test-tokenizer-random.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359
  1. # Test libllama tokenizer == AutoTokenizer.
  2. # Brute force random words/text generation.
  3. #
  4. # Sample usage:
  5. #
  6. # python3 tests/test-tokenizer-random.py ./models/ggml-vocab-llama-bpe.gguf ./models/tokenizers/llama-bpe
  7. #
  8. import time
  9. import logging
  10. import argparse
  11. import subprocess
  12. import random
  13. from typing import Callable, Iterator
  14. import cffi
  15. from transformers import AutoTokenizer
  16. logger = logging.getLogger("test-tokenizer-random-bpe")
  17. class LibLlama:
  18. DEFAULT_PATH_LLAMA_H = "./llama.h"
  19. DEFAULT_PATH_LIBLLAMA = "./build/libllama.so" # CMakeLists.txt: BUILD_SHARED_LIBS ON
  20. def __init__(self, path_llama_h: str = None, path_libllama: str = None):
  21. path_llama_h = path_llama_h or self.DEFAULT_PATH_LLAMA_H
  22. path_libllama = path_libllama or self.DEFAULT_PATH_LIBLLAMA
  23. (self.ffi, self.lib) = self._load_libllama_cffi(path_llama_h, path_libllama)
  24. self.lib.llama_backend_init()
  25. def _load_libllama_cffi(self, path_llama_h: str, path_libllama: str):
  26. cmd = ["gcc", "-E", "-P", "-D__restrict=", "-D__attribute__(x)=", "-D__asm__(x)=", path_llama_h]
  27. res = subprocess.run(cmd, stdout=subprocess.PIPE)
  28. assert (res.returncode == 0)
  29. source = res.stdout.decode()
  30. ffi = cffi.FFI()
  31. if True: # workarounds for pycparser
  32. source = "typedef struct { } __builtin_va_list;" + "\n" + source
  33. source = source.replace("sizeof (int)", str(ffi.sizeof("int")))
  34. source = source.replace("sizeof (void *)", str(ffi.sizeof("void*")))
  35. source = source.replace("sizeof (size_t)", str(ffi.sizeof("size_t")))
  36. source = source.replace("sizeof(int32_t)", str(ffi.sizeof("int32_t")))
  37. ffi.cdef(source, override=True)
  38. lib = ffi.dlopen(path_libllama)
  39. return (ffi, lib)
  40. def model_default_params(self, **kwargs):
  41. mparams = self.lib.llama_model_default_params()
  42. for k, v in kwargs.items():
  43. setattr(mparams, k, v)
  44. return mparams
  45. def context_default_params(self, **kwargs):
  46. cparams = self.lib.llama_context_default_params()
  47. for k, v in kwargs.items():
  48. setattr(cparams, k, v)
  49. return cparams
  50. class LibLlamaModel:
  51. def __init__(self, libllama: LibLlama, path_model: str, mparams={}, cparams={}):
  52. self.lib = libllama.lib
  53. self.ffi = libllama.ffi
  54. if isinstance(mparams, dict):
  55. mparams = libllama.model_default_params(**mparams)
  56. self.model = self.lib.llama_load_model_from_file(path_model.encode(), mparams)
  57. if not self.model:
  58. raise RuntimeError("error: failed to load model '%s'" % path_model)
  59. if isinstance(cparams, dict):
  60. cparams = libllama.context_default_params(**cparams)
  61. self.ctx = self.lib.llama_new_context_with_model(self.model, cparams)
  62. if not self.ctx:
  63. raise RuntimeError("error: failed to create context for model '%s'" % path_model)
  64. n_tokens_max = self.lib.llama_n_ctx(self.ctx)
  65. self.token_ids = self.ffi.new("llama_token[]", n_tokens_max)
  66. def free(self):
  67. if self.ctx:
  68. self.lib.llama_free(self.ctx)
  69. if self.model:
  70. self.lib.llama_free_model(self.model)
  71. self.ctx = None
  72. self.model = None
  73. self.lib = None
  74. def tokenize(self, text: str, n_tokens_max: int = 0, add_special: bool = False, parse_special: bool = False) -> list[int]:
  75. n_tokens_max = n_tokens_max if n_tokens_max > 0 else len(self.token_ids)
  76. text = text.encode("utf-8")
  77. num = self.lib.llama_tokenize(self.model, text, len(text), self.token_ids, n_tokens_max, add_special, parse_special)
  78. if num < 0:
  79. return []
  80. return list(self.token_ids[0:num])
  81. def generator_custom_text() -> Iterator[str]:
  82. """General tests"""
  83. yield from [
  84. "",
  85. " ",
  86. " ",
  87. " ",
  88. "\t",
  89. "\n",
  90. "\n\n",
  91. "\n\n\n",
  92. "\t\n",
  93. "Hello world",
  94. " Hello world",
  95. "Hello World",
  96. " Hello World",
  97. " Hello World!",
  98. "Hello, world!",
  99. " Hello, world!",
  100. " this is 🦙.cpp",
  101. "w048 7tuijk dsdfhu",
  102. "нещо на Български",
  103. "កាន់តែពិសេសអាចខលចេញ",
  104. "🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)",
  105. "Hello",
  106. " Hello",
  107. " Hello",
  108. " Hello",
  109. " Hello",
  110. " Hello\n Hello",
  111. " (",
  112. "\n =",
  113. "' era",
  114. "Hello, y'all! How are you 😁 ?我想在apple工作1314151天~",
  115. "3",
  116. "33",
  117. "333",
  118. "3333",
  119. "33333",
  120. "333333",
  121. "3333333",
  122. "33333333",
  123. "333333333",
  124. ]
  125. def generator_custom_text_edge_cases() -> Iterator[str]:
  126. """Edge cases found while debugging"""
  127. yield from [
  128. '\x1f-a', # unicode_ranges_control, {0x00001C, 0x00001F}
  129. '¼-a', # unicode_ranges_digit, 0x00BC
  130. '½-a', # unicode_ranges_digit, 0x00BD
  131. '¾-a', # unicode_ranges_digit, 0x00BE
  132. 'a 〇b', # unicode_ranges_digit, 0x3007
  133. 'Ⅵ-a', # unicode_ranges_digit, {0x00002150, 0x0000218F} // Number Forms
  134. '\uFEFF//', # unicode_ranges_control, 0xFEFF (BOM)
  135. 'Cửa Việt', # llama-3, ignore_merges = true
  136. '<s>a', # Phi-3 fail
  137. '<unk><|endoftext|><s>', # Phi-3 fail
  138. 'a\na', # TODO: Bert fail
  139. 'a </s> b', # rstrip phi-3
  140. 'a <mask> b', # lstrip jina-v2
  141. ]
  142. def generator_vocab_words(vocab: list[str]) -> Iterator[str]:
  143. """Brute force check all vocab words"""
  144. yield from vocab
  145. def generator_added_lr_strip(tokenizer) -> Iterator[str]:
  146. WHITESPACES = ["", " ", " ", " "]
  147. special_tokens = list(tokenizer.all_special_tokens)
  148. added_tokens = list(tokenizer.added_tokens_encoder)
  149. all_tokens = list(sorted(set(special_tokens + added_tokens)))
  150. for token in all_tokens:
  151. for lstrip in WHITESPACES:
  152. for rstrip in WHITESPACES:
  153. yield lstrip + token + rstrip
  154. yield "a" + lstrip + token + rstrip
  155. yield lstrip + token + rstrip + "z"
  156. yield "a" + lstrip + token + rstrip + "z"
  157. def generator_random_added_tokens(tokenizer, iterations=100) -> Iterator[str]:
  158. special_tokens = list(tokenizer.all_special_tokens)
  159. added_tokens = list(tokenizer.added_tokens_encoder)
  160. separations = [" ", "\n", "\t", "-", "!", "one", "1", "<s>", "</s>"]
  161. all_tokens = list(sorted(set(special_tokens + added_tokens + separations)))
  162. rand = random.Random()
  163. for m in range(iterations):
  164. rand.seed(m)
  165. words = rand.choices(all_tokens, k=500)
  166. if words[0] == tokenizer.bos_token: # skip spam warning of double BOS
  167. while len(words) > 1 and words[1] == tokenizer.bos_token: # leave one starting BOS
  168. words.pop(0)
  169. if tokenizer.add_bos_token: # drop all starting BOS
  170. words.pop(0)
  171. yield "".join(words)
  172. def generator_random_chars(iterations=100) -> Iterator[str]:
  173. """Brute force random text with simple characters"""
  174. WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5)
  175. CHARS = list(sorted(set("""
  176. ABCDEFGHIJKLMNOPQRSTUVWXYZ
  177. abcdefghijklmnopqrstuvwxyz
  178. ÁÉÍÓÚÀÈÌÒÙÂÊÎÔÛÄËÏÖÜ
  179. áéíóúàèìòùâêîôûäëïöü
  180. .-,*/-+ª!"·$%&/()=?¿[]{}<>\\|@#~½¬~;:_
  181. """)))
  182. rand = random.Random()
  183. for m in range(iterations):
  184. rand.seed(m)
  185. text = []
  186. num_words = rand.randint(300, 400)
  187. for i in range(num_words):
  188. k = rand.randint(1, 7)
  189. word = rand.choices(CHARS, k=k)
  190. space = rand.choice(WHITESPACES)
  191. text.append("".join(word) + space)
  192. yield "".join(text)
  193. def generator_random_vocab_chars(vocab: list[str], iterations=100) -> Iterator[str]:
  194. """Brute force random text with vocab characters"""
  195. vocab_chars = set()
  196. for word in vocab:
  197. vocab_chars.update(word)
  198. vocab_chars = list(sorted(vocab_chars))
  199. rand = random.Random()
  200. for m in range(iterations):
  201. rand.seed(m)
  202. text = rand.choices(vocab_chars, k=1024)
  203. yield "".join(text)
  204. def generator_random_vocab_words(vocab: list[str], iterations=100) -> Iterator[str]:
  205. """Brute force random text from vocab words"""
  206. vocab = [w.strip() for w in vocab]
  207. yield from vocab
  208. rand = random.Random()
  209. for m in range(iterations):
  210. rand.seed(m)
  211. text = []
  212. num_words = rand.randint(300, 400)
  213. for i in range(num_words):
  214. k = rand.randint(1, 3)
  215. words = rand.choices(vocab, k=k)
  216. sep = rand.choice(" \n\r\t")
  217. text.append("".join(words) + sep)
  218. yield "".join(text)
  219. def generator_random_bytes(iterations=100) -> Iterator[str]:
  220. """Brute force random bytes"""
  221. WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5)
  222. rand = random.Random()
  223. for m in range(iterations):
  224. rand.seed(m)
  225. text = []
  226. num_words = rand.randint(300, 400)
  227. for i in range(num_words):
  228. k = rand.randint(1, 8)
  229. word = [chr(r) for r in rand.randbytes(k) if r]
  230. word.append(rand.choice(WHITESPACES))
  231. text.append("".join(word))
  232. yield "".join(text)
  233. def test_compare_tokenizer(func_tokenize1: Callable, func_tokenize2: Callable, generator: Iterator[str]):
  234. def find_first_mismatch(ids1: list[int], ids2: list[int]):
  235. for i, (a, b) in enumerate(zip(ids1, ids2)):
  236. if a != b:
  237. return i
  238. if len(ids1) == len(ids2):
  239. return -1
  240. return min(len(ids1), len(ids2))
  241. t0 = time.perf_counter()
  242. logger.info("%s: %s" % (generator.__name__, "ini"))
  243. for text in generator:
  244. ids1 = func_tokenize1(text)
  245. ids2 = func_tokenize2(text)
  246. if ids1 != ids2:
  247. i = find_first_mismatch(ids1, ids2)
  248. ids1 = list(ids1)[max(0, i - 2) : i + 5 + 1]
  249. ids2 = list(ids2)[max(0, i - 2) : i + 5 + 1]
  250. logger.info(" TokenIDs: " + str(ids1))
  251. logger.info(" Expected: " + str(ids2))
  252. raise Exception()
  253. t1 = time.perf_counter()
  254. logger.info("%s: end, time: %.3f secs" % (generator.__name__, t1 - t0))
  255. def main(argv: list[str] = None):
  256. parser = argparse.ArgumentParser()
  257. parser.add_argument("vocab_file", help="path to vocab 'gguf' file")
  258. parser.add_argument("dir_tokenizer", help="directory containing 'tokenizer.model' file")
  259. parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
  260. args = parser.parse_args(argv)
  261. logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
  262. model = LibLlamaModel(LibLlama(), args.vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=4096))
  263. tokenizer = AutoTokenizer.from_pretrained(args.dir_tokenizer)
  264. def func_tokenize1(text: str):
  265. return model.tokenize(text, add_special=True, parse_special=True)
  266. def func_tokenize2(text: str):
  267. return tokenizer.encode(text, add_special_tokens=True)
  268. ids = func_tokenize2("a")
  269. assert 1 <= len(ids) <= 3
  270. add_bos_token = len(ids) > 1 and tokenizer.bos_token_id == ids[0]
  271. tokenizer.add_bos_token = getattr(tokenizer, "add_bos_token", add_bos_token)
  272. vocab = list(sorted(tokenizer.batch_decode(list(tokenizer.get_vocab().values()), skip_special_tokens=True)))
  273. test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_custom_text())
  274. test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_custom_text_edge_cases())
  275. test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_vocab_words(vocab))
  276. test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_added_lr_strip(tokenizer))
  277. test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_added_tokens(tokenizer, 10_000))
  278. test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_chars(10_000))
  279. test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_vocab_chars(vocab, 10_000))
  280. test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_vocab_words(vocab, 5_000))
  281. # test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_bytes(10_000)) # FAIL
  282. model.free()
  283. if __name__ == "__main__":
  284. # main()
  285. path_tokenizers = "./models/tokenizers/"
  286. path_vocab_format = "./models/ggml-vocab-%s.gguf"
  287. # import os
  288. # tokenizers = os.listdir(path_tokenizers)
  289. tokenizers = [
  290. "llama-spm", # SPM
  291. "phi-3", # SPM
  292. "jina-v2-en", # WPM
  293. "bert-bge", # WPM
  294. ]
  295. for tokenizer in tokenizers:
  296. print("\n" + "=" * 50 + "\n" + tokenizer + "\n") # noqa
  297. vocab_file = path_vocab_format % tokenizer
  298. dir_tokenizer = path_tokenizers + "/" + tokenizer
  299. main([vocab_file, dir_tokenizer, "--verbose"])