| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965 |
- #include "llama-graph.h"
- #include "llama-impl.h"
- #include "llama-batch.h"
- #include "llama-cparams.h"
- #include "llama-kv-cache.h"
- #include "llama-kv-cache-iswa.h"
- #include "llama-memory-hybrid.h"
- #include "llama-memory-recurrent.h"
- #include <cassert>
- #include <cmath>
- #include <cstring>
- void llm_graph_input_embd::set_input(const llama_ubatch * ubatch) {
- if (ubatch->token) {
- const int64_t n_tokens = ubatch->n_tokens;
- ggml_backend_tensor_set(tokens, ubatch->token, 0, n_tokens*ggml_element_size(tokens));
- }
- if (ubatch->embd) {
- const int64_t n_embd = embd->ne[0];
- const int64_t n_tokens = ubatch->n_tokens;
- ggml_backend_tensor_set(embd, ubatch->embd, 0, n_tokens*n_embd*ggml_element_size(embd));
- }
- }
- bool llm_graph_input_embd::can_reuse(const llm_graph_params & params) {
- bool res = true;
- res &= (!tokens && !params.ubatch.token) || (tokens && tokens->ne[0] == params.ubatch.n_tokens);
- res &= (!embd && !params.ubatch.embd) || (embd && embd->ne[0] == params.ubatch.n_tokens);
- return res;
- }
- void llm_graph_input_pos::set_input(const llama_ubatch * ubatch) {
- if (ubatch->pos && pos) {
- const int64_t n_tokens = ubatch->n_tokens;
- if (ubatch->token && n_pos_per_embd == 4) {
- // in case we're using M-RoPE with text tokens, convert the 1D positions to 4D
- // the 3 first dims are the same, and 4th dim is all 0
- std::vector<llama_pos> pos_data(n_tokens*n_pos_per_embd);
- // copy the first dimension
- for (int i = 0; i < n_tokens; ++i) {
- pos_data[ i] = ubatch->pos[i];
- pos_data[ n_tokens + i] = ubatch->pos[i];
- pos_data[2 * n_tokens + i] = ubatch->pos[i];
- pos_data[3 * n_tokens + i] = 0; // 4th dim is 0
- }
- ggml_backend_tensor_set(pos, pos_data.data(), 0, pos_data.size()*ggml_element_size(pos));
- } else {
- ggml_backend_tensor_set(pos, ubatch->pos, 0, n_tokens*n_pos_per_embd*ggml_element_size(pos));
- }
- }
- }
- bool llm_graph_input_pos::can_reuse(const llm_graph_params & params) {
- bool res = true;
- res &= pos->ne[0] == params.ubatch.n_tokens;
- return res;
- }
- void llm_graph_input_attn_temp::set_input(const llama_ubatch * ubatch) {
- if (ubatch->pos && attn_scale) {
- const int64_t n_tokens = ubatch->n_tokens;
- std::vector<float> attn_scale_data(n_tokens, 0.0f);
- for (int i = 0; i < n_tokens; ++i) {
- const float pos = ubatch->pos[i];
- attn_scale_data[i] = std::log(
- std::floor((pos + 1.0f) / n_attn_temp_floor_scale) + 1.0
- ) * f_attn_temp_scale + 1.0;
- }
- ggml_backend_tensor_set(attn_scale, attn_scale_data.data(), 0, n_tokens*ggml_element_size(attn_scale));
- }
- }
- void llm_graph_input_pos_bucket::set_input(const llama_ubatch * ubatch) {
- if (pos_bucket) {
- const int64_t n_tokens = ubatch->n_tokens;
- GGML_ASSERT(ggml_backend_buffer_is_host(pos_bucket->buffer));
- GGML_ASSERT(!ubatch->equal_seqs()); // TODO: use ubatch->n_seqs instead of failing
- int32_t * data = (int32_t *) pos_bucket->data;
- for (int h = 0; h < 1; ++h) {
- for (int j = 0; j < n_tokens; ++j) {
- for (int i = 0; i < n_tokens; ++i) {
- data[h*(n_tokens*n_tokens) + j*n_tokens + i] = llama_relative_position_bucket(ubatch->pos[i], ubatch->pos[j], hparams.n_rel_attn_bkts, true);
- }
- }
- }
- }
- }
- void llm_graph_input_pos_bucket_kv::set_input(const llama_ubatch * ubatch) {
- if (pos_bucket) {
- mctx->set_input_pos_bucket(pos_bucket, ubatch);
- }
- }
- void llm_graph_input_out_ids::set_input(const llama_ubatch * ubatch) {
- GGML_ASSERT(out_ids);
- const int64_t n_tokens = ubatch->n_tokens;
- GGML_ASSERT(ggml_backend_buffer_is_host(out_ids->buffer));
- int32_t * data = (int32_t *) out_ids->data;
- if (n_outputs == n_tokens) {
- for (int i = 0; i < n_tokens; ++i) {
- data[i] = i;
- }
- return;
- }
- GGML_ASSERT(ubatch->output);
- int n_outputs = 0;
- for (int i = 0; i < n_tokens; ++i) {
- if (ubatch->output[i]) {
- data[n_outputs++] = i;
- }
- }
- }
- bool llm_graph_input_out_ids::can_reuse(const llm_graph_params & params) {
- bool res = true;
- res &= n_outputs == params.n_outputs;
- return res;
- }
- void llm_graph_input_mean::set_input(const llama_ubatch * ubatch) {
- if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
- const int64_t n_tokens = ubatch->n_tokens;
- const int64_t n_seq_tokens = ubatch->n_seq_tokens;
- const int64_t n_seqs_unq = ubatch->n_seqs_unq;
- GGML_ASSERT(mean);
- GGML_ASSERT(ggml_backend_buffer_is_host(mean->buffer));
- float * data = (float *) mean->data;
- memset(mean->data, 0, n_tokens*n_seqs_unq*ggml_element_size(mean));
- std::vector<uint64_t> sums(n_seqs_unq, 0);
- for (int i = 0; i < n_tokens; i += n_seq_tokens) {
- for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
- const llama_seq_id seq_id = ubatch->seq_id[i][s];
- const int32_t seq_idx = ubatch->seq_idx[seq_id];
- sums[seq_idx] += ubatch->n_seq_tokens;
- }
- }
- std::vector<float> div(n_seqs_unq, 0.0f);
- for (int s = 0; s < n_seqs_unq; ++s) {
- const uint64_t sum = sums[s];
- if (sum > 0) {
- div[s] = 1.0f/float(sum);
- }
- }
- for (int i = 0; i < n_tokens; i += n_seq_tokens) {
- for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
- const llama_seq_id seq_id = ubatch->seq_id[i][s];
- const int32_t seq_idx = ubatch->seq_idx[seq_id];
- for (int j = 0; j < n_seq_tokens; ++j) {
- data[seq_idx*n_tokens + i + j] = div[seq_idx];
- }
- }
- }
- }
- }
- void llm_graph_input_cls::set_input(const llama_ubatch * ubatch) {
- const int64_t n_tokens = ubatch->n_tokens;
- const int64_t n_seqs_unq = ubatch->n_seqs_unq;
- if (cparams.embeddings && (
- cparams.pooling_type == LLAMA_POOLING_TYPE_CLS ||
- cparams.pooling_type == LLAMA_POOLING_TYPE_RANK ||
- cparams.pooling_type == LLAMA_POOLING_TYPE_LAST
- )) {
- GGML_ASSERT(cls);
- GGML_ASSERT(ggml_backend_buffer_is_host(cls->buffer));
- uint32_t * data = (uint32_t *) cls->data;
- memset(cls->data, 0, n_seqs_unq*ggml_element_size(cls));
- std::vector<int> target_pos(n_seqs_unq, -1);
- std::vector<int> target_row(n_seqs_unq, -1);
- const bool last = (
- cparams.pooling_type == LLAMA_POOLING_TYPE_LAST ||
- (cparams.pooling_type == LLAMA_POOLING_TYPE_RANK && arch == LLM_ARCH_QWEN3) // qwen3 reranking & embedding models use last token
- );
- for (int i = 0; i < n_tokens; ++i) {
- const llama_pos pos = ubatch->pos[i];
- for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
- const llama_seq_id seq_id = ubatch->seq_id[i][s];
- const int32_t seq_idx = ubatch->seq_idx[seq_id];
- if (
- (target_pos[seq_idx] == -1) ||
- ( last && pos >= target_pos[seq_idx]) ||
- (!last && pos < target_pos[seq_idx])
- ) {
- target_pos[seq_idx] = pos;
- target_row[seq_idx] = i;
- }
- }
- }
- for (int s = 0; s < n_seqs_unq; ++s) {
- if (target_row[s] >= 0) {
- data[s] = target_row[s];
- }
- }
- }
- }
- void llm_graph_input_rs::set_input(const llama_ubatch * ubatch) {
- GGML_UNUSED(ubatch);
- const int64_t n_rs = mctx->get_n_rs();
- if (s_copy) {
- GGML_ASSERT(ggml_backend_buffer_is_host(s_copy->buffer));
- int32_t * data = (int32_t *) s_copy->data;
- // assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n
- for (uint32_t i = 0; i < n_rs; ++i) {
- data[i] = mctx->s_copy(i);
- }
- }
- }
- void llm_graph_input_cross_embd::set_input(const llama_ubatch * ubatch) {
- GGML_UNUSED(ubatch);
- if (cross_embd && !cross->v_embd.empty()) {
- assert(cross_embd->type == GGML_TYPE_F32);
- ggml_backend_tensor_set(cross_embd, cross->v_embd.data(), 0, ggml_nbytes(cross_embd));
- }
- }
- static void print_mask(float * data, int64_t n_tokens, int64_t n_kv, int64_t n_swa, llama_swa_type swa_type) {
- LLAMA_LOG_DEBUG("%s: === Attention mask ===\n", __func__);
- const char * swa_type_str = (swa_type == LLAMA_SWA_TYPE_NONE) ? "LLAMA_SWA_TYPE_NONE" :
- (swa_type == LLAMA_SWA_TYPE_STANDARD) ? "LLAMA_SWA_TYPE_STANDARD" :
- (swa_type == LLAMA_SWA_TYPE_CHUNKED) ? "LLAMA_SWA_TYPE_CHUNKED" :
- (swa_type == LLAMA_SWA_TYPE_SYMMETRIC) ? "LLAMA_SWA_TYPE_SYMMETRIC" : "unknown";
- LLAMA_LOG_DEBUG("%s: n_swa : %d, n_kv: %d, swq_type: %s\n", __func__, (int)n_swa, (int)n_kv, swa_type_str);
- LLAMA_LOG_DEBUG("%s: '0' = can attend, '∞' = masked\n", __func__);
- LLAMA_LOG_DEBUG("%s: Rows = query tokens, Columns = key/value tokens\n\n", __func__);
- LLAMA_LOG_DEBUG(" ");
- for (int j = 0; j < std::min((int64_t)20, n_kv); ++j) {
- LLAMA_LOG_DEBUG("%2d", j);
- }
- LLAMA_LOG_DEBUG("\n");
- for (int i = 0; i < std::min((int64_t)20, n_tokens); ++i) {
- LLAMA_LOG_DEBUG(" %2d ", i);
- for (int j = 0; j < std::min((int64_t)20, n_kv); ++j) {
- float val = data[i * n_kv + j];
- if (val == -INFINITY) {
- LLAMA_LOG_DEBUG(" ∞");
- } else {
- LLAMA_LOG_DEBUG(" 0");
- }
- }
- LLAMA_LOG_DEBUG("\n");
- }
- }
- void llm_graph_input_attn_no_cache::set_input(const llama_ubatch * ubatch) {
- const int64_t n_kv = ubatch->n_tokens;
- const int64_t n_tokens = ubatch->n_tokens;
- GGML_ASSERT(kq_mask);
- GGML_ASSERT(ggml_backend_buffer_is_host(kq_mask->buffer));
- float * data = (float *) kq_mask->data;
- // [TAG_NO_CACHE_ISWA]
- GGML_ASSERT(hparams.swa_type == LLAMA_SWA_TYPE_NONE && "TODO: implement");
- for (int h = 0; h < 1; ++h) {
- for (int i1 = 0; i1 < n_tokens; ++i1) {
- const llama_seq_id s1 = ubatch->seq_id[i1][0];
- for (int i0 = 0; i0 < n_tokens; ++i0) {
- float f = -INFINITY;
- for (int s = 0; s < ubatch->n_seq_id[i0]; ++s) {
- const llama_seq_id s0 = ubatch->seq_id[i0][0];
- if (s0 != s1) {
- continue; // skip different sequences
- }
- if (cparams.causal_attn && ubatch->pos[i0] > ubatch->pos[i1]) {
- continue; // skip future tokens for causal attention
- }
- // TODO: this does not take into account that some layers are SWA and others are note (i.e. iSWA) [TAG_NO_CACHE_ISWA]
- //if (hparams.is_masked_swa(ubatch->pos[i0], ubatch->pos[i1])) {
- // continue; // skip masked tokens for SWA
- //}
- // TODO: reimplement this like in llama_kv_cache_unified
- if (hparams.use_alibi) {
- f = -std::abs(ubatch->pos[i0] - ubatch->pos[i1]);
- } else {
- f = 0.0f;
- }
- }
- data[h*(n_kv*n_tokens) + i1*n_kv + i0] = f;
- }
- }
- }
- if (debug) {
- print_mask(data, n_tokens, n_kv, hparams.n_swa, hparams.swa_type);
- }
- }
- void llm_graph_input_attn_kv::set_input(const llama_ubatch * ubatch) {
- mctx->set_input_k_idxs(self_k_idxs, ubatch);
- mctx->set_input_v_idxs(self_v_idxs, ubatch);
- mctx->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn);
- }
- bool llm_graph_input_attn_kv::can_reuse(const llm_graph_params & params) {
- const auto * mctx = static_cast<const llama_kv_cache_context *>(params.mctx);
- this->mctx = mctx;
- bool res = true;
- res &= self_k_idxs->ne[0] == params.ubatch.n_tokens;
- //res &= self_v_idxs->ne[0] == params.ubatch.n_tokens; // TODO: need to move this to the unified cache and check there
- res &= self_kq_mask->ne[0] == mctx->get_n_kv();
- res &= self_kq_mask->ne[1] == GGML_PAD(params.ubatch.n_tokens, GGML_KQ_MASK_PAD);
- return res;
- }
- void llm_graph_input_attn_kv_iswa::set_input(const llama_ubatch * ubatch) {
- mctx->get_base()->set_input_k_idxs(self_k_idxs, ubatch);
- mctx->get_base()->set_input_v_idxs(self_v_idxs, ubatch);
- mctx->get_base()->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn);
- mctx->get_swa()->set_input_k_idxs(self_k_idxs_swa, ubatch);
- mctx->get_swa()->set_input_v_idxs(self_v_idxs_swa, ubatch);
- mctx->get_swa()->set_input_kq_mask(self_kq_mask_swa, ubatch, cparams.causal_attn);
- }
- bool llm_graph_input_attn_kv_iswa::can_reuse(const llm_graph_params & params) {
- const auto * mctx = static_cast<const llama_kv_cache_iswa_context *>(params.mctx);
- this->mctx = mctx;
- bool res = true;
- res &= self_k_idxs->ne[0] == params.ubatch.n_tokens;
- //res &= self_v_idxs->ne[0] == params.ubatch.n_tokens; // TODO: need to move this to the unified cache and check there
- res &= self_k_idxs_swa->ne[0] == params.ubatch.n_tokens;
- //res &= self_v_idxs_swa->ne[0] == params.ubatch.n_tokens; // TODO: need to move this to the unified cache and check there
- res &= self_kq_mask->ne[0] == mctx->get_base()->get_n_kv();
- res &= self_kq_mask->ne[1] == GGML_PAD(params.ubatch.n_tokens, GGML_KQ_MASK_PAD);
- res &= self_kq_mask_swa->ne[0] == mctx->get_swa()->get_n_kv();
- res &= self_kq_mask_swa->ne[1] == GGML_PAD(params.ubatch.n_tokens, GGML_KQ_MASK_PAD);
- return res;
- }
- void llm_graph_input_attn_cross::set_input(const llama_ubatch * ubatch) {
- GGML_ASSERT(cross_kq_mask);
- const int64_t n_enc = cross_kq_mask->ne[0];
- const int64_t n_tokens = ubatch->n_tokens;
- GGML_ASSERT(ggml_backend_buffer_is_host(cross_kq_mask->buffer));
- GGML_ASSERT(!ubatch->equal_seqs()); // TODO: use ubatch->n_seqs instead of failing
- float * data = (float *) cross_kq_mask->data;
- for (int h = 0; h < 1; ++h) {
- for (int i = 0; i < n_tokens; ++i) {
- for (int j = 0; j < n_enc; ++j) {
- float f = -INFINITY;
- for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
- const llama_seq_id seq_id = ubatch->seq_id[i][s];
- if (cross->seq_ids_enc[j].find(seq_id) != cross->seq_ids_enc[j].end()) {
- f = 0.0f;
- }
- }
- data[h*(n_enc*n_tokens) + i*n_enc + j] = f;
- }
- }
- for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
- for (int j = 0; j < n_enc; ++j) {
- data[h*(n_enc*n_tokens) + i*n_enc + j] = -INFINITY;
- }
- }
- }
- }
- void llm_graph_input_mem_hybrid::set_input(const llama_ubatch * ubatch) {
- inp_attn->set_input(ubatch);
- inp_rs->set_input(ubatch);
- }
- //
- // llm_graph_result
- //
- llm_graph_result::llm_graph_result(int64_t max_nodes) : max_nodes(max_nodes) {
- reset();
- const char * LLAMA_GRAPH_RESULT_DEBUG = getenv("LLAMA_GRAPH_RESULT_DEBUG");
- debug = LLAMA_GRAPH_RESULT_DEBUG ? atoi(LLAMA_GRAPH_RESULT_DEBUG) : 0;
- }
- int64_t llm_graph_result::get_max_nodes() const {
- return max_nodes;
- }
- void llm_graph_result::reset() {
- t_tokens = nullptr;
- t_logits = nullptr;
- t_embd = nullptr;
- t_embd_pooled = nullptr;
- params = {};
- inputs.clear();
- buf_compute_meta.resize(ggml_tensor_overhead()*max_nodes + ggml_graph_overhead_custom(max_nodes, false));
- ggml_init_params params = {
- /*.mem_size =*/ buf_compute_meta.size(),
- /*.mem_buffer =*/ buf_compute_meta.data(),
- /*.no_alloc =*/ true,
- };
- ctx_compute.reset(ggml_init(params));
- gf = ggml_new_graph_custom(ctx_compute.get(), max_nodes, false);
- }
- void llm_graph_result::set_inputs(const llama_ubatch * ubatch) {
- for (auto & input : inputs) {
- input->set_input(ubatch);
- }
- }
- bool llm_graph_result::can_reuse(const llm_graph_params & params) {
- if (!this->params.allow_reuse(params)) {
- if (debug > 1) {
- LLAMA_LOG_DEBUG("%s: cannot reuse graph due to incompatible graph parameters\n", __func__);
- }
- return false;
- }
- if (debug > 1) {
- LLAMA_LOG_DEBUG("%s: checking compatibility of %d inputs:\n", __func__, (int) inputs.size());
- }
- bool res = true;
- for (auto & input : inputs) {
- const bool cur = input->can_reuse(params);
- if (debug > 1) {
- LLAMA_LOG_DEBUG("%s: can_reuse = %d\n", "placeholder", cur);
- }
- res = res && cur;
- }
- if (debug > 0) {
- LLAMA_LOG_DEBUG("%s: can reuse graph = %d\n", __func__, res);
- }
- return res;
- }
- llm_graph_input_i * llm_graph_result::add_input(llm_graph_input_ptr input) {
- inputs.emplace_back(std::move(input));
- return inputs.back().get();
- }
- void llm_graph_result::set_params(const llm_graph_params & params) {
- this->params = params;
- }
- //
- // llm_graph_context
- //
- llm_graph_context::llm_graph_context(const llm_graph_params & params) :
- arch (params.arch),
- hparams (params.hparams),
- cparams (params.cparams),
- ubatch (params.ubatch),
- n_embd (hparams.n_embd),
- n_layer (hparams.n_layer),
- n_rot (hparams.n_rot),
- n_ctx (cparams.n_ctx),
- n_head (hparams.n_head()),
- n_head_kv (hparams.n_head_kv()),
- n_embd_head_k (hparams.n_embd_head_k),
- n_embd_k_gqa (hparams.n_embd_k_gqa()),
- n_embd_head_v (hparams.n_embd_head_v),
- n_embd_v_gqa (hparams.n_embd_v_gqa()),
- n_expert (hparams.n_expert),
- n_expert_used (cparams.warmup ? hparams.n_expert : hparams.n_expert_used),
- freq_base (cparams.rope_freq_base),
- freq_scale (cparams.rope_freq_scale),
- ext_factor (cparams.yarn_ext_factor),
- attn_factor (cparams.yarn_attn_factor),
- beta_fast (cparams.yarn_beta_fast),
- beta_slow (cparams.yarn_beta_slow),
- norm_eps (hparams.f_norm_eps),
- norm_rms_eps (hparams.f_norm_rms_eps),
- n_tokens (ubatch.n_tokens),
- n_outputs (params.n_outputs),
- n_ctx_orig (cparams.n_ctx_orig_yarn),
- pooling_type (cparams.pooling_type),
- rope_type (hparams.rope_type),
- sched (params.sched),
- backend_cpu (params.backend_cpu),
- cvec (params.cvec),
- loras (params.loras),
- mctx (params.mctx),
- cross (params.cross),
- cb_func (params.cb),
- res (params.res),
- ctx0 (res->get_ctx()),
- gf (res->get_gf()) {
- res->set_params(params);
- }
- void llm_graph_context::cb(ggml_tensor * cur, const char * name, int il) const {
- if (cb_func) {
- cb_func(ubatch, cur, name, il);
- }
- }
- ggml_tensor * llm_graph_context::build_cvec(
- ggml_tensor * cur,
- int il) const {
- return cvec->apply_to(ctx0, cur, il);
- }
- ggml_tensor * llm_graph_context::build_lora_mm(
- ggml_tensor * w,
- ggml_tensor * cur) const {
- ggml_tensor * res = ggml_mul_mat(ctx0, w, cur);
- for (const auto & lora : *loras) {
- llama_adapter_lora_weight * lw = lora.first->get_weight(w);
- if (lw == nullptr) {
- continue;
- }
- const float adapter_scale = lora.second;
- const float scale = lw->get_scale(lora.first->alpha, adapter_scale);
- ggml_tensor * ab_cur = ggml_mul_mat(
- ctx0, lw->b,
- ggml_mul_mat(ctx0, lw->a, cur)
- );
- ab_cur = ggml_scale(ctx0, ab_cur, scale);
- res = ggml_add(ctx0, res, ab_cur);
- }
- return res;
- }
- ggml_tensor * llm_graph_context::build_lora_mm_id(
- ggml_tensor * w, // ggml_tensor * as
- ggml_tensor * cur, // ggml_tensor * b
- ggml_tensor * ids) const {
- ggml_tensor * res = ggml_mul_mat_id(ctx0, w, cur, ids);
- for (const auto & lora : *loras) {
- llama_adapter_lora_weight * lw = lora.first->get_weight(w);
- if (lw == nullptr) {
- continue;
- }
- const float alpha = lora.first->alpha;
- const float rank = (float) lw->b->ne[0];
- const float scale = alpha ? lora.second * alpha / rank : lora.second;
- ggml_tensor * ab_cur = ggml_mul_mat_id(
- ctx0, lw->b,
- ggml_mul_mat_id(ctx0, lw->a, cur, ids),
- ids
- );
- ab_cur = ggml_scale(ctx0, ab_cur, scale);
- res = ggml_add(ctx0, res, ab_cur);
- }
- return res;
- }
- ggml_tensor * llm_graph_context::build_norm(
- ggml_tensor * cur,
- ggml_tensor * mw,
- ggml_tensor * mb,
- llm_norm_type type,
- int il) const {
- switch (type) {
- case LLM_NORM: cur = ggml_norm (ctx0, cur, hparams.f_norm_eps); break;
- case LLM_NORM_RMS: cur = ggml_rms_norm(ctx0, cur, hparams.f_norm_rms_eps); break;
- case LLM_NORM_GROUP:
- {
- cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], 1, cur->ne[1]);
- cur = ggml_group_norm(ctx0, cur, hparams.n_norm_groups, hparams.f_norm_group_eps);
- cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[2]);
- } break;
- }
- if (mw || mb) {
- cb(cur, "norm", il);
- }
- if (mw) {
- cur = ggml_mul(ctx0, cur, mw);
- if (mb) {
- cb(cur, "norm_w", il);
- }
- }
- if (mb) {
- cur = ggml_add(ctx0, cur, mb);
- }
- return cur;
- }
- ggml_tensor * llm_graph_context::build_ffn(
- ggml_tensor * cur,
- ggml_tensor * up,
- ggml_tensor * up_b,
- ggml_tensor * up_s,
- ggml_tensor * gate,
- ggml_tensor * gate_b,
- ggml_tensor * gate_s,
- ggml_tensor * down,
- ggml_tensor * down_b,
- ggml_tensor * down_s,
- ggml_tensor * act_scales,
- llm_ffn_op_type type_op,
- llm_ffn_gate_type type_gate,
- int il) const {
- ggml_tensor * tmp = up ? build_lora_mm(up, cur) : cur;
- cb(tmp, "ffn_up", il);
- if (up_b) {
- tmp = ggml_add(ctx0, tmp, up_b);
- cb(tmp, "ffn_up_b", il);
- }
- if (up_s) {
- tmp = ggml_mul(ctx0, tmp, up_s);
- cb(tmp, "ffn_up_s", il);
- }
- if (gate) {
- switch (type_gate) {
- case LLM_FFN_SEQ:
- {
- cur = build_lora_mm(gate, tmp);
- cb(cur, "ffn_gate", il);
- } break;
- case LLM_FFN_PAR:
- {
- cur = build_lora_mm(gate, cur);
- cb(cur, "ffn_gate", il);
- } break;
- }
- if (gate_b) {
- cur = ggml_add(ctx0, cur, gate_b);
- cb(cur, "ffn_gate_b", il);
- }
- if (gate_s) {
- cur = ggml_mul(ctx0, cur, gate_s);
- cb(cur, "ffn_gate_s", il);
- }
- } else {
- cur = tmp;
- }
- switch (type_op) {
- case LLM_FFN_SILU:
- if (gate && type_gate == LLM_FFN_PAR) {
- cur = ggml_swiglu_split(ctx0, cur, tmp);
- cb(cur, "ffn_swiglu", il);
- type_gate = LLM_FFN_SEQ;
- } else {
- cur = ggml_silu(ctx0, cur);
- cb(cur, "ffn_silu", il);
- } break;
- case LLM_FFN_GELU:
- if (gate && type_gate == LLM_FFN_PAR) {
- cur = ggml_geglu_split(ctx0, cur, tmp);
- cb(cur, "ffn_geglu", il);
- type_gate = LLM_FFN_SEQ;
- } else {
- cur = ggml_gelu(ctx0, cur);
- cb(cur, "ffn_gelu", il);
- if (act_scales != NULL) {
- cur = ggml_div(ctx0, cur, act_scales);
- cb(cur, "ffn_act", il);
- }
- } break;
- case LLM_FFN_RELU:
- if (gate && type_gate == LLM_FFN_PAR) {
- cur = ggml_reglu_split(ctx0, cur, tmp);
- cb(cur, "ffn_reglu", il);
- type_gate = LLM_FFN_SEQ;
- } else {
- cur = ggml_relu(ctx0, cur);
- cb(cur, "ffn_relu", il);
- } break;
- case LLM_FFN_RELU_SQR:
- {
- cur = ggml_relu(ctx0, cur);
- cb(cur, "ffn_relu", il);
- cur = ggml_sqr(ctx0, cur);
- cb(cur, "ffn_sqr(relu)", il);
- } break;
- case LLM_FFN_SWIGLU:
- {
- cur = ggml_swiglu(ctx0, cur);
- cb(cur, "ffn_swiglu", il);
- } break;
- case LLM_FFN_GEGLU:
- {
- cur = ggml_geglu(ctx0, cur);
- cb(cur, "ffn_geglu", il);
- } break;
- case LLM_FFN_REGLU:
- {
- cur = ggml_reglu(ctx0, cur);
- cb(cur, "ffn_reglu", il);
- } break;
- default:
- GGML_ABORT("fatal error");
- }
- if (gate && type_gate == LLM_FFN_PAR) {
- cur = ggml_mul(ctx0, cur, tmp);
- cb(cur, "ffn_gate_par", il);
- }
- if (down) {
- cur = build_lora_mm(down, cur);
- if (arch == LLM_ARCH_GLM4 || arch == LLM_ARCH_GLM4_MOE) {
- // GLM4 and GLM4_MOE seem to have numerical issues with half-precision accumulators
- ggml_mul_mat_set_prec(cur, GGML_PREC_F32);
- }
- }
- if (down_b) {
- cb(cur, "ffn_down", il);
- }
- if (down_b) {
- cur = ggml_add(ctx0, cur, down_b);
- }
- if (down_s) {
- cur = ggml_mul(ctx0, cur, down_s);
- cb(cur, "ffn_down_s", il);
- }
- return cur;
- }
- ggml_tensor * llm_graph_context::build_moe_ffn(
- ggml_tensor * cur,
- ggml_tensor * gate_inp,
- ggml_tensor * up_exps,
- ggml_tensor * gate_exps,
- ggml_tensor * down_exps,
- ggml_tensor * exp_probs_b,
- int64_t n_expert,
- int64_t n_expert_used,
- llm_ffn_op_type type_op,
- bool norm_w,
- bool scale_w,
- float w_scale,
- llama_expert_gating_func_type gating_op,
- int il,
- ggml_tensor * probs_in) const {
- return build_moe_ffn(
- cur,
- gate_inp, /* gate_inp_b */ nullptr,
- up_exps, /* up_exps_b */ nullptr,
- gate_exps, /* gate_exps_b */ nullptr,
- down_exps, /* down_exps_b */ nullptr,
- exp_probs_b,
- n_expert,
- n_expert_used,
- type_op,
- norm_w,
- scale_w,
- w_scale,
- gating_op,
- il,
- probs_in
- );
- }
- ggml_tensor * llm_graph_context::build_moe_ffn(
- ggml_tensor * cur,
- ggml_tensor * gate_inp,
- ggml_tensor * gate_inp_b,
- ggml_tensor * up_exps,
- ggml_tensor * up_exps_b,
- ggml_tensor * gate_exps,
- ggml_tensor * gate_exps_b,
- ggml_tensor * down_exps,
- ggml_tensor * down_exps_b,
- ggml_tensor * exp_probs_b,
- int64_t n_expert,
- int64_t n_expert_used,
- llm_ffn_op_type type_op,
- bool norm_w,
- bool scale_w,
- float w_scale,
- llama_expert_gating_func_type gating_op,
- int il,
- ggml_tensor * probs_in) const {
- const int64_t n_embd = cur->ne[0];
- const int64_t n_tokens = cur->ne[1];
- const bool weight_before_ffn = arch == LLM_ARCH_LLAMA4; // for llama4, we apply the sigmoid-ed weights before the FFN
- ggml_tensor * logits = nullptr;
- if (probs_in == nullptr) {
- logits = build_lora_mm(gate_inp, cur); // [n_expert, n_tokens]
- cb(logits, "ffn_moe_logits", il);
- } else {
- logits = probs_in;
- }
- if (gate_inp_b) {
- logits = ggml_add(ctx0, logits, gate_inp_b);
- cb(logits, "ffn_moe_logits_biased", il);
- }
- ggml_tensor * probs = nullptr;
- switch (gating_op) {
- case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX:
- {
- probs = ggml_soft_max(ctx0, logits); // [n_expert, n_tokens]
- } break;
- case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID:
- {
- probs = ggml_sigmoid(ctx0, logits); // [n_expert, n_tokens]
- } break;
- case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX_WEIGHT:
- {
- probs = logits; // [n_expert, n_tokens]
- } break;
- default:
- GGML_ABORT("fatal error");
- }
- cb(probs, "ffn_moe_probs", il);
- // add experts selection bias - introduced in DeepSeek V3
- // leave probs unbiased as it's later used to get expert weights
- ggml_tensor * selection_probs = probs;
- if (exp_probs_b != nullptr) {
- selection_probs = ggml_add(ctx0, probs, exp_probs_b);
- cb(selection_probs, "ffn_moe_probs_biased", il);
- }
- // llama4 doesn't have exp_probs_b, and sigmoid is only used after top_k
- // see: https://github.com/meta-llama/llama-models/blob/699a02993512fb36936b1b0741e13c06790bcf98/models/llama4/moe.py#L183-L198
- if (arch == LLM_ARCH_LLAMA4) {
- selection_probs = logits;
- }
- if (arch == LLM_ARCH_GROVEMOE) {
- selection_probs = ggml_sigmoid(ctx0, logits); // [n_expert, n_tokens]
- cb(selection_probs, "ffn_moe_probs_biased", il);
- }
- // select experts
- ggml_tensor * selected_experts = ggml_top_k(ctx0, selection_probs, n_expert_used); // [n_expert_used, n_tokens]
- cb(selected_experts->src[0], "ffn_moe_argsort", il);
- cb(selected_experts, "ffn_moe_topk", il);
- if (arch == LLM_ARCH_GROVEMOE && n_expert != hparams.n_expert) {
- // TODO: Use scalar div instead when/if implemented
- ggml_tensor * f_sel = ggml_cast(ctx0, selected_experts, GGML_TYPE_F32);
- selected_experts = ggml_cast(ctx0, ggml_scale(ctx0, f_sel, 1.0f / float(hparams.n_group_experts)), GGML_TYPE_I32);
- probs = ggml_reshape_3d(ctx0, probs, 1, hparams.n_expert, n_tokens);
- } else {
- probs = ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens);
- }
- ggml_tensor * weights = ggml_get_rows(ctx0, probs, selected_experts); // [1, n_expert_used, n_tokens]
- cb(weights, "ffn_moe_weights", il);
- if (gating_op == LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX_WEIGHT) {
- weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens);
- weights = ggml_soft_max(ctx0, weights); // [n_expert_used, n_tokens]
- weights = ggml_reshape_3d(ctx0, weights, 1, n_expert_used, n_tokens);
- cb(weights, "ffn_moe_weights_softmax", il);
- }
- if (norm_w) {
- weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens);
- ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights); // [1, n_tokens]
- cb(weights_sum, "ffn_moe_weights_sum", il);
- weights = ggml_div(ctx0, weights, weights_sum); // [n_expert_used, n_tokens]
- cb(weights, "ffn_moe_weights_norm", il);
- weights = ggml_reshape_3d(ctx0, weights, 1, n_expert_used, n_tokens);
- }
- if (scale_w) {
- weights = ggml_scale(ctx0, weights, w_scale);
- cb(weights, "ffn_moe_weights_scaled", il);
- }
- //call early so that topk-moe can be used
- ggml_build_forward_expand(gf, weights);
- cur = ggml_reshape_3d(ctx0, cur, n_embd, 1, n_tokens);
- if (weight_before_ffn) {
- // repeat cur to [n_embd, n_expert_used, n_tokens]
- ggml_tensor * repeated = ggml_repeat_4d(ctx0, cur, n_embd, n_expert_used, n_tokens, 1);
- cur = ggml_mul(ctx0, repeated, weights);
- cb(cur, "ffn_moe_weighted", il);
- }
- ggml_tensor * up = build_lora_mm_id(up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
- cb(up, "ffn_moe_up", il);
- if (up_exps_b) {
- up = ggml_add_id(ctx0, up, up_exps_b, selected_experts);
- cb(up, "ffn_moe_up_biased", il);
- }
- ggml_tensor * experts = nullptr;
- if (gate_exps) {
- cur = build_lora_mm_id(gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
- cb(cur, "ffn_moe_gate", il);
- } else {
- cur = up;
- }
- if (gate_exps_b) {
- cur = ggml_add_id(ctx0, cur, gate_exps_b, selected_experts);
- cb(cur, "ffn_moe_gate_biased", il);
- }
- switch (type_op) {
- case LLM_FFN_SILU:
- if (gate_exps) {
- cur = ggml_swiglu_split(ctx0, cur, up);
- cb(cur, "ffn_moe_swiglu", il);
- } else {
- cur = ggml_silu(ctx0, cur);
- cb(cur, "ffn_moe_silu", il);
- } break;
- case LLM_FFN_GELU:
- if (gate_exps) {
- cur = ggml_geglu_split(ctx0, cur, up);
- cb(cur, "ffn_moe_geglu", il);
- } else {
- cur = ggml_gelu(ctx0, cur);
- cb(cur, "ffn_moe_gelu", il);
- } break;
- case LLM_FFN_SWIGLU_OAI_MOE:
- {
- // TODO: move to hparams?
- constexpr float alpha = 1.702f;
- constexpr float limit = 7.0f;
- cur = ggml_swiglu_oai(ctx0, cur, up, alpha, limit);
- cb(cur, "ffn_moe_swiglu_oai", il);
- } break;
- case LLM_FFN_RELU:
- if (gate_exps) {
- cur = ggml_reglu_split(ctx0, cur, up);
- cb(cur, "ffn_moe_reglu", il);
- } else {
- cur = ggml_relu(ctx0, cur);
- cb(cur, "ffn_moe_relu", il);
- } break;
- default:
- GGML_ABORT("fatal error");
- }
- experts = build_lora_mm_id(down_exps, cur, selected_experts); // [n_embd, n_expert_used, n_tokens]
- cb(experts, "ffn_moe_down", il);
- if (down_exps_b) {
- experts = ggml_add_id(ctx0, experts, down_exps_b, selected_experts);
- cb(experts, "ffn_moe_down_biased", il);
- }
- if (!weight_before_ffn) {
- experts = ggml_mul(ctx0, experts, weights);
- cb(cur, "ffn_moe_weighted", il);
- }
- ggml_tensor * cur_experts[LLAMA_MAX_EXPERTS] = { nullptr };
- assert(n_expert_used > 0);
- // order the views before the adds
- for (uint32_t i = 0; i < hparams.n_expert_used; ++i) {
- cur_experts[i] = ggml_view_2d(ctx0, experts, n_embd, n_tokens, experts->nb[2], i*experts->nb[1]);
- ggml_build_forward_expand(gf, cur_experts[i]);
- }
- // aggregate experts
- // note: here we explicitly use hparams.n_expert_used instead of n_expert_used
- // to avoid potentially a large number of add nodes during warmup
- // ref: https://github.com/ggml-org/llama.cpp/pull/14753
- ggml_tensor * moe_out = cur_experts[0];
- for (uint32_t i = 1; i < hparams.n_expert_used; ++i) {
- moe_out = ggml_add(ctx0, moe_out, cur_experts[i]);
- }
- if (hparams.n_expert_used == 1) {
- // avoid returning a non-contiguous tensor
- moe_out = ggml_cont(ctx0, moe_out);
- }
- cb(moe_out, "ffn_moe_out", il);
- return moe_out;
- }
- // input embeddings with optional lora
- ggml_tensor * llm_graph_context::build_inp_embd(ggml_tensor * tok_embd) const {
- const int64_t n_embd = hparams.n_embd;
- auto inp = std::make_unique<llm_graph_input_embd>();
- ggml_tensor * cur = nullptr;
- if (ubatch.token) {
- inp->tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_tokens);
- //cb(inp->tokens, "inp_tokens", -1);
- ggml_set_input(inp->tokens);
- res->t_tokens = inp->tokens;
- cur = ggml_get_rows(ctx0, tok_embd, inp->tokens);
- // apply lora for embedding tokens if needed
- for (const auto & lora : *loras) {
- llama_adapter_lora_weight * lw = lora.first->get_weight(tok_embd);
- if (lw == nullptr) {
- continue;
- }
- const float adapter_scale = lora.second;
- const float scale = lw->get_scale(lora.first->alpha, adapter_scale);
- ggml_tensor * inpL_delta = ggml_scale(ctx0, ggml_mul_mat(
- ctx0, lw->b, // non-transposed lora_b
- ggml_get_rows(ctx0, lw->a, inp->tokens)
- ), scale);
- cur = ggml_add(ctx0, cur, inpL_delta);
- }
- } else {
- inp->embd = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, ubatch.n_tokens);
- ggml_set_input(inp->embd);
- cur = inp->embd;
- }
- // For Granite architecture
- if (hparams.f_embedding_scale != 0.0f) {
- cur = ggml_scale(ctx0, cur, hparams.f_embedding_scale);
- }
- cb(cur, "inp_embd", -1);
- res->add_input(std::move(inp));
- return cur;
- }
- ggml_tensor * llm_graph_context::build_inp_pos() const {
- auto inp = std::make_unique<llm_graph_input_pos>(hparams.n_pos_per_embd());
- auto & cur = inp->pos;
- cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, (int64_t)n_tokens*hparams.n_pos_per_embd());
- ggml_set_input(cur);
- res->add_input(std::move(inp));
- return cur;
- }
- ggml_tensor * llm_graph_context::build_inp_attn_scale() const {
- auto inp = std::make_unique<llm_graph_input_attn_temp>(hparams.n_attn_temp_floor_scale, hparams.f_attn_temp_scale);
- auto & cur = inp->attn_scale;
- // this need to be 1x1xN for broadcasting
- cur = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 1, 1, n_tokens);
- ggml_set_input(cur);
- res->add_input(std::move(inp));
- return cur;
- }
- ggml_tensor * llm_graph_context::build_inp_out_ids() const {
- // note: when all tokens are output, we could skip this optimization to spare the ggml_get_rows() calls,
- // but this would make the graph topology depend on the number of output tokens, which can interere with
- // features that require constant topology such as pipline parallelism
- // ref: https://github.com/ggml-org/llama.cpp/pull/14275#issuecomment-2987424471
- //if (n_outputs < n_tokens) {
- // return nullptr;
- //}
- auto inp = std::make_unique<llm_graph_input_out_ids>(hparams, cparams, n_outputs);
- auto & cur = inp->out_ids;
- cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
- ggml_set_input(cur);
- res->add_input(std::move(inp));
- return cur;
- }
- ggml_tensor * llm_graph_context::build_inp_mean() const {
- auto inp = std::make_unique<llm_graph_input_mean>(cparams);
- auto & cur = inp->mean;
- cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, ubatch.n_seqs_unq);
- ggml_set_input(cur);
- res->add_input(std::move(inp));
- return cur;
- }
- ggml_tensor * llm_graph_context::build_inp_cls() const {
- auto inp = std::make_unique<llm_graph_input_cls>(cparams, arch);
- auto & cur = inp->cls;
- cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_seqs_unq);
- ggml_set_input(cur);
- res->add_input(std::move(inp));
- return cur;
- }
- ggml_tensor * llm_graph_context::build_inp_cross_embd() const {
- auto inp = std::make_unique<llm_graph_input_cross_embd>(cross);
- auto & cur = inp->cross_embd;
- // if we have the output embeddings from the encoder, use them directly
- // TODO: needs more work to be correct, for now just use the tensor shape
- //if (cross->t_embd) {
- // cur = ggml_view_tensor(ctx0, cross->t_embd);
- // return cur;
- //}
- const auto n_embd = !cross->v_embd.empty() ? cross->n_embd : hparams.n_embd;
- const auto n_enc = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train;
- cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_enc);
- ggml_set_input(cur);
- res->add_input(std::move(inp));
- return cur;
- }
- ggml_tensor * llm_graph_context::build_inp_pos_bucket_enc() const {
- auto inp = std::make_unique<llm_graph_input_pos_bucket>(hparams);
- auto & cur = inp->pos_bucket;
- cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_tokens);
- ggml_set_input(cur);
- res->add_input(std::move(inp));
- return cur;
- }
- ggml_tensor * llm_graph_context::build_inp_pos_bucket_dec() const {
- const auto * mctx_cur = static_cast<const llama_kv_cache_context *>(mctx);
- auto inp = std::make_unique<llm_graph_input_pos_bucket_kv>(hparams, mctx_cur);
- const auto n_kv = mctx_cur->get_n_kv();
- auto & cur = inp->pos_bucket;
- cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
- ggml_set_input(cur);
- res->add_input(std::move(inp));
- return cur;
- }
- ggml_tensor * llm_graph_context::build_pos_bias(ggml_tensor * pos_bucket, ggml_tensor * attn_rel_b) const {
- ggml_tensor * pos_bucket_1d = ggml_reshape_1d(ctx0, pos_bucket, pos_bucket->ne[0] * pos_bucket->ne[1]);
- cb(pos_bucket_1d, "pos_bucket_1d", -1);
- ggml_tensor * pos_bias = ggml_get_rows(ctx0, attn_rel_b, pos_bucket_1d);
- pos_bias = ggml_reshape_3d(ctx0, pos_bias, pos_bias->ne[0], pos_bucket->ne[0], pos_bucket->ne[1]);
- pos_bias = ggml_permute (ctx0, pos_bias, 2, 0, 1, 3);
- pos_bias = ggml_cont (ctx0, pos_bias);
- cb(pos_bias, "pos_bias", -1);
- return pos_bias;
- }
- ggml_tensor * llm_graph_context::build_attn_mha(
- ggml_tensor * q,
- ggml_tensor * k,
- ggml_tensor * v,
- ggml_tensor * kq_b,
- ggml_tensor * kq_mask,
- ggml_tensor * sinks,
- ggml_tensor * v_mla,
- float kq_scale,
- int il) const {
- const bool v_trans = v->nb[1] > v->nb[2];
- // split the batch into streams if needed
- const auto n_stream = k->ne[3];
- q = ggml_view_4d(ctx0, q, q->ne[0], q->ne[1], q->ne[2]/n_stream, n_stream, q->nb[1], q->nb[2], q->nb[3]/n_stream, 0);
- q = ggml_permute(ctx0, q, 0, 2, 1, 3);
- k = ggml_permute(ctx0, k, 0, 2, 1, 3);
- v = ggml_permute(ctx0, v, 0, 2, 1, 3);
- const auto n_kv = k->ne[1];
- ggml_tensor * cur;
- // TODO: replace hardcoded padding with ggml-provided padding
- if (cparams.flash_attn && (n_kv % 256 == 0) && kq_b == nullptr) {
- GGML_ASSERT(kq_b == nullptr && "Flash attention does not support KQ bias yet");
- if (v_trans) {
- v = ggml_transpose(ctx0, v);
- }
- // this can happen when KV cache is not used (e.g. an embedding model with non-causal attn)
- if (k->type == GGML_TYPE_F32) {
- k = ggml_cast(ctx0, k, GGML_TYPE_F16);
- }
- if (v->type == GGML_TYPE_F32) {
- v = ggml_cast(ctx0, v, GGML_TYPE_F16);
- }
- cur = ggml_flash_attn_ext(ctx0, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias,
- hparams.attn_soft_cap ? hparams.f_attn_logit_softcapping : 0.0f);
- cb(cur, LLAMA_TENSOR_NAME_FATTN, il);
- ggml_flash_attn_ext_add_sinks(cur, sinks);
- ggml_flash_attn_ext_set_prec (cur, GGML_PREC_F32);
- if (v_mla) {
- #if 0
- // v_mla can be applied as a matrix-vector multiplication with broadcasting across dimension 3 == n_tokens.
- // However, the code is optimized for dimensions 0 and 1 being large, so this is ineffient.
- cur = ggml_reshape_4d(ctx0, cur, v_mla->ne[0], 1, n_head, n_tokens);
- cur = ggml_mul_mat(ctx0, v_mla, cur);
- #else
- // It's preferable to do the calculation as a matrix-matrix multiplication with n_tokens in dimension 1.
- // The permutations are noops and only change how the tensor data is interpreted.
- cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
- cur = ggml_mul_mat(ctx0, v_mla, cur);
- cb(cur, "fattn_mla", il);
- cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
- cur = ggml_cont(ctx0, cur); // Needed because ggml_reshape_2d expects contiguous inputs.
- #endif
- }
- cur = ggml_reshape_2d(ctx0, cur, cur->ne[0]*cur->ne[1], cur->ne[2]*cur->ne[3]);
- } else {
- ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
- cb(kq, "kq", il);
- // note: this op tends to require high floating point range
- // while for some models F16 is enough, for others it is not, so we default to F32 here
- ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
- if (arch == LLM_ARCH_GROK) {
- // need to do the following:
- // multiply by attn_output_multiplier
- // and then :
- // kq = 30 * tanh(kq / 30)
- // before the softmax below
- kq = ggml_tanh(ctx0, ggml_scale(ctx0, kq, hparams.f_attn_out_scale / hparams.f_attn_logit_softcapping));
- cb(kq, "kq_tanh", il);
- kq = ggml_scale(ctx0, kq, hparams.f_attn_logit_softcapping);
- cb(kq, "kq_scaled", il);
- }
- if (hparams.attn_soft_cap) {
- kq = ggml_scale(ctx0, kq, 1.0f / hparams.f_attn_logit_softcapping);
- cb(kq, "kq_scaled_1", il);
- kq = ggml_tanh (ctx0, kq);
- cb(kq, "kq_tanh", il);
- kq = ggml_scale(ctx0, kq, hparams.f_attn_logit_softcapping);
- cb(kq, "kq_scaled_2", il);
- }
- if (kq_b) {
- kq = ggml_add(ctx0, kq, kq_b);
- cb(kq, "kq_plus_kq_b", il);
- }
- kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias);
- ggml_soft_max_add_sinks(kq, sinks);
- cb(kq, "kq_soft_max", il);
- if (!v_trans) {
- // note: avoid this branch
- v = ggml_cont(ctx0, ggml_transpose(ctx0, v));
- cb(v, "v_cont", il);
- }
- ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
- cb(kqv, "kqv", il);
- // for MLA with the absorption optimization, we need to "decompress" from MQA back to MHA
- if (v_mla) {
- kqv = ggml_mul_mat(ctx0, v_mla, kqv);
- cb(kqv, "kqv_mla", il);
- }
- cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
- // recombine streams
- cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*cur->ne[1], cur->ne[2]*cur->ne[3]);
- if (!cparams.offload_kqv) {
- // all nodes between the KV store and the attention output are run on the CPU
- ggml_backend_sched_set_tensor_backend(sched, cur, backend_cpu);
- }
- }
- ggml_build_forward_expand(gf, cur);
- return cur;
- }
- llm_graph_input_attn_no_cache * llm_graph_context::build_attn_inp_no_cache() const {
- auto inp = std::make_unique<llm_graph_input_attn_no_cache>(hparams, cparams);
- // note: there is no KV cache, so the number of KV values is equal to the number of tokens in the batch
- inp->kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), 1, 1);
- ggml_set_input(inp->kq_mask);
- inp->kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->kq_mask, GGML_TYPE_F16) : inp->kq_mask;
- return (llm_graph_input_attn_no_cache *) res->add_input(std::move(inp));
- }
- ggml_tensor * llm_graph_context::build_attn(
- llm_graph_input_attn_no_cache * inp,
- ggml_tensor * wo,
- ggml_tensor * wo_b,
- ggml_tensor * q_cur,
- ggml_tensor * k_cur,
- ggml_tensor * v_cur,
- ggml_tensor * kq_b,
- ggml_tensor * sinks,
- ggml_tensor * v_mla,
- float kq_scale,
- int il) const {
- GGML_UNUSED(n_tokens);
- // these nodes are added to the graph together so that they are not reordered
- // by doing so, the number of splits in the graph is reduced
- ggml_build_forward_expand(gf, q_cur);
- ggml_build_forward_expand(gf, k_cur);
- ggml_build_forward_expand(gf, v_cur);
- const auto & kq_mask = inp->get_kq_mask();
- // [TAG_NO_CACHE_PAD]
- // TODO: if ubatch.equal_seqs() == true, we can split the three tensors below into ubatch.n_seqs_unq streams
- // but it might not be worth it: https://github.com/ggml-org/llama.cpp/pull/15636
- //assert(!ubatch.equal_seqs() || (k_cur->ne[3] == 1 && k_cur->ne[3] == ubatch.n_seqs_unq));
- ggml_tensor * q = q_cur;
- ggml_tensor * k = k_cur;
- ggml_tensor * v = v_cur;
- ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, sinks, v_mla, kq_scale, il);
- cb(cur, "kqv_out", il);
- if (wo) {
- cur = build_lora_mm(wo, cur);
- }
- if (wo_b) {
- //cb(cur, "kqv_wo", il);
- }
- if (wo_b) {
- cur = ggml_add(ctx0, cur, wo_b);
- }
- return cur;
- }
- static std::unique_ptr<llm_graph_input_attn_kv> build_attn_inp_kv_impl(
- ggml_context * ctx0,
- const llama_ubatch & ubatch,
- const llama_hparams & hparams,
- const llama_cparams & cparams,
- const llama_kv_cache_context * mctx_cur) {
- auto inp = std::make_unique<llm_graph_input_attn_kv>(hparams, cparams, mctx_cur);
- {
- GGML_ASSERT(hparams.swa_type == LLAMA_SWA_TYPE_NONE && "Use llama_kv_cache_iswa for SWA");
- const auto n_kv = mctx_cur->get_n_kv();
- const auto n_tokens = ubatch.n_tokens;
- const auto n_stream = cparams.kv_unified ? 1 : ubatch.n_seqs_unq;
- inp->self_k_idxs = mctx_cur->build_input_k_idxs(ctx0, ubatch);
- inp->self_v_idxs = mctx_cur->build_input_v_idxs(ctx0, ubatch);
- inp->self_kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens/n_stream, GGML_KQ_MASK_PAD), 1, n_stream);
- ggml_set_input(inp->self_kq_mask);
- inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask;
- }
- return inp;
- }
- llm_graph_input_attn_kv * llm_graph_context::build_attn_inp_kv() const {
- const auto * mctx_cur = static_cast<const llama_kv_cache_context *>(mctx);
- auto inp = build_attn_inp_kv_impl(ctx0, ubatch, hparams, cparams, mctx_cur);
- return (llm_graph_input_attn_kv *) res->add_input(std::move(inp));
- }
- ggml_tensor * llm_graph_context::build_attn(
- llm_graph_input_attn_kv * inp,
- ggml_tensor * wo,
- ggml_tensor * wo_b,
- ggml_tensor * q_cur,
- ggml_tensor * k_cur,
- ggml_tensor * v_cur,
- ggml_tensor * kq_b,
- ggml_tensor * sinks,
- ggml_tensor * v_mla,
- float kq_scale,
- int il) const {
- // these nodes are added to the graph together so that they are not reordered
- // by doing so, the number of splits in the graph is reduced
- ggml_build_forward_expand(gf, q_cur);
- ggml_build_forward_expand(gf, k_cur);
- ggml_build_forward_expand(gf, v_cur);
- const auto * mctx_cur = inp->mctx;
- // store to KV cache
- {
- const auto & k_idxs = inp->get_k_idxs();
- const auto & v_idxs = inp->get_v_idxs();
- ggml_build_forward_expand(gf, mctx_cur->cpy_k(ctx0, k_cur, k_idxs, il));
- ggml_build_forward_expand(gf, mctx_cur->cpy_v(ctx0, v_cur, v_idxs, il));
- }
- const auto & kq_mask = inp->get_kq_mask();
- ggml_tensor * q = q_cur;
- ggml_tensor * k = mctx_cur->get_k(ctx0, il);
- ggml_tensor * v = mctx_cur->get_v(ctx0, il);
- ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, sinks, v_mla, kq_scale, il);
- cb(cur, "kqv_out", il);
- if (wo) {
- cur = build_lora_mm(wo, cur);
- if (arch == LLM_ARCH_GLM4 || arch == LLM_ARCH_GLM4_MOE) {
- // GLM4 and GLM4_MOE seem to have numerical issues with half-precision accumulators
- ggml_mul_mat_set_prec(cur, GGML_PREC_F32);
- }
- }
- if (wo_b) {
- cur = ggml_add(ctx0, cur, wo_b);
- }
- return cur;
- }
- ggml_tensor * llm_graph_context::build_attn(
- llm_graph_input_attn_kv_iswa * inp,
- ggml_tensor * wo,
- ggml_tensor * wo_b,
- ggml_tensor * q_cur,
- ggml_tensor * k_cur,
- ggml_tensor * v_cur,
- ggml_tensor * kq_b,
- ggml_tensor * sinks,
- ggml_tensor * v_mla,
- float kq_scale,
- int il) const {
- // these nodes are added to the graph together so that they are not reordered
- // by doing so, the number of splits in the graph is reduced
- ggml_build_forward_expand(gf, q_cur);
- if (k_cur) {
- ggml_build_forward_expand(gf, k_cur);
- }
- if (v_cur) {
- ggml_build_forward_expand(gf, v_cur);
- }
- const auto * mctx_iswa = inp->mctx;
- const bool is_swa = hparams.is_swa(il);
- const auto * mctx_cur = is_swa ? mctx_iswa->get_swa() : mctx_iswa->get_base();
- // optionally store to KV cache
- if (k_cur) {
- const auto & k_idxs = is_swa ? inp->get_k_idxs_swa() : inp->get_k_idxs();
- ggml_build_forward_expand(gf, mctx_cur->cpy_k(ctx0, k_cur, k_idxs, il));
- }
- if (v_cur) {
- const auto & v_idxs = is_swa ? inp->get_v_idxs_swa() : inp->get_v_idxs();
- ggml_build_forward_expand(gf, mctx_cur->cpy_v(ctx0, v_cur, v_idxs, il));
- }
- const auto & kq_mask = is_swa ? inp->get_kq_mask_swa() : inp->get_kq_mask();
- ggml_tensor * q = q_cur;
- ggml_tensor * k = mctx_cur->get_k(ctx0, il);
- ggml_tensor * v = mctx_cur->get_v(ctx0, il);
- ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, sinks, v_mla, kq_scale, il);
- cb(cur, "kqv_out", il);
- if (wo) {
- cur = build_lora_mm(wo, cur);
- }
- if (wo_b) {
- //cb(cur, "kqv_wo", il);
- }
- if (wo_b) {
- cur = ggml_add(ctx0, cur, wo_b);
- }
- return cur;
- }
- llm_graph_input_attn_cross * llm_graph_context::build_attn_inp_cross() const {
- auto inp = std::make_unique<llm_graph_input_attn_cross>(cross);
- const int32_t n_enc = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train;
- inp->cross_kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_enc, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), 1, 1);
- ggml_set_input(inp->cross_kq_mask);
- inp->cross_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->cross_kq_mask, GGML_TYPE_F16) : inp->cross_kq_mask;
- return (llm_graph_input_attn_cross *) res->add_input(std::move(inp));
- }
- ggml_tensor * llm_graph_context::build_attn(
- llm_graph_input_attn_cross * inp,
- ggml_tensor * wo,
- ggml_tensor * wo_b,
- ggml_tensor * q_cur,
- ggml_tensor * k_cur,
- ggml_tensor * v_cur,
- ggml_tensor * kq_b,
- ggml_tensor * sinks,
- ggml_tensor * v_mla,
- float kq_scale,
- int il) const {
- // these nodes are added to the graph together so that they are not reordered
- // by doing so, the number of splits in the graph is reduced
- ggml_build_forward_expand(gf, q_cur);
- ggml_build_forward_expand(gf, k_cur);
- ggml_build_forward_expand(gf, v_cur);
- const auto & kq_mask = inp->get_kq_mask_cross();
- ggml_tensor * q = q_cur;
- ggml_tensor * k = k_cur;
- ggml_tensor * v = v_cur;
- ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, sinks, v_mla, kq_scale, il);
- cb(cur, "kqv_out", il);
- if (wo) {
- cur = build_lora_mm(wo, cur);
- }
- if (wo_b) {
- //cb(cur, "kqv_wo", il);
- }
- if (wo_b) {
- cur = ggml_add(ctx0, cur, wo_b);
- }
- return cur;
- }
- // TODO: maybe separate the inner implementation into a separate function
- // like with the non-sliding window equivalent
- // once sliding-window hybrid caches are a thing.
- llm_graph_input_attn_kv_iswa * llm_graph_context::build_attn_inp_kv_iswa() const {
- const auto * mctx_cur = static_cast<const llama_kv_cache_iswa_context *>(mctx);
- auto inp = std::make_unique<llm_graph_input_attn_kv_iswa>(hparams, cparams, mctx_cur);
- const auto n_stream = cparams.kv_unified ? 1 : ubatch.n_seqs_unq;
- {
- const auto n_kv = mctx_cur->get_base()->get_n_kv();
- inp->self_k_idxs = mctx_cur->get_base()->build_input_k_idxs(ctx0, ubatch);
- inp->self_v_idxs = mctx_cur->get_base()->build_input_v_idxs(ctx0, ubatch);
- inp->self_kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens/n_stream, GGML_KQ_MASK_PAD), 1, n_stream);
- ggml_set_input(inp->self_kq_mask);
- inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask;
- }
- {
- GGML_ASSERT(hparams.swa_type != LLAMA_SWA_TYPE_NONE && "Use llama_kv_cache for non-SWA");
- const auto n_kv = mctx_cur->get_swa()->get_n_kv();
- inp->self_k_idxs_swa = mctx_cur->get_swa()->build_input_k_idxs(ctx0, ubatch);
- inp->self_v_idxs_swa = mctx_cur->get_swa()->build_input_v_idxs(ctx0, ubatch);
- inp->self_kq_mask_swa = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens/n_stream, GGML_KQ_MASK_PAD), 1, n_stream);
- ggml_set_input(inp->self_kq_mask_swa);
- inp->self_kq_mask_swa_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask_swa, GGML_TYPE_F16) : inp->self_kq_mask_swa;
- }
- return (llm_graph_input_attn_kv_iswa *) res->add_input(std::move(inp));
- }
- ggml_tensor * llm_graph_context::build_rs(
- ggml_tensor * s,
- ggml_tensor * state_copy_main,
- ggml_tensor * state_copy_extra,
- int32_t state_size,
- int32_t n_seqs,
- uint32_t n_rs,
- uint32_t rs_head,
- uint32_t rs_size,
- int32_t rs_zero,
- const llm_graph_get_rows_fn & get_state_rows) const {
- ggml_tensor * states = ggml_reshape_2d(ctx0, s, state_size, rs_size);
- // Clear a single state which will then be copied to the other cleared states.
- // Note that this is a no-op when the view is zero-sized.
- ggml_tensor * state_zero = ggml_view_1d(ctx0, states, state_size*(rs_zero >= 0), rs_zero*states->nb[1]*(rs_zero >= 0));
- ggml_build_forward_expand(gf, ggml_scale_inplace(ctx0, state_zero, 0));
- // copy states
- // NOTE: assuming the copy destinations are ALL contained between rs_head and rs_head + n_rs
- // {state_size, rs_size} -> {state_size, n_seqs}
- ggml_tensor * output_states = get_state_rows(ctx0, states, state_copy_main);
- ggml_build_forward_expand(gf, output_states);
- // copy extra states which won't be changed further (between n_seqs and n_rs)
- ggml_tensor * states_extra = ggml_get_rows(ctx0, states, state_copy_extra);
- ggml_build_forward_expand(gf,
- ggml_cpy(ctx0,
- states_extra,
- ggml_view_1d(ctx0, s, state_size*(n_rs - n_seqs), (rs_head + n_seqs)*state_size*ggml_element_size(s))));
- return output_states;
- }
- static std::unique_ptr<llm_graph_input_rs> build_rs_inp_impl(
- ggml_context * ctx0,
- const llama_ubatch & ubatch,
- const llama_memory_recurrent_context * mctx_cur) {
- auto inp = std::make_unique<llm_graph_input_rs>(mctx_cur);
- const int64_t n_rs = mctx_cur->get_n_rs();
- const int64_t n_seqs = ubatch.n_seqs;
- inp->s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_rs);
- ggml_set_input(inp->s_copy);
- inp->s_copy_main = ggml_view_1d(ctx0, inp->s_copy, n_seqs, 0);
- inp->s_copy_extra = ggml_view_1d(ctx0, inp->s_copy, n_rs - n_seqs, n_seqs * inp->s_copy->nb[0]);
- return inp;
- }
- llm_graph_input_rs * llm_graph_context::build_rs_inp() const {
- const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
- auto inp = build_rs_inp_impl(ctx0, ubatch, mctx_cur);
- return (llm_graph_input_rs *) res->add_input(std::move(inp));
- }
- ggml_tensor * llm_graph_context::build_rs(
- llm_graph_input_rs * inp,
- ggml_tensor * s,
- int32_t state_size,
- int32_t n_seqs,
- const llm_graph_get_rows_fn & get_state_rows) const {
- const auto * kv_state = inp->mctx;
- return build_rs(s, inp->s_copy_main, inp->s_copy_extra, state_size, n_seqs,
- kv_state->get_n_rs(), kv_state->get_head(), kv_state->get_size(), kv_state->get_rs_z(),
- get_state_rows);
- }
- ggml_tensor * llm_graph_context::build_rwkv_token_shift_load(
- llm_graph_input_rs * inp,
- const llama_ubatch & ubatch,
- int il) const {
- const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
- const auto token_shift_count = hparams.token_shift_count;
- const int64_t n_seqs = ubatch.n_seqs;
- ggml_tensor * token_shift_all = mctx_cur->get_r_l(il);
- ggml_tensor * token_shift = build_rs(
- inp, token_shift_all,
- hparams.n_embd_r(), n_seqs);
- token_shift = ggml_reshape_3d(ctx0, token_shift, hparams.n_embd, token_shift_count, n_seqs);
- return token_shift;
- }
- ggml_tensor * llm_graph_context::build_rwkv_token_shift_store(
- ggml_tensor * token_shift,
- const llama_ubatch & ubatch,
- int il) const {
- const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
- const auto token_shift_count = hparams.token_shift_count;
- const auto n_embd = hparams.n_embd;
- const int64_t n_seqs = ubatch.n_seqs;
- const auto kv_head = mctx_cur->get_head();
- return ggml_cpy(
- ctx0,
- ggml_view_1d(ctx0, token_shift, n_embd * n_seqs * token_shift_count, 0),
- ggml_view_1d(ctx0, mctx_cur->get_r_l(il), hparams.n_embd_r()*n_seqs, hparams.n_embd_r()*kv_head*ggml_element_size(mctx_cur->get_r_l(il)))
- );
- }
- llm_graph_input_mem_hybrid * llm_graph_context::build_inp_mem_hybrid() const {
- const auto * mctx_cur = static_cast<const llama_memory_hybrid_context *>(mctx);
- auto inp_rs = build_rs_inp_impl(ctx0, ubatch, mctx_cur->get_recr());
- auto inp_attn = build_attn_inp_kv_impl(ctx0, ubatch, hparams, cparams, mctx_cur->get_attn());
- auto inp = std::make_unique<llm_graph_input_mem_hybrid>(std::move(inp_attn), std::move(inp_rs), mctx_cur);
- return (llm_graph_input_mem_hybrid *) res->add_input(std::move(inp));
- }
- void llm_graph_context::build_pooling(
- ggml_tensor * cls,
- ggml_tensor * cls_b,
- ggml_tensor * cls_out,
- ggml_tensor * cls_out_b) const {
- if (!cparams.embeddings) {
- return;
- }
- ggml_tensor * inp = res->t_embd;
- //// find result_norm tensor for input
- //for (int i = ggml_graph_n_nodes(gf) - 1; i >= 0; --i) {
- // inp = ggml_graph_node(gf, i);
- // if (strcmp(inp->name, "result_norm") == 0 || strcmp(inp->name, "result_embd") == 0) {
- // break;
- // }
- // inp = nullptr;
- //}
- GGML_ASSERT(inp != nullptr && "missing result_norm/result_embd tensor");
- ggml_tensor * cur;
- switch (pooling_type) {
- case LLAMA_POOLING_TYPE_NONE:
- {
- cur = inp;
- } break;
- case LLAMA_POOLING_TYPE_MEAN:
- {
- ggml_tensor * inp_mean = build_inp_mean();
- cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, inp)), inp_mean);
- } break;
- case LLAMA_POOLING_TYPE_CLS:
- case LLAMA_POOLING_TYPE_LAST:
- {
- ggml_tensor * inp_cls = build_inp_cls();
- cur = ggml_get_rows(ctx0, inp, inp_cls);
- } break;
- case LLAMA_POOLING_TYPE_RANK:
- {
- ggml_tensor * inp_cls = build_inp_cls();
- cur = ggml_get_rows(ctx0, inp, inp_cls);
- // classification head
- // https://github.com/huggingface/transformers/blob/5af7d41e49bbfc8319f462eb45253dcb3863dfb7/src/transformers/models/roberta/modeling_roberta.py#L1566
- if (cls) {
- cur = ggml_mul_mat(ctx0, cls, cur);
- if (cls_b) {
- cur = ggml_add(ctx0, cur, cls_b);
- }
- cur = ggml_tanh(ctx0, cur);
- }
- // some models don't have `cls_out`, for example: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
- // https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/blob/cb5347e43979c3084a890e3f99491952603ae1b7/modeling_bert.py#L884-L896
- // Single layer classification head (direct projection)
- // https://github.com/huggingface/transformers/blob/f4fc42216cd56ab6b68270bf80d811614d8d59e4/src/transformers/models/bert/modeling_bert.py#L1476
- if (cls_out) {
- cur = ggml_mul_mat(ctx0, cls_out, cur);
- if (cls_out_b) {
- cur = ggml_add(ctx0, cur, cls_out_b);
- }
- }
- // softmax for qwen3 reranker
- if (arch == LLM_ARCH_QWEN3) {
- cur = ggml_soft_max(ctx0, cur);
- }
- } break;
- default:
- {
- GGML_ABORT("unknown pooling type");
- }
- }
- cb(cur, "result_embd_pooled", -1);
- res->t_embd_pooled = cur;
- ggml_build_forward_expand(gf, cur);
- }
- int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buckets, bool bidirectional) {
- // TODO move to hparams if a T5 variant appears that uses a different value
- const int64_t max_distance = 128;
- if (bidirectional) {
- n_buckets >>= 1;
- }
- const int64_t max_exact = n_buckets >> 1;
- int32_t relative_position = x - y;
- int32_t relative_bucket = 0;
- if (bidirectional) {
- relative_bucket += (relative_position > 0) * n_buckets;
- relative_position = abs(relative_position);
- } else {
- relative_position = -std::min<int32_t>(relative_position, 0);
- }
- int32_t relative_position_if_large = floorf(max_exact + logf(1.0 * relative_position / max_exact) * (n_buckets - max_exact) / log(1.0 * max_distance / max_exact));
- relative_position_if_large = std::min<int32_t>(relative_position_if_large, n_buckets - 1);
- relative_bucket += (relative_position < max_exact ? relative_position : relative_position_if_large);
- return relative_bucket;
- }
|