llama-model.cpp 578 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385
  1. #include "llama-model.h"
  2. #include "llama-impl.h"
  3. #include "llama-mmap.h"
  4. #include "llama-batch.h"
  5. #include "llama-cparams.h"
  6. #include "llama-model-loader.h"
  7. #include "llama-kv-cache.h"
  8. #include "ggml-cpp.h"
  9. #include <algorithm>
  10. #include <cassert>
  11. #include <cmath>
  12. #include <cfloat>
  13. #include <cstring>
  14. #include <cmath>
  15. #include <functional>
  16. #include <map>
  17. #include <regex>
  18. #include <sstream>
  19. #include <stdexcept>
  20. const char * llm_type_name(llm_type type) {
  21. switch (type) {
  22. case LLM_TYPE_14M: return "14M";
  23. case LLM_TYPE_17M: return "17M";
  24. case LLM_TYPE_22M: return "22M";
  25. case LLM_TYPE_33M: return "33M";
  26. case LLM_TYPE_60M: return "60M";
  27. case LLM_TYPE_70M: return "70M";
  28. case LLM_TYPE_80M: return "80M";
  29. case LLM_TYPE_109M: return "109M";
  30. case LLM_TYPE_137M: return "137M";
  31. case LLM_TYPE_160M: return "160M";
  32. case LLM_TYPE_190M: return "190M";
  33. case LLM_TYPE_220M: return "220M";
  34. case LLM_TYPE_250M: return "250M";
  35. case LLM_TYPE_270M: return "270M";
  36. case LLM_TYPE_335M: return "335M";
  37. case LLM_TYPE_410M: return "410M";
  38. case LLM_TYPE_450M: return "450M";
  39. case LLM_TYPE_770M: return "770M";
  40. case LLM_TYPE_780M: return "780M";
  41. case LLM_TYPE_0_5B: return "0.5B";
  42. case LLM_TYPE_1B: return "1B";
  43. case LLM_TYPE_1_3B: return "1.3B";
  44. case LLM_TYPE_1_4B: return "1.4B";
  45. case LLM_TYPE_1_5B: return "1.5B";
  46. case LLM_TYPE_1_6B: return "1.6B";
  47. case LLM_TYPE_1_8B: return "1.8B";
  48. case LLM_TYPE_2B: return "2B";
  49. case LLM_TYPE_2_8B: return "2.8B";
  50. case LLM_TYPE_2_9B: return "2.9B";
  51. case LLM_TYPE_3B: return "3B";
  52. case LLM_TYPE_4B: return "4B";
  53. case LLM_TYPE_6B: return "6B";
  54. case LLM_TYPE_6_9B: return "6.9B";
  55. case LLM_TYPE_7B: return "7B";
  56. case LLM_TYPE_8B: return "8B";
  57. case LLM_TYPE_9B: return "9B";
  58. case LLM_TYPE_11B: return "11B";
  59. case LLM_TYPE_12B: return "12B";
  60. case LLM_TYPE_13B: return "13B";
  61. case LLM_TYPE_14B: return "14B";
  62. case LLM_TYPE_15B: return "15B";
  63. case LLM_TYPE_16B: return "16B";
  64. case LLM_TYPE_20B: return "20B";
  65. case LLM_TYPE_30B: return "30B";
  66. case LLM_TYPE_32B: return "32B";
  67. case LLM_TYPE_34B: return "34B";
  68. case LLM_TYPE_35B: return "35B";
  69. case LLM_TYPE_40B: return "40B";
  70. case LLM_TYPE_65B: return "65B";
  71. case LLM_TYPE_70B: return "70B";
  72. case LLM_TYPE_236B: return "236B";
  73. case LLM_TYPE_314B: return "314B";
  74. case LLM_TYPE_671B: return "671B";
  75. case LLM_TYPE_SMALL: return "0.1B";
  76. case LLM_TYPE_MEDIUM: return "0.4B";
  77. case LLM_TYPE_LARGE: return "0.8B";
  78. case LLM_TYPE_XL: return "1.5B";
  79. case LLM_TYPE_A1_7B: return "A1.7B";
  80. case LLM_TYPE_A2_7B: return "A2.7B";
  81. case LLM_TYPE_8x7B: return "8x7B";
  82. case LLM_TYPE_8x22B: return "8x22B";
  83. case LLM_TYPE_16x12B: return "16x12B";
  84. case LLM_TYPE_16x3_8B: return "16x3.8B";
  85. case LLM_TYPE_10B_128x3_66B: return "10B+128x3.66B";
  86. case LLM_TYPE_57B_A14B: return "57B.A14B";
  87. case LLM_TYPE_27B: return "27B";
  88. case LLM_TYPE_290B: return "290B";
  89. case LLM_TYPE_17B_16E: return "17Bx16E (Scout)";
  90. case LLM_TYPE_17B_128E: return "17Bx128E (Maverick)";
  91. case LLM_TYPE_0_6B: return "0.6B";
  92. case LLM_TYPE_1_7B: return "1.7B";
  93. case LLM_TYPE_30B_A3B: return "30B.A3B";
  94. case LLM_TYPE_235B_A22B: return "235B.A22B";
  95. default: return "?B";
  96. }
  97. }
  98. static const char * llama_expert_gating_func_name(llama_expert_gating_func_type type) {
  99. switch (type) {
  100. case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX: return "softmax";
  101. case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID: return "sigmoid";
  102. default: return "unknown";
  103. }
  104. }
  105. static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
  106. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  107. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  108. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  109. { LLAMA_ROPE_SCALING_TYPE_LONGROPE, "longrope" },
  110. };
  111. static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
  112. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  113. if (kv.second == name) {
  114. return (llama_rope_scaling_type) kv.first;
  115. }
  116. }
  117. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  118. }
  119. // checks if the weight tensor can be used with the specified buffer type and device
  120. static bool weight_buft_supported(const llama_hparams & hparams, ggml_tensor * w, ggml_op op, ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev) {
  121. GGML_ASSERT(w != nullptr);
  122. if (op == GGML_OP_NONE) {
  123. return true;
  124. }
  125. ggml_init_params params = {
  126. /*.mem_size =*/ ggml_tensor_overhead()*8,
  127. /*.mem_buffer =*/ NULL,
  128. /*.no_alloc =*/ true,
  129. };
  130. ggml_context_ptr ctx_ptr { ggml_init(params) };
  131. if (!ctx_ptr) {
  132. throw std::runtime_error(format("failed to create ggml context"));
  133. }
  134. ggml_context * ctx = ctx_ptr.get();
  135. ggml_tensor * op_tensor = nullptr;
  136. switch (op) {
  137. case GGML_OP_GET_ROWS:
  138. {
  139. ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512);
  140. op_tensor = ggml_get_rows(ctx, w, b);
  141. } break;
  142. case GGML_OP_MUL_MAT:
  143. {
  144. ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], 512, w->ne[2], w->ne[3]);
  145. op_tensor = ggml_mul_mat(ctx, w, b);
  146. } break;
  147. case GGML_OP_MUL_MAT_ID:
  148. {
  149. int n_expert_used = hparams.n_expert_used;
  150. ggml_tensor * b = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, w->ne[0], n_expert_used, 512);
  151. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_expert_used, 512);
  152. op_tensor = ggml_mul_mat_id(ctx, w, b, ids);
  153. } break;
  154. case GGML_OP_ADD:
  155. {
  156. ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]);
  157. op_tensor = ggml_add(ctx, a, w);
  158. } break;
  159. case GGML_OP_MUL:
  160. {
  161. ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]);
  162. op_tensor = ggml_mul(ctx, a, w);
  163. } break;
  164. case GGML_OP_DIV:
  165. {
  166. ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, w->ne[0]);
  167. op_tensor = ggml_div(ctx, a, w);
  168. } break;
  169. case GGML_OP_ROPE:
  170. {
  171. int n_embd_head = hparams.n_embd_head_v;
  172. int n_head = hparams.n_head();
  173. ggml_tensor * a = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd_head, n_head, 512);
  174. ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512);
  175. op_tensor = ggml_rope_ext(
  176. ctx, a, b, w,
  177. 0, 0, 0, 0, 0,
  178. 0, 0, 0, 0
  179. );
  180. } break;
  181. case GGML_OP_SSM_CONV:
  182. {
  183. // FIXME
  184. ggml_tensor * conv_x = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, 12345, w->ne[1], 6789);
  185. op_tensor = ggml_ssm_conv(ctx, conv_x, w);
  186. } break;
  187. case GGML_OP_SSM_SCAN:
  188. {
  189. // FIXME
  190. const int64_t d_state = w->ne[0];
  191. const int64_t d_inner = w->ne[1];
  192. const int64_t n_seq_tokens = 512;
  193. const int64_t n_seqs = 1;
  194. ggml_tensor * s = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, d_inner, n_seqs);
  195. ggml_tensor * x = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_seq_tokens, n_seqs);
  196. ggml_tensor * dt = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_seq_tokens, n_seqs);
  197. ggml_tensor * B = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, n_seq_tokens, n_seqs);
  198. ggml_tensor * C = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, n_seq_tokens, n_seqs);
  199. op_tensor = ggml_ssm_scan(ctx, s, x, dt, w, B, C);
  200. } break;
  201. case GGML_OP_RWKV_WKV6:
  202. {
  203. // FIXME
  204. const int64_t S = 123;
  205. const int64_t H = 123;
  206. const int64_t n_tokens = 123;
  207. const int64_t n_seqs = 123;
  208. ggml_tensor * k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  209. ggml_tensor * v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  210. ggml_tensor * r = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  211. ggml_tensor * tf = w;
  212. ggml_tensor * td = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  213. ggml_tensor * state = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, S, n_seqs, S, H);
  214. op_tensor = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, state);
  215. } break;
  216. case GGML_OP_IM2COL:
  217. {
  218. const int n_embd = hparams.n_embd;
  219. ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, n_embd, w->ne[1], 1, 1);
  220. op_tensor = ggml_im2col(ctx, w, b, 1, 0, 0, 0, 1, 0, false, GGML_TYPE_F16);
  221. } break;
  222. default:
  223. GGML_ABORT("%s: missing test for op %s for tensor %s", __func__, ggml_op_name(op), w->name);
  224. }
  225. // create a temporary dummy buffer for the weight so that supports_op can check the buffer type
  226. GGML_ASSERT(w->buffer == nullptr);
  227. w->buffer = ggml_backend_buft_alloc_buffer(buft, 0);
  228. bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
  229. ggml_backend_buffer_free(w->buffer);
  230. w->buffer = nullptr;
  231. return op_supported;
  232. }
  233. // lists of buffer types used for each layer
  234. using buft_list_t = std::vector<std::pair<ggml_backend_dev_t, ggml_backend_buffer_type_t>>;
  235. // find the first buffer type in the list that can use the tensor
  236. static ggml_backend_buffer_type_t select_weight_buft(const llama_hparams & hparams, ggml_tensor * tensor, ggml_op op, const buft_list_t & buft_list) {
  237. GGML_ASSERT(!buft_list.empty());
  238. for (const auto & cur : buft_list) {
  239. ggml_backend_dev_t cur_dev = cur.first;
  240. ggml_backend_buffer_type_t cur_buft = cur.second;
  241. if (weight_buft_supported(hparams, tensor, op, cur_buft, cur_dev)) {
  242. return cur_buft;
  243. }
  244. }
  245. return nullptr;
  246. }
  247. // CPU: ACCEL -> GPU host -> CPU extra -> CPU
  248. static buft_list_t make_cpu_buft_list(const std::vector<ggml_backend_dev_t> & devices) {
  249. buft_list_t buft_list;
  250. // add ACCEL buffer types
  251. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  252. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  253. if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_ACCEL) {
  254. auto * buft = ggml_backend_dev_buffer_type(dev);
  255. // skip
  256. if (buft != ggml_backend_cpu_buffer_type()) {
  257. buft_list.emplace_back(dev, buft);
  258. }
  259. }
  260. }
  261. // add a host buffer type
  262. // storing the tensors in a host buffer is useful when the processing of large batches
  263. // is offloaded to a GPU device, since it reduces the time spent on data transfers
  264. // generally, this will be done using the first device in the list
  265. // a better approach would be to handle this on a weight-by-weight basis using the offload_op
  266. // function of the device to determine if it would benefit from being stored in a host buffer
  267. for (auto * dev : devices) {
  268. ggml_backend_buffer_type_t buft = ggml_backend_dev_host_buffer_type(dev);
  269. if (buft) {
  270. buft_list.emplace_back(dev, buft);
  271. break;
  272. }
  273. }
  274. // add extra buffer types, only if no GPU device is present
  275. // ref: https://github.com/ggml-org/llama.cpp/issues/12481#issuecomment-2743136094
  276. auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  277. auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
  278. auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
  279. ggml_backend_reg_get_proc_address(cpu_reg, "ggml_backend_dev_get_extra_bufts");
  280. if (ggml_backend_dev_get_extra_bufts_fn) {
  281. ggml_backend_buffer_type_t * extra_bufts = ggml_backend_dev_get_extra_bufts_fn(cpu_dev);
  282. while (extra_bufts && *extra_bufts) {
  283. buft_list.emplace_back(cpu_dev, *extra_bufts);
  284. ++extra_bufts;
  285. }
  286. }
  287. // add the CPU buffer type
  288. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  289. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  290. if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU) {
  291. buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev));
  292. }
  293. }
  294. return buft_list;
  295. }
  296. // GPU: split if LLAMA_SPLIT_MODE_ROW -> GPU
  297. static buft_list_t make_gpu_buft_list(ggml_backend_dev_t dev, llama_split_mode split_mode, const float * tensor_split) {
  298. buft_list_t buft_list;
  299. // add the device split buffer type if requested and available
  300. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  301. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  302. auto ggml_backend_split_buffer_type_fn = (ggml_backend_split_buffer_type_t)
  303. ggml_backend_reg_get_proc_address(reg, "ggml_backend_split_buffer_type");
  304. if (ggml_backend_split_buffer_type_fn) {
  305. size_t dev_index = [&]() {
  306. auto * reg = ggml_backend_dev_backend_reg(dev);
  307. for (size_t i = 0; i < ggml_backend_reg_dev_count(reg); ++i) {
  308. if (ggml_backend_reg_dev_get(reg, i) == dev) {
  309. return i;
  310. }
  311. }
  312. throw std::runtime_error(format("device %s not found in its backend reg", ggml_backend_dev_name(dev)));
  313. }();
  314. auto * buft = ggml_backend_split_buffer_type_fn(dev_index, tensor_split);
  315. if (buft != nullptr) {
  316. buft_list.emplace_back(dev, buft);
  317. }
  318. }
  319. }
  320. // add the device default buffer type
  321. buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev));
  322. return buft_list;
  323. }
  324. struct llama_model::impl {
  325. impl() {}
  326. ~impl() {}
  327. uint64_t n_elements = 0;
  328. size_t n_bytes = 0;
  329. std::string desc_str;
  330. // model memory mapped files
  331. llama_mmaps mappings;
  332. // objects representing data potentially being locked in memory
  333. llama_mlocks mlock_bufs;
  334. llama_mlocks mlock_mmaps;
  335. // contexts where the model tensors metadata is stored
  336. std::vector<ggml_context_ptr> ctxs;
  337. // the model memory buffers for the tensor data
  338. std::vector<ggml_backend_buffer_ptr> bufs;
  339. buft_list_t cpu_buft_list;
  340. std::map<ggml_backend_dev_t, buft_list_t> gpu_buft_list;
  341. struct layer_dev {
  342. ggml_backend_dev_t dev;
  343. buft_list_t * buft_list;
  344. };
  345. layer_dev dev_input = {};
  346. layer_dev dev_output = {};
  347. std::vector<layer_dev> dev_layer;
  348. bool has_tensor_overrides;
  349. };
  350. llama_model::llama_model(const llama_model_params & params) : params(params), pimpl(std::make_unique<impl>()) {
  351. pimpl->has_tensor_overrides = params.tensor_buft_overrides && params.tensor_buft_overrides[0].pattern;
  352. }
  353. llama_model::~llama_model() {}
  354. void llama_model::load_stats(llama_model_loader & ml) {
  355. pimpl->n_elements = ml.n_elements;
  356. pimpl->n_bytes = ml.n_bytes;
  357. }
  358. void llama_model::load_arch(llama_model_loader & ml) {
  359. arch = ml.get_arch();
  360. if (arch == LLM_ARCH_UNKNOWN) {
  361. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  362. }
  363. }
  364. void llama_model::load_hparams(llama_model_loader & ml) {
  365. const gguf_context * ctx = ml.meta.get();
  366. // get metadata as string
  367. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  368. gguf_type type = gguf_get_kv_type(ctx, i);
  369. if (type == GGUF_TYPE_ARRAY) {
  370. continue;
  371. }
  372. const char * name = gguf_get_key(ctx, i);
  373. const std::string value = gguf_kv_to_str(ctx, i);
  374. gguf_kv.emplace(name, value);
  375. }
  376. // get general kv
  377. ml.get_key(LLM_KV_GENERAL_NAME, name, false);
  378. // everything past this point is not vocab-related
  379. if (hparams.vocab_only) {
  380. return;
  381. }
  382. ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  383. ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  384. ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
  385. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  386. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  387. if (arch == LLM_ARCH_WAVTOKENIZER_DEC) {
  388. ml.get_key(LLM_KV_FEATURES_LENGTH, hparams.n_embd_features);
  389. ml.get_key(LLM_KV_POSNET_EMBEDDING_LENGTH, hparams.posnet.n_embd);
  390. ml.get_key(LLM_KV_POSNET_BLOCK_COUNT, hparams.posnet.n_layer);
  391. ml.get_key(LLM_KV_CONVNEXT_EMBEDDING_LENGTH, hparams.convnext.n_embd);
  392. ml.get_key(LLM_KV_CONVNEXT_BLOCK_COUNT, hparams.convnext.n_layer);
  393. }
  394. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  395. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  396. if (hparams.n_expert > 0) {
  397. GGML_ASSERT(hparams.n_expert_used > 0);
  398. } else {
  399. GGML_ASSERT(hparams.n_expert_used == 0);
  400. }
  401. // zero-out the array hparams
  402. std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0);
  403. std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
  404. std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0);
  405. ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer, false);
  406. ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer, false);
  407. // n_head_kv is optional, default to n_head
  408. hparams.n_head_kv_arr = hparams.n_head_arr;
  409. ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv_arr, hparams.n_layer, false);
  410. bool rope_finetuned = false;
  411. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  412. hparams.rope_finetuned = rope_finetuned;
  413. hparams.n_ctx_orig_yarn = hparams.n_ctx_train;
  414. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn, false);
  415. // rope_freq_base (optional)
  416. hparams.rope_freq_base_train = 10000.0f;
  417. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  418. std::string rope_scaling("linear");
  419. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  420. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  421. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  422. // rope_freq_scale (inverse of the kv) is optional
  423. float ropescale = 0.0f;
  424. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  425. // try the old key name
  426. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  427. }
  428. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  429. // by default assume that the sliding-window layers use the same scaling type as the non-sliding-window layers
  430. hparams.rope_freq_base_train_swa = hparams.rope_freq_base_train;
  431. hparams.rope_freq_scale_train_swa = hparams.rope_freq_scale_train;
  432. ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false);
  433. // non-transformer models do not have attention heads
  434. if (hparams.n_head() > 0) {
  435. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  436. // gpt-j n_rot = rotary_dim
  437. hparams.n_embd_head_k = hparams.n_embd / hparams.n_head();
  438. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  439. hparams.n_embd_head_v = hparams.n_embd / hparams.n_head();
  440. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  441. // sanity check for n_rot (optional)
  442. hparams.n_rot = hparams.n_embd_head_k;
  443. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  444. if (arch == LLM_ARCH_LLAMA || arch == LLM_ARCH_DECI || arch == LLM_ARCH_FALCON) {
  445. if (hparams.n_rot != hparams.n_embd_head_k) {
  446. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
  447. }
  448. }
  449. } else {
  450. hparams.n_rot = 0;
  451. hparams.n_embd_head_k = 0;
  452. hparams.n_embd_head_v = 0;
  453. }
  454. // for differentiating model types
  455. uint32_t n_vocab = 0;
  456. ml.get_key(LLM_KV_VOCAB_SIZE, n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, n_vocab, false);
  457. // arch-specific KVs
  458. switch (arch) {
  459. case LLM_ARCH_LLAMA:
  460. {
  461. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  462. if (hparams.n_expert == 8) {
  463. switch (hparams.n_layer) {
  464. case 32: type = LLM_TYPE_8x7B; break;
  465. case 56: type = LLM_TYPE_8x22B; break;
  466. default: type = LLM_TYPE_UNKNOWN;
  467. }
  468. } else {
  469. switch (hparams.n_layer) {
  470. case 16: type = LLM_TYPE_1B; break; // Llama 3.2 1B
  471. case 22: type = LLM_TYPE_1B; break;
  472. case 26: type = LLM_TYPE_3B; break;
  473. case 28: type = LLM_TYPE_3B; break; // Llama 3.2 3B
  474. // granite uses a vocab with len 49152
  475. case 32: type = n_vocab == 49152 ? LLM_TYPE_3B : (n_vocab < 40000 ? LLM_TYPE_7B : LLM_TYPE_8B); break;
  476. case 36: type = LLM_TYPE_8B; break; // granite
  477. case 40: type = LLM_TYPE_13B; break;
  478. case 48: type = LLM_TYPE_34B; break;
  479. case 60: type = LLM_TYPE_30B; break;
  480. case 80: type = hparams.n_head() == hparams.n_head_kv() ? LLM_TYPE_65B : LLM_TYPE_70B; break;
  481. default: type = LLM_TYPE_UNKNOWN;
  482. }
  483. }
  484. } break;
  485. case LLM_ARCH_LLAMA4:
  486. {
  487. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  488. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  489. ml.get_key(LLM_KV_INTERLEAVE_MOE_LAYER_STEP, hparams.n_moe_layer_step);
  490. hparams.n_swa_pattern = 4; // pattern: 3 chunked - 1 full
  491. hparams.n_attn_chunk = 8192; // should this be a gguf kv? currently it's the same for Scout and Maverick
  492. hparams.n_swa = 1; // TODO @ngxson : this is added to trigger the SWA branch (we store the chunked attn mask in the SWA tensor), will need to clean this up later
  493. switch (hparams.n_expert) {
  494. case 16: type = LLM_TYPE_17B_16E; break;
  495. case 128: type = LLM_TYPE_17B_128E; break;
  496. default: type = LLM_TYPE_UNKNOWN;
  497. }
  498. if (type == LLM_TYPE_17B_128E) {
  499. hparams.use_kq_norm = false;
  500. }
  501. } break;
  502. case LLM_ARCH_DECI:
  503. {
  504. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  505. switch (hparams.n_layer) {
  506. case 32: type = LLM_TYPE_7B; break;
  507. case 80: type = LLM_TYPE_70B; break;
  508. default: type = LLM_TYPE_UNKNOWN;
  509. }
  510. } break;
  511. case LLM_ARCH_MINICPM:
  512. {
  513. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  514. ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
  515. ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
  516. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  517. switch (hparams.n_layer) {
  518. case 52: type = LLM_TYPE_1B; break;
  519. case 40: type = LLM_TYPE_2B; break;
  520. default: type = LLM_TYPE_UNKNOWN;
  521. }
  522. } break;
  523. case LLM_ARCH_MINICPM3:
  524. {
  525. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  526. ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
  527. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  528. switch (hparams.n_layer) {
  529. case 62: type = LLM_TYPE_4B; break;
  530. default: type = LLM_TYPE_UNKNOWN;
  531. }
  532. } break;
  533. case LLM_ARCH_GROK:
  534. {
  535. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  536. switch (hparams.n_layer) {
  537. case 64: type = LLM_TYPE_314B; break;
  538. default: type = LLM_TYPE_UNKNOWN;
  539. }
  540. } break;
  541. case LLM_ARCH_FALCON:
  542. {
  543. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  544. switch (hparams.n_layer) {
  545. case 32: type = LLM_TYPE_7B; break;
  546. case 60: type = LLM_TYPE_40B; break;
  547. default: type = LLM_TYPE_UNKNOWN;
  548. }
  549. } break;
  550. case LLM_ARCH_BAICHUAN:
  551. {
  552. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  553. switch (hparams.n_layer) {
  554. case 32: type = LLM_TYPE_7B; break;
  555. case 40: type = LLM_TYPE_13B; break;
  556. default: type = LLM_TYPE_UNKNOWN;
  557. }
  558. if (type == LLM_TYPE_13B) {
  559. // TODO: become GGUF KV parameter
  560. hparams.f_max_alibi_bias = 8.0f;
  561. }
  562. } break;
  563. case LLM_ARCH_STARCODER:
  564. {
  565. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  566. switch (hparams.n_layer) {
  567. case 24: type = LLM_TYPE_1B; break;
  568. case 36: type = LLM_TYPE_3B; break;
  569. case 42: type = LLM_TYPE_7B; break;
  570. case 40: type = LLM_TYPE_15B; break;
  571. default: type = LLM_TYPE_UNKNOWN;
  572. }
  573. } break;
  574. case LLM_ARCH_REFACT:
  575. {
  576. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  577. switch (hparams.n_layer) {
  578. case 32: type = LLM_TYPE_1B; break;
  579. default: type = LLM_TYPE_UNKNOWN;
  580. }
  581. // TODO: become GGUF KV parameter
  582. hparams.f_max_alibi_bias = 8.0f;
  583. } break;
  584. case LLM_ARCH_BERT:
  585. {
  586. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  587. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  588. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  589. switch (hparams.n_layer) {
  590. case 3:
  591. type = LLM_TYPE_17M; break; // bge-micro
  592. case 6:
  593. type = LLM_TYPE_22M; break; // MiniLM-L6
  594. case 12:
  595. switch (hparams.n_embd) {
  596. case 384: type = LLM_TYPE_33M; break; // MiniLM-L12, bge-small
  597. case 768: type = LLM_TYPE_109M; break; // bge-base
  598. default: type = LLM_TYPE_UNKNOWN;
  599. } break;
  600. case 24:
  601. type = LLM_TYPE_335M; break; // bge-large
  602. default: type = LLM_TYPE_UNKNOWN;
  603. }
  604. } break;
  605. case LLM_ARCH_JINA_BERT_V2:
  606. {
  607. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  608. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  609. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  610. hparams.f_max_alibi_bias = 8.0f;
  611. switch (hparams.n_layer) {
  612. case 4: type = LLM_TYPE_33M; break; // jina-embeddings-small
  613. case 12: type = LLM_TYPE_137M; break; // jina-embeddings-base
  614. default: type = LLM_TYPE_UNKNOWN;
  615. }
  616. } break;
  617. case LLM_ARCH_NOMIC_BERT:
  618. case LLM_ARCH_NOMIC_BERT_MOE:
  619. {
  620. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  621. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  622. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  623. ml.get_key(LLM_KV_MOE_EVERY_N_LAYERS, hparams.moe_every_n_layers, 0);
  624. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  625. type = LLM_TYPE_137M;
  626. }
  627. } break;
  628. case LLM_ARCH_BLOOM:
  629. {
  630. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  631. switch (hparams.n_layer) {
  632. case 24: type = LLM_TYPE_1B; break;
  633. case 30:
  634. switch (hparams.n_embd) {
  635. case 2560: type = LLM_TYPE_3B; break;
  636. case 4096: type = LLM_TYPE_7B; break;
  637. default: type = LLM_TYPE_UNKNOWN;
  638. } break;
  639. default: type = LLM_TYPE_UNKNOWN;
  640. }
  641. // TODO: become GGUF KV parameter
  642. hparams.f_max_alibi_bias = 8.0f;
  643. } break;
  644. case LLM_ARCH_MPT:
  645. {
  646. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  647. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  648. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  649. switch (hparams.n_layer) {
  650. case 32: type = LLM_TYPE_7B; break;
  651. case 48: type = LLM_TYPE_30B; break;
  652. default: type = LLM_TYPE_UNKNOWN;
  653. }
  654. } break;
  655. case LLM_ARCH_STABLELM:
  656. {
  657. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  658. switch (hparams.n_layer) {
  659. case 24: type = LLM_TYPE_1B; break;
  660. case 32: type = LLM_TYPE_3B; break;
  661. case 40: type = LLM_TYPE_12B; break;
  662. default: type = LLM_TYPE_UNKNOWN;
  663. }
  664. } break;
  665. case LLM_ARCH_QWEN:
  666. {
  667. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  668. switch (hparams.n_layer) {
  669. case 32: type = LLM_TYPE_7B; break;
  670. case 40: type = LLM_TYPE_13B; break;
  671. default: type = LLM_TYPE_UNKNOWN;
  672. }
  673. } break;
  674. case LLM_ARCH_QWEN2VL:
  675. {
  676. ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, true);
  677. }
  678. // fall through
  679. case LLM_ARCH_QWEN2:
  680. {
  681. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  682. switch (hparams.n_layer) {
  683. case 24: type = hparams.n_embd == 1024 ? LLM_TYPE_0_5B : LLM_TYPE_1B; break;
  684. case 28: type = hparams.n_embd == 1536 ? LLM_TYPE_1_5B : LLM_TYPE_7B; break;
  685. case 32: type = LLM_TYPE_7B; break;
  686. case 36: type = LLM_TYPE_3B; break;
  687. case 40: type = hparams.n_head() == 20 ? LLM_TYPE_4B : LLM_TYPE_13B; break;
  688. case 48: type = LLM_TYPE_14B; break;
  689. case 64: type = LLM_TYPE_32B; break;
  690. case 80: type = LLM_TYPE_70B; break;
  691. default: type = LLM_TYPE_UNKNOWN;
  692. }
  693. } break;
  694. case LLM_ARCH_QWEN2MOE:
  695. {
  696. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  697. ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
  698. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  699. switch (hparams.n_layer) {
  700. case 24: type = LLM_TYPE_A2_7B; break;
  701. case 28: type = LLM_TYPE_57B_A14B; break;
  702. default: type = LLM_TYPE_UNKNOWN;
  703. }
  704. } break;
  705. case LLM_ARCH_QWEN3:
  706. {
  707. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  708. switch (hparams.n_layer) {
  709. case 28: type = hparams.n_embd == 1024 ? LLM_TYPE_0_6B : LLM_TYPE_1_7B; break;
  710. case 36: type = hparams.n_embd == 2560 ? LLM_TYPE_4B : LLM_TYPE_8B; break;
  711. case 40: type = LLM_TYPE_14B; break;
  712. case 64: type = LLM_TYPE_32B; break;
  713. default: type = LLM_TYPE_UNKNOWN;
  714. }
  715. } break;
  716. case LLM_ARCH_QWEN3MOE:
  717. {
  718. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  719. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  720. switch (hparams.n_layer) {
  721. case 48: type = LLM_TYPE_30B_A3B; break;
  722. case 94: type = LLM_TYPE_235B_A22B; break;
  723. default: type = LLM_TYPE_UNKNOWN;
  724. }
  725. } break;
  726. case LLM_ARCH_PHI2:
  727. {
  728. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  729. switch (hparams.n_layer) {
  730. case 24: type = LLM_TYPE_1B; break;
  731. case 32: type = LLM_TYPE_3B; break;
  732. default: type = LLM_TYPE_UNKNOWN;
  733. }
  734. } break;
  735. case LLM_ARCH_PHI3:
  736. {
  737. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  738. switch (hparams.n_layer) {
  739. case 24: type = LLM_TYPE_1B; break;
  740. case 32: type = LLM_TYPE_3B; break;
  741. case 40: type = LLM_TYPE_14B; break;
  742. default: type = LLM_TYPE_UNKNOWN;
  743. }
  744. // for backward compatibility ; see: https://github.com/ggerganov/llama.cpp/pull/8931
  745. if ((hparams.n_layer == 32 || hparams.n_layer == 40) && hparams.n_ctx_train == 4096) {
  746. // default value for Phi-3-mini-4k-instruct and Phi-3-medium-4k-instruct
  747. hparams.n_swa = 2047;
  748. } else if (hparams.n_layer == 32 && hparams.n_head_kv(0) == 32 && hparams.n_ctx_train == 131072) {
  749. // default value for Phi-3-mini-128k-instruct
  750. // note: this seems incorrect because the window is bigger than the train context?
  751. hparams.n_swa = 262144;
  752. } else if (hparams.n_layer == 40 && hparams.n_ctx_train == 131072) {
  753. // default value for Phi-3-medium-128k-instruct
  754. // note: this seems incorrect because the window is equal to the train context?
  755. hparams.n_swa = 131072;
  756. }
  757. bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  758. if (!found_swa && hparams.n_swa == 0) {
  759. throw std::runtime_error("invalid value for sliding_window");
  760. }
  761. } break;
  762. case LLM_ARCH_PHIMOE:
  763. {
  764. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  765. switch (hparams.n_layer) {
  766. case 32: type = LLM_TYPE_16x3_8B; break;
  767. default: type = LLM_TYPE_UNKNOWN;
  768. }
  769. } break;
  770. case LLM_ARCH_PLAMO:
  771. {
  772. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  773. switch (hparams.n_layer) {
  774. case 40: type = LLM_TYPE_13B; break;
  775. default: type = LLM_TYPE_UNKNOWN;
  776. }
  777. } break;
  778. case LLM_ARCH_GPT2:
  779. {
  780. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  781. switch (hparams.n_layer) {
  782. case 12: type = LLM_TYPE_SMALL; break;
  783. case 24: type = LLM_TYPE_MEDIUM; break;
  784. case 36: type = LLM_TYPE_LARGE; break;
  785. case 48: type = LLM_TYPE_XL; break;
  786. default: type = LLM_TYPE_UNKNOWN;
  787. }
  788. } break;
  789. case LLM_ARCH_CODESHELL:
  790. {
  791. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  792. switch (hparams.n_layer) {
  793. case 42: type = LLM_TYPE_7B; break;
  794. default: type = LLM_TYPE_UNKNOWN;
  795. }
  796. } break;
  797. case LLM_ARCH_ORION:
  798. {
  799. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  800. switch (hparams.n_layer) {
  801. case 40: type = LLM_TYPE_14B; break;
  802. default: type = LLM_TYPE_UNKNOWN;
  803. }
  804. } break;
  805. case LLM_ARCH_INTERNLM2:
  806. {
  807. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  808. switch (hparams.n_layer) {
  809. case 32: type = LLM_TYPE_7B; break;
  810. case 48: type = LLM_TYPE_20B; break;
  811. default: type = LLM_TYPE_UNKNOWN;
  812. }
  813. } break;
  814. case LLM_ARCH_GEMMA:
  815. {
  816. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  817. switch (hparams.n_layer) {
  818. case 18: type = LLM_TYPE_2B; break;
  819. case 28: type = LLM_TYPE_7B; break;
  820. default: type = LLM_TYPE_UNKNOWN;
  821. }
  822. } break;
  823. case LLM_ARCH_GEMMA2:
  824. {
  825. hparams.n_swa = 4096; // default value of gemma 2
  826. hparams.n_swa_pattern = 2;
  827. hparams.attn_soft_cap = true;
  828. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  829. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  830. ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping, false);
  831. ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false);
  832. switch (hparams.n_layer) {
  833. case 26: type = LLM_TYPE_2B; break;
  834. case 42: type = LLM_TYPE_9B; break;
  835. case 46: type = LLM_TYPE_27B; break;
  836. default: type = LLM_TYPE_UNKNOWN;
  837. }
  838. } break;
  839. case LLM_ARCH_GEMMA3:
  840. {
  841. hparams.n_swa_pattern = 6;
  842. hparams.rope_freq_base_train_swa = 10000.0f;
  843. hparams.rope_freq_scale_train_swa = 1.0f;
  844. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
  845. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  846. switch (hparams.n_layer) {
  847. case 26: type = LLM_TYPE_1B; break;
  848. case 34: type = LLM_TYPE_4B; break;
  849. case 48: type = LLM_TYPE_12B; break;
  850. case 62: type = LLM_TYPE_27B; break;
  851. default: type = LLM_TYPE_UNKNOWN;
  852. }
  853. hparams.f_attention_scale = type == LLM_TYPE_27B
  854. ? 1.0f / std::sqrt(float(hparams.n_embd / hparams.n_head(0)))
  855. : 1.0f / std::sqrt(float(hparams.n_embd_head_k));
  856. } break;
  857. case LLM_ARCH_STARCODER2:
  858. {
  859. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  860. switch (hparams.n_layer) {
  861. case 30: type = LLM_TYPE_3B; break;
  862. case 32: type = LLM_TYPE_7B; break;
  863. case 40: type = LLM_TYPE_15B; break;
  864. case 52: type = LLM_TYPE_20B; break; // granite
  865. case 88: type = LLM_TYPE_34B; break; // granite
  866. default: type = LLM_TYPE_UNKNOWN;
  867. }
  868. } break;
  869. case LLM_ARCH_MAMBA:
  870. {
  871. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  872. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  873. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  874. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  875. ml.get_key(LLM_KV_SSM_DT_B_C_RMS, hparams.ssm_dt_b_c_rms, false);
  876. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  877. switch (hparams.n_layer) {
  878. case 24:
  879. switch (hparams.n_embd) {
  880. case 768: type = LLM_TYPE_SMALL; break;
  881. default: type = LLM_TYPE_UNKNOWN;
  882. } break;
  883. case 48:
  884. switch (hparams.n_embd) {
  885. case 1024: type = LLM_TYPE_MEDIUM; break;
  886. case 1536: type = LLM_TYPE_LARGE; break;
  887. case 2048: type = LLM_TYPE_XL; break;
  888. default: type = LLM_TYPE_UNKNOWN;
  889. } break;
  890. case 64:
  891. switch (hparams.n_embd) {
  892. case 2560: type = LLM_TYPE_3B; break;
  893. default: type = LLM_TYPE_UNKNOWN;
  894. } break;
  895. default: type = LLM_TYPE_UNKNOWN;
  896. }
  897. } break;
  898. case LLM_ARCH_XVERSE:
  899. {
  900. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  901. switch (hparams.n_layer) {
  902. case 32: type = LLM_TYPE_7B; break;
  903. case 40: type = LLM_TYPE_13B; break;
  904. case 80: type = LLM_TYPE_65B; break;
  905. default: type = LLM_TYPE_UNKNOWN;
  906. }
  907. } break;
  908. case LLM_ARCH_COMMAND_R:
  909. {
  910. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  911. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  912. switch (hparams.n_layer) {
  913. case 40: type = LLM_TYPE_35B; break;
  914. default: type = LLM_TYPE_UNKNOWN;
  915. }
  916. } break;
  917. case LLM_ARCH_COHERE2:
  918. {
  919. hparams.n_swa_pattern = 4;
  920. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
  921. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  922. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  923. switch (hparams.n_layer) {
  924. case 32: type = LLM_TYPE_8B; break;
  925. default: type = LLM_TYPE_UNKNOWN;
  926. }
  927. } break;
  928. case LLM_ARCH_DBRX:
  929. {
  930. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  931. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
  932. switch (hparams.n_layer) {
  933. case 40: type = LLM_TYPE_16x12B; break;
  934. default: type = LLM_TYPE_UNKNOWN;
  935. }
  936. } break;
  937. case LLM_ARCH_OLMO:
  938. {
  939. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  940. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  941. switch (hparams.n_layer) {
  942. case 22: type = LLM_TYPE_1B; break;
  943. case 32: type = LLM_TYPE_7B; break;
  944. case 80: type = LLM_TYPE_70B; break;
  945. default: type = LLM_TYPE_UNKNOWN;
  946. }
  947. } break;
  948. case LLM_ARCH_OLMO2:
  949. {
  950. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  951. switch (hparams.n_layer) {
  952. case 16: type = LLM_TYPE_1B; break;
  953. case 32: type = LLM_TYPE_7B; break;
  954. case 40: type = LLM_TYPE_13B; break;
  955. case 64: type = LLM_TYPE_32B; break;
  956. default: type = LLM_TYPE_UNKNOWN;
  957. }
  958. } break;
  959. case LLM_ARCH_OLMOE:
  960. {
  961. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  962. switch (hparams.n_layer) {
  963. case 16: type = LLM_TYPE_A1_7B; break;
  964. default: type = LLM_TYPE_UNKNOWN;
  965. }
  966. } break;
  967. case LLM_ARCH_OPENELM:
  968. {
  969. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  970. switch (hparams.n_layer) {
  971. case 16: type = LLM_TYPE_270M; break;
  972. case 20: type = LLM_TYPE_450M; break;
  973. case 28: type = LLM_TYPE_1B; break;
  974. case 36: type = LLM_TYPE_3B; break;
  975. default: type = LLM_TYPE_UNKNOWN;
  976. }
  977. } break;
  978. case LLM_ARCH_GPTNEOX:
  979. {
  980. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  981. ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res);
  982. switch (hparams.n_layer) {
  983. case 6:
  984. switch (hparams.n_ff()) {
  985. case 512: type = LLM_TYPE_14M; break;
  986. case 2048: type = LLM_TYPE_70M; break;
  987. default: type = LLM_TYPE_UNKNOWN;
  988. } break;
  989. case 12:
  990. switch (hparams.n_ff()) {
  991. case 3072: type = LLM_TYPE_160M; break;
  992. default: type = LLM_TYPE_UNKNOWN;
  993. } break;
  994. case 16:
  995. switch (hparams.n_ff()) {
  996. case 8192: type = LLM_TYPE_1B; break;
  997. default: type = LLM_TYPE_UNKNOWN;
  998. } break;
  999. case 24:
  1000. switch (hparams.n_ff()) {
  1001. case 4096: type = LLM_TYPE_410M; break;
  1002. case 8192: type = LLM_TYPE_1_4B; break;
  1003. default: type = LLM_TYPE_UNKNOWN;
  1004. } break;
  1005. case 32:
  1006. switch (hparams.n_ff()) {
  1007. case 10240: type = LLM_TYPE_2_8B; break;
  1008. case 16384: type = LLM_TYPE_6_9B; break;
  1009. default: type = LLM_TYPE_UNKNOWN;
  1010. } break;
  1011. case 36:
  1012. switch (hparams.n_ff()) {
  1013. case 20480: type = LLM_TYPE_12B; break;
  1014. default: type = LLM_TYPE_UNKNOWN;
  1015. } break;
  1016. case 44:
  1017. switch (hparams.n_ff()) {
  1018. case 24576: type = LLM_TYPE_20B; break;
  1019. default: type = LLM_TYPE_UNKNOWN;
  1020. } break;
  1021. default: type = LLM_TYPE_UNKNOWN;
  1022. }
  1023. } break;
  1024. case LLM_ARCH_ARCTIC:
  1025. {
  1026. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1027. if (hparams.n_expert == 128) {
  1028. switch (hparams.n_layer) {
  1029. case 35: type = LLM_TYPE_10B_128x3_66B; break;
  1030. default: type = LLM_TYPE_UNKNOWN;
  1031. }
  1032. } else {
  1033. type = LLM_TYPE_UNKNOWN;
  1034. }
  1035. } break;
  1036. case LLM_ARCH_DEEPSEEK:
  1037. {
  1038. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1039. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1040. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1041. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1042. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1043. switch (hparams.n_layer) {
  1044. case 28: type = LLM_TYPE_20B; break;
  1045. default: type = LLM_TYPE_UNKNOWN;
  1046. }
  1047. } break;
  1048. case LLM_ARCH_DEEPSEEK2:
  1049. {
  1050. bool is_lite = (hparams.n_layer == 27);
  1051. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1052. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1053. if (!is_lite) {
  1054. ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
  1055. }
  1056. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  1057. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH_MLA, hparams.n_embd_head_k_mla, false);
  1058. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH_MLA, hparams.n_embd_head_v_mla, false);
  1059. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1060. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1061. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1062. ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
  1063. ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
  1064. if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
  1065. // for compatibility with existing DeepSeek V2 and V2.5 GGUFs
  1066. // that have no expert_gating_func model parameter set
  1067. hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX;
  1068. }
  1069. ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul);
  1070. switch (hparams.n_layer) {
  1071. case 27: type = LLM_TYPE_16B; break;
  1072. case 60: type = LLM_TYPE_236B; break;
  1073. case 61: type = LLM_TYPE_671B; break;
  1074. default: type = LLM_TYPE_UNKNOWN;
  1075. }
  1076. } break;
  1077. case LLM_ARCH_PLM:
  1078. {
  1079. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1080. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  1081. switch (hparams.n_layer) {
  1082. case 32: type = LLM_TYPE_1_8B; break;
  1083. default: type = LLM_TYPE_UNKNOWN;
  1084. }
  1085. } break;
  1086. case LLM_ARCH_CHATGLM:
  1087. {
  1088. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1089. switch (hparams.n_layer) {
  1090. case 28: {
  1091. if (hparams.n_head(0) == 16) {
  1092. type = LLM_TYPE_1_5B;
  1093. } else {
  1094. type = LLM_TYPE_6B;
  1095. }
  1096. } break;
  1097. case 40: {
  1098. if (hparams.n_head(0) == 24) {
  1099. type = LLM_TYPE_4B;
  1100. } else {
  1101. type = LLM_TYPE_9B;
  1102. }
  1103. } break;
  1104. default: type = LLM_TYPE_UNKNOWN;
  1105. }
  1106. } break;
  1107. case LLM_ARCH_GLM4:
  1108. {
  1109. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1110. switch (hparams.n_layer) {
  1111. case 40: type = LLM_TYPE_9B; break;
  1112. case 61: type = LLM_TYPE_32B; break;
  1113. default: type = LLM_TYPE_UNKNOWN;
  1114. }
  1115. } break;
  1116. case LLM_ARCH_BITNET:
  1117. {
  1118. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1119. switch (hparams.n_layer) {
  1120. case 26: type = LLM_TYPE_3B; break;
  1121. default: type = LLM_TYPE_UNKNOWN;
  1122. }
  1123. } break;
  1124. case LLM_ARCH_T5:
  1125. {
  1126. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1127. ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
  1128. uint32_t dec_start_token_id;
  1129. if (ml.get_key(LLM_KV_DECODER_START_TOKEN_ID, dec_start_token_id, false)) {
  1130. hparams.dec_start_token_id = dec_start_token_id;
  1131. }
  1132. switch (hparams.n_layer) {
  1133. case 6: type = LLM_TYPE_60M; break; // t5-small
  1134. case 8: type = LLM_TYPE_80M; break; // flan-t5-small
  1135. case 12:
  1136. switch (hparams.n_ff()) {
  1137. case 3072: type = LLM_TYPE_220M; break; // t5-base
  1138. case 2048: type = LLM_TYPE_250M; break; // flan-t5-base
  1139. default: type = LLM_TYPE_UNKNOWN;
  1140. } break;
  1141. case 24:
  1142. switch (hparams.n_ff()) {
  1143. case 4096: type = LLM_TYPE_770M; break; // t5-large
  1144. case 2816: type = LLM_TYPE_780M; break; // flan-t5-large
  1145. case 16384: type = LLM_TYPE_3B; break; // t5-3b
  1146. case 5120: type = LLM_TYPE_3B; break; // flan-t5-xl
  1147. case 65536: type = LLM_TYPE_11B; break; // t5-11b
  1148. case 10240: type = LLM_TYPE_11B; break; // flan-t5-xxl
  1149. default: type = LLM_TYPE_UNKNOWN;
  1150. } break;
  1151. default: type = LLM_TYPE_UNKNOWN;
  1152. }
  1153. } break;
  1154. case LLM_ARCH_T5ENCODER:
  1155. {
  1156. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1157. ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
  1158. type = LLM_TYPE_UNKNOWN;
  1159. } break;
  1160. case LLM_ARCH_JAIS:
  1161. {
  1162. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1163. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  1164. switch (hparams.n_layer) {
  1165. case 24: type = LLM_TYPE_1_3B; break;
  1166. case 40: type = LLM_TYPE_13B; break;
  1167. /* TODO: add variants */
  1168. default: type = LLM_TYPE_UNKNOWN;
  1169. }
  1170. } break;
  1171. case LLM_ARCH_NEMOTRON:
  1172. {
  1173. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1174. switch (hparams.n_layer) {
  1175. case 32: type = LLM_TYPE_4B; break;
  1176. default: type = LLM_TYPE_UNKNOWN;
  1177. }
  1178. } break;
  1179. case LLM_ARCH_EXAONE:
  1180. {
  1181. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1182. switch (hparams.n_layer) {
  1183. case 32: type = LLM_TYPE_8B; break;
  1184. default: type = LLM_TYPE_UNKNOWN;
  1185. }
  1186. } break;
  1187. case LLM_ARCH_RWKV6:
  1188. case LLM_ARCH_RWKV6QWEN2:
  1189. {
  1190. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps, false);
  1191. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps, false);
  1192. ml.get_key(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size);
  1193. ml.get_key(LLM_KV_TIME_MIX_EXTRA_DIM, hparams.time_mix_extra_dim);
  1194. ml.get_key(LLM_KV_TIME_DECAY_EXTRA_DIM, hparams.time_decay_extra_dim);
  1195. ml.get_key(LLM_KV_RESCALE_EVERY_N_LAYERS, hparams.rescale_every_n_layers, false);
  1196. ml.get_key(LLM_KV_TOKEN_SHIFT_COUNT, hparams.token_shift_count, false);
  1197. switch (hparams.n_layer) {
  1198. case 24: type = LLM_TYPE_1_6B; break;
  1199. case 32:
  1200. switch (hparams.n_embd) {
  1201. case 2560: type = LLM_TYPE_3B; break;
  1202. case 4096: type = LLM_TYPE_7B; break;
  1203. default: type = LLM_TYPE_UNKNOWN;
  1204. } break;
  1205. case 61: type = LLM_TYPE_14B; break;
  1206. case 64: type = LLM_TYPE_32B; break;
  1207. default: type = LLM_TYPE_UNKNOWN;
  1208. }
  1209. } break;
  1210. case LLM_ARCH_RWKV7:
  1211. case LLM_ARCH_ARWKV7:
  1212. {
  1213. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps, false);
  1214. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps, false);
  1215. ml.get_key(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size);
  1216. ml.get_key(LLM_KV_ATTENTION_DECAY_LORA_RANK, hparams.n_lora_decay);
  1217. ml.get_key(LLM_KV_ATTENTION_ICLR_LORA_RANK, hparams.n_lora_iclr);
  1218. ml.get_key(LLM_KV_ATTENTION_VALUE_RESIDUAL_MIX_LORA_RANK, hparams.n_lora_value_res_mix);
  1219. ml.get_key(LLM_KV_ATTENTION_GATE_LORA_RANK, hparams.n_lora_gate, false);
  1220. ml.get_key(LLM_KV_TOKEN_SHIFT_COUNT, hparams.token_shift_count, false);
  1221. switch (hparams.n_layer) {
  1222. case 12: type = LLM_TYPE_190M; break;
  1223. case 24:
  1224. switch (hparams.n_embd) {
  1225. case 1024: type = LLM_TYPE_450M; break;
  1226. case 2048: type = LLM_TYPE_1_5B; break;
  1227. default: type = LLM_TYPE_UNKNOWN;
  1228. } break;
  1229. case 28:
  1230. switch (hparams.n_embd) {
  1231. case 1536: type = LLM_TYPE_1_5B; break;
  1232. case 3584: type = LLM_TYPE_7B; break;
  1233. default: type = LLM_TYPE_UNKNOWN;
  1234. } break;
  1235. case 32: type = LLM_TYPE_2_9B; break; // RWKV-7-World
  1236. default: type = LLM_TYPE_UNKNOWN;
  1237. }
  1238. } break;
  1239. case LLM_ARCH_GRANITE:
  1240. case LLM_ARCH_GRANITE_MOE:
  1241. {
  1242. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1243. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  1244. ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
  1245. ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
  1246. ml.get_key(LLM_KV_ATTENTION_SCALE, hparams.f_attention_scale);
  1247. switch (hparams.n_layer) {
  1248. case 32: type = LLM_TYPE_3B; break;
  1249. case 40: type = LLM_TYPE_3B; break;
  1250. // Add additional layer/vocab/etc checks here for other model sizes
  1251. default: type = LLM_TYPE_UNKNOWN;
  1252. }
  1253. } break;
  1254. case LLM_ARCH_CHAMELEON:
  1255. {
  1256. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1257. hparams.f_norm_eps = 1e-5; // eps for qk-norm, torch default
  1258. ml.get_key(LLM_KV_SWIN_NORM, hparams.swin_norm);
  1259. switch (hparams.n_layer) {
  1260. case 32: type = LLM_TYPE_7B; break;
  1261. case 48: type = LLM_TYPE_34B; break;
  1262. default: type = LLM_TYPE_UNKNOWN;
  1263. }
  1264. } break;
  1265. case LLM_ARCH_WAVTOKENIZER_DEC:
  1266. {
  1267. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1268. ml.get_key(LLM_KV_ATTENTION_GROUPNORM_EPS, hparams.f_norm_group_eps);
  1269. ml.get_key(LLM_KV_ATTENTION_GROUPNORM_GROUPS, hparams.n_norm_groups);
  1270. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  1271. } break;
  1272. case LLM_ARCH_BAILINGMOE:
  1273. {
  1274. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1275. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1276. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1277. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1278. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1279. ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
  1280. switch (hparams.n_layer) {
  1281. case 28: type = LLM_TYPE_16B; break;
  1282. case 88: type = LLM_TYPE_290B; break;
  1283. default: type = LLM_TYPE_UNKNOWN;
  1284. }
  1285. } break;
  1286. default: throw std::runtime_error("unsupported model architecture");
  1287. }
  1288. pimpl->n_bytes = ml.n_bytes;
  1289. pimpl->desc_str = arch_name() + " " + type_name() + " " + ml.ftype_name();
  1290. if (hparams.f_max_alibi_bias > 0.0f) {
  1291. hparams.use_alibi = true;
  1292. }
  1293. hparams.rope_type = llama_model_rope_type(this);
  1294. }
  1295. void llama_model::load_vocab(llama_model_loader & ml) {
  1296. const auto kv = LLM_KV(arch);
  1297. vocab.load(ml, kv);
  1298. }
  1299. bool llama_model::load_tensors(llama_model_loader & ml) {
  1300. const auto & split_mode = params.split_mode;
  1301. const auto & n_gpu_layers = params.n_gpu_layers;
  1302. const auto & use_mlock = params.use_mlock;
  1303. const auto & tensor_split = params.tensor_split;
  1304. const int n_layer = hparams.n_layer;
  1305. const bool use_mmap_buffer = true;
  1306. LLAMA_LOG_INFO("%s: loading model tensors, this can take a while... (mmap = %s)\n", __func__, ml.use_mmap ? "true" : "false");
  1307. // build a list of buffer types for the CPU and GPU devices
  1308. pimpl->cpu_buft_list = make_cpu_buft_list(devices);
  1309. for (auto * dev : devices) {
  1310. buft_list_t buft_list = make_gpu_buft_list(dev, split_mode, tensor_split);
  1311. // add CPU buffer types as a fallback
  1312. buft_list.insert(buft_list.end(), pimpl->cpu_buft_list.begin(), pimpl->cpu_buft_list.end());
  1313. pimpl->gpu_buft_list.emplace(dev, std::move(buft_list));
  1314. }
  1315. // calculate the split points
  1316. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + n_devices(), [](float x) { return x == 0.0f; });
  1317. std::vector<float> splits(n_devices());
  1318. if (all_zero) {
  1319. // default split, by free memory
  1320. for (size_t i = 0; i < n_devices(); ++i) {
  1321. ggml_backend_dev_t dev = devices[i];
  1322. size_t total;
  1323. size_t free;
  1324. ggml_backend_dev_memory(dev, &free, &total);
  1325. splits[i] = free;
  1326. }
  1327. } else {
  1328. std::copy(tensor_split, tensor_split + n_devices(), splits.begin());
  1329. }
  1330. // sum and normalize the splits to get the split points
  1331. float split_sum = 0.0f;
  1332. for (size_t i = 0; i < n_devices(); ++i) {
  1333. split_sum += splits[i];
  1334. splits[i] = split_sum;
  1335. }
  1336. for (size_t i = 0; i < n_devices(); ++i) {
  1337. splits[i] /= split_sum;
  1338. }
  1339. ggml_backend_dev_t cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  1340. const int i_gpu_start = std::max((int) hparams.n_layer - n_gpu_layers, (int) 0);
  1341. const int act_gpu_layers = devices.empty() ? 0 : std::min(n_gpu_layers, (int)n_layer + 1);
  1342. auto get_layer_buft_list = [&](int il) -> llama_model::impl::layer_dev {
  1343. const bool is_swa = il < (int) hparams.n_layer && hparams.is_swa(il);
  1344. if (il < i_gpu_start || (il - i_gpu_start) >= act_gpu_layers) {
  1345. LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s, is_swa = %d\n", il, ggml_backend_dev_name(cpu_dev), is_swa);
  1346. return {cpu_dev, &pimpl->cpu_buft_list};
  1347. }
  1348. const int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + n_devices(), float(il - i_gpu_start)/act_gpu_layers) - splits.begin();
  1349. auto * dev = devices.at(layer_gpu);
  1350. LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s, is_swa = %d\n", il, ggml_backend_dev_name(dev), is_swa);
  1351. return {dev, &pimpl->gpu_buft_list.at(dev)};
  1352. };
  1353. // assign the input layer
  1354. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  1355. pimpl->dev_input = { cpu_dev, &pimpl->cpu_buft_list };
  1356. // assign the repeating layers to the devices according to the splits
  1357. pimpl->dev_layer.resize(n_layer);
  1358. for (int il = 0; il < n_layer; ++il) {
  1359. pimpl->dev_layer[il] = get_layer_buft_list(il);
  1360. }
  1361. // assign the output layer
  1362. pimpl->dev_output = get_layer_buft_list(n_layer);
  1363. // one ggml context per buffer type
  1364. int max_n_tensors = ml.n_tensors;
  1365. max_n_tensors += 1; // duplicated output tensor
  1366. max_n_tensors += n_layer*2; // duplicated rope freq tensors
  1367. const size_t ctx_size = ggml_tensor_overhead()*max_n_tensors;
  1368. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  1369. auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
  1370. auto it = ctx_map.find(buft);
  1371. if (it == ctx_map.end()) {
  1372. ggml_init_params params = {
  1373. /*.mem_size =*/ ctx_size,
  1374. /*.mem_buffer =*/ NULL,
  1375. /*.no_alloc =*/ true,
  1376. };
  1377. ggml_context * ctx = ggml_init(params);
  1378. if (!ctx) {
  1379. throw std::runtime_error(format("failed to create ggml context"));
  1380. }
  1381. ctx_map[buft] = ctx;
  1382. pimpl->ctxs.emplace_back(ctx);
  1383. return ctx;
  1384. }
  1385. return it->second;
  1386. };
  1387. const auto TENSOR_DUPLICATED = llama_model_loader::TENSOR_DUPLICATED;
  1388. const auto TENSOR_NOT_REQUIRED = llama_model_loader::TENSOR_NOT_REQUIRED;
  1389. // create tensors for the weights
  1390. {
  1391. // note: cast to int64_t since we will use these for the tensor dimensions
  1392. const int64_t n_head = hparams.n_head();
  1393. const int64_t n_head_kv = hparams.n_head_kv();
  1394. const int64_t n_embd = hparams.n_embd;
  1395. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  1396. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  1397. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  1398. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  1399. const int64_t n_ff = hparams.n_ff();
  1400. const int64_t n_embd_gqa = n_embd_v_gqa;
  1401. const int64_t n_vocab = vocab.n_tokens();
  1402. const int64_t n_token_types = vocab.n_token_types();
  1403. const int64_t n_rot = hparams.n_rot;
  1404. const int64_t n_expert = hparams.n_expert;
  1405. const int64_t n_expert_used = hparams.n_expert_used;
  1406. const int64_t n_ctx_train = hparams.n_ctx_train;
  1407. if (n_expert > 0 && hparams.n_expert_used == 0) {
  1408. throw std::runtime_error("model has expert layers but no expert layers are used");
  1409. }
  1410. int n_moved_tensors = 0;
  1411. ggml_tensor * first_moved_tensor = nullptr;
  1412. ggml_backend_buffer_type_t first_moved_from_buft = nullptr;
  1413. ggml_backend_buffer_type_t first_moved_to_buft = nullptr;
  1414. auto create_tensor = [&](const LLM_TN_IMPL & tn, const std::initializer_list<int64_t> & ne, int flags) -> ggml_tensor * {
  1415. ggml_tensor * t_meta = ml.get_tensor_meta(tn.str().c_str());
  1416. if (!t_meta) {
  1417. if (flags & TENSOR_NOT_REQUIRED) {
  1418. return nullptr;
  1419. }
  1420. throw std::runtime_error(format("missing tensor '%s'", tn.str().c_str()));
  1421. }
  1422. // some models use the token embedding tensor as the output, but since these are used in different layers and with different ops
  1423. // the tensor is duplicated
  1424. // to handle this, we check if the tensor is duplicated, and if so, we assume that it is being loaded as the output tensor
  1425. llm_tensor tn_tensor = tn.tensor;
  1426. if (tn.tensor == LLM_TENSOR_TOKEN_EMBD && flags & TENSOR_DUPLICATED) {
  1427. tn_tensor = LLM_TENSOR_OUTPUT;
  1428. }
  1429. llm_tensor_info info;
  1430. try {
  1431. info = llm_tensor_info_for(tn_tensor);
  1432. } catch (const std::out_of_range & e) {
  1433. throw std::runtime_error(format("missing tensor info mapping for %s", tn.str().c_str()));
  1434. }
  1435. // skip unused tensors
  1436. if (info.op == GGML_OP_NONE) {
  1437. const size_t nbytes = ggml_nbytes(t_meta);
  1438. LLAMA_LOG_WARN("model has unused tensor %s (size = %zu bytes) -- ignoring\n", tn.str().c_str(), nbytes);
  1439. ml.size_data -= nbytes;
  1440. ml.n_created++;
  1441. return nullptr;
  1442. }
  1443. // tensors with "bias" suffix are always used with GGML_OP_ADD
  1444. ggml_op op;
  1445. bool bias = tn.suffix != nullptr && strcmp(tn.suffix, "bias") == 0;
  1446. if (bias) {
  1447. op = GGML_OP_ADD;
  1448. } else {
  1449. op = info.op;
  1450. }
  1451. // sanity checks
  1452. if (info.layer == LLM_TENSOR_LAYER_INPUT || info.layer == LLM_TENSOR_LAYER_OUTPUT) {
  1453. if (tn.bid != -1) {
  1454. GGML_ABORT("input/output layer tensor %s used with a layer number", tn.str().c_str());
  1455. }
  1456. } else {
  1457. if (tn.bid == -1) {
  1458. GGML_ABORT("repeating layer tensor %s used without a layer number", tn.str().c_str());
  1459. }
  1460. }
  1461. // select the buffer type for this tensor
  1462. buft_list_t * buft_list;
  1463. switch (info.layer) {
  1464. case LLM_TENSOR_LAYER_INPUT:
  1465. buft_list = pimpl->dev_input.buft_list;
  1466. break;
  1467. case LLM_TENSOR_LAYER_OUTPUT:
  1468. buft_list = pimpl->dev_output.buft_list;
  1469. break;
  1470. case LLM_TENSOR_LAYER_REPEATING:
  1471. buft_list = pimpl->dev_layer.at(tn.bid).buft_list;
  1472. break;
  1473. default:
  1474. GGML_ABORT("invalid layer %d for tensor %s", info.layer, tn.str().c_str());
  1475. }
  1476. ggml_backend_buffer_type_t buft = nullptr;
  1477. // check overrides
  1478. if (ml.tensor_buft_overrides) {
  1479. std::string tensor_name = tn.str();
  1480. for (const auto * overrides = ml.tensor_buft_overrides; overrides->pattern != nullptr; ++overrides) {
  1481. std::regex pattern(overrides->pattern);
  1482. if (std::regex_search(tensor_name, pattern)) {
  1483. LLAMA_LOG_DEBUG("tensor %s buffer type overriden to %s\n", tensor_name.c_str(), ggml_backend_buft_name(overrides->buft));
  1484. buft = overrides->buft;
  1485. break;
  1486. }
  1487. }
  1488. }
  1489. if (!buft) {
  1490. buft = select_weight_buft(hparams, t_meta, op, *buft_list);
  1491. if (!buft) {
  1492. throw std::runtime_error(format("failed to find a compatible buffer type for tensor %s", tn.str().c_str()));
  1493. }
  1494. }
  1495. // avoid using a host buffer when using mmap
  1496. auto * buft_dev = ggml_backend_buft_get_device(buft);
  1497. if (ml.use_mmap && buft_dev && buft == ggml_backend_dev_host_buffer_type(buft_dev)) {
  1498. auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  1499. buft = ggml_backend_dev_buffer_type(cpu_dev);
  1500. }
  1501. if (buft != buft_list->front().second) {
  1502. n_moved_tensors++;
  1503. if (!first_moved_tensor) {
  1504. first_moved_tensor = t_meta;
  1505. first_moved_from_buft = buft_list->front().second;
  1506. first_moved_to_buft = buft;
  1507. }
  1508. }
  1509. ggml_context * ctx = ctx_for_buft(buft);
  1510. // if duplicated, check if the original tensor was allocated in the same buffer type context and avoid creating a new one
  1511. if (flags & TENSOR_DUPLICATED) {
  1512. ggml_tensor * t = ggml_get_tensor(ctx, tn.str().c_str());
  1513. if (t) {
  1514. return t;
  1515. }
  1516. }
  1517. return ml.create_tensor(ctx, tn, ne, flags);
  1518. };
  1519. layers.resize(n_layer);
  1520. // TODO: move to a separate function
  1521. const auto tn = LLM_TN(arch);
  1522. switch (arch) {
  1523. case LLM_ARCH_LLAMA:
  1524. case LLM_ARCH_REFACT:
  1525. case LLM_ARCH_MINICPM:
  1526. case LLM_ARCH_GRANITE:
  1527. case LLM_ARCH_GRANITE_MOE:
  1528. {
  1529. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1530. // output
  1531. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1532. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1533. // if output is NULL, init from the input tok embed
  1534. if (output == NULL) {
  1535. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1536. }
  1537. for (int i = 0; i < n_layer; ++i) {
  1538. auto & layer = layers[i];
  1539. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1540. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  1541. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  1542. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  1543. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  1544. // optional bias tensors
  1545. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1546. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1547. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1548. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1549. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1550. if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
  1551. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1552. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1553. }
  1554. else {
  1555. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1556. }
  1557. if (n_expert == 0) {
  1558. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1559. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1560. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1561. // optional MLP bias
  1562. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1563. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1564. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1565. } else {
  1566. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1567. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED);
  1568. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  1569. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1570. }
  1571. }
  1572. } break;
  1573. case LLM_ARCH_LLAMA4:
  1574. {
  1575. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1576. // output
  1577. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1578. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1579. // if output is NULL, init from the input tok embed
  1580. if (output == NULL) {
  1581. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1582. }
  1583. GGML_ASSERT(hparams.n_moe_layer_step > 0 && "Llama 4 requires n_moe_layer_step > 0");
  1584. for (int i = 0; i < n_layer; ++i) {
  1585. bool is_moe_layer = (i + 1) % hparams.n_moe_layer_step == 0;
  1586. auto & layer = layers[i];
  1587. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1588. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  1589. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  1590. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  1591. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  1592. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1593. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1594. if (is_moe_layer) {
  1595. int n_ff_exp = hparams.n_ff_exp;
  1596. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1597. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
  1598. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert}, 0);
  1599. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
  1600. // Shared expert
  1601. const int64_t n_ff_shexp = n_ff_exp;
  1602. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  1603. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd }, 0);
  1604. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  1605. } else {
  1606. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1607. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1608. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1609. }
  1610. }
  1611. } break;
  1612. case LLM_ARCH_DECI:
  1613. {
  1614. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1615. // output
  1616. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1617. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1618. // if output is NULL, init from the input tok embed
  1619. if (output == NULL) {
  1620. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1621. }
  1622. for (int i = 0; i < n_layer; ++i) {
  1623. auto & layer = layers[i];
  1624. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(i);
  1625. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(i);
  1626. const int64_t n_embd_gqa = hparams.n_embd_v_gqa(i);
  1627. const int64_t n_ff = hparams.n_ff(i);
  1628. const int64_t n_head = hparams.n_head(i);
  1629. const int64_t n_head_kv = hparams.n_head_kv(i);
  1630. if (n_head_kv == 0 && n_head > 0) {
  1631. // linear attention for DeciLMCausalModel
  1632. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1633. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1634. }
  1635. else if (n_head_kv > 0) {
  1636. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1637. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  1638. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  1639. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  1640. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  1641. }
  1642. // optional bias tensors
  1643. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1644. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1645. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1646. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1647. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1648. if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
  1649. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1650. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1651. }
  1652. else {
  1653. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1654. }
  1655. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1656. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1657. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1658. // optional MLP bias
  1659. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1660. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1661. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1662. }
  1663. } break;
  1664. case LLM_ARCH_MINICPM3:
  1665. {
  1666. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  1667. const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  1668. const int64_t q_lora_rank = hparams.n_lora_q;
  1669. const int64_t kv_lora_rank = hparams.n_lora_kv;
  1670. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1671. // output
  1672. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1673. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1674. // if output is NULL, init from the input tok embed
  1675. if (output == NULL) {
  1676. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1677. }
  1678. for (int i = 0; i < n_layer; ++i) {
  1679. auto & layer = layers[i];
  1680. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1681. layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0);
  1682. layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
  1683. layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
  1684. layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k}, 0);
  1685. layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
  1686. layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
  1687. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0);
  1688. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1689. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1690. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1691. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1692. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head_qk_rope/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1693. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head_qk_rope/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1694. }
  1695. } break;
  1696. case LLM_ARCH_GROK:
  1697. {
  1698. if (n_expert == 0) {
  1699. throw std::runtime_error("Grok model cannot have zero experts");
  1700. }
  1701. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1702. // output
  1703. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1704. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1705. // if output is NULL, init from the input tok embed
  1706. if (output == NULL) {
  1707. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1708. }
  1709. for (int i = 0; i < n_layer; ++i) {
  1710. auto & layer = layers[i];
  1711. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1712. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1713. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1714. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1715. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1716. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
  1717. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1718. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1719. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED);
  1720. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  1721. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1722. layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
  1723. }
  1724. } break;
  1725. case LLM_ARCH_DBRX:
  1726. {
  1727. if (n_expert == 0) {
  1728. throw std::runtime_error("DBRX model cannot have zero experts");
  1729. }
  1730. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1731. // output
  1732. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1733. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1734. for (int i = 0; i < n_layer; ++i) {
  1735. auto & layer = layers[i];
  1736. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1737. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1738. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1739. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
  1740. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1741. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1742. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  1743. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1744. }
  1745. } break;
  1746. case LLM_ARCH_BAICHUAN:
  1747. {
  1748. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1749. {
  1750. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1751. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1752. }
  1753. for (int i = 0; i < n_layer; ++i) {
  1754. auto & layer = layers[i];
  1755. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1756. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1757. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1758. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1759. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1760. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1761. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1762. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1763. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1764. }
  1765. } break;
  1766. case LLM_ARCH_FALCON:
  1767. {
  1768. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1769. // output
  1770. {
  1771. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1772. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1773. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1774. if (!output) {
  1775. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // needs to be on GPU
  1776. }
  1777. }
  1778. for (int i = 0; i < n_layer; ++i) {
  1779. auto & layer = layers[i];
  1780. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1781. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1782. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1783. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1784. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1785. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1786. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1787. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1788. }
  1789. } break;
  1790. case LLM_ARCH_STARCODER:
  1791. {
  1792. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1793. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
  1794. // output
  1795. {
  1796. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1797. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1798. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1799. if (!output) {
  1800. // needs to be on GPU
  1801. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1802. }
  1803. }
  1804. for (int i = 0; i < n_layer; ++i) {
  1805. auto & layer = layers[i];
  1806. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1807. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1808. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1809. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  1810. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1811. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1812. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1813. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  1814. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1815. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1816. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1817. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  1818. }
  1819. } break;
  1820. case LLM_ARCH_BERT:
  1821. case LLM_ARCH_NOMIC_BERT:
  1822. case LLM_ARCH_NOMIC_BERT_MOE:
  1823. {
  1824. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1825. type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, 0);
  1826. if (arch == LLM_ARCH_BERT) {
  1827. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
  1828. cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, n_embd}, TENSOR_NOT_REQUIRED);
  1829. cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  1830. cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, 1}, TENSOR_NOT_REQUIRED);
  1831. cls_out_b = create_tensor(tn(LLM_TENSOR_CLS_OUT, "bias"), {1}, TENSOR_NOT_REQUIRED);
  1832. }
  1833. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  1834. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  1835. for (int i = 0; i < n_layer; ++i) {
  1836. auto & layer = layers[i];
  1837. if (arch == LLM_ARCH_BERT) {
  1838. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1839. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  1840. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1841. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  1842. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1843. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  1844. } else {
  1845. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1846. }
  1847. if (arch == LLM_ARCH_NOMIC_BERT_MOE) {
  1848. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  1849. }
  1850. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1851. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
  1852. layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0);
  1853. if (hparams.moe_every_n_layers > 0 && i % hparams.moe_every_n_layers == 1) {
  1854. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1855. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff, n_expert}, 0);
  1856. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  1857. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1858. } else {
  1859. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1860. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1861. if (arch == LLM_ARCH_BERT || arch == LLM_ARCH_NOMIC_BERT_MOE) {
  1862. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1863. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  1864. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1865. } else {
  1866. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1867. }
  1868. }
  1869. layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
  1870. layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0);
  1871. }
  1872. } break;
  1873. case LLM_ARCH_JINA_BERT_V2:
  1874. {
  1875. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // word_embeddings
  1876. type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, 0); // token_type_embeddings
  1877. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0); // LayerNorm
  1878. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0); //LayerNorm bias
  1879. cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, 1}, TENSOR_NOT_REQUIRED);
  1880. cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {1}, TENSOR_NOT_REQUIRED);
  1881. for (int i = 0; i < n_layer; ++i) {
  1882. auto & layer = layers[i]; // JinaBertLayer
  1883. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1884. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  1885. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1886. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1887. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1888. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  1889. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1890. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1891. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1892. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  1893. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); //output_dens
  1894. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); //output_dens
  1895. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0); //output_norm
  1896. layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0);
  1897. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1898. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1899. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1900. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1901. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1902. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1903. layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
  1904. layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0);
  1905. }
  1906. } break;
  1907. case LLM_ARCH_BLOOM:
  1908. {
  1909. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1910. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  1911. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  1912. // output
  1913. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1914. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1915. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1916. // if output is NULL, init from the input tok embed
  1917. if (output == NULL) {
  1918. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1919. }
  1920. for (int i = 0; i < n_layer; ++i) {
  1921. auto & layer = layers[i];
  1922. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1923. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1924. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1925. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  1926. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1927. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1928. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1929. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  1930. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1931. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1932. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1933. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  1934. }
  1935. } break;
  1936. case LLM_ARCH_MPT:
  1937. {
  1938. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1939. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, TENSOR_NOT_REQUIRED);
  1940. // output
  1941. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1942. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  1943. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1944. if (!output) {
  1945. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // needs to be on GPU
  1946. }
  1947. for (int i = 0; i < n_layer; ++i) {
  1948. auto & layer = layers[i];
  1949. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1950. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1951. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1952. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1953. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1954. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1955. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1956. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1957. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1958. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1959. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1960. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1961. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1962. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1963. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1964. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1965. // AWQ ScaleActivation layer
  1966. layer.ffn_act = create_tensor(tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1967. }
  1968. } break;
  1969. case LLM_ARCH_STABLELM:
  1970. {
  1971. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1972. // output
  1973. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1974. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1975. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1976. for (int i = 0; i < n_layer; ++i) {
  1977. auto & layer = layers[i];
  1978. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1979. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1980. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1981. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1982. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1983. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1984. // optional bias tensors, present in Stable LM 2 1.6B
  1985. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1986. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1987. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1988. // optional q and k layernorms, present in StableLM 2 12B
  1989. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, TENSOR_NOT_REQUIRED);
  1990. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, TENSOR_NOT_REQUIRED);
  1991. // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
  1992. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1993. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1994. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1995. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1996. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1997. }
  1998. } break;
  1999. case LLM_ARCH_QWEN:
  2000. {
  2001. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2002. // output
  2003. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2004. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2005. for (int i = 0; i < n_layer; ++i) {
  2006. auto & layer = layers[i];
  2007. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2008. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3}, 0);
  2009. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3}, 0);
  2010. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2011. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2012. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2}, 0);
  2013. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd}, 0);
  2014. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2}, 0);
  2015. }
  2016. } break;
  2017. case LLM_ARCH_QWEN2:
  2018. case LLM_ARCH_QWEN2VL:
  2019. {
  2020. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2021. // output
  2022. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2023. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2024. // if output is NULL, init from the input tok embed
  2025. if (output == NULL) {
  2026. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2027. }
  2028. for (int i = 0; i < n_layer; ++i) {
  2029. auto & layer = layers[i];
  2030. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2031. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2032. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2033. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2034. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2035. // optional bias tensors
  2036. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2037. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2038. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2039. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2040. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2041. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2042. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2043. }
  2044. } break;
  2045. case LLM_ARCH_QWEN2MOE:
  2046. {
  2047. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2048. // output
  2049. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2050. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2051. for (int i = 0; i < n_layer; ++i) {
  2052. auto & layer = layers[i];
  2053. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2054. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2055. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2056. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2057. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2058. // optional bias tensors
  2059. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2060. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2061. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2062. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2063. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2064. if (n_expert == 0) {
  2065. throw std::runtime_error("n_expert must be > 0 for QWEN2MOE");
  2066. }
  2067. if (n_expert_used == 0) {
  2068. throw std::runtime_error("n_expert_used must be > 0 for QWEN2MOE");
  2069. }
  2070. // MoE branch
  2071. const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
  2072. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2073. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2074. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2075. // Shared expert branch
  2076. const int64_t n_ff_shexp = hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff;
  2077. layer.ffn_gate_inp_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd}, 0);
  2078. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  2079. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, 0);
  2080. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  2081. }
  2082. } break;
  2083. case LLM_ARCH_QWEN3:
  2084. {
  2085. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2086. // output
  2087. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2088. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2089. // if output is NULL, init from the input tok embed
  2090. if (output == NULL) {
  2091. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2092. }
  2093. for (int i = 0; i < n_layer; ++i) {
  2094. auto & layer = layers[i];
  2095. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2096. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2097. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2098. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2099. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2100. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  2101. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  2102. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2103. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2104. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2105. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2106. }
  2107. } break;
  2108. case LLM_ARCH_QWEN3MOE:
  2109. {
  2110. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2111. // output
  2112. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2113. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2114. for (int i = 0; i < n_layer; ++i) {
  2115. auto & layer = layers[i];
  2116. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2117. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2118. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2119. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2120. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2121. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  2122. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  2123. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2124. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2125. if (n_expert == 0) {
  2126. throw std::runtime_error("n_expert must be > 0 for QWEN3MOE");
  2127. }
  2128. if (n_expert_used == 0) {
  2129. throw std::runtime_error("n_expert_used must be > 0 for QWEN3MOE");
  2130. }
  2131. // MoE branch
  2132. const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
  2133. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2134. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2135. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2136. }
  2137. } break;
  2138. case LLM_ARCH_PHI2:
  2139. {
  2140. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2141. // output
  2142. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2143. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2144. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2145. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab}, 0);
  2146. for (int i = 0; i < n_layer; ++i) {
  2147. auto & layer = layers[i];
  2148. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2149. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2150. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2151. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2152. if (layer.wqkv == nullptr) {
  2153. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2154. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2155. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2156. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2157. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2158. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2159. }
  2160. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2161. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2162. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2163. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2164. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2165. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2166. }
  2167. } break;
  2168. case LLM_ARCH_PHI3:
  2169. {
  2170. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  2171. // output
  2172. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  2173. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2174. // if output is NULL, init from the input tok embed
  2175. if (output == NULL) {
  2176. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2177. }
  2178. for (int i = 0; i < n_layer; ++i) {
  2179. auto & layer = layers[i];
  2180. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  2181. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, TENSOR_NOT_REQUIRED);
  2182. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
  2183. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
  2184. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
  2185. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff }, 0);
  2186. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2187. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2188. }
  2189. } break;
  2190. case LLM_ARCH_PHIMOE:
  2191. {
  2192. const int64_t n_embd_head = n_embd / n_head;
  2193. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  2194. // output
  2195. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  2196. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2197. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, 0);
  2198. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), { n_vocab }, 0);
  2199. for (int i = 0; i < n_layer; ++i) {
  2200. auto & layer = layers[i];
  2201. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  2202. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), { n_embd }, 0);
  2203. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, TENSOR_NOT_REQUIRED);
  2204. if (layer.wqkv == nullptr) {
  2205. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2206. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2207. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2208. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2209. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2210. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2211. }
  2212. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
  2213. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd }, 0);
  2214. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
  2215. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), { n_embd }, 0);
  2216. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2217. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2218. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  2219. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2220. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2221. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2222. }
  2223. } break;
  2224. case LLM_ARCH_PLAMO:
  2225. {
  2226. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2227. // output
  2228. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2229. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2230. for (int i = 0; i < n_layer; ++i) {
  2231. auto & layer = layers[i];
  2232. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2233. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2234. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2235. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2236. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2237. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2238. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2239. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2240. }
  2241. } break;
  2242. case LLM_ARCH_GPT2:
  2243. {
  2244. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2245. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
  2246. // output
  2247. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2248. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2249. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2250. // if output is NULL, init from the input tok embed
  2251. if (output == NULL) {
  2252. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2253. }
  2254. for (int i = 0; i < n_layer; ++i) {
  2255. auto & layer = layers[i];
  2256. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2257. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2258. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2259. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2260. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2261. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2262. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2263. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2264. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2265. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2266. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2267. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2268. }
  2269. } break;
  2270. case LLM_ARCH_CODESHELL:
  2271. {
  2272. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2273. // if tok embd is NULL, init from output
  2274. if (tok_embd == NULL) {
  2275. tok_embd = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2276. }
  2277. // output
  2278. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2279. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2280. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2281. for (int i = 0; i < n_layer; ++i) {
  2282. auto & layer = layers[i];
  2283. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2284. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2285. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2286. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2287. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2288. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2289. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2290. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2291. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2292. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2293. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2294. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2295. }
  2296. } break;
  2297. case LLM_ARCH_ORION:
  2298. {
  2299. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2300. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2301. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2302. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2303. for (int i = 0; i < n_layer; ++i) {
  2304. auto & layer = layers[i];
  2305. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2306. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2307. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2308. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2309. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2310. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2311. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2312. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2313. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2314. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2315. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2316. }
  2317. } break;
  2318. case LLM_ARCH_INTERNLM2:
  2319. {
  2320. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2321. // output
  2322. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2323. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2324. for (int i = 0; i < n_layer; ++i) {
  2325. auto & layer = layers[i];
  2326. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2327. // layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2328. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2329. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2330. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2331. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2332. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2333. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2334. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2335. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2336. }
  2337. } break;
  2338. case LLM_ARCH_GEMMA:
  2339. {
  2340. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2341. // output
  2342. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2343. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  2344. for (int i = 0; i < n_layer; ++i) {
  2345. auto & layer = layers[i];
  2346. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2347. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2348. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2349. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2350. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2351. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2352. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2353. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2354. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2355. }
  2356. } break;
  2357. case LLM_ARCH_GEMMA2:
  2358. {
  2359. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2360. // output
  2361. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2362. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  2363. for (int i = 0; i < n_layer; ++i) {
  2364. auto & layer = layers[i];
  2365. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2366. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2367. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2368. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2369. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2370. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  2371. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2372. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2373. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2374. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2375. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  2376. }
  2377. } break;
  2378. case LLM_ARCH_GEMMA3:
  2379. {
  2380. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2381. // output
  2382. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2383. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2384. // if output is NULL, init from the input tok embed
  2385. if (output == NULL) {
  2386. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2387. }
  2388. for (int i = 0; i < n_layer; ++i) {
  2389. auto & layer = layers[i];
  2390. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2391. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2392. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2393. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2394. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2395. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  2396. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  2397. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  2398. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2399. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2400. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2401. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2402. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  2403. }
  2404. } break;
  2405. case LLM_ARCH_STARCODER2:
  2406. {
  2407. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2408. // output
  2409. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2410. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2411. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2412. // if output is NULL, init from the input tok embed
  2413. if (output == NULL) {
  2414. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2415. }
  2416. for (int i = 0; i < n_layer; ++i) {
  2417. auto & layer = layers[i];
  2418. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2419. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2420. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2421. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2422. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2423. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2424. // optional bias tensors
  2425. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2426. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2427. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2428. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2429. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2430. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2431. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2432. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2433. // optional bias tensors
  2434. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2435. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff}, 0);
  2436. }
  2437. } break;
  2438. case LLM_ARCH_MAMBA:
  2439. {
  2440. const int64_t d_conv = hparams.ssm_d_conv;
  2441. const int64_t d_inner = hparams.ssm_d_inner;
  2442. const int64_t d_state = hparams.ssm_d_state;
  2443. const int64_t dt_rank = hparams.ssm_dt_rank;
  2444. // only an expansion factor of 2 is supported for now
  2445. if (2 * n_embd != d_inner) {
  2446. throw std::runtime_error("only an expansion factor of 2 is supported for now");
  2447. }
  2448. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2449. // output
  2450. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2451. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2452. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  2453. if (output == NULL) {
  2454. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2455. }
  2456. for (int i = 0; i < n_layer; ++i) {
  2457. auto & layer = layers[i];
  2458. // norm
  2459. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2460. layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner}, 0);
  2461. layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner}, 0);
  2462. layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner}, 0);
  2463. layer.ssm_x = create_tensor(tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state}, 0);
  2464. layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner}, 0);
  2465. layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner}, 0);
  2466. // no "weight" suffix for these
  2467. layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner}, 0);
  2468. layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {d_inner}, 0);
  2469. // out_proj
  2470. layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
  2471. }
  2472. } break;
  2473. case LLM_ARCH_XVERSE:
  2474. {
  2475. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2476. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2477. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2478. for (int i = 0; i < n_layer; ++i) {
  2479. auto & layer = layers[i];
  2480. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2481. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2482. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2483. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2484. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2485. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2486. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2487. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2488. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2489. }
  2490. } break;
  2491. case LLM_ARCH_COMMAND_R:
  2492. {
  2493. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2494. // output
  2495. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2496. // init output from the input tok embed
  2497. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2498. for (int i = 0; i < n_layer; ++i) {
  2499. auto & layer = layers[i];
  2500. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2501. if (n_layer >= 64){
  2502. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0);
  2503. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0);
  2504. }
  2505. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2506. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2507. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2508. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2509. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2510. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2511. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2512. }
  2513. } break;
  2514. case LLM_ARCH_COHERE2:
  2515. {
  2516. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  2517. // output
  2518. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  2519. // init output from the input tok embed
  2520. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab },
  2521. TENSOR_DUPLICATED);
  2522. for (int i = 0; i < n_layer; ++i) {
  2523. auto & layer = layers[i];
  2524. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  2525. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd }, 0);
  2526. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0);
  2527. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0);
  2528. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
  2529. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, 0);
  2530. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
  2531. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0);
  2532. }
  2533. }
  2534. break;
  2535. case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
  2536. {
  2537. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2538. // output
  2539. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2540. // if output is NULL, init from the input tok embed
  2541. if (output == NULL) {
  2542. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2543. }
  2544. for (int i = 0; i < n_layer; ++i) {
  2545. auto & layer = layers[i];
  2546. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2547. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2548. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2549. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2550. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2551. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2552. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2553. }
  2554. } break;
  2555. case LLM_ARCH_OLMO2:
  2556. {
  2557. const int64_t n_embd_head = n_embd / n_head;
  2558. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2559. // output
  2560. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2561. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2562. for (int i = 0; i < n_layer; ++i) {
  2563. auto & layer = layers[i];
  2564. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2565. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2566. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2567. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2568. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
  2569. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_head_kv * n_embd_head}, 0);
  2570. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  2571. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2572. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2573. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2574. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  2575. }
  2576. } break;
  2577. case LLM_ARCH_OLMOE:
  2578. {
  2579. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2580. // output
  2581. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2582. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2583. for (int i = 0; i < n_layer; ++i) {
  2584. auto & layer = layers[i];
  2585. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2586. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2587. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2588. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2589. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2590. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
  2591. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, 0);
  2592. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2593. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2594. if (n_expert == 0) {
  2595. throw std::runtime_error("n_expert must be > 0");
  2596. }
  2597. if (n_expert_used == 0) {
  2598. throw std::runtime_error("n_expert_used must be > 0");
  2599. }
  2600. // MoE branch
  2601. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2602. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  2603. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2604. }
  2605. } break;
  2606. case LLM_ARCH_OPENELM:
  2607. {
  2608. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2609. // output
  2610. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2611. // init output from the input tok embed
  2612. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2613. for (int i = 0; i < n_layer; ++i) {
  2614. const int64_t n_head = hparams.n_head(i);
  2615. const int64_t n_head_qkv = 2*hparams.n_head_kv(i) + n_head;
  2616. const int64_t n_ff = hparams.n_ff(i);
  2617. auto & layer = layers[i];
  2618. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2619. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_head_qkv*n_embd_head_k}, 0);
  2620. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  2621. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  2622. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head*n_embd_head_k, n_embd}, 0);
  2623. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2624. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2625. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2626. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2627. }
  2628. } break;
  2629. case LLM_ARCH_GPTNEOX:
  2630. {
  2631. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2632. // output
  2633. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2634. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2635. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2636. for (int i = 0; i < n_layer; ++i) {
  2637. auto & layer = layers[i];
  2638. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2639. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2640. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2641. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2642. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2643. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2644. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2645. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2646. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2647. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2648. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2649. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2650. }
  2651. } break;
  2652. case LLM_ARCH_ARCTIC:
  2653. {
  2654. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2655. // output
  2656. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2657. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2658. // if output is NULL, init from the input tok embed
  2659. if (output == NULL) {
  2660. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2661. }
  2662. for (int i = 0; i < n_layer; ++i) {
  2663. auto & layer = layers[i];
  2664. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2665. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2666. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2667. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2668. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2669. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2670. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd}, 0);
  2671. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd}, 0);
  2672. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_embd}, 0);
  2673. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2674. layer.ffn_norm_exps = create_tensor(tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd}, 0);
  2675. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  2676. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  2677. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2678. }
  2679. } break;
  2680. case LLM_ARCH_DEEPSEEK:
  2681. {
  2682. const int64_t n_ff_exp = hparams.n_ff_exp;
  2683. const int64_t n_expert_shared = hparams.n_expert_shared;
  2684. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2685. // output
  2686. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2687. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2688. for (int i = 0; i < n_layer; ++i) {
  2689. auto & layer = layers[i];
  2690. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2691. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2692. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2693. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2694. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2695. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2696. if (i < (int) hparams.n_layer_dense_lead) {
  2697. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2698. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2699. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2700. } else {
  2701. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2702. if (n_expert == 0) {
  2703. throw std::runtime_error("n_expert must be > 0");
  2704. }
  2705. if (n_expert_used == 0) {
  2706. throw std::runtime_error("n_expert_used must be > 0");
  2707. }
  2708. // MoE branch
  2709. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2710. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2711. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2712. // Shared expert branch
  2713. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2714. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
  2715. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2716. }
  2717. }
  2718. } break;
  2719. case LLM_ARCH_DEEPSEEK2:
  2720. {
  2721. const bool is_lite = (hparams.n_layer == 27);
  2722. const bool is_mla = (hparams.n_embd_head_k_mla != 0 && hparams.n_embd_head_v_mla != 0);
  2723. // note: these are the actual head sizes you get when treating as MHA or after "decompression" using wv_b for MLA
  2724. const int64_t n_embd_head_k_mla = is_mla ? hparams.n_embd_head_k_mla : hparams.n_embd_head_k;
  2725. const int64_t n_embd_head_v_mla = is_mla ? hparams.n_embd_head_v_mla : hparams.n_embd_head_v;
  2726. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  2727. const int64_t n_embd_head_qk_nope = n_embd_head_k_mla - n_embd_head_qk_rope;
  2728. const int64_t q_lora_rank = hparams.n_lora_q;
  2729. const int64_t kv_lora_rank = hparams.n_lora_kv;
  2730. const int64_t n_ff_exp = hparams.n_ff_exp;
  2731. const int64_t n_expert_shared = hparams.n_expert_shared;
  2732. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2733. // output
  2734. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2735. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2736. for (int i = 0; i < n_layer; ++i) {
  2737. auto & layer = layers[i];
  2738. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2739. if (!is_lite) {
  2740. layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0);
  2741. }
  2742. layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
  2743. if (!is_lite) {
  2744. layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
  2745. layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k_mla}, 0);
  2746. } else {
  2747. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_embd_head_k_mla}, 0);
  2748. }
  2749. layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + n_embd_head_qk_rope}, 0);
  2750. // note: only old legacy GGUF files will have the unsplit wkv_b tensor in
  2751. if (is_mla) {
  2752. layer.wk_b = create_tensor(tn(LLM_TENSOR_ATTN_K_B, "weight", i), {n_embd_head_qk_nope, kv_lora_rank, n_head}, 0);
  2753. layer.wv_b = create_tensor(tn(LLM_TENSOR_ATTN_V_B, "weight", i), {kv_lora_rank, n_embd_head_v_mla, n_head}, 0);
  2754. } else {
  2755. layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v_mla)}, 0);
  2756. }
  2757. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_embd_head_v_mla, n_embd}, 0);
  2758. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2759. if (i < (int) hparams.n_layer_dense_lead) {
  2760. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2761. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2762. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2763. } else {
  2764. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2765. layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
  2766. if (n_expert == 0) {
  2767. throw std::runtime_error("n_expert must be > 0");
  2768. }
  2769. if (n_expert_used == 0) {
  2770. throw std::runtime_error("n_expert_used must be > 0");
  2771. }
  2772. // MoE branch
  2773. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2774. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2775. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2776. // Shared expert branch
  2777. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2778. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
  2779. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2780. }
  2781. }
  2782. } break;
  2783. case LLM_ARCH_PLM:
  2784. {
  2785. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  2786. const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  2787. const int64_t kv_lora_rank = hparams.n_lora_kv;
  2788. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2789. // output
  2790. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2791. // output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2792. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2793. for (int i = 0; i < n_layer; ++i) {
  2794. auto & layer = layers[i];
  2795. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2796. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2797. layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
  2798. layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
  2799. layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
  2800. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0);
  2801. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2802. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2803. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2804. }
  2805. } break;
  2806. case LLM_ARCH_BITNET:
  2807. {
  2808. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2809. // output
  2810. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2811. for (int i = 0; i < n_layer; ++i) {
  2812. auto & layer = layers[i];
  2813. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2814. layer.attn_sub_norm = create_tensor(tn(LLM_TENSOR_ATTN_SUB_NORM, "weight", i), {n_embd}, 0);
  2815. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2816. layer.wq_scale = create_tensor(tn(LLM_TENSOR_ATTN_Q, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2817. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2818. layer.wk_scale = create_tensor(tn(LLM_TENSOR_ATTN_K, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2819. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2820. layer.wv_scale = create_tensor(tn(LLM_TENSOR_ATTN_V, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2821. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2822. layer.wo_scale = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2823. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2824. layer.ffn_sub_norm = create_tensor(tn(LLM_TENSOR_FFN_SUB_NORM, "weight", i), {n_ff}, 0);
  2825. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2826. layer.ffn_gate_scale = create_tensor(tn(LLM_TENSOR_FFN_GATE, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2827. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2828. layer.ffn_down_scale = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2829. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2830. layer.ffn_up_scale = create_tensor(tn(LLM_TENSOR_FFN_UP, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2831. }
  2832. } break;
  2833. case LLM_ARCH_T5:
  2834. {
  2835. const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
  2836. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2837. // output
  2838. output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2839. output_norm = create_tensor(tn(LLM_TENSOR_DEC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2840. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2841. // if output is NULL, init from the input tok embed
  2842. if (output == NULL) {
  2843. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2844. }
  2845. for (int i = 0; i < n_layer; ++i) {
  2846. auto & layer = layers[i];
  2847. layer.attn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}, 0);
  2848. layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2849. layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2850. layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2851. layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2852. layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2853. layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0);
  2854. layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  2855. layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2856. layer.ffn_up_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2857. layer.attn_norm = create_tensor(tn(LLM_TENSOR_DEC_ATTN_NORM, "weight", i), {n_embd}, 0);
  2858. layer.attn_rel_b = create_tensor(tn(LLM_TENSOR_DEC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2859. layer.wq = create_tensor(tn(LLM_TENSOR_DEC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2860. layer.wk = create_tensor(tn(LLM_TENSOR_DEC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2861. layer.wv = create_tensor(tn(LLM_TENSOR_DEC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2862. layer.wo = create_tensor(tn(LLM_TENSOR_DEC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2863. layer.attn_norm_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_NORM, "weight", i), {n_embd}, 0);
  2864. // this tensor seems to be unused in HF transformers implementation
  2865. layer.attn_rel_b_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2866. layer.wq_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2867. layer.wk_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2868. layer.wv_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2869. layer.wo_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2870. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_DEC_FFN_NORM, "weight", i), {n_embd}, 0);
  2871. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_DEC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  2872. layer.ffn_down = create_tensor(tn(LLM_TENSOR_DEC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2873. layer.ffn_up = create_tensor(tn(LLM_TENSOR_DEC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2874. }
  2875. } break;
  2876. case LLM_ARCH_T5ENCODER:
  2877. {
  2878. const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
  2879. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2880. // output
  2881. output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2882. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2883. // if output is NULL, init from the input tok embed
  2884. if (output == NULL) {
  2885. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2886. }
  2887. for (int i = 0; i < n_layer; ++i) {
  2888. auto & layer = layers[i];
  2889. layer.attn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}, 0);
  2890. layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2891. layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2892. layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2893. layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2894. layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2895. layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0);
  2896. layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  2897. layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2898. layer.ffn_up_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2899. }
  2900. } break;
  2901. case LLM_ARCH_JAIS:
  2902. {
  2903. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2904. // output
  2905. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2906. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2907. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2908. for (int i = 0; i < n_layer; ++i) {
  2909. auto & layer = layers[i];
  2910. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2911. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2912. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2913. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2914. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2915. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2916. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2917. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2918. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2919. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2920. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2921. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, 0);
  2922. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2923. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2924. }
  2925. } break;
  2926. case LLM_ARCH_CHATGLM:
  2927. {
  2928. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2929. // output
  2930. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2931. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2932. for (int i = 0; i < n_layer; ++i) {
  2933. auto & layer = layers[i];
  2934. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2935. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2936. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2937. if (layer.wqkv == nullptr) {
  2938. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2939. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2940. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2941. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2942. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2943. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2944. }
  2945. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2946. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2947. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2}, 0);
  2948. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2949. }
  2950. } break;
  2951. case LLM_ARCH_GLM4:
  2952. {
  2953. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2954. // output
  2955. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2956. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2957. // if output is NULL, init from the input tok embed
  2958. if (output == NULL) {
  2959. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2960. }
  2961. for (int i = 0; i < n_layer; ++i) {
  2962. auto & layer = layers[i];
  2963. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2964. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2965. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2966. if (layer.wqkv == nullptr) {
  2967. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2968. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2969. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2970. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2971. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2972. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2973. }
  2974. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2975. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  2976. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2977. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2978. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2}, 0);
  2979. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  2980. }
  2981. } break;
  2982. case LLM_ARCH_NEMOTRON:
  2983. {
  2984. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2985. // output
  2986. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2987. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2988. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2989. for (int i = 0; i < n_layer; ++i) {
  2990. auto & layer = layers[i];
  2991. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2992. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2993. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2994. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2995. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2996. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2997. // optional bias tensors
  2998. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2999. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  3000. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  3001. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3002. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3003. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  3004. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3005. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3006. // optional MLP bias
  3007. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3008. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  3009. }
  3010. } break;
  3011. case LLM_ARCH_EXAONE:
  3012. {
  3013. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3014. // output
  3015. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3016. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3017. // if output is NULL, init from the input tok embed
  3018. if (output == NULL) {
  3019. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3020. }
  3021. for (int i = 0; i < n_layer; ++i) {
  3022. auto & layer = layers[i];
  3023. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3024. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  3025. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  3026. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  3027. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  3028. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3029. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  3030. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3031. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3032. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3033. }
  3034. } break;
  3035. case LLM_ARCH_RWKV6:
  3036. {
  3037. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3038. // Block 0, LN0
  3039. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  3040. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  3041. // output
  3042. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3043. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3044. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3045. const int time_mix_extra_dim = hparams.time_mix_extra_dim;
  3046. const int time_decay_extra_dim = hparams.time_decay_extra_dim;
  3047. const int head_size = hparams.wkv_head_size;
  3048. const int attn_hidden_size = n_embd;
  3049. const int ffn_size = hparams.n_ff_arr[0];
  3050. for (int i = 0; i < n_layer; ++i) {
  3051. auto & layer = layers[i];
  3052. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3053. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  3054. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, 0);
  3055. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, 0);
  3056. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0);
  3057. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0);
  3058. layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0);
  3059. layer.time_mix_lerp_w = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_W, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  3060. layer.time_mix_lerp_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  3061. layer.time_mix_lerp_v = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_V, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  3062. layer.time_mix_lerp_r = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  3063. layer.time_mix_lerp_g = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_G, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  3064. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, TENSOR_NOT_REQUIRED);
  3065. GGML_ASSERT(!(layer.time_mix_lerp_fused == NULL && layer.time_mix_lerp_w == NULL));
  3066. layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, 0);
  3067. layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0);
  3068. layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0);
  3069. layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0);
  3070. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
  3071. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3072. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3073. layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3074. layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, 0);
  3075. layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, 0);
  3076. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  3077. layer.channel_mix_lerp_k = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0);
  3078. layer.channel_mix_lerp_r = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, 0);
  3079. layer.channel_mix_key = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}, 0);
  3080. layer.channel_mix_value = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}, 0);
  3081. layer.channel_mix_receptance = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, "weight", i), {n_embd, n_embd}, 0);
  3082. }
  3083. } break;
  3084. case LLM_ARCH_RWKV6QWEN2:
  3085. {
  3086. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3087. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3088. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  3089. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3090. const int time_mix_extra_dim = hparams.time_mix_extra_dim;
  3091. const int time_decay_extra_dim = hparams.time_decay_extra_dim;
  3092. const int head_size = hparams.wkv_head_size;
  3093. const int attn_hidden_size = n_embd;
  3094. const int n_head_kv = hparams.n_head_kv();
  3095. int attn_key_value_size;
  3096. if (n_head_kv == 0 || attn_hidden_size / head_size == n_head_kv) {
  3097. attn_key_value_size = attn_hidden_size;
  3098. } else {
  3099. attn_key_value_size = n_head_kv * head_size;
  3100. }
  3101. for (int i = 0; i < n_layer; ++i) {
  3102. auto & layer = layers[i];
  3103. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3104. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0);
  3105. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0);
  3106. layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0);
  3107. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, 0);
  3108. layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, TENSOR_NOT_REQUIRED);
  3109. layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0);
  3110. layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0);
  3111. layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0);
  3112. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {n_embd, attn_key_value_size}, 0);
  3113. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {n_embd, attn_key_value_size}, 0);
  3114. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3115. layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3116. // optional bias tensors
  3117. layer.time_mix_key_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "bias", i), {attn_key_value_size}, TENSOR_NOT_REQUIRED);
  3118. layer.time_mix_value_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "bias", i), {attn_key_value_size}, TENSOR_NOT_REQUIRED);
  3119. layer.time_mix_receptance_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "bias", i), {attn_hidden_size}, TENSOR_NOT_REQUIRED);
  3120. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  3121. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3122. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3123. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3124. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3125. }
  3126. } break;
  3127. case LLM_ARCH_RWKV7:
  3128. {
  3129. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3130. // Block 0, LN0
  3131. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  3132. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  3133. // output
  3134. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3135. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3136. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3137. const int n_lora_decay = hparams.n_lora_decay;
  3138. const int n_lora_iclr = hparams.n_lora_iclr;
  3139. const int n_lora_value_res_mix = hparams.n_lora_value_res_mix;
  3140. const int n_lora_gate = hparams.n_lora_gate;
  3141. const int attn_hidden_size = n_embd;
  3142. const int ffn_size = hparams.n_ff_arr[0];
  3143. for (int i = 0; i < n_layer; ++i) {
  3144. auto & layer = layers[i];
  3145. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3146. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  3147. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, 0);
  3148. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, 0);
  3149. layer.time_mix_w0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W0, "weight", i), {n_embd}, 0);
  3150. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, n_lora_decay}, 0);
  3151. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {n_lora_decay, n_embd}, 0);
  3152. layer.time_mix_a0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A0, "weight", i), {n_embd}, 0);
  3153. layer.time_mix_a1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A1, "weight", i), {n_embd, n_lora_iclr}, 0);
  3154. layer.time_mix_a2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A2, "weight", i), {n_lora_iclr, n_embd}, 0);
  3155. if (i == 0) {
  3156. // actually not used
  3157. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  3158. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_iclr}, 0);
  3159. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_iclr, n_embd}, 0);
  3160. } else {
  3161. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  3162. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_value_res_mix}, 0);
  3163. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_value_res_mix, n_embd}, 0);
  3164. }
  3165. layer.time_mix_g1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G1, "weight", i), {n_embd, n_lora_gate}, 0);
  3166. layer.time_mix_g2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G2, "weight", i), {n_lora_gate, n_embd}, 0);
  3167. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 6}, 0);
  3168. layer.time_mix_k_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_K, "weight", i), {attn_hidden_size}, 0);
  3169. layer.time_mix_k_a = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_A, "weight", i), {attn_hidden_size}, 0);
  3170. layer.time_mix_r_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_R_K, "weight", i), {attn_hidden_size}, 0);
  3171. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
  3172. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3173. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3174. layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, 0);
  3175. layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, 0);
  3176. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  3177. layer.channel_mix_lerp_k = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0);
  3178. layer.channel_mix_key = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}, 0);
  3179. layer.channel_mix_value = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}, 0);
  3180. }
  3181. } break;
  3182. case LLM_ARCH_ARWKV7:
  3183. {
  3184. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3185. // output
  3186. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3187. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3188. const int n_lora_decay = hparams.n_lora_decay;
  3189. const int n_lora_iclr = hparams.n_lora_iclr;
  3190. const int n_lora_value_res_mix = hparams.n_lora_value_res_mix;
  3191. const int n_lora_gate = hparams.n_lora_gate;
  3192. const int attn_hidden_size = n_embd;
  3193. for (int i = 0; i < n_layer; ++i) {
  3194. auto & layer = layers[i];
  3195. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3196. layer.time_mix_w0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W0, "weight", i), {n_embd}, 0);
  3197. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, n_lora_decay}, 0);
  3198. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {n_lora_decay, n_embd}, 0);
  3199. layer.time_mix_a0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A0, "weight", i), {n_embd}, 0);
  3200. layer.time_mix_a1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A1, "weight", i), {n_embd, n_lora_iclr}, 0);
  3201. layer.time_mix_a2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A2, "weight", i), {n_lora_iclr, n_embd}, 0);
  3202. if (i == 0) {
  3203. // actually not used
  3204. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  3205. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_iclr}, 0);
  3206. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_iclr, n_embd}, 0);
  3207. } else {
  3208. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  3209. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_value_res_mix}, 0);
  3210. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_value_res_mix, n_embd}, 0);
  3211. }
  3212. layer.time_mix_g1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G1, "weight", i), {n_embd, n_lora_gate}, TENSOR_NOT_REQUIRED);
  3213. layer.time_mix_g2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G2, "weight", i), {n_lora_gate, n_embd}, TENSOR_NOT_REQUIRED);
  3214. try {
  3215. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 6}, 0);
  3216. } catch(std::runtime_error & e) {
  3217. // ARWKV models may not have gate tensors
  3218. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, 0);
  3219. }
  3220. layer.time_mix_k_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_K, "weight", i), {attn_hidden_size}, 0);
  3221. layer.time_mix_k_a = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_A, "weight", i), {attn_hidden_size}, 0);
  3222. layer.time_mix_r_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_R_K, "weight", i), {attn_hidden_size}, 0);
  3223. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
  3224. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3225. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3226. layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3227. layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3228. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  3229. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3230. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3231. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3232. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3233. }
  3234. } break;
  3235. case LLM_ARCH_CHAMELEON:
  3236. {
  3237. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3238. // output
  3239. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3240. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3241. // if output is NULL, init from the input tok embed
  3242. if (output == NULL) {
  3243. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3244. }
  3245. for (int i = 0; i < n_layer; ++i) {
  3246. auto & layer = layers[i];
  3247. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3248. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0);
  3249. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0);
  3250. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd_head_k, n_head}, TENSOR_NOT_REQUIRED);
  3251. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd_head_k, n_head_kv}, TENSOR_NOT_REQUIRED);
  3252. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3253. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3254. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3255. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3256. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3257. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3258. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3259. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3260. }
  3261. } break;
  3262. case LLM_ARCH_WAVTOKENIZER_DEC:
  3263. {
  3264. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hparams.n_embd_features, n_vocab}, 0);
  3265. conv1d = create_tensor(tn(LLM_TENSOR_CONV1D, "weight"), {7, hparams.n_embd_features, hparams.posnet.n_embd}, 0);
  3266. conv1d_b = create_tensor(tn(LLM_TENSOR_CONV1D, "bias"), {1, hparams.posnet.n_embd}, 0);
  3267. // posnet
  3268. {
  3269. const int64_t n_embd = hparams.posnet.n_embd;
  3270. for (uint32_t i = 0; i < hparams.posnet.n_layer; ++i) {
  3271. auto & layer = layers[i].posnet;
  3272. // posnet:
  3273. //
  3274. // - resnet
  3275. // - resnet
  3276. // - attn
  3277. // - resnet
  3278. // - resnet
  3279. // - norm
  3280. //
  3281. switch (i) {
  3282. case 0:
  3283. case 1:
  3284. case 3:
  3285. case 4:
  3286. {
  3287. layer.norm1 = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "weight", i), {1, n_embd}, 0);
  3288. layer.norm1_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "bias", i), {1, n_embd}, 0);
  3289. layer.conv1 = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "weight", i), {3, n_embd, n_embd}, 0);
  3290. layer.conv1_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "bias", i), {1, n_embd}, 0);
  3291. layer.norm2 = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "weight", i), {1, n_embd}, 0);
  3292. layer.norm2_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "bias", i), {1, n_embd}, 0);
  3293. layer.conv2 = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "weight", i), {3, n_embd, n_embd}, 0);
  3294. layer.conv2_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "bias", i), {1, n_embd}, 0);
  3295. } break;
  3296. case 2:
  3297. {
  3298. layer.attn_norm = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0);
  3299. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias", i), {1, n_embd}, 0);
  3300. layer.attn_q = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q, "weight", i), {1, n_embd, n_embd}, 0);
  3301. layer.attn_q_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q, "bias", i), {1, n_embd}, 0);
  3302. layer.attn_k = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K, "weight", i), {1, n_embd, n_embd}, 0);
  3303. layer.attn_k_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K, "bias", i), {1, n_embd}, 0);
  3304. layer.attn_v = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V, "weight", i), {1, n_embd, n_embd}, 0);
  3305. layer.attn_v_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V, "bias", i), {1, n_embd}, 0);
  3306. layer.attn_o = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT, "weight", i), {1, n_embd, n_embd}, 0);
  3307. layer.attn_o_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT, "bias", i), {1, n_embd}, 0);
  3308. } break;
  3309. case 5:
  3310. {
  3311. layer.norm = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0);
  3312. layer.norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias", i), {1, n_embd}, 0);
  3313. } break;
  3314. default: GGML_ABORT("unknown posnet layer");
  3315. };
  3316. }
  3317. }
  3318. GGML_ASSERT(hparams.posnet.n_embd == hparams.convnext.n_embd);
  3319. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {hparams.posnet.n_embd}, 0);
  3320. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {hparams.posnet.n_embd}, 0);
  3321. // convnext
  3322. {
  3323. const int64_t n_embd = hparams.convnext.n_embd;
  3324. for (uint32_t i = 0; i < hparams.convnext.n_layer; ++i) {
  3325. auto & layer = layers[i].convnext;
  3326. layer.dw = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW, "weight", i), {7, 1, n_embd}, 0);
  3327. layer.dw_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW, "bias", i), {1, n_embd}, 0);
  3328. layer.norm = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM, "weight", i), {n_embd}, 0);
  3329. layer.norm_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM, "bias", i), {n_embd}, 0);
  3330. layer.pw1 = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1, "weight", i), {n_embd, n_ff}, 0);
  3331. layer.pw1_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1, "bias", i), {n_ff}, 0);
  3332. layer.pw2 = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2, "weight", i), {n_ff, n_embd}, 0);
  3333. layer.pw2_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2, "bias", i), {n_embd}, 0);
  3334. layer.gamma = create_tensor(tn(LLM_TENSOR_CONVNEXT_GAMMA, "weight", i), {n_embd}, 0);
  3335. }
  3336. // output
  3337. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3338. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3339. }
  3340. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hparams.convnext.n_embd, n_embd}, 0);
  3341. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_embd}, 0);
  3342. } break;
  3343. case LLM_ARCH_BAILINGMOE:
  3344. {
  3345. const int64_t n_ff_exp = hparams.n_ff_exp;
  3346. const int64_t n_expert_shared = hparams.n_expert_shared;
  3347. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3348. // output
  3349. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3350. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3351. for (int i = 0; i < n_layer; ++i) {
  3352. auto & layer = layers[i];
  3353. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3354. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_rot}, 0);
  3355. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_head_kv * n_rot}, 0);
  3356. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_head_kv * n_rot}, 0);
  3357. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_rot, n_embd}, 0);
  3358. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3359. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  3360. if (n_expert == 0) {
  3361. throw std::runtime_error("n_expert must be > 0");
  3362. }
  3363. if (n_expert_used == 0) {
  3364. throw std::runtime_error("n_expert_used must be > 0");
  3365. }
  3366. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  3367. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  3368. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  3369. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  3370. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
  3371. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  3372. }
  3373. } break;
  3374. default:
  3375. throw std::runtime_error("unknown architecture");
  3376. }
  3377. if (n_moved_tensors > 0) {
  3378. LLAMA_LOG_DEBUG("%s: tensor '%s' (%s) (and %d others) cannot be used with preferred buffer type %s, using %s instead\n",
  3379. __func__, first_moved_tensor->name, ggml_type_name(first_moved_tensor->type), n_moved_tensors - 1,
  3380. ggml_backend_buft_name(first_moved_from_buft), ggml_backend_buft_name(first_moved_to_buft));
  3381. }
  3382. }
  3383. ml.done_getting_tensors();
  3384. ml.init_mappings(true, use_mlock ? &pimpl->mlock_mmaps : nullptr);
  3385. pimpl->mappings.reserve(ml.mappings.size());
  3386. // create the backend buffers
  3387. std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
  3388. ctx_bufs.reserve(ctx_map.size());
  3389. // Ensure we have enough capacity for the maximum backend buffer we will potentially create
  3390. const size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
  3391. pimpl->bufs.reserve(n_max_backend_buffer);
  3392. for (auto & it : ctx_map) {
  3393. ggml_backend_buffer_type_t buft = it.first;
  3394. ggml_context * ctx = it.second;
  3395. // skip contexts without tensors
  3396. if (ggml_get_first_tensor(ctx) == nullptr) {
  3397. continue;
  3398. }
  3399. llama_buf_map buf_map;
  3400. buf_map.reserve(n_max_backend_buffer);
  3401. // check if it is possible to use buffer_from_host_ptr with this buffer type
  3402. ggml_backend_dev_t dev = ggml_backend_buft_get_device(buft);
  3403. if (!dev) {
  3404. // FIXME: workaround for CPU backend buft having a NULL device
  3405. dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  3406. }
  3407. ggml_backend_dev_props props;
  3408. ggml_backend_dev_get_props(dev, &props);
  3409. bool buffer_from_host_ptr_supported = props.caps.buffer_from_host_ptr;
  3410. bool is_default_buft = buft == ggml_backend_dev_buffer_type(dev);
  3411. if (ml.use_mmap && use_mmap_buffer && buffer_from_host_ptr_supported && is_default_buft) {
  3412. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  3413. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  3414. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
  3415. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  3416. void * addr = nullptr;
  3417. size_t first, last; // NOLINT
  3418. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  3419. if (first >= last) {
  3420. continue;
  3421. }
  3422. const size_t max_size = ggml_get_max_tensor_size(ctx);
  3423. ggml_backend_buffer_t buf = ggml_backend_dev_buffer_from_host_ptr(dev, (char *) addr + first, last - first, max_size);
  3424. if (buf == nullptr) {
  3425. throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
  3426. }
  3427. pimpl->bufs.emplace_back(buf);
  3428. buf_map.emplace(idx, buf);
  3429. }
  3430. }
  3431. else {
  3432. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  3433. if (buf == nullptr) {
  3434. throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
  3435. }
  3436. pimpl->bufs.emplace_back(buf);
  3437. if (use_mlock && ggml_backend_buffer_is_host(buf)) {
  3438. pimpl->mlock_bufs.emplace_back(new llama_mlock);
  3439. auto & mlock_buf = pimpl->mlock_bufs.back();
  3440. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  3441. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  3442. }
  3443. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  3444. buf_map.emplace(idx, buf);
  3445. }
  3446. }
  3447. if (pimpl->bufs.empty()) {
  3448. throw std::runtime_error("failed to allocate buffer");
  3449. }
  3450. for (auto & buf : buf_map) {
  3451. // indicate that this buffer contains weights
  3452. // this is used by ggml_backend_sched to improve op scheduling: ops that use a weight are preferably scheduled to the backend that contains the weight
  3453. ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  3454. }
  3455. ctx_bufs.emplace_back(ctx, buf_map);
  3456. }
  3457. if (llama_supports_gpu_offload()) {
  3458. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  3459. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  3460. if (n_gpu_layers > (int) hparams.n_layer) {
  3461. LLAMA_LOG_INFO("%s: offloading output layer to GPU\n", __func__);
  3462. }
  3463. const int max_backend_supported_layers = hparams.n_layer + 1;
  3464. const int max_offloadable_layers = hparams.n_layer + 1;
  3465. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  3466. }
  3467. // print memory requirements per buffer type
  3468. for (auto & buf : pimpl->bufs) {
  3469. LLAMA_LOG_INFO("%s: %12s model buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf.get()), ggml_backend_buffer_get_size(buf.get()) / 1024.0 / 1024.0);
  3470. }
  3471. // populate tensors_by_name
  3472. for (auto & ctx : pimpl->ctxs) {
  3473. for (auto * cur = ggml_get_first_tensor(ctx.get()); cur != NULL; cur = ggml_get_next_tensor(ctx.get(), cur)) {
  3474. tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  3475. }
  3476. }
  3477. // load tensor data
  3478. for (auto & it : ctx_bufs) {
  3479. ggml_context * ctx = it.first;
  3480. auto & bufs = it.second;
  3481. if (!ml.load_all_data(ctx, bufs, use_mlock ? &pimpl->mlock_mmaps : NULL, params.progress_callback, params.progress_callback_user_data)) {
  3482. return false;
  3483. }
  3484. }
  3485. if (use_mmap_buffer) {
  3486. for (auto & mapping : ml.mappings) {
  3487. pimpl->mappings.emplace_back(std::move(mapping));
  3488. }
  3489. }
  3490. return true;
  3491. }
  3492. std::string llama_model::arch_name() const {
  3493. return llm_arch_name(arch);
  3494. }
  3495. std::string llama_model::type_name() const {
  3496. return llm_type_name(type);
  3497. }
  3498. std::string llama_model::desc() const {
  3499. return pimpl->desc_str;
  3500. }
  3501. size_t llama_model::size() const {
  3502. return pimpl->n_bytes;
  3503. }
  3504. size_t llama_model::n_tensors() const {
  3505. return tensors_by_name.size();
  3506. }
  3507. size_t llama_model::n_devices() const {
  3508. return devices.size();
  3509. }
  3510. uint64_t llama_model::n_elements() const {
  3511. return pimpl->n_elements;
  3512. }
  3513. void llama_model::print_info() const {
  3514. const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
  3515. auto print_f = [](const std::function<uint32_t(uint32_t)> & f, uint32_t n) {
  3516. bool is_var = false;
  3517. std::vector<uint32_t> v;
  3518. for (uint32_t i = 0; i < n; ++i) {
  3519. v.push_back(f(i));
  3520. if (v[i] != v[0]) {
  3521. is_var = true;
  3522. }
  3523. }
  3524. std::stringstream ss;
  3525. if (is_var) {
  3526. ss << "[";
  3527. for (uint32_t i = 0; i < n; ++i) {
  3528. ss << v[i];
  3529. if (i < n - 1) {
  3530. ss << ", ";
  3531. }
  3532. }
  3533. ss << "]";
  3534. } else {
  3535. ss << v[0];
  3536. }
  3537. return ss.str();
  3538. };
  3539. // hparams
  3540. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, arch_name().c_str());
  3541. LLAMA_LOG_INFO("%s: vocab_only = %d\n", __func__, hparams.vocab_only);
  3542. if (!hparams.vocab_only) {
  3543. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  3544. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  3545. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  3546. LLAMA_LOG_INFO("%s: n_head = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head(il); }, hparams.n_layer).c_str());
  3547. LLAMA_LOG_INFO("%s: n_head_kv = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head_kv(il); }, hparams.n_layer).c_str());
  3548. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  3549. LLAMA_LOG_INFO("%s: n_swa = %u\n", __func__, hparams.n_swa);
  3550. LLAMA_LOG_INFO("%s: n_swa_pattern = %u\n", __func__, hparams.n_swa_pattern);
  3551. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  3552. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  3553. LLAMA_LOG_INFO("%s: n_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_gqa(il); }, hparams.n_layer).c_str());
  3554. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_k_gqa(il); }, hparams.n_layer).c_str());
  3555. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_v_gqa(il); }, hparams.n_layer).c_str());
  3556. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  3557. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  3558. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  3559. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  3560. LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
  3561. LLAMA_LOG_INFO("%s: f_attn_scale = %.1e\n", __func__, hparams.f_attention_scale);
  3562. LLAMA_LOG_INFO("%s: n_ff = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_ff(il); }, hparams.n_layer).c_str());
  3563. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  3564. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  3565. LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
  3566. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  3567. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  3568. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
  3569. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  3570. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  3571. LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn);
  3572. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  3573. LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
  3574. LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
  3575. LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
  3576. LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
  3577. LLAMA_LOG_INFO("%s: ssm_dt_b_c_rms = %d\n", __func__, hparams.ssm_dt_b_c_rms);
  3578. }
  3579. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, type_name().c_str());
  3580. if (pimpl->n_elements >= 1e12) {
  3581. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, pimpl->n_elements*1e-12);
  3582. } else if (pimpl->n_elements >= 1e9) {
  3583. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, pimpl->n_elements*1e-9);
  3584. } else if (pimpl->n_elements >= 1e6) {
  3585. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, pimpl->n_elements*1e-6);
  3586. } else {
  3587. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, pimpl->n_elements*1e-3);
  3588. }
  3589. // general kv
  3590. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, name.c_str());
  3591. if (arch == LLM_ARCH_DEEPSEEK) {
  3592. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  3593. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3594. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  3595. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  3596. }
  3597. if (arch == LLM_ARCH_DEEPSEEK2) {
  3598. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  3599. LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q);
  3600. LLAMA_LOG_INFO("%s: n_lora_kv = %d\n", __func__, hparams.n_lora_kv);
  3601. LLAMA_LOG_INFO("%s: n_embd_head_k_mla = %d\n", __func__, hparams.n_embd_head_k_mla);
  3602. LLAMA_LOG_INFO("%s: n_embd_head_v_mla = %d\n", __func__, hparams.n_embd_head_v_mla);
  3603. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3604. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  3605. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  3606. LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
  3607. LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));
  3608. LLAMA_LOG_INFO("%s: rope_yarn_log_mul = %.4f\n", __func__, hparams.rope_yarn_log_mul);
  3609. }
  3610. if (arch == LLM_ARCH_QWEN2MOE) {
  3611. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3612. LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
  3613. }
  3614. if (arch == LLM_ARCH_QWEN3MOE) {
  3615. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3616. }
  3617. if (arch == LLM_ARCH_MINICPM || arch == LLM_ARCH_GRANITE || arch == LLM_ARCH_GRANITE_MOE) {
  3618. LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale);
  3619. LLAMA_LOG_INFO("%s: f_residual_scale = %f\n", __func__, hparams.f_residual_scale);
  3620. LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale);
  3621. }
  3622. if (arch == LLM_ARCH_BAILINGMOE) {
  3623. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  3624. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3625. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  3626. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  3627. LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
  3628. }
  3629. vocab.print_info();
  3630. }
  3631. ggml_backend_dev_t llama_model::dev_layer(int il) const {
  3632. return pimpl->dev_layer.at(il).dev;
  3633. }
  3634. ggml_backend_dev_t llama_model::dev_output() const {
  3635. return pimpl->dev_output.dev;
  3636. }
  3637. template<typename F>
  3638. static bool buft_supported(ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev, F & fn) {
  3639. ggml_init_params params = {
  3640. /*.mem_size =*/ ggml_tensor_overhead()*8,
  3641. /*.mem_buffer =*/ NULL,
  3642. /*.no_alloc =*/ true,
  3643. };
  3644. ggml_context_ptr ctx { ggml_init(params) };
  3645. if (!ctx) {
  3646. throw std::runtime_error(format("failed to create ggml context"));
  3647. }
  3648. ggml_backend_buffer_ptr buf { ggml_backend_buft_alloc_buffer(buft, 0) };
  3649. ggml_tensor * op_tensor = fn(ctx.get());
  3650. for (int i = 0; i < GGML_MAX_SRC; i++) {
  3651. if (op_tensor->src[i] != nullptr) {
  3652. assert(op_tensor->src[i]->buffer == nullptr);
  3653. op_tensor->src[i]->buffer = buf.get();
  3654. }
  3655. }
  3656. bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
  3657. return op_supported;
  3658. }
  3659. template<typename F>
  3660. static ggml_backend_buffer_type_t select_buft(const buft_list_t & buft_list, const F & fn) {
  3661. for (const auto & cur : buft_list) {
  3662. ggml_backend_dev_t cur_dev = cur.first;
  3663. ggml_backend_buffer_type_t cur_buft = cur.second;
  3664. if (buft_supported(cur_buft, cur_dev, fn)) {
  3665. return cur_buft;
  3666. }
  3667. }
  3668. throw std::runtime_error(format("no suitable buffer type found"));
  3669. }
  3670. ggml_backend_buffer_type_t llama_model::select_buft(int il) const {
  3671. return ::select_buft(
  3672. *pimpl->dev_layer.at(il).buft_list,
  3673. [&](ggml_context * ctx) {
  3674. ggml_tensor * cur = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
  3675. ggml_tensor * layer_dir = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
  3676. return ggml_add(ctx, cur, layer_dir);
  3677. });
  3678. }
  3679. bool llama_model::has_tensor_overrides() const {
  3680. return pimpl->has_tensor_overrides;
  3681. }
  3682. const ggml_tensor * llama_model::get_tensor(const char * name) const {
  3683. auto it = std::find_if(tensors_by_name.begin(), tensors_by_name.end(),
  3684. [name](const std::pair<std::string, ggml_tensor *> & it) {
  3685. return it.first == name;
  3686. });
  3687. if (it == tensors_by_name.end()) {
  3688. return nullptr;
  3689. }
  3690. return it->second;
  3691. }
  3692. struct llm_build_llama : public llm_graph_context {
  3693. llm_build_llama(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  3694. const int64_t n_embd_head = hparams.n_embd_head_v;
  3695. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  3696. GGML_ASSERT(n_embd_head == hparams.n_rot);
  3697. ggml_tensor * cur;
  3698. ggml_tensor * inpL;
  3699. inpL = build_inp_embd(model.tok_embd);
  3700. // inp_pos - contains the positions
  3701. ggml_tensor * inp_pos = build_inp_pos();
  3702. // temperature tuning
  3703. ggml_tensor * inp_attn_scale = nullptr;
  3704. if (arch == LLM_ARCH_LLAMA4) {
  3705. inp_attn_scale = build_inp_attn_scale();
  3706. }
  3707. auto * inp_attn = build_attn_inp_kv_unified();
  3708. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  3709. for (int il = 0; il < n_layer; ++il) {
  3710. ggml_tensor * inpSA = inpL;
  3711. bool use_rope = arch == LLM_ARCH_LLAMA4
  3712. ? (il + 1) % hparams.n_no_rope_layer_step != 0
  3713. : true;
  3714. // norm
  3715. cur = build_norm(inpL,
  3716. model.layers[il].attn_norm, NULL,
  3717. LLM_NORM_RMS, il);
  3718. cb(cur, "attn_norm", il);
  3719. // self-attention
  3720. {
  3721. // rope freq factors for llama3; may return nullptr for llama2 and other models
  3722. ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
  3723. // compute Q and K and RoPE them
  3724. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  3725. cb(Qcur, "Qcur", il);
  3726. if (model.layers[il].bq) {
  3727. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  3728. cb(Qcur, "Qcur", il);
  3729. }
  3730. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  3731. cb(Kcur, "Kcur", il);
  3732. if (model.layers[il].bk) {
  3733. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  3734. cb(Kcur, "Kcur", il);
  3735. }
  3736. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  3737. cb(Vcur, "Vcur", il);
  3738. if (model.layers[il].bv) {
  3739. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  3740. cb(Vcur, "Vcur", il);
  3741. }
  3742. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  3743. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  3744. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  3745. if (use_rope) {
  3746. Qcur = ggml_rope_ext(
  3747. ctx0, Qcur, inp_pos, rope_factors,
  3748. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3749. ext_factor, attn_factor, beta_fast, beta_slow
  3750. );
  3751. Kcur = ggml_rope_ext(
  3752. ctx0, Kcur, inp_pos, rope_factors,
  3753. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3754. ext_factor, attn_factor, beta_fast, beta_slow
  3755. );
  3756. } else if (inp_attn_scale) {
  3757. Qcur = ggml_mul(ctx0, Qcur, inp_attn_scale);
  3758. }
  3759. cb(Qcur, "Qcur", il);
  3760. cb(Kcur, "Kcur", il);
  3761. cb(Vcur, "Vcur", il);
  3762. if (arch == LLM_ARCH_LLAMA4 && use_rope && hparams.use_kq_norm) {
  3763. // Llama4TextL2Norm
  3764. Qcur = ggml_rms_norm(ctx0, Qcur, hparams.f_norm_rms_eps);
  3765. Kcur = ggml_rms_norm(ctx0, Kcur, hparams.f_norm_rms_eps);
  3766. cb(Qcur, "Qcur_normed", il);
  3767. cb(Kcur, "Kcur_normed", il);
  3768. }
  3769. cur = build_attn(inp_attn, gf,
  3770. model.layers[il].wo, model.layers[il].bo,
  3771. Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
  3772. cb(cur, "attn_out", il);
  3773. }
  3774. if (il == n_layer - 1) {
  3775. // skip computing output for unused tokens
  3776. ggml_tensor * inp_out_ids = build_inp_out_ids();
  3777. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  3778. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  3779. }
  3780. // For Granite architecture
  3781. if (hparams.f_residual_scale) {
  3782. cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
  3783. }
  3784. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  3785. cb(ffn_inp, "ffn_inp", il);
  3786. // feed-forward network (non-MoE)
  3787. if (model.layers[il].ffn_gate_inp == nullptr) {
  3788. cur = build_norm(ffn_inp,
  3789. model.layers[il].ffn_norm, NULL,
  3790. LLM_NORM_RMS, il);
  3791. cb(cur, "ffn_norm", il);
  3792. cur = build_ffn(cur,
  3793. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  3794. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  3795. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  3796. NULL,
  3797. LLM_FFN_SILU, LLM_FFN_PAR, il);
  3798. cb(cur, "ffn_out", il);
  3799. } else if (arch == LLM_ARCH_LLAMA4) {
  3800. // llama4 MoE
  3801. ggml_tensor * ffn_inp_normed = build_norm(ffn_inp,
  3802. model.layers[il].ffn_norm, NULL,
  3803. LLM_NORM_RMS, il);
  3804. cb(cur, "ffn_norm", il);
  3805. ggml_tensor * moe_out = build_moe_ffn(ffn_inp_normed,
  3806. model.layers[il].ffn_gate_inp,
  3807. model.layers[il].ffn_up_exps,
  3808. model.layers[il].ffn_gate_exps,
  3809. model.layers[il].ffn_down_exps,
  3810. nullptr,
  3811. n_expert, n_expert_used,
  3812. LLM_FFN_SILU, false,
  3813. false, 0.0,
  3814. LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID,
  3815. il);
  3816. // Shared experts
  3817. ggml_tensor * shexp_out = build_ffn(ffn_inp_normed,
  3818. model.layers[il].ffn_up_shexp, NULL, NULL,
  3819. model.layers[il].ffn_gate_shexp, NULL, NULL,
  3820. model.layers[il].ffn_down_shexp, NULL, NULL,
  3821. NULL,
  3822. LLM_FFN_SILU, LLM_FFN_PAR, il);
  3823. cb(shexp_out, "ffn_moe_shexp", il);
  3824. cur = ggml_add(ctx0, moe_out, shexp_out);
  3825. cb(cur, "ffn_moe_out_merged", il);
  3826. } else {
  3827. // MoE branch
  3828. cur = build_norm(ffn_inp,
  3829. model.layers[il].ffn_norm, NULL,
  3830. LLM_NORM_RMS, il);
  3831. cb(cur, "ffn_norm", il);
  3832. cur = build_moe_ffn(cur,
  3833. model.layers[il].ffn_gate_inp,
  3834. model.layers[il].ffn_up_exps,
  3835. model.layers[il].ffn_gate_exps,
  3836. model.layers[il].ffn_down_exps,
  3837. nullptr,
  3838. n_expert, n_expert_used,
  3839. LLM_FFN_SILU, true,
  3840. false, 0.0,
  3841. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  3842. il);
  3843. cb(cur, "ffn_moe_out", il);
  3844. }
  3845. // For Granite architecture
  3846. if (hparams.f_residual_scale) {
  3847. cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
  3848. }
  3849. cur = ggml_add(ctx0, cur, ffn_inp);
  3850. cb(cur, "ffn_out", il);
  3851. cur = build_cvec(cur, il);
  3852. cb(cur, "l_out", il);
  3853. // input for next layer
  3854. inpL = cur;
  3855. }
  3856. cur = inpL;
  3857. cur = build_norm(cur,
  3858. model.output_norm, NULL,
  3859. LLM_NORM_RMS, -1);
  3860. cb(cur, "result_norm", -1);
  3861. res->t_embd = cur;
  3862. // lm_head
  3863. cur = build_lora_mm(model.output, cur);
  3864. // For Granite architecture
  3865. if (hparams.f_logit_scale) {
  3866. cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
  3867. }
  3868. cb(cur, "result_output", -1);
  3869. res->t_logits = cur;
  3870. ggml_build_forward_expand(gf, cur);
  3871. }
  3872. };
  3873. struct llm_build_deci : public llm_graph_context {
  3874. llm_build_deci(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  3875. const int64_t n_embd_head = hparams.n_embd_head_v;
  3876. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  3877. GGML_ASSERT(n_embd_head == hparams.n_rot);
  3878. ggml_tensor * cur;
  3879. ggml_tensor * inpL;
  3880. inpL = build_inp_embd(model.tok_embd);
  3881. // inp_pos - contains the positions
  3882. ggml_tensor * inp_pos = build_inp_pos();
  3883. auto * inp_attn = build_attn_inp_kv_unified();
  3884. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  3885. for (int il = 0; il < n_layer; ++il) {
  3886. ggml_tensor * inpSA = inpL;
  3887. const int64_t n_head_kv = hparams.n_head_kv(il);
  3888. const int64_t n_head = hparams.n_head(il);
  3889. if (n_head == 0) {
  3890. // attention-free layer of Llama-3_1-Nemotron-51B
  3891. cur = inpL;
  3892. } else {
  3893. // norm
  3894. cur = build_norm(inpL,
  3895. model.layers[il].attn_norm, NULL,
  3896. LLM_NORM_RMS, il);
  3897. cb(cur, "attn_norm", il);
  3898. }
  3899. if (n_head > 0 && n_head_kv == 0) {
  3900. // "linear attention" of Llama-3_1-Nemotron-51B
  3901. cur = build_lora_mm(model.layers[il].wo, cur);
  3902. cb(cur, "wo", il);
  3903. } else if (n_head > 0) {
  3904. // self-attention
  3905. // rope freq factors for llama3; may return nullptr for llama2 and other models
  3906. ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
  3907. // compute Q and K and RoPE them
  3908. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  3909. cb(Qcur, "Qcur", il);
  3910. if (model.layers[il].bq) {
  3911. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  3912. cb(Qcur, "Qcur", il);
  3913. }
  3914. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  3915. cb(Kcur, "Kcur", il);
  3916. if (model.layers[il].bk) {
  3917. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  3918. cb(Kcur, "Kcur", il);
  3919. }
  3920. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  3921. cb(Vcur, "Vcur", il);
  3922. if (model.layers[il].bv) {
  3923. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  3924. cb(Vcur, "Vcur", il);
  3925. }
  3926. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  3927. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  3928. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  3929. Qcur = ggml_rope_ext(
  3930. ctx0, Qcur, inp_pos, rope_factors,
  3931. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3932. ext_factor, attn_factor, beta_fast, beta_slow
  3933. );
  3934. Kcur = ggml_rope_ext(
  3935. ctx0, Kcur, inp_pos, rope_factors,
  3936. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3937. ext_factor, attn_factor, beta_fast, beta_slow
  3938. );
  3939. cb(Qcur, "Qcur", il);
  3940. cb(Kcur, "Kcur", il);
  3941. cb(Vcur, "Vcur", il);
  3942. cur = build_attn(inp_attn, gf,
  3943. model.layers[il].wo, model.layers[il].bo,
  3944. Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
  3945. }
  3946. if (il == n_layer - 1) {
  3947. // skip computing output for unused tokens
  3948. ggml_tensor * inp_out_ids = build_inp_out_ids();
  3949. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  3950. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  3951. }
  3952. // For Granite architecture
  3953. if (hparams.f_residual_scale) {
  3954. cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
  3955. }
  3956. // modified to support attention-free layer of Llama-3_1-Nemotron-51B
  3957. ggml_tensor * ffn_inp = cur;
  3958. if (n_head > 0) {
  3959. ffn_inp = ggml_add(ctx0, cur, inpSA);
  3960. cb(ffn_inp, "ffn_inp", il);
  3961. }
  3962. // feed-forward network
  3963. if (model.layers[il].ffn_gate_inp == nullptr) {
  3964. cur = build_norm(ffn_inp,
  3965. model.layers[il].ffn_norm, NULL,
  3966. LLM_NORM_RMS, il);
  3967. cb(cur, "ffn_norm", il);
  3968. cur = build_ffn(cur,
  3969. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  3970. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  3971. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  3972. NULL,
  3973. LLM_FFN_SILU, LLM_FFN_PAR, il);
  3974. cb(cur, "ffn_out", il);
  3975. }
  3976. // For Granite architecture
  3977. if (hparams.f_residual_scale) {
  3978. cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
  3979. }
  3980. cur = ggml_add(ctx0, cur, ffn_inp);
  3981. cb(cur, "ffn_out", il);
  3982. cur = build_cvec(cur, il);
  3983. cb(cur, "l_out", il);
  3984. // input for next layer
  3985. inpL = cur;
  3986. }
  3987. cur = inpL;
  3988. cur = build_norm(cur,
  3989. model.output_norm, NULL,
  3990. LLM_NORM_RMS, -1);
  3991. cb(cur, "result_norm", -1);
  3992. res->t_embd = cur;
  3993. // lm_head
  3994. cur = build_lora_mm(model.output, cur);
  3995. // For Granite architecture
  3996. if (hparams.f_logit_scale) {
  3997. cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
  3998. }
  3999. cb(cur, "result_output", -1);
  4000. res->t_logits = cur;
  4001. ggml_build_forward_expand(gf, cur);
  4002. }
  4003. };
  4004. struct llm_build_baichuan : public llm_graph_context {
  4005. llm_build_baichuan(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4006. const int64_t n_embd_head = hparams.n_embd_head_v;
  4007. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4008. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4009. ggml_tensor * cur;
  4010. ggml_tensor * inpL;
  4011. inpL = build_inp_embd(model.tok_embd);
  4012. // inp_pos - contains the positions
  4013. ggml_tensor * inp_pos = model.type == LLM_TYPE_7B ? build_inp_pos() : nullptr;
  4014. auto * inp_attn = build_attn_inp_kv_unified();
  4015. for (int il = 0; il < n_layer; ++il) {
  4016. ggml_tensor * inpSA = inpL;
  4017. cur = build_norm(inpL,
  4018. model.layers[il].attn_norm, NULL,
  4019. LLM_NORM_RMS, il);
  4020. cb(cur, "attn_norm", il);
  4021. // self-attention
  4022. {
  4023. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  4024. cb(Qcur, "Qcur", il);
  4025. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  4026. cb(Kcur, "Kcur", il);
  4027. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  4028. cb(Vcur, "Vcur", il);
  4029. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4030. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4031. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4032. switch (model.type) {
  4033. case LLM_TYPE_7B:
  4034. Qcur = ggml_rope_ext(
  4035. ctx0, Qcur, inp_pos, nullptr,
  4036. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4037. ext_factor, attn_factor, beta_fast, beta_slow
  4038. );
  4039. Kcur = ggml_rope_ext(
  4040. ctx0, Kcur, inp_pos, nullptr,
  4041. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4042. ext_factor, attn_factor, beta_fast, beta_slow
  4043. );
  4044. break;
  4045. case LLM_TYPE_13B:
  4046. break;
  4047. default:
  4048. GGML_ABORT("fatal error");
  4049. }
  4050. cb(Qcur, "Qcur", il);
  4051. cb(Kcur, "Kcur", il);
  4052. cb(Vcur, "Vcur", il);
  4053. cur = build_attn(inp_attn, gf,
  4054. model.layers[il].wo, NULL,
  4055. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4056. }
  4057. if (il == n_layer - 1) {
  4058. // skip computing output for unused tokens
  4059. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4060. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4061. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4062. }
  4063. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4064. cb(ffn_inp, "ffn_inp", il);
  4065. // feed-forward network
  4066. {
  4067. cur = build_norm(ffn_inp,
  4068. model.layers[il].ffn_norm, NULL,
  4069. LLM_NORM_RMS, il);
  4070. cb(cur, "ffn_norm", il);
  4071. cur = build_ffn(cur,
  4072. model.layers[il].ffn_up, NULL, NULL,
  4073. model.layers[il].ffn_gate, NULL, NULL,
  4074. model.layers[il].ffn_down, NULL, NULL,
  4075. NULL,
  4076. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4077. cb(cur, "ffn_out", il);
  4078. }
  4079. cur = ggml_add(ctx0, cur, ffn_inp);
  4080. cur = build_cvec(cur, il);
  4081. cb(cur, "l_out", il);
  4082. // input for next layer
  4083. inpL = cur;
  4084. }
  4085. cur = inpL;
  4086. cur = build_norm(cur,
  4087. model.output_norm, NULL,
  4088. LLM_NORM_RMS, -1);
  4089. cb(cur, "result_norm", -1);
  4090. res->t_embd = cur;
  4091. // lm_head
  4092. cur = build_lora_mm(model.output, cur);
  4093. cb(cur, "result_output", -1);
  4094. res->t_logits = cur;
  4095. ggml_build_forward_expand(gf, cur);
  4096. }
  4097. };
  4098. struct llm_build_xverse : public llm_graph_context {
  4099. llm_build_xverse(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4100. const int64_t n_embd_head = hparams.n_embd_head_v;
  4101. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4102. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4103. ggml_tensor * cur;
  4104. ggml_tensor * inpL;
  4105. inpL = build_inp_embd(model.tok_embd);
  4106. // inp_pos - contains the positions
  4107. ggml_tensor * inp_pos = build_inp_pos();
  4108. auto * inp_attn = build_attn_inp_kv_unified();
  4109. for (int il = 0; il < n_layer; ++il) {
  4110. ggml_tensor * inpSA = inpL;
  4111. cur = build_norm(inpL,
  4112. model.layers[il].attn_norm, NULL,
  4113. LLM_NORM_RMS, il);
  4114. cb(cur, "attn_norm", il);
  4115. // self-attention
  4116. {
  4117. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  4118. cb(Qcur, "Qcur", il);
  4119. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  4120. cb(Kcur, "Kcur", il);
  4121. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  4122. cb(Vcur, "Vcur", il);
  4123. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4124. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4125. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4126. Qcur = ggml_rope_ext(
  4127. ctx0, Qcur, inp_pos, nullptr,
  4128. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4129. ext_factor, attn_factor, beta_fast, beta_slow
  4130. );
  4131. Kcur = ggml_rope_ext(
  4132. ctx0, Kcur, inp_pos, nullptr,
  4133. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4134. ext_factor, attn_factor, beta_fast, beta_slow
  4135. );
  4136. cb(Qcur, "Qcur", il);
  4137. cb(Kcur, "Kcur", il);
  4138. cb(Vcur, "Vcur", il);
  4139. cur = build_attn(inp_attn, gf,
  4140. model.layers[il].wo, NULL,
  4141. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4142. }
  4143. if (il == n_layer - 1) {
  4144. // skip computing output for unused tokens
  4145. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4146. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4147. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4148. }
  4149. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4150. cb(ffn_inp, "ffn_inp", il);
  4151. // feed-forward network
  4152. {
  4153. cur = build_norm(ffn_inp,
  4154. model.layers[il].ffn_norm, NULL,
  4155. LLM_NORM_RMS, il);
  4156. cb(cur, "ffn_norm", il);
  4157. cur = build_ffn(cur,
  4158. model.layers[il].ffn_up, NULL, NULL,
  4159. model.layers[il].ffn_gate, NULL, NULL,
  4160. model.layers[il].ffn_down, NULL, NULL,
  4161. NULL,
  4162. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4163. cb(cur, "ffn_out", il);
  4164. }
  4165. cur = ggml_add(ctx0, cur, ffn_inp);
  4166. cur = build_cvec(cur, il);
  4167. cb(cur, "l_out", il);
  4168. // input for next layer
  4169. inpL = cur;
  4170. }
  4171. cur = inpL;
  4172. cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
  4173. cb(cur, "result_norm", -1);
  4174. res->t_embd = cur;
  4175. // lm_head
  4176. cur = build_lora_mm(model.output, cur);
  4177. cb(cur, "result_output", -1);
  4178. res->t_logits = cur;
  4179. ggml_build_forward_expand(gf, cur);
  4180. }
  4181. };
  4182. struct llm_build_falcon : public llm_graph_context {
  4183. llm_build_falcon(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4184. const int64_t n_embd_head = hparams.n_embd_head_v;
  4185. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4186. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4187. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4188. ggml_tensor * cur;
  4189. ggml_tensor * inpL;
  4190. inpL = build_inp_embd(model.tok_embd);
  4191. // inp_pos - contains the positions
  4192. ggml_tensor * inp_pos = build_inp_pos();
  4193. auto * inp_attn = build_attn_inp_kv_unified();
  4194. for (int il = 0; il < n_layer; ++il) {
  4195. ggml_tensor * attn_norm;
  4196. attn_norm = build_norm(inpL,
  4197. model.layers[il].attn_norm,
  4198. model.layers[il].attn_norm_b,
  4199. LLM_NORM, il);
  4200. cb(attn_norm, "attn_norm", il);
  4201. // self-attention
  4202. {
  4203. if (model.layers[il].attn_norm_2) {
  4204. // Falcon-40B
  4205. cur = build_norm(inpL,
  4206. model.layers[il].attn_norm_2,
  4207. model.layers[il].attn_norm_2_b,
  4208. LLM_NORM, il);
  4209. cb(cur, "attn_norm_2", il);
  4210. } else {
  4211. cur = attn_norm;
  4212. }
  4213. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4214. cb(cur, "wqkv", il);
  4215. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4216. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4217. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4218. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4219. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4220. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4221. // using mode = 2 for neox mode
  4222. Qcur = ggml_rope_ext(
  4223. ctx0, Qcur, inp_pos, nullptr,
  4224. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4225. ext_factor, attn_factor, beta_fast, beta_slow
  4226. );
  4227. Kcur = ggml_rope_ext(
  4228. ctx0, Kcur, inp_pos, nullptr,
  4229. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4230. ext_factor, attn_factor, beta_fast, beta_slow
  4231. );
  4232. cb(Qcur, "Qcur", il);
  4233. cb(Kcur, "Kcur", il);
  4234. cb(Vcur, "Vcur", il);
  4235. cur = build_attn(inp_attn, gf,
  4236. model.layers[il].wo, NULL,
  4237. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4238. }
  4239. if (il == n_layer - 1) {
  4240. // skip computing output for unused tokens
  4241. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4242. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4243. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4244. attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
  4245. }
  4246. ggml_tensor * ffn_inp = cur;
  4247. // feed forward
  4248. {
  4249. cur = build_ffn(attn_norm, // !! use the attn norm, not the result
  4250. model.layers[il].ffn_up, NULL, NULL,
  4251. NULL, NULL, NULL,
  4252. model.layers[il].ffn_down, NULL, NULL,
  4253. NULL,
  4254. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  4255. cb(cur, "ffn_out", il);
  4256. }
  4257. cur = ggml_add(ctx0, cur, ffn_inp);
  4258. cur = ggml_add(ctx0, cur, inpL);
  4259. cur = build_cvec(cur, il);
  4260. cb(cur, "l_out", il);
  4261. // input for next layer
  4262. inpL = cur;
  4263. }
  4264. cur = inpL;
  4265. // norm
  4266. cur = build_norm(cur,
  4267. model.output_norm,
  4268. model.output_norm_b,
  4269. LLM_NORM, -1);
  4270. cb(cur, "result_norm", -1);
  4271. res->t_embd = cur;
  4272. cur = build_lora_mm(model.output, cur);
  4273. cb(cur, "result_output", -1);
  4274. res->t_logits = cur;
  4275. ggml_build_forward_expand(gf, cur);
  4276. }
  4277. };
  4278. struct llm_build_grok : public llm_graph_context {
  4279. llm_build_grok(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4280. const int64_t n_embd_head = hparams.n_embd_head_v;
  4281. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4282. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4283. ggml_tensor * cur;
  4284. ggml_tensor * inpL;
  4285. inpL = build_inp_embd(model.tok_embd);
  4286. // multiply by embedding_multiplier_scale of 78.38367176906169
  4287. inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
  4288. // inp_pos - contains the positions
  4289. ggml_tensor * inp_pos = build_inp_pos();
  4290. auto * inp_attn = build_attn_inp_kv_unified();
  4291. for (int il = 0; il < n_layer; ++il) {
  4292. ggml_tensor * inpSA = inpL;
  4293. // norm
  4294. cur = build_norm(inpL,
  4295. model.layers[il].attn_norm, NULL,
  4296. LLM_NORM_RMS, il);
  4297. cb(cur, "attn_norm", il);
  4298. // self-attention
  4299. {
  4300. // compute Q and K and RoPE them
  4301. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  4302. cb(Qcur, "Qcur", il);
  4303. if (model.layers[il].bq) {
  4304. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  4305. cb(Qcur, "Qcur", il);
  4306. }
  4307. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  4308. cb(Kcur, "Kcur", il);
  4309. if (model.layers[il].bk) {
  4310. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  4311. cb(Kcur, "Kcur", il);
  4312. }
  4313. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  4314. cb(Vcur, "Vcur", il);
  4315. if (model.layers[il].bv) {
  4316. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  4317. cb(Vcur, "Vcur", il);
  4318. }
  4319. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4320. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4321. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4322. Qcur = ggml_rope_ext(
  4323. ctx0, Qcur, inp_pos, nullptr,
  4324. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4325. ext_factor, attn_factor, beta_fast, beta_slow
  4326. );
  4327. Kcur = ggml_rope_ext(
  4328. ctx0, Kcur, inp_pos, nullptr,
  4329. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4330. ext_factor, attn_factor, beta_fast, beta_slow
  4331. );
  4332. cb(Qcur, "Qcur", il);
  4333. cb(Kcur, "Kcur", il);
  4334. cb(Vcur, "Vcur", il);
  4335. cur = build_attn(inp_attn, gf,
  4336. model.layers[il].wo, model.layers[il].bo,
  4337. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  4338. }
  4339. if (il == n_layer - 1) {
  4340. // skip computing output for unused tokens
  4341. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4342. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4343. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4344. }
  4345. // Grok
  4346. // if attn_out_norm is present then apply it before adding the input
  4347. if (model.layers[il].attn_out_norm) {
  4348. cur = build_norm(cur,
  4349. model.layers[il].attn_out_norm, NULL,
  4350. LLM_NORM_RMS, il);
  4351. cb(cur, "attn_out_norm", il);
  4352. }
  4353. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4354. cb(ffn_inp, "ffn_inp", il);
  4355. // feed-forward network
  4356. // MoE branch
  4357. cur = build_norm(ffn_inp,
  4358. model.layers[il].ffn_norm, NULL,
  4359. LLM_NORM_RMS, il);
  4360. cb(cur, "ffn_norm", il);
  4361. cur = build_moe_ffn(cur,
  4362. model.layers[il].ffn_gate_inp,
  4363. model.layers[il].ffn_up_exps,
  4364. model.layers[il].ffn_gate_exps,
  4365. model.layers[il].ffn_down_exps,
  4366. nullptr,
  4367. n_expert, n_expert_used,
  4368. LLM_FFN_GELU, true,
  4369. false, 0.0,
  4370. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  4371. il);
  4372. cb(cur, "ffn_moe_out", il);
  4373. // Grok
  4374. // if layer_out_norm is present then apply it before adding the input
  4375. // Idea: maybe ffn_out_norm is a better name
  4376. if (model.layers[il].layer_out_norm) {
  4377. cur = build_norm(cur,
  4378. model.layers[il].layer_out_norm, NULL,
  4379. LLM_NORM_RMS, il);
  4380. cb(cur, "layer_out_norm", il);
  4381. }
  4382. cur = ggml_add(ctx0, cur, ffn_inp);
  4383. cb(cur, "ffn_out", il);
  4384. cur = build_cvec(cur, il);
  4385. cb(cur, "l_out", il);
  4386. // input for next layer
  4387. inpL = cur;
  4388. }
  4389. cur = inpL;
  4390. cur = build_norm(cur,
  4391. model.output_norm, NULL,
  4392. LLM_NORM_RMS, -1);
  4393. cb(cur, "result_norm", -1);
  4394. res->t_embd = cur;
  4395. // lm_head
  4396. cur = build_lora_mm(model.output, cur);
  4397. // Grok
  4398. // multiply logits by output_multiplier_scale of 0.5773502691896257
  4399. cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
  4400. cb(cur, "result_output", -1);
  4401. res->t_logits = cur;
  4402. ggml_build_forward_expand(gf, cur);
  4403. }
  4404. };
  4405. struct llm_build_dbrx : public llm_graph_context {
  4406. llm_build_dbrx(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4407. const int64_t n_embd_head = hparams.n_embd_head_v;
  4408. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4409. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4410. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4411. ggml_tensor * cur;
  4412. ggml_tensor * inpL;
  4413. inpL = build_inp_embd(model.tok_embd);
  4414. // inp_pos - contains the positions
  4415. ggml_tensor * inp_pos = build_inp_pos();
  4416. auto * inp_attn = build_attn_inp_kv_unified();
  4417. for (int il = 0; il < n_layer; ++il) {
  4418. ggml_tensor * inpSA = inpL;
  4419. // norm
  4420. cur = build_norm(inpL,
  4421. model.layers[il].attn_norm, NULL,
  4422. LLM_NORM, il);
  4423. cb(cur, "attn_norm", il);
  4424. // self-attention
  4425. {
  4426. ggml_tensor * Qcur = nullptr;
  4427. ggml_tensor * Kcur = nullptr;
  4428. ggml_tensor * Vcur = nullptr;
  4429. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4430. cb(cur, "wqkv", il);
  4431. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  4432. cb(cur, "wqkv_clamped", il);
  4433. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4434. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4435. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4436. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4437. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4438. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4439. Qcur = ggml_rope_ext(
  4440. ctx0, Qcur, inp_pos, nullptr,
  4441. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4442. ext_factor, attn_factor, beta_fast, beta_slow
  4443. );
  4444. Kcur = ggml_rope_ext(
  4445. ctx0, Kcur, inp_pos, nullptr,
  4446. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4447. ext_factor, attn_factor, beta_fast, beta_slow
  4448. );
  4449. cb(Qcur, "Qcur", il);
  4450. cb(Kcur, "Kcur", il);
  4451. cb(Vcur, "Vcur", il);
  4452. cur = build_attn(inp_attn, gf,
  4453. model.layers[il].wo, NULL,
  4454. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4455. }
  4456. if (il == n_layer - 1) {
  4457. // skip computing output for unused tokens
  4458. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4459. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4460. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4461. }
  4462. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4463. cb(ffn_inp, "ffn_inp", il);
  4464. // feed-forward network
  4465. // MoE branch
  4466. cur = build_norm(ffn_inp,
  4467. model.layers[il].attn_out_norm, NULL,
  4468. LLM_NORM, il);
  4469. cb(cur, "attn_out_norm", il);
  4470. cur = build_moe_ffn(cur,
  4471. model.layers[il].ffn_gate_inp,
  4472. model.layers[il].ffn_up_exps,
  4473. model.layers[il].ffn_gate_exps,
  4474. model.layers[il].ffn_down_exps,
  4475. nullptr,
  4476. n_expert, n_expert_used,
  4477. LLM_FFN_SILU, true,
  4478. false, 0.0,
  4479. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  4480. il);
  4481. cb(cur, "ffn_moe_out", il);
  4482. cur = ggml_add(ctx0, cur, ffn_inp);
  4483. cb(cur, "ffn_out", il);
  4484. cur = build_cvec(cur, il);
  4485. cb(cur, "l_out", il);
  4486. // input for next layer
  4487. inpL = cur;
  4488. }
  4489. cur = inpL;
  4490. cur = build_norm(cur,
  4491. model.output_norm, NULL,
  4492. LLM_NORM, -1);
  4493. cb(cur, "result_norm", -1);
  4494. res->t_embd = cur;
  4495. // lm_head
  4496. cur = build_lora_mm(model.output, cur);
  4497. cb(cur, "result_output", -1);
  4498. res->t_logits = cur;
  4499. ggml_build_forward_expand(gf, cur);
  4500. }
  4501. };
  4502. struct llm_build_starcoder : public llm_graph_context {
  4503. llm_build_starcoder(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4504. const int64_t n_embd_head = hparams.n_embd_head_v;
  4505. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4506. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4507. ggml_tensor * cur;
  4508. ggml_tensor * inpL;
  4509. inpL = build_inp_embd(model.tok_embd);
  4510. // inp_pos - contains the positions
  4511. ggml_tensor * inp_pos = build_inp_pos();
  4512. auto * inp_attn = build_attn_inp_kv_unified();
  4513. ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  4514. cb(pos, "pos_embd", -1);
  4515. inpL = ggml_add(ctx0, inpL, pos);
  4516. cb(inpL, "inpL", -1);
  4517. for (int il = 0; il < n_layer; ++il) {
  4518. cur = build_norm(inpL,
  4519. model.layers[il].attn_norm,
  4520. model.layers[il].attn_norm_b,
  4521. LLM_NORM, il);
  4522. cb(cur, "attn_norm", il);
  4523. // self-attention
  4524. {
  4525. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4526. cb(cur, "wqkv", il);
  4527. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4528. cb(cur, "bqkv", il);
  4529. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4530. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4531. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4532. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4533. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4534. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4535. cb(Qcur, "Qcur", il);
  4536. cb(Kcur, "Kcur", il);
  4537. cb(Vcur, "Vcur", il);
  4538. cur = build_attn(inp_attn, gf,
  4539. model.layers[il].wo, model.layers[il].bo,
  4540. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4541. }
  4542. if (il == n_layer - 1) {
  4543. // skip computing output for unused tokens
  4544. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4545. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4546. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4547. }
  4548. // add the input
  4549. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  4550. cb(ffn_inp, "ffn_inp", il);
  4551. // FF
  4552. {
  4553. cur = build_norm(ffn_inp,
  4554. model.layers[il].ffn_norm,
  4555. model.layers[il].ffn_norm_b,
  4556. LLM_NORM, il);
  4557. cb(cur, "ffn_norm", il);
  4558. cur = build_ffn(cur,
  4559. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  4560. NULL, NULL, NULL,
  4561. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4562. NULL,
  4563. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  4564. cb(cur, "ffn_out", il);
  4565. }
  4566. cur = ggml_add(ctx0, cur, ffn_inp);
  4567. cur = build_cvec(cur, il);
  4568. cb(cur, "l_out", il);
  4569. // input for next layer
  4570. inpL = cur;
  4571. }
  4572. cur = build_norm(inpL,
  4573. model.output_norm,
  4574. model.output_norm_b,
  4575. LLM_NORM, -1);
  4576. cb(cur, "result_norm", -1);
  4577. res->t_embd = cur;
  4578. cur = build_lora_mm(model.output, cur);
  4579. cb(cur, "result_output", -1);
  4580. res->t_logits = cur;
  4581. ggml_build_forward_expand(gf, cur);
  4582. }
  4583. };
  4584. struct llm_build_refact : public llm_graph_context {
  4585. llm_build_refact(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4586. const int64_t n_embd_head = hparams.n_embd_head_v;
  4587. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4588. ggml_tensor * cur;
  4589. ggml_tensor * inpL;
  4590. inpL = build_inp_embd(model.tok_embd);
  4591. auto * inp_attn = build_attn_inp_kv_unified();
  4592. for (int il = 0; il < n_layer; ++il) {
  4593. ggml_tensor * inpSA = inpL;
  4594. cur = build_norm(inpL,
  4595. model.layers[il].attn_norm, NULL,
  4596. LLM_NORM_RMS, il);
  4597. cb(cur, "attn_norm", il);
  4598. // self-attention
  4599. {
  4600. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  4601. cb(Qcur, "Qcur", il);
  4602. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  4603. cb(Kcur, "Kcur", il);
  4604. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  4605. cb(Vcur, "Vcur", il);
  4606. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4607. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4608. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4609. cb(Qcur, "Qcur", il);
  4610. cb(Kcur, "Kcur", il);
  4611. cb(Vcur, "Vcur", il);
  4612. cur = build_attn(inp_attn, gf,
  4613. model.layers[il].wo, NULL,
  4614. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4615. }
  4616. if (il == n_layer - 1) {
  4617. // skip computing output for unused tokens
  4618. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4619. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4620. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4621. }
  4622. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4623. cb(ffn_inp, "ffn_inp", il);
  4624. // feed-forward network
  4625. {
  4626. cur = build_norm(ffn_inp,
  4627. model.layers[il].ffn_norm, NULL,
  4628. LLM_NORM_RMS, il);
  4629. cb(cur, "ffn_norm", il);
  4630. cur = build_ffn(cur,
  4631. model.layers[il].ffn_up, NULL, NULL,
  4632. model.layers[il].ffn_gate, NULL, NULL,
  4633. model.layers[il].ffn_down, NULL, NULL,
  4634. NULL,
  4635. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4636. cb(cur, "ffn_out", il);
  4637. }
  4638. cur = ggml_add(ctx0, cur, ffn_inp);
  4639. cur = build_cvec(cur, il);
  4640. cb(cur, "l_out", il);
  4641. // input for next layer
  4642. inpL = cur;
  4643. }
  4644. cur = inpL;
  4645. cur = build_norm(cur,
  4646. model.output_norm, NULL,
  4647. LLM_NORM_RMS, -1);
  4648. cb(cur, "result_norm", -1);
  4649. res->t_embd = cur;
  4650. // lm_head
  4651. cur = build_lora_mm(model.output, cur);
  4652. cb(cur, "result_output", -1);
  4653. res->t_logits = cur;
  4654. ggml_build_forward_expand(gf, cur);
  4655. }
  4656. };
  4657. struct llm_build_bert : public llm_graph_context {
  4658. llm_build_bert(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4659. const int64_t n_embd_head = hparams.n_embd_head_v;
  4660. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4661. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4662. ggml_tensor * cur;
  4663. ggml_tensor * inpL;
  4664. ggml_tensor * inp_pos = nullptr;
  4665. if (model.arch != LLM_ARCH_JINA_BERT_V2) {
  4666. inp_pos = build_inp_pos();
  4667. }
  4668. // construct input embeddings (token, type, position)
  4669. inpL = build_inp_embd(model.tok_embd);
  4670. // token types are hardcoded to zero ("Sentence A")
  4671. ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
  4672. inpL = ggml_add(ctx0, inpL, type_row0);
  4673. if (model.arch == LLM_ARCH_BERT) {
  4674. inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
  4675. }
  4676. cb(inpL, "inp_embd", -1);
  4677. // embed layer norm
  4678. inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
  4679. cb(inpL, "inp_norm", -1);
  4680. auto * inp_attn = build_attn_inp_no_cache();
  4681. // iterate layers
  4682. for (int il = 0; il < n_layer; ++il) {
  4683. ggml_tensor * cur = inpL;
  4684. ggml_tensor * Qcur;
  4685. ggml_tensor * Kcur;
  4686. ggml_tensor * Vcur;
  4687. // self-attention
  4688. if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_JINA_BERT_V2) {
  4689. Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, cur), model.layers[il].bq);
  4690. if (model.layers[il].attn_q_norm) {
  4691. Qcur = build_norm(Qcur,
  4692. model.layers[il].attn_q_norm,
  4693. model.layers[il].attn_q_norm_b,
  4694. LLM_NORM, il);
  4695. }
  4696. Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, cur), model.layers[il].bk);
  4697. if (model.layers[il].attn_k_norm) {
  4698. Kcur = build_norm(Kcur,
  4699. model.layers[il].attn_k_norm,
  4700. model.layers[il].attn_k_norm_b,
  4701. LLM_NORM, il);
  4702. }
  4703. Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, cur), model.layers[il].bv);
  4704. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4705. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4706. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4707. } else {
  4708. // compute Q and K and RoPE them
  4709. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4710. cb(cur, "wqkv", il);
  4711. if (model.arch == LLM_ARCH_NOMIC_BERT_MOE) {
  4712. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4713. cb(cur, "bqkv", il);
  4714. }
  4715. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4716. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4717. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4718. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4719. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4720. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4721. Qcur = ggml_rope_ext(
  4722. ctx0, Qcur, inp_pos, nullptr,
  4723. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4724. ext_factor, attn_factor, beta_fast, beta_slow
  4725. );
  4726. Kcur = ggml_rope_ext(
  4727. ctx0, Kcur, inp_pos, nullptr,
  4728. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4729. ext_factor, attn_factor, beta_fast, beta_slow
  4730. );
  4731. }
  4732. cb(Qcur, "Qcur", il);
  4733. cb(Kcur, "Kcur", il);
  4734. cb(Vcur, "Vcur", il);
  4735. cur = build_attn(inp_attn, gf,
  4736. model.layers[il].wo, model.layers[il].bo,
  4737. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4738. cb(cur, "kqv_out", il);
  4739. if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
  4740. // skip computing output for unused tokens
  4741. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4742. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4743. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4744. }
  4745. // re-add the layer input
  4746. cur = ggml_add(ctx0, cur, inpL);
  4747. // attention layer norm
  4748. cur = build_norm(cur, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, il);
  4749. if (model.layers[il].attn_norm_2 != nullptr) {
  4750. cur = ggml_add(ctx0, cur, inpL); // re-add the layer input
  4751. cur = build_norm(cur, model.layers[il].attn_norm_2, model.layers[il].attn_norm_2_b, LLM_NORM, il);
  4752. }
  4753. ggml_tensor * ffn_inp = cur;
  4754. cb(ffn_inp, "ffn_inp", il);
  4755. // feed-forward network
  4756. if (hparams.moe_every_n_layers > 0 && il % hparams.moe_every_n_layers == 1) {
  4757. // MoE branch
  4758. cur = build_moe_ffn(cur,
  4759. model.layers[il].ffn_gate_inp,
  4760. model.layers[il].ffn_up_exps,
  4761. nullptr,
  4762. model.layers[il].ffn_down_exps,
  4763. nullptr,
  4764. hparams.n_expert,
  4765. hparams.n_expert_used,
  4766. LLM_FFN_GELU,
  4767. false, false,
  4768. 0.0f,
  4769. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, il);
  4770. cb(cur, "ffn_moe_out", il);
  4771. } else if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_NOMIC_BERT_MOE) {
  4772. cur = build_ffn(cur,
  4773. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  4774. NULL, NULL, NULL,
  4775. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4776. NULL,
  4777. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  4778. cb(cur, "ffn_out", il);
  4779. } else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
  4780. cur = build_ffn(cur,
  4781. model.layers[il].ffn_up, NULL, NULL,
  4782. model.layers[il].ffn_gate, NULL, NULL,
  4783. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4784. NULL,
  4785. LLM_FFN_GELU, LLM_FFN_PAR, il);
  4786. cb(cur, "ffn_out", il);
  4787. } else {
  4788. cur = build_ffn(cur,
  4789. model.layers[il].ffn_up, NULL, NULL,
  4790. model.layers[il].ffn_gate, NULL, NULL,
  4791. model.layers[il].ffn_down, NULL, NULL,
  4792. NULL,
  4793. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4794. cb(cur, "ffn_out", il);
  4795. }
  4796. // attentions bypass the intermediate layer
  4797. cur = ggml_add(ctx0, cur, ffn_inp);
  4798. // output layer norm
  4799. cur = build_norm(cur, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, il);
  4800. // input for next layer
  4801. inpL = cur;
  4802. }
  4803. cur = inpL;
  4804. cb(cur, "result_embd", -1);
  4805. res->t_embd = cur;
  4806. ggml_build_forward_expand(gf, cur);
  4807. }
  4808. };
  4809. struct llm_build_bloom : public llm_graph_context {
  4810. llm_build_bloom(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4811. const int64_t n_embd_head = hparams.n_embd_head_v;
  4812. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4813. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4814. ggml_tensor * cur;
  4815. ggml_tensor * inpL;
  4816. inpL = build_inp_embd(model.tok_embd);
  4817. auto * inp_attn = build_attn_inp_kv_unified();
  4818. inpL = build_norm(inpL,
  4819. model.tok_norm,
  4820. model.tok_norm_b,
  4821. LLM_NORM, -1);
  4822. cb(inpL, "inp_norm", -1);
  4823. for (int il = 0; il < n_layer; ++il) {
  4824. cur = build_norm(inpL,
  4825. model.layers[il].attn_norm,
  4826. model.layers[il].attn_norm_b,
  4827. LLM_NORM, il);
  4828. cb(cur, "attn_norm", il);
  4829. // self-attention
  4830. {
  4831. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4832. cb(cur, "wqkv", il);
  4833. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4834. cb(cur, "bqkv", il);
  4835. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4836. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4837. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4838. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4839. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4840. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4841. cb(Qcur, "Qcur", il);
  4842. cb(Kcur, "Kcur", il);
  4843. cb(Vcur, "Vcur", il);
  4844. cur = build_attn(inp_attn, gf,
  4845. model.layers[il].wo, model.layers[il].bo,
  4846. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4847. }
  4848. if (il == n_layer - 1) {
  4849. // skip computing output for unused tokens
  4850. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4851. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4852. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4853. }
  4854. // Add the input
  4855. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  4856. cb(ffn_inp, "ffn_inp", il);
  4857. // FF
  4858. {
  4859. cur = build_norm(ffn_inp,
  4860. model.layers[il].ffn_norm,
  4861. model.layers[il].ffn_norm_b,
  4862. LLM_NORM, il);
  4863. cb(cur, "ffn_norm", il);
  4864. cur = build_ffn(cur,
  4865. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  4866. NULL, NULL, NULL,
  4867. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4868. NULL,
  4869. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  4870. cb(cur, "ffn_out", il);
  4871. }
  4872. cur = ggml_add(ctx0, cur, ffn_inp);
  4873. cur = build_cvec(cur, il);
  4874. cb(cur, "l_out", il);
  4875. // input for next layer
  4876. inpL = cur;
  4877. }
  4878. cur = build_norm(inpL,
  4879. model.output_norm,
  4880. model.output_norm_b,
  4881. LLM_NORM, -1);
  4882. cb(cur, "result_norm", -1);
  4883. res->t_embd = cur;
  4884. cur = build_lora_mm(model.output, cur);
  4885. cb(cur, "result_output", -1);
  4886. res->t_logits = cur;
  4887. ggml_build_forward_expand(gf, cur);
  4888. }
  4889. };
  4890. struct llm_build_mpt : public llm_graph_context {
  4891. llm_build_mpt(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4892. const int64_t n_embd_head = hparams.n_embd_head_v;
  4893. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4894. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4895. ggml_tensor * cur;
  4896. ggml_tensor * pos;
  4897. ggml_tensor * inpL;
  4898. inpL = build_inp_embd(model.tok_embd);
  4899. auto * inp_attn = build_attn_inp_kv_unified();
  4900. if (model.pos_embd) {
  4901. // inp_pos - contains the positions
  4902. ggml_tensor * inp_pos = build_inp_pos();
  4903. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  4904. cb(pos, "pos_embd", -1);
  4905. inpL = ggml_add(ctx0, inpL, pos);
  4906. cb(inpL, "inpL", -1);
  4907. }
  4908. for (int il = 0; il < n_layer; ++il) {
  4909. ggml_tensor * attn_norm;
  4910. attn_norm = build_norm(inpL,
  4911. model.layers[il].attn_norm,
  4912. model.layers[il].attn_norm_b,
  4913. LLM_NORM, il);
  4914. cb(attn_norm, "attn_norm", il);
  4915. // self-attention
  4916. {
  4917. cur = attn_norm;
  4918. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4919. cb(cur, "wqkv", il);
  4920. if (model.layers[il].bqkv){
  4921. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4922. cb(cur, "bqkv", il);
  4923. }
  4924. if (hparams.f_clamp_kqv > 0.0f) {
  4925. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  4926. cb(cur, "wqkv_clamped", il);
  4927. }
  4928. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4929. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4930. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4931. cb(Qcur, "Qcur", il);
  4932. cb(Kcur, "Kcur", il);
  4933. cb(Vcur, "Vcur", il);
  4934. // Q/K Layernorm
  4935. if (model.layers[il].attn_q_norm) {
  4936. Qcur = build_norm(Qcur,
  4937. model.layers[il].attn_q_norm,
  4938. model.layers[il].attn_q_norm_b,
  4939. LLM_NORM, il);
  4940. cb(Qcur, "Qcur", il);
  4941. Kcur = build_norm(Kcur,
  4942. model.layers[il].attn_k_norm,
  4943. model.layers[il].attn_k_norm_b,
  4944. LLM_NORM, il);
  4945. cb(Kcur, "Kcur", il);
  4946. }
  4947. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4948. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4949. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4950. cb(Qcur, "Qcur", il);
  4951. cb(Kcur, "Kcur", il);
  4952. cb(Vcur, "Vcur", il);
  4953. cur = build_attn(inp_attn, gf,
  4954. model.layers[il].wo, model.layers[il].bo,
  4955. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4956. }
  4957. if (il == n_layer - 1) {
  4958. // skip computing output for unused tokens
  4959. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4960. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4961. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4962. }
  4963. // Add the input
  4964. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  4965. cb(ffn_inp, "ffn_inp", il);
  4966. // feed forward
  4967. {
  4968. cur = build_norm(ffn_inp,
  4969. model.layers[il].ffn_norm,
  4970. model.layers[il].ffn_norm_b,
  4971. LLM_NORM, il);
  4972. cb(cur, "ffn_norm", il);
  4973. cur = build_ffn(cur,
  4974. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  4975. NULL, NULL, NULL,
  4976. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4977. model.layers[il].ffn_act,
  4978. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  4979. cb(cur, "ffn_out", il);
  4980. }
  4981. cur = ggml_add(ctx0, cur, ffn_inp);
  4982. cur = build_cvec(cur, il);
  4983. cb(cur, "l_out", il);
  4984. // input for next layer
  4985. inpL = cur;
  4986. }
  4987. cur = inpL;
  4988. cur = build_norm(cur,
  4989. model.output_norm,
  4990. model.output_norm_b,
  4991. LLM_NORM, -1);
  4992. cb(cur, "result_norm", -1);
  4993. res->t_embd = cur;
  4994. cur = build_lora_mm(model.output, cur);
  4995. cb(cur, "result_output", -1);
  4996. res->t_logits = cur;
  4997. ggml_build_forward_expand(gf, cur);
  4998. }
  4999. };
  5000. struct llm_build_stablelm : public llm_graph_context {
  5001. llm_build_stablelm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5002. const int64_t n_embd_head = hparams.n_embd_head_v;
  5003. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5004. ggml_tensor * cur;
  5005. ggml_tensor * inpL;
  5006. inpL = build_inp_embd(model.tok_embd);
  5007. // inp_pos - contains the positions
  5008. ggml_tensor * inp_pos = build_inp_pos();
  5009. auto * inp_attn = build_attn_inp_kv_unified();
  5010. for (int il = 0; il < n_layer; ++il) {
  5011. // norm
  5012. cur = build_norm(inpL,
  5013. model.layers[il].attn_norm,
  5014. model.layers[il].attn_norm_b,
  5015. LLM_NORM, il);
  5016. cb(cur, "attn_norm", il);
  5017. ggml_tensor * inpSA = cur;
  5018. // self-attention
  5019. {
  5020. // compute Q and K and RoPE them
  5021. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5022. cb(Qcur, "Qcur", il);
  5023. if (model.layers[il].bq) {
  5024. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5025. cb(Qcur, "Qcur", il);
  5026. }
  5027. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5028. cb(Kcur, "Kcur", il);
  5029. if (model.layers[il].bk) {
  5030. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5031. cb(Kcur, "Kcur", il);
  5032. }
  5033. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5034. cb(Vcur, "Vcur", il);
  5035. if (model.layers[il].bv) {
  5036. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5037. cb(Vcur, "Vcur", il);
  5038. }
  5039. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5040. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5041. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5042. if (model.layers[il].attn_q_norm) {
  5043. Qcur = build_norm(Qcur,
  5044. model.layers[il].attn_q_norm,
  5045. NULL,
  5046. LLM_NORM, il);
  5047. cb(Qcur, "Qcur", il);
  5048. }
  5049. if (model.layers[il].attn_k_norm) {
  5050. Kcur = build_norm(Kcur,
  5051. model.layers[il].attn_k_norm,
  5052. NULL,
  5053. LLM_NORM, il);
  5054. cb(Kcur, "Kcur", il);
  5055. }
  5056. Qcur = ggml_rope_ext(
  5057. ctx0, Qcur, inp_pos, nullptr,
  5058. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5059. ext_factor, attn_factor, beta_fast, beta_slow
  5060. );
  5061. Kcur = ggml_rope_ext(
  5062. ctx0, Kcur, inp_pos, nullptr,
  5063. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5064. ext_factor, attn_factor, beta_fast, beta_slow
  5065. );
  5066. cb(Qcur, "Qcur", il);
  5067. cb(Kcur, "Kcur", il);
  5068. cb(Vcur, "Vcur", il);
  5069. cur = build_attn(inp_attn, gf,
  5070. model.layers[il].wo, NULL,
  5071. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5072. }
  5073. if (il == n_layer - 1) {
  5074. // skip computing output for unused tokens
  5075. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5076. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5077. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  5078. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5079. }
  5080. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  5081. cb(ffn_inp, "ffn_inp", il);
  5082. // feed-forward network
  5083. {
  5084. if (model.layers[il].ffn_norm) {
  5085. cur = build_norm(ffn_inp,
  5086. model.layers[il].ffn_norm,
  5087. model.layers[il].ffn_norm_b,
  5088. LLM_NORM, il);
  5089. cb(cur, "ffn_norm", il);
  5090. } else {
  5091. // parallel residual
  5092. cur = inpSA;
  5093. }
  5094. cur = build_ffn(cur,
  5095. model.layers[il].ffn_up, NULL, NULL,
  5096. model.layers[il].ffn_gate, NULL, NULL,
  5097. model.layers[il].ffn_down, NULL, NULL,
  5098. NULL,
  5099. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5100. cb(cur, "ffn_out", il);
  5101. }
  5102. cur = ggml_add(ctx0, cur, ffn_inp);
  5103. cur = build_cvec(cur, il);
  5104. cb(cur, "l_out", il);
  5105. // input for next layer
  5106. inpL = cur;
  5107. }
  5108. cur = inpL;
  5109. cur = build_norm(cur,
  5110. model.output_norm,
  5111. model.output_norm_b,
  5112. LLM_NORM, -1);
  5113. cb(cur, "result_norm", -1);
  5114. res->t_embd = cur;
  5115. // lm_head
  5116. cur = build_lora_mm(model.output, cur);
  5117. cb(cur, "result_output", -1);
  5118. res->t_logits = cur;
  5119. ggml_build_forward_expand(gf, cur);
  5120. }
  5121. };
  5122. struct llm_build_qwen : public llm_graph_context {
  5123. llm_build_qwen(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5124. const int64_t n_embd_head = hparams.n_embd_head_v;
  5125. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5126. ggml_tensor * cur;
  5127. ggml_tensor * inpL;
  5128. inpL = build_inp_embd(model.tok_embd);
  5129. // inp_pos - contains the positions
  5130. ggml_tensor * inp_pos = build_inp_pos();
  5131. auto * inp_attn = build_attn_inp_kv_unified();
  5132. for (int il = 0; il < n_layer; ++il) {
  5133. ggml_tensor * inpSA = inpL;
  5134. cur = build_norm(inpL,
  5135. model.layers[il].attn_norm, NULL,
  5136. LLM_NORM_RMS, il);
  5137. cb(cur, "attn_norm", il);
  5138. // self-attention
  5139. {
  5140. cur = build_lora_mm(model.layers[il].wqkv, cur);
  5141. cb(cur, "wqkv", il);
  5142. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  5143. cb(cur, "bqkv", il);
  5144. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5145. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5146. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
  5147. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5148. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5149. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5150. // using mode = 2 for neox mode
  5151. Qcur = ggml_rope_ext(
  5152. ctx0, Qcur, inp_pos, nullptr,
  5153. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5154. ext_factor, attn_factor, beta_fast, beta_slow
  5155. );
  5156. Kcur = ggml_rope_ext(
  5157. ctx0, Kcur, inp_pos, nullptr,
  5158. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5159. ext_factor, attn_factor, beta_fast, beta_slow
  5160. );
  5161. cb(Qcur, "Qcur", il);
  5162. cb(Kcur, "Kcur", il);
  5163. cb(Vcur, "Vcur", il);
  5164. cur = build_attn(inp_attn, gf,
  5165. model.layers[il].wo, NULL,
  5166. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5167. }
  5168. if (il == n_layer - 1) {
  5169. // skip computing output for unused tokens
  5170. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5171. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5172. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5173. }
  5174. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5175. cb(ffn_inp, "ffn_inp", il);
  5176. // feed-forward forward
  5177. {
  5178. cur = build_norm(ffn_inp,
  5179. model.layers[il].ffn_norm, NULL,
  5180. LLM_NORM_RMS, il);
  5181. cb(cur, "ffn_norm", il);
  5182. cur = build_ffn(cur,
  5183. model.layers[il].ffn_up, NULL, NULL,
  5184. model.layers[il].ffn_gate, NULL, NULL,
  5185. model.layers[il].ffn_down, NULL, NULL,
  5186. NULL,
  5187. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5188. cb(cur, "ffn_out", il);
  5189. }
  5190. cur = ggml_add(ctx0, cur, ffn_inp);
  5191. cur = build_cvec(cur, il);
  5192. cb(cur, "l_out", il);
  5193. // input for next layer
  5194. inpL = cur;
  5195. }
  5196. cur = inpL;
  5197. cur = build_norm(cur,
  5198. model.output_norm, NULL,
  5199. LLM_NORM_RMS, -1);
  5200. cb(cur, "result_norm", -1);
  5201. res->t_embd = cur;
  5202. // lm_head
  5203. cur = build_lora_mm(model.output, cur);
  5204. cb(cur, "result_output", -1);
  5205. res->t_logits = cur;
  5206. ggml_build_forward_expand(gf, cur);
  5207. }
  5208. };
  5209. struct llm_build_qwen2 : public llm_graph_context {
  5210. llm_build_qwen2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5211. const int64_t n_embd_head = hparams.n_embd_head_v;
  5212. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5213. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5214. ggml_tensor * cur;
  5215. ggml_tensor * inpL;
  5216. inpL = build_inp_embd(model.tok_embd);
  5217. // inp_pos - contains the positions
  5218. ggml_tensor * inp_pos = build_inp_pos();
  5219. auto * inp_attn = build_attn_inp_kv_unified();
  5220. for (int il = 0; il < n_layer; ++il) {
  5221. ggml_tensor * inpSA = inpL;
  5222. // norm
  5223. cur = build_norm(inpL,
  5224. model.layers[il].attn_norm, NULL,
  5225. LLM_NORM_RMS, il);
  5226. cb(cur, "attn_norm", il);
  5227. // self-attention
  5228. {
  5229. // compute Q and K and RoPE them
  5230. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5231. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5232. cb(Qcur, "Qcur", il);
  5233. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5234. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5235. cb(Kcur, "Kcur", il);
  5236. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5237. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5238. cb(Vcur, "Vcur", il);
  5239. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5240. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5241. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5242. Qcur = ggml_rope_ext(
  5243. ctx0, Qcur, inp_pos, nullptr,
  5244. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5245. ext_factor, attn_factor, beta_fast, beta_slow
  5246. );
  5247. Kcur = ggml_rope_ext(
  5248. ctx0, Kcur, inp_pos, nullptr,
  5249. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5250. ext_factor, attn_factor, beta_fast, beta_slow
  5251. );
  5252. cb(Qcur, "Qcur", il);
  5253. cb(Kcur, "Kcur", il);
  5254. cb(Vcur, "Vcur", il);
  5255. cur = build_attn(inp_attn, gf,
  5256. model.layers[il].wo, model.layers[il].bo,
  5257. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5258. }
  5259. if (il == n_layer - 1) {
  5260. // skip computing output for unused tokens
  5261. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5262. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5263. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5264. }
  5265. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5266. cb(ffn_inp, "ffn_inp", il);
  5267. // feed-forward network
  5268. cur = build_norm(ffn_inp,
  5269. model.layers[il].ffn_norm, NULL,
  5270. LLM_NORM_RMS, il);
  5271. cb(cur, "ffn_norm", il);
  5272. cur = build_ffn(cur,
  5273. model.layers[il].ffn_up, NULL, NULL,
  5274. model.layers[il].ffn_gate, NULL, NULL,
  5275. model.layers[il].ffn_down, NULL, NULL,
  5276. NULL,
  5277. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5278. cb(cur, "ffn_out", il);
  5279. cur = ggml_add(ctx0, cur, ffn_inp);
  5280. cur = build_cvec(cur, il);
  5281. cb(cur, "l_out", il);
  5282. // input for next layer
  5283. inpL = cur;
  5284. }
  5285. cur = inpL;
  5286. cur = build_norm(cur,
  5287. model.output_norm, NULL,
  5288. LLM_NORM_RMS, -1);
  5289. cb(cur, "result_norm", -1);
  5290. res->t_embd = cur;
  5291. // lm_head
  5292. cur = build_lora_mm(model.output, cur);
  5293. cb(cur, "result_output", -1);
  5294. res->t_logits = cur;
  5295. ggml_build_forward_expand(gf, cur);
  5296. }
  5297. };
  5298. struct llm_build_qwen2vl : public llm_graph_context {
  5299. llm_build_qwen2vl(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5300. const int64_t n_embd_head = hparams.n_embd_head_v;
  5301. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5302. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5303. ggml_tensor * cur;
  5304. ggml_tensor * inpL;
  5305. inpL = build_inp_embd(model.tok_embd);
  5306. // inp_pos - contains the positions
  5307. ggml_tensor * inp_pos = build_inp_pos();
  5308. auto * inp_attn = build_attn_inp_kv_unified();
  5309. int sections[4];
  5310. std::copy(std::begin(hparams.rope_sections), std::begin(hparams.rope_sections) + 4, sections);
  5311. for (int il = 0; il < n_layer; ++il) {
  5312. ggml_tensor * inpSA = inpL;
  5313. // norm
  5314. cur = build_norm(inpL,
  5315. model.layers[il].attn_norm, NULL,
  5316. LLM_NORM_RMS, il);
  5317. cb(cur, "attn_norm", il);
  5318. // self-attention
  5319. {
  5320. // compute Q and K and RoPE them
  5321. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5322. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5323. cb(Qcur, "Qcur", il);
  5324. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5325. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5326. cb(Kcur, "Kcur", il);
  5327. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5328. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5329. cb(Vcur, "Vcur", il);
  5330. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5331. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5332. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5333. Qcur = ggml_rope_multi(
  5334. ctx0, Qcur, inp_pos, nullptr,
  5335. n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
  5336. ext_factor, attn_factor, beta_fast, beta_slow
  5337. );
  5338. Kcur = ggml_rope_multi(
  5339. ctx0, Kcur, inp_pos, nullptr,
  5340. n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
  5341. ext_factor, attn_factor, beta_fast, beta_slow
  5342. );
  5343. cb(Qcur, "Qcur", il);
  5344. cb(Kcur, "Kcur", il);
  5345. cb(Vcur, "Vcur", il);
  5346. cur = build_attn(inp_attn, gf,
  5347. model.layers[il].wo, model.layers[il].bo,
  5348. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5349. }
  5350. if (il == n_layer - 1) {
  5351. // skip computing output for unused tokens
  5352. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5353. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5354. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5355. }
  5356. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5357. cb(ffn_inp, "ffn_inp", il);
  5358. // feed-forward network
  5359. cur = build_norm(ffn_inp,
  5360. model.layers[il].ffn_norm, NULL,
  5361. LLM_NORM_RMS, il);
  5362. cb(cur, "ffn_norm", il);
  5363. cur = build_ffn(cur,
  5364. model.layers[il].ffn_up, NULL, NULL,
  5365. model.layers[il].ffn_gate, NULL, NULL,
  5366. model.layers[il].ffn_down, NULL, NULL,
  5367. NULL,
  5368. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5369. cb(cur, "ffn_out", il);
  5370. cur = ggml_add(ctx0, cur, ffn_inp);
  5371. cur = build_cvec(cur, il);
  5372. cb(cur, "l_out", il);
  5373. // input for next layer
  5374. inpL = cur;
  5375. }
  5376. cur = inpL;
  5377. cur = build_norm(cur,
  5378. model.output_norm, NULL,
  5379. LLM_NORM_RMS, -1);
  5380. cb(cur, "result_norm", -1);
  5381. res->t_embd = cur;
  5382. // lm_head
  5383. cur = build_lora_mm(model.output, cur);
  5384. cb(cur, "result_output", -1);
  5385. res->t_logits = cur;
  5386. ggml_build_forward_expand(gf, cur);
  5387. }
  5388. };
  5389. struct llm_build_qwen2moe : public llm_graph_context {
  5390. llm_build_qwen2moe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5391. const int64_t n_embd_head = hparams.n_embd_head_v;
  5392. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5393. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5394. ggml_tensor * cur;
  5395. ggml_tensor * inpL;
  5396. inpL = build_inp_embd(model.tok_embd);
  5397. // inp_pos - contains the positions
  5398. ggml_tensor * inp_pos = build_inp_pos();
  5399. auto * inp_attn = build_attn_inp_kv_unified();
  5400. for (int il = 0; il < n_layer; ++il) {
  5401. ggml_tensor * inpSA = inpL;
  5402. // norm
  5403. cur = build_norm(inpL,
  5404. model.layers[il].attn_norm, NULL,
  5405. LLM_NORM_RMS, il);
  5406. cb(cur, "attn_norm", il);
  5407. // self_attention
  5408. {
  5409. // compute Q and K and RoPE them
  5410. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5411. cb(Qcur, "Qcur", il);
  5412. if (model.layers[il].bq) {
  5413. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5414. cb(Qcur, "Qcur", il);
  5415. }
  5416. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5417. cb(Kcur, "Kcur", il);
  5418. if (model.layers[il].bk) {
  5419. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5420. cb(Kcur, "Kcur", il);
  5421. }
  5422. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5423. cb(Vcur, "Vcur", il);
  5424. if (model.layers[il].bv) {
  5425. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5426. cb(Vcur, "Vcur", il);
  5427. }
  5428. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5429. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5430. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5431. Qcur = ggml_rope_ext(
  5432. ctx0, Qcur, inp_pos, nullptr,
  5433. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5434. ext_factor, attn_factor, beta_fast, beta_slow
  5435. );
  5436. Kcur = ggml_rope_ext(
  5437. ctx0, Kcur, inp_pos, nullptr,
  5438. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5439. ext_factor, attn_factor, beta_fast, beta_slow
  5440. );
  5441. cb(Qcur, "Qcur", il);
  5442. cb(Kcur, "Kcur", il);
  5443. cb(Vcur, "Vcur", il);
  5444. cur = build_attn(inp_attn, gf,
  5445. model.layers[il].wo, model.layers[il].bo,
  5446. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5447. }
  5448. if (il == n_layer - 1) {
  5449. // skip computing output for unused tokens
  5450. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5451. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5452. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5453. }
  5454. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5455. cb(ffn_inp, "ffn_inp", il);
  5456. // MoE branch
  5457. cur = build_norm(ffn_inp,
  5458. model.layers[il].ffn_norm, NULL,
  5459. LLM_NORM_RMS, il);
  5460. cb(cur, "ffn_norm", il);
  5461. ggml_tensor * moe_out =
  5462. build_moe_ffn(cur,
  5463. model.layers[il].ffn_gate_inp,
  5464. model.layers[il].ffn_up_exps,
  5465. model.layers[il].ffn_gate_exps,
  5466. model.layers[il].ffn_down_exps,
  5467. nullptr,
  5468. n_expert, n_expert_used,
  5469. LLM_FFN_SILU, false,
  5470. false, 0.0,
  5471. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  5472. il);
  5473. cb(moe_out, "ffn_moe_out", il);
  5474. // FFN shared expert
  5475. {
  5476. ggml_tensor * cur_gate_inp = build_lora_mm(model.layers[il].ffn_gate_inp_shexp, cur);
  5477. cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
  5478. // sigmoid
  5479. ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
  5480. cb(cur_gate, "ffn_shexp_gate", il);
  5481. ggml_tensor * cur_ffn = build_ffn(cur,
  5482. model.layers[il].ffn_up_shexp, NULL, NULL,
  5483. model.layers[il].ffn_gate_shexp, NULL, NULL,
  5484. model.layers[il].ffn_down_shexp, NULL, NULL,
  5485. NULL,
  5486. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5487. cb(cur_ffn, "ffn_shexp", il);
  5488. ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
  5489. cb(ffn_shexp_out, "ffn_shexp_out", il);
  5490. moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
  5491. cb(moe_out, "ffn_out", il);
  5492. cur = moe_out;
  5493. }
  5494. cur = ggml_add(ctx0, cur, ffn_inp);
  5495. cur = build_cvec(cur, il);
  5496. cb(cur, "l_out", il);
  5497. // input for next layer
  5498. inpL = cur;
  5499. }
  5500. cur = inpL;
  5501. cur = build_norm(cur,
  5502. model.output_norm, NULL,
  5503. LLM_NORM_RMS, -1);
  5504. cb(cur, "result_norm", -1);
  5505. res->t_embd = cur;
  5506. // lm_head
  5507. cur = build_lora_mm(model.output, cur);
  5508. cb(cur, "result_output", -1);
  5509. res->t_logits = cur;
  5510. ggml_build_forward_expand(gf, cur);
  5511. }
  5512. };
  5513. struct llm_build_qwen3 : public llm_graph_context {
  5514. llm_build_qwen3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5515. const int64_t n_embd_head = hparams.n_embd_head_v;
  5516. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5517. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5518. ggml_tensor * cur;
  5519. ggml_tensor * inpL;
  5520. inpL = build_inp_embd(model.tok_embd);
  5521. // inp_pos - contains the positions
  5522. ggml_tensor * inp_pos = build_inp_pos();
  5523. auto * inp_attn = build_attn_inp_kv_unified();
  5524. for (int il = 0; il < n_layer; ++il) {
  5525. ggml_tensor * inpSA = inpL;
  5526. // norm
  5527. cur = build_norm(inpL,
  5528. model.layers[il].attn_norm, NULL,
  5529. LLM_NORM_RMS, il);
  5530. cb(cur, "attn_norm", il);
  5531. // self-attention
  5532. {
  5533. // compute Q and K and RoPE them
  5534. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5535. cb(Qcur, "Qcur", il);
  5536. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5537. cb(Kcur, "Kcur", il);
  5538. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5539. cb(Vcur, "Vcur", il);
  5540. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5541. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5542. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5543. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
  5544. cb(Qcur, "Qcur_normed", il);
  5545. Qcur = ggml_rope_ext(
  5546. ctx0, Qcur, inp_pos, nullptr,
  5547. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5548. ext_factor, attn_factor, beta_fast, beta_slow
  5549. );
  5550. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
  5551. cb(Kcur, "Kcur_normed", il);
  5552. Kcur = ggml_rope_ext(
  5553. ctx0, Kcur, inp_pos, nullptr,
  5554. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5555. ext_factor, attn_factor, beta_fast, beta_slow
  5556. );
  5557. cb(Qcur, "Qcur", il);
  5558. cb(Kcur, "Kcur", il);
  5559. cb(Vcur, "Vcur", il);
  5560. cur = build_attn(inp_attn, gf,
  5561. model.layers[il].wo, model.layers[il].bo,
  5562. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5563. }
  5564. if (il == n_layer - 1) {
  5565. // skip computing output for unused tokens
  5566. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5567. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5568. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5569. }
  5570. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5571. cb(ffn_inp, "ffn_inp", il);
  5572. // feed-forward network
  5573. cur = build_norm(ffn_inp,
  5574. model.layers[il].ffn_norm, NULL,
  5575. LLM_NORM_RMS, il);
  5576. cb(cur, "ffn_norm", il);
  5577. cur = build_ffn(cur,
  5578. model.layers[il].ffn_up, NULL, NULL,
  5579. model.layers[il].ffn_gate, NULL, NULL,
  5580. model.layers[il].ffn_down, NULL, NULL,
  5581. NULL,
  5582. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5583. cb(cur, "ffn_out", il);
  5584. cur = ggml_add(ctx0, cur, ffn_inp);
  5585. cur = build_cvec(cur, il);
  5586. cb(cur, "l_out", il);
  5587. // input for next layer
  5588. inpL = cur;
  5589. }
  5590. cur = inpL;
  5591. cur = build_norm(cur,
  5592. model.output_norm, NULL,
  5593. LLM_NORM_RMS, -1);
  5594. cb(cur, "result_norm", -1);
  5595. res->t_embd = cur;
  5596. // lm_head
  5597. cur = build_lora_mm(model.output, cur);
  5598. cb(cur, "result_output", -1);
  5599. res->t_logits = cur;
  5600. ggml_build_forward_expand(gf, cur);
  5601. }
  5602. };
  5603. struct llm_build_qwen3moe : public llm_graph_context {
  5604. llm_build_qwen3moe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5605. const int64_t n_embd_head = hparams.n_embd_head_v;
  5606. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5607. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5608. ggml_tensor * cur;
  5609. ggml_tensor * inpL;
  5610. inpL = build_inp_embd(model.tok_embd);
  5611. // inp_pos - contains the positions
  5612. ggml_tensor * inp_pos = build_inp_pos();
  5613. auto * inp_attn = build_attn_inp_kv_unified();
  5614. for (int il = 0; il < n_layer; ++il) {
  5615. ggml_tensor * inpSA = inpL;
  5616. // norm
  5617. cur = build_norm(inpL,
  5618. model.layers[il].attn_norm, NULL,
  5619. LLM_NORM_RMS, il);
  5620. cb(cur, "attn_norm", il);
  5621. // self_attention
  5622. {
  5623. // compute Q and K and RoPE them
  5624. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5625. cb(Qcur, "Qcur", il);
  5626. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5627. cb(Kcur, "Kcur", il);
  5628. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5629. cb(Vcur, "Vcur", il);
  5630. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5631. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5632. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5633. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
  5634. cb(Qcur, "Qcur_normed", il);
  5635. Qcur = ggml_rope_ext(
  5636. ctx0, Qcur, inp_pos, nullptr,
  5637. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5638. ext_factor, attn_factor, beta_fast, beta_slow
  5639. );
  5640. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
  5641. cb(Kcur, "Kcur_normed", il);
  5642. Kcur = ggml_rope_ext(
  5643. ctx0, Kcur, inp_pos, nullptr,
  5644. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5645. ext_factor, attn_factor, beta_fast, beta_slow
  5646. );
  5647. cb(Qcur, "Qcur", il);
  5648. cb(Kcur, "Kcur", il);
  5649. cb(Vcur, "Vcur", il);
  5650. cur = build_attn(inp_attn, gf,
  5651. model.layers[il].wo, model.layers[il].bo,
  5652. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5653. }
  5654. if (il == n_layer - 1) {
  5655. // skip computing output for unused tokens
  5656. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5657. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5658. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5659. }
  5660. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5661. cb(ffn_inp, "ffn_inp", il);
  5662. // MoE branch
  5663. cur = build_norm(ffn_inp,
  5664. model.layers[il].ffn_norm, NULL,
  5665. LLM_NORM_RMS, il);
  5666. cb(cur, "ffn_norm", il);
  5667. ggml_tensor * moe_out =
  5668. build_moe_ffn(cur,
  5669. model.layers[il].ffn_gate_inp,
  5670. model.layers[il].ffn_up_exps,
  5671. model.layers[il].ffn_gate_exps,
  5672. model.layers[il].ffn_down_exps,
  5673. nullptr,
  5674. n_expert, n_expert_used,
  5675. LLM_FFN_SILU, true,
  5676. false, 0.0,
  5677. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  5678. il);
  5679. cb(moe_out, "ffn_moe_out", il);
  5680. cur = moe_out;
  5681. cur = ggml_add(ctx0, cur, ffn_inp);
  5682. cur = build_cvec(cur, il);
  5683. cb(cur, "l_out", il);
  5684. // input for next layer
  5685. inpL = cur;
  5686. }
  5687. cur = inpL;
  5688. cur = build_norm(cur,
  5689. model.output_norm, NULL,
  5690. LLM_NORM_RMS, -1);
  5691. cb(cur, "result_norm", -1);
  5692. res->t_embd = cur;
  5693. // lm_head
  5694. cur = build_lora_mm(model.output, cur);
  5695. cb(cur, "result_output", -1);
  5696. res->t_logits = cur;
  5697. ggml_build_forward_expand(gf, cur);
  5698. }
  5699. };
  5700. struct llm_build_phi2 : public llm_graph_context {
  5701. llm_build_phi2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5702. const int64_t n_embd_head = hparams.n_embd_head_v;
  5703. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5704. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5705. ggml_tensor * cur;
  5706. ggml_tensor * attn_norm_output;
  5707. ggml_tensor * ffn_output;
  5708. ggml_tensor * inpL;
  5709. inpL = build_inp_embd(model.tok_embd);
  5710. // inp_pos - contains the positions
  5711. ggml_tensor * inp_pos = build_inp_pos();
  5712. auto * inp_attn = build_attn_inp_kv_unified();
  5713. for (int il = 0; il < n_layer; ++il) {
  5714. attn_norm_output = build_norm(inpL,
  5715. model.layers[il].attn_norm,
  5716. model.layers[il].attn_norm_b,
  5717. LLM_NORM, il);
  5718. cb(attn_norm_output, "attn_norm", il);
  5719. // self-attention
  5720. {
  5721. ggml_tensor * Qcur = nullptr;
  5722. ggml_tensor * Kcur = nullptr;
  5723. ggml_tensor * Vcur = nullptr;
  5724. if (model.layers[il].wqkv) {
  5725. cur = build_lora_mm(model.layers[il].wqkv, attn_norm_output);
  5726. cb(cur, "wqkv", il);
  5727. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  5728. cb(cur, "bqkv", il);
  5729. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5730. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5731. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  5732. } else {
  5733. Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  5734. Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  5735. Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  5736. }
  5737. cb(Qcur, "Qcur", il);
  5738. cb(Kcur, "Kcur", il);
  5739. cb(Vcur, "Vcur", il);
  5740. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5741. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5742. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5743. Qcur = ggml_rope_ext(
  5744. ctx0, Qcur, inp_pos, nullptr,
  5745. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5746. ext_factor, attn_factor, beta_fast, beta_slow
  5747. );
  5748. Kcur = ggml_rope_ext(
  5749. ctx0, Kcur, inp_pos, nullptr,
  5750. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5751. ext_factor, attn_factor, beta_fast, beta_slow
  5752. );
  5753. cb(Qcur, "Qcur", il);
  5754. cb(Kcur, "Kcur", il);
  5755. cb(Vcur, "Vcur", il);
  5756. // with phi2, we scale the Q to avoid precision issues
  5757. // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
  5758. Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
  5759. cur = build_attn(inp_attn, gf,
  5760. model.layers[il].wo, model.layers[il].bo,
  5761. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  5762. }
  5763. if (il == n_layer - 1) {
  5764. // skip computing output for unused tokens
  5765. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5766. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5767. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  5768. attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
  5769. }
  5770. // FF
  5771. {
  5772. ffn_output = build_ffn(attn_norm_output,
  5773. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  5774. NULL, NULL, NULL,
  5775. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  5776. NULL,
  5777. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  5778. cb(ffn_output, "ffn_out", il);
  5779. }
  5780. cur = ggml_add(ctx0, cur, ffn_output);
  5781. cur = ggml_add(ctx0, cur, inpL);
  5782. cur = build_cvec(cur, il);
  5783. cb(cur, "l_out", il);
  5784. // input for next layer
  5785. inpL = cur;
  5786. }
  5787. cur = build_norm(inpL,
  5788. model.output_norm,
  5789. model.output_norm_b,
  5790. LLM_NORM, -1);
  5791. cb(cur, "result_norm", -1);
  5792. res->t_embd = cur;
  5793. cur = build_lora_mm(model.output, cur);
  5794. cb(cur, "result_output_no_bias", -1);
  5795. cur = ggml_add(ctx0, cur, model.output_b);
  5796. cb(cur, "result_output", -1);
  5797. res->t_logits = cur;
  5798. ggml_build_forward_expand(gf, cur);
  5799. }
  5800. };
  5801. struct llm_build_phi3 : public llm_graph_context {
  5802. llm_build_phi3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5803. const int64_t n_embd_head = hparams.n_embd_head_v;
  5804. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5805. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5806. ggml_tensor * cur;
  5807. ggml_tensor * inpL;
  5808. inpL = build_inp_embd(model.tok_embd);
  5809. // inp_pos - contains the positions
  5810. ggml_tensor * inp_pos = build_inp_pos();
  5811. auto * inp_attn = build_attn_inp_kv_unified();
  5812. for (int il = 0; il < n_layer; ++il) {
  5813. auto * residual = inpL;
  5814. // self-attention
  5815. {
  5816. // rope freq factors for 128k context
  5817. ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
  5818. ggml_tensor* attn_norm_output = build_norm(inpL,
  5819. model.layers[il].attn_norm,
  5820. model.layers[il].attn_norm_b,
  5821. LLM_NORM_RMS, il);
  5822. cb(attn_norm_output, "attn_norm", il);
  5823. ggml_tensor * Qcur = nullptr;
  5824. ggml_tensor * Kcur = nullptr;
  5825. ggml_tensor * Vcur = nullptr;
  5826. if (model.layers[il].wqkv) {
  5827. cur = build_lora_mm(model.layers[il].wqkv, attn_norm_output);
  5828. cb(cur, "wqkv", il);
  5829. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
  5830. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
  5831. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
  5832. } else {
  5833. Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  5834. Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  5835. Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  5836. }
  5837. cb(Qcur, "Qcur", il);
  5838. cb(Kcur, "Kcur", il);
  5839. cb(Vcur, "Vcur", il);
  5840. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5841. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5842. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5843. Qcur = ggml_rope_ext(
  5844. ctx0, Qcur, inp_pos, rope_factors,
  5845. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5846. ext_factor, attn_factor, beta_fast, beta_slow
  5847. );
  5848. Kcur = ggml_rope_ext(
  5849. ctx0, Kcur, inp_pos, rope_factors,
  5850. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5851. ext_factor, attn_factor, beta_fast, beta_slow
  5852. );
  5853. cb(Qcur, "Qcur", il);
  5854. cb(Kcur, "Kcur", il);
  5855. cb(Vcur, "Vcur", il);
  5856. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  5857. cb(Qcur, "Qcur", il);
  5858. cur = build_attn(inp_attn, gf,
  5859. model.layers[il].wo, model.layers[il].bo,
  5860. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  5861. }
  5862. if (il == n_layer - 1) {
  5863. // skip computing output for unused tokens
  5864. ggml_tensor* inp_out_ids = build_inp_out_ids();
  5865. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5866. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  5867. }
  5868. cur = ggml_add(ctx0, cur, residual);
  5869. residual = cur;
  5870. cur = build_norm(cur,
  5871. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  5872. LLM_NORM_RMS, il);
  5873. cb(cur, "ffn_norm", il);
  5874. // feed-forward network
  5875. if (model.layers[il].ffn_gate_inp == nullptr) {
  5876. cur = build_ffn(cur,
  5877. model.layers[il].ffn_up, NULL, NULL,
  5878. NULL, NULL, NULL,
  5879. model.layers[il].ffn_down, NULL, NULL,
  5880. NULL,
  5881. LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
  5882. cb(cur, "ffn_out", il);
  5883. } else {
  5884. // MoE branch
  5885. cur = build_moe_ffn(cur,
  5886. model.layers[il].ffn_gate_inp,
  5887. model.layers[il].ffn_up_exps,
  5888. model.layers[il].ffn_gate_exps,
  5889. model.layers[il].ffn_down_exps,
  5890. nullptr,
  5891. n_expert, n_expert_used,
  5892. LLM_FFN_SILU, true,
  5893. false, 0.0,
  5894. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  5895. il);
  5896. cb(cur, "ffn_moe_out", il);
  5897. }
  5898. cur = ggml_add(ctx0, residual, cur);
  5899. cur = build_cvec(cur, il);
  5900. cb(cur, "l_out", il);
  5901. // input for next layer
  5902. inpL = cur;
  5903. }
  5904. cur = build_norm(inpL,
  5905. model.output_norm,
  5906. model.output_norm_b,
  5907. LLM_NORM_RMS, -1);
  5908. cb(cur, "result_norm", -1);
  5909. res->t_embd = cur;
  5910. cur = build_lora_mm(model.output, cur);
  5911. if (model.output_b != nullptr) {
  5912. cb(cur, "result_output_no_bias", -1);
  5913. cur = ggml_add(ctx0, cur, model.output_b);
  5914. }
  5915. cb(cur, "result_output", -1);
  5916. res->t_logits = cur;
  5917. ggml_build_forward_expand(gf, cur);
  5918. }
  5919. };
  5920. struct llm_build_plamo : public llm_graph_context {
  5921. llm_build_plamo(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5922. const int64_t n_embd_head = hparams.n_embd_head_v;
  5923. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5924. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5925. ggml_tensor * cur;
  5926. ggml_tensor * inpL;
  5927. inpL = build_inp_embd(model.tok_embd);
  5928. // inp_pos - contains the positions
  5929. ggml_tensor * inp_pos = build_inp_pos();
  5930. auto * inp_attn = build_attn_inp_kv_unified();
  5931. for (int il = 0; il < n_layer; ++il) {
  5932. // norm
  5933. cur = build_norm(inpL,
  5934. model.layers[il].attn_norm, NULL,
  5935. LLM_NORM_RMS, il);
  5936. cb(cur, "attn_norm", il);
  5937. ggml_tensor * attention_norm = cur;
  5938. // self-attention
  5939. {
  5940. // compute Q and K and RoPE them
  5941. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5942. cb(Qcur, "Qcur", il);
  5943. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5944. cb(Kcur, "Kcur", il);
  5945. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5946. cb(Vcur, "Vcur", il);
  5947. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5948. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5949. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5950. Qcur = ggml_rope_ext(
  5951. ctx0, Qcur, inp_pos, nullptr,
  5952. n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
  5953. ext_factor, attn_factor, beta_fast, beta_slow
  5954. );
  5955. Kcur = ggml_rope_ext(
  5956. ctx0, Kcur, inp_pos, nullptr,
  5957. n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
  5958. ext_factor, attn_factor, beta_fast, beta_slow
  5959. );
  5960. cb(Qcur, "Qcur", il);
  5961. cb(Kcur, "Kcur", il);
  5962. cb(Vcur, "Vcur", il);
  5963. cur = build_attn(inp_attn, gf,
  5964. model.layers[il].wo, NULL,
  5965. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5966. }
  5967. ggml_tensor * sa_out = cur;
  5968. cur = attention_norm;
  5969. if (il == n_layer - 1) {
  5970. // skip computing output for unused tokens
  5971. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5972. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5973. sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
  5974. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  5975. }
  5976. // feed-forward network
  5977. {
  5978. cur = build_ffn(cur,
  5979. model.layers[il].ffn_up, NULL, NULL,
  5980. model.layers[il].ffn_gate, NULL, NULL,
  5981. model.layers[il].ffn_down, NULL, NULL,
  5982. NULL,
  5983. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5984. cb(cur, "ffn_out", il);
  5985. }
  5986. cur = ggml_add(ctx0, cur, sa_out);
  5987. cur = ggml_add(ctx0, cur, inpL);
  5988. cur = build_cvec(cur, il);
  5989. cb(cur, "l_out", il);
  5990. // input for next layer
  5991. inpL = cur;
  5992. }
  5993. cur = inpL;
  5994. cur = build_norm(cur,
  5995. model.output_norm, NULL,
  5996. LLM_NORM_RMS, -1);
  5997. cb(cur, "result_norm", -1);
  5998. res->t_embd = cur;
  5999. // lm_head
  6000. cur = build_lora_mm(model.output, cur);
  6001. cb(cur, "result_output", -1);
  6002. res->t_logits = cur;
  6003. ggml_build_forward_expand(gf, cur);
  6004. }
  6005. };
  6006. struct llm_build_gpt2 : public llm_graph_context {
  6007. llm_build_gpt2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6008. const int64_t n_embd_head = hparams.n_embd_head_v;
  6009. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6010. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6011. ggml_tensor * cur;
  6012. ggml_tensor * pos;
  6013. ggml_tensor * inpL;
  6014. inpL = build_inp_embd(model.tok_embd);
  6015. // inp_pos - contains the positions
  6016. ggml_tensor * inp_pos = build_inp_pos();
  6017. auto * inp_attn = build_attn_inp_kv_unified();
  6018. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  6019. cb(pos, "pos_embd", -1);
  6020. inpL = ggml_add(ctx0, inpL, pos);
  6021. cb(inpL, "inpL", -1);
  6022. for (int il = 0; il < n_layer; ++il) {
  6023. cur = build_norm(inpL,
  6024. model.layers[il].attn_norm,
  6025. model.layers[il].attn_norm_b,
  6026. LLM_NORM, il);
  6027. cb(cur, "attn_norm", il);
  6028. // self-attention
  6029. {
  6030. cur = build_lora_mm(model.layers[il].wqkv, cur);
  6031. cb(cur, "wqkv", il);
  6032. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6033. cb(cur, "bqkv", il);
  6034. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6035. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6036. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6037. cb(Qcur, "Qcur", il);
  6038. cb(Kcur, "Kcur", il);
  6039. cb(Vcur, "Vcur", il);
  6040. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6041. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6042. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6043. cur = build_attn(inp_attn, gf,
  6044. model.layers[il].wo, model.layers[il].bo,
  6045. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6046. }
  6047. if (il == n_layer - 1) {
  6048. // skip computing output for unused tokens
  6049. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6050. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6051. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6052. }
  6053. // add the input
  6054. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6055. cb(ffn_inp, "ffn_inp", il);
  6056. // FF
  6057. {
  6058. cur = build_norm(ffn_inp,
  6059. model.layers[il].ffn_norm,
  6060. model.layers[il].ffn_norm_b,
  6061. LLM_NORM, il);
  6062. cb(cur, "ffn_norm", il);
  6063. cur = build_ffn(cur,
  6064. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  6065. NULL, NULL, NULL,
  6066. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  6067. NULL,
  6068. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  6069. cb(cur, "ffn_out", il);
  6070. }
  6071. cur = ggml_add(ctx0, cur, ffn_inp);
  6072. cur = build_cvec(cur, il);
  6073. cb(cur, "l_out", il);
  6074. // input for next layer
  6075. inpL = cur;
  6076. }
  6077. cur = build_norm(inpL,
  6078. model.output_norm,
  6079. model.output_norm_b,
  6080. LLM_NORM, -1);
  6081. cb(cur, "result_norm", -1);
  6082. res->t_embd = cur;
  6083. cur = build_lora_mm(model.output, cur);
  6084. cb(cur, "result_output", -1);
  6085. res->t_logits = cur;
  6086. ggml_build_forward_expand(gf, cur);
  6087. }
  6088. };
  6089. struct llm_build_codeshell : public llm_graph_context {
  6090. llm_build_codeshell(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6091. const int64_t n_embd_head = hparams.n_embd_head_v;
  6092. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6093. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6094. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6095. ggml_tensor * cur;
  6096. ggml_tensor * inpL;
  6097. inpL = build_inp_embd(model.tok_embd);
  6098. // inp_pos - contains the positions
  6099. ggml_tensor * inp_pos = build_inp_pos();
  6100. auto * inp_attn = build_attn_inp_kv_unified();
  6101. for (int il = 0; il < n_layer; ++il) {
  6102. cur = build_norm(inpL,
  6103. model.layers[il].attn_norm,
  6104. model.layers[il].attn_norm_b,
  6105. LLM_NORM, il);
  6106. cb(cur, "attn_norm", il);
  6107. // self-attention
  6108. {
  6109. cur = build_lora_mm(model.layers[il].wqkv, cur);
  6110. cb(cur, "wqkv", il);
  6111. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6112. cb(cur, "bqkv", il);
  6113. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6114. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6115. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6116. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6117. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6118. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6119. Qcur = ggml_rope_ext(
  6120. ctx0, Qcur, inp_pos, nullptr,
  6121. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6122. ext_factor, attn_factor, beta_fast, beta_slow
  6123. );
  6124. Kcur = ggml_rope_ext(
  6125. ctx0, Kcur, inp_pos, nullptr,
  6126. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6127. ext_factor, attn_factor, beta_fast, beta_slow
  6128. );
  6129. cb(Qcur, "Qcur", il);
  6130. cb(Kcur, "Kcur", il);
  6131. cb(Vcur, "Vcur", il);
  6132. cur = build_attn(inp_attn, gf,
  6133. model.layers[il].wo, model.layers[il].bo,
  6134. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6135. }
  6136. if (il == n_layer - 1) {
  6137. // skip computing output for unused tokens
  6138. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6139. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6140. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6141. }
  6142. // add the input
  6143. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6144. cb(ffn_inp, "ffn_inp", il);
  6145. // FF
  6146. {
  6147. cur = build_norm(ffn_inp,
  6148. model.layers[il].ffn_norm,
  6149. model.layers[il].ffn_norm_b,
  6150. LLM_NORM, il);
  6151. cb(cur, "ffn_norm", il);
  6152. cur = build_ffn(cur,
  6153. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  6154. NULL, NULL, NULL,
  6155. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  6156. NULL,
  6157. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  6158. cb(cur, "ffn_out", il);
  6159. }
  6160. cur = ggml_add(ctx0, cur, ffn_inp);
  6161. cur = build_cvec(cur, il);
  6162. cb(cur, "l_out", il);
  6163. // input for next layer
  6164. inpL = cur;
  6165. }
  6166. cur = build_norm(inpL,
  6167. model.output_norm,
  6168. model.output_norm_b,
  6169. LLM_NORM, -1);
  6170. cb(cur, "result_norm", -1);
  6171. res->t_embd = cur;
  6172. cur = build_lora_mm(model.output, cur);
  6173. cb(cur, "result_output", -1);
  6174. res->t_logits = cur;
  6175. ggml_build_forward_expand(gf, cur);
  6176. }
  6177. };
  6178. struct llm_build_orion : public llm_graph_context {
  6179. llm_build_orion(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6180. const int64_t n_embd_head = hparams.n_embd_head_v;
  6181. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6182. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6183. ggml_tensor * cur;
  6184. ggml_tensor * inpL;
  6185. inpL = build_inp_embd(model.tok_embd);
  6186. // inp_pos - contains the positions
  6187. ggml_tensor * inp_pos = build_inp_pos();
  6188. auto * inp_attn = build_attn_inp_kv_unified();
  6189. for (int il = 0; il < n_layer; ++il) {
  6190. ggml_tensor * inpSA = inpL;
  6191. // norm
  6192. cur = build_norm(inpL,
  6193. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  6194. LLM_NORM, il);
  6195. cb(cur, "attn_norm", il);
  6196. // self-attention
  6197. {
  6198. // compute Q and K and RoPE them
  6199. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6200. cb(Qcur, "Qcur", il);
  6201. // if (model.layers[il].bq) {
  6202. // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6203. // cb(Qcur, "Qcur", il);
  6204. // }
  6205. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6206. cb(Kcur, "Kcur", il);
  6207. // if (model.layers[il].bk) {
  6208. // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6209. // cb(Kcur, "Kcur", il);
  6210. // }
  6211. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6212. cb(Vcur, "Vcur", il);
  6213. // if (model.layers[il].bv) {
  6214. // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6215. // cb(Vcur, "Vcur", il);
  6216. // }
  6217. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6218. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6219. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6220. Qcur = ggml_rope_ext(
  6221. ctx0, Qcur, inp_pos, nullptr,
  6222. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6223. ext_factor, attn_factor, beta_fast, beta_slow
  6224. );
  6225. Kcur = ggml_rope_ext(
  6226. ctx0, Kcur, inp_pos, nullptr,
  6227. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6228. ext_factor, attn_factor, beta_fast, beta_slow
  6229. );
  6230. cb(Qcur, "Qcur", il);
  6231. cb(Kcur, "Kcur", il);
  6232. cb(Vcur, "Vcur", il);
  6233. cur = build_attn(inp_attn, gf,
  6234. model.layers[il].wo, NULL,
  6235. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6236. }
  6237. if (il == n_layer - 1) {
  6238. // skip computing output for unused tokens
  6239. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6240. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6241. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6242. }
  6243. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6244. cb(ffn_inp, "ffn_inp", il);
  6245. // feed-forward network
  6246. cur = build_norm(ffn_inp,
  6247. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  6248. LLM_NORM, il);
  6249. cb(cur, "ffn_norm", il);
  6250. cur = build_ffn(cur,
  6251. model.layers[il].ffn_up, NULL, NULL,
  6252. model.layers[il].ffn_gate, NULL, NULL,
  6253. model.layers[il].ffn_down, NULL, NULL,
  6254. NULL,
  6255. LLM_FFN_SILU, LLM_FFN_PAR, il);
  6256. cb(cur, "ffn_out", il);
  6257. cur = ggml_add(ctx0, cur, ffn_inp);
  6258. cur = build_cvec(cur, il);
  6259. cb(cur, "l_out", il);
  6260. // input for next layer
  6261. inpL = cur;
  6262. }
  6263. cur = inpL;
  6264. cur = build_norm(cur,
  6265. model.output_norm, model.output_norm_b,
  6266. LLM_NORM, -1);
  6267. cb(cur, "result_norm", -1);
  6268. res->t_embd = cur;
  6269. // lm_head
  6270. cur = build_lora_mm(model.output, cur);
  6271. cb(cur, "result_output", -1);
  6272. res->t_logits = cur;
  6273. ggml_build_forward_expand(gf, cur);
  6274. }
  6275. };
  6276. struct llm_build_internlm2 : public llm_graph_context {
  6277. llm_build_internlm2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6278. const int64_t n_embd_head = hparams.n_embd_head_v;
  6279. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6280. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6281. ggml_tensor * cur;
  6282. ggml_tensor * inpL;
  6283. inpL = build_inp_embd(model.tok_embd);
  6284. // inp_pos - contains the positions
  6285. ggml_tensor * inp_pos = build_inp_pos();
  6286. auto * inp_attn = build_attn_inp_kv_unified();
  6287. for (int il = 0; il < n_layer; ++il) {
  6288. ggml_tensor * inpSA = inpL;
  6289. // norm
  6290. cur = build_norm(inpL,
  6291. model.layers[il].attn_norm, NULL,
  6292. LLM_NORM_RMS, il);
  6293. cb(cur, "attn_norm", il);
  6294. // self-attention
  6295. {
  6296. // compute Q and K and RoPE them
  6297. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6298. cb(Qcur, "Qcur", il);
  6299. if (model.layers[il].bq) {
  6300. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6301. cb(Qcur, "Qcur", il);
  6302. }
  6303. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6304. cb(Kcur, "Kcur", il);
  6305. if (model.layers[il].bk) {
  6306. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6307. cb(Kcur, "Kcur", il);
  6308. }
  6309. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6310. cb(Vcur, "Vcur", il);
  6311. if (model.layers[il].bv) {
  6312. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6313. cb(Vcur, "Vcur", il);
  6314. }
  6315. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6316. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6317. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6318. Qcur = ggml_rope_ext(
  6319. ctx0, Qcur, inp_pos, nullptr,
  6320. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6321. ext_factor, attn_factor, beta_fast, beta_slow
  6322. );
  6323. Kcur = ggml_rope_ext(
  6324. ctx0, Kcur, inp_pos, nullptr,
  6325. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6326. ext_factor, attn_factor, beta_fast, beta_slow
  6327. );
  6328. cb(Qcur, "Qcur", il);
  6329. cb(Kcur, "Kcur", il);
  6330. cb(Vcur, "Vcur", il);
  6331. cur = build_attn(inp_attn, gf,
  6332. model.layers[il].wo, model.layers[il].bo,
  6333. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6334. }
  6335. if (il == n_layer - 1) {
  6336. // skip computing output for unused tokens
  6337. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6338. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6339. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6340. }
  6341. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6342. cb(ffn_inp, "ffn_inp", il);
  6343. // feed-forward network
  6344. cur = build_norm(ffn_inp,
  6345. model.layers[il].ffn_norm, NULL,
  6346. LLM_NORM_RMS, il);
  6347. cb(cur, "ffn_norm", il);
  6348. cur = build_ffn(cur,
  6349. model.layers[il].ffn_up, NULL, NULL,
  6350. model.layers[il].ffn_gate, NULL, NULL,
  6351. model.layers[il].ffn_down, NULL, NULL,
  6352. NULL,
  6353. LLM_FFN_SILU, LLM_FFN_PAR, il);
  6354. cb(cur, "ffn_out", il);
  6355. cur = ggml_add(ctx0, cur, ffn_inp);
  6356. cur = build_cvec(cur, il);
  6357. cb(cur, "l_out", il);
  6358. // input for next layer
  6359. inpL = cur;
  6360. }
  6361. cur = inpL;
  6362. cur = build_norm(cur,
  6363. model.output_norm, NULL,
  6364. LLM_NORM_RMS, -1);
  6365. cb(cur, "result_norm", -1);
  6366. res->t_embd = cur;
  6367. // lm_head
  6368. cur = build_lora_mm(model.output, cur);
  6369. cb(cur, "result_output", -1);
  6370. res->t_logits = cur;
  6371. ggml_build_forward_expand(gf, cur);
  6372. }
  6373. };
  6374. struct llm_build_minicpm3 : public llm_graph_context {
  6375. llm_build_minicpm3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6376. //TODO: if the model varies, these parameters need to be read from the model
  6377. const int64_t n_embd_base = 256;
  6378. const float scale_embd = 12.0f;
  6379. const float scale_depth = 1.4f;
  6380. const float kq_scale = 1.0f / sqrtf(float(hparams.n_embd_head_k));
  6381. const uint32_t n_embd_head_qk_rope = hparams.n_rot;
  6382. const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  6383. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  6384. ggml_tensor * cur;
  6385. ggml_tensor * inpL;
  6386. inpL = build_inp_embd(model.tok_embd);
  6387. // scale the input embeddings
  6388. inpL = ggml_scale(ctx0, inpL, scale_embd);
  6389. cb(inpL, "inp_scaled", -1);
  6390. // inp_pos - contains the positions
  6391. ggml_tensor * inp_pos = build_inp_pos();
  6392. auto * inp_attn = build_attn_inp_kv_unified();
  6393. for (int il = 0; il < n_layer; ++il) {
  6394. ggml_tensor * inpSA = inpL;
  6395. ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
  6396. // norm
  6397. cur = build_norm(inpL,
  6398. model.layers[il].attn_norm, NULL,
  6399. LLM_NORM_RMS, il);
  6400. cb(cur, "attn_norm", il);
  6401. // self_attention
  6402. {
  6403. ggml_tensor * q = NULL;
  6404. // {n_embd, q_lora_rank} * {n_embd, n_tokens} -> {q_lora_rank, n_tokens}
  6405. q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
  6406. cb(q, "q", il);
  6407. q = build_norm(q,
  6408. model.layers[il].attn_q_a_norm, NULL,
  6409. LLM_NORM_RMS, il);
  6410. cb(q, "q", il);
  6411. // {q_lora_rank, n_head * hparams.n_embd_head_k} * {q_lora_rank, n_tokens} -> {n_head * hparams.n_embd_head_k, n_tokens}
  6412. q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
  6413. cb(q, "q", il);
  6414. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  6415. ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
  6416. ggml_row_size(q->type, hparams.n_embd_head_k),
  6417. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  6418. 0);
  6419. cb(q_nope, "q_nope", il);
  6420. // and {n_head * n_embd_head_qk_rope, n_tokens}
  6421. ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
  6422. ggml_row_size(q->type, hparams.n_embd_head_k),
  6423. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  6424. ggml_row_size(q->type, n_embd_head_qk_nope));
  6425. cb(q_pe, "q_pe", il);
  6426. // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
  6427. ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
  6428. cb(kv_pe_compresseed, "kv_pe_compresseed", il);
  6429. // split into {kv_lora_rank, n_tokens}
  6430. ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
  6431. kv_pe_compresseed->nb[1],
  6432. 0);
  6433. cb(kv_compressed, "kv_compressed", il);
  6434. // and {n_embd_head_qk_rope, n_tokens}
  6435. ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
  6436. kv_pe_compresseed->nb[1],
  6437. kv_pe_compresseed->nb[1],
  6438. ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
  6439. cb(k_pe, "k_pe", il);
  6440. // TODO: the CUDA backend used to not support non-cont. (RMS) norm, investigate removing ggml_cont
  6441. kv_compressed = ggml_cont(ctx0, kv_compressed);
  6442. kv_compressed = build_norm(kv_compressed,
  6443. model.layers[il].attn_kv_a_norm, NULL,
  6444. LLM_NORM_RMS, il);
  6445. cb(kv_compressed, "kv_compressed", il);
  6446. // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
  6447. ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
  6448. cb(kv, "kv", il);
  6449. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  6450. ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
  6451. ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
  6452. ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  6453. 0);
  6454. cb(k_nope, "k_nope", il);
  6455. // and {n_head * n_embd_head_v, n_tokens}
  6456. ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
  6457. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  6458. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
  6459. ggml_row_size(kv->type, (n_embd_head_qk_nope)));
  6460. cb(v_states, "v_states", il);
  6461. v_states = ggml_cont(ctx0, v_states);
  6462. cb(v_states, "v_states", il);
  6463. v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
  6464. ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
  6465. 0);
  6466. cb(v_states, "v_states", il);
  6467. q_pe = ggml_cont(ctx0, q_pe); // TODO: the CUDA backend used to not support non-cont. RoPE, investigate removing this
  6468. q_pe = ggml_rope_ext(
  6469. ctx0, q_pe, inp_pos, rope_factors,
  6470. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6471. ext_factor, attn_factor, beta_fast, beta_slow
  6472. );
  6473. cb(q_pe, "q_pe", il);
  6474. // shared RoPE key
  6475. k_pe = ggml_cont(ctx0, k_pe); // TODO: the CUDA backend used to not support non-cont. RoPE, investigate removing this
  6476. k_pe = ggml_rope_ext(
  6477. ctx0, k_pe, inp_pos, rope_factors,
  6478. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6479. ext_factor, attn_factor, beta_fast, beta_slow
  6480. );
  6481. cb(k_pe, "k_pe", il);
  6482. ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
  6483. cb(q_states, "q_states", il);
  6484. ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
  6485. cb(k_states, "k_states", il);
  6486. cur = build_attn(inp_attn, gf,
  6487. model.layers[il].wo, NULL,
  6488. q_states, k_states, v_states, nullptr, nullptr, kq_scale, il);
  6489. }
  6490. if (il == n_layer - 1) {
  6491. // skip computing output for unused tokens
  6492. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6493. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6494. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6495. }
  6496. // scale_res - scale the hidden states for residual connection
  6497. const float scale_res = scale_depth/sqrtf(float(n_layer));
  6498. cur = ggml_scale(ctx0, cur, scale_res);
  6499. cb(cur, "hidden_scaled", il);
  6500. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6501. cb(ffn_inp, "ffn_inp", il);
  6502. // feed-forward network
  6503. {
  6504. cur = build_norm(ffn_inp,
  6505. model.layers[il].ffn_norm, NULL,
  6506. LLM_NORM_RMS, il);
  6507. cb(cur, "ffn_norm", il);
  6508. cur = build_ffn(cur,
  6509. model.layers[il].ffn_up, NULL, NULL,
  6510. model.layers[il].ffn_gate, NULL, NULL,
  6511. model.layers[il].ffn_down, NULL, NULL,
  6512. NULL,
  6513. LLM_FFN_SILU, LLM_FFN_PAR, il);
  6514. cb(cur, "ffn_out", il);
  6515. }
  6516. // scale the hidden states for residual connection
  6517. cur = ggml_scale(ctx0, cur, scale_res);
  6518. cb(cur, "hidden_scaled_ffn", il);
  6519. cur = ggml_add(ctx0, cur, ffn_inp);
  6520. cur = build_cvec(cur, il);
  6521. cb(cur, "l_out", il);
  6522. // input for next layer
  6523. inpL = cur;
  6524. }
  6525. cur = inpL;
  6526. cur = build_norm(cur,
  6527. model.output_norm, NULL,
  6528. LLM_NORM_RMS, -1);
  6529. cb(cur, "result_norm", -1);
  6530. res->t_embd = cur;
  6531. // lm_head scaling
  6532. const float scale_lmhead = float(n_embd_base)/float(n_embd);
  6533. cur = ggml_scale(ctx0, cur, scale_lmhead);
  6534. cb(cur, "lmhead_scaling", -1);
  6535. // lm_head
  6536. cur = build_lora_mm(model.output, cur);
  6537. cb(cur, "result_output", -1);
  6538. res->t_logits = cur;
  6539. ggml_build_forward_expand(gf, cur);
  6540. }
  6541. };
  6542. struct llm_build_gemma : public llm_graph_context {
  6543. llm_build_gemma(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6544. const int64_t n_embd_head = hparams.n_embd_head_v;
  6545. ggml_tensor * cur;
  6546. ggml_tensor * inpL;
  6547. inpL = build_inp_embd(model.tok_embd);
  6548. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  6549. cb(inpL, "inp_scaled", -1);
  6550. // inp_pos - contains the positions
  6551. ggml_tensor * inp_pos = build_inp_pos();
  6552. auto * inp_attn = build_attn_inp_kv_unified();
  6553. for (int il = 0; il < n_layer; ++il) {
  6554. // norm
  6555. cur = build_norm(inpL,
  6556. model.layers[il].attn_norm, NULL,
  6557. LLM_NORM_RMS, il);
  6558. cb(cur, "attn_norm", il);
  6559. // self-attention
  6560. {
  6561. // compute Q and K and RoPE them
  6562. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6563. cb(Qcur, "Qcur", il);
  6564. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6565. cb(Kcur, "Kcur", il);
  6566. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6567. cb(Vcur, "Vcur", il);
  6568. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6569. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6570. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6571. Qcur = ggml_rope_ext(
  6572. ctx0, Qcur, inp_pos, nullptr,
  6573. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6574. ext_factor, attn_factor, beta_fast, beta_slow);
  6575. Kcur = ggml_rope_ext(
  6576. ctx0, Kcur, inp_pos, nullptr,
  6577. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6578. ext_factor, attn_factor, beta_fast, beta_slow);
  6579. cb(Qcur, "Qcur", il);
  6580. cb(Kcur, "Kcur", il);
  6581. cb(Vcur, "Vcur", il);
  6582. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  6583. cb(Qcur, "Qcur_scaled", il);
  6584. cur = build_attn(inp_attn, gf,
  6585. model.layers[il].wo, NULL,
  6586. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  6587. }
  6588. if (il == n_layer - 1) {
  6589. // skip computing output for unused tokens
  6590. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6591. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6592. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6593. }
  6594. ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  6595. cb(sa_out, "sa_out", il);
  6596. cur = build_norm(sa_out,
  6597. model.layers[il].ffn_norm, NULL,
  6598. LLM_NORM_RMS, il);
  6599. cb(cur, "ffn_norm", il);
  6600. // feed-forward network
  6601. {
  6602. cur = build_ffn(cur,
  6603. model.layers[il].ffn_up, NULL, NULL,
  6604. model.layers[il].ffn_gate, NULL, NULL,
  6605. model.layers[il].ffn_down, NULL, NULL,
  6606. NULL,
  6607. LLM_FFN_GELU, LLM_FFN_PAR, il);
  6608. cb(cur, "ffn_out", il);
  6609. }
  6610. cur = ggml_add(ctx0, cur, sa_out);
  6611. cur = build_cvec(cur, il);
  6612. cb(cur, "l_out", il);
  6613. // input for next layer
  6614. inpL = cur;
  6615. }
  6616. cur = inpL;
  6617. cur = build_norm(cur,
  6618. model.output_norm, NULL,
  6619. LLM_NORM_RMS, -1);
  6620. cb(cur, "result_norm", -1);
  6621. res->t_embd = cur;
  6622. // lm_head
  6623. cur = build_lora_mm(model.output, cur);
  6624. cb(cur, "result_output", -1);
  6625. res->t_logits = cur;
  6626. ggml_build_forward_expand(gf, cur);
  6627. }
  6628. };
  6629. struct llm_build_gemma2 : public llm_graph_context {
  6630. llm_build_gemma2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6631. const int64_t n_embd_head = hparams.n_embd_head_k;
  6632. ggml_tensor * cur;
  6633. ggml_tensor * inpL;
  6634. inpL = build_inp_embd(model.tok_embd);
  6635. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  6636. cb(inpL, "inp_scaled", -1);
  6637. // inp_pos - contains the positions
  6638. ggml_tensor * inp_pos = build_inp_pos();
  6639. auto * inp_attn = build_attn_inp_kv_unified();
  6640. for (int il = 0; il < n_layer; ++il) {
  6641. // norm
  6642. cur = build_norm(inpL,
  6643. model.layers[il].attn_norm, NULL,
  6644. LLM_NORM_RMS, il);
  6645. cb(cur, "attn_norm", il);
  6646. // self-attention
  6647. {
  6648. // compute Q and K and RoPE them
  6649. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6650. cb(Qcur, "Qcur", il);
  6651. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6652. cb(Kcur, "Kcur", il);
  6653. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6654. cb(Vcur, "Vcur", il);
  6655. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6656. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6657. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6658. Qcur = ggml_rope_ext(
  6659. ctx0, Qcur, inp_pos, nullptr,
  6660. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6661. ext_factor, attn_factor, beta_fast, beta_slow);
  6662. Kcur = ggml_rope_ext(
  6663. ctx0, Kcur, inp_pos, nullptr,
  6664. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6665. ext_factor, attn_factor, beta_fast, beta_slow);
  6666. cb(Qcur, "Qcur", il);
  6667. cb(Kcur, "Kcur", il);
  6668. cb(Vcur, "Vcur", il);
  6669. // ref: https://github.com/google/gemma_pytorch/commit/03e657582d17cb5a8617ebf333c1c16f3694670e
  6670. switch (model.type) {
  6671. case LLM_TYPE_2B:
  6672. case LLM_TYPE_9B:
  6673. case LLM_TYPE_27B: Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head))); break;
  6674. default: GGML_ABORT("fatal error");
  6675. };
  6676. cb(Qcur, "Qcur_scaled", il);
  6677. cur = build_attn(inp_attn, gf,
  6678. model.layers[il].wo, NULL,
  6679. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  6680. }
  6681. cur = build_norm(cur,
  6682. model.layers[il].attn_post_norm, NULL,
  6683. LLM_NORM_RMS, il);
  6684. cb(cur, "attn_post_norm", il);
  6685. if (il == n_layer - 1) {
  6686. // skip computing output for unused tokens
  6687. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6688. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6689. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6690. }
  6691. ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  6692. cb(sa_out, "sa_out", il);
  6693. cur = build_norm(sa_out,
  6694. model.layers[il].ffn_norm, NULL,
  6695. LLM_NORM_RMS, il);
  6696. cb(cur, "ffn_norm", il);
  6697. // feed-forward network
  6698. {
  6699. cur = build_ffn(cur,
  6700. model.layers[il].ffn_up, NULL, NULL,
  6701. model.layers[il].ffn_gate, NULL, NULL,
  6702. model.layers[il].ffn_down, NULL, NULL,
  6703. NULL,
  6704. LLM_FFN_GELU, LLM_FFN_PAR, il);
  6705. cb(cur, "ffn_out", il);
  6706. }
  6707. cur = build_norm(cur,
  6708. model.layers[il].ffn_post_norm, NULL,
  6709. LLM_NORM_RMS, -1);
  6710. cb(cur, "ffn_post_norm", -1);
  6711. cur = ggml_add(ctx0, cur, sa_out);
  6712. cur = build_cvec(cur, il);
  6713. cb(cur, "l_out", il);
  6714. // input for next layer
  6715. inpL = cur;
  6716. }
  6717. cur = inpL;
  6718. cur = build_norm(cur,
  6719. model.output_norm, NULL,
  6720. LLM_NORM_RMS, -1);
  6721. cb(cur, "result_norm", -1);
  6722. res->t_embd = cur;
  6723. // lm_head
  6724. cur = build_lora_mm(model.output, cur);
  6725. // final logit soft-capping
  6726. cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping);
  6727. cur = ggml_tanh(ctx0, cur);
  6728. cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping);
  6729. cb(cur, "result_output", -1);
  6730. res->t_logits = cur;
  6731. ggml_build_forward_expand(gf, cur);
  6732. }
  6733. };
  6734. struct llm_build_gemma3 : public llm_graph_context {
  6735. llm_build_gemma3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6736. const int64_t n_embd_head = hparams.n_embd_head_k;
  6737. ggml_tensor * cur;
  6738. ggml_tensor * inpL;
  6739. inpL = build_inp_embd(model.tok_embd);
  6740. // important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
  6741. if (ubatch.token) {
  6742. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  6743. cb(inpL, "inp_scaled", -1);
  6744. }
  6745. // inp_pos - contains the positions
  6746. ggml_tensor * inp_pos = build_inp_pos();
  6747. // TODO: is causal == true correct? might need some changes
  6748. auto * inp_attn = build_attn_inp_kv_unified();
  6749. for (int il = 0; il < n_layer; ++il) {
  6750. const bool is_swa = hparams.is_swa(il);
  6751. const float freq_base_l = is_swa ? hparams.rope_freq_base_train_swa : cparams.rope_freq_base;
  6752. const float freq_scale_l = is_swa ? hparams.rope_freq_scale_train_swa : cparams.rope_freq_scale;
  6753. // norm
  6754. cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
  6755. cb(cur, "attn_norm", il);
  6756. // self-attention
  6757. {
  6758. // compute Q and K and RoPE them
  6759. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6760. cb(Qcur, "Qcur", il);
  6761. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6762. cb(Kcur, "Kcur", il);
  6763. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6764. cb(Vcur, "Vcur", il);
  6765. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6766. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6767. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6768. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
  6769. cb(Qcur, "Qcur_normed", il);
  6770. Qcur = ggml_rope_ext(
  6771. ctx0, Qcur, inp_pos, nullptr,
  6772. n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
  6773. ext_factor, attn_factor, beta_fast, beta_slow);
  6774. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
  6775. cb(Kcur, "Kcur_normed", il);
  6776. Kcur = ggml_rope_ext(
  6777. ctx0, Kcur, inp_pos, nullptr,
  6778. n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
  6779. ext_factor, attn_factor, beta_fast, beta_slow);
  6780. cb(Qcur, "Qcur", il);
  6781. cb(Kcur, "Kcur", il);
  6782. cb(Vcur, "Vcur", il);
  6783. cur = build_attn(inp_attn, gf,
  6784. model.layers[il].wo, NULL,
  6785. Qcur, Kcur, Vcur, nullptr, nullptr, hparams.f_attention_scale, il);
  6786. }
  6787. cur = build_norm(cur,
  6788. model.layers[il].attn_post_norm, NULL,
  6789. LLM_NORM_RMS, il);
  6790. cb(cur, "attn_post_norm", il);
  6791. if (il == n_layer - 1) {
  6792. // skip computing output for unused tokens
  6793. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6794. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6795. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6796. }
  6797. ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  6798. cb(sa_out, "sa_out", il);
  6799. cur = build_norm(sa_out,
  6800. model.layers[il].ffn_norm, NULL,
  6801. LLM_NORM_RMS, il);
  6802. cb(cur, "ffn_norm", il);
  6803. // feed-forward network
  6804. {
  6805. cur = build_ffn(cur,
  6806. model.layers[il].ffn_up, NULL, NULL,
  6807. model.layers[il].ffn_gate, NULL, NULL,
  6808. model.layers[il].ffn_down, NULL, NULL,
  6809. NULL,
  6810. LLM_FFN_GELU, LLM_FFN_PAR, il);
  6811. cb(cur, "ffn_out", il);
  6812. }
  6813. cur = build_norm(cur,
  6814. model.layers[il].ffn_post_norm, NULL,
  6815. LLM_NORM_RMS, -1);
  6816. cb(cur, "ffn_post_norm", -1);
  6817. cur = ggml_add(ctx0, cur, sa_out);
  6818. cur = build_cvec(cur, il);
  6819. cb(cur, "l_out", il);
  6820. // input for next layer
  6821. inpL = cur;
  6822. }
  6823. cur = inpL;
  6824. cur = build_norm(cur,
  6825. model.output_norm, NULL,
  6826. LLM_NORM_RMS, -1);
  6827. cb(cur, "result_norm", -1);
  6828. res->t_embd = cur;
  6829. // lm_head
  6830. cur = build_lora_mm(model.output, cur);
  6831. cb(cur, "result_output", -1);
  6832. res->t_logits = cur;
  6833. ggml_build_forward_expand(gf, cur);
  6834. }
  6835. };
  6836. // TODO: move up next to build_starcoder
  6837. struct llm_build_starcoder2 : public llm_graph_context {
  6838. llm_build_starcoder2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6839. const int64_t n_embd_head = hparams.n_embd_head_v;
  6840. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6841. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6842. ggml_tensor * cur;
  6843. ggml_tensor * inpL;
  6844. inpL = build_inp_embd(model.tok_embd);
  6845. // inp_pos - contains the positions
  6846. ggml_tensor * inp_pos = build_inp_pos();
  6847. auto * inp_attn = build_attn_inp_kv_unified();
  6848. for (int il = 0; il < n_layer; ++il) {
  6849. ggml_tensor * inpSA = inpL;
  6850. // norm
  6851. cur = build_norm(inpL,
  6852. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  6853. LLM_NORM, il);
  6854. cb(cur, "attn_norm", il);
  6855. // self-attention
  6856. {
  6857. // compute Q and K and RoPE them
  6858. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6859. cb(Qcur, "Qcur", il);
  6860. if (model.layers[il].bq) {
  6861. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6862. cb(Qcur, "Qcur", il);
  6863. }
  6864. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6865. cb(Kcur, "Kcur", il);
  6866. if (model.layers[il].bk) {
  6867. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6868. cb(Kcur, "Kcur", il);
  6869. }
  6870. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6871. cb(Vcur, "Vcur", il);
  6872. if (model.layers[il].bv) {
  6873. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6874. cb(Vcur, "Vcur", il);
  6875. }
  6876. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6877. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6878. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6879. Qcur = ggml_rope_ext(
  6880. ctx0, Qcur, inp_pos, nullptr,
  6881. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6882. ext_factor, attn_factor, beta_fast, beta_slow
  6883. );
  6884. Kcur = ggml_rope_ext(
  6885. ctx0, Kcur, inp_pos, nullptr,
  6886. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6887. ext_factor, attn_factor, beta_fast, beta_slow
  6888. );
  6889. cb(Qcur, "Qcur", il);
  6890. cb(Kcur, "Kcur", il);
  6891. cb(Vcur, "Vcur", il);
  6892. cur = build_attn(inp_attn, gf,
  6893. model.layers[il].wo, model.layers[il].bo,
  6894. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6895. }
  6896. if (il == n_layer - 1) {
  6897. // skip computing output for unused tokens
  6898. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6899. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6900. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6901. }
  6902. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6903. cb(ffn_inp, "ffn_inp", il);
  6904. // feed-forward network
  6905. cur = build_norm(ffn_inp,
  6906. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  6907. LLM_NORM, il);
  6908. cb(cur, "ffn_norm", il);
  6909. cur = build_ffn(cur,
  6910. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  6911. NULL, NULL, NULL,
  6912. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  6913. NULL,
  6914. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  6915. cb(cur, "ffn_out", il);
  6916. cur = ggml_add(ctx0, cur, ffn_inp);
  6917. cur = build_cvec(cur, il);
  6918. cb(cur, "l_out", il);
  6919. // input for next layer
  6920. inpL = cur;
  6921. }
  6922. cur = inpL;
  6923. cur = build_norm(cur,
  6924. model.output_norm, model.output_norm_b,
  6925. LLM_NORM, -1);
  6926. cb(cur, "result_norm", -1);
  6927. res->t_embd = cur;
  6928. // lm_head
  6929. cur = build_lora_mm(model.output, cur);
  6930. cb(cur, "result_output", -1);
  6931. res->t_logits = cur;
  6932. ggml_build_forward_expand(gf, cur);
  6933. }
  6934. };
  6935. struct llm_build_mamba : public llm_graph_context {
  6936. const llama_model & model;
  6937. llm_build_mamba(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params), model(model) {
  6938. ggml_tensor * cur;
  6939. ggml_tensor * inpL;
  6940. // {n_embd, n_tokens}
  6941. inpL = build_inp_embd(model.tok_embd);
  6942. ggml_tensor * state_copy = build_inp_s_copy();
  6943. ggml_tensor * state_mask = build_inp_s_mask();
  6944. for (int il = 0; il < n_layer; ++il) {
  6945. // norm
  6946. cur = build_norm(inpL,
  6947. model.layers[il].attn_norm, NULL,
  6948. LLM_NORM_RMS, il);
  6949. cb(cur, "attn_norm", il);
  6950. //cur = build_mamba_layer(gf, cur, state_copy, state_mask, il);
  6951. cur = build_mamba_layer(gf, cur, state_copy, state_mask, ubatch, il);
  6952. if (il == n_layer - 1) {
  6953. // skip computing output for unused tokens
  6954. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6955. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6956. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6957. }
  6958. // residual
  6959. cur = ggml_add(ctx0, cur, inpL);
  6960. cur = build_cvec(cur, il);
  6961. cb(cur, "l_out", il);
  6962. // input for next layer
  6963. inpL = cur;
  6964. }
  6965. // final rmsnorm
  6966. cur = build_norm(inpL,
  6967. model.output_norm, NULL,
  6968. LLM_NORM_RMS, -1);
  6969. cb(cur, "result_norm", -1);
  6970. res->t_embd = cur;
  6971. // lm_head
  6972. cur = build_lora_mm(model.output, cur);
  6973. cb(cur, "result_output", -1);
  6974. res->t_logits = cur;
  6975. ggml_build_forward_expand(gf, cur);
  6976. }
  6977. // TODO: split
  6978. ggml_tensor * build_mamba_layer(
  6979. ggml_cgraph * gf,
  6980. ggml_tensor * cur,
  6981. ggml_tensor * state_copy,
  6982. ggml_tensor * state_mask,
  6983. const llama_ubatch & ubatch,
  6984. int il) const {
  6985. const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
  6986. const auto kv_head = kv_self->head;
  6987. const int64_t d_conv = hparams.ssm_d_conv;
  6988. const int64_t d_inner = hparams.ssm_d_inner;
  6989. const int64_t d_state = hparams.ssm_d_state;
  6990. const int64_t dt_rank = hparams.ssm_dt_rank;
  6991. const int64_t n_seqs = ubatch.n_seqs;
  6992. // Some variants of Mamba arch (e.g. FalconMamba do apply layer norm on B and Dt layers)
  6993. const bool ssm_dt_b_c_rms = hparams.ssm_dt_b_c_rms;
  6994. // Use the same RMS norm as the final layer norm
  6995. const float norm_rms_eps = hparams.f_norm_rms_eps;
  6996. const int64_t n_seq_tokens = ubatch.n_seq_tokens;
  6997. GGML_ASSERT(n_seqs != 0);
  6998. GGML_ASSERT(ubatch.equal_seqs);
  6999. GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
  7000. ggml_tensor * conv_states_all = kv_self->k_l[il];
  7001. ggml_tensor * ssm_states_all = kv_self->v_l[il];
  7002. // (ab)using the KV cache to store the states
  7003. ggml_tensor * conv = build_copy_mask_state(
  7004. gf, conv_states_all, state_copy, state_mask,
  7005. hparams.n_embd_k_s(), n_seqs);
  7006. conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner, n_seqs);
  7007. ggml_tensor * ssm = build_copy_mask_state(
  7008. gf, ssm_states_all, state_copy, state_mask,
  7009. hparams.n_embd_v_s(), n_seqs);
  7010. ssm = ggml_reshape_3d(ctx0, ssm, d_state, d_inner, n_seqs);
  7011. // {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
  7012. cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
  7013. // {n_embd, 2*d_inner} @ {n_embd, n_seq_tokens, n_seqs} => {2*d_inner, n_seq_tokens, n_seqs}
  7014. ggml_tensor * xz = build_lora_mm(model.layers[il].ssm_in, cur);
  7015. // split the above in two
  7016. // => {d_inner, n_seq_tokens, n_seqs}
  7017. ggml_tensor * x = ggml_view_3d(ctx0, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], 0);
  7018. ggml_tensor * z = ggml_view_3d(ctx0, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], d_inner*ggml_element_size(xz));
  7019. // conv
  7020. {
  7021. // => {d_conv - 1 + n_seq_tokens, d_inner, n_seqs}
  7022. ggml_tensor * conv_x = ggml_concat(ctx0, conv, ggml_transpose(ctx0, x), 0);
  7023. // copy last (d_conv - 1) columns back into the state cache
  7024. ggml_tensor * last_conv = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_inner, n_seqs, conv_x->nb[1], conv_x->nb[2], n_seq_tokens*(conv_x->nb[0]));
  7025. ggml_build_forward_expand(gf,
  7026. ggml_cpy(ctx0, last_conv,
  7027. ggml_view_1d(ctx0, conv_states_all,
  7028. (d_conv - 1)*(d_inner)*(n_seqs),
  7029. kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(conv_states_all))));
  7030. // 1D convolution
  7031. // The equivalent is to make a self-overlapping view of conv_x
  7032. // over d_conv columns at each stride in the 3rd dimension,
  7033. // then element-wise multiply that with the conv1d weight,
  7034. // then sum the elements of each row,
  7035. // (the last two steps are a dot product over rows (also doable with mul_mat))
  7036. // then permute away the ne[0] dimension,
  7037. // and then you're left with the resulting x tensor.
  7038. // For simultaneous sequences, all sequences need to have the same length.
  7039. x = ggml_ssm_conv(ctx0, conv_x, model.layers[il].ssm_conv1d);
  7040. // bias
  7041. x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
  7042. x = ggml_silu(ctx0, x);
  7043. }
  7044. // ssm
  7045. {
  7046. // {d_inner, dt_rank + 2*d_state} @ {d_inner, n_seq_tokens, n_seqs} => {dt_rank + 2*d_state, n_seq_tokens, n_seqs}
  7047. ggml_tensor * x_db = build_lora_mm(model.layers[il].ssm_x, x);
  7048. // split
  7049. ggml_tensor * dt = ggml_view_3d(ctx0, x_db, dt_rank, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], 0);
  7050. ggml_tensor * B = ggml_view_3d(ctx0, x_db, d_state, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*dt_rank);
  7051. ggml_tensor * C = ggml_view_3d(ctx0, x_db, d_state, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*(dt_rank+d_state));
  7052. // Some Mamba variants (e.g. FalconMamba) apply RMS norm in B, C & Dt layers
  7053. if (ssm_dt_b_c_rms) {
  7054. dt = ggml_rms_norm(ctx0, dt, norm_rms_eps);
  7055. B = ggml_rms_norm(ctx0, B, norm_rms_eps);
  7056. C = ggml_rms_norm(ctx0, C, norm_rms_eps);
  7057. }
  7058. // {dt_rank, d_inner} @ {dt_rank, n_seq_tokens, n_seqs} => {d_inner, n_seq_tokens, n_seqs}
  7059. dt = build_lora_mm(model.layers[il].ssm_dt, dt);
  7060. dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
  7061. // Custom operator to optimize the parallel associative scan
  7062. // as described in the Annex D of the Mamba paper.
  7063. // => {d_inner, n_seq_tokens, n_seqs} and {d_state, d_inner, n_seqs}
  7064. ggml_tensor * y_ssm = ggml_ssm_scan(ctx0, ssm, x, dt, model.layers[il].ssm_a, B, C);
  7065. // store last states
  7066. ggml_build_forward_expand(gf,
  7067. ggml_cpy(ctx0,
  7068. ggml_view_1d(ctx0, y_ssm, d_state*d_inner*n_seqs, x->nb[3]),
  7069. ggml_view_1d(ctx0, ssm_states_all, d_state*d_inner*n_seqs, kv_head*d_state*d_inner*ggml_element_size(ssm_states_all))));
  7070. ggml_tensor * y = ggml_view_3d(ctx0, y_ssm, d_inner, n_seq_tokens, n_seqs, x->nb[1], x->nb[2], 0);
  7071. // TODO: skip computing output earlier for unused tokens
  7072. // {d_inner, n_seq_tokens, n_seqs} * {d_inner} => {d_inner, n_seq_tokens, n_seqs}
  7073. y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
  7074. y = ggml_mul(ctx0, y, ggml_silu(ctx0, ggml_cont(ctx0, z)));
  7075. // {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
  7076. cur = build_lora_mm(model.layers[il].ssm_out, y);
  7077. }
  7078. // {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
  7079. cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs);
  7080. //cb(cur, "mamba_out", il);
  7081. return cur;
  7082. }
  7083. };
  7084. struct llm_build_command_r : public llm_graph_context {
  7085. llm_build_command_r(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7086. const int64_t n_embd_head = hparams.n_embd_head_v;
  7087. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7088. const float f_logit_scale = hparams.f_logit_scale;
  7089. ggml_tensor * cur;
  7090. ggml_tensor * inpL;
  7091. inpL = build_inp_embd(model.tok_embd);
  7092. // inp_pos - contains the positions
  7093. ggml_tensor * inp_pos = build_inp_pos();
  7094. auto * inp_attn = build_attn_inp_kv_unified();
  7095. for (int il = 0; il < n_layer; ++il) {
  7096. // norm
  7097. cur = build_norm(inpL,
  7098. model.layers[il].attn_norm, NULL,
  7099. LLM_NORM, il);
  7100. cb(cur, "attn_norm", il);
  7101. ggml_tensor * ffn_inp = cur;
  7102. // self-attention
  7103. {
  7104. // compute Q and K and RoPE them
  7105. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7106. cb(Qcur, "Qcur", il);
  7107. if (model.layers[il].bq) {
  7108. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7109. cb(Qcur, "Qcur", il);
  7110. }
  7111. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7112. cb(Kcur, "Kcur", il);
  7113. if (model.layers[il].bk) {
  7114. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7115. cb(Kcur, "Kcur", il);
  7116. }
  7117. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7118. cb(Vcur, "Vcur", il);
  7119. if (model.layers[il].bv) {
  7120. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7121. cb(Vcur, "Vcur", il);
  7122. }
  7123. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7124. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7125. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7126. if (model.layers[il].attn_q_norm) {
  7127. Qcur = build_norm(Qcur,
  7128. model.layers[il].attn_q_norm,
  7129. NULL,
  7130. LLM_NORM, il);
  7131. cb(Qcur, "Qcur", il);
  7132. }
  7133. Qcur = ggml_rope_ext(
  7134. ctx0, Qcur, inp_pos, nullptr,
  7135. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7136. ext_factor, attn_factor, beta_fast, beta_slow
  7137. );
  7138. if (model.layers[il].attn_k_norm) {
  7139. Kcur = build_norm(Kcur,
  7140. model.layers[il].attn_k_norm,
  7141. NULL,
  7142. LLM_NORM, il);
  7143. cb(Kcur, "Kcur", il);
  7144. }
  7145. Kcur = ggml_rope_ext(
  7146. ctx0, Kcur, inp_pos, nullptr,
  7147. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7148. ext_factor, attn_factor, beta_fast, beta_slow
  7149. );
  7150. cb(Qcur, "Qcur", il);
  7151. cb(Kcur, "Kcur", il);
  7152. cb(Vcur, "Vcur", il);
  7153. cur = build_attn(inp_attn, gf,
  7154. model.layers[il].wo, model.layers[il].bo,
  7155. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7156. }
  7157. if (il == n_layer - 1) {
  7158. // skip computing output for unused tokens
  7159. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7160. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7161. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7162. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  7163. }
  7164. ggml_tensor * attn_out = cur;
  7165. // feed-forward network
  7166. {
  7167. cur = build_ffn(ffn_inp,
  7168. model.layers[il].ffn_up, NULL, NULL,
  7169. model.layers[il].ffn_gate, NULL, NULL,
  7170. model.layers[il].ffn_down, NULL, NULL,
  7171. NULL,
  7172. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7173. cb(cur, "ffn_out", il);
  7174. }
  7175. // add together residual + FFN + self-attention
  7176. cur = ggml_add(ctx0, cur, inpL);
  7177. cur = ggml_add(ctx0, cur, attn_out);
  7178. cur = build_cvec(cur, il);
  7179. cb(cur, "l_out", il);
  7180. // input for next layer
  7181. inpL = cur;
  7182. }
  7183. cur = inpL;
  7184. cur = build_norm(cur,
  7185. model.output_norm, NULL,
  7186. LLM_NORM, -1);
  7187. cb(cur, "result_norm", -1);
  7188. res->t_embd = cur;
  7189. // lm_head
  7190. cur = build_lora_mm(model.output, cur);
  7191. if (f_logit_scale) {
  7192. cur = ggml_scale(ctx0, cur, f_logit_scale);
  7193. }
  7194. cb(cur, "result_output", -1);
  7195. res->t_logits = cur;
  7196. ggml_build_forward_expand(gf, cur);
  7197. }
  7198. };
  7199. struct llm_build_cohere2 : public llm_graph_context {
  7200. llm_build_cohere2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7201. const int64_t n_embd_head = hparams.n_embd_head_v;
  7202. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7203. const float f_logit_scale = hparams.f_logit_scale;
  7204. ggml_tensor * cur;
  7205. ggml_tensor * inpL;
  7206. inpL = build_inp_embd(model.tok_embd);
  7207. // inp_pos - contains the positions
  7208. ggml_tensor * inp_pos = build_inp_pos();
  7209. auto * inp_attn = build_attn_inp_kv_unified();
  7210. for (int il = 0; il < n_layer; ++il) {
  7211. const bool is_swa = hparams.is_swa(il);
  7212. // norm
  7213. cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM, il);
  7214. cb(cur, "attn_norm", il);
  7215. ggml_tensor * ffn_inp = cur;
  7216. // self-attention
  7217. {
  7218. // rope freq factors for 128k context
  7219. ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
  7220. // compute Q and K and RoPE them
  7221. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7222. cb(Qcur, "Qcur", il);
  7223. if (model.layers[il].bq) {
  7224. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7225. cb(Qcur, "Qcur", il);
  7226. }
  7227. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7228. cb(Kcur, "Kcur", il);
  7229. if (model.layers[il].bk) {
  7230. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7231. cb(Kcur, "Kcur", il);
  7232. }
  7233. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7234. cb(Vcur, "Vcur", il);
  7235. if (model.layers[il].bv) {
  7236. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7237. cb(Vcur, "Vcur", il);
  7238. }
  7239. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7240. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7241. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7242. if (is_swa) {
  7243. Qcur = ggml_rope_ext(
  7244. ctx0, Qcur, inp_pos, rope_factors,
  7245. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7246. ext_factor, attn_factor, beta_fast, beta_slow
  7247. );
  7248. Kcur = ggml_rope_ext(
  7249. ctx0, Kcur, inp_pos, rope_factors,
  7250. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7251. ext_factor, attn_factor, beta_fast, beta_slow
  7252. );
  7253. }
  7254. cb(Qcur, "Qcur", il);
  7255. cb(Kcur, "Kcur", il);
  7256. cb(Vcur, "Vcur", il);
  7257. cur = build_attn(inp_attn, gf,
  7258. model.layers[il].wo, model.layers[il].bo,
  7259. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7260. }
  7261. if (il == n_layer - 1) {
  7262. // skip computing output for unused tokens
  7263. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7264. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7265. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7266. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  7267. }
  7268. ggml_tensor * attn_out = cur;
  7269. // feed-forward network
  7270. {
  7271. cur = build_ffn(ffn_inp, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate,
  7272. NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR,
  7273. il);
  7274. cb(cur, "ffn_out", il);
  7275. }
  7276. // add together residual + FFN + self-attention
  7277. cur = ggml_add(ctx0, cur, inpL);
  7278. cur = ggml_add(ctx0, cur, attn_out);
  7279. cur = build_cvec(cur, il);
  7280. cb(cur, "l_out", il);
  7281. // input for next layer
  7282. inpL = cur;
  7283. }
  7284. cur = inpL;
  7285. cur = build_norm(cur, model.output_norm, NULL, LLM_NORM, -1);
  7286. cb(cur, "result_norm", -1);
  7287. res->t_embd = cur;
  7288. // lm_head
  7289. cur = build_lora_mm(model.output, cur);
  7290. if (f_logit_scale) {
  7291. cur = ggml_scale(ctx0, cur, f_logit_scale);
  7292. }
  7293. cb(cur, "result_output", -1);
  7294. res->t_logits = cur;
  7295. ggml_build_forward_expand(gf, cur);
  7296. }
  7297. };
  7298. // ref: https://allenai.org/olmo
  7299. // based on the original build_llama() function, changes:
  7300. // * non-parametric layer norm
  7301. // * clamp qkv
  7302. // * removed bias
  7303. // * removed MoE
  7304. struct llm_build_olmo : public llm_graph_context {
  7305. llm_build_olmo(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7306. const int64_t n_embd_head = hparams.n_embd_head_v;
  7307. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7308. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7309. ggml_tensor * cur;
  7310. ggml_tensor * inpL;
  7311. inpL = build_inp_embd(model.tok_embd);
  7312. // inp_pos - contains the positions
  7313. ggml_tensor * inp_pos = build_inp_pos();
  7314. auto * inp_attn = build_attn_inp_kv_unified();
  7315. for (int il = 0; il < n_layer; ++il) {
  7316. ggml_tensor * inpSA = inpL;
  7317. // norm
  7318. cur = build_norm(inpL,
  7319. NULL, NULL,
  7320. LLM_NORM, il);
  7321. cb(cur, "attn_norm", il);
  7322. // self-attention
  7323. {
  7324. // compute Q and K and RoPE them
  7325. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7326. cb(Qcur, "Qcur", il);
  7327. if (hparams.f_clamp_kqv > 0.0f) {
  7328. Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7329. cb(Qcur, "Qcur", il);
  7330. }
  7331. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7332. cb(Kcur, "Kcur", il);
  7333. if (hparams.f_clamp_kqv > 0.0f) {
  7334. Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7335. cb(Kcur, "Kcur", il);
  7336. }
  7337. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7338. cb(Vcur, "Vcur", il);
  7339. if (hparams.f_clamp_kqv > 0.0f) {
  7340. Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7341. cb(Vcur, "Vcur", il);
  7342. }
  7343. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7344. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7345. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7346. Qcur = ggml_rope_ext(
  7347. ctx0, Qcur, inp_pos, nullptr,
  7348. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7349. ext_factor, attn_factor, beta_fast, beta_slow
  7350. );
  7351. Kcur = ggml_rope_ext(
  7352. ctx0, Kcur, inp_pos, nullptr,
  7353. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7354. ext_factor, attn_factor, beta_fast, beta_slow
  7355. );
  7356. cb(Qcur, "Qcur", il);
  7357. cb(Kcur, "Kcur", il);
  7358. cb(Vcur, "Vcur", il);
  7359. cur = build_attn(inp_attn, gf,
  7360. model.layers[il].wo, nullptr,
  7361. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7362. }
  7363. if (il == n_layer - 1) {
  7364. // skip computing output for unused tokens
  7365. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7366. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7367. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7368. }
  7369. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7370. cb(ffn_inp, "ffn_inp", il);
  7371. // feed-forward network
  7372. cur = build_norm(ffn_inp,
  7373. NULL, NULL,
  7374. LLM_NORM, il);
  7375. cb(cur, "ffn_norm", il);
  7376. cur = build_ffn(cur,
  7377. model.layers[il].ffn_up, NULL, NULL,
  7378. model.layers[il].ffn_gate, NULL, NULL,
  7379. model.layers[il].ffn_down, NULL, NULL,
  7380. NULL,
  7381. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7382. cb(cur, "ffn_out", il);
  7383. cur = ggml_add(ctx0, cur, ffn_inp);
  7384. cb(cur, "ffn_out", il);
  7385. cur = build_cvec(cur, il);
  7386. cb(cur, "l_out", il);
  7387. // input for next layer
  7388. inpL = cur;
  7389. }
  7390. cur = inpL;
  7391. cur = build_norm(cur,
  7392. NULL, NULL,
  7393. LLM_NORM, -1);
  7394. cb(cur, "result_norm", -1);
  7395. res->t_embd = cur;
  7396. // lm_head
  7397. cur = build_lora_mm(model.output, cur);
  7398. cb(cur, "result_output", -1);
  7399. res->t_logits = cur;
  7400. ggml_build_forward_expand(gf, cur);
  7401. }
  7402. };
  7403. struct llm_build_olmo2 : public llm_graph_context {
  7404. llm_build_olmo2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7405. const int64_t n_embd_head = hparams.n_embd_head_v;
  7406. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7407. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7408. ggml_tensor * cur;
  7409. ggml_tensor * inpL;
  7410. inpL = build_inp_embd(model.tok_embd);
  7411. // inp_pos - contains the positions
  7412. ggml_tensor * inp_pos = build_inp_pos();
  7413. auto * inp_attn = build_attn_inp_kv_unified();
  7414. for (int il = 0; il < n_layer; ++il) {
  7415. ggml_tensor * inpSA = inpL;
  7416. cur = inpL;
  7417. // self_attention
  7418. {
  7419. // compute Q and K and RoPE them
  7420. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7421. cb(Qcur, "Qcur", il);
  7422. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7423. cb(Kcur, "Kcur", il);
  7424. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7425. cb(Vcur, "Vcur", il);
  7426. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL,
  7427. LLM_NORM_RMS, il);
  7428. cb(Qcur, "Qcur_normed", il);
  7429. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL,
  7430. LLM_NORM_RMS, il);
  7431. cb(Kcur, "Kcur_normed", il);
  7432. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7433. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7434. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7435. Qcur = ggml_rope_ext(
  7436. ctx0, Qcur, inp_pos, nullptr,
  7437. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7438. ext_factor, attn_factor, beta_fast, beta_slow
  7439. );
  7440. Kcur = ggml_rope_ext(
  7441. ctx0, Kcur, inp_pos, nullptr,
  7442. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7443. ext_factor, attn_factor, beta_fast, beta_slow
  7444. );
  7445. cb(Qcur, "Qcur", il);
  7446. cb(Kcur, "Kcur", il);
  7447. cb(Vcur, "Vcur", il);
  7448. cur = build_attn(inp_attn, gf,
  7449. model.layers[il].wo, NULL,
  7450. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7451. }
  7452. cur = build_norm(cur,
  7453. model.layers[il].attn_post_norm, NULL,
  7454. LLM_NORM_RMS, il);
  7455. cb(cur, "attn_post_norm", il);
  7456. if (il == n_layer - 1) {
  7457. // skip computing output for unused tokens
  7458. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7459. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7460. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7461. }
  7462. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7463. cb(ffn_inp, "ffn_inp", il);
  7464. // feed-forward network
  7465. cur = build_ffn(ffn_inp,
  7466. model.layers[il].ffn_up, NULL, NULL,
  7467. model.layers[il].ffn_gate, NULL, NULL,
  7468. model.layers[il].ffn_down, NULL, NULL,
  7469. NULL,
  7470. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7471. cb(cur, "ffn_out", il);
  7472. cur = build_norm(cur,
  7473. model.layers[il].ffn_post_norm, NULL,
  7474. LLM_NORM_RMS, -1);
  7475. cb(cur, "ffn_post_norm", -1);
  7476. cur = ggml_add(ctx0, cur, ffn_inp);
  7477. cb(cur, "ffn_out", il);
  7478. cur = build_cvec(cur, il);
  7479. cb(cur, "l_out", il);
  7480. // input for next layer
  7481. inpL = cur;
  7482. }
  7483. cur = inpL;
  7484. cur = build_norm(cur,
  7485. model.output_norm, NULL,
  7486. LLM_NORM_RMS, -1);
  7487. cb(cur, "result_norm", -1);
  7488. res->t_embd = cur;
  7489. // lm_head
  7490. cur = build_lora_mm(model.output, cur);
  7491. cb(cur, "result_output", -1);
  7492. res->t_logits = cur;
  7493. ggml_build_forward_expand(gf, cur);
  7494. }
  7495. };
  7496. // based on the build_qwen2moe() function, changes:
  7497. // * removed shared experts
  7498. // * removed bias
  7499. // * added q, k norm
  7500. struct llm_build_olmoe : public llm_graph_context {
  7501. llm_build_olmoe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7502. const int64_t n_embd_head = hparams.n_embd_head_v;
  7503. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7504. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7505. ggml_tensor * cur;
  7506. ggml_tensor * inpL;
  7507. inpL = build_inp_embd(model.tok_embd);
  7508. // inp_pos - contains the positions
  7509. ggml_tensor * inp_pos = build_inp_pos();
  7510. auto * inp_attn = build_attn_inp_kv_unified();
  7511. for (int il = 0; il < n_layer; ++il) {
  7512. ggml_tensor * inpSA = inpL;
  7513. // norm
  7514. cur = build_norm(inpL,
  7515. model.layers[il].attn_norm, NULL,
  7516. LLM_NORM_RMS, il);
  7517. cb(cur, "attn_norm", il);
  7518. // self_attention
  7519. {
  7520. // compute Q and K and RoPE them
  7521. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7522. cb(Qcur, "Qcur", il);
  7523. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7524. cb(Kcur, "Kcur", il);
  7525. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7526. cb(Vcur, "Vcur", il);
  7527. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL,
  7528. LLM_NORM_RMS, il);
  7529. cb(Qcur, "Qcur_normed", il);
  7530. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL,
  7531. LLM_NORM_RMS, il);
  7532. cb(Kcur, "Kcur_normed", il);
  7533. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7534. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7535. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7536. Qcur = ggml_rope_ext(
  7537. ctx0, Qcur, inp_pos, nullptr,
  7538. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7539. ext_factor, attn_factor, beta_fast, beta_slow
  7540. );
  7541. Kcur = ggml_rope_ext(
  7542. ctx0, Kcur, inp_pos, nullptr,
  7543. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7544. ext_factor, attn_factor, beta_fast, beta_slow
  7545. );
  7546. cb(Qcur, "Qcur", il);
  7547. cb(Kcur, "Kcur", il);
  7548. cb(Vcur, "Vcur", il);
  7549. cur = build_attn(inp_attn, gf,
  7550. model.layers[il].wo, NULL,
  7551. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7552. }
  7553. if (il == n_layer - 1) {
  7554. // skip computing output for unused tokens
  7555. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7556. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7557. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7558. }
  7559. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7560. cb(ffn_inp, "ffn_inp", il);
  7561. // MoE branch
  7562. cur = build_norm(ffn_inp,
  7563. model.layers[il].ffn_norm, NULL,
  7564. LLM_NORM_RMS, il);
  7565. cb(cur, "ffn_norm", il);
  7566. cur = build_moe_ffn(cur,
  7567. model.layers[il].ffn_gate_inp,
  7568. model.layers[il].ffn_up_exps,
  7569. model.layers[il].ffn_gate_exps,
  7570. model.layers[il].ffn_down_exps,
  7571. nullptr,
  7572. n_expert, n_expert_used,
  7573. LLM_FFN_SILU, false,
  7574. false, 0.0,
  7575. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  7576. il);
  7577. cb(cur, "ffn_moe_out", il);
  7578. cur = ggml_add(ctx0, cur, ffn_inp);
  7579. cur = build_cvec(cur, il);
  7580. cb(cur, "l_out", il);
  7581. // input for next layer
  7582. inpL = cur;
  7583. }
  7584. cur = inpL;
  7585. cur = build_norm(cur,
  7586. model.output_norm, NULL,
  7587. LLM_NORM_RMS, -1);
  7588. cb(cur, "result_norm", -1);
  7589. res->t_embd = cur;
  7590. // lm_head
  7591. cur = build_lora_mm(model.output, cur);
  7592. cb(cur, "result_output", -1);
  7593. res->t_logits = cur;
  7594. ggml_build_forward_expand(gf, cur);
  7595. }
  7596. };
  7597. struct llm_build_openelm : public llm_graph_context {
  7598. llm_build_openelm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7599. const int64_t n_embd_head = hparams.n_embd_head_v;
  7600. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7601. ggml_tensor * cur;
  7602. ggml_tensor * inpL;
  7603. inpL = build_inp_embd(model.tok_embd);
  7604. // inp_pos - contains the positions
  7605. ggml_tensor * inp_pos = build_inp_pos();
  7606. auto * inp_attn = build_attn_inp_kv_unified();
  7607. for (int il = 0; il < n_layer; ++il) {
  7608. const int64_t n_head = hparams.n_head(il);
  7609. const int64_t n_head_kv = hparams.n_head_kv(il);
  7610. const int64_t n_head_qkv = 2*n_head_kv + n_head;
  7611. cur = inpL;
  7612. ggml_tensor * residual = cur;
  7613. // norm
  7614. cur = build_norm(inpL,
  7615. model.layers[il].attn_norm, NULL,
  7616. LLM_NORM_RMS, il);
  7617. cb(cur, "attn_norm", il);
  7618. // self-attention
  7619. {
  7620. cur = build_lora_mm(model.layers[il].wqkv, cur);
  7621. cb(cur, "wqkv", il);
  7622. cur = ggml_reshape_3d(ctx0, cur, n_embd_head_k, n_head_qkv, n_tokens);
  7623. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, cur->nb[1], cur->nb[2], 0));
  7624. cb(Qcur, "Qcur", il);
  7625. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*n_head));
  7626. cb(Kcur, "Kcur", il);
  7627. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*(n_head+n_head_kv)));
  7628. cb(Vcur, "Vcur", il);
  7629. Qcur = build_norm(Qcur,
  7630. model.layers[il].attn_q_norm, NULL,
  7631. LLM_NORM_RMS, il);
  7632. cb(Qcur, "Qcur", il);
  7633. Kcur = build_norm(Kcur,
  7634. model.layers[il].attn_k_norm, NULL,
  7635. LLM_NORM_RMS, il);
  7636. cb(Kcur, "Kcur", il);
  7637. Qcur = ggml_rope_ext(
  7638. ctx0, Qcur, inp_pos, NULL,
  7639. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7640. ext_factor, attn_factor, beta_fast, beta_slow
  7641. );
  7642. Kcur = ggml_rope_ext(
  7643. ctx0, Kcur, inp_pos, NULL,
  7644. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7645. ext_factor, attn_factor, beta_fast, beta_slow
  7646. );
  7647. cb(Qcur, "Qcur", il);
  7648. cb(Kcur, "Kcur", il);
  7649. cb(Qcur, "Vcur", il);
  7650. cur = build_attn(inp_attn, gf,
  7651. model.layers[il].wo, NULL,
  7652. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7653. }
  7654. if (il == n_layer - 1) {
  7655. // skip computing output for unused tokens
  7656. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7657. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  7658. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7659. }
  7660. ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
  7661. cb(ffn_inp, "ffn_inp", il);
  7662. // feed-forward network
  7663. {
  7664. cur = build_norm(ffn_inp,
  7665. model.layers[il].ffn_norm, NULL,
  7666. LLM_NORM_RMS, il);
  7667. cb(cur, "ffn_norm", il);
  7668. cur = build_ffn(cur,
  7669. model.layers[il].ffn_up, NULL, NULL,
  7670. model.layers[il].ffn_gate, NULL, NULL,
  7671. model.layers[il].ffn_down, NULL, NULL,
  7672. NULL,
  7673. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7674. cb(cur, "ffn_out", il);
  7675. }
  7676. cur = ggml_add(ctx0, cur, ffn_inp);
  7677. cur = build_cvec(cur, il);
  7678. cb(cur, "l_out", il);
  7679. inpL = cur;
  7680. }
  7681. cur = inpL;
  7682. // norm
  7683. cur = build_norm(cur,
  7684. model.output_norm, NULL,
  7685. LLM_NORM_RMS, -1);
  7686. cb(cur, "result_norm", -1);
  7687. res->t_embd = cur;
  7688. cur = build_lora_mm(model.output, cur);
  7689. cb(cur, "result_output", -1);
  7690. res->t_logits = cur;
  7691. ggml_build_forward_expand(gf, cur);
  7692. }
  7693. };
  7694. struct llm_build_gptneox : public llm_graph_context {
  7695. llm_build_gptneox(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7696. const int64_t n_embd_head = hparams.n_embd_head_v;
  7697. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7698. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7699. ggml_tensor * cur;
  7700. ggml_tensor * inpL;
  7701. inpL = build_inp_embd(model.tok_embd);
  7702. // inp_pos - contains the positions
  7703. ggml_tensor * inp_pos = build_inp_pos();
  7704. auto * inp_attn = build_attn_inp_kv_unified();
  7705. for (int il = 0; il < n_layer; ++il) {
  7706. cur = build_norm(inpL,
  7707. model.layers[il].attn_norm,
  7708. model.layers[il].attn_norm_b,
  7709. LLM_NORM, il);
  7710. cb(cur, "attn_norm", il);
  7711. // self-attention
  7712. {
  7713. cur = build_lora_mm(model.layers[il].wqkv, cur);
  7714. cb(cur, "wqkv", il);
  7715. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7716. cb(cur, "bqkv", il);
  7717. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7718. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7719. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7720. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7721. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7722. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7723. Qcur = ggml_rope_ext(
  7724. ctx0, Qcur, inp_pos, nullptr,
  7725. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7726. ext_factor, attn_factor, beta_fast, beta_slow
  7727. );
  7728. Kcur = ggml_rope_ext(
  7729. ctx0, Kcur, inp_pos, nullptr,
  7730. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7731. ext_factor, attn_factor, beta_fast, beta_slow
  7732. );
  7733. cb(Qcur, "Qcur", il);
  7734. cb(Kcur, "Kcur", il);
  7735. cb(Vcur, "Vcur", il);
  7736. cur = build_attn(inp_attn, gf,
  7737. model.layers[il].wo, model.layers[il].bo,
  7738. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7739. }
  7740. if (il == n_layer - 1) {
  7741. // skip computing output for unused tokens
  7742. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7743. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7744. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7745. }
  7746. // ffn
  7747. if (hparams.use_par_res) {
  7748. // attention and ffn are computed in parallel
  7749. // x = x + attn(ln1(x)) + ffn(ln2(x))
  7750. ggml_tensor * attn_out = cur;
  7751. cur = build_norm(inpL,
  7752. model.layers[il].ffn_norm,
  7753. model.layers[il].ffn_norm_b,
  7754. LLM_NORM, il);
  7755. cb(cur, "ffn_norm", il);
  7756. cur = build_ffn(cur,
  7757. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  7758. NULL, NULL, NULL,
  7759. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  7760. NULL,
  7761. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  7762. cb(cur, "ffn_out", il);
  7763. cur = ggml_add(ctx0, cur, inpL);
  7764. cb(cur, "ffn_out", il);
  7765. cur = ggml_add(ctx0, cur, attn_out);
  7766. cur = build_cvec(cur, il);
  7767. cb(cur, "l_out", il);
  7768. // input for next layer
  7769. inpL = cur;
  7770. } else {
  7771. // attention and ffn are computed sequentially
  7772. // x = x + attn(ln1(x))
  7773. // x = x + ffn(ln2(x))
  7774. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7775. cb(ffn_inp, "ffn_inp", il);
  7776. cur = build_norm(ffn_inp,
  7777. model.layers[il].ffn_norm,
  7778. model.layers[il].ffn_norm_b,
  7779. LLM_NORM, il);
  7780. cb(cur, "ffn_norm", il);
  7781. cur = build_ffn(cur,
  7782. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  7783. NULL, NULL, NULL,
  7784. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  7785. NULL,
  7786. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  7787. cb(cur, "ffn_out", il);
  7788. cur = ggml_add(ctx0, cur, ffn_inp);
  7789. cur = build_cvec(cur, il);
  7790. cb(cur, "l_out", il);
  7791. // input for next layer
  7792. inpL = cur;
  7793. }
  7794. }
  7795. cur = build_norm(inpL,
  7796. model.output_norm,
  7797. model.output_norm_b,
  7798. LLM_NORM, -1);
  7799. cb(cur, "result_norm", -1);
  7800. res->t_embd = cur;
  7801. cur = build_lora_mm(model.output, cur);
  7802. cb(cur, "result_output", -1);
  7803. res->t_logits = cur;
  7804. ggml_build_forward_expand(gf, cur);
  7805. }
  7806. };
  7807. struct llm_build_arctic : public llm_graph_context {
  7808. llm_build_arctic(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7809. const int64_t n_embd_head = hparams.n_embd_head_v;
  7810. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7811. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7812. ggml_tensor * cur;
  7813. ggml_tensor * inpL;
  7814. inpL = build_inp_embd(model.tok_embd);
  7815. // inp_pos - contains the positions
  7816. ggml_tensor * inp_pos = build_inp_pos();
  7817. auto * inp_attn = build_attn_inp_kv_unified();
  7818. for (int il = 0; il < n_layer; ++il) {
  7819. ggml_tensor * inpSA = inpL;
  7820. // norm
  7821. cur = build_norm(inpL,
  7822. model.layers[il].attn_norm, NULL,
  7823. LLM_NORM_RMS, il);
  7824. cb(cur, "attn_norm", il);
  7825. // self-attention
  7826. {
  7827. // compute Q and K and RoPE them
  7828. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7829. cb(Qcur, "Qcur", il);
  7830. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7831. cb(Kcur, "Kcur", il);
  7832. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7833. cb(Vcur, "Vcur", il);
  7834. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7835. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7836. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7837. Qcur = ggml_rope_ext(
  7838. ctx0, Qcur, inp_pos, nullptr,
  7839. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7840. ext_factor, attn_factor, beta_fast, beta_slow
  7841. );
  7842. Kcur = ggml_rope_ext(
  7843. ctx0, Kcur, inp_pos, nullptr,
  7844. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7845. ext_factor, attn_factor, beta_fast, beta_slow
  7846. );
  7847. cb(Qcur, "Qcur", il);
  7848. cb(Kcur, "Kcur", il);
  7849. cb(Vcur, "Vcur", il);
  7850. cur = build_attn(inp_attn, gf,
  7851. model.layers[il].wo, NULL,
  7852. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7853. }
  7854. if (il == n_layer - 1) {
  7855. // skip computing output for unused tokens
  7856. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7857. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7858. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7859. }
  7860. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7861. cb(ffn_inp, "ffn_inp", il);
  7862. // feed-forward network
  7863. cur = build_norm(ffn_inp,
  7864. model.layers[il].ffn_norm, NULL,
  7865. LLM_NORM_RMS, il);
  7866. cb(cur, "ffn_norm", il);
  7867. cur = build_ffn(cur,
  7868. model.layers[il].ffn_up, NULL, NULL,
  7869. model.layers[il].ffn_gate, NULL, NULL,
  7870. model.layers[il].ffn_down, NULL, NULL,
  7871. NULL,
  7872. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7873. cb(cur, "ffn_out", il);
  7874. ggml_tensor * ffn_out = ggml_add(ctx0, cur, ffn_inp);
  7875. cb(ffn_out, "ffn_out", il);
  7876. // MoE
  7877. cur = build_norm(inpSA,
  7878. model.layers[il].ffn_norm_exps, NULL,
  7879. LLM_NORM_RMS, il);
  7880. cb(cur, "ffn_norm_exps", il);
  7881. cur = build_moe_ffn(cur,
  7882. model.layers[il].ffn_gate_inp,
  7883. model.layers[il].ffn_up_exps,
  7884. model.layers[il].ffn_gate_exps,
  7885. model.layers[il].ffn_down_exps,
  7886. nullptr,
  7887. n_expert, n_expert_used,
  7888. LLM_FFN_SILU, true,
  7889. false, 0.0,
  7890. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  7891. il);
  7892. cb(cur, "ffn_moe_out", il);
  7893. cur = ggml_add(ctx0, cur, ffn_out);
  7894. cb(cur, "ffn_out", il);
  7895. cur = build_cvec(cur, il);
  7896. cb(cur, "l_out", il);
  7897. // input for next layer
  7898. inpL = cur;
  7899. }
  7900. cur = inpL;
  7901. cur = build_norm(cur,
  7902. model.output_norm, NULL,
  7903. LLM_NORM_RMS, -1);
  7904. cb(cur, "result_norm", -1);
  7905. res->t_embd = cur;
  7906. // lm_head
  7907. cur = build_lora_mm(model.output, cur);
  7908. cb(cur, "result_output", -1);
  7909. res->t_logits = cur;
  7910. ggml_build_forward_expand(gf, cur);
  7911. }
  7912. };
  7913. struct llm_build_deepseek : public llm_graph_context {
  7914. llm_build_deepseek(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7915. const int64_t n_embd_head = hparams.n_embd_head_v;
  7916. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7917. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7918. ggml_tensor * cur;
  7919. ggml_tensor * inpL;
  7920. inpL = build_inp_embd(model.tok_embd);
  7921. // inp_pos - contains the positions
  7922. ggml_tensor * inp_pos = build_inp_pos();
  7923. auto * inp_attn = build_attn_inp_kv_unified();
  7924. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  7925. for (int il = 0; il < n_layer; ++il) {
  7926. ggml_tensor * inpSA = inpL;
  7927. // norm
  7928. cur = build_norm(inpL,
  7929. model.layers[il].attn_norm, NULL,
  7930. LLM_NORM_RMS, il);
  7931. cb(cur, "attn_norm", il);
  7932. // self-attention
  7933. {
  7934. // rope freq factors for llama3; may return nullptr for llama2 and other models
  7935. ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
  7936. // compute Q and K and RoPE them
  7937. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7938. cb(Qcur, "Qcur", il);
  7939. if (model.layers[il].bq) {
  7940. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7941. cb(Qcur, "Qcur", il);
  7942. }
  7943. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7944. cb(Kcur, "Kcur", il);
  7945. if (model.layers[il].bk) {
  7946. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7947. cb(Kcur, "Kcur", il);
  7948. }
  7949. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7950. cb(Vcur, "Vcur", il);
  7951. if (model.layers[il].bv) {
  7952. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7953. cb(Vcur, "Vcur", il);
  7954. }
  7955. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7956. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7957. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7958. Qcur = ggml_rope_ext(
  7959. ctx0, Qcur, inp_pos, rope_factors,
  7960. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7961. ext_factor, attn_factor, beta_fast, beta_slow
  7962. );
  7963. Kcur = ggml_rope_ext(
  7964. ctx0, Kcur, inp_pos, rope_factors,
  7965. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7966. ext_factor, attn_factor, beta_fast, beta_slow
  7967. );
  7968. cb(Qcur, "Qcur", il);
  7969. cb(Kcur, "Kcur", il);
  7970. cb(Vcur, "Vcur", il);
  7971. cur = build_attn(inp_attn, gf,
  7972. model.layers[il].wo, model.layers[il].bo,
  7973. Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
  7974. }
  7975. if (il == n_layer - 1) {
  7976. // skip computing output for unused tokens
  7977. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7978. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7979. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7980. }
  7981. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7982. cb(ffn_inp, "ffn_inp", il);
  7983. cur = build_norm(ffn_inp,
  7984. model.layers[il].ffn_norm, NULL,
  7985. LLM_NORM_RMS, il);
  7986. cb(cur, "ffn_norm", il);
  7987. if ((uint32_t) il < hparams.n_layer_dense_lead) {
  7988. cur = build_ffn(cur,
  7989. model.layers[il].ffn_up, NULL, NULL,
  7990. model.layers[il].ffn_gate, NULL, NULL,
  7991. model.layers[il].ffn_down, NULL, NULL,
  7992. NULL,
  7993. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7994. cb(cur, "ffn_out", il);
  7995. } else {
  7996. // MoE branch
  7997. ggml_tensor * moe_out =
  7998. build_moe_ffn(cur,
  7999. model.layers[il].ffn_gate_inp,
  8000. model.layers[il].ffn_up_exps,
  8001. model.layers[il].ffn_gate_exps,
  8002. model.layers[il].ffn_down_exps,
  8003. nullptr,
  8004. n_expert, n_expert_used,
  8005. LLM_FFN_SILU, false,
  8006. false, hparams.expert_weights_scale,
  8007. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  8008. il);
  8009. cb(moe_out, "ffn_moe_out", il);
  8010. // FFN shared expert
  8011. {
  8012. ggml_tensor * ffn_shexp = build_ffn(cur,
  8013. model.layers[il].ffn_up_shexp, NULL, NULL,
  8014. model.layers[il].ffn_gate_shexp, NULL, NULL,
  8015. model.layers[il].ffn_down_shexp, NULL, NULL,
  8016. NULL,
  8017. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8018. cb(ffn_shexp, "ffn_shexp", il);
  8019. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  8020. cb(cur, "ffn_out", il);
  8021. }
  8022. }
  8023. cur = ggml_add(ctx0, cur, ffn_inp);
  8024. cur = build_cvec(cur, il);
  8025. cb(cur, "l_out", il);
  8026. // input for next layer
  8027. inpL = cur;
  8028. }
  8029. cur = inpL;
  8030. cur = build_norm(cur,
  8031. model.output_norm, NULL,
  8032. LLM_NORM_RMS, -1);
  8033. cb(cur, "result_norm", -1);
  8034. res->t_embd = cur;
  8035. // lm_head
  8036. cur = build_lora_mm(model.output, cur);
  8037. cb(cur, "result_output", -1);
  8038. res->t_logits = cur;
  8039. ggml_build_forward_expand(gf, cur);
  8040. }
  8041. };
  8042. struct llm_build_deepseek2 : public llm_graph_context {
  8043. llm_build_deepseek2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8044. bool is_lite = (hparams.n_layer == 27);
  8045. const bool is_mla = (hparams.n_embd_head_k_mla != 0 && hparams.n_embd_head_v_mla != 0);
  8046. // note: these are the actual head sizes you get when treating as MHA or after "decompression" using wv_b for MLA
  8047. const int64_t n_embd_head_k = is_mla ? hparams.n_embd_head_k_mla : hparams.n_embd_head_k;
  8048. const int64_t n_embd_head_v = is_mla ? hparams.n_embd_head_v_mla : hparams.n_embd_head_v;
  8049. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  8050. const int64_t n_embd_head_qk_nope = n_embd_head_k - n_embd_head_qk_rope;
  8051. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  8052. // We have to pre-scale kq_scale and attn_factor to make the YaRN RoPE work correctly.
  8053. // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
  8054. const float mscale = attn_factor * (1.0f + hparams.rope_yarn_log_mul * logf(1.0f / freq_scale));
  8055. const float kq_scale = 1.0f*mscale*mscale/sqrtf(float(n_embd_head_k));
  8056. const float attn_factor = 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale));
  8057. ggml_tensor * cur;
  8058. ggml_tensor * inpL;
  8059. // {n_embd, n_tokens}
  8060. inpL = build_inp_embd(model.tok_embd);
  8061. // inp_pos - contains the positions
  8062. ggml_tensor * inp_pos = build_inp_pos();
  8063. auto * inp_attn = build_attn_inp_kv_unified();
  8064. for (int il = 0; il < n_layer; ++il) {
  8065. ggml_tensor * inpSA = inpL;
  8066. // norm
  8067. cur = build_norm(inpL,
  8068. model.layers[il].attn_norm, NULL,
  8069. LLM_NORM_RMS, il);
  8070. cb(cur, "attn_norm", il);
  8071. // self_attention
  8072. {
  8073. ggml_tensor * q = NULL;
  8074. if (!is_lite) {
  8075. q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
  8076. cb(q, "q", il);
  8077. q = build_norm(q,
  8078. model.layers[il].attn_q_a_norm, nullptr,
  8079. LLM_NORM_RMS, il);
  8080. cb(q, "q", il);
  8081. q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
  8082. cb(q, "q", il);
  8083. } else {
  8084. q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8085. cb(q, "q", il);
  8086. }
  8087. // split into {n_embd_head_qk_nope, n_head, n_tokens}
  8088. ggml_tensor * q_nope = ggml_view_3d(ctx0, q,
  8089. n_embd_head_qk_nope, n_head, n_tokens,
  8090. ggml_row_size(q->type, n_embd_head_k),
  8091. ggml_row_size(q->type, n_embd_head_k) * n_head,
  8092. 0);
  8093. cb(q_nope, "q_nope", il);
  8094. // and {n_embd_head_qk_rope, n_head, n_tokens}
  8095. ggml_tensor * q_pe = ggml_view_3d(ctx0, q,
  8096. n_embd_head_qk_rope, n_head, n_tokens,
  8097. ggml_row_size(q->type, n_embd_head_k),
  8098. ggml_row_size(q->type, n_embd_head_k) * n_head,
  8099. ggml_row_size(q->type, n_embd_head_qk_nope));
  8100. cb(q_pe, "q_pe", il);
  8101. ggml_tensor * kv_cmpr_pe = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
  8102. cb(kv_cmpr_pe, "kv_cmpr_pe", il);
  8103. // split into {kv_lora_rank, n_tokens}
  8104. ggml_tensor * kv_cmpr = ggml_view_2d(ctx0, kv_cmpr_pe,
  8105. kv_lora_rank, n_tokens,
  8106. ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
  8107. 0);
  8108. cb(kv_cmpr, "kv_cmpr", il);
  8109. // and {n_embd_head_qk_rope, 1, n_tokens}
  8110. ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_cmpr_pe,
  8111. n_embd_head_qk_rope, 1, n_tokens,
  8112. ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
  8113. ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
  8114. ggml_row_size(kv_cmpr_pe->type, kv_lora_rank));
  8115. cb(k_pe, "k_pe", il);
  8116. q_pe = ggml_rope_ext(ctx0, q_pe, inp_pos, nullptr,
  8117. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8118. ext_factor, attn_factor, beta_fast, beta_slow
  8119. );
  8120. cb(q_pe, "q_pe", il);
  8121. k_pe = ggml_rope_ext(ctx0, k_pe, inp_pos, nullptr,
  8122. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8123. ext_factor, attn_factor, beta_fast, beta_slow
  8124. );
  8125. cb(k_pe, "k_pe", il);
  8126. kv_cmpr = build_norm(kv_cmpr,
  8127. model.layers[il].attn_kv_a_norm, nullptr,
  8128. LLM_NORM_RMS, il);
  8129. cb(kv_cmpr, "kv_cmpr", il);
  8130. if (is_mla) {
  8131. // {n_embd_head_qk_nope, n_tokens, n_head}
  8132. q_nope = ggml_permute(ctx0, q_nope, 0, 2, 1, 3);
  8133. cb(q_nope, "q_nope_perm", il);
  8134. // {n_embd_head_qk_nope, kv_lora_rank, n_head} x {n_embd_head_qk_nope, n_tokens, n_head}
  8135. ggml_tensor * q_nope_absorbed = ggml_mul_mat(ctx0, model.layers[il].wk_b, q_nope);
  8136. ggml_mul_mat_set_prec(q_nope_absorbed, GGML_PREC_F32);
  8137. cb(q_nope_absorbed, "q_nope_absorbed", il);
  8138. // {kv_lora_rank, n_head, n_tokens}
  8139. q_nope_absorbed = ggml_permute(ctx0, q_nope_absorbed, 0, 2, 1, 3);
  8140. cb(q_nope_absorbed, "q_nope_absorbed_perm", il);
  8141. // {n_embd_head_qk_rope + kv_lora_rank, n_head, n_tokens}
  8142. // note: rope must go first for in-place context shifting in build_rope_shift()
  8143. ggml_tensor * Qcur = ggml_concat(ctx0, q_pe, q_nope_absorbed, 0);
  8144. cb(Qcur, "Qcur", il);
  8145. kv_cmpr = ggml_reshape_3d(ctx0, kv_cmpr, kv_lora_rank, 1, n_tokens);
  8146. cb(kv_cmpr, "kv_cmpr_reshape", il);
  8147. // {n_embd_head_qk_rope + kv_lora_rank, 1, n_tokens}
  8148. ggml_tensor * Kcur = ggml_concat(ctx0, k_pe, kv_cmpr, 0);
  8149. cb(Kcur, "Kcur", il);
  8150. // {kv_lora_rank, 1, n_tokens}
  8151. ggml_tensor * Vcur = kv_cmpr;
  8152. cb(Vcur, "Vcur", il);
  8153. // note: MLA with the absorption optimzation converts into MQA (ie: GQA with 1 group)
  8154. cur = build_attn(inp_attn, gf,
  8155. model.layers[il].wo, NULL,
  8156. Qcur, Kcur, Vcur, nullptr, model.layers[il].wv_b, kq_scale, il);
  8157. } else {
  8158. ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_cmpr);
  8159. cb(kv, "kv", il);
  8160. // split into {n_embd_head_qk_nope, n_head, n_tokens}
  8161. ggml_tensor * k_nope = ggml_view_3d(ctx0, kv,
  8162. n_embd_head_qk_nope, n_head, n_tokens,
  8163. ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v),
  8164. ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v) * n_head,
  8165. 0);
  8166. cb(k_nope, "k_nope_view", il);
  8167. // and {n_embd_head_v, n_head, n_tokens}
  8168. ggml_tensor * Vcur = ggml_view_3d(ctx0, kv,
  8169. n_embd_head_v, n_head, n_tokens,
  8170. ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v),
  8171. ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v) * n_head,
  8172. ggml_row_size(kv->type, n_embd_head_qk_nope));
  8173. cb(Vcur, "Vcur_view", il);
  8174. Vcur = ggml_cont(ctx0, Vcur);
  8175. cb(Vcur, "Vcur_cont", il);
  8176. // note: rope must go first for in-place context shifting in build_rope_shift()
  8177. ggml_tensor * Qcur = ggml_concat(ctx0, q_pe, q_nope, 0);
  8178. cb(Qcur, "Qcur", il);
  8179. ggml_tensor * Kcur = ggml_concat(ctx0, ggml_repeat(ctx0, k_pe, q_pe), k_nope, 0);
  8180. cb(Kcur, "Kcur", il);
  8181. // note: MLA without the absorption optimization converts into MHA (ie: GQA with full n_head groups)
  8182. cur = build_attn(inp_attn, gf,
  8183. model.layers[il].wo, NULL,
  8184. Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
  8185. }
  8186. }
  8187. if (il == n_layer - 1) {
  8188. // skip computing output for unused tokens
  8189. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8190. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8191. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8192. }
  8193. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8194. cb(ffn_inp, "ffn_inp", il);
  8195. cur = build_norm(ffn_inp,
  8196. model.layers[il].ffn_norm, NULL,
  8197. LLM_NORM_RMS, il);
  8198. cb(cur, "ffn_norm", il);
  8199. if ((uint32_t) il < hparams.n_layer_dense_lead) {
  8200. cur = build_ffn(cur,
  8201. model.layers[il].ffn_up, NULL, NULL,
  8202. model.layers[il].ffn_gate, NULL, NULL,
  8203. model.layers[il].ffn_down, NULL, NULL,
  8204. NULL,
  8205. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8206. cb(cur, "ffn_out", il);
  8207. } else {
  8208. // MoE branch
  8209. ggml_tensor * moe_out =
  8210. build_moe_ffn(cur,
  8211. model.layers[il].ffn_gate_inp,
  8212. model.layers[il].ffn_up_exps,
  8213. model.layers[il].ffn_gate_exps,
  8214. model.layers[il].ffn_down_exps,
  8215. model.layers[il].ffn_exp_probs_b,
  8216. n_expert, n_expert_used,
  8217. LLM_FFN_SILU, hparams.expert_weights_norm,
  8218. true, hparams.expert_weights_scale,
  8219. (llama_expert_gating_func_type) hparams.expert_gating_func,
  8220. il);
  8221. cb(moe_out, "ffn_moe_out", il);
  8222. // FFN shared expert
  8223. {
  8224. ggml_tensor * ffn_shexp = build_ffn(cur,
  8225. model.layers[il].ffn_up_shexp, NULL, NULL,
  8226. model.layers[il].ffn_gate_shexp, NULL, NULL,
  8227. model.layers[il].ffn_down_shexp, NULL, NULL,
  8228. NULL,
  8229. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8230. cb(ffn_shexp, "ffn_shexp", il);
  8231. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  8232. cb(cur, "ffn_out", il);
  8233. }
  8234. }
  8235. cur = ggml_add(ctx0, cur, ffn_inp);
  8236. cur = build_cvec(cur, il);
  8237. cb(cur, "l_out", il);
  8238. // input for next layer
  8239. inpL = cur;
  8240. }
  8241. cur = inpL;
  8242. cur = build_norm(cur,
  8243. model.output_norm, NULL,
  8244. LLM_NORM_RMS, -1);
  8245. cb(cur, "result_norm", -1);
  8246. res->t_embd = cur;
  8247. // lm_head
  8248. cur = ggml_mul_mat(ctx0, model.output, cur);
  8249. cb(cur, "result_output", -1);
  8250. res->t_logits = cur;
  8251. ggml_build_forward_expand(gf, cur);
  8252. }
  8253. };
  8254. struct llm_build_bitnet : public llm_graph_context {
  8255. llm_build_bitnet(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8256. const int64_t n_embd_head = hparams.n_embd_head_v;
  8257. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8258. ggml_tensor * cur;
  8259. ggml_tensor * inpL;
  8260. inpL = build_inp_embd(model.tok_embd);
  8261. // inp_pos - contains the positions
  8262. ggml_tensor * inp_pos = build_inp_pos();
  8263. auto * inp_attn = build_attn_inp_kv_unified();
  8264. for (int il = 0; il < n_layer; ++il) {
  8265. ggml_tensor * inpSA = inpL;
  8266. cur = build_norm(inpL,
  8267. model.layers[il].attn_norm, NULL,
  8268. LLM_NORM_RMS, il);
  8269. cb(cur, "attn_norm", il);
  8270. // self-attention
  8271. {
  8272. // compute Q and K and RoPE them
  8273. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  8274. if (model.layers[il].wq_scale) {
  8275. Qcur = ggml_mul(ctx0, Qcur, model.layers[il].wq_scale);
  8276. }
  8277. cb(Qcur, "Qcur", il);
  8278. if (model.layers[il].bq) {
  8279. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8280. cb(Qcur, "Qcur", il);
  8281. }
  8282. // B1.K
  8283. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  8284. if (model.layers[il].wk_scale) {
  8285. Kcur = ggml_mul(ctx0, Kcur, model.layers[il].wk_scale);
  8286. }
  8287. cb(Kcur, "Kcur", il);
  8288. if (model.layers[il].bk) {
  8289. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8290. cb(Kcur, "Kcur", il);
  8291. }
  8292. // B1.V
  8293. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  8294. if (model.layers[il].wv_scale) {
  8295. Vcur = ggml_mul(ctx0, Vcur, model.layers[il].wv_scale);
  8296. }
  8297. cb(Vcur, "Vcur", il);
  8298. if (model.layers[il].bv) {
  8299. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8300. cb(Vcur, "Vcur", il);
  8301. }
  8302. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8303. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8304. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8305. Qcur = ggml_rope_ext(
  8306. ctx0, Qcur, inp_pos, nullptr,
  8307. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8308. ext_factor, attn_factor, beta_fast, beta_slow
  8309. );
  8310. Kcur = ggml_rope_ext(
  8311. ctx0, Kcur, inp_pos, nullptr,
  8312. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8313. ext_factor, attn_factor, beta_fast, beta_slow
  8314. );
  8315. cb(Qcur, "Qcur", il);
  8316. cb(Kcur, "Kcur", il);
  8317. cb(Vcur, "Vcur", il);
  8318. cur = build_attn(inp_attn, gf,
  8319. NULL, NULL,
  8320. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  8321. cur = build_norm(cur,
  8322. model.layers[il].attn_sub_norm, NULL,
  8323. LLM_NORM_RMS, il);
  8324. cb(cur, "attn_sub_norm", il);
  8325. cur = build_lora_mm(model.layers[il].wo, cur);
  8326. if (model.layers[il].wo_scale) {
  8327. cur = ggml_mul(ctx0, cur, model.layers[il].wo_scale);
  8328. }
  8329. if (model.layers[il].bo) {
  8330. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  8331. }
  8332. cb(cur, "attn_o_out", il);
  8333. }
  8334. if (il == n_layer - 1) {
  8335. // skip computing output for unused tokens
  8336. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8337. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8338. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8339. }
  8340. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8341. cb(ffn_inp, "ffn_inp", il);
  8342. // feed-forward forward
  8343. cur = build_norm(ffn_inp,
  8344. model.layers[il].ffn_norm, NULL,
  8345. LLM_NORM_RMS, il);
  8346. cb(cur, "ffn_norm", il);
  8347. cur = build_ffn(cur,
  8348. model.layers[il].ffn_up, NULL, model.layers[il].ffn_up_scale,
  8349. model.layers[il].ffn_gate, NULL, model.layers[il].ffn_gate_scale,
  8350. NULL, NULL, NULL,
  8351. NULL,
  8352. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8353. cb(cur, "ffn_sub_out", il);
  8354. cur = build_norm(cur,
  8355. model.layers[il].ffn_sub_norm, NULL,
  8356. LLM_NORM_RMS, il);
  8357. cb(cur, "ffn_sub_norm", il);
  8358. cur = build_lora_mm(model.layers[il].ffn_down, cur);
  8359. if (model.layers[il].ffn_down_scale) {
  8360. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_down_scale);
  8361. }
  8362. cb(cur, "ffn_down", il);
  8363. cur = ggml_add(ctx0, cur, ffn_inp);
  8364. cb(cur, "l_out", il);
  8365. // input for next layer
  8366. inpL = cur;
  8367. }
  8368. cur = inpL;
  8369. cur = build_norm(cur,
  8370. model.output_norm, NULL,
  8371. LLM_NORM_RMS, -1);
  8372. cb(cur, "result_norm", -1);
  8373. res->t_embd = cur;
  8374. // lm_head
  8375. // FIXME: do not use model.tok_embd directly, duplicate as model.output
  8376. cur = build_lora_mm(model.tok_embd, cur);
  8377. cb(cur, "result_output", -1);
  8378. res->t_logits = cur;
  8379. ggml_build_forward_expand(gf, cur);
  8380. }
  8381. };
  8382. struct llm_build_t5_enc : public llm_graph_context {
  8383. llm_build_t5_enc(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8384. const int64_t n_embd_head = hparams.n_embd_head_v;
  8385. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8386. ggml_tensor * cur;
  8387. ggml_tensor * inpL;
  8388. inpL = build_inp_embd(model.tok_embd);
  8389. ggml_tensor * pos_bucket_enc = build_inp_pos_bucket_enc();
  8390. auto * inp_attn = build_attn_inp_no_cache();
  8391. for (int il = 0; il < n_layer; ++il) {
  8392. ggml_tensor * inpSA = inpL;
  8393. // norm
  8394. cur = build_norm(inpL,
  8395. model.layers[il].attn_norm_enc, NULL,
  8396. LLM_NORM_RMS, il);
  8397. cb(cur, "attn_norm", il);
  8398. // self-attention
  8399. {
  8400. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq_enc, cur);
  8401. cb(Qcur, "Qcur", il);
  8402. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk_enc, cur);
  8403. cb(Kcur, "Kcur", il);
  8404. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv_enc, cur);
  8405. cb(Vcur, "Vcur", il);
  8406. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8407. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8408. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8409. ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b_enc ? model.layers[il].attn_rel_b_enc : model.layers[0].attn_rel_b_enc;
  8410. ggml_tensor * kq_b = build_pos_bias(pos_bucket_enc, attn_rel_b);
  8411. cur = build_attn(inp_attn, gf,
  8412. model.layers[il].wo_enc, nullptr,
  8413. Qcur, Kcur, Vcur, kq_b, nullptr, 1.0f, il);
  8414. cb(cur, "kqv_out", il);
  8415. }
  8416. if (il == n_layer - 1) {
  8417. // skip computing output for unused tokens
  8418. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8419. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8420. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8421. }
  8422. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8423. cb(ffn_inp, "ffn_inp", il);
  8424. // feed-forward network
  8425. {
  8426. cur = build_norm(ffn_inp,
  8427. model.layers[il].ffn_norm_enc, NULL,
  8428. LLM_NORM_RMS, il);
  8429. cb(cur, "ffn_norm", il);
  8430. // T5 uses relu, flan-T5 uses gelu-gated
  8431. cur = build_ffn(cur,
  8432. model.layers[il].ffn_up_enc, NULL, NULL,
  8433. model.layers[il].ffn_gate_enc, NULL, NULL,
  8434. model.layers[il].ffn_down_enc, NULL, NULL,
  8435. NULL,
  8436. model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
  8437. model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
  8438. il);
  8439. cb(cur, "ffn_out", il);
  8440. }
  8441. cur = ggml_add(ctx0, cur, ffn_inp);
  8442. cb(cur, "ffn_out", il);
  8443. cur = build_cvec(cur, il);
  8444. cb(cur, "l_out", il);
  8445. // input for next layer
  8446. inpL = cur;
  8447. }
  8448. cur = inpL;
  8449. cb(cur, "result_embd", -1);
  8450. cur = build_norm(cur,
  8451. model.output_norm_enc, NULL,
  8452. LLM_NORM_RMS, -1);
  8453. cb(cur, "result_norm", -1);
  8454. res->t_embd = cur;
  8455. ggml_build_forward_expand(gf, cur);
  8456. }
  8457. };
  8458. struct llm_build_t5_dec : public llm_graph_context {
  8459. llm_build_t5_dec(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8460. const int64_t n_embd_head = hparams.n_embd_head_v;
  8461. //const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8462. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8463. ggml_tensor * cur;
  8464. ggml_tensor * inpL;
  8465. inpL = build_inp_embd(model.tok_embd);
  8466. ggml_tensor * embd_enc = build_inp_cross_embd();
  8467. ggml_tensor * pos_bucket_dec = build_inp_pos_bucket_dec();
  8468. const int64_t n_outputs_enc = embd_enc->ne[1];
  8469. auto * inp_attn_self = build_attn_inp_kv_unified();
  8470. auto * inp_attn_cross = build_attn_inp_cross();
  8471. for (int il = 0; il < n_layer; ++il) {
  8472. ggml_tensor * inpSA = inpL;
  8473. // norm
  8474. cur = build_norm(inpL,
  8475. model.layers[il].attn_norm, NULL,
  8476. LLM_NORM_RMS, il);
  8477. cb(cur, "attn_norm", il);
  8478. // self-attention
  8479. {
  8480. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  8481. cb(Qcur, "Qcur", il);
  8482. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  8483. cb(Kcur, "Kcur", il);
  8484. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  8485. cb(Vcur, "Vcur", il);
  8486. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8487. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8488. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8489. ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b ? model.layers[il].attn_rel_b : model.layers[0].attn_rel_b;
  8490. ggml_tensor * kq_b = build_pos_bias(pos_bucket_dec, attn_rel_b);
  8491. cur = build_attn(inp_attn_self, gf,
  8492. model.layers[il].wo, model.layers[il].bo,
  8493. Qcur, Kcur, Vcur, kq_b, nullptr, 1.0f, il);
  8494. cb(cur, "kqv_out", il);
  8495. }
  8496. cur = ggml_add(ctx0, cur, inpSA);
  8497. cb(cur, "cross_inp", il);
  8498. ggml_tensor * inpCA = cur;
  8499. // norm
  8500. cur = build_norm(cur,
  8501. model.layers[il].attn_norm_cross, NULL,
  8502. LLM_NORM_RMS, il);
  8503. cb(cur, "attn_norm_cross", il);
  8504. // cross-attention
  8505. {
  8506. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq_cross, cur);
  8507. cb(Qcur, "Qcur", il);
  8508. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk_cross, embd_enc);
  8509. cb(Kcur, "Kcur", il);
  8510. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv_cross, embd_enc);
  8511. cb(Vcur, "Vcur", il);
  8512. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8513. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_outputs_enc);
  8514. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_outputs_enc);
  8515. cur = build_attn(inp_attn_cross, gf,
  8516. model.layers[il].wo_cross, nullptr,
  8517. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  8518. cb(cur, "kqv_out", il);
  8519. //ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  8520. //ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  8521. //ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  8522. //cb(kq, "kq", il);
  8523. //kq = ggml_soft_max_ext(ctx0, kq, KQ_mask_cross, 1.0f, hparams.f_max_alibi_bias);
  8524. //cb(kq, "kq_soft_max_ext", il);
  8525. //ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_outputs_enc)));
  8526. //cb(v, "v", il);
  8527. //ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_outputs_enc, n_embd_head, n_head_kv), kq);
  8528. //cb(kqv, "kqv", il);
  8529. //ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  8530. //cb(kqv_merged, "kqv_merged", il);
  8531. //cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  8532. //cb(cur, "kqv_merged_cont", il);
  8533. //ggml_build_forward_expand(gf, cur);
  8534. //cur = build_lora_mm(model.layers[il].wo_cross, cur);
  8535. //cb(cur, "kqv_out", il);
  8536. }
  8537. if (il == n_layer - 1) {
  8538. // skip computing output for unused tokens
  8539. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8540. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8541. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8542. inpCA = ggml_get_rows(ctx0, inpCA, inp_out_ids);
  8543. }
  8544. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpCA);
  8545. cb(ffn_inp, "ffn_inp", il);
  8546. // feed-forward network
  8547. {
  8548. cur = build_norm(ffn_inp,
  8549. model.layers[il].ffn_norm, NULL,
  8550. LLM_NORM_RMS, il);
  8551. cb(cur, "ffn_norm", il);
  8552. // T5 uses relu, flan-T5 uses gelu-gated
  8553. cur = build_ffn(cur,
  8554. model.layers[il].ffn_up, NULL, NULL,
  8555. model.layers[il].ffn_gate, NULL, NULL,
  8556. model.layers[il].ffn_down, NULL, NULL,
  8557. NULL,
  8558. model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
  8559. model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
  8560. il);
  8561. cb(cur, "ffn_out", il);
  8562. }
  8563. cur = ggml_add(ctx0, cur, ffn_inp);
  8564. cb(cur, "ffn_out", il);
  8565. cur = build_cvec(cur, il);
  8566. cb(cur, "l_out", il);
  8567. // input for next layer
  8568. inpL = cur;
  8569. }
  8570. cur = inpL;
  8571. cb(cur, "result_embd", -1);
  8572. cur = build_norm(cur,
  8573. model.output_norm, NULL,
  8574. LLM_NORM_RMS, -1);
  8575. cb(cur, "result_norm", -1);
  8576. res->t_embd = cur;
  8577. // lm_head
  8578. cur = build_lora_mm(model.output, cur);
  8579. cb(cur, "result_output", -1);
  8580. res->t_logits = cur;
  8581. ggml_build_forward_expand(gf, cur);
  8582. }
  8583. };
  8584. struct llm_build_jais : public llm_graph_context {
  8585. llm_build_jais(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8586. const int64_t n_embd_head = hparams.n_embd_head_v;
  8587. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8588. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8589. ggml_tensor * cur;
  8590. ggml_tensor * inpL;
  8591. inpL = build_inp_embd(model.tok_embd);
  8592. auto * inp_attn = build_attn_inp_kv_unified();
  8593. for (int il = 0; il < n_layer; ++il) {
  8594. cur = build_norm(inpL,
  8595. model.layers[il].attn_norm,
  8596. model.layers[il].attn_norm_b,
  8597. LLM_NORM, il);
  8598. cb(cur, "attn_norm", il);
  8599. // self-attention
  8600. {
  8601. cur = build_lora_mm(model.layers[il].wqkv, cur);
  8602. cb(cur, "wqkv", il);
  8603. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8604. cb(cur, "bqkv", il);
  8605. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*cur->nb[0]*(n_embd)));
  8606. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*cur->nb[0]*(n_embd)));
  8607. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*cur->nb[0]*(n_embd + n_embd_gqa)));
  8608. cb(Qcur, "Qcur", il);
  8609. cb(Kcur, "Kcur", il);
  8610. cb(Vcur, "Vcur", il);
  8611. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8612. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8613. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8614. cur = build_attn(inp_attn, gf,
  8615. model.layers[il].wo, model.layers[il].bo,
  8616. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/float(n_embd_head), il);
  8617. }
  8618. if (il == n_layer - 1) {
  8619. // skip computing output for unused tokens
  8620. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8621. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8622. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8623. }
  8624. // add the input
  8625. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8626. cb(ffn_inp, "ffn_inp", il);
  8627. // FF
  8628. {
  8629. cur = build_norm(ffn_inp,
  8630. model.layers[il].ffn_norm,
  8631. model.layers[il].ffn_norm_b,
  8632. LLM_NORM, il);
  8633. cb(cur, "ffn_norm", il);
  8634. cur = build_ffn(cur,
  8635. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  8636. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  8637. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  8638. NULL,
  8639. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8640. cb(cur, "ffn_out", il);
  8641. }
  8642. inpL = ggml_add(ctx0, cur, ffn_inp);
  8643. cb(inpL, "l_out", il);
  8644. }
  8645. cur = build_norm(inpL,
  8646. model.output_norm,
  8647. model.output_norm_b,
  8648. LLM_NORM, -1);
  8649. cb(cur, "result_norm", -1);
  8650. res->t_embd = cur;
  8651. cur = build_lora_mm(model.output, cur);
  8652. cb(cur, "result_output", -1);
  8653. res->t_logits = cur;
  8654. ggml_build_forward_expand(gf, cur);
  8655. }
  8656. };
  8657. struct llm_build_chatglm : public llm_graph_context {
  8658. llm_build_chatglm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8659. const int64_t n_embd_head = hparams.n_embd_head_v;
  8660. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8661. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8662. ggml_tensor * cur;
  8663. ggml_tensor * inpL;
  8664. inpL = build_inp_embd(model.tok_embd);
  8665. // inp_pos - contains the positions
  8666. ggml_tensor * inp_pos = build_inp_pos();
  8667. auto * inp_attn = build_attn_inp_kv_unified();
  8668. for (int il = 0; il < n_layer; ++il) {
  8669. ggml_tensor * inpSA = inpL;
  8670. cur = build_norm(inpL,
  8671. model.layers[il].attn_norm,
  8672. NULL,
  8673. LLM_NORM_RMS, il);
  8674. cb(cur, "attn_norm", il);
  8675. // self-attention
  8676. {
  8677. ggml_tensor * Qcur = nullptr;
  8678. ggml_tensor * Kcur = nullptr;
  8679. ggml_tensor * Vcur = nullptr;
  8680. if (model.layers[il].wqkv == nullptr) {
  8681. Qcur = build_lora_mm(model.layers[il].wq, cur);
  8682. if (model.layers[il].bq) {
  8683. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8684. }
  8685. Kcur = build_lora_mm(model.layers[il].wk, cur);
  8686. if (model.layers[il].bk) {
  8687. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8688. }
  8689. Vcur = build_lora_mm(model.layers[il].wv, cur);
  8690. if (model.layers[il].bv) {
  8691. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8692. }
  8693. } else {
  8694. cur = build_lora_mm(model.layers[il].wqkv, cur);
  8695. cb(cur, "wqkv", il);
  8696. if (model.layers[il].bqkv) {
  8697. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8698. cb(cur, "bqkv", il);
  8699. }
  8700. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8701. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8702. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8703. }
  8704. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8705. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8706. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8707. //printf("freq_base: %f freq_scale: %f ext_factor: %f attn_factor: %f\n", freq_base, freq_scale, ext_factor, attn_factor);
  8708. Qcur = ggml_rope_ext(
  8709. ctx0, Qcur, inp_pos, nullptr,
  8710. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8711. ext_factor, attn_factor, beta_fast, beta_slow
  8712. );
  8713. Kcur = ggml_rope_ext(
  8714. ctx0, Kcur, inp_pos, nullptr,
  8715. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8716. ext_factor, attn_factor, beta_fast, beta_slow
  8717. );
  8718. cb(Qcur, "Qcur", il);
  8719. cb(Kcur, "Kcur", il);
  8720. cb(Vcur, "Vcur", il);
  8721. cur = build_attn(inp_attn, gf,
  8722. model.layers[il].wo, NULL,
  8723. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  8724. }
  8725. if (il == n_layer - 1) {
  8726. // skip computing output for unused tokens
  8727. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8728. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8729. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8730. }
  8731. // Add the input
  8732. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8733. cb(ffn_inp, "ffn_inp", il);
  8734. // FF
  8735. {
  8736. cur = build_norm(ffn_inp,
  8737. model.layers[il].ffn_norm,
  8738. NULL,
  8739. LLM_NORM_RMS, il);
  8740. cb(cur, "ffn_norm", il);
  8741. cur = build_ffn(cur,
  8742. model.layers[il].ffn_up, NULL, NULL,
  8743. NULL, NULL, NULL,
  8744. model.layers[il].ffn_down, NULL, NULL,
  8745. NULL,
  8746. LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
  8747. cb(cur, "ffn_out", il);
  8748. }
  8749. inpL = ggml_add(ctx0, cur, ffn_inp);
  8750. cb(inpL, "l_out", il);
  8751. }
  8752. cur = build_norm(inpL,
  8753. model.output_norm,
  8754. NULL,
  8755. LLM_NORM_RMS, -1);
  8756. cb(cur, "result_norm", -1);
  8757. res->t_embd = cur;
  8758. cur = build_lora_mm(model.output, cur);
  8759. cb(cur, "result_output", -1);
  8760. res->t_logits = cur;
  8761. ggml_build_forward_expand(gf, cur);
  8762. }
  8763. };
  8764. struct llm_build_glm4 : public llm_graph_context {
  8765. llm_build_glm4(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8766. const int64_t n_embd_head = hparams.n_embd_head_v;
  8767. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8768. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8769. ggml_tensor * cur;
  8770. ggml_tensor * inpL;
  8771. inpL = build_inp_embd(model.tok_embd);
  8772. // inp_pos - contains the positions
  8773. ggml_tensor * inp_pos = build_inp_pos();
  8774. auto * inp_attn = build_attn_inp_kv_unified();
  8775. for (int il = 0; il < n_layer; ++il) {
  8776. ggml_tensor * inpSA = inpL;
  8777. // Pre-attention norm
  8778. cur = build_norm(inpL,
  8779. model.layers[il].attn_norm,
  8780. NULL,
  8781. LLM_NORM_RMS, il);
  8782. cb(cur, "attn_norm", il);
  8783. // self-attention
  8784. {
  8785. ggml_tensor * Qcur = nullptr;
  8786. ggml_tensor * Kcur = nullptr;
  8787. ggml_tensor * Vcur = nullptr;
  8788. if (model.layers[il].wqkv == nullptr) {
  8789. Qcur = build_lora_mm(model.layers[il].wq, cur);
  8790. if (model.layers[il].bq) {
  8791. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8792. }
  8793. Kcur = build_lora_mm(model.layers[il].wk, cur);
  8794. if (model.layers[il].bk) {
  8795. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8796. }
  8797. Vcur = build_lora_mm(model.layers[il].wv, cur);
  8798. if (model.layers[il].bv) {
  8799. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8800. }
  8801. } else {
  8802. cur = build_lora_mm(model.layers[il].wqkv, cur);
  8803. cb(cur, "wqkv", il);
  8804. if (model.layers[il].bqkv) {
  8805. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8806. cb(cur, "bqkv", il);
  8807. }
  8808. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8809. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8810. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8811. }
  8812. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8813. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8814. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8815. Qcur = ggml_rope_ext(
  8816. ctx0, Qcur, inp_pos, nullptr,
  8817. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8818. ext_factor, attn_factor, beta_fast, beta_slow
  8819. );
  8820. Kcur = ggml_rope_ext(
  8821. ctx0, Kcur, inp_pos, nullptr,
  8822. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8823. ext_factor, attn_factor, beta_fast, beta_slow
  8824. );
  8825. cb(Qcur, "Qcur", il);
  8826. cb(Kcur, "Kcur", il);
  8827. cb(Vcur, "Vcur", il);
  8828. cur = build_attn(inp_attn, gf,
  8829. model.layers[il].wo, NULL,
  8830. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  8831. }
  8832. if (il == n_layer - 1) {
  8833. // skip computing output for unused tokens
  8834. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8835. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8836. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8837. }
  8838. // Post-attention norm (new!)
  8839. cur = build_norm(cur,
  8840. model.layers[il].attn_post_norm,
  8841. NULL,
  8842. LLM_NORM_RMS, il);
  8843. cb(cur, "post_attn_norm", il);
  8844. // Add the input (residual connection after post-attention norm)
  8845. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8846. cb(ffn_inp, "ffn_inp", il);
  8847. // FF
  8848. {
  8849. // Pre-MLP norm
  8850. cur = build_norm(ffn_inp,
  8851. model.layers[il].ffn_norm,
  8852. NULL,
  8853. LLM_NORM_RMS, il);
  8854. cb(cur, "ffn_norm", il);
  8855. // MLP
  8856. cur = build_ffn(cur,
  8857. model.layers[il].ffn_up, NULL, NULL,
  8858. NULL, NULL, NULL,
  8859. model.layers[il].ffn_down, NULL, NULL,
  8860. NULL,
  8861. LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
  8862. cb(cur, "ffn_out", il);
  8863. // Post-MLP norm
  8864. cur = build_norm(cur,
  8865. model.layers[il].ffn_post_norm,
  8866. NULL,
  8867. LLM_NORM_RMS, il);
  8868. cb(cur, "post_mlp_norm", il);
  8869. }
  8870. // Add residual connection after post-MLP norm
  8871. inpL = ggml_add(ctx0, cur, ffn_inp);
  8872. cb(inpL, "l_out", il);
  8873. }
  8874. // Final norm
  8875. cur = build_norm(inpL,
  8876. model.output_norm,
  8877. NULL,
  8878. LLM_NORM_RMS, -1);
  8879. cb(cur, "result_norm", -1);
  8880. res->t_embd = cur;
  8881. // Output projection
  8882. cur = build_lora_mm(model.output, cur);
  8883. cb(cur, "result_output", -1);
  8884. res->t_logits = cur;
  8885. ggml_build_forward_expand(gf, cur);
  8886. }
  8887. };
  8888. struct llm_build_nemotron : public llm_graph_context {
  8889. llm_build_nemotron(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8890. const int64_t n_embd_head = hparams.n_embd_head_v;
  8891. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8892. //GGML_ASSERT(n_embd_head == hparams.n_rot);
  8893. ggml_tensor * cur;
  8894. ggml_tensor * inpL;
  8895. inpL = build_inp_embd(model.tok_embd);
  8896. // inp_pos - contains the positions
  8897. ggml_tensor * inp_pos = build_inp_pos();
  8898. auto * inp_attn = build_attn_inp_kv_unified();
  8899. for (int il = 0; il < n_layer; ++il) {
  8900. ggml_tensor * inpSA = inpL;
  8901. // norm
  8902. cur = build_norm(inpL,
  8903. model.layers[il].attn_norm,
  8904. model.layers[il].attn_norm_b,
  8905. LLM_NORM, il);
  8906. cb(cur, "attn_norm", il);
  8907. // self-attention
  8908. {
  8909. // compute Q and K and RoPE them
  8910. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  8911. cb(Qcur, "Qcur", il);
  8912. if (model.layers[il].bq) {
  8913. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8914. cb(Qcur, "Qcur", il);
  8915. }
  8916. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  8917. cb(Kcur, "Kcur", il);
  8918. if (model.layers[il].bk) {
  8919. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8920. cb(Kcur, "Kcur", il);
  8921. }
  8922. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  8923. cb(Vcur, "Vcur", il);
  8924. if (model.layers[il].bv) {
  8925. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8926. cb(Vcur, "Vcur", il);
  8927. }
  8928. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8929. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8930. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8931. Qcur = ggml_rope_ext(
  8932. ctx0, Qcur, inp_pos, nullptr,
  8933. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8934. ext_factor, attn_factor, beta_fast, beta_slow
  8935. );
  8936. Kcur = ggml_rope_ext(
  8937. ctx0, Kcur, inp_pos, nullptr,
  8938. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8939. ext_factor, attn_factor, beta_fast, beta_slow
  8940. );
  8941. cb(Qcur, "Qcur", il);
  8942. cb(Kcur, "Kcur", il);
  8943. cb(Vcur, "Vcur", il);
  8944. cur = build_attn(inp_attn, gf,
  8945. model.layers[il].wo, model.layers[il].bo,
  8946. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  8947. }
  8948. if (il == n_layer - 1) {
  8949. // skip computing output for unused tokens
  8950. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8951. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8952. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8953. }
  8954. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8955. cb(ffn_inp, "ffn_inp", il);
  8956. // feed-forward network
  8957. cur = build_norm(ffn_inp,
  8958. model.layers[il].ffn_norm,
  8959. model.layers[il].ffn_norm_b,
  8960. LLM_NORM, il);
  8961. cb(cur, "ffn_norm", il);
  8962. cur = build_ffn(cur,
  8963. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  8964. NULL, NULL, NULL,
  8965. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  8966. NULL,
  8967. LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il);
  8968. cur = ggml_add(ctx0, cur, ffn_inp);
  8969. cb(cur, "ffn_out", il);
  8970. cur = build_cvec(cur, il);
  8971. cb(cur, "l_out", il);
  8972. // input for next layer
  8973. inpL = cur;
  8974. }
  8975. cur = inpL;
  8976. cur = build_norm(cur,
  8977. model.output_norm, model.output_norm_b,
  8978. LLM_NORM, -1);
  8979. cb(cur, "result_norm", -1);
  8980. res->t_embd = cur;
  8981. // lm_head
  8982. cur = build_lora_mm(model.output, cur);
  8983. cb(cur, "result_output", -1);
  8984. res->t_logits = cur;
  8985. ggml_build_forward_expand(gf, cur);
  8986. }
  8987. };
  8988. struct llm_build_exaone : public llm_graph_context {
  8989. llm_build_exaone(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8990. const int64_t n_embd_head = hparams.n_embd_head_v;
  8991. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8992. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8993. ggml_tensor * cur;
  8994. ggml_tensor * inpL;
  8995. inpL = build_inp_embd(model.tok_embd);
  8996. // inp_pos - contains the positions
  8997. ggml_tensor * inp_pos = build_inp_pos();
  8998. auto * inp_attn = build_attn_inp_kv_unified();
  8999. for (int il = 0; il < n_layer; ++il) {
  9000. ggml_tensor * inpSA = inpL;
  9001. // norm
  9002. cur = build_norm(inpL,
  9003. model.layers[il].attn_norm, NULL,
  9004. LLM_NORM_RMS, il);
  9005. cb(cur, "attn_norm", il);
  9006. // self-attention
  9007. {
  9008. // rope freq factors for llama3; may return nullptr for llama2 and other models
  9009. ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
  9010. // compute Q and K and RoPE them
  9011. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  9012. cb(Qcur, "Qcur", il);
  9013. if (model.layers[il].bq) {
  9014. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  9015. cb(Qcur, "Qcur", il);
  9016. }
  9017. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  9018. cb(Kcur, "Kcur", il);
  9019. if (model.layers[il].bk) {
  9020. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  9021. cb(Kcur, "Kcur", il);
  9022. }
  9023. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  9024. cb(Vcur, "Vcur", il);
  9025. if (model.layers[il].bv) {
  9026. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  9027. cb(Vcur, "Vcur", il);
  9028. }
  9029. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  9030. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  9031. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  9032. Qcur = ggml_rope_ext(
  9033. ctx0, Qcur, inp_pos, rope_factors,
  9034. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9035. ext_factor, attn_factor, beta_fast, beta_slow
  9036. );
  9037. Kcur = ggml_rope_ext(
  9038. ctx0, Kcur, inp_pos, rope_factors,
  9039. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9040. ext_factor, attn_factor, beta_fast, beta_slow
  9041. );
  9042. cb(Qcur, "Qcur", il);
  9043. cb(Kcur, "Kcur", il);
  9044. cb(Vcur, "Vcur", il);
  9045. cur = build_attn(inp_attn, gf,
  9046. model.layers[il].wo, model.layers[il].bo,
  9047. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  9048. }
  9049. if (il == n_layer - 1) {
  9050. // skip computing output for unused tokens
  9051. ggml_tensor * inp_out_ids = build_inp_out_ids();
  9052. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9053. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9054. }
  9055. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9056. cb(ffn_inp, "ffn_inp", il);
  9057. // feed-forward network
  9058. cur = build_norm(ffn_inp,
  9059. model.layers[il].ffn_norm, NULL,
  9060. LLM_NORM_RMS, il);
  9061. cb(cur, "ffn_norm", il);
  9062. cur = build_ffn(cur,
  9063. model.layers[il].ffn_up, NULL, NULL,
  9064. model.layers[il].ffn_gate, NULL, NULL,
  9065. model.layers[il].ffn_down, NULL, NULL,
  9066. NULL,
  9067. LLM_FFN_SILU, LLM_FFN_PAR, il);
  9068. cb(cur, "ffn_out", il);
  9069. cur = ggml_add(ctx0, cur, ffn_inp);
  9070. cb(cur, "ffn_out", il);
  9071. cur = build_cvec(cur, il);
  9072. cb(cur, "l_out", il);
  9073. // input for next layer
  9074. inpL = cur;
  9075. }
  9076. cur = inpL;
  9077. cur = build_norm(cur,
  9078. model.output_norm, NULL,
  9079. LLM_NORM_RMS, -1);
  9080. cb(cur, "result_norm", -1);
  9081. res->t_embd = cur;
  9082. // lm_head
  9083. cur = build_lora_mm(model.output, cur);
  9084. cb(cur, "result_output", -1);
  9085. res->t_logits = cur;
  9086. ggml_build_forward_expand(gf, cur);
  9087. }
  9088. };
  9089. struct llm_build_rwkv6_base : public llm_graph_context {
  9090. const llama_model & model;
  9091. llm_build_rwkv6_base(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params), model(model) {
  9092. }
  9093. ggml_tensor * build_rwkv6_channel_mix(
  9094. const llama_layer * layer,
  9095. ggml_tensor * cur,
  9096. ggml_tensor * x_prev,
  9097. llm_arch arch) const {
  9098. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  9099. switch (arch) {
  9100. case LLM_ARCH_RWKV6:
  9101. {
  9102. ggml_tensor * xk = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_k), cur);
  9103. ggml_tensor * xr = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_r), cur);
  9104. ggml_tensor * r = ggml_sigmoid(ctx0, build_lora_mm(layer->channel_mix_receptance, xr));
  9105. ggml_tensor * k = ggml_sqr(
  9106. ctx0,
  9107. ggml_relu(
  9108. ctx0,
  9109. build_lora_mm(layer->channel_mix_key, xk)
  9110. )
  9111. );
  9112. cur = ggml_mul(ctx0, r, build_lora_mm(layer->channel_mix_value, k));
  9113. } break;
  9114. default:
  9115. GGML_ABORT("fatal error");
  9116. }
  9117. return cur;
  9118. }
  9119. ggml_tensor * build_rwkv6_time_mix(
  9120. ggml_cgraph * gf,
  9121. ggml_tensor * cur,
  9122. ggml_tensor * x_prev,
  9123. ggml_tensor * state_copy,
  9124. ggml_tensor * state_mask,
  9125. const llama_ubatch & ubatch,
  9126. int il) const {
  9127. const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
  9128. const auto n_tokens = ubatch.n_tokens;
  9129. const auto n_seqs = ubatch.n_seqs;
  9130. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9131. const auto n_embd = hparams.n_embd;
  9132. const auto head_size = hparams.wkv_head_size;
  9133. const auto n_head = n_embd / head_size;
  9134. const auto n_head_kv = hparams.n_head_kv(il);
  9135. const auto kv_head = kv_self->head;
  9136. const auto & layer = model.layers[il];
  9137. bool is_qrwkv = layer.time_mix_first == nullptr;
  9138. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  9139. sx = ggml_reshape_2d(ctx0, sx, n_embd, n_tokens);
  9140. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  9141. ggml_tensor * xxx = ggml_add(ctx0, ggml_mul(ctx0, sx, layer.time_mix_lerp_x), cur);
  9142. xxx = ggml_reshape_4d(
  9143. ctx0,
  9144. ggml_tanh(
  9145. ctx0,
  9146. ggml_mul_mat(ctx0, layer.time_mix_w1, xxx)
  9147. ),
  9148. layer.time_mix_w1->ne[1] / 5, 1, 5, n_tokens
  9149. );
  9150. xxx = ggml_cont(ctx0, ggml_permute(ctx0, xxx, 0, 1, 3, 2));
  9151. xxx = ggml_mul_mat(
  9152. ctx0,
  9153. ggml_reshape_4d(
  9154. ctx0,
  9155. layer.time_mix_w2,
  9156. layer.time_mix_w2->ne[0], layer.time_mix_w2->ne[1], 1, 5
  9157. ),
  9158. xxx
  9159. );
  9160. ggml_tensor *xw, *xk, *xv, *xr, *xg;
  9161. if (layer.time_mix_lerp_fused) {
  9162. // fusing these weights makes some performance improvement
  9163. sx = ggml_reshape_3d(ctx0, sx, n_embd, 1, n_tokens);
  9164. cur = ggml_reshape_3d(ctx0, cur, n_embd, 1, n_tokens);
  9165. xxx = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xxx, layer.time_mix_lerp_fused), sx), cur);
  9166. xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0);
  9167. xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
  9168. xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
  9169. xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
  9170. xg = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
  9171. } else {
  9172. // for backward compatibility
  9173. xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0);
  9174. xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
  9175. xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
  9176. xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
  9177. xg = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
  9178. xw = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xw, layer.time_mix_lerp_w), sx), cur);
  9179. xk = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xk, layer.time_mix_lerp_k), sx), cur);
  9180. xv = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xv, layer.time_mix_lerp_v), sx), cur);
  9181. xr = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xr, layer.time_mix_lerp_r), sx), cur);
  9182. xg = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xg, layer.time_mix_lerp_g), sx), cur);
  9183. }
  9184. ggml_tensor * r = build_lora_mm(layer.time_mix_receptance, xr);
  9185. ggml_tensor * k = build_lora_mm(layer.time_mix_key, xk);
  9186. ggml_tensor * v = build_lora_mm(layer.time_mix_value, xv);
  9187. if (layer.time_mix_receptance_b) {
  9188. r = ggml_add(ctx0, r, layer.time_mix_receptance_b);
  9189. }
  9190. if (layer.time_mix_key_b) {
  9191. k = ggml_add(ctx0, k, layer.time_mix_key_b);
  9192. }
  9193. if (layer.time_mix_value_b) {
  9194. v = ggml_add(ctx0, v, layer.time_mix_value_b);
  9195. }
  9196. ggml_tensor * g = build_lora_mm(layer.time_mix_gate, xg);
  9197. if (is_qrwkv) {
  9198. g = ggml_sigmoid(ctx0, g);
  9199. } else {
  9200. g = ggml_silu(ctx0, g);
  9201. }
  9202. if (n_head_kv != 0 && n_head_kv != n_head) {
  9203. GGML_ASSERT(n_head % n_head_kv == 0);
  9204. k = ggml_reshape_4d(ctx0, k, head_size, 1, n_head_kv, n_tokens);
  9205. v = ggml_reshape_4d(ctx0, v, head_size, 1, n_head_kv, n_tokens);
  9206. ggml_tensor * tmp = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, head_size, n_head / n_head_kv, n_head_kv, n_tokens);
  9207. k = ggml_repeat(ctx0, k, tmp);
  9208. v = ggml_repeat(ctx0, v, tmp);
  9209. }
  9210. k = ggml_reshape_3d(ctx0, k, head_size, n_head, n_tokens);
  9211. v = ggml_reshape_3d(ctx0, v, head_size, n_head, n_tokens);
  9212. r = ggml_reshape_3d(ctx0, r, head_size, n_head, n_tokens);
  9213. ggml_tensor * w = ggml_mul_mat(
  9214. ctx0,
  9215. layer.time_mix_decay_w2,
  9216. ggml_tanh(
  9217. ctx0,
  9218. ggml_mul_mat(ctx0, layer.time_mix_decay_w1, xw)
  9219. )
  9220. );
  9221. w = ggml_add(ctx0, w, layer.time_mix_decay);
  9222. w = ggml_exp(ctx0, ggml_neg(ctx0, ggml_exp(ctx0, w)));
  9223. w = ggml_reshape_3d(ctx0, w, head_size, n_head, n_tokens);
  9224. if (is_qrwkv) {
  9225. // k = k * (1 - w)
  9226. k = ggml_sub(ctx0, k, ggml_mul(ctx0, k, w));
  9227. }
  9228. ggml_tensor * wkv_state = build_copy_mask_state(
  9229. gf, kv_self->v_l[il], state_copy, state_mask,
  9230. hparams.n_embd_v_s(), n_seqs);
  9231. ggml_tensor * wkv_output;
  9232. if (is_qrwkv) {
  9233. wkv_output = ggml_gated_linear_attn(ctx0, k, v, r, w, wkv_state, pow(head_size, -0.5f));
  9234. } else {
  9235. wkv_output = ggml_rwkv_wkv6(ctx0, k, v, r, layer.time_mix_first, w, wkv_state);
  9236. }
  9237. cur = ggml_view_1d(ctx0, wkv_output, n_embd * n_tokens, 0);
  9238. wkv_state = ggml_view_1d(ctx0, wkv_output, n_embd * head_size * n_seqs, n_embd * n_tokens * sizeof(float));
  9239. ggml_build_forward_expand(
  9240. gf,
  9241. ggml_cpy(
  9242. ctx0,
  9243. wkv_state,
  9244. ggml_view_1d(
  9245. ctx0,
  9246. kv_self->v_l[il],
  9247. hparams.n_embd_v_s() * n_seqs,
  9248. hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_self->v_l[il])
  9249. )
  9250. )
  9251. );
  9252. if (!is_qrwkv) {
  9253. // group norm with head_count groups
  9254. cur = ggml_reshape_3d(ctx0, cur, n_embd / n_head, n_head, n_tokens);
  9255. cur = ggml_norm(ctx0, cur, 64e-5f);
  9256. // Convert back to regular vectors.
  9257. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  9258. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.time_mix_ln), layer.time_mix_ln_b);
  9259. } else {
  9260. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  9261. }
  9262. cur = ggml_mul(ctx0, cur, g);
  9263. cur = build_lora_mm(layer.time_mix_output, cur);
  9264. return ggml_reshape_3d(ctx0, cur, n_embd, n_seq_tokens, n_seqs);
  9265. }
  9266. };
  9267. struct llm_build_rwkv6 : public llm_build_rwkv6_base {
  9268. llm_build_rwkv6(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv6_base(model, params) {
  9269. GGML_ASSERT(hparams.token_shift_count == 2);
  9270. ggml_tensor * cur;
  9271. ggml_tensor * inpL;
  9272. inpL = build_inp_embd(model.tok_embd);
  9273. inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
  9274. ggml_tensor * state_copy = build_inp_s_copy();
  9275. ggml_tensor * state_mask = build_inp_s_mask();
  9276. const auto n_embd = hparams.n_embd;
  9277. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9278. const auto n_seqs = ubatch.n_seqs;
  9279. for (int il = 0; il < n_layer; ++il) {
  9280. const llama_layer * layer = &model.layers[il];
  9281. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  9282. ggml_tensor * token_shift = build_rwkv_token_shift_load(
  9283. gf, state_copy, state_mask, ubatch, il
  9284. );
  9285. ggml_tensor * att_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], 0);
  9286. ggml_tensor * ffn_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], n_embd * ggml_element_size(token_shift));
  9287. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM, il);
  9288. cb(att_norm, "attn_norm", il);
  9289. ggml_tensor * x_prev = ggml_concat(
  9290. ctx0,
  9291. att_shift,
  9292. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  9293. 1
  9294. );
  9295. cur = build_rwkv6_time_mix(gf, att_norm, x_prev, state_copy, state_mask, ubatch, il);
  9296. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9297. cb(ffn_inp, "ffn_inp", il);
  9298. ggml_tensor * ffn_norm = build_norm(ffn_inp, layer->attn_norm_2, layer->attn_norm_2_b, LLM_NORM, il);
  9299. cb(ffn_norm, "ffn_norm", il);
  9300. x_prev = ggml_concat(
  9301. ctx0,
  9302. ffn_shift,
  9303. ggml_view_3d(ctx0, ffn_norm, n_embd, n_seq_tokens - 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], 0),
  9304. 1
  9305. );
  9306. token_shift = ggml_concat(ctx0,
  9307. ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm)),
  9308. ggml_view_3d(ctx0, ffn_norm, n_embd, 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(ffn_norm)),
  9309. 1
  9310. );
  9311. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  9312. if (il == n_layer - 1) {
  9313. // skip computing output for unused tokens
  9314. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9315. ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids);
  9316. ffn_norm = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_norm, n_embd, n_tokens), inp_out_ids);
  9317. x_prev = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, x_prev, n_embd, n_tokens), inp_out_ids);
  9318. cur = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, cur, n_embd, n_tokens), inp_out_ids);
  9319. }
  9320. cur = build_rwkv6_channel_mix(layer, ffn_norm, x_prev, LLM_ARCH_RWKV6);
  9321. cur = ggml_add(ctx0, cur, ffn_inp);
  9322. if (hparams.rescale_every_n_layers != 0 && (il + 1) % hparams.rescale_every_n_layers == 0) {
  9323. cur = ggml_scale(ctx0, cur, 0.5F);
  9324. }
  9325. cur = build_cvec(cur, il);
  9326. cb(cur, "l_out", il);
  9327. // input for next layer
  9328. inpL = cur;
  9329. }
  9330. cur = inpL;
  9331. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1);
  9332. cb(cur, "result_norm", -1);
  9333. res->t_embd = cur;
  9334. cur = build_lora_mm(model.output, cur);
  9335. cb(cur, "result_output", -1);
  9336. res->t_logits = cur;
  9337. ggml_build_forward_expand(gf, cur);
  9338. }
  9339. };
  9340. // ref: https://huggingface.co/recursal/QRWKV6-32B-Instruct-Preview-v0.1/blob/main/modeling_rwkv6qwen2.py
  9341. struct llm_build_rwkv6qwen2 : public llm_build_rwkv6_base {
  9342. llm_build_rwkv6qwen2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv6_base(model, params) {
  9343. GGML_ASSERT(n_embd == hparams.n_embd_k_s());
  9344. ggml_tensor * cur;
  9345. ggml_tensor * inpL;
  9346. inpL = build_inp_embd(model.tok_embd);
  9347. ggml_tensor * state_copy = build_inp_s_copy();
  9348. ggml_tensor * state_mask = build_inp_s_mask();
  9349. const auto n_embd = hparams.n_embd;
  9350. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9351. const auto n_seqs = ubatch.n_seqs;
  9352. for (int il = 0; il < n_layer; ++il) {
  9353. const llama_layer * layer = &model.layers[il];
  9354. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  9355. ggml_tensor * token_shift = build_rwkv_token_shift_load(
  9356. gf, state_copy, state_mask, ubatch, il
  9357. );
  9358. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM_RMS, il);
  9359. cb(att_norm, "attn_norm", il);
  9360. ggml_tensor * x_prev = ggml_concat(
  9361. ctx0,
  9362. token_shift,
  9363. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  9364. 1
  9365. );
  9366. cur = build_rwkv6_time_mix(gf, att_norm, x_prev, state_copy, state_mask, ubatch, il);
  9367. token_shift = ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm));
  9368. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  9369. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9370. cb(ffn_inp, "ffn_inp", il);
  9371. if (il == n_layer - 1) {
  9372. // skip computing output for unused tokens
  9373. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9374. cur = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, cur, n_embd, n_tokens), inp_out_ids);
  9375. ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids);
  9376. }
  9377. // feed-forward network
  9378. cur = build_norm(ffn_inp,
  9379. model.layers[il].ffn_norm, NULL,
  9380. LLM_NORM_RMS, il);
  9381. cb(cur, "ffn_norm", il);
  9382. cur = build_ffn(cur,
  9383. model.layers[il].ffn_up, NULL, NULL,
  9384. model.layers[il].ffn_gate, NULL, NULL,
  9385. model.layers[il].ffn_down, NULL, NULL,
  9386. NULL,
  9387. LLM_FFN_SILU, LLM_FFN_PAR, il);
  9388. cb(cur, "ffn_out", il);
  9389. cur = ggml_add(ctx0, cur, ffn_inp);
  9390. cur = build_cvec(cur, il);
  9391. cb(cur, "l_out", il);
  9392. // input for next layer
  9393. inpL = cur;
  9394. }
  9395. cur = inpL;
  9396. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM_RMS, -1);
  9397. cb(cur, "result_norm", -1);
  9398. res->t_embd = cur;
  9399. cur = build_lora_mm(model.output, cur);
  9400. cb(cur, "result_output", -1);
  9401. res->t_logits = cur;
  9402. ggml_build_forward_expand(gf, cur);
  9403. }
  9404. };
  9405. struct llm_build_rwkv7_base : public llm_graph_context {
  9406. const llama_model & model;
  9407. llm_build_rwkv7_base(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params), model(model) {
  9408. }
  9409. ggml_tensor * build_rwkv7_channel_mix(
  9410. const llama_layer * layer,
  9411. ggml_tensor * cur,
  9412. ggml_tensor * x_prev,
  9413. llm_arch arch) const {
  9414. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  9415. switch (arch) {
  9416. case LLM_ARCH_RWKV7:
  9417. {
  9418. ggml_tensor * xk = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_k), cur);
  9419. ggml_tensor * k = ggml_sqr(
  9420. ctx0,
  9421. ggml_relu(
  9422. ctx0,
  9423. build_lora_mm(layer->channel_mix_key, xk)
  9424. )
  9425. );
  9426. cur = build_lora_mm(layer->channel_mix_value, k);
  9427. } break;
  9428. default:
  9429. GGML_ABORT("fatal error");
  9430. }
  9431. return cur;
  9432. }
  9433. ggml_tensor * build_rwkv7_time_mix(
  9434. ggml_cgraph * gf,
  9435. ggml_tensor * cur,
  9436. ggml_tensor * x_prev,
  9437. ggml_tensor * state_copy,
  9438. ggml_tensor * state_mask,
  9439. ggml_tensor *& first_layer_value,
  9440. const llama_ubatch & ubatch,
  9441. int il) const {
  9442. const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
  9443. const auto n_tokens = ubatch.n_tokens;
  9444. const auto n_seqs = ubatch.n_seqs;
  9445. const auto n_embd = hparams.n_embd;
  9446. const auto head_size = hparams.wkv_head_size;
  9447. const auto head_count = n_embd / head_size;
  9448. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9449. const auto kv_head = kv_self->head;
  9450. const auto & layer = model.layers[il];
  9451. bool has_gating = layer.time_mix_g1 && layer.time_mix_g2;
  9452. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  9453. ggml_tensor * dummy = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_embd, n_seq_tokens, n_seqs, has_gating ? 6 : 5);
  9454. sx = ggml_repeat(ctx0, sx, dummy);
  9455. ggml_tensor * xxx = ggml_add(ctx0, ggml_mul(ctx0, sx, layer.time_mix_lerp_fused), cur);
  9456. ggml_tensor * xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0);
  9457. ggml_tensor * xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
  9458. ggml_tensor * xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
  9459. ggml_tensor * xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
  9460. ggml_tensor * xa = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
  9461. ggml_tensor * xg = has_gating ? ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 5 * sizeof(float)) : nullptr;
  9462. ggml_tensor * r = build_lora_mm(layer.time_mix_receptance, xr);
  9463. ggml_tensor * w = ggml_add(
  9464. ctx0,
  9465. ggml_mul_mat(ctx0, layer.time_mix_w2, ggml_tanh(ctx0, ggml_mul_mat(ctx0, layer.time_mix_w1, xw))),
  9466. layer.time_mix_w0
  9467. );
  9468. w = ggml_exp(ctx0, ggml_scale(ctx0, ggml_sigmoid(ctx0, w), -0.606531));
  9469. ggml_tensor * k = build_lora_mm(layer.time_mix_key, xk);
  9470. ggml_tensor * v = build_lora_mm(layer.time_mix_value, xv);
  9471. if (first_layer_value == nullptr) {
  9472. first_layer_value = v;
  9473. } else {
  9474. // Add the first layer value as a residual connection.
  9475. v = ggml_add(ctx0, v,
  9476. ggml_mul(ctx0,
  9477. ggml_sub(ctx0, first_layer_value, v),
  9478. ggml_sigmoid(ctx0, ggml_add(ctx0,
  9479. ggml_mul_mat(ctx0, layer.time_mix_v2, ggml_mul_mat(ctx0, layer.time_mix_v1, xv)),
  9480. layer.time_mix_v0
  9481. )
  9482. )
  9483. )
  9484. );
  9485. }
  9486. ggml_tensor * g = nullptr;
  9487. if (layer.time_mix_g1 && layer.time_mix_g2) {
  9488. g = ggml_mul_mat(ctx0, layer.time_mix_g2, ggml_sigmoid(ctx0, ggml_mul_mat(ctx0, layer.time_mix_g1, xg)));
  9489. }
  9490. ggml_tensor * a = ggml_sigmoid(ctx0,
  9491. ggml_add(
  9492. ctx0,
  9493. ggml_mul_mat(ctx0, layer.time_mix_a2, ggml_mul_mat(ctx0, layer.time_mix_a1, xa)),
  9494. layer.time_mix_a0
  9495. )
  9496. );
  9497. ggml_tensor * kk = ggml_reshape_3d(ctx0, ggml_mul(ctx0, k, layer.time_mix_k_k), head_size, head_count, n_tokens);
  9498. kk = ggml_l2_norm(ctx0, kk, 1e-12);
  9499. ggml_tensor * ka = ggml_mul(ctx0, k, layer.time_mix_k_a);
  9500. k = ggml_add(ctx0, k, ggml_sub(ctx0, ggml_mul(ctx0, a, ka), ka));
  9501. r = ggml_reshape_3d(ctx0, r, head_size, head_count, n_tokens);
  9502. w = ggml_reshape_3d(ctx0, w, head_size, head_count, n_tokens);
  9503. k = ggml_reshape_3d(ctx0, k, head_size, head_count, n_tokens);
  9504. v = ggml_reshape_3d(ctx0, v, head_size, head_count, n_tokens);
  9505. a = ggml_reshape_3d(ctx0, a, head_size, head_count, n_tokens);
  9506. ggml_tensor * wkv_state = build_copy_mask_state(
  9507. gf, kv_self->v_l[il], state_copy, state_mask,
  9508. hparams.n_embd_v_s(), n_seqs);
  9509. ggml_tensor * wkv_output = ggml_rwkv_wkv7(ctx0, r, w, k, v, ggml_neg(ctx0, kk), ggml_mul(ctx0, kk, a), wkv_state);
  9510. cur = ggml_view_1d(ctx0, wkv_output, n_embd * n_tokens, 0);
  9511. wkv_state = ggml_view_1d(ctx0, wkv_output, n_embd * head_size * n_seqs, n_embd * n_tokens * sizeof(float));
  9512. ggml_build_forward_expand(
  9513. gf,
  9514. ggml_cpy(
  9515. ctx0,
  9516. wkv_state,
  9517. ggml_view_1d(
  9518. ctx0,
  9519. kv_self->v_l[il],
  9520. hparams.n_embd_v_s() * n_seqs,
  9521. hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_self->v_l[il])
  9522. )
  9523. )
  9524. );
  9525. if (layer.time_mix_ln && layer.time_mix_ln_b) {
  9526. // group norm with head_count groups
  9527. cur = ggml_reshape_3d(ctx0, cur, n_embd / head_count, head_count, n_tokens);
  9528. cur = ggml_norm(ctx0, cur, 64e-5f);
  9529. // Convert back to regular vectors.
  9530. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  9531. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.time_mix_ln), layer.time_mix_ln_b);
  9532. } else {
  9533. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  9534. }
  9535. ggml_tensor * rk = ggml_sum_rows(ctx0,
  9536. ggml_mul(ctx0, ggml_mul(ctx0, k, r), ggml_reshape_2d(ctx0, layer.time_mix_r_k, head_size, head_count)));
  9537. cur = ggml_add(ctx0, cur, ggml_reshape_2d(ctx0, ggml_mul(ctx0, v, rk), n_embd, n_tokens));
  9538. if (has_gating) {
  9539. cur = ggml_mul(ctx0, cur, g);
  9540. }
  9541. cur = build_lora_mm(layer.time_mix_output, cur);
  9542. return ggml_reshape_3d(ctx0, cur, n_embd, n_seq_tokens, n_seqs);
  9543. }
  9544. };
  9545. struct llm_build_rwkv7 : public llm_build_rwkv7_base {
  9546. llm_build_rwkv7(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv7_base(model, params) {
  9547. GGML_ASSERT(hparams.token_shift_count == 2);
  9548. ggml_tensor * cur;
  9549. ggml_tensor * inpL;
  9550. ggml_tensor * v_first = nullptr;
  9551. inpL = build_inp_embd(model.tok_embd);
  9552. inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
  9553. ggml_tensor * state_copy = build_inp_s_copy();
  9554. ggml_tensor * state_mask = build_inp_s_mask();
  9555. const auto n_embd = hparams.n_embd;
  9556. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9557. const auto n_seqs = ubatch.n_seqs;
  9558. for (int il = 0; il < n_layer; ++il) {
  9559. const llama_layer * layer = &model.layers[il];
  9560. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  9561. ggml_tensor * token_shift = build_rwkv_token_shift_load(
  9562. gf, state_copy, state_mask, ubatch, il
  9563. );
  9564. ggml_tensor * att_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], 0);
  9565. ggml_tensor * ffn_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], n_embd * ggml_element_size(token_shift));
  9566. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM, il);
  9567. cb(att_norm, "attn_norm", il);
  9568. ggml_tensor * x_prev = ggml_concat(
  9569. ctx0,
  9570. att_shift,
  9571. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  9572. 1
  9573. );
  9574. cur = build_rwkv7_time_mix(gf, att_norm, x_prev, state_copy, state_mask, v_first, ubatch, il);
  9575. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9576. cb(ffn_inp, "ffn_inp", il);
  9577. ggml_tensor * ffn_norm = build_norm(ffn_inp, layer->attn_norm_2, layer->attn_norm_2_b, LLM_NORM, il);
  9578. cb(ffn_norm, "ffn_norm", il);
  9579. x_prev = ggml_concat(
  9580. ctx0,
  9581. ffn_shift,
  9582. ggml_view_3d(ctx0, ffn_norm, n_embd, n_seq_tokens - 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], 0),
  9583. 1
  9584. );
  9585. token_shift = ggml_concat(ctx0,
  9586. ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm)),
  9587. ggml_view_3d(ctx0, ffn_norm, n_embd, 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(ffn_norm)),
  9588. 1
  9589. );
  9590. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  9591. if (il == n_layer - 1) {
  9592. // skip computing output for unused tokens
  9593. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9594. ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids);
  9595. ffn_norm = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_norm, n_embd, n_tokens), inp_out_ids);
  9596. x_prev = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, x_prev, n_embd, n_tokens), inp_out_ids);
  9597. }
  9598. cur = build_rwkv7_channel_mix(layer, ffn_norm, x_prev, LLM_ARCH_RWKV7);
  9599. cur = ggml_add(ctx0, cur, ffn_inp);
  9600. cur = build_cvec(cur, il);
  9601. cb(cur, "l_out", il);
  9602. // input for next layer
  9603. inpL = cur;
  9604. }
  9605. cur = inpL;
  9606. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1);
  9607. cb(cur, "result_norm", -1);
  9608. res->t_embd = cur;
  9609. cur = build_lora_mm(model.output, cur);
  9610. cb(cur, "result_output", -1);
  9611. res->t_logits = cur;
  9612. ggml_build_forward_expand(gf, cur);
  9613. }
  9614. };
  9615. struct llm_build_arwkv7 : public llm_build_rwkv7_base {
  9616. llm_build_arwkv7(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv7_base(model, params) {
  9617. GGML_ASSERT(n_embd == hparams.n_embd_k_s());
  9618. ggml_tensor * cur;
  9619. ggml_tensor * inpL;
  9620. ggml_tensor * v_first = nullptr;
  9621. inpL = build_inp_embd(model.tok_embd);
  9622. ggml_tensor * state_copy = build_inp_s_copy();
  9623. ggml_tensor * state_mask = build_inp_s_mask();
  9624. const auto n_embd = hparams.n_embd;
  9625. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9626. const auto n_seqs = ubatch.n_seqs;
  9627. for (int il = 0; il < n_layer; ++il) {
  9628. const llama_layer * layer = &model.layers[il];
  9629. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  9630. ggml_tensor * token_shift = build_rwkv_token_shift_load(
  9631. gf, state_copy, state_mask, ubatch, il
  9632. );
  9633. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM_RMS, il);
  9634. cb(att_norm, "attn_norm", il);
  9635. ggml_tensor * x_prev = ggml_concat(
  9636. ctx0,
  9637. token_shift,
  9638. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  9639. 1
  9640. );
  9641. cur = build_rwkv7_time_mix(gf, att_norm, x_prev, state_copy, state_mask, v_first, ubatch, il);
  9642. token_shift = ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm));
  9643. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  9644. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9645. cb(ffn_inp, "ffn_inp", il);
  9646. if (il == n_layer - 1) {
  9647. // skip computing output for unused tokens
  9648. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9649. cur = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, cur, n_embd, n_tokens), inp_out_ids);
  9650. ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids);
  9651. }
  9652. // feed-forward network
  9653. cur = build_norm(ffn_inp,
  9654. model.layers[il].ffn_norm, NULL,
  9655. LLM_NORM_RMS, il);
  9656. cb(cur, "ffn_norm", il);
  9657. cur = build_ffn(cur,
  9658. model.layers[il].ffn_up, NULL, NULL,
  9659. model.layers[il].ffn_gate, NULL, NULL,
  9660. model.layers[il].ffn_down, NULL, NULL,
  9661. NULL,
  9662. LLM_FFN_SILU, LLM_FFN_PAR, il);
  9663. cb(cur, "ffn_out", il);
  9664. cur = ggml_add(ctx0, cur, ffn_inp);
  9665. cur = build_cvec(cur, il);
  9666. cb(cur, "l_out", il);
  9667. // input for next layer
  9668. inpL = cur;
  9669. }
  9670. cur = inpL;
  9671. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM_RMS, -1);
  9672. cb(cur, "result_norm", -1);
  9673. res->t_embd = cur;
  9674. cur = build_lora_mm(model.output, cur);
  9675. cb(cur, "result_output", -1);
  9676. res->t_logits = cur;
  9677. ggml_build_forward_expand(gf, cur);
  9678. }
  9679. };
  9680. // ref: https://github.com/facebookresearch/chameleon
  9681. // based on the original build_llama() function, changes:
  9682. // * qk-norm
  9683. // * swin-norm
  9684. // * removed bias
  9685. // * removed MoE
  9686. struct llm_build_chameleon : public llm_graph_context {
  9687. llm_build_chameleon(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  9688. const int64_t n_embd_head = hparams.n_embd_head_v;
  9689. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9690. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9691. ggml_tensor * cur;
  9692. ggml_tensor * inpL;
  9693. inpL = build_inp_embd(model.tok_embd);
  9694. // inp_pos - contains the positions
  9695. ggml_tensor * inp_pos = build_inp_pos();
  9696. auto * inp_attn = build_attn_inp_kv_unified();
  9697. for (int il = 0; il < n_layer; ++il) {
  9698. ggml_tensor * inpSA = inpL;
  9699. // norm
  9700. if (hparams.swin_norm) {
  9701. cur = inpL;
  9702. } else {
  9703. cur = build_norm(inpL,
  9704. model.layers[il].attn_norm, NULL,
  9705. LLM_NORM_RMS, il);
  9706. cb(cur, "attn_norm", il);
  9707. }
  9708. // self-attention
  9709. {
  9710. // compute Q and K and RoPE them
  9711. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  9712. cb(Qcur, "Qcur", il);
  9713. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  9714. cb(Kcur, "Kcur", il);
  9715. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  9716. cb(Vcur, "Vcur", il);
  9717. if (model.layers[il].attn_q_norm) {
  9718. Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
  9719. ggml_element_size(Qcur) * n_embd_head,
  9720. ggml_element_size(Qcur) * n_embd_head * n_head,
  9721. 0);
  9722. cb(Qcur, "Qcur", il);
  9723. Qcur = build_norm(Qcur,
  9724. model.layers[il].attn_q_norm,
  9725. model.layers[il].attn_q_norm_b,
  9726. LLM_NORM, il);
  9727. cb(Qcur, "Qcur", il);
  9728. }
  9729. if (model.layers[il].attn_k_norm) {
  9730. Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
  9731. ggml_element_size(Kcur) * n_embd_head,
  9732. ggml_element_size(Kcur) * n_embd_head * n_head_kv,
  9733. 0);
  9734. cb(Kcur, "Kcur", il);
  9735. Kcur = build_norm(Kcur,
  9736. model.layers[il].attn_k_norm,
  9737. model.layers[il].attn_k_norm_b,
  9738. LLM_NORM, il);
  9739. cb(Kcur, "Kcur", il);
  9740. }
  9741. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  9742. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  9743. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  9744. Qcur = ggml_rope_ext(
  9745. ctx0, Qcur, inp_pos, nullptr,
  9746. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9747. ext_factor, attn_factor, beta_fast, beta_slow
  9748. );
  9749. Kcur = ggml_rope_ext(
  9750. ctx0, Kcur, inp_pos, nullptr,
  9751. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9752. ext_factor, attn_factor, beta_fast, beta_slow
  9753. );
  9754. cb(Qcur, "Qcur", il);
  9755. cb(Kcur, "Kcur", il);
  9756. cb(Vcur, "Vcur", il);
  9757. cur = build_attn(inp_attn, gf,
  9758. model.layers[il].wo, nullptr,
  9759. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  9760. if (hparams.swin_norm) {
  9761. cur = build_norm(cur,
  9762. model.layers[il].attn_norm, NULL,
  9763. LLM_NORM_RMS, il);
  9764. }
  9765. }
  9766. if (il == n_layer - 1) {
  9767. // skip computing output for unused tokens
  9768. ggml_tensor * inp_out_ids = build_inp_out_ids();
  9769. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9770. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9771. }
  9772. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9773. cb(ffn_inp, "ffn_inp", il);
  9774. // feed-forward network
  9775. if (!hparams.swin_norm) {
  9776. cur = build_norm(ffn_inp,
  9777. model.layers[il].ffn_norm, NULL,
  9778. LLM_NORM_RMS, il);
  9779. cb(cur, "ffn_norm", il);
  9780. }
  9781. cur = build_ffn(cur,
  9782. model.layers[il].ffn_up, NULL, NULL,
  9783. model.layers[il].ffn_gate, NULL, NULL,
  9784. model.layers[il].ffn_down, NULL, NULL,
  9785. NULL,
  9786. LLM_FFN_SILU, LLM_FFN_PAR, il);
  9787. cb(cur, "ffn_out", il);
  9788. if (hparams.swin_norm) {
  9789. cur = build_norm(cur,
  9790. model.layers[il].ffn_norm, NULL,
  9791. LLM_NORM_RMS, il);
  9792. cb(cur, "ffn_norm", il);
  9793. }
  9794. cur = ggml_add(ctx0, cur, ffn_inp);
  9795. cb(cur, "ffn_out", il);
  9796. cur = build_cvec(cur, il);
  9797. cb(cur, "l_out", il);
  9798. // input for next layer
  9799. inpL = cur;
  9800. }
  9801. cur = inpL;
  9802. cur = build_norm(cur,
  9803. model.output_norm, NULL,
  9804. LLM_NORM_RMS, -1);
  9805. cb(cur, "result_norm", -1);
  9806. res->t_embd = cur;
  9807. // lm_head
  9808. cur = build_lora_mm(model.output, cur);
  9809. cb(cur, "result_output_with_img_logits", -1);
  9810. // TODO: this suppresses the output of image tokens, which is required to enable text-only outputs.
  9811. // Needs to be removed once image outputs are supported.
  9812. int img_token_end_idx = 8196;
  9813. int img_token_start_idx = 4;
  9814. int num_img_tokens = img_token_end_idx - img_token_start_idx;
  9815. // creates 1d tensor of size num_img_tokens and values -FLT_MAX,
  9816. // which ensures that text token values are always at least larger than image token values
  9817. ggml_tensor * img_logits = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, num_img_tokens);
  9818. img_logits = ggml_clamp(ctx0, img_logits, -FLT_MAX, -FLT_MAX);
  9819. cb(img_logits, "img_logits", -1);
  9820. cur = ggml_set_1d(ctx0, cur, img_logits, ggml_element_size(cur) * img_token_start_idx);
  9821. cb(cur, "result_output", -1);
  9822. res->t_logits = cur;
  9823. ggml_build_forward_expand(gf, cur);
  9824. }
  9825. };
  9826. struct llm_build_wavtokenizer_dec : public llm_graph_context {
  9827. llm_build_wavtokenizer_dec(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  9828. ggml_tensor * cur;
  9829. ggml_tensor * inpL;
  9830. inpL = build_inp_embd(model.tok_embd);
  9831. cur = ggml_cont(ctx0, ggml_transpose(ctx0, inpL));
  9832. cur = ggml_conv_1d_ph(ctx0, model.conv1d, cur, 1, 1);
  9833. cur = ggml_add(ctx0, cur, model.conv1d_b);
  9834. // posnet
  9835. for (uint32_t il = 0; il < hparams.posnet.n_layer; ++il) {
  9836. const auto & layer = model.layers[il].posnet;
  9837. inpL = cur;
  9838. switch (il) {
  9839. case 0:
  9840. case 1:
  9841. case 3:
  9842. case 4:
  9843. {
  9844. cur = build_norm(cur,
  9845. layer.norm1,
  9846. layer.norm1_b,
  9847. LLM_NORM_GROUP, 0);
  9848. cur = ggml_mul(ctx0, ggml_sigmoid(ctx0, cur), cur);
  9849. cur = ggml_conv_1d_ph(ctx0, layer.conv1, cur, 1, 1);
  9850. cur = ggml_add(ctx0, cur, layer.conv1_b);
  9851. cur = build_norm(cur,
  9852. layer.norm2,
  9853. layer.norm2_b,
  9854. LLM_NORM_GROUP, 0);
  9855. cur = ggml_mul(ctx0, ggml_sigmoid(ctx0, cur), cur);
  9856. cur = ggml_conv_1d_ph(ctx0, layer.conv2, cur, 1, 1);
  9857. cur = ggml_add(ctx0, cur, layer.conv2_b);
  9858. cur = ggml_add(ctx0, cur, inpL);
  9859. } break;
  9860. case 2:
  9861. {
  9862. cur = build_norm(cur,
  9863. layer.attn_norm,
  9864. layer.attn_norm_b,
  9865. LLM_NORM_GROUP, 0);
  9866. ggml_tensor * q;
  9867. ggml_tensor * k;
  9868. ggml_tensor * v;
  9869. q = ggml_conv_1d_ph(ctx0, layer.attn_q, cur, 1, 1);
  9870. k = ggml_conv_1d_ph(ctx0, layer.attn_k, cur, 1, 1);
  9871. v = ggml_conv_1d_ph(ctx0, layer.attn_v, cur, 1, 1);
  9872. q = ggml_add(ctx0, q, layer.attn_q_b);
  9873. k = ggml_add(ctx0, k, layer.attn_k_b);
  9874. v = ggml_add(ctx0, v, layer.attn_v_b);
  9875. q = ggml_cont(ctx0, ggml_transpose(ctx0, q));
  9876. k = ggml_cont(ctx0, ggml_transpose(ctx0, k));
  9877. ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  9878. kq = ggml_soft_max_ext(ctx0, kq, nullptr, 1.0f/sqrtf(float(hparams.posnet.n_embd)), 0.0f);
  9879. cur = ggml_mul_mat(ctx0, kq, v);
  9880. cur = ggml_conv_1d_ph(ctx0, layer.attn_o, cur, 1, 1);
  9881. cur = ggml_add(ctx0, cur, layer.attn_o_b);
  9882. cur = ggml_add(ctx0, cur, inpL);
  9883. } break;
  9884. case 5:
  9885. {
  9886. cur = build_norm(cur,
  9887. layer.norm,
  9888. layer.norm_b,
  9889. LLM_NORM_GROUP, 0);
  9890. } break;
  9891. default: GGML_ABORT("unknown posnet layer");
  9892. };
  9893. }
  9894. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  9895. cur = build_norm(cur,
  9896. model.tok_norm,
  9897. model.tok_norm_b,
  9898. LLM_NORM, -1);
  9899. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  9900. inpL = cur;
  9901. // convnext
  9902. for (uint32_t il = 0; il < hparams.convnext.n_layer; ++il) {
  9903. const auto & layer = model.layers[il].convnext;
  9904. cur = inpL;
  9905. cur = ggml_conv_1d_dw_ph(ctx0, layer.dw, cur, 1, 1);
  9906. cur = ggml_add(ctx0, cur, layer.dw_b);
  9907. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  9908. cur = build_norm(cur,
  9909. layer.norm,
  9910. layer.norm_b,
  9911. LLM_NORM, -1);
  9912. cur = build_ffn(cur,
  9913. layer.pw1, layer.pw1_b, NULL,
  9914. NULL, NULL, NULL,
  9915. layer.pw2, layer.pw2_b, NULL,
  9916. NULL,
  9917. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  9918. cur = ggml_mul(ctx0, cur, layer.gamma);
  9919. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  9920. inpL = ggml_add(ctx0, cur, inpL);
  9921. }
  9922. cur = inpL;
  9923. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  9924. cur = build_norm(cur,
  9925. model.output_norm,
  9926. model.output_norm_b,
  9927. LLM_NORM, -1);
  9928. // lm_head
  9929. cur = build_lora_mm(model.output, cur);
  9930. cur = ggml_add(ctx0, cur, model.output_b);
  9931. cb(cur, "result_embd", -1);
  9932. res->t_embd = cur;
  9933. ggml_build_forward_expand(gf, cur);
  9934. }
  9935. };
  9936. struct llm_build_plm : public llm_graph_context {
  9937. llm_build_plm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  9938. const float kq_scale = 1.0f/sqrtf(float(hparams.n_embd_head_k));
  9939. const uint32_t n_embd_head_qk_rope = hparams.n_rot;
  9940. const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  9941. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  9942. ggml_tensor * cur;
  9943. ggml_tensor * inpL;
  9944. // {n_embd, n_tokens}
  9945. inpL = build_inp_embd(model.tok_embd);
  9946. // inp_pos - contains the positions
  9947. ggml_tensor * inp_pos = build_inp_pos();
  9948. auto * inp_attn = build_attn_inp_kv_unified();
  9949. for (int il = 0; il < n_layer; ++il) {
  9950. ggml_tensor * inpSA = inpL;
  9951. // norm
  9952. cur = build_norm(inpL,
  9953. model.layers[il].attn_norm, NULL,
  9954. LLM_NORM_RMS, il);
  9955. cb(cur, "attn_norm", il);
  9956. // self_attention
  9957. {
  9958. ggml_tensor * q = NULL;
  9959. q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9960. cb(q, "q", il);
  9961. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  9962. ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
  9963. ggml_row_size(q->type, hparams.n_embd_head_k),
  9964. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  9965. 0);
  9966. cb(q_nope, "q_nope", il);
  9967. // and {n_head * n_embd_head_qk_rope, n_tokens}
  9968. ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
  9969. ggml_row_size(q->type, hparams.n_embd_head_k),
  9970. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  9971. ggml_row_size(q->type, n_embd_head_qk_nope));
  9972. cb(q_pe, "q_pe", il);
  9973. // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
  9974. ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
  9975. cb(kv_pe_compresseed, "kv_pe_compresseed", il);
  9976. // split into {kv_lora_rank, n_tokens}
  9977. ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
  9978. kv_pe_compresseed->nb[1],
  9979. 0);
  9980. cb(kv_compressed, "kv_compressed", il);
  9981. // and {n_embd_head_qk_rope, n_tokens}
  9982. ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
  9983. kv_pe_compresseed->nb[1],
  9984. kv_pe_compresseed->nb[1],
  9985. ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
  9986. cb(k_pe, "k_pe", il);
  9987. kv_compressed = build_norm(kv_compressed,
  9988. model.layers[il].attn_kv_a_norm, NULL,
  9989. LLM_NORM_RMS, il);
  9990. cb(kv_compressed, "kv_compressed", il);
  9991. // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
  9992. ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
  9993. cb(kv, "kv", il);
  9994. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  9995. ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
  9996. ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
  9997. ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  9998. 0);
  9999. cb(k_nope, "k_nope", il);
  10000. // and {n_head * n_embd_head_v, n_tokens}
  10001. ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
  10002. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  10003. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
  10004. ggml_row_size(kv->type, (n_embd_head_qk_nope)));
  10005. cb(v_states, "v_states", il);
  10006. v_states = ggml_cont(ctx0, v_states);
  10007. cb(v_states, "v_states", il);
  10008. v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
  10009. ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
  10010. 0);
  10011. cb(v_states, "v_states", il);
  10012. q_pe = ggml_rope_ext(
  10013. ctx0, q_pe, inp_pos, nullptr,
  10014. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10015. ext_factor, attn_factor, beta_fast, beta_slow
  10016. );
  10017. cb(q_pe, "q_pe", il);
  10018. // shared RoPE key
  10019. k_pe = ggml_rope_ext(
  10020. ctx0, k_pe, inp_pos, nullptr,
  10021. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10022. ext_factor, attn_factor, beta_fast, beta_slow
  10023. );
  10024. cb(k_pe, "k_pe", il);
  10025. ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
  10026. cb(q_states, "q_states", il);
  10027. ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
  10028. cb(k_states, "k_states", il);
  10029. cur = build_attn(inp_attn, gf,
  10030. model.layers[il].wo, NULL,
  10031. q_states, k_states, v_states, nullptr, nullptr, kq_scale, il);
  10032. }
  10033. if (il == n_layer - 1) {
  10034. // skip computing output for unused tokens
  10035. ggml_tensor * inp_out_ids = build_inp_out_ids();
  10036. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10037. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  10038. }
  10039. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  10040. cb(ffn_inp, "ffn_inp", il);
  10041. cur = build_norm(ffn_inp,
  10042. model.layers[il].ffn_norm, NULL,
  10043. LLM_NORM_RMS, il);
  10044. cb(cur, "ffn_norm", il);
  10045. cur = build_ffn(cur,
  10046. model.layers[il].ffn_up, NULL, NULL,
  10047. NULL, NULL, NULL,
  10048. model.layers[il].ffn_down, NULL, NULL,
  10049. NULL,
  10050. LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il);
  10051. cb(cur, "ffn_out", il);
  10052. cur = ggml_add(ctx0, cur, ffn_inp);
  10053. cur = build_cvec(cur, il);
  10054. cb(cur, "l_out", il);
  10055. // input for next layer
  10056. inpL = cur;
  10057. }
  10058. cur = inpL;
  10059. cur = build_norm(cur,
  10060. model.output_norm, NULL,
  10061. LLM_NORM_RMS, -1);
  10062. cb(cur, "result_norm", -1);
  10063. res->t_embd = cur;
  10064. cur = build_lora_mm(model.output, cur);
  10065. cb(cur, "result_output", -1);
  10066. res->t_logits = cur;
  10067. ggml_build_forward_expand(gf, cur);
  10068. }
  10069. };
  10070. struct llm_build_bailingmoe : public llm_graph_context {
  10071. llm_build_bailingmoe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  10072. ggml_tensor * cur;
  10073. ggml_tensor * inpL;
  10074. inpL = build_inp_embd(model.tok_embd);
  10075. // inp_pos - contains the positions
  10076. ggml_tensor * inp_pos = build_inp_pos();
  10077. auto * inp_attn = build_attn_inp_kv_unified();
  10078. for (int il = 0; il < n_layer; ++il) {
  10079. ggml_tensor * inpSA = inpL;
  10080. // norm
  10081. cur = build_norm(inpL,
  10082. model.layers[il].attn_norm, NULL,
  10083. LLM_NORM_RMS, il);
  10084. cb(cur, "attn_norm", il);
  10085. // self-attention
  10086. {
  10087. // rope freq factors for llama3; may return nullptr for llama2 and other models
  10088. ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
  10089. // compute Q and K and RoPE them
  10090. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  10091. cb(Qcur, "Qcur", il);
  10092. if (model.layers[il].bq) {
  10093. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  10094. cb(Qcur, "Qcur", il);
  10095. }
  10096. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  10097. cb(Kcur, "Kcur", il);
  10098. if (model.layers[il].bk) {
  10099. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  10100. cb(Kcur, "Kcur", il);
  10101. }
  10102. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  10103. cb(Vcur, "Vcur", il);
  10104. if (model.layers[il].bv) {
  10105. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  10106. cb(Vcur, "Vcur", il);
  10107. }
  10108. Qcur = ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens);
  10109. Kcur = ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens);
  10110. Vcur = ggml_reshape_3d(ctx0, Vcur, n_rot, n_head_kv, n_tokens);
  10111. Qcur = ggml_rope_ext(
  10112. ctx0, Qcur, inp_pos, rope_factors,
  10113. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10114. ext_factor, attn_factor, beta_fast, beta_slow
  10115. );
  10116. Kcur = ggml_rope_ext(
  10117. ctx0, Kcur, inp_pos, rope_factors,
  10118. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10119. ext_factor, attn_factor, beta_fast, beta_slow
  10120. );
  10121. cb(Qcur, "Qcur", il);
  10122. cb(Kcur, "Kcur", il);
  10123. cb(Vcur, "Vcur", il);
  10124. cur = build_attn(inp_attn, gf,
  10125. model.layers[il].wo, model.layers[il].bo,
  10126. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_rot)), il);
  10127. }
  10128. if (il == n_layer - 1) {
  10129. // skip computing output for unused tokens
  10130. ggml_tensor * inp_out_ids = build_inp_out_ids();
  10131. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10132. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  10133. }
  10134. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  10135. cb(ffn_inp, "ffn_inp", il);
  10136. cur = build_norm(ffn_inp,
  10137. model.layers[il].ffn_norm, NULL,
  10138. LLM_NORM_RMS, il);
  10139. cb(cur, "ffn_norm", il);
  10140. ggml_tensor * moe_out =
  10141. build_moe_ffn(cur,
  10142. model.layers[il].ffn_gate_inp,
  10143. model.layers[il].ffn_up_exps,
  10144. model.layers[il].ffn_gate_exps,
  10145. model.layers[il].ffn_down_exps,
  10146. nullptr,
  10147. n_expert, n_expert_used,
  10148. LLM_FFN_SILU, hparams.expert_weights_norm,
  10149. false, hparams.expert_weights_scale,
  10150. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  10151. il);
  10152. cb(moe_out, "ffn_moe_out", il);
  10153. // FFN shared expert
  10154. {
  10155. ggml_tensor * ffn_shexp = build_ffn(cur,
  10156. model.layers[il].ffn_up_shexp, NULL, NULL,
  10157. model.layers[il].ffn_gate_shexp, NULL, NULL,
  10158. model.layers[il].ffn_down_shexp, NULL, NULL,
  10159. NULL,
  10160. LLM_FFN_SILU, LLM_FFN_PAR, il);
  10161. cb(ffn_shexp, "ffn_shexp", il);
  10162. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  10163. cb(cur, "ffn_out", il);
  10164. }
  10165. cur = ggml_add(ctx0, cur, ffn_inp);
  10166. cur = build_cvec(cur, il);
  10167. cb(cur, "l_out", il);
  10168. // input for next layer
  10169. inpL = cur;
  10170. }
  10171. cur = inpL;
  10172. cur = build_norm(cur,
  10173. model.output_norm, NULL,
  10174. LLM_NORM_RMS, -1);
  10175. cb(cur, "result_norm", -1);
  10176. res->t_embd = cur;
  10177. // lm_head
  10178. cur = build_lora_mm(model.output, cur);
  10179. cb(cur, "result_output", -1);
  10180. res->t_logits = cur;
  10181. ggml_build_forward_expand(gf, cur);
  10182. }
  10183. };
  10184. llama_memory_i * llama_model::create_memory() const {
  10185. llama_memory_i * res;
  10186. switch (arch) {
  10187. case LLM_ARCH_MAMBA:
  10188. case LLM_ARCH_RWKV6:
  10189. case LLM_ARCH_RWKV6QWEN2:
  10190. case LLM_ARCH_RWKV7:
  10191. case LLM_ARCH_ARWKV7:
  10192. {
  10193. res = new llama_kv_cache_unified(hparams, {
  10194. /*.get_rope_factors =*/ nullptr
  10195. });
  10196. } break;
  10197. default:
  10198. {
  10199. res = new llama_kv_cache_unified(hparams, {
  10200. /*.get_rope_factors =*/ [this](uint32_t n_ctx_per_seq, int il) {
  10201. // choose long/short freq factors based on the context size
  10202. if (layers[il].rope_freqs != nullptr) {
  10203. return layers[il].rope_freqs;
  10204. }
  10205. if (n_ctx_per_seq > hparams.n_ctx_orig_yarn) {
  10206. return layers[il].rope_long;
  10207. }
  10208. return layers[il].rope_short;
  10209. }
  10210. });
  10211. }
  10212. }
  10213. return res;
  10214. }
  10215. llm_graph_result_ptr llama_model::build_graph(
  10216. const llm_graph_params & params,
  10217. ggml_cgraph * gf,
  10218. llm_graph_type type) const {
  10219. std::unique_ptr<llm_graph_context> llm;
  10220. switch (arch) {
  10221. case LLM_ARCH_LLAMA:
  10222. case LLM_ARCH_LLAMA4:
  10223. case LLM_ARCH_MINICPM:
  10224. case LLM_ARCH_GRANITE:
  10225. case LLM_ARCH_GRANITE_MOE:
  10226. {
  10227. llm = std::make_unique<llm_build_llama>(*this, params, gf);
  10228. } break;
  10229. case LLM_ARCH_DECI:
  10230. {
  10231. llm = std::make_unique<llm_build_deci>(*this, params, gf);
  10232. } break;
  10233. case LLM_ARCH_BAICHUAN:
  10234. {
  10235. llm = std::make_unique<llm_build_baichuan>(*this, params, gf);
  10236. } break;
  10237. case LLM_ARCH_FALCON:
  10238. {
  10239. llm = std::make_unique<llm_build_falcon>(*this, params, gf);
  10240. } break;
  10241. case LLM_ARCH_GROK:
  10242. {
  10243. llm = std::make_unique<llm_build_grok>(*this, params, gf);
  10244. } break;
  10245. case LLM_ARCH_STARCODER:
  10246. {
  10247. llm = std::make_unique<llm_build_starcoder>(*this, params, gf);
  10248. } break;
  10249. case LLM_ARCH_REFACT:
  10250. {
  10251. llm = std::make_unique<llm_build_refact>(*this, params, gf);
  10252. } break;
  10253. case LLM_ARCH_BERT:
  10254. case LLM_ARCH_JINA_BERT_V2:
  10255. case LLM_ARCH_NOMIC_BERT:
  10256. case LLM_ARCH_NOMIC_BERT_MOE:
  10257. {
  10258. llm = std::make_unique<llm_build_bert>(*this, params, gf);
  10259. } break;
  10260. case LLM_ARCH_BLOOM:
  10261. {
  10262. llm = std::make_unique<llm_build_bloom>(*this, params, gf);
  10263. } break;
  10264. case LLM_ARCH_MPT:
  10265. {
  10266. llm = std::make_unique<llm_build_mpt>(*this, params, gf);
  10267. } break;
  10268. case LLM_ARCH_STABLELM:
  10269. {
  10270. llm = std::make_unique<llm_build_stablelm>(*this, params, gf);
  10271. } break;
  10272. case LLM_ARCH_QWEN:
  10273. {
  10274. llm = std::make_unique<llm_build_qwen>(*this, params, gf);
  10275. } break;
  10276. case LLM_ARCH_QWEN2:
  10277. {
  10278. llm = std::make_unique<llm_build_qwen2>(*this, params, gf);
  10279. } break;
  10280. case LLM_ARCH_QWEN2VL:
  10281. {
  10282. llm = std::make_unique<llm_build_qwen2vl>(*this, params, gf);
  10283. } break;
  10284. case LLM_ARCH_QWEN2MOE:
  10285. {
  10286. llm = std::make_unique<llm_build_qwen2moe>(*this, params, gf);
  10287. } break;
  10288. case LLM_ARCH_QWEN3:
  10289. {
  10290. llm = std::make_unique<llm_build_qwen3>(*this, params, gf);
  10291. } break;
  10292. case LLM_ARCH_QWEN3MOE:
  10293. {
  10294. llm = std::make_unique<llm_build_qwen3moe>(*this, params, gf);
  10295. } break;
  10296. case LLM_ARCH_PHI2:
  10297. {
  10298. llm = std::make_unique<llm_build_phi2>(*this, params, gf);
  10299. } break;
  10300. case LLM_ARCH_PHI3:
  10301. case LLM_ARCH_PHIMOE:
  10302. {
  10303. llm = std::make_unique<llm_build_phi3>(*this, params, gf);
  10304. } break;
  10305. case LLM_ARCH_PLAMO:
  10306. {
  10307. llm = std::make_unique<llm_build_plamo>(*this, params, gf);
  10308. } break;
  10309. case LLM_ARCH_GPT2:
  10310. {
  10311. llm = std::make_unique<llm_build_gpt2>(*this, params, gf);
  10312. } break;
  10313. case LLM_ARCH_CODESHELL:
  10314. {
  10315. llm = std::make_unique<llm_build_codeshell>(*this, params, gf);
  10316. } break;
  10317. case LLM_ARCH_ORION:
  10318. {
  10319. llm = std::make_unique<llm_build_orion>(*this, params, gf);
  10320. } break;
  10321. case LLM_ARCH_INTERNLM2:
  10322. {
  10323. llm = std::make_unique<llm_build_internlm2>(*this, params, gf);
  10324. } break;
  10325. case LLM_ARCH_MINICPM3:
  10326. {
  10327. llm = std::make_unique<llm_build_minicpm3>(*this, params, gf);
  10328. } break;
  10329. case LLM_ARCH_GEMMA:
  10330. {
  10331. llm = std::make_unique<llm_build_gemma>(*this, params, gf);
  10332. } break;
  10333. case LLM_ARCH_GEMMA2:
  10334. {
  10335. llm = std::make_unique<llm_build_gemma2>(*this, params, gf);
  10336. } break;
  10337. case LLM_ARCH_GEMMA3:
  10338. {
  10339. llm = std::make_unique<llm_build_gemma3>(*this, params, gf);
  10340. } break;
  10341. case LLM_ARCH_STARCODER2:
  10342. {
  10343. llm = std::make_unique<llm_build_starcoder2>(*this, params, gf);
  10344. } break;
  10345. case LLM_ARCH_MAMBA:
  10346. {
  10347. llm = std::make_unique<llm_build_mamba>(*this, params, gf);
  10348. } break;
  10349. case LLM_ARCH_XVERSE:
  10350. {
  10351. llm = std::make_unique<llm_build_xverse>(*this, params, gf);
  10352. } break;
  10353. case LLM_ARCH_COMMAND_R:
  10354. {
  10355. llm = std::make_unique<llm_build_command_r>(*this, params, gf);
  10356. } break;
  10357. case LLM_ARCH_COHERE2:
  10358. {
  10359. llm = std::make_unique<llm_build_cohere2>(*this, params, gf);
  10360. } break;
  10361. case LLM_ARCH_DBRX:
  10362. {
  10363. llm = std::make_unique<llm_build_dbrx>(*this, params, gf);
  10364. } break;
  10365. case LLM_ARCH_OLMO:
  10366. {
  10367. llm = std::make_unique<llm_build_olmo>(*this, params, gf);
  10368. } break;
  10369. case LLM_ARCH_OLMO2:
  10370. {
  10371. llm = std::make_unique<llm_build_olmo2>(*this, params, gf);
  10372. } break;
  10373. case LLM_ARCH_OLMOE:
  10374. {
  10375. llm = std::make_unique<llm_build_olmoe>(*this, params, gf);
  10376. } break;
  10377. case LLM_ARCH_OPENELM:
  10378. {
  10379. llm = std::make_unique<llm_build_openelm>(*this, params, gf);
  10380. } break;
  10381. case LLM_ARCH_GPTNEOX:
  10382. {
  10383. llm = std::make_unique<llm_build_gptneox>(*this, params, gf);
  10384. } break;
  10385. case LLM_ARCH_ARCTIC:
  10386. {
  10387. llm = std::make_unique<llm_build_arctic>(*this, params, gf);
  10388. } break;
  10389. case LLM_ARCH_DEEPSEEK:
  10390. {
  10391. llm = std::make_unique<llm_build_deepseek>(*this, params, gf);
  10392. } break;
  10393. case LLM_ARCH_DEEPSEEK2:
  10394. {
  10395. llm = std::make_unique<llm_build_deepseek2>(*this, params, gf);
  10396. } break;
  10397. case LLM_ARCH_CHATGLM:
  10398. {
  10399. llm = std::make_unique<llm_build_chatglm>(*this, params, gf);
  10400. } break;
  10401. case LLM_ARCH_GLM4:
  10402. {
  10403. llm = std::make_unique<llm_build_glm4>(*this, params, gf);
  10404. } break;
  10405. case LLM_ARCH_BITNET:
  10406. {
  10407. llm = std::make_unique<llm_build_bitnet>(*this, params, gf);
  10408. } break;
  10409. case LLM_ARCH_T5:
  10410. {
  10411. switch (type) {
  10412. case LLM_GRAPH_TYPE_ENCODER:
  10413. llm = std::make_unique<llm_build_t5_enc>(*this, params, gf);
  10414. break;
  10415. case LLM_GRAPH_TYPE_DEFAULT:
  10416. case LLM_GRAPH_TYPE_DECODER:
  10417. llm = std::make_unique<llm_build_t5_dec>(*this, params, gf);
  10418. break;
  10419. default:
  10420. GGML_ABORT("invalid graph type");
  10421. };
  10422. } break;
  10423. case LLM_ARCH_T5ENCODER:
  10424. {
  10425. llm = std::make_unique<llm_build_t5_enc>(*this, params, gf);
  10426. }
  10427. break;
  10428. case LLM_ARCH_JAIS:
  10429. {
  10430. llm = std::make_unique<llm_build_jais>(*this, params, gf);
  10431. } break;
  10432. case LLM_ARCH_NEMOTRON:
  10433. {
  10434. llm = std::make_unique<llm_build_nemotron>(*this, params, gf);
  10435. } break;
  10436. case LLM_ARCH_EXAONE:
  10437. {
  10438. llm = std::make_unique<llm_build_exaone>(*this, params, gf);
  10439. } break;
  10440. case LLM_ARCH_RWKV6:
  10441. {
  10442. llm = std::make_unique<llm_build_rwkv6>(*this, params, gf);
  10443. } break;
  10444. case LLM_ARCH_RWKV6QWEN2:
  10445. {
  10446. llm = std::make_unique<llm_build_rwkv6qwen2>(*this, params, gf);
  10447. } break;
  10448. case LLM_ARCH_RWKV7:
  10449. {
  10450. llm = std::make_unique<llm_build_rwkv7>(*this, params, gf);
  10451. } break;
  10452. case LLM_ARCH_ARWKV7:
  10453. {
  10454. llm = std::make_unique<llm_build_arwkv7>(*this, params, gf);
  10455. } break;
  10456. case LLM_ARCH_CHAMELEON:
  10457. {
  10458. llm = std::make_unique<llm_build_chameleon>(*this, params, gf);
  10459. } break;
  10460. case LLM_ARCH_WAVTOKENIZER_DEC:
  10461. {
  10462. llm = std::make_unique<llm_build_wavtokenizer_dec>(*this, params, gf);
  10463. } break;
  10464. case LLM_ARCH_PLM:
  10465. {
  10466. llm = std::make_unique<llm_build_plm>(*this, params, gf);
  10467. } break;
  10468. case LLM_ARCH_BAILINGMOE:
  10469. {
  10470. llm = std::make_unique<llm_build_bailingmoe>(*this, params, gf);
  10471. } break;
  10472. default:
  10473. GGML_ABORT("fatal error");
  10474. }
  10475. // add on pooling layer
  10476. llm->build_pooling(gf, cls, cls_b, cls_out, cls_out_b);
  10477. return std::move(llm->res);
  10478. }
  10479. //
  10480. // interface implementation
  10481. //
  10482. llama_model_params llama_model_default_params() {
  10483. llama_model_params result = {
  10484. /*.devices =*/ nullptr,
  10485. /*.tensor_buft_overrides =*/ nullptr,
  10486. /*.n_gpu_layers =*/ 0,
  10487. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  10488. /*.main_gpu =*/ 0,
  10489. /*.tensor_split =*/ nullptr,
  10490. /*.progress_callback =*/ nullptr,
  10491. /*.progress_callback_user_data =*/ nullptr,
  10492. /*.kv_overrides =*/ nullptr,
  10493. /*.vocab_only =*/ false,
  10494. /*.use_mmap =*/ true,
  10495. /*.use_mlock =*/ false,
  10496. /*.check_tensors =*/ false,
  10497. };
  10498. #ifdef GGML_USE_METAL
  10499. // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
  10500. result.n_gpu_layers = 999;
  10501. #endif
  10502. return result;
  10503. }
  10504. const llama_vocab * llama_model_get_vocab(const llama_model * model) {
  10505. return &model->vocab;
  10506. }
  10507. void llama_free_model(llama_model * model) {
  10508. llama_model_free(model);
  10509. }
  10510. void llama_model_free(llama_model * model) {
  10511. delete model;
  10512. }
  10513. int32_t llama_model_n_ctx_train(const llama_model * model) {
  10514. return model->hparams.n_ctx_train;
  10515. }
  10516. int32_t llama_model_n_embd(const llama_model * model) {
  10517. return model->hparams.n_embd;
  10518. }
  10519. int32_t llama_model_n_layer(const llama_model * model) {
  10520. return model->hparams.n_layer;
  10521. }
  10522. int32_t llama_model_n_head(const llama_model * model) {
  10523. return model->hparams.n_head();
  10524. }
  10525. int32_t llama_model_n_head_kv(const llama_model * model) {
  10526. return model->hparams.n_head_kv();
  10527. }
  10528. // deprecated
  10529. int32_t llama_n_ctx_train(const llama_model * model) {
  10530. return llama_model_n_ctx_train(model);
  10531. }
  10532. // deprecated
  10533. int32_t llama_n_embd(const llama_model * model) {
  10534. return llama_model_n_embd(model);
  10535. }
  10536. // deprecated
  10537. int32_t llama_n_layer(const llama_model * model) {
  10538. return llama_model_n_layer(model);
  10539. }
  10540. // deprecated
  10541. int32_t llama_n_head(const llama_model * model) {
  10542. return llama_model_n_head(model);
  10543. }
  10544. llama_rope_type llama_model_rope_type(const llama_model * model) {
  10545. switch (model->arch) {
  10546. // these models do not use RoPE
  10547. case LLM_ARCH_GPT2:
  10548. case LLM_ARCH_GPTJ:
  10549. case LLM_ARCH_MPT:
  10550. case LLM_ARCH_REFACT:
  10551. case LLM_ARCH_BLOOM:
  10552. case LLM_ARCH_MAMBA:
  10553. case LLM_ARCH_JINA_BERT_V2:
  10554. case LLM_ARCH_T5:
  10555. case LLM_ARCH_T5ENCODER:
  10556. case LLM_ARCH_JAIS:
  10557. case LLM_ARCH_RWKV6:
  10558. case LLM_ARCH_RWKV6QWEN2:
  10559. case LLM_ARCH_RWKV7:
  10560. case LLM_ARCH_ARWKV7:
  10561. case LLM_ARCH_WAVTOKENIZER_DEC:
  10562. return LLAMA_ROPE_TYPE_NONE;
  10563. // use what we call a normal RoPE, operating on pairs of consecutive head values
  10564. case LLM_ARCH_LLAMA:
  10565. case LLM_ARCH_LLAMA4:
  10566. case LLM_ARCH_DECI:
  10567. case LLM_ARCH_BAICHUAN:
  10568. case LLM_ARCH_STARCODER:
  10569. case LLM_ARCH_PLAMO:
  10570. case LLM_ARCH_ORION:
  10571. case LLM_ARCH_INTERNLM2:
  10572. case LLM_ARCH_MINICPM:
  10573. case LLM_ARCH_XVERSE:
  10574. case LLM_ARCH_COMMAND_R:
  10575. case LLM_ARCH_COHERE2:
  10576. case LLM_ARCH_OLMO:
  10577. case LLM_ARCH_ARCTIC:
  10578. case LLM_ARCH_DEEPSEEK:
  10579. case LLM_ARCH_DEEPSEEK2:
  10580. case LLM_ARCH_PLM:
  10581. case LLM_ARCH_CHATGLM:
  10582. case LLM_ARCH_GLM4:
  10583. case LLM_ARCH_GRANITE:
  10584. case LLM_ARCH_GRANITE_MOE:
  10585. case LLM_ARCH_CHAMELEON:
  10586. case LLM_ARCH_BAILINGMOE:
  10587. return LLAMA_ROPE_TYPE_NORM;
  10588. // the pairs of head values are offset by n_rot/2
  10589. case LLM_ARCH_FALCON:
  10590. case LLM_ARCH_GROK:
  10591. case LLM_ARCH_DBRX:
  10592. case LLM_ARCH_BERT:
  10593. case LLM_ARCH_NOMIC_BERT:
  10594. case LLM_ARCH_NOMIC_BERT_MOE:
  10595. case LLM_ARCH_STABLELM:
  10596. case LLM_ARCH_BITNET:
  10597. case LLM_ARCH_QWEN:
  10598. case LLM_ARCH_QWEN2:
  10599. case LLM_ARCH_QWEN2MOE:
  10600. case LLM_ARCH_QWEN3:
  10601. case LLM_ARCH_QWEN3MOE:
  10602. case LLM_ARCH_OLMO2:
  10603. case LLM_ARCH_OLMOE:
  10604. case LLM_ARCH_PHI2:
  10605. case LLM_ARCH_PHI3:
  10606. case LLM_ARCH_PHIMOE:
  10607. case LLM_ARCH_GEMMA:
  10608. case LLM_ARCH_GEMMA2:
  10609. case LLM_ARCH_GEMMA3:
  10610. case LLM_ARCH_STARCODER2:
  10611. case LLM_ARCH_OPENELM:
  10612. case LLM_ARCH_GPTNEOX:
  10613. case LLM_ARCH_CODESHELL:
  10614. case LLM_ARCH_NEMOTRON:
  10615. case LLM_ARCH_EXAONE:
  10616. case LLM_ARCH_MINICPM3:
  10617. return LLAMA_ROPE_TYPE_NEOX;
  10618. case LLM_ARCH_QWEN2VL:
  10619. return LLAMA_ROPE_TYPE_MROPE;
  10620. // all model arches should be listed explicitly here
  10621. case LLM_ARCH_UNKNOWN:
  10622. GGML_ABORT("unknown architecture");
  10623. }
  10624. return LLAMA_ROPE_TYPE_NONE;
  10625. }
  10626. float llama_model_rope_freq_scale_train(const llama_model * model) {
  10627. return model->hparams.rope_freq_scale_train;
  10628. }
  10629. int32_t llama_model_meta_val_str(const llama_model * model, const char * key, char * buf, size_t buf_size) {
  10630. const auto & it = model->gguf_kv.find(key);
  10631. if (it == model->gguf_kv.end()) {
  10632. if (buf_size > 0) {
  10633. buf[0] = '\0';
  10634. }
  10635. return -1;
  10636. }
  10637. return snprintf(buf, buf_size, "%s", it->second.c_str());
  10638. }
  10639. int32_t llama_model_meta_count(const llama_model * model) {
  10640. return (int)model->gguf_kv.size();
  10641. }
  10642. int32_t llama_model_meta_key_by_index(const llama_model * model, int i, char * buf, size_t buf_size) {
  10643. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  10644. if (buf_size > 0) {
  10645. buf[0] = '\0';
  10646. }
  10647. return -1;
  10648. }
  10649. auto it = model->gguf_kv.begin();
  10650. std::advance(it, i);
  10651. return snprintf(buf, buf_size, "%s", it->first.c_str());
  10652. }
  10653. int32_t llama_model_meta_val_str_by_index(const llama_model * model, int32_t i, char * buf, size_t buf_size) {
  10654. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  10655. if (buf_size > 0) {
  10656. buf[0] = '\0';
  10657. }
  10658. return -1;
  10659. }
  10660. auto it = model->gguf_kv.begin();
  10661. std::advance(it, i);
  10662. return snprintf(buf, buf_size, "%s", it->second.c_str());
  10663. }
  10664. int32_t llama_model_desc(const llama_model * model, char * buf, size_t buf_size) {
  10665. return snprintf(buf, buf_size, "%s", model->desc().c_str());
  10666. }
  10667. uint64_t llama_model_size(const llama_model * model) {
  10668. return model->size();
  10669. }
  10670. const char * llama_model_chat_template(const llama_model * model, const char * name) {
  10671. const auto key = name ? LLM_KV(model->arch, name)(LLM_KV_TOKENIZER_CHAT_TEMPLATE_N)
  10672. : LLM_KV(model->arch)(LLM_KV_TOKENIZER_CHAT_TEMPLATE);
  10673. const auto & it = model->gguf_kv.find(key);
  10674. if (it == model->gguf_kv.end()) {
  10675. return nullptr;
  10676. }
  10677. return it->second.c_str();
  10678. }
  10679. uint64_t llama_model_n_params(const llama_model * model) {
  10680. return model->n_elements();
  10681. }
  10682. bool llama_model_has_encoder(const llama_model * model) {
  10683. switch (model->arch) {
  10684. case LLM_ARCH_T5: return true;
  10685. case LLM_ARCH_T5ENCODER: return true;
  10686. default: return false;
  10687. }
  10688. }
  10689. bool llama_model_has_decoder(const llama_model * model) {
  10690. switch (model->arch) {
  10691. case LLM_ARCH_T5ENCODER: return false;
  10692. default: return true;
  10693. }
  10694. }
  10695. llama_token llama_model_decoder_start_token(const llama_model * model) {
  10696. return model->hparams.dec_start_token_id;
  10697. }
  10698. bool llama_model_is_recurrent(const llama_model * model) {
  10699. switch (model->arch) {
  10700. case LLM_ARCH_MAMBA: return true;
  10701. case LLM_ARCH_RWKV6: return true;
  10702. case LLM_ARCH_RWKV6QWEN2: return true;
  10703. case LLM_ARCH_RWKV7: return true;
  10704. case LLM_ARCH_ARWKV7: return true;
  10705. default: return false;
  10706. }
  10707. }
  10708. const std::vector<std::pair<std::string, ggml_tensor *>> & llama_internal_get_tensor_map(const llama_model * model) {
  10709. return model->tensors_by_name;
  10710. }