llama-graph.cpp 64 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965
  1. #include "llama-graph.h"
  2. #include "llama-impl.h"
  3. #include "llama-batch.h"
  4. #include "llama-cparams.h"
  5. #include "llama-kv-cache.h"
  6. #include "llama-kv-cache-iswa.h"
  7. #include "llama-memory-hybrid.h"
  8. #include "llama-memory-recurrent.h"
  9. #include <cassert>
  10. #include <cmath>
  11. #include <cstring>
  12. void llm_graph_input_embd::set_input(const llama_ubatch * ubatch) {
  13. if (ubatch->token) {
  14. const int64_t n_tokens = ubatch->n_tokens;
  15. ggml_backend_tensor_set(tokens, ubatch->token, 0, n_tokens*ggml_element_size(tokens));
  16. }
  17. if (ubatch->embd) {
  18. const int64_t n_embd = embd->ne[0];
  19. const int64_t n_tokens = ubatch->n_tokens;
  20. ggml_backend_tensor_set(embd, ubatch->embd, 0, n_tokens*n_embd*ggml_element_size(embd));
  21. }
  22. }
  23. bool llm_graph_input_embd::can_reuse(const llm_graph_params & params) {
  24. bool res = true;
  25. res &= (!tokens && !params.ubatch.token) || (tokens && tokens->ne[0] == params.ubatch.n_tokens);
  26. res &= (!embd && !params.ubatch.embd) || (embd && embd->ne[0] == params.ubatch.n_tokens);
  27. return res;
  28. }
  29. void llm_graph_input_pos::set_input(const llama_ubatch * ubatch) {
  30. if (ubatch->pos && pos) {
  31. const int64_t n_tokens = ubatch->n_tokens;
  32. if (ubatch->token && n_pos_per_embd == 4) {
  33. // in case we're using M-RoPE with text tokens, convert the 1D positions to 4D
  34. // the 3 first dims are the same, and 4th dim is all 0
  35. std::vector<llama_pos> pos_data(n_tokens*n_pos_per_embd);
  36. // copy the first dimension
  37. for (int i = 0; i < n_tokens; ++i) {
  38. pos_data[ i] = ubatch->pos[i];
  39. pos_data[ n_tokens + i] = ubatch->pos[i];
  40. pos_data[2 * n_tokens + i] = ubatch->pos[i];
  41. pos_data[3 * n_tokens + i] = 0; // 4th dim is 0
  42. }
  43. ggml_backend_tensor_set(pos, pos_data.data(), 0, pos_data.size()*ggml_element_size(pos));
  44. } else {
  45. ggml_backend_tensor_set(pos, ubatch->pos, 0, n_tokens*n_pos_per_embd*ggml_element_size(pos));
  46. }
  47. }
  48. }
  49. bool llm_graph_input_pos::can_reuse(const llm_graph_params & params) {
  50. bool res = true;
  51. res &= pos->ne[0] == params.ubatch.n_tokens;
  52. return res;
  53. }
  54. void llm_graph_input_attn_temp::set_input(const llama_ubatch * ubatch) {
  55. if (ubatch->pos && attn_scale) {
  56. const int64_t n_tokens = ubatch->n_tokens;
  57. std::vector<float> attn_scale_data(n_tokens, 0.0f);
  58. for (int i = 0; i < n_tokens; ++i) {
  59. const float pos = ubatch->pos[i];
  60. attn_scale_data[i] = std::log(
  61. std::floor((pos + 1.0f) / n_attn_temp_floor_scale) + 1.0
  62. ) * f_attn_temp_scale + 1.0;
  63. }
  64. ggml_backend_tensor_set(attn_scale, attn_scale_data.data(), 0, n_tokens*ggml_element_size(attn_scale));
  65. }
  66. }
  67. void llm_graph_input_pos_bucket::set_input(const llama_ubatch * ubatch) {
  68. if (pos_bucket) {
  69. const int64_t n_tokens = ubatch->n_tokens;
  70. GGML_ASSERT(ggml_backend_buffer_is_host(pos_bucket->buffer));
  71. GGML_ASSERT(!ubatch->equal_seqs()); // TODO: use ubatch->n_seqs instead of failing
  72. int32_t * data = (int32_t *) pos_bucket->data;
  73. for (int h = 0; h < 1; ++h) {
  74. for (int j = 0; j < n_tokens; ++j) {
  75. for (int i = 0; i < n_tokens; ++i) {
  76. data[h*(n_tokens*n_tokens) + j*n_tokens + i] = llama_relative_position_bucket(ubatch->pos[i], ubatch->pos[j], hparams.n_rel_attn_bkts, true);
  77. }
  78. }
  79. }
  80. }
  81. }
  82. void llm_graph_input_pos_bucket_kv::set_input(const llama_ubatch * ubatch) {
  83. if (pos_bucket) {
  84. mctx->set_input_pos_bucket(pos_bucket, ubatch);
  85. }
  86. }
  87. void llm_graph_input_out_ids::set_input(const llama_ubatch * ubatch) {
  88. GGML_ASSERT(out_ids);
  89. const int64_t n_tokens = ubatch->n_tokens;
  90. GGML_ASSERT(ggml_backend_buffer_is_host(out_ids->buffer));
  91. int32_t * data = (int32_t *) out_ids->data;
  92. if (n_outputs == n_tokens) {
  93. for (int i = 0; i < n_tokens; ++i) {
  94. data[i] = i;
  95. }
  96. return;
  97. }
  98. GGML_ASSERT(ubatch->output);
  99. int n_outputs = 0;
  100. for (int i = 0; i < n_tokens; ++i) {
  101. if (ubatch->output[i]) {
  102. data[n_outputs++] = i;
  103. }
  104. }
  105. }
  106. bool llm_graph_input_out_ids::can_reuse(const llm_graph_params & params) {
  107. bool res = true;
  108. res &= n_outputs == params.n_outputs;
  109. return res;
  110. }
  111. void llm_graph_input_mean::set_input(const llama_ubatch * ubatch) {
  112. if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
  113. const int64_t n_tokens = ubatch->n_tokens;
  114. const int64_t n_seq_tokens = ubatch->n_seq_tokens;
  115. const int64_t n_seqs_unq = ubatch->n_seqs_unq;
  116. GGML_ASSERT(mean);
  117. GGML_ASSERT(ggml_backend_buffer_is_host(mean->buffer));
  118. float * data = (float *) mean->data;
  119. memset(mean->data, 0, n_tokens*n_seqs_unq*ggml_element_size(mean));
  120. std::vector<uint64_t> sums(n_seqs_unq, 0);
  121. for (int i = 0; i < n_tokens; i += n_seq_tokens) {
  122. for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
  123. const llama_seq_id seq_id = ubatch->seq_id[i][s];
  124. const int32_t seq_idx = ubatch->seq_idx[seq_id];
  125. sums[seq_idx] += ubatch->n_seq_tokens;
  126. }
  127. }
  128. std::vector<float> div(n_seqs_unq, 0.0f);
  129. for (int s = 0; s < n_seqs_unq; ++s) {
  130. const uint64_t sum = sums[s];
  131. if (sum > 0) {
  132. div[s] = 1.0f/float(sum);
  133. }
  134. }
  135. for (int i = 0; i < n_tokens; i += n_seq_tokens) {
  136. for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
  137. const llama_seq_id seq_id = ubatch->seq_id[i][s];
  138. const int32_t seq_idx = ubatch->seq_idx[seq_id];
  139. for (int j = 0; j < n_seq_tokens; ++j) {
  140. data[seq_idx*n_tokens + i + j] = div[seq_idx];
  141. }
  142. }
  143. }
  144. }
  145. }
  146. void llm_graph_input_cls::set_input(const llama_ubatch * ubatch) {
  147. const int64_t n_tokens = ubatch->n_tokens;
  148. const int64_t n_seqs_unq = ubatch->n_seqs_unq;
  149. if (cparams.embeddings && (
  150. cparams.pooling_type == LLAMA_POOLING_TYPE_CLS ||
  151. cparams.pooling_type == LLAMA_POOLING_TYPE_RANK ||
  152. cparams.pooling_type == LLAMA_POOLING_TYPE_LAST
  153. )) {
  154. GGML_ASSERT(cls);
  155. GGML_ASSERT(ggml_backend_buffer_is_host(cls->buffer));
  156. uint32_t * data = (uint32_t *) cls->data;
  157. memset(cls->data, 0, n_seqs_unq*ggml_element_size(cls));
  158. std::vector<int> target_pos(n_seqs_unq, -1);
  159. std::vector<int> target_row(n_seqs_unq, -1);
  160. const bool last = (
  161. cparams.pooling_type == LLAMA_POOLING_TYPE_LAST ||
  162. (cparams.pooling_type == LLAMA_POOLING_TYPE_RANK && arch == LLM_ARCH_QWEN3) // qwen3 reranking & embedding models use last token
  163. );
  164. for (int i = 0; i < n_tokens; ++i) {
  165. const llama_pos pos = ubatch->pos[i];
  166. for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
  167. const llama_seq_id seq_id = ubatch->seq_id[i][s];
  168. const int32_t seq_idx = ubatch->seq_idx[seq_id];
  169. if (
  170. (target_pos[seq_idx] == -1) ||
  171. ( last && pos >= target_pos[seq_idx]) ||
  172. (!last && pos < target_pos[seq_idx])
  173. ) {
  174. target_pos[seq_idx] = pos;
  175. target_row[seq_idx] = i;
  176. }
  177. }
  178. }
  179. for (int s = 0; s < n_seqs_unq; ++s) {
  180. if (target_row[s] >= 0) {
  181. data[s] = target_row[s];
  182. }
  183. }
  184. }
  185. }
  186. void llm_graph_input_rs::set_input(const llama_ubatch * ubatch) {
  187. GGML_UNUSED(ubatch);
  188. const int64_t n_rs = mctx->get_n_rs();
  189. if (s_copy) {
  190. GGML_ASSERT(ggml_backend_buffer_is_host(s_copy->buffer));
  191. int32_t * data = (int32_t *) s_copy->data;
  192. // assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n
  193. for (uint32_t i = 0; i < n_rs; ++i) {
  194. data[i] = mctx->s_copy(i);
  195. }
  196. }
  197. }
  198. void llm_graph_input_cross_embd::set_input(const llama_ubatch * ubatch) {
  199. GGML_UNUSED(ubatch);
  200. if (cross_embd && !cross->v_embd.empty()) {
  201. assert(cross_embd->type == GGML_TYPE_F32);
  202. ggml_backend_tensor_set(cross_embd, cross->v_embd.data(), 0, ggml_nbytes(cross_embd));
  203. }
  204. }
  205. static void print_mask(float * data, int64_t n_tokens, int64_t n_kv, int64_t n_swa, llama_swa_type swa_type) {
  206. LLAMA_LOG_DEBUG("%s: === Attention mask ===\n", __func__);
  207. const char * swa_type_str = (swa_type == LLAMA_SWA_TYPE_NONE) ? "LLAMA_SWA_TYPE_NONE" :
  208. (swa_type == LLAMA_SWA_TYPE_STANDARD) ? "LLAMA_SWA_TYPE_STANDARD" :
  209. (swa_type == LLAMA_SWA_TYPE_CHUNKED) ? "LLAMA_SWA_TYPE_CHUNKED" :
  210. (swa_type == LLAMA_SWA_TYPE_SYMMETRIC) ? "LLAMA_SWA_TYPE_SYMMETRIC" : "unknown";
  211. LLAMA_LOG_DEBUG("%s: n_swa : %d, n_kv: %d, swq_type: %s\n", __func__, (int)n_swa, (int)n_kv, swa_type_str);
  212. LLAMA_LOG_DEBUG("%s: '0' = can attend, '∞' = masked\n", __func__);
  213. LLAMA_LOG_DEBUG("%s: Rows = query tokens, Columns = key/value tokens\n\n", __func__);
  214. LLAMA_LOG_DEBUG(" ");
  215. for (int j = 0; j < std::min((int64_t)20, n_kv); ++j) {
  216. LLAMA_LOG_DEBUG("%2d", j);
  217. }
  218. LLAMA_LOG_DEBUG("\n");
  219. for (int i = 0; i < std::min((int64_t)20, n_tokens); ++i) {
  220. LLAMA_LOG_DEBUG(" %2d ", i);
  221. for (int j = 0; j < std::min((int64_t)20, n_kv); ++j) {
  222. float val = data[i * n_kv + j];
  223. if (val == -INFINITY) {
  224. LLAMA_LOG_DEBUG(" ∞");
  225. } else {
  226. LLAMA_LOG_DEBUG(" 0");
  227. }
  228. }
  229. LLAMA_LOG_DEBUG("\n");
  230. }
  231. }
  232. void llm_graph_input_attn_no_cache::set_input(const llama_ubatch * ubatch) {
  233. const int64_t n_kv = ubatch->n_tokens;
  234. const int64_t n_tokens = ubatch->n_tokens;
  235. GGML_ASSERT(kq_mask);
  236. GGML_ASSERT(ggml_backend_buffer_is_host(kq_mask->buffer));
  237. float * data = (float *) kq_mask->data;
  238. // [TAG_NO_CACHE_ISWA]
  239. GGML_ASSERT(hparams.swa_type == LLAMA_SWA_TYPE_NONE && "TODO: implement");
  240. for (int h = 0; h < 1; ++h) {
  241. for (int i1 = 0; i1 < n_tokens; ++i1) {
  242. const llama_seq_id s1 = ubatch->seq_id[i1][0];
  243. for (int i0 = 0; i0 < n_tokens; ++i0) {
  244. float f = -INFINITY;
  245. for (int s = 0; s < ubatch->n_seq_id[i0]; ++s) {
  246. const llama_seq_id s0 = ubatch->seq_id[i0][0];
  247. if (s0 != s1) {
  248. continue; // skip different sequences
  249. }
  250. if (cparams.causal_attn && ubatch->pos[i0] > ubatch->pos[i1]) {
  251. continue; // skip future tokens for causal attention
  252. }
  253. // TODO: this does not take into account that some layers are SWA and others are note (i.e. iSWA) [TAG_NO_CACHE_ISWA]
  254. //if (hparams.is_masked_swa(ubatch->pos[i0], ubatch->pos[i1])) {
  255. // continue; // skip masked tokens for SWA
  256. //}
  257. // TODO: reimplement this like in llama_kv_cache_unified
  258. if (hparams.use_alibi) {
  259. f = -std::abs(ubatch->pos[i0] - ubatch->pos[i1]);
  260. } else {
  261. f = 0.0f;
  262. }
  263. }
  264. data[h*(n_kv*n_tokens) + i1*n_kv + i0] = f;
  265. }
  266. }
  267. }
  268. if (debug) {
  269. print_mask(data, n_tokens, n_kv, hparams.n_swa, hparams.swa_type);
  270. }
  271. }
  272. void llm_graph_input_attn_kv::set_input(const llama_ubatch * ubatch) {
  273. mctx->set_input_k_idxs(self_k_idxs, ubatch);
  274. mctx->set_input_v_idxs(self_v_idxs, ubatch);
  275. mctx->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn);
  276. }
  277. bool llm_graph_input_attn_kv::can_reuse(const llm_graph_params & params) {
  278. const auto * mctx = static_cast<const llama_kv_cache_context *>(params.mctx);
  279. this->mctx = mctx;
  280. bool res = true;
  281. res &= self_k_idxs->ne[0] == params.ubatch.n_tokens;
  282. //res &= self_v_idxs->ne[0] == params.ubatch.n_tokens; // TODO: need to move this to the unified cache and check there
  283. res &= self_kq_mask->ne[0] == mctx->get_n_kv();
  284. res &= self_kq_mask->ne[1] == GGML_PAD(params.ubatch.n_tokens, GGML_KQ_MASK_PAD);
  285. return res;
  286. }
  287. void llm_graph_input_attn_kv_iswa::set_input(const llama_ubatch * ubatch) {
  288. mctx->get_base()->set_input_k_idxs(self_k_idxs, ubatch);
  289. mctx->get_base()->set_input_v_idxs(self_v_idxs, ubatch);
  290. mctx->get_base()->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn);
  291. mctx->get_swa()->set_input_k_idxs(self_k_idxs_swa, ubatch);
  292. mctx->get_swa()->set_input_v_idxs(self_v_idxs_swa, ubatch);
  293. mctx->get_swa()->set_input_kq_mask(self_kq_mask_swa, ubatch, cparams.causal_attn);
  294. }
  295. bool llm_graph_input_attn_kv_iswa::can_reuse(const llm_graph_params & params) {
  296. const auto * mctx = static_cast<const llama_kv_cache_iswa_context *>(params.mctx);
  297. this->mctx = mctx;
  298. bool res = true;
  299. res &= self_k_idxs->ne[0] == params.ubatch.n_tokens;
  300. //res &= self_v_idxs->ne[0] == params.ubatch.n_tokens; // TODO: need to move this to the unified cache and check there
  301. res &= self_k_idxs_swa->ne[0] == params.ubatch.n_tokens;
  302. //res &= self_v_idxs_swa->ne[0] == params.ubatch.n_tokens; // TODO: need to move this to the unified cache and check there
  303. res &= self_kq_mask->ne[0] == mctx->get_base()->get_n_kv();
  304. res &= self_kq_mask->ne[1] == GGML_PAD(params.ubatch.n_tokens, GGML_KQ_MASK_PAD);
  305. res &= self_kq_mask_swa->ne[0] == mctx->get_swa()->get_n_kv();
  306. res &= self_kq_mask_swa->ne[1] == GGML_PAD(params.ubatch.n_tokens, GGML_KQ_MASK_PAD);
  307. return res;
  308. }
  309. void llm_graph_input_attn_cross::set_input(const llama_ubatch * ubatch) {
  310. GGML_ASSERT(cross_kq_mask);
  311. const int64_t n_enc = cross_kq_mask->ne[0];
  312. const int64_t n_tokens = ubatch->n_tokens;
  313. GGML_ASSERT(ggml_backend_buffer_is_host(cross_kq_mask->buffer));
  314. GGML_ASSERT(!ubatch->equal_seqs()); // TODO: use ubatch->n_seqs instead of failing
  315. float * data = (float *) cross_kq_mask->data;
  316. for (int h = 0; h < 1; ++h) {
  317. for (int i = 0; i < n_tokens; ++i) {
  318. for (int j = 0; j < n_enc; ++j) {
  319. float f = -INFINITY;
  320. for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
  321. const llama_seq_id seq_id = ubatch->seq_id[i][s];
  322. if (cross->seq_ids_enc[j].find(seq_id) != cross->seq_ids_enc[j].end()) {
  323. f = 0.0f;
  324. }
  325. }
  326. data[h*(n_enc*n_tokens) + i*n_enc + j] = f;
  327. }
  328. }
  329. for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
  330. for (int j = 0; j < n_enc; ++j) {
  331. data[h*(n_enc*n_tokens) + i*n_enc + j] = -INFINITY;
  332. }
  333. }
  334. }
  335. }
  336. void llm_graph_input_mem_hybrid::set_input(const llama_ubatch * ubatch) {
  337. inp_attn->set_input(ubatch);
  338. inp_rs->set_input(ubatch);
  339. }
  340. //
  341. // llm_graph_result
  342. //
  343. llm_graph_result::llm_graph_result(int64_t max_nodes) : max_nodes(max_nodes) {
  344. reset();
  345. const char * LLAMA_GRAPH_RESULT_DEBUG = getenv("LLAMA_GRAPH_RESULT_DEBUG");
  346. debug = LLAMA_GRAPH_RESULT_DEBUG ? atoi(LLAMA_GRAPH_RESULT_DEBUG) : 0;
  347. }
  348. int64_t llm_graph_result::get_max_nodes() const {
  349. return max_nodes;
  350. }
  351. void llm_graph_result::reset() {
  352. t_tokens = nullptr;
  353. t_logits = nullptr;
  354. t_embd = nullptr;
  355. t_embd_pooled = nullptr;
  356. params = {};
  357. inputs.clear();
  358. buf_compute_meta.resize(ggml_tensor_overhead()*max_nodes + ggml_graph_overhead_custom(max_nodes, false));
  359. ggml_init_params params = {
  360. /*.mem_size =*/ buf_compute_meta.size(),
  361. /*.mem_buffer =*/ buf_compute_meta.data(),
  362. /*.no_alloc =*/ true,
  363. };
  364. ctx_compute.reset(ggml_init(params));
  365. gf = ggml_new_graph_custom(ctx_compute.get(), max_nodes, false);
  366. }
  367. void llm_graph_result::set_inputs(const llama_ubatch * ubatch) {
  368. for (auto & input : inputs) {
  369. input->set_input(ubatch);
  370. }
  371. }
  372. bool llm_graph_result::can_reuse(const llm_graph_params & params) {
  373. if (!this->params.allow_reuse(params)) {
  374. if (debug > 1) {
  375. LLAMA_LOG_DEBUG("%s: cannot reuse graph due to incompatible graph parameters\n", __func__);
  376. }
  377. return false;
  378. }
  379. if (debug > 1) {
  380. LLAMA_LOG_DEBUG("%s: checking compatibility of %d inputs:\n", __func__, (int) inputs.size());
  381. }
  382. bool res = true;
  383. for (auto & input : inputs) {
  384. const bool cur = input->can_reuse(params);
  385. if (debug > 1) {
  386. LLAMA_LOG_DEBUG("%s: can_reuse = %d\n", "placeholder", cur);
  387. }
  388. res = res && cur;
  389. }
  390. if (debug > 0) {
  391. LLAMA_LOG_DEBUG("%s: can reuse graph = %d\n", __func__, res);
  392. }
  393. return res;
  394. }
  395. llm_graph_input_i * llm_graph_result::add_input(llm_graph_input_ptr input) {
  396. inputs.emplace_back(std::move(input));
  397. return inputs.back().get();
  398. }
  399. void llm_graph_result::set_params(const llm_graph_params & params) {
  400. this->params = params;
  401. }
  402. //
  403. // llm_graph_context
  404. //
  405. llm_graph_context::llm_graph_context(const llm_graph_params & params) :
  406. arch (params.arch),
  407. hparams (params.hparams),
  408. cparams (params.cparams),
  409. ubatch (params.ubatch),
  410. n_embd (hparams.n_embd),
  411. n_layer (hparams.n_layer),
  412. n_rot (hparams.n_rot),
  413. n_ctx (cparams.n_ctx),
  414. n_head (hparams.n_head()),
  415. n_head_kv (hparams.n_head_kv()),
  416. n_embd_head_k (hparams.n_embd_head_k),
  417. n_embd_k_gqa (hparams.n_embd_k_gqa()),
  418. n_embd_head_v (hparams.n_embd_head_v),
  419. n_embd_v_gqa (hparams.n_embd_v_gqa()),
  420. n_expert (hparams.n_expert),
  421. n_expert_used (cparams.warmup ? hparams.n_expert : hparams.n_expert_used),
  422. freq_base (cparams.rope_freq_base),
  423. freq_scale (cparams.rope_freq_scale),
  424. ext_factor (cparams.yarn_ext_factor),
  425. attn_factor (cparams.yarn_attn_factor),
  426. beta_fast (cparams.yarn_beta_fast),
  427. beta_slow (cparams.yarn_beta_slow),
  428. norm_eps (hparams.f_norm_eps),
  429. norm_rms_eps (hparams.f_norm_rms_eps),
  430. n_tokens (ubatch.n_tokens),
  431. n_outputs (params.n_outputs),
  432. n_ctx_orig (cparams.n_ctx_orig_yarn),
  433. pooling_type (cparams.pooling_type),
  434. rope_type (hparams.rope_type),
  435. sched (params.sched),
  436. backend_cpu (params.backend_cpu),
  437. cvec (params.cvec),
  438. loras (params.loras),
  439. mctx (params.mctx),
  440. cross (params.cross),
  441. cb_func (params.cb),
  442. res (params.res),
  443. ctx0 (res->get_ctx()),
  444. gf (res->get_gf()) {
  445. res->set_params(params);
  446. }
  447. void llm_graph_context::cb(ggml_tensor * cur, const char * name, int il) const {
  448. if (cb_func) {
  449. cb_func(ubatch, cur, name, il);
  450. }
  451. }
  452. ggml_tensor * llm_graph_context::build_cvec(
  453. ggml_tensor * cur,
  454. int il) const {
  455. return cvec->apply_to(ctx0, cur, il);
  456. }
  457. ggml_tensor * llm_graph_context::build_lora_mm(
  458. ggml_tensor * w,
  459. ggml_tensor * cur) const {
  460. ggml_tensor * res = ggml_mul_mat(ctx0, w, cur);
  461. for (const auto & lora : *loras) {
  462. llama_adapter_lora_weight * lw = lora.first->get_weight(w);
  463. if (lw == nullptr) {
  464. continue;
  465. }
  466. const float adapter_scale = lora.second;
  467. const float scale = lw->get_scale(lora.first->alpha, adapter_scale);
  468. ggml_tensor * ab_cur = ggml_mul_mat(
  469. ctx0, lw->b,
  470. ggml_mul_mat(ctx0, lw->a, cur)
  471. );
  472. ab_cur = ggml_scale(ctx0, ab_cur, scale);
  473. res = ggml_add(ctx0, res, ab_cur);
  474. }
  475. return res;
  476. }
  477. ggml_tensor * llm_graph_context::build_lora_mm_id(
  478. ggml_tensor * w, // ggml_tensor * as
  479. ggml_tensor * cur, // ggml_tensor * b
  480. ggml_tensor * ids) const {
  481. ggml_tensor * res = ggml_mul_mat_id(ctx0, w, cur, ids);
  482. for (const auto & lora : *loras) {
  483. llama_adapter_lora_weight * lw = lora.first->get_weight(w);
  484. if (lw == nullptr) {
  485. continue;
  486. }
  487. const float alpha = lora.first->alpha;
  488. const float rank = (float) lw->b->ne[0];
  489. const float scale = alpha ? lora.second * alpha / rank : lora.second;
  490. ggml_tensor * ab_cur = ggml_mul_mat_id(
  491. ctx0, lw->b,
  492. ggml_mul_mat_id(ctx0, lw->a, cur, ids),
  493. ids
  494. );
  495. ab_cur = ggml_scale(ctx0, ab_cur, scale);
  496. res = ggml_add(ctx0, res, ab_cur);
  497. }
  498. return res;
  499. }
  500. ggml_tensor * llm_graph_context::build_norm(
  501. ggml_tensor * cur,
  502. ggml_tensor * mw,
  503. ggml_tensor * mb,
  504. llm_norm_type type,
  505. int il) const {
  506. switch (type) {
  507. case LLM_NORM: cur = ggml_norm (ctx0, cur, hparams.f_norm_eps); break;
  508. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx0, cur, hparams.f_norm_rms_eps); break;
  509. case LLM_NORM_GROUP:
  510. {
  511. cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], 1, cur->ne[1]);
  512. cur = ggml_group_norm(ctx0, cur, hparams.n_norm_groups, hparams.f_norm_group_eps);
  513. cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[2]);
  514. } break;
  515. }
  516. if (mw || mb) {
  517. cb(cur, "norm", il);
  518. }
  519. if (mw) {
  520. cur = ggml_mul(ctx0, cur, mw);
  521. if (mb) {
  522. cb(cur, "norm_w", il);
  523. }
  524. }
  525. if (mb) {
  526. cur = ggml_add(ctx0, cur, mb);
  527. }
  528. return cur;
  529. }
  530. ggml_tensor * llm_graph_context::build_ffn(
  531. ggml_tensor * cur,
  532. ggml_tensor * up,
  533. ggml_tensor * up_b,
  534. ggml_tensor * up_s,
  535. ggml_tensor * gate,
  536. ggml_tensor * gate_b,
  537. ggml_tensor * gate_s,
  538. ggml_tensor * down,
  539. ggml_tensor * down_b,
  540. ggml_tensor * down_s,
  541. ggml_tensor * act_scales,
  542. llm_ffn_op_type type_op,
  543. llm_ffn_gate_type type_gate,
  544. int il) const {
  545. ggml_tensor * tmp = up ? build_lora_mm(up, cur) : cur;
  546. cb(tmp, "ffn_up", il);
  547. if (up_b) {
  548. tmp = ggml_add(ctx0, tmp, up_b);
  549. cb(tmp, "ffn_up_b", il);
  550. }
  551. if (up_s) {
  552. tmp = ggml_mul(ctx0, tmp, up_s);
  553. cb(tmp, "ffn_up_s", il);
  554. }
  555. if (gate) {
  556. switch (type_gate) {
  557. case LLM_FFN_SEQ:
  558. {
  559. cur = build_lora_mm(gate, tmp);
  560. cb(cur, "ffn_gate", il);
  561. } break;
  562. case LLM_FFN_PAR:
  563. {
  564. cur = build_lora_mm(gate, cur);
  565. cb(cur, "ffn_gate", il);
  566. } break;
  567. }
  568. if (gate_b) {
  569. cur = ggml_add(ctx0, cur, gate_b);
  570. cb(cur, "ffn_gate_b", il);
  571. }
  572. if (gate_s) {
  573. cur = ggml_mul(ctx0, cur, gate_s);
  574. cb(cur, "ffn_gate_s", il);
  575. }
  576. } else {
  577. cur = tmp;
  578. }
  579. switch (type_op) {
  580. case LLM_FFN_SILU:
  581. if (gate && type_gate == LLM_FFN_PAR) {
  582. cur = ggml_swiglu_split(ctx0, cur, tmp);
  583. cb(cur, "ffn_swiglu", il);
  584. type_gate = LLM_FFN_SEQ;
  585. } else {
  586. cur = ggml_silu(ctx0, cur);
  587. cb(cur, "ffn_silu", il);
  588. } break;
  589. case LLM_FFN_GELU:
  590. if (gate && type_gate == LLM_FFN_PAR) {
  591. cur = ggml_geglu_split(ctx0, cur, tmp);
  592. cb(cur, "ffn_geglu", il);
  593. type_gate = LLM_FFN_SEQ;
  594. } else {
  595. cur = ggml_gelu(ctx0, cur);
  596. cb(cur, "ffn_gelu", il);
  597. if (act_scales != NULL) {
  598. cur = ggml_div(ctx0, cur, act_scales);
  599. cb(cur, "ffn_act", il);
  600. }
  601. } break;
  602. case LLM_FFN_RELU:
  603. if (gate && type_gate == LLM_FFN_PAR) {
  604. cur = ggml_reglu_split(ctx0, cur, tmp);
  605. cb(cur, "ffn_reglu", il);
  606. type_gate = LLM_FFN_SEQ;
  607. } else {
  608. cur = ggml_relu(ctx0, cur);
  609. cb(cur, "ffn_relu", il);
  610. } break;
  611. case LLM_FFN_RELU_SQR:
  612. {
  613. cur = ggml_relu(ctx0, cur);
  614. cb(cur, "ffn_relu", il);
  615. cur = ggml_sqr(ctx0, cur);
  616. cb(cur, "ffn_sqr(relu)", il);
  617. } break;
  618. case LLM_FFN_SWIGLU:
  619. {
  620. cur = ggml_swiglu(ctx0, cur);
  621. cb(cur, "ffn_swiglu", il);
  622. } break;
  623. case LLM_FFN_GEGLU:
  624. {
  625. cur = ggml_geglu(ctx0, cur);
  626. cb(cur, "ffn_geglu", il);
  627. } break;
  628. case LLM_FFN_REGLU:
  629. {
  630. cur = ggml_reglu(ctx0, cur);
  631. cb(cur, "ffn_reglu", il);
  632. } break;
  633. default:
  634. GGML_ABORT("fatal error");
  635. }
  636. if (gate && type_gate == LLM_FFN_PAR) {
  637. cur = ggml_mul(ctx0, cur, tmp);
  638. cb(cur, "ffn_gate_par", il);
  639. }
  640. if (down) {
  641. cur = build_lora_mm(down, cur);
  642. if (arch == LLM_ARCH_GLM4 || arch == LLM_ARCH_GLM4_MOE) {
  643. // GLM4 and GLM4_MOE seem to have numerical issues with half-precision accumulators
  644. ggml_mul_mat_set_prec(cur, GGML_PREC_F32);
  645. }
  646. }
  647. if (down_b) {
  648. cb(cur, "ffn_down", il);
  649. }
  650. if (down_b) {
  651. cur = ggml_add(ctx0, cur, down_b);
  652. }
  653. if (down_s) {
  654. cur = ggml_mul(ctx0, cur, down_s);
  655. cb(cur, "ffn_down_s", il);
  656. }
  657. return cur;
  658. }
  659. ggml_tensor * llm_graph_context::build_moe_ffn(
  660. ggml_tensor * cur,
  661. ggml_tensor * gate_inp,
  662. ggml_tensor * up_exps,
  663. ggml_tensor * gate_exps,
  664. ggml_tensor * down_exps,
  665. ggml_tensor * exp_probs_b,
  666. int64_t n_expert,
  667. int64_t n_expert_used,
  668. llm_ffn_op_type type_op,
  669. bool norm_w,
  670. bool scale_w,
  671. float w_scale,
  672. llama_expert_gating_func_type gating_op,
  673. int il,
  674. ggml_tensor * probs_in) const {
  675. return build_moe_ffn(
  676. cur,
  677. gate_inp, /* gate_inp_b */ nullptr,
  678. up_exps, /* up_exps_b */ nullptr,
  679. gate_exps, /* gate_exps_b */ nullptr,
  680. down_exps, /* down_exps_b */ nullptr,
  681. exp_probs_b,
  682. n_expert,
  683. n_expert_used,
  684. type_op,
  685. norm_w,
  686. scale_w,
  687. w_scale,
  688. gating_op,
  689. il,
  690. probs_in
  691. );
  692. }
  693. ggml_tensor * llm_graph_context::build_moe_ffn(
  694. ggml_tensor * cur,
  695. ggml_tensor * gate_inp,
  696. ggml_tensor * gate_inp_b,
  697. ggml_tensor * up_exps,
  698. ggml_tensor * up_exps_b,
  699. ggml_tensor * gate_exps,
  700. ggml_tensor * gate_exps_b,
  701. ggml_tensor * down_exps,
  702. ggml_tensor * down_exps_b,
  703. ggml_tensor * exp_probs_b,
  704. int64_t n_expert,
  705. int64_t n_expert_used,
  706. llm_ffn_op_type type_op,
  707. bool norm_w,
  708. bool scale_w,
  709. float w_scale,
  710. llama_expert_gating_func_type gating_op,
  711. int il,
  712. ggml_tensor * probs_in) const {
  713. const int64_t n_embd = cur->ne[0];
  714. const int64_t n_tokens = cur->ne[1];
  715. const bool weight_before_ffn = arch == LLM_ARCH_LLAMA4; // for llama4, we apply the sigmoid-ed weights before the FFN
  716. ggml_tensor * logits = nullptr;
  717. if (probs_in == nullptr) {
  718. logits = build_lora_mm(gate_inp, cur); // [n_expert, n_tokens]
  719. cb(logits, "ffn_moe_logits", il);
  720. } else {
  721. logits = probs_in;
  722. }
  723. if (gate_inp_b) {
  724. logits = ggml_add(ctx0, logits, gate_inp_b);
  725. cb(logits, "ffn_moe_logits_biased", il);
  726. }
  727. ggml_tensor * probs = nullptr;
  728. switch (gating_op) {
  729. case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX:
  730. {
  731. probs = ggml_soft_max(ctx0, logits); // [n_expert, n_tokens]
  732. } break;
  733. case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID:
  734. {
  735. probs = ggml_sigmoid(ctx0, logits); // [n_expert, n_tokens]
  736. } break;
  737. case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX_WEIGHT:
  738. {
  739. probs = logits; // [n_expert, n_tokens]
  740. } break;
  741. default:
  742. GGML_ABORT("fatal error");
  743. }
  744. cb(probs, "ffn_moe_probs", il);
  745. // add experts selection bias - introduced in DeepSeek V3
  746. // leave probs unbiased as it's later used to get expert weights
  747. ggml_tensor * selection_probs = probs;
  748. if (exp_probs_b != nullptr) {
  749. selection_probs = ggml_add(ctx0, probs, exp_probs_b);
  750. cb(selection_probs, "ffn_moe_probs_biased", il);
  751. }
  752. // llama4 doesn't have exp_probs_b, and sigmoid is only used after top_k
  753. // see: https://github.com/meta-llama/llama-models/blob/699a02993512fb36936b1b0741e13c06790bcf98/models/llama4/moe.py#L183-L198
  754. if (arch == LLM_ARCH_LLAMA4) {
  755. selection_probs = logits;
  756. }
  757. if (arch == LLM_ARCH_GROVEMOE) {
  758. selection_probs = ggml_sigmoid(ctx0, logits); // [n_expert, n_tokens]
  759. cb(selection_probs, "ffn_moe_probs_biased", il);
  760. }
  761. // select experts
  762. ggml_tensor * selected_experts = ggml_top_k(ctx0, selection_probs, n_expert_used); // [n_expert_used, n_tokens]
  763. cb(selected_experts->src[0], "ffn_moe_argsort", il);
  764. cb(selected_experts, "ffn_moe_topk", il);
  765. if (arch == LLM_ARCH_GROVEMOE && n_expert != hparams.n_expert) {
  766. // TODO: Use scalar div instead when/if implemented
  767. ggml_tensor * f_sel = ggml_cast(ctx0, selected_experts, GGML_TYPE_F32);
  768. selected_experts = ggml_cast(ctx0, ggml_scale(ctx0, f_sel, 1.0f / float(hparams.n_group_experts)), GGML_TYPE_I32);
  769. probs = ggml_reshape_3d(ctx0, probs, 1, hparams.n_expert, n_tokens);
  770. } else {
  771. probs = ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens);
  772. }
  773. ggml_tensor * weights = ggml_get_rows(ctx0, probs, selected_experts); // [1, n_expert_used, n_tokens]
  774. cb(weights, "ffn_moe_weights", il);
  775. if (gating_op == LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX_WEIGHT) {
  776. weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens);
  777. weights = ggml_soft_max(ctx0, weights); // [n_expert_used, n_tokens]
  778. weights = ggml_reshape_3d(ctx0, weights, 1, n_expert_used, n_tokens);
  779. cb(weights, "ffn_moe_weights_softmax", il);
  780. }
  781. if (norm_w) {
  782. weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens);
  783. ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights); // [1, n_tokens]
  784. cb(weights_sum, "ffn_moe_weights_sum", il);
  785. weights = ggml_div(ctx0, weights, weights_sum); // [n_expert_used, n_tokens]
  786. cb(weights, "ffn_moe_weights_norm", il);
  787. weights = ggml_reshape_3d(ctx0, weights, 1, n_expert_used, n_tokens);
  788. }
  789. if (scale_w) {
  790. weights = ggml_scale(ctx0, weights, w_scale);
  791. cb(weights, "ffn_moe_weights_scaled", il);
  792. }
  793. //call early so that topk-moe can be used
  794. ggml_build_forward_expand(gf, weights);
  795. cur = ggml_reshape_3d(ctx0, cur, n_embd, 1, n_tokens);
  796. if (weight_before_ffn) {
  797. // repeat cur to [n_embd, n_expert_used, n_tokens]
  798. ggml_tensor * repeated = ggml_repeat_4d(ctx0, cur, n_embd, n_expert_used, n_tokens, 1);
  799. cur = ggml_mul(ctx0, repeated, weights);
  800. cb(cur, "ffn_moe_weighted", il);
  801. }
  802. ggml_tensor * up = build_lora_mm_id(up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  803. cb(up, "ffn_moe_up", il);
  804. if (up_exps_b) {
  805. up = ggml_add_id(ctx0, up, up_exps_b, selected_experts);
  806. cb(up, "ffn_moe_up_biased", il);
  807. }
  808. ggml_tensor * experts = nullptr;
  809. if (gate_exps) {
  810. cur = build_lora_mm_id(gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  811. cb(cur, "ffn_moe_gate", il);
  812. } else {
  813. cur = up;
  814. }
  815. if (gate_exps_b) {
  816. cur = ggml_add_id(ctx0, cur, gate_exps_b, selected_experts);
  817. cb(cur, "ffn_moe_gate_biased", il);
  818. }
  819. switch (type_op) {
  820. case LLM_FFN_SILU:
  821. if (gate_exps) {
  822. cur = ggml_swiglu_split(ctx0, cur, up);
  823. cb(cur, "ffn_moe_swiglu", il);
  824. } else {
  825. cur = ggml_silu(ctx0, cur);
  826. cb(cur, "ffn_moe_silu", il);
  827. } break;
  828. case LLM_FFN_GELU:
  829. if (gate_exps) {
  830. cur = ggml_geglu_split(ctx0, cur, up);
  831. cb(cur, "ffn_moe_geglu", il);
  832. } else {
  833. cur = ggml_gelu(ctx0, cur);
  834. cb(cur, "ffn_moe_gelu", il);
  835. } break;
  836. case LLM_FFN_SWIGLU_OAI_MOE:
  837. {
  838. // TODO: move to hparams?
  839. constexpr float alpha = 1.702f;
  840. constexpr float limit = 7.0f;
  841. cur = ggml_swiglu_oai(ctx0, cur, up, alpha, limit);
  842. cb(cur, "ffn_moe_swiglu_oai", il);
  843. } break;
  844. case LLM_FFN_RELU:
  845. if (gate_exps) {
  846. cur = ggml_reglu_split(ctx0, cur, up);
  847. cb(cur, "ffn_moe_reglu", il);
  848. } else {
  849. cur = ggml_relu(ctx0, cur);
  850. cb(cur, "ffn_moe_relu", il);
  851. } break;
  852. default:
  853. GGML_ABORT("fatal error");
  854. }
  855. experts = build_lora_mm_id(down_exps, cur, selected_experts); // [n_embd, n_expert_used, n_tokens]
  856. cb(experts, "ffn_moe_down", il);
  857. if (down_exps_b) {
  858. experts = ggml_add_id(ctx0, experts, down_exps_b, selected_experts);
  859. cb(experts, "ffn_moe_down_biased", il);
  860. }
  861. if (!weight_before_ffn) {
  862. experts = ggml_mul(ctx0, experts, weights);
  863. cb(cur, "ffn_moe_weighted", il);
  864. }
  865. ggml_tensor * cur_experts[LLAMA_MAX_EXPERTS] = { nullptr };
  866. assert(n_expert_used > 0);
  867. // order the views before the adds
  868. for (uint32_t i = 0; i < hparams.n_expert_used; ++i) {
  869. cur_experts[i] = ggml_view_2d(ctx0, experts, n_embd, n_tokens, experts->nb[2], i*experts->nb[1]);
  870. ggml_build_forward_expand(gf, cur_experts[i]);
  871. }
  872. // aggregate experts
  873. // note: here we explicitly use hparams.n_expert_used instead of n_expert_used
  874. // to avoid potentially a large number of add nodes during warmup
  875. // ref: https://github.com/ggml-org/llama.cpp/pull/14753
  876. ggml_tensor * moe_out = cur_experts[0];
  877. for (uint32_t i = 1; i < hparams.n_expert_used; ++i) {
  878. moe_out = ggml_add(ctx0, moe_out, cur_experts[i]);
  879. }
  880. if (hparams.n_expert_used == 1) {
  881. // avoid returning a non-contiguous tensor
  882. moe_out = ggml_cont(ctx0, moe_out);
  883. }
  884. cb(moe_out, "ffn_moe_out", il);
  885. return moe_out;
  886. }
  887. // input embeddings with optional lora
  888. ggml_tensor * llm_graph_context::build_inp_embd(ggml_tensor * tok_embd) const {
  889. const int64_t n_embd = hparams.n_embd;
  890. auto inp = std::make_unique<llm_graph_input_embd>();
  891. ggml_tensor * cur = nullptr;
  892. if (ubatch.token) {
  893. inp->tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_tokens);
  894. //cb(inp->tokens, "inp_tokens", -1);
  895. ggml_set_input(inp->tokens);
  896. res->t_tokens = inp->tokens;
  897. cur = ggml_get_rows(ctx0, tok_embd, inp->tokens);
  898. // apply lora for embedding tokens if needed
  899. for (const auto & lora : *loras) {
  900. llama_adapter_lora_weight * lw = lora.first->get_weight(tok_embd);
  901. if (lw == nullptr) {
  902. continue;
  903. }
  904. const float adapter_scale = lora.second;
  905. const float scale = lw->get_scale(lora.first->alpha, adapter_scale);
  906. ggml_tensor * inpL_delta = ggml_scale(ctx0, ggml_mul_mat(
  907. ctx0, lw->b, // non-transposed lora_b
  908. ggml_get_rows(ctx0, lw->a, inp->tokens)
  909. ), scale);
  910. cur = ggml_add(ctx0, cur, inpL_delta);
  911. }
  912. } else {
  913. inp->embd = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, ubatch.n_tokens);
  914. ggml_set_input(inp->embd);
  915. cur = inp->embd;
  916. }
  917. // For Granite architecture
  918. if (hparams.f_embedding_scale != 0.0f) {
  919. cur = ggml_scale(ctx0, cur, hparams.f_embedding_scale);
  920. }
  921. cb(cur, "inp_embd", -1);
  922. res->add_input(std::move(inp));
  923. return cur;
  924. }
  925. ggml_tensor * llm_graph_context::build_inp_pos() const {
  926. auto inp = std::make_unique<llm_graph_input_pos>(hparams.n_pos_per_embd());
  927. auto & cur = inp->pos;
  928. cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, (int64_t)n_tokens*hparams.n_pos_per_embd());
  929. ggml_set_input(cur);
  930. res->add_input(std::move(inp));
  931. return cur;
  932. }
  933. ggml_tensor * llm_graph_context::build_inp_attn_scale() const {
  934. auto inp = std::make_unique<llm_graph_input_attn_temp>(hparams.n_attn_temp_floor_scale, hparams.f_attn_temp_scale);
  935. auto & cur = inp->attn_scale;
  936. // this need to be 1x1xN for broadcasting
  937. cur = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 1, 1, n_tokens);
  938. ggml_set_input(cur);
  939. res->add_input(std::move(inp));
  940. return cur;
  941. }
  942. ggml_tensor * llm_graph_context::build_inp_out_ids() const {
  943. // note: when all tokens are output, we could skip this optimization to spare the ggml_get_rows() calls,
  944. // but this would make the graph topology depend on the number of output tokens, which can interere with
  945. // features that require constant topology such as pipline parallelism
  946. // ref: https://github.com/ggml-org/llama.cpp/pull/14275#issuecomment-2987424471
  947. //if (n_outputs < n_tokens) {
  948. // return nullptr;
  949. //}
  950. auto inp = std::make_unique<llm_graph_input_out_ids>(hparams, cparams, n_outputs);
  951. auto & cur = inp->out_ids;
  952. cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
  953. ggml_set_input(cur);
  954. res->add_input(std::move(inp));
  955. return cur;
  956. }
  957. ggml_tensor * llm_graph_context::build_inp_mean() const {
  958. auto inp = std::make_unique<llm_graph_input_mean>(cparams);
  959. auto & cur = inp->mean;
  960. cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, ubatch.n_seqs_unq);
  961. ggml_set_input(cur);
  962. res->add_input(std::move(inp));
  963. return cur;
  964. }
  965. ggml_tensor * llm_graph_context::build_inp_cls() const {
  966. auto inp = std::make_unique<llm_graph_input_cls>(cparams, arch);
  967. auto & cur = inp->cls;
  968. cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_seqs_unq);
  969. ggml_set_input(cur);
  970. res->add_input(std::move(inp));
  971. return cur;
  972. }
  973. ggml_tensor * llm_graph_context::build_inp_cross_embd() const {
  974. auto inp = std::make_unique<llm_graph_input_cross_embd>(cross);
  975. auto & cur = inp->cross_embd;
  976. // if we have the output embeddings from the encoder, use them directly
  977. // TODO: needs more work to be correct, for now just use the tensor shape
  978. //if (cross->t_embd) {
  979. // cur = ggml_view_tensor(ctx0, cross->t_embd);
  980. // return cur;
  981. //}
  982. const auto n_embd = !cross->v_embd.empty() ? cross->n_embd : hparams.n_embd;
  983. const auto n_enc = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train;
  984. cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_enc);
  985. ggml_set_input(cur);
  986. res->add_input(std::move(inp));
  987. return cur;
  988. }
  989. ggml_tensor * llm_graph_context::build_inp_pos_bucket_enc() const {
  990. auto inp = std::make_unique<llm_graph_input_pos_bucket>(hparams);
  991. auto & cur = inp->pos_bucket;
  992. cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_tokens);
  993. ggml_set_input(cur);
  994. res->add_input(std::move(inp));
  995. return cur;
  996. }
  997. ggml_tensor * llm_graph_context::build_inp_pos_bucket_dec() const {
  998. const auto * mctx_cur = static_cast<const llama_kv_cache_context *>(mctx);
  999. auto inp = std::make_unique<llm_graph_input_pos_bucket_kv>(hparams, mctx_cur);
  1000. const auto n_kv = mctx_cur->get_n_kv();
  1001. auto & cur = inp->pos_bucket;
  1002. cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
  1003. ggml_set_input(cur);
  1004. res->add_input(std::move(inp));
  1005. return cur;
  1006. }
  1007. ggml_tensor * llm_graph_context::build_pos_bias(ggml_tensor * pos_bucket, ggml_tensor * attn_rel_b) const {
  1008. ggml_tensor * pos_bucket_1d = ggml_reshape_1d(ctx0, pos_bucket, pos_bucket->ne[0] * pos_bucket->ne[1]);
  1009. cb(pos_bucket_1d, "pos_bucket_1d", -1);
  1010. ggml_tensor * pos_bias = ggml_get_rows(ctx0, attn_rel_b, pos_bucket_1d);
  1011. pos_bias = ggml_reshape_3d(ctx0, pos_bias, pos_bias->ne[0], pos_bucket->ne[0], pos_bucket->ne[1]);
  1012. pos_bias = ggml_permute (ctx0, pos_bias, 2, 0, 1, 3);
  1013. pos_bias = ggml_cont (ctx0, pos_bias);
  1014. cb(pos_bias, "pos_bias", -1);
  1015. return pos_bias;
  1016. }
  1017. ggml_tensor * llm_graph_context::build_attn_mha(
  1018. ggml_tensor * q,
  1019. ggml_tensor * k,
  1020. ggml_tensor * v,
  1021. ggml_tensor * kq_b,
  1022. ggml_tensor * kq_mask,
  1023. ggml_tensor * sinks,
  1024. ggml_tensor * v_mla,
  1025. float kq_scale,
  1026. int il) const {
  1027. const bool v_trans = v->nb[1] > v->nb[2];
  1028. // split the batch into streams if needed
  1029. const auto n_stream = k->ne[3];
  1030. q = ggml_view_4d(ctx0, q, q->ne[0], q->ne[1], q->ne[2]/n_stream, n_stream, q->nb[1], q->nb[2], q->nb[3]/n_stream, 0);
  1031. q = ggml_permute(ctx0, q, 0, 2, 1, 3);
  1032. k = ggml_permute(ctx0, k, 0, 2, 1, 3);
  1033. v = ggml_permute(ctx0, v, 0, 2, 1, 3);
  1034. const auto n_kv = k->ne[1];
  1035. ggml_tensor * cur;
  1036. // TODO: replace hardcoded padding with ggml-provided padding
  1037. if (cparams.flash_attn && (n_kv % 256 == 0) && kq_b == nullptr) {
  1038. GGML_ASSERT(kq_b == nullptr && "Flash attention does not support KQ bias yet");
  1039. if (v_trans) {
  1040. v = ggml_transpose(ctx0, v);
  1041. }
  1042. // this can happen when KV cache is not used (e.g. an embedding model with non-causal attn)
  1043. if (k->type == GGML_TYPE_F32) {
  1044. k = ggml_cast(ctx0, k, GGML_TYPE_F16);
  1045. }
  1046. if (v->type == GGML_TYPE_F32) {
  1047. v = ggml_cast(ctx0, v, GGML_TYPE_F16);
  1048. }
  1049. cur = ggml_flash_attn_ext(ctx0, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias,
  1050. hparams.attn_soft_cap ? hparams.f_attn_logit_softcapping : 0.0f);
  1051. cb(cur, LLAMA_TENSOR_NAME_FATTN, il);
  1052. ggml_flash_attn_ext_add_sinks(cur, sinks);
  1053. ggml_flash_attn_ext_set_prec (cur, GGML_PREC_F32);
  1054. if (v_mla) {
  1055. #if 0
  1056. // v_mla can be applied as a matrix-vector multiplication with broadcasting across dimension 3 == n_tokens.
  1057. // However, the code is optimized for dimensions 0 and 1 being large, so this is ineffient.
  1058. cur = ggml_reshape_4d(ctx0, cur, v_mla->ne[0], 1, n_head, n_tokens);
  1059. cur = ggml_mul_mat(ctx0, v_mla, cur);
  1060. #else
  1061. // It's preferable to do the calculation as a matrix-matrix multiplication with n_tokens in dimension 1.
  1062. // The permutations are noops and only change how the tensor data is interpreted.
  1063. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  1064. cur = ggml_mul_mat(ctx0, v_mla, cur);
  1065. cb(cur, "fattn_mla", il);
  1066. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  1067. cur = ggml_cont(ctx0, cur); // Needed because ggml_reshape_2d expects contiguous inputs.
  1068. #endif
  1069. }
  1070. cur = ggml_reshape_2d(ctx0, cur, cur->ne[0]*cur->ne[1], cur->ne[2]*cur->ne[3]);
  1071. } else {
  1072. ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  1073. cb(kq, "kq", il);
  1074. // note: this op tends to require high floating point range
  1075. // while for some models F16 is enough, for others it is not, so we default to F32 here
  1076. ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  1077. if (arch == LLM_ARCH_GROK) {
  1078. // need to do the following:
  1079. // multiply by attn_output_multiplier
  1080. // and then :
  1081. // kq = 30 * tanh(kq / 30)
  1082. // before the softmax below
  1083. kq = ggml_tanh(ctx0, ggml_scale(ctx0, kq, hparams.f_attn_out_scale / hparams.f_attn_logit_softcapping));
  1084. cb(kq, "kq_tanh", il);
  1085. kq = ggml_scale(ctx0, kq, hparams.f_attn_logit_softcapping);
  1086. cb(kq, "kq_scaled", il);
  1087. }
  1088. if (hparams.attn_soft_cap) {
  1089. kq = ggml_scale(ctx0, kq, 1.0f / hparams.f_attn_logit_softcapping);
  1090. cb(kq, "kq_scaled_1", il);
  1091. kq = ggml_tanh (ctx0, kq);
  1092. cb(kq, "kq_tanh", il);
  1093. kq = ggml_scale(ctx0, kq, hparams.f_attn_logit_softcapping);
  1094. cb(kq, "kq_scaled_2", il);
  1095. }
  1096. if (kq_b) {
  1097. kq = ggml_add(ctx0, kq, kq_b);
  1098. cb(kq, "kq_plus_kq_b", il);
  1099. }
  1100. kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias);
  1101. ggml_soft_max_add_sinks(kq, sinks);
  1102. cb(kq, "kq_soft_max", il);
  1103. if (!v_trans) {
  1104. // note: avoid this branch
  1105. v = ggml_cont(ctx0, ggml_transpose(ctx0, v));
  1106. cb(v, "v_cont", il);
  1107. }
  1108. ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
  1109. cb(kqv, "kqv", il);
  1110. // for MLA with the absorption optimization, we need to "decompress" from MQA back to MHA
  1111. if (v_mla) {
  1112. kqv = ggml_mul_mat(ctx0, v_mla, kqv);
  1113. cb(kqv, "kqv_mla", il);
  1114. }
  1115. cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  1116. // recombine streams
  1117. cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*cur->ne[1], cur->ne[2]*cur->ne[3]);
  1118. if (!cparams.offload_kqv) {
  1119. // all nodes between the KV store and the attention output are run on the CPU
  1120. ggml_backend_sched_set_tensor_backend(sched, cur, backend_cpu);
  1121. }
  1122. }
  1123. ggml_build_forward_expand(gf, cur);
  1124. return cur;
  1125. }
  1126. llm_graph_input_attn_no_cache * llm_graph_context::build_attn_inp_no_cache() const {
  1127. auto inp = std::make_unique<llm_graph_input_attn_no_cache>(hparams, cparams);
  1128. // note: there is no KV cache, so the number of KV values is equal to the number of tokens in the batch
  1129. inp->kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), 1, 1);
  1130. ggml_set_input(inp->kq_mask);
  1131. inp->kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->kq_mask, GGML_TYPE_F16) : inp->kq_mask;
  1132. return (llm_graph_input_attn_no_cache *) res->add_input(std::move(inp));
  1133. }
  1134. ggml_tensor * llm_graph_context::build_attn(
  1135. llm_graph_input_attn_no_cache * inp,
  1136. ggml_tensor * wo,
  1137. ggml_tensor * wo_b,
  1138. ggml_tensor * q_cur,
  1139. ggml_tensor * k_cur,
  1140. ggml_tensor * v_cur,
  1141. ggml_tensor * kq_b,
  1142. ggml_tensor * sinks,
  1143. ggml_tensor * v_mla,
  1144. float kq_scale,
  1145. int il) const {
  1146. GGML_UNUSED(n_tokens);
  1147. // these nodes are added to the graph together so that they are not reordered
  1148. // by doing so, the number of splits in the graph is reduced
  1149. ggml_build_forward_expand(gf, q_cur);
  1150. ggml_build_forward_expand(gf, k_cur);
  1151. ggml_build_forward_expand(gf, v_cur);
  1152. const auto & kq_mask = inp->get_kq_mask();
  1153. // [TAG_NO_CACHE_PAD]
  1154. // TODO: if ubatch.equal_seqs() == true, we can split the three tensors below into ubatch.n_seqs_unq streams
  1155. // but it might not be worth it: https://github.com/ggml-org/llama.cpp/pull/15636
  1156. //assert(!ubatch.equal_seqs() || (k_cur->ne[3] == 1 && k_cur->ne[3] == ubatch.n_seqs_unq));
  1157. ggml_tensor * q = q_cur;
  1158. ggml_tensor * k = k_cur;
  1159. ggml_tensor * v = v_cur;
  1160. ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, sinks, v_mla, kq_scale, il);
  1161. cb(cur, "kqv_out", il);
  1162. if (wo) {
  1163. cur = build_lora_mm(wo, cur);
  1164. }
  1165. if (wo_b) {
  1166. //cb(cur, "kqv_wo", il);
  1167. }
  1168. if (wo_b) {
  1169. cur = ggml_add(ctx0, cur, wo_b);
  1170. }
  1171. return cur;
  1172. }
  1173. static std::unique_ptr<llm_graph_input_attn_kv> build_attn_inp_kv_impl(
  1174. ggml_context * ctx0,
  1175. const llama_ubatch & ubatch,
  1176. const llama_hparams & hparams,
  1177. const llama_cparams & cparams,
  1178. const llama_kv_cache_context * mctx_cur) {
  1179. auto inp = std::make_unique<llm_graph_input_attn_kv>(hparams, cparams, mctx_cur);
  1180. {
  1181. GGML_ASSERT(hparams.swa_type == LLAMA_SWA_TYPE_NONE && "Use llama_kv_cache_iswa for SWA");
  1182. const auto n_kv = mctx_cur->get_n_kv();
  1183. const auto n_tokens = ubatch.n_tokens;
  1184. const auto n_stream = cparams.kv_unified ? 1 : ubatch.n_seqs_unq;
  1185. inp->self_k_idxs = mctx_cur->build_input_k_idxs(ctx0, ubatch);
  1186. inp->self_v_idxs = mctx_cur->build_input_v_idxs(ctx0, ubatch);
  1187. inp->self_kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens/n_stream, GGML_KQ_MASK_PAD), 1, n_stream);
  1188. ggml_set_input(inp->self_kq_mask);
  1189. inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask;
  1190. }
  1191. return inp;
  1192. }
  1193. llm_graph_input_attn_kv * llm_graph_context::build_attn_inp_kv() const {
  1194. const auto * mctx_cur = static_cast<const llama_kv_cache_context *>(mctx);
  1195. auto inp = build_attn_inp_kv_impl(ctx0, ubatch, hparams, cparams, mctx_cur);
  1196. return (llm_graph_input_attn_kv *) res->add_input(std::move(inp));
  1197. }
  1198. ggml_tensor * llm_graph_context::build_attn(
  1199. llm_graph_input_attn_kv * inp,
  1200. ggml_tensor * wo,
  1201. ggml_tensor * wo_b,
  1202. ggml_tensor * q_cur,
  1203. ggml_tensor * k_cur,
  1204. ggml_tensor * v_cur,
  1205. ggml_tensor * kq_b,
  1206. ggml_tensor * sinks,
  1207. ggml_tensor * v_mla,
  1208. float kq_scale,
  1209. int il) const {
  1210. // these nodes are added to the graph together so that they are not reordered
  1211. // by doing so, the number of splits in the graph is reduced
  1212. ggml_build_forward_expand(gf, q_cur);
  1213. ggml_build_forward_expand(gf, k_cur);
  1214. ggml_build_forward_expand(gf, v_cur);
  1215. const auto * mctx_cur = inp->mctx;
  1216. // store to KV cache
  1217. {
  1218. const auto & k_idxs = inp->get_k_idxs();
  1219. const auto & v_idxs = inp->get_v_idxs();
  1220. ggml_build_forward_expand(gf, mctx_cur->cpy_k(ctx0, k_cur, k_idxs, il));
  1221. ggml_build_forward_expand(gf, mctx_cur->cpy_v(ctx0, v_cur, v_idxs, il));
  1222. }
  1223. const auto & kq_mask = inp->get_kq_mask();
  1224. ggml_tensor * q = q_cur;
  1225. ggml_tensor * k = mctx_cur->get_k(ctx0, il);
  1226. ggml_tensor * v = mctx_cur->get_v(ctx0, il);
  1227. ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, sinks, v_mla, kq_scale, il);
  1228. cb(cur, "kqv_out", il);
  1229. if (wo) {
  1230. cur = build_lora_mm(wo, cur);
  1231. if (arch == LLM_ARCH_GLM4 || arch == LLM_ARCH_GLM4_MOE) {
  1232. // GLM4 and GLM4_MOE seem to have numerical issues with half-precision accumulators
  1233. ggml_mul_mat_set_prec(cur, GGML_PREC_F32);
  1234. }
  1235. }
  1236. if (wo_b) {
  1237. cur = ggml_add(ctx0, cur, wo_b);
  1238. }
  1239. return cur;
  1240. }
  1241. ggml_tensor * llm_graph_context::build_attn(
  1242. llm_graph_input_attn_kv_iswa * inp,
  1243. ggml_tensor * wo,
  1244. ggml_tensor * wo_b,
  1245. ggml_tensor * q_cur,
  1246. ggml_tensor * k_cur,
  1247. ggml_tensor * v_cur,
  1248. ggml_tensor * kq_b,
  1249. ggml_tensor * sinks,
  1250. ggml_tensor * v_mla,
  1251. float kq_scale,
  1252. int il) const {
  1253. // these nodes are added to the graph together so that they are not reordered
  1254. // by doing so, the number of splits in the graph is reduced
  1255. ggml_build_forward_expand(gf, q_cur);
  1256. if (k_cur) {
  1257. ggml_build_forward_expand(gf, k_cur);
  1258. }
  1259. if (v_cur) {
  1260. ggml_build_forward_expand(gf, v_cur);
  1261. }
  1262. const auto * mctx_iswa = inp->mctx;
  1263. const bool is_swa = hparams.is_swa(il);
  1264. const auto * mctx_cur = is_swa ? mctx_iswa->get_swa() : mctx_iswa->get_base();
  1265. // optionally store to KV cache
  1266. if (k_cur) {
  1267. const auto & k_idxs = is_swa ? inp->get_k_idxs_swa() : inp->get_k_idxs();
  1268. ggml_build_forward_expand(gf, mctx_cur->cpy_k(ctx0, k_cur, k_idxs, il));
  1269. }
  1270. if (v_cur) {
  1271. const auto & v_idxs = is_swa ? inp->get_v_idxs_swa() : inp->get_v_idxs();
  1272. ggml_build_forward_expand(gf, mctx_cur->cpy_v(ctx0, v_cur, v_idxs, il));
  1273. }
  1274. const auto & kq_mask = is_swa ? inp->get_kq_mask_swa() : inp->get_kq_mask();
  1275. ggml_tensor * q = q_cur;
  1276. ggml_tensor * k = mctx_cur->get_k(ctx0, il);
  1277. ggml_tensor * v = mctx_cur->get_v(ctx0, il);
  1278. ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, sinks, v_mla, kq_scale, il);
  1279. cb(cur, "kqv_out", il);
  1280. if (wo) {
  1281. cur = build_lora_mm(wo, cur);
  1282. }
  1283. if (wo_b) {
  1284. //cb(cur, "kqv_wo", il);
  1285. }
  1286. if (wo_b) {
  1287. cur = ggml_add(ctx0, cur, wo_b);
  1288. }
  1289. return cur;
  1290. }
  1291. llm_graph_input_attn_cross * llm_graph_context::build_attn_inp_cross() const {
  1292. auto inp = std::make_unique<llm_graph_input_attn_cross>(cross);
  1293. const int32_t n_enc = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train;
  1294. inp->cross_kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_enc, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), 1, 1);
  1295. ggml_set_input(inp->cross_kq_mask);
  1296. inp->cross_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->cross_kq_mask, GGML_TYPE_F16) : inp->cross_kq_mask;
  1297. return (llm_graph_input_attn_cross *) res->add_input(std::move(inp));
  1298. }
  1299. ggml_tensor * llm_graph_context::build_attn(
  1300. llm_graph_input_attn_cross * inp,
  1301. ggml_tensor * wo,
  1302. ggml_tensor * wo_b,
  1303. ggml_tensor * q_cur,
  1304. ggml_tensor * k_cur,
  1305. ggml_tensor * v_cur,
  1306. ggml_tensor * kq_b,
  1307. ggml_tensor * sinks,
  1308. ggml_tensor * v_mla,
  1309. float kq_scale,
  1310. int il) const {
  1311. // these nodes are added to the graph together so that they are not reordered
  1312. // by doing so, the number of splits in the graph is reduced
  1313. ggml_build_forward_expand(gf, q_cur);
  1314. ggml_build_forward_expand(gf, k_cur);
  1315. ggml_build_forward_expand(gf, v_cur);
  1316. const auto & kq_mask = inp->get_kq_mask_cross();
  1317. ggml_tensor * q = q_cur;
  1318. ggml_tensor * k = k_cur;
  1319. ggml_tensor * v = v_cur;
  1320. ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, sinks, v_mla, kq_scale, il);
  1321. cb(cur, "kqv_out", il);
  1322. if (wo) {
  1323. cur = build_lora_mm(wo, cur);
  1324. }
  1325. if (wo_b) {
  1326. //cb(cur, "kqv_wo", il);
  1327. }
  1328. if (wo_b) {
  1329. cur = ggml_add(ctx0, cur, wo_b);
  1330. }
  1331. return cur;
  1332. }
  1333. // TODO: maybe separate the inner implementation into a separate function
  1334. // like with the non-sliding window equivalent
  1335. // once sliding-window hybrid caches are a thing.
  1336. llm_graph_input_attn_kv_iswa * llm_graph_context::build_attn_inp_kv_iswa() const {
  1337. const auto * mctx_cur = static_cast<const llama_kv_cache_iswa_context *>(mctx);
  1338. auto inp = std::make_unique<llm_graph_input_attn_kv_iswa>(hparams, cparams, mctx_cur);
  1339. const auto n_stream = cparams.kv_unified ? 1 : ubatch.n_seqs_unq;
  1340. {
  1341. const auto n_kv = mctx_cur->get_base()->get_n_kv();
  1342. inp->self_k_idxs = mctx_cur->get_base()->build_input_k_idxs(ctx0, ubatch);
  1343. inp->self_v_idxs = mctx_cur->get_base()->build_input_v_idxs(ctx0, ubatch);
  1344. inp->self_kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens/n_stream, GGML_KQ_MASK_PAD), 1, n_stream);
  1345. ggml_set_input(inp->self_kq_mask);
  1346. inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask;
  1347. }
  1348. {
  1349. GGML_ASSERT(hparams.swa_type != LLAMA_SWA_TYPE_NONE && "Use llama_kv_cache for non-SWA");
  1350. const auto n_kv = mctx_cur->get_swa()->get_n_kv();
  1351. inp->self_k_idxs_swa = mctx_cur->get_swa()->build_input_k_idxs(ctx0, ubatch);
  1352. inp->self_v_idxs_swa = mctx_cur->get_swa()->build_input_v_idxs(ctx0, ubatch);
  1353. inp->self_kq_mask_swa = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens/n_stream, GGML_KQ_MASK_PAD), 1, n_stream);
  1354. ggml_set_input(inp->self_kq_mask_swa);
  1355. inp->self_kq_mask_swa_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask_swa, GGML_TYPE_F16) : inp->self_kq_mask_swa;
  1356. }
  1357. return (llm_graph_input_attn_kv_iswa *) res->add_input(std::move(inp));
  1358. }
  1359. ggml_tensor * llm_graph_context::build_rs(
  1360. ggml_tensor * s,
  1361. ggml_tensor * state_copy_main,
  1362. ggml_tensor * state_copy_extra,
  1363. int32_t state_size,
  1364. int32_t n_seqs,
  1365. uint32_t n_rs,
  1366. uint32_t rs_head,
  1367. uint32_t rs_size,
  1368. int32_t rs_zero,
  1369. const llm_graph_get_rows_fn & get_state_rows) const {
  1370. ggml_tensor * states = ggml_reshape_2d(ctx0, s, state_size, rs_size);
  1371. // Clear a single state which will then be copied to the other cleared states.
  1372. // Note that this is a no-op when the view is zero-sized.
  1373. ggml_tensor * state_zero = ggml_view_1d(ctx0, states, state_size*(rs_zero >= 0), rs_zero*states->nb[1]*(rs_zero >= 0));
  1374. ggml_build_forward_expand(gf, ggml_scale_inplace(ctx0, state_zero, 0));
  1375. // copy states
  1376. // NOTE: assuming the copy destinations are ALL contained between rs_head and rs_head + n_rs
  1377. // {state_size, rs_size} -> {state_size, n_seqs}
  1378. ggml_tensor * output_states = get_state_rows(ctx0, states, state_copy_main);
  1379. ggml_build_forward_expand(gf, output_states);
  1380. // copy extra states which won't be changed further (between n_seqs and n_rs)
  1381. ggml_tensor * states_extra = ggml_get_rows(ctx0, states, state_copy_extra);
  1382. ggml_build_forward_expand(gf,
  1383. ggml_cpy(ctx0,
  1384. states_extra,
  1385. ggml_view_1d(ctx0, s, state_size*(n_rs - n_seqs), (rs_head + n_seqs)*state_size*ggml_element_size(s))));
  1386. return output_states;
  1387. }
  1388. static std::unique_ptr<llm_graph_input_rs> build_rs_inp_impl(
  1389. ggml_context * ctx0,
  1390. const llama_ubatch & ubatch,
  1391. const llama_memory_recurrent_context * mctx_cur) {
  1392. auto inp = std::make_unique<llm_graph_input_rs>(mctx_cur);
  1393. const int64_t n_rs = mctx_cur->get_n_rs();
  1394. const int64_t n_seqs = ubatch.n_seqs;
  1395. inp->s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_rs);
  1396. ggml_set_input(inp->s_copy);
  1397. inp->s_copy_main = ggml_view_1d(ctx0, inp->s_copy, n_seqs, 0);
  1398. inp->s_copy_extra = ggml_view_1d(ctx0, inp->s_copy, n_rs - n_seqs, n_seqs * inp->s_copy->nb[0]);
  1399. return inp;
  1400. }
  1401. llm_graph_input_rs * llm_graph_context::build_rs_inp() const {
  1402. const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
  1403. auto inp = build_rs_inp_impl(ctx0, ubatch, mctx_cur);
  1404. return (llm_graph_input_rs *) res->add_input(std::move(inp));
  1405. }
  1406. ggml_tensor * llm_graph_context::build_rs(
  1407. llm_graph_input_rs * inp,
  1408. ggml_tensor * s,
  1409. int32_t state_size,
  1410. int32_t n_seqs,
  1411. const llm_graph_get_rows_fn & get_state_rows) const {
  1412. const auto * kv_state = inp->mctx;
  1413. return build_rs(s, inp->s_copy_main, inp->s_copy_extra, state_size, n_seqs,
  1414. kv_state->get_n_rs(), kv_state->get_head(), kv_state->get_size(), kv_state->get_rs_z(),
  1415. get_state_rows);
  1416. }
  1417. ggml_tensor * llm_graph_context::build_rwkv_token_shift_load(
  1418. llm_graph_input_rs * inp,
  1419. const llama_ubatch & ubatch,
  1420. int il) const {
  1421. const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
  1422. const auto token_shift_count = hparams.token_shift_count;
  1423. const int64_t n_seqs = ubatch.n_seqs;
  1424. ggml_tensor * token_shift_all = mctx_cur->get_r_l(il);
  1425. ggml_tensor * token_shift = build_rs(
  1426. inp, token_shift_all,
  1427. hparams.n_embd_r(), n_seqs);
  1428. token_shift = ggml_reshape_3d(ctx0, token_shift, hparams.n_embd, token_shift_count, n_seqs);
  1429. return token_shift;
  1430. }
  1431. ggml_tensor * llm_graph_context::build_rwkv_token_shift_store(
  1432. ggml_tensor * token_shift,
  1433. const llama_ubatch & ubatch,
  1434. int il) const {
  1435. const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
  1436. const auto token_shift_count = hparams.token_shift_count;
  1437. const auto n_embd = hparams.n_embd;
  1438. const int64_t n_seqs = ubatch.n_seqs;
  1439. const auto kv_head = mctx_cur->get_head();
  1440. return ggml_cpy(
  1441. ctx0,
  1442. ggml_view_1d(ctx0, token_shift, n_embd * n_seqs * token_shift_count, 0),
  1443. ggml_view_1d(ctx0, mctx_cur->get_r_l(il), hparams.n_embd_r()*n_seqs, hparams.n_embd_r()*kv_head*ggml_element_size(mctx_cur->get_r_l(il)))
  1444. );
  1445. }
  1446. llm_graph_input_mem_hybrid * llm_graph_context::build_inp_mem_hybrid() const {
  1447. const auto * mctx_cur = static_cast<const llama_memory_hybrid_context *>(mctx);
  1448. auto inp_rs = build_rs_inp_impl(ctx0, ubatch, mctx_cur->get_recr());
  1449. auto inp_attn = build_attn_inp_kv_impl(ctx0, ubatch, hparams, cparams, mctx_cur->get_attn());
  1450. auto inp = std::make_unique<llm_graph_input_mem_hybrid>(std::move(inp_attn), std::move(inp_rs), mctx_cur);
  1451. return (llm_graph_input_mem_hybrid *) res->add_input(std::move(inp));
  1452. }
  1453. void llm_graph_context::build_pooling(
  1454. ggml_tensor * cls,
  1455. ggml_tensor * cls_b,
  1456. ggml_tensor * cls_out,
  1457. ggml_tensor * cls_out_b) const {
  1458. if (!cparams.embeddings) {
  1459. return;
  1460. }
  1461. ggml_tensor * inp = res->t_embd;
  1462. //// find result_norm tensor for input
  1463. //for (int i = ggml_graph_n_nodes(gf) - 1; i >= 0; --i) {
  1464. // inp = ggml_graph_node(gf, i);
  1465. // if (strcmp(inp->name, "result_norm") == 0 || strcmp(inp->name, "result_embd") == 0) {
  1466. // break;
  1467. // }
  1468. // inp = nullptr;
  1469. //}
  1470. GGML_ASSERT(inp != nullptr && "missing result_norm/result_embd tensor");
  1471. ggml_tensor * cur;
  1472. switch (pooling_type) {
  1473. case LLAMA_POOLING_TYPE_NONE:
  1474. {
  1475. cur = inp;
  1476. } break;
  1477. case LLAMA_POOLING_TYPE_MEAN:
  1478. {
  1479. ggml_tensor * inp_mean = build_inp_mean();
  1480. cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, inp)), inp_mean);
  1481. } break;
  1482. case LLAMA_POOLING_TYPE_CLS:
  1483. case LLAMA_POOLING_TYPE_LAST:
  1484. {
  1485. ggml_tensor * inp_cls = build_inp_cls();
  1486. cur = ggml_get_rows(ctx0, inp, inp_cls);
  1487. } break;
  1488. case LLAMA_POOLING_TYPE_RANK:
  1489. {
  1490. ggml_tensor * inp_cls = build_inp_cls();
  1491. cur = ggml_get_rows(ctx0, inp, inp_cls);
  1492. // classification head
  1493. // https://github.com/huggingface/transformers/blob/5af7d41e49bbfc8319f462eb45253dcb3863dfb7/src/transformers/models/roberta/modeling_roberta.py#L1566
  1494. if (cls) {
  1495. cur = ggml_mul_mat(ctx0, cls, cur);
  1496. if (cls_b) {
  1497. cur = ggml_add(ctx0, cur, cls_b);
  1498. }
  1499. cur = ggml_tanh(ctx0, cur);
  1500. }
  1501. // some models don't have `cls_out`, for example: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  1502. // https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/blob/cb5347e43979c3084a890e3f99491952603ae1b7/modeling_bert.py#L884-L896
  1503. // Single layer classification head (direct projection)
  1504. // https://github.com/huggingface/transformers/blob/f4fc42216cd56ab6b68270bf80d811614d8d59e4/src/transformers/models/bert/modeling_bert.py#L1476
  1505. if (cls_out) {
  1506. cur = ggml_mul_mat(ctx0, cls_out, cur);
  1507. if (cls_out_b) {
  1508. cur = ggml_add(ctx0, cur, cls_out_b);
  1509. }
  1510. }
  1511. // softmax for qwen3 reranker
  1512. if (arch == LLM_ARCH_QWEN3) {
  1513. cur = ggml_soft_max(ctx0, cur);
  1514. }
  1515. } break;
  1516. default:
  1517. {
  1518. GGML_ABORT("unknown pooling type");
  1519. }
  1520. }
  1521. cb(cur, "result_embd_pooled", -1);
  1522. res->t_embd_pooled = cur;
  1523. ggml_build_forward_expand(gf, cur);
  1524. }
  1525. int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buckets, bool bidirectional) {
  1526. // TODO move to hparams if a T5 variant appears that uses a different value
  1527. const int64_t max_distance = 128;
  1528. if (bidirectional) {
  1529. n_buckets >>= 1;
  1530. }
  1531. const int64_t max_exact = n_buckets >> 1;
  1532. int32_t relative_position = x - y;
  1533. int32_t relative_bucket = 0;
  1534. if (bidirectional) {
  1535. relative_bucket += (relative_position > 0) * n_buckets;
  1536. relative_position = abs(relative_position);
  1537. } else {
  1538. relative_position = -std::min<int32_t>(relative_position, 0);
  1539. }
  1540. int32_t relative_position_if_large = floorf(max_exact + logf(1.0 * relative_position / max_exact) * (n_buckets - max_exact) / log(1.0 * max_distance / max_exact));
  1541. relative_position_if_large = std::min<int32_t>(relative_position_if_large, n_buckets - 1);
  1542. relative_bucket += (relative_position < max_exact ? relative_position : relative_position_if_large);
  1543. return relative_bucket;
  1544. }