task.id);
  1645. }
  1646. }
  1647. // when the request is finished, we can remove task associated with it
  1648. void remove_waiting_task_id(int id_task) {
  1649. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1650. std::unique_lock<std::mutex> lock(mutex_results);
  1651. waiting_task_ids.erase(id_task);
  1652. // make sure to clean up all pending results
  1653. queue_results.erase(
  1654. std::remove_if(queue_results.begin(), queue_results.end(), [id_task](const server_task_result_ptr & res) {
  1655. return res->id == id_task;
  1656. }),
  1657. queue_results.end());
  1658. }
  1659. void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) {
  1660. std::unique_lock<std::mutex> lock(mutex_results);
  1661. for (const auto & id_task : id_tasks) {
  1662. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1663. waiting_task_ids.erase(id_task);
  1664. }
  1665. }
  1666. // This function blocks the thread until there is a response for one of the id_tasks
  1667. server_task_result_ptr recv(const std::unordered_set<int> & id_tasks) {
  1668. while (true) {
  1669. std::unique_lock<std::mutex> lock(mutex_results);
  1670. condition_results.wait(lock, [&]{
  1671. if (!running) {
  1672. SRV_DBG("%s : queue result stop\n", __func__);
  1673. std::terminate(); // we cannot return here since the caller is HTTP code
  1674. }
  1675. return !queue_results.empty();
  1676. });
  1677. for (size_t i = 0; i < queue_results.size(); i++) {
  1678. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1679. server_task_result_ptr res = std::move(queue_results[i]);
  1680. queue_results.erase(queue_results.begin() + i);
  1681. return res;
  1682. }
  1683. }
  1684. }
  1685. // should never reach here
  1686. }
  1687. // same as recv(), but have timeout in seconds
  1688. // if timeout is reached, nullptr is returned
  1689. server_task_result_ptr recv_with_timeout(const std::unordered_set<int> & id_tasks, int timeout) {
  1690. while (true) {
  1691. std::unique_lock<std::mutex> lock(mutex_results);
  1692. for (int i = 0; i < (int) queue_results.size(); i++) {
  1693. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1694. server_task_result_ptr res = std::move(queue_results[i]);
  1695. queue_results.erase(queue_results.begin() + i);
  1696. return res;
  1697. }
  1698. }
  1699. std::cv_status cr_res = condition_results.wait_for(lock, std::chrono::seconds(timeout));
  1700. if (!running) {
  1701. SRV_DBG("%s : queue result stop\n", __func__);
  1702. std::terminate(); // we cannot return here since the caller is HTTP code
  1703. }
  1704. if (cr_res == std::cv_status::timeout) {
  1705. return nullptr;
  1706. }
  1707. }
  1708. // should never reach here
  1709. }
  1710. // single-task version of recv()
  1711. server_task_result_ptr recv(int id_task) {
  1712. std::unordered_set<int> id_tasks = {id_task};
  1713. return recv(id_tasks);
  1714. }
  1715. // Send a new result to a waiting id_task
  1716. void send(server_task_result_ptr && result) {
  1717. SRV_DBG("sending result for task id = %d\n", result->id);
  1718. std::unique_lock<std::mutex> lock(mutex_results);
  1719. for (const auto & id_task : waiting_task_ids) {
  1720. if (result->id == id_task) {
  1721. SRV_DBG("task id = %d pushed to result queue\n", result->id);
  1722. queue_results.emplace_back(std::move(result));
  1723. condition_results.notify_all();
  1724. return;
  1725. }
  1726. }
  1727. }
  1728. // terminate the waiting loop
  1729. void terminate() {
  1730. running = false;
  1731. condition_results.notify_all();
  1732. }
  1733. };
  1734. struct server_context {
  1735. common_params params_base;
  1736. // note: keep these alive - they determine the lifetime of the model, context, etc.
  1737. common_init_result llama_init;
  1738. common_init_result llama_init_dft;
  1739. llama_model * model = nullptr;
  1740. llama_context * ctx = nullptr;
  1741. // multimodal
  1742. mtmd_context * mctx = nullptr;
  1743. const llama_vocab * vocab = nullptr;
  1744. bool vocab_dft_compatible = true;
  1745. llama_model * model_dft = nullptr;
  1746. llama_context_params cparams_dft;
  1747. llama_batch batch {};
  1748. bool clean_kv_cache = true;
  1749. bool add_bos_token = true;
  1750. int32_t n_ctx; // total context for all clients / slots
  1751. // slots / clients
  1752. std::vector<server_slot> slots;
  1753. json default_generation_settings_for_props;
  1754. server_queue queue_tasks;
  1755. server_response queue_results;
  1756. server_metrics metrics;
  1757. // Necessary similarity of prompt for slot selection
  1758. float slot_prompt_similarity = 0.0f;
  1759. common_chat_templates_ptr chat_templates;
  1760. oaicompat_parser_options oai_parser_opt;
  1761. ~server_context() {
  1762. mtmd_free(mctx);
  1763. // Clear any sampling context
  1764. for (server_slot & slot : slots) {
  1765. common_sampler_free(slot.smpl);
  1766. slot.smpl = nullptr;
  1767. llama_free(slot.ctx_dft);
  1768. slot.ctx_dft = nullptr;
  1769. common_speculative_free(slot.spec);
  1770. slot.spec = nullptr;
  1771. llama_batch_free(slot.batch_spec);
  1772. }
  1773. llama_batch_free(batch);
  1774. }
  1775. bool load_model(const common_params & params) {
  1776. SRV_INF("loading model '%s'\n", params.model.path.c_str());
  1777. params_base = params;
  1778. llama_init = common_init_from_params(params_base);
  1779. model = llama_init.model.get();
  1780. ctx = llama_init.context.get();
  1781. if (model == nullptr) {
  1782. SRV_ERR("failed to load model, '%s'\n", params_base.model.path.c_str());
  1783. return false;
  1784. }
  1785. vocab = llama_model_get_vocab(model);
  1786. n_ctx = llama_n_ctx(ctx);
  1787. add_bos_token = llama_vocab_get_add_bos(vocab);
  1788. if (!params_base.speculative.model.path.empty() || !params_base.speculative.model.hf_repo.empty()) {
  1789. SRV_INF("loading draft model '%s'\n", params_base.speculative.model.path.c_str());
  1790. auto params_dft = params_base;
  1791. params_dft.devices = params_base.speculative.devices;
  1792. params_dft.model = params_base.speculative.model;
  1793. params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? params_base.n_ctx / params_base.n_parallel : params_base.speculative.n_ctx;
  1794. params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
  1795. params_dft.n_parallel = 1;
  1796. params_dft.cache_type_k = params_base.speculative.cache_type_k;
  1797. params_dft.cache_type_v = params_base.speculative.cache_type_v;
  1798. params_dft.cpuparams.n_threads = params_base.speculative.cpuparams.n_threads;
  1799. params_dft.cpuparams_batch.n_threads = params_base.speculative.cpuparams_batch.n_threads;
  1800. params_dft.tensor_buft_overrides = params_base.speculative.tensor_buft_overrides;
  1801. llama_init_dft = common_init_from_params(params_dft);
  1802. model_dft = llama_init_dft.model.get();
  1803. if (model_dft == nullptr) {
  1804. SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.path.c_str());
  1805. return false;
  1806. }
  1807. vocab_dft_compatible = common_speculative_are_compatible(ctx, llama_init_dft.context.get());
  1808. if (!vocab_dft_compatible) {
  1809. SRV_INF("the draft model '%s' is not compatible with the target model '%s'. tokens will be translated between the draft and target models.\n", params_base.speculative.model.path.c_str(), params_base.model.path.c_str());
  1810. }
  1811. const int n_ctx_dft = llama_n_ctx(llama_init_dft.context.get());
  1812. cparams_dft = common_context_params_to_llama(params_dft);
  1813. cparams_dft.n_batch = n_ctx_dft;
  1814. // the context is not needed - we will create one for each slot
  1815. llama_init_dft.context.reset();
  1816. }
  1817. chat_templates = common_chat_templates_init(model, params_base.chat_template);
  1818. try {
  1819. common_chat_format_example(chat_templates.get(), params.use_jinja, params.default_template_kwargs);
  1820. } catch (const std::exception & e) {
  1821. SRV_WRN("%s: Chat template parsing error: %s\n", __func__, e.what());
  1822. SRV_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
  1823. chat_templates = common_chat_templates_init(model, "chatml");
  1824. }
  1825. std::string & mmproj_path = params_base.mmproj.path;
  1826. if (!mmproj_path.empty()) {
  1827. mtmd_context_params mparams = mtmd_context_params_default();
  1828. mparams.use_gpu = params_base.mmproj_use_gpu;
  1829. mparams.print_timings = false;
  1830. mparams.n_threads = params_base.cpuparams.n_threads;
  1831. mparams.verbosity = params_base.verbosity > 0 ? GGML_LOG_LEVEL_DEBUG : GGML_LOG_LEVEL_INFO;
  1832. mctx = mtmd_init_from_file(mmproj_path.c_str(), model, mparams);
  1833. if (mctx == nullptr) {
  1834. SRV_ERR("failed to load multimodal model, '%s'\n", mmproj_path.c_str());
  1835. return false;
  1836. }
  1837. SRV_INF("loaded multimodal model, '%s'\n", mmproj_path.c_str());
  1838. if (params_base.ctx_shift) {
  1839. params_base.ctx_shift = false;
  1840. SRV_WRN("%s\n", "ctx_shift is not supported by multimodal, it will be disabled");
  1841. }
  1842. if (params_base.n_cache_reuse) {
  1843. params_base.n_cache_reuse = 0;
  1844. SRV_WRN("%s\n", "cache_reuse is not supported by multimodal, it will be disabled");
  1845. }
  1846. if (!params_base.speculative.model.path.empty()) {
  1847. SRV_ERR("%s\n", "err: speculative decode is not supported by multimodal");
  1848. return false;
  1849. }
  1850. }
  1851. if (!llama_memory_can_shift(llama_get_memory(ctx))) {
  1852. if (params_base.ctx_shift) {
  1853. params_base.ctx_shift = false;
  1854. SRV_WRN("%s\n", "ctx_shift is not supported by this context, it will be disabled");
  1855. }
  1856. if (params_base.n_cache_reuse) {
  1857. params_base.n_cache_reuse = 0;
  1858. SRV_WRN("%s\n", "cache_reuse is not supported by this context, it will be disabled");
  1859. }
  1860. }
  1861. return true;
  1862. }
  1863. void init() {
  1864. const int32_t n_ctx_slot = n_ctx / params_base.n_parallel;
  1865. SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel);
  1866. for (int i = 0; i < params_base.n_parallel; i++) {
  1867. server_slot slot;
  1868. slot.id = i;
  1869. slot.ctx = ctx;
  1870. slot.n_ctx = n_ctx_slot;
  1871. slot.n_predict = params_base.n_predict;
  1872. slot.mctx = mctx;
  1873. slot.cache_tokens.has_mtmd = mctx != nullptr;
  1874. if (model_dft) {
  1875. slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
  1876. slot.ctx_dft = llama_init_from_model(model_dft, cparams_dft);
  1877. if (slot.ctx_dft == nullptr) {
  1878. SRV_ERR("%s", "failed to create draft context\n");
  1879. return;
  1880. }
  1881. slot.spec = common_speculative_init(slot.ctx, slot.ctx_dft);
  1882. if (slot.spec == nullptr) {
  1883. SRV_ERR("%s", "failed to create speculator\n");
  1884. return;
  1885. }
  1886. for (auto &pair : params_base.speculative.replacements) {
  1887. common_speculative_add_replacement_tgt_dft(slot.spec, pair.first.c_str(), pair.second.c_str());
  1888. }
  1889. }
  1890. SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx);
  1891. slot.params.sampling = params_base.sampling;
  1892. slot.params.n_keep = params_base.n_keep;
  1893. slot.callback_on_release = [this](int) {
  1894. queue_tasks.pop_deferred_task();
  1895. };
  1896. slot.reset();
  1897. slots.push_back(std::move(slot));
  1898. }
  1899. default_generation_settings_for_props = slots[0].to_json();
  1900. // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
  1901. // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
  1902. {
  1903. const int32_t n_batch = llama_n_batch(ctx);
  1904. batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
  1905. }
  1906. metrics.init();
  1907. oai_parser_opt = {
  1908. /* use_jinja */ params_base.use_jinja,
  1909. /* prefill_assistant */ params_base.prefill_assistant,
  1910. /* reasoning_format */ params_base.reasoning_format,
  1911. /* chat_template_kwargs */ params_base.default_template_kwargs,
  1912. /* common_chat_templates */ chat_templates.get(),
  1913. /* allow_image */ mctx ? mtmd_support_vision(mctx) : false,
  1914. /* allow_audio */ mctx ? mtmd_support_audio (mctx) : false,
  1915. /* enable_thinking */ params_base.reasoning_budget != 0,
  1916. };
  1917. }
  1918. server_slot * get_slot_by_id(int id) {
  1919. for (server_slot & slot : slots) {
  1920. if (slot.id == id) {
  1921. return &slot;
  1922. }
  1923. }
  1924. return nullptr;
  1925. }
  1926. server_slot * get_available_slot(const server_task & task) {
  1927. server_slot * ret = nullptr;
  1928. // find the slot that has at least n% prompt similarity
  1929. if (ret == nullptr && slot_prompt_similarity != 0.0f) {
  1930. int lcs_len = 0;
  1931. float similarity = 0;
  1932. for (server_slot & slot : slots) {
  1933. // skip the slot if it is not available
  1934. if (slot.is_processing()) {
  1935. continue;
  1936. }
  1937. // skip the slot if it does not contains cached tokens
  1938. if (slot.cache_tokens.empty()) {
  1939. continue;
  1940. }
  1941. // length of the Longest Common Subsequence between the current slot's prompt and the input prompt
  1942. int cur_lcs_len = slot.cache_tokens.get_common_prefix(task.prompt_tokens);
  1943. // fraction of the common subsequence length compared to the current slot's prompt length
  1944. float cur_similarity = static_cast<float>(cur_lcs_len) / static_cast<int>(slot.cache_tokens.size());
  1945. // select the current slot if the criteria match
  1946. if (cur_lcs_len > lcs_len && cur_similarity > slot_prompt_similarity) {
  1947. lcs_len = cur_lcs_len;
  1948. similarity = cur_similarity;
  1949. ret = &slot;
  1950. }
  1951. }
  1952. if (ret != nullptr) {
  1953. SLT_DBG(*ret, "selected slot by lcs similarity, lcs_len = %d, similarity = %f\n", lcs_len, similarity);
  1954. }
  1955. }
  1956. // find the slot that has been least recently used
  1957. if (ret == nullptr) {
  1958. int64_t t_last = -1;
  1959. for (server_slot & slot : slots) {
  1960. // skip the slot if it is not available
  1961. if (slot.is_processing()) {
  1962. continue;
  1963. }
  1964. // select the current slot if the criteria match
  1965. if (!ret || slot.t_last_used <= t_last) {
  1966. t_last = slot.t_last_used;
  1967. ret = &slot;
  1968. }
  1969. }
  1970. if (ret != nullptr) {
  1971. SLT_DBG(*ret, "selected slot by lru, t_last = %" PRId64 "\n", t_last);
  1972. }
  1973. }
  1974. return ret;
  1975. }
  1976. bool launch_slot_with_task(server_slot & slot, server_task && task) {
  1977. slot.reset();
  1978. slot.id_task = task.id;
  1979. slot.index = task.index;
  1980. slot.task_type = task.type;
  1981. slot.params = std::move(task.params);
  1982. slot.prompt_tokens = std::move(task.prompt_tokens);
  1983. if (!are_lora_equal(slot.params.lora, slot.lora)) {
  1984. // if lora is changed, we cannot reuse cached tokens
  1985. slot.cache_tokens.clear();
  1986. slot.lora = slot.params.lora;
  1987. }
  1988. if (!slot.prompt_tokens.validate(ctx)) {
  1989. send_error(task, "Prompt contains invalid tokens", ERROR_TYPE_INVALID_REQUEST);
  1990. return false;
  1991. }
  1992. SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str());
  1993. if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
  1994. // Might be better to reject the request with a 400 ?
  1995. SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d\n", slot.params.n_predict, slot.n_predict);
  1996. slot.params.n_predict = slot.n_predict;
  1997. }
  1998. {
  1999. if (slot.smpl != nullptr) {
  2000. common_sampler_free(slot.smpl);
  2001. }
  2002. slot.smpl = common_sampler_init(model, slot.params.sampling);
  2003. if (slot.smpl == nullptr) {
  2004. // for now, the only error that may happen here is invalid grammar
  2005. send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
  2006. return false;
  2007. }
  2008. }
  2009. if (slot.ctx_dft) {
  2010. llama_batch_free(slot.batch_spec);
  2011. slot.batch_spec = llama_batch_init(slot.params.speculative.n_max + 1, 0, 1);
  2012. }
  2013. slot.state = SLOT_STATE_STARTED;
  2014. SLT_INF(slot, "%s", "processing task\n");
  2015. return true;
  2016. }
  2017. void kv_cache_clear() {
  2018. SRV_DBG("%s", "clearing KV cache\n");
  2019. // clear the entire KV cache
  2020. llama_memory_clear(llama_get_memory(ctx), true);
  2021. clean_kv_cache = false;
  2022. }
  2023. bool process_token(completion_token_output & result, server_slot & slot) {
  2024. // remember which tokens were sampled - used for repetition penalties during sampling
  2025. const std::string token_str = result.text_to_send;
  2026. slot.sampled = result.tok;
  2027. slot.generated_text += token_str;
  2028. if (slot.params.return_tokens) {
  2029. slot.generated_tokens.push_back(result.tok);
  2030. }
  2031. slot.has_next_token = true;
  2032. // check if there is incomplete UTF-8 character at the end
  2033. bool incomplete = validate_utf8(slot.generated_text) < slot.generated_text.size();
  2034. // search stop word and delete it
  2035. if (!incomplete) {
  2036. size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
  2037. const std::string str_test = slot.generated_text.substr(pos);
  2038. bool send_text = true;
  2039. size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), true);
  2040. if (stop_pos != std::string::npos) {
  2041. slot.generated_text.erase(
  2042. slot.generated_text.begin() + pos + stop_pos,
  2043. slot.generated_text.end());
  2044. pos = std::min(slot.n_sent_text, slot.generated_text.size());
  2045. } else if (slot.has_next_token) {
  2046. stop_pos = slot.find_stopping_strings(str_test, token_str.size(), false);
  2047. send_text = stop_pos == std::string::npos;
  2048. }
  2049. // check if there is any token to predict
  2050. if (send_text) {
  2051. // no send the stop word in the response
  2052. result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
  2053. slot.n_sent_text += result.text_to_send.size();
  2054. // add the token to slot queue and cache
  2055. } else {
  2056. result.text_to_send = "";
  2057. }
  2058. slot.add_token(result);
  2059. if (slot.params.stream) {
  2060. send_partial_response(slot, result);
  2061. }
  2062. }
  2063. if (incomplete) {
  2064. slot.has_next_token = true;
  2065. }
  2066. // if context shifting is disabled, make sure that we don't run out of context
  2067. if (!params_base.ctx_shift && slot.n_past + 1 >= slot.n_ctx) {
  2068. slot.stop = STOP_TYPE_LIMIT;
  2069. slot.has_next_token = false;
  2070. SLT_DBG(slot, "stopped due to running out of context, n_past = %d, n_ctx = %d\n", slot.n_past, slot.n_ctx);
  2071. }
  2072. // check the limits
  2073. if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) {
  2074. slot.stop = STOP_TYPE_LIMIT;
  2075. slot.has_next_token = false;
  2076. SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict);
  2077. }
  2078. if (slot.has_new_line) {
  2079. // require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
  2080. if (slot.params.n_indent > 0) {
  2081. // check the current indentation
  2082. // TODO: improve by not doing it more than once for each new line
  2083. if (slot.last_nl_pos > 0) {
  2084. size_t pos = slot.last_nl_pos;
  2085. int n_indent = 0;
  2086. while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) {
  2087. n_indent++;
  2088. pos++;
  2089. }
  2090. if (pos < slot.generated_text.size() && n_indent < slot.params.n_indent) {
  2091. slot.stop = STOP_TYPE_LIMIT;
  2092. slot.has_next_token = false;
  2093. // cut the last line
  2094. slot.generated_text.erase(pos, std::string::npos);
  2095. SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent);
  2096. }
  2097. }
  2098. // find the next new line
  2099. {
  2100. const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos);
  2101. if (pos != std::string::npos) {
  2102. slot.last_nl_pos = pos + 1;
  2103. }
  2104. }
  2105. }
  2106. }
  2107. // check if there is a new line in the generated text
  2108. if (result.text_to_send.find('\n') != std::string::npos) {
  2109. slot.has_new_line = true;
  2110. // if we have seen a new line, we stop after a certain time limit, but only upon another new line
  2111. if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
  2112. slot.stop = STOP_TYPE_LIMIT;
  2113. slot.has_next_token = false;
  2114. SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
  2115. }
  2116. }
  2117. // if context shift is disabled, we stop when it reaches the context limit
  2118. if (slot.n_past >= slot.n_ctx) {
  2119. slot.truncated = true;
  2120. slot.stop = STOP_TYPE_LIMIT;
  2121. slot.has_next_token = false;
  2122. SLT_DBG(slot, "stopped due to running out of context capacity, n_past = %d, n_prompt_tokens = %d, n_decoded = %d, n_ctx = %d\n",
  2123. slot.n_decoded, slot.n_prompt_tokens, slot.n_past, slot.n_ctx);
  2124. }
  2125. if (llama_vocab_is_eog(vocab, result.tok)) {
  2126. slot.stop = STOP_TYPE_EOS;
  2127. slot.has_next_token = false;
  2128. SLT_DBG(slot, "%s", "stopped by EOS\n");
  2129. }
  2130. const auto n_ctx_train = llama_model_n_ctx_train(model);
  2131. if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
  2132. slot.truncated = true;
  2133. slot.stop = STOP_TYPE_LIMIT;
  2134. slot.has_next_token = false; // stop prediction
  2135. SLT_WRN(slot,
  2136. "n_predict (%d) is set for infinite generation. "
  2137. "Limiting generated tokens to n_ctx_train (%d) to avoid EOS-less generation infinite loop\n",
  2138. slot.params.n_predict, n_ctx_train);
  2139. }
  2140. SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str());
  2141. return slot.has_next_token; // continue
  2142. }
  2143. void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) const {
  2144. size_t n_probs = slot.params.sampling.n_probs;
  2145. size_t n_vocab = llama_vocab_n_tokens(vocab);
  2146. if (post_sampling) {
  2147. const auto * cur_p = common_sampler_get_candidates(slot.smpl, true);
  2148. const size_t max_probs = cur_p->size;
  2149. // set probability for sampled token
  2150. for (size_t i = 0; i < max_probs; i++) {
  2151. if (cur_p->data[i].id == result.tok) {
  2152. result.prob = cur_p->data[i].p;
  2153. break;
  2154. }
  2155. }
  2156. // set probability for top n_probs tokens
  2157. result.probs.reserve(max_probs);
  2158. for (size_t i = 0; i < std::min(max_probs, n_probs); i++) {
  2159. result.probs.push_back({
  2160. cur_p->data[i].id,
  2161. common_token_to_piece(ctx, cur_p->data[i].id, special),
  2162. cur_p->data[i].p
  2163. });
  2164. }
  2165. } else {
  2166. // TODO: optimize this with min-p optimization
  2167. std::vector<llama_token_data> cur = get_token_probabilities(ctx, idx);
  2168. // set probability for sampled token
  2169. for (size_t i = 0; i < n_vocab; i++) {
  2170. // set probability for sampled token
  2171. if (cur[i].id == result.tok) {
  2172. result.prob = cur[i].p;
  2173. break;
  2174. }
  2175. }
  2176. // set probability for top n_probs tokens
  2177. result.probs.reserve(n_probs);
  2178. for (size_t i = 0; i < std::min(n_vocab, n_probs); i++) {
  2179. result.probs.push_back({
  2180. cur[i].id,
  2181. common_token_to_piece(ctx, cur[i].id, special),
  2182. cur[i].p
  2183. });
  2184. }
  2185. }
  2186. }
  2187. void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  2188. send_error(task.id, error, type);
  2189. }
  2190. void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  2191. send_error(slot.id_task, error, type);
  2192. }
  2193. void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  2194. SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str());
  2195. auto res = std::make_unique<server_task_result_error>();
  2196. res->id = id_task;
  2197. res->err_type = type;
  2198. res->err_msg = error;
  2199. queue_results.send(std::move(res));
  2200. }
  2201. // if multimodal is enabled, send an error and return false
  2202. bool ensure_no_mtmd(const int id_task) {
  2203. if (mctx) {
  2204. send_error(id_task, "This feature is not supported by multimodal", ERROR_TYPE_NOT_SUPPORTED);
  2205. return false;
  2206. }
  2207. return true;
  2208. }
  2209. void send_partial_response(server_slot & slot, const completion_token_output & tkn) {
  2210. auto res = std::make_unique<server_task_result_cmpl_partial>();
  2211. res->id = slot.id_task;
  2212. res->index = slot.index;
  2213. res->content = tkn.text_to_send;
  2214. res->tokens = { tkn.tok };
  2215. res->n_decoded = slot.n_decoded;
  2216. res->n_prompt_tokens = slot.n_prompt_tokens;
  2217. res->post_sampling_probs = slot.params.post_sampling_probs;
  2218. res->verbose = slot.params.verbose;
  2219. res->oaicompat = slot.params.oaicompat;
  2220. res->oaicompat_model = slot.params.oaicompat_model;
  2221. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  2222. slot.update_chat_msg(res->oaicompat_msg_diffs);
  2223. // populate res.probs_output
  2224. if (slot.params.sampling.n_probs > 0) {
  2225. res->prob_output = tkn; // copy the token probs
  2226. }
  2227. // populate timings if this is final response or timings_per_token is enabled
  2228. if (slot.stop != STOP_TYPE_NONE || slot.params.timings_per_token) {
  2229. res->timings = slot.get_timings();
  2230. }
  2231. queue_results.send(std::move(res));
  2232. }
  2233. void send_final_response(server_slot & slot) {
  2234. auto res = std::make_unique<server_task_result_cmpl_final>();
  2235. res->id = slot.id_task;
  2236. res->id_slot = slot.id;
  2237. res->index = slot.index;
  2238. res->content = slot.generated_text;
  2239. res->tokens = std::move(slot.generated_tokens);
  2240. res->timings = slot.get_timings();
  2241. res->prompt = slot.prompt_tokens.detokenize(ctx, true);
  2242. res->response_fields = std::move(slot.params.response_fields);
  2243. res->truncated = slot.truncated;
  2244. res->n_decoded = slot.n_decoded;
  2245. res->n_prompt_tokens = slot.n_prompt_tokens;
  2246. res->n_tokens_cached = slot.n_past;
  2247. res->has_new_line = slot.has_new_line;
  2248. res->stopping_word = slot.stopping_word;
  2249. res->stop = slot.stop;
  2250. res->post_sampling_probs = slot.params.post_sampling_probs;
  2251. res->verbose = slot.params.verbose;
  2252. res->stream = slot.params.stream;
  2253. res->oaicompat = slot.params.oaicompat;
  2254. res->oaicompat_model = slot.params.oaicompat_model;
  2255. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  2256. res->oaicompat_msg = slot.update_chat_msg(res->oaicompat_msg_diffs);
  2257. // populate res.probs_output
  2258. if (slot.params.sampling.n_probs > 0) {
  2259. if (!slot.params.stream && slot.stop == STOP_TYPE_WORD) {
  2260. const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
  2261. size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
  2262. res->probs_output = std::vector<completion_token_output>(
  2263. slot.generated_token_probs.begin(),
  2264. slot.generated_token_probs.end() - safe_offset);
  2265. } else {
  2266. res->probs_output = std::vector<completion_token_output>(
  2267. slot.generated_token_probs.begin(),
  2268. slot.generated_token_probs.end());
  2269. }
  2270. }
  2271. res->generation_params = slot.params; // copy the parameters
  2272. queue_results.send(std::move(res));
  2273. }
  2274. void send_embedding(const server_slot & slot, const llama_batch & batch) {
  2275. auto res = std::make_unique<server_task_result_embd>();
  2276. res->id = slot.id_task;
  2277. res->index = slot.index;
  2278. res->n_tokens = slot.n_prompt_tokens;
  2279. res->oaicompat = slot.params.oaicompat;
  2280. const int n_embd = llama_model_n_embd(model);
  2281. std::vector<float> embd_res(n_embd, 0.0f);
  2282. for (int i = 0; i < batch.n_tokens; ++i) {
  2283. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  2284. continue;
  2285. }
  2286. const float * embd = nullptr;
  2287. if (llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE) {
  2288. embd = llama_get_embeddings_ith(ctx, i);
  2289. } else {
  2290. embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  2291. }
  2292. if (embd == nullptr) {
  2293. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  2294. res->embedding.push_back(std::vector<float>(n_embd, 0.0f));
  2295. continue;
  2296. }
  2297. // normalize only when there is pooling
  2298. if (llama_pooling_type(slot.ctx) != LLAMA_POOLING_TYPE_NONE) {
  2299. common_embd_normalize(embd, embd_res.data(), n_embd, slot.params.embd_normalize);
  2300. res->embedding.push_back(embd_res);
  2301. break;
  2302. } else {
  2303. res->embedding.emplace_back(embd, embd + n_embd);
  2304. }
  2305. }
  2306. SLT_DBG(slot, "%s", "sending embeddings\n");
  2307. queue_results.send(std::move(res));
  2308. }
  2309. void send_rerank(const server_slot & slot, const llama_batch & batch) {
  2310. auto res = std::make_unique<server_task_result_rerank>();
  2311. res->id = slot.id_task;
  2312. res->index = slot.index;
  2313. res->n_tokens = slot.n_prompt_tokens;
  2314. for (int i = 0; i < batch.n_tokens; ++i) {
  2315. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  2316. continue;
  2317. }
  2318. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  2319. if (embd == NULL) {
  2320. embd = llama_get_embeddings_ith(ctx, i);
  2321. }
  2322. if (embd == NULL) {
  2323. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  2324. res->score = -1e6;
  2325. continue;
  2326. }
  2327. res->score = embd[0];
  2328. }
  2329. SLT_DBG(slot, "sending rerank result, res.score = %f\n", res->score);
  2330. queue_results.send(std::move(res));
  2331. }
  2332. //
  2333. // Functions to create new task(s) and receive result(s)
  2334. //
  2335. void cancel_tasks(const std::unordered_set<int> & id_tasks) {
  2336. std::vector<server_task> cancel_tasks;
  2337. cancel_tasks.reserve(id_tasks.size());
  2338. for (const auto & id_task : id_tasks) {
  2339. SRV_WRN("cancel task, id_task = %d\n", id_task);
  2340. server_task task(SERVER_TASK_TYPE_CANCEL);
  2341. task.id_target = id_task;
  2342. queue_results.remove_waiting_task_id(id_task);
  2343. cancel_tasks.push_back(std::move(task));
  2344. }
  2345. // push to beginning of the queue, so it has highest priority
  2346. queue_tasks.post(std::move(cancel_tasks), true);
  2347. }
  2348. // receive the results from task(s)
  2349. void receive_multi_results(
  2350. const std::unordered_set<int> & id_tasks,
  2351. const std::function<void(std::vector<server_task_result_ptr>&)> & result_handler,
  2352. const std::function<void(json)> & error_handler,
  2353. const std::function<bool()> & is_connection_closed) {
  2354. std::vector<server_task_result_ptr> results(id_tasks.size());
  2355. for (int i = 0; i < (int)id_tasks.size(); i++) {
  2356. server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
  2357. if (is_connection_closed()) {
  2358. cancel_tasks(id_tasks);
  2359. return;
  2360. }
  2361. if (result == nullptr) {
  2362. i--; // retry
  2363. continue;
  2364. }
  2365. if (result->is_error()) {
  2366. error_handler(result->to_json());
  2367. cancel_tasks(id_tasks);
  2368. return;
  2369. }
  2370. GGML_ASSERT(
  2371. dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  2372. || dynamic_cast<server_task_result_embd*>(result.get()) != nullptr
  2373. || dynamic_cast<server_task_result_rerank*>(result.get()) != nullptr
  2374. );
  2375. const size_t idx = result->get_index();
  2376. GGML_ASSERT(idx < results.size() && "index out of range");
  2377. results[idx] = std::move(result);
  2378. }
  2379. result_handler(results);
  2380. }
  2381. // receive the results from task(s), in stream mode
  2382. void receive_cmpl_results_stream(
  2383. const std::unordered_set<int> & id_tasks,
  2384. const std::function<bool(server_task_result_ptr&)> & result_handler,
  2385. const std::function<void(json)> & error_handler,
  2386. const std::function<bool()> & is_connection_closed) {
  2387. size_t n_finished = 0;
  2388. while (true) {
  2389. server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
  2390. if (is_connection_closed()) {
  2391. cancel_tasks(id_tasks);
  2392. return;
  2393. }
  2394. if (result == nullptr) {
  2395. continue; // retry
  2396. }
  2397. if (result->is_error()) {
  2398. error_handler(result->to_json());
  2399. cancel_tasks(id_tasks);
  2400. return;
  2401. }
  2402. GGML_ASSERT(
  2403. dynamic_cast<server_task_result_cmpl_partial*>(result.get()) != nullptr
  2404. || dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  2405. );
  2406. if (!result_handler(result)) {
  2407. cancel_tasks(id_tasks);
  2408. break;
  2409. }
  2410. if (result->is_stop()) {
  2411. if (++n_finished == id_tasks.size()) {
  2412. break;
  2413. }
  2414. }
  2415. }
  2416. }
  2417. //
  2418. // Functions to process the task
  2419. //
  2420. void process_single_task(server_task && task) {
  2421. switch (task.type) {
  2422. case SERVER_TASK_TYPE_COMPLETION:
  2423. case SERVER_TASK_TYPE_INFILL:
  2424. case SERVER_TASK_TYPE_EMBEDDING:
  2425. case SERVER_TASK_TYPE_RERANK:
  2426. {
  2427. const int id_slot = task.id_selected_slot;
  2428. server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task);
  2429. if (slot == nullptr) {
  2430. // if no slot is available, we defer this task for processing later
  2431. SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id);
  2432. queue_tasks.defer(std::move(task));
  2433. break;
  2434. }
  2435. if (slot->is_processing()) {
  2436. // if requested slot is unavailable, we defer this task for processing later
  2437. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2438. queue_tasks.defer(std::move(task));
  2439. break;
  2440. }
  2441. if (!launch_slot_with_task(*slot, std::move(task))) {
  2442. SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id);
  2443. break;
  2444. }
  2445. } break;
  2446. case SERVER_TASK_TYPE_CANCEL:
  2447. {
  2448. // release slot linked with the task id
  2449. for (auto & slot : slots) {
  2450. if (slot.id_task == task.id_target) {
  2451. slot.release();
  2452. break;
  2453. }
  2454. }
  2455. } break;
  2456. case SERVER_TASK_TYPE_NEXT_RESPONSE:
  2457. {
  2458. // do nothing
  2459. } break;
  2460. case SERVER_TASK_TYPE_METRICS:
  2461. {
  2462. json slots_data = json::array();
  2463. int n_idle_slots = 0;
  2464. int n_processing_slots = 0;
  2465. for (server_slot & slot : slots) {
  2466. json slot_data = slot.to_json(true);
  2467. if (slot.is_processing()) {
  2468. n_processing_slots++;
  2469. } else {
  2470. n_idle_slots++;
  2471. }
  2472. slots_data.push_back(slot_data);
  2473. }
  2474. SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots);
  2475. auto res = std::make_unique<server_task_result_metrics>();
  2476. res->id = task.id;
  2477. res->slots_data = std::move(slots_data);
  2478. res->n_idle_slots = n_idle_slots;
  2479. res->n_processing_slots = n_processing_slots;
  2480. res->n_tasks_deferred = queue_tasks.queue_tasks_deferred.size();
  2481. res->t_start = metrics.t_start;
  2482. res->n_prompt_tokens_processed_total = metrics.n_prompt_tokens_processed_total;
  2483. res->t_prompt_processing_total = metrics.t_prompt_processing_total;
  2484. res->n_tokens_predicted_total = metrics.n_tokens_predicted_total;
  2485. res->t_tokens_generation_total = metrics.t_tokens_generation_total;
  2486. res->n_past_max = metrics.n_past_max;
  2487. res->n_prompt_tokens_processed = metrics.n_prompt_tokens_processed;
  2488. res->t_prompt_processing = metrics.t_prompt_processing;
  2489. res->n_tokens_predicted = metrics.n_tokens_predicted;
  2490. res->t_tokens_generation = metrics.t_tokens_generation;
  2491. res->n_decode_total = metrics.n_decode_total;
  2492. res->n_busy_slots_total = metrics.n_busy_slots_total;
  2493. if (task.metrics_reset_bucket) {
  2494. metrics.reset_bucket();
  2495. }
  2496. queue_results.send(std::move(res));
  2497. } break;
  2498. case SERVER_TASK_TYPE_SLOT_SAVE:
  2499. {
  2500. if (!ensure_no_mtmd(task.id)) {
  2501. break;
  2502. }
  2503. int id_slot = task.slot_action.slot_id;
  2504. server_slot * slot = get_slot_by_id(id_slot);
  2505. if (slot == nullptr) {
  2506. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2507. break;
  2508. }
  2509. if (slot->is_processing()) {
  2510. // if requested slot is unavailable, we defer this task for processing later
  2511. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2512. queue_tasks.defer(std::move(task));
  2513. break;
  2514. }
  2515. const size_t token_count = slot->cache_tokens.size();
  2516. const int64_t t_start = ggml_time_us();
  2517. std::string filename = task.slot_action.filename;
  2518. std::string filepath = task.slot_action.filepath;
  2519. const llama_tokens & tokens = slot->cache_tokens.get_text_tokens();
  2520. const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, tokens.data(), token_count);
  2521. const int64_t t_end = ggml_time_us();
  2522. const double t_save_ms = (t_end - t_start) / 1000.0;
  2523. auto res = std::make_unique<server_task_result_slot_save_load>();
  2524. res->id = task.id;
  2525. res->id_slot = id_slot;
  2526. res->filename = filename;
  2527. res->is_save = true;
  2528. res->n_tokens = token_count;
  2529. res->n_bytes = nwrite;
  2530. res->t_ms = t_save_ms;
  2531. queue_results.send(std::move(res));
  2532. } break;
  2533. case SERVER_TASK_TYPE_SLOT_RESTORE:
  2534. {
  2535. if (!ensure_no_mtmd(task.id)) break;
  2536. int id_slot = task.slot_action.slot_id;
  2537. server_slot * slot = get_slot_by_id(id_slot);
  2538. if (slot == nullptr) {
  2539. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2540. break;
  2541. }
  2542. if (slot->is_processing()) {
  2543. // if requested slot is unavailable, we defer this task for processing later
  2544. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2545. queue_tasks.defer(std::move(task));
  2546. break;
  2547. }
  2548. const int64_t t_start = ggml_time_us();
  2549. std::string filename = task.slot_action.filename;
  2550. std::string filepath = task.slot_action.filepath;
  2551. llama_tokens tokens;
  2552. tokens.resize(slot->n_ctx);
  2553. size_t token_count = 0;
  2554. size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, tokens.data(), tokens.size(), &token_count);
  2555. if (nread == 0) {
  2556. slot->cache_tokens.clear(); // KV may already been invalidated?
  2557. send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
  2558. break;
  2559. }
  2560. tokens.resize(token_count);
  2561. slot->cache_tokens.clear();
  2562. slot->cache_tokens.insert(tokens);
  2563. const int64_t t_end = ggml_time_us();
  2564. const double t_restore_ms = (t_end - t_start) / 1000.0;
  2565. auto res = std::make_unique<server_task_result_slot_save_load>();
  2566. res->id = task.id;
  2567. res->id_slot = id_slot;
  2568. res->filename = filename;
  2569. res->is_save = false;
  2570. res->n_tokens = token_count;
  2571. res->n_bytes = nread;
  2572. res->t_ms = t_restore_ms;
  2573. queue_results.send(std::move(res));
  2574. } break;
  2575. case SERVER_TASK_TYPE_SLOT_ERASE:
  2576. {
  2577. if (!ensure_no_mtmd(task.id)) break;
  2578. int id_slot = task.slot_action.slot_id;
  2579. server_slot * slot = get_slot_by_id(id_slot);
  2580. if (slot == nullptr) {
  2581. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2582. break;
  2583. }
  2584. if (slot->is_processing()) {
  2585. // if requested slot is unavailable, we defer this task for processing later
  2586. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2587. queue_tasks.defer(std::move(task));
  2588. break;
  2589. }
  2590. // Erase token cache
  2591. const size_t n_erased = slot->cache_tokens.size();
  2592. llama_memory_seq_rm(llama_get_memory(ctx), slot->id, -1, -1);
  2593. slot->cache_tokens.clear();
  2594. auto res = std::make_unique<server_task_result_slot_erase>();
  2595. res->id = task.id;
  2596. res->id_slot = id_slot;
  2597. res->n_erased = n_erased;
  2598. queue_results.send(std::move(res));
  2599. } break;
  2600. case SERVER_TASK_TYPE_SET_LORA:
  2601. {
  2602. params_base.lora_adapters = std::move(task.set_lora);
  2603. auto res = std::make_unique<server_task_result_apply_lora>();
  2604. res->id = task.id;
  2605. queue_results.send(std::move(res));
  2606. } break;
  2607. }
  2608. }
  2609. void update_slots() {
  2610. // check if all slots are idle
  2611. {
  2612. bool all_idle = true;
  2613. for (auto & slot : slots) {
  2614. if (slot.is_processing()) {
  2615. all_idle = false;
  2616. break;
  2617. }
  2618. }
  2619. if (all_idle) {
  2620. SRV_INF("%s", "all slots are idle\n");
  2621. if (clean_kv_cache) {
  2622. kv_cache_clear();
  2623. }
  2624. return;
  2625. }
  2626. }
  2627. {
  2628. SRV_DBG("%s", "posting NEXT_RESPONSE\n");
  2629. server_task task(SERVER_TASK_TYPE_NEXT_RESPONSE);
  2630. task.id = queue_tasks.get_new_id();
  2631. queue_tasks.post(std::move(task));
  2632. }
  2633. // apply context-shift if needed
  2634. // TODO: simplify and improve
  2635. for (server_slot & slot : slots) {
  2636. if (slot.is_processing() && slot.n_past + 1 >= slot.n_ctx) {
  2637. if (!params_base.ctx_shift) {
  2638. // this check is redundant (for good)
  2639. // we should never get here, because generation should already stopped in process_token()
  2640. slot.release();
  2641. send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
  2642. continue;
  2643. }
  2644. if (mctx) {
  2645. // we should never reach this because params_base.ctx_shift is automatically disabled if mmproj is loaded
  2646. // we don't support ctx_shift because an image chunk may contains multiple tokens
  2647. GGML_ABORT("not supported by multimodal");
  2648. }
  2649. // Shift context
  2650. const int n_keep = slot.params.n_keep + add_bos_token;
  2651. const int n_left = slot.n_past - n_keep;
  2652. const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
  2653. SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
  2654. llama_memory_seq_rm (llama_get_memory(ctx), slot.id, n_keep , n_keep + n_discard);
  2655. llama_memory_seq_add(llama_get_memory(ctx), slot.id, n_keep + n_discard, slot.n_past, -n_discard);
  2656. // add generated tokens to cache
  2657. {
  2658. llama_tokens new_tokens = slot.cache_tokens.get_text_tokens(); // copy
  2659. for (size_t i = n_keep + n_discard; i < new_tokens.size(); i++) {
  2660. new_tokens[i - n_discard] = new_tokens[i];
  2661. }
  2662. new_tokens.resize(slot.cache_tokens.size() - n_discard);
  2663. slot.cache_tokens.clear();
  2664. slot.cache_tokens.insert(new_tokens);
  2665. }
  2666. slot.n_past -= n_discard;
  2667. slot.truncated = true;
  2668. }
  2669. }
  2670. // start populating the batch for this iteration
  2671. common_batch_clear(batch);
  2672. // track if given slot can be batched with slots already in the batch
  2673. server_slot * slot_batched = nullptr;
  2674. auto accept_special_token = [&](server_slot & slot, llama_token token) {
  2675. return params_base.special || slot.params.sampling.preserved_tokens.find(token) != slot.params.sampling.preserved_tokens.end();
  2676. };
  2677. // frist, add sampled tokens from any ongoing sequences
  2678. for (auto & slot : slots) {
  2679. if (slot.state != SLOT_STATE_GENERATING) {
  2680. continue;
  2681. }
  2682. // check if we can batch this slot with the previous one
  2683. if (!slot_batched) {
  2684. slot_batched = &slot;
  2685. } else if (!slot_batched->can_batch_with(slot)) {
  2686. continue;
  2687. }
  2688. slot.i_batch = batch.n_tokens;
  2689. common_batch_add(batch, slot.sampled, slot.n_past, { slot.id }, true);
  2690. slot.n_past += 1;
  2691. slot.cache_tokens.push_back(slot.sampled);
  2692. SLT_DBG(slot, "slot decode token, n_ctx = %d, n_past = %d, n_cache_tokens = %d, truncated = %d\n",
  2693. slot.n_ctx, slot.n_past, (int) slot.cache_tokens.size(), slot.truncated);
  2694. }
  2695. // process in chunks of params.n_batch
  2696. int32_t n_batch = llama_n_batch(ctx);
  2697. int32_t n_ubatch = llama_n_ubatch(ctx);
  2698. // next, batch any pending prompts without exceeding n_batch
  2699. if (params_base.cont_batching || batch.n_tokens == 0) {
  2700. for (auto & slot : slots) {
  2701. // check if we can batch this slot with the previous one
  2702. if (slot.is_processing()) {
  2703. if (!slot_batched) {
  2704. slot_batched = &slot;
  2705. } else if (!slot_batched->can_batch_with(slot)) {
  2706. continue;
  2707. }
  2708. }
  2709. // this slot still has a prompt to be processed
  2710. if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) {
  2711. auto & prompt_tokens = slot.prompt_tokens;
  2712. // TODO: maybe move branch to outside of this loop in the future
  2713. if (slot.state == SLOT_STATE_STARTED) {
  2714. slot.t_start_process_prompt = ggml_time_us();
  2715. slot.t_start_generation = 0;
  2716. slot.n_past = 0;
  2717. slot.n_prompt_tokens = prompt_tokens.size();
  2718. slot.state = SLOT_STATE_PROCESSING_PROMPT;
  2719. SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, slot.n_prompt_tokens);
  2720. // print prompt tokens (for debugging)
  2721. /*if (1) {
  2722. // first 16 tokens (avoid flooding logs)
  2723. for (int i = 0; i < std::min<int>(16, prompt_tokens.size()); i++) {
  2724. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2725. }
  2726. } else {
  2727. // all
  2728. for (int i = 0; i < (int) prompt_tokens.size(); i++) {
  2729. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2730. }
  2731. }*/
  2732. // empty prompt passed -> release the slot and send empty response
  2733. if (prompt_tokens.empty()) {
  2734. SLT_WRN(slot, "%s", "empty prompt - releasing slot\n");
  2735. slot.release();
  2736. slot.print_timings();
  2737. send_final_response(slot);
  2738. continue;
  2739. }
  2740. // TODO: support memory-less logits computation
  2741. if (slot.need_logits() && !llama_get_memory(ctx)) {
  2742. slot.release();
  2743. send_error(slot, "the current context does not logits computation. skipping", ERROR_TYPE_SERVER);
  2744. continue;
  2745. }
  2746. if (!slot.can_split()) {
  2747. if (slot.n_prompt_tokens > n_ubatch) {
  2748. slot.release();
  2749. send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
  2750. continue;
  2751. }
  2752. if (slot.n_prompt_tokens > slot.n_ctx) {
  2753. slot.release();
  2754. send_error(slot, "input is larger than the max context size. skipping", ERROR_TYPE_SERVER);
  2755. continue;
  2756. }
  2757. } else {
  2758. if (!params_base.ctx_shift) {
  2759. // if context shift is disabled, we make sure prompt size is smaller than KV size
  2760. // TODO: there should be a separate parameter that control prompt truncation
  2761. // context shift should be applied only during the generation phase
  2762. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2763. slot.release();
  2764. send_error(slot, "the request exceeds the available context size. try increasing the context size or enable context shift", ERROR_TYPE_INVALID_REQUEST);
  2765. continue;
  2766. }
  2767. }
  2768. if (slot.params.n_keep < 0) {
  2769. slot.params.n_keep = slot.n_prompt_tokens;
  2770. }
  2771. slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
  2772. // if input prompt is too big, truncate it
  2773. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2774. if (mctx) {
  2775. // we should never reach this
  2776. GGML_ABORT("not supported by multimodal");
  2777. }
  2778. const int n_left = slot.n_ctx - slot.params.n_keep;
  2779. const int n_block_size = n_left / 2;
  2780. const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
  2781. const llama_tokens & curr_tokens = slot.prompt_tokens.get_text_tokens();
  2782. llama_tokens new_tokens(
  2783. curr_tokens.begin(),
  2784. curr_tokens.begin() + slot.params.n_keep);
  2785. new_tokens.insert(
  2786. new_tokens.end(),
  2787. curr_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
  2788. curr_tokens.end());
  2789. prompt_tokens.clear();
  2790. prompt_tokens.insert(new_tokens);
  2791. slot.truncated = true;
  2792. slot.n_prompt_tokens = prompt_tokens.size();
  2793. SLT_WRN(slot, "input truncated, n_ctx = %d, n_keep = %d, n_left = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, n_left, slot.n_prompt_tokens);
  2794. GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
  2795. }
  2796. if (slot.params.cache_prompt) {
  2797. // reuse any previously computed tokens that are common with the new prompt
  2798. slot.n_past = slot.cache_tokens.get_common_prefix(prompt_tokens);
  2799. // reuse chunks from the cached prompt by shifting their KV cache in the new position
  2800. if (params_base.n_cache_reuse > 0) {
  2801. size_t head_c = slot.n_past; // cache
  2802. size_t head_p = slot.n_past; // current prompt
  2803. if (mctx) {
  2804. // we should never reach this
  2805. GGML_ABORT("not supported by multimodal");
  2806. }
  2807. SLT_DBG(slot, "trying to reuse chunks with size > %d, slot.n_past = %d\n", params_base.n_cache_reuse, slot.n_past);
  2808. while (head_c < slot.cache_tokens.size() &&
  2809. head_p < prompt_tokens.size()) {
  2810. size_t n_match = 0;
  2811. while (head_c + n_match < slot.cache_tokens.size() &&
  2812. head_p + n_match < prompt_tokens.size() &&
  2813. slot.cache_tokens[head_c + n_match] == prompt_tokens[head_p + n_match]) {
  2814. n_match++;
  2815. }
  2816. if (n_match >= (size_t) params_base.n_cache_reuse) {
  2817. SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
  2818. //for (size_t i = head_p; i < head_p + n_match; i++) {
  2819. // SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2820. //}
  2821. const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
  2822. llama_memory_seq_rm (llama_get_memory(ctx), slot.id, head_p, head_c);
  2823. llama_memory_seq_add(llama_get_memory(ctx), slot.id, head_c, head_c + n_match, kv_shift);
  2824. for (size_t i = 0; i < n_match; i++) {
  2825. slot.cache_tokens.set_token(head_p + i, slot.cache_tokens[head_c + i]);
  2826. slot.n_past++;
  2827. }
  2828. head_c += n_match;
  2829. head_p += n_match;
  2830. } else {
  2831. head_c += 1;
  2832. }
  2833. }
  2834. SLT_DBG(slot, "after context reuse, new slot.n_past = %d\n", slot.n_past);
  2835. }
  2836. } else {
  2837. // if we don't cache the prompt, we have to remove the entire KV cache
  2838. slot.n_past = 0;
  2839. }
  2840. const auto n_swa = llama_model_n_swa(model);
  2841. if (slot.n_past > 0 && slot.n_past < (int) slot.cache_tokens.size()) {
  2842. const auto pos_min = llama_memory_seq_pos_min(llama_get_memory(ctx), slot.id);
  2843. if (pos_min == -1) {
  2844. SLT_ERR(slot, "n_past = %d, cache_tokens.size() = %d, seq_id = %d, pos_min = %d\n", slot.n_past, (int) slot.cache_tokens.size(), slot.id, pos_min);
  2845. GGML_ABORT("pos_min == -1, but n_past > 0 - should not happen: https://github.com/ggml-org/llama.cpp/pull/13833#discussion_r2116181237");
  2846. }
  2847. const auto pos_min_thold = std::max(0, slot.n_past - n_swa);
  2848. if (pos_min > pos_min_thold) {
  2849. SLT_WRN(slot, "n_past = %d, cache_tokens.size() = %d, seq_id = %d, pos_min = %d, n_swa = %d\n", slot.n_past, (int) slot.cache_tokens.size(), slot.id, pos_min, n_swa);
  2850. // search for a SWA checkpoint
  2851. const auto it = std::find_if(
  2852. slot.swa_checkpoints.rbegin(),
  2853. slot.swa_checkpoints.rend(),
  2854. [&](const auto & cur) {
  2855. return cur.pos_min <= pos_min_thold;
  2856. }
  2857. );
  2858. bool do_reset = it == slot.swa_checkpoints.rend();
  2859. if (!do_reset) {
  2860. // restore the checkpoint
  2861. const size_t swa_size = it->data.size();
  2862. const size_t n = llama_state_seq_set_data_ext(ctx, it->data.data(), swa_size, slot.id, LLAMA_STATE_SEQ_FLAGS_SWA_ONLY);
  2863. if (n != swa_size) {
  2864. SLT_ERR(slot, "failed to restore SWA checkpoint, pos_min = %d, pos_max = %d, size = %.3f MiB\n", it->pos_min, it->pos_max, (float) swa_size / 1024 / 1024);
  2865. do_reset = true;
  2866. } else {
  2867. slot.n_past = std::min(slot.n_past, it->pos_max);
  2868. SLT_WRN(slot, "SWA checkpoint restore, pos_min = %d, pos_max = %d, size = %.3f MiB\n", it->pos_min, it->pos_max, (float) swa_size / 1024 / 1024);
  2869. }
  2870. }
  2871. if (do_reset) {
  2872. SLT_WRN(slot, "forcing full prompt re-processing due to lack of cache data (likely due to SWA, see %s)\n",
  2873. "https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055");
  2874. slot.n_past = 0;
  2875. slot.swa_checkpoints.clear();
  2876. }
  2877. }
  2878. }
  2879. if (n_swa > 0) {
  2880. const auto pos_min_thold = std::max(0, slot.n_past - n_swa);
  2881. // erase any checkpoints with pos_min > pos_min_thold
  2882. for (int i = (int) slot.swa_checkpoints.size() - 1; i >= 0; i--) {
  2883. const auto & cur = slot.swa_checkpoints[i];
  2884. if (cur.pos_min > pos_min_thold) {
  2885. slot.swa_checkpoints.erase(slot.swa_checkpoints.begin() + i);
  2886. SLT_WRN(slot, "SWA checkpoint erase, pos_min = %d, pos_max = %d, size = %.3f MiB\n", cur.pos_min, cur.pos_max, (float) cur.data.size() / 1024 / 1024);
  2887. }
  2888. }
  2889. }
  2890. }
  2891. if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
  2892. SLT_WRN(slot, "need to evaluate at least 1 token for each active slot, n_past = %d, n_prompt_tokens = %d\n", slot.n_past, slot.n_prompt_tokens);
  2893. slot.n_past--;
  2894. }
  2895. slot.n_prompt_tokens_processed = 0;
  2896. }
  2897. if (!slot.can_split()) {
  2898. // cannot fit the prompt in the current batch - will try next iter
  2899. if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
  2900. continue;
  2901. }
  2902. }
  2903. // keep only the common part
  2904. if (!llama_memory_seq_rm(llama_get_memory(ctx), slot.id, slot.n_past, -1)) {
  2905. // could not partially delete (likely using a non-Transformer model)
  2906. llama_memory_seq_rm(llama_get_memory(ctx), slot.id, -1, -1);
  2907. // there is no common part left
  2908. slot.n_past = 0;
  2909. }
  2910. SLT_INF(slot, "kv cache rm [%d, end)\n", slot.n_past);
  2911. // remove the non-common part from the cache
  2912. slot.cache_tokens.keep_first(slot.n_past);
  2913. // check if we should process the image
  2914. if (slot.n_past < slot.n_prompt_tokens && slot.prompt_tokens[slot.n_past] == LLAMA_TOKEN_NULL) {
  2915. // process the image
  2916. int32_t new_n_past;
  2917. int32_t res = slot.prompt_tokens.process_chunk(ctx, mctx, slot.n_past, slot.id, new_n_past);
  2918. int32_t n_pos = new_n_past - slot.n_past;
  2919. if (res != 0) {
  2920. SLT_ERR(slot, "failed to process image, res = %d\n", res);
  2921. slot.release();
  2922. send_error(slot, "failed to process image", ERROR_TYPE_SERVER);
  2923. continue;
  2924. }
  2925. // add the image chunk to cache
  2926. {
  2927. const auto & chunk = slot.prompt_tokens.find_chunk(slot.n_past);
  2928. slot.cache_tokens.push_back(chunk.get()); // copy
  2929. }
  2930. slot.n_past += n_pos;
  2931. slot.n_prompt_tokens_processed += n_pos;
  2932. }
  2933. // add prompt tokens for processing in the current batch
  2934. while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
  2935. // get next token to process
  2936. llama_token cur_tok = slot.prompt_tokens[slot.n_past];
  2937. if (cur_tok == LLAMA_TOKEN_NULL) {
  2938. break; // end of text chunk
  2939. }
  2940. // embedding requires all tokens in the batch to be output
  2941. const bool need_embd = server_task_type_need_embd(slot.task_type);
  2942. common_batch_add(batch, cur_tok, slot.n_past, { slot.id }, need_embd);
  2943. slot.cache_tokens.push_back(cur_tok);
  2944. slot.n_prompt_tokens_processed++;
  2945. slot.n_past++;
  2946. }
  2947. // SLT_INF(slot, "new cache_tokens: %s\n", slot.cache_tokens.str().c_str());
  2948. SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens);
  2949. // entire prompt has been processed
  2950. if (slot.n_past == slot.n_prompt_tokens) {
  2951. slot.state = SLOT_STATE_DONE_PROMPT;
  2952. GGML_ASSERT(batch.n_tokens > 0);
  2953. GGML_ASSERT((size_t) slot.n_prompt_tokens == slot.prompt_tokens.size());
  2954. common_sampler_reset(slot.smpl);
  2955. // Process all prompt tokens through sampler system
  2956. for (int i = 0; i < slot.n_prompt_tokens; ++i) {
  2957. llama_token id = slot.prompt_tokens[i];
  2958. if (id != LLAMA_TOKEN_NULL) {
  2959. common_sampler_accept(slot.smpl, id, false);
  2960. }
  2961. }
  2962. // extract the logits only for the last token
  2963. batch.logits[batch.n_tokens - 1] = true;
  2964. slot.n_decoded = 0;
  2965. slot.i_batch = batch.n_tokens - 1;
  2966. SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, batch.n_tokens);
  2967. }
  2968. }
  2969. if (batch.n_tokens >= n_batch) {
  2970. break;
  2971. }
  2972. }
  2973. }
  2974. if (batch.n_tokens == 0) {
  2975. SRV_WRN("%s", "no tokens to decode\n");
  2976. return;
  2977. }
  2978. SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
  2979. if (slot_batched) {
  2980. // apply lora, only need to do it once per batch
  2981. common_set_adapter_lora(ctx, slot_batched->lora);
  2982. llama_set_embeddings(ctx, slot_batched->need_embd());
  2983. }
  2984. int32_t i_next = 0;
  2985. // process the created batch of tokens
  2986. for (int32_t i = 0; i < batch.n_tokens; i = i_next) {
  2987. const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
  2988. llama_batch batch_view = {
  2989. n_tokens,
  2990. batch.token + i,
  2991. nullptr,
  2992. batch.pos + i,
  2993. batch.n_seq_id + i,
  2994. batch.seq_id + i,
  2995. batch.logits + i,
  2996. };
  2997. const int ret = llama_decode(ctx, batch_view);
  2998. metrics.on_decoded(slots);
  2999. if (ret != 0) {
  3000. {
  3001. std::string err;
  3002. if (n_batch == 1 && ret == 1) {
  3003. err = "Context size has been exceeded.";
  3004. }
  3005. if (ret == -1) {
  3006. err = "Invalid input batch.";
  3007. }
  3008. if (ret < -1) {
  3009. // TODO: update slot state based on llama_memory_seq_pos_min() and llama_memory_seq_pos_max()
  3010. err = "Compute error.";
  3011. }
  3012. // TODO: handle ret == 2 (abort) when we start aborting
  3013. if (!err.empty()) {
  3014. SRV_ERR("%s, i = %d, n_batch = %d, ret = %d\n", err.c_str(), i, n_batch, ret);
  3015. for (auto & slot : slots) {
  3016. slot.release();
  3017. send_error(slot, err);
  3018. }
  3019. break;
  3020. }
  3021. }
  3022. // retry with half the batch size to try to find a free slot in the KV cache
  3023. n_batch /= 2;
  3024. SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  3025. continue; // continue loop of n_batch
  3026. }
  3027. // move the head of the batch forward with the number of tokens we just processed
  3028. i_next = i + n_tokens;
  3029. // on successful decode, restore the original batch size
  3030. n_batch = llama_n_batch(ctx);
  3031. for (auto & slot : slots) {
  3032. if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
  3033. continue; // continue loop of slots
  3034. }
  3035. if (slot.state == SLOT_STATE_DONE_PROMPT) {
  3036. if (slot.task_type == SERVER_TASK_TYPE_EMBEDDING) {
  3037. // prompt evaluated for embedding
  3038. send_embedding(slot, batch_view);
  3039. slot.release();
  3040. slot.i_batch = -1;
  3041. continue; // continue loop of slots
  3042. }
  3043. if (slot.task_type == SERVER_TASK_TYPE_RERANK) {
  3044. send_rerank(slot, batch_view);
  3045. slot.release();
  3046. slot.i_batch = -1;
  3047. continue; // continue loop of slots
  3048. }
  3049. // prompt evaluated for next-token prediction
  3050. slot.state = SLOT_STATE_GENERATING;
  3051. // make a checkpoint with the SWA memory
  3052. // checkpoints are needed only if we are not using "--swa-full"
  3053. if (llama_model_n_swa(model) > 0 && !params_base.swa_full && params_base.n_swa_checkpoints > 0) {
  3054. if (slot.swa_checkpoints.size() >= (size_t) params_base.n_swa_checkpoints) {
  3055. {
  3056. const auto & cur = slot.swa_checkpoints.back();
  3057. SLT_WRN(slot, "SWA checkpoint erase, pos_min = %d, pos_max = %d, size = %.3f MiB\n",
  3058. cur.pos_min, cur.pos_max, (float) cur.data.size() / 1024 / 1024);
  3059. }
  3060. slot.swa_checkpoints.erase(slot.swa_checkpoints.begin());
  3061. }
  3062. const size_t swa_size = llama_state_seq_get_size_ext(ctx, slot.id, LLAMA_STATE_SEQ_FLAGS_SWA_ONLY);
  3063. auto & cur = slot.swa_checkpoints.emplace_back(swa_checkpoint{
  3064. /*.pos_min = */ llama_memory_seq_pos_min(llama_get_memory(ctx), slot.id),
  3065. /*.pos_max = */ llama_memory_seq_pos_max(llama_get_memory(ctx), slot.id),
  3066. /*.data = */ std::vector<uint8_t>(swa_size),
  3067. });
  3068. llama_state_seq_get_data_ext(ctx, cur.data.data(), swa_size, slot.id, LLAMA_STATE_SEQ_FLAGS_SWA_ONLY);
  3069. float size_total = 0.0f;
  3070. for (const auto & checkpoint : slot.swa_checkpoints) {
  3071. size_total += (float) checkpoint.data.size() / 1024 / 1024;
  3072. }
  3073. SLT_WRN(slot, "SWA checkpoint create, pos_min = %d, pos_max = %d, size = %.3f MiB, total = %d/%d (%.3f MiB)\n",
  3074. cur.pos_min, cur.pos_max, (float) cur.data.size() / 1024 / 1024, (int) slot.swa_checkpoints.size(), params_base.n_swa_checkpoints, size_total);
  3075. }
  3076. } else if (slot.state != SLOT_STATE_GENERATING) {
  3077. continue; // continue loop of slots
  3078. }
  3079. const int tok_idx = slot.i_batch - i;
  3080. llama_token id = common_sampler_sample(slot.smpl, ctx, tok_idx);
  3081. slot.i_batch = -1;
  3082. common_sampler_accept(slot.smpl, id, true);
  3083. slot.n_decoded += 1;
  3084. const int64_t t_current = ggml_time_us();
  3085. if (slot.n_decoded == 1) {
  3086. slot.t_start_generation = t_current;
  3087. slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
  3088. metrics.on_prompt_eval(slot);
  3089. }
  3090. slot.t_token_generation = (t_current - slot.t_start_generation) / 1e3;
  3091. completion_token_output result;
  3092. result.tok = id;
  3093. result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
  3094. result.prob = 1.0f; // TODO: set it here instead of doing inside populate_token_probs
  3095. if (slot.params.sampling.n_probs > 0) {
  3096. populate_token_probs(slot, result, slot.params.post_sampling_probs, params_base.special, tok_idx);
  3097. }
  3098. if (!process_token(result, slot)) {
  3099. // release slot because of stop condition
  3100. slot.release();
  3101. slot.print_timings();
  3102. send_final_response(slot);
  3103. metrics.on_prediction(slot);
  3104. continue;
  3105. }
  3106. }
  3107. // do speculative decoding
  3108. for (auto & slot : slots) {
  3109. if (!slot.is_processing() || !slot.can_speculate()) {
  3110. continue;
  3111. }
  3112. if (slot.state != SLOT_STATE_GENERATING) {
  3113. continue;
  3114. }
  3115. if (mctx) {
  3116. // we should never reach this, as speculative is automatically disabled if mmproj is loaded
  3117. GGML_ABORT("not supported by multimodal");
  3118. }
  3119. // determine the max draft that fits the current slot state
  3120. int n_draft_max = slot.params.speculative.n_max;
  3121. // note: n_past is not yet increased for the `id` token sampled above
  3122. // also, need to leave space for 1 extra token to allow context shifts
  3123. n_draft_max = std::min(n_draft_max, slot.n_ctx - slot.n_past - 2);
  3124. if (slot.n_remaining > 0) {
  3125. n_draft_max = std::min(n_draft_max, slot.n_remaining - 1);
  3126. }
  3127. SLT_DBG(slot, "max possible draft: %d\n", n_draft_max);
  3128. if (n_draft_max < slot.params.speculative.n_min) {
  3129. SLT_DBG(slot, "the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, slot.params.speculative.n_min);
  3130. continue;
  3131. }
  3132. llama_token id = slot.sampled;
  3133. struct common_speculative_params params_spec;
  3134. params_spec.n_draft = n_draft_max;
  3135. params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.params.speculative.n_max;
  3136. params_spec.p_min = slot.params.speculative.p_min;
  3137. const llama_tokens & cached_text_tokens = slot.cache_tokens.get_text_tokens();
  3138. llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, cached_text_tokens, id);
  3139. // ignore small drafts
  3140. if (slot.params.speculative.n_min > (int) draft.size()) {
  3141. SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.params.speculative.n_min);
  3142. continue;
  3143. }
  3144. // keep track of total number of drafted tokens tested
  3145. slot.n_draft_total += draft.size();
  3146. // construct the speculation batch
  3147. common_batch_clear(slot.batch_spec);
  3148. common_batch_add (slot.batch_spec, id, slot.n_past, { slot.id }, true);
  3149. for (size_t i = 0; i < draft.size(); ++i) {
  3150. common_batch_add(slot.batch_spec, draft[i], slot.n_past + 1 + i, { slot.id }, true);
  3151. }
  3152. SLT_DBG(slot, "decoding speculative batch, size = %d\n", slot.batch_spec.n_tokens);
  3153. llama_decode(ctx, slot.batch_spec);
  3154. // the accepted tokens from the speculation
  3155. const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft);
  3156. slot.n_past += ids.size();
  3157. slot.n_decoded += ids.size();
  3158. // update how many tokens out of those tested were accepted
  3159. slot.n_draft_accepted += ids.size() - 1;
  3160. slot.cache_tokens.push_back(id);
  3161. slot.cache_tokens.insert({ids.begin(), ids.end() - 1});
  3162. llama_memory_seq_rm(llama_get_memory(ctx), slot.id, slot.n_past, -1);
  3163. for (size_t i = 0; i < ids.size(); ++i) {
  3164. completion_token_output result;
  3165. result.tok = ids[i];
  3166. result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
  3167. result.prob = 1.0f; // set later
  3168. // TODO: set result.probs
  3169. if (!process_token(result, slot)) {
  3170. // release slot because of stop condition
  3171. slot.release();
  3172. slot.print_timings();
  3173. send_final_response(slot);
  3174. metrics.on_prediction(slot);
  3175. break;
  3176. }
  3177. }
  3178. SLT_DBG(slot, "accepted %d/%d draft tokens, new n_past = %d\n", (int) ids.size() - 1, (int) draft.size(), slot.n_past);
  3179. }
  3180. }
  3181. SRV_DBG("%s", "run slots completed\n");
  3182. }
  3183. json model_meta() const {
  3184. return json {
  3185. {"vocab_type", llama_vocab_type (vocab)},
  3186. {"n_vocab", llama_vocab_n_tokens (vocab)},
  3187. {"n_ctx_train", llama_model_n_ctx_train(model)},
  3188. {"n_embd", llama_model_n_embd (model)},
  3189. {"n_params", llama_model_n_params (model)},
  3190. {"size", llama_model_size (model)},
  3191. };
  3192. }
  3193. };
  3194. static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
  3195. // skip GH copilot requests when using default port
  3196. if (req.path == "/v1/health" || req.path == "/v1/completions") {
  3197. return;
  3198. }
  3199. // reminder: this function is not covered by httplib's exception handler; if someone does more complicated stuff, think about wrapping it in try-catch
  3200. SRV_INF("request: %s %s %s %d\n", req.method.c_str(), req.path.c_str(), req.remote_addr.c_str(), res.status);
  3201. SRV_DBG("request: %s\n", req.body.c_str());
  3202. SRV_DBG("response: %s\n", res.body.c_str());
  3203. }
  3204. std::function<void(int)> shutdown_handler;
  3205. std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
  3206. inline void signal_handler(int signal) {
  3207. if (is_terminating.test_and_set()) {
  3208. // in case it hangs, we can force terminate the server by hitting Ctrl+C twice
  3209. // this is for better developer experience, we can remove when the server is stable enough
  3210. fprintf(stderr, "Received second interrupt, terminating immediately.\n");
  3211. exit(1);
  3212. }
  3213. shutdown_handler(signal);
  3214. }
  3215. int main(int argc, char ** argv) {
  3216. // own arguments required by this example
  3217. common_params params;
  3218. if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) {
  3219. return 1;
  3220. }
  3221. common_init();
  3222. // struct that contains llama context and inference
  3223. server_context ctx_server;
  3224. llama_backend_init();
  3225. llama_numa_init(params.numa);
  3226. LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency());
  3227. LOG_INF("\n");
  3228. LOG_INF("%s\n", common_params_get_system_info(params).c_str());
  3229. LOG_INF("\n");
  3230. std::unique_ptr<httplib::Server> svr;
  3231. #ifdef CPPHTTPLIB_OPENSSL_SUPPORT
  3232. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  3233. LOG_INF("Running with SSL: key = %s, cert = %s\n", params.ssl_file_key.c_str(), params.ssl_file_cert.c_str());
  3234. svr.reset(
  3235. new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str())
  3236. );
  3237. } else {
  3238. LOG_INF("Running without SSL\n");
  3239. svr.reset(new httplib::Server());
  3240. }
  3241. #else
  3242. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  3243. LOG_ERR("Server is built without SSL support\n");
  3244. return 1;
  3245. }
  3246. svr.reset(new httplib::Server());
  3247. #endif
  3248. std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
  3249. svr->set_default_headers({{"Server", "llama.cpp"}});
  3250. svr->set_logger(log_server_request);
  3251. auto res_error = [](httplib::Response & res, const json & error_data) {
  3252. json final_response {{"error", error_data}};
  3253. res.set_content(safe_json_to_str(final_response), MIMETYPE_JSON);
  3254. res.status = json_value(error_data, "code", 500);
  3255. };
  3256. auto res_ok = [](httplib::Response & res, const json & data) {
  3257. res.set_content(safe_json_to_str(data), MIMETYPE_JSON);
  3258. res.status = 200;
  3259. };
  3260. svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, const std::exception_ptr & ep) {
  3261. std::string message;
  3262. try {
  3263. std::rethrow_exception(ep);
  3264. } catch (const std::exception & e) {
  3265. message = e.what();
  3266. } catch (...) {
  3267. message = "Unknown Exception";
  3268. }
  3269. try {
  3270. json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
  3271. LOG_WRN("got exception: %s\n", formatted_error.dump().c_str());
  3272. res_error(res, formatted_error);
  3273. } catch (const std::exception & e) {
  3274. LOG_ERR("got another exception: %s | while hanlding exception: %s\n", e.what(), message.c_str());
  3275. }
  3276. });
  3277. svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) {
  3278. if (res.status == 404) {
  3279. res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND));
  3280. }
  3281. // for other error codes, we skip processing here because it's already done by res_error()
  3282. });
  3283. // set timeouts and change hostname and port
  3284. svr->set_read_timeout (params.timeout_read);
  3285. svr->set_write_timeout(params.timeout_write);
  3286. std::unordered_map<std::string, std::string> log_data;
  3287. log_data["hostname"] = params.hostname;
  3288. log_data["port"] = std::to_string(params.port);
  3289. if (params.api_keys.size() == 1) {
  3290. auto key = params.api_keys[0];
  3291. log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
  3292. } else if (params.api_keys.size() > 1) {
  3293. log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded";
  3294. }
  3295. // Necessary similarity of prompt for slot selection
  3296. ctx_server.slot_prompt_similarity = params.slot_prompt_similarity;
  3297. //
  3298. // Middlewares
  3299. //
  3300. auto middleware_validate_api_key = [&params, &res_error](const httplib::Request & req, httplib::Response & res) {
  3301. static const std::unordered_set<std::string> public_endpoints = {
  3302. "/health",
  3303. "/models",
  3304. "/v1/models",
  3305. "/api/tags"
  3306. };
  3307. // If API key is not set, skip validation
  3308. if (params.api_keys.empty()) {
  3309. return true;
  3310. }
  3311. // If path is public or is static file, skip validation
  3312. if (public_endpoints.find(req.path) != public_endpoints.end() || req.path == "/") {
  3313. return true;
  3314. }
  3315. // Check for API key in the header
  3316. auto auth_header = req.get_header_value("Authorization");
  3317. std::string prefix = "Bearer ";
  3318. if (auth_header.substr(0, prefix.size()) == prefix) {
  3319. std::string received_api_key = auth_header.substr(prefix.size());
  3320. if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) {
  3321. return true; // API key is valid
  3322. }
  3323. }
  3324. // API key is invalid or not provided
  3325. res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));
  3326. LOG_WRN("Unauthorized: Invalid API Key\n");
  3327. return false;
  3328. };
  3329. auto middleware_server_state = [&res_error, &state](const httplib::Request & req, httplib::Response & res) {
  3330. server_state current_state = state.load();
  3331. if (current_state == SERVER_STATE_LOADING_MODEL) {
  3332. auto tmp = string_split<std::string>(req.path, '.');
  3333. if (req.path == "/" || tmp.back() == "html") {
  3334. res.set_content(reinterpret_cast<const char*>(loading_html), loading_html_len, "text/html; charset=utf-8");
  3335. res.status = 503;
  3336. } else if (req.path == "/models" || req.path == "/v1/models" || req.path == "/api/tags") {
  3337. // allow the models endpoint to be accessed during loading
  3338. return true;
  3339. } else {
  3340. res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
  3341. }
  3342. return false;
  3343. }
  3344. return true;
  3345. };
  3346. // register server middlewares
  3347. svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) {
  3348. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  3349. // If this is OPTIONS request, skip validation because browsers don't include Authorization header
  3350. if (req.method == "OPTIONS") {
  3351. res.set_header("Access-Control-Allow-Credentials", "true");
  3352. res.set_header("Access-Control-Allow-Methods", "GET, POST");
  3353. res.set_header("Access-Control-Allow-Headers", "*");
  3354. res.set_content("", "text/html"); // blank response, no data
  3355. return httplib::Server::HandlerResponse::Handled; // skip further processing
  3356. }
  3357. if (!middleware_server_state(req, res)) {
  3358. return httplib::Server::HandlerResponse::Handled;
  3359. }
  3360. if (!middleware_validate_api_key(req, res)) {
  3361. return httplib::Server::HandlerResponse::Handled;
  3362. }
  3363. return httplib::Server::HandlerResponse::Unhandled;
  3364. });
  3365. //
  3366. // Route handlers (or controllers)
  3367. //
  3368. const auto handle_health = [&](const httplib::Request &, httplib::Response & res) {
  3369. // error and loading states are handled by middleware
  3370. json health = {{"status", "ok"}};
  3371. res_ok(res, health);
  3372. };
  3373. const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) {
  3374. if (!params.endpoint_slots) {
  3375. res_error(res, format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED));
  3376. return;
  3377. }
  3378. // request slots data using task queue
  3379. int task_id = ctx_server.queue_tasks.get_new_id();
  3380. {
  3381. server_task task(SERVER_TASK_TYPE_METRICS);
  3382. task.id = task_id;
  3383. ctx_server.queue_results.add_waiting_task_id(task_id);
  3384. ctx_server.queue_tasks.post(std::move(task), true); // high-priority task
  3385. }
  3386. // get the result
  3387. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3388. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3389. if (result->is_error()) {
  3390. res_error(res, result->to_json());
  3391. return;
  3392. }
  3393. // TODO: get rid of this dynamic_cast
  3394. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  3395. GGML_ASSERT(res_metrics != nullptr);
  3396. // optionally return "fail_on_no_slot" error
  3397. if (req.has_param("fail_on_no_slot")) {
  3398. if (res_metrics->n_idle_slots == 0) {
  3399. res_error(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
  3400. return;
  3401. }
  3402. }
  3403. res_ok(res, res_metrics->slots_data);
  3404. };
  3405. const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
  3406. if (!params.endpoint_metrics) {
  3407. res_error(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
  3408. return;
  3409. }
  3410. // request slots data using task queue
  3411. int task_id = ctx_server.queue_tasks.get_new_id();
  3412. {
  3413. server_task task(SERVER_TASK_TYPE_METRICS);
  3414. task.id = task_id;
  3415. ctx_server.queue_results.add_waiting_task_id(task_id);
  3416. ctx_server.queue_tasks.post(std::move(task), true); // high-priority task
  3417. }
  3418. // get the result
  3419. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3420. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3421. if (result->is_error()) {
  3422. res_error(res, result->to_json());
  3423. return;
  3424. }
  3425. // TODO: get rid of this dynamic_cast
  3426. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  3427. GGML_ASSERT(res_metrics != nullptr);
  3428. // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
  3429. json all_metrics_def = json {
  3430. {"counter", {{
  3431. {"name", "prompt_tokens_total"},
  3432. {"help", "Number of prompt tokens processed."},
  3433. {"value", (uint64_t) res_metrics->n_prompt_tokens_processed_total}
  3434. }, {
  3435. {"name", "prompt_seconds_total"},
  3436. {"help", "Prompt process time"},
  3437. {"value", (uint64_t) res_metrics->t_prompt_processing_total / 1.e3}
  3438. }, {
  3439. {"name", "tokens_predicted_total"},
  3440. {"help", "Number of generation tokens processed."},
  3441. {"value", (uint64_t) res_metrics->n_tokens_predicted_total}
  3442. }, {
  3443. {"name", "tokens_predicted_seconds_total"},
  3444. {"help", "Predict process time"},
  3445. {"value", (uint64_t) res_metrics->t_tokens_generation_total / 1.e3}
  3446. }, {
  3447. {"name", "n_decode_total"},
  3448. {"help", "Total number of llama_decode() calls"},
  3449. {"value", res_metrics->n_decode_total}
  3450. }, {
  3451. {"name", "n_past_max"},
  3452. {"help", "Largest observed n_past."},
  3453. {"value", res_metrics->n_past_max}
  3454. }, {
  3455. {"name", "n_busy_slots_per_decode"},
  3456. {"help", "Average number of busy slots per llama_decode() call"},
  3457. {"value", (float) res_metrics->n_busy_slots_total / std::max((float) res_metrics->n_decode_total, 1.f)}
  3458. }}},
  3459. {"gauge", {{
  3460. {"name", "prompt_tokens_seconds"},
  3461. {"help", "Average prompt throughput in tokens/s."},
  3462. {"value", res_metrics->n_prompt_tokens_processed ? 1.e3 / res_metrics->t_prompt_processing * res_metrics->n_prompt_tokens_processed : 0.}
  3463. },{
  3464. {"name", "predicted_tokens_seconds"},
  3465. {"help", "Average generation throughput in tokens/s."},
  3466. {"value", res_metrics->n_tokens_predicted ? 1.e3 / res_metrics->t_tokens_generation * res_metrics->n_tokens_predicted : 0.}
  3467. },{
  3468. {"name", "requests_processing"},
  3469. {"help", "Number of requests processing."},
  3470. {"value", (uint64_t) res_metrics->n_processing_slots}
  3471. },{
  3472. {"name", "requests_deferred"},
  3473. {"help", "Number of requests deferred."},
  3474. {"value", (uint64_t) res_metrics->n_tasks_deferred}
  3475. }}}
  3476. };
  3477. std::stringstream prometheus;
  3478. for (const auto & el : all_metrics_def.items()) {
  3479. const auto & type = el.key();
  3480. const auto & metrics_def = el.value();
  3481. for (const auto & metric_def : metrics_def) {
  3482. const std::string name = metric_def.at("name");
  3483. const std::string help = metric_def.at("help");
  3484. auto value = json_value(metric_def, "value", 0.);
  3485. prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
  3486. << "# TYPE llamacpp:" << name << " " << type << "\n"
  3487. << "llamacpp:" << name << " " << value << "\n";
  3488. }
  3489. }
  3490. res.set_header("Process-Start-Time-Unix", std::to_string(res_metrics->t_start));
  3491. res.set_content(prometheus.str(), "text/plain; version=0.0.4");
  3492. res.status = 200; // HTTP OK
  3493. };
  3494. const auto handle_slots_save = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  3495. json request_data = json::parse(req.body);
  3496. std::string filename = request_data.at("filename");
  3497. if (!fs_validate_filename(filename)) {
  3498. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  3499. return;
  3500. }
  3501. std::string filepath = params.slot_save_path + filename;
  3502. int task_id = ctx_server.queue_tasks.get_new_id();
  3503. {
  3504. server_task task(SERVER_TASK_TYPE_SLOT_SAVE);
  3505. task.id = task_id;
  3506. task.slot_action.slot_id = id_slot;
  3507. task.slot_action.filename = filename;
  3508. task.slot_action.filepath = filepath;
  3509. ctx_server.queue_results.add_waiting_task_id(task_id);
  3510. ctx_server.queue_tasks.post(std::move(task));
  3511. }
  3512. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3513. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3514. if (result->is_error()) {
  3515. res_error(res, result->to_json());
  3516. return;
  3517. }
  3518. res_ok(res, result->to_json());
  3519. };
  3520. const auto handle_slots_restore = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  3521. json request_data = json::parse(req.body);
  3522. std::string filename = request_data.at("filename");
  3523. if (!fs_validate_filename(filename)) {
  3524. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  3525. return;
  3526. }
  3527. std::string filepath = params.slot_save_path + filename;
  3528. int task_id = ctx_server.queue_tasks.get_new_id();
  3529. {
  3530. server_task task(SERVER_TASK_TYPE_SLOT_RESTORE);
  3531. task.id = task_id;
  3532. task.slot_action.slot_id = id_slot;
  3533. task.slot_action.filename = filename;
  3534. task.slot_action.filepath = filepath;
  3535. ctx_server.queue_results.add_waiting_task_id(task_id);
  3536. ctx_server.queue_tasks.post(std::move(task));
  3537. }
  3538. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3539. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3540. if (result->is_error()) {
  3541. res_error(res, result->to_json());
  3542. return;
  3543. }
  3544. GGML_ASSERT(dynamic_cast<server_task_result_slot_save_load*>(result.get()) != nullptr);
  3545. res_ok(res, result->to_json());
  3546. };
  3547. const auto handle_slots_erase = [&ctx_server, &res_error, &res_ok](const httplib::Request & /* req */, httplib::Response & res, int id_slot) {
  3548. int task_id = ctx_server.queue_tasks.get_new_id();
  3549. {
  3550. server_task task(SERVER_TASK_TYPE_SLOT_ERASE);
  3551. task.id = task_id;
  3552. task.slot_action.slot_id = id_slot;
  3553. ctx_server.queue_results.add_waiting_task_id(task_id);
  3554. ctx_server.queue_tasks.post(std::move(task));
  3555. }
  3556. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3557. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3558. if (result->is_error()) {
  3559. res_error(res, result->to_json());
  3560. return;
  3561. }
  3562. GGML_ASSERT(dynamic_cast<server_task_result_slot_erase*>(result.get()) != nullptr);
  3563. res_ok(res, result->to_json());
  3564. };
  3565. const auto handle_slots_action = [&params, &res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
  3566. if (params.slot_save_path.empty()) {
  3567. res_error(res, format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED));
  3568. return;
  3569. }
  3570. std::string id_slot_str = req.path_params.at("id_slot");
  3571. int id_slot;
  3572. try {
  3573. id_slot = std::stoi(id_slot_str);
  3574. } catch (const std::exception &) {
  3575. res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
  3576. return;
  3577. }
  3578. std::string action = req.get_param_value("action");
  3579. if (action == "save") {
  3580. handle_slots_save(req, res, id_slot);
  3581. } else if (action == "restore") {
  3582. handle_slots_restore(req, res, id_slot);
  3583. } else if (action == "erase") {
  3584. handle_slots_erase(req, res, id_slot);
  3585. } else {
  3586. res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
  3587. }
  3588. };
  3589. const auto handle_props = [&params, &ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3590. // this endpoint is publicly available, please only return what is safe to be exposed
  3591. json data = {
  3592. { "default_generation_settings", ctx_server.default_generation_settings_for_props },
  3593. { "total_slots", ctx_server.params_base.n_parallel },
  3594. { "model_path", ctx_server.params_base.model.path },
  3595. { "modalities", json {
  3596. {"vision", ctx_server.oai_parser_opt.allow_image},
  3597. {"audio", ctx_server.oai_parser_opt.allow_audio},
  3598. } },
  3599. { "endpoint_slots", params.endpoint_slots },
  3600. { "endpoint_props", params.endpoint_props },
  3601. { "endpoint_metrics", params.endpoint_metrics },
  3602. { "webui", params.webui },
  3603. { "chat_template", common_chat_templates_source(ctx_server.chat_templates.get()) },
  3604. { "bos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_bos(ctx_server.vocab), /* special= */ true)},
  3605. { "eos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_eos(ctx_server.vocab), /* special= */ true)},
  3606. { "build_info", build_info },
  3607. };
  3608. if (ctx_server.params_base.use_jinja) {
  3609. if (auto tool_use_src = common_chat_templates_source(ctx_server.chat_templates.get(), "tool_use")) {
  3610. data["chat_template_tool_use"] = tool_use_src;
  3611. }
  3612. }
  3613. res_ok(res, data);
  3614. };
  3615. const auto handle_props_change = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3616. if (!ctx_server.params_base.endpoint_props) {
  3617. res_error(res, format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED));
  3618. return;
  3619. }
  3620. json data = json::parse(req.body);
  3621. // update any props here
  3622. res_ok(res, {{ "success", true }});
  3623. };
  3624. const auto handle_api_show = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3625. bool has_mtmd = ctx_server.mctx != nullptr;
  3626. json data = {
  3627. {
  3628. "template", common_chat_templates_source(ctx_server.chat_templates.get()),
  3629. },
  3630. {
  3631. "model_info", {
  3632. { "llama.context_length", ctx_server.slots.back().n_ctx, },
  3633. }
  3634. },
  3635. {"modelfile", ""},
  3636. {"parameters", ""},
  3637. {"template", common_chat_templates_source(ctx_server.chat_templates.get())},
  3638. {"details", {
  3639. {"parent_model", ""},
  3640. {"format", "gguf"},
  3641. {"family", ""},
  3642. {"families", {""}},
  3643. {"parameter_size", ""},
  3644. {"quantization_level", ""}
  3645. }},
  3646. {"model_info", ""},
  3647. {"capabilities", has_mtmd ? json({"completion","multimodal"}) : json({"completion"})}
  3648. };
  3649. res_ok(res, data);
  3650. };
  3651. // handle completion-like requests (completion, chat, infill)
  3652. // we can optionally provide a custom format for partial results and final results
  3653. const auto handle_completions_impl = [&ctx_server, &res_error, &res_ok](
  3654. server_task_type type,
  3655. json & data,
  3656. const std::vector<raw_buffer> & files,
  3657. const std::function<bool()> & is_connection_closed,
  3658. httplib::Response & res,
  3659. oaicompat_type oaicompat) -> void {
  3660. GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);
  3661. auto completion_id = gen_chatcmplid();
  3662. std::unordered_set<int> task_ids;
  3663. try {
  3664. std::vector<server_task> tasks;
  3665. const auto & prompt = data.at("prompt");
  3666. // TODO: this log can become very long, put it behind a flag or think about a more compact format
  3667. //SRV_DBG("Prompt: %s\n", prompt.is_string() ? prompt.get<std::string>().c_str() : prompt.dump(2).c_str());
  3668. // process prompt
  3669. std::vector<server_tokens> inputs;
  3670. if (oaicompat && ctx_server.mctx != nullptr) {
  3671. // This is the case used by OAI compatible chat path with MTMD. TODO It can be moved to the path below.
  3672. inputs.push_back(process_mtmd_prompt(ctx_server.mctx, prompt.get<std::string>(), files));
  3673. } else {
  3674. // Everything else, including multimodal completions.
  3675. inputs = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, prompt, true, true);
  3676. }
  3677. tasks.reserve(inputs.size());
  3678. for (size_t i = 0; i < inputs.size(); i++) {
  3679. server_task task = server_task(type);
  3680. task.id = ctx_server.queue_tasks.get_new_id();
  3681. task.index = i;
  3682. task.prompt_tokens = std::move(inputs[i]);
  3683. task.params = server_task::params_from_json_cmpl(
  3684. ctx_server.ctx,
  3685. ctx_server.params_base,
  3686. data);
  3687. task.id_selected_slot = json_value(data, "id_slot", -1);
  3688. // OAI-compat
  3689. task.params.oaicompat = oaicompat;
  3690. task.params.oaicompat_cmpl_id = completion_id;
  3691. // oaicompat_model is already populated by params_from_json_cmpl
  3692. tasks.push_back(std::move(task));
  3693. }
  3694. task_ids = server_task::get_list_id(tasks);
  3695. ctx_server.queue_results.add_waiting_tasks(tasks);
  3696. ctx_server.queue_tasks.post(std::move(tasks));
  3697. } catch (const std::exception & e) {
  3698. res_error(res, format_error_response(e.what(), ERROR_TYPE_INVALID_REQUEST));
  3699. return;
  3700. }
  3701. bool stream = json_value(data, "stream", false);
  3702. if (!stream) {
  3703. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3704. if (results.size() == 1) {
  3705. // single result
  3706. res_ok(res, results[0]->to_json());
  3707. } else {
  3708. // multiple results (multitask)
  3709. json arr = json::array();
  3710. for (auto & res : results) {
  3711. arr.push_back(res->to_json());
  3712. }
  3713. res_ok(res, arr);
  3714. }
  3715. }, [&](const json & error_data) {
  3716. res_error(res, error_data);
  3717. }, is_connection_closed);
  3718. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3719. } else {
  3720. const auto chunked_content_provider = [task_ids, &ctx_server, oaicompat](size_t, httplib::DataSink & sink) {
  3721. ctx_server.receive_cmpl_results_stream(task_ids, [&](server_task_result_ptr & result) -> bool {
  3722. json res_json = result->to_json();
  3723. if (res_json.is_array()) {
  3724. for (const auto & res : res_json) {
  3725. if (!server_sent_event(sink, "data", res)) {
  3726. // sending failed (HTTP connection closed), cancel the generation
  3727. return false;
  3728. }
  3729. }
  3730. return true;
  3731. } else {
  3732. return server_sent_event(sink, "data", res_json);
  3733. }
  3734. }, [&](const json & error_data) {
  3735. server_sent_event(sink, "error", error_data);
  3736. }, [&sink]() {
  3737. // note: do not use req.is_connection_closed here because req is already destroyed
  3738. return !sink.is_writable();
  3739. });
  3740. if (oaicompat != OAICOMPAT_TYPE_NONE) {
  3741. static const std::string ev_done = "data: [DONE]\n\n";
  3742. sink.write(ev_done.data(), ev_done.size());
  3743. }
  3744. sink.done();
  3745. return false;
  3746. };
  3747. auto on_complete = [task_ids, &ctx_server] (bool) {
  3748. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3749. };
  3750. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  3751. }
  3752. };
  3753. const auto handle_completions = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3754. json data = json::parse(req.body);
  3755. std::vector<raw_buffer> files; // dummy
  3756. handle_completions_impl(
  3757. SERVER_TASK_TYPE_COMPLETION,
  3758. data,
  3759. files,
  3760. req.is_connection_closed,
  3761. res,
  3762. OAICOMPAT_TYPE_NONE);
  3763. };
  3764. const auto handle_completions_oai = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3765. json data = oaicompat_completion_params_parse(json::parse(req.body));
  3766. std::vector<raw_buffer> files; // dummy
  3767. handle_completions_impl(
  3768. SERVER_TASK_TYPE_COMPLETION,
  3769. data,
  3770. files,
  3771. req.is_connection_closed,
  3772. res,
  3773. OAICOMPAT_TYPE_COMPLETION);
  3774. };
  3775. const auto handle_infill = [&ctx_server, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3776. // check model compatibility
  3777. std::string err;
  3778. if (llama_vocab_fim_pre(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3779. err += "prefix token is missing. ";
  3780. }
  3781. if (llama_vocab_fim_suf(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3782. err += "suffix token is missing. ";
  3783. }
  3784. if (llama_vocab_fim_mid(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3785. err += "middle token is missing. ";
  3786. }
  3787. if (!err.empty()) {
  3788. res_error(res, format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED));
  3789. return;
  3790. }
  3791. json data = json::parse(req.body);
  3792. // validate input
  3793. if (data.contains("prompt") && !data.at("prompt").is_string()) {
  3794. // prompt is optional
  3795. res_error(res, format_error_response("\"prompt\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3796. }
  3797. if (!data.contains("input_prefix")) {
  3798. res_error(res, format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3799. }
  3800. if (!data.contains("input_suffix")) {
  3801. res_error(res, format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3802. }
  3803. if (data.contains("input_extra") && !data.at("input_extra").is_array()) {
  3804. // input_extra is optional
  3805. res_error(res, format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST));
  3806. return;
  3807. }
  3808. json input_extra = json_value(data, "input_extra", json::array());
  3809. for (const auto & chunk : input_extra) {
  3810. // { "text": string, "filename": string }
  3811. if (!chunk.contains("text") || !chunk.at("text").is_string()) {
  3812. res_error(res, format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST));
  3813. return;
  3814. }
  3815. // filename is optional
  3816. if (chunk.contains("filename") && !chunk.at("filename").is_string()) {
  3817. res_error(res, format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST));
  3818. return;
  3819. }
  3820. }
  3821. data["input_extra"] = input_extra; // default to empty array if it's not exist
  3822. std::string prompt = json_value(data, "prompt", std::string());
  3823. std::vector<server_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, prompt, false, true);
  3824. SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
  3825. data["prompt"] = format_infill(
  3826. ctx_server.vocab,
  3827. data.at("input_prefix"),
  3828. data.at("input_suffix"),
  3829. data.at("input_extra"),
  3830. ctx_server.params_base.n_batch,
  3831. ctx_server.params_base.n_predict,
  3832. ctx_server.slots[0].n_ctx, // TODO: there should be a better way
  3833. ctx_server.params_base.spm_infill,
  3834. tokenized_prompts[0].get_text_tokens() // TODO: this could maybe be multimodal.
  3835. );
  3836. std::vector<raw_buffer> files; // dummy
  3837. handle_completions_impl(
  3838. SERVER_TASK_TYPE_INFILL,
  3839. data,
  3840. files,
  3841. req.is_connection_closed,
  3842. res,
  3843. OAICOMPAT_TYPE_NONE); // infill is not OAI compatible
  3844. };
  3845. const auto handle_chat_completions = [&ctx_server, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3846. LOG_DBG("request: %s\n", req.body.c_str());
  3847. auto body = json::parse(req.body);
  3848. std::vector<raw_buffer> files;
  3849. json data = oaicompat_chat_params_parse(
  3850. body,
  3851. ctx_server.oai_parser_opt,
  3852. files);
  3853. handle_completions_impl(
  3854. SERVER_TASK_TYPE_COMPLETION,
  3855. data,
  3856. files,
  3857. req.is_connection_closed,
  3858. res,
  3859. OAICOMPAT_TYPE_CHAT);
  3860. };
  3861. // same with handle_chat_completions, but without inference part
  3862. const auto handle_apply_template = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3863. auto body = json::parse(req.body);
  3864. std::vector<raw_buffer> files; // dummy, unused
  3865. json data = oaicompat_chat_params_parse(
  3866. body,
  3867. ctx_server.oai_parser_opt,
  3868. files);
  3869. res_ok(res, {{ "prompt", std::move(data.at("prompt")) }});
  3870. };
  3871. const auto handle_models = [&params, &ctx_server, &state, &res_ok](const httplib::Request &, httplib::Response & res) {
  3872. server_state current_state = state.load();
  3873. json model_meta = nullptr;
  3874. if (current_state == SERVER_STATE_READY) {
  3875. model_meta = ctx_server.model_meta();
  3876. }
  3877. bool has_mtmd = ctx_server.mctx != nullptr;
  3878. json models = {
  3879. {"models", {
  3880. {
  3881. {"name", params.model_alias.empty() ? params.model.path : params.model_alias},
  3882. {"model", params.model_alias.empty() ? params.model.path : params.model_alias},
  3883. {"modified_at", ""},
  3884. {"size", ""},
  3885. {"digest", ""}, // dummy value, llama.cpp does not support managing model file's hash
  3886. {"type", "model"},
  3887. {"description", ""},
  3888. {"tags", {""}},
  3889. {"capabilities", has_mtmd ? json({"completion","multimodal"}) : json({"completion"})},
  3890. {"parameters", ""},
  3891. {"details", {
  3892. {"parent_model", ""},
  3893. {"format", "gguf"},
  3894. {"family", ""},
  3895. {"families", {""}},
  3896. {"parameter_size", ""},
  3897. {"quantization_level", ""}
  3898. }}
  3899. }
  3900. }},
  3901. {"object", "list"},
  3902. {"data", {
  3903. {
  3904. {"id", params.model_alias.empty() ? params.model.path : params.model_alias},
  3905. {"object", "model"},
  3906. {"created", std::time(0)},
  3907. {"owned_by", "llamacpp"},
  3908. {"meta", model_meta},
  3909. },
  3910. }}
  3911. };
  3912. res_ok(res, models);
  3913. };
  3914. const auto handle_tokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3915. const json body = json::parse(req.body);
  3916. json tokens_response = json::array();
  3917. if (body.count("content") != 0) {
  3918. const bool add_special = json_value(body, "add_special", false);
  3919. const bool parse_special = json_value(body, "parse_special", true);
  3920. const bool with_pieces = json_value(body, "with_pieces", false);
  3921. llama_tokens tokens = tokenize_mixed(ctx_server.vocab, body.at("content"), add_special, parse_special);
  3922. if (with_pieces) {
  3923. for (const auto& token : tokens) {
  3924. std::string piece = common_token_to_piece(ctx_server.ctx, token);
  3925. json piece_json;
  3926. // Check if the piece is valid UTF-8
  3927. if (is_valid_utf8(piece)) {
  3928. piece_json = piece;
  3929. } else {
  3930. // If not valid UTF-8, store as array of byte values
  3931. piece_json = json::array();
  3932. for (unsigned char c : piece) {
  3933. piece_json.push_back(static_cast<int>(c));
  3934. }
  3935. }
  3936. tokens_response.push_back({
  3937. {"id", token},
  3938. {"piece", piece_json}
  3939. });
  3940. }
  3941. } else {
  3942. tokens_response = tokens;
  3943. }
  3944. }
  3945. const json data = format_tokenizer_response(tokens_response);
  3946. res_ok(res, data);
  3947. };
  3948. const auto handle_detokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3949. const json body = json::parse(req.body);
  3950. std::string content;
  3951. if (body.count("tokens") != 0) {
  3952. const llama_tokens tokens = body.at("tokens");
  3953. content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
  3954. }
  3955. const json data = format_detokenized_response(content);
  3956. res_ok(res, data);
  3957. };
  3958. const auto handle_embeddings_impl = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res, oaicompat_type oaicompat) {
  3959. if (!ctx_server.params_base.embedding) {
  3960. res_error(res, format_error_response("This server does not support embeddings. Start it with `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  3961. return;
  3962. }
  3963. if (oaicompat != OAICOMPAT_TYPE_NONE && llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
  3964. res_error(res, format_error_response("Pooling type 'none' is not OAI compatible. Please use a different pooling type", ERROR_TYPE_INVALID_REQUEST));
  3965. return;
  3966. }
  3967. const json body = json::parse(req.body);
  3968. // for the shape of input/content, see tokenize_input_prompts()
  3969. json prompt;
  3970. if (body.count("input") != 0) {
  3971. prompt = body.at("input");
  3972. } else if (body.contains("content")) {
  3973. oaicompat = OAICOMPAT_TYPE_NONE; // "content" field is not OAI compatible
  3974. prompt = body.at("content");
  3975. } else {
  3976. res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3977. return;
  3978. }
  3979. bool use_base64 = false;
  3980. if (body.count("encoding_format") != 0) {
  3981. const std::string& format = body.at("encoding_format");
  3982. if (format == "base64") {
  3983. use_base64 = true;
  3984. } else if (format != "float") {
  3985. res_error(res, format_error_response("The format to return the embeddings in. Can be either float or base64", ERROR_TYPE_INVALID_REQUEST));
  3986. return;
  3987. }
  3988. }
  3989. auto tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, prompt, true, true);
  3990. for (const auto & tokens : tokenized_prompts) {
  3991. // this check is necessary for models that do not add BOS token to the input
  3992. if (tokens.empty()) {
  3993. res_error(res, format_error_response("Input content cannot be empty", ERROR_TYPE_INVALID_REQUEST));
  3994. return;
  3995. }
  3996. }
  3997. int embd_normalize = 2; // default to Euclidean/L2 norm
  3998. if (body.count("embd_normalize") != 0) {
  3999. embd_normalize = body.at("embd_normalize");
  4000. if (llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
  4001. SRV_DBG("embd_normalize is not supported by pooling type %d, ignoring it\n", llama_pooling_type(ctx_server.ctx));
  4002. }
  4003. }
  4004. // create and queue the task
  4005. json responses = json::array();
  4006. bool error = false;
  4007. std::unordered_set<int> task_ids;
  4008. {
  4009. std::vector<server_task> tasks;
  4010. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  4011. server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING);
  4012. task.id = ctx_server.queue_tasks.get_new_id();
  4013. task.index = i;
  4014. task.prompt_tokens = std::move(tokenized_prompts[i]);
  4015. // OAI-compat
  4016. task.params.oaicompat = oaicompat;
  4017. task.params.embd_normalize = embd_normalize;
  4018. tasks.push_back(std::move(task));
  4019. }
  4020. task_ids = server_task::get_list_id(tasks);
  4021. ctx_server.queue_results.add_waiting_tasks(tasks);
  4022. ctx_server.queue_tasks.post(std::move(tasks));
  4023. }
  4024. // get the result
  4025. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  4026. for (auto & res : results) {
  4027. GGML_ASSERT(dynamic_cast<server_task_result_embd*>(res.get()) != nullptr);
  4028. responses.push_back(res->to_json());
  4029. }
  4030. }, [&](const json & error_data) {
  4031. res_error(res, error_data);
  4032. error = true;
  4033. }, req.is_connection_closed);
  4034. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  4035. if (error) {
  4036. return;
  4037. }
  4038. // write JSON response
  4039. json root = oaicompat == OAICOMPAT_TYPE_EMBEDDING
  4040. ? format_embeddings_response_oaicompat(body, responses, use_base64)
  4041. : json(responses);
  4042. res_ok(res, root);
  4043. };
  4044. const auto handle_embeddings = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  4045. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_NONE);
  4046. };
  4047. const auto handle_embeddings_oai = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  4048. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_EMBEDDING);
  4049. };
  4050. const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  4051. if (!ctx_server.params_base.embedding || ctx_server.params_base.pooling_type != LLAMA_POOLING_TYPE_RANK) {
  4052. res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking`", ERROR_TYPE_NOT_SUPPORTED));
  4053. return;
  4054. }
  4055. const json body = json::parse(req.body);
  4056. // TODO: implement
  4057. //int top_n = 1;
  4058. //if (body.count("top_n") != 1) {
  4059. // top_n = body.at("top_n");
  4060. //} else {
  4061. // res_error(res, format_error_response("\"top_n\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  4062. // return;
  4063. //}
  4064. // if true, use TEI API format, otherwise use Jina API format
  4065. // Jina: https://jina.ai/reranker/
  4066. // TEI: https://huggingface.github.io/text-embeddings-inference/#/Text%20Embeddings%20Inference/rerank
  4067. bool is_tei_format = body.contains("texts");
  4068. json query;
  4069. if (body.count("query") == 1) {
  4070. query = body.at("query");
  4071. if (!query.is_string()) {
  4072. res_error(res, format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  4073. return;
  4074. }
  4075. } else {
  4076. res_error(res, format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  4077. return;
  4078. }
  4079. std::vector<std::string> documents = json_value(body, "documents",
  4080. json_value(body, "texts", std::vector<std::string>()));
  4081. if (documents.empty()) {
  4082. res_error(res, format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST));
  4083. return;
  4084. }
  4085. std::vector<server_tokens> tokenized_queries = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, query, /* add_special */ false, true);
  4086. if (tokenized_queries.size() != 1) {
  4087. res_error(res, format_error_response("\"query\" must contain only a single prompt", ERROR_TYPE_INVALID_REQUEST));
  4088. }
  4089. // create and queue the task
  4090. json responses = json::array();
  4091. bool error = false;
  4092. std::unordered_set<int> task_ids;
  4093. {
  4094. std::vector<server_task> tasks;
  4095. auto tokenized_docs = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, documents, /* add_special */ false, true);
  4096. tasks.reserve(tokenized_docs.size());
  4097. for (size_t i = 0; i < tokenized_docs.size(); i++) {
  4098. auto tmp = format_rerank(ctx_server.vocab, tokenized_queries[0], tokenized_docs[i]);
  4099. server_task task = server_task(SERVER_TASK_TYPE_RERANK);
  4100. task.id = ctx_server.queue_tasks.get_new_id();
  4101. task.index = i;
  4102. task.prompt_tokens = std::move(tmp);
  4103. tasks.push_back(std::move(task));
  4104. }
  4105. task_ids = server_task::get_list_id(tasks);
  4106. ctx_server.queue_results.add_waiting_tasks(tasks);
  4107. ctx_server.queue_tasks.post(std::move(tasks));
  4108. }
  4109. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  4110. for (auto & res : results) {
  4111. GGML_ASSERT(dynamic_cast<server_task_result_rerank*>(res.get()) != nullptr);
  4112. responses.push_back(res->to_json());
  4113. }
  4114. }, [&](const json & error_data) {
  4115. res_error(res, error_data);
  4116. error = true;
  4117. }, req.is_connection_closed);
  4118. if (error) {
  4119. return;
  4120. }
  4121. // write JSON response
  4122. json root = format_response_rerank(
  4123. body,
  4124. responses,
  4125. is_tei_format,
  4126. documents);
  4127. res_ok(res, root);
  4128. };
  4129. const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) {
  4130. json result = json::array();
  4131. const auto & loras = ctx_server.params_base.lora_adapters;
  4132. for (size_t i = 0; i < loras.size(); ++i) {
  4133. auto & lora = loras[i];
  4134. result.push_back({
  4135. {"id", i},
  4136. {"path", lora.path},
  4137. {"scale", lora.scale},
  4138. {"task_name", lora.task_name},
  4139. {"prompt_prefix", lora.prompt_prefix},
  4140. });
  4141. }
  4142. res_ok(res, result);
  4143. res.status = 200; // HTTP OK
  4144. };
  4145. const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) {
  4146. const json body = json::parse(req.body);
  4147. if (!body.is_array()) {
  4148. res_error(res, format_error_response("Request body must be an array", ERROR_TYPE_INVALID_REQUEST));
  4149. return;
  4150. }
  4151. int task_id = ctx_server.queue_tasks.get_new_id();
  4152. {
  4153. server_task task(SERVER_TASK_TYPE_SET_LORA);
  4154. task.id = task_id;
  4155. task.set_lora = parse_lora_request(ctx_server.params_base.lora_adapters, body);
  4156. ctx_server.queue_results.add_waiting_task_id(task_id);
  4157. ctx_server.queue_tasks.post(std::move(task));
  4158. }
  4159. // get the result
  4160. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  4161. ctx_server.queue_results.remove_waiting_task_id(task_id);
  4162. if (result->is_error()) {
  4163. res_error(res, result->to_json());
  4164. return;
  4165. }
  4166. GGML_ASSERT(dynamic_cast<server_task_result_apply_lora*>(result.get()) != nullptr);
  4167. res_ok(res, result->to_json());
  4168. };
  4169. //
  4170. // Router
  4171. //
  4172. if (!params.webui) {
  4173. LOG_INF("Web UI is disabled\n");
  4174. } else {
  4175. // register static assets routes
  4176. if (!params.public_path.empty()) {
  4177. // Set the base directory for serving static files
  4178. bool is_found = svr->set_mount_point(params.api_prefix + "/", params.public_path);
  4179. if (!is_found) {
  4180. LOG_ERR("%s: static assets path not found: %s\n", __func__, params.public_path.c_str());
  4181. return 1;
  4182. }
  4183. } else {
  4184. // using embedded static index.html
  4185. svr->Get(params.api_prefix + "/", [](const httplib::Request & req, httplib::Response & res) {
  4186. if (req.get_header_value("Accept-Encoding").find("gzip") == std::string::npos) {
  4187. res.set_content("Error: gzip is not supported by this browser", "text/plain");
  4188. } else {
  4189. res.set_header("Content-Encoding", "gzip");
  4190. // COEP and COOP headers, required by pyodide (python interpreter)
  4191. res.set_header("Cross-Origin-Embedder-Policy", "require-corp");
  4192. res.set_header("Cross-Origin-Opener-Policy", "same-origin");
  4193. res.set_content(reinterpret_cast<const char*>(index_html_gz), index_html_gz_len, "text/html; charset=utf-8");
  4194. }
  4195. return false;
  4196. });
  4197. }
  4198. }
  4199. // register API routes
  4200. svr->Get (params.api_prefix + "/health", handle_health); // public endpoint (no API key check)
  4201. svr->Get (params.api_prefix + "/metrics", handle_metrics);
  4202. svr->Get (params.api_prefix + "/props", handle_props);
  4203. svr->Post(params.api_prefix + "/props", handle_props_change);
  4204. svr->Post(params.api_prefix + "/api/show", handle_api_show);
  4205. svr->Get (params.api_prefix + "/models", handle_models); // public endpoint (no API key check)
  4206. svr->Get (params.api_prefix + "/v1/models", handle_models); // public endpoint (no API key check)
  4207. svr->Get (params.api_prefix + "/api/tags", handle_models); // ollama specific endpoint. public endpoint (no API key check)
  4208. svr->Post(params.api_prefix + "/completion", handle_completions); // legacy
  4209. svr->Post(params.api_prefix + "/completions", handle_completions);
  4210. svr->Post(params.api_prefix + "/v1/completions", handle_completions_oai);
  4211. svr->Post(params.api_prefix + "/chat/completions", handle_chat_completions);
  4212. svr->Post(params.api_prefix + "/v1/chat/completions", handle_chat_completions);
  4213. svr->Post(params.api_prefix + "/api/chat", handle_chat_completions); // ollama specific endpoint
  4214. svr->Post(params.api_prefix + "/infill", handle_infill);
  4215. svr->Post(params.api_prefix + "/embedding", handle_embeddings); // legacy
  4216. svr->Post(params.api_prefix + "/embeddings", handle_embeddings);
  4217. svr->Post(params.api_prefix + "/v1/embeddings", handle_embeddings_oai);
  4218. svr->Post(params.api_prefix + "/rerank", handle_rerank);
  4219. svr->Post(params.api_prefix + "/reranking", handle_rerank);
  4220. svr->Post(params.api_prefix + "/v1/rerank", handle_rerank);
  4221. svr->Post(params.api_prefix + "/v1/reranking", handle_rerank);
  4222. svr->Post(params.api_prefix + "/tokenize", handle_tokenize);
  4223. svr->Post(params.api_prefix + "/detokenize", handle_detokenize);
  4224. svr->Post(params.api_prefix + "/apply-template", handle_apply_template);
  4225. // LoRA adapters hotswap
  4226. svr->Get (params.api_prefix + "/lora-adapters", handle_lora_adapters_list);
  4227. svr->Post(params.api_prefix + "/lora-adapters", handle_lora_adapters_apply);
  4228. // Save & load slots
  4229. svr->Get (params.api_prefix + "/slots", handle_slots);
  4230. svr->Post(params.api_prefix + "/slots/:id_slot", handle_slots_action);
  4231. //
  4232. // Start the server
  4233. //
  4234. if (params.n_threads_http < 1) {
  4235. // +2 threads for monitoring endpoints
  4236. params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
  4237. }
  4238. log_data["n_threads_http"] = std::to_string(params.n_threads_http);
  4239. svr->new_task_queue = [&params] { return new httplib::ThreadPool(params.n_threads_http); };
  4240. // clean up function, to be called before exit
  4241. auto clean_up = [&svr, &ctx_server]() {
  4242. SRV_INF("%s: cleaning up before exit...\n", __func__);
  4243. svr->stop();
  4244. ctx_server.queue_results.terminate();
  4245. llama_backend_free();
  4246. };
  4247. bool was_bound = false;
  4248. bool is_sock = false;
  4249. if (string_ends_with(std::string(params.hostname), ".sock")) {
  4250. is_sock = true;
  4251. LOG_INF("%s: setting address family to AF_UNIX\n", __func__);
  4252. svr->set_address_family(AF_UNIX);
  4253. // bind_to_port requires a second arg, any value other than 0 should
  4254. // simply get ignored
  4255. was_bound = svr->bind_to_port(params.hostname, 8080);
  4256. } else {
  4257. LOG_INF("%s: binding port with default address family\n", __func__);
  4258. // bind HTTP listen port
  4259. if (params.port == 0) {
  4260. int bound_port = svr->bind_to_any_port(params.hostname);
  4261. if ((was_bound = (bound_port >= 0))) {
  4262. params.port = bound_port;
  4263. }
  4264. } else {
  4265. was_bound = svr->bind_to_port(params.hostname, params.port);
  4266. }
  4267. }
  4268. if (!was_bound) {
  4269. LOG_ERR("%s: couldn't bind HTTP server socket, hostname: %s, port: %d\n", __func__, params.hostname.c_str(), params.port);
  4270. clean_up();
  4271. return 1;
  4272. }
  4273. // run the HTTP server in a thread
  4274. std::thread t([&]() { svr->listen_after_bind(); });
  4275. svr->wait_until_ready();
  4276. LOG_INF("%s: HTTP server is listening, hostname: %s, port: %d, http threads: %d\n", __func__, params.hostname.c_str(), params.port, params.n_threads_http);
  4277. // load the model
  4278. LOG_INF("%s: loading model\n", __func__);
  4279. if (!ctx_server.load_model(params)) {
  4280. clean_up();
  4281. t.join();
  4282. LOG_ERR("%s: exiting due to model loading error\n", __func__);
  4283. return 1;
  4284. }
  4285. ctx_server.init();
  4286. state.store(SERVER_STATE_READY);
  4287. LOG_INF("%s: model loaded\n", __func__);
  4288. // print sample chat example to make it clear which template is used
  4289. LOG_INF("%s: chat template, chat_template: %s, example_format: '%s'\n", __func__,
  4290. common_chat_templates_source(ctx_server.chat_templates.get()),
  4291. common_chat_format_example(ctx_server.chat_templates.get(), ctx_server.params_base.use_jinja, ctx_server.params_base.default_template_kwargs).c_str());
  4292. ctx_server.queue_tasks.on_new_task([&ctx_server](server_task && task) {
  4293. ctx_server.process_single_task(std::move(task));
  4294. });
  4295. ctx_server.queue_tasks.on_update_slots([&ctx_server]() {
  4296. ctx_server.update_slots();
  4297. });
  4298. shutdown_handler = [&](int) {
  4299. // this will unblock start_loop()
  4300. ctx_server.queue_tasks.terminate();
  4301. };
  4302. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  4303. struct sigaction sigint_action;
  4304. sigint_action.sa_handler = signal_handler;
  4305. sigemptyset (&sigint_action.sa_mask);
  4306. sigint_action.sa_flags = 0;
  4307. sigaction(SIGINT, &sigint_action, NULL);
  4308. sigaction(SIGTERM, &sigint_action, NULL);
  4309. #elif defined (_WIN32)
  4310. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  4311. return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
  4312. };
  4313. SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  4314. #endif
  4315. LOG_INF("%s: server is listening on %s - starting the main loop\n", __func__,
  4316. is_sock ? string_format("unix://%s", params.hostname.c_str()).c_str() :
  4317. string_format("http://%s:%d", params.hostname.c_str(), params.port).c_str());
  4318. // this call blocks the main thread until queue_tasks.terminate() is called
  4319. ctx_server.queue_tasks.start_loop();
  4320. clean_up();
  4321. t.join();
  4322. return 0;
  4323. }