ggml.c 359 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. // if C99 - static_assert is noop
  20. // ref: https://stackoverflow.com/a/53923785/4039976
  21. #ifndef static_assert
  22. #define static_assert(cond, msg) struct global_scope_noop_trick
  23. #endif
  24. #if defined(_WIN32)
  25. #include <windows.h>
  26. typedef volatile LONG atomic_int;
  27. typedef atomic_int atomic_bool;
  28. static void atomic_store(atomic_int* ptr, LONG val) {
  29. InterlockedExchange(ptr, val);
  30. }
  31. static LONG atomic_load(atomic_int* ptr) {
  32. return InterlockedCompareExchange(ptr, 0, 0);
  33. }
  34. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  35. return InterlockedExchangeAdd(ptr, inc);
  36. }
  37. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  38. return atomic_fetch_add(ptr, -(dec));
  39. }
  40. typedef HANDLE pthread_t;
  41. typedef DWORD thread_ret_t;
  42. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  43. (void) unused;
  44. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  45. if (handle == NULL)
  46. {
  47. return EAGAIN;
  48. }
  49. *out = handle;
  50. return 0;
  51. }
  52. static int pthread_join(pthread_t thread, void* unused) {
  53. (void) unused;
  54. return (int) WaitForSingleObject(thread, INFINITE);
  55. }
  56. static int sched_yield (void) {
  57. Sleep (0);
  58. return 0;
  59. }
  60. #else
  61. #include <pthread.h>
  62. #include <stdatomic.h>
  63. typedef void* thread_ret_t;
  64. #endif
  65. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  66. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  67. #ifndef __FMA__
  68. #define __FMA__
  69. #endif
  70. #ifndef __F16C__
  71. #define __F16C__
  72. #endif
  73. #ifndef __SSE3__
  74. #define __SSE3__
  75. #endif
  76. #endif
  77. #ifdef __HAIKU__
  78. #define static_assert(cond, msg) _Static_assert(cond, msg)
  79. #endif
  80. /*#define GGML_PERF*/
  81. #define GGML_DEBUG 0
  82. #define GGML_GELU_FP16
  83. #define GGML_SILU_FP16
  84. #define GGML_SOFT_MAX_UNROLL 4
  85. #define GGML_VEC_DOT_UNROLL 2
  86. #ifdef GGML_USE_ACCELERATE
  87. // uncomment to use vDSP for soft max computation
  88. // note: not sure if it is actually faster
  89. //#define GGML_SOFT_MAX_ACCELERATE
  90. #endif
  91. #if UINTPTR_MAX == 0xFFFFFFFF
  92. #define GGML_MEM_ALIGN 4
  93. #else
  94. #define GGML_MEM_ALIGN 16
  95. #endif
  96. #if defined(_MSC_VER) || defined(__MINGW32__)
  97. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  98. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  99. #else
  100. inline static void* ggml_aligned_malloc(size_t size) {
  101. void* aligned_memory = NULL;
  102. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  103. if (result != 0) {
  104. // Handle allocation failure
  105. return NULL;
  106. }
  107. return aligned_memory;
  108. }
  109. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  110. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  111. #endif
  112. #define UNUSED(x) (void)(x)
  113. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  114. #define GGML_ASSERT(x) \
  115. do { \
  116. if (!(x)) { \
  117. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  118. abort(); \
  119. } \
  120. } while (0)
  121. #ifdef GGML_USE_ACCELERATE
  122. #include <Accelerate/Accelerate.h>
  123. #elif GGML_USE_OPENBLAS
  124. #include <cblas.h>
  125. #endif
  126. #undef MIN
  127. #undef MAX
  128. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  129. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  130. // floating point type used to accumulate sums
  131. typedef double ggml_float;
  132. // 16-bit float
  133. // on Arm, we use __fp16
  134. // on x86, we use uint16_t
  135. #ifdef __ARM_NEON
  136. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  137. //
  138. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  139. //
  140. #include <arm_neon.h>
  141. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  142. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  143. #define GGML_FP16_TO_FP32(x) ((float) (x))
  144. #define GGML_FP32_TO_FP16(x) (x)
  145. #else
  146. #ifdef __wasm_simd128__
  147. #include <wasm_simd128.h>
  148. #else
  149. #ifdef __POWER9_VECTOR__
  150. #include <altivec.h>
  151. #undef bool
  152. #define bool _Bool
  153. #else
  154. #include <immintrin.h>
  155. #endif
  156. #endif
  157. #ifdef __F16C__
  158. #ifdef _MSC_VER
  159. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  160. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  161. #else
  162. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  163. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  164. #endif
  165. #elif defined(__POWER9_VECTOR__)
  166. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  167. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  168. /* the inline asm below is about 12% faster than the lookup method */
  169. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  170. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  171. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  172. register float f;
  173. register double d;
  174. __asm__(
  175. "mtfprd %0,%2\n"
  176. "xscvhpdp %0,%0\n"
  177. "frsp %1,%0\n" :
  178. /* temp */ "=d"(d),
  179. /* out */ "=f"(f):
  180. /* in */ "r"(h));
  181. return f;
  182. }
  183. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  184. register double d;
  185. register ggml_fp16_t r;
  186. __asm__( /* xscvdphp can work on double or single precision */
  187. "xscvdphp %0,%2\n"
  188. "mffprd %1,%0\n" :
  189. /* temp */ "=d"(d),
  190. /* out */ "=r"(r):
  191. /* in */ "f"(f));
  192. return r;
  193. }
  194. #else
  195. // FP16 <-> FP32
  196. // ref: https://github.com/Maratyszcza/FP16
  197. static inline float fp32_from_bits(uint32_t w) {
  198. union {
  199. uint32_t as_bits;
  200. float as_value;
  201. } fp32;
  202. fp32.as_bits = w;
  203. return fp32.as_value;
  204. }
  205. static inline uint32_t fp32_to_bits(float f) {
  206. union {
  207. float as_value;
  208. uint32_t as_bits;
  209. } fp32;
  210. fp32.as_value = f;
  211. return fp32.as_bits;
  212. }
  213. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  214. const uint32_t w = (uint32_t) h << 16;
  215. const uint32_t sign = w & UINT32_C(0x80000000);
  216. const uint32_t two_w = w + w;
  217. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  218. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  219. const float exp_scale = 0x1.0p-112f;
  220. #else
  221. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  222. #endif
  223. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  224. const uint32_t magic_mask = UINT32_C(126) << 23;
  225. const float magic_bias = 0.5f;
  226. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  227. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  228. const uint32_t result = sign |
  229. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  230. return fp32_from_bits(result);
  231. }
  232. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  233. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  234. const float scale_to_inf = 0x1.0p+112f;
  235. const float scale_to_zero = 0x1.0p-110f;
  236. #else
  237. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  238. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  239. #endif
  240. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  241. const uint32_t w = fp32_to_bits(f);
  242. const uint32_t shl1_w = w + w;
  243. const uint32_t sign = w & UINT32_C(0x80000000);
  244. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  245. if (bias < UINT32_C(0x71000000)) {
  246. bias = UINT32_C(0x71000000);
  247. }
  248. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  249. const uint32_t bits = fp32_to_bits(base);
  250. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  251. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  252. const uint32_t nonsign = exp_bits + mantissa_bits;
  253. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  254. }
  255. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  256. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  257. #endif // __F16C__
  258. #endif // __ARM_NEON
  259. //
  260. // global data
  261. //
  262. // precomputed gelu table for f16 (128 KB)
  263. static ggml_fp16_t table_gelu_f16[1 << 16];
  264. // precomputed silu table for f16 (128 KB)
  265. static ggml_fp16_t table_silu_f16[1 << 16];
  266. // precomputed exp table for f16 (128 KB)
  267. static ggml_fp16_t table_exp_f16[1 << 16];
  268. // precomputed f32 table for f16 (256 KB)
  269. static float table_f32_f16[1 << 16];
  270. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  271. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  272. // This is also true for POWER9.
  273. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  274. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  275. uint16_t s;
  276. memcpy(&s, &f, sizeof(uint16_t));
  277. return table_f32_f16[s];
  278. }
  279. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  280. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  281. #endif
  282. // note: do not use these inside ggml.c
  283. // these are meant to be used via the ggml.h API
  284. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  285. return (float) GGML_FP16_TO_FP32(x);
  286. }
  287. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  288. return GGML_FP32_TO_FP16(x);
  289. }
  290. //
  291. // timing
  292. //
  293. #if defined(_MSC_VER) || defined(__MINGW32__)
  294. static int64_t timer_freq;
  295. void ggml_time_init(void) {
  296. LARGE_INTEGER frequency;
  297. QueryPerformanceFrequency(&frequency);
  298. timer_freq = frequency.QuadPart;
  299. }
  300. int64_t ggml_time_ms(void) {
  301. LARGE_INTEGER t;
  302. QueryPerformanceCounter(&t);
  303. return (t.QuadPart * 1000) / timer_freq;
  304. }
  305. int64_t ggml_time_us(void) {
  306. LARGE_INTEGER t;
  307. QueryPerformanceCounter(&t);
  308. return (t.QuadPart * 1000000) / timer_freq;
  309. }
  310. #else
  311. void ggml_time_init(void) {}
  312. int64_t ggml_time_ms(void) {
  313. struct timespec ts;
  314. clock_gettime(CLOCK_MONOTONIC, &ts);
  315. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  316. }
  317. int64_t ggml_time_us(void) {
  318. struct timespec ts;
  319. clock_gettime(CLOCK_MONOTONIC, &ts);
  320. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  321. }
  322. #endif
  323. int64_t ggml_cycles(void) {
  324. return clock();
  325. }
  326. int64_t ggml_cycles_per_ms(void) {
  327. return CLOCKS_PER_SEC/1000;
  328. }
  329. #ifdef GGML_PERF
  330. #define ggml_perf_time_ms() ggml_time_ms()
  331. #define ggml_perf_time_us() ggml_time_us()
  332. #define ggml_perf_cycles() ggml_cycles()
  333. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  334. #else
  335. #define ggml_perf_time_ms() 0
  336. #define ggml_perf_time_us() 0
  337. #define ggml_perf_cycles() 0
  338. #define ggml_perf_cycles_per_ms() 0
  339. #endif
  340. //
  341. // cache line
  342. //
  343. #if defined(__cpp_lib_hardware_interference_size)
  344. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  345. #else
  346. #if defined(__POWER9_VECTOR__)
  347. #define CACHE_LINE_SIZE 128
  348. #else
  349. #define CACHE_LINE_SIZE 64
  350. #endif
  351. #endif
  352. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  353. //
  354. // quantization
  355. //
  356. #define QK 32
  357. // AVX routines provided by GH user Const-me
  358. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  359. #if __AVX2__ || __AVX512F__
  360. // Unpack 32 4-bit fields into 32 bytes
  361. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  362. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  363. {
  364. // Load 16 bytes from memory
  365. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  366. // Expand bytes into uint16_t values
  367. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  368. // Unpack values into individual bytes
  369. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  370. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  371. __m256i low = _mm256_and_si256( lowMask, bytes );
  372. high = _mm256_slli_epi16( high, 4 );
  373. bytes = _mm256_or_si256( low, high );
  374. return bytes;
  375. }
  376. static inline __m128i packNibbles( __m256i bytes )
  377. {
  378. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  379. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  380. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  381. __m256i low = _mm256_and_si256( lowByte, bytes );
  382. high = _mm256_srli_epi16( high, 4 );
  383. bytes = _mm256_or_si256( low, high );
  384. // Compress uint16_t lanes into bytes
  385. __m128i r0 = _mm256_castsi256_si128( bytes );
  386. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  387. return _mm_packus_epi16( r0, r1 );
  388. }
  389. #elif __AVX__
  390. static inline __m128i bytesFromNibbles( const uint8_t* rsi )
  391. {
  392. // Load 8 bytes from memory
  393. __m128i tmp = _mm_loadu_si64( ( const __m128i* )rsi );
  394. // Expand bytes into uint16_t values
  395. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  396. // Unpack values into individual bytes
  397. const __m128i lowMask = _mm_set1_epi8( 0xF );
  398. __m128i high = _mm_andnot_si128( lowMask, bytes );
  399. __m128i low = _mm_and_si128( lowMask, bytes );
  400. high = _mm_slli_epi16( high, 4 );
  401. bytes = _mm_or_si128( low, high );
  402. return bytes;
  403. }
  404. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  405. {
  406. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  407. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  408. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  409. __m128i low = _mm_and_si128( lowByte, bytes1 );
  410. high = _mm_srli_epi16( high, 4 );
  411. bytes1 = _mm_or_si128( low, high );
  412. high = _mm_andnot_si128( lowByte, bytes2 );
  413. low = _mm_and_si128( lowByte, bytes2 );
  414. high = _mm_srli_epi16( high, 4 );
  415. bytes2 = _mm_or_si128( low, high );
  416. return _mm_packus_epi16( bytes1, bytes2);
  417. }
  418. #endif
  419. #if __ARM_NEON
  420. #if !defined(__aarch64__)
  421. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  422. return
  423. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  424. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  425. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  426. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  427. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  428. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  429. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  430. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  431. }
  432. inline static int32_t vaddvq_s16(int16x8_t v) {
  433. return
  434. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  435. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  436. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  437. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  438. }
  439. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  440. return
  441. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  442. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  443. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  444. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  445. }
  446. inline static int32_t vaddvq_s32(int32x4_t v) {
  447. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  448. }
  449. inline static float vaddvq_f32(float32x4_t v) {
  450. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  451. }
  452. float vminvq_f32(float32x4_t v) {
  453. return
  454. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  455. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  456. }
  457. float vmaxvq_f32(float32x4_t v) {
  458. return
  459. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  460. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  461. }
  462. int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) {
  463. return vget_low_s8(vcombine_s8(a, b));
  464. }
  465. int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) {
  466. return vget_high_s8(vcombine_s8(a, b));
  467. }
  468. uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  469. return vget_low_u8(vcombine_u8(a, b));
  470. }
  471. uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  472. return vget_high_u8(vcombine_u8(a, b));
  473. }
  474. #endif
  475. #endif
  476. // method 5
  477. // blocks of QK elements
  478. // represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors)
  479. typedef struct {
  480. float d; // delta
  481. uint8_t qs[QK / 2]; // nibbles / quants
  482. } block_q4_0;
  483. static_assert(sizeof(block_q4_0) == sizeof(float) + QK / 2, "wrong q4_0 block size/padding");
  484. // method 4
  485. // blocks of QK elements
  486. // represented with 2 floats (delta + min) and QK/2 8-bit ints (i.e QK 4-bit unsigned integer factors)
  487. typedef struct {
  488. float d; // delta
  489. float m; // min
  490. uint8_t qs[QK / 2]; // nibbles / quants
  491. } block_q4_1;
  492. static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK / 2, "wrong q4_1 block size/padding");
  493. typedef struct {
  494. float d; // delta
  495. int8_t qs[QK]; // quants
  496. } block_q8_0;
  497. static_assert(sizeof(block_q8_0) == sizeof(float) + QK, "wrong q8_0 block size/padding");
  498. // reference implementation for deterministic creation of model files
  499. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  500. assert(k % QK == 0);
  501. const int nb = k / QK;
  502. uint8_t pp[QK/2];
  503. for (int i = 0; i < nb; i++) {
  504. float amax = 0.0f; // absolute max
  505. for (int l = 0; l < QK; l++) {
  506. const float v = x[i*QK + l];
  507. amax = MAX(amax, fabsf(v));
  508. }
  509. const float d = amax / ((1 << 3) - 1);
  510. const float id = d ? 1.0f/d : 0.0f;
  511. y[i].d = d;
  512. for (int l = 0; l < QK; l += 2) {
  513. const float v0 = x[i*QK + l + 0]*id;
  514. const float v1 = x[i*QK + l + 1]*id;
  515. const uint8_t vi0 = (int8_t)roundf(v0) + 8;
  516. const uint8_t vi1 = (int8_t)roundf(v1) + 8;
  517. assert(vi0 < 16);
  518. assert(vi1 < 16);
  519. pp[l/2] = vi0 | (vi1 << 4);
  520. }
  521. memcpy(y[i].qs, pp, sizeof(pp));
  522. }
  523. }
  524. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  525. assert(k % QK == 0);
  526. const int nb = k / QK;
  527. block_q4_0 * restrict y = vy;
  528. #if defined(__POWER9_VECTOR__)
  529. const vector float v85 = vec_splats(8.5f);
  530. for (int i = 0; i < nb; i++) {
  531. float amax = 0.0f; // absolute max
  532. vector float srcv [8];
  533. vector float asrcv[8];
  534. vector float amaxv[8];
  535. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  536. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  537. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  538. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  539. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  540. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  541. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  542. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  543. amax = MAX(
  544. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  545. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  546. const float d = amax / ((1 << 3) - 1);
  547. const float id = d ? 1.0/d : 0.0;
  548. y[i].d = d;
  549. const vector float vid = vec_splats(id);
  550. uint8_t * restrict pb = y[i].qs;
  551. for (int l = 0; l < 8; l++) {
  552. const vector float vf = vec_madd(srcv[l], vid, v85);
  553. const vector signed int vi = vec_signed(vf);
  554. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  555. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  556. }
  557. }
  558. #elif __ARM_NEON
  559. for (int i = 0; i < nb; i++) {
  560. float32x4_t srcv [8];
  561. float32x4_t asrcv[8];
  562. float32x4_t amaxv[8];
  563. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  564. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  565. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  566. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  567. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  568. const float amax = vmaxvq_f32(amaxv[0]);
  569. const float d = amax / ((1 << 3) - 1);
  570. const float id = d ? 1.0f/d : 0.0f;
  571. y[i].d = d;
  572. for (int l = 0; l < 8; l++) {
  573. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  574. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  575. const int32x4_t vi = vcvtq_s32_f32(vf);
  576. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  577. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  578. }
  579. }
  580. #elif defined(__AVX2__)
  581. for (int i = 0; i < nb; i++) {
  582. // Load elements into 4 AVX vectors
  583. __m256 v0 = _mm256_loadu_ps( x );
  584. __m256 v1 = _mm256_loadu_ps( x + 8 );
  585. __m256 v2 = _mm256_loadu_ps( x + 16 );
  586. __m256 v3 = _mm256_loadu_ps( x + 24 );
  587. x += 32;
  588. // Compute max(abs(e)) for the block
  589. const __m256 signBit = _mm256_set1_ps( -0.0f );
  590. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  591. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  592. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  593. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  594. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  595. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  596. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  597. const float maxScalar = _mm_cvtss_f32( max4 );
  598. // Quantize these floats
  599. const float d = maxScalar / 7.0f;
  600. y[i].d = d;
  601. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  602. const __m256 mul = _mm256_set1_ps( id );
  603. // Apply the multiplier
  604. v0 = _mm256_mul_ps( v0, mul );
  605. v1 = _mm256_mul_ps( v1, mul );
  606. v2 = _mm256_mul_ps( v2, mul );
  607. v3 = _mm256_mul_ps( v3, mul );
  608. // Round to nearest integer
  609. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  610. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  611. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  612. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  613. // Convert floats to integers
  614. __m256i i0 = _mm256_cvtps_epi32( v0 );
  615. __m256i i1 = _mm256_cvtps_epi32( v1 );
  616. __m256i i2 = _mm256_cvtps_epi32( v2 );
  617. __m256i i3 = _mm256_cvtps_epi32( v3 );
  618. // Convert int32 to int16
  619. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  620. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  621. // Convert int16 to int8
  622. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  623. // We got our precious signed bytes, but the order is now wrong
  624. // These AVX2 pack instructions process 16-byte pieces independently
  625. // The following instruction is fixing the order
  626. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  627. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  628. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  629. const __m256i off = _mm256_set1_epi8( 8 );
  630. i0 = _mm256_add_epi8( i0, off );
  631. // Compress the vector into 4 bit/value, and store
  632. __m128i res = packNibbles( i0 );
  633. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  634. }
  635. #elif defined(__AVX__)
  636. for (int i = 0; i < nb; i++) {
  637. // Load elements into 4 AVX vectors
  638. __m256 v0 = _mm256_loadu_ps( x );
  639. __m256 v1 = _mm256_loadu_ps( x + 8 );
  640. __m256 v2 = _mm256_loadu_ps( x + 16 );
  641. __m256 v3 = _mm256_loadu_ps( x + 24 );
  642. x += 32;
  643. // Compute max(abs(e)) for the block
  644. const __m256 signBit = _mm256_set1_ps( -0.0f );
  645. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  646. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  647. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  648. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  649. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  650. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  651. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  652. const float maxScalar = _mm_cvtss_f32( max4 );
  653. // Quantize these floats
  654. const float d = maxScalar / 7.0f;
  655. y[i].d = d;
  656. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  657. const __m256 mul = _mm256_set1_ps( id );
  658. // Apply the multiplier
  659. v0 = _mm256_mul_ps( v0, mul );
  660. v1 = _mm256_mul_ps( v1, mul );
  661. v2 = _mm256_mul_ps( v2, mul );
  662. v3 = _mm256_mul_ps( v3, mul );
  663. // Round to nearest integer
  664. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  665. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  666. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  667. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  668. // Convert floats to integers
  669. __m256i i0 = _mm256_cvtps_epi32( v0 );
  670. __m256i i1 = _mm256_cvtps_epi32( v1 );
  671. __m256i i2 = _mm256_cvtps_epi32( v2 );
  672. __m256i i3 = _mm256_cvtps_epi32( v3 );
  673. // Since we don't have in AVX some necessary functions,
  674. // we split the registers in half and call AVX2 analogs from SSE
  675. __m128i ni0 = _mm256_castsi256_si128( i0 );
  676. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  677. __m128i ni2 = _mm256_castsi256_si128( i1 );
  678. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  679. __m128i ni4 = _mm256_castsi256_si128( i2 );
  680. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  681. __m128i ni6 = _mm256_castsi256_si128( i3 );
  682. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  683. // Convert int32 to int16
  684. ni0 = _mm_packs_epi32( ni0, ni1 );
  685. ni2 = _mm_packs_epi32( ni2, ni3 );
  686. ni4 = _mm_packs_epi32( ni4, ni5 );
  687. ni6 = _mm_packs_epi32( ni6, ni7 );
  688. // Convert int16 to int8
  689. ni0 = _mm_packs_epi16( ni0, ni2 );
  690. ni4 = _mm_packs_epi16( ni4, ni6 );
  691. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  692. const __m128i off = _mm_set1_epi8( 8);
  693. ni0 = _mm_add_epi8( ni0, off );
  694. ni4 = _mm_add_epi8( ni4, off );
  695. // Compress the vector into 4 bit/value, and store
  696. __m128i res = packNibbles( ni0, ni4 );
  697. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  698. }
  699. #elif defined(__wasm_simd128__)
  700. for (int i = 0; i < nb; i++) {
  701. float amax = 0.0f; // absolute max
  702. v128_t srcv [8];
  703. v128_t asrcv[8];
  704. v128_t amaxv[8];
  705. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  706. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  707. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  708. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  709. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  710. amax = MAX(
  711. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  712. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  713. const float d = amax / ((1 << 3) - 1);
  714. const float id = d ? 1.0/d : 0.0;
  715. y[i].d = d;
  716. for (int l = 0; l < 8; l++) {
  717. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  718. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  719. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  720. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  721. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  722. }
  723. }
  724. #else
  725. // scalar
  726. quantize_row_q4_0_reference(x, y, k);
  727. #endif
  728. }
  729. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  730. assert(k % QK == 0);
  731. const int nb = k / QK;
  732. block_q4_1 * restrict y = vy;
  733. uint8_t pp[QK/2];
  734. for (int i = 0; i < nb; i++) {
  735. float min = FLT_MAX;
  736. float max = -FLT_MAX;
  737. for (int l = 0; l < QK; l++) {
  738. const float v = x[i*QK + l];
  739. if (v < min) min = v;
  740. if (v > max) max = v;
  741. }
  742. const float d = (max - min) / ((1 << 4) - 1);
  743. const float id = d ? 1.0f/d : 0.0f;
  744. y[i].d = d;
  745. y[i].m = min;
  746. for (int l = 0; l < QK; l += 2) {
  747. const float v0 = (x[i*QK + l + 0] - min)*id;
  748. const float v1 = (x[i*QK + l + 1] - min)*id;
  749. const uint8_t vi0 = roundf(v0);
  750. const uint8_t vi1 = roundf(v1);
  751. assert(vi0 < 16);
  752. assert(vi1 < 16);
  753. pp[l/2] = vi0 | (vi1 << 4);
  754. }
  755. memcpy(y[i].qs, pp, sizeof(pp));
  756. }
  757. }
  758. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  759. assert(k % QK == 0);
  760. const int nb = k / QK;
  761. block_q4_1 * restrict y = vy;
  762. #if defined(__AVX2__)
  763. for (int i = 0; i < nb; i++) {
  764. // Load elements into 4 AVX vectors
  765. __m256 v0 = _mm256_loadu_ps( x );
  766. __m256 v1 = _mm256_loadu_ps( x + 8 );
  767. __m256 v2 = _mm256_loadu_ps( x + 16 );
  768. __m256 v3 = _mm256_loadu_ps( x + 24 );
  769. x += 32;
  770. // Compute max for the block
  771. __m256 vmax;
  772. vmax = _mm256_max_ps( v0, v1 );
  773. vmax = _mm256_max_ps( vmax, v2 );
  774. vmax = _mm256_max_ps( vmax, v3 );
  775. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  776. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  777. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  778. const float maxScalar = _mm_cvtss_f32( max4 );
  779. // Compute min for the block
  780. __m256 vmin;
  781. vmin = _mm256_min_ps( v0, v1 );
  782. vmin = _mm256_min_ps( vmin, v2 );
  783. vmin = _mm256_min_ps( vmin, v3 );
  784. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  785. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  786. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  787. const float minScalar = _mm_cvtss_f32( min4 );
  788. // Quantize these floats
  789. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  790. const float id = d ? 1.0f/d : 0.0f;
  791. y[i].m = minScalar;
  792. y[i].d = d;
  793. // x = (x-min)*id
  794. const __m256 mul = _mm256_set1_ps( id );
  795. const __m256 off = _mm256_set1_ps( minScalar );
  796. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  797. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  798. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  799. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  800. // Round to nearest integer
  801. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  802. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  803. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  804. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  805. // Convert floats to integers
  806. __m256i i0 = _mm256_cvtps_epi32( v0 );
  807. __m256i i1 = _mm256_cvtps_epi32( v1 );
  808. __m256i i2 = _mm256_cvtps_epi32( v2 );
  809. __m256i i3 = _mm256_cvtps_epi32( v3 );
  810. // Convert int32 to int16
  811. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  812. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  813. // Convert int16 to int8
  814. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  815. // We got our precious signed bytes, but the order is now wrong
  816. // These AVX2 pack instructions process 16-byte pieces independently
  817. // The following instruction is fixing the order
  818. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  819. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  820. // Compress the vector into 4 bit/value, and store
  821. __m128i res = packNibbles( i0 );
  822. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  823. }
  824. #elif __ARM_NEON
  825. for (int i = 0; i < nb; i++) {
  826. float32x4_t srcv[8];
  827. float32x4_t minv[8];
  828. float32x4_t maxv[8];
  829. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK + 4*l);
  830. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  831. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  832. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  833. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  834. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  835. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  836. const float min = vminvq_f32(minv[0]);
  837. const float max = vmaxvq_f32(maxv[0]);
  838. const float d = (max - min) / ((1 << 4) - 1);
  839. const float id = d ? 1.0f/d : 0.0f;
  840. y[i].d = d;
  841. y[i].m = min;
  842. const float32x4_t minv0 = vdupq_n_f32(min);
  843. for (int l = 0; l < 8; l++) {
  844. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  845. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  846. const int32x4_t vi = vcvtq_s32_f32(vf);
  847. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  848. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  849. }
  850. }
  851. #else
  852. // scalar
  853. quantize_row_q4_1_reference(x, vy, k);
  854. #endif
  855. }
  856. // reference implementation for deterministic creation of model files
  857. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  858. assert(k % QK == 0);
  859. const int nb = k / QK;
  860. for (int i = 0; i < nb; i++) {
  861. float amax = 0.0f; // absolute max
  862. for (int l = 0; l < QK; l++) {
  863. const float v = x[i*QK + l];
  864. amax = MAX(amax, fabsf(v));
  865. }
  866. const float d = amax / ((1 << 7) - 1);
  867. const float id = d ? 1.0f/d : 0.0f;
  868. y[i].d = d;
  869. for (int l = 0; l < QK; ++l) {
  870. const float v = x[i*QK + l]*id;
  871. y[i].qs[l] = roundf(v);
  872. }
  873. }
  874. }
  875. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  876. assert(k % QK == 0);
  877. const int nb = k / QK;
  878. block_q8_0 * restrict y = vy;
  879. #if defined(__ARM_NEON)
  880. for (int i = 0; i < nb; i++) {
  881. float32x4_t srcv [8];
  882. float32x4_t asrcv[8];
  883. float32x4_t amaxv[8];
  884. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  885. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  886. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  887. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  888. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  889. const float amax = vmaxvq_f32(amaxv[0]);
  890. const float d = amax / ((1 << 7) - 1);
  891. const float id = d ? 1.0f/d : 0.0f;
  892. y[i].d = d;
  893. for (int l = 0; l < 8; l++) {
  894. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  895. const int32x4_t vi = vcvtnq_s32_f32(v);
  896. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  897. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  898. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  899. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  900. }
  901. }
  902. #elif defined(__AVX2__) || defined(__AVX__)
  903. for (int i = 0; i < nb; i++) {
  904. // Load elements into 4 AVX vectors
  905. __m256 v0 = _mm256_loadu_ps( x );
  906. __m256 v1 = _mm256_loadu_ps( x + 8 );
  907. __m256 v2 = _mm256_loadu_ps( x + 16 );
  908. __m256 v3 = _mm256_loadu_ps( x + 24 );
  909. x += 32;
  910. // Compute max(abs(e)) for the block
  911. const __m256 signBit = _mm256_set1_ps( -0.0f );
  912. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  913. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  914. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  915. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  916. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  917. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  918. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  919. const float maxScalar = _mm_cvtss_f32( max4 );
  920. // Quantize these floats
  921. const float d = maxScalar / 127.f;
  922. y[i].d = d;
  923. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  924. const __m256 mul = _mm256_set1_ps( id );
  925. // Apply the multiplier
  926. v0 = _mm256_mul_ps( v0, mul );
  927. v1 = _mm256_mul_ps( v1, mul );
  928. v2 = _mm256_mul_ps( v2, mul );
  929. v3 = _mm256_mul_ps( v3, mul );
  930. // Round to nearest integer
  931. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  932. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  933. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  934. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  935. // Convert floats to integers
  936. __m256i i0 = _mm256_cvtps_epi32( v0 );
  937. __m256i i1 = _mm256_cvtps_epi32( v1 );
  938. __m256i i2 = _mm256_cvtps_epi32( v2 );
  939. __m256i i3 = _mm256_cvtps_epi32( v3 );
  940. #if defined(__AVX2__)
  941. // Convert int32 to int16
  942. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  943. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  944. // Convert int16 to int8
  945. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  946. // We got our precious signed bytes, but the order is now wrong
  947. // These AVX2 pack instructions process 16-byte pieces independently
  948. // The following instruction is fixing the order
  949. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  950. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  951. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  952. #else
  953. // Since we don't have in AVX some necessary functions,
  954. // we split the registers in half and call AVX2 analogs from SSE
  955. __m128i ni0 = _mm256_castsi256_si128( i0 );
  956. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  957. __m128i ni2 = _mm256_castsi256_si128( i1 );
  958. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  959. __m128i ni4 = _mm256_castsi256_si128( i2 );
  960. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  961. __m128i ni6 = _mm256_castsi256_si128( i3 );
  962. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  963. // Convert int32 to int16
  964. ni0 = _mm_packs_epi32( ni0, ni1 );
  965. ni2 = _mm_packs_epi32( ni2, ni3 );
  966. ni4 = _mm_packs_epi32( ni4, ni5 );
  967. ni6 = _mm_packs_epi32( ni6, ni7 );
  968. // Convert int16 to int8
  969. ni0 = _mm_packs_epi16( ni0, ni2 );
  970. ni4 = _mm_packs_epi16( ni4, ni6 );
  971. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  972. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  973. #endif
  974. }
  975. #else
  976. // scalar
  977. quantize_row_q8_0_reference(x, y, k);
  978. #endif
  979. }
  980. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  981. assert(k % QK == 0);
  982. const int nb = k / QK;
  983. const block_q4_0 * restrict x = vx;
  984. #if defined(__AVX2__)
  985. for (int i = 0; i < nb; i++) {
  986. // scale factor
  987. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  988. const uint8_t * restrict pp = x[i].qs;
  989. for (int l = 0; l < QK; l += 32) {
  990. // Load 32x4-bit integers into 32x8-bit integers
  991. __m256i vx8 = bytesFromNibbles(pp+l/2);
  992. // Subtract 8 from the integers
  993. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  994. // Convert to 16-bit int
  995. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  996. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  997. // Convert to 32-bit int -> float 32
  998. const __m256 vf[4] = {
  999. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1000. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1001. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1002. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1003. };
  1004. // Scale and store
  1005. for (int j = 0; j < 4; j++) {
  1006. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  1007. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  1008. }
  1009. }
  1010. }
  1011. #elif defined(__ARM_NEON)
  1012. for (int i = 0; i < nb; i++) {
  1013. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1014. const uint8_t * restrict pp = x[i].qs;
  1015. for (int l = 0; l < QK; l += 16) {
  1016. // Load 16x4-bit integers into 8x8-bit integers
  1017. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1018. // Expand 4-bit qs to 8-bit bytes
  1019. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  1020. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1021. // Convert to signed 8-bit integers
  1022. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  1023. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  1024. // Subtract 8 from each byte
  1025. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  1026. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  1027. // Interleave and combine
  1028. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  1029. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  1030. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  1031. // convert to 2x int16x8_t
  1032. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  1033. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  1034. // convert to 4x float32x4_t
  1035. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  1036. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  1037. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  1038. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  1039. // Multiply by d
  1040. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  1041. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  1042. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  1043. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  1044. // Store
  1045. vst1q_f32(y + i*QK + l + 0, r0);
  1046. vst1q_f32(y + i*QK + l + 4, r1);
  1047. vst1q_f32(y + i*QK + l + 8, r2);
  1048. vst1q_f32(y + i*QK + l + 12, r3);
  1049. }
  1050. }
  1051. #else
  1052. // scalar
  1053. for (int i = 0; i < nb; i++) {
  1054. const float d = x[i].d;
  1055. const uint8_t * restrict pp = x[i].qs;
  1056. for (int l = 0; l < QK; l += 2) {
  1057. const uint8_t vi = pp[l/2];
  1058. const int8_t vi0 = vi & 0xf;
  1059. const int8_t vi1 = vi >> 4;
  1060. const float v0 = (vi0 - 8)*d;
  1061. const float v1 = (vi1 - 8)*d;
  1062. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  1063. y[i*QK + l + 0] = v0;
  1064. y[i*QK + l + 1] = v1;
  1065. assert(!isnan(y[i*QK + l + 0]));
  1066. assert(!isnan(y[i*QK + l + 1]));
  1067. }
  1068. }
  1069. #endif
  1070. }
  1071. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  1072. assert(k % QK == 0);
  1073. const int nb = k / QK;
  1074. const block_q4_1 * restrict x = vx;
  1075. #if defined(__AVX2__)
  1076. for (int i = 0; i < nb; i++) {
  1077. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1078. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  1079. const uint8_t * restrict pp = x[i].qs;
  1080. for (int l = 0; l < QK; l += 32) {
  1081. // Load 32x4-bit integers into 32x8-bit integers
  1082. __m256i vx8 = bytesFromNibbles(pp+l/2);
  1083. // Convert to 16-bit int
  1084. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1085. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1086. // Convert to 32-bit int -> float 32
  1087. const __m256 vf[4] = {
  1088. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1089. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1090. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1091. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1092. };
  1093. // Scale, add m and store
  1094. for (int j = 0; j < 4; j++) {
  1095. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  1096. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  1097. }
  1098. }
  1099. }
  1100. #elif defined(__ARM_NEON)
  1101. for (int i = 0; i < nb; i++) {
  1102. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1103. const float32x4_t vm = vdupq_n_f32(x[i].m);
  1104. const uint8_t * restrict pp = x[i].qs;
  1105. for (int l = 0; l < QK; l += 16) {
  1106. // Load 16x4-bit integers into 8x8-bit integers
  1107. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1108. // Expand 4-bit qs to 8-bit bytes
  1109. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  1110. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1111. // Interleave and combine
  1112. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  1113. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  1114. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  1115. // convert to 2x uint16x8_t
  1116. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  1117. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  1118. // convert to 4x float32x4_t
  1119. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  1120. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  1121. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  1122. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  1123. // multiply by d and add m
  1124. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  1125. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  1126. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  1127. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  1128. // Store
  1129. vst1q_f32(y + i*QK + l + 0, r0);
  1130. vst1q_f32(y + i*QK + l + 4, r1);
  1131. vst1q_f32(y + i*QK + l + 8, r2);
  1132. vst1q_f32(y + i*QK + l + 12, r3);
  1133. }
  1134. }
  1135. #else
  1136. for (int i = 0; i < nb; i++) {
  1137. const float d = x[i].d;
  1138. const float m = x[i].m;
  1139. const uint8_t * restrict pp = x[i].qs;
  1140. for (int l = 0; l < QK; l += 2) {
  1141. const uint8_t vi = pp[l/2];
  1142. const int8_t vi0 = vi & 0xf;
  1143. const int8_t vi1 = vi >> 4;
  1144. const float v0 = vi0*d + m;
  1145. const float v1 = vi1*d + m;
  1146. y[i*QK + l + 0] = v0;
  1147. y[i*QK + l + 1] = v1;
  1148. assert(!isnan(y[i*QK + l + 0]));
  1149. assert(!isnan(y[i*QK + l + 1]));
  1150. }
  1151. }
  1152. #endif
  1153. }
  1154. //
  1155. // simd mappings
  1156. //
  1157. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1158. // we then implement the fundamental computation operations below using only these macros
  1159. // adding support for new architectures requires to define the corresponding SIMD macros
  1160. //
  1161. // GGML_F32_STEP / GGML_F16_STEP
  1162. // number of elements to process in a single step
  1163. //
  1164. // GGML_F32_EPR / GGML_F16_EPR
  1165. // number of elements to fit in a single register
  1166. //
  1167. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1168. #define GGML_SIMD
  1169. // F32 NEON
  1170. #define GGML_F32_STEP 16
  1171. #define GGML_F32_EPR 4
  1172. #define GGML_F32x4 float32x4_t
  1173. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1174. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1175. #define GGML_F32x4_LOAD vld1q_f32
  1176. #define GGML_F32x4_STORE vst1q_f32
  1177. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1178. #define GGML_F32x4_ADD vaddq_f32
  1179. #define GGML_F32x4_MUL vmulq_f32
  1180. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1181. #define GGML_F32x4_REDUCE(res, x) \
  1182. { \
  1183. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1184. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1185. } \
  1186. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1187. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1188. } \
  1189. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1190. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1191. } \
  1192. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1193. }
  1194. #define GGML_F32_VEC GGML_F32x4
  1195. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1196. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1197. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1198. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1199. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1200. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1201. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1202. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1203. // F16 NEON
  1204. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1205. #define GGML_F16_STEP 32
  1206. #define GGML_F16_EPR 8
  1207. #define GGML_F16x8 float16x8_t
  1208. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1209. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1210. #define GGML_F16x8_LOAD vld1q_f16
  1211. #define GGML_F16x8_STORE vst1q_f16
  1212. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1213. #define GGML_F16x8_ADD vaddq_f16
  1214. #define GGML_F16x8_MUL vmulq_f16
  1215. #define GGML_F16x8_REDUCE(res, x) \
  1216. { \
  1217. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1218. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1219. } \
  1220. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1221. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1222. } \
  1223. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1224. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1225. } \
  1226. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1227. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1228. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1229. }
  1230. #define GGML_F16_VEC GGML_F16x8
  1231. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1232. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1233. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1234. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1235. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1236. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1237. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1238. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1239. #else
  1240. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1241. // and take advantage of the vcvt_ functions to convert to/from FP16
  1242. #define GGML_F16_STEP 16
  1243. #define GGML_F16_EPR 4
  1244. #define GGML_F32Cx4 float32x4_t
  1245. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1246. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1247. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1248. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1249. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1250. #define GGML_F32Cx4_ADD vaddq_f32
  1251. #define GGML_F32Cx4_MUL vmulq_f32
  1252. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1253. #define GGML_F16_VEC GGML_F32Cx4
  1254. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1255. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1256. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1257. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1258. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1259. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1260. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1261. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1262. #endif
  1263. #elif defined(__AVX__)
  1264. #define GGML_SIMD
  1265. // F32 AVX
  1266. #define GGML_F32_STEP 32
  1267. #define GGML_F32_EPR 8
  1268. #define GGML_F32x8 __m256
  1269. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1270. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1271. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1272. #define GGML_F32x8_STORE _mm256_storeu_ps
  1273. #if defined(__FMA__)
  1274. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1275. #else
  1276. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1277. #endif
  1278. #define GGML_F32x8_ADD _mm256_add_ps
  1279. #define GGML_F32x8_MUL _mm256_mul_ps
  1280. #define GGML_F32x8_REDUCE(res, x) \
  1281. { \
  1282. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1283. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1284. } \
  1285. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1286. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1287. } \
  1288. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1289. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1290. } \
  1291. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1292. _mm256_extractf128_ps(x[0], 1)); \
  1293. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1294. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1295. }
  1296. // TODO: is this optimal ?
  1297. #define GGML_F32_VEC GGML_F32x8
  1298. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1299. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1300. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1301. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1302. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1303. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1304. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1305. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1306. // F16 AVX
  1307. #define GGML_F16_STEP 32
  1308. #define GGML_F16_EPR 8
  1309. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1310. #define GGML_F32Cx8 __m256
  1311. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1312. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1313. #if defined(__F16C__)
  1314. // the _mm256_cvt intrinsics require F16C
  1315. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1316. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1317. #else
  1318. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1319. float tmp[8];
  1320. for (int i = 0; i < 8; i++)
  1321. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1322. return _mm256_loadu_ps(tmp);
  1323. }
  1324. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1325. float arr[8];
  1326. _mm256_storeu_ps(arr, y);
  1327. for (int i = 0; i < 8; i++)
  1328. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1329. }
  1330. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1331. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1332. #endif
  1333. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1334. #define GGML_F32Cx8_ADD _mm256_add_ps
  1335. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1336. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1337. #define GGML_F16_VEC GGML_F32Cx8
  1338. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1339. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1340. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1341. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1342. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1343. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1344. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1345. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1346. #elif defined(__POWER9_VECTOR__)
  1347. #define GGML_SIMD
  1348. // F32 POWER9
  1349. #define GGML_F32_STEP 32
  1350. #define GGML_F32_EPR 4
  1351. #define GGML_F32x4 vector float
  1352. #define GGML_F32x4_ZERO 0.0f
  1353. #define GGML_F32x4_SET1 vec_splats
  1354. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1355. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1356. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1357. #define GGML_F32x4_ADD vec_add
  1358. #define GGML_F32x4_MUL vec_mul
  1359. #define GGML_F32x4_REDUCE(res, x) \
  1360. { \
  1361. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1362. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1363. } \
  1364. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1365. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1366. } \
  1367. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1368. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1369. } \
  1370. res = vec_extract(x[0], 0) + \
  1371. vec_extract(x[0], 1) + \
  1372. vec_extract(x[0], 2) + \
  1373. vec_extract(x[0], 3); \
  1374. }
  1375. #define GGML_F32_VEC GGML_F32x4
  1376. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1377. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1378. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1379. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1380. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1381. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1382. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1383. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1384. // F16 POWER9
  1385. #define GGML_F16_STEP GGML_F32_STEP
  1386. #define GGML_F16_EPR GGML_F32_EPR
  1387. #define GGML_F16_VEC GGML_F32x4
  1388. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1389. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1390. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1391. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1392. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1393. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1394. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1395. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1396. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1397. #define GGML_F16_VEC_STORE(p, r, i) \
  1398. if (i & 0x1) \
  1399. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1400. r[i - GGML_ENDIAN_BYTE(0)]), \
  1401. 0, p - GGML_F16_EPR)
  1402. #elif defined(__wasm_simd128__)
  1403. #define GGML_SIMD
  1404. // F32 WASM
  1405. #define GGML_F32_STEP 16
  1406. #define GGML_F32_EPR 4
  1407. #define GGML_F32x4 v128_t
  1408. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1409. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1410. #define GGML_F32x4_LOAD wasm_v128_load
  1411. #define GGML_F32x4_STORE wasm_v128_store
  1412. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1413. #define GGML_F32x4_ADD wasm_f32x4_add
  1414. #define GGML_F32x4_MUL wasm_f32x4_mul
  1415. #define GGML_F32x4_REDUCE(res, x) \
  1416. { \
  1417. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1418. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1419. } \
  1420. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1421. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1422. } \
  1423. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1424. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1425. } \
  1426. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1427. wasm_f32x4_extract_lane(x[0], 1) + \
  1428. wasm_f32x4_extract_lane(x[0], 2) + \
  1429. wasm_f32x4_extract_lane(x[0], 3); \
  1430. }
  1431. #define GGML_F32_VEC GGML_F32x4
  1432. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1433. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1434. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1435. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1436. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1437. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1438. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1439. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1440. // F16 WASM
  1441. #define GGML_F16_STEP 16
  1442. #define GGML_F16_EPR 4
  1443. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1444. float tmp[4];
  1445. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1446. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1447. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1448. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1449. return wasm_v128_load(tmp);
  1450. }
  1451. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1452. float tmp[4];
  1453. wasm_v128_store(tmp, x);
  1454. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1455. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1456. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1457. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1458. }
  1459. #define GGML_F16x4 v128_t
  1460. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1461. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1462. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1463. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1464. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1465. #define GGML_F16x4_ADD wasm_f32x4_add
  1466. #define GGML_F16x4_MUL wasm_f32x4_mul
  1467. #define GGML_F16x4_REDUCE(res, x) \
  1468. { \
  1469. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1470. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1471. } \
  1472. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1473. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1474. } \
  1475. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1476. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1477. } \
  1478. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1479. wasm_f32x4_extract_lane(x[0], 1) + \
  1480. wasm_f32x4_extract_lane(x[0], 2) + \
  1481. wasm_f32x4_extract_lane(x[0], 3); \
  1482. }
  1483. #define GGML_F16_VEC GGML_F16x4
  1484. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1485. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1486. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1487. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1488. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1489. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1490. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1491. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1492. #elif defined(__SSE3__)
  1493. #define GGML_SIMD
  1494. // F32 SSE
  1495. #define GGML_F32_STEP 32
  1496. #define GGML_F32_EPR 4
  1497. #define GGML_F32x4 __m128
  1498. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1499. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1500. #define GGML_F32x4_LOAD _mm_loadu_ps
  1501. #define GGML_F32x4_STORE _mm_storeu_ps
  1502. #if defined(__FMA__)
  1503. // TODO: Does this work?
  1504. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1505. #else
  1506. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1507. #endif
  1508. #define GGML_F32x4_ADD _mm_add_ps
  1509. #define GGML_F32x4_MUL _mm_mul_ps
  1510. #define GGML_F32x4_REDUCE(res, x) \
  1511. { \
  1512. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1513. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1514. } \
  1515. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1516. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1517. } \
  1518. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1519. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1520. } \
  1521. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1522. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1523. }
  1524. // TODO: is this optimal ?
  1525. #define GGML_F32_VEC GGML_F32x4
  1526. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1527. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1528. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1529. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1530. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1531. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1532. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1533. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1534. // F16 SSE
  1535. #define GGML_F16_STEP 32
  1536. #define GGML_F16_EPR 4
  1537. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1538. float tmp[4];
  1539. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1540. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1541. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1542. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1543. return _mm_loadu_ps(tmp);
  1544. }
  1545. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1546. float arr[4];
  1547. _mm_storeu_ps(arr, y);
  1548. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1549. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1550. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1551. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1552. }
  1553. #define GGML_F32Cx4 __m128
  1554. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1555. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1556. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1557. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1558. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1559. #define GGML_F32Cx4_ADD _mm_add_ps
  1560. #define GGML_F32Cx4_MUL _mm_mul_ps
  1561. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1562. #define GGML_F16_VEC GGML_F32Cx4
  1563. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1564. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1565. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1566. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1567. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1568. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1569. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1570. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1571. #endif
  1572. // GGML_F32_ARR / GGML_F16_ARR
  1573. // number of registers to use per step
  1574. #ifdef GGML_SIMD
  1575. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1576. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1577. #endif
  1578. //
  1579. // fundamental operations
  1580. //
  1581. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1582. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1583. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1584. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1585. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1586. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1587. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1588. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1589. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1590. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1591. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1592. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1593. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1594. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1595. #ifdef GGML_SIMD
  1596. float sumf = 0.0f;
  1597. const int np = (n & ~(GGML_F32_STEP - 1));
  1598. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1599. GGML_F32_VEC ax[GGML_F32_ARR];
  1600. GGML_F32_VEC ay[GGML_F32_ARR];
  1601. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1602. for (int j = 0; j < GGML_F32_ARR; j++) {
  1603. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1604. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1605. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1606. }
  1607. }
  1608. // reduce sum0..sum3 to sum0
  1609. GGML_F32_VEC_REDUCE(sumf, sum);
  1610. // leftovers
  1611. for (int i = np; i < n; ++i) {
  1612. sumf += x[i]*y[i];
  1613. }
  1614. #else
  1615. // scalar
  1616. ggml_float sumf = 0.0;
  1617. for (int i = 0; i < n; ++i) {
  1618. sumf += (ggml_float)(x[i]*y[i]);
  1619. }
  1620. #endif
  1621. *s = sumf;
  1622. }
  1623. #if __AVX512F__ && QK == 32
  1624. static inline __m512 dot_q4_0_oneblock_avx512(
  1625. __m512 acc,
  1626. const block_q4_0 * restrict x,
  1627. const block_q4_0 * restrict y,
  1628. int i
  1629. ) {
  1630. // Compute combined scale for the block
  1631. __m512 d = _mm512_set1_ps( x[i].d * y[i].d );
  1632. __m256i bx = bytesFromNibbles( x[i].qs );
  1633. __m256i by = bytesFromNibbles( y[i].qs );
  1634. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1635. const __m256i off = _mm256_set1_epi8( 8 );
  1636. bx = _mm256_sub_epi8( bx, off );
  1637. by = _mm256_sub_epi8( by, off );
  1638. // Sign-extend 16 signed bytes into int16_t
  1639. __m512i x32 = _mm512_cvtepi8_epi16( bx );
  1640. __m512i y32 = _mm512_cvtepi8_epi16( by );
  1641. // Compute products of int16_t integers, add pairwise
  1642. __m512i i64 = _mm512_madd_epi16( x32, y32 );
  1643. // Convert int32_t to float
  1644. __m512 p = _mm512_cvtepi32_ps( i64 );
  1645. // Apply the scale, and accumulate
  1646. return _mm512_fmadd_ps( d, p, acc );
  1647. }
  1648. #endif
  1649. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1650. ggml_float sumf = 0.0;
  1651. #if defined(GGML_SIMD)
  1652. const int np = (n & ~(GGML_F16_STEP - 1));
  1653. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1654. GGML_F16_VEC ax[GGML_F16_ARR];
  1655. GGML_F16_VEC ay[GGML_F16_ARR];
  1656. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1657. for (int j = 0; j < GGML_F16_ARR; j++) {
  1658. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1659. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1660. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1661. }
  1662. }
  1663. // reduce sum0..sum3 to sum0
  1664. GGML_F16_VEC_REDUCE(sumf, sum);
  1665. // leftovers
  1666. for (int i = np; i < n; ++i) {
  1667. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1668. }
  1669. #else
  1670. for (int i = 0; i < n; ++i) {
  1671. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1672. }
  1673. #endif
  1674. *s = sumf;
  1675. }
  1676. static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1677. const int nb = n / QK;
  1678. assert(n % QK == 0);
  1679. assert(nb % 2 == 0);
  1680. const block_q4_0 * restrict x = vx;
  1681. const block_q4_0 * restrict y = vy;
  1682. float sumf = 0.0;
  1683. #if defined(__ARM_NEON)
  1684. float sum0 = 0.0f;
  1685. float sum1 = 0.0f;
  1686. for (int i = 0; i < nb; i += 2) {
  1687. const block_q4_0 * restrict x0 = &x[i + 0];
  1688. const block_q4_0 * restrict y0 = &y[i + 0];
  1689. const block_q4_0 * restrict x1 = &x[i + 1];
  1690. const block_q4_0 * restrict y1 = &y[i + 1];
  1691. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1692. const int8x16_t s8b = vdupq_n_s8(0x8);
  1693. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1694. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1695. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1696. const uint8x16_t v1_1 = vld1q_u8(y1->qs);
  1697. // 4-bit -> 8-bit
  1698. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
  1699. const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b));
  1700. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1701. const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4));
  1702. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
  1703. const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b));
  1704. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1705. const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4));
  1706. // sub 8
  1707. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1708. const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b);
  1709. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1710. const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b);
  1711. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1712. const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b);
  1713. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1714. const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b);
  1715. #if defined(__ARM_FEATURE_DOTPROD)
  1716. // dot product into int32x4_t
  1717. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  1718. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  1719. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  1720. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  1721. sum0 += x0->d*y0->d*vaddvq_s32(p_0);
  1722. sum1 += x1->d*y1->d*vaddvq_s32(p_1);
  1723. #else
  1724. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1725. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1726. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1727. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1728. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1729. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1730. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1731. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1732. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  1733. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  1734. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  1735. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  1736. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  1737. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  1738. sum0 += x0->d*y0->d*vaddvq_s16(p_0);
  1739. sum1 += x1->d*y1->d*vaddvq_s16(p_1);
  1740. #endif
  1741. }
  1742. sumf = sum0 + sum1;
  1743. #elif defined(__AVX512F__)
  1744. // Initialize accumulator with zeros
  1745. __m512 acc0 = _mm512_setzero_ps();
  1746. __m512 acc1 = _mm512_setzero_ps();
  1747. const int superblock_size = 8;
  1748. const int superblock_count = nb / superblock_size;
  1749. for (int superblock_ix = 0; superblock_ix < superblock_count; superblock_ix += 1) {
  1750. int i = superblock_ix * superblock_size;
  1751. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+0 );
  1752. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+1 );
  1753. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+2 );
  1754. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+3 );
  1755. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+4 );
  1756. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+5 );
  1757. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+6 );
  1758. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+7 );
  1759. }
  1760. // Remainders
  1761. for (int i = superblock_count * superblock_size; i < nb; ++i) {
  1762. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i );
  1763. }
  1764. // Horizontal sum of all lanes of the accumulator
  1765. sumf = _mm512_reduce_add_ps( acc0 ) + _mm512_reduce_add_ps( acc1 );
  1766. #elif defined(__AVX2__)
  1767. // Initialize accumulator with zeros
  1768. __m256 acc = _mm256_setzero_ps();
  1769. /* Prepare the constants we will need during execution */
  1770. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  1771. const __m256i offset_8 = _mm256_set1_epi16( 8 );
  1772. #define UNROLL_COUNT 8
  1773. // make sure we only unroll multiples of the block count
  1774. assert(nb % UNROLL_COUNT == 0);
  1775. // Main loop
  1776. for (int i = 0; i < nb; i+=UNROLL_COUNT) {
  1777. // This loop will be unrolled by the compiler
  1778. for (int u=0;u<UNROLL_COUNT;u++) {
  1779. /* Compute combined scale for the block */
  1780. const __m256 scale = _mm256_mul_ps(
  1781. _mm256_broadcast_ss( &x[i+u].d ),
  1782. _mm256_broadcast_ss( &y[i+u].d ) );
  1783. /* get input from x
  1784. Input: 32 Nibbles (16 bytes) at *x[i+u]
  1785. Output: 2 vectors with 16 values of type int16_t (x_high_q, x_low_q) */
  1786. /* Load 16 bytes from memory */
  1787. const __m128i tmp_x = _mm_loadu_si128( ( const __m128i* ) x[i+u].qs);
  1788. /* Expand bytes into uint16_t values */
  1789. const __m256i bytes_x = _mm256_cvtepu8_epi16(tmp_x);
  1790. /* Unpack values into individual bytes */
  1791. __m256i x_low_q = _mm256_and_si256( lowMask, bytes_x );
  1792. const __m256i pre_shift_x_high_q = _mm256_andnot_si256( lowMask, bytes_x );
  1793. __m256i x_high_q = _mm256_srli_epi16( pre_shift_x_high_q, 4 );
  1794. /* Now we have two vectors with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. */
  1795. x_high_q = _mm256_sub_epi16( x_high_q, offset_8 );
  1796. x_low_q = _mm256_sub_epi16( x_low_q, offset_8 );
  1797. /* get input from y
  1798. Input: 32 Nibbles (16 bytes) at *y[i+u]
  1799. Output: 2 vectors with 16 values of type int16_t (y_high_q, y_low_q) */
  1800. /* Load 16 bytes from memory */
  1801. const __m128i tmp_y = _mm_loadu_si128( (const __m128i* ) y[i+u].qs);
  1802. /* Expand bytes into uint16_t values */
  1803. const __m256i bytes_y = _mm256_cvtepu8_epi16(tmp_y);
  1804. /* Unpack values into individual bytes */
  1805. const __m256i pre_shift_y_high_q = _mm256_andnot_si256( lowMask, bytes_y );
  1806. __m256i y_high_q = _mm256_srli_epi16( pre_shift_y_high_q, 4 );
  1807. __m256i y_low_q = _mm256_and_si256( lowMask, bytes_y );
  1808. /* Now we have two vectors with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. */
  1809. y_high_q = _mm256_sub_epi16( y_high_q, offset_8 );
  1810. y_low_q = _mm256_sub_epi16( y_low_q, offset_8 );
  1811. /* Compute products of int16_t integers, add pairwise, store as int32_t */
  1812. __m256i xy_high_q = _mm256_madd_epi16( x_high_q, y_high_q );
  1813. __m256i xy_low_q = _mm256_madd_epi16( x_low_q, y_low_q );
  1814. /* Accumulate the products of int32_t integers -> we now have a vector of 8 int_32t */
  1815. __m256i xy_q = _mm256_add_epi32( xy_high_q, xy_low_q );
  1816. /* Convert to vectore of 8 int32_t to 8 floats */
  1817. __m256 q = _mm256_cvtepi32_ps( xy_q );
  1818. /* Multiply q with scale and accumulate */
  1819. acc = _mm256_fmadd_ps( scale, q, acc );
  1820. }
  1821. }
  1822. // Return horizontal sum of the acc vector
  1823. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1824. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1825. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1826. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1827. sumf = _mm_cvtss_f32( res );
  1828. #elif defined(__AVX__)
  1829. // Initialize accumulator with zeros
  1830. __m256 acc = _mm256_setzero_ps();
  1831. // Main loop
  1832. for (int i = 0; i < nb; ++i) {
  1833. // Compute combined scale for the block
  1834. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1835. __m128i i32[2];
  1836. for (int j = 0; j < 2; ++j) {
  1837. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  1838. __m128i bx = bytesFromNibbles( x[i].qs + 8*j );
  1839. __m128i by = bytesFromNibbles( y[i].qs + 8*j );
  1840. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1841. const __m128i off = _mm_set1_epi8( 8 );
  1842. bx = _mm_sub_epi8( bx, off );
  1843. by = _mm_sub_epi8( by, off );
  1844. // Get absolute values of x vectors
  1845. const __m128i ax = _mm_sign_epi8(bx, bx);
  1846. // Sign the values of the y vectors
  1847. const __m128i sy = _mm_sign_epi8(by, bx);
  1848. // Perform multiplication and create 16-bit values
  1849. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  1850. const __m128i ones = _mm_set1_epi16(1);
  1851. i32[j] = _mm_madd_epi16(ones, dot);
  1852. }
  1853. // Convert int32_t to float
  1854. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  1855. // Apply the scale, and accumulate
  1856. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1857. }
  1858. // Return horizontal sum of the acc vector
  1859. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1860. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1861. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1862. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1863. sumf = _mm_cvtss_f32( res );
  1864. #elif defined(__wasm_simd128__)
  1865. // wasm simd
  1866. float sum0 = 0.0f;
  1867. float sum1 = 0.0f;
  1868. for (int i = 0; i < nb; i += 2) {
  1869. const block_q4_0 * restrict x0 = &x[i + 0];
  1870. const block_q4_0 * restrict y0 = &y[i + 0];
  1871. const block_q4_0 * restrict x1 = &x[i + 1];
  1872. const block_q4_0 * restrict y1 = &y[i + 1];
  1873. const v128_t m4b = wasm_u8x16_splat(0xf);
  1874. const v128_t s8b = wasm_i8x16_splat(0x8);
  1875. const v128_t v0_0 = wasm_v128_load(x0->qs);
  1876. const v128_t v0_1 = wasm_v128_load(y0->qs);
  1877. const v128_t v1_0 = wasm_v128_load(x1->qs);
  1878. const v128_t v1_1 = wasm_v128_load(y1->qs);
  1879. // 4-bit -> 8-bit
  1880. const v128_t v0_0l = wasm_v128_and(v0_0, m4b);
  1881. const v128_t v1_0l = wasm_v128_and(v1_0, m4b);
  1882. const v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
  1883. const v128_t v1_0h = wasm_u8x16_shr(v1_0, 4);
  1884. const v128_t v0_1l = wasm_v128_and(v0_1, m4b);
  1885. const v128_t v1_1l = wasm_v128_and(v1_1, m4b);
  1886. const v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
  1887. const v128_t v1_1h = wasm_u8x16_shr(v1_1, 4);
  1888. // sub 8
  1889. const v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
  1890. const v128_t v1_0ls = wasm_i8x16_sub(v1_0l, s8b);
  1891. const v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);
  1892. const v128_t v1_0hs = wasm_i8x16_sub(v1_0h, s8b);
  1893. const v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
  1894. const v128_t v1_1ls = wasm_i8x16_sub(v1_1l, s8b);
  1895. const v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);
  1896. const v128_t v1_1hs = wasm_i8x16_sub(v1_1h, s8b);
  1897. // dot product into int16x8_t
  1898. const v128_t pl0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0ls), wasm_i16x8_extend_low_i8x16(v1_0ls));
  1899. const v128_t pl0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0ls), wasm_i16x8_extend_high_i8x16(v1_0ls));
  1900. const v128_t ph0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0hs), wasm_i16x8_extend_low_i8x16(v1_0hs));
  1901. const v128_t ph0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0hs), wasm_i16x8_extend_high_i8x16(v1_0hs));
  1902. const v128_t pl1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1ls), wasm_i16x8_extend_low_i8x16(v1_1ls));
  1903. const v128_t pl1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1ls), wasm_i16x8_extend_high_i8x16(v1_1ls));
  1904. const v128_t ph1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1hs), wasm_i16x8_extend_low_i8x16(v1_1hs));
  1905. const v128_t ph1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1hs), wasm_i16x8_extend_high_i8x16(v1_1hs));
  1906. const v128_t pl_0 = wasm_i16x8_add(pl0l, pl0h);
  1907. const v128_t ph_0 = wasm_i16x8_add(ph0l, ph0h);
  1908. const v128_t pl_1 = wasm_i16x8_add(pl1l, pl1h);
  1909. const v128_t ph_1 = wasm_i16x8_add(ph1l, ph1h);
  1910. const v128_t p_0 = wasm_i16x8_add(pl_0, ph_0);
  1911. const v128_t p_1 = wasm_i16x8_add(pl_1, ph_1);
  1912. sum0 += x0->d * y0->d * (
  1913. wasm_i16x8_extract_lane(p_0, 0) + wasm_i16x8_extract_lane(p_0, 1) +
  1914. wasm_i16x8_extract_lane(p_0, 2) + wasm_i16x8_extract_lane(p_0, 3) +
  1915. wasm_i16x8_extract_lane(p_0, 4) + wasm_i16x8_extract_lane(p_0, 5) +
  1916. wasm_i16x8_extract_lane(p_0, 6) + wasm_i16x8_extract_lane(p_0, 7));
  1917. sum1 += x1->d * y1->d * (
  1918. wasm_i16x8_extract_lane(p_1, 0) + wasm_i16x8_extract_lane(p_1, 1) +
  1919. wasm_i16x8_extract_lane(p_1, 2) + wasm_i16x8_extract_lane(p_1, 3) +
  1920. wasm_i16x8_extract_lane(p_1, 4) + wasm_i16x8_extract_lane(p_1, 5) +
  1921. wasm_i16x8_extract_lane(p_1, 6) + wasm_i16x8_extract_lane(p_1, 7));
  1922. }
  1923. sumf = sum0 + sum1;
  1924. #else
  1925. // scalar
  1926. for (int i = 0; i < nb; i++) {
  1927. const float d0 = x[i].d;
  1928. const float d1 = y[i].d;
  1929. const uint8_t * restrict p0 = x[i].qs;
  1930. const uint8_t * restrict p1 = y[i].qs;
  1931. int sumi = 0;
  1932. for (int j = 0; j < QK/2; j++) {
  1933. const uint8_t v0 = p0[j];
  1934. const uint8_t v1 = p1[j];
  1935. const int8_t i0 = (int8_t) (v0 & 0xf) - 8;
  1936. const int8_t i1 = (int8_t) (v0 >> 4) - 8;
  1937. const int8_t i2 = (int8_t) (v1 & 0xf) - 8;
  1938. const int8_t i3 = (int8_t) (v1 >> 4) - 8;
  1939. sumi += i0*i2 + i1*i3;
  1940. }
  1941. sumf += d0 * d1 * sumi;
  1942. }
  1943. #endif
  1944. *s = sumf;
  1945. }
  1946. static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1947. const int nb = n / QK;
  1948. const block_q4_1 * restrict x = vx;
  1949. const block_q4_1 * restrict y = vy;
  1950. float sumf = 0.0;
  1951. #if defined(__AVX2__)
  1952. // Initialize accumulator with zeros
  1953. __m256 acc = _mm256_setzero_ps();
  1954. // Accumulator for constant offsets
  1955. float acc_offset = 0.0f;
  1956. // Main loop
  1957. for (int i = 0; i < nb; ++i) {
  1958. const float * d0 = &x[i].d;
  1959. const float * d1 = &y[i].d;
  1960. const float * m0 = &x[i].m;
  1961. const float * m1 = &y[i].m;
  1962. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1963. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1964. const __m256 m0v = _mm256_broadcast_ss( m0 );
  1965. const __m256 m1v = _mm256_broadcast_ss( m1 );
  1966. // Compute combined scale for the block
  1967. const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
  1968. // Compute cross scales for the block
  1969. const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
  1970. const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
  1971. const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0xAA /* 0b10101010 */ );
  1972. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1973. __m256i bx = bytesFromNibbles( x[i].qs );
  1974. __m256i by = bytesFromNibbles( y[i].qs );
  1975. // Now we have a vector with bytes in [ 0 .. 15 ] interval.
  1976. // Sign-extend first 16 signed bytes into int16_t
  1977. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1978. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1979. // Compute products of int16_t integers, add pairwise
  1980. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1981. // Sign-extend last 16 signed bytes into int16_t vectors
  1982. __m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1983. __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1984. // Accumulate products of int16_t integers
  1985. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
  1986. // compute sums of unsigned bytes in bx, by in blocks of 8.
  1987. // This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
  1988. // which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
  1989. // so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
  1990. __m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
  1991. __m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
  1992. __m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
  1993. __m256 sums = _mm256_cvtepi32_ps( sumsi );
  1994. // Convert int32_t to float
  1995. __m256 p = _mm256_cvtepi32_ps( i32 );
  1996. // Apply the scale, and accumulate
  1997. // acc += d0*d1*x*y + d0*m1*x + d1*m0*y
  1998. acc = _mm256_fmadd_ps( scale_01, p, acc );
  1999. acc = _mm256_fmadd_ps( cross_scales, sums, acc );
  2000. // acc_offset += m0*m1 (for each entry in the block)
  2001. acc_offset += (*m0)*(*m1);
  2002. }
  2003. // Return horizontal sum of the acc vector
  2004. __m128 res = _mm256_extractf128_ps( acc, 1 );
  2005. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  2006. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  2007. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  2008. sumf = _mm_cvtss_f32( res ) + acc_offset * QK;
  2009. #elif defined(__ARM_NEON)
  2010. float sum00 = 0.0f;
  2011. float sum01 = 0.0f;
  2012. float sum10 = 0.0f;
  2013. float sum11 = 0.0f;
  2014. for (int i = 0; i < nb; i += 2) {
  2015. const block_q4_1 * restrict x0 = &x[i + 0];
  2016. const block_q4_1 * restrict y0 = &y[i + 0];
  2017. const block_q4_1 * restrict x1 = &x[i + 1];
  2018. const block_q4_1 * restrict y1 = &y[i + 1];
  2019. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2020. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2021. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  2022. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2023. const uint8x16_t v1_1 = vld1q_u8(y1->qs);
  2024. // 4-bit -> 8-bit
  2025. const uint8x16_t v0_0l = vandq_u8(v0_0, m4b);
  2026. const uint8x16_t v1_0l = vandq_u8(v1_0, m4b);
  2027. const uint8x16_t v0_0h = vshrq_n_u8(v0_0, 4);
  2028. const uint8x16_t v1_0h = vshrq_n_u8(v1_0, 4);
  2029. const uint8x16_t v0_1l = vandq_u8(v0_1, m4b);
  2030. const uint8x16_t v1_1l = vandq_u8(v1_1, m4b);
  2031. const uint8x16_t v0_1h = vshrq_n_u8(v0_1, 4);
  2032. const uint8x16_t v1_1h = vshrq_n_u8(v1_1, 4);
  2033. sum00 += x0->m*y0->m;
  2034. sum01 += y0->m*x0->d*((uint16_t)vaddvq_u8(v0_0l) + (uint16_t)vaddvq_u8(v0_0h));
  2035. sum10 += x0->m*y0->d*((uint16_t)vaddvq_u8(v1_0l) + (uint16_t)vaddvq_u8(v1_0h));
  2036. sum00 += x1->m*y1->m;
  2037. sum01 += y1->m*x1->d*((uint16_t)vaddvq_u8(v0_1l) + (uint16_t)vaddvq_u8(v0_1h));
  2038. sum10 += x1->m*y1->d*((uint16_t)vaddvq_u8(v1_1l) + (uint16_t)vaddvq_u8(v1_1h));
  2039. #if defined(__ARM_FEATURE_DOTPROD)
  2040. // dot product into int32x4_t
  2041. uint32x4_t p_0 = vdotq_u32(vdupq_n_u32(0), v0_0l, v1_0l);
  2042. uint32x4_t p_1 = vdotq_u32(vdupq_n_u32(0), v0_1l, v1_1l);
  2043. p_0 = vdotq_u32(p_0, v0_0h, v1_0h);
  2044. p_1 = vdotq_u32(p_1, v0_1h, v1_1h);
  2045. sum11 += x0->d*y0->d*vaddvq_u32(p_0);
  2046. sum11 += x1->d*y1->d*vaddvq_u32(p_1);
  2047. #else
  2048. const uint16x8_t pl0l = vmull_u8(vget_low_u8 (v0_0l), vget_low_u8 (v1_0l));
  2049. const uint16x8_t pl0h = vmull_u8(vget_high_u8(v0_0l), vget_high_u8(v1_0l));
  2050. const uint16x8_t ph0l = vmull_u8(vget_low_u8 (v0_0h), vget_low_u8 (v1_0h));
  2051. const uint16x8_t ph0h = vmull_u8(vget_high_u8(v0_0h), vget_high_u8(v1_0h));
  2052. const uint16x8_t pl1l = vmull_u8(vget_low_u8 (v0_1l), vget_low_u8 (v1_1l));
  2053. const uint16x8_t pl1h = vmull_u8(vget_high_u8(v0_1l), vget_high_u8(v1_1l));
  2054. const uint16x8_t ph1l = vmull_u8(vget_low_u8 (v0_1h), vget_low_u8 (v1_1h));
  2055. const uint16x8_t ph1h = vmull_u8(vget_high_u8(v0_1h), vget_high_u8(v1_1h));
  2056. const uint16x8_t pl_0 = vaddq_u16(pl0l, pl0h);
  2057. const uint16x8_t ph_0 = vaddq_u16(ph0l, ph0h);
  2058. const uint16x8_t pl_1 = vaddq_u16(pl1l, pl1h);
  2059. const uint16x8_t ph_1 = vaddq_u16(ph1l, ph1h);
  2060. const uint16x8_t p_0 = vaddq_u16(pl_0, ph_0);
  2061. const uint16x8_t p_1 = vaddq_u16(pl_1, ph_1);
  2062. sum11 += x0->d*y0->d*vaddvq_u16(p_0);
  2063. sum11 += x1->d*y1->d*vaddvq_u16(p_1);
  2064. #endif
  2065. }
  2066. sumf = QK*sum00 + sum01 + sum10 + sum11;
  2067. #else
  2068. // scalar
  2069. for (int i = 0; i < nb; i++) {
  2070. const float d0 = x[i].d;
  2071. const float d1 = y[i].d;
  2072. const float m0 = x[i].m;
  2073. const float m1 = y[i].m;
  2074. const uint8_t * restrict p0 = x[i].qs;
  2075. const uint8_t * restrict p1 = y[i].qs;
  2076. for (int j = 0; j < QK/2; j++) {
  2077. const uint8_t v0 = p0[j];
  2078. const uint8_t v1 = p1[j];
  2079. const float f0 = d0*(v0 & 0xf) + m0;
  2080. const float f1 = d0*(v0 >> 4) + m0;
  2081. const float f2 = d1*(v1 & 0xf) + m1;
  2082. const float f3 = d1*(v1 >> 4) + m1;
  2083. sumf += f0*f2 + f1*f3;
  2084. }
  2085. }
  2086. #endif
  2087. *s = sumf;
  2088. }
  2089. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2090. const int nb = n / QK;
  2091. assert(n % QK == 0);
  2092. assert(nb % 2 == 0);
  2093. const block_q4_0 * restrict x = vx;
  2094. const block_q8_0 * restrict y = vy;
  2095. float sumf = 0.0;
  2096. #if defined(__ARM_NEON)
  2097. float sum0 = 0.0f;
  2098. float sum1 = 0.0f;
  2099. for (int i = 0; i < nb; i += 2) {
  2100. const block_q4_0 * restrict x0 = &x[i + 0];
  2101. const block_q4_0 * restrict x1 = &x[i + 1];
  2102. const block_q8_0 * restrict y0 = &y[i + 0];
  2103. const block_q8_0 * restrict y1 = &y[i + 1];
  2104. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2105. const int8x16_t s8b = vdupq_n_s8(0x8);
  2106. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2107. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2108. // 4-bit -> 8-bit
  2109. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2110. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2111. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2112. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2113. // sub 8
  2114. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2115. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2116. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2117. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2118. // load y
  2119. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2120. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2121. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2122. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2123. // interleave
  2124. const int8x16_t v1_0ls = vuzp1q_s8(v1_0l, v1_0h);
  2125. const int8x16_t v1_0hs = vuzp2q_s8(v1_0l, v1_0h);
  2126. const int8x16_t v1_1ls = vuzp1q_s8(v1_1l, v1_1h);
  2127. const int8x16_t v1_1hs = vuzp2q_s8(v1_1l, v1_1h);
  2128. #if defined(__ARM_FEATURE_DOTPROD)
  2129. // dot product into int32x4_t
  2130. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  2131. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  2132. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  2133. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  2134. sum0 += x0->d*y0->d*vaddvq_s32(p_0);
  2135. sum1 += x1->d*y1->d*vaddvq_s32(p_1);
  2136. #else
  2137. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  2138. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  2139. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  2140. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  2141. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  2142. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  2143. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  2144. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  2145. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  2146. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  2147. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  2148. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  2149. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  2150. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  2151. sum0 += x0->d*y0->d*vaddvq_s16(p_0);
  2152. sum1 += x1->d*y1->d*vaddvq_s16(p_1);
  2153. #endif
  2154. }
  2155. sumf = sum0 + sum1;
  2156. #elif defined(__AVX2__)
  2157. // Initialize accumulator with zeros
  2158. __m256 acc = _mm256_setzero_ps();
  2159. // Main loop
  2160. for (int i = 0; i < nb; ++i) {
  2161. /* Compute combined scale for the block */
  2162. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2163. __m256i bx = bytesFromNibbles(x[i].qs);
  2164. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2165. const __m256i off = _mm256_set1_epi8( 8 );
  2166. bx = _mm256_sub_epi8( bx, off );
  2167. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2168. // Get absolute values of x vectors
  2169. const __m256i ax = _mm256_sign_epi8(bx, bx);
  2170. // Sign the values of the y vectors
  2171. const __m256i sy = _mm256_sign_epi8(by, bx);
  2172. // Perform multiplication and create 16-bit values
  2173. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  2174. const __m256i ones = _mm256_set1_epi16(1);
  2175. __m256i xy_q = _mm256_madd_epi16(ones, dot);
  2176. /* Convert to vectore of 8 int32_t to 8 floats */
  2177. __m256 q = _mm256_cvtepi32_ps( xy_q );
  2178. /* Multiply q with scale and accumulate */
  2179. acc = _mm256_fmadd_ps( d, q, acc );
  2180. }
  2181. // Return horizontal sum of the acc vector
  2182. __m128 res = _mm256_extractf128_ps( acc, 1 );
  2183. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  2184. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  2185. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  2186. sumf = _mm_cvtss_f32( res );
  2187. #elif defined(__AVX__)
  2188. // Initialize accumulator with zeros
  2189. __m256 acc = _mm256_setzero_ps();
  2190. // Main loop
  2191. for (int i = 0; i < nb; ++i) {
  2192. // Compute combined scale for the block
  2193. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2194. __m128i i32[2];
  2195. for (int j = 0; j < 2; ++j) {
  2196. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  2197. __m128i bx = bytesFromNibbles( x[i].qs + 8*j );
  2198. __m128i by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16*j));
  2199. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2200. const __m128i off = _mm_set1_epi8( 8 );
  2201. bx = _mm_sub_epi8( bx, off );
  2202. // Get absolute values of x vectors
  2203. const __m128i ax = _mm_sign_epi8(bx, bx);
  2204. // Sign the values of the y vectors
  2205. const __m128i sy = _mm_sign_epi8(by, bx);
  2206. // Perform multiplication and create 16-bit values
  2207. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  2208. const __m128i ones = _mm_set1_epi16(1);
  2209. i32[j] = _mm_madd_epi16(ones, dot);
  2210. }
  2211. // Convert int32_t to float
  2212. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  2213. // Apply the scale, and accumulate
  2214. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2215. }
  2216. // Return horizontal sum of the acc vector
  2217. __m128 res = _mm256_extractf128_ps( acc, 1 );
  2218. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  2219. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  2220. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  2221. sumf = _mm_cvtss_f32( res );
  2222. #else
  2223. // scalar
  2224. for (int i = 0; i < nb; i++) {
  2225. const float d0 = x[i].d;
  2226. const float d1 = y[i].d;
  2227. const uint8_t * restrict p0 = x[i].qs;
  2228. const int8_t * restrict p1 = y[i].qs;
  2229. int sumi = 0;
  2230. for (int j = 0; j < QK/2; j++) {
  2231. const uint8_t v0 = p0[j];
  2232. const int i0 = (int8_t) (v0 & 0xf) - 8;
  2233. const int i1 = (int8_t) (v0 >> 4) - 8;
  2234. const int i2 = p1[2*j + 0];
  2235. const int i3 = p1[2*j + 1];
  2236. sumi += i0*i2 + i1*i3;
  2237. }
  2238. sumf += d0*d1*sumi;
  2239. }
  2240. #endif
  2241. *s = sumf;
  2242. }
  2243. // compute GGML_VEC_DOT_UNROLL dot products at once
  2244. // xs - x row stride in bytes
  2245. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2246. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2247. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2248. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2249. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2250. }
  2251. #if defined(GGML_SIMD)
  2252. const int np = (n & ~(GGML_F16_STEP - 1));
  2253. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2254. GGML_F16_VEC ax[GGML_F16_ARR];
  2255. GGML_F16_VEC ay[GGML_F16_ARR];
  2256. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2257. for (int j = 0; j < GGML_F16_ARR; j++) {
  2258. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2259. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2260. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2261. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2262. }
  2263. }
  2264. }
  2265. // reduce sum0..sum3 to sum0
  2266. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2267. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2268. }
  2269. // leftovers
  2270. for (int i = np; i < n; ++i) {
  2271. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2272. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2273. }
  2274. }
  2275. #else
  2276. for (int i = 0; i < n; ++i) {
  2277. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2278. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2279. }
  2280. }
  2281. #endif
  2282. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2283. s[i] = sumf[i];
  2284. }
  2285. }
  2286. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2287. #if defined(GGML_SIMD)
  2288. const int np = (n & ~(GGML_F32_STEP - 1));
  2289. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2290. GGML_F32_VEC ax[GGML_F32_ARR];
  2291. GGML_F32_VEC ay[GGML_F32_ARR];
  2292. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2293. for (int j = 0; j < GGML_F32_ARR; j++) {
  2294. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2295. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2296. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2297. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2298. }
  2299. }
  2300. // leftovers
  2301. for (int i = np; i < n; ++i) {
  2302. y[i] += x[i]*v;
  2303. }
  2304. #else
  2305. // scalar
  2306. for (int i = 0; i < n; ++i) {
  2307. y[i] += x[i]*v;
  2308. }
  2309. #endif
  2310. }
  2311. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2312. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2313. #if defined(GGML_SIMD)
  2314. const int np = (n & ~(GGML_F32_STEP - 1));
  2315. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2316. GGML_F32_VEC ay[GGML_F32_ARR];
  2317. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2318. for (int j = 0; j < GGML_F32_ARR; j++) {
  2319. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2320. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2321. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2322. }
  2323. }
  2324. // leftovers
  2325. for (int i = np; i < n; ++i) {
  2326. y[i] *= v;
  2327. }
  2328. #else
  2329. // scalar
  2330. for (int i = 0; i < n; ++i) {
  2331. y[i] *= v;
  2332. }
  2333. #endif
  2334. }
  2335. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2336. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2337. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2338. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2339. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2340. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2341. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2342. static const float GELU_COEF_A = 0.044715f;
  2343. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2344. inline static float ggml_gelu_f32(float x) {
  2345. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2346. }
  2347. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2348. const uint16_t * i16 = (const uint16_t *) x;
  2349. for (int i = 0; i < n; ++i) {
  2350. y[i] = table_gelu_f16[i16[i]];
  2351. }
  2352. }
  2353. #ifdef GGML_GELU_FP16
  2354. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2355. uint16_t t;
  2356. for (int i = 0; i < n; ++i) {
  2357. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2358. memcpy(&t, &fp16, sizeof(uint16_t));
  2359. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2360. }
  2361. }
  2362. #else
  2363. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2364. for (int i = 0; i < n; ++i) {
  2365. y[i] = ggml_gelu_f32(x[i]);
  2366. }
  2367. }
  2368. #endif
  2369. // Sigmoid Linear Unit (SiLU) function
  2370. inline static float ggml_silu_f32(float x) {
  2371. return x/(1.0f + expf(-x));
  2372. }
  2373. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2374. const uint16_t * i16 = (const uint16_t *) x;
  2375. for (int i = 0; i < n; ++i) {
  2376. y[i] = table_silu_f16[i16[i]];
  2377. }
  2378. }
  2379. #ifdef GGML_SILU_FP16
  2380. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2381. uint16_t t;
  2382. for (int i = 0; i < n; ++i) {
  2383. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2384. memcpy(&t, &fp16, sizeof(uint16_t));
  2385. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2386. }
  2387. }
  2388. #else
  2389. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2390. for (int i = 0; i < n; ++i) {
  2391. y[i] = ggml_silu_f32(x[i]);
  2392. }
  2393. }
  2394. #endif
  2395. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2396. #ifndef GGML_USE_ACCELERATE
  2397. ggml_float sum = 0.0;
  2398. for (int i = 0; i < n; ++i) {
  2399. sum += (ggml_float)x[i];
  2400. }
  2401. *s = sum;
  2402. #else
  2403. vDSP_sve(x, 1, s, n);
  2404. #endif
  2405. }
  2406. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2407. #ifndef GGML_USE_ACCELERATE
  2408. float max = -INFINITY;
  2409. for (int i = 0; i < n; ++i) {
  2410. max = MAX(max, x[i]);
  2411. }
  2412. *s = max;
  2413. #else
  2414. vDSP_maxv(x, 1, s, n);
  2415. #endif
  2416. }
  2417. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2418. ggml_vec_norm_f32(n, s, x);
  2419. *s = 1.f/(*s);
  2420. }
  2421. //
  2422. // logging
  2423. //
  2424. #if (GGML_DEBUG >= 1)
  2425. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2426. #else
  2427. #define GGML_PRINT_DEBUG(...)
  2428. #endif
  2429. #if (GGML_DEBUG >= 5)
  2430. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2431. #else
  2432. #define GGML_PRINT_DEBUG_5(...)
  2433. #endif
  2434. #if (GGML_DEBUG >= 10)
  2435. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2436. #else
  2437. #define GGML_PRINT_DEBUG_10(...)
  2438. #endif
  2439. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2440. //
  2441. // data types
  2442. //
  2443. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2444. [GGML_TYPE_F32] = 1,
  2445. [GGML_TYPE_F16] = 1,
  2446. [GGML_TYPE_Q4_0] = QK,
  2447. [GGML_TYPE_Q4_1] = QK,
  2448. [GGML_TYPE_Q8_0] = QK,
  2449. [GGML_TYPE_I8] = 1,
  2450. [GGML_TYPE_I16] = 1,
  2451. [GGML_TYPE_I32] = 1,
  2452. };
  2453. static_assert(GGML_TYPE_COUNT == 8, "GGML_BLCK_SIZE is outdated");
  2454. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2455. [GGML_TYPE_F32] = sizeof(float),
  2456. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2457. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2458. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2459. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2460. [GGML_TYPE_I8] = sizeof(int8_t),
  2461. [GGML_TYPE_I16] = sizeof(int16_t),
  2462. [GGML_TYPE_I32] = sizeof(int32_t),
  2463. };
  2464. static_assert(GGML_TYPE_COUNT == 8, "GGML_TYPE_SIZE is outdated");
  2465. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2466. [GGML_TYPE_F32] = "f32",
  2467. [GGML_TYPE_F16] = "f16",
  2468. [GGML_TYPE_Q4_0] = "q4_0",
  2469. [GGML_TYPE_Q4_1] = "q4_1",
  2470. [GGML_TYPE_Q8_0] = "q8_0",
  2471. [GGML_TYPE_I8] = "i8",
  2472. [GGML_TYPE_I16] = "i16",
  2473. [GGML_TYPE_I32] = "i32",
  2474. };
  2475. static_assert(GGML_TYPE_COUNT == 8, "GGML_TYPE_NAME is outdated");
  2476. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2477. "NONE",
  2478. "DUP",
  2479. "ADD",
  2480. "SUB",
  2481. "MUL",
  2482. "DIV",
  2483. "SQR",
  2484. "SQRT",
  2485. "SUM",
  2486. "MEAN",
  2487. "REPEAT",
  2488. "ABS",
  2489. "SGN",
  2490. "NEG",
  2491. "STEP",
  2492. "RELU",
  2493. "GELU",
  2494. "SILU",
  2495. "NORM",
  2496. "RMS_NORM",
  2497. "MUL_MAT",
  2498. "SCALE",
  2499. "CPY",
  2500. "CONT",
  2501. "RESHAPE",
  2502. "VIEW",
  2503. "PERMUTE",
  2504. "TRANSPOSE",
  2505. "GET_ROWS",
  2506. "DIAG_MASK_INF",
  2507. "SOFT_MAX",
  2508. "ROPE",
  2509. "CONV_1D_1S",
  2510. "CONV_1D_2S",
  2511. "FLASH_ATTN",
  2512. "FLASH_FF",
  2513. "MAP_UNARY",
  2514. "MAP_BINARY",
  2515. };
  2516. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  2517. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2518. "none",
  2519. "x",
  2520. "x+y",
  2521. "x-y",
  2522. "x*y",
  2523. "x/y",
  2524. "x^2",
  2525. "√x",
  2526. "Σx",
  2527. "Σx/n",
  2528. "repeat(x)",
  2529. "abs(x)",
  2530. "sgn(x)",
  2531. "-x",
  2532. "step(x)",
  2533. "relu(x)",
  2534. "gelu(x)",
  2535. "silu(x)",
  2536. "norm(x)",
  2537. "rms_norm(x)",
  2538. "X*Y",
  2539. "x*v",
  2540. "x-\\>y",
  2541. "cont(x)",
  2542. "reshape(x)",
  2543. "view(x)",
  2544. "permute(x)",
  2545. "transpose(x)",
  2546. "get_rows(x)",
  2547. "diag_mask_inf(x)",
  2548. "soft_max(x)",
  2549. "rope(x)",
  2550. "conv_1d_1s(x)",
  2551. "conv_1d_2s(x)",
  2552. "flash_attn(x)",
  2553. "flash_ff(x)",
  2554. "f(x)",
  2555. "f(x,y)",
  2556. };
  2557. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  2558. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2559. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2560. //
  2561. // ggml context
  2562. //
  2563. struct ggml_context {
  2564. size_t mem_size;
  2565. void * mem_buffer;
  2566. bool mem_buffer_owned;
  2567. bool no_alloc;
  2568. int n_objects;
  2569. struct ggml_object * objects_begin;
  2570. struct ggml_object * objects_end;
  2571. struct ggml_scratch scratch;
  2572. struct ggml_scratch scratch_save;
  2573. };
  2574. struct ggml_context_container {
  2575. bool used;
  2576. struct ggml_context context;
  2577. };
  2578. //
  2579. // compute types
  2580. //
  2581. enum ggml_task_type {
  2582. GGML_TASK_INIT = 0,
  2583. GGML_TASK_COMPUTE,
  2584. GGML_TASK_FINALIZE,
  2585. };
  2586. struct ggml_compute_params {
  2587. enum ggml_task_type type;
  2588. int ith, nth;
  2589. // work buffer for all threads
  2590. size_t wsize;
  2591. void * wdata;
  2592. };
  2593. //
  2594. // ggml state
  2595. //
  2596. struct ggml_state {
  2597. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2598. };
  2599. // global state
  2600. static struct ggml_state g_state;
  2601. static atomic_int g_state_barrier = 0;
  2602. // barrier via spin lock
  2603. inline static void ggml_critical_section_start(void) {
  2604. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2605. while (processing > 0) {
  2606. // wait for other threads to finish
  2607. atomic_fetch_sub(&g_state_barrier, 1);
  2608. sched_yield(); // TODO: reconsider this
  2609. processing = atomic_fetch_add(&g_state_barrier, 1);
  2610. }
  2611. }
  2612. // TODO: make this somehow automatically executed
  2613. // some sort of "sentry" mechanism
  2614. inline static void ggml_critical_section_end(void) {
  2615. atomic_fetch_sub(&g_state_barrier, 1);
  2616. }
  2617. ////////////////////////////////////////////////////////////////////////////////
  2618. void ggml_print_object(const struct ggml_object * obj) {
  2619. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2620. obj->offs, obj->size, (const void *) obj->next);
  2621. }
  2622. void ggml_print_objects(const struct ggml_context * ctx) {
  2623. struct ggml_object * obj = ctx->objects_begin;
  2624. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2625. while (obj != NULL) {
  2626. ggml_print_object(obj);
  2627. obj = obj->next;
  2628. }
  2629. GGML_PRINT("%s: --- end ---\n", __func__);
  2630. }
  2631. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2632. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2633. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2634. }
  2635. int ggml_nrows(const struct ggml_tensor * tensor) {
  2636. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2637. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2638. }
  2639. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2640. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2641. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2642. }
  2643. int ggml_blck_size(enum ggml_type type) {
  2644. return GGML_BLCK_SIZE[type];
  2645. }
  2646. size_t ggml_type_size(enum ggml_type type) {
  2647. return GGML_TYPE_SIZE[type];
  2648. }
  2649. float ggml_type_sizef(enum ggml_type type) {
  2650. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2651. }
  2652. const char * ggml_type_name(enum ggml_type type) {
  2653. return GGML_TYPE_NAME[type];
  2654. }
  2655. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2656. return GGML_TYPE_SIZE[tensor->type];
  2657. }
  2658. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2659. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2660. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2661. }
  2662. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2663. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2664. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2665. }
  2666. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2667. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2668. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2669. }
  2670. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2671. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2672. return
  2673. (t0->ne[0] == t1->ne[0]) &&
  2674. (t0->ne[2] == t1->ne[2]) &&
  2675. (t0->ne[3] == t1->ne[3]);
  2676. }
  2677. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2678. return tensor->nb[0] > tensor->nb[1];
  2679. }
  2680. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2681. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2682. return
  2683. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2684. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2685. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2686. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2687. }
  2688. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2689. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2690. return
  2691. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2692. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2693. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2694. }
  2695. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2696. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2697. return
  2698. (t0->ne[0] == t1->ne[0] ) &&
  2699. (t0->ne[1] == t1->ne[1] ) &&
  2700. (t0->ne[2] == t1->ne[2] ) &&
  2701. (t0->ne[3] == t1->ne[3] );
  2702. }
  2703. // check if t1 can be represented as a repeatition of t0
  2704. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2705. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2706. return
  2707. (t1->ne[0]%t0->ne[0] == 0) &&
  2708. (t1->ne[1]%t0->ne[1] == 0) &&
  2709. (t1->ne[2]%t0->ne[2] == 0) &&
  2710. (t1->ne[3]%t0->ne[3] == 0);
  2711. }
  2712. static inline int ggml_up32(int n) {
  2713. return (n + 31) & ~31;
  2714. }
  2715. static inline int ggml_up64(int n) {
  2716. return (n + 63) & ~63;
  2717. }
  2718. static inline int ggml_up(int n, int m) {
  2719. // assert m is a power of 2
  2720. GGML_ASSERT((m & (m - 1)) == 0);
  2721. return (n + m - 1) & ~(m - 1);
  2722. }
  2723. // assert that pointer is aligned to GGML_MEM_ALIGN
  2724. #define ggml_assert_aligned(ptr) \
  2725. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2726. ////////////////////////////////////////////////////////////////////////////////
  2727. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2728. // make this function thread safe
  2729. ggml_critical_section_start();
  2730. static bool is_first_call = true;
  2731. if (is_first_call) {
  2732. // initialize time system (required on Windows)
  2733. ggml_time_init();
  2734. // initialize GELU, SILU and EXP F32 tables
  2735. {
  2736. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2737. ggml_fp16_t ii;
  2738. for (int i = 0; i < (1 << 16); ++i) {
  2739. uint16_t ui = i;
  2740. memcpy(&ii, &ui, sizeof(ii));
  2741. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2742. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2743. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2744. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2745. }
  2746. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2747. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2748. }
  2749. // initialize g_state
  2750. {
  2751. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2752. g_state = (struct ggml_state) {
  2753. /*.contexts =*/ { { 0 } },
  2754. };
  2755. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2756. g_state.contexts[i].used = false;
  2757. }
  2758. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2759. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2760. }
  2761. is_first_call = false;
  2762. }
  2763. // find non-used context in g_state
  2764. struct ggml_context * ctx = NULL;
  2765. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2766. if (!g_state.contexts[i].used) {
  2767. g_state.contexts[i].used = true;
  2768. ctx = &g_state.contexts[i].context;
  2769. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2770. break;
  2771. }
  2772. }
  2773. if (ctx == NULL) {
  2774. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2775. ggml_critical_section_end();
  2776. return NULL;
  2777. }
  2778. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  2779. *ctx = (struct ggml_context) {
  2780. /*.mem_size =*/ mem_size,
  2781. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2782. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2783. /*.no_alloc =*/ params.no_alloc,
  2784. /*.n_objects =*/ 0,
  2785. /*.objects_begin =*/ NULL,
  2786. /*.objects_end =*/ NULL,
  2787. /*.scratch =*/ { 0, 0, NULL, },
  2788. /*.scratch_save =*/ { 0, 0, NULL, },
  2789. };
  2790. GGML_ASSERT(ctx->mem_buffer != NULL);
  2791. ggml_assert_aligned(ctx->mem_buffer);
  2792. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2793. ggml_critical_section_end();
  2794. return ctx;
  2795. }
  2796. void ggml_free(struct ggml_context * ctx) {
  2797. // make this function thread safe
  2798. ggml_critical_section_start();
  2799. bool found = false;
  2800. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2801. if (&g_state.contexts[i].context == ctx) {
  2802. g_state.contexts[i].used = false;
  2803. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2804. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2805. if (ctx->mem_buffer_owned) {
  2806. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2807. }
  2808. found = true;
  2809. break;
  2810. }
  2811. }
  2812. if (!found) {
  2813. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2814. }
  2815. ggml_critical_section_end();
  2816. }
  2817. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2818. return ctx->objects_end->offs + ctx->objects_end->size;
  2819. }
  2820. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2821. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2822. ctx->scratch = scratch;
  2823. return result;
  2824. }
  2825. ////////////////////////////////////////////////////////////////////////////////
  2826. struct ggml_tensor * ggml_new_tensor_impl(
  2827. struct ggml_context * ctx,
  2828. enum ggml_type type,
  2829. int n_dims,
  2830. const int64_t* ne,
  2831. void* data) {
  2832. // always insert objects at the end of the context's memory pool
  2833. struct ggml_object * obj_cur = ctx->objects_end;
  2834. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2835. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2836. const size_t cur_end = cur_offs + cur_size;
  2837. size_t size_needed = 0;
  2838. if (data == NULL && !ctx->no_alloc) {
  2839. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  2840. for (int i = 1; i < n_dims; i++) {
  2841. size_needed *= ne[i];
  2842. }
  2843. // align to GGML_MEM_ALIGN
  2844. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  2845. }
  2846. char * const mem_buffer = ctx->mem_buffer;
  2847. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2848. if (ctx->scratch.data == NULL || data != NULL) {
  2849. size_needed += sizeof(struct ggml_tensor);
  2850. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2851. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2852. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  2853. assert(false);
  2854. return NULL;
  2855. }
  2856. *obj_new = (struct ggml_object) {
  2857. .offs = cur_end + GGML_OBJECT_SIZE,
  2858. .size = size_needed,
  2859. .next = NULL,
  2860. };
  2861. } else {
  2862. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  2863. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  2864. assert(false);
  2865. return NULL;
  2866. }
  2867. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  2868. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2869. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  2870. assert(false);
  2871. return NULL;
  2872. }
  2873. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2874. *obj_new = (struct ggml_object) {
  2875. .offs = cur_end + GGML_OBJECT_SIZE,
  2876. .size = sizeof(struct ggml_tensor),
  2877. .next = NULL,
  2878. };
  2879. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  2880. ctx->scratch.offs += size_needed;
  2881. }
  2882. if (obj_cur != NULL) {
  2883. obj_cur->next = obj_new;
  2884. } else {
  2885. // this is the first object in this context
  2886. ctx->objects_begin = obj_new;
  2887. }
  2888. ctx->objects_end = obj_new;
  2889. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2890. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  2891. ggml_assert_aligned(result);
  2892. *result = (struct ggml_tensor) {
  2893. /*.type =*/ type,
  2894. /*.n_dims =*/ n_dims,
  2895. /*.ne =*/ { 1, 1, 1, 1 },
  2896. /*.nb =*/ { 0, 0, 0, 0 },
  2897. /*.op =*/ GGML_OP_NONE,
  2898. /*.is_param =*/ false,
  2899. /*.grad =*/ NULL,
  2900. /*.src0 =*/ NULL,
  2901. /*.src1 =*/ NULL,
  2902. /*.opt =*/ { NULL },
  2903. /*.n_tasks =*/ 0,
  2904. /*.perf_runs =*/ 0,
  2905. /*.perf_cycles =*/ 0,
  2906. /*.perf_time_us =*/ 0,
  2907. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  2908. /*.pad =*/ { 0 },
  2909. };
  2910. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2911. //ggml_assert_aligned(result->data);
  2912. for (int i = 0; i < n_dims; i++) {
  2913. result->ne[i] = ne[i];
  2914. }
  2915. result->nb[0] = GGML_TYPE_SIZE[type];
  2916. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  2917. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2918. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2919. }
  2920. ctx->n_objects++;
  2921. return result;
  2922. }
  2923. struct ggml_tensor * ggml_new_tensor(
  2924. struct ggml_context * ctx,
  2925. enum ggml_type type,
  2926. int n_dims,
  2927. const int64_t * ne) {
  2928. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  2929. }
  2930. struct ggml_tensor * ggml_new_tensor_1d(
  2931. struct ggml_context * ctx,
  2932. enum ggml_type type,
  2933. int64_t ne0) {
  2934. return ggml_new_tensor(ctx, type, 1, &ne0);
  2935. }
  2936. struct ggml_tensor * ggml_new_tensor_2d(
  2937. struct ggml_context * ctx,
  2938. enum ggml_type type,
  2939. int64_t ne0,
  2940. int64_t ne1) {
  2941. const int64_t ne[2] = { ne0, ne1 };
  2942. return ggml_new_tensor(ctx, type, 2, ne);
  2943. }
  2944. struct ggml_tensor * ggml_new_tensor_3d(
  2945. struct ggml_context * ctx,
  2946. enum ggml_type type,
  2947. int64_t ne0,
  2948. int64_t ne1,
  2949. int64_t ne2) {
  2950. const int64_t ne[3] = { ne0, ne1, ne2 };
  2951. return ggml_new_tensor(ctx, type, 3, ne);
  2952. }
  2953. struct ggml_tensor * ggml_new_tensor_4d(
  2954. struct ggml_context * ctx,
  2955. enum ggml_type type,
  2956. int64_t ne0,
  2957. int64_t ne1,
  2958. int64_t ne2,
  2959. int64_t ne3) {
  2960. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2961. return ggml_new_tensor(ctx, type, 4, ne);
  2962. }
  2963. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2964. ctx->scratch_save = ctx->scratch;
  2965. ctx->scratch.data = NULL;
  2966. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2967. ctx->scratch = ctx->scratch_save;
  2968. ggml_set_i32(result, value);
  2969. return result;
  2970. }
  2971. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2972. ctx->scratch_save = ctx->scratch;
  2973. ctx->scratch.data = NULL;
  2974. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2975. ctx->scratch = ctx->scratch_save;
  2976. ggml_set_f32(result, value);
  2977. return result;
  2978. }
  2979. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2980. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  2981. }
  2982. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2983. memset(tensor->data, 0, ggml_nbytes(tensor));
  2984. return tensor;
  2985. }
  2986. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2987. const int n = ggml_nrows(tensor);
  2988. const int nc = tensor->ne[0];
  2989. const size_t n1 = tensor->nb[1];
  2990. char * const data = tensor->data;
  2991. switch (tensor->type) {
  2992. case GGML_TYPE_Q4_0:
  2993. {
  2994. GGML_ASSERT(false);
  2995. } break;
  2996. case GGML_TYPE_Q4_1:
  2997. {
  2998. GGML_ASSERT(false);
  2999. } break;
  3000. case GGML_TYPE_Q8_0:
  3001. {
  3002. GGML_ASSERT(false);
  3003. } break;
  3004. case GGML_TYPE_I8:
  3005. {
  3006. assert(tensor->nb[0] == sizeof(int8_t));
  3007. for (int i = 0; i < n; i++) {
  3008. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3009. }
  3010. } break;
  3011. case GGML_TYPE_I16:
  3012. {
  3013. assert(tensor->nb[0] == sizeof(int16_t));
  3014. for (int i = 0; i < n; i++) {
  3015. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3016. }
  3017. } break;
  3018. case GGML_TYPE_I32:
  3019. {
  3020. assert(tensor->nb[0] == sizeof(int32_t));
  3021. for (int i = 0; i < n; i++) {
  3022. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3023. }
  3024. } break;
  3025. case GGML_TYPE_F16:
  3026. {
  3027. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3028. for (int i = 0; i < n; i++) {
  3029. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3030. }
  3031. } break;
  3032. case GGML_TYPE_F32:
  3033. {
  3034. assert(tensor->nb[0] == sizeof(float));
  3035. for (int i = 0; i < n; i++) {
  3036. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3037. }
  3038. } break;
  3039. case GGML_TYPE_COUNT:
  3040. {
  3041. GGML_ASSERT(false);
  3042. } break;
  3043. }
  3044. return tensor;
  3045. }
  3046. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3047. const int n = ggml_nrows(tensor);
  3048. const int nc = tensor->ne[0];
  3049. const size_t n1 = tensor->nb[1];
  3050. char * const data = tensor->data;
  3051. switch (tensor->type) {
  3052. case GGML_TYPE_Q4_0:
  3053. {
  3054. GGML_ASSERT(false);
  3055. } break;
  3056. case GGML_TYPE_Q4_1:
  3057. {
  3058. GGML_ASSERT(false);
  3059. } break;
  3060. case GGML_TYPE_Q8_0:
  3061. {
  3062. GGML_ASSERT(false);
  3063. } break;
  3064. case GGML_TYPE_I8:
  3065. {
  3066. assert(tensor->nb[0] == sizeof(int8_t));
  3067. for (int i = 0; i < n; i++) {
  3068. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3069. }
  3070. } break;
  3071. case GGML_TYPE_I16:
  3072. {
  3073. assert(tensor->nb[0] == sizeof(int16_t));
  3074. for (int i = 0; i < n; i++) {
  3075. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3076. }
  3077. } break;
  3078. case GGML_TYPE_I32:
  3079. {
  3080. assert(tensor->nb[0] == sizeof(int32_t));
  3081. for (int i = 0; i < n; i++) {
  3082. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3083. }
  3084. } break;
  3085. case GGML_TYPE_F16:
  3086. {
  3087. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3088. for (int i = 0; i < n; i++) {
  3089. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3090. }
  3091. } break;
  3092. case GGML_TYPE_F32:
  3093. {
  3094. assert(tensor->nb[0] == sizeof(float));
  3095. for (int i = 0; i < n; i++) {
  3096. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3097. }
  3098. } break;
  3099. case GGML_TYPE_COUNT:
  3100. {
  3101. GGML_ASSERT(false);
  3102. } break;
  3103. }
  3104. return tensor;
  3105. }
  3106. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3107. switch (tensor->type) {
  3108. case GGML_TYPE_Q4_0:
  3109. {
  3110. GGML_ASSERT(false);
  3111. } break;
  3112. case GGML_TYPE_Q4_1:
  3113. {
  3114. GGML_ASSERT(false);
  3115. } break;
  3116. case GGML_TYPE_Q8_0:
  3117. {
  3118. GGML_ASSERT(false);
  3119. } break;
  3120. case GGML_TYPE_I8:
  3121. {
  3122. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3123. return ((int8_t *)(tensor->data))[i];
  3124. } break;
  3125. case GGML_TYPE_I16:
  3126. {
  3127. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3128. return ((int16_t *)(tensor->data))[i];
  3129. } break;
  3130. case GGML_TYPE_I32:
  3131. {
  3132. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3133. return ((int32_t *)(tensor->data))[i];
  3134. } break;
  3135. case GGML_TYPE_F16:
  3136. {
  3137. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3138. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3139. } break;
  3140. case GGML_TYPE_F32:
  3141. {
  3142. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3143. return ((float *)(tensor->data))[i];
  3144. } break;
  3145. case GGML_TYPE_COUNT:
  3146. {
  3147. GGML_ASSERT(false);
  3148. } break;
  3149. }
  3150. return 0.0f;
  3151. }
  3152. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3153. switch (tensor->type) {
  3154. case GGML_TYPE_Q4_0:
  3155. {
  3156. GGML_ASSERT(false);
  3157. } break;
  3158. case GGML_TYPE_Q4_1:
  3159. {
  3160. GGML_ASSERT(false);
  3161. } break;
  3162. case GGML_TYPE_Q8_0:
  3163. {
  3164. GGML_ASSERT(false);
  3165. } break;
  3166. case GGML_TYPE_I8:
  3167. {
  3168. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3169. ((int8_t *)(tensor->data))[i] = value;
  3170. } break;
  3171. case GGML_TYPE_I16:
  3172. {
  3173. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3174. ((int16_t *)(tensor->data))[i] = value;
  3175. } break;
  3176. case GGML_TYPE_I32:
  3177. {
  3178. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3179. ((int32_t *)(tensor->data))[i] = value;
  3180. } break;
  3181. case GGML_TYPE_F16:
  3182. {
  3183. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3184. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3185. } break;
  3186. case GGML_TYPE_F32:
  3187. {
  3188. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3189. ((float *)(tensor->data))[i] = value;
  3190. } break;
  3191. case GGML_TYPE_COUNT:
  3192. {
  3193. GGML_ASSERT(false);
  3194. } break;
  3195. }
  3196. }
  3197. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3198. switch (tensor->type) {
  3199. case GGML_TYPE_Q4_0:
  3200. {
  3201. GGML_ASSERT(false);
  3202. } break;
  3203. case GGML_TYPE_Q4_1:
  3204. {
  3205. GGML_ASSERT(false);
  3206. } break;
  3207. case GGML_TYPE_Q8_0:
  3208. {
  3209. GGML_ASSERT(false);
  3210. } break;
  3211. case GGML_TYPE_I8:
  3212. {
  3213. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3214. return ((int8_t *)(tensor->data))[i];
  3215. } break;
  3216. case GGML_TYPE_I16:
  3217. {
  3218. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3219. return ((int16_t *)(tensor->data))[i];
  3220. } break;
  3221. case GGML_TYPE_I32:
  3222. {
  3223. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3224. return ((int32_t *)(tensor->data))[i];
  3225. } break;
  3226. case GGML_TYPE_F16:
  3227. {
  3228. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3229. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3230. } break;
  3231. case GGML_TYPE_F32:
  3232. {
  3233. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3234. return ((float *)(tensor->data))[i];
  3235. } break;
  3236. case GGML_TYPE_COUNT:
  3237. {
  3238. GGML_ASSERT(false);
  3239. } break;
  3240. }
  3241. return 0.0f;
  3242. }
  3243. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3244. switch (tensor->type) {
  3245. case GGML_TYPE_Q4_0:
  3246. {
  3247. GGML_ASSERT(false);
  3248. } break;
  3249. case GGML_TYPE_Q4_1:
  3250. {
  3251. GGML_ASSERT(false);
  3252. } break;
  3253. case GGML_TYPE_Q8_0:
  3254. {
  3255. GGML_ASSERT(false);
  3256. } break;
  3257. case GGML_TYPE_I8:
  3258. {
  3259. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3260. ((int8_t *)(tensor->data))[i] = value;
  3261. } break;
  3262. case GGML_TYPE_I16:
  3263. {
  3264. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3265. ((int16_t *)(tensor->data))[i] = value;
  3266. } break;
  3267. case GGML_TYPE_I32:
  3268. {
  3269. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3270. ((int32_t *)(tensor->data))[i] = value;
  3271. } break;
  3272. case GGML_TYPE_F16:
  3273. {
  3274. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3275. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3276. } break;
  3277. case GGML_TYPE_F32:
  3278. {
  3279. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3280. ((float *)(tensor->data))[i] = value;
  3281. } break;
  3282. case GGML_TYPE_COUNT:
  3283. {
  3284. GGML_ASSERT(false);
  3285. } break;
  3286. }
  3287. }
  3288. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3289. return tensor->data;
  3290. }
  3291. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3292. assert(tensor->type == GGML_TYPE_F32);
  3293. return (float *)(tensor->data);
  3294. }
  3295. struct ggml_tensor * ggml_view_tensor(
  3296. struct ggml_context * ctx,
  3297. const struct ggml_tensor * src) {
  3298. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3299. result->nb[0] = src->nb[0];
  3300. result->nb[1] = src->nb[1];
  3301. result->nb[2] = src->nb[2];
  3302. result->nb[3] = src->nb[3];
  3303. return result;
  3304. }
  3305. ////////////////////////////////////////////////////////////////////////////////
  3306. // ggml_dup
  3307. struct ggml_tensor * ggml_dup_impl(
  3308. struct ggml_context * ctx,
  3309. struct ggml_tensor * a,
  3310. bool inplace) {
  3311. bool is_node = false;
  3312. if (!inplace && (a->grad)) {
  3313. is_node = true;
  3314. }
  3315. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3316. result->op = GGML_OP_DUP;
  3317. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3318. result->src0 = a;
  3319. result->src1 = NULL;
  3320. return result;
  3321. }
  3322. struct ggml_tensor * ggml_dup(
  3323. struct ggml_context * ctx,
  3324. struct ggml_tensor * a) {
  3325. return ggml_dup_impl(ctx, a, false);
  3326. }
  3327. struct ggml_tensor * ggml_dup_inplace(
  3328. struct ggml_context * ctx,
  3329. struct ggml_tensor * a) {
  3330. return ggml_dup_impl(ctx, a, true);
  3331. }
  3332. // ggml_add
  3333. struct ggml_tensor * ggml_add_impl(
  3334. struct ggml_context * ctx,
  3335. struct ggml_tensor * a,
  3336. struct ggml_tensor * b,
  3337. bool inplace) {
  3338. GGML_ASSERT(ggml_are_same_shape(a, b));
  3339. bool is_node = false;
  3340. if (!inplace && (a->grad || b->grad)) {
  3341. is_node = true;
  3342. }
  3343. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3344. result->op = GGML_OP_ADD;
  3345. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3346. result->src0 = a;
  3347. result->src1 = b;
  3348. return result;
  3349. }
  3350. struct ggml_tensor * ggml_add(
  3351. struct ggml_context * ctx,
  3352. struct ggml_tensor * a,
  3353. struct ggml_tensor * b) {
  3354. return ggml_add_impl(ctx, a, b, false);
  3355. }
  3356. struct ggml_tensor * ggml_add_inplace(
  3357. struct ggml_context * ctx,
  3358. struct ggml_tensor * a,
  3359. struct ggml_tensor * b) {
  3360. return ggml_add_impl(ctx, a, b, true);
  3361. }
  3362. // ggml_sub
  3363. struct ggml_tensor * ggml_sub_impl(
  3364. struct ggml_context * ctx,
  3365. struct ggml_tensor * a,
  3366. struct ggml_tensor * b,
  3367. bool inplace) {
  3368. GGML_ASSERT(ggml_are_same_shape(a, b));
  3369. bool is_node = false;
  3370. if (!inplace && (a->grad || b->grad)) {
  3371. is_node = true;
  3372. }
  3373. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3374. result->op = GGML_OP_SUB;
  3375. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3376. result->src0 = a;
  3377. result->src1 = b;
  3378. return result;
  3379. }
  3380. struct ggml_tensor * ggml_sub(
  3381. struct ggml_context * ctx,
  3382. struct ggml_tensor * a,
  3383. struct ggml_tensor * b) {
  3384. return ggml_sub_impl(ctx, a, b, false);
  3385. }
  3386. struct ggml_tensor * ggml_sub_inplace(
  3387. struct ggml_context * ctx,
  3388. struct ggml_tensor * a,
  3389. struct ggml_tensor * b) {
  3390. return ggml_sub_impl(ctx, a, b, true);
  3391. }
  3392. // ggml_mul
  3393. struct ggml_tensor * ggml_mul_impl(
  3394. struct ggml_context * ctx,
  3395. struct ggml_tensor * a,
  3396. struct ggml_tensor * b,
  3397. bool inplace) {
  3398. GGML_ASSERT(ggml_are_same_shape(a, b));
  3399. bool is_node = false;
  3400. if (!inplace && (a->grad || b->grad)) {
  3401. is_node = true;
  3402. }
  3403. if (inplace) {
  3404. GGML_ASSERT(is_node == false);
  3405. }
  3406. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3407. result->op = GGML_OP_MUL;
  3408. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3409. result->src0 = a;
  3410. result->src1 = b;
  3411. return result;
  3412. }
  3413. struct ggml_tensor * ggml_mul(
  3414. struct ggml_context * ctx,
  3415. struct ggml_tensor * a,
  3416. struct ggml_tensor * b) {
  3417. return ggml_mul_impl(ctx, a, b, false);
  3418. }
  3419. struct ggml_tensor * ggml_mul_inplace(
  3420. struct ggml_context * ctx,
  3421. struct ggml_tensor * a,
  3422. struct ggml_tensor * b) {
  3423. return ggml_mul_impl(ctx, a, b, true);
  3424. }
  3425. // ggml_div
  3426. struct ggml_tensor * ggml_div_impl(
  3427. struct ggml_context * ctx,
  3428. struct ggml_tensor * a,
  3429. struct ggml_tensor * b,
  3430. bool inplace) {
  3431. GGML_ASSERT(ggml_are_same_shape(a, b));
  3432. bool is_node = false;
  3433. if (!inplace && (a->grad || b->grad)) {
  3434. is_node = true;
  3435. }
  3436. if (inplace) {
  3437. GGML_ASSERT(is_node == false);
  3438. }
  3439. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3440. result->op = GGML_OP_DIV;
  3441. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3442. result->src0 = a;
  3443. result->src1 = b;
  3444. return result;
  3445. }
  3446. struct ggml_tensor * ggml_div(
  3447. struct ggml_context * ctx,
  3448. struct ggml_tensor * a,
  3449. struct ggml_tensor * b) {
  3450. return ggml_div_impl(ctx, a, b, false);
  3451. }
  3452. struct ggml_tensor * ggml_div_inplace(
  3453. struct ggml_context * ctx,
  3454. struct ggml_tensor * a,
  3455. struct ggml_tensor * b) {
  3456. return ggml_div_impl(ctx, a, b, true);
  3457. }
  3458. // ggml_sqr
  3459. struct ggml_tensor * ggml_sqr_impl(
  3460. struct ggml_context * ctx,
  3461. struct ggml_tensor * a,
  3462. bool inplace) {
  3463. bool is_node = false;
  3464. if (!inplace && (a->grad)) {
  3465. is_node = true;
  3466. }
  3467. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3468. result->op = GGML_OP_SQR;
  3469. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3470. result->src0 = a;
  3471. result->src1 = NULL;
  3472. return result;
  3473. }
  3474. struct ggml_tensor * ggml_sqr(
  3475. struct ggml_context * ctx,
  3476. struct ggml_tensor * a) {
  3477. return ggml_sqr_impl(ctx, a, false);
  3478. }
  3479. struct ggml_tensor * ggml_sqr_inplace(
  3480. struct ggml_context * ctx,
  3481. struct ggml_tensor * a) {
  3482. return ggml_sqr_impl(ctx, a, true);
  3483. }
  3484. // ggml_sqrt
  3485. struct ggml_tensor * ggml_sqrt_impl(
  3486. struct ggml_context * ctx,
  3487. struct ggml_tensor * a,
  3488. bool inplace) {
  3489. bool is_node = false;
  3490. if (!inplace && (a->grad)) {
  3491. is_node = true;
  3492. }
  3493. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3494. result->op = GGML_OP_SQRT;
  3495. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3496. result->src0 = a;
  3497. result->src1 = NULL;
  3498. return result;
  3499. }
  3500. struct ggml_tensor * ggml_sqrt(
  3501. struct ggml_context * ctx,
  3502. struct ggml_tensor * a) {
  3503. return ggml_sqrt_impl(ctx, a, false);
  3504. }
  3505. struct ggml_tensor * ggml_sqrt_inplace(
  3506. struct ggml_context * ctx,
  3507. struct ggml_tensor * a) {
  3508. return ggml_sqrt_impl(ctx, a, true);
  3509. }
  3510. // ggml_sum
  3511. struct ggml_tensor * ggml_sum(
  3512. struct ggml_context * ctx,
  3513. struct ggml_tensor * a) {
  3514. bool is_node = false;
  3515. if (a->grad) {
  3516. is_node = true;
  3517. }
  3518. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3519. result->op = GGML_OP_SUM;
  3520. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3521. result->src0 = a;
  3522. result->src1 = NULL;
  3523. return result;
  3524. }
  3525. // ggml_mean
  3526. struct ggml_tensor * ggml_mean(
  3527. struct ggml_context * ctx,
  3528. struct ggml_tensor * a) {
  3529. bool is_node = false;
  3530. if (a->grad) {
  3531. GGML_ASSERT(false); // TODO: implement
  3532. is_node = true;
  3533. }
  3534. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3535. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3536. result->op = GGML_OP_MEAN;
  3537. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3538. result->src0 = a;
  3539. result->src1 = NULL;
  3540. return result;
  3541. }
  3542. // ggml_repeat
  3543. struct ggml_tensor * ggml_repeat(
  3544. struct ggml_context * ctx,
  3545. struct ggml_tensor * a,
  3546. struct ggml_tensor * b) {
  3547. GGML_ASSERT(ggml_can_repeat(a, b));
  3548. bool is_node = false;
  3549. if (a->grad) {
  3550. is_node = true;
  3551. }
  3552. if (ggml_are_same_shape(a, b) && !is_node) {
  3553. return a;
  3554. }
  3555. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3556. result->op = GGML_OP_REPEAT;
  3557. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3558. result->src0 = a;
  3559. result->src1 = b;
  3560. return result;
  3561. }
  3562. // ggml_abs
  3563. struct ggml_tensor * ggml_abs_impl(
  3564. struct ggml_context * ctx,
  3565. struct ggml_tensor * a,
  3566. bool inplace) {
  3567. bool is_node = false;
  3568. if (!inplace && (a->grad)) {
  3569. is_node = true;
  3570. }
  3571. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3572. result->op = GGML_OP_ABS;
  3573. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3574. result->src0 = a;
  3575. result->src1 = NULL;
  3576. return result;
  3577. }
  3578. struct ggml_tensor * ggml_abs(
  3579. struct ggml_context * ctx,
  3580. struct ggml_tensor * a) {
  3581. return ggml_abs_impl(ctx, a, false);
  3582. }
  3583. struct ggml_tensor * ggml_abs_inplace(
  3584. struct ggml_context * ctx,
  3585. struct ggml_tensor * a) {
  3586. return ggml_abs_impl(ctx, a, true);
  3587. }
  3588. // ggml_sgn
  3589. struct ggml_tensor * ggml_sgn_impl(
  3590. struct ggml_context * ctx,
  3591. struct ggml_tensor * a,
  3592. bool inplace) {
  3593. bool is_node = false;
  3594. if (!inplace && (a->grad)) {
  3595. is_node = true;
  3596. }
  3597. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3598. result->op = GGML_OP_SGN;
  3599. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3600. result->src0 = a;
  3601. result->src1 = NULL;
  3602. return result;
  3603. }
  3604. struct ggml_tensor * ggml_sgn(
  3605. struct ggml_context * ctx,
  3606. struct ggml_tensor * a) {
  3607. return ggml_sgn_impl(ctx, a, false);
  3608. }
  3609. struct ggml_tensor * ggml_sgn_inplace(
  3610. struct ggml_context * ctx,
  3611. struct ggml_tensor * a) {
  3612. return ggml_sgn_impl(ctx, a, true);
  3613. }
  3614. // ggml_neg
  3615. struct ggml_tensor * ggml_neg_impl(
  3616. struct ggml_context * ctx,
  3617. struct ggml_tensor * a,
  3618. bool inplace) {
  3619. bool is_node = false;
  3620. if (!inplace && (a->grad)) {
  3621. is_node = true;
  3622. }
  3623. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3624. result->op = GGML_OP_NEG;
  3625. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3626. result->src0 = a;
  3627. result->src1 = NULL;
  3628. return result;
  3629. }
  3630. struct ggml_tensor * ggml_neg(
  3631. struct ggml_context * ctx,
  3632. struct ggml_tensor * a) {
  3633. return ggml_neg_impl(ctx, a, false);
  3634. }
  3635. struct ggml_tensor * ggml_neg_inplace(
  3636. struct ggml_context * ctx,
  3637. struct ggml_tensor * a) {
  3638. return ggml_neg_impl(ctx, a, true);
  3639. }
  3640. // ggml_step
  3641. struct ggml_tensor * ggml_step_impl(
  3642. struct ggml_context * ctx,
  3643. struct ggml_tensor * a,
  3644. bool inplace) {
  3645. bool is_node = false;
  3646. if (!inplace && (a->grad)) {
  3647. is_node = true;
  3648. }
  3649. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3650. result->op = GGML_OP_STEP;
  3651. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3652. result->src0 = a;
  3653. result->src1 = NULL;
  3654. return result;
  3655. }
  3656. struct ggml_tensor * ggml_step(
  3657. struct ggml_context * ctx,
  3658. struct ggml_tensor * a) {
  3659. return ggml_step_impl(ctx, a, false);
  3660. }
  3661. struct ggml_tensor * ggml_step_inplace(
  3662. struct ggml_context * ctx,
  3663. struct ggml_tensor * a) {
  3664. return ggml_step_impl(ctx, a, true);
  3665. }
  3666. // ggml_relu
  3667. struct ggml_tensor * ggml_relu_impl(
  3668. struct ggml_context * ctx,
  3669. struct ggml_tensor * a,
  3670. bool inplace) {
  3671. bool is_node = false;
  3672. if (!inplace && (a->grad)) {
  3673. is_node = true;
  3674. }
  3675. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3676. result->op = GGML_OP_RELU;
  3677. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3678. result->src0 = a;
  3679. result->src1 = NULL;
  3680. return result;
  3681. }
  3682. struct ggml_tensor * ggml_relu(
  3683. struct ggml_context * ctx,
  3684. struct ggml_tensor * a) {
  3685. return ggml_relu_impl(ctx, a, false);
  3686. }
  3687. struct ggml_tensor * ggml_relu_inplace(
  3688. struct ggml_context * ctx,
  3689. struct ggml_tensor * a) {
  3690. return ggml_relu_impl(ctx, a, true);
  3691. }
  3692. // ggml_gelu
  3693. struct ggml_tensor * ggml_gelu_impl(
  3694. struct ggml_context * ctx,
  3695. struct ggml_tensor * a,
  3696. bool inplace) {
  3697. bool is_node = false;
  3698. if (!inplace && (a->grad)) {
  3699. is_node = true;
  3700. }
  3701. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3702. result->op = GGML_OP_GELU;
  3703. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3704. result->src0 = a;
  3705. result->src1 = NULL;
  3706. return result;
  3707. }
  3708. struct ggml_tensor * ggml_gelu(
  3709. struct ggml_context * ctx,
  3710. struct ggml_tensor * a) {
  3711. return ggml_gelu_impl(ctx, a, false);
  3712. }
  3713. struct ggml_tensor * ggml_gelu_inplace(
  3714. struct ggml_context * ctx,
  3715. struct ggml_tensor * a) {
  3716. return ggml_gelu_impl(ctx, a, true);
  3717. }
  3718. // ggml_silu
  3719. struct ggml_tensor * ggml_silu_impl(
  3720. struct ggml_context * ctx,
  3721. struct ggml_tensor * a,
  3722. bool inplace) {
  3723. bool is_node = false;
  3724. if (!inplace && (a->grad)) {
  3725. is_node = true;
  3726. }
  3727. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3728. result->op = GGML_OP_SILU;
  3729. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3730. result->src0 = a;
  3731. result->src1 = NULL;
  3732. return result;
  3733. }
  3734. struct ggml_tensor * ggml_silu(
  3735. struct ggml_context * ctx,
  3736. struct ggml_tensor * a) {
  3737. return ggml_silu_impl(ctx, a, false);
  3738. }
  3739. struct ggml_tensor * ggml_silu_inplace(
  3740. struct ggml_context * ctx,
  3741. struct ggml_tensor * a) {
  3742. return ggml_silu_impl(ctx, a, true);
  3743. }
  3744. // ggml_norm
  3745. struct ggml_tensor * ggml_norm_impl(
  3746. struct ggml_context * ctx,
  3747. struct ggml_tensor * a,
  3748. bool inplace) {
  3749. bool is_node = false;
  3750. if (!inplace && (a->grad)) {
  3751. GGML_ASSERT(false); // TODO: implement backward
  3752. is_node = true;
  3753. }
  3754. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3755. result->op = GGML_OP_NORM;
  3756. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3757. result->src0 = a;
  3758. result->src1 = NULL; // TODO: maybe store epsilon here?
  3759. return result;
  3760. }
  3761. struct ggml_tensor * ggml_norm(
  3762. struct ggml_context * ctx,
  3763. struct ggml_tensor * a) {
  3764. return ggml_norm_impl(ctx, a, false);
  3765. }
  3766. struct ggml_tensor * ggml_norm_inplace(
  3767. struct ggml_context * ctx,
  3768. struct ggml_tensor * a) {
  3769. return ggml_norm_impl(ctx, a, true);
  3770. }
  3771. struct ggml_tensor * ggml_rms_norm_impl(
  3772. struct ggml_context * ctx,
  3773. struct ggml_tensor * a,
  3774. bool inplace) {
  3775. bool is_node = false;
  3776. if (!inplace && (a->grad)) {
  3777. GGML_ASSERT(false); // TODO: implement backward
  3778. is_node = true;
  3779. }
  3780. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3781. result->op = GGML_OP_RMS_NORM;
  3782. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3783. result->src0 = a;
  3784. result->src1 = NULL; // TODO: maybe store epsilon here?
  3785. return result;
  3786. }
  3787. struct ggml_tensor * ggml_rms_norm(
  3788. struct ggml_context * ctx,
  3789. struct ggml_tensor * a) {
  3790. return ggml_rms_norm_impl(ctx, a, false);
  3791. }
  3792. struct ggml_tensor * ggml_rms_norm_inplace(
  3793. struct ggml_context * ctx,
  3794. struct ggml_tensor * a) {
  3795. return ggml_rms_norm_impl(ctx, a, true);
  3796. }
  3797. // ggml_mul_mat
  3798. struct ggml_tensor * ggml_mul_mat(
  3799. struct ggml_context * ctx,
  3800. struct ggml_tensor * a,
  3801. struct ggml_tensor * b) {
  3802. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3803. GGML_ASSERT(!ggml_is_transposed(a));
  3804. bool is_node = false;
  3805. if (a->grad || b->grad) {
  3806. is_node = true;
  3807. }
  3808. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3809. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3810. result->op = GGML_OP_MUL_MAT;
  3811. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3812. result->src0 = a;
  3813. result->src1 = b;
  3814. return result;
  3815. }
  3816. // ggml_scale
  3817. struct ggml_tensor * ggml_scale_impl(
  3818. struct ggml_context * ctx,
  3819. struct ggml_tensor * a,
  3820. struct ggml_tensor * b,
  3821. bool inplace) {
  3822. GGML_ASSERT(ggml_is_scalar(b));
  3823. GGML_ASSERT(ggml_is_padded_1d(a));
  3824. bool is_node = false;
  3825. if (!inplace && (a->grad || b->grad)) {
  3826. GGML_ASSERT(false); // TODO: implement backward
  3827. is_node = true;
  3828. }
  3829. // TODO: when implement backward, fix this:
  3830. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3831. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3832. result->op = GGML_OP_SCALE;
  3833. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3834. result->src0 = a;
  3835. result->src1 = b;
  3836. return result;
  3837. }
  3838. struct ggml_tensor * ggml_scale(
  3839. struct ggml_context * ctx,
  3840. struct ggml_tensor * a,
  3841. struct ggml_tensor * b) {
  3842. return ggml_scale_impl(ctx, a, b, false);
  3843. }
  3844. struct ggml_tensor * ggml_scale_inplace(
  3845. struct ggml_context * ctx,
  3846. struct ggml_tensor * a,
  3847. struct ggml_tensor * b) {
  3848. return ggml_scale_impl(ctx, a, b, true);
  3849. }
  3850. // ggml_cpy
  3851. struct ggml_tensor * ggml_cpy_impl(
  3852. struct ggml_context * ctx,
  3853. struct ggml_tensor * a,
  3854. struct ggml_tensor * b,
  3855. bool inplace) {
  3856. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3857. bool is_node = false;
  3858. if (!inplace && (a->grad || b->grad)) {
  3859. GGML_ASSERT(false); // TODO: implement backward
  3860. is_node = true;
  3861. }
  3862. // make a view of the destination
  3863. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3864. result->op = GGML_OP_CPY;
  3865. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3866. result->src0 = a;
  3867. result->src1 = b;
  3868. return result;
  3869. }
  3870. struct ggml_tensor * ggml_cpy(
  3871. struct ggml_context * ctx,
  3872. struct ggml_tensor * a,
  3873. struct ggml_tensor * b) {
  3874. return ggml_cpy_impl(ctx, a, b, false);
  3875. }
  3876. struct ggml_tensor * ggml_cpy_inplace(
  3877. struct ggml_context * ctx,
  3878. struct ggml_tensor * a,
  3879. struct ggml_tensor * b) {
  3880. return ggml_cpy_impl(ctx, a, b, true);
  3881. }
  3882. // ggml_cont
  3883. struct ggml_tensor * ggml_cont_impl(
  3884. struct ggml_context * ctx,
  3885. struct ggml_tensor * a,
  3886. bool inplace) {
  3887. bool is_node = false;
  3888. if (!inplace && a->grad) {
  3889. GGML_ASSERT(false); // TODO: implement backward
  3890. is_node = true;
  3891. }
  3892. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3893. result->op = GGML_OP_CONT;
  3894. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3895. result->src0 = a;
  3896. result->src1 = NULL;
  3897. return result;
  3898. }
  3899. struct ggml_tensor * ggml_cont(
  3900. struct ggml_context * ctx,
  3901. struct ggml_tensor * a) {
  3902. return ggml_cont_impl(ctx, a, false);
  3903. }
  3904. struct ggml_tensor * ggml_cont_inplace(
  3905. struct ggml_context * ctx,
  3906. struct ggml_tensor * a) {
  3907. return ggml_cont_impl(ctx, a, true);
  3908. }
  3909. // ggml_reshape
  3910. struct ggml_tensor * ggml_reshape(
  3911. struct ggml_context * ctx,
  3912. struct ggml_tensor * a,
  3913. struct ggml_tensor * b) {
  3914. GGML_ASSERT(ggml_is_contiguous(a));
  3915. GGML_ASSERT(ggml_is_contiguous(b));
  3916. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3917. bool is_node = false;
  3918. if (a->grad || b->grad) {
  3919. GGML_ASSERT(false); // TODO: implement backward
  3920. is_node = true;
  3921. }
  3922. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  3923. result->op = GGML_OP_RESHAPE;
  3924. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3925. result->src0 = a;
  3926. result->src1 = NULL;
  3927. return result;
  3928. }
  3929. struct ggml_tensor * ggml_reshape_2d(
  3930. struct ggml_context * ctx,
  3931. struct ggml_tensor * a,
  3932. int64_t ne0,
  3933. int64_t ne1) {
  3934. GGML_ASSERT(ggml_is_contiguous(a));
  3935. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3936. bool is_node = false;
  3937. if (a->grad) {
  3938. GGML_ASSERT(false); // TODO: implement backward
  3939. is_node = true;
  3940. }
  3941. const int64_t ne[2] = { ne0, ne1 };
  3942. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  3943. result->op = GGML_OP_RESHAPE;
  3944. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3945. result->src0 = a;
  3946. result->src1 = NULL;
  3947. return result;
  3948. }
  3949. struct ggml_tensor * ggml_reshape_3d(
  3950. struct ggml_context * ctx,
  3951. struct ggml_tensor * a,
  3952. int64_t ne0,
  3953. int64_t ne1,
  3954. int64_t ne2) {
  3955. GGML_ASSERT(ggml_is_contiguous(a));
  3956. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3957. bool is_node = false;
  3958. if (a->grad) {
  3959. GGML_ASSERT(false); // TODO: implement backward
  3960. is_node = true;
  3961. }
  3962. const int64_t ne[3] = { ne0, ne1, ne2 };
  3963. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  3964. result->op = GGML_OP_RESHAPE;
  3965. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3966. result->src0 = a;
  3967. result->src1 = NULL;
  3968. return result;
  3969. }
  3970. // ggml_view_1d
  3971. struct ggml_tensor * ggml_view_1d(
  3972. struct ggml_context * ctx,
  3973. struct ggml_tensor * a,
  3974. int64_t ne0,
  3975. size_t offset) {
  3976. if (a->grad) {
  3977. GGML_ASSERT(false); // gradient propagation is not supported
  3978. }
  3979. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  3980. result->op = GGML_OP_VIEW;
  3981. result->grad = NULL;
  3982. result->src0 = a;
  3983. result->src1 = NULL; // TODO: maybe store the offset here?
  3984. return result;
  3985. }
  3986. // ggml_view_2d
  3987. struct ggml_tensor * ggml_view_2d(
  3988. struct ggml_context * ctx,
  3989. struct ggml_tensor * a,
  3990. int64_t ne0,
  3991. int64_t ne1,
  3992. size_t nb1,
  3993. size_t offset) {
  3994. if (a->grad) {
  3995. GGML_ASSERT(false); // gradient propagation is not supported
  3996. }
  3997. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  3998. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  3999. result->nb[1] = nb1;
  4000. result->nb[2] = result->nb[1]*ne1;
  4001. result->nb[3] = result->nb[2];
  4002. result->op = GGML_OP_VIEW;
  4003. result->grad = NULL;
  4004. result->src0 = a;
  4005. result->src1 = NULL; // TODO: maybe store the offset here?
  4006. return result;
  4007. }
  4008. // ggml_view_3d
  4009. struct ggml_tensor * ggml_view_3d(
  4010. struct ggml_context * ctx,
  4011. struct ggml_tensor * a,
  4012. int64_t ne0,
  4013. int64_t ne1,
  4014. int64_t ne2,
  4015. size_t nb1,
  4016. size_t nb2,
  4017. size_t offset) {
  4018. if (a->grad) {
  4019. GGML_ASSERT(false); // gradient propagation is not supported
  4020. }
  4021. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4022. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4023. result->nb[1] = nb1;
  4024. result->nb[2] = nb2;
  4025. result->nb[3] = result->nb[2]*ne2;
  4026. result->op = GGML_OP_VIEW;
  4027. result->grad = NULL;
  4028. result->src0 = a;
  4029. result->src1 = NULL; // TODO: maybe store the offset here?
  4030. return result;
  4031. }
  4032. // ggml_permute
  4033. struct ggml_tensor * ggml_permute(
  4034. struct ggml_context * ctx,
  4035. struct ggml_tensor * a,
  4036. int axis0,
  4037. int axis1,
  4038. int axis2,
  4039. int axis3) {
  4040. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4041. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4042. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4043. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4044. GGML_ASSERT(axis0 != axis1);
  4045. GGML_ASSERT(axis0 != axis2);
  4046. GGML_ASSERT(axis0 != axis3);
  4047. GGML_ASSERT(axis1 != axis2);
  4048. GGML_ASSERT(axis1 != axis3);
  4049. GGML_ASSERT(axis2 != axis3);
  4050. bool is_node = false;
  4051. if (a->grad) {
  4052. GGML_ASSERT(false); // TODO: implement backward
  4053. is_node = true;
  4054. }
  4055. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4056. int ne[GGML_MAX_DIMS];
  4057. int nb[GGML_MAX_DIMS];
  4058. ne[axis0] = a->ne[0];
  4059. ne[axis1] = a->ne[1];
  4060. ne[axis2] = a->ne[2];
  4061. ne[axis3] = a->ne[3];
  4062. nb[axis0] = a->nb[0];
  4063. nb[axis1] = a->nb[1];
  4064. nb[axis2] = a->nb[2];
  4065. nb[axis3] = a->nb[3];
  4066. result->ne[0] = ne[0];
  4067. result->ne[1] = ne[1];
  4068. result->ne[2] = ne[2];
  4069. result->ne[3] = ne[3];
  4070. result->nb[0] = nb[0];
  4071. result->nb[1] = nb[1];
  4072. result->nb[2] = nb[2];
  4073. result->nb[3] = nb[3];
  4074. result->op = GGML_OP_PERMUTE;
  4075. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4076. result->src0 = a;
  4077. result->src1 = NULL; // TODO: maybe store the permutation here?
  4078. return result;
  4079. }
  4080. // ggml_transpose
  4081. struct ggml_tensor * ggml_transpose(
  4082. struct ggml_context * ctx,
  4083. struct ggml_tensor * a) {
  4084. bool is_node = false;
  4085. if (a->grad) {
  4086. GGML_ASSERT(false); // TODO: implement backward
  4087. is_node = true;
  4088. }
  4089. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4090. result->ne[0] = a->ne[1];
  4091. result->ne[1] = a->ne[0];
  4092. result->nb[0] = a->nb[1];
  4093. result->nb[1] = a->nb[0];
  4094. result->op = GGML_OP_TRANSPOSE;
  4095. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4096. result->src0 = a;
  4097. result->src1 = NULL;
  4098. return result;
  4099. }
  4100. // ggml_get_rows
  4101. struct ggml_tensor * ggml_get_rows(
  4102. struct ggml_context * ctx,
  4103. struct ggml_tensor * a,
  4104. struct ggml_tensor * b) {
  4105. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4106. bool is_node = false;
  4107. if (a->grad || b->grad) {
  4108. GGML_ASSERT(false); // TODO: implement backward
  4109. is_node = true;
  4110. }
  4111. // TODO: implement non F32 return
  4112. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4113. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4114. result->op = GGML_OP_GET_ROWS;
  4115. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4116. result->src0 = a;
  4117. result->src1 = b;
  4118. return result;
  4119. }
  4120. // ggml_diag_mask_inf
  4121. struct ggml_tensor * ggml_diag_mask_inf(
  4122. struct ggml_context * ctx,
  4123. struct ggml_tensor * a,
  4124. int n_past) {
  4125. bool is_node = false;
  4126. if (a->grad) {
  4127. GGML_ASSERT(false); // TODO: implement backward
  4128. is_node = true;
  4129. }
  4130. // TODO: when implement backward, fix this:
  4131. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4132. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4133. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  4134. result->op = GGML_OP_DIAG_MASK_INF;
  4135. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4136. result->src0 = a;
  4137. result->src1 = b;
  4138. return result;
  4139. }
  4140. // ggml_soft_max
  4141. struct ggml_tensor * ggml_soft_max(
  4142. struct ggml_context * ctx,
  4143. struct ggml_tensor * a) {
  4144. bool is_node = false;
  4145. if (a->grad) {
  4146. GGML_ASSERT(false); // TODO: implement backward
  4147. is_node = true;
  4148. }
  4149. // TODO: when implement backward, fix this:
  4150. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4151. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4152. result->op = GGML_OP_SOFT_MAX;
  4153. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4154. result->src0 = a;
  4155. result->src1 = NULL;
  4156. return result;
  4157. }
  4158. // ggml_rope
  4159. struct ggml_tensor * ggml_rope(
  4160. struct ggml_context * ctx,
  4161. struct ggml_tensor * a,
  4162. int n_past,
  4163. int n_dims,
  4164. int mode) {
  4165. GGML_ASSERT(n_past >= 0);
  4166. bool is_node = false;
  4167. if (a->grad) {
  4168. GGML_ASSERT(false); // TODO: implement backward
  4169. is_node = true;
  4170. }
  4171. // TODO: when implement backward, fix this:
  4172. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4173. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4174. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4175. ((int32_t *) b->data)[0] = n_past;
  4176. ((int32_t *) b->data)[1] = n_dims;
  4177. ((int32_t *) b->data)[2] = mode;
  4178. result->op = GGML_OP_ROPE;
  4179. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4180. result->src0 = a;
  4181. result->src1 = b;
  4182. return result;
  4183. }
  4184. // ggml_conv_1d_1s
  4185. struct ggml_tensor * ggml_conv_1d_1s(
  4186. struct ggml_context * ctx,
  4187. struct ggml_tensor * a,
  4188. struct ggml_tensor * b) {
  4189. GGML_ASSERT(ggml_is_matrix(b));
  4190. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4191. GGML_ASSERT(a->ne[3] == 1);
  4192. bool is_node = false;
  4193. if (a->grad || b->grad) {
  4194. GGML_ASSERT(false); // TODO: implement backward
  4195. is_node = true;
  4196. }
  4197. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  4198. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4199. result->op = GGML_OP_CONV_1D_1S;
  4200. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4201. result->src0 = a;
  4202. result->src1 = b;
  4203. return result;
  4204. }
  4205. // ggml_conv_1d_2s
  4206. struct ggml_tensor * ggml_conv_1d_2s(
  4207. struct ggml_context * ctx,
  4208. struct ggml_tensor * a,
  4209. struct ggml_tensor * b) {
  4210. GGML_ASSERT(ggml_is_matrix(b));
  4211. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4212. GGML_ASSERT(a->ne[3] == 1);
  4213. bool is_node = false;
  4214. if (a->grad || b->grad) {
  4215. GGML_ASSERT(false); // TODO: implement backward
  4216. is_node = true;
  4217. }
  4218. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  4219. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4220. result->op = GGML_OP_CONV_1D_2S;
  4221. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4222. result->src0 = a;
  4223. result->src1 = b;
  4224. return result;
  4225. }
  4226. // ggml_flash_attn
  4227. struct ggml_tensor * ggml_flash_attn(
  4228. struct ggml_context * ctx,
  4229. struct ggml_tensor * q,
  4230. struct ggml_tensor * k,
  4231. struct ggml_tensor * v,
  4232. bool masked) {
  4233. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4234. // TODO: check if vT can be multiplied by (k*qT)
  4235. bool is_node = false;
  4236. if (q->grad || k->grad || v->grad) {
  4237. GGML_ASSERT(false); // TODO: implement backward
  4238. is_node = true;
  4239. }
  4240. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4241. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  4242. result->op = GGML_OP_FLASH_ATTN;
  4243. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4244. result->src0 = q;
  4245. result->src1 = k;
  4246. result->opt[0] = v;
  4247. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  4248. return result;
  4249. }
  4250. // ggml_flash_ff
  4251. struct ggml_tensor * ggml_flash_ff(
  4252. struct ggml_context * ctx,
  4253. struct ggml_tensor * a,
  4254. struct ggml_tensor * b0,
  4255. struct ggml_tensor * b1,
  4256. struct ggml_tensor * c0,
  4257. struct ggml_tensor * c1) {
  4258. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4259. // TODO: more checks
  4260. bool is_node = false;
  4261. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4262. GGML_ASSERT(false); // TODO: implement backward
  4263. is_node = true;
  4264. }
  4265. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4266. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  4267. result->op = GGML_OP_FLASH_FF;
  4268. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4269. result->src0 = a;
  4270. result->src1 = b0;
  4271. result->opt[0] = b1;
  4272. result->opt[1] = c0;
  4273. result->opt[2] = c1;
  4274. return result;
  4275. }
  4276. // ggml_map_unary
  4277. struct ggml_tensor * ggml_map_unary_impl_f32(
  4278. struct ggml_context * ctx,
  4279. struct ggml_tensor * a,
  4280. const ggml_unary_op_f32_t fun,
  4281. bool inplace) {
  4282. bool is_node = false;
  4283. if (!inplace && a->grad) {
  4284. is_node = true;
  4285. }
  4286. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4287. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4288. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4289. result->op = GGML_OP_MAP_UNARY;
  4290. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4291. result->src0 = a;
  4292. result->opt[0] = addr_tensor;
  4293. return result;
  4294. }
  4295. struct ggml_tensor * ggml_map_unary_f32(
  4296. struct ggml_context * ctx,
  4297. struct ggml_tensor * a,
  4298. const ggml_unary_op_f32_t fun) {
  4299. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4300. }
  4301. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4302. struct ggml_context * ctx,
  4303. struct ggml_tensor * a,
  4304. const ggml_unary_op_f32_t fun) {
  4305. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4306. }
  4307. // ggml_map_binary
  4308. struct ggml_tensor * ggml_map_binary_impl_f32(
  4309. struct ggml_context * ctx,
  4310. struct ggml_tensor * a,
  4311. struct ggml_tensor * b,
  4312. const ggml_binary_op_f32_t fun,
  4313. bool inplace) {
  4314. GGML_ASSERT(ggml_are_same_shape(a, b));
  4315. bool is_node = false;
  4316. if (!inplace && (a->grad || b->grad)) {
  4317. is_node = true;
  4318. }
  4319. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4320. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4321. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4322. result->op = GGML_OP_MAP_BINARY;
  4323. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4324. result->src0 = a;
  4325. result->src1 = b;
  4326. result->opt[0] = addr_tensor;
  4327. return result;
  4328. }
  4329. struct ggml_tensor * ggml_map_binary_f32(
  4330. struct ggml_context * ctx,
  4331. struct ggml_tensor * a,
  4332. struct ggml_tensor * b,
  4333. const ggml_binary_op_f32_t fun) {
  4334. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4335. }
  4336. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4337. struct ggml_context * ctx,
  4338. struct ggml_tensor * a,
  4339. struct ggml_tensor * b,
  4340. const ggml_binary_op_f32_t fun) {
  4341. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4342. }
  4343. ////////////////////////////////////////////////////////////////////////////////
  4344. void ggml_set_param(
  4345. struct ggml_context * ctx,
  4346. struct ggml_tensor * tensor) {
  4347. tensor->is_param = true;
  4348. GGML_ASSERT(tensor->grad == NULL);
  4349. tensor->grad = ggml_dup_tensor(ctx, tensor);
  4350. }
  4351. // ggml_compute_forward_dup
  4352. static void ggml_compute_forward_dup_f16(
  4353. const struct ggml_compute_params * params,
  4354. const struct ggml_tensor * src0,
  4355. struct ggml_tensor * dst) {
  4356. GGML_ASSERT(params->ith == 0);
  4357. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4358. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4359. return;
  4360. }
  4361. const int64_t ne00 = src0->ne[0];
  4362. const int64_t ne01 = src0->ne[1];
  4363. const int64_t ne02 = src0->ne[2];
  4364. const int64_t ne03 = src0->ne[3];
  4365. const size_t nb00 = src0->nb[0];
  4366. const size_t nb01 = src0->nb[1];
  4367. const size_t nb02 = src0->nb[2];
  4368. const size_t nb03 = src0->nb[3];
  4369. const size_t nb0 = dst->nb[0];
  4370. const size_t nb1 = dst->nb[1];
  4371. const size_t nb2 = dst->nb[2];
  4372. const size_t nb3 = dst->nb[3];
  4373. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4374. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  4375. return;
  4376. }
  4377. if (src0->type == dst->type &&
  4378. src0->ne[0] == dst->ne[0] &&
  4379. src0->nb[0] == GGML_TYPE_SIZE[src0->type] && dst->nb[0] == GGML_TYPE_SIZE[dst->type]) {
  4380. // copy by rows
  4381. const size_t rs = ne00*nb00;
  4382. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4383. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4384. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4385. memcpy(
  4386. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4387. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4388. rs);
  4389. }
  4390. }
  4391. }
  4392. return;
  4393. }
  4394. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  4395. if (ggml_is_contiguous(dst)) {
  4396. if (src0->nb[0] == sizeof(ggml_fp16_t)) {
  4397. if (dst->type == GGML_TYPE_F16) {
  4398. size_t id = 0;
  4399. const size_t rs = ne00*nb00;
  4400. for (int i03 = 0; i03 < ne03; i03++) {
  4401. for (int i02 = 0; i02 < ne02; i02++) {
  4402. for (int i01 = 0; i01 < ne01; i01++) {
  4403. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4404. char * dst_ptr = (char *) dst->data + id*rs;
  4405. memcpy(dst_ptr, src0_ptr, rs);
  4406. id++;
  4407. }
  4408. }
  4409. }
  4410. } else if (dst->type == GGML_TYPE_F32) {
  4411. size_t id = 0;
  4412. float * dst_ptr = (float *) dst->data;
  4413. for (int i03 = 0; i03 < ne03; i03++) {
  4414. for (int i02 = 0; i02 < ne02; i02++) {
  4415. for (int i01 = 0; i01 < ne01; i01++) {
  4416. for (int i00 = 0; i00 < ne00; i00++) {
  4417. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4418. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  4419. id++;
  4420. }
  4421. }
  4422. }
  4423. }
  4424. } else {
  4425. GGML_ASSERT(false); // TODO: implement
  4426. }
  4427. } else {
  4428. //printf("%s: this is not optimal - fix me\n", __func__);
  4429. if (dst->type == GGML_TYPE_F32) {
  4430. size_t id = 0;
  4431. float * dst_ptr = (float *) dst->data;
  4432. for (int i03 = 0; i03 < ne03; i03++) {
  4433. for (int i02 = 0; i02 < ne02; i02++) {
  4434. for (int i01 = 0; i01 < ne01; i01++) {
  4435. for (int i00 = 0; i00 < ne00; i00++) {
  4436. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4437. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  4438. id++;
  4439. }
  4440. }
  4441. }
  4442. }
  4443. } else if (dst->type == GGML_TYPE_F16) {
  4444. size_t id = 0;
  4445. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4446. for (int i03 = 0; i03 < ne03; i03++) {
  4447. for (int i02 = 0; i02 < ne02; i02++) {
  4448. for (int i01 = 0; i01 < ne01; i01++) {
  4449. for (int i00 = 0; i00 < ne00; i00++) {
  4450. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4451. dst_ptr[id] = *src0_ptr;
  4452. id++;
  4453. }
  4454. }
  4455. }
  4456. }
  4457. } else {
  4458. GGML_ASSERT(false); // TODO: implement
  4459. }
  4460. }
  4461. return;
  4462. }
  4463. // dst counters
  4464. int64_t i10 = 0;
  4465. int64_t i11 = 0;
  4466. int64_t i12 = 0;
  4467. int64_t i13 = 0;
  4468. if (dst->type == GGML_TYPE_F16) {
  4469. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4470. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4471. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4472. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4473. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4474. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4475. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  4476. if (++i10 == ne00) {
  4477. i10 = 0;
  4478. if (++i11 == ne01) {
  4479. i11 = 0;
  4480. if (++i12 == ne02) {
  4481. i12 = 0;
  4482. if (++i13 == ne03) {
  4483. i13 = 0;
  4484. }
  4485. }
  4486. }
  4487. }
  4488. }
  4489. }
  4490. }
  4491. }
  4492. } else if (dst->type == GGML_TYPE_F32) {
  4493. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4494. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4495. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4496. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4497. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4498. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4499. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  4500. if (++i10 == ne00) {
  4501. i10 = 0;
  4502. if (++i11 == ne01) {
  4503. i11 = 0;
  4504. if (++i12 == ne02) {
  4505. i12 = 0;
  4506. if (++i13 == ne03) {
  4507. i13 = 0;
  4508. }
  4509. }
  4510. }
  4511. }
  4512. }
  4513. }
  4514. }
  4515. }
  4516. } else {
  4517. GGML_ASSERT(false); // TODO: implement
  4518. }
  4519. }
  4520. static void ggml_compute_forward_dup_f32(
  4521. const struct ggml_compute_params * params,
  4522. const struct ggml_tensor * src0,
  4523. struct ggml_tensor * dst) {
  4524. GGML_ASSERT(params->ith == 0);
  4525. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4526. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4527. return;
  4528. }
  4529. const int64_t ne00 = src0->ne[0];
  4530. const int64_t ne01 = src0->ne[1];
  4531. const int64_t ne02 = src0->ne[2];
  4532. const int64_t ne03 = src0->ne[3];
  4533. const size_t nb00 = src0->nb[0];
  4534. const size_t nb01 = src0->nb[1];
  4535. const size_t nb02 = src0->nb[2];
  4536. const size_t nb03 = src0->nb[3];
  4537. const size_t nb0 = dst->nb[0];
  4538. const size_t nb1 = dst->nb[1];
  4539. const size_t nb2 = dst->nb[2];
  4540. const size_t nb3 = dst->nb[3];
  4541. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4542. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  4543. return;
  4544. }
  4545. if (src0->type == dst->type &&
  4546. src0->ne[0] == dst->ne[0] &&
  4547. src0->nb[0] == GGML_TYPE_SIZE[src0->type] && dst->nb[0] == GGML_TYPE_SIZE[dst->type]) {
  4548. // copy by rows
  4549. const size_t rs = ne00*nb00;
  4550. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4551. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4552. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4553. memcpy(
  4554. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4555. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4556. rs);
  4557. }
  4558. }
  4559. }
  4560. return;
  4561. }
  4562. if (ggml_is_contiguous(dst)) {
  4563. // TODO: simplify
  4564. if (src0->nb[0] == sizeof(float)) {
  4565. if (dst->type == GGML_TYPE_F32) {
  4566. size_t id = 0;
  4567. const size_t rs = ne00*nb00;
  4568. for (int i03 = 0; i03 < ne03; i03++) {
  4569. for (int i02 = 0; i02 < ne02; i02++) {
  4570. for (int i01 = 0; i01 < ne01; i01++) {
  4571. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4572. char * dst_ptr = (char *) dst->data + id*rs;
  4573. memcpy(dst_ptr, src0_ptr, rs);
  4574. id++;
  4575. }
  4576. }
  4577. }
  4578. } else if (dst->type == GGML_TYPE_F16) {
  4579. size_t id = 0;
  4580. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4581. for (int i03 = 0; i03 < ne03; i03++) {
  4582. for (int i02 = 0; i02 < ne02; i02++) {
  4583. for (int i01 = 0; i01 < ne01; i01++) {
  4584. for (int i00 = 0; i00 < ne00; i00++) {
  4585. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4586. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4587. id++;
  4588. }
  4589. }
  4590. }
  4591. }
  4592. } else {
  4593. GGML_ASSERT(false); // TODO: implement
  4594. }
  4595. } else {
  4596. //printf("%s: this is not optimal - fix me\n", __func__);
  4597. if (dst->type == GGML_TYPE_F32) {
  4598. size_t id = 0;
  4599. float * dst_ptr = (float *) dst->data;
  4600. for (int i03 = 0; i03 < ne03; i03++) {
  4601. for (int i02 = 0; i02 < ne02; i02++) {
  4602. for (int i01 = 0; i01 < ne01; i01++) {
  4603. for (int i00 = 0; i00 < ne00; i00++) {
  4604. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4605. dst_ptr[id] = *src0_ptr;
  4606. id++;
  4607. }
  4608. }
  4609. }
  4610. }
  4611. } else if (dst->type == GGML_TYPE_F16) {
  4612. size_t id = 0;
  4613. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4614. for (int i03 = 0; i03 < ne03; i03++) {
  4615. for (int i02 = 0; i02 < ne02; i02++) {
  4616. for (int i01 = 0; i01 < ne01; i01++) {
  4617. for (int i00 = 0; i00 < ne00; i00++) {
  4618. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4619. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4620. id++;
  4621. }
  4622. }
  4623. }
  4624. }
  4625. } else {
  4626. GGML_ASSERT(false); // TODO: implement
  4627. }
  4628. }
  4629. return;
  4630. }
  4631. // dst counters
  4632. int64_t i10 = 0;
  4633. int64_t i11 = 0;
  4634. int64_t i12 = 0;
  4635. int64_t i13 = 0;
  4636. if (dst->type == GGML_TYPE_F32) {
  4637. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4638. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4639. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4640. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4641. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4642. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4643. memcpy(dst_ptr, src0_ptr, sizeof(float));
  4644. if (++i10 == dst->ne[0]) {
  4645. i10 = 0;
  4646. if (++i11 == dst->ne[1]) {
  4647. i11 = 0;
  4648. if (++i12 == dst->ne[2]) {
  4649. i12 = 0;
  4650. if (++i13 == dst->ne[3]) {
  4651. i13 = 0;
  4652. }
  4653. }
  4654. }
  4655. }
  4656. }
  4657. }
  4658. }
  4659. }
  4660. } else if (dst->type == GGML_TYPE_F16) {
  4661. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4662. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4663. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4664. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4665. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4666. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4667. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  4668. if (++i10 == dst->ne[0]) {
  4669. i10 = 0;
  4670. if (++i11 == dst->ne[1]) {
  4671. i11 = 0;
  4672. if (++i12 == dst->ne[2]) {
  4673. i12 = 0;
  4674. if (++i13 == dst->ne[3]) {
  4675. i13 = 0;
  4676. }
  4677. }
  4678. }
  4679. }
  4680. }
  4681. }
  4682. }
  4683. }
  4684. } else {
  4685. GGML_ASSERT(false); // TODO: implement
  4686. }
  4687. }
  4688. static void ggml_compute_forward_dup(
  4689. const struct ggml_compute_params * params,
  4690. const struct ggml_tensor * src0,
  4691. struct ggml_tensor * dst) {
  4692. switch (src0->type) {
  4693. case GGML_TYPE_F16:
  4694. {
  4695. ggml_compute_forward_dup_f16(params, src0, dst);
  4696. } break;
  4697. case GGML_TYPE_F32:
  4698. {
  4699. ggml_compute_forward_dup_f32(params, src0, dst);
  4700. } break;
  4701. case GGML_TYPE_Q4_0:
  4702. case GGML_TYPE_Q4_1:
  4703. case GGML_TYPE_Q8_0:
  4704. case GGML_TYPE_I8:
  4705. case GGML_TYPE_I16:
  4706. case GGML_TYPE_I32:
  4707. case GGML_TYPE_COUNT:
  4708. {
  4709. GGML_ASSERT(false);
  4710. } break;
  4711. }
  4712. }
  4713. // ggml_compute_forward_add
  4714. static void ggml_compute_forward_add_f32(
  4715. const struct ggml_compute_params * params,
  4716. const struct ggml_tensor * src0,
  4717. const struct ggml_tensor * src1,
  4718. struct ggml_tensor * dst) {
  4719. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4720. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4721. return;
  4722. }
  4723. const int ith = params->ith;
  4724. const int nth = params->nth;
  4725. const int n = ggml_nrows(src0);
  4726. const int nc = src0->ne[0];
  4727. const size_t nb00 = src0->nb[0];
  4728. const size_t nb01 = src0->nb[1];
  4729. const size_t nb10 = src1->nb[0];
  4730. const size_t nb11 = src1->nb[1];
  4731. const size_t nb0 = dst->nb[0];
  4732. const size_t nb1 = dst->nb[1];
  4733. GGML_ASSERT( nb0 == sizeof(float));
  4734. GGML_ASSERT(nb00 == sizeof(float));
  4735. if (nb10 == sizeof(float)) {
  4736. for (int j = ith; j < n; j += nth) {
  4737. #ifdef GGML_USE_ACCELERATE
  4738. vDSP_vadd(
  4739. (float *) ((char *) src0->data + j*nb01), 1,
  4740. (float *) ((char *) src1->data + j*nb11), 1,
  4741. (float *) ((char *) dst->data + j*nb1), 1, nc);
  4742. #else
  4743. ggml_vec_add_f32(nc,
  4744. (float *) ((char *) dst->data + j*nb1),
  4745. (float *) ((char *) src0->data + j*nb01),
  4746. (float *) ((char *) src1->data + j*nb11));
  4747. #endif
  4748. }
  4749. } else {
  4750. // src1 is not contiguous
  4751. for (int j = ith; j < n; j += nth) {
  4752. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  4753. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  4754. for (int i = 0; i < nc; i++) {
  4755. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  4756. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  4757. }
  4758. }
  4759. }
  4760. }
  4761. static void ggml_compute_forward_add(
  4762. const struct ggml_compute_params * params,
  4763. const struct ggml_tensor * src0,
  4764. const struct ggml_tensor * src1,
  4765. struct ggml_tensor * dst) {
  4766. switch (src0->type) {
  4767. case GGML_TYPE_F32:
  4768. {
  4769. ggml_compute_forward_add_f32(params, src0, src1, dst);
  4770. } break;
  4771. case GGML_TYPE_Q4_0:
  4772. case GGML_TYPE_Q4_1:
  4773. case GGML_TYPE_Q8_0:
  4774. case GGML_TYPE_I8:
  4775. case GGML_TYPE_I16:
  4776. case GGML_TYPE_I32:
  4777. case GGML_TYPE_F16:
  4778. case GGML_TYPE_COUNT:
  4779. {
  4780. GGML_ASSERT(false);
  4781. } break;
  4782. }
  4783. }
  4784. // ggml_compute_forward_sub
  4785. static void ggml_compute_forward_sub_f32(
  4786. const struct ggml_compute_params * params,
  4787. const struct ggml_tensor * src0,
  4788. const struct ggml_tensor * src1,
  4789. struct ggml_tensor * dst) {
  4790. assert(params->ith == 0);
  4791. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4792. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4793. return;
  4794. }
  4795. const int n = ggml_nrows(src0);
  4796. const int nc = src0->ne[0];
  4797. assert( dst->nb[0] == sizeof(float));
  4798. assert(src0->nb[0] == sizeof(float));
  4799. assert(src1->nb[0] == sizeof(float));
  4800. for (int i = 0; i < n; i++) {
  4801. ggml_vec_sub_f32(nc,
  4802. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4803. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4804. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4805. }
  4806. }
  4807. static void ggml_compute_forward_sub(
  4808. const struct ggml_compute_params * params,
  4809. const struct ggml_tensor * src0,
  4810. const struct ggml_tensor * src1,
  4811. struct ggml_tensor * dst) {
  4812. switch (src0->type) {
  4813. case GGML_TYPE_F32:
  4814. {
  4815. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  4816. } break;
  4817. case GGML_TYPE_Q4_0:
  4818. case GGML_TYPE_Q4_1:
  4819. case GGML_TYPE_Q8_0:
  4820. case GGML_TYPE_I8:
  4821. case GGML_TYPE_I16:
  4822. case GGML_TYPE_I32:
  4823. case GGML_TYPE_F16:
  4824. case GGML_TYPE_COUNT:
  4825. {
  4826. GGML_ASSERT(false);
  4827. } break;
  4828. }
  4829. }
  4830. // ggml_compute_forward_mul
  4831. static void ggml_compute_forward_mul_f32(
  4832. const struct ggml_compute_params * params,
  4833. const struct ggml_tensor * src0,
  4834. const struct ggml_tensor * src1,
  4835. struct ggml_tensor * dst) {
  4836. assert(params->ith == 0);
  4837. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4838. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4839. return;
  4840. }
  4841. const int n = ggml_nrows(src0);
  4842. const int nc = src0->ne[0];
  4843. assert( dst->nb[0] == sizeof(float));
  4844. assert(src0->nb[0] == sizeof(float));
  4845. assert(src1->nb[0] == sizeof(float));
  4846. for (int i = 0; i < n; i++) {
  4847. ggml_vec_mul_f32(nc,
  4848. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4849. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4850. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4851. }
  4852. }
  4853. static void ggml_compute_forward_mul(
  4854. const struct ggml_compute_params * params,
  4855. const struct ggml_tensor * src0,
  4856. const struct ggml_tensor * src1,
  4857. struct ggml_tensor * dst) {
  4858. switch (src0->type) {
  4859. case GGML_TYPE_F32:
  4860. {
  4861. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  4862. } break;
  4863. case GGML_TYPE_Q4_0:
  4864. case GGML_TYPE_Q4_1:
  4865. case GGML_TYPE_Q8_0:
  4866. case GGML_TYPE_I8:
  4867. case GGML_TYPE_I16:
  4868. case GGML_TYPE_I32:
  4869. case GGML_TYPE_F16:
  4870. case GGML_TYPE_COUNT:
  4871. {
  4872. GGML_ASSERT(false);
  4873. } break;
  4874. }
  4875. }
  4876. // ggml_compute_forward_div
  4877. static void ggml_compute_forward_div_f32(
  4878. const struct ggml_compute_params * params,
  4879. const struct ggml_tensor * src0,
  4880. const struct ggml_tensor * src1,
  4881. struct ggml_tensor * dst) {
  4882. assert(params->ith == 0);
  4883. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4884. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4885. return;
  4886. }
  4887. const int n = ggml_nrows(src0);
  4888. const int nc = src0->ne[0];
  4889. assert( dst->nb[0] == sizeof(float));
  4890. assert(src0->nb[0] == sizeof(float));
  4891. assert(src1->nb[0] == sizeof(float));
  4892. for (int i = 0; i < n; i++) {
  4893. ggml_vec_div_f32(nc,
  4894. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4895. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4896. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4897. }
  4898. }
  4899. static void ggml_compute_forward_div(
  4900. const struct ggml_compute_params * params,
  4901. const struct ggml_tensor * src0,
  4902. const struct ggml_tensor * src1,
  4903. struct ggml_tensor * dst) {
  4904. switch (src0->type) {
  4905. case GGML_TYPE_F32:
  4906. {
  4907. ggml_compute_forward_div_f32(params, src0, src1, dst);
  4908. } break;
  4909. case GGML_TYPE_Q4_0:
  4910. case GGML_TYPE_Q4_1:
  4911. case GGML_TYPE_Q8_0:
  4912. case GGML_TYPE_I8:
  4913. case GGML_TYPE_I16:
  4914. case GGML_TYPE_I32:
  4915. case GGML_TYPE_F16:
  4916. case GGML_TYPE_COUNT:
  4917. {
  4918. GGML_ASSERT(false);
  4919. } break;
  4920. }
  4921. }
  4922. // ggml_compute_forward_sqr
  4923. static void ggml_compute_forward_sqr_f32(
  4924. const struct ggml_compute_params * params,
  4925. const struct ggml_tensor * src0,
  4926. struct ggml_tensor * dst) {
  4927. assert(params->ith == 0);
  4928. assert(ggml_are_same_shape(src0, dst));
  4929. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4930. return;
  4931. }
  4932. const int n = ggml_nrows(src0);
  4933. const int nc = src0->ne[0];
  4934. assert( dst->nb[0] == sizeof(float));
  4935. assert(src0->nb[0] == sizeof(float));
  4936. for (int i = 0; i < n; i++) {
  4937. ggml_vec_sqr_f32(nc,
  4938. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4939. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4940. }
  4941. }
  4942. static void ggml_compute_forward_sqr(
  4943. const struct ggml_compute_params * params,
  4944. const struct ggml_tensor * src0,
  4945. struct ggml_tensor * dst) {
  4946. switch (src0->type) {
  4947. case GGML_TYPE_F32:
  4948. {
  4949. ggml_compute_forward_sqr_f32(params, src0, dst);
  4950. } break;
  4951. case GGML_TYPE_Q4_0:
  4952. case GGML_TYPE_Q4_1:
  4953. case GGML_TYPE_Q8_0:
  4954. case GGML_TYPE_I8:
  4955. case GGML_TYPE_I16:
  4956. case GGML_TYPE_I32:
  4957. case GGML_TYPE_F16:
  4958. case GGML_TYPE_COUNT:
  4959. {
  4960. GGML_ASSERT(false);
  4961. } break;
  4962. }
  4963. }
  4964. // ggml_compute_forward_sqrt
  4965. static void ggml_compute_forward_sqrt_f32(
  4966. const struct ggml_compute_params * params,
  4967. const struct ggml_tensor * src0,
  4968. struct ggml_tensor * dst) {
  4969. assert(params->ith == 0);
  4970. assert(ggml_are_same_shape(src0, dst));
  4971. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4972. return;
  4973. }
  4974. const int n = ggml_nrows(src0);
  4975. const int nc = src0->ne[0];
  4976. assert( dst->nb[0] == sizeof(float));
  4977. assert(src0->nb[0] == sizeof(float));
  4978. for (int i = 0; i < n; i++) {
  4979. ggml_vec_sqrt_f32(nc,
  4980. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4981. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4982. }
  4983. }
  4984. static void ggml_compute_forward_sqrt(
  4985. const struct ggml_compute_params * params,
  4986. const struct ggml_tensor * src0,
  4987. struct ggml_tensor * dst) {
  4988. switch (src0->type) {
  4989. case GGML_TYPE_F32:
  4990. {
  4991. ggml_compute_forward_sqrt_f32(params, src0, dst);
  4992. } break;
  4993. case GGML_TYPE_Q4_0:
  4994. case GGML_TYPE_Q4_1:
  4995. case GGML_TYPE_Q8_0:
  4996. case GGML_TYPE_I8:
  4997. case GGML_TYPE_I16:
  4998. case GGML_TYPE_I32:
  4999. case GGML_TYPE_F16:
  5000. case GGML_TYPE_COUNT:
  5001. {
  5002. GGML_ASSERT(false);
  5003. } break;
  5004. }
  5005. }
  5006. // ggml_compute_forward_sum
  5007. static void ggml_compute_forward_sum_f32(
  5008. const struct ggml_compute_params * params,
  5009. const struct ggml_tensor * src0,
  5010. struct ggml_tensor * dst) {
  5011. assert(params->ith == 0);
  5012. assert(ggml_is_scalar(dst));
  5013. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5014. return;
  5015. }
  5016. assert(ggml_is_scalar(dst));
  5017. assert(src0->nb[0] == sizeof(float));
  5018. const int64_t ne00 = src0->ne[0];
  5019. const int64_t ne01 = src0->ne[1];
  5020. const int64_t ne02 = src0->ne[2];
  5021. const int64_t ne03 = src0->ne[3];
  5022. const size_t nb01 = src0->nb[1];
  5023. const size_t nb02 = src0->nb[2];
  5024. const size_t nb03 = src0->nb[3];
  5025. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5026. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5027. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5028. ggml_vec_sum_f32(ne00,
  5029. (float *) (dst->data),
  5030. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5031. }
  5032. }
  5033. }
  5034. }
  5035. static void ggml_compute_forward_sum(
  5036. const struct ggml_compute_params * params,
  5037. const struct ggml_tensor * src0,
  5038. struct ggml_tensor * dst) {
  5039. switch (src0->type) {
  5040. case GGML_TYPE_F32:
  5041. {
  5042. ggml_compute_forward_sum_f32(params, src0, dst);
  5043. } break;
  5044. case GGML_TYPE_Q4_0:
  5045. case GGML_TYPE_Q4_1:
  5046. case GGML_TYPE_Q8_0:
  5047. case GGML_TYPE_I8:
  5048. case GGML_TYPE_I16:
  5049. case GGML_TYPE_I32:
  5050. case GGML_TYPE_F16:
  5051. case GGML_TYPE_COUNT:
  5052. {
  5053. GGML_ASSERT(false);
  5054. } break;
  5055. }
  5056. }
  5057. // ggml_compute_forward_mean
  5058. static void ggml_compute_forward_mean_f32(
  5059. const struct ggml_compute_params * params,
  5060. const struct ggml_tensor * src0,
  5061. struct ggml_tensor * dst) {
  5062. assert(params->ith == 0);
  5063. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5064. return;
  5065. }
  5066. assert(src0->nb[0] == sizeof(float));
  5067. const int64_t ne00 = src0->ne[0];
  5068. const int64_t ne01 = src0->ne[1];
  5069. const int64_t ne02 = src0->ne[2];
  5070. const int64_t ne03 = src0->ne[3];
  5071. const size_t nb01 = src0->nb[1];
  5072. const size_t nb02 = src0->nb[2];
  5073. const size_t nb03 = src0->nb[3];
  5074. const int64_t ne0 = dst->ne[0];
  5075. const int64_t ne1 = dst->ne[1];
  5076. const int64_t ne2 = dst->ne[2];
  5077. const int64_t ne3 = dst->ne[3];
  5078. assert(ne0 == 1);
  5079. assert(ne1 == ne01);
  5080. assert(ne2 == ne02);
  5081. assert(ne3 == ne03);
  5082. UNUSED(ne0);
  5083. UNUSED(ne1);
  5084. UNUSED(ne2);
  5085. UNUSED(ne3);
  5086. const size_t nb1 = dst->nb[1];
  5087. const size_t nb2 = dst->nb[2];
  5088. const size_t nb3 = dst->nb[3];
  5089. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5090. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5091. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5092. ggml_vec_sum_f32(ne00,
  5093. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5094. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5095. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  5096. }
  5097. }
  5098. }
  5099. }
  5100. static void ggml_compute_forward_mean(
  5101. const struct ggml_compute_params * params,
  5102. const struct ggml_tensor * src0,
  5103. struct ggml_tensor * dst) {
  5104. switch (src0->type) {
  5105. case GGML_TYPE_F32:
  5106. {
  5107. ggml_compute_forward_mean_f32(params, src0, dst);
  5108. } break;
  5109. case GGML_TYPE_Q4_0:
  5110. case GGML_TYPE_Q4_1:
  5111. case GGML_TYPE_Q8_0:
  5112. case GGML_TYPE_I8:
  5113. case GGML_TYPE_I16:
  5114. case GGML_TYPE_I32:
  5115. case GGML_TYPE_F16:
  5116. case GGML_TYPE_COUNT:
  5117. {
  5118. GGML_ASSERT(false);
  5119. } break;
  5120. }
  5121. }
  5122. // ggml_compute_forward_repeat
  5123. static void ggml_compute_forward_repeat_f32(
  5124. const struct ggml_compute_params * params,
  5125. const struct ggml_tensor * src0,
  5126. struct ggml_tensor * dst) {
  5127. assert(params->ith == 0);
  5128. assert(ggml_can_repeat(src0, dst));
  5129. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5130. return;
  5131. }
  5132. // TODO: implement support for rank > 2 tensors
  5133. assert(src0->ne[2] == 1);
  5134. assert(src0->ne[3] == 1);
  5135. assert( dst->ne[2] == 1);
  5136. assert( dst->ne[3] == 1);
  5137. const int nc = dst->ne[0];
  5138. const int nr = dst->ne[1];
  5139. const int nc0 = src0->ne[0];
  5140. const int nr0 = src0->ne[1];
  5141. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5142. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5143. // TODO: support for transposed / permuted tensors
  5144. assert( dst->nb[0] == sizeof(float));
  5145. assert(src0->nb[0] == sizeof(float));
  5146. // TODO: maybe this is not optimal?
  5147. for (int i = 0; i < nrr; i++) {
  5148. for (int j = 0; j < ncr; j++) {
  5149. for (int k = 0; k < nr0; k++) {
  5150. ggml_vec_cpy_f32(nc0,
  5151. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  5152. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  5153. }
  5154. }
  5155. }
  5156. }
  5157. static void ggml_compute_forward_repeat(
  5158. const struct ggml_compute_params * params,
  5159. const struct ggml_tensor * src0,
  5160. struct ggml_tensor * dst) {
  5161. switch (src0->type) {
  5162. case GGML_TYPE_F32:
  5163. {
  5164. ggml_compute_forward_repeat_f32(params, src0, dst);
  5165. } break;
  5166. case GGML_TYPE_Q4_0:
  5167. case GGML_TYPE_Q4_1:
  5168. case GGML_TYPE_Q8_0:
  5169. case GGML_TYPE_I8:
  5170. case GGML_TYPE_I16:
  5171. case GGML_TYPE_I32:
  5172. case GGML_TYPE_F16:
  5173. case GGML_TYPE_COUNT:
  5174. {
  5175. GGML_ASSERT(false);
  5176. } break;
  5177. }
  5178. }
  5179. // ggml_compute_forward_abs
  5180. static void ggml_compute_forward_abs_f32(
  5181. const struct ggml_compute_params * params,
  5182. const struct ggml_tensor * src0,
  5183. struct ggml_tensor * dst) {
  5184. assert(params->ith == 0);
  5185. assert(ggml_are_same_shape(src0, dst));
  5186. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5187. return;
  5188. }
  5189. const int n = ggml_nrows(src0);
  5190. const int nc = src0->ne[0];
  5191. assert(dst->nb[0] == sizeof(float));
  5192. assert(src0->nb[0] == sizeof(float));
  5193. for (int i = 0; i < n; i++) {
  5194. ggml_vec_abs_f32(nc,
  5195. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5196. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5197. }
  5198. }
  5199. static void ggml_compute_forward_abs(
  5200. const struct ggml_compute_params * params,
  5201. const struct ggml_tensor * src0,
  5202. struct ggml_tensor * dst) {
  5203. switch (src0->type) {
  5204. case GGML_TYPE_F32:
  5205. {
  5206. ggml_compute_forward_abs_f32(params, src0, dst);
  5207. } break;
  5208. case GGML_TYPE_Q4_0:
  5209. case GGML_TYPE_Q4_1:
  5210. case GGML_TYPE_Q8_0:
  5211. case GGML_TYPE_I8:
  5212. case GGML_TYPE_I16:
  5213. case GGML_TYPE_I32:
  5214. case GGML_TYPE_F16:
  5215. case GGML_TYPE_COUNT:
  5216. {
  5217. GGML_ASSERT(false);
  5218. } break;
  5219. }
  5220. }
  5221. // ggml_compute_forward_sgn
  5222. static void ggml_compute_forward_sgn_f32(
  5223. const struct ggml_compute_params * params,
  5224. const struct ggml_tensor * src0,
  5225. struct ggml_tensor * dst) {
  5226. assert(params->ith == 0);
  5227. assert(ggml_are_same_shape(src0, dst));
  5228. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5229. return;
  5230. }
  5231. const int n = ggml_nrows(src0);
  5232. const int nc = src0->ne[0];
  5233. assert(dst->nb[0] == sizeof(float));
  5234. assert(src0->nb[0] == sizeof(float));
  5235. for (int i = 0; i < n; i++) {
  5236. ggml_vec_sgn_f32(nc,
  5237. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5238. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5239. }
  5240. }
  5241. static void ggml_compute_forward_sgn(
  5242. const struct ggml_compute_params * params,
  5243. const struct ggml_tensor * src0,
  5244. struct ggml_tensor * dst) {
  5245. switch (src0->type) {
  5246. case GGML_TYPE_F32:
  5247. {
  5248. ggml_compute_forward_sgn_f32(params, src0, dst);
  5249. } break;
  5250. case GGML_TYPE_Q4_0:
  5251. case GGML_TYPE_Q4_1:
  5252. case GGML_TYPE_Q8_0:
  5253. case GGML_TYPE_I8:
  5254. case GGML_TYPE_I16:
  5255. case GGML_TYPE_I32:
  5256. case GGML_TYPE_F16:
  5257. case GGML_TYPE_COUNT:
  5258. {
  5259. GGML_ASSERT(false);
  5260. } break;
  5261. }
  5262. }
  5263. // ggml_compute_forward_neg
  5264. static void ggml_compute_forward_neg_f32(
  5265. const struct ggml_compute_params * params,
  5266. const struct ggml_tensor * src0,
  5267. struct ggml_tensor * dst) {
  5268. assert(params->ith == 0);
  5269. assert(ggml_are_same_shape(src0, dst));
  5270. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5271. return;
  5272. }
  5273. const int n = ggml_nrows(src0);
  5274. const int nc = src0->ne[0];
  5275. assert(dst->nb[0] == sizeof(float));
  5276. assert(src0->nb[0] == sizeof(float));
  5277. for (int i = 0; i < n; i++) {
  5278. ggml_vec_neg_f32(nc,
  5279. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5280. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5281. }
  5282. }
  5283. static void ggml_compute_forward_neg(
  5284. const struct ggml_compute_params * params,
  5285. const struct ggml_tensor * src0,
  5286. struct ggml_tensor * dst) {
  5287. switch (src0->type) {
  5288. case GGML_TYPE_F32:
  5289. {
  5290. ggml_compute_forward_neg_f32(params, src0, dst);
  5291. } break;
  5292. case GGML_TYPE_Q4_0:
  5293. case GGML_TYPE_Q4_1:
  5294. case GGML_TYPE_Q8_0:
  5295. case GGML_TYPE_I8:
  5296. case GGML_TYPE_I16:
  5297. case GGML_TYPE_I32:
  5298. case GGML_TYPE_F16:
  5299. case GGML_TYPE_COUNT:
  5300. {
  5301. GGML_ASSERT(false);
  5302. } break;
  5303. }
  5304. }
  5305. // ggml_compute_forward_step
  5306. static void ggml_compute_forward_step_f32(
  5307. const struct ggml_compute_params * params,
  5308. const struct ggml_tensor * src0,
  5309. struct ggml_tensor * dst) {
  5310. assert(params->ith == 0);
  5311. assert(ggml_are_same_shape(src0, dst));
  5312. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5313. return;
  5314. }
  5315. const int n = ggml_nrows(src0);
  5316. const int nc = src0->ne[0];
  5317. assert(dst->nb[0] == sizeof(float));
  5318. assert(src0->nb[0] == sizeof(float));
  5319. for (int i = 0; i < n; i++) {
  5320. ggml_vec_step_f32(nc,
  5321. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5322. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5323. }
  5324. }
  5325. static void ggml_compute_forward_step(
  5326. const struct ggml_compute_params * params,
  5327. const struct ggml_tensor * src0,
  5328. struct ggml_tensor * dst) {
  5329. switch (src0->type) {
  5330. case GGML_TYPE_F32:
  5331. {
  5332. ggml_compute_forward_step_f32(params, src0, dst);
  5333. } break;
  5334. case GGML_TYPE_Q4_0:
  5335. case GGML_TYPE_Q4_1:
  5336. case GGML_TYPE_Q8_0:
  5337. case GGML_TYPE_I8:
  5338. case GGML_TYPE_I16:
  5339. case GGML_TYPE_I32:
  5340. case GGML_TYPE_F16:
  5341. case GGML_TYPE_COUNT:
  5342. {
  5343. GGML_ASSERT(false);
  5344. } break;
  5345. }
  5346. }
  5347. // ggml_compute_forward_relu
  5348. static void ggml_compute_forward_relu_f32(
  5349. const struct ggml_compute_params * params,
  5350. const struct ggml_tensor * src0,
  5351. struct ggml_tensor * dst) {
  5352. assert(params->ith == 0);
  5353. assert(ggml_are_same_shape(src0, dst));
  5354. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5355. return;
  5356. }
  5357. const int n = ggml_nrows(src0);
  5358. const int nc = src0->ne[0];
  5359. assert(dst->nb[0] == sizeof(float));
  5360. assert(src0->nb[0] == sizeof(float));
  5361. for (int i = 0; i < n; i++) {
  5362. ggml_vec_relu_f32(nc,
  5363. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5364. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5365. }
  5366. }
  5367. static void ggml_compute_forward_relu(
  5368. const struct ggml_compute_params * params,
  5369. const struct ggml_tensor * src0,
  5370. struct ggml_tensor * dst) {
  5371. switch (src0->type) {
  5372. case GGML_TYPE_F32:
  5373. {
  5374. ggml_compute_forward_relu_f32(params, src0, dst);
  5375. } break;
  5376. case GGML_TYPE_Q4_0:
  5377. case GGML_TYPE_Q4_1:
  5378. case GGML_TYPE_Q8_0:
  5379. case GGML_TYPE_I8:
  5380. case GGML_TYPE_I16:
  5381. case GGML_TYPE_I32:
  5382. case GGML_TYPE_F16:
  5383. case GGML_TYPE_COUNT:
  5384. {
  5385. GGML_ASSERT(false);
  5386. } break;
  5387. }
  5388. }
  5389. // ggml_compute_forward_gelu
  5390. static void ggml_compute_forward_gelu_f32(
  5391. const struct ggml_compute_params * params,
  5392. const struct ggml_tensor * src0,
  5393. struct ggml_tensor * dst) {
  5394. GGML_ASSERT(ggml_is_contiguous(src0));
  5395. GGML_ASSERT(ggml_is_contiguous(dst));
  5396. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5397. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5398. return;
  5399. }
  5400. const int ith = params->ith;
  5401. const int nth = params->nth;
  5402. const int nc = src0->ne[0];
  5403. const int nr = ggml_nrows(src0);
  5404. // rows per thread
  5405. const int dr = (nr + nth - 1)/nth;
  5406. // row range for this thread
  5407. const int ir0 = dr*ith;
  5408. const int ir1 = MIN(ir0 + dr, nr);
  5409. for (int i1 = ir0; i1 < ir1; i1++) {
  5410. ggml_vec_gelu_f32(nc,
  5411. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5412. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5413. #ifndef NDEBUG
  5414. for (int k = 0; k < nc; k++) {
  5415. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5416. UNUSED(x);
  5417. assert(!isnan(x));
  5418. assert(!isinf(x));
  5419. }
  5420. #endif
  5421. }
  5422. }
  5423. static void ggml_compute_forward_gelu(
  5424. const struct ggml_compute_params * params,
  5425. const struct ggml_tensor * src0,
  5426. struct ggml_tensor * dst) {
  5427. switch (src0->type) {
  5428. case GGML_TYPE_F32:
  5429. {
  5430. ggml_compute_forward_gelu_f32(params, src0, dst);
  5431. } break;
  5432. case GGML_TYPE_Q4_0:
  5433. case GGML_TYPE_Q4_1:
  5434. case GGML_TYPE_Q8_0:
  5435. case GGML_TYPE_I8:
  5436. case GGML_TYPE_I16:
  5437. case GGML_TYPE_I32:
  5438. case GGML_TYPE_F16:
  5439. case GGML_TYPE_COUNT:
  5440. {
  5441. GGML_ASSERT(false);
  5442. } break;
  5443. }
  5444. //printf("XXXXXXXX gelu\n");
  5445. }
  5446. // ggml_compute_forward_silu
  5447. static void ggml_compute_forward_silu_f32(
  5448. const struct ggml_compute_params * params,
  5449. const struct ggml_tensor * src0,
  5450. struct ggml_tensor * dst) {
  5451. GGML_ASSERT(ggml_is_contiguous(src0));
  5452. GGML_ASSERT(ggml_is_contiguous(dst));
  5453. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5454. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5455. return;
  5456. }
  5457. const int ith = params->ith;
  5458. const int nth = params->nth;
  5459. const int nc = src0->ne[0];
  5460. const int nr = ggml_nrows(src0);
  5461. // rows per thread
  5462. const int dr = (nr + nth - 1)/nth;
  5463. // row range for this thread
  5464. const int ir0 = dr*ith;
  5465. const int ir1 = MIN(ir0 + dr, nr);
  5466. for (int i1 = ir0; i1 < ir1; i1++) {
  5467. ggml_vec_silu_f32(nc,
  5468. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5469. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5470. #ifndef NDEBUG
  5471. for (int k = 0; k < nc; k++) {
  5472. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5473. UNUSED(x);
  5474. assert(!isnan(x));
  5475. assert(!isinf(x));
  5476. }
  5477. #endif
  5478. }
  5479. }
  5480. static void ggml_compute_forward_silu(
  5481. const struct ggml_compute_params * params,
  5482. const struct ggml_tensor * src0,
  5483. struct ggml_tensor * dst) {
  5484. switch (src0->type) {
  5485. case GGML_TYPE_F32:
  5486. {
  5487. ggml_compute_forward_silu_f32(params, src0, dst);
  5488. } break;
  5489. case GGML_TYPE_Q4_0:
  5490. case GGML_TYPE_Q4_1:
  5491. case GGML_TYPE_Q8_0:
  5492. case GGML_TYPE_I8:
  5493. case GGML_TYPE_I16:
  5494. case GGML_TYPE_I32:
  5495. case GGML_TYPE_F16:
  5496. case GGML_TYPE_COUNT:
  5497. {
  5498. GGML_ASSERT(false);
  5499. } break;
  5500. }
  5501. }
  5502. // ggml_compute_forward_norm
  5503. static void ggml_compute_forward_norm_f32(
  5504. const struct ggml_compute_params * params,
  5505. const struct ggml_tensor * src0,
  5506. struct ggml_tensor * dst) {
  5507. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5508. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5509. return;
  5510. }
  5511. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5512. const int ith = params->ith;
  5513. const int nth = params->nth;
  5514. const int64_t ne00 = src0->ne[0];
  5515. const int64_t ne01 = src0->ne[1];
  5516. const int64_t ne02 = src0->ne[2];
  5517. const int64_t ne03 = src0->ne[3];
  5518. const size_t nb01 = src0->nb[1];
  5519. const size_t nb02 = src0->nb[2];
  5520. const size_t nb03 = src0->nb[3];
  5521. const size_t nb1 = dst->nb[1];
  5522. const size_t nb2 = dst->nb[2];
  5523. const size_t nb3 = dst->nb[3];
  5524. const float eps = 1e-5f; // TODO: make this a parameter
  5525. // TODO: optimize
  5526. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5527. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5528. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5529. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5530. ggml_float sum = 0.0;
  5531. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5532. sum += (ggml_float)x[i00];
  5533. }
  5534. float mean = sum/ne00;
  5535. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5536. ggml_float sum2 = 0.0;
  5537. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5538. float v = x[i00] - mean;
  5539. y[i00] = v;
  5540. sum2 += (ggml_float)(v*v);
  5541. }
  5542. float variance = sum2/ne00;
  5543. const float scale = 1.0f/sqrtf(variance + eps);
  5544. ggml_vec_scale_f32(ne00, y, scale);
  5545. }
  5546. }
  5547. }
  5548. }
  5549. static void ggml_compute_forward_norm(
  5550. const struct ggml_compute_params * params,
  5551. const struct ggml_tensor * src0,
  5552. struct ggml_tensor * dst) {
  5553. switch (src0->type) {
  5554. case GGML_TYPE_F32:
  5555. {
  5556. ggml_compute_forward_norm_f32(params, src0, dst);
  5557. } break;
  5558. case GGML_TYPE_Q4_0:
  5559. case GGML_TYPE_Q4_1:
  5560. case GGML_TYPE_Q8_0:
  5561. case GGML_TYPE_I8:
  5562. case GGML_TYPE_I16:
  5563. case GGML_TYPE_I32:
  5564. case GGML_TYPE_F16:
  5565. case GGML_TYPE_COUNT:
  5566. {
  5567. GGML_ASSERT(false);
  5568. } break;
  5569. }
  5570. }
  5571. static void ggml_compute_forward_rms_norm_f32(
  5572. const struct ggml_compute_params * params,
  5573. const struct ggml_tensor * src0,
  5574. struct ggml_tensor * dst) {
  5575. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5576. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5577. return;
  5578. }
  5579. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5580. const int ith = params->ith;
  5581. const int nth = params->nth;
  5582. const int64_t ne00 = src0->ne[0];
  5583. const int64_t ne01 = src0->ne[1];
  5584. const int64_t ne02 = src0->ne[2];
  5585. const int64_t ne03 = src0->ne[3];
  5586. const size_t nb01 = src0->nb[1];
  5587. const size_t nb02 = src0->nb[2];
  5588. const size_t nb03 = src0->nb[3];
  5589. const size_t nb1 = dst->nb[1];
  5590. const size_t nb2 = dst->nb[2];
  5591. const size_t nb3 = dst->nb[3];
  5592. const float eps = 1e-6f; // TODO: make this a parameter
  5593. // TODO: optimize
  5594. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5595. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5596. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5597. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5598. ggml_float sum = 0.0;
  5599. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5600. sum += (ggml_float)(x[i00] * x[i00]);
  5601. }
  5602. float mean = sum/ne00;
  5603. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5604. memcpy(y, x, ne00 * sizeof(float));
  5605. // for (int i00 = 0; i00 < ne00; i00++) {
  5606. // y[i00] = x[i00];
  5607. // }
  5608. const float scale = 1.0f/sqrtf(mean + eps);
  5609. ggml_vec_scale_f32(ne00, y, scale);
  5610. }
  5611. }
  5612. }
  5613. }
  5614. static void ggml_compute_forward_rms_norm(
  5615. const struct ggml_compute_params * params,
  5616. const struct ggml_tensor * src0,
  5617. struct ggml_tensor * dst) {
  5618. switch (src0->type) {
  5619. case GGML_TYPE_F32:
  5620. {
  5621. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  5622. } break;
  5623. case GGML_TYPE_Q4_0:
  5624. case GGML_TYPE_Q4_1:
  5625. case GGML_TYPE_Q8_0:
  5626. case GGML_TYPE_I8:
  5627. case GGML_TYPE_I16:
  5628. case GGML_TYPE_I32:
  5629. case GGML_TYPE_F16:
  5630. case GGML_TYPE_COUNT:
  5631. {
  5632. GGML_ASSERT(false);
  5633. } break;
  5634. }
  5635. }
  5636. // ggml_compute_forward_mul_mat
  5637. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5638. // helper function to determine if it is better to use BLAS or not
  5639. // for large matrices, BLAS is faster
  5640. static bool ggml_compute_forward_mul_mat_use_blas(
  5641. const struct ggml_tensor * src0,
  5642. const struct ggml_tensor * src1,
  5643. struct ggml_tensor * dst) {
  5644. //const int64_t ne00 = src0->ne[0];
  5645. //const int64_t ne01 = src0->ne[1];
  5646. const int64_t ne10 = src1->ne[0];
  5647. const int64_t ne0 = dst->ne[0];
  5648. const int64_t ne1 = dst->ne[1];
  5649. // TODO: find the optimal values for these
  5650. if (ggml_is_contiguous(src0) &&
  5651. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  5652. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  5653. return true;
  5654. }
  5655. return false;
  5656. }
  5657. #endif
  5658. static void ggml_compute_forward_mul_mat_f32(
  5659. const struct ggml_compute_params * params,
  5660. const struct ggml_tensor * src0,
  5661. const struct ggml_tensor * src1,
  5662. struct ggml_tensor * dst) {
  5663. int64_t t0 = ggml_perf_time_us();
  5664. UNUSED(t0);
  5665. const int64_t ne00 = src0->ne[0];
  5666. const int64_t ne01 = src0->ne[1];
  5667. const int64_t ne02 = src0->ne[2];
  5668. const int64_t ne03 = src0->ne[3];
  5669. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5670. const int64_t ne10 = src1->ne[0];
  5671. #endif
  5672. const int64_t ne11 = src1->ne[1];
  5673. #ifndef NDEBUG
  5674. const int64_t ne12 = src1->ne[2];
  5675. const int64_t ne13 = src1->ne[3];
  5676. const int64_t ne0 = dst->ne[0];
  5677. const int64_t ne1 = dst->ne[1];
  5678. const int64_t ne2 = dst->ne[2];
  5679. const int64_t ne3 = dst->ne[3];
  5680. const int nb00 = src0->nb[0];
  5681. #endif
  5682. const int nb01 = src0->nb[1];
  5683. const int nb02 = src0->nb[2];
  5684. const int nb03 = src0->nb[3];
  5685. #ifndef NDEBUG
  5686. const int nb10 = src1->nb[0];
  5687. #endif
  5688. const int nb11 = src1->nb[1];
  5689. const int nb12 = src1->nb[2];
  5690. const int nb13 = src1->nb[3];
  5691. const int nb0 = dst->nb[0];
  5692. const int nb1 = dst->nb[1];
  5693. const int nb2 = dst->nb[2];
  5694. const int nb3 = dst->nb[3];
  5695. const int ith = params->ith;
  5696. const int nth = params->nth;
  5697. assert(ne02 == ne12);
  5698. assert(ne03 == ne13);
  5699. assert(ne2 == ne12);
  5700. assert(ne3 == ne13);
  5701. // we don't support permuted src0 or src1
  5702. assert(nb00 == sizeof(float));
  5703. assert(nb10 == sizeof(float));
  5704. // dst cannot be transposed or permuted
  5705. assert(nb0 == sizeof(float));
  5706. assert(nb0 <= nb1);
  5707. assert(nb1 <= nb2);
  5708. assert(nb2 <= nb3);
  5709. assert(ne0 == ne01);
  5710. assert(ne1 == ne11);
  5711. assert(ne2 == ne02);
  5712. assert(ne3 == ne03);
  5713. // nb01 >= nb00 - src0 is not transposed
  5714. // compute by src0 rows
  5715. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5716. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5717. if (params->ith != 0) {
  5718. return;
  5719. }
  5720. if (params->type == GGML_TASK_INIT) {
  5721. return;
  5722. }
  5723. if (params->type == GGML_TASK_FINALIZE) {
  5724. return;
  5725. }
  5726. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5727. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5728. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  5729. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5730. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5731. // zT = y * xT
  5732. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5733. ne11, ne01, ne10,
  5734. 1.0f, y, ne10,
  5735. x, ne00,
  5736. 0.0f, d, ne01);
  5737. }
  5738. }
  5739. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5740. return;
  5741. }
  5742. #endif
  5743. if (params->type == GGML_TASK_INIT) {
  5744. return;
  5745. }
  5746. if (params->type == GGML_TASK_FINALIZE) {
  5747. return;
  5748. }
  5749. // parallelize by src0 rows using ggml_vec_dot_f32
  5750. // total rows in src0
  5751. const int nr = ne01*ne02*ne03;
  5752. // rows per thread
  5753. const int dr = (nr + nth - 1)/nth;
  5754. // row range for this thread
  5755. const int ir0 = dr*ith;
  5756. const int ir1 = MIN(ir0 + dr, nr);
  5757. for (int ir = ir0; ir < ir1; ++ir) {
  5758. // src0 indices
  5759. const int i03 = ir/(ne02*ne01);
  5760. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5761. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5762. for (int64_t ic = 0; ic < ne11; ++ic) {
  5763. // src1 indices
  5764. const int i13 = i03;
  5765. const int i12 = i02;
  5766. const int i11 = ic;
  5767. // dst indices
  5768. const int i0 = i01;
  5769. const int i1 = i11;
  5770. const int i2 = i02;
  5771. const int i3 = i03;
  5772. ggml_vec_dot_f32(ne00,
  5773. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  5774. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  5775. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  5776. }
  5777. }
  5778. //int64_t t1 = ggml_perf_time_us();
  5779. //static int64_t acc = 0;
  5780. //acc += t1 - t0;
  5781. //if (t1 - t0 > 10) {
  5782. // printf("\n");
  5783. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5784. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5785. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5786. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  5787. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5788. //}
  5789. }
  5790. static void ggml_compute_forward_mul_mat_f16_f32(
  5791. const struct ggml_compute_params * params,
  5792. const struct ggml_tensor * src0,
  5793. const struct ggml_tensor * src1,
  5794. struct ggml_tensor * dst) {
  5795. int64_t t0 = ggml_perf_time_us();
  5796. UNUSED(t0);
  5797. const int64_t ne00 = src0->ne[0];
  5798. const int64_t ne01 = src0->ne[1];
  5799. const int64_t ne02 = src0->ne[2];
  5800. const int64_t ne03 = src0->ne[3];
  5801. const int64_t ne10 = src1->ne[0];
  5802. const int64_t ne11 = src1->ne[1];
  5803. const int64_t ne12 = src1->ne[2];
  5804. const int64_t ne13 = src1->ne[3];
  5805. const int64_t ne0 = dst->ne[0];
  5806. const int64_t ne1 = dst->ne[1];
  5807. const int64_t ne2 = dst->ne[2];
  5808. const int64_t ne3 = dst->ne[3];
  5809. //const int64_t ne = ne0*ne1*ne2*ne3;
  5810. const int nb00 = src0->nb[0];
  5811. const int nb01 = src0->nb[1];
  5812. const int nb02 = src0->nb[2];
  5813. const int nb03 = src0->nb[3];
  5814. const int nb10 = src1->nb[0];
  5815. const int nb11 = src1->nb[1];
  5816. const int nb12 = src1->nb[2];
  5817. const int nb13 = src1->nb[3];
  5818. const int nb0 = dst->nb[0];
  5819. const int nb1 = dst->nb[1];
  5820. const int nb2 = dst->nb[2];
  5821. const int nb3 = dst->nb[3];
  5822. const int ith = params->ith;
  5823. const int nth = params->nth;
  5824. GGML_ASSERT(ne02 == ne12);
  5825. GGML_ASSERT(ne03 == ne13);
  5826. GGML_ASSERT(ne2 == ne12);
  5827. GGML_ASSERT(ne3 == ne13);
  5828. // TODO: we don't support permuted src0
  5829. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5830. // dst cannot be transposed or permuted
  5831. GGML_ASSERT(nb0 == sizeof(float));
  5832. GGML_ASSERT(nb0 <= nb1);
  5833. GGML_ASSERT(nb1 <= nb2);
  5834. GGML_ASSERT(nb2 <= nb3);
  5835. GGML_ASSERT(ne0 == ne01);
  5836. GGML_ASSERT(ne1 == ne11);
  5837. GGML_ASSERT(ne2 == ne02);
  5838. GGML_ASSERT(ne3 == ne03);
  5839. // nb01 >= nb00 - src0 is not transposed
  5840. // compute by src0 rows
  5841. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5842. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5843. GGML_ASSERT(nb10 == sizeof(float));
  5844. if (params->ith != 0) {
  5845. return;
  5846. }
  5847. if (params->type == GGML_TASK_INIT) {
  5848. return;
  5849. }
  5850. if (params->type == GGML_TASK_FINALIZE) {
  5851. return;
  5852. }
  5853. float * const wdata = params->wdata;
  5854. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5855. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5856. {
  5857. size_t id = 0;
  5858. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  5859. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  5860. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  5861. }
  5862. }
  5863. }
  5864. const float * x = wdata;
  5865. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5866. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5867. // zT = y * xT
  5868. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5869. ne11, ne01, ne10,
  5870. 1.0f, y, ne10,
  5871. x, ne00,
  5872. 0.0f, d, ne01);
  5873. }
  5874. }
  5875. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  5876. return;
  5877. }
  5878. #endif
  5879. if (params->type == GGML_TASK_INIT) {
  5880. ggml_fp16_t * const wdata = params->wdata;
  5881. size_t id = 0;
  5882. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  5883. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  5884. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  5885. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  5886. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5887. }
  5888. }
  5889. }
  5890. }
  5891. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  5892. return;
  5893. }
  5894. if (params->type == GGML_TASK_FINALIZE) {
  5895. return;
  5896. }
  5897. // fp16 -> half the size, so divide by 2
  5898. // TODO: do not support transposed src1
  5899. assert(nb10/2 == sizeof(ggml_fp16_t));
  5900. // parallelize by src0 rows using ggml_vec_dot_f16
  5901. // total rows in src0
  5902. const int nr = ne01*ne02*ne03;
  5903. // rows per thread
  5904. const int dr = (nr + nth - 1)/nth;
  5905. // row range for this thread
  5906. const int ir0 = dr*ith;
  5907. const int ir1 = MIN(ir0 + dr, nr);
  5908. ggml_fp16_t * wdata = params->wdata;
  5909. for (int ir = ir0; ir < ir1; ++ir) {
  5910. // src0 indices
  5911. const int i03 = ir/(ne02*ne01);
  5912. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5913. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5914. const int i13 = i03;
  5915. const int i12 = i02;
  5916. const int i0 = i01;
  5917. const int i2 = i02;
  5918. const int i3 = i03;
  5919. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5920. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  5921. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5922. for (int64_t ic = 0; ic < ne11; ++ic) {
  5923. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  5924. }
  5925. }
  5926. //int64_t t1 = ggml_time_us();
  5927. //static int64_t acc = 0;
  5928. //acc += t1 - t0;
  5929. //if (t1 - t0 > 10) {
  5930. // printf("\n");
  5931. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5932. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5933. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5934. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5935. //}
  5936. }
  5937. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  5938. [GGML_TYPE_Q4_0] = {
  5939. .dequantize_row_q = dequantize_row_q4_0,
  5940. .quantize_row_q = quantize_row_q4_0,
  5941. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  5942. .quantize_row_q_dot = quantize_row_q8_0,
  5943. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  5944. },
  5945. [GGML_TYPE_Q4_1] = {
  5946. .dequantize_row_q = dequantize_row_q4_1,
  5947. .quantize_row_q = quantize_row_q4_1,
  5948. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  5949. .quantize_row_q_dot = quantize_row_q4_1,
  5950. .vec_dot_q = ggml_vec_dot_q4_1,
  5951. },
  5952. // TODO: GGML_TYPE_Q8_0
  5953. };
  5954. // For internal test use
  5955. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  5956. GGML_ASSERT(i < GGML_TYPE_COUNT);
  5957. return quantize_fns[i];
  5958. }
  5959. static void ggml_compute_forward_mul_mat_q_f32(
  5960. const struct ggml_compute_params * params,
  5961. const struct ggml_tensor * src0,
  5962. const struct ggml_tensor * src1,
  5963. struct ggml_tensor * dst) {
  5964. int64_t t0 = ggml_perf_time_us();
  5965. UNUSED(t0);
  5966. const int64_t ne00 = src0->ne[0];
  5967. const int64_t ne01 = src0->ne[1];
  5968. const int64_t ne02 = src0->ne[2];
  5969. const int64_t ne03 = src0->ne[3];
  5970. const int64_t ne10 = src1->ne[0];
  5971. const int64_t ne11 = src1->ne[1];
  5972. const int64_t ne12 = src1->ne[2];
  5973. const int64_t ne13 = src1->ne[3];
  5974. const int64_t ne0 = dst->ne[0];
  5975. const int64_t ne1 = dst->ne[1];
  5976. const int64_t ne2 = dst->ne[2];
  5977. const int64_t ne3 = dst->ne[3];
  5978. const int nb00 = src0->nb[0];
  5979. const int nb01 = src0->nb[1];
  5980. const int nb02 = src0->nb[2];
  5981. const int nb03 = src0->nb[3];
  5982. const int nb10 = src1->nb[0];
  5983. const int nb11 = src1->nb[1];
  5984. const int nb12 = src1->nb[2];
  5985. const int nb13 = src1->nb[3];
  5986. const int nb0 = dst->nb[0];
  5987. const int nb1 = dst->nb[1];
  5988. const int nb2 = dst->nb[2];
  5989. const int nb3 = dst->nb[3];
  5990. const int ith = params->ith;
  5991. const int nth = params->nth;
  5992. GGML_ASSERT(ne02 == ne12);
  5993. GGML_ASSERT(ne03 == ne13);
  5994. GGML_ASSERT(ne2 == ne12);
  5995. GGML_ASSERT(ne3 == ne13);
  5996. const enum ggml_type type = src0->type;
  5997. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  5998. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  5999. // we don't support permuted src0 or src1
  6000. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  6001. GGML_ASSERT(nb10 == sizeof(float));
  6002. // dst cannot be transposed or permuted
  6003. GGML_ASSERT(nb0 == sizeof(float));
  6004. GGML_ASSERT(nb0 <= nb1);
  6005. GGML_ASSERT(nb1 <= nb2);
  6006. GGML_ASSERT(nb2 <= nb3);
  6007. GGML_ASSERT(ne0 == ne01);
  6008. GGML_ASSERT(ne1 == ne11);
  6009. GGML_ASSERT(ne2 == ne02);
  6010. GGML_ASSERT(ne3 == ne03);
  6011. // nb01 >= nb00 - src0 is not transposed
  6012. // compute by src0 rows
  6013. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  6014. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6015. if (params->ith != 0) {
  6016. return;
  6017. }
  6018. if (params->type == GGML_TASK_INIT) {
  6019. return;
  6020. }
  6021. if (params->type == GGML_TASK_FINALIZE) {
  6022. return;
  6023. }
  6024. float * const wdata = params->wdata;
  6025. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6026. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6027. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6028. {
  6029. size_t id = 0;
  6030. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6031. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  6032. id += ne00;
  6033. }
  6034. }
  6035. const float * x = wdata;
  6036. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6037. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6038. // zT = y * xT
  6039. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6040. ne11, ne01, ne10,
  6041. 1.0f, y, ne10,
  6042. x, ne00,
  6043. 0.0f, d, ne01);
  6044. }
  6045. }
  6046. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6047. return;
  6048. }
  6049. #endif
  6050. if (params->type == GGML_TASK_INIT) {
  6051. char * wdata = params->wdata;
  6052. const size_t row_size = ne10*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  6053. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6054. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6055. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6056. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  6057. wdata += row_size;
  6058. }
  6059. }
  6060. }
  6061. return;
  6062. }
  6063. if (params->type == GGML_TASK_FINALIZE) {
  6064. return;
  6065. }
  6066. // parallelize by src0 rows using ggml_vec_dot_q
  6067. // total rows in src0
  6068. const int nr = ne01*ne02*ne03;
  6069. // rows per thread
  6070. const int dr = (nr + nth - 1)/nth;
  6071. // row range for this thread
  6072. const int ir0 = dr*ith;
  6073. const int ir1 = MIN(ir0 + dr, nr);
  6074. void * wdata = params->wdata;
  6075. const size_t row_size = ne00*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  6076. for (int ir = ir0; ir < ir1; ++ir) {
  6077. // src0 indices
  6078. const int i03 = ir/(ne02*ne01);
  6079. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6080. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6081. const int i13 = i03;
  6082. const int i12 = i02;
  6083. const int i0 = i01;
  6084. const int i2 = i02;
  6085. const int i3 = i03;
  6086. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6087. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  6088. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6089. assert(ne00 % 32 == 0);
  6090. for (int64_t ic = 0; ic < ne11; ++ic) {
  6091. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  6092. }
  6093. }
  6094. //int64_t t1 = ggml_time_us();
  6095. //static int64_t acc = 0;
  6096. //acc += t1 - t0;
  6097. //if (t1 - t0 > 10) {
  6098. // printf("\n");
  6099. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6100. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6101. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6102. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6103. //}
  6104. }
  6105. static void ggml_compute_forward_mul_mat(
  6106. const struct ggml_compute_params * params,
  6107. const struct ggml_tensor * src0,
  6108. const struct ggml_tensor * src1,
  6109. struct ggml_tensor * dst) {
  6110. switch (src0->type) {
  6111. case GGML_TYPE_Q4_0:
  6112. case GGML_TYPE_Q4_1:
  6113. case GGML_TYPE_Q8_0:
  6114. {
  6115. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  6116. } break;
  6117. case GGML_TYPE_F16:
  6118. {
  6119. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  6120. } break;
  6121. case GGML_TYPE_F32:
  6122. {
  6123. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  6124. } break;
  6125. case GGML_TYPE_I8:
  6126. case GGML_TYPE_I16:
  6127. case GGML_TYPE_I32:
  6128. case GGML_TYPE_COUNT:
  6129. {
  6130. GGML_ASSERT(false);
  6131. } break;
  6132. }
  6133. #if 0
  6134. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  6135. static int first = 8;
  6136. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  6137. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  6138. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  6139. if (first) {
  6140. --first;
  6141. } else {
  6142. for (int k = 0; k < dst->ne[1]; ++k) {
  6143. for (int j = 0; j < dst->ne[0]/16; ++j) {
  6144. for (int i = 0; i < 16; ++i) {
  6145. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  6146. }
  6147. printf("\n");
  6148. }
  6149. printf("\n");
  6150. }
  6151. printf("\n");
  6152. exit(0);
  6153. }
  6154. } else {
  6155. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  6156. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  6157. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  6158. }
  6159. #endif
  6160. }
  6161. // ggml_compute_forward_scale
  6162. static void ggml_compute_forward_scale_f32(
  6163. const struct ggml_compute_params * params,
  6164. const struct ggml_tensor * src0,
  6165. const struct ggml_tensor * src1,
  6166. struct ggml_tensor * dst) {
  6167. GGML_ASSERT(ggml_is_contiguous(src0));
  6168. GGML_ASSERT(ggml_is_contiguous(dst));
  6169. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6170. GGML_ASSERT(ggml_is_scalar(src1));
  6171. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6172. return;
  6173. }
  6174. // scale factor
  6175. const float v = *(float *) src1->data;
  6176. const int ith = params->ith;
  6177. const int nth = params->nth;
  6178. const int nc = src0->ne[0];
  6179. const int nr = ggml_nrows(src0);
  6180. // rows per thread
  6181. const int dr = (nr + nth - 1)/nth;
  6182. // row range for this thread
  6183. const int ir0 = dr*ith;
  6184. const int ir1 = MIN(ir0 + dr, nr);
  6185. for (int i1 = ir0; i1 < ir1; i1++) {
  6186. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  6187. }
  6188. }
  6189. static void ggml_compute_forward_scale(
  6190. const struct ggml_compute_params * params,
  6191. const struct ggml_tensor * src0,
  6192. const struct ggml_tensor * src1,
  6193. struct ggml_tensor * dst) {
  6194. switch (src0->type) {
  6195. case GGML_TYPE_F32:
  6196. {
  6197. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  6198. } break;
  6199. case GGML_TYPE_Q4_0:
  6200. case GGML_TYPE_Q4_1:
  6201. case GGML_TYPE_Q8_0:
  6202. case GGML_TYPE_I8:
  6203. case GGML_TYPE_I16:
  6204. case GGML_TYPE_I32:
  6205. case GGML_TYPE_F16:
  6206. case GGML_TYPE_COUNT:
  6207. {
  6208. GGML_ASSERT(false);
  6209. } break;
  6210. }
  6211. }
  6212. // ggml_compute_forward_cpy
  6213. static void ggml_compute_forward_cpy(
  6214. const struct ggml_compute_params * params,
  6215. const struct ggml_tensor * src0,
  6216. struct ggml_tensor * dst) {
  6217. ggml_compute_forward_dup(params, src0, dst);
  6218. }
  6219. // ggml_compute_forward_cont
  6220. static void ggml_compute_forward_cont(
  6221. const struct ggml_compute_params * params,
  6222. const struct ggml_tensor * src0,
  6223. struct ggml_tensor * dst) {
  6224. ggml_compute_forward_dup(params, src0, dst);
  6225. }
  6226. // ggml_compute_forward_reshape
  6227. static void ggml_compute_forward_reshape(
  6228. const struct ggml_compute_params * params,
  6229. const struct ggml_tensor * src0,
  6230. struct ggml_tensor * dst) {
  6231. // NOP
  6232. UNUSED(params);
  6233. UNUSED(src0);
  6234. UNUSED(dst);
  6235. }
  6236. // ggml_compute_forward_view
  6237. static void ggml_compute_forward_view(
  6238. const struct ggml_compute_params * params,
  6239. const struct ggml_tensor * src0) {
  6240. // NOP
  6241. UNUSED(params);
  6242. UNUSED(src0);
  6243. }
  6244. // ggml_compute_forward_permute
  6245. static void ggml_compute_forward_permute(
  6246. const struct ggml_compute_params * params,
  6247. const struct ggml_tensor * src0) {
  6248. // NOP
  6249. UNUSED(params);
  6250. UNUSED(src0);
  6251. }
  6252. // ggml_compute_forward_transpose
  6253. static void ggml_compute_forward_transpose(
  6254. const struct ggml_compute_params * params,
  6255. const struct ggml_tensor * src0) {
  6256. // NOP
  6257. UNUSED(params);
  6258. UNUSED(src0);
  6259. }
  6260. // ggml_compute_forward_get_rows
  6261. static void ggml_compute_forward_get_rows_q(
  6262. const struct ggml_compute_params * params,
  6263. const struct ggml_tensor * src0,
  6264. const struct ggml_tensor * src1,
  6265. struct ggml_tensor * dst) {
  6266. assert(params->ith == 0);
  6267. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6268. return;
  6269. }
  6270. const int nc = src0->ne[0];
  6271. const int nr = ggml_nelements(src1);
  6272. const enum ggml_type type = src0->type;
  6273. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6274. assert( dst->ne[0] == nc);
  6275. assert( dst->ne[1] == nr);
  6276. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  6277. for (int i = 0; i < nr; ++i) {
  6278. const int r = ((int32_t *) src1->data)[i];
  6279. dequantize_row_q(
  6280. (const void *) ((char *) src0->data + r*src0->nb[1]),
  6281. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  6282. }
  6283. }
  6284. static void ggml_compute_forward_get_rows_f16(
  6285. const struct ggml_compute_params * params,
  6286. const struct ggml_tensor * src0,
  6287. const struct ggml_tensor * src1,
  6288. struct ggml_tensor * dst) {
  6289. assert(params->ith == 0);
  6290. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6291. return;
  6292. }
  6293. const int nc = src0->ne[0];
  6294. const int nr = ggml_nelements(src1);
  6295. assert( dst->ne[0] == nc);
  6296. assert( dst->ne[1] == nr);
  6297. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6298. for (int i = 0; i < nr; ++i) {
  6299. const int r = ((int32_t *) src1->data)[i];
  6300. for (int j = 0; j < nc; ++j) {
  6301. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  6302. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  6303. }
  6304. }
  6305. }
  6306. static void ggml_compute_forward_get_rows_f32(
  6307. const struct ggml_compute_params * params,
  6308. const struct ggml_tensor * src0,
  6309. const struct ggml_tensor * src1,
  6310. struct ggml_tensor * dst) {
  6311. assert(params->ith == 0);
  6312. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6313. return;
  6314. }
  6315. const int nc = src0->ne[0];
  6316. const int nr = ggml_nelements(src1);
  6317. assert( dst->ne[0] == nc);
  6318. assert( dst->ne[1] == nr);
  6319. assert(src0->nb[0] == sizeof(float));
  6320. for (int i = 0; i < nr; ++i) {
  6321. const int r = ((int32_t *) src1->data)[i];
  6322. ggml_vec_cpy_f32(nc,
  6323. (float *) ((char *) dst->data + i*dst->nb[1]),
  6324. (float *) ((char *) src0->data + r*src0->nb[1]));
  6325. }
  6326. }
  6327. static void ggml_compute_forward_get_rows(
  6328. const struct ggml_compute_params * params,
  6329. const struct ggml_tensor * src0,
  6330. const struct ggml_tensor * src1,
  6331. struct ggml_tensor * dst) {
  6332. switch (src0->type) {
  6333. case GGML_TYPE_Q4_0:
  6334. case GGML_TYPE_Q4_1:
  6335. case GGML_TYPE_Q8_0:
  6336. {
  6337. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  6338. } break;
  6339. case GGML_TYPE_F16:
  6340. {
  6341. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  6342. } break;
  6343. case GGML_TYPE_F32:
  6344. {
  6345. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  6346. } break;
  6347. case GGML_TYPE_I8:
  6348. case GGML_TYPE_I16:
  6349. case GGML_TYPE_I32:
  6350. case GGML_TYPE_COUNT:
  6351. {
  6352. GGML_ASSERT(false);
  6353. } break;
  6354. }
  6355. //static bool first = true;
  6356. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  6357. //if (first) {
  6358. // first = false;
  6359. //} else {
  6360. // for (int k = 0; k < dst->ne[1]; ++k) {
  6361. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  6362. // for (int i = 0; i < 16; ++i) {
  6363. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  6364. // }
  6365. // printf("\n");
  6366. // }
  6367. // printf("\n");
  6368. // }
  6369. // printf("\n");
  6370. // exit(0);
  6371. //}
  6372. }
  6373. // ggml_compute_forward_diag_mask_inf
  6374. static void ggml_compute_forward_diag_mask_inf_f32(
  6375. const struct ggml_compute_params * params,
  6376. const struct ggml_tensor * src0,
  6377. const struct ggml_tensor * src1,
  6378. struct ggml_tensor * dst) {
  6379. assert(params->ith == 0);
  6380. assert(src1->type == GGML_TYPE_I32);
  6381. assert(ggml_nelements(src1) == 1);
  6382. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6383. return;
  6384. }
  6385. const int n_past = ((int32_t *) src1->data)[0];
  6386. // TODO: handle transposed/permuted matrices
  6387. const int n = ggml_nrows(src0);
  6388. const int nc = src0->ne[0];
  6389. const int nr = src0->ne[1];
  6390. const int nz = n/nr;
  6391. assert( dst->nb[0] == sizeof(float));
  6392. assert(src0->nb[0] == sizeof(float));
  6393. for (int k = 0; k < nz; k++) {
  6394. for (int j = 0; j < nr; j++) {
  6395. for (int i = n_past; i < nc; i++) {
  6396. if (i > n_past + j) {
  6397. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  6398. }
  6399. }
  6400. }
  6401. }
  6402. }
  6403. static void ggml_compute_forward_diag_mask_inf(
  6404. const struct ggml_compute_params * params,
  6405. const struct ggml_tensor * src0,
  6406. const struct ggml_tensor * src1,
  6407. struct ggml_tensor * dst) {
  6408. switch (src0->type) {
  6409. case GGML_TYPE_F32:
  6410. {
  6411. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  6412. } break;
  6413. case GGML_TYPE_Q4_0:
  6414. case GGML_TYPE_Q4_1:
  6415. case GGML_TYPE_Q8_0:
  6416. case GGML_TYPE_I8:
  6417. case GGML_TYPE_I16:
  6418. case GGML_TYPE_I32:
  6419. case GGML_TYPE_F16:
  6420. case GGML_TYPE_COUNT:
  6421. {
  6422. GGML_ASSERT(false);
  6423. } break;
  6424. }
  6425. }
  6426. // ggml_compute_forward_soft_max
  6427. static void ggml_compute_forward_soft_max_f32(
  6428. const struct ggml_compute_params * params,
  6429. const struct ggml_tensor * src0,
  6430. struct ggml_tensor * dst) {
  6431. GGML_ASSERT(ggml_is_contiguous(src0));
  6432. GGML_ASSERT(ggml_is_contiguous(dst));
  6433. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6434. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6435. return;
  6436. }
  6437. // TODO: handle transposed/permuted matrices
  6438. const int ith = params->ith;
  6439. const int nth = params->nth;
  6440. const int nc = src0->ne[0];
  6441. const int nr = ggml_nrows(src0);
  6442. // rows per thread
  6443. const int dr = (nr + nth - 1)/nth;
  6444. // row range for this thread
  6445. const int ir0 = dr*ith;
  6446. const int ir1 = MIN(ir0 + dr, nr);
  6447. for (int i1 = ir0; i1 < ir1; i1++) {
  6448. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  6449. #ifndef NDEBUG
  6450. for (int i = 0; i < nc; ++i) {
  6451. //printf("p[%d] = %f\n", i, p[i]);
  6452. assert(!isnan(p[i]));
  6453. }
  6454. #endif
  6455. float max = -INFINITY;
  6456. ggml_vec_max_f32(nc, &max, p);
  6457. ggml_float sum = 0.0;
  6458. uint16_t scvt;
  6459. for (int i = 0; i < nc; i++) {
  6460. if (p[i] == -INFINITY) {
  6461. p[i] = 0.0f;
  6462. } else {
  6463. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  6464. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  6465. memcpy(&scvt, &s, sizeof(scvt));
  6466. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  6467. sum += (ggml_float)val;
  6468. p[i] = val;
  6469. }
  6470. }
  6471. assert(sum > 0.0);
  6472. sum = 1.0/sum;
  6473. ggml_vec_scale_f32(nc, p, sum);
  6474. #ifndef NDEBUG
  6475. for (int i = 0; i < nc; ++i) {
  6476. assert(!isnan(p[i]));
  6477. assert(!isinf(p[i]));
  6478. }
  6479. #endif
  6480. }
  6481. }
  6482. static void ggml_compute_forward_soft_max(
  6483. const struct ggml_compute_params * params,
  6484. const struct ggml_tensor * src0,
  6485. struct ggml_tensor * dst) {
  6486. switch (src0->type) {
  6487. case GGML_TYPE_F32:
  6488. {
  6489. ggml_compute_forward_soft_max_f32(params, src0, dst);
  6490. } break;
  6491. case GGML_TYPE_Q4_0:
  6492. case GGML_TYPE_Q4_1:
  6493. case GGML_TYPE_Q8_0:
  6494. case GGML_TYPE_I8:
  6495. case GGML_TYPE_I16:
  6496. case GGML_TYPE_I32:
  6497. case GGML_TYPE_F16:
  6498. case GGML_TYPE_COUNT:
  6499. {
  6500. GGML_ASSERT(false);
  6501. } break;
  6502. }
  6503. }
  6504. // ggml_compute_forward_rope
  6505. static void ggml_compute_forward_rope_f32(
  6506. const struct ggml_compute_params * params,
  6507. const struct ggml_tensor * src0,
  6508. const struct ggml_tensor * src1,
  6509. struct ggml_tensor * dst) {
  6510. assert(src1->type == GGML_TYPE_I32);
  6511. assert(ggml_nelements(src1) == 3);
  6512. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6513. return;
  6514. }
  6515. const int n_past = ((int32_t *) src1->data)[0];
  6516. const int n_dims = ((int32_t *) src1->data)[1];
  6517. const int mode = ((int32_t *) src1->data)[2];
  6518. //const int64_t ne0 = src0->ne[0];
  6519. const int64_t ne1 = src0->ne[1];
  6520. const int64_t ne2 = src0->ne[2];
  6521. const int64_t ne3 = src0->ne[3];
  6522. const int nb0 = src0->nb[0];
  6523. const int nb1 = src0->nb[1];
  6524. const int nb2 = src0->nb[2];
  6525. const int nb3 = src0->nb[3];
  6526. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6527. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6528. assert(nb0 == sizeof(float));
  6529. const int ith = params->ith;
  6530. const int nth = params->nth;
  6531. const int nr = ggml_nrows(src0);
  6532. // rows per thread
  6533. const int dr = (nr + nth - 1)/nth;
  6534. // row range for this thread
  6535. const int ir0 = dr*ith;
  6536. const int ir1 = MIN(ir0 + dr, nr);
  6537. // row index used to determine which thread to use
  6538. int ir = 0;
  6539. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  6540. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6541. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6542. const int p = (mode == 0 ? n_past + i2 : i2);
  6543. for (int64_t i1 = 0; i1 < ne1; i1++) {
  6544. if (ir++ < ir0) continue;
  6545. if (ir > ir1) break;
  6546. float theta = (float)p;
  6547. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6548. const float cos_theta = cosf(theta);
  6549. const float sin_theta = sinf(theta);
  6550. theta *= theta_scale;
  6551. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6552. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6553. const float x0 = src[0];
  6554. const float x1 = src[1];
  6555. dst_data[0] = x0*cos_theta - x1*sin_theta;
  6556. dst_data[1] = x0*sin_theta + x1*cos_theta;
  6557. }
  6558. }
  6559. }
  6560. }
  6561. }
  6562. static void ggml_compute_forward_rope_f16(
  6563. const struct ggml_compute_params * params,
  6564. const struct ggml_tensor * src0,
  6565. const struct ggml_tensor * src1,
  6566. struct ggml_tensor * dst) {
  6567. assert(src1->type == GGML_TYPE_I32);
  6568. assert(ggml_nelements(src1) == 3);
  6569. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6570. return;
  6571. }
  6572. const int n_past = ((int32_t *) src1->data)[0];
  6573. const int n_dims = ((int32_t *) src1->data)[1];
  6574. const int mode = ((int32_t *) src1->data)[2];
  6575. //const int64_t ne0 = src0->ne[0];
  6576. const int64_t ne1 = src0->ne[1];
  6577. const int64_t ne2 = src0->ne[2];
  6578. const int64_t ne3 = src0->ne[3];
  6579. const int nb0 = src0->nb[0];
  6580. const int nb1 = src0->nb[1];
  6581. const int nb2 = src0->nb[2];
  6582. const int nb3 = src0->nb[3];
  6583. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6584. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6585. assert(nb0 == sizeof(ggml_fp16_t));
  6586. const int ith = params->ith;
  6587. const int nth = params->nth;
  6588. const int nr = ggml_nrows(src0);
  6589. // rows per thread
  6590. const int dr = (nr + nth - 1)/nth;
  6591. // row range for this thread
  6592. const int ir0 = dr*ith;
  6593. const int ir1 = MIN(ir0 + dr, nr);
  6594. // row index used to determine which thread to use
  6595. int ir = 0;
  6596. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  6597. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6598. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6599. const int p = (mode == 0 ? n_past + i2 : i2);
  6600. for (int64_t i1 = 0; i1 < ne1; i1++) {
  6601. if (ir++ < ir0) continue;
  6602. if (ir > ir1) break;
  6603. float theta = (float)p;
  6604. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6605. const float cos_theta = cosf(theta);
  6606. const float sin_theta = sinf(theta);
  6607. theta *= theta_scale;
  6608. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6609. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6610. const float x0 = ggml_fp16_to_fp32(src[0]);
  6611. const float x1 = ggml_fp16_to_fp32(src[1]);
  6612. dst_data[0] = ggml_fp32_to_fp16(x0*cos_theta - x1*sin_theta);
  6613. dst_data[1] = ggml_fp32_to_fp16(x0*sin_theta + x1*cos_theta);
  6614. }
  6615. }
  6616. }
  6617. }
  6618. }
  6619. static void ggml_compute_forward_rope(
  6620. const struct ggml_compute_params * params,
  6621. const struct ggml_tensor * src0,
  6622. const struct ggml_tensor * src1,
  6623. struct ggml_tensor * dst) {
  6624. switch (src0->type) {
  6625. case GGML_TYPE_F16:
  6626. {
  6627. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  6628. } break;
  6629. case GGML_TYPE_F32:
  6630. {
  6631. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  6632. } break;
  6633. case GGML_TYPE_Q4_0:
  6634. case GGML_TYPE_Q4_1:
  6635. case GGML_TYPE_Q8_0:
  6636. case GGML_TYPE_I8:
  6637. case GGML_TYPE_I16:
  6638. case GGML_TYPE_I32:
  6639. case GGML_TYPE_COUNT:
  6640. {
  6641. GGML_ASSERT(false);
  6642. } break;
  6643. }
  6644. }
  6645. // ggml_compute_forward_conv_1d_1s
  6646. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  6647. const struct ggml_compute_params * params,
  6648. const struct ggml_tensor * src0,
  6649. const struct ggml_tensor * src1,
  6650. struct ggml_tensor * dst) {
  6651. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6652. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6653. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6654. int64_t t0 = ggml_perf_time_us();
  6655. UNUSED(t0);
  6656. const int64_t ne00 = src0->ne[0];
  6657. const int64_t ne01 = src0->ne[1];
  6658. const int64_t ne02 = src0->ne[2];
  6659. //const int64_t ne03 = src0->ne[3];
  6660. const int64_t ne10 = src1->ne[0];
  6661. const int64_t ne11 = src1->ne[1];
  6662. //const int64_t ne12 = src1->ne[2];
  6663. //const int64_t ne13 = src1->ne[3];
  6664. //const int64_t ne0 = dst->ne[0];
  6665. //const int64_t ne1 = dst->ne[1];
  6666. //const int64_t ne2 = dst->ne[2];
  6667. //const int64_t ne3 = dst->ne[3];
  6668. //const int64_t ne = ne0*ne1*ne2*ne3;
  6669. const int nb00 = src0->nb[0];
  6670. const int nb01 = src0->nb[1];
  6671. const int nb02 = src0->nb[2];
  6672. //const int nb03 = src0->nb[3];
  6673. const int nb10 = src1->nb[0];
  6674. const int nb11 = src1->nb[1];
  6675. //const int nb12 = src1->nb[2];
  6676. //const int nb13 = src1->nb[3];
  6677. //const int nb0 = dst->nb[0];
  6678. const int nb1 = dst->nb[1];
  6679. //const int nb2 = dst->nb[2];
  6680. //const int nb3 = dst->nb[3];
  6681. const int ith = params->ith;
  6682. const int nth = params->nth;
  6683. const int nk = ne00;
  6684. const int nh = nk/2;
  6685. const int ew0 = ggml_up32(ne01);
  6686. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6687. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6688. GGML_ASSERT(nb10 == sizeof(float));
  6689. if (params->type == GGML_TASK_INIT) {
  6690. // TODO: fix this memset (wsize is overestimated)
  6691. memset(params->wdata, 0, params->wsize);
  6692. // prepare kernel data (src0)
  6693. {
  6694. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6695. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6696. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6697. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6698. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6699. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6700. dst_data[i00*ew0 + i01] = src[i00];
  6701. }
  6702. }
  6703. }
  6704. }
  6705. // prepare source data (src1)
  6706. {
  6707. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6708. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6709. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6710. ggml_fp16_t * dst_data = wdata;
  6711. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6712. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6713. }
  6714. }
  6715. }
  6716. return;
  6717. }
  6718. if (params->type == GGML_TASK_FINALIZE) {
  6719. return;
  6720. }
  6721. // total rows in dst
  6722. const int nr = ne02;
  6723. // rows per thread
  6724. const int dr = (nr + nth - 1)/nth;
  6725. // row range for this thread
  6726. const int ir0 = dr*ith;
  6727. const int ir1 = MIN(ir0 + dr, nr);
  6728. for (int i1 = ir0; i1 < ir1; i1++) {
  6729. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6730. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  6731. dst_data[i0] = 0;
  6732. for (int k = -nh; k <= nh; k++) {
  6733. float v = 0.0f;
  6734. ggml_vec_dot_f16(ew0, &v,
  6735. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6736. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6737. dst_data[i0] += v;
  6738. }
  6739. }
  6740. }
  6741. }
  6742. static void ggml_compute_forward_conv_1d_1s_f32(
  6743. const struct ggml_compute_params * params,
  6744. const struct ggml_tensor * src0,
  6745. const struct ggml_tensor * src1,
  6746. struct ggml_tensor * dst) {
  6747. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6748. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6749. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6750. int64_t t0 = ggml_perf_time_us();
  6751. UNUSED(t0);
  6752. const int64_t ne00 = src0->ne[0];
  6753. const int64_t ne01 = src0->ne[1];
  6754. const int64_t ne02 = src0->ne[2];
  6755. //const int64_t ne03 = src0->ne[3];
  6756. const int64_t ne10 = src1->ne[0];
  6757. const int64_t ne11 = src1->ne[1];
  6758. //const int64_t ne12 = src1->ne[2];
  6759. //const int64_t ne13 = src1->ne[3];
  6760. //const int64_t ne0 = dst->ne[0];
  6761. //const int64_t ne1 = dst->ne[1];
  6762. //const int64_t ne2 = dst->ne[2];
  6763. //const int64_t ne3 = dst->ne[3];
  6764. //const int64_t ne = ne0*ne1*ne2*ne3;
  6765. const int nb00 = src0->nb[0];
  6766. const int nb01 = src0->nb[1];
  6767. const int nb02 = src0->nb[2];
  6768. //const int nb03 = src0->nb[3];
  6769. const int nb10 = src1->nb[0];
  6770. const int nb11 = src1->nb[1];
  6771. //const int nb12 = src1->nb[2];
  6772. //const int nb13 = src1->nb[3];
  6773. //const int nb0 = dst->nb[0];
  6774. const int nb1 = dst->nb[1];
  6775. //const int nb2 = dst->nb[2];
  6776. //const int nb3 = dst->nb[3];
  6777. const int ith = params->ith;
  6778. const int nth = params->nth;
  6779. const int nk = ne00;
  6780. const int nh = nk/2;
  6781. const int ew0 = ggml_up32(ne01);
  6782. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6783. GGML_ASSERT(nb00 == sizeof(float));
  6784. GGML_ASSERT(nb10 == sizeof(float));
  6785. if (params->type == GGML_TASK_INIT) {
  6786. // TODO: fix this memset (wsize is overestimated)
  6787. memset(params->wdata, 0, params->wsize);
  6788. // prepare kernel data (src0)
  6789. {
  6790. float * const wdata = (float *) params->wdata + 0;
  6791. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6792. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6793. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6794. float * dst_data = wdata + i02*ew0*ne00;
  6795. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6796. dst_data[i00*ew0 + i01] = src[i00];
  6797. }
  6798. }
  6799. }
  6800. }
  6801. // prepare source data (src1)
  6802. {
  6803. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6804. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6805. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6806. float * dst_data = wdata;
  6807. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6808. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6809. }
  6810. }
  6811. }
  6812. return;
  6813. }
  6814. if (params->type == GGML_TASK_FINALIZE) {
  6815. return;
  6816. }
  6817. // total rows in dst
  6818. const int nr = ne02;
  6819. // rows per thread
  6820. const int dr = (nr + nth - 1)/nth;
  6821. // row range for this thread
  6822. const int ir0 = dr*ith;
  6823. const int ir1 = MIN(ir0 + dr, nr);
  6824. for (int i1 = ir0; i1 < ir1; i1++) {
  6825. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6826. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  6827. dst_data[i0] = 0;
  6828. for (int k = -nh; k <= nh; k++) {
  6829. float v = 0.0f;
  6830. ggml_vec_dot_f32(ew0, &v,
  6831. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6832. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6833. dst_data[i0] += v;
  6834. }
  6835. }
  6836. }
  6837. }
  6838. static void ggml_compute_forward_conv_1d_1s(
  6839. const struct ggml_compute_params * params,
  6840. const struct ggml_tensor * src0,
  6841. const struct ggml_tensor * src1,
  6842. struct ggml_tensor * dst) {
  6843. switch (src0->type) {
  6844. case GGML_TYPE_F16:
  6845. {
  6846. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  6847. } break;
  6848. case GGML_TYPE_F32:
  6849. {
  6850. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  6851. } break;
  6852. case GGML_TYPE_Q4_0:
  6853. case GGML_TYPE_Q4_1:
  6854. case GGML_TYPE_Q8_0:
  6855. case GGML_TYPE_I8:
  6856. case GGML_TYPE_I16:
  6857. case GGML_TYPE_I32:
  6858. case GGML_TYPE_COUNT:
  6859. {
  6860. GGML_ASSERT(false);
  6861. } break;
  6862. }
  6863. }
  6864. // ggml_compute_forward_conv_1d_2s
  6865. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  6866. const struct ggml_compute_params * params,
  6867. const struct ggml_tensor * src0,
  6868. const struct ggml_tensor * src1,
  6869. struct ggml_tensor * dst) {
  6870. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6871. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6872. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6873. int64_t t0 = ggml_perf_time_us();
  6874. UNUSED(t0);
  6875. const int64_t ne00 = src0->ne[0];
  6876. const int64_t ne01 = src0->ne[1];
  6877. const int64_t ne02 = src0->ne[2];
  6878. //const int64_t ne03 = src0->ne[3];
  6879. const int64_t ne10 = src1->ne[0];
  6880. const int64_t ne11 = src1->ne[1];
  6881. //const int64_t ne12 = src1->ne[2];
  6882. //const int64_t ne13 = src1->ne[3];
  6883. //const int64_t ne0 = dst->ne[0];
  6884. //const int64_t ne1 = dst->ne[1];
  6885. //const int64_t ne2 = dst->ne[2];
  6886. //const int64_t ne3 = dst->ne[3];
  6887. //const int64_t ne = ne0*ne1*ne2*ne3;
  6888. const int nb00 = src0->nb[0];
  6889. const int nb01 = src0->nb[1];
  6890. const int nb02 = src0->nb[2];
  6891. //const int nb03 = src0->nb[3];
  6892. const int nb10 = src1->nb[0];
  6893. const int nb11 = src1->nb[1];
  6894. //const int nb12 = src1->nb[2];
  6895. //const int nb13 = src1->nb[3];
  6896. //const int nb0 = dst->nb[0];
  6897. const int nb1 = dst->nb[1];
  6898. //const int nb2 = dst->nb[2];
  6899. //const int nb3 = dst->nb[3];
  6900. const int ith = params->ith;
  6901. const int nth = params->nth;
  6902. const int nk = ne00;
  6903. const int nh = nk/2;
  6904. const int ew0 = ggml_up32(ne01);
  6905. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6906. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6907. GGML_ASSERT(nb10 == sizeof(float));
  6908. if (params->type == GGML_TASK_INIT) {
  6909. // TODO: fix this memset (wsize is overestimated)
  6910. memset(params->wdata, 0, params->wsize);
  6911. // prepare kernel data (src0)
  6912. {
  6913. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6914. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6915. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6916. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6917. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6918. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6919. dst_data[i00*ew0 + i01] = src[i00];
  6920. }
  6921. }
  6922. }
  6923. }
  6924. // prepare source data (src1)
  6925. {
  6926. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6927. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6928. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6929. ggml_fp16_t * dst_data = wdata;
  6930. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6931. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6932. }
  6933. }
  6934. }
  6935. return;
  6936. }
  6937. if (params->type == GGML_TASK_FINALIZE) {
  6938. return;
  6939. }
  6940. // total rows in dst
  6941. const int nr = ne02;
  6942. // rows per thread
  6943. const int dr = (nr + nth - 1)/nth;
  6944. // row range for this thread
  6945. const int ir0 = dr*ith;
  6946. const int ir1 = MIN(ir0 + dr, nr);
  6947. for (int i1 = ir0; i1 < ir1; i1++) {
  6948. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6949. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  6950. dst_data[i0/2] = 0;
  6951. for (int k = -nh; k <= nh; k++) {
  6952. float v = 0.0f;
  6953. ggml_vec_dot_f16(ew0, &v,
  6954. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6955. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6956. dst_data[i0/2] += v;
  6957. }
  6958. }
  6959. }
  6960. }
  6961. static void ggml_compute_forward_conv_1d_2s_f32(
  6962. const struct ggml_compute_params * params,
  6963. const struct ggml_tensor * src0,
  6964. const struct ggml_tensor * src1,
  6965. struct ggml_tensor * dst) {
  6966. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6967. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6968. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6969. int64_t t0 = ggml_perf_time_us();
  6970. UNUSED(t0);
  6971. const int64_t ne00 = src0->ne[0];
  6972. const int64_t ne01 = src0->ne[1];
  6973. const int64_t ne02 = src0->ne[2];
  6974. //const int64_t ne03 = src0->ne[3];
  6975. const int64_t ne10 = src1->ne[0];
  6976. const int64_t ne11 = src1->ne[1];
  6977. //const int64_t ne12 = src1->ne[2];
  6978. //const int64_t ne13 = src1->ne[3];
  6979. //const int64_t ne0 = dst->ne[0];
  6980. //const int64_t ne1 = dst->ne[1];
  6981. //const int64_t ne2 = dst->ne[2];
  6982. //const int64_t ne3 = dst->ne[3];
  6983. //const int64_t ne = ne0*ne1*ne2*ne3;
  6984. const int nb00 = src0->nb[0];
  6985. const int nb01 = src0->nb[1];
  6986. const int nb02 = src0->nb[2];
  6987. //const int nb03 = src0->nb[3];
  6988. const int nb10 = src1->nb[0];
  6989. const int nb11 = src1->nb[1];
  6990. //const int nb12 = src1->nb[2];
  6991. //const int nb13 = src1->nb[3];
  6992. //const int nb0 = dst->nb[0];
  6993. const int nb1 = dst->nb[1];
  6994. //const int nb2 = dst->nb[2];
  6995. //const int nb3 = dst->nb[3];
  6996. const int ith = params->ith;
  6997. const int nth = params->nth;
  6998. const int nk = ne00;
  6999. const int nh = nk/2;
  7000. const int ew0 = ggml_up32(ne01);
  7001. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7002. GGML_ASSERT(nb00 == sizeof(float));
  7003. GGML_ASSERT(nb10 == sizeof(float));
  7004. if (params->type == GGML_TASK_INIT) {
  7005. // TODO: fix this memset (wsize is overestimated)
  7006. memset(params->wdata, 0, params->wsize);
  7007. // prepare kernel data (src0)
  7008. {
  7009. float * const wdata = (float *) params->wdata + 0;
  7010. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7011. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7012. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7013. float * dst_data = wdata + i02*ew0*ne00;
  7014. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7015. dst_data[i00*ew0 + i01] = src[i00];
  7016. }
  7017. }
  7018. }
  7019. }
  7020. // prepare source data (src1)
  7021. {
  7022. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7023. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7024. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7025. float * dst_data = wdata;
  7026. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7027. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7028. }
  7029. }
  7030. }
  7031. return;
  7032. }
  7033. if (params->type == GGML_TASK_FINALIZE) {
  7034. return;
  7035. }
  7036. // total rows in dst
  7037. const int nr = ne02;
  7038. // rows per thread
  7039. const int dr = (nr + nth - 1)/nth;
  7040. // row range for this thread
  7041. const int ir0 = dr*ith;
  7042. const int ir1 = MIN(ir0 + dr, nr);
  7043. for (int i1 = ir0; i1 < ir1; i1++) {
  7044. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7045. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7046. dst_data[i0/2] = 0;
  7047. for (int k = -nh; k <= nh; k++) {
  7048. float v = 0.0f;
  7049. ggml_vec_dot_f32(ew0, &v,
  7050. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7051. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7052. dst_data[i0/2] += v;
  7053. }
  7054. }
  7055. }
  7056. }
  7057. static void ggml_compute_forward_conv_1d_2s(
  7058. const struct ggml_compute_params * params,
  7059. const struct ggml_tensor * src0,
  7060. const struct ggml_tensor * src1,
  7061. struct ggml_tensor * dst) {
  7062. switch (src0->type) {
  7063. case GGML_TYPE_F16:
  7064. {
  7065. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  7066. } break;
  7067. case GGML_TYPE_F32:
  7068. {
  7069. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  7070. } break;
  7071. case GGML_TYPE_Q4_0:
  7072. case GGML_TYPE_Q4_1:
  7073. case GGML_TYPE_Q8_0:
  7074. case GGML_TYPE_I8:
  7075. case GGML_TYPE_I16:
  7076. case GGML_TYPE_I32:
  7077. case GGML_TYPE_COUNT:
  7078. {
  7079. GGML_ASSERT(false);
  7080. } break;
  7081. }
  7082. }
  7083. // ggml_compute_forward_flash_attn
  7084. static void ggml_compute_forward_flash_attn_f32(
  7085. const struct ggml_compute_params * params,
  7086. const struct ggml_tensor * q,
  7087. const struct ggml_tensor * k,
  7088. const struct ggml_tensor * v,
  7089. const bool masked,
  7090. struct ggml_tensor * dst) {
  7091. int64_t t0 = ggml_perf_time_us();
  7092. UNUSED(t0);
  7093. const int64_t neq0 = q->ne[0];
  7094. const int64_t neq1 = q->ne[1];
  7095. const int64_t neq2 = q->ne[2];
  7096. const int64_t neq3 = q->ne[3];
  7097. const int64_t nek0 = k->ne[0];
  7098. const int64_t nek1 = k->ne[1];
  7099. //const int64_t nek2 = k->ne[2];
  7100. //const int64_t nek3 = k->ne[3];
  7101. //const int64_t nev0 = v->ne[0];
  7102. const int64_t nev1 = v->ne[1];
  7103. //const int64_t nev2 = v->ne[2];
  7104. //const int64_t nev3 = v->ne[3];
  7105. const int64_t ne0 = dst->ne[0];
  7106. const int64_t ne1 = dst->ne[1];
  7107. //const int64_t ne2 = dst->ne[2];
  7108. //const int64_t ne3 = dst->ne[3];
  7109. const int nbk0 = k->nb[0];
  7110. const int nbk1 = k->nb[1];
  7111. const int nbk2 = k->nb[2];
  7112. const int nbk3 = k->nb[3];
  7113. const int nbq0 = q->nb[0];
  7114. const int nbq1 = q->nb[1];
  7115. const int nbq2 = q->nb[2];
  7116. const int nbq3 = q->nb[3];
  7117. const int nbv0 = v->nb[0];
  7118. const int nbv1 = v->nb[1];
  7119. const int nbv2 = v->nb[2];
  7120. const int nbv3 = v->nb[3];
  7121. const int nb0 = dst->nb[0];
  7122. const int nb1 = dst->nb[1];
  7123. const int nb2 = dst->nb[2];
  7124. const int nb3 = dst->nb[3];
  7125. const int ith = params->ith;
  7126. const int nth = params->nth;
  7127. const int64_t D = neq0;
  7128. const int64_t N = neq1;
  7129. const int64_t P = nek1 - N;
  7130. const int64_t M = P + N;
  7131. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7132. GGML_ASSERT(ne0 == D);
  7133. GGML_ASSERT(ne1 == N);
  7134. GGML_ASSERT(P >= 0);
  7135. GGML_ASSERT(nbq0 == sizeof(float));
  7136. GGML_ASSERT(nbk0 == sizeof(float));
  7137. GGML_ASSERT(nbv0 == sizeof(float));
  7138. GGML_ASSERT(neq0 == D);
  7139. GGML_ASSERT(nek0 == D);
  7140. GGML_ASSERT(nev1 == D);
  7141. GGML_ASSERT(neq1 == N);
  7142. GGML_ASSERT(nek1 == N + P);
  7143. GGML_ASSERT(nev1 == D);
  7144. // dst cannot be transposed or permuted
  7145. GGML_ASSERT(nb0 == sizeof(float));
  7146. GGML_ASSERT(nb0 <= nb1);
  7147. GGML_ASSERT(nb1 <= nb2);
  7148. GGML_ASSERT(nb2 <= nb3);
  7149. if (params->type == GGML_TASK_INIT) {
  7150. return;
  7151. }
  7152. if (params->type == GGML_TASK_FINALIZE) {
  7153. return;
  7154. }
  7155. // parallelize by q rows using ggml_vec_dot_f32
  7156. // total rows in q
  7157. const int nr = neq1*neq2*neq3;
  7158. // rows per thread
  7159. const int dr = (nr + nth - 1)/nth;
  7160. // row range for this thread
  7161. const int ir0 = dr*ith;
  7162. const int ir1 = MIN(ir0 + dr, nr);
  7163. const float scale = 1.0f/sqrtf(D);
  7164. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7165. for (int ir = ir0; ir < ir1; ++ir) {
  7166. // q indices
  7167. const int iq3 = ir/(neq2*neq1);
  7168. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7169. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7170. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  7171. for (int i = M; i < Mup; ++i) {
  7172. S[i] = -INFINITY;
  7173. }
  7174. for (int64_t ic = 0; ic < nek1; ++ic) {
  7175. // k indices
  7176. const int ik3 = iq3;
  7177. const int ik2 = iq2;
  7178. const int ik1 = ic;
  7179. // S indices
  7180. const int i1 = ik1;
  7181. ggml_vec_dot_f32(neq0,
  7182. S + i1,
  7183. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7184. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7185. }
  7186. // scale
  7187. ggml_vec_scale_f32(nek1, S, scale);
  7188. if (masked) {
  7189. for (int64_t i = P; i < M; i++) {
  7190. if (i > P + iq1) {
  7191. S[i] = -INFINITY;
  7192. }
  7193. }
  7194. }
  7195. // softmax
  7196. {
  7197. float max = -INFINITY;
  7198. ggml_vec_max_f32(M, &max, S);
  7199. ggml_float sum = 0.0;
  7200. {
  7201. #ifdef GGML_SOFT_MAX_ACCELERATE
  7202. max = -max;
  7203. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7204. vvexpf(S, S, &Mup);
  7205. ggml_vec_sum_f32(Mup, &sum, S);
  7206. #else
  7207. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7208. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7209. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7210. float * SS = S + i;
  7211. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7212. if (SS[j] == -INFINITY) {
  7213. SS[j] = 0.0f;
  7214. } else {
  7215. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7216. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7217. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7218. sump[j] += (ggml_float)val;
  7219. SS[j] = val;
  7220. }
  7221. }
  7222. }
  7223. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7224. sum += sump[i];
  7225. }
  7226. #endif
  7227. }
  7228. assert(sum > 0.0);
  7229. sum = 1.0/sum;
  7230. ggml_vec_scale_f32(M, S, sum);
  7231. #ifndef NDEBUG
  7232. for (int i = 0; i < M; ++i) {
  7233. assert(!isnan(S[i]));
  7234. assert(!isinf(S[i]));
  7235. }
  7236. #endif
  7237. }
  7238. for (int64_t ic = 0; ic < nev1; ++ic) {
  7239. // dst indices
  7240. const int i1 = iq1;
  7241. const int i2 = iq2;
  7242. const int i3 = iq3;
  7243. ggml_vec_dot_f32(nek1,
  7244. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7245. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7246. S);
  7247. }
  7248. }
  7249. }
  7250. static void ggml_compute_forward_flash_attn_f16(
  7251. const struct ggml_compute_params * params,
  7252. const struct ggml_tensor * q,
  7253. const struct ggml_tensor * k,
  7254. const struct ggml_tensor * v,
  7255. const bool masked,
  7256. struct ggml_tensor * dst) {
  7257. int64_t t0 = ggml_perf_time_us();
  7258. UNUSED(t0);
  7259. const int64_t neq0 = q->ne[0];
  7260. const int64_t neq1 = q->ne[1];
  7261. const int64_t neq2 = q->ne[2];
  7262. const int64_t neq3 = q->ne[3];
  7263. const int64_t nek0 = k->ne[0];
  7264. const int64_t nek1 = k->ne[1];
  7265. //const int64_t nek2 = k->ne[2];
  7266. //const int64_t nek3 = k->ne[3];
  7267. //const int64_t nev0 = v->ne[0];
  7268. const int64_t nev1 = v->ne[1];
  7269. //const int64_t nev2 = v->ne[2];
  7270. //const int64_t nev3 = v->ne[3];
  7271. const int64_t ne0 = dst->ne[0];
  7272. const int64_t ne1 = dst->ne[1];
  7273. //const int64_t ne2 = dst->ne[2];
  7274. //const int64_t ne3 = dst->ne[3];
  7275. const int nbk0 = k->nb[0];
  7276. const int nbk1 = k->nb[1];
  7277. const int nbk2 = k->nb[2];
  7278. const int nbk3 = k->nb[3];
  7279. const int nbq0 = q->nb[0];
  7280. const int nbq1 = q->nb[1];
  7281. const int nbq2 = q->nb[2];
  7282. const int nbq3 = q->nb[3];
  7283. const int nbv0 = v->nb[0];
  7284. const int nbv1 = v->nb[1];
  7285. const int nbv2 = v->nb[2];
  7286. const int nbv3 = v->nb[3];
  7287. const int nb0 = dst->nb[0];
  7288. const int nb1 = dst->nb[1];
  7289. const int nb2 = dst->nb[2];
  7290. const int nb3 = dst->nb[3];
  7291. const int ith = params->ith;
  7292. const int nth = params->nth;
  7293. const int64_t D = neq0;
  7294. const int64_t N = neq1;
  7295. const int64_t P = nek1 - N;
  7296. const int64_t M = P + N;
  7297. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7298. GGML_ASSERT(ne0 == D);
  7299. GGML_ASSERT(ne1 == N);
  7300. GGML_ASSERT(P >= 0);
  7301. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  7302. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  7303. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  7304. GGML_ASSERT(neq0 == D);
  7305. GGML_ASSERT(nek0 == D);
  7306. GGML_ASSERT(nev1 == D);
  7307. GGML_ASSERT(neq1 == N);
  7308. GGML_ASSERT(nek1 == N + P);
  7309. GGML_ASSERT(nev1 == D);
  7310. // dst cannot be transposed or permuted
  7311. GGML_ASSERT(nb0 == sizeof(float));
  7312. GGML_ASSERT(nb0 <= nb1);
  7313. GGML_ASSERT(nb1 <= nb2);
  7314. GGML_ASSERT(nb2 <= nb3);
  7315. if (params->type == GGML_TASK_INIT) {
  7316. return;
  7317. }
  7318. if (params->type == GGML_TASK_FINALIZE) {
  7319. return;
  7320. }
  7321. // parallelize by q rows using ggml_vec_dot_f32
  7322. // total rows in q
  7323. const int nr = neq1*neq2*neq3;
  7324. // rows per thread
  7325. const int dr = (nr + nth - 1)/nth;
  7326. // row range for this thread
  7327. const int ir0 = dr*ith;
  7328. const int ir1 = MIN(ir0 + dr, nr);
  7329. const float scale = 1.0f/sqrtf(D);
  7330. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7331. for (int ir = ir0; ir < ir1; ++ir) {
  7332. // q indices
  7333. const int iq3 = ir/(neq2*neq1);
  7334. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7335. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7336. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  7337. for (int i = M; i < Mup; ++i) {
  7338. S[i] = -INFINITY;
  7339. }
  7340. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  7341. for (int64_t ic = 0; ic < nek1; ++ic) {
  7342. // k indices
  7343. const int ik3 = iq3;
  7344. const int ik2 = iq2;
  7345. const int ik1 = ic;
  7346. // S indices
  7347. const int i1 = ik1;
  7348. ggml_vec_dot_f16(neq0,
  7349. S + i1,
  7350. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7351. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7352. }
  7353. } else {
  7354. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  7355. // k indices
  7356. const int ik3 = iq3;
  7357. const int ik2 = iq2;
  7358. const int ik1 = ic;
  7359. // S indices
  7360. const int i1 = ik1;
  7361. ggml_vec_dot_f16_unroll(neq0, nbk1,
  7362. S + i1,
  7363. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7364. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7365. }
  7366. }
  7367. // scale
  7368. ggml_vec_scale_f32(nek1, S, scale);
  7369. if (masked) {
  7370. for (int64_t i = P; i < M; i++) {
  7371. if (i > P + iq1) {
  7372. S[i] = -INFINITY;
  7373. }
  7374. }
  7375. }
  7376. // softmax
  7377. {
  7378. float max = -INFINITY;
  7379. ggml_vec_max_f32(M, &max, S);
  7380. ggml_float sum = 0.0;
  7381. {
  7382. #ifdef GGML_SOFT_MAX_ACCELERATE
  7383. max = -max;
  7384. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7385. vvexpf(S, S, &Mup);
  7386. ggml_vec_sum_f32(Mup, &sum, S);
  7387. #else
  7388. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7389. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7390. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7391. float * SS = S + i;
  7392. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7393. if (SS[j] == -INFINITY) {
  7394. SS[j] = 0.0f;
  7395. } else {
  7396. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7397. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7398. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7399. sump[j] += (ggml_float)val;
  7400. SS[j] = val;
  7401. }
  7402. }
  7403. }
  7404. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7405. sum += sump[i];
  7406. }
  7407. #endif
  7408. }
  7409. assert(sum > 0.0);
  7410. sum = 1.0/sum;
  7411. ggml_vec_scale_f32(M, S, sum);
  7412. #ifndef NDEBUG
  7413. for (int i = 0; i < M; ++i) {
  7414. assert(!isnan(S[i]));
  7415. assert(!isinf(S[i]));
  7416. }
  7417. #endif
  7418. }
  7419. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  7420. for (int64_t i = 0; i < M; i++) {
  7421. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7422. }
  7423. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  7424. for (int64_t ic = 0; ic < nev1; ++ic) {
  7425. // dst indices
  7426. const int i1 = iq1;
  7427. const int i2 = iq2;
  7428. const int i3 = iq3;
  7429. ggml_vec_dot_f16(nek1,
  7430. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7431. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7432. S16);
  7433. }
  7434. } else {
  7435. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  7436. // dst indices
  7437. const int i1 = iq1;
  7438. const int i2 = iq2;
  7439. const int i3 = iq3;
  7440. ggml_vec_dot_f16_unroll(nek1, nbv1,
  7441. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7442. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7443. S16);
  7444. }
  7445. }
  7446. }
  7447. }
  7448. static void ggml_compute_forward_flash_attn(
  7449. const struct ggml_compute_params * params,
  7450. const struct ggml_tensor * q,
  7451. const struct ggml_tensor * k,
  7452. const struct ggml_tensor * v,
  7453. const bool masked,
  7454. struct ggml_tensor * dst) {
  7455. switch (q->type) {
  7456. case GGML_TYPE_F16:
  7457. {
  7458. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  7459. } break;
  7460. case GGML_TYPE_F32:
  7461. {
  7462. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  7463. } break;
  7464. case GGML_TYPE_Q4_0:
  7465. case GGML_TYPE_Q4_1:
  7466. case GGML_TYPE_Q8_0:
  7467. case GGML_TYPE_I8:
  7468. case GGML_TYPE_I16:
  7469. case GGML_TYPE_I32:
  7470. case GGML_TYPE_COUNT:
  7471. {
  7472. GGML_ASSERT(false);
  7473. } break;
  7474. }
  7475. }
  7476. // ggml_compute_forward_flash_ff
  7477. static void ggml_compute_forward_flash_ff_f16(
  7478. const struct ggml_compute_params * params,
  7479. const struct ggml_tensor * a, // F16
  7480. const struct ggml_tensor * b0, // F16 fc_w
  7481. const struct ggml_tensor * b1, // F32 fc_b
  7482. const struct ggml_tensor * c0, // F16 proj_w
  7483. const struct ggml_tensor * c1, // F32 proj_b
  7484. struct ggml_tensor * dst) {
  7485. int64_t t0 = ggml_perf_time_us();
  7486. UNUSED(t0);
  7487. const int64_t nea0 = a->ne[0];
  7488. const int64_t nea1 = a->ne[1];
  7489. const int64_t nea2 = a->ne[2];
  7490. const int64_t nea3 = a->ne[3];
  7491. const int64_t neb00 = b0->ne[0];
  7492. const int64_t neb01 = b0->ne[1];
  7493. //const int64_t neb02 = b0->ne[2];
  7494. //const int64_t neb03 = b0->ne[3];
  7495. const int64_t neb10 = b1->ne[0];
  7496. const int64_t neb11 = b1->ne[1];
  7497. //const int64_t neb12 = b1->ne[2];
  7498. //const int64_t neb13 = b1->ne[3];
  7499. const int64_t nec00 = c0->ne[0];
  7500. const int64_t nec01 = c0->ne[1];
  7501. //const int64_t nec02 = c0->ne[2];
  7502. //const int64_t nec03 = c0->ne[3];
  7503. const int64_t nec10 = c1->ne[0];
  7504. const int64_t nec11 = c1->ne[1];
  7505. //const int64_t nec12 = c1->ne[2];
  7506. //const int64_t nec13 = c1->ne[3];
  7507. const int64_t ne0 = dst->ne[0];
  7508. const int64_t ne1 = dst->ne[1];
  7509. const int64_t ne2 = dst->ne[2];
  7510. //const int64_t ne3 = dst->ne[3];
  7511. const int nba0 = a->nb[0];
  7512. const int nba1 = a->nb[1];
  7513. const int nba2 = a->nb[2];
  7514. const int nba3 = a->nb[3];
  7515. const int nbb00 = b0->nb[0];
  7516. const int nbb01 = b0->nb[1];
  7517. const int nbb02 = b0->nb[2];
  7518. const int nbb03 = b0->nb[3];
  7519. const int nbb10 = b1->nb[0];
  7520. //const int nbb11 = b1->nb[1];
  7521. //const int nbb12 = b1->nb[2];
  7522. //const int nbb13 = b1->nb[3];
  7523. const int nbc00 = c0->nb[0];
  7524. const int nbc01 = c0->nb[1];
  7525. const int nbc02 = c0->nb[2];
  7526. const int nbc03 = c0->nb[3];
  7527. const int nbc10 = c1->nb[0];
  7528. //const int nbc11 = c1->nb[1];
  7529. //const int nbc12 = c1->nb[2];
  7530. //const int nbc13 = c1->nb[3];
  7531. const int nb0 = dst->nb[0];
  7532. const int nb1 = dst->nb[1];
  7533. const int nb2 = dst->nb[2];
  7534. const int nb3 = dst->nb[3];
  7535. const int ith = params->ith;
  7536. const int nth = params->nth;
  7537. const int64_t D = nea0;
  7538. //const int64_t N = nea1;
  7539. const int64_t M = neb01;
  7540. GGML_ASSERT(ne0 == nea0);
  7541. GGML_ASSERT(ne1 == nea1);
  7542. GGML_ASSERT(ne2 == nea2);
  7543. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  7544. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  7545. GGML_ASSERT(nbb10 == sizeof(float));
  7546. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  7547. GGML_ASSERT(nbc10 == sizeof(float));
  7548. GGML_ASSERT(neb00 == D);
  7549. GGML_ASSERT(neb01 == M);
  7550. GGML_ASSERT(neb10 == M);
  7551. GGML_ASSERT(neb11 == 1);
  7552. GGML_ASSERT(nec00 == M);
  7553. GGML_ASSERT(nec01 == D);
  7554. GGML_ASSERT(nec10 == D);
  7555. GGML_ASSERT(nec11 == 1);
  7556. // dst cannot be transposed or permuted
  7557. GGML_ASSERT(nb0 == sizeof(float));
  7558. GGML_ASSERT(nb0 <= nb1);
  7559. GGML_ASSERT(nb1 <= nb2);
  7560. GGML_ASSERT(nb2 <= nb3);
  7561. if (params->type == GGML_TASK_INIT) {
  7562. return;
  7563. }
  7564. if (params->type == GGML_TASK_FINALIZE) {
  7565. return;
  7566. }
  7567. // parallelize by a rows using ggml_vec_dot_f32
  7568. // total rows in a
  7569. const int nr = nea1*nea2*nea3;
  7570. // rows per thread
  7571. const int dr = (nr + nth - 1)/nth;
  7572. // row range for this thread
  7573. const int ir0 = dr*ith;
  7574. const int ir1 = MIN(ir0 + dr, nr);
  7575. for (int ir = ir0; ir < ir1; ++ir) {
  7576. // a indices
  7577. const int ia3 = ir/(nea2*nea1);
  7578. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  7579. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  7580. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  7581. for (int64_t ic = 0; ic < neb01; ++ic) {
  7582. // b0 indices
  7583. const int ib03 = ia3;
  7584. const int ib02 = ia2;
  7585. const int ib01 = ic;
  7586. // S indices
  7587. const int i1 = ib01;
  7588. ggml_vec_dot_f16(nea0,
  7589. S + i1,
  7590. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  7591. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  7592. }
  7593. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  7594. //ggml_vec_gelu_f32(neb01, S, S);
  7595. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  7596. for (int64_t i = 0; i < M; i++) {
  7597. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7598. }
  7599. ggml_vec_gelu_f16(neb01, S16, S16);
  7600. {
  7601. // dst indices
  7602. const int i1 = ia1;
  7603. const int i2 = ia2;
  7604. const int i3 = ia3;
  7605. for (int64_t ic = 0; ic < nec01; ++ic) {
  7606. ggml_vec_dot_f16(neb01,
  7607. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7608. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  7609. S16);
  7610. }
  7611. ggml_vec_add_f32(nec01,
  7612. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7613. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7614. (float *) c1->data);
  7615. }
  7616. }
  7617. }
  7618. static void ggml_compute_forward_flash_ff(
  7619. const struct ggml_compute_params * params,
  7620. const struct ggml_tensor * a,
  7621. const struct ggml_tensor * b0,
  7622. const struct ggml_tensor * b1,
  7623. const struct ggml_tensor * c0,
  7624. const struct ggml_tensor * c1,
  7625. struct ggml_tensor * dst) {
  7626. switch (b0->type) {
  7627. case GGML_TYPE_F16:
  7628. {
  7629. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  7630. } break;
  7631. case GGML_TYPE_F32:
  7632. {
  7633. GGML_ASSERT(false); // TODO
  7634. } break;
  7635. case GGML_TYPE_Q4_0:
  7636. case GGML_TYPE_Q4_1:
  7637. case GGML_TYPE_Q8_0:
  7638. case GGML_TYPE_I8:
  7639. case GGML_TYPE_I16:
  7640. case GGML_TYPE_I32:
  7641. case GGML_TYPE_COUNT:
  7642. {
  7643. GGML_ASSERT(false);
  7644. } break;
  7645. }
  7646. }
  7647. // ggml_compute_forward_map_unary
  7648. static void ggml_compute_forward_map_unary_f32(
  7649. const struct ggml_compute_params * params,
  7650. const struct ggml_tensor * src0,
  7651. struct ggml_tensor * dst,
  7652. const ggml_unary_op_f32_t fun) {
  7653. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7654. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7655. return;
  7656. }
  7657. const int n = ggml_nrows(src0);
  7658. const int nc = src0->ne[0];
  7659. assert( dst->nb[0] == sizeof(float));
  7660. assert(src0->nb[0] == sizeof(float));
  7661. for (int i = 0; i < n; i++) {
  7662. fun(nc,
  7663. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7664. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7665. }
  7666. }
  7667. static void ggml_compute_forward_map_unary(
  7668. const struct ggml_compute_params * params,
  7669. const struct ggml_tensor * src0,
  7670. struct ggml_tensor * dst,
  7671. const ggml_unary_op_f32_t fun) {
  7672. switch (src0->type) {
  7673. case GGML_TYPE_F32:
  7674. {
  7675. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  7676. } break;
  7677. case GGML_TYPE_Q4_0:
  7678. case GGML_TYPE_Q4_1:
  7679. case GGML_TYPE_Q8_0:
  7680. case GGML_TYPE_I8:
  7681. case GGML_TYPE_I16:
  7682. case GGML_TYPE_I32:
  7683. case GGML_TYPE_F16:
  7684. case GGML_TYPE_COUNT:
  7685. {
  7686. GGML_ASSERT(false);
  7687. } break;
  7688. }
  7689. }
  7690. // ggml_compute_forward_map_binary
  7691. static void ggml_compute_forward_map_binary_f32(
  7692. const struct ggml_compute_params * params,
  7693. const struct ggml_tensor * src0,
  7694. const struct ggml_tensor * src1,
  7695. struct ggml_tensor * dst,
  7696. const ggml_binary_op_f32_t fun) {
  7697. assert(params->ith == 0);
  7698. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7699. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7700. return;
  7701. }
  7702. const int n = ggml_nrows(src0);
  7703. const int nc = src0->ne[0];
  7704. assert( dst->nb[0] == sizeof(float));
  7705. assert(src0->nb[0] == sizeof(float));
  7706. assert(src1->nb[0] == sizeof(float));
  7707. for (int i = 0; i < n; i++) {
  7708. fun(nc,
  7709. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7710. (float *) ((char *) src0->data + i*(src0->nb[1])),
  7711. (float *) ((char *) src1->data + i*(src1->nb[1])));
  7712. }
  7713. }
  7714. static void ggml_compute_forward_map_binary(
  7715. const struct ggml_compute_params * params,
  7716. const struct ggml_tensor * src0,
  7717. const struct ggml_tensor * src1,
  7718. struct ggml_tensor * dst,
  7719. const ggml_binary_op_f32_t fun) {
  7720. switch (src0->type) {
  7721. case GGML_TYPE_F32:
  7722. {
  7723. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  7724. } break;
  7725. case GGML_TYPE_Q4_0:
  7726. case GGML_TYPE_Q4_1:
  7727. case GGML_TYPE_Q8_0:
  7728. case GGML_TYPE_I8:
  7729. case GGML_TYPE_I16:
  7730. case GGML_TYPE_I32:
  7731. case GGML_TYPE_F16:
  7732. case GGML_TYPE_COUNT:
  7733. {
  7734. GGML_ASSERT(false);
  7735. } break;
  7736. }
  7737. }
  7738. /////////////////////////////////
  7739. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  7740. GGML_ASSERT(params);
  7741. switch (tensor->op) {
  7742. case GGML_OP_DUP:
  7743. {
  7744. ggml_compute_forward_dup(params, tensor->src0, tensor);
  7745. } break;
  7746. case GGML_OP_ADD:
  7747. {
  7748. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  7749. } break;
  7750. case GGML_OP_SUB:
  7751. {
  7752. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  7753. } break;
  7754. case GGML_OP_MUL:
  7755. {
  7756. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  7757. } break;
  7758. case GGML_OP_DIV:
  7759. {
  7760. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  7761. } break;
  7762. case GGML_OP_SQR:
  7763. {
  7764. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  7765. } break;
  7766. case GGML_OP_SQRT:
  7767. {
  7768. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  7769. } break;
  7770. case GGML_OP_SUM:
  7771. {
  7772. ggml_compute_forward_sum(params, tensor->src0, tensor);
  7773. } break;
  7774. case GGML_OP_MEAN:
  7775. {
  7776. ggml_compute_forward_mean(params, tensor->src0, tensor);
  7777. } break;
  7778. case GGML_OP_REPEAT:
  7779. {
  7780. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  7781. } break;
  7782. case GGML_OP_ABS:
  7783. {
  7784. ggml_compute_forward_abs(params, tensor->src0, tensor);
  7785. } break;
  7786. case GGML_OP_SGN:
  7787. {
  7788. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  7789. } break;
  7790. case GGML_OP_NEG:
  7791. {
  7792. ggml_compute_forward_neg(params, tensor->src0, tensor);
  7793. } break;
  7794. case GGML_OP_STEP:
  7795. {
  7796. ggml_compute_forward_step(params, tensor->src0, tensor);
  7797. } break;
  7798. case GGML_OP_RELU:
  7799. {
  7800. ggml_compute_forward_relu(params, tensor->src0, tensor);
  7801. } break;
  7802. case GGML_OP_GELU:
  7803. {
  7804. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  7805. } break;
  7806. case GGML_OP_SILU:
  7807. {
  7808. ggml_compute_forward_silu(params, tensor->src0, tensor);
  7809. } break;
  7810. case GGML_OP_NORM:
  7811. {
  7812. ggml_compute_forward_norm(params, tensor->src0, tensor);
  7813. } break;
  7814. case GGML_OP_RMS_NORM:
  7815. {
  7816. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  7817. } break;
  7818. case GGML_OP_MUL_MAT:
  7819. {
  7820. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  7821. } break;
  7822. case GGML_OP_SCALE:
  7823. {
  7824. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  7825. } break;
  7826. case GGML_OP_CPY:
  7827. {
  7828. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  7829. } break;
  7830. case GGML_OP_CONT:
  7831. {
  7832. ggml_compute_forward_cont(params, tensor->src0, tensor);
  7833. } break;
  7834. case GGML_OP_RESHAPE:
  7835. {
  7836. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  7837. } break;
  7838. case GGML_OP_VIEW:
  7839. {
  7840. ggml_compute_forward_view(params, tensor->src0);
  7841. } break;
  7842. case GGML_OP_PERMUTE:
  7843. {
  7844. ggml_compute_forward_permute(params, tensor->src0);
  7845. } break;
  7846. case GGML_OP_TRANSPOSE:
  7847. {
  7848. ggml_compute_forward_transpose(params, tensor->src0);
  7849. } break;
  7850. case GGML_OP_GET_ROWS:
  7851. {
  7852. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  7853. } break;
  7854. case GGML_OP_DIAG_MASK_INF:
  7855. {
  7856. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  7857. } break;
  7858. case GGML_OP_SOFT_MAX:
  7859. {
  7860. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  7861. } break;
  7862. case GGML_OP_ROPE:
  7863. {
  7864. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  7865. } break;
  7866. case GGML_OP_CONV_1D_1S:
  7867. {
  7868. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  7869. } break;
  7870. case GGML_OP_CONV_1D_2S:
  7871. {
  7872. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  7873. } break;
  7874. case GGML_OP_FLASH_ATTN:
  7875. {
  7876. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  7877. GGML_ASSERT(t == 0 || t == 1);
  7878. bool masked = t != 0;
  7879. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  7880. } break;
  7881. case GGML_OP_FLASH_FF:
  7882. {
  7883. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  7884. } break;
  7885. case GGML_OP_MAP_UNARY:
  7886. {
  7887. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  7888. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  7889. }
  7890. break;
  7891. case GGML_OP_MAP_BINARY:
  7892. {
  7893. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  7894. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  7895. }
  7896. break;
  7897. case GGML_OP_NONE:
  7898. {
  7899. // nop
  7900. } break;
  7901. case GGML_OP_COUNT:
  7902. {
  7903. GGML_ASSERT(false);
  7904. } break;
  7905. }
  7906. }
  7907. ////////////////////////////////////////////////////////////////////////////////
  7908. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  7909. struct ggml_tensor * src0 = tensor->src0;
  7910. struct ggml_tensor * src1 = tensor->src1;
  7911. switch (tensor->op) {
  7912. case GGML_OP_DUP:
  7913. {
  7914. if (src0->grad) {
  7915. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7916. }
  7917. } break;
  7918. case GGML_OP_ADD:
  7919. {
  7920. if (src0->grad) {
  7921. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7922. }
  7923. if (src1->grad) {
  7924. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  7925. }
  7926. } break;
  7927. case GGML_OP_SUB:
  7928. {
  7929. if (src0->grad) {
  7930. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7931. }
  7932. if (src1->grad) {
  7933. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  7934. }
  7935. } break;
  7936. case GGML_OP_MUL:
  7937. {
  7938. if (src0->grad) {
  7939. src0->grad =
  7940. ggml_add_impl(ctx,
  7941. src0->grad,
  7942. ggml_mul(ctx, src1, tensor->grad),
  7943. inplace);
  7944. }
  7945. if (src1->grad) {
  7946. src1->grad =
  7947. ggml_add_impl(ctx,
  7948. src1->grad,
  7949. ggml_mul(ctx, src0, tensor->grad),
  7950. inplace);
  7951. }
  7952. } break;
  7953. case GGML_OP_DIV:
  7954. {
  7955. if (src0->grad) {
  7956. src0->grad =
  7957. ggml_add_impl(ctx,
  7958. src0->grad,
  7959. ggml_div(ctx, tensor->grad, src1),
  7960. inplace);
  7961. }
  7962. if (src1->grad) {
  7963. src1->grad =
  7964. ggml_sub_impl(ctx,
  7965. src1->grad,
  7966. ggml_mul(ctx,
  7967. tensor->grad,
  7968. ggml_div(ctx, tensor, src1)),
  7969. inplace);
  7970. }
  7971. } break;
  7972. case GGML_OP_SQR:
  7973. {
  7974. if (src0->grad) {
  7975. src0->grad =
  7976. ggml_add_impl(ctx,
  7977. src0->grad,
  7978. ggml_mul(ctx,
  7979. ggml_mul(ctx, src0, tensor->grad),
  7980. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  7981. inplace);
  7982. }
  7983. } break;
  7984. case GGML_OP_SQRT:
  7985. {
  7986. if (src0->grad) {
  7987. src0->grad =
  7988. ggml_add_impl(ctx,
  7989. src0->grad,
  7990. ggml_div(ctx,
  7991. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  7992. tensor),
  7993. inplace);
  7994. }
  7995. } break;
  7996. case GGML_OP_SUM:
  7997. {
  7998. if (src0->grad) {
  7999. src0->grad =
  8000. ggml_add_impl(ctx,
  8001. src0->grad,
  8002. ggml_repeat(ctx, tensor->grad, src0->grad),
  8003. inplace);
  8004. }
  8005. } break;
  8006. case GGML_OP_MEAN:
  8007. {
  8008. GGML_ASSERT(false); // TODO: implement
  8009. } break;
  8010. case GGML_OP_REPEAT:
  8011. {
  8012. if (src0->grad) {
  8013. src0->grad =
  8014. ggml_add_impl(ctx,
  8015. src0->grad,
  8016. ggml_sum(ctx, tensor->grad),
  8017. inplace);
  8018. }
  8019. } break;
  8020. case GGML_OP_ABS:
  8021. {
  8022. if (src0->grad) {
  8023. src0->grad =
  8024. ggml_add_impl(ctx,
  8025. src0->grad,
  8026. ggml_mul(ctx,
  8027. ggml_sgn(ctx, src0),
  8028. tensor->grad),
  8029. inplace);
  8030. }
  8031. } break;
  8032. case GGML_OP_SGN:
  8033. {
  8034. if (src0->grad) {
  8035. // noop
  8036. }
  8037. } break;
  8038. case GGML_OP_NEG:
  8039. {
  8040. if (src0->grad) {
  8041. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  8042. }
  8043. } break;
  8044. case GGML_OP_STEP:
  8045. {
  8046. if (src0->grad) {
  8047. // noop
  8048. }
  8049. } break;
  8050. case GGML_OP_RELU:
  8051. {
  8052. if (src0->grad) {
  8053. src0->grad = ggml_sub_impl(ctx,
  8054. src0->grad,
  8055. ggml_mul(ctx,
  8056. ggml_step(ctx, src0),
  8057. tensor->grad),
  8058. inplace);
  8059. }
  8060. } break;
  8061. case GGML_OP_GELU:
  8062. {
  8063. GGML_ASSERT(false); // TODO: not implemented
  8064. } break;
  8065. case GGML_OP_SILU:
  8066. {
  8067. GGML_ASSERT(false); // TODO: not implemented
  8068. } break;
  8069. case GGML_OP_NORM:
  8070. {
  8071. GGML_ASSERT(false); // TODO: not implemented
  8072. } break;
  8073. case GGML_OP_RMS_NORM:
  8074. {
  8075. GGML_ASSERT(false); // TODO: not implemented
  8076. } break;
  8077. case GGML_OP_MUL_MAT:
  8078. {
  8079. if (src0->grad) {
  8080. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  8081. GGML_ASSERT(false);
  8082. }
  8083. if (src1->grad) {
  8084. src1->grad =
  8085. ggml_add_impl(ctx,
  8086. src1->grad,
  8087. ggml_mul_mat(ctx,
  8088. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  8089. tensor->grad),
  8090. inplace);
  8091. }
  8092. } break;
  8093. case GGML_OP_SCALE:
  8094. {
  8095. GGML_ASSERT(false); // TODO: not implemented
  8096. } break;
  8097. case GGML_OP_CPY:
  8098. {
  8099. GGML_ASSERT(false); // TODO: not implemented
  8100. } break;
  8101. case GGML_OP_CONT:
  8102. {
  8103. GGML_ASSERT(false); // TODO: not implemented
  8104. } break;
  8105. case GGML_OP_RESHAPE:
  8106. {
  8107. GGML_ASSERT(false); // TODO: not implemented
  8108. } break;
  8109. case GGML_OP_VIEW:
  8110. {
  8111. GGML_ASSERT(false); // not supported
  8112. } break;
  8113. case GGML_OP_PERMUTE:
  8114. {
  8115. GGML_ASSERT(false); // TODO: not implemented
  8116. } break;
  8117. case GGML_OP_TRANSPOSE:
  8118. {
  8119. GGML_ASSERT(false); // TODO: not implemented
  8120. } break;
  8121. case GGML_OP_GET_ROWS:
  8122. {
  8123. GGML_ASSERT(false); // TODO: not implemented
  8124. } break;
  8125. case GGML_OP_DIAG_MASK_INF:
  8126. {
  8127. GGML_ASSERT(false); // TODO: not implemented
  8128. } break;
  8129. case GGML_OP_SOFT_MAX:
  8130. {
  8131. GGML_ASSERT(false); // TODO: not implemented
  8132. } break;
  8133. case GGML_OP_ROPE:
  8134. {
  8135. GGML_ASSERT(false); // TODO: not implemented
  8136. } break;
  8137. case GGML_OP_CONV_1D_1S:
  8138. {
  8139. GGML_ASSERT(false); // TODO: not implemented
  8140. } break;
  8141. case GGML_OP_CONV_1D_2S:
  8142. {
  8143. GGML_ASSERT(false); // TODO: not implemented
  8144. } break;
  8145. case GGML_OP_FLASH_ATTN:
  8146. {
  8147. GGML_ASSERT(false); // not supported
  8148. } break;
  8149. case GGML_OP_FLASH_FF:
  8150. {
  8151. GGML_ASSERT(false); // not supported
  8152. } break;
  8153. case GGML_OP_MAP_UNARY:
  8154. case GGML_OP_MAP_BINARY:
  8155. {
  8156. GGML_ASSERT(false); // not supported
  8157. } break;
  8158. case GGML_OP_NONE:
  8159. {
  8160. // nop
  8161. } break;
  8162. case GGML_OP_COUNT:
  8163. {
  8164. GGML_ASSERT(false);
  8165. } break;
  8166. }
  8167. }
  8168. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  8169. if (node->grad == NULL) {
  8170. // this usually happens when we generate intermediate nodes from constants in the backward pass
  8171. // it can also happen during forward pass, if the user performs computations with constants
  8172. if (node->op != GGML_OP_NONE) {
  8173. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  8174. }
  8175. }
  8176. // check if already visited
  8177. for (int i = 0; i < cgraph->n_nodes; i++) {
  8178. if (cgraph->nodes[i] == node) {
  8179. return;
  8180. }
  8181. }
  8182. for (int i = 0; i < cgraph->n_leafs; i++) {
  8183. if (cgraph->leafs[i] == node) {
  8184. return;
  8185. }
  8186. }
  8187. if (node->src0) {
  8188. ggml_visit_parents(cgraph, node->src0);
  8189. }
  8190. if (node->src1) {
  8191. ggml_visit_parents(cgraph, node->src1);
  8192. }
  8193. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  8194. if (node->opt[i]) {
  8195. ggml_visit_parents(cgraph, node->opt[i]);
  8196. }
  8197. }
  8198. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  8199. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  8200. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  8201. cgraph->leafs[cgraph->n_leafs] = node;
  8202. cgraph->n_leafs++;
  8203. } else {
  8204. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  8205. cgraph->nodes[cgraph->n_nodes] = node;
  8206. cgraph->grads[cgraph->n_nodes] = node->grad;
  8207. cgraph->n_nodes++;
  8208. }
  8209. }
  8210. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  8211. if (!expand) {
  8212. cgraph->n_nodes = 0;
  8213. cgraph->n_leafs = 0;
  8214. }
  8215. const int n0 = cgraph->n_nodes;
  8216. UNUSED(n0);
  8217. ggml_visit_parents(cgraph, tensor);
  8218. const int n_new = cgraph->n_nodes - n0;
  8219. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  8220. if (n_new > 0) {
  8221. // the last added node should always be starting point
  8222. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  8223. }
  8224. }
  8225. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  8226. ggml_build_forward_impl(cgraph, tensor, true);
  8227. }
  8228. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  8229. struct ggml_cgraph result = {
  8230. /*.n_nodes =*/ 0,
  8231. /*.n_leafs =*/ 0,
  8232. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  8233. /*.work_size =*/ 0,
  8234. /*.work =*/ NULL,
  8235. /*.nodes =*/ { NULL },
  8236. /*.grads =*/ { NULL },
  8237. /*.leafs =*/ { NULL },
  8238. /*.perf_runs =*/ 0,
  8239. /*.perf_cycles =*/ 0,
  8240. /*.perf_time_us =*/ 0,
  8241. };
  8242. ggml_build_forward_impl(&result, tensor, false);
  8243. return result;
  8244. }
  8245. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  8246. struct ggml_cgraph result = *gf;
  8247. GGML_ASSERT(gf->n_nodes > 0);
  8248. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  8249. if (keep) {
  8250. for (int i = 0; i < gf->n_nodes; i++) {
  8251. struct ggml_tensor * node = gf->nodes[i];
  8252. if (node->grad) {
  8253. node->grad = ggml_dup_tensor(ctx, node);
  8254. gf->grads[i] = node->grad;
  8255. }
  8256. }
  8257. }
  8258. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  8259. struct ggml_tensor * node = gf->nodes[i];
  8260. // because we detached the grad nodes from the original graph, we can afford inplace operations
  8261. if (node->grad) {
  8262. ggml_compute_backward(ctx, node, keep);
  8263. }
  8264. }
  8265. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  8266. struct ggml_tensor * node = gf->nodes[i];
  8267. if (node->is_param) {
  8268. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  8269. ggml_build_forward_impl(&result, node->grad, true);
  8270. }
  8271. }
  8272. return result;
  8273. }
  8274. //
  8275. // thread data
  8276. //
  8277. // synchronization is done via busy loops
  8278. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  8279. //
  8280. #ifdef __APPLE__
  8281. //#include <os/lock.h>
  8282. //
  8283. //typedef os_unfair_lock ggml_lock_t;
  8284. //
  8285. //#define ggml_lock_init(x) UNUSED(x)
  8286. //#define ggml_lock_destroy(x) UNUSED(x)
  8287. //#define ggml_lock_lock os_unfair_lock_lock
  8288. //#define ggml_lock_unlock os_unfair_lock_unlock
  8289. //
  8290. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  8291. typedef int ggml_lock_t;
  8292. #define ggml_lock_init(x) UNUSED(x)
  8293. #define ggml_lock_destroy(x) UNUSED(x)
  8294. #define ggml_lock_lock(x) UNUSED(x)
  8295. #define ggml_lock_unlock(x) UNUSED(x)
  8296. #define GGML_LOCK_INITIALIZER 0
  8297. typedef pthread_t ggml_thread_t;
  8298. #define ggml_thread_create pthread_create
  8299. #define ggml_thread_join pthread_join
  8300. #else
  8301. //typedef pthread_spinlock_t ggml_lock_t;
  8302. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  8303. //#define ggml_lock_destroy pthread_spin_destroy
  8304. //#define ggml_lock_lock pthread_spin_lock
  8305. //#define ggml_lock_unlock pthread_spin_unlock
  8306. typedef int ggml_lock_t;
  8307. #define ggml_lock_init(x) UNUSED(x)
  8308. #define ggml_lock_destroy(x) UNUSED(x)
  8309. #define ggml_lock_lock(x) UNUSED(x)
  8310. #define ggml_lock_unlock(x) UNUSED(x)
  8311. #define GGML_LOCK_INITIALIZER 0
  8312. typedef pthread_t ggml_thread_t;
  8313. #define ggml_thread_create pthread_create
  8314. #define ggml_thread_join pthread_join
  8315. #endif
  8316. struct ggml_compute_state_shared {
  8317. ggml_lock_t spin;
  8318. int n_threads;
  8319. // synchronization primitives
  8320. atomic_int n_ready;
  8321. atomic_bool has_work;
  8322. atomic_bool stop; // stop all threads
  8323. };
  8324. struct ggml_compute_state {
  8325. ggml_thread_t thrd;
  8326. struct ggml_compute_params params;
  8327. struct ggml_tensor * node;
  8328. struct ggml_compute_state_shared * shared;
  8329. };
  8330. static thread_ret_t ggml_graph_compute_thread(void * data) {
  8331. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  8332. const int n_threads = state->shared->n_threads;
  8333. while (true) {
  8334. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  8335. atomic_store(&state->shared->has_work, false);
  8336. } else {
  8337. while (atomic_load(&state->shared->has_work)) {
  8338. if (atomic_load(&state->shared->stop)) {
  8339. return 0;
  8340. }
  8341. ggml_lock_lock (&state->shared->spin);
  8342. ggml_lock_unlock(&state->shared->spin);
  8343. }
  8344. }
  8345. atomic_fetch_sub(&state->shared->n_ready, 1);
  8346. // wait for work
  8347. while (!atomic_load(&state->shared->has_work)) {
  8348. if (atomic_load(&state->shared->stop)) {
  8349. return 0;
  8350. }
  8351. ggml_lock_lock (&state->shared->spin);
  8352. ggml_lock_unlock(&state->shared->spin);
  8353. }
  8354. // check if we should stop
  8355. if (atomic_load(&state->shared->stop)) {
  8356. break;
  8357. }
  8358. if (state->node) {
  8359. if (state->params.ith < state->params.nth) {
  8360. ggml_compute_forward(&state->params, state->node);
  8361. }
  8362. state->node = NULL;
  8363. } else {
  8364. break;
  8365. }
  8366. }
  8367. return 0;
  8368. }
  8369. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  8370. const int n_threads = cgraph->n_threads;
  8371. struct ggml_compute_state_shared state_shared = {
  8372. /*.spin =*/ GGML_LOCK_INITIALIZER,
  8373. /*.n_threads =*/ n_threads,
  8374. /*.n_ready =*/ 0,
  8375. /*.has_work =*/ false,
  8376. /*.stop =*/ false,
  8377. };
  8378. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  8379. // create thread pool
  8380. if (n_threads > 1) {
  8381. ggml_lock_init(&state_shared.spin);
  8382. atomic_store(&state_shared.has_work, true);
  8383. for (int j = 0; j < n_threads - 1; j++) {
  8384. workers[j] = (struct ggml_compute_state) {
  8385. .thrd = 0,
  8386. .params = {
  8387. .type = GGML_TASK_COMPUTE,
  8388. .ith = j + 1,
  8389. .nth = n_threads,
  8390. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8391. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8392. },
  8393. .node = NULL,
  8394. .shared = &state_shared,
  8395. };
  8396. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  8397. GGML_ASSERT(rc == 0);
  8398. UNUSED(rc);
  8399. }
  8400. }
  8401. // initialize tasks + work buffer
  8402. {
  8403. size_t work_size = 0;
  8404. // thread scheduling for the different operations
  8405. for (int i = 0; i < cgraph->n_nodes; i++) {
  8406. struct ggml_tensor * node = cgraph->nodes[i];
  8407. switch (node->op) {
  8408. case GGML_OP_DUP:
  8409. {
  8410. node->n_tasks = 1;
  8411. } break;
  8412. case GGML_OP_ADD:
  8413. {
  8414. node->n_tasks = n_threads;
  8415. } break;
  8416. case GGML_OP_SUB:
  8417. case GGML_OP_MUL:
  8418. case GGML_OP_DIV:
  8419. case GGML_OP_SQR:
  8420. case GGML_OP_SQRT:
  8421. case GGML_OP_SUM:
  8422. case GGML_OP_MEAN:
  8423. case GGML_OP_REPEAT:
  8424. case GGML_OP_ABS:
  8425. case GGML_OP_SGN:
  8426. case GGML_OP_NEG:
  8427. case GGML_OP_STEP:
  8428. case GGML_OP_RELU:
  8429. {
  8430. node->n_tasks = 1;
  8431. } break;
  8432. case GGML_OP_GELU:
  8433. {
  8434. node->n_tasks = n_threads;
  8435. } break;
  8436. case GGML_OP_SILU:
  8437. {
  8438. node->n_tasks = n_threads;
  8439. } break;
  8440. case GGML_OP_NORM:
  8441. case GGML_OP_RMS_NORM:
  8442. {
  8443. node->n_tasks = n_threads;
  8444. } break;
  8445. case GGML_OP_MUL_MAT:
  8446. {
  8447. node->n_tasks = n_threads;
  8448. // TODO: use different scheduling for different matrix sizes
  8449. //const int nr0 = ggml_nrows(node->src0);
  8450. //const int nr1 = ggml_nrows(node->src1);
  8451. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  8452. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  8453. size_t cur = 0;
  8454. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  8455. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8456. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8457. node->n_tasks = 1; // TODO: this actually is doing nothing
  8458. // the threads are still spinning
  8459. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  8460. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  8461. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  8462. //printf("cur = %zu\n", cur);
  8463. } else {
  8464. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  8465. }
  8466. #else
  8467. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  8468. #endif
  8469. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  8470. cur = 0;
  8471. } else if (quantize_fns[node->src0->type].vec_dot_q && node->src1->type == GGML_TYPE_F32) {
  8472. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8473. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8474. node->n_tasks = 1;
  8475. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  8476. } else
  8477. #endif
  8478. {
  8479. cur = GGML_TYPE_SIZE[GGML_TYPE_Q8_0]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  8480. }
  8481. } else {
  8482. GGML_ASSERT(false);
  8483. }
  8484. work_size = MAX(work_size, cur);
  8485. } break;
  8486. case GGML_OP_SCALE:
  8487. {
  8488. node->n_tasks = n_threads;
  8489. } break;
  8490. case GGML_OP_CPY:
  8491. case GGML_OP_CONT:
  8492. case GGML_OP_RESHAPE:
  8493. case GGML_OP_VIEW:
  8494. case GGML_OP_PERMUTE:
  8495. case GGML_OP_TRANSPOSE:
  8496. case GGML_OP_GET_ROWS:
  8497. case GGML_OP_DIAG_MASK_INF:
  8498. {
  8499. node->n_tasks = 1;
  8500. } break;
  8501. case GGML_OP_SOFT_MAX:
  8502. {
  8503. node->n_tasks = n_threads;
  8504. } break;
  8505. case GGML_OP_ROPE:
  8506. {
  8507. node->n_tasks = n_threads;
  8508. } break;
  8509. case GGML_OP_CONV_1D_1S:
  8510. case GGML_OP_CONV_1D_2S:
  8511. {
  8512. node->n_tasks = n_threads;
  8513. GGML_ASSERT(node->src0->ne[3] == 1);
  8514. GGML_ASSERT(node->src1->ne[2] == 1);
  8515. GGML_ASSERT(node->src1->ne[3] == 1);
  8516. size_t cur = 0;
  8517. const int nk = node->src0->ne[0];
  8518. if (node->src0->type == GGML_TYPE_F16 &&
  8519. node->src1->type == GGML_TYPE_F32) {
  8520. cur = sizeof(ggml_fp16_t)*(
  8521. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  8522. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  8523. );
  8524. } else if (node->src0->type == GGML_TYPE_F32 &&
  8525. node->src1->type == GGML_TYPE_F32) {
  8526. cur = sizeof(float)*(
  8527. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  8528. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  8529. );
  8530. } else {
  8531. GGML_ASSERT(false);
  8532. }
  8533. work_size = MAX(work_size, cur);
  8534. } break;
  8535. case GGML_OP_FLASH_ATTN:
  8536. {
  8537. node->n_tasks = n_threads;
  8538. size_t cur = 0;
  8539. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  8540. if (node->src1->type == GGML_TYPE_F32) {
  8541. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  8542. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  8543. }
  8544. if (node->src1->type == GGML_TYPE_F16) {
  8545. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  8546. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  8547. }
  8548. work_size = MAX(work_size, cur);
  8549. } break;
  8550. case GGML_OP_FLASH_FF:
  8551. {
  8552. node->n_tasks = n_threads;
  8553. size_t cur = 0;
  8554. if (node->src1->type == GGML_TYPE_F32) {
  8555. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  8556. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  8557. }
  8558. if (node->src1->type == GGML_TYPE_F16) {
  8559. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  8560. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  8561. }
  8562. work_size = MAX(work_size, cur);
  8563. } break;
  8564. case GGML_OP_MAP_UNARY:
  8565. case GGML_OP_MAP_BINARY:
  8566. {
  8567. node->n_tasks = 1;
  8568. } break;
  8569. case GGML_OP_NONE:
  8570. {
  8571. node->n_tasks = 1;
  8572. } break;
  8573. case GGML_OP_COUNT:
  8574. {
  8575. GGML_ASSERT(false);
  8576. } break;
  8577. }
  8578. }
  8579. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  8580. GGML_ASSERT(false); // TODO: better handling
  8581. }
  8582. if (work_size > 0 && cgraph->work == NULL) {
  8583. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  8584. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  8585. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  8586. }
  8587. }
  8588. const int64_t perf_start_cycles = ggml_perf_cycles();
  8589. const int64_t perf_start_time_us = ggml_perf_time_us();
  8590. for (int i = 0; i < cgraph->n_nodes; i++) {
  8591. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  8592. struct ggml_tensor * node = cgraph->nodes[i];
  8593. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  8594. //if (node->grad == NULL && node->perf_runs > 0) {
  8595. // continue;
  8596. //}
  8597. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  8598. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  8599. // INIT
  8600. struct ggml_compute_params params = {
  8601. /*.type =*/ GGML_TASK_INIT,
  8602. /*.ith =*/ 0,
  8603. /*.nth =*/ node->n_tasks,
  8604. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8605. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  8606. };
  8607. ggml_compute_forward(&params, node);
  8608. // COMPUTE
  8609. if (node->n_tasks > 1) {
  8610. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8611. atomic_store(&state_shared.has_work, false);
  8612. }
  8613. while (atomic_load(&state_shared.has_work)) {
  8614. ggml_lock_lock (&state_shared.spin);
  8615. ggml_lock_unlock(&state_shared.spin);
  8616. }
  8617. // launch thread pool
  8618. for (int j = 0; j < n_threads - 1; j++) {
  8619. workers[j].params = (struct ggml_compute_params) {
  8620. .type = GGML_TASK_COMPUTE,
  8621. .ith = j + 1,
  8622. .nth = node->n_tasks,
  8623. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8624. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8625. };
  8626. workers[j].node = node;
  8627. }
  8628. atomic_fetch_sub(&state_shared.n_ready, 1);
  8629. while (atomic_load(&state_shared.n_ready) > 0) {
  8630. ggml_lock_lock (&state_shared.spin);
  8631. ggml_lock_unlock(&state_shared.spin);
  8632. }
  8633. atomic_store(&state_shared.has_work, true);
  8634. }
  8635. params.type = GGML_TASK_COMPUTE;
  8636. ggml_compute_forward(&params, node);
  8637. // wait for thread pool
  8638. if (node->n_tasks > 1) {
  8639. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8640. atomic_store(&state_shared.has_work, false);
  8641. }
  8642. while (atomic_load(&state_shared.has_work)) {
  8643. ggml_lock_lock (&state_shared.spin);
  8644. ggml_lock_unlock(&state_shared.spin);
  8645. }
  8646. atomic_fetch_sub(&state_shared.n_ready, 1);
  8647. while (atomic_load(&state_shared.n_ready) != 0) {
  8648. ggml_lock_lock (&state_shared.spin);
  8649. ggml_lock_unlock(&state_shared.spin);
  8650. }
  8651. }
  8652. // FINALIZE
  8653. if (node->n_tasks > 1) {
  8654. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8655. atomic_store(&state_shared.has_work, false);
  8656. }
  8657. while (atomic_load(&state_shared.has_work)) {
  8658. ggml_lock_lock (&state_shared.spin);
  8659. ggml_lock_unlock(&state_shared.spin);
  8660. }
  8661. // launch thread pool
  8662. for (int j = 0; j < n_threads - 1; j++) {
  8663. workers[j].params = (struct ggml_compute_params) {
  8664. .type = GGML_TASK_FINALIZE,
  8665. .ith = j + 1,
  8666. .nth = node->n_tasks,
  8667. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8668. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8669. };
  8670. workers[j].node = node;
  8671. }
  8672. atomic_fetch_sub(&state_shared.n_ready, 1);
  8673. while (atomic_load(&state_shared.n_ready) > 0) {
  8674. ggml_lock_lock (&state_shared.spin);
  8675. ggml_lock_unlock(&state_shared.spin);
  8676. }
  8677. atomic_store(&state_shared.has_work, true);
  8678. }
  8679. params.type = GGML_TASK_FINALIZE;
  8680. ggml_compute_forward(&params, node);
  8681. // wait for thread pool
  8682. if (node->n_tasks > 1) {
  8683. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8684. atomic_store(&state_shared.has_work, false);
  8685. }
  8686. while (atomic_load(&state_shared.has_work)) {
  8687. ggml_lock_lock (&state_shared.spin);
  8688. ggml_lock_unlock(&state_shared.spin);
  8689. }
  8690. atomic_fetch_sub(&state_shared.n_ready, 1);
  8691. while (atomic_load(&state_shared.n_ready) != 0) {
  8692. ggml_lock_lock (&state_shared.spin);
  8693. ggml_lock_unlock(&state_shared.spin);
  8694. }
  8695. }
  8696. // performance stats (node)
  8697. {
  8698. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  8699. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  8700. node->perf_runs++;
  8701. node->perf_cycles += perf_cycles_cur;
  8702. node->perf_time_us += perf_time_us_cur;
  8703. }
  8704. }
  8705. // join thread pool
  8706. if (n_threads > 1) {
  8707. atomic_store(&state_shared.stop, true);
  8708. atomic_store(&state_shared.has_work, true);
  8709. for (int j = 0; j < n_threads - 1; j++) {
  8710. int rc = ggml_thread_join(workers[j].thrd, NULL);
  8711. GGML_ASSERT(rc == 0);
  8712. UNUSED(rc);
  8713. }
  8714. ggml_lock_destroy(&state_shared.spin);
  8715. }
  8716. // performance stats (graph)
  8717. {
  8718. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  8719. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  8720. cgraph->perf_runs++;
  8721. cgraph->perf_cycles += perf_cycles_cur;
  8722. cgraph->perf_time_us += perf_time_us_cur;
  8723. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  8724. __func__, cgraph->perf_runs,
  8725. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  8726. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  8727. (double) perf_time_us_cur / 1000.0,
  8728. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  8729. }
  8730. }
  8731. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  8732. for (int i = 0; i < cgraph->n_nodes; i++) {
  8733. struct ggml_tensor * grad = cgraph->grads[i];
  8734. if (grad) {
  8735. ggml_set_zero(grad);
  8736. }
  8737. }
  8738. }
  8739. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  8740. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  8741. GGML_PRINT("=== GRAPH ===\n");
  8742. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  8743. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  8744. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  8745. for (int i = 0; i < cgraph->n_nodes; i++) {
  8746. struct ggml_tensor * node = cgraph->nodes[i];
  8747. perf_total_per_op_us[node->op] += node->perf_time_us;
  8748. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 ", %" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  8749. i,
  8750. node->ne[0], node->ne[1], node->ne[2],
  8751. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  8752. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  8753. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  8754. (double) node->perf_time_us / 1000.0,
  8755. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  8756. }
  8757. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  8758. for (int i = 0; i < cgraph->n_leafs; i++) {
  8759. struct ggml_tensor * node = cgraph->leafs[i];
  8760. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 "] %8s\n",
  8761. i,
  8762. node->ne[0], node->ne[1],
  8763. GGML_OP_LABEL[node->op]);
  8764. }
  8765. for (int i = 0; i < GGML_OP_COUNT; i++) {
  8766. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  8767. }
  8768. GGML_PRINT("========================================\n");
  8769. }
  8770. // check if node is part of the graph
  8771. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8772. if (cgraph == NULL) {
  8773. return true;
  8774. }
  8775. for (int i = 0; i < cgraph->n_nodes; i++) {
  8776. if (cgraph->nodes[i] == node) {
  8777. return true;
  8778. }
  8779. }
  8780. return false;
  8781. }
  8782. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8783. for (int i = 0; i < cgraph->n_nodes; i++) {
  8784. struct ggml_tensor * parent = cgraph->nodes[i];
  8785. if (parent->grad == node) {
  8786. return parent;
  8787. }
  8788. }
  8789. return NULL;
  8790. }
  8791. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  8792. char color[16];
  8793. FILE * fp = fopen(filename, "w");
  8794. GGML_ASSERT(fp);
  8795. fprintf(fp, "digraph G {\n");
  8796. fprintf(fp, " newrank = true;\n");
  8797. fprintf(fp, " rankdir = LR;\n");
  8798. for (int i = 0; i < gb->n_nodes; i++) {
  8799. struct ggml_tensor * node = gb->nodes[i];
  8800. if (ggml_graph_get_parent(gb, node) != NULL) {
  8801. continue;
  8802. }
  8803. if (node->is_param) {
  8804. snprintf(color, sizeof(color), "yellow");
  8805. } else if (node->grad) {
  8806. if (ggml_graph_find(gf, node)) {
  8807. snprintf(color, sizeof(color), "green");
  8808. } else {
  8809. snprintf(color, sizeof(color), "lightblue");
  8810. }
  8811. } else {
  8812. snprintf(color, sizeof(color), "white");
  8813. }
  8814. fprintf(fp, " \"%p\" [ \
  8815. style = filled; fillcolor = %s; shape = record; \
  8816. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  8817. (void *) node, color,
  8818. i, node->ne[0], node->ne[1],
  8819. GGML_OP_SYMBOL[node->op]);
  8820. if (node->grad) {
  8821. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  8822. } else {
  8823. fprintf(fp, "\"; ]\n");
  8824. }
  8825. }
  8826. for (int i = 0; i < gb->n_leafs; i++) {
  8827. struct ggml_tensor * node = gb->leafs[i];
  8828. snprintf(color, sizeof(color), "pink");
  8829. if (ggml_nelements(node) == 1) {
  8830. fprintf(fp, " \"%p\" [ \
  8831. style = filled; fillcolor = %s; shape = record; \
  8832. label=\"<x>%.1e\"; ]\n",
  8833. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  8834. } else {
  8835. fprintf(fp, " \"%p\" [ \
  8836. style = filled; fillcolor = %s; shape = record; \
  8837. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  8838. (void *) node, color,
  8839. i, node->ne[0], node->ne[1]);
  8840. }
  8841. }
  8842. for (int i = 0; i < gb->n_nodes; i++) {
  8843. struct ggml_tensor * node = gb->nodes[i];
  8844. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  8845. if (node->src0) {
  8846. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  8847. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  8848. parent0 ? (void *) parent0 : (void *) node->src0,
  8849. parent0 ? "g" : "x",
  8850. parent ? (void *) parent : (void *) node,
  8851. parent ? "g" : "x",
  8852. parent ? "empty" : "vee",
  8853. parent ? "dashed" : "solid");
  8854. }
  8855. if (node->src1) {
  8856. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  8857. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  8858. parent1 ? (void *) parent1 : (void *) node->src1,
  8859. parent1 ? "g" : "x",
  8860. parent ? (void *) parent : (void *) node,
  8861. parent ? "g" : "x",
  8862. parent ? "empty" : "vee",
  8863. parent ? "dashed" : "solid");
  8864. }
  8865. }
  8866. for (int i = 0; i < gb->n_leafs; i++) {
  8867. struct ggml_tensor * node = gb->leafs[i];
  8868. if (node->src0) {
  8869. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  8870. (void *) node->src0, "x",
  8871. (void *) node, "x");
  8872. }
  8873. if (node->src1) {
  8874. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  8875. (void *) node->src1, "x",
  8876. (void *) node, "x");
  8877. }
  8878. }
  8879. fprintf(fp, "}\n");
  8880. fclose(fp);
  8881. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  8882. }
  8883. ////////////////////////////////////////////////////////////////////////////////
  8884. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  8885. int i = 0;
  8886. for (int p = 0; p < np; ++p) {
  8887. const int64_t ne = ggml_nelements(ps[p]) ;
  8888. // TODO: add function to set tensor from array
  8889. for (int64_t j = 0; j < ne; ++j) {
  8890. ggml_set_f32_1d(ps[p], j, x[i++]);
  8891. }
  8892. }
  8893. }
  8894. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  8895. int i = 0;
  8896. for (int p = 0; p < np; ++p) {
  8897. const int64_t ne = ggml_nelements(ps[p]) ;
  8898. // TODO: add function to get all elements at once
  8899. for (int64_t j = 0; j < ne; ++j) {
  8900. x[i++] = ggml_get_f32_1d(ps[p], j);
  8901. }
  8902. }
  8903. }
  8904. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  8905. int i = 0;
  8906. for (int p = 0; p < np; ++p) {
  8907. const int64_t ne = ggml_nelements(ps[p]) ;
  8908. // TODO: add function to get all elements at once
  8909. for (int64_t j = 0; j < ne; ++j) {
  8910. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  8911. }
  8912. }
  8913. }
  8914. //
  8915. // ADAM
  8916. //
  8917. // ref: https://arxiv.org/pdf/1412.6980.pdf
  8918. //
  8919. static enum ggml_opt_result ggml_opt_adam(
  8920. struct ggml_context * ctx,
  8921. struct ggml_opt_params params,
  8922. struct ggml_tensor * f,
  8923. struct ggml_cgraph * gf,
  8924. struct ggml_cgraph * gb) {
  8925. GGML_ASSERT(ggml_is_scalar(f));
  8926. gf->n_threads = params.n_threads;
  8927. gb->n_threads = params.n_threads;
  8928. // these will store the parameters we want to optimize
  8929. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8930. int np = 0;
  8931. int nx = 0;
  8932. for (int i = 0; i < gf->n_nodes; ++i) {
  8933. if (gf->nodes[i]->is_param) {
  8934. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8935. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8936. ps[np++] = gf->nodes[i];
  8937. nx += ggml_nelements(gf->nodes[i]);
  8938. }
  8939. }
  8940. // constants
  8941. const float alpha = params.adam.alpha;
  8942. const float beta1 = params.adam.beta1;
  8943. const float beta2 = params.adam.beta2;
  8944. const float eps = params.adam.eps;
  8945. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  8946. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  8947. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  8948. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  8949. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  8950. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  8951. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  8952. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8953. // initialize
  8954. ggml_vec_set_f32(nx, m, 0.0f);
  8955. ggml_vec_set_f32(nx, v, 0.0f);
  8956. // update view
  8957. ggml_opt_get_params(np, ps, x);
  8958. // compute the function value
  8959. ggml_graph_reset (gf);
  8960. ggml_set_f32 (f->grad, 1.0f);
  8961. ggml_graph_compute(ctx, gb);
  8962. float fx_prev = ggml_get_f32_1d(f, 0);
  8963. if (pf) {
  8964. pf[0] = fx_prev;
  8965. }
  8966. int n_no_improvement = 0;
  8967. float fx_best = fx_prev;
  8968. // run the optimizer
  8969. for (int t = 0; t < params.adam.n_iter; ++t) {
  8970. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  8971. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8972. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  8973. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  8974. for (int i = 0; i < np; ++i) {
  8975. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  8976. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  8977. }
  8978. const int64_t t_start_wall = ggml_time_us();
  8979. const int64_t t_start_cpu = ggml_cycles();
  8980. UNUSED(t_start_wall);
  8981. UNUSED(t_start_cpu);
  8982. {
  8983. // update the gradient
  8984. ggml_opt_get_grad(np, ps, g1);
  8985. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  8986. ggml_vec_scale_f32(nx, m, beta1);
  8987. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  8988. // g2 = g1^2
  8989. ggml_vec_sqr_f32 (nx, g2, g1);
  8990. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  8991. ggml_vec_scale_f32(nx, v, beta2);
  8992. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  8993. // m^hat = m_t / (1 - beta1^t)
  8994. // v^hat = v_t / (1 - beta2^t)
  8995. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  8996. ggml_vec_cpy_f32 (nx, mh, m);
  8997. ggml_vec_cpy_f32 (nx, vh, v);
  8998. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  8999. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  9000. ggml_vec_sqrt_f32 (nx, vh, vh);
  9001. ggml_vec_acc1_f32 (nx, vh, eps);
  9002. ggml_vec_div_f32 (nx, mh, mh, vh);
  9003. ggml_vec_sub_f32 (nx, x, x, mh);
  9004. // update the parameters
  9005. ggml_opt_set_params(np, ps, x);
  9006. }
  9007. ggml_graph_reset (gf);
  9008. ggml_set_f32 (f->grad, 1.0f);
  9009. ggml_graph_compute(ctx, gb);
  9010. const float fx = ggml_get_f32_1d(f, 0);
  9011. // check convergence
  9012. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  9013. GGML_PRINT_DEBUG("converged\n");
  9014. return GGML_OPT_OK;
  9015. }
  9016. // delta-based convergence test
  9017. if (pf != NULL) {
  9018. // need at least params.past iterations to start checking for convergence
  9019. if (params.past <= t) {
  9020. const float rate = (pf[t%params.past] - fx)/fx;
  9021. if (fabsf(rate) < params.delta) {
  9022. return GGML_OPT_OK;
  9023. }
  9024. }
  9025. pf[t%params.past] = fx;
  9026. }
  9027. // check for improvement
  9028. if (params.max_no_improvement > 0) {
  9029. if (fx_best > fx) {
  9030. fx_best = fx;
  9031. n_no_improvement = 0;
  9032. } else {
  9033. ++n_no_improvement;
  9034. if (n_no_improvement >= params.max_no_improvement) {
  9035. return GGML_OPT_OK;
  9036. }
  9037. }
  9038. }
  9039. fx_prev = fx;
  9040. {
  9041. const int64_t t_end_cpu = ggml_cycles();
  9042. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  9043. UNUSED(t_end_cpu);
  9044. const int64_t t_end_wall = ggml_time_us();
  9045. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  9046. UNUSED(t_end_wall);
  9047. }
  9048. }
  9049. return GGML_OPT_DID_NOT_CONVERGE;
  9050. }
  9051. //
  9052. // L-BFGS
  9053. //
  9054. // the L-BFGS implementation below is based on the following implementation:
  9055. //
  9056. // https://github.com/chokkan/liblbfgs
  9057. //
  9058. struct ggml_lbfgs_iteration_data {
  9059. float alpha;
  9060. float ys;
  9061. float * s;
  9062. float * y;
  9063. };
  9064. static enum ggml_opt_result linesearch_backtracking(
  9065. struct ggml_context * ctx,
  9066. const struct ggml_opt_params * params,
  9067. int nx,
  9068. float * x,
  9069. float * fx,
  9070. float * g,
  9071. float * d,
  9072. float * step,
  9073. const float * xp,
  9074. struct ggml_tensor * f,
  9075. struct ggml_cgraph * gf,
  9076. struct ggml_cgraph * gb,
  9077. const int np,
  9078. struct ggml_tensor * ps[]) {
  9079. int count = 0;
  9080. float width = 0.0f;
  9081. float dg = 0.0f;
  9082. float finit = 0.0f;
  9083. float dginit = 0.0f;
  9084. float dgtest = 0.0f;
  9085. const float dec = 0.5f;
  9086. const float inc = 2.1f;
  9087. if (*step <= 0.f) {
  9088. return GGML_LINESEARCH_INVALID_PARAMETERS;
  9089. }
  9090. // compute the initial gradient in the search direction
  9091. ggml_vec_dot_f32(nx, &dginit, g, d);
  9092. // make sure that d points to a descent direction
  9093. if (0 < dginit) {
  9094. return GGML_LINESEARCH_FAIL;
  9095. }
  9096. // initialize local variables
  9097. finit = *fx;
  9098. dgtest = params->lbfgs.ftol*dginit;
  9099. while (true) {
  9100. ggml_vec_cpy_f32(nx, x, xp);
  9101. ggml_vec_mad_f32(nx, x, d, *step);
  9102. // evaluate the function and gradient values
  9103. {
  9104. ggml_opt_set_params(np, ps, x);
  9105. ggml_graph_reset (gf);
  9106. ggml_set_f32 (f->grad, 1.0f);
  9107. ggml_graph_compute(ctx, gb);
  9108. ggml_opt_get_grad(np, ps, g);
  9109. *fx = ggml_get_f32_1d(f, 0);
  9110. }
  9111. ++count;
  9112. if (*fx > finit + (*step)*dgtest) {
  9113. width = dec;
  9114. } else {
  9115. // Armijo condition is satisfied
  9116. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  9117. return count;
  9118. }
  9119. ggml_vec_dot_f32(nx, &dg, g, d);
  9120. // check the Wolfe condition
  9121. if (dg < params->lbfgs.wolfe * dginit) {
  9122. width = inc;
  9123. } else {
  9124. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  9125. // regular Wolfe conditions
  9126. return count;
  9127. }
  9128. if(dg > -params->lbfgs.wolfe*dginit) {
  9129. width = dec;
  9130. } else {
  9131. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  9132. return count;
  9133. }
  9134. return count;
  9135. }
  9136. }
  9137. if (*step < params->lbfgs.min_step) {
  9138. return GGML_LINESEARCH_MINIMUM_STEP;
  9139. }
  9140. if (*step > params->lbfgs.max_step) {
  9141. return GGML_LINESEARCH_MAXIMUM_STEP;
  9142. }
  9143. if (params->lbfgs.max_linesearch <= count) {
  9144. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  9145. }
  9146. (*step) *= width;
  9147. }
  9148. return GGML_LINESEARCH_FAIL;
  9149. }
  9150. static enum ggml_opt_result ggml_opt_lbfgs(
  9151. struct ggml_context * ctx,
  9152. struct ggml_opt_params params,
  9153. struct ggml_tensor * f,
  9154. struct ggml_cgraph * gf,
  9155. struct ggml_cgraph * gb) {
  9156. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  9157. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  9158. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  9159. return GGML_OPT_INVALID_WOLFE;
  9160. }
  9161. }
  9162. gf->n_threads = params.n_threads;
  9163. gb->n_threads = params.n_threads;
  9164. const int m = params.lbfgs.m;
  9165. // these will store the parameters we want to optimize
  9166. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9167. int np = 0;
  9168. int nx = 0;
  9169. for (int i = 0; i < gf->n_nodes; ++i) {
  9170. if (gf->nodes[i]->is_param) {
  9171. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9172. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9173. ps[np++] = gf->nodes[i];
  9174. nx += ggml_nelements(gf->nodes[i]);
  9175. }
  9176. }
  9177. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  9178. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  9179. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  9180. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  9181. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  9182. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9183. float fx = 0.0f; // cost function value
  9184. float xnorm = 0.0f; // ||x||
  9185. float gnorm = 0.0f; // ||g||
  9186. float step = 0.0f;
  9187. // initialize x from the graph nodes
  9188. ggml_opt_get_params(np, ps, x);
  9189. // the L-BFGS memory
  9190. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  9191. for (int i = 0; i < m; ++i) {
  9192. lm[i].alpha = 0.0f;
  9193. lm[i].ys = 0.0f;
  9194. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  9195. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  9196. }
  9197. // evaluate the function value and its gradient
  9198. {
  9199. ggml_opt_set_params(np, ps, x);
  9200. ggml_graph_reset (gf);
  9201. ggml_set_f32 (f->grad, 1.0f);
  9202. ggml_graph_compute(ctx, gb);
  9203. ggml_opt_get_grad(np, ps, g);
  9204. fx = ggml_get_f32_1d(f, 0);
  9205. }
  9206. if (pf) {
  9207. pf[0] = fx;
  9208. }
  9209. float fx_best = fx;
  9210. // search direction = -gradient
  9211. ggml_vec_neg_f32(nx, d, g);
  9212. // ||x||, ||g||
  9213. ggml_vec_norm_f32(nx, &xnorm, x);
  9214. ggml_vec_norm_f32(nx, &gnorm, g);
  9215. if (xnorm < 1.0f) {
  9216. xnorm = 1.0f;
  9217. }
  9218. // already optimized
  9219. if (gnorm/xnorm <= params.lbfgs.eps) {
  9220. return GGML_OPT_OK;
  9221. }
  9222. // initial step
  9223. ggml_vec_norm_inv_f32(nx, &step, d);
  9224. int j = 0;
  9225. int k = 1;
  9226. int ls = 0;
  9227. int end = 0;
  9228. int bound = 0;
  9229. int n_no_improvement = 0;
  9230. float ys = 0.0f;
  9231. float yy = 0.0f;
  9232. float beta = 0.0f;
  9233. while (true) {
  9234. // store the current position and gradient vectors
  9235. ggml_vec_cpy_f32(nx, xp, x);
  9236. ggml_vec_cpy_f32(nx, gp, g);
  9237. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  9238. if (ls < 0) {
  9239. // linesearch failed - go back to the previous point and return
  9240. ggml_vec_cpy_f32(nx, x, xp);
  9241. ggml_vec_cpy_f32(nx, g, gp);
  9242. return ls;
  9243. }
  9244. ggml_vec_norm_f32(nx, &xnorm, x);
  9245. ggml_vec_norm_f32(nx, &gnorm, g);
  9246. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9247. if (xnorm < 1.0f) {
  9248. xnorm = 1.0f;
  9249. }
  9250. if (gnorm/xnorm <= params.lbfgs.eps) {
  9251. // converged
  9252. return GGML_OPT_OK;
  9253. }
  9254. // delta-based convergence test
  9255. if (pf != NULL) {
  9256. // need at least params.past iterations to start checking for convergence
  9257. if (params.past <= k) {
  9258. const float rate = (pf[k%params.past] - fx)/fx;
  9259. if (fabsf(rate) < params.delta) {
  9260. return GGML_OPT_OK;
  9261. }
  9262. }
  9263. pf[k%params.past] = fx;
  9264. }
  9265. // check for improvement
  9266. if (params.max_no_improvement > 0) {
  9267. if (fx < fx_best) {
  9268. fx_best = fx;
  9269. n_no_improvement = 0;
  9270. } else {
  9271. n_no_improvement++;
  9272. if (n_no_improvement >= params.max_no_improvement) {
  9273. return GGML_OPT_OK;
  9274. }
  9275. }
  9276. }
  9277. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  9278. // reached the maximum number of iterations
  9279. return GGML_OPT_DID_NOT_CONVERGE;
  9280. }
  9281. // update vectors s and y:
  9282. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  9283. // y_{k+1} = g_{k+1} - g_{k}.
  9284. //
  9285. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  9286. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  9287. // compute scalars ys and yy:
  9288. // ys = y^t \cdot s -> 1 / \rho.
  9289. // yy = y^t \cdot y.
  9290. //
  9291. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  9292. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  9293. lm[end].ys = ys;
  9294. // find new search direction
  9295. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  9296. bound = (m <= k) ? m : k;
  9297. k++;
  9298. end = (end + 1)%m;
  9299. // initialize search direction with -g
  9300. ggml_vec_neg_f32(nx, d, g);
  9301. j = end;
  9302. for (int i = 0; i < bound; ++i) {
  9303. j = (j + m - 1) % m;
  9304. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  9305. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  9306. lm[j].alpha /= lm[j].ys;
  9307. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  9308. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  9309. }
  9310. ggml_vec_scale_f32(nx, d, ys/yy);
  9311. for (int i = 0; i < bound; ++i) {
  9312. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  9313. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  9314. beta /= lm[j].ys;
  9315. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  9316. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  9317. j = (j + 1)%m;
  9318. }
  9319. step = 1.0;
  9320. }
  9321. return GGML_OPT_DID_NOT_CONVERGE;
  9322. }
  9323. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  9324. struct ggml_opt_params result;
  9325. switch (type) {
  9326. case GGML_OPT_ADAM:
  9327. {
  9328. result = (struct ggml_opt_params) {
  9329. .type = GGML_OPT_ADAM,
  9330. .n_threads = 1,
  9331. .past = 0,
  9332. .delta = 1e-5f,
  9333. .max_no_improvement = 100,
  9334. .print_forward_graph = true,
  9335. .print_backward_graph = true,
  9336. .adam = {
  9337. .n_iter = 10000,
  9338. .alpha = 0.001f,
  9339. .beta1 = 0.9f,
  9340. .beta2 = 0.999f,
  9341. .eps = 1e-8f,
  9342. .eps_f = 1e-5f,
  9343. .eps_g = 1e-3f,
  9344. },
  9345. };
  9346. } break;
  9347. case GGML_OPT_LBFGS:
  9348. {
  9349. result = (struct ggml_opt_params) {
  9350. .type = GGML_OPT_LBFGS,
  9351. .n_threads = 1,
  9352. .past = 0,
  9353. .delta = 1e-5f,
  9354. .max_no_improvement = 0,
  9355. .print_forward_graph = true,
  9356. .print_backward_graph = true,
  9357. .lbfgs = {
  9358. .m = 6,
  9359. .n_iter = 100,
  9360. .max_linesearch = 20,
  9361. .eps = 1e-5f,
  9362. .ftol = 1e-4f,
  9363. .wolfe = 0.9f,
  9364. .min_step = 1e-20f,
  9365. .max_step = 1e+20f,
  9366. .linesearch = GGML_LINESEARCH_DEFAULT,
  9367. },
  9368. };
  9369. } break;
  9370. }
  9371. return result;
  9372. }
  9373. enum ggml_opt_result ggml_opt(
  9374. struct ggml_context * ctx,
  9375. struct ggml_opt_params params,
  9376. struct ggml_tensor * f) {
  9377. bool free_ctx = false;
  9378. if (ctx == NULL) {
  9379. struct ggml_init_params params_ctx = {
  9380. .mem_size = 16*1024*1024,
  9381. .mem_buffer = NULL,
  9382. .no_alloc = false,
  9383. };
  9384. ctx = ggml_init(params_ctx);
  9385. if (ctx == NULL) {
  9386. return GGML_OPT_NO_CONTEXT;
  9387. }
  9388. free_ctx = true;
  9389. }
  9390. enum ggml_opt_result result = GGML_OPT_OK;
  9391. // build forward + backward compute graphs
  9392. struct ggml_cgraph gf = ggml_build_forward (f);
  9393. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  9394. switch (params.type) {
  9395. case GGML_OPT_ADAM:
  9396. {
  9397. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  9398. } break;
  9399. case GGML_OPT_LBFGS:
  9400. {
  9401. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  9402. } break;
  9403. }
  9404. if (params.print_forward_graph) {
  9405. ggml_graph_print (&gf);
  9406. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  9407. }
  9408. if (params.print_backward_graph) {
  9409. ggml_graph_print (&gb);
  9410. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  9411. }
  9412. if (free_ctx) {
  9413. ggml_free(ctx);
  9414. }
  9415. return result;
  9416. }
  9417. ////////////////////////////////////////////////////////////////////////////////
  9418. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  9419. assert(k % QK == 0);
  9420. const int nb = k / QK;
  9421. for (int j = 0; j < n; j += k) {
  9422. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK;
  9423. quantize_row_q4_0_reference(src + j, y, k);
  9424. for (int i = 0; i < nb; i++) {
  9425. for (int l = 0; l < QK; l += 2) {
  9426. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9427. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9428. hist[vi0]++;
  9429. hist[vi1]++;
  9430. }
  9431. }
  9432. }
  9433. return (n/QK*sizeof(block_q4_0));
  9434. }
  9435. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  9436. assert(k % QK == 0);
  9437. const int nb = k / QK;
  9438. for (int j = 0; j < n; j += k) {
  9439. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK;
  9440. quantize_row_q4_1_reference(src + j, y, k);
  9441. for (int i = 0; i < nb; i++) {
  9442. for (int l = 0; l < QK; l += 2) {
  9443. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9444. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9445. hist[vi0]++;
  9446. hist[vi1]++;
  9447. }
  9448. }
  9449. }
  9450. return (n/QK*sizeof(block_q4_1));
  9451. }
  9452. ////////////////////////////////////////////////////////////////////////////////
  9453. int ggml_cpu_has_avx(void) {
  9454. #if defined(__AVX__)
  9455. return 1;
  9456. #else
  9457. return 0;
  9458. #endif
  9459. }
  9460. int ggml_cpu_has_avx2(void) {
  9461. #if defined(__AVX2__)
  9462. return 1;
  9463. #else
  9464. return 0;
  9465. #endif
  9466. }
  9467. int ggml_cpu_has_avx512(void) {
  9468. #if defined(__AVX512F__)
  9469. return 1;
  9470. #else
  9471. return 0;
  9472. #endif
  9473. }
  9474. int ggml_cpu_has_fma(void) {
  9475. #if defined(__FMA__)
  9476. return 1;
  9477. #else
  9478. return 0;
  9479. #endif
  9480. }
  9481. int ggml_cpu_has_neon(void) {
  9482. #if defined(__ARM_NEON)
  9483. return 1;
  9484. #else
  9485. return 0;
  9486. #endif
  9487. }
  9488. int ggml_cpu_has_arm_fma(void) {
  9489. #if defined(__ARM_FEATURE_FMA)
  9490. return 1;
  9491. #else
  9492. return 0;
  9493. #endif
  9494. }
  9495. int ggml_cpu_has_f16c(void) {
  9496. #if defined(__F16C__)
  9497. return 1;
  9498. #else
  9499. return 0;
  9500. #endif
  9501. }
  9502. int ggml_cpu_has_fp16_va(void) {
  9503. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  9504. return 1;
  9505. #else
  9506. return 0;
  9507. #endif
  9508. }
  9509. int ggml_cpu_has_wasm_simd(void) {
  9510. #if defined(__wasm_simd128__)
  9511. return 1;
  9512. #else
  9513. return 0;
  9514. #endif
  9515. }
  9516. int ggml_cpu_has_blas(void) {
  9517. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9518. return 1;
  9519. #else
  9520. return 0;
  9521. #endif
  9522. }
  9523. int ggml_cpu_has_sse3(void) {
  9524. #if defined(__SSE3__)
  9525. return 1;
  9526. #else
  9527. return 0;
  9528. #endif
  9529. }
  9530. int ggml_cpu_has_vsx(void) {
  9531. #if defined(__POWER9_VECTOR__)
  9532. return 1;
  9533. #else
  9534. return 0;
  9535. #endif
  9536. }
  9537. ////////////////////////////////////////////////////////////////////////////////