ggml.c 384 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #define GGML_ASSERT(x) \
  116. do { \
  117. if (!(x)) { \
  118. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  119. abort(); \
  120. } \
  121. } while (0)
  122. #if defined(GGML_USE_ACCELERATE)
  123. #include <Accelerate/Accelerate.h>
  124. #elif defined(GGML_USE_OPENBLAS)
  125. #include <cblas.h>
  126. #elif defined(GGML_USE_CUBLAS)
  127. #include "ggml-cuda.h"
  128. #endif
  129. #undef MIN
  130. #undef MAX
  131. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  132. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  133. // floating point type used to accumulate sums
  134. typedef double ggml_float;
  135. // 16-bit float
  136. // on Arm, we use __fp16
  137. // on x86, we use uint16_t
  138. #ifdef __ARM_NEON
  139. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  140. //
  141. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  142. //
  143. #include <arm_neon.h>
  144. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  145. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  146. #define GGML_FP16_TO_FP32(x) ((float) (x))
  147. #define GGML_FP32_TO_FP16(x) (x)
  148. #else
  149. #ifdef __wasm_simd128__
  150. #include <wasm_simd128.h>
  151. #else
  152. #ifdef __POWER9_VECTOR__
  153. #include <altivec.h>
  154. #undef bool
  155. #define bool _Bool
  156. #else
  157. #include <immintrin.h>
  158. #endif
  159. #endif
  160. #ifdef __F16C__
  161. #ifdef _MSC_VER
  162. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  163. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  164. #else
  165. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  166. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  167. #endif
  168. #elif defined(__POWER9_VECTOR__)
  169. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  170. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  171. /* the inline asm below is about 12% faster than the lookup method */
  172. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  173. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  174. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  175. register float f;
  176. register double d;
  177. __asm__(
  178. "mtfprd %0,%2\n"
  179. "xscvhpdp %0,%0\n"
  180. "frsp %1,%0\n" :
  181. /* temp */ "=d"(d),
  182. /* out */ "=f"(f):
  183. /* in */ "r"(h));
  184. return f;
  185. }
  186. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  187. register double d;
  188. register ggml_fp16_t r;
  189. __asm__( /* xscvdphp can work on double or single precision */
  190. "xscvdphp %0,%2\n"
  191. "mffprd %1,%0\n" :
  192. /* temp */ "=d"(d),
  193. /* out */ "=r"(r):
  194. /* in */ "f"(f));
  195. return r;
  196. }
  197. #else
  198. // FP16 <-> FP32
  199. // ref: https://github.com/Maratyszcza/FP16
  200. static inline float fp32_from_bits(uint32_t w) {
  201. union {
  202. uint32_t as_bits;
  203. float as_value;
  204. } fp32;
  205. fp32.as_bits = w;
  206. return fp32.as_value;
  207. }
  208. static inline uint32_t fp32_to_bits(float f) {
  209. union {
  210. float as_value;
  211. uint32_t as_bits;
  212. } fp32;
  213. fp32.as_value = f;
  214. return fp32.as_bits;
  215. }
  216. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  217. const uint32_t w = (uint32_t) h << 16;
  218. const uint32_t sign = w & UINT32_C(0x80000000);
  219. const uint32_t two_w = w + w;
  220. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  221. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  222. const float exp_scale = 0x1.0p-112f;
  223. #else
  224. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  225. #endif
  226. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  227. const uint32_t magic_mask = UINT32_C(126) << 23;
  228. const float magic_bias = 0.5f;
  229. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  230. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  231. const uint32_t result = sign |
  232. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  233. return fp32_from_bits(result);
  234. }
  235. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  236. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  237. const float scale_to_inf = 0x1.0p+112f;
  238. const float scale_to_zero = 0x1.0p-110f;
  239. #else
  240. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  241. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  242. #endif
  243. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  244. const uint32_t w = fp32_to_bits(f);
  245. const uint32_t shl1_w = w + w;
  246. const uint32_t sign = w & UINT32_C(0x80000000);
  247. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  248. if (bias < UINT32_C(0x71000000)) {
  249. bias = UINT32_C(0x71000000);
  250. }
  251. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  252. const uint32_t bits = fp32_to_bits(base);
  253. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  254. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  255. const uint32_t nonsign = exp_bits + mantissa_bits;
  256. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  257. }
  258. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  259. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  260. #endif // __F16C__
  261. #endif // __ARM_NEON
  262. //
  263. // global data
  264. //
  265. // precomputed gelu table for f16 (128 KB)
  266. static ggml_fp16_t table_gelu_f16[1 << 16];
  267. // precomputed silu table for f16 (128 KB)
  268. static ggml_fp16_t table_silu_f16[1 << 16];
  269. // precomputed exp table for f16 (128 KB)
  270. static ggml_fp16_t table_exp_f16[1 << 16];
  271. // precomputed f32 table for f16 (256 KB)
  272. static float table_f32_f16[1 << 16];
  273. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  274. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  275. // This is also true for POWER9.
  276. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  277. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  278. uint16_t s;
  279. memcpy(&s, &f, sizeof(uint16_t));
  280. return table_f32_f16[s];
  281. }
  282. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  283. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  284. #endif
  285. // note: do not use these inside ggml.c
  286. // these are meant to be used via the ggml.h API
  287. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  288. return (float) GGML_FP16_TO_FP32(x);
  289. }
  290. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  291. return GGML_FP32_TO_FP16(x);
  292. }
  293. //
  294. // timing
  295. //
  296. #if defined(_MSC_VER) || defined(__MINGW32__)
  297. static int64_t timer_freq;
  298. void ggml_time_init(void) {
  299. LARGE_INTEGER frequency;
  300. QueryPerformanceFrequency(&frequency);
  301. timer_freq = frequency.QuadPart;
  302. }
  303. int64_t ggml_time_ms(void) {
  304. LARGE_INTEGER t;
  305. QueryPerformanceCounter(&t);
  306. return (t.QuadPart * 1000) / timer_freq;
  307. }
  308. int64_t ggml_time_us(void) {
  309. LARGE_INTEGER t;
  310. QueryPerformanceCounter(&t);
  311. return (t.QuadPart * 1000000) / timer_freq;
  312. }
  313. #else
  314. void ggml_time_init(void) {}
  315. int64_t ggml_time_ms(void) {
  316. struct timespec ts;
  317. clock_gettime(CLOCK_MONOTONIC, &ts);
  318. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  319. }
  320. int64_t ggml_time_us(void) {
  321. struct timespec ts;
  322. clock_gettime(CLOCK_MONOTONIC, &ts);
  323. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  324. }
  325. #endif
  326. int64_t ggml_cycles(void) {
  327. return clock();
  328. }
  329. int64_t ggml_cycles_per_ms(void) {
  330. return CLOCKS_PER_SEC/1000;
  331. }
  332. #ifdef GGML_PERF
  333. #define ggml_perf_time_ms() ggml_time_ms()
  334. #define ggml_perf_time_us() ggml_time_us()
  335. #define ggml_perf_cycles() ggml_cycles()
  336. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  337. #else
  338. #define ggml_perf_time_ms() 0
  339. #define ggml_perf_time_us() 0
  340. #define ggml_perf_cycles() 0
  341. #define ggml_perf_cycles_per_ms() 0
  342. #endif
  343. //
  344. // cache line
  345. //
  346. #if defined(__cpp_lib_hardware_interference_size)
  347. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  348. #else
  349. #if defined(__POWER9_VECTOR__)
  350. #define CACHE_LINE_SIZE 128
  351. #else
  352. #define CACHE_LINE_SIZE 64
  353. #endif
  354. #endif
  355. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  356. //
  357. // quantization
  358. //
  359. #if __AVX__ || __AVX2__ || __AVX512F__
  360. // Unpack 16 4-bit fields into 16 bytes
  361. // The output vector contains 16 bytes, each one in [ 0 .. 15 ] interval
  362. static inline __m128i bytes_from_nibbles_16(const uint8_t * rsi)
  363. {
  364. // Load 8 bytes from memory
  365. __m128i tmp = _mm_loadu_si64( ( const __m128i* )rsi );
  366. // Expand bytes into uint16_t values
  367. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  368. // Unpack values into individual bytes
  369. const __m128i lowMask = _mm_set1_epi8( 0xF );
  370. __m128i high = _mm_andnot_si128( lowMask, bytes );
  371. __m128i low = _mm_and_si128( lowMask, bytes );
  372. high = _mm_slli_epi16( high, 4 );
  373. bytes = _mm_or_si128( low, high );
  374. return bytes;
  375. }
  376. #if __AVX2__ || __AVX512F__
  377. // Unpack 32 4-bit fields into 32 bytes
  378. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  379. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  380. {
  381. // Load 16 bytes from memory
  382. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  383. // Expand bytes into uint16_t values
  384. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  385. // Unpack values into individual bytes
  386. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  387. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  388. __m256i low = _mm256_and_si256( lowMask, bytes );
  389. high = _mm256_slli_epi16( high, 4 );
  390. bytes = _mm256_or_si256( low, high );
  391. return bytes;
  392. }
  393. static inline __m128i packNibbles( __m256i bytes )
  394. {
  395. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  396. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  397. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  398. __m256i low = _mm256_and_si256( lowByte, bytes );
  399. high = _mm256_srli_epi16( high, 4 );
  400. bytes = _mm256_or_si256( low, high );
  401. // Compress uint16_t lanes into bytes
  402. __m128i r0 = _mm256_castsi256_si128( bytes );
  403. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  404. return _mm_packus_epi16( r0, r1 );
  405. }
  406. #else
  407. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  408. {
  409. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  410. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  411. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  412. __m128i low = _mm_and_si128( lowByte, bytes1 );
  413. high = _mm_srli_epi16( high, 4 );
  414. bytes1 = _mm_or_si128( low, high );
  415. high = _mm_andnot_si128( lowByte, bytes2 );
  416. low = _mm_and_si128( lowByte, bytes2 );
  417. high = _mm_srli_epi16( high, 4 );
  418. bytes2 = _mm_or_si128( low, high );
  419. return _mm_packus_epi16( bytes1, bytes2);
  420. }
  421. #endif
  422. #endif // __AVX__ || __AVX2__ || __AVX512F__
  423. #if __ARM_NEON
  424. #if !defined(__aarch64__)
  425. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  426. return
  427. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  428. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  429. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  430. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  431. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  432. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  433. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  434. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  435. }
  436. inline static int16_t vaddvq_s8(int8x16_t v) {
  437. return
  438. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  439. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  440. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  441. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  442. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  443. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  444. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  445. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  446. }
  447. inline static int32_t vaddvq_s16(int16x8_t v) {
  448. return
  449. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  450. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  451. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  452. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  453. }
  454. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  455. return
  456. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  457. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  458. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  459. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  460. }
  461. inline static int32_t vaddvq_s32(int32x4_t v) {
  462. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  463. }
  464. inline static float vaddvq_f32(float32x4_t v) {
  465. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  466. }
  467. float vminvq_f32(float32x4_t v) {
  468. return
  469. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  470. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  471. }
  472. float vmaxvq_f32(float32x4_t v) {
  473. return
  474. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  475. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  476. }
  477. int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) {
  478. return vget_low_s8(vcombine_s8(a, b));
  479. }
  480. int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) {
  481. return vget_high_s8(vcombine_s8(a, b));
  482. }
  483. uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  484. return vget_low_u8(vcombine_u8(a, b));
  485. }
  486. uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  487. return vget_high_u8(vcombine_u8(a, b));
  488. }
  489. #endif
  490. #endif
  491. #define QK4_0 32
  492. typedef struct {
  493. float d; // delta
  494. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  495. } block_q4_0;
  496. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  497. #define QK4_1 32
  498. typedef struct {
  499. float d; // delta
  500. float m; // min
  501. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  502. } block_q4_1;
  503. static_assert(sizeof(block_q4_1) == 2 * sizeof(float) + QK4_1 / 2, "wrong q4_1 block size/padding");
  504. #define QK4_2 16
  505. typedef struct {
  506. ggml_fp16_t d; // delta
  507. uint8_t qs[QK4_2 / 2]; // nibbles / quants
  508. } block_q4_2;
  509. static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
  510. #define QK4_3 16
  511. typedef struct {
  512. ggml_fp16_t d; // delta
  513. ggml_fp16_t m; // min
  514. uint8_t qs[QK4_3 / 2]; // nibbles / quants
  515. } block_q4_3;
  516. static_assert(sizeof(block_q4_3) == 2 * sizeof(ggml_fp16_t) + QK4_3 / 2, "wrong q4_3 block size/padding");
  517. #define QK8_0 32
  518. typedef struct {
  519. float d; // delta
  520. float s; // d * sum(qs[i])
  521. int8_t qs[QK8_0]; // quants
  522. } block_q8_0;
  523. static_assert(sizeof(block_q8_0) == 2*sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  524. // reference implementation for deterministic creation of model files
  525. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  526. assert(k % QK4_0 == 0);
  527. const int nb = k / QK4_0;
  528. uint8_t pp[QK4_0/2];
  529. for (int i = 0; i < nb; i++) {
  530. float amax = 0.0f; // absolute max
  531. for (int l = 0; l < QK4_0; l++) {
  532. const float v = x[i*QK4_0 + l];
  533. amax = MAX(amax, fabsf(v));
  534. }
  535. const float d = amax / ((1 << 3) - 1);
  536. const float id = d ? 1.0f/d : 0.0f;
  537. y[i].d = d;
  538. for (int l = 0; l < QK4_0; l += 2) {
  539. const float v0 = x[i*QK4_0 + l + 0]*id;
  540. const float v1 = x[i*QK4_0 + l + 1]*id;
  541. const uint8_t vi0 = (int8_t)roundf(v0) + 8;
  542. const uint8_t vi1 = (int8_t)roundf(v1) + 8;
  543. assert(vi0 < 16);
  544. assert(vi1 < 16);
  545. pp[l/2] = vi0 | (vi1 << 4);
  546. }
  547. memcpy(y[i].qs, pp, sizeof(pp));
  548. }
  549. }
  550. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  551. assert(k % QK4_0 == 0);
  552. const int nb = k / QK4_0;
  553. block_q4_0 * restrict y = vy;
  554. #if defined(__POWER9_VECTOR__)
  555. const vector float v85 = vec_splats(8.5f);
  556. for (int i = 0; i < nb; i++) {
  557. float amax = 0.0f; // absolute max
  558. vector float srcv [8];
  559. vector float asrcv[8];
  560. vector float amaxv[8];
  561. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  562. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  563. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  564. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  565. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  566. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  567. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  568. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  569. amax = MAX(
  570. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  571. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  572. const float d = amax / ((1 << 3) - 1);
  573. const float id = d ? 1.0/d : 0.0;
  574. y[i].d = d;
  575. const vector float vid = vec_splats(id);
  576. uint8_t * restrict pb = y[i].qs;
  577. for (int l = 0; l < 8; l++) {
  578. const vector float vf = vec_madd(srcv[l], vid, v85);
  579. const vector signed int vi = vec_signed(vf);
  580. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  581. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  582. }
  583. }
  584. #elif __ARM_NEON
  585. for (int i = 0; i < nb; i++) {
  586. float32x4_t srcv [8];
  587. float32x4_t asrcv[8];
  588. float32x4_t amaxv[8];
  589. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  590. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  591. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  592. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  593. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  594. const float amax = vmaxvq_f32(amaxv[0]);
  595. const float d = amax / ((1 << 3) - 1);
  596. const float id = d ? 1.0f/d : 0.0f;
  597. y[i].d = d;
  598. for (int l = 0; l < 8; l++) {
  599. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  600. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  601. const int32x4_t vi = vcvtq_s32_f32(vf);
  602. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  603. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  604. }
  605. }
  606. #elif defined(__AVX2__)
  607. for (int i = 0; i < nb; i++) {
  608. // Load elements into 4 AVX vectors
  609. __m256 v0 = _mm256_loadu_ps( x );
  610. __m256 v1 = _mm256_loadu_ps( x + 8 );
  611. __m256 v2 = _mm256_loadu_ps( x + 16 );
  612. __m256 v3 = _mm256_loadu_ps( x + 24 );
  613. x += 32;
  614. // Compute max(abs(e)) for the block
  615. const __m256 signBit = _mm256_set1_ps( -0.0f );
  616. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  617. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  618. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  619. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  620. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  621. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  622. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  623. const float maxScalar = _mm_cvtss_f32( max4 );
  624. // Quantize these floats
  625. const float d = maxScalar / 7.0f;
  626. y[i].d = d;
  627. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  628. const __m256 mul = _mm256_set1_ps( id );
  629. // Apply the multiplier
  630. v0 = _mm256_mul_ps( v0, mul );
  631. v1 = _mm256_mul_ps( v1, mul );
  632. v2 = _mm256_mul_ps( v2, mul );
  633. v3 = _mm256_mul_ps( v3, mul );
  634. // Round to nearest integer
  635. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  636. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  637. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  638. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  639. // Convert floats to integers
  640. __m256i i0 = _mm256_cvtps_epi32( v0 );
  641. __m256i i1 = _mm256_cvtps_epi32( v1 );
  642. __m256i i2 = _mm256_cvtps_epi32( v2 );
  643. __m256i i3 = _mm256_cvtps_epi32( v3 );
  644. // Convert int32 to int16
  645. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  646. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  647. // Convert int16 to int8
  648. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  649. // We got our precious signed bytes, but the order is now wrong
  650. // These AVX2 pack instructions process 16-byte pieces independently
  651. // The following instruction is fixing the order
  652. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  653. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  654. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  655. const __m256i off = _mm256_set1_epi8( 8 );
  656. i0 = _mm256_add_epi8( i0, off );
  657. // Compress the vector into 4 bit/value, and store
  658. __m128i res = packNibbles( i0 );
  659. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  660. }
  661. #elif defined(__AVX__)
  662. for (int i = 0; i < nb; i++) {
  663. // Load elements into 4 AVX vectors
  664. __m256 v0 = _mm256_loadu_ps( x );
  665. __m256 v1 = _mm256_loadu_ps( x + 8 );
  666. __m256 v2 = _mm256_loadu_ps( x + 16 );
  667. __m256 v3 = _mm256_loadu_ps( x + 24 );
  668. x += 32;
  669. // Compute max(abs(e)) for the block
  670. const __m256 signBit = _mm256_set1_ps( -0.0f );
  671. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  672. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  673. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  674. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  675. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  676. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  677. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  678. const float maxScalar = _mm_cvtss_f32( max4 );
  679. // Quantize these floats
  680. const float d = maxScalar / 7.0f;
  681. y[i].d = d;
  682. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  683. const __m256 mul = _mm256_set1_ps( id );
  684. // Apply the multiplier
  685. v0 = _mm256_mul_ps( v0, mul );
  686. v1 = _mm256_mul_ps( v1, mul );
  687. v2 = _mm256_mul_ps( v2, mul );
  688. v3 = _mm256_mul_ps( v3, mul );
  689. // Round to nearest integer
  690. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  691. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  692. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  693. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  694. // Convert floats to integers
  695. __m256i i0 = _mm256_cvtps_epi32( v0 );
  696. __m256i i1 = _mm256_cvtps_epi32( v1 );
  697. __m256i i2 = _mm256_cvtps_epi32( v2 );
  698. __m256i i3 = _mm256_cvtps_epi32( v3 );
  699. // Since we don't have in AVX some necessary functions,
  700. // we split the registers in half and call AVX2 analogs from SSE
  701. __m128i ni0 = _mm256_castsi256_si128( i0 );
  702. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  703. __m128i ni2 = _mm256_castsi256_si128( i1 );
  704. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  705. __m128i ni4 = _mm256_castsi256_si128( i2 );
  706. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  707. __m128i ni6 = _mm256_castsi256_si128( i3 );
  708. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  709. // Convert int32 to int16
  710. ni0 = _mm_packs_epi32( ni0, ni1 );
  711. ni2 = _mm_packs_epi32( ni2, ni3 );
  712. ni4 = _mm_packs_epi32( ni4, ni5 );
  713. ni6 = _mm_packs_epi32( ni6, ni7 );
  714. // Convert int16 to int8
  715. ni0 = _mm_packs_epi16( ni0, ni2 );
  716. ni4 = _mm_packs_epi16( ni4, ni6 );
  717. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  718. const __m128i off = _mm_set1_epi8( 8);
  719. ni0 = _mm_add_epi8( ni0, off );
  720. ni4 = _mm_add_epi8( ni4, off );
  721. // Compress the vector into 4 bit/value, and store
  722. __m128i res = packNibbles( ni0, ni4 );
  723. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  724. }
  725. #elif defined(__wasm_simd128__)
  726. for (int i = 0; i < nb; i++) {
  727. float amax = 0.0f; // absolute max
  728. v128_t srcv [8];
  729. v128_t asrcv[8];
  730. v128_t amaxv[8];
  731. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  732. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  733. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  734. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  735. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  736. amax = MAX(
  737. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  738. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  739. const float d = amax / ((1 << 3) - 1);
  740. const float id = d ? 1.0/d : 0.0;
  741. y[i].d = d;
  742. for (int l = 0; l < 8; l++) {
  743. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  744. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  745. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  746. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  747. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  748. }
  749. }
  750. #else
  751. // scalar
  752. quantize_row_q4_0_reference(x, y, k);
  753. #endif
  754. }
  755. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  756. assert(k % QK4_1 == 0);
  757. const int nb = k / QK4_1;
  758. block_q4_1 * restrict y = vy;
  759. uint8_t pp[QK4_1/2];
  760. for (int i = 0; i < nb; i++) {
  761. float min = FLT_MAX;
  762. float max = -FLT_MAX;
  763. for (int l = 0; l < QK4_1; l++) {
  764. const float v = x[i*QK4_1 + l];
  765. if (v < min) min = v;
  766. if (v > max) max = v;
  767. }
  768. const float d = (max - min) / ((1 << 4) - 1);
  769. const float id = d ? 1.0f/d : 0.0f;
  770. y[i].d = d;
  771. y[i].m = min;
  772. for (int l = 0; l < QK4_1; l += 2) {
  773. const float v0 = (x[i*QK4_1 + l + 0] - min)*id;
  774. const float v1 = (x[i*QK4_1 + l + 1] - min)*id;
  775. const uint8_t vi0 = roundf(v0);
  776. const uint8_t vi1 = roundf(v1);
  777. assert(vi0 < 16);
  778. assert(vi1 < 16);
  779. pp[l/2] = vi0 | (vi1 << 4);
  780. }
  781. memcpy(y[i].qs, pp, sizeof(pp));
  782. }
  783. }
  784. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  785. assert(k % QK4_1 == 0);
  786. const int nb = k / QK4_1;
  787. block_q4_1 * restrict y = vy;
  788. #if defined(__AVX2__)
  789. for (int i = 0; i < nb; i++) {
  790. // Load elements into 4 AVX vectors
  791. __m256 v0 = _mm256_loadu_ps( x );
  792. __m256 v1 = _mm256_loadu_ps( x + 8 );
  793. __m256 v2 = _mm256_loadu_ps( x + 16 );
  794. __m256 v3 = _mm256_loadu_ps( x + 24 );
  795. x += 32;
  796. // Compute max for the block
  797. __m256 vmax;
  798. vmax = _mm256_max_ps( v0, v1 );
  799. vmax = _mm256_max_ps( vmax, v2 );
  800. vmax = _mm256_max_ps( vmax, v3 );
  801. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  802. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  803. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  804. const float maxScalar = _mm_cvtss_f32( max4 );
  805. // Compute min for the block
  806. __m256 vmin;
  807. vmin = _mm256_min_ps( v0, v1 );
  808. vmin = _mm256_min_ps( vmin, v2 );
  809. vmin = _mm256_min_ps( vmin, v3 );
  810. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  811. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  812. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  813. const float minScalar = _mm_cvtss_f32( min4 );
  814. // Quantize these floats
  815. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  816. const float id = d ? 1.0f/d : 0.0f;
  817. y[i].m = minScalar;
  818. y[i].d = d;
  819. // x = (x-min)*id
  820. const __m256 mul = _mm256_set1_ps( id );
  821. const __m256 off = _mm256_set1_ps( minScalar );
  822. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  823. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  824. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  825. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  826. // Round to nearest integer
  827. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  828. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  829. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  830. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  831. // Convert floats to integers
  832. __m256i i0 = _mm256_cvtps_epi32( v0 );
  833. __m256i i1 = _mm256_cvtps_epi32( v1 );
  834. __m256i i2 = _mm256_cvtps_epi32( v2 );
  835. __m256i i3 = _mm256_cvtps_epi32( v3 );
  836. // Convert int32 to int16
  837. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  838. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  839. // Convert int16 to int8
  840. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  841. // We got our precious signed bytes, but the order is now wrong
  842. // These AVX2 pack instructions process 16-byte pieces independently
  843. // The following instruction is fixing the order
  844. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  845. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  846. // Compress the vector into 4 bit/value, and store
  847. __m128i res = packNibbles( i0 );
  848. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  849. }
  850. #elif __ARM_NEON
  851. for (int i = 0; i < nb; i++) {
  852. float32x4_t srcv[8];
  853. float32x4_t minv[8];
  854. float32x4_t maxv[8];
  855. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK4_1 + 4*l);
  856. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  857. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  858. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  859. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  860. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  861. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  862. const float min = vminvq_f32(minv[0]);
  863. const float max = vmaxvq_f32(maxv[0]);
  864. const float d = (max - min) / ((1 << 4) - 1);
  865. const float id = d ? 1.0f/d : 0.0f;
  866. y[i].d = d;
  867. y[i].m = min;
  868. const float32x4_t minv0 = vdupq_n_f32(min);
  869. for (int l = 0; l < 8; l++) {
  870. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  871. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  872. const int32x4_t vi = vcvtq_s32_f32(vf);
  873. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  874. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  875. }
  876. }
  877. #else
  878. // scalar
  879. quantize_row_q4_1_reference(x, vy, k);
  880. #endif
  881. }
  882. // reference implementation for deterministic creation of model files
  883. static void quantize_row_q4_2_reference(const float * restrict x, block_q4_2 * restrict y, int k) {
  884. assert(k % QK4_2 == 0);
  885. const int nb = k / QK4_2;
  886. for (int i = 0; i < nb; i++) {
  887. float amax = 0.0f; // absolute max
  888. for (int l = 0; l < QK4_2; l++) {
  889. const float v = x[i*QK4_2 + l];
  890. amax = MAX(amax, fabsf(v));
  891. }
  892. const float d = amax / ((1 << 3) - 1);
  893. const float id = d ? 1.0f/d : 0.0f;
  894. y[i].d = GGML_FP32_TO_FP16(d);
  895. for (int l = 0; l < QK4_2; l += 2) {
  896. const float v0 = x[i*QK4_2 + l + 0]*id;
  897. const float v1 = x[i*QK4_2 + l + 1]*id;
  898. const uint8_t vi0 = (uint8_t)(v0 + 8.5f);
  899. const uint8_t vi1 = (uint8_t)(v1 + 8.5f);
  900. assert(vi0 < 16);
  901. assert(vi1 < 16);
  902. y[i].qs[l/2] = vi0 | (vi1 << 4);
  903. }
  904. }
  905. }
  906. static inline int nearest_int(float fval) {
  907. assert(fval <= 4194303.f);
  908. float val = fval + 12582912.f;
  909. int i; memcpy(&i, &val, sizeof(int));
  910. return (i & 0x007fffff) - 0x00400000;
  911. }
  912. static float kquantize_q4_with_bounds(int n, int nmin, int nmax, const float * restrict X, int nCandidates,
  913. const float * restrict candidates, int8_t * restrict L) {
  914. assert (nmin >= INT8_MIN);
  915. assert (nmax <= INT8_MAX);
  916. float amax = 0;
  917. for (int i=0; i<n; ++i) amax = MAX(amax, fabsf(X[i]));
  918. if (!amax) { // all zero
  919. for (int i=0; i<n; ++i) L[i] = 0;
  920. return 1.f;
  921. }
  922. float best = 0, bestScale = 0;
  923. for (int si=0; si<nCandidates; ++si) {
  924. float iscale = candidates[si]/amax;
  925. float sumlxP = 0; int suml2P = 0;
  926. float sumlxM = 0; int suml2M = 0;
  927. for (int i=0; i<n; ++i) {
  928. int l = nearest_int(iscale*X[i]);
  929. int lp = MAX(nmin, MIN(nmax, +l));
  930. int lm = MAX(nmin, MIN(nmax, -l));
  931. sumlxP += X[i]*lp; suml2P += lp*lp;
  932. sumlxM += X[i]*lm; suml2M += lm*lm;
  933. }
  934. float sumlxP2 = sumlxP*sumlxP;
  935. float sumlxM2 = sumlxM*sumlxM;
  936. if (sumlxP2*suml2M > sumlxM2*suml2P) {
  937. if (sumlxP2 > best*suml2P) {
  938. best = sumlxP2/suml2P; bestScale = iscale;
  939. }
  940. } else {
  941. if (sumlxM2 > best*suml2M) {
  942. best = sumlxM2/suml2M; bestScale = -iscale;
  943. }
  944. }
  945. }
  946. float sumlx = 0; int suml2 = 0;
  947. for (int i=0; i<n; ++i) {
  948. int l = nearest_int(bestScale*X[i]);
  949. l = MAX(nmin, MIN(nmax, l));
  950. sumlx += X[i]*l; suml2 += l*l;
  951. L[i] = l;
  952. }
  953. float scale = sumlx/suml2;
  954. return scale;
  955. }
  956. static void quantize_row_q4_2_rmse(const float * restrict x, block_q4_2 * restrict y, int k) {
  957. #define CANDIDATE_COUNT 8
  958. static const float candidates[CANDIDATE_COUNT] = { +8.7f, +8.3f, +8.1f, +7.8f, +7.3f, +7.0f, +6.3f, +5.7f };
  959. assert(k % QK4_2 == 0);
  960. int8_t L[QK4_2];
  961. const int nb = k / QK4_2;
  962. for (int i = 0; i < nb; i++) {
  963. float scale = kquantize_q4_with_bounds(QK4_2, -8, 7, x, CANDIDATE_COUNT, candidates, L);
  964. y[i].d = GGML_FP32_TO_FP16(scale);
  965. for (int l = 0; l < QK4_2; l += 2) {
  966. const uint8_t vi0 = (uint8_t)(L[l+0] + 8);
  967. const uint8_t vi1 = (uint8_t)(L[l+1] + 8);
  968. assert(vi0 < 16);
  969. assert(vi1 < 16);
  970. y[i].qs[l/2] = vi0 | (vi1 << 4);
  971. }
  972. x += QK4_2;
  973. }
  974. }
  975. static void quantize_row_q4_2(const float * restrict x, void * restrict vy, int k) {
  976. assert(k % QK4_2 == 0);
  977. block_q4_2 * restrict y = vy;
  978. //quantize_row_q4_2_reference(x, y, k);
  979. // This produces the exact same format, just better match to the input floats ("better" as measured by RMSE)
  980. quantize_row_q4_2_rmse(x, y, k);
  981. }
  982. static void quantize_row_q4_3_reference(const float * restrict x, block_q4_3 * restrict y, int k) {
  983. assert(k % QK4_3 == 0);
  984. const int nb = k / QK4_3;
  985. for (int i = 0; i < nb; i++) {
  986. float min = FLT_MAX;
  987. float max = -FLT_MAX;
  988. for (int l = 0; l < QK4_3; l++) {
  989. const float v = x[i*QK4_3 + l];
  990. if (v < min) min = v;
  991. if (v > max) max = v;
  992. }
  993. const float d = (max - min) / ((1 << 4) - 1);
  994. const float id = d ? 1.0f/d : 0.0f;
  995. y[i].d = GGML_FP32_TO_FP16(d);
  996. y[i].m = GGML_FP32_TO_FP16(min);
  997. for (int l = 0; l < QK4_3; l += 2) {
  998. const float v0 = (x[i*QK4_3 + l + 0] - min)*id;
  999. const float v1 = (x[i*QK4_3 + l + 1] - min)*id;
  1000. const uint8_t vi0 = (int) (v0 + 0.5f);
  1001. const uint8_t vi1 = (int) (v1 + 0.5f);
  1002. assert(vi0 < 16);
  1003. assert(vi1 < 16);
  1004. y[i].qs[l/2] = vi0 | (vi1 << 4);
  1005. }
  1006. }
  1007. }
  1008. static void quantize_row_q4_3(const float * restrict x, void * restrict vy, int k) {
  1009. assert(k % QK4_3 == 0);
  1010. block_q4_3 * restrict y = vy;
  1011. quantize_row_q4_3_reference(x, y, k);
  1012. }
  1013. // reference implementation for deterministic creation of model files
  1014. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  1015. assert(k % QK8_0 == 0);
  1016. const int nb = k / QK8_0;
  1017. for (int i = 0; i < nb; i++) {
  1018. float amax = 0.0f; // absolute max
  1019. for (int l = 0; l < QK8_0; l++) {
  1020. const float v = x[i*QK8_0 + l];
  1021. amax = MAX(amax, fabsf(v));
  1022. }
  1023. const float d = amax / ((1 << 7) - 1);
  1024. const float id = d ? 1.0f/d : 0.0f;
  1025. y[i].d = d;
  1026. int sum = 0;
  1027. for (int l = 0; l < QK8_0; ++l) {
  1028. const float v = x[i*QK8_0 + l]*id;
  1029. y[i].qs[l] = roundf(v);
  1030. sum += y[i].qs[l];
  1031. }
  1032. y[i].s = d * sum;
  1033. }
  1034. }
  1035. #ifdef __AVX2__
  1036. // There is no better way of doing this?
  1037. // I guess not, AVX is not very good at horizontal sums.
  1038. // The commented solution for a hotrizontal sum was suggested by @pubby as being slightly
  1039. // faster than the solution below. As I don't have an AVX2 system handt right now to test,
  1040. // keeping the original.
  1041. // TODO: Please try and if it does make a differece, uncomment and remove the implementation below.
  1042. //static inline float horizontal_sum(__m256i a) {
  1043. // __m256i b = _mm256_castps_si256(_mm256_movehdup_ps(_mm256_castsi256_ps(a)));
  1044. // __m256i sum = _mm256_add_epi32(a, b);
  1045. // __m256i hi = _mm256_unpackhi_epi64(sum, sum);
  1046. // sum = _mm256_add_epi32(sum, hi);
  1047. // return _mm256_cvtsi256_si32(sum) + _mm256_extract_epi32(sum, 4);
  1048. //}
  1049. static inline float horizontal_sum(__m256i a) {
  1050. __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extracti128_si256(a, 1));
  1051. __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  1052. __m128i sum64 = _mm_add_epi32(hi64, sum128);
  1053. __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  1054. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  1055. }
  1056. #endif
  1057. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  1058. assert(k % QK8_0 == 0);
  1059. const int nb = k / QK8_0;
  1060. block_q8_0 * restrict y = vy;
  1061. #if defined(__ARM_NEON)
  1062. for (int i = 0; i < nb; i++) {
  1063. float32x4_t srcv [8];
  1064. float32x4_t asrcv[8];
  1065. float32x4_t amaxv[8];
  1066. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  1067. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  1068. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  1069. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  1070. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  1071. const float amax = vmaxvq_f32(amaxv[0]);
  1072. const float d = amax / ((1 << 7) - 1);
  1073. const float id = d ? 1.0f/d : 0.0f;
  1074. y[i].d = d;
  1075. int32x4_t accv = vdupq_n_s32(0);
  1076. for (int l = 0; l < 8; l++) {
  1077. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1078. const int32x4_t vi = vcvtnq_s32_f32(v);
  1079. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1080. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1081. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1082. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1083. accv = vaddq_s32(accv, vi);
  1084. }
  1085. int32_t sum = vaddvq_s32(accv);
  1086. y[i].s = d * sum;
  1087. }
  1088. #elif defined(__AVX2__) || defined(__AVX__)
  1089. for (int i = 0; i < nb; i++) {
  1090. // Load elements into 4 AVX vectors
  1091. __m256 v0 = _mm256_loadu_ps( x );
  1092. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1093. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1094. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1095. x += 32;
  1096. // Compute max(abs(e)) for the block
  1097. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1098. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1099. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1100. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1101. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1102. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1103. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1104. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1105. const float maxScalar = _mm_cvtss_f32( max4 );
  1106. // Quantize these floats
  1107. const float d = maxScalar / 127.f;
  1108. y[i].d = d;
  1109. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1110. const __m256 mul = _mm256_set1_ps( id );
  1111. // Apply the multiplier
  1112. v0 = _mm256_mul_ps( v0, mul );
  1113. v1 = _mm256_mul_ps( v1, mul );
  1114. v2 = _mm256_mul_ps( v2, mul );
  1115. v3 = _mm256_mul_ps( v3, mul );
  1116. // Round to nearest integer
  1117. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1118. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1119. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1120. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1121. // Convert floats to integers
  1122. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1123. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1124. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1125. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1126. #if defined(__AVX2__)
  1127. // Compute the sum of the quants and set y[i].s
  1128. y[i].s = d * horizontal_sum(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1129. // Convert int32 to int16
  1130. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1131. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1132. // Convert int16 to int8
  1133. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1134. // We got our precious signed bytes, but the order is now wrong
  1135. // These AVX2 pack instructions process 16-byte pieces independently
  1136. // The following instruction is fixing the order
  1137. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1138. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1139. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1140. #else
  1141. // Since we don't have in AVX some necessary functions,
  1142. // we split the registers in half and call AVX2 analogs from SSE
  1143. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1144. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1145. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1146. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1147. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1148. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1149. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1150. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1151. // Convert int32 to int16
  1152. ni0 = _mm_packs_epi32( ni0, ni1 );
  1153. ni2 = _mm_packs_epi32( ni2, ni3 );
  1154. ni4 = _mm_packs_epi32( ni4, ni5 );
  1155. ni6 = _mm_packs_epi32( ni6, ni7 );
  1156. // Convert int16 to int8
  1157. ni0 = _mm_packs_epi16( ni0, ni2 );
  1158. ni4 = _mm_packs_epi16( ni4, ni6 );
  1159. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1160. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1161. #endif
  1162. }
  1163. #else
  1164. // scalar
  1165. quantize_row_q8_0_reference(x, y, k);
  1166. #endif
  1167. #if defined __AVX__
  1168. // TODO: vectorize this
  1169. for (int i=0; i<nb; ++i) {
  1170. int sum = 0;
  1171. for (int l=0; l<QK8_0; ++l) sum += y[i].qs[l];
  1172. y[i].s = y[i].d * sum;
  1173. }
  1174. #endif
  1175. }
  1176. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  1177. assert(k % QK4_0 == 0);
  1178. const int nb = k / QK4_0;
  1179. const block_q4_0 * restrict x = vx;
  1180. #if defined(__AVX2__)
  1181. for (int i = 0; i < nb; i++) {
  1182. // scale factor
  1183. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1184. const uint8_t * restrict pp = x[i].qs;
  1185. for (int l = 0; l < QK4_0; l += 32) {
  1186. // Load 32x4-bit integers into 32x8-bit integers
  1187. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1188. // Subtract 8 from the integers
  1189. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  1190. // Convert to 16-bit int
  1191. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1192. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1193. // Convert to 32-bit int -> float 32
  1194. const __m256 vf[4] = {
  1195. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1196. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1197. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1198. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1199. };
  1200. // Scale and store
  1201. for (int j = 0; j < 4; j++) {
  1202. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  1203. _mm256_storeu_ps(y + i * QK4_0 + l + j*8, result);
  1204. }
  1205. }
  1206. }
  1207. #elif defined(__ARM_NEON)
  1208. for (int i = 0; i < nb; i++) {
  1209. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1210. const uint8_t * restrict pp = x[i].qs;
  1211. for (int l = 0; l < QK4_0; l += 16) {
  1212. // Load 16x4-bit integers into 8x8-bit integers
  1213. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1214. // Expand 4-bit qs to 8-bit bytes
  1215. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  1216. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1217. // Convert to signed 8-bit integers
  1218. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  1219. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  1220. // Subtract 8 from each byte
  1221. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  1222. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  1223. // Interleave and combine
  1224. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  1225. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  1226. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  1227. // convert to 2x int16x8_t
  1228. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  1229. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  1230. // convert to 4x float32x4_t
  1231. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  1232. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  1233. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  1234. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  1235. // Multiply by d
  1236. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  1237. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  1238. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  1239. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  1240. // Store
  1241. vst1q_f32(y + i*QK4_0 + l + 0, r0);
  1242. vst1q_f32(y + i*QK4_0 + l + 4, r1);
  1243. vst1q_f32(y + i*QK4_0 + l + 8, r2);
  1244. vst1q_f32(y + i*QK4_0 + l + 12, r3);
  1245. }
  1246. }
  1247. #else
  1248. // scalar
  1249. for (int i = 0; i < nb; i++) {
  1250. const float d = x[i].d;
  1251. const uint8_t * restrict pp = x[i].qs;
  1252. for (int l = 0; l < QK4_0; l += 2) {
  1253. const uint8_t vi = pp[l/2];
  1254. const int8_t vi0 = vi & 0xf;
  1255. const int8_t vi1 = vi >> 4;
  1256. const float v0 = (vi0 - 8)*d;
  1257. const float v1 = (vi1 - 8)*d;
  1258. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  1259. y[i*QK4_0 + l + 0] = v0;
  1260. y[i*QK4_0 + l + 1] = v1;
  1261. assert(!isnan(y[i*QK4_0 + l + 0]));
  1262. assert(!isnan(y[i*QK4_0 + l + 1]));
  1263. }
  1264. }
  1265. #endif
  1266. }
  1267. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  1268. assert(k % QK4_1 == 0);
  1269. const int nb = k / QK4_1;
  1270. const block_q4_1 * restrict x = vx;
  1271. #if defined(__AVX2__)
  1272. for (int i = 0; i < nb; i++) {
  1273. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1274. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  1275. const uint8_t * restrict pp = x[i].qs;
  1276. for (int l = 0; l < QK4_1; l += 32) {
  1277. // Load 32x4-bit integers into 32x8-bit integers
  1278. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1279. // Convert to 16-bit int
  1280. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1281. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1282. // Convert to 32-bit int -> float 32
  1283. const __m256 vf[4] = {
  1284. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1285. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1286. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1287. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1288. };
  1289. // Scale, add m and store
  1290. for (int j = 0; j < 4; j++) {
  1291. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  1292. _mm256_storeu_ps(y + i * QK4_1 + l + j*8, result);
  1293. }
  1294. }
  1295. }
  1296. #elif defined(__ARM_NEON)
  1297. for (int i = 0; i < nb; i++) {
  1298. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1299. const float32x4_t vm = vdupq_n_f32(x[i].m);
  1300. const uint8_t * restrict pp = x[i].qs;
  1301. for (int l = 0; l < QK4_1; l += 16) {
  1302. // Load 16x4-bit integers into 8x8-bit integers
  1303. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1304. // Expand 4-bit qs to 8-bit bytes
  1305. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  1306. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1307. // Interleave and combine
  1308. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  1309. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  1310. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  1311. // convert to 2x uint16x8_t
  1312. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  1313. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  1314. // convert to 4x float32x4_t
  1315. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  1316. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  1317. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  1318. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  1319. // multiply by d and add m
  1320. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  1321. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  1322. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  1323. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  1324. // Store
  1325. vst1q_f32(y + i*QK4_1 + l + 0, r0);
  1326. vst1q_f32(y + i*QK4_1 + l + 4, r1);
  1327. vst1q_f32(y + i*QK4_1 + l + 8, r2);
  1328. vst1q_f32(y + i*QK4_1 + l + 12, r3);
  1329. }
  1330. }
  1331. #else
  1332. for (int i = 0; i < nb; i++) {
  1333. const float d = x[i].d;
  1334. const float m = x[i].m;
  1335. const uint8_t * restrict pp = x[i].qs;
  1336. for (int l = 0; l < QK4_1; l += 2) {
  1337. const uint8_t vi = pp[l/2];
  1338. const int8_t vi0 = vi & 0xf;
  1339. const int8_t vi1 = vi >> 4;
  1340. const float v0 = vi0*d + m;
  1341. const float v1 = vi1*d + m;
  1342. y[i*QK4_1 + l + 0] = v0;
  1343. y[i*QK4_1 + l + 1] = v1;
  1344. assert(!isnan(y[i*QK4_1 + l + 0]));
  1345. assert(!isnan(y[i*QK4_1 + l + 1]));
  1346. }
  1347. }
  1348. #endif
  1349. }
  1350. static void dequantize_row_q4_2(const void * restrict vx, float * restrict y, int k) {
  1351. assert(k % QK4_2 == 0);
  1352. const int nb = k / QK4_2;
  1353. const block_q4_2 * restrict x = vx;
  1354. for (int i = 0; i < nb; i++) {
  1355. const float d = GGML_FP16_TO_FP32(x[i].d);
  1356. const uint8_t * restrict pp = x[i].qs;
  1357. for (int l = 0; l < QK4_2; l += 2) {
  1358. const uint8_t vi = pp[l/2];
  1359. const int8_t vi0 = vi & 0xf;
  1360. const int8_t vi1 = vi >> 4;
  1361. const float v0 = (vi0 - 8)*d;
  1362. const float v1 = (vi1 - 8)*d;
  1363. y[i*QK4_2 + l + 0] = v0;
  1364. y[i*QK4_2 + l + 1] = v1;
  1365. assert(!isnan(y[i*QK4_2 + l + 0]));
  1366. assert(!isnan(y[i*QK4_2 + l + 1]));
  1367. }
  1368. }
  1369. }
  1370. static void dequantize_row_q4_3(const void * restrict vx, float * restrict y, int k) {
  1371. assert(k % QK4_3 == 0);
  1372. const int nb = k / QK4_3;
  1373. const block_q4_3 * restrict x = vx;
  1374. for (int i = 0; i < nb; i++) {
  1375. const float d = GGML_FP16_TO_FP32(x[i].d);
  1376. const float m = GGML_FP16_TO_FP32(x[i].m);
  1377. const uint8_t * restrict pp = x[i].qs;
  1378. for (int l = 0; l < QK4_3; l += 2) {
  1379. const uint8_t vi = pp[l/2];
  1380. const int8_t vi0 = vi & 0xf;
  1381. const int8_t vi1 = vi >> 4;
  1382. const float v0 = vi0*d + m;
  1383. const float v1 = vi1*d + m;
  1384. y[i*QK4_3 + l + 0] = v0;
  1385. y[i*QK4_3 + l + 1] = v1;
  1386. assert(!isnan(y[i*QK4_3 + l + 0]));
  1387. assert(!isnan(y[i*QK4_3 + l + 1]));
  1388. }
  1389. }
  1390. }
  1391. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1392. static void ggml_vec_dot_q4_1_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1393. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1394. static void ggml_vec_dot_q4_3_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1395. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1396. [GGML_TYPE_Q4_0] = {
  1397. .dequantize_row_q = dequantize_row_q4_0,
  1398. .quantize_row_q = quantize_row_q4_0,
  1399. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1400. .quantize_row_q_dot = quantize_row_q8_0,
  1401. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1402. },
  1403. [GGML_TYPE_Q4_1] = {
  1404. .dequantize_row_q = dequantize_row_q4_1,
  1405. .quantize_row_q = quantize_row_q4_1,
  1406. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1407. .quantize_row_q_dot = quantize_row_q8_0,
  1408. .vec_dot_q = ggml_vec_dot_q4_1_q8_0,
  1409. },
  1410. [GGML_TYPE_Q4_2] = {
  1411. .dequantize_row_q = dequantize_row_q4_2,
  1412. .quantize_row_q = quantize_row_q4_2,
  1413. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_2_rmse, //quantize_row_q4_2_reference,
  1414. .quantize_row_q_dot = quantize_row_q8_0,
  1415. .vec_dot_q = ggml_vec_dot_q4_2_q8_0,
  1416. },
  1417. [GGML_TYPE_Q4_3] = {
  1418. .dequantize_row_q = dequantize_row_q4_3,
  1419. .quantize_row_q = quantize_row_q4_3,
  1420. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_3_reference, // TODO: RMSE optimization
  1421. .quantize_row_q_dot = quantize_row_q8_0,
  1422. .vec_dot_q = ggml_vec_dot_q4_3_q8_0,
  1423. },
  1424. [GGML_TYPE_Q8_0] = {
  1425. .dequantize_row_q = NULL, // TODO
  1426. .quantize_row_q = quantize_row_q8_0,
  1427. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1428. .quantize_row_q_dot = quantize_row_q8_0,
  1429. .vec_dot_q = NULL, // TODO
  1430. },
  1431. };
  1432. // For internal test use
  1433. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1434. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1435. return quantize_fns[i];
  1436. }
  1437. //
  1438. // simd mappings
  1439. //
  1440. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1441. // we then implement the fundamental computation operations below using only these macros
  1442. // adding support for new architectures requires to define the corresponding SIMD macros
  1443. //
  1444. // GGML_F32_STEP / GGML_F16_STEP
  1445. // number of elements to process in a single step
  1446. //
  1447. // GGML_F32_EPR / GGML_F16_EPR
  1448. // number of elements to fit in a single register
  1449. //
  1450. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1451. #define GGML_SIMD
  1452. // F32 NEON
  1453. #define GGML_F32_STEP 16
  1454. #define GGML_F32_EPR 4
  1455. #define GGML_F32x4 float32x4_t
  1456. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1457. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1458. #define GGML_F32x4_LOAD vld1q_f32
  1459. #define GGML_F32x4_STORE vst1q_f32
  1460. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1461. #define GGML_F32x4_ADD vaddq_f32
  1462. #define GGML_F32x4_MUL vmulq_f32
  1463. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1464. #define GGML_F32x4_REDUCE(res, x) \
  1465. { \
  1466. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1467. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1468. } \
  1469. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1470. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1471. } \
  1472. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1473. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1474. } \
  1475. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1476. }
  1477. #define GGML_F32_VEC GGML_F32x4
  1478. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1479. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1480. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1481. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1482. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1483. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1484. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1485. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1486. // F16 NEON
  1487. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1488. #define GGML_F16_STEP 32
  1489. #define GGML_F16_EPR 8
  1490. #define GGML_F16x8 float16x8_t
  1491. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1492. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1493. #define GGML_F16x8_LOAD vld1q_f16
  1494. #define GGML_F16x8_STORE vst1q_f16
  1495. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1496. #define GGML_F16x8_ADD vaddq_f16
  1497. #define GGML_F16x8_MUL vmulq_f16
  1498. #define GGML_F16x8_REDUCE(res, x) \
  1499. { \
  1500. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1501. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1502. } \
  1503. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1504. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1505. } \
  1506. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1507. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1508. } \
  1509. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1510. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1511. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1512. }
  1513. #define GGML_F16_VEC GGML_F16x8
  1514. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1515. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1516. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1517. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1518. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1519. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1520. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1521. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1522. #else
  1523. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1524. // and take advantage of the vcvt_ functions to convert to/from FP16
  1525. #define GGML_F16_STEP 16
  1526. #define GGML_F16_EPR 4
  1527. #define GGML_F32Cx4 float32x4_t
  1528. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1529. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1530. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1531. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1532. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1533. #define GGML_F32Cx4_ADD vaddq_f32
  1534. #define GGML_F32Cx4_MUL vmulq_f32
  1535. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1536. #define GGML_F16_VEC GGML_F32Cx4
  1537. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1538. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1539. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1540. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1541. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1542. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1543. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1544. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1545. #endif
  1546. #elif defined(__AVX__)
  1547. #define GGML_SIMD
  1548. // F32 AVX
  1549. #define GGML_F32_STEP 32
  1550. #define GGML_F32_EPR 8
  1551. #define GGML_F32x8 __m256
  1552. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1553. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1554. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1555. #define GGML_F32x8_STORE _mm256_storeu_ps
  1556. #if defined(__FMA__)
  1557. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1558. #else
  1559. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1560. #endif
  1561. #define GGML_F32x8_ADD _mm256_add_ps
  1562. #define GGML_F32x8_MUL _mm256_mul_ps
  1563. #define GGML_F32x8_REDUCE(res, x) \
  1564. { \
  1565. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1566. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1567. } \
  1568. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1569. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1570. } \
  1571. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1572. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1573. } \
  1574. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1575. _mm256_extractf128_ps(x[0], 1)); \
  1576. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1577. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1578. }
  1579. // TODO: is this optimal ?
  1580. #define GGML_F32_VEC GGML_F32x8
  1581. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1582. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1583. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1584. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1585. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1586. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1587. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1588. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1589. // F16 AVX
  1590. #define GGML_F16_STEP 32
  1591. #define GGML_F16_EPR 8
  1592. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1593. #define GGML_F32Cx8 __m256
  1594. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1595. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1596. #if defined(__F16C__)
  1597. // the _mm256_cvt intrinsics require F16C
  1598. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1599. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1600. #else
  1601. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1602. float tmp[8];
  1603. for (int i = 0; i < 8; i++)
  1604. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1605. return _mm256_loadu_ps(tmp);
  1606. }
  1607. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1608. float arr[8];
  1609. _mm256_storeu_ps(arr, y);
  1610. for (int i = 0; i < 8; i++)
  1611. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1612. }
  1613. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1614. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1615. #endif
  1616. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1617. #define GGML_F32Cx8_ADD _mm256_add_ps
  1618. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1619. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1620. #define GGML_F16_VEC GGML_F32Cx8
  1621. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1622. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1623. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1624. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1625. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1626. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1627. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1628. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1629. #elif defined(__POWER9_VECTOR__)
  1630. #define GGML_SIMD
  1631. // F32 POWER9
  1632. #define GGML_F32_STEP 32
  1633. #define GGML_F32_EPR 4
  1634. #define GGML_F32x4 vector float
  1635. #define GGML_F32x4_ZERO 0.0f
  1636. #define GGML_F32x4_SET1 vec_splats
  1637. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1638. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1639. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1640. #define GGML_F32x4_ADD vec_add
  1641. #define GGML_F32x4_MUL vec_mul
  1642. #define GGML_F32x4_REDUCE(res, x) \
  1643. { \
  1644. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1645. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1646. } \
  1647. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1648. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1649. } \
  1650. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1651. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1652. } \
  1653. res = vec_extract(x[0], 0) + \
  1654. vec_extract(x[0], 1) + \
  1655. vec_extract(x[0], 2) + \
  1656. vec_extract(x[0], 3); \
  1657. }
  1658. #define GGML_F32_VEC GGML_F32x4
  1659. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1660. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1661. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1662. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1663. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1664. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1665. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1666. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1667. // F16 POWER9
  1668. #define GGML_F16_STEP GGML_F32_STEP
  1669. #define GGML_F16_EPR GGML_F32_EPR
  1670. #define GGML_F16_VEC GGML_F32x4
  1671. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1672. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1673. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1674. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1675. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1676. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1677. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1678. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1679. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1680. #define GGML_F16_VEC_STORE(p, r, i) \
  1681. if (i & 0x1) \
  1682. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1683. r[i - GGML_ENDIAN_BYTE(0)]), \
  1684. 0, p - GGML_F16_EPR)
  1685. #elif defined(__wasm_simd128__)
  1686. #define GGML_SIMD
  1687. // F32 WASM
  1688. #define GGML_F32_STEP 16
  1689. #define GGML_F32_EPR 4
  1690. #define GGML_F32x4 v128_t
  1691. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1692. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1693. #define GGML_F32x4_LOAD wasm_v128_load
  1694. #define GGML_F32x4_STORE wasm_v128_store
  1695. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1696. #define GGML_F32x4_ADD wasm_f32x4_add
  1697. #define GGML_F32x4_MUL wasm_f32x4_mul
  1698. #define GGML_F32x4_REDUCE(res, x) \
  1699. { \
  1700. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1701. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1702. } \
  1703. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1704. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1705. } \
  1706. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1707. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1708. } \
  1709. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1710. wasm_f32x4_extract_lane(x[0], 1) + \
  1711. wasm_f32x4_extract_lane(x[0], 2) + \
  1712. wasm_f32x4_extract_lane(x[0], 3); \
  1713. }
  1714. #define GGML_F32_VEC GGML_F32x4
  1715. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1716. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1717. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1718. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1719. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1720. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1721. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1722. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1723. // F16 WASM
  1724. #define GGML_F16_STEP 16
  1725. #define GGML_F16_EPR 4
  1726. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1727. float tmp[4];
  1728. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1729. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1730. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1731. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1732. return wasm_v128_load(tmp);
  1733. }
  1734. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1735. float tmp[4];
  1736. wasm_v128_store(tmp, x);
  1737. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1738. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1739. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1740. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1741. }
  1742. #define GGML_F16x4 v128_t
  1743. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1744. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1745. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1746. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1747. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1748. #define GGML_F16x4_ADD wasm_f32x4_add
  1749. #define GGML_F16x4_MUL wasm_f32x4_mul
  1750. #define GGML_F16x4_REDUCE(res, x) \
  1751. { \
  1752. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1753. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1754. } \
  1755. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1756. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1757. } \
  1758. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1759. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1760. } \
  1761. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1762. wasm_f32x4_extract_lane(x[0], 1) + \
  1763. wasm_f32x4_extract_lane(x[0], 2) + \
  1764. wasm_f32x4_extract_lane(x[0], 3); \
  1765. }
  1766. #define GGML_F16_VEC GGML_F16x4
  1767. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1768. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1769. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1770. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1771. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1772. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1773. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1774. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1775. #elif defined(__SSE3__)
  1776. #define GGML_SIMD
  1777. // F32 SSE
  1778. #define GGML_F32_STEP 32
  1779. #define GGML_F32_EPR 4
  1780. #define GGML_F32x4 __m128
  1781. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1782. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1783. #define GGML_F32x4_LOAD _mm_loadu_ps
  1784. #define GGML_F32x4_STORE _mm_storeu_ps
  1785. #if defined(__FMA__)
  1786. // TODO: Does this work?
  1787. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1788. #else
  1789. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1790. #endif
  1791. #define GGML_F32x4_ADD _mm_add_ps
  1792. #define GGML_F32x4_MUL _mm_mul_ps
  1793. #define GGML_F32x4_REDUCE(res, x) \
  1794. { \
  1795. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1796. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1797. } \
  1798. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1799. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1800. } \
  1801. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1802. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1803. } \
  1804. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1805. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1806. }
  1807. // TODO: is this optimal ?
  1808. #define GGML_F32_VEC GGML_F32x4
  1809. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1810. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1811. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1812. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1813. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1814. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1815. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1816. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1817. // F16 SSE
  1818. #define GGML_F16_STEP 32
  1819. #define GGML_F16_EPR 4
  1820. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1821. float tmp[4];
  1822. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1823. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1824. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1825. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1826. return _mm_loadu_ps(tmp);
  1827. }
  1828. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1829. float arr[4];
  1830. _mm_storeu_ps(arr, y);
  1831. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1832. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1833. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1834. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1835. }
  1836. #define GGML_F32Cx4 __m128
  1837. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1838. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1839. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1840. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1841. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1842. #define GGML_F32Cx4_ADD _mm_add_ps
  1843. #define GGML_F32Cx4_MUL _mm_mul_ps
  1844. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1845. #define GGML_F16_VEC GGML_F32Cx4
  1846. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1847. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1848. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1849. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1850. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1851. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1852. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1853. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1854. #endif
  1855. // GGML_F32_ARR / GGML_F16_ARR
  1856. // number of registers to use per step
  1857. #ifdef GGML_SIMD
  1858. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1859. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1860. #endif
  1861. //
  1862. // fundamental operations
  1863. //
  1864. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1865. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1866. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1867. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1868. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1869. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1870. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1871. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1872. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1873. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1874. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1875. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1876. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1877. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1878. #ifdef GGML_SIMD
  1879. float sumf = 0.0f;
  1880. const int np = (n & ~(GGML_F32_STEP - 1));
  1881. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1882. GGML_F32_VEC ax[GGML_F32_ARR];
  1883. GGML_F32_VEC ay[GGML_F32_ARR];
  1884. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1885. for (int j = 0; j < GGML_F32_ARR; j++) {
  1886. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1887. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1888. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1889. }
  1890. }
  1891. // reduce sum0..sum3 to sum0
  1892. GGML_F32_VEC_REDUCE(sumf, sum);
  1893. // leftovers
  1894. for (int i = np; i < n; ++i) {
  1895. sumf += x[i]*y[i];
  1896. }
  1897. #else
  1898. // scalar
  1899. ggml_float sumf = 0.0;
  1900. for (int i = 0; i < n; ++i) {
  1901. sumf += (ggml_float)(x[i]*y[i]);
  1902. }
  1903. #endif
  1904. *s = sumf;
  1905. }
  1906. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1907. ggml_float sumf = 0.0;
  1908. #if defined(GGML_SIMD)
  1909. const int np = (n & ~(GGML_F16_STEP - 1));
  1910. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1911. GGML_F16_VEC ax[GGML_F16_ARR];
  1912. GGML_F16_VEC ay[GGML_F16_ARR];
  1913. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1914. for (int j = 0; j < GGML_F16_ARR; j++) {
  1915. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1916. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1917. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1918. }
  1919. }
  1920. // reduce sum0..sum3 to sum0
  1921. GGML_F16_VEC_REDUCE(sumf, sum);
  1922. // leftovers
  1923. for (int i = np; i < n; ++i) {
  1924. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1925. }
  1926. #else
  1927. for (int i = 0; i < n; ++i) {
  1928. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1929. }
  1930. #endif
  1931. *s = sumf;
  1932. }
  1933. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1934. const int nb = n / QK8_0;
  1935. assert(n % QK8_0 == 0);
  1936. assert(nb % 2 == 0);
  1937. const block_q4_0 * restrict x = vx;
  1938. const block_q8_0 * restrict y = vy;
  1939. float sumf = 0.0;
  1940. #if defined(__ARM_NEON)
  1941. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1942. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1943. float sum8 = 0;
  1944. for (int i = 0; i < nb; i += 2) {
  1945. const block_q4_0 * restrict x0 = &x[i + 0];
  1946. const block_q4_0 * restrict x1 = &x[i + 1];
  1947. const block_q8_0 * restrict y0 = &y[i + 0];
  1948. const block_q8_0 * restrict y1 = &y[i + 1];
  1949. sum8 += x0->d * y0->s + x1->d * y1->s;
  1950. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1951. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1952. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1953. // 4-bit -> 8-bit
  1954. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1955. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1956. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1957. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1958. // load y
  1959. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1960. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1961. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1962. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1963. // interleave
  1964. const int8x16_t v1_0ls = vuzp1q_s8(v1_0l, v1_0h);
  1965. const int8x16_t v1_0hs = vuzp2q_s8(v1_0l, v1_0h);
  1966. const int8x16_t v1_1ls = vuzp1q_s8(v1_1l, v1_1h);
  1967. const int8x16_t v1_1hs = vuzp2q_s8(v1_1l, v1_1h);
  1968. #if defined(__ARM_FEATURE_DOTPROD)
  1969. // dot product into int32x4_t
  1970. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0ls), v0_0h, v1_0hs);
  1971. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1ls), v0_1h, v1_1hs);
  1972. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  1973. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  1974. #else
  1975. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0ls));
  1976. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0ls));
  1977. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0hs));
  1978. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0hs));
  1979. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1ls));
  1980. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1ls));
  1981. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1hs));
  1982. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1hs));
  1983. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1984. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1985. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1986. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1987. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  1988. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  1989. #endif
  1990. }
  1991. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) - 8 * sum8;
  1992. #elif defined(__AVX2__)
  1993. // Initialize accumulator with zeros
  1994. __m256 acc = _mm256_setzero_ps();
  1995. // Main loop
  1996. for (int i = 0; i < nb; ++i) {
  1997. /* Compute combined scale for the block */
  1998. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1999. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2000. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2001. const __m256i off = _mm256_set1_epi8( 8 );
  2002. bx = _mm256_sub_epi8( bx, off );
  2003. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2004. // Get absolute values of x vectors
  2005. const __m256i ax = _mm256_sign_epi8(bx, bx);
  2006. // Sign the values of the y vectors
  2007. const __m256i sy = _mm256_sign_epi8(by, bx);
  2008. // Perform multiplication and create 16-bit values
  2009. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  2010. const __m256i ones = _mm256_set1_epi16(1);
  2011. __m256i xy_q = _mm256_madd_epi16(ones, dot);
  2012. /* Convert to vectore of 8 int32_t to 8 floats */
  2013. __m256 q = _mm256_cvtepi32_ps( xy_q );
  2014. /* Multiply q with scale and accumulate */
  2015. acc = _mm256_fmadd_ps( d, q, acc );
  2016. }
  2017. // Return horizontal sum of the acc vector
  2018. __m128 res = _mm256_extractf128_ps( acc, 1 );
  2019. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  2020. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  2021. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  2022. sumf = _mm_cvtss_f32( res );
  2023. #elif defined(__AVX__)
  2024. // Initialize accumulator with zeros
  2025. __m256 acc = _mm256_setzero_ps();
  2026. // Main loop
  2027. for (int i = 0; i < nb; ++i) {
  2028. // Compute combined scale for the block
  2029. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2030. __m128i i32[2];
  2031. for (int j = 0; j < 2; ++j) {
  2032. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  2033. __m128i bx = bytes_from_nibbles_16(x[i].qs + 8*j);
  2034. __m128i by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16*j));
  2035. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2036. const __m128i off = _mm_set1_epi8( 8 );
  2037. bx = _mm_sub_epi8( bx, off );
  2038. // Get absolute values of x vectors
  2039. const __m128i ax = _mm_sign_epi8(bx, bx);
  2040. // Sign the values of the y vectors
  2041. const __m128i sy = _mm_sign_epi8(by, bx);
  2042. // Perform multiplication and create 16-bit values
  2043. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  2044. const __m128i ones = _mm_set1_epi16(1);
  2045. i32[j] = _mm_madd_epi16(ones, dot);
  2046. }
  2047. // Convert int32_t to float
  2048. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  2049. // Apply the scale, and accumulate
  2050. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2051. }
  2052. // Return horizontal sum of the acc vector
  2053. __m128 res = _mm256_extractf128_ps( acc, 1 );
  2054. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  2055. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  2056. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  2057. sumf = _mm_cvtss_f32( res );
  2058. #else
  2059. // scalar
  2060. for (int i = 0; i < nb; i++) {
  2061. const float d0 = x[i].d;
  2062. const float d1 = y[i].d;
  2063. const uint8_t * restrict p0 = x[i].qs;
  2064. const int8_t * restrict p1 = y[i].qs;
  2065. int sumi = 0;
  2066. for (int j = 0; j < QK8_0/2; j++) {
  2067. const uint8_t v0 = p0[j];
  2068. const int i0 = (int8_t) (v0 & 0xf) - 8;
  2069. const int i1 = (int8_t) (v0 >> 4) - 8;
  2070. const int i2 = p1[2*j + 0];
  2071. const int i3 = p1[2*j + 1];
  2072. sumi += i0*i2 + i1*i3;
  2073. }
  2074. sumf += d0*d1*sumi;
  2075. }
  2076. #endif
  2077. *s = sumf;
  2078. }
  2079. static void ggml_vec_dot_q4_1_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2080. const int nb = n / QK8_0;
  2081. assert(n % QK8_0 == 0);
  2082. assert(nb % 2 == 0);
  2083. const block_q4_1 * restrict x = vx;
  2084. const block_q8_0 * restrict y = vy;
  2085. float sumf = 0.0;
  2086. // TODO: add AVX / WASM SIMD / etc
  2087. #if defined(__ARM_NEON)
  2088. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2089. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2090. float summs = 0;
  2091. for (int i = 0; i < nb; i += 2) {
  2092. const block_q4_1 * restrict x0 = &x[i + 0];
  2093. const block_q4_1 * restrict x1 = &x[i + 1];
  2094. const block_q8_0 * restrict y0 = &y[i + 0];
  2095. const block_q8_0 * restrict y1 = &y[i + 1];
  2096. summs += x0->m * y0->s + x1->m * y1->s;
  2097. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2098. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2099. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2100. // 4-bit -> 8-bit
  2101. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2102. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2103. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2104. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2105. // load y
  2106. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2107. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2108. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2109. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2110. // interleave
  2111. const int8x16_t v1_0ls = vuzp1q_s8(v1_0l, v1_0h);
  2112. const int8x16_t v1_0hs = vuzp2q_s8(v1_0l, v1_0h);
  2113. const int8x16_t v1_1ls = vuzp1q_s8(v1_1l, v1_1h);
  2114. const int8x16_t v1_1hs = vuzp2q_s8(v1_1l, v1_1h);
  2115. #if defined(__ARM_FEATURE_DOTPROD)
  2116. // dot product into int32x4_t
  2117. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0ls), v0_0h, v1_0hs);
  2118. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1ls), v0_1h, v1_1hs);
  2119. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2120. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2121. #else
  2122. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0ls));
  2123. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0ls));
  2124. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0hs));
  2125. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0hs));
  2126. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1ls));
  2127. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1ls));
  2128. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1hs));
  2129. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1hs));
  2130. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2131. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2132. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2133. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2134. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2135. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2136. #endif
  2137. }
  2138. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2139. #elif defined(__AVX2__)
  2140. // Initialize accumulator with zeros
  2141. __m256 acc = _mm256_setzero_ps();
  2142. float summs = 0;
  2143. // Main loop
  2144. for (int i = 0; i < nb; ++i) {
  2145. const float * d0 = &x[i].d;
  2146. const float * d1 = &y[i].d;
  2147. //const float * m0 = &x[i].m;
  2148. summs += x[i].m * y[i].s;
  2149. const __m256 d0v = _mm256_broadcast_ss( d0 );
  2150. const __m256 d1v = _mm256_broadcast_ss( d1 );
  2151. // Compute combined scales
  2152. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2153. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2154. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2155. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2156. // Get absolute values of x vectors
  2157. const __m256i ax = _mm256_sign_epi8( bx, bx );
  2158. // Sign the values of the y vectors
  2159. const __m256i sy = _mm256_sign_epi8( by, bx );
  2160. // Perform multiplication and create 16-bit values
  2161. const __m256i dot = _mm256_maddubs_epi16( ax, sy );
  2162. const __m256i ones = _mm256_set1_epi16( 1 );
  2163. const __m256i xy_q = _mm256_madd_epi16( ones, dot );
  2164. // Convert to vector of 8 int32_t to 8 floats
  2165. const __m256 xy = _mm256_cvtepi32_ps( xy_q );
  2166. // Accumulate d0*d1*x*y
  2167. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2168. }
  2169. // Return horizontal sum of the acc vector
  2170. __m128 res = _mm256_extractf128_ps( acc, 1 );
  2171. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  2172. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  2173. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  2174. sumf = _mm_cvtss_f32( res ) + summs;
  2175. #else
  2176. // scalar
  2177. for (int i = 0; i < nb; i++) {
  2178. const float d0 = x[i].d;
  2179. const float m0 = x[i].m;
  2180. const float d1 = y[i].d;
  2181. const uint8_t * restrict p0 = x[i].qs;
  2182. const int8_t * restrict p1 = y[i].qs;
  2183. // TODO: this is very slow ..
  2184. for (int j = 0; j < QK8_0/2; j++) {
  2185. const uint8_t v0 = p0[j];
  2186. const float f0 = d0*(v0 & 0xf) + m0;
  2187. const float f1 = d0*(v0 >> 4) + m0;
  2188. const float f2 = d1*p1[2*j + 0];
  2189. const float f3 = d1*p1[2*j + 1];
  2190. sumf += f0*f2 + f1*f3;
  2191. }
  2192. }
  2193. #endif
  2194. *s = sumf;
  2195. }
  2196. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2197. const int nb = n / QK8_0;
  2198. assert(n % QK8_0 == 0);
  2199. assert(nb % 2 == 0);
  2200. assert(QK8_0 == 2*QK4_2);
  2201. const block_q4_2 * restrict x = vx;
  2202. const block_q8_0 * restrict y = vy;
  2203. float sumf = 0.0;
  2204. #if defined(__ARM_NEON)
  2205. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2206. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2207. for (int i = 0; i < nb; i += 2) {
  2208. const block_q4_2 * restrict x0_0 = &x[2*(i + 0) + 0];
  2209. const block_q4_2 * restrict x0_1 = &x[2*(i + 0) + 1];
  2210. const block_q4_2 * restrict x1_0 = &x[2*(i + 1) + 0];
  2211. const block_q4_2 * restrict x1_1 = &x[2*(i + 1) + 1];
  2212. const block_q8_0 * restrict y0 = &y[i + 0];
  2213. const block_q8_0 * restrict y1 = &y[i + 1];
  2214. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2215. const int8x16_t s8b = vdupq_n_s8(0x8);
  2216. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2217. const uint8x16_t v0_1 = vcombine_u8(vld1_u8(x1_0->qs), vld1_u8(x1_1->qs));
  2218. // 4-bit -> 8-bit
  2219. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2220. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2221. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2222. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2223. // sub 8
  2224. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2225. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2226. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2227. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2228. // interleave
  2229. const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs);
  2230. const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs);
  2231. const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs);
  2232. const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs);
  2233. // load y
  2234. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2235. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2236. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2237. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2238. #if defined(__ARM_FEATURE_DOTPROD)
  2239. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2240. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), GGML_FP16_TO_FP32(x0_0->d)),
  2241. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2242. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2243. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l)), GGML_FP16_TO_FP32(x1_0->d)),
  2244. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1hz, v1_1h)), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2245. #else
  2246. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2247. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2248. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2249. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2250. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2251. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2252. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2253. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2254. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2255. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2256. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2257. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2258. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2259. vmulq_n_f32(vcvtq_f32_s32(pl0), GGML_FP16_TO_FP32(x0_0->d)),
  2260. vmulq_n_f32(vcvtq_f32_s32(ph0), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2261. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2262. vmulq_n_f32(vcvtq_f32_s32(pl1), GGML_FP16_TO_FP32(x1_0->d)),
  2263. vmulq_n_f32(vcvtq_f32_s32(ph1), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2264. #endif
  2265. }
  2266. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2267. #elif defined(__AVX2__)
  2268. // Initialize accumulator with zeros
  2269. __m256 acc = _mm256_setzero_ps();
  2270. // Main loop
  2271. for (int i = 0; i < nb; i++) {
  2272. /* Compute combined scale for the block */
  2273. const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d));
  2274. const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d));
  2275. const __m256 d = _mm256_mul_ps(_mm256_set_m128(d1, d0), _mm256_broadcast_ss(&y[i].d));
  2276. __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs);
  2277. __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs);
  2278. __m256i bx = _mm256_set_m128i(bx1, bx0);
  2279. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2280. const __m256i off = _mm256_set1_epi8(8);
  2281. bx = _mm256_sub_epi8(bx, off);
  2282. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2283. // Get absolute values of x vectors
  2284. const __m256i ax = _mm256_sign_epi8(bx, bx);
  2285. // Sign the values of the y vectors
  2286. const __m256i sy = _mm256_sign_epi8(by, bx);
  2287. // Perform multiplication and create 16-bit values
  2288. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  2289. const __m256i ones = _mm256_set1_epi16(1);
  2290. __m256i xy_q = _mm256_madd_epi16(ones, dot);
  2291. /* Convert to vectore of 8 int32_t to 8 floats */
  2292. __m256 q = _mm256_cvtepi32_ps(xy_q);
  2293. /* Multiply q with scale and accumulate */
  2294. acc = _mm256_fmadd_ps(d, q, acc);
  2295. }
  2296. // Return horizontal sum of the acc vector
  2297. __m128 res = _mm256_extractf128_ps(acc, 1);
  2298. res = _mm_add_ps(res, _mm256_castps256_ps128(acc));
  2299. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  2300. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  2301. sumf = _mm_cvtss_f32(res);
  2302. #else
  2303. // scalar
  2304. for (int i = 0; i < nb; i++) {
  2305. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2306. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2307. const int8_t * restrict y0 = y[i].qs;
  2308. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2309. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2310. int sumi_0 = 0;
  2311. int sumi_1 = 0;
  2312. for (int j = 0; j < QK8_0/4; j++) {
  2313. const uint8_t v0 = x0[j];
  2314. const uint8_t v1 = x1[j];
  2315. const int i0_0 = (int8_t) (v0 & 0xf) - 8;
  2316. const int i1_0 = (int8_t) (v0 >> 4) - 8;
  2317. const int i0_1 = (int8_t) (v1 & 0xf) - 8;
  2318. const int i1_1 = (int8_t) (v1 >> 4) - 8;
  2319. const int i2_0 = y0[2*j + 0];
  2320. const int i3_0 = y0[2*j + 1];
  2321. const int i2_1 = y0[2*(j + QK8_0/4) + 0];
  2322. const int i3_1 = y0[2*(j + QK8_0/4) + 1];
  2323. sumi_0 += i0_0*i2_0 + i1_0*i3_0;
  2324. sumi_1 += i0_1*i2_1 + i1_1*i3_1;
  2325. }
  2326. sumf += (d0 * y[i].d) * sumi_0;
  2327. sumf += (d1 * y[i].d) * sumi_1;
  2328. }
  2329. #endif
  2330. *s = sumf;
  2331. }
  2332. static void ggml_vec_dot_q4_3_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2333. const int nb = n / QK8_0;
  2334. assert(n % QK8_0 == 0);
  2335. assert(nb % 2 == 0);
  2336. assert(QK8_0 == 2*QK4_2);
  2337. const block_q4_3 * restrict x = vx;
  2338. const block_q8_0 * restrict y = vy;
  2339. float sumf = 0.0;
  2340. #if defined(__ARM_NEON)
  2341. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2342. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2343. for (int i = 0; i < nb; i += 2) {
  2344. const block_q4_3 * restrict x0_0 = &x[2*(i + 0) + 0];
  2345. const block_q4_3 * restrict x0_1 = &x[2*(i + 0) + 1];
  2346. const block_q4_3 * restrict x1_0 = &x[2*(i + 1) + 0];
  2347. const block_q4_3 * restrict x1_1 = &x[2*(i + 1) + 1];
  2348. const block_q8_0 * restrict y0 = &y[i + 0];
  2349. const block_q8_0 * restrict y1 = &y[i + 1];
  2350. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2351. const float x0_0d = GGML_FP16_TO_FP32(x0_0->d);
  2352. const float x0_1d = GGML_FP16_TO_FP32(x0_1->d);
  2353. const float x1_0d = GGML_FP16_TO_FP32(x1_0->d);
  2354. const float x1_1d = GGML_FP16_TO_FP32(x1_1->d);
  2355. const float x0_0m = GGML_FP16_TO_FP32(x0_0->m);
  2356. const float x0_1m = GGML_FP16_TO_FP32(x0_1->m);
  2357. const float x1_0m = GGML_FP16_TO_FP32(x1_0->m);
  2358. const float x1_1m = GGML_FP16_TO_FP32(x1_1->m);
  2359. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2360. const uint8x16_t v0_1 = vcombine_u8(vld1_u8(x1_0->qs), vld1_u8(x1_1->qs));
  2361. // 4-bit -> 8-bit
  2362. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2363. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2364. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2365. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2366. // interleave
  2367. const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h);
  2368. const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h);
  2369. const int8x16_t v0_1lz = vzip1q_s8(v0_1l, v0_1h);
  2370. const int8x16_t v0_1hz = vzip2q_s8(v0_1l, v0_1h);
  2371. // load y
  2372. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2373. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2374. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2375. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2376. const int16x8_t sy0_0 = vaddq_s16(vmovl_s8(vget_low_s8(v1_0l)), vmovl_s8(vget_high_s8(v1_0l)));
  2377. const int16x8_t sy0_1 = vaddq_s16(vmovl_s8(vget_low_s8(v1_0h)), vmovl_s8(vget_high_s8(v1_0h)));
  2378. const int16x8_t sy1_0 = vaddq_s16(vmovl_s8(vget_low_s8(v1_1l)), vmovl_s8(vget_high_s8(v1_1l)));
  2379. const int16x8_t sy1_1 = vaddq_s16(vmovl_s8(vget_low_s8(v1_1h)), vmovl_s8(vget_high_s8(v1_1h)));
  2380. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddl_s16(vget_low_s16(sy0_0), vget_high_s16(sy0_0))), x0_0m*y0->d);
  2381. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddl_s16(vget_low_s16(sy0_1), vget_high_s16(sy0_1))), x0_1m*y0->d);
  2382. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddl_s16(vget_low_s16(sy1_0), vget_high_s16(sy1_0))), x1_0m*y1->d);
  2383. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddl_s16(vget_low_s16(sy1_1), vget_high_s16(sy1_1))), x1_1m*y1->d);
  2384. #if defined(__ARM_FEATURE_DOTPROD)
  2385. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), x0_0d*y0->d);
  2386. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), x0_1d*y0->d);
  2387. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l)), x1_0d*y1->d);
  2388. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1hz, v1_1h)), x1_1d*y1->d);
  2389. #else
  2390. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2391. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2392. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2393. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2394. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2395. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2396. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2397. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2398. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2399. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2400. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2401. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2402. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(pl0), x0_0d*y0->d);
  2403. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(ph0), x0_1d*y0->d);
  2404. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(pl1), x1_0d*y1->d);
  2405. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(ph1), x1_1d*y1->d);
  2406. #endif
  2407. }
  2408. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2409. #else
  2410. // scalar
  2411. for (int i = 0; i < nb; i++) {
  2412. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2413. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2414. const int8_t * restrict y0 = y[i].qs;
  2415. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2416. const float m0 = GGML_FP16_TO_FP32(x[2*i + 0].m);
  2417. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2418. const float m1 = GGML_FP16_TO_FP32(x[2*i + 1].m);
  2419. int sy_0 = 0;
  2420. int sy_1 = 0;
  2421. int sxy_0 = 0;
  2422. int sxy_1 = 0;
  2423. for (int j = 0; j < QK8_0/4; j++) {
  2424. const uint8_t v0 = x0[j];
  2425. const uint8_t v1 = x1[j];
  2426. const int x0_0 = v0 & 0xf;
  2427. const int x1_0 = v0 >> 4;
  2428. const int x0_1 = v1 & 0xf;
  2429. const int x1_1 = v1 >> 4;
  2430. const int y0_0 = y0[2*j + 0];
  2431. const int y1_0 = y0[2*j + 1];
  2432. const int y0_1 = y0[2*(j + QK8_0/4) + 0];
  2433. const int y1_1 = y0[2*(j + QK8_0/4) + 1];
  2434. sy_0 += y0_0 + y1_0;
  2435. sy_1 += y0_1 + y1_1;
  2436. sxy_0 += x0_0*y0_0 + x1_0*y1_0;
  2437. sxy_1 += x0_1*y0_1 + x1_1*y1_1;
  2438. }
  2439. sumf += (d0*sxy_0 + m0*sy_0)*y[i].d;
  2440. sumf += (d1*sxy_1 + m1*sy_1)*y[i].d;
  2441. }
  2442. #endif
  2443. *s = sumf;
  2444. }
  2445. // compute GGML_VEC_DOT_UNROLL dot products at once
  2446. // xs - x row stride in bytes
  2447. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2448. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2449. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2450. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2451. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2452. }
  2453. #if defined(GGML_SIMD)
  2454. const int np = (n & ~(GGML_F16_STEP - 1));
  2455. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2456. GGML_F16_VEC ax[GGML_F16_ARR];
  2457. GGML_F16_VEC ay[GGML_F16_ARR];
  2458. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2459. for (int j = 0; j < GGML_F16_ARR; j++) {
  2460. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2461. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2462. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2463. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2464. }
  2465. }
  2466. }
  2467. // reduce sum0..sum3 to sum0
  2468. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2469. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2470. }
  2471. // leftovers
  2472. for (int i = np; i < n; ++i) {
  2473. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2474. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2475. }
  2476. }
  2477. #else
  2478. for (int i = 0; i < n; ++i) {
  2479. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2480. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2481. }
  2482. }
  2483. #endif
  2484. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2485. s[i] = sumf[i];
  2486. }
  2487. }
  2488. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2489. #if defined(GGML_SIMD)
  2490. const int np = (n & ~(GGML_F32_STEP - 1));
  2491. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2492. GGML_F32_VEC ax[GGML_F32_ARR];
  2493. GGML_F32_VEC ay[GGML_F32_ARR];
  2494. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2495. for (int j = 0; j < GGML_F32_ARR; j++) {
  2496. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2497. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2498. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2499. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2500. }
  2501. }
  2502. // leftovers
  2503. for (int i = np; i < n; ++i) {
  2504. y[i] += x[i]*v;
  2505. }
  2506. #else
  2507. // scalar
  2508. for (int i = 0; i < n; ++i) {
  2509. y[i] += x[i]*v;
  2510. }
  2511. #endif
  2512. }
  2513. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2514. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2515. #if defined(GGML_SIMD)
  2516. const int np = (n & ~(GGML_F32_STEP - 1));
  2517. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2518. GGML_F32_VEC ay[GGML_F32_ARR];
  2519. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2520. for (int j = 0; j < GGML_F32_ARR; j++) {
  2521. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2522. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2523. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2524. }
  2525. }
  2526. // leftovers
  2527. for (int i = np; i < n; ++i) {
  2528. y[i] *= v;
  2529. }
  2530. #else
  2531. // scalar
  2532. for (int i = 0; i < n; ++i) {
  2533. y[i] *= v;
  2534. }
  2535. #endif
  2536. }
  2537. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2538. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2539. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2540. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2541. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2542. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2543. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2544. static const float GELU_COEF_A = 0.044715f;
  2545. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2546. inline static float ggml_gelu_f32(float x) {
  2547. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2548. }
  2549. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2550. const uint16_t * i16 = (const uint16_t *) x;
  2551. for (int i = 0; i < n; ++i) {
  2552. y[i] = table_gelu_f16[i16[i]];
  2553. }
  2554. }
  2555. #ifdef GGML_GELU_FP16
  2556. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2557. uint16_t t;
  2558. for (int i = 0; i < n; ++i) {
  2559. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2560. memcpy(&t, &fp16, sizeof(uint16_t));
  2561. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2562. }
  2563. }
  2564. #else
  2565. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2566. for (int i = 0; i < n; ++i) {
  2567. y[i] = ggml_gelu_f32(x[i]);
  2568. }
  2569. }
  2570. #endif
  2571. // Sigmoid Linear Unit (SiLU) function
  2572. inline static float ggml_silu_f32(float x) {
  2573. return x/(1.0f + expf(-x));
  2574. }
  2575. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2576. const uint16_t * i16 = (const uint16_t *) x;
  2577. for (int i = 0; i < n; ++i) {
  2578. y[i] = table_silu_f16[i16[i]];
  2579. }
  2580. }
  2581. #ifdef GGML_SILU_FP16
  2582. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2583. uint16_t t;
  2584. for (int i = 0; i < n; ++i) {
  2585. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2586. memcpy(&t, &fp16, sizeof(uint16_t));
  2587. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2588. }
  2589. }
  2590. #else
  2591. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2592. for (int i = 0; i < n; ++i) {
  2593. y[i] = ggml_silu_f32(x[i]);
  2594. }
  2595. }
  2596. #endif
  2597. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2598. #ifndef GGML_USE_ACCELERATE
  2599. ggml_float sum = 0.0;
  2600. for (int i = 0; i < n; ++i) {
  2601. sum += (ggml_float)x[i];
  2602. }
  2603. *s = sum;
  2604. #else
  2605. vDSP_sve(x, 1, s, n);
  2606. #endif
  2607. }
  2608. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2609. #ifndef GGML_USE_ACCELERATE
  2610. float max = -INFINITY;
  2611. for (int i = 0; i < n; ++i) {
  2612. max = MAX(max, x[i]);
  2613. }
  2614. *s = max;
  2615. #else
  2616. vDSP_maxv(x, 1, s, n);
  2617. #endif
  2618. }
  2619. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2620. ggml_vec_norm_f32(n, s, x);
  2621. *s = 1.f/(*s);
  2622. }
  2623. //
  2624. // logging
  2625. //
  2626. #if (GGML_DEBUG >= 1)
  2627. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2628. #else
  2629. #define GGML_PRINT_DEBUG(...)
  2630. #endif
  2631. #if (GGML_DEBUG >= 5)
  2632. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2633. #else
  2634. #define GGML_PRINT_DEBUG_5(...)
  2635. #endif
  2636. #if (GGML_DEBUG >= 10)
  2637. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2638. #else
  2639. #define GGML_PRINT_DEBUG_10(...)
  2640. #endif
  2641. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2642. //
  2643. // data types
  2644. //
  2645. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2646. [GGML_TYPE_F32] = 1,
  2647. [GGML_TYPE_F16] = 1,
  2648. [GGML_TYPE_Q4_0] = QK4_0,
  2649. [GGML_TYPE_Q4_1] = QK4_1,
  2650. [GGML_TYPE_Q4_2] = QK4_2,
  2651. [GGML_TYPE_Q4_3] = QK4_3,
  2652. [GGML_TYPE_Q8_0] = QK8_0,
  2653. [GGML_TYPE_I8] = 1,
  2654. [GGML_TYPE_I16] = 1,
  2655. [GGML_TYPE_I32] = 1,
  2656. };
  2657. static_assert(GGML_TYPE_COUNT == 10, "GGML_BLCK_SIZE is outdated");
  2658. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2659. [GGML_TYPE_F32] = sizeof(float),
  2660. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2661. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2662. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2663. [GGML_TYPE_Q4_2] = sizeof(block_q4_2),
  2664. [GGML_TYPE_Q4_3] = sizeof(block_q4_3),
  2665. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2666. [GGML_TYPE_I8] = sizeof(int8_t),
  2667. [GGML_TYPE_I16] = sizeof(int16_t),
  2668. [GGML_TYPE_I32] = sizeof(int32_t),
  2669. };
  2670. static_assert(GGML_TYPE_COUNT == 10, "GGML_TYPE_SIZE is outdated");
  2671. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2672. [GGML_TYPE_F32] = "f32",
  2673. [GGML_TYPE_F16] = "f16",
  2674. [GGML_TYPE_Q4_0] = "q4_0",
  2675. [GGML_TYPE_Q4_1] = "q4_1",
  2676. [GGML_TYPE_Q4_2] = "q4_2",
  2677. [GGML_TYPE_Q4_3] = "q4_3",
  2678. [GGML_TYPE_Q8_0] = "q8_0",
  2679. [GGML_TYPE_I8] = "i8",
  2680. [GGML_TYPE_I16] = "i16",
  2681. [GGML_TYPE_I32] = "i32",
  2682. };
  2683. static_assert(GGML_TYPE_COUNT == 10, "GGML_TYPE_NAME is outdated");
  2684. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2685. [GGML_TYPE_F32] = false,
  2686. [GGML_TYPE_F16] = false,
  2687. [GGML_TYPE_Q4_0] = true,
  2688. [GGML_TYPE_Q4_1] = true,
  2689. [GGML_TYPE_Q4_2] = true,
  2690. [GGML_TYPE_Q4_3] = true,
  2691. [GGML_TYPE_Q8_0] = true,
  2692. [GGML_TYPE_I8] = false,
  2693. [GGML_TYPE_I16] = false,
  2694. [GGML_TYPE_I32] = false,
  2695. };
  2696. static_assert(GGML_TYPE_COUNT == 10, "GGML_IS_QUANTIZED is outdated");
  2697. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2698. "NONE",
  2699. "DUP",
  2700. "ADD",
  2701. "SUB",
  2702. "MUL",
  2703. "DIV",
  2704. "SQR",
  2705. "SQRT",
  2706. "SUM",
  2707. "MEAN",
  2708. "REPEAT",
  2709. "ABS",
  2710. "SGN",
  2711. "NEG",
  2712. "STEP",
  2713. "RELU",
  2714. "GELU",
  2715. "SILU",
  2716. "NORM",
  2717. "RMS_NORM",
  2718. "MUL_MAT",
  2719. "SCALE",
  2720. "CPY",
  2721. "CONT",
  2722. "RESHAPE",
  2723. "VIEW",
  2724. "PERMUTE",
  2725. "TRANSPOSE",
  2726. "GET_ROWS",
  2727. "DIAG_MASK_INF",
  2728. "SOFT_MAX",
  2729. "ROPE",
  2730. "CONV_1D_1S",
  2731. "CONV_1D_2S",
  2732. "FLASH_ATTN",
  2733. "FLASH_FF",
  2734. "MAP_UNARY",
  2735. "MAP_BINARY",
  2736. };
  2737. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  2738. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2739. "none",
  2740. "x",
  2741. "x+y",
  2742. "x-y",
  2743. "x*y",
  2744. "x/y",
  2745. "x^2",
  2746. "√x",
  2747. "Σx",
  2748. "Σx/n",
  2749. "repeat(x)",
  2750. "abs(x)",
  2751. "sgn(x)",
  2752. "-x",
  2753. "step(x)",
  2754. "relu(x)",
  2755. "gelu(x)",
  2756. "silu(x)",
  2757. "norm(x)",
  2758. "rms_norm(x)",
  2759. "X*Y",
  2760. "x*v",
  2761. "x-\\>y",
  2762. "cont(x)",
  2763. "reshape(x)",
  2764. "view(x)",
  2765. "permute(x)",
  2766. "transpose(x)",
  2767. "get_rows(x)",
  2768. "diag_mask_inf(x)",
  2769. "soft_max(x)",
  2770. "rope(x)",
  2771. "conv_1d_1s(x)",
  2772. "conv_1d_2s(x)",
  2773. "flash_attn(x)",
  2774. "flash_ff(x)",
  2775. "f(x)",
  2776. "f(x,y)",
  2777. };
  2778. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  2779. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2780. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2781. //
  2782. // ggml context
  2783. //
  2784. struct ggml_context {
  2785. size_t mem_size;
  2786. void * mem_buffer;
  2787. bool mem_buffer_owned;
  2788. bool no_alloc;
  2789. int n_objects;
  2790. struct ggml_object * objects_begin;
  2791. struct ggml_object * objects_end;
  2792. struct ggml_scratch scratch;
  2793. struct ggml_scratch scratch_save;
  2794. };
  2795. struct ggml_context_container {
  2796. bool used;
  2797. struct ggml_context context;
  2798. };
  2799. //
  2800. // compute types
  2801. //
  2802. enum ggml_task_type {
  2803. GGML_TASK_INIT = 0,
  2804. GGML_TASK_COMPUTE,
  2805. GGML_TASK_FINALIZE,
  2806. };
  2807. struct ggml_compute_params {
  2808. enum ggml_task_type type;
  2809. int ith, nth;
  2810. // work buffer for all threads
  2811. size_t wsize;
  2812. void * wdata;
  2813. };
  2814. //
  2815. // ggml state
  2816. //
  2817. struct ggml_state {
  2818. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2819. };
  2820. // global state
  2821. static struct ggml_state g_state;
  2822. static atomic_int g_state_barrier = 0;
  2823. // barrier via spin lock
  2824. inline static void ggml_critical_section_start(void) {
  2825. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2826. while (processing > 0) {
  2827. // wait for other threads to finish
  2828. atomic_fetch_sub(&g_state_barrier, 1);
  2829. sched_yield(); // TODO: reconsider this
  2830. processing = atomic_fetch_add(&g_state_barrier, 1);
  2831. }
  2832. }
  2833. // TODO: make this somehow automatically executed
  2834. // some sort of "sentry" mechanism
  2835. inline static void ggml_critical_section_end(void) {
  2836. atomic_fetch_sub(&g_state_barrier, 1);
  2837. }
  2838. ////////////////////////////////////////////////////////////////////////////////
  2839. void ggml_print_object(const struct ggml_object * obj) {
  2840. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2841. obj->offs, obj->size, (const void *) obj->next);
  2842. }
  2843. void ggml_print_objects(const struct ggml_context * ctx) {
  2844. struct ggml_object * obj = ctx->objects_begin;
  2845. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2846. while (obj != NULL) {
  2847. ggml_print_object(obj);
  2848. obj = obj->next;
  2849. }
  2850. GGML_PRINT("%s: --- end ---\n", __func__);
  2851. }
  2852. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2853. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2854. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2855. }
  2856. int ggml_nrows(const struct ggml_tensor * tensor) {
  2857. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2858. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2859. }
  2860. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2861. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2862. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2863. }
  2864. int ggml_blck_size(enum ggml_type type) {
  2865. return GGML_BLCK_SIZE[type];
  2866. }
  2867. size_t ggml_type_size(enum ggml_type type) {
  2868. return GGML_TYPE_SIZE[type];
  2869. }
  2870. float ggml_type_sizef(enum ggml_type type) {
  2871. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2872. }
  2873. const char * ggml_type_name(enum ggml_type type) {
  2874. return GGML_TYPE_NAME[type];
  2875. }
  2876. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2877. return GGML_TYPE_SIZE[tensor->type];
  2878. }
  2879. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2880. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2881. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2882. }
  2883. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2884. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2885. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2886. }
  2887. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2888. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2889. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2890. }
  2891. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2892. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2893. return
  2894. (t0->ne[0] == t1->ne[0]) &&
  2895. (t0->ne[2] == t1->ne[2]) &&
  2896. (t0->ne[3] == t1->ne[3]);
  2897. }
  2898. bool ggml_is_quantized(enum ggml_type type) {
  2899. return GGML_IS_QUANTIZED[type];
  2900. }
  2901. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2902. return tensor->nb[0] > tensor->nb[1];
  2903. }
  2904. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2905. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2906. return
  2907. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2908. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2909. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2910. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2911. }
  2912. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2913. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2914. return
  2915. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2916. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2917. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2918. }
  2919. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2920. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2921. return
  2922. (t0->ne[0] == t1->ne[0] ) &&
  2923. (t0->ne[1] == t1->ne[1] ) &&
  2924. (t0->ne[2] == t1->ne[2] ) &&
  2925. (t0->ne[3] == t1->ne[3] );
  2926. }
  2927. // check if t1 can be represented as a repeatition of t0
  2928. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2929. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2930. return
  2931. (t1->ne[0]%t0->ne[0] == 0) &&
  2932. (t1->ne[1]%t0->ne[1] == 0) &&
  2933. (t1->ne[2]%t0->ne[2] == 0) &&
  2934. (t1->ne[3]%t0->ne[3] == 0);
  2935. }
  2936. static inline int ggml_up32(int n) {
  2937. return (n + 31) & ~31;
  2938. }
  2939. static inline int ggml_up64(int n) {
  2940. return (n + 63) & ~63;
  2941. }
  2942. static inline int ggml_up(int n, int m) {
  2943. // assert m is a power of 2
  2944. GGML_ASSERT((m & (m - 1)) == 0);
  2945. return (n + m - 1) & ~(m - 1);
  2946. }
  2947. // assert that pointer is aligned to GGML_MEM_ALIGN
  2948. #define ggml_assert_aligned(ptr) \
  2949. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2950. ////////////////////////////////////////////////////////////////////////////////
  2951. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2952. // make this function thread safe
  2953. ggml_critical_section_start();
  2954. static bool is_first_call = true;
  2955. if (is_first_call) {
  2956. // initialize time system (required on Windows)
  2957. ggml_time_init();
  2958. // initialize GELU, SILU and EXP F32 tables
  2959. {
  2960. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2961. ggml_fp16_t ii;
  2962. for (int i = 0; i < (1 << 16); ++i) {
  2963. uint16_t ui = i;
  2964. memcpy(&ii, &ui, sizeof(ii));
  2965. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2966. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2967. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2968. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2969. }
  2970. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2971. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2972. }
  2973. // initialize g_state
  2974. {
  2975. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2976. g_state = (struct ggml_state) {
  2977. /*.contexts =*/ { { 0 } },
  2978. };
  2979. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2980. g_state.contexts[i].used = false;
  2981. }
  2982. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2983. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2984. }
  2985. // initialize cuBLAS
  2986. #if defined(GGML_USE_CUBLAS)
  2987. ggml_init_cublas();
  2988. #endif
  2989. is_first_call = false;
  2990. }
  2991. // find non-used context in g_state
  2992. struct ggml_context * ctx = NULL;
  2993. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2994. if (!g_state.contexts[i].used) {
  2995. g_state.contexts[i].used = true;
  2996. ctx = &g_state.contexts[i].context;
  2997. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2998. break;
  2999. }
  3000. }
  3001. if (ctx == NULL) {
  3002. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3003. ggml_critical_section_end();
  3004. return NULL;
  3005. }
  3006. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3007. *ctx = (struct ggml_context) {
  3008. /*.mem_size =*/ mem_size,
  3009. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3010. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3011. /*.no_alloc =*/ params.no_alloc,
  3012. /*.n_objects =*/ 0,
  3013. /*.objects_begin =*/ NULL,
  3014. /*.objects_end =*/ NULL,
  3015. /*.scratch =*/ { 0, 0, NULL, },
  3016. /*.scratch_save =*/ { 0, 0, NULL, },
  3017. };
  3018. GGML_ASSERT(ctx->mem_buffer != NULL);
  3019. ggml_assert_aligned(ctx->mem_buffer);
  3020. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3021. ggml_critical_section_end();
  3022. return ctx;
  3023. }
  3024. void ggml_free(struct ggml_context * ctx) {
  3025. // make this function thread safe
  3026. ggml_critical_section_start();
  3027. bool found = false;
  3028. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3029. if (&g_state.contexts[i].context == ctx) {
  3030. g_state.contexts[i].used = false;
  3031. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3032. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3033. if (ctx->mem_buffer_owned) {
  3034. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3035. }
  3036. found = true;
  3037. break;
  3038. }
  3039. }
  3040. if (!found) {
  3041. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3042. }
  3043. ggml_critical_section_end();
  3044. }
  3045. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3046. return ctx->objects_end->offs + ctx->objects_end->size;
  3047. }
  3048. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3049. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3050. ctx->scratch = scratch;
  3051. return result;
  3052. }
  3053. ////////////////////////////////////////////////////////////////////////////////
  3054. struct ggml_tensor * ggml_new_tensor_impl(
  3055. struct ggml_context * ctx,
  3056. enum ggml_type type,
  3057. int n_dims,
  3058. const int64_t* ne,
  3059. void* data) {
  3060. // always insert objects at the end of the context's memory pool
  3061. struct ggml_object * obj_cur = ctx->objects_end;
  3062. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3063. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3064. const size_t cur_end = cur_offs + cur_size;
  3065. size_t size_needed = 0;
  3066. if (data == NULL && !ctx->no_alloc) {
  3067. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3068. for (int i = 1; i < n_dims; i++) {
  3069. size_needed *= ne[i];
  3070. }
  3071. // align to GGML_MEM_ALIGN
  3072. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3073. }
  3074. char * const mem_buffer = ctx->mem_buffer;
  3075. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3076. if (ctx->scratch.data == NULL || data != NULL) {
  3077. size_needed += sizeof(struct ggml_tensor);
  3078. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3079. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3080. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3081. assert(false);
  3082. return NULL;
  3083. }
  3084. *obj_new = (struct ggml_object) {
  3085. .offs = cur_end + GGML_OBJECT_SIZE,
  3086. .size = size_needed,
  3087. .next = NULL,
  3088. };
  3089. } else {
  3090. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3091. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  3092. assert(false);
  3093. return NULL;
  3094. }
  3095. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  3096. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3097. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  3098. assert(false);
  3099. return NULL;
  3100. }
  3101. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3102. *obj_new = (struct ggml_object) {
  3103. .offs = cur_end + GGML_OBJECT_SIZE,
  3104. .size = sizeof(struct ggml_tensor),
  3105. .next = NULL,
  3106. };
  3107. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3108. ctx->scratch.offs += size_needed;
  3109. }
  3110. if (obj_cur != NULL) {
  3111. obj_cur->next = obj_new;
  3112. } else {
  3113. // this is the first object in this context
  3114. ctx->objects_begin = obj_new;
  3115. }
  3116. ctx->objects_end = obj_new;
  3117. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3118. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3119. ggml_assert_aligned(result);
  3120. *result = (struct ggml_tensor) {
  3121. /*.type =*/ type,
  3122. /*.n_dims =*/ n_dims,
  3123. /*.ne =*/ { 1, 1, 1, 1 },
  3124. /*.nb =*/ { 0, 0, 0, 0 },
  3125. /*.op =*/ GGML_OP_NONE,
  3126. /*.is_param =*/ false,
  3127. /*.grad =*/ NULL,
  3128. /*.src0 =*/ NULL,
  3129. /*.src1 =*/ NULL,
  3130. /*.opt =*/ { NULL },
  3131. /*.n_tasks =*/ 0,
  3132. /*.perf_runs =*/ 0,
  3133. /*.perf_cycles =*/ 0,
  3134. /*.perf_time_us =*/ 0,
  3135. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3136. /*.pad =*/ { 0 },
  3137. };
  3138. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3139. //ggml_assert_aligned(result->data);
  3140. for (int i = 0; i < n_dims; i++) {
  3141. result->ne[i] = ne[i];
  3142. }
  3143. result->nb[0] = GGML_TYPE_SIZE[type];
  3144. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3145. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3146. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3147. }
  3148. ctx->n_objects++;
  3149. return result;
  3150. }
  3151. struct ggml_tensor * ggml_new_tensor(
  3152. struct ggml_context * ctx,
  3153. enum ggml_type type,
  3154. int n_dims,
  3155. const int64_t * ne) {
  3156. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3157. }
  3158. struct ggml_tensor * ggml_new_tensor_1d(
  3159. struct ggml_context * ctx,
  3160. enum ggml_type type,
  3161. int64_t ne0) {
  3162. return ggml_new_tensor(ctx, type, 1, &ne0);
  3163. }
  3164. struct ggml_tensor * ggml_new_tensor_2d(
  3165. struct ggml_context * ctx,
  3166. enum ggml_type type,
  3167. int64_t ne0,
  3168. int64_t ne1) {
  3169. const int64_t ne[2] = { ne0, ne1 };
  3170. return ggml_new_tensor(ctx, type, 2, ne);
  3171. }
  3172. struct ggml_tensor * ggml_new_tensor_3d(
  3173. struct ggml_context * ctx,
  3174. enum ggml_type type,
  3175. int64_t ne0,
  3176. int64_t ne1,
  3177. int64_t ne2) {
  3178. const int64_t ne[3] = { ne0, ne1, ne2 };
  3179. return ggml_new_tensor(ctx, type, 3, ne);
  3180. }
  3181. struct ggml_tensor * ggml_new_tensor_4d(
  3182. struct ggml_context * ctx,
  3183. enum ggml_type type,
  3184. int64_t ne0,
  3185. int64_t ne1,
  3186. int64_t ne2,
  3187. int64_t ne3) {
  3188. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3189. return ggml_new_tensor(ctx, type, 4, ne);
  3190. }
  3191. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3192. ctx->scratch_save = ctx->scratch;
  3193. ctx->scratch.data = NULL;
  3194. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3195. ctx->scratch = ctx->scratch_save;
  3196. ggml_set_i32(result, value);
  3197. return result;
  3198. }
  3199. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3200. ctx->scratch_save = ctx->scratch;
  3201. ctx->scratch.data = NULL;
  3202. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3203. ctx->scratch = ctx->scratch_save;
  3204. ggml_set_f32(result, value);
  3205. return result;
  3206. }
  3207. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3208. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3209. }
  3210. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3211. memset(tensor->data, 0, ggml_nbytes(tensor));
  3212. return tensor;
  3213. }
  3214. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3215. const int n = ggml_nrows(tensor);
  3216. const int nc = tensor->ne[0];
  3217. const size_t n1 = tensor->nb[1];
  3218. char * const data = tensor->data;
  3219. switch (tensor->type) {
  3220. case GGML_TYPE_I8:
  3221. {
  3222. assert(tensor->nb[0] == sizeof(int8_t));
  3223. for (int i = 0; i < n; i++) {
  3224. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3225. }
  3226. } break;
  3227. case GGML_TYPE_I16:
  3228. {
  3229. assert(tensor->nb[0] == sizeof(int16_t));
  3230. for (int i = 0; i < n; i++) {
  3231. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3232. }
  3233. } break;
  3234. case GGML_TYPE_I32:
  3235. {
  3236. assert(tensor->nb[0] == sizeof(int32_t));
  3237. for (int i = 0; i < n; i++) {
  3238. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3239. }
  3240. } break;
  3241. case GGML_TYPE_F16:
  3242. {
  3243. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3244. for (int i = 0; i < n; i++) {
  3245. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3246. }
  3247. } break;
  3248. case GGML_TYPE_F32:
  3249. {
  3250. assert(tensor->nb[0] == sizeof(float));
  3251. for (int i = 0; i < n; i++) {
  3252. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3253. }
  3254. } break;
  3255. default:
  3256. {
  3257. GGML_ASSERT(false);
  3258. } break;
  3259. }
  3260. return tensor;
  3261. }
  3262. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3263. const int n = ggml_nrows(tensor);
  3264. const int nc = tensor->ne[0];
  3265. const size_t n1 = tensor->nb[1];
  3266. char * const data = tensor->data;
  3267. switch (tensor->type) {
  3268. case GGML_TYPE_I8:
  3269. {
  3270. assert(tensor->nb[0] == sizeof(int8_t));
  3271. for (int i = 0; i < n; i++) {
  3272. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3273. }
  3274. } break;
  3275. case GGML_TYPE_I16:
  3276. {
  3277. assert(tensor->nb[0] == sizeof(int16_t));
  3278. for (int i = 0; i < n; i++) {
  3279. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3280. }
  3281. } break;
  3282. case GGML_TYPE_I32:
  3283. {
  3284. assert(tensor->nb[0] == sizeof(int32_t));
  3285. for (int i = 0; i < n; i++) {
  3286. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3287. }
  3288. } break;
  3289. case GGML_TYPE_F16:
  3290. {
  3291. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3292. for (int i = 0; i < n; i++) {
  3293. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3294. }
  3295. } break;
  3296. case GGML_TYPE_F32:
  3297. {
  3298. assert(tensor->nb[0] == sizeof(float));
  3299. for (int i = 0; i < n; i++) {
  3300. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3301. }
  3302. } break;
  3303. default:
  3304. {
  3305. GGML_ASSERT(false);
  3306. } break;
  3307. }
  3308. return tensor;
  3309. }
  3310. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3311. switch (tensor->type) {
  3312. case GGML_TYPE_I8:
  3313. {
  3314. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3315. return ((int8_t *)(tensor->data))[i];
  3316. } break;
  3317. case GGML_TYPE_I16:
  3318. {
  3319. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3320. return ((int16_t *)(tensor->data))[i];
  3321. } break;
  3322. case GGML_TYPE_I32:
  3323. {
  3324. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3325. return ((int32_t *)(tensor->data))[i];
  3326. } break;
  3327. case GGML_TYPE_F16:
  3328. {
  3329. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3330. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3331. } break;
  3332. case GGML_TYPE_F32:
  3333. {
  3334. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3335. return ((float *)(tensor->data))[i];
  3336. } break;
  3337. default:
  3338. {
  3339. GGML_ASSERT(false);
  3340. } break;
  3341. }
  3342. return 0.0f;
  3343. }
  3344. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3345. switch (tensor->type) {
  3346. case GGML_TYPE_I8:
  3347. {
  3348. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3349. ((int8_t *)(tensor->data))[i] = value;
  3350. } break;
  3351. case GGML_TYPE_I16:
  3352. {
  3353. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3354. ((int16_t *)(tensor->data))[i] = value;
  3355. } break;
  3356. case GGML_TYPE_I32:
  3357. {
  3358. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3359. ((int32_t *)(tensor->data))[i] = value;
  3360. } break;
  3361. case GGML_TYPE_F16:
  3362. {
  3363. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3364. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3365. } break;
  3366. case GGML_TYPE_F32:
  3367. {
  3368. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3369. ((float *)(tensor->data))[i] = value;
  3370. } break;
  3371. default:
  3372. {
  3373. GGML_ASSERT(false);
  3374. } break;
  3375. }
  3376. }
  3377. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3378. switch (tensor->type) {
  3379. case GGML_TYPE_I8:
  3380. {
  3381. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3382. return ((int8_t *)(tensor->data))[i];
  3383. } break;
  3384. case GGML_TYPE_I16:
  3385. {
  3386. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3387. return ((int16_t *)(tensor->data))[i];
  3388. } break;
  3389. case GGML_TYPE_I32:
  3390. {
  3391. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3392. return ((int32_t *)(tensor->data))[i];
  3393. } break;
  3394. case GGML_TYPE_F16:
  3395. {
  3396. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3397. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3398. } break;
  3399. case GGML_TYPE_F32:
  3400. {
  3401. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3402. return ((float *)(tensor->data))[i];
  3403. } break;
  3404. default:
  3405. {
  3406. GGML_ASSERT(false);
  3407. } break;
  3408. }
  3409. return 0.0f;
  3410. }
  3411. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3412. switch (tensor->type) {
  3413. case GGML_TYPE_I8:
  3414. {
  3415. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3416. ((int8_t *)(tensor->data))[i] = value;
  3417. } break;
  3418. case GGML_TYPE_I16:
  3419. {
  3420. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3421. ((int16_t *)(tensor->data))[i] = value;
  3422. } break;
  3423. case GGML_TYPE_I32:
  3424. {
  3425. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3426. ((int32_t *)(tensor->data))[i] = value;
  3427. } break;
  3428. case GGML_TYPE_F16:
  3429. {
  3430. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3431. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3432. } break;
  3433. case GGML_TYPE_F32:
  3434. {
  3435. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3436. ((float *)(tensor->data))[i] = value;
  3437. } break;
  3438. default:
  3439. {
  3440. GGML_ASSERT(false);
  3441. } break;
  3442. }
  3443. }
  3444. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3445. return tensor->data;
  3446. }
  3447. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3448. assert(tensor->type == GGML_TYPE_F32);
  3449. return (float *)(tensor->data);
  3450. }
  3451. struct ggml_tensor * ggml_view_tensor(
  3452. struct ggml_context * ctx,
  3453. const struct ggml_tensor * src) {
  3454. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3455. result->nb[0] = src->nb[0];
  3456. result->nb[1] = src->nb[1];
  3457. result->nb[2] = src->nb[2];
  3458. result->nb[3] = src->nb[3];
  3459. return result;
  3460. }
  3461. ////////////////////////////////////////////////////////////////////////////////
  3462. // ggml_dup
  3463. struct ggml_tensor * ggml_dup_impl(
  3464. struct ggml_context * ctx,
  3465. struct ggml_tensor * a,
  3466. bool inplace) {
  3467. bool is_node = false;
  3468. if (!inplace && (a->grad)) {
  3469. is_node = true;
  3470. }
  3471. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3472. result->op = GGML_OP_DUP;
  3473. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3474. result->src0 = a;
  3475. result->src1 = NULL;
  3476. return result;
  3477. }
  3478. struct ggml_tensor * ggml_dup(
  3479. struct ggml_context * ctx,
  3480. struct ggml_tensor * a) {
  3481. return ggml_dup_impl(ctx, a, false);
  3482. }
  3483. struct ggml_tensor * ggml_dup_inplace(
  3484. struct ggml_context * ctx,
  3485. struct ggml_tensor * a) {
  3486. return ggml_dup_impl(ctx, a, true);
  3487. }
  3488. // ggml_add
  3489. struct ggml_tensor * ggml_add_impl(
  3490. struct ggml_context * ctx,
  3491. struct ggml_tensor * a,
  3492. struct ggml_tensor * b,
  3493. bool inplace) {
  3494. GGML_ASSERT(ggml_are_same_shape(a, b));
  3495. bool is_node = false;
  3496. if (!inplace && (a->grad || b->grad)) {
  3497. is_node = true;
  3498. }
  3499. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3500. result->op = GGML_OP_ADD;
  3501. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3502. result->src0 = a;
  3503. result->src1 = b;
  3504. return result;
  3505. }
  3506. struct ggml_tensor * ggml_add(
  3507. struct ggml_context * ctx,
  3508. struct ggml_tensor * a,
  3509. struct ggml_tensor * b) {
  3510. return ggml_add_impl(ctx, a, b, false);
  3511. }
  3512. struct ggml_tensor * ggml_add_inplace(
  3513. struct ggml_context * ctx,
  3514. struct ggml_tensor * a,
  3515. struct ggml_tensor * b) {
  3516. return ggml_add_impl(ctx, a, b, true);
  3517. }
  3518. // ggml_sub
  3519. struct ggml_tensor * ggml_sub_impl(
  3520. struct ggml_context * ctx,
  3521. struct ggml_tensor * a,
  3522. struct ggml_tensor * b,
  3523. bool inplace) {
  3524. GGML_ASSERT(ggml_are_same_shape(a, b));
  3525. bool is_node = false;
  3526. if (!inplace && (a->grad || b->grad)) {
  3527. is_node = true;
  3528. }
  3529. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3530. result->op = GGML_OP_SUB;
  3531. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3532. result->src0 = a;
  3533. result->src1 = b;
  3534. return result;
  3535. }
  3536. struct ggml_tensor * ggml_sub(
  3537. struct ggml_context * ctx,
  3538. struct ggml_tensor * a,
  3539. struct ggml_tensor * b) {
  3540. return ggml_sub_impl(ctx, a, b, false);
  3541. }
  3542. struct ggml_tensor * ggml_sub_inplace(
  3543. struct ggml_context * ctx,
  3544. struct ggml_tensor * a,
  3545. struct ggml_tensor * b) {
  3546. return ggml_sub_impl(ctx, a, b, true);
  3547. }
  3548. // ggml_mul
  3549. struct ggml_tensor * ggml_mul_impl(
  3550. struct ggml_context * ctx,
  3551. struct ggml_tensor * a,
  3552. struct ggml_tensor * b,
  3553. bool inplace) {
  3554. GGML_ASSERT(ggml_are_same_shape(a, b));
  3555. bool is_node = false;
  3556. if (!inplace && (a->grad || b->grad)) {
  3557. is_node = true;
  3558. }
  3559. if (inplace) {
  3560. GGML_ASSERT(is_node == false);
  3561. }
  3562. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3563. result->op = GGML_OP_MUL;
  3564. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3565. result->src0 = a;
  3566. result->src1 = b;
  3567. return result;
  3568. }
  3569. struct ggml_tensor * ggml_mul(
  3570. struct ggml_context * ctx,
  3571. struct ggml_tensor * a,
  3572. struct ggml_tensor * b) {
  3573. return ggml_mul_impl(ctx, a, b, false);
  3574. }
  3575. struct ggml_tensor * ggml_mul_inplace(
  3576. struct ggml_context * ctx,
  3577. struct ggml_tensor * a,
  3578. struct ggml_tensor * b) {
  3579. return ggml_mul_impl(ctx, a, b, true);
  3580. }
  3581. // ggml_div
  3582. struct ggml_tensor * ggml_div_impl(
  3583. struct ggml_context * ctx,
  3584. struct ggml_tensor * a,
  3585. struct ggml_tensor * b,
  3586. bool inplace) {
  3587. GGML_ASSERT(ggml_are_same_shape(a, b));
  3588. bool is_node = false;
  3589. if (!inplace && (a->grad || b->grad)) {
  3590. is_node = true;
  3591. }
  3592. if (inplace) {
  3593. GGML_ASSERT(is_node == false);
  3594. }
  3595. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3596. result->op = GGML_OP_DIV;
  3597. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3598. result->src0 = a;
  3599. result->src1 = b;
  3600. return result;
  3601. }
  3602. struct ggml_tensor * ggml_div(
  3603. struct ggml_context * ctx,
  3604. struct ggml_tensor * a,
  3605. struct ggml_tensor * b) {
  3606. return ggml_div_impl(ctx, a, b, false);
  3607. }
  3608. struct ggml_tensor * ggml_div_inplace(
  3609. struct ggml_context * ctx,
  3610. struct ggml_tensor * a,
  3611. struct ggml_tensor * b) {
  3612. return ggml_div_impl(ctx, a, b, true);
  3613. }
  3614. // ggml_sqr
  3615. struct ggml_tensor * ggml_sqr_impl(
  3616. struct ggml_context * ctx,
  3617. struct ggml_tensor * a,
  3618. bool inplace) {
  3619. bool is_node = false;
  3620. if (!inplace && (a->grad)) {
  3621. is_node = true;
  3622. }
  3623. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3624. result->op = GGML_OP_SQR;
  3625. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3626. result->src0 = a;
  3627. result->src1 = NULL;
  3628. return result;
  3629. }
  3630. struct ggml_tensor * ggml_sqr(
  3631. struct ggml_context * ctx,
  3632. struct ggml_tensor * a) {
  3633. return ggml_sqr_impl(ctx, a, false);
  3634. }
  3635. struct ggml_tensor * ggml_sqr_inplace(
  3636. struct ggml_context * ctx,
  3637. struct ggml_tensor * a) {
  3638. return ggml_sqr_impl(ctx, a, true);
  3639. }
  3640. // ggml_sqrt
  3641. struct ggml_tensor * ggml_sqrt_impl(
  3642. struct ggml_context * ctx,
  3643. struct ggml_tensor * a,
  3644. bool inplace) {
  3645. bool is_node = false;
  3646. if (!inplace && (a->grad)) {
  3647. is_node = true;
  3648. }
  3649. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3650. result->op = GGML_OP_SQRT;
  3651. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3652. result->src0 = a;
  3653. result->src1 = NULL;
  3654. return result;
  3655. }
  3656. struct ggml_tensor * ggml_sqrt(
  3657. struct ggml_context * ctx,
  3658. struct ggml_tensor * a) {
  3659. return ggml_sqrt_impl(ctx, a, false);
  3660. }
  3661. struct ggml_tensor * ggml_sqrt_inplace(
  3662. struct ggml_context * ctx,
  3663. struct ggml_tensor * a) {
  3664. return ggml_sqrt_impl(ctx, a, true);
  3665. }
  3666. // ggml_sum
  3667. struct ggml_tensor * ggml_sum(
  3668. struct ggml_context * ctx,
  3669. struct ggml_tensor * a) {
  3670. bool is_node = false;
  3671. if (a->grad) {
  3672. is_node = true;
  3673. }
  3674. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3675. result->op = GGML_OP_SUM;
  3676. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3677. result->src0 = a;
  3678. result->src1 = NULL;
  3679. return result;
  3680. }
  3681. // ggml_mean
  3682. struct ggml_tensor * ggml_mean(
  3683. struct ggml_context * ctx,
  3684. struct ggml_tensor * a) {
  3685. bool is_node = false;
  3686. if (a->grad) {
  3687. GGML_ASSERT(false); // TODO: implement
  3688. is_node = true;
  3689. }
  3690. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3691. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3692. result->op = GGML_OP_MEAN;
  3693. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3694. result->src0 = a;
  3695. result->src1 = NULL;
  3696. return result;
  3697. }
  3698. // ggml_repeat
  3699. struct ggml_tensor * ggml_repeat(
  3700. struct ggml_context * ctx,
  3701. struct ggml_tensor * a,
  3702. struct ggml_tensor * b) {
  3703. GGML_ASSERT(ggml_can_repeat(a, b));
  3704. bool is_node = false;
  3705. if (a->grad) {
  3706. is_node = true;
  3707. }
  3708. if (ggml_are_same_shape(a, b) && !is_node) {
  3709. return a;
  3710. }
  3711. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3712. result->op = GGML_OP_REPEAT;
  3713. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3714. result->src0 = a;
  3715. result->src1 = b;
  3716. return result;
  3717. }
  3718. // ggml_abs
  3719. struct ggml_tensor * ggml_abs_impl(
  3720. struct ggml_context * ctx,
  3721. struct ggml_tensor * a,
  3722. bool inplace) {
  3723. bool is_node = false;
  3724. if (!inplace && (a->grad)) {
  3725. is_node = true;
  3726. }
  3727. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3728. result->op = GGML_OP_ABS;
  3729. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3730. result->src0 = a;
  3731. result->src1 = NULL;
  3732. return result;
  3733. }
  3734. struct ggml_tensor * ggml_abs(
  3735. struct ggml_context * ctx,
  3736. struct ggml_tensor * a) {
  3737. return ggml_abs_impl(ctx, a, false);
  3738. }
  3739. struct ggml_tensor * ggml_abs_inplace(
  3740. struct ggml_context * ctx,
  3741. struct ggml_tensor * a) {
  3742. return ggml_abs_impl(ctx, a, true);
  3743. }
  3744. // ggml_sgn
  3745. struct ggml_tensor * ggml_sgn_impl(
  3746. struct ggml_context * ctx,
  3747. struct ggml_tensor * a,
  3748. bool inplace) {
  3749. bool is_node = false;
  3750. if (!inplace && (a->grad)) {
  3751. is_node = true;
  3752. }
  3753. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3754. result->op = GGML_OP_SGN;
  3755. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3756. result->src0 = a;
  3757. result->src1 = NULL;
  3758. return result;
  3759. }
  3760. struct ggml_tensor * ggml_sgn(
  3761. struct ggml_context * ctx,
  3762. struct ggml_tensor * a) {
  3763. return ggml_sgn_impl(ctx, a, false);
  3764. }
  3765. struct ggml_tensor * ggml_sgn_inplace(
  3766. struct ggml_context * ctx,
  3767. struct ggml_tensor * a) {
  3768. return ggml_sgn_impl(ctx, a, true);
  3769. }
  3770. // ggml_neg
  3771. struct ggml_tensor * ggml_neg_impl(
  3772. struct ggml_context * ctx,
  3773. struct ggml_tensor * a,
  3774. bool inplace) {
  3775. bool is_node = false;
  3776. if (!inplace && (a->grad)) {
  3777. is_node = true;
  3778. }
  3779. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3780. result->op = GGML_OP_NEG;
  3781. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3782. result->src0 = a;
  3783. result->src1 = NULL;
  3784. return result;
  3785. }
  3786. struct ggml_tensor * ggml_neg(
  3787. struct ggml_context * ctx,
  3788. struct ggml_tensor * a) {
  3789. return ggml_neg_impl(ctx, a, false);
  3790. }
  3791. struct ggml_tensor * ggml_neg_inplace(
  3792. struct ggml_context * ctx,
  3793. struct ggml_tensor * a) {
  3794. return ggml_neg_impl(ctx, a, true);
  3795. }
  3796. // ggml_step
  3797. struct ggml_tensor * ggml_step_impl(
  3798. struct ggml_context * ctx,
  3799. struct ggml_tensor * a,
  3800. bool inplace) {
  3801. bool is_node = false;
  3802. if (!inplace && (a->grad)) {
  3803. is_node = true;
  3804. }
  3805. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3806. result->op = GGML_OP_STEP;
  3807. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3808. result->src0 = a;
  3809. result->src1 = NULL;
  3810. return result;
  3811. }
  3812. struct ggml_tensor * ggml_step(
  3813. struct ggml_context * ctx,
  3814. struct ggml_tensor * a) {
  3815. return ggml_step_impl(ctx, a, false);
  3816. }
  3817. struct ggml_tensor * ggml_step_inplace(
  3818. struct ggml_context * ctx,
  3819. struct ggml_tensor * a) {
  3820. return ggml_step_impl(ctx, a, true);
  3821. }
  3822. // ggml_relu
  3823. struct ggml_tensor * ggml_relu_impl(
  3824. struct ggml_context * ctx,
  3825. struct ggml_tensor * a,
  3826. bool inplace) {
  3827. bool is_node = false;
  3828. if (!inplace && (a->grad)) {
  3829. is_node = true;
  3830. }
  3831. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3832. result->op = GGML_OP_RELU;
  3833. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3834. result->src0 = a;
  3835. result->src1 = NULL;
  3836. return result;
  3837. }
  3838. struct ggml_tensor * ggml_relu(
  3839. struct ggml_context * ctx,
  3840. struct ggml_tensor * a) {
  3841. return ggml_relu_impl(ctx, a, false);
  3842. }
  3843. struct ggml_tensor * ggml_relu_inplace(
  3844. struct ggml_context * ctx,
  3845. struct ggml_tensor * a) {
  3846. return ggml_relu_impl(ctx, a, true);
  3847. }
  3848. // ggml_gelu
  3849. struct ggml_tensor * ggml_gelu_impl(
  3850. struct ggml_context * ctx,
  3851. struct ggml_tensor * a,
  3852. bool inplace) {
  3853. bool is_node = false;
  3854. if (!inplace && (a->grad)) {
  3855. is_node = true;
  3856. }
  3857. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3858. result->op = GGML_OP_GELU;
  3859. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3860. result->src0 = a;
  3861. result->src1 = NULL;
  3862. return result;
  3863. }
  3864. struct ggml_tensor * ggml_gelu(
  3865. struct ggml_context * ctx,
  3866. struct ggml_tensor * a) {
  3867. return ggml_gelu_impl(ctx, a, false);
  3868. }
  3869. struct ggml_tensor * ggml_gelu_inplace(
  3870. struct ggml_context * ctx,
  3871. struct ggml_tensor * a) {
  3872. return ggml_gelu_impl(ctx, a, true);
  3873. }
  3874. // ggml_silu
  3875. struct ggml_tensor * ggml_silu_impl(
  3876. struct ggml_context * ctx,
  3877. struct ggml_tensor * a,
  3878. bool inplace) {
  3879. bool is_node = false;
  3880. if (!inplace && (a->grad)) {
  3881. is_node = true;
  3882. }
  3883. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3884. result->op = GGML_OP_SILU;
  3885. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3886. result->src0 = a;
  3887. result->src1 = NULL;
  3888. return result;
  3889. }
  3890. struct ggml_tensor * ggml_silu(
  3891. struct ggml_context * ctx,
  3892. struct ggml_tensor * a) {
  3893. return ggml_silu_impl(ctx, a, false);
  3894. }
  3895. struct ggml_tensor * ggml_silu_inplace(
  3896. struct ggml_context * ctx,
  3897. struct ggml_tensor * a) {
  3898. return ggml_silu_impl(ctx, a, true);
  3899. }
  3900. // ggml_norm
  3901. struct ggml_tensor * ggml_norm_impl(
  3902. struct ggml_context * ctx,
  3903. struct ggml_tensor * a,
  3904. bool inplace) {
  3905. bool is_node = false;
  3906. if (!inplace && (a->grad)) {
  3907. GGML_ASSERT(false); // TODO: implement backward
  3908. is_node = true;
  3909. }
  3910. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3911. result->op = GGML_OP_NORM;
  3912. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3913. result->src0 = a;
  3914. result->src1 = NULL; // TODO: maybe store epsilon here?
  3915. return result;
  3916. }
  3917. struct ggml_tensor * ggml_norm(
  3918. struct ggml_context * ctx,
  3919. struct ggml_tensor * a) {
  3920. return ggml_norm_impl(ctx, a, false);
  3921. }
  3922. struct ggml_tensor * ggml_norm_inplace(
  3923. struct ggml_context * ctx,
  3924. struct ggml_tensor * a) {
  3925. return ggml_norm_impl(ctx, a, true);
  3926. }
  3927. struct ggml_tensor * ggml_rms_norm_impl(
  3928. struct ggml_context * ctx,
  3929. struct ggml_tensor * a,
  3930. bool inplace) {
  3931. bool is_node = false;
  3932. if (!inplace && (a->grad)) {
  3933. GGML_ASSERT(false); // TODO: implement backward
  3934. is_node = true;
  3935. }
  3936. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3937. result->op = GGML_OP_RMS_NORM;
  3938. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3939. result->src0 = a;
  3940. result->src1 = NULL; // TODO: maybe store epsilon here?
  3941. return result;
  3942. }
  3943. struct ggml_tensor * ggml_rms_norm(
  3944. struct ggml_context * ctx,
  3945. struct ggml_tensor * a) {
  3946. return ggml_rms_norm_impl(ctx, a, false);
  3947. }
  3948. struct ggml_tensor * ggml_rms_norm_inplace(
  3949. struct ggml_context * ctx,
  3950. struct ggml_tensor * a) {
  3951. return ggml_rms_norm_impl(ctx, a, true);
  3952. }
  3953. // ggml_mul_mat
  3954. struct ggml_tensor * ggml_mul_mat(
  3955. struct ggml_context * ctx,
  3956. struct ggml_tensor * a,
  3957. struct ggml_tensor * b) {
  3958. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3959. GGML_ASSERT(!ggml_is_transposed(a));
  3960. bool is_node = false;
  3961. if (a->grad || b->grad) {
  3962. is_node = true;
  3963. }
  3964. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3965. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3966. result->op = GGML_OP_MUL_MAT;
  3967. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3968. result->src0 = a;
  3969. result->src1 = b;
  3970. return result;
  3971. }
  3972. // ggml_scale
  3973. struct ggml_tensor * ggml_scale_impl(
  3974. struct ggml_context * ctx,
  3975. struct ggml_tensor * a,
  3976. struct ggml_tensor * b,
  3977. bool inplace) {
  3978. GGML_ASSERT(ggml_is_scalar(b));
  3979. GGML_ASSERT(ggml_is_padded_1d(a));
  3980. bool is_node = false;
  3981. if (!inplace && (a->grad || b->grad)) {
  3982. GGML_ASSERT(false); // TODO: implement backward
  3983. is_node = true;
  3984. }
  3985. // TODO: when implement backward, fix this:
  3986. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3987. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3988. result->op = GGML_OP_SCALE;
  3989. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3990. result->src0 = a;
  3991. result->src1 = b;
  3992. return result;
  3993. }
  3994. struct ggml_tensor * ggml_scale(
  3995. struct ggml_context * ctx,
  3996. struct ggml_tensor * a,
  3997. struct ggml_tensor * b) {
  3998. return ggml_scale_impl(ctx, a, b, false);
  3999. }
  4000. struct ggml_tensor * ggml_scale_inplace(
  4001. struct ggml_context * ctx,
  4002. struct ggml_tensor * a,
  4003. struct ggml_tensor * b) {
  4004. return ggml_scale_impl(ctx, a, b, true);
  4005. }
  4006. // ggml_cpy
  4007. struct ggml_tensor * ggml_cpy_impl(
  4008. struct ggml_context * ctx,
  4009. struct ggml_tensor * a,
  4010. struct ggml_tensor * b,
  4011. bool inplace) {
  4012. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4013. bool is_node = false;
  4014. if (!inplace && (a->grad || b->grad)) {
  4015. GGML_ASSERT(false); // TODO: implement backward
  4016. is_node = true;
  4017. }
  4018. // make a view of the destination
  4019. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4020. result->op = GGML_OP_CPY;
  4021. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4022. result->src0 = a;
  4023. result->src1 = b;
  4024. return result;
  4025. }
  4026. struct ggml_tensor * ggml_cpy(
  4027. struct ggml_context * ctx,
  4028. struct ggml_tensor * a,
  4029. struct ggml_tensor * b) {
  4030. return ggml_cpy_impl(ctx, a, b, false);
  4031. }
  4032. struct ggml_tensor * ggml_cpy_inplace(
  4033. struct ggml_context * ctx,
  4034. struct ggml_tensor * a,
  4035. struct ggml_tensor * b) {
  4036. return ggml_cpy_impl(ctx, a, b, true);
  4037. }
  4038. // ggml_cont
  4039. struct ggml_tensor * ggml_cont_impl(
  4040. struct ggml_context * ctx,
  4041. struct ggml_tensor * a,
  4042. bool inplace) {
  4043. bool is_node = false;
  4044. if (!inplace && a->grad) {
  4045. GGML_ASSERT(false); // TODO: implement backward
  4046. is_node = true;
  4047. }
  4048. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4049. result->op = GGML_OP_CONT;
  4050. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4051. result->src0 = a;
  4052. result->src1 = NULL;
  4053. return result;
  4054. }
  4055. struct ggml_tensor * ggml_cont(
  4056. struct ggml_context * ctx,
  4057. struct ggml_tensor * a) {
  4058. return ggml_cont_impl(ctx, a, false);
  4059. }
  4060. struct ggml_tensor * ggml_cont_inplace(
  4061. struct ggml_context * ctx,
  4062. struct ggml_tensor * a) {
  4063. return ggml_cont_impl(ctx, a, true);
  4064. }
  4065. // ggml_reshape
  4066. struct ggml_tensor * ggml_reshape(
  4067. struct ggml_context * ctx,
  4068. struct ggml_tensor * a,
  4069. struct ggml_tensor * b) {
  4070. GGML_ASSERT(ggml_is_contiguous(a));
  4071. GGML_ASSERT(ggml_is_contiguous(b));
  4072. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4073. bool is_node = false;
  4074. if (a->grad || b->grad) {
  4075. GGML_ASSERT(false); // TODO: implement backward
  4076. is_node = true;
  4077. }
  4078. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4079. result->op = GGML_OP_RESHAPE;
  4080. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4081. result->src0 = a;
  4082. result->src1 = NULL;
  4083. return result;
  4084. }
  4085. struct ggml_tensor * ggml_reshape_2d(
  4086. struct ggml_context * ctx,
  4087. struct ggml_tensor * a,
  4088. int64_t ne0,
  4089. int64_t ne1) {
  4090. GGML_ASSERT(ggml_is_contiguous(a));
  4091. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4092. bool is_node = false;
  4093. if (a->grad) {
  4094. GGML_ASSERT(false); // TODO: implement backward
  4095. is_node = true;
  4096. }
  4097. const int64_t ne[2] = { ne0, ne1 };
  4098. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4099. result->op = GGML_OP_RESHAPE;
  4100. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4101. result->src0 = a;
  4102. result->src1 = NULL;
  4103. return result;
  4104. }
  4105. struct ggml_tensor * ggml_reshape_3d(
  4106. struct ggml_context * ctx,
  4107. struct ggml_tensor * a,
  4108. int64_t ne0,
  4109. int64_t ne1,
  4110. int64_t ne2) {
  4111. GGML_ASSERT(ggml_is_contiguous(a));
  4112. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4113. bool is_node = false;
  4114. if (a->grad) {
  4115. GGML_ASSERT(false); // TODO: implement backward
  4116. is_node = true;
  4117. }
  4118. const int64_t ne[3] = { ne0, ne1, ne2 };
  4119. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4120. result->op = GGML_OP_RESHAPE;
  4121. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4122. result->src0 = a;
  4123. result->src1 = NULL;
  4124. return result;
  4125. }
  4126. // ggml_view_1d
  4127. struct ggml_tensor * ggml_view_1d(
  4128. struct ggml_context * ctx,
  4129. struct ggml_tensor * a,
  4130. int64_t ne0,
  4131. size_t offset) {
  4132. if (a->grad) {
  4133. GGML_ASSERT(false); // gradient propagation is not supported
  4134. }
  4135. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4136. result->op = GGML_OP_VIEW;
  4137. result->grad = NULL;
  4138. result->src0 = a;
  4139. result->src1 = NULL; // TODO: maybe store the offset here?
  4140. return result;
  4141. }
  4142. // ggml_view_2d
  4143. struct ggml_tensor * ggml_view_2d(
  4144. struct ggml_context * ctx,
  4145. struct ggml_tensor * a,
  4146. int64_t ne0,
  4147. int64_t ne1,
  4148. size_t nb1,
  4149. size_t offset) {
  4150. if (a->grad) {
  4151. GGML_ASSERT(false); // gradient propagation is not supported
  4152. }
  4153. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4154. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4155. result->nb[1] = nb1;
  4156. result->nb[2] = result->nb[1]*ne1;
  4157. result->nb[3] = result->nb[2];
  4158. result->op = GGML_OP_VIEW;
  4159. result->grad = NULL;
  4160. result->src0 = a;
  4161. result->src1 = NULL; // TODO: maybe store the offset here?
  4162. return result;
  4163. }
  4164. // ggml_view_3d
  4165. struct ggml_tensor * ggml_view_3d(
  4166. struct ggml_context * ctx,
  4167. struct ggml_tensor * a,
  4168. int64_t ne0,
  4169. int64_t ne1,
  4170. int64_t ne2,
  4171. size_t nb1,
  4172. size_t nb2,
  4173. size_t offset) {
  4174. if (a->grad) {
  4175. GGML_ASSERT(false); // gradient propagation is not supported
  4176. }
  4177. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4178. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4179. result->nb[1] = nb1;
  4180. result->nb[2] = nb2;
  4181. result->nb[3] = result->nb[2]*ne2;
  4182. result->op = GGML_OP_VIEW;
  4183. result->grad = NULL;
  4184. result->src0 = a;
  4185. result->src1 = NULL; // TODO: maybe store the offset here?
  4186. return result;
  4187. }
  4188. // ggml_permute
  4189. struct ggml_tensor * ggml_permute(
  4190. struct ggml_context * ctx,
  4191. struct ggml_tensor * a,
  4192. int axis0,
  4193. int axis1,
  4194. int axis2,
  4195. int axis3) {
  4196. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4197. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4198. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4199. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4200. GGML_ASSERT(axis0 != axis1);
  4201. GGML_ASSERT(axis0 != axis2);
  4202. GGML_ASSERT(axis0 != axis3);
  4203. GGML_ASSERT(axis1 != axis2);
  4204. GGML_ASSERT(axis1 != axis3);
  4205. GGML_ASSERT(axis2 != axis3);
  4206. bool is_node = false;
  4207. if (a->grad) {
  4208. GGML_ASSERT(false); // TODO: implement backward
  4209. is_node = true;
  4210. }
  4211. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4212. int ne[GGML_MAX_DIMS];
  4213. int nb[GGML_MAX_DIMS];
  4214. ne[axis0] = a->ne[0];
  4215. ne[axis1] = a->ne[1];
  4216. ne[axis2] = a->ne[2];
  4217. ne[axis3] = a->ne[3];
  4218. nb[axis0] = a->nb[0];
  4219. nb[axis1] = a->nb[1];
  4220. nb[axis2] = a->nb[2];
  4221. nb[axis3] = a->nb[3];
  4222. result->ne[0] = ne[0];
  4223. result->ne[1] = ne[1];
  4224. result->ne[2] = ne[2];
  4225. result->ne[3] = ne[3];
  4226. result->nb[0] = nb[0];
  4227. result->nb[1] = nb[1];
  4228. result->nb[2] = nb[2];
  4229. result->nb[3] = nb[3];
  4230. result->op = GGML_OP_PERMUTE;
  4231. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4232. result->src0 = a;
  4233. result->src1 = NULL; // TODO: maybe store the permutation here?
  4234. return result;
  4235. }
  4236. // ggml_transpose
  4237. struct ggml_tensor * ggml_transpose(
  4238. struct ggml_context * ctx,
  4239. struct ggml_tensor * a) {
  4240. bool is_node = false;
  4241. if (a->grad) {
  4242. GGML_ASSERT(false); // TODO: implement backward
  4243. is_node = true;
  4244. }
  4245. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4246. result->ne[0] = a->ne[1];
  4247. result->ne[1] = a->ne[0];
  4248. result->nb[0] = a->nb[1];
  4249. result->nb[1] = a->nb[0];
  4250. result->op = GGML_OP_TRANSPOSE;
  4251. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4252. result->src0 = a;
  4253. result->src1 = NULL;
  4254. return result;
  4255. }
  4256. // ggml_get_rows
  4257. struct ggml_tensor * ggml_get_rows(
  4258. struct ggml_context * ctx,
  4259. struct ggml_tensor * a,
  4260. struct ggml_tensor * b) {
  4261. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4262. bool is_node = false;
  4263. if (a->grad || b->grad) {
  4264. GGML_ASSERT(false); // TODO: implement backward
  4265. is_node = true;
  4266. }
  4267. // TODO: implement non F32 return
  4268. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4269. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4270. result->op = GGML_OP_GET_ROWS;
  4271. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4272. result->src0 = a;
  4273. result->src1 = b;
  4274. return result;
  4275. }
  4276. // ggml_diag_mask_inf
  4277. struct ggml_tensor * ggml_diag_mask_inf(
  4278. struct ggml_context * ctx,
  4279. struct ggml_tensor * a,
  4280. int n_past) {
  4281. bool is_node = false;
  4282. if (a->grad) {
  4283. GGML_ASSERT(false); // TODO: implement backward
  4284. is_node = true;
  4285. }
  4286. // TODO: when implement backward, fix this:
  4287. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4288. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4289. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  4290. result->op = GGML_OP_DIAG_MASK_INF;
  4291. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4292. result->src0 = a;
  4293. result->src1 = b;
  4294. return result;
  4295. }
  4296. // ggml_soft_max
  4297. struct ggml_tensor * ggml_soft_max(
  4298. struct ggml_context * ctx,
  4299. struct ggml_tensor * a) {
  4300. bool is_node = false;
  4301. if (a->grad) {
  4302. GGML_ASSERT(false); // TODO: implement backward
  4303. is_node = true;
  4304. }
  4305. // TODO: when implement backward, fix this:
  4306. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4307. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4308. result->op = GGML_OP_SOFT_MAX;
  4309. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4310. result->src0 = a;
  4311. result->src1 = NULL;
  4312. return result;
  4313. }
  4314. // ggml_rope
  4315. struct ggml_tensor * ggml_rope(
  4316. struct ggml_context * ctx,
  4317. struct ggml_tensor * a,
  4318. int n_past,
  4319. int n_dims,
  4320. int mode) {
  4321. GGML_ASSERT(n_past >= 0);
  4322. bool is_node = false;
  4323. if (a->grad) {
  4324. GGML_ASSERT(false); // TODO: implement backward
  4325. is_node = true;
  4326. }
  4327. // TODO: when implement backward, fix this:
  4328. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4329. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4330. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4331. ((int32_t *) b->data)[0] = n_past;
  4332. ((int32_t *) b->data)[1] = n_dims;
  4333. ((int32_t *) b->data)[2] = mode;
  4334. result->op = GGML_OP_ROPE;
  4335. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4336. result->src0 = a;
  4337. result->src1 = b;
  4338. return result;
  4339. }
  4340. // ggml_conv_1d_1s
  4341. struct ggml_tensor * ggml_conv_1d_1s(
  4342. struct ggml_context * ctx,
  4343. struct ggml_tensor * a,
  4344. struct ggml_tensor * b) {
  4345. GGML_ASSERT(ggml_is_matrix(b));
  4346. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4347. GGML_ASSERT(a->ne[3] == 1);
  4348. bool is_node = false;
  4349. if (a->grad || b->grad) {
  4350. GGML_ASSERT(false); // TODO: implement backward
  4351. is_node = true;
  4352. }
  4353. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  4354. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4355. result->op = GGML_OP_CONV_1D_1S;
  4356. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4357. result->src0 = a;
  4358. result->src1 = b;
  4359. return result;
  4360. }
  4361. // ggml_conv_1d_2s
  4362. struct ggml_tensor * ggml_conv_1d_2s(
  4363. struct ggml_context * ctx,
  4364. struct ggml_tensor * a,
  4365. struct ggml_tensor * b) {
  4366. GGML_ASSERT(ggml_is_matrix(b));
  4367. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4368. GGML_ASSERT(a->ne[3] == 1);
  4369. bool is_node = false;
  4370. if (a->grad || b->grad) {
  4371. GGML_ASSERT(false); // TODO: implement backward
  4372. is_node = true;
  4373. }
  4374. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  4375. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4376. result->op = GGML_OP_CONV_1D_2S;
  4377. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4378. result->src0 = a;
  4379. result->src1 = b;
  4380. return result;
  4381. }
  4382. // ggml_flash_attn
  4383. struct ggml_tensor * ggml_flash_attn(
  4384. struct ggml_context * ctx,
  4385. struct ggml_tensor * q,
  4386. struct ggml_tensor * k,
  4387. struct ggml_tensor * v,
  4388. bool masked) {
  4389. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4390. // TODO: check if vT can be multiplied by (k*qT)
  4391. bool is_node = false;
  4392. if (q->grad || k->grad || v->grad) {
  4393. GGML_ASSERT(false); // TODO: implement backward
  4394. is_node = true;
  4395. }
  4396. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4397. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  4398. result->op = GGML_OP_FLASH_ATTN;
  4399. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4400. result->src0 = q;
  4401. result->src1 = k;
  4402. result->opt[0] = v;
  4403. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  4404. return result;
  4405. }
  4406. // ggml_flash_ff
  4407. struct ggml_tensor * ggml_flash_ff(
  4408. struct ggml_context * ctx,
  4409. struct ggml_tensor * a,
  4410. struct ggml_tensor * b0,
  4411. struct ggml_tensor * b1,
  4412. struct ggml_tensor * c0,
  4413. struct ggml_tensor * c1) {
  4414. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4415. // TODO: more checks
  4416. bool is_node = false;
  4417. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4418. GGML_ASSERT(false); // TODO: implement backward
  4419. is_node = true;
  4420. }
  4421. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4422. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  4423. result->op = GGML_OP_FLASH_FF;
  4424. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4425. result->src0 = a;
  4426. result->src1 = b0;
  4427. result->opt[0] = b1;
  4428. result->opt[1] = c0;
  4429. result->opt[2] = c1;
  4430. return result;
  4431. }
  4432. // ggml_map_unary
  4433. struct ggml_tensor * ggml_map_unary_impl_f32(
  4434. struct ggml_context * ctx,
  4435. struct ggml_tensor * a,
  4436. const ggml_unary_op_f32_t fun,
  4437. bool inplace) {
  4438. bool is_node = false;
  4439. if (!inplace && a->grad) {
  4440. is_node = true;
  4441. }
  4442. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4443. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4444. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4445. result->op = GGML_OP_MAP_UNARY;
  4446. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4447. result->src0 = a;
  4448. result->opt[0] = addr_tensor;
  4449. return result;
  4450. }
  4451. struct ggml_tensor * ggml_map_unary_f32(
  4452. struct ggml_context * ctx,
  4453. struct ggml_tensor * a,
  4454. const ggml_unary_op_f32_t fun) {
  4455. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4456. }
  4457. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4458. struct ggml_context * ctx,
  4459. struct ggml_tensor * a,
  4460. const ggml_unary_op_f32_t fun) {
  4461. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4462. }
  4463. // ggml_map_binary
  4464. struct ggml_tensor * ggml_map_binary_impl_f32(
  4465. struct ggml_context * ctx,
  4466. struct ggml_tensor * a,
  4467. struct ggml_tensor * b,
  4468. const ggml_binary_op_f32_t fun,
  4469. bool inplace) {
  4470. GGML_ASSERT(ggml_are_same_shape(a, b));
  4471. bool is_node = false;
  4472. if (!inplace && (a->grad || b->grad)) {
  4473. is_node = true;
  4474. }
  4475. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4476. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4477. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4478. result->op = GGML_OP_MAP_BINARY;
  4479. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4480. result->src0 = a;
  4481. result->src1 = b;
  4482. result->opt[0] = addr_tensor;
  4483. return result;
  4484. }
  4485. struct ggml_tensor * ggml_map_binary_f32(
  4486. struct ggml_context * ctx,
  4487. struct ggml_tensor * a,
  4488. struct ggml_tensor * b,
  4489. const ggml_binary_op_f32_t fun) {
  4490. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4491. }
  4492. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4493. struct ggml_context * ctx,
  4494. struct ggml_tensor * a,
  4495. struct ggml_tensor * b,
  4496. const ggml_binary_op_f32_t fun) {
  4497. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4498. }
  4499. ////////////////////////////////////////////////////////////////////////////////
  4500. void ggml_set_param(
  4501. struct ggml_context * ctx,
  4502. struct ggml_tensor * tensor) {
  4503. tensor->is_param = true;
  4504. GGML_ASSERT(tensor->grad == NULL);
  4505. tensor->grad = ggml_dup_tensor(ctx, tensor);
  4506. }
  4507. // ggml_compute_forward_dup
  4508. static void ggml_compute_forward_dup_f16(
  4509. const struct ggml_compute_params * params,
  4510. const struct ggml_tensor * src0,
  4511. struct ggml_tensor * dst) {
  4512. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4513. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4514. return;
  4515. }
  4516. const int64_t ne00 = src0->ne[0];
  4517. const int64_t ne01 = src0->ne[1];
  4518. const int64_t ne02 = src0->ne[2];
  4519. const int64_t ne03 = src0->ne[3];
  4520. const int64_t ne0 = dst->ne[0];
  4521. const int64_t ne1 = dst->ne[1];
  4522. const int64_t ne2 = dst->ne[2];
  4523. const int64_t ne3 = dst->ne[3];
  4524. const size_t nb00 = src0->nb[0];
  4525. const size_t nb01 = src0->nb[1];
  4526. const size_t nb02 = src0->nb[2];
  4527. const size_t nb03 = src0->nb[3];
  4528. const size_t nb0 = dst->nb[0];
  4529. const size_t nb1 = dst->nb[1];
  4530. const size_t nb2 = dst->nb[2];
  4531. const size_t nb3 = dst->nb[3];
  4532. const int ith = params->ith; // thread index
  4533. const int nth = params->nth; // number of threads
  4534. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4535. // parallelize by elements
  4536. const int ne = ggml_nelements(dst);
  4537. const int dr = (ne + nth - 1) / nth;
  4538. const int ie0 = dr * ith;
  4539. const int ie1 = MIN(ie0 + dr, ne);
  4540. memcpy(
  4541. ((char *) dst->data + ie0*nb0),
  4542. ((char *) src0->data + ie0*nb00),
  4543. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  4544. return;
  4545. }
  4546. // parallelize by rows
  4547. const int nr = ne01;
  4548. // number of rows per thread
  4549. const int dr = (nr + nth - 1) / nth;
  4550. // row range for this thread
  4551. const int ir0 = dr * ith;
  4552. const int ir1 = MIN(ir0 + dr, nr);
  4553. if (src0->type == dst->type &&
  4554. ne00 == ne0 &&
  4555. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  4556. // copy by rows
  4557. const size_t rs = ne00*nb00;
  4558. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4559. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4560. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4561. memcpy(
  4562. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4563. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4564. rs);
  4565. }
  4566. }
  4567. }
  4568. return;
  4569. }
  4570. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  4571. if (ggml_is_contiguous(dst)) {
  4572. if (nb00 == sizeof(ggml_fp16_t)) {
  4573. if (dst->type == GGML_TYPE_F16) {
  4574. size_t id = 0;
  4575. const size_t rs = ne00 * nb00;
  4576. char * dst_ptr = (char *) dst->data;
  4577. for (int i03 = 0; i03 < ne03; i03++) {
  4578. for (int i02 = 0; i02 < ne02; i02++) {
  4579. id += rs * ir0;
  4580. for (int i01 = ir0; i01 < ir1; i01++) {
  4581. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4582. memcpy(dst_ptr + id, src0_ptr, rs);
  4583. id += rs;
  4584. }
  4585. id += rs * (ne01 - ir1);
  4586. }
  4587. }
  4588. } else if (dst->type == GGML_TYPE_F32) {
  4589. size_t id = 0;
  4590. float * dst_ptr = (float *) dst->data;
  4591. for (int i03 = 0; i03 < ne03; i03++) {
  4592. for (int i02 = 0; i02 < ne02; i02++) {
  4593. id += ne00 * ir0;
  4594. for (int i01 = ir0; i01 < ir1; i01++) {
  4595. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4596. for (int i00 = 0; i00 < ne00; i00++) {
  4597. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4598. id++;
  4599. }
  4600. }
  4601. id += ne00 * (ne01 - ir1);
  4602. }
  4603. }
  4604. } else if (ggml_is_quantized(dst->type)) {
  4605. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  4606. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  4607. size_t id = 0;
  4608. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  4609. char * dst_ptr = (char *) dst->data;
  4610. for (int i03 = 0; i03 < ne03; i03++) {
  4611. for (int i02 = 0; i02 < ne02; i02++) {
  4612. id += rs * ir0;
  4613. for (int i01 = ir0; i01 < ir1; i01++) {
  4614. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4615. for (int i00 = 0; i00 < ne00; i00++) {
  4616. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4617. }
  4618. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  4619. id += rs;
  4620. }
  4621. id += rs * (ne01 - ir1);
  4622. }
  4623. }
  4624. } else {
  4625. GGML_ASSERT(false); // TODO: implement
  4626. }
  4627. } else {
  4628. //printf("%s: this is not optimal - fix me\n", __func__);
  4629. if (dst->type == GGML_TYPE_F32) {
  4630. size_t id = 0;
  4631. float * dst_ptr = (float *) dst->data;
  4632. for (int i03 = 0; i03 < ne03; i03++) {
  4633. for (int i02 = 0; i02 < ne02; i02++) {
  4634. id += ne00 * ir0;
  4635. for (int i01 = ir0; i01 < ir1; i01++) {
  4636. for (int i00 = 0; i00 < ne00; i00++) {
  4637. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4638. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  4639. id++;
  4640. }
  4641. }
  4642. id += ne00 * (ne01 - ir1);
  4643. }
  4644. }
  4645. } else if (dst->type == GGML_TYPE_F16) {
  4646. size_t id = 0;
  4647. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4648. for (int i03 = 0; i03 < ne03; i03++) {
  4649. for (int i02 = 0; i02 < ne02; i02++) {
  4650. id += ne00 * ir0;
  4651. for (int i01 = ir0; i01 < ir1; i01++) {
  4652. for (int i00 = 0; i00 < ne00; i00++) {
  4653. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4654. dst_ptr[id] = *src0_ptr;
  4655. id++;
  4656. }
  4657. }
  4658. id += ne00 * (ne01 - ir1);
  4659. }
  4660. }
  4661. } else {
  4662. GGML_ASSERT(false); // TODO: implement
  4663. }
  4664. }
  4665. return;
  4666. }
  4667. // dst counters
  4668. int64_t i10 = 0;
  4669. int64_t i11 = 0;
  4670. int64_t i12 = 0;
  4671. int64_t i13 = 0;
  4672. if (dst->type == GGML_TYPE_F16) {
  4673. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4674. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4675. i10 += ne00 * ir0;
  4676. while (i10 >= ne0) {
  4677. i10 -= ne0;
  4678. if (++i11 == ne1) {
  4679. i11 = 0;
  4680. if (++i12 == ne2) {
  4681. i12 = 0;
  4682. if (++i13 == ne3) {
  4683. i13 = 0;
  4684. }
  4685. }
  4686. }
  4687. }
  4688. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4689. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4690. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4691. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4692. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  4693. if (++i10 == ne00) {
  4694. i10 = 0;
  4695. if (++i11 == ne01) {
  4696. i11 = 0;
  4697. if (++i12 == ne02) {
  4698. i12 = 0;
  4699. if (++i13 == ne03) {
  4700. i13 = 0;
  4701. }
  4702. }
  4703. }
  4704. }
  4705. }
  4706. }
  4707. i10 += ne00 * (ne01 - ir1);
  4708. while (i10 >= ne0) {
  4709. i10 -= ne0;
  4710. if (++i11 == ne1) {
  4711. i11 = 0;
  4712. if (++i12 == ne2) {
  4713. i12 = 0;
  4714. if (++i13 == ne3) {
  4715. i13 = 0;
  4716. }
  4717. }
  4718. }
  4719. }
  4720. }
  4721. }
  4722. } else if (dst->type == GGML_TYPE_F32) {
  4723. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4724. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4725. i10 += ne00 * ir0;
  4726. while (i10 >= ne0) {
  4727. i10 -= ne0;
  4728. if (++i11 == ne1) {
  4729. i11 = 0;
  4730. if (++i12 == ne2) {
  4731. i12 = 0;
  4732. if (++i13 == ne3) {
  4733. i13 = 0;
  4734. }
  4735. }
  4736. }
  4737. }
  4738. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4739. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4740. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4741. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4742. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  4743. if (++i10 == ne0) {
  4744. i10 = 0;
  4745. if (++i11 == ne1) {
  4746. i11 = 0;
  4747. if (++i12 == ne2) {
  4748. i12 = 0;
  4749. if (++i13 == ne3) {
  4750. i13 = 0;
  4751. }
  4752. }
  4753. }
  4754. }
  4755. }
  4756. }
  4757. i10 += ne00 * (ne01 - ir1);
  4758. while (i10 >= ne0) {
  4759. i10 -= ne0;
  4760. if (++i11 == ne1) {
  4761. i11 = 0;
  4762. if (++i12 == ne2) {
  4763. i12 = 0;
  4764. if (++i13 == ne3) {
  4765. i13 = 0;
  4766. }
  4767. }
  4768. }
  4769. }
  4770. }
  4771. }
  4772. } else {
  4773. GGML_ASSERT(false); // TODO: implement
  4774. }
  4775. }
  4776. static void ggml_compute_forward_dup_f32(
  4777. const struct ggml_compute_params * params,
  4778. const struct ggml_tensor * src0,
  4779. struct ggml_tensor * dst) {
  4780. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4781. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4782. return;
  4783. }
  4784. const int64_t ne00 = src0->ne[0];
  4785. const int64_t ne01 = src0->ne[1];
  4786. const int64_t ne02 = src0->ne[2];
  4787. const int64_t ne03 = src0->ne[3];
  4788. const int64_t ne0 = dst->ne[0];
  4789. const int64_t ne1 = dst->ne[1];
  4790. const int64_t ne2 = dst->ne[2];
  4791. const int64_t ne3 = dst->ne[3];
  4792. const size_t nb00 = src0->nb[0];
  4793. const size_t nb01 = src0->nb[1];
  4794. const size_t nb02 = src0->nb[2];
  4795. const size_t nb03 = src0->nb[3];
  4796. const size_t nb0 = dst->nb[0];
  4797. const size_t nb1 = dst->nb[1];
  4798. const size_t nb2 = dst->nb[2];
  4799. const size_t nb3 = dst->nb[3];
  4800. const int ith = params->ith; // thread index
  4801. const int nth = params->nth; // number of threads
  4802. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4803. // parallelize by elements
  4804. const int ne = ggml_nelements(dst);
  4805. const int dr = (ne + nth - 1) / nth;
  4806. const int ie0 = dr * ith;
  4807. const int ie1 = MIN(ie0 + dr, ne);
  4808. memcpy(
  4809. ((char *) dst->data + ie0*nb0),
  4810. ((char *) src0->data + ie0*nb00),
  4811. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  4812. return;
  4813. }
  4814. // parallelize by rows
  4815. const int nr = ne01;
  4816. // number of rows per thread
  4817. const int dr = (nr + nth - 1) / nth;
  4818. // row range for this thread
  4819. const int ir0 = dr * ith;
  4820. const int ir1 = MIN(ir0 + dr, nr);
  4821. if (src0->type == dst->type &&
  4822. ne00 == ne0 &&
  4823. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  4824. // copy by rows
  4825. const size_t rs = ne00*nb00;
  4826. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4827. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4828. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4829. memcpy(
  4830. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4831. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4832. rs);
  4833. }
  4834. }
  4835. }
  4836. return;
  4837. }
  4838. if (ggml_is_contiguous(dst)) {
  4839. // TODO: simplify
  4840. if (nb00 == sizeof(float)) {
  4841. if (dst->type == GGML_TYPE_F32) {
  4842. size_t id = 0;
  4843. const size_t rs = ne00 * nb00;
  4844. char * dst_ptr = (char *) dst->data;
  4845. for (int i03 = 0; i03 < ne03; i03++) {
  4846. for (int i02 = 0; i02 < ne02; i02++) {
  4847. id += rs * ir0;
  4848. for (int i01 = ir0; i01 < ir1; i01++) {
  4849. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4850. memcpy(dst_ptr + id, src0_ptr, rs);
  4851. id += rs;
  4852. }
  4853. id += rs * (ne01 - ir1);
  4854. }
  4855. }
  4856. } else if (dst->type == GGML_TYPE_F16) {
  4857. size_t id = 0;
  4858. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4859. for (int i03 = 0; i03 < ne03; i03++) {
  4860. for (int i02 = 0; i02 < ne02; i02++) {
  4861. id += ne00 * ir0;
  4862. for (int i01 = ir0; i01 < ir1; i01++) {
  4863. for (int i00 = 0; i00 < ne00; i00++) {
  4864. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4865. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4866. id++;
  4867. }
  4868. }
  4869. id += ne00 * (ne01 - ir1);
  4870. }
  4871. }
  4872. } else if (ggml_is_quantized(dst->type)) {
  4873. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  4874. size_t id = 0;
  4875. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  4876. char * dst_ptr = (char *) dst->data;
  4877. for (int i03 = 0; i03 < ne03; i03++) {
  4878. for (int i02 = 0; i02 < ne02; i02++) {
  4879. id += rs * ir0;
  4880. for (int i01 = ir0; i01 < ir1; i01++) {
  4881. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4882. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  4883. id += rs;
  4884. }
  4885. id += rs * (ne01 - ir1);
  4886. }
  4887. }
  4888. } else {
  4889. GGML_ASSERT(false); // TODO: implement
  4890. }
  4891. } else {
  4892. //printf("%s: this is not optimal - fix me\n", __func__);
  4893. if (dst->type == GGML_TYPE_F32) {
  4894. size_t id = 0;
  4895. float * dst_ptr = (float *) dst->data;
  4896. for (int i03 = 0; i03 < ne03; i03++) {
  4897. for (int i02 = 0; i02 < ne02; i02++) {
  4898. id += ne00 * ir0;
  4899. for (int i01 = ir0; i01 < ir1; i01++) {
  4900. for (int i00 = 0; i00 < ne00; i00++) {
  4901. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4902. dst_ptr[id] = *src0_ptr;
  4903. id++;
  4904. }
  4905. }
  4906. id += ne00 * (ne01 - ir1);
  4907. }
  4908. }
  4909. } else if (dst->type == GGML_TYPE_F16) {
  4910. size_t id = 0;
  4911. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4912. for (int i03 = 0; i03 < ne03; i03++) {
  4913. for (int i02 = 0; i02 < ne02; i02++) {
  4914. id += ne00 * ir0;
  4915. for (int i01 = ir0; i01 < ir1; i01++) {
  4916. for (int i00 = 0; i00 < ne00; i00++) {
  4917. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4918. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4919. id++;
  4920. }
  4921. }
  4922. id += ne00 * (ne01 - ir1);
  4923. }
  4924. }
  4925. } else {
  4926. GGML_ASSERT(false); // TODO: implement
  4927. }
  4928. }
  4929. return;
  4930. }
  4931. // dst counters
  4932. int64_t i10 = 0;
  4933. int64_t i11 = 0;
  4934. int64_t i12 = 0;
  4935. int64_t i13 = 0;
  4936. if (dst->type == GGML_TYPE_F32) {
  4937. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4938. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4939. i10 += ne00 * ir0;
  4940. while (i10 >= ne0) {
  4941. i10 -= ne0;
  4942. if (++i11 == ne1) {
  4943. i11 = 0;
  4944. if (++i12 == ne2) {
  4945. i12 = 0;
  4946. if (++i13 == ne3) {
  4947. i13 = 0;
  4948. }
  4949. }
  4950. }
  4951. }
  4952. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4953. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4954. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4955. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4956. memcpy(dst_ptr, src0_ptr, sizeof(float));
  4957. if (++i10 == ne0) {
  4958. i10 = 0;
  4959. if (++i11 == ne1) {
  4960. i11 = 0;
  4961. if (++i12 == ne2) {
  4962. i12 = 0;
  4963. if (++i13 == ne3) {
  4964. i13 = 0;
  4965. }
  4966. }
  4967. }
  4968. }
  4969. }
  4970. }
  4971. i10 += ne00 * (ne01 - ir1);
  4972. while (i10 >= ne0) {
  4973. i10 -= ne0;
  4974. if (++i11 == ne1) {
  4975. i11 = 0;
  4976. if (++i12 == ne2) {
  4977. i12 = 0;
  4978. if (++i13 == ne3) {
  4979. i13 = 0;
  4980. }
  4981. }
  4982. }
  4983. }
  4984. }
  4985. }
  4986. } else if (dst->type == GGML_TYPE_F16) {
  4987. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4988. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4989. i10 += ne00 * ir0;
  4990. while (i10 >= ne0) {
  4991. i10 -= ne0;
  4992. if (++i11 == ne1) {
  4993. i11 = 0;
  4994. if (++i12 == ne2) {
  4995. i12 = 0;
  4996. if (++i13 == ne3) {
  4997. i13 = 0;
  4998. }
  4999. }
  5000. }
  5001. }
  5002. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5003. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5004. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5005. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5006. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5007. if (++i10 == ne0) {
  5008. i10 = 0;
  5009. if (++i11 == ne1) {
  5010. i11 = 0;
  5011. if (++i12 == ne2) {
  5012. i12 = 0;
  5013. if (++i13 == ne3) {
  5014. i13 = 0;
  5015. }
  5016. }
  5017. }
  5018. }
  5019. }
  5020. }
  5021. i10 += ne00 * (ne01 - ir1);
  5022. while (i10 >= ne0) {
  5023. i10 -= ne0;
  5024. if (++i11 == ne1) {
  5025. i11 = 0;
  5026. if (++i12 == ne2) {
  5027. i12 = 0;
  5028. if (++i13 == ne3) {
  5029. i13 = 0;
  5030. }
  5031. }
  5032. }
  5033. }
  5034. }
  5035. }
  5036. } else {
  5037. GGML_ASSERT(false); // TODO: implement
  5038. }
  5039. }
  5040. static void ggml_compute_forward_dup(
  5041. const struct ggml_compute_params * params,
  5042. const struct ggml_tensor * src0,
  5043. struct ggml_tensor * dst) {
  5044. switch (src0->type) {
  5045. case GGML_TYPE_F16:
  5046. {
  5047. ggml_compute_forward_dup_f16(params, src0, dst);
  5048. } break;
  5049. case GGML_TYPE_F32:
  5050. {
  5051. ggml_compute_forward_dup_f32(params, src0, dst);
  5052. } break;
  5053. default:
  5054. {
  5055. GGML_ASSERT(false);
  5056. } break;
  5057. }
  5058. }
  5059. // ggml_compute_forward_add
  5060. static void ggml_compute_forward_add_f32(
  5061. const struct ggml_compute_params * params,
  5062. const struct ggml_tensor * src0,
  5063. const struct ggml_tensor * src1,
  5064. struct ggml_tensor * dst) {
  5065. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5066. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5067. return;
  5068. }
  5069. const int ith = params->ith;
  5070. const int nth = params->nth;
  5071. const int n = ggml_nrows(src0);
  5072. const int nc = src0->ne[0];
  5073. const size_t nb00 = src0->nb[0];
  5074. const size_t nb01 = src0->nb[1];
  5075. const size_t nb10 = src1->nb[0];
  5076. const size_t nb11 = src1->nb[1];
  5077. const size_t nb0 = dst->nb[0];
  5078. const size_t nb1 = dst->nb[1];
  5079. GGML_ASSERT( nb0 == sizeof(float));
  5080. GGML_ASSERT(nb00 == sizeof(float));
  5081. if (nb10 == sizeof(float)) {
  5082. for (int j = ith; j < n; j += nth) {
  5083. #ifdef GGML_USE_ACCELERATE
  5084. vDSP_vadd(
  5085. (float *) ((char *) src0->data + j*nb01), 1,
  5086. (float *) ((char *) src1->data + j*nb11), 1,
  5087. (float *) ((char *) dst->data + j*nb1), 1, nc);
  5088. #else
  5089. ggml_vec_add_f32(nc,
  5090. (float *) ((char *) dst->data + j*nb1),
  5091. (float *) ((char *) src0->data + j*nb01),
  5092. (float *) ((char *) src1->data + j*nb11));
  5093. #endif
  5094. }
  5095. } else {
  5096. // src1 is not contiguous
  5097. for (int j = ith; j < n; j += nth) {
  5098. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  5099. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  5100. for (int i = 0; i < nc; i++) {
  5101. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5102. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  5103. }
  5104. }
  5105. }
  5106. }
  5107. static void ggml_compute_forward_add_f16_f32(
  5108. const struct ggml_compute_params * params,
  5109. const struct ggml_tensor * src0,
  5110. const struct ggml_tensor * src1,
  5111. struct ggml_tensor * dst) {
  5112. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5113. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5114. return;
  5115. }
  5116. const int ith = params->ith;
  5117. const int nth = params->nth;
  5118. const int n = ggml_nrows(src0);
  5119. const int nc = src0->ne[0];
  5120. const size_t nb00 = src0->nb[0];
  5121. const size_t nb01 = src0->nb[1];
  5122. const size_t nb10 = src1->nb[0];
  5123. const size_t nb11 = src1->nb[1];
  5124. const size_t nb0 = dst->nb[0];
  5125. const size_t nb1 = dst->nb[1];
  5126. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5127. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5128. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5129. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5130. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5131. if (nb10 == sizeof(float)) {
  5132. for (int j = ith; j < n; j += nth) {
  5133. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5134. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5135. for (int i = 0; i < nc; i++) {
  5136. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5137. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + *src1_ptr);
  5138. }
  5139. }
  5140. }
  5141. else {
  5142. // src1 is not contiguous
  5143. GGML_ASSERT(false);
  5144. }
  5145. }
  5146. static void ggml_compute_forward_add_f16_f16(
  5147. const struct ggml_compute_params * params,
  5148. const struct ggml_tensor * src0,
  5149. const struct ggml_tensor * src1,
  5150. struct ggml_tensor * dst) {
  5151. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5152. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5153. return;
  5154. }
  5155. const int ith = params->ith;
  5156. const int nth = params->nth;
  5157. const int n = ggml_nrows(src0);
  5158. const int nc = src0->ne[0];
  5159. const size_t nb00 = src0->nb[0];
  5160. const size_t nb01 = src0->nb[1];
  5161. const size_t nb10 = src1->nb[0];
  5162. const size_t nb11 = src1->nb[1];
  5163. const size_t nb0 = dst->nb[0];
  5164. const size_t nb1 = dst->nb[1];
  5165. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5166. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5167. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5168. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5169. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5170. if (nb10 == sizeof(ggml_fp16_t)) {
  5171. for (int j = ith; j < n; j += nth) {
  5172. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5173. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5174. for (int i = 0; i < nc; i++) {
  5175. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + j*nb11 + i*nb10);
  5176. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(*src1_ptr));
  5177. }
  5178. }
  5179. }
  5180. else {
  5181. // src1 is not contiguous
  5182. GGML_ASSERT(false);
  5183. }
  5184. }
  5185. static void ggml_compute_forward_add_q_f32(
  5186. const struct ggml_compute_params * params,
  5187. const struct ggml_tensor * src0,
  5188. const struct ggml_tensor * src1,
  5189. struct ggml_tensor * dst) {
  5190. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5191. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5192. return;
  5193. }
  5194. const int64_t ne00 = src0->ne[0];
  5195. const int64_t ne01 = src0->ne[1];
  5196. const int64_t ne02 = src0->ne[2];
  5197. const int64_t ne03 = src0->ne[3];
  5198. //const int64_t ne10 = src1->ne[0];
  5199. //const int64_t ne11 = src1->ne[1];
  5200. const int64_t ne12 = src1->ne[2];
  5201. const int64_t ne13 = src1->ne[3];
  5202. //const int64_t ne0 = dst->ne[0];
  5203. //const int64_t ne1 = dst->ne[1];
  5204. const int64_t ne2 = dst->ne[2];
  5205. const int64_t ne3 = dst->ne[3];
  5206. const int nb00 = src0->nb[0];
  5207. const int nb01 = src0->nb[1];
  5208. const int nb02 = src0->nb[2];
  5209. const int nb03 = src0->nb[3];
  5210. const int nb10 = src1->nb[0];
  5211. const int nb11 = src1->nb[1];
  5212. const int nb12 = src1->nb[2];
  5213. const int nb13 = src1->nb[3];
  5214. const int nb0 = dst->nb[0];
  5215. const int nb1 = dst->nb[1];
  5216. const int nb2 = dst->nb[2];
  5217. const int nb3 = dst->nb[3];
  5218. const int ith = params->ith;
  5219. const int nth = params->nth;
  5220. GGML_ASSERT(ne02 == ne12);
  5221. GGML_ASSERT(ne03 == ne13);
  5222. GGML_ASSERT(ne2 == ne12);
  5223. GGML_ASSERT(ne3 == ne13);
  5224. const enum ggml_type type = src0->type;
  5225. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5226. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5227. // we don't support permuted src0 or src1
  5228. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5229. GGML_ASSERT(nb10 == sizeof(float));
  5230. // dst cannot be transposed or permuted
  5231. GGML_ASSERT(nb0 <= nb1);
  5232. GGML_ASSERT(nb1 <= nb2);
  5233. GGML_ASSERT(nb2 <= nb3);
  5234. GGML_ASSERT(ggml_is_quantized(src0->type));
  5235. GGML_ASSERT(dst->type == src0->type);
  5236. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5237. // total rows in src0
  5238. const int nr = ne01*ne02*ne03;
  5239. // rows per thread
  5240. const int dr = (nr + nth - 1)/nth;
  5241. // row range for this thread
  5242. const int ir0 = dr*ith;
  5243. const int ir1 = MIN(ir0 + dr, nr);
  5244. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5245. for (int ir = ir0; ir < ir1; ++ir) {
  5246. // src0 indices
  5247. const int i03 = ir/(ne02*ne01);
  5248. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5249. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5250. // src1 and dst are same shape as src0 => same indices
  5251. const int i13 = i03;
  5252. const int i12 = i02;
  5253. const int i11 = i01;
  5254. const int i3 = i03;
  5255. const int i2 = i02;
  5256. const int i1 = i01;
  5257. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5258. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5259. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  5260. assert(ne00 % 32 == 0);
  5261. // unquantize row from src0 to temp buffer
  5262. dequantize_row_q(src0_row, wdata, ne00);
  5263. // add src1
  5264. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5265. // quantize row to dst
  5266. quantize_row_q(wdata, dst_row, ne00);
  5267. }
  5268. }
  5269. static void ggml_compute_forward_add(
  5270. const struct ggml_compute_params * params,
  5271. const struct ggml_tensor * src0,
  5272. const struct ggml_tensor * src1,
  5273. struct ggml_tensor * dst) {
  5274. switch (src0->type) {
  5275. case GGML_TYPE_F32:
  5276. {
  5277. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5278. } break;
  5279. case GGML_TYPE_F16:
  5280. {
  5281. if (src1->type == GGML_TYPE_F16) {
  5282. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5283. }
  5284. else if (src1->type == GGML_TYPE_F32) {
  5285. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5286. }
  5287. else {
  5288. GGML_ASSERT(false);
  5289. }
  5290. } break;
  5291. case GGML_TYPE_Q4_0:
  5292. case GGML_TYPE_Q4_1:
  5293. case GGML_TYPE_Q4_2:
  5294. case GGML_TYPE_Q4_3:
  5295. {
  5296. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5297. } break;
  5298. default:
  5299. {
  5300. GGML_ASSERT(false);
  5301. } break;
  5302. }
  5303. }
  5304. // ggml_compute_forward_sub
  5305. static void ggml_compute_forward_sub_f32(
  5306. const struct ggml_compute_params * params,
  5307. const struct ggml_tensor * src0,
  5308. const struct ggml_tensor * src1,
  5309. struct ggml_tensor * dst) {
  5310. assert(params->ith == 0);
  5311. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5312. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5313. return;
  5314. }
  5315. const int n = ggml_nrows(src0);
  5316. const int nc = src0->ne[0];
  5317. assert( dst->nb[0] == sizeof(float));
  5318. assert(src0->nb[0] == sizeof(float));
  5319. assert(src1->nb[0] == sizeof(float));
  5320. for (int i = 0; i < n; i++) {
  5321. ggml_vec_sub_f32(nc,
  5322. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5323. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5324. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5325. }
  5326. }
  5327. static void ggml_compute_forward_sub(
  5328. const struct ggml_compute_params * params,
  5329. const struct ggml_tensor * src0,
  5330. const struct ggml_tensor * src1,
  5331. struct ggml_tensor * dst) {
  5332. switch (src0->type) {
  5333. case GGML_TYPE_F32:
  5334. {
  5335. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  5336. } break;
  5337. default:
  5338. {
  5339. GGML_ASSERT(false);
  5340. } break;
  5341. }
  5342. }
  5343. // ggml_compute_forward_mul
  5344. static void ggml_compute_forward_mul_f32(
  5345. const struct ggml_compute_params * params,
  5346. const struct ggml_tensor * src0,
  5347. const struct ggml_tensor * src1,
  5348. struct ggml_tensor * dst) {
  5349. assert(params->ith == 0);
  5350. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5351. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5352. return;
  5353. }
  5354. const int n = ggml_nrows(src0);
  5355. const int nc = src0->ne[0];
  5356. assert( dst->nb[0] == sizeof(float));
  5357. assert(src0->nb[0] == sizeof(float));
  5358. assert(src1->nb[0] == sizeof(float));
  5359. for (int i = 0; i < n; i++) {
  5360. ggml_vec_mul_f32(nc,
  5361. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5362. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5363. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5364. }
  5365. }
  5366. static void ggml_compute_forward_mul(
  5367. const struct ggml_compute_params * params,
  5368. const struct ggml_tensor * src0,
  5369. const struct ggml_tensor * src1,
  5370. struct ggml_tensor * dst) {
  5371. switch (src0->type) {
  5372. case GGML_TYPE_F32:
  5373. {
  5374. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  5375. } break;
  5376. default:
  5377. {
  5378. GGML_ASSERT(false);
  5379. } break;
  5380. }
  5381. }
  5382. // ggml_compute_forward_div
  5383. static void ggml_compute_forward_div_f32(
  5384. const struct ggml_compute_params * params,
  5385. const struct ggml_tensor * src0,
  5386. const struct ggml_tensor * src1,
  5387. struct ggml_tensor * dst) {
  5388. assert(params->ith == 0);
  5389. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5390. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5391. return;
  5392. }
  5393. const int n = ggml_nrows(src0);
  5394. const int nc = src0->ne[0];
  5395. assert( dst->nb[0] == sizeof(float));
  5396. assert(src0->nb[0] == sizeof(float));
  5397. assert(src1->nb[0] == sizeof(float));
  5398. for (int i = 0; i < n; i++) {
  5399. ggml_vec_div_f32(nc,
  5400. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5401. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5402. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5403. }
  5404. }
  5405. static void ggml_compute_forward_div(
  5406. const struct ggml_compute_params * params,
  5407. const struct ggml_tensor * src0,
  5408. const struct ggml_tensor * src1,
  5409. struct ggml_tensor * dst) {
  5410. switch (src0->type) {
  5411. case GGML_TYPE_F32:
  5412. {
  5413. ggml_compute_forward_div_f32(params, src0, src1, dst);
  5414. } break;
  5415. default:
  5416. {
  5417. GGML_ASSERT(false);
  5418. } break;
  5419. }
  5420. }
  5421. // ggml_compute_forward_sqr
  5422. static void ggml_compute_forward_sqr_f32(
  5423. const struct ggml_compute_params * params,
  5424. const struct ggml_tensor * src0,
  5425. struct ggml_tensor * dst) {
  5426. assert(params->ith == 0);
  5427. assert(ggml_are_same_shape(src0, dst));
  5428. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5429. return;
  5430. }
  5431. const int n = ggml_nrows(src0);
  5432. const int nc = src0->ne[0];
  5433. assert( dst->nb[0] == sizeof(float));
  5434. assert(src0->nb[0] == sizeof(float));
  5435. for (int i = 0; i < n; i++) {
  5436. ggml_vec_sqr_f32(nc,
  5437. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5438. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5439. }
  5440. }
  5441. static void ggml_compute_forward_sqr(
  5442. const struct ggml_compute_params * params,
  5443. const struct ggml_tensor * src0,
  5444. struct ggml_tensor * dst) {
  5445. switch (src0->type) {
  5446. case GGML_TYPE_F32:
  5447. {
  5448. ggml_compute_forward_sqr_f32(params, src0, dst);
  5449. } break;
  5450. default:
  5451. {
  5452. GGML_ASSERT(false);
  5453. } break;
  5454. }
  5455. }
  5456. // ggml_compute_forward_sqrt
  5457. static void ggml_compute_forward_sqrt_f32(
  5458. const struct ggml_compute_params * params,
  5459. const struct ggml_tensor * src0,
  5460. struct ggml_tensor * dst) {
  5461. assert(params->ith == 0);
  5462. assert(ggml_are_same_shape(src0, dst));
  5463. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5464. return;
  5465. }
  5466. const int n = ggml_nrows(src0);
  5467. const int nc = src0->ne[0];
  5468. assert( dst->nb[0] == sizeof(float));
  5469. assert(src0->nb[0] == sizeof(float));
  5470. for (int i = 0; i < n; i++) {
  5471. ggml_vec_sqrt_f32(nc,
  5472. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5473. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5474. }
  5475. }
  5476. static void ggml_compute_forward_sqrt(
  5477. const struct ggml_compute_params * params,
  5478. const struct ggml_tensor * src0,
  5479. struct ggml_tensor * dst) {
  5480. switch (src0->type) {
  5481. case GGML_TYPE_F32:
  5482. {
  5483. ggml_compute_forward_sqrt_f32(params, src0, dst);
  5484. } break;
  5485. default:
  5486. {
  5487. GGML_ASSERT(false);
  5488. } break;
  5489. }
  5490. }
  5491. // ggml_compute_forward_sum
  5492. static void ggml_compute_forward_sum_f32(
  5493. const struct ggml_compute_params * params,
  5494. const struct ggml_tensor * src0,
  5495. struct ggml_tensor * dst) {
  5496. assert(params->ith == 0);
  5497. assert(ggml_is_scalar(dst));
  5498. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5499. return;
  5500. }
  5501. assert(ggml_is_scalar(dst));
  5502. assert(src0->nb[0] == sizeof(float));
  5503. const int64_t ne00 = src0->ne[0];
  5504. const int64_t ne01 = src0->ne[1];
  5505. const int64_t ne02 = src0->ne[2];
  5506. const int64_t ne03 = src0->ne[3];
  5507. const size_t nb01 = src0->nb[1];
  5508. const size_t nb02 = src0->nb[2];
  5509. const size_t nb03 = src0->nb[3];
  5510. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5511. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5512. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5513. ggml_vec_sum_f32(ne00,
  5514. (float *) (dst->data),
  5515. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5516. }
  5517. }
  5518. }
  5519. }
  5520. static void ggml_compute_forward_sum(
  5521. const struct ggml_compute_params * params,
  5522. const struct ggml_tensor * src0,
  5523. struct ggml_tensor * dst) {
  5524. switch (src0->type) {
  5525. case GGML_TYPE_F32:
  5526. {
  5527. ggml_compute_forward_sum_f32(params, src0, dst);
  5528. } break;
  5529. default:
  5530. {
  5531. GGML_ASSERT(false);
  5532. } break;
  5533. }
  5534. }
  5535. // ggml_compute_forward_mean
  5536. static void ggml_compute_forward_mean_f32(
  5537. const struct ggml_compute_params * params,
  5538. const struct ggml_tensor * src0,
  5539. struct ggml_tensor * dst) {
  5540. assert(params->ith == 0);
  5541. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5542. return;
  5543. }
  5544. assert(src0->nb[0] == sizeof(float));
  5545. const int64_t ne00 = src0->ne[0];
  5546. const int64_t ne01 = src0->ne[1];
  5547. const int64_t ne02 = src0->ne[2];
  5548. const int64_t ne03 = src0->ne[3];
  5549. const size_t nb01 = src0->nb[1];
  5550. const size_t nb02 = src0->nb[2];
  5551. const size_t nb03 = src0->nb[3];
  5552. const int64_t ne0 = dst->ne[0];
  5553. const int64_t ne1 = dst->ne[1];
  5554. const int64_t ne2 = dst->ne[2];
  5555. const int64_t ne3 = dst->ne[3];
  5556. assert(ne0 == 1);
  5557. assert(ne1 == ne01);
  5558. assert(ne2 == ne02);
  5559. assert(ne3 == ne03);
  5560. UNUSED(ne0);
  5561. UNUSED(ne1);
  5562. UNUSED(ne2);
  5563. UNUSED(ne3);
  5564. const size_t nb1 = dst->nb[1];
  5565. const size_t nb2 = dst->nb[2];
  5566. const size_t nb3 = dst->nb[3];
  5567. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5568. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5569. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5570. ggml_vec_sum_f32(ne00,
  5571. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5572. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5573. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  5574. }
  5575. }
  5576. }
  5577. }
  5578. static void ggml_compute_forward_mean(
  5579. const struct ggml_compute_params * params,
  5580. const struct ggml_tensor * src0,
  5581. struct ggml_tensor * dst) {
  5582. switch (src0->type) {
  5583. case GGML_TYPE_F32:
  5584. {
  5585. ggml_compute_forward_mean_f32(params, src0, dst);
  5586. } break;
  5587. default:
  5588. {
  5589. GGML_ASSERT(false);
  5590. } break;
  5591. }
  5592. }
  5593. // ggml_compute_forward_repeat
  5594. static void ggml_compute_forward_repeat_f32(
  5595. const struct ggml_compute_params * params,
  5596. const struct ggml_tensor * src0,
  5597. struct ggml_tensor * dst) {
  5598. assert(params->ith == 0);
  5599. assert(ggml_can_repeat(src0, dst));
  5600. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5601. return;
  5602. }
  5603. // TODO: implement support for rank > 2 tensors
  5604. assert(src0->ne[2] == 1);
  5605. assert(src0->ne[3] == 1);
  5606. assert( dst->ne[2] == 1);
  5607. assert( dst->ne[3] == 1);
  5608. const int nc = dst->ne[0];
  5609. const int nr = dst->ne[1];
  5610. const int nc0 = src0->ne[0];
  5611. const int nr0 = src0->ne[1];
  5612. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5613. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5614. // TODO: support for transposed / permuted tensors
  5615. assert( dst->nb[0] == sizeof(float));
  5616. assert(src0->nb[0] == sizeof(float));
  5617. // TODO: maybe this is not optimal?
  5618. for (int i = 0; i < nrr; i++) {
  5619. for (int j = 0; j < ncr; j++) {
  5620. for (int k = 0; k < nr0; k++) {
  5621. ggml_vec_cpy_f32(nc0,
  5622. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  5623. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  5624. }
  5625. }
  5626. }
  5627. }
  5628. static void ggml_compute_forward_repeat(
  5629. const struct ggml_compute_params * params,
  5630. const struct ggml_tensor * src0,
  5631. struct ggml_tensor * dst) {
  5632. switch (src0->type) {
  5633. case GGML_TYPE_F32:
  5634. {
  5635. ggml_compute_forward_repeat_f32(params, src0, dst);
  5636. } break;
  5637. default:
  5638. {
  5639. GGML_ASSERT(false);
  5640. } break;
  5641. }
  5642. }
  5643. // ggml_compute_forward_abs
  5644. static void ggml_compute_forward_abs_f32(
  5645. const struct ggml_compute_params * params,
  5646. const struct ggml_tensor * src0,
  5647. struct ggml_tensor * dst) {
  5648. assert(params->ith == 0);
  5649. assert(ggml_are_same_shape(src0, dst));
  5650. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5651. return;
  5652. }
  5653. const int n = ggml_nrows(src0);
  5654. const int nc = src0->ne[0];
  5655. assert(dst->nb[0] == sizeof(float));
  5656. assert(src0->nb[0] == sizeof(float));
  5657. for (int i = 0; i < n; i++) {
  5658. ggml_vec_abs_f32(nc,
  5659. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5660. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5661. }
  5662. }
  5663. static void ggml_compute_forward_abs(
  5664. const struct ggml_compute_params * params,
  5665. const struct ggml_tensor * src0,
  5666. struct ggml_tensor * dst) {
  5667. switch (src0->type) {
  5668. case GGML_TYPE_F32:
  5669. {
  5670. ggml_compute_forward_abs_f32(params, src0, dst);
  5671. } break;
  5672. default:
  5673. {
  5674. GGML_ASSERT(false);
  5675. } break;
  5676. }
  5677. }
  5678. // ggml_compute_forward_sgn
  5679. static void ggml_compute_forward_sgn_f32(
  5680. const struct ggml_compute_params * params,
  5681. const struct ggml_tensor * src0,
  5682. struct ggml_tensor * dst) {
  5683. assert(params->ith == 0);
  5684. assert(ggml_are_same_shape(src0, dst));
  5685. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5686. return;
  5687. }
  5688. const int n = ggml_nrows(src0);
  5689. const int nc = src0->ne[0];
  5690. assert(dst->nb[0] == sizeof(float));
  5691. assert(src0->nb[0] == sizeof(float));
  5692. for (int i = 0; i < n; i++) {
  5693. ggml_vec_sgn_f32(nc,
  5694. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5695. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5696. }
  5697. }
  5698. static void ggml_compute_forward_sgn(
  5699. const struct ggml_compute_params * params,
  5700. const struct ggml_tensor * src0,
  5701. struct ggml_tensor * dst) {
  5702. switch (src0->type) {
  5703. case GGML_TYPE_F32:
  5704. {
  5705. ggml_compute_forward_sgn_f32(params, src0, dst);
  5706. } break;
  5707. default:
  5708. {
  5709. GGML_ASSERT(false);
  5710. } break;
  5711. }
  5712. }
  5713. // ggml_compute_forward_neg
  5714. static void ggml_compute_forward_neg_f32(
  5715. const struct ggml_compute_params * params,
  5716. const struct ggml_tensor * src0,
  5717. struct ggml_tensor * dst) {
  5718. assert(params->ith == 0);
  5719. assert(ggml_are_same_shape(src0, dst));
  5720. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5721. return;
  5722. }
  5723. const int n = ggml_nrows(src0);
  5724. const int nc = src0->ne[0];
  5725. assert(dst->nb[0] == sizeof(float));
  5726. assert(src0->nb[0] == sizeof(float));
  5727. for (int i = 0; i < n; i++) {
  5728. ggml_vec_neg_f32(nc,
  5729. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5730. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5731. }
  5732. }
  5733. static void ggml_compute_forward_neg(
  5734. const struct ggml_compute_params * params,
  5735. const struct ggml_tensor * src0,
  5736. struct ggml_tensor * dst) {
  5737. switch (src0->type) {
  5738. case GGML_TYPE_F32:
  5739. {
  5740. ggml_compute_forward_neg_f32(params, src0, dst);
  5741. } break;
  5742. default:
  5743. {
  5744. GGML_ASSERT(false);
  5745. } break;
  5746. }
  5747. }
  5748. // ggml_compute_forward_step
  5749. static void ggml_compute_forward_step_f32(
  5750. const struct ggml_compute_params * params,
  5751. const struct ggml_tensor * src0,
  5752. struct ggml_tensor * dst) {
  5753. assert(params->ith == 0);
  5754. assert(ggml_are_same_shape(src0, dst));
  5755. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5756. return;
  5757. }
  5758. const int n = ggml_nrows(src0);
  5759. const int nc = src0->ne[0];
  5760. assert(dst->nb[0] == sizeof(float));
  5761. assert(src0->nb[0] == sizeof(float));
  5762. for (int i = 0; i < n; i++) {
  5763. ggml_vec_step_f32(nc,
  5764. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5765. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5766. }
  5767. }
  5768. static void ggml_compute_forward_step(
  5769. const struct ggml_compute_params * params,
  5770. const struct ggml_tensor * src0,
  5771. struct ggml_tensor * dst) {
  5772. switch (src0->type) {
  5773. case GGML_TYPE_F32:
  5774. {
  5775. ggml_compute_forward_step_f32(params, src0, dst);
  5776. } break;
  5777. default:
  5778. {
  5779. GGML_ASSERT(false);
  5780. } break;
  5781. }
  5782. }
  5783. // ggml_compute_forward_relu
  5784. static void ggml_compute_forward_relu_f32(
  5785. const struct ggml_compute_params * params,
  5786. const struct ggml_tensor * src0,
  5787. struct ggml_tensor * dst) {
  5788. assert(params->ith == 0);
  5789. assert(ggml_are_same_shape(src0, dst));
  5790. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5791. return;
  5792. }
  5793. const int n = ggml_nrows(src0);
  5794. const int nc = src0->ne[0];
  5795. assert(dst->nb[0] == sizeof(float));
  5796. assert(src0->nb[0] == sizeof(float));
  5797. for (int i = 0; i < n; i++) {
  5798. ggml_vec_relu_f32(nc,
  5799. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5800. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5801. }
  5802. }
  5803. static void ggml_compute_forward_relu(
  5804. const struct ggml_compute_params * params,
  5805. const struct ggml_tensor * src0,
  5806. struct ggml_tensor * dst) {
  5807. switch (src0->type) {
  5808. case GGML_TYPE_F32:
  5809. {
  5810. ggml_compute_forward_relu_f32(params, src0, dst);
  5811. } break;
  5812. default:
  5813. {
  5814. GGML_ASSERT(false);
  5815. } break;
  5816. }
  5817. }
  5818. // ggml_compute_forward_gelu
  5819. static void ggml_compute_forward_gelu_f32(
  5820. const struct ggml_compute_params * params,
  5821. const struct ggml_tensor * src0,
  5822. struct ggml_tensor * dst) {
  5823. GGML_ASSERT(ggml_is_contiguous(src0));
  5824. GGML_ASSERT(ggml_is_contiguous(dst));
  5825. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5826. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5827. return;
  5828. }
  5829. const int ith = params->ith;
  5830. const int nth = params->nth;
  5831. const int nc = src0->ne[0];
  5832. const int nr = ggml_nrows(src0);
  5833. // rows per thread
  5834. const int dr = (nr + nth - 1)/nth;
  5835. // row range for this thread
  5836. const int ir0 = dr*ith;
  5837. const int ir1 = MIN(ir0 + dr, nr);
  5838. for (int i1 = ir0; i1 < ir1; i1++) {
  5839. ggml_vec_gelu_f32(nc,
  5840. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5841. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5842. #ifndef NDEBUG
  5843. for (int k = 0; k < nc; k++) {
  5844. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5845. UNUSED(x);
  5846. assert(!isnan(x));
  5847. assert(!isinf(x));
  5848. }
  5849. #endif
  5850. }
  5851. }
  5852. static void ggml_compute_forward_gelu(
  5853. const struct ggml_compute_params * params,
  5854. const struct ggml_tensor * src0,
  5855. struct ggml_tensor * dst) {
  5856. switch (src0->type) {
  5857. case GGML_TYPE_F32:
  5858. {
  5859. ggml_compute_forward_gelu_f32(params, src0, dst);
  5860. } break;
  5861. default:
  5862. {
  5863. GGML_ASSERT(false);
  5864. } break;
  5865. }
  5866. //printf("XXXXXXXX gelu\n");
  5867. }
  5868. // ggml_compute_forward_silu
  5869. static void ggml_compute_forward_silu_f32(
  5870. const struct ggml_compute_params * params,
  5871. const struct ggml_tensor * src0,
  5872. struct ggml_tensor * dst) {
  5873. GGML_ASSERT(ggml_is_contiguous(src0));
  5874. GGML_ASSERT(ggml_is_contiguous(dst));
  5875. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5876. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5877. return;
  5878. }
  5879. const int ith = params->ith;
  5880. const int nth = params->nth;
  5881. const int nc = src0->ne[0];
  5882. const int nr = ggml_nrows(src0);
  5883. // rows per thread
  5884. const int dr = (nr + nth - 1)/nth;
  5885. // row range for this thread
  5886. const int ir0 = dr*ith;
  5887. const int ir1 = MIN(ir0 + dr, nr);
  5888. for (int i1 = ir0; i1 < ir1; i1++) {
  5889. ggml_vec_silu_f32(nc,
  5890. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5891. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5892. #ifndef NDEBUG
  5893. for (int k = 0; k < nc; k++) {
  5894. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5895. UNUSED(x);
  5896. assert(!isnan(x));
  5897. assert(!isinf(x));
  5898. }
  5899. #endif
  5900. }
  5901. }
  5902. static void ggml_compute_forward_silu(
  5903. const struct ggml_compute_params * params,
  5904. const struct ggml_tensor * src0,
  5905. struct ggml_tensor * dst) {
  5906. switch (src0->type) {
  5907. case GGML_TYPE_F32:
  5908. {
  5909. ggml_compute_forward_silu_f32(params, src0, dst);
  5910. } break;
  5911. default:
  5912. {
  5913. GGML_ASSERT(false);
  5914. } break;
  5915. }
  5916. }
  5917. // ggml_compute_forward_norm
  5918. static void ggml_compute_forward_norm_f32(
  5919. const struct ggml_compute_params * params,
  5920. const struct ggml_tensor * src0,
  5921. struct ggml_tensor * dst) {
  5922. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5923. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5924. return;
  5925. }
  5926. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5927. const int ith = params->ith;
  5928. const int nth = params->nth;
  5929. const int64_t ne00 = src0->ne[0];
  5930. const int64_t ne01 = src0->ne[1];
  5931. const int64_t ne02 = src0->ne[2];
  5932. const int64_t ne03 = src0->ne[3];
  5933. const size_t nb01 = src0->nb[1];
  5934. const size_t nb02 = src0->nb[2];
  5935. const size_t nb03 = src0->nb[3];
  5936. const size_t nb1 = dst->nb[1];
  5937. const size_t nb2 = dst->nb[2];
  5938. const size_t nb3 = dst->nb[3];
  5939. const float eps = 1e-5f; // TODO: make this a parameter
  5940. // TODO: optimize
  5941. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5942. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5943. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5944. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5945. ggml_float sum = 0.0;
  5946. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5947. sum += (ggml_float)x[i00];
  5948. }
  5949. float mean = sum/ne00;
  5950. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5951. ggml_float sum2 = 0.0;
  5952. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5953. float v = x[i00] - mean;
  5954. y[i00] = v;
  5955. sum2 += (ggml_float)(v*v);
  5956. }
  5957. float variance = sum2/ne00;
  5958. const float scale = 1.0f/sqrtf(variance + eps);
  5959. ggml_vec_scale_f32(ne00, y, scale);
  5960. }
  5961. }
  5962. }
  5963. }
  5964. static void ggml_compute_forward_norm(
  5965. const struct ggml_compute_params * params,
  5966. const struct ggml_tensor * src0,
  5967. struct ggml_tensor * dst) {
  5968. switch (src0->type) {
  5969. case GGML_TYPE_F32:
  5970. {
  5971. ggml_compute_forward_norm_f32(params, src0, dst);
  5972. } break;
  5973. default:
  5974. {
  5975. GGML_ASSERT(false);
  5976. } break;
  5977. }
  5978. }
  5979. static void ggml_compute_forward_rms_norm_f32(
  5980. const struct ggml_compute_params * params,
  5981. const struct ggml_tensor * src0,
  5982. struct ggml_tensor * dst) {
  5983. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5984. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5985. return;
  5986. }
  5987. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5988. const int ith = params->ith;
  5989. const int nth = params->nth;
  5990. const int64_t ne00 = src0->ne[0];
  5991. const int64_t ne01 = src0->ne[1];
  5992. const int64_t ne02 = src0->ne[2];
  5993. const int64_t ne03 = src0->ne[3];
  5994. const size_t nb01 = src0->nb[1];
  5995. const size_t nb02 = src0->nb[2];
  5996. const size_t nb03 = src0->nb[3];
  5997. const size_t nb1 = dst->nb[1];
  5998. const size_t nb2 = dst->nb[2];
  5999. const size_t nb3 = dst->nb[3];
  6000. const float eps = 1e-6f; // TODO: make this a parameter
  6001. // TODO: optimize
  6002. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6003. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6004. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  6005. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6006. ggml_float sum = 0.0;
  6007. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6008. sum += (ggml_float)(x[i00] * x[i00]);
  6009. }
  6010. float mean = sum/ne00;
  6011. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6012. memcpy(y, x, ne00 * sizeof(float));
  6013. // for (int i00 = 0; i00 < ne00; i00++) {
  6014. // y[i00] = x[i00];
  6015. // }
  6016. const float scale = 1.0f/sqrtf(mean + eps);
  6017. ggml_vec_scale_f32(ne00, y, scale);
  6018. }
  6019. }
  6020. }
  6021. }
  6022. static void ggml_compute_forward_rms_norm(
  6023. const struct ggml_compute_params * params,
  6024. const struct ggml_tensor * src0,
  6025. struct ggml_tensor * dst) {
  6026. switch (src0->type) {
  6027. case GGML_TYPE_F32:
  6028. {
  6029. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  6030. } break;
  6031. default:
  6032. {
  6033. GGML_ASSERT(false);
  6034. } break;
  6035. }
  6036. }
  6037. // ggml_compute_forward_mul_mat
  6038. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6039. // helper function to determine if it is better to use BLAS or not
  6040. // for large matrices, BLAS is faster
  6041. static bool ggml_compute_forward_mul_mat_use_blas(
  6042. const struct ggml_tensor * src0,
  6043. const struct ggml_tensor * src1,
  6044. struct ggml_tensor * dst) {
  6045. //const int64_t ne00 = src0->ne[0];
  6046. //const int64_t ne01 = src0->ne[1];
  6047. const int64_t ne10 = src1->ne[0];
  6048. const int64_t ne0 = dst->ne[0];
  6049. const int64_t ne1 = dst->ne[1];
  6050. // TODO: find the optimal values for these
  6051. if (ggml_is_contiguous(src0) &&
  6052. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  6053. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  6054. return true;
  6055. }
  6056. return false;
  6057. }
  6058. #endif
  6059. static void ggml_compute_forward_mul_mat_f32(
  6060. const struct ggml_compute_params * params,
  6061. const struct ggml_tensor * src0,
  6062. const struct ggml_tensor * src1,
  6063. struct ggml_tensor * dst) {
  6064. int64_t t0 = ggml_perf_time_us();
  6065. UNUSED(t0);
  6066. const int64_t ne00 = src0->ne[0];
  6067. const int64_t ne01 = src0->ne[1];
  6068. const int64_t ne02 = src0->ne[2];
  6069. const int64_t ne03 = src0->ne[3];
  6070. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6071. const int64_t ne10 = src1->ne[0];
  6072. #endif
  6073. const int64_t ne11 = src1->ne[1];
  6074. #ifndef NDEBUG
  6075. const int64_t ne12 = src1->ne[2];
  6076. const int64_t ne13 = src1->ne[3];
  6077. const int64_t ne0 = dst->ne[0];
  6078. const int64_t ne1 = dst->ne[1];
  6079. const int64_t ne2 = dst->ne[2];
  6080. const int64_t ne3 = dst->ne[3];
  6081. const int nb00 = src0->nb[0];
  6082. #endif
  6083. const int nb01 = src0->nb[1];
  6084. const int nb02 = src0->nb[2];
  6085. const int nb03 = src0->nb[3];
  6086. #ifndef NDEBUG
  6087. const int nb10 = src1->nb[0];
  6088. #endif
  6089. const int nb11 = src1->nb[1];
  6090. const int nb12 = src1->nb[2];
  6091. const int nb13 = src1->nb[3];
  6092. const int nb0 = dst->nb[0];
  6093. const int nb1 = dst->nb[1];
  6094. const int nb2 = dst->nb[2];
  6095. const int nb3 = dst->nb[3];
  6096. const int ith = params->ith;
  6097. const int nth = params->nth;
  6098. assert(ne02 == ne12);
  6099. assert(ne03 == ne13);
  6100. assert(ne2 == ne12);
  6101. assert(ne3 == ne13);
  6102. // we don't support permuted src0 or src1
  6103. assert(nb00 == sizeof(float));
  6104. assert(nb10 == sizeof(float));
  6105. // dst cannot be transposed or permuted
  6106. assert(nb0 == sizeof(float));
  6107. assert(nb0 <= nb1);
  6108. assert(nb1 <= nb2);
  6109. assert(nb2 <= nb3);
  6110. assert(ne0 == ne01);
  6111. assert(ne1 == ne11);
  6112. assert(ne2 == ne02);
  6113. assert(ne3 == ne03);
  6114. // nb01 >= nb00 - src0 is not transposed
  6115. // compute by src0 rows
  6116. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6117. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6118. if (params->ith != 0) {
  6119. return;
  6120. }
  6121. if (params->type == GGML_TASK_INIT) {
  6122. return;
  6123. }
  6124. if (params->type == GGML_TASK_FINALIZE) {
  6125. return;
  6126. }
  6127. #if defined(GGML_USE_CUBLAS)
  6128. const float alpha = 1.0f;
  6129. const float beta = 0.0f;
  6130. const int x_ne = ne01 * ne10;
  6131. const int y_ne = ne11 * ne10;
  6132. const int d_ne = ne11 * ne01;
  6133. size_t x_size, y_size, d_size;
  6134. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6135. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6136. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6137. #endif
  6138. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6139. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6140. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6141. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6142. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6143. #if defined(GGML_USE_CUBLAS)
  6144. // copy data to device
  6145. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(float) * x_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6146. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6147. // compute
  6148. CUBLAS_CHECK(
  6149. cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6150. ne01, ne11, ne10,
  6151. &alpha, d_X, ne00,
  6152. d_Y, ne10,
  6153. &beta, d_D, ne01));
  6154. // copy data to host
  6155. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6156. #else
  6157. // zT = y * xT
  6158. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6159. ne11, ne01, ne10,
  6160. 1.0f, y, ne10,
  6161. x, ne00,
  6162. 0.0f, d, ne01);
  6163. #endif
  6164. }
  6165. }
  6166. #if defined(GGML_USE_CUBLAS)
  6167. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6168. ggml_cuda_pool_free(d_X, x_size);
  6169. ggml_cuda_pool_free(d_Y, y_size);
  6170. ggml_cuda_pool_free(d_D, d_size);
  6171. #endif
  6172. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6173. return;
  6174. }
  6175. #endif
  6176. if (params->type == GGML_TASK_INIT) {
  6177. return;
  6178. }
  6179. if (params->type == GGML_TASK_FINALIZE) {
  6180. return;
  6181. }
  6182. // parallelize by src0 rows using ggml_vec_dot_f32
  6183. // total rows in src0
  6184. const int nr = ne01*ne02*ne03;
  6185. // rows per thread
  6186. const int dr = (nr + nth - 1)/nth;
  6187. // row range for this thread
  6188. const int ir0 = dr*ith;
  6189. const int ir1 = MIN(ir0 + dr, nr);
  6190. for (int ir = ir0; ir < ir1; ++ir) {
  6191. // src0 indices
  6192. const int i03 = ir/(ne02*ne01);
  6193. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6194. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6195. for (int64_t ic = 0; ic < ne11; ++ic) {
  6196. // src1 indices
  6197. const int i13 = i03;
  6198. const int i12 = i02;
  6199. const int i11 = ic;
  6200. // dst indices
  6201. const int i0 = i01;
  6202. const int i1 = i11;
  6203. const int i2 = i02;
  6204. const int i3 = i03;
  6205. ggml_vec_dot_f32(ne00,
  6206. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6207. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  6208. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  6209. }
  6210. }
  6211. //int64_t t1 = ggml_perf_time_us();
  6212. //static int64_t acc = 0;
  6213. //acc += t1 - t0;
  6214. //if (t1 - t0 > 10) {
  6215. // printf("\n");
  6216. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6217. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6218. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6219. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  6220. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6221. //}
  6222. }
  6223. static void ggml_compute_forward_mul_mat_f16_f32(
  6224. const struct ggml_compute_params * params,
  6225. const struct ggml_tensor * src0,
  6226. const struct ggml_tensor * src1,
  6227. struct ggml_tensor * dst) {
  6228. int64_t t0 = ggml_perf_time_us();
  6229. UNUSED(t0);
  6230. const int64_t ne00 = src0->ne[0];
  6231. const int64_t ne01 = src0->ne[1];
  6232. const int64_t ne02 = src0->ne[2];
  6233. const int64_t ne03 = src0->ne[3];
  6234. const int64_t ne10 = src1->ne[0];
  6235. const int64_t ne11 = src1->ne[1];
  6236. const int64_t ne12 = src1->ne[2];
  6237. const int64_t ne13 = src1->ne[3];
  6238. const int64_t ne0 = dst->ne[0];
  6239. const int64_t ne1 = dst->ne[1];
  6240. const int64_t ne2 = dst->ne[2];
  6241. const int64_t ne3 = dst->ne[3];
  6242. //const int64_t ne = ne0*ne1*ne2*ne3;
  6243. const int nb00 = src0->nb[0];
  6244. const int nb01 = src0->nb[1];
  6245. const int nb02 = src0->nb[2];
  6246. const int nb03 = src0->nb[3];
  6247. const int nb10 = src1->nb[0];
  6248. const int nb11 = src1->nb[1];
  6249. const int nb12 = src1->nb[2];
  6250. const int nb13 = src1->nb[3];
  6251. const int nb0 = dst->nb[0];
  6252. const int nb1 = dst->nb[1];
  6253. const int nb2 = dst->nb[2];
  6254. const int nb3 = dst->nb[3];
  6255. const int ith = params->ith;
  6256. const int nth = params->nth;
  6257. GGML_ASSERT(ne02 == ne12);
  6258. GGML_ASSERT(ne03 == ne13);
  6259. GGML_ASSERT(ne2 == ne12);
  6260. GGML_ASSERT(ne3 == ne13);
  6261. // TODO: we don't support permuted src0
  6262. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6263. // dst cannot be transposed or permuted
  6264. GGML_ASSERT(nb0 == sizeof(float));
  6265. GGML_ASSERT(nb0 <= nb1);
  6266. GGML_ASSERT(nb1 <= nb2);
  6267. GGML_ASSERT(nb2 <= nb3);
  6268. GGML_ASSERT(ne0 == ne01);
  6269. GGML_ASSERT(ne1 == ne11);
  6270. GGML_ASSERT(ne2 == ne02);
  6271. GGML_ASSERT(ne3 == ne03);
  6272. // nb01 >= nb00 - src0 is not transposed
  6273. // compute by src0 rows
  6274. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6275. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6276. GGML_ASSERT(nb10 == sizeof(float));
  6277. if (params->ith != 0) {
  6278. return;
  6279. }
  6280. if (params->type == GGML_TASK_INIT) {
  6281. return;
  6282. }
  6283. if (params->type == GGML_TASK_FINALIZE) {
  6284. return;
  6285. }
  6286. #if defined(GGML_USE_CUBLAS)
  6287. ggml_fp16_t * const wdata = params->wdata;
  6288. const float alpha = 1.0f;
  6289. const float beta = 0.0f;
  6290. const int x_ne = ne01 * ne10;
  6291. const int y_ne = ne11 * ne10;
  6292. const int d_ne = ne11 * ne01;
  6293. size_t x_size, y_size, d_size;
  6294. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6295. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6296. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6297. #else
  6298. float * const wdata = params->wdata;
  6299. #endif
  6300. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6301. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6302. #if defined(GGML_USE_CUBLAS)
  6303. // with cuBlAS, instead of converting src0 to fp32, we convert src1 to fp16
  6304. {
  6305. size_t id = 0;
  6306. for (int64_t i01 = 0; i01 < ne11; ++i01) {
  6307. for (int64_t i00 = 0; i00 < ne10; ++i00) {
  6308. wdata[id++] = GGML_FP32_TO_FP16(*(float *) ((char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11 + i00*nb10));
  6309. }
  6310. }
  6311. }
  6312. #else
  6313. {
  6314. size_t id = 0;
  6315. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6316. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  6317. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  6318. }
  6319. }
  6320. }
  6321. #endif
  6322. #if defined(GGML_USE_CUBLAS)
  6323. const ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6324. const ggml_fp16_t * y = (ggml_fp16_t *) wdata;
  6325. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6326. // copy data to device
  6327. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(ggml_fp16_t) * x_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6328. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(ggml_fp16_t) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6329. // compute
  6330. CUBLAS_CHECK(
  6331. cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6332. ne01, ne11, ne10,
  6333. &alpha, d_X, CUDA_R_16F, ne00,
  6334. d_Y, CUDA_R_16F, ne10,
  6335. &beta, d_D, CUDA_R_32F, ne01,
  6336. CUBLAS_COMPUTE_32F,
  6337. CUBLAS_GEMM_DEFAULT));
  6338. // copy data to host
  6339. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6340. #else
  6341. const float * x = wdata;
  6342. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6343. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6344. // zT = y * xT
  6345. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6346. ne11, ne01, ne10,
  6347. 1.0f, y, ne10,
  6348. x, ne00,
  6349. 0.0f, d, ne01);
  6350. #endif
  6351. }
  6352. }
  6353. #if defined(GGML_USE_CUBLAS)
  6354. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6355. ggml_cuda_pool_free(d_X, x_size);
  6356. ggml_cuda_pool_free(d_Y, y_size);
  6357. ggml_cuda_pool_free(d_D, d_size);
  6358. #endif
  6359. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  6360. return;
  6361. }
  6362. #endif
  6363. if (params->type == GGML_TASK_INIT) {
  6364. ggml_fp16_t * const wdata = params->wdata;
  6365. size_t id = 0;
  6366. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6367. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6368. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6369. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  6370. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  6371. }
  6372. }
  6373. }
  6374. }
  6375. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  6376. return;
  6377. }
  6378. if (params->type == GGML_TASK_FINALIZE) {
  6379. return;
  6380. }
  6381. // fp16 -> half the size, so divide by 2
  6382. // TODO: do not support transposed src1
  6383. assert(nb10/2 == sizeof(ggml_fp16_t));
  6384. // parallelize by src0 rows using ggml_vec_dot_f16
  6385. // total rows in src0
  6386. const int nr = ne01*ne02*ne03;
  6387. // rows per thread
  6388. const int dr = (nr + nth - 1)/nth;
  6389. // row range for this thread
  6390. const int ir0 = dr*ith;
  6391. const int ir1 = MIN(ir0 + dr, nr);
  6392. ggml_fp16_t * wdata = params->wdata;
  6393. for (int ir = ir0; ir < ir1; ++ir) {
  6394. // src0 indices
  6395. const int i03 = ir/(ne02*ne01);
  6396. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6397. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6398. const int i13 = i03;
  6399. const int i12 = i02;
  6400. const int i0 = i01;
  6401. const int i2 = i02;
  6402. const int i3 = i03;
  6403. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6404. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  6405. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6406. for (int64_t ic = 0; ic < ne11; ++ic) {
  6407. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  6408. }
  6409. }
  6410. //int64_t t1 = ggml_time_us();
  6411. //static int64_t acc = 0;
  6412. //acc += t1 - t0;
  6413. //if (t1 - t0 > 10) {
  6414. // printf("\n");
  6415. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6416. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6417. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6418. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6419. //}
  6420. }
  6421. static void ggml_compute_forward_mul_mat_q_f32(
  6422. const struct ggml_compute_params * params,
  6423. const struct ggml_tensor * src0,
  6424. const struct ggml_tensor * src1,
  6425. struct ggml_tensor * dst) {
  6426. int64_t t0 = ggml_perf_time_us();
  6427. UNUSED(t0);
  6428. const int64_t ne00 = src0->ne[0];
  6429. const int64_t ne01 = src0->ne[1];
  6430. const int64_t ne02 = src0->ne[2];
  6431. const int64_t ne03 = src0->ne[3];
  6432. const int64_t ne10 = src1->ne[0];
  6433. const int64_t ne11 = src1->ne[1];
  6434. const int64_t ne12 = src1->ne[2];
  6435. const int64_t ne13 = src1->ne[3];
  6436. const int64_t ne0 = dst->ne[0];
  6437. const int64_t ne1 = dst->ne[1];
  6438. const int64_t ne2 = dst->ne[2];
  6439. const int64_t ne3 = dst->ne[3];
  6440. const int nb00 = src0->nb[0];
  6441. const int nb01 = src0->nb[1];
  6442. const int nb02 = src0->nb[2];
  6443. const int nb03 = src0->nb[3];
  6444. const int nb10 = src1->nb[0];
  6445. const int nb11 = src1->nb[1];
  6446. const int nb12 = src1->nb[2];
  6447. const int nb13 = src1->nb[3];
  6448. const int nb0 = dst->nb[0];
  6449. const int nb1 = dst->nb[1];
  6450. const int nb2 = dst->nb[2];
  6451. const int nb3 = dst->nb[3];
  6452. const int ith = params->ith;
  6453. const int nth = params->nth;
  6454. GGML_ASSERT(ne02 == ne12);
  6455. GGML_ASSERT(ne03 == ne13);
  6456. GGML_ASSERT(ne2 == ne12);
  6457. GGML_ASSERT(ne3 == ne13);
  6458. const enum ggml_type type = src0->type;
  6459. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  6460. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  6461. // we don't support permuted src0 or src1
  6462. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  6463. GGML_ASSERT(nb10 == sizeof(float));
  6464. // dst cannot be transposed or permuted
  6465. GGML_ASSERT(nb0 == sizeof(float));
  6466. GGML_ASSERT(nb0 <= nb1);
  6467. GGML_ASSERT(nb1 <= nb2);
  6468. GGML_ASSERT(nb2 <= nb3);
  6469. GGML_ASSERT(ne0 == ne01);
  6470. GGML_ASSERT(ne1 == ne11);
  6471. GGML_ASSERT(ne2 == ne02);
  6472. GGML_ASSERT(ne3 == ne03);
  6473. // nb01 >= nb00 - src0 is not transposed
  6474. // compute by src0 rows
  6475. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6476. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6477. if (params->ith != 0) {
  6478. return;
  6479. }
  6480. if (params->type == GGML_TASK_INIT) {
  6481. return;
  6482. }
  6483. if (params->type == GGML_TASK_FINALIZE) {
  6484. return;
  6485. }
  6486. #if defined(GGML_USE_CUBLAS)
  6487. const float alpha = 1.0f;
  6488. const float beta = 0.0f;
  6489. const int x_ne = ne01 * ne10;
  6490. const int y_ne = ne11 * ne10;
  6491. const int d_ne = ne11 * ne01;
  6492. size_t x_size, y_size, d_size, q_size;
  6493. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6494. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6495. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6496. float *d_Q = ggml_cuda_pool_malloc(GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], &q_size);
  6497. void (*dequantize_row_q_cuda)(const void * x, float * y, int k, cudaStream_t stream) = NULL;
  6498. if (type == GGML_TYPE_Q4_0) {
  6499. dequantize_row_q_cuda = dequantize_row_q4_0_cuda;
  6500. }
  6501. else if (type == GGML_TYPE_Q4_1) {
  6502. dequantize_row_q_cuda = dequantize_row_q4_1_cuda;
  6503. }
  6504. else if (type == GGML_TYPE_Q4_2) {
  6505. dequantize_row_q_cuda = dequantize_row_q4_2_cuda;
  6506. }
  6507. else {
  6508. GGML_ASSERT(false);
  6509. }
  6510. #else
  6511. float * const wdata = params->wdata;
  6512. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6513. #endif
  6514. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6515. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6516. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6517. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6518. #if defined(GGML_USE_CUBLAS)
  6519. // copy and dequantize on device
  6520. CUDA_CHECK(
  6521. cudaMemcpyAsync(d_Q, (char *) src0->data + i03*nb03 + i02*nb02,
  6522. GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], cudaMemcpyHostToDevice, g_cudaStream));
  6523. dequantize_row_q_cuda(d_Q, d_X, ne01 * ne00, g_cudaStream);
  6524. CUDA_CHECK(cudaGetLastError());
  6525. #else
  6526. {
  6527. size_t id = 0;
  6528. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6529. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  6530. id += ne00;
  6531. }
  6532. }
  6533. const float * x = wdata;
  6534. #endif
  6535. #if defined(GGML_USE_CUBLAS)
  6536. // copy data to device
  6537. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6538. // compute
  6539. CUBLAS_CHECK(
  6540. cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6541. ne01, ne11, ne10,
  6542. &alpha, d_X, ne00,
  6543. d_Y, ne10,
  6544. &beta, d_D, ne01));
  6545. // copy data to host
  6546. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6547. #else
  6548. // zT = y * xT
  6549. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6550. ne11, ne01, ne10,
  6551. 1.0f, y, ne10,
  6552. x, ne00,
  6553. 0.0f, d, ne01);
  6554. #endif
  6555. }
  6556. }
  6557. #if defined(GGML_USE_CUBLAS)
  6558. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6559. ggml_cuda_pool_free(d_X, x_size);
  6560. ggml_cuda_pool_free(d_Y, y_size);
  6561. ggml_cuda_pool_free(d_D, d_size);
  6562. ggml_cuda_pool_free(d_Q, q_size);
  6563. #endif
  6564. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6565. return;
  6566. }
  6567. #endif
  6568. if (params->type == GGML_TASK_INIT) {
  6569. char * wdata = params->wdata;
  6570. const size_t row_size = ne10*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  6571. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6572. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6573. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6574. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  6575. wdata += row_size;
  6576. }
  6577. }
  6578. }
  6579. return;
  6580. }
  6581. if (params->type == GGML_TASK_FINALIZE) {
  6582. return;
  6583. }
  6584. // parallelize by src0 rows using ggml_vec_dot_q
  6585. // total rows in src0
  6586. const int nr = ne01*ne02*ne03;
  6587. // rows per thread
  6588. const int dr = (nr + nth - 1)/nth;
  6589. // row range for this thread
  6590. const int ir0 = dr*ith;
  6591. const int ir1 = MIN(ir0 + dr, nr);
  6592. void * wdata = params->wdata;
  6593. const size_t row_size = ne00*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  6594. for (int ir = ir0; ir < ir1; ++ir) {
  6595. // src0 indices
  6596. const int i03 = ir/(ne02*ne01);
  6597. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6598. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6599. const int i13 = i03;
  6600. const int i12 = i02;
  6601. const int i0 = i01;
  6602. const int i2 = i02;
  6603. const int i3 = i03;
  6604. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6605. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  6606. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6607. assert(ne00 % 32 == 0);
  6608. for (int64_t ic = 0; ic < ne11; ++ic) {
  6609. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  6610. }
  6611. }
  6612. //int64_t t1 = ggml_time_us();
  6613. //static int64_t acc = 0;
  6614. //acc += t1 - t0;
  6615. //if (t1 - t0 > 10) {
  6616. // printf("\n");
  6617. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6618. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6619. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6620. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6621. //}
  6622. }
  6623. static void ggml_compute_forward_mul_mat(
  6624. const struct ggml_compute_params * params,
  6625. const struct ggml_tensor * src0,
  6626. const struct ggml_tensor * src1,
  6627. struct ggml_tensor * dst) {
  6628. switch (src0->type) {
  6629. case GGML_TYPE_Q4_0:
  6630. case GGML_TYPE_Q4_1:
  6631. case GGML_TYPE_Q4_2:
  6632. case GGML_TYPE_Q4_3:
  6633. case GGML_TYPE_Q8_0:
  6634. {
  6635. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  6636. } break;
  6637. case GGML_TYPE_F16:
  6638. {
  6639. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  6640. } break;
  6641. case GGML_TYPE_F32:
  6642. {
  6643. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  6644. } break;
  6645. default:
  6646. {
  6647. GGML_ASSERT(false);
  6648. } break;
  6649. }
  6650. }
  6651. // ggml_compute_forward_scale
  6652. static void ggml_compute_forward_scale_f32(
  6653. const struct ggml_compute_params * params,
  6654. const struct ggml_tensor * src0,
  6655. const struct ggml_tensor * src1,
  6656. struct ggml_tensor * dst) {
  6657. GGML_ASSERT(ggml_is_contiguous(src0));
  6658. GGML_ASSERT(ggml_is_contiguous(dst));
  6659. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6660. GGML_ASSERT(ggml_is_scalar(src1));
  6661. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6662. return;
  6663. }
  6664. // scale factor
  6665. const float v = *(float *) src1->data;
  6666. const int ith = params->ith;
  6667. const int nth = params->nth;
  6668. const int nc = src0->ne[0];
  6669. const int nr = ggml_nrows(src0);
  6670. // rows per thread
  6671. const int dr = (nr + nth - 1)/nth;
  6672. // row range for this thread
  6673. const int ir0 = dr*ith;
  6674. const int ir1 = MIN(ir0 + dr, nr);
  6675. for (int i1 = ir0; i1 < ir1; i1++) {
  6676. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  6677. }
  6678. }
  6679. static void ggml_compute_forward_scale(
  6680. const struct ggml_compute_params * params,
  6681. const struct ggml_tensor * src0,
  6682. const struct ggml_tensor * src1,
  6683. struct ggml_tensor * dst) {
  6684. switch (src0->type) {
  6685. case GGML_TYPE_F32:
  6686. {
  6687. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  6688. } break;
  6689. default:
  6690. {
  6691. GGML_ASSERT(false);
  6692. } break;
  6693. }
  6694. }
  6695. // ggml_compute_forward_cpy
  6696. static void ggml_compute_forward_cpy(
  6697. const struct ggml_compute_params * params,
  6698. const struct ggml_tensor * src0,
  6699. struct ggml_tensor * dst) {
  6700. ggml_compute_forward_dup(params, src0, dst);
  6701. }
  6702. // ggml_compute_forward_cont
  6703. static void ggml_compute_forward_cont(
  6704. const struct ggml_compute_params * params,
  6705. const struct ggml_tensor * src0,
  6706. struct ggml_tensor * dst) {
  6707. ggml_compute_forward_dup(params, src0, dst);
  6708. }
  6709. // ggml_compute_forward_reshape
  6710. static void ggml_compute_forward_reshape(
  6711. const struct ggml_compute_params * params,
  6712. const struct ggml_tensor * src0,
  6713. struct ggml_tensor * dst) {
  6714. // NOP
  6715. UNUSED(params);
  6716. UNUSED(src0);
  6717. UNUSED(dst);
  6718. }
  6719. // ggml_compute_forward_view
  6720. static void ggml_compute_forward_view(
  6721. const struct ggml_compute_params * params,
  6722. const struct ggml_tensor * src0) {
  6723. // NOP
  6724. UNUSED(params);
  6725. UNUSED(src0);
  6726. }
  6727. // ggml_compute_forward_permute
  6728. static void ggml_compute_forward_permute(
  6729. const struct ggml_compute_params * params,
  6730. const struct ggml_tensor * src0) {
  6731. // NOP
  6732. UNUSED(params);
  6733. UNUSED(src0);
  6734. }
  6735. // ggml_compute_forward_transpose
  6736. static void ggml_compute_forward_transpose(
  6737. const struct ggml_compute_params * params,
  6738. const struct ggml_tensor * src0) {
  6739. // NOP
  6740. UNUSED(params);
  6741. UNUSED(src0);
  6742. }
  6743. // ggml_compute_forward_get_rows
  6744. static void ggml_compute_forward_get_rows_q(
  6745. const struct ggml_compute_params * params,
  6746. const struct ggml_tensor * src0,
  6747. const struct ggml_tensor * src1,
  6748. struct ggml_tensor * dst) {
  6749. assert(params->ith == 0);
  6750. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6751. return;
  6752. }
  6753. const int nc = src0->ne[0];
  6754. const int nr = ggml_nelements(src1);
  6755. const enum ggml_type type = src0->type;
  6756. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6757. assert( dst->ne[0] == nc);
  6758. assert( dst->ne[1] == nr);
  6759. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  6760. for (int i = 0; i < nr; ++i) {
  6761. const int r = ((int32_t *) src1->data)[i];
  6762. dequantize_row_q(
  6763. (const void *) ((char *) src0->data + r*src0->nb[1]),
  6764. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  6765. }
  6766. }
  6767. static void ggml_compute_forward_get_rows_f16(
  6768. const struct ggml_compute_params * params,
  6769. const struct ggml_tensor * src0,
  6770. const struct ggml_tensor * src1,
  6771. struct ggml_tensor * dst) {
  6772. assert(params->ith == 0);
  6773. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6774. return;
  6775. }
  6776. const int nc = src0->ne[0];
  6777. const int nr = ggml_nelements(src1);
  6778. assert( dst->ne[0] == nc);
  6779. assert( dst->ne[1] == nr);
  6780. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6781. for (int i = 0; i < nr; ++i) {
  6782. const int r = ((int32_t *) src1->data)[i];
  6783. for (int j = 0; j < nc; ++j) {
  6784. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  6785. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  6786. }
  6787. }
  6788. }
  6789. static void ggml_compute_forward_get_rows_f32(
  6790. const struct ggml_compute_params * params,
  6791. const struct ggml_tensor * src0,
  6792. const struct ggml_tensor * src1,
  6793. struct ggml_tensor * dst) {
  6794. assert(params->ith == 0);
  6795. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6796. return;
  6797. }
  6798. const int nc = src0->ne[0];
  6799. const int nr = ggml_nelements(src1);
  6800. assert( dst->ne[0] == nc);
  6801. assert( dst->ne[1] == nr);
  6802. assert(src0->nb[0] == sizeof(float));
  6803. for (int i = 0; i < nr; ++i) {
  6804. const int r = ((int32_t *) src1->data)[i];
  6805. ggml_vec_cpy_f32(nc,
  6806. (float *) ((char *) dst->data + i*dst->nb[1]),
  6807. (float *) ((char *) src0->data + r*src0->nb[1]));
  6808. }
  6809. }
  6810. static void ggml_compute_forward_get_rows(
  6811. const struct ggml_compute_params * params,
  6812. const struct ggml_tensor * src0,
  6813. const struct ggml_tensor * src1,
  6814. struct ggml_tensor * dst) {
  6815. switch (src0->type) {
  6816. case GGML_TYPE_Q4_0:
  6817. case GGML_TYPE_Q4_1:
  6818. case GGML_TYPE_Q4_2:
  6819. case GGML_TYPE_Q4_3:
  6820. case GGML_TYPE_Q8_0:
  6821. {
  6822. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  6823. } break;
  6824. case GGML_TYPE_F16:
  6825. {
  6826. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  6827. } break;
  6828. case GGML_TYPE_F32:
  6829. {
  6830. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  6831. } break;
  6832. default:
  6833. {
  6834. GGML_ASSERT(false);
  6835. } break;
  6836. }
  6837. //static bool first = true;
  6838. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  6839. //if (first) {
  6840. // first = false;
  6841. //} else {
  6842. // for (int k = 0; k < dst->ne[1]; ++k) {
  6843. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  6844. // for (int i = 0; i < 16; ++i) {
  6845. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  6846. // }
  6847. // printf("\n");
  6848. // }
  6849. // printf("\n");
  6850. // }
  6851. // printf("\n");
  6852. // exit(0);
  6853. //}
  6854. }
  6855. // ggml_compute_forward_diag_mask_inf
  6856. static void ggml_compute_forward_diag_mask_inf_f32(
  6857. const struct ggml_compute_params * params,
  6858. const struct ggml_tensor * src0,
  6859. const struct ggml_tensor * src1,
  6860. struct ggml_tensor * dst) {
  6861. assert(params->ith == 0);
  6862. assert(src1->type == GGML_TYPE_I32);
  6863. assert(ggml_nelements(src1) == 1);
  6864. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6865. return;
  6866. }
  6867. const int n_past = ((int32_t *) src1->data)[0];
  6868. // TODO: handle transposed/permuted matrices
  6869. const int n = ggml_nrows(src0);
  6870. const int nc = src0->ne[0];
  6871. const int nr = src0->ne[1];
  6872. const int nz = n/nr;
  6873. assert( dst->nb[0] == sizeof(float));
  6874. assert(src0->nb[0] == sizeof(float));
  6875. for (int k = 0; k < nz; k++) {
  6876. for (int j = 0; j < nr; j++) {
  6877. for (int i = n_past; i < nc; i++) {
  6878. if (i > n_past + j) {
  6879. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  6880. }
  6881. }
  6882. }
  6883. }
  6884. }
  6885. static void ggml_compute_forward_diag_mask_inf(
  6886. const struct ggml_compute_params * params,
  6887. const struct ggml_tensor * src0,
  6888. const struct ggml_tensor * src1,
  6889. struct ggml_tensor * dst) {
  6890. switch (src0->type) {
  6891. case GGML_TYPE_F32:
  6892. {
  6893. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  6894. } break;
  6895. default:
  6896. {
  6897. GGML_ASSERT(false);
  6898. } break;
  6899. }
  6900. }
  6901. // ggml_compute_forward_soft_max
  6902. static void ggml_compute_forward_soft_max_f32(
  6903. const struct ggml_compute_params * params,
  6904. const struct ggml_tensor * src0,
  6905. struct ggml_tensor * dst) {
  6906. GGML_ASSERT(ggml_is_contiguous(src0));
  6907. GGML_ASSERT(ggml_is_contiguous(dst));
  6908. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6909. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6910. return;
  6911. }
  6912. // TODO: handle transposed/permuted matrices
  6913. const int ith = params->ith;
  6914. const int nth = params->nth;
  6915. const int nc = src0->ne[0];
  6916. const int nr = ggml_nrows(src0);
  6917. // rows per thread
  6918. const int dr = (nr + nth - 1)/nth;
  6919. // row range for this thread
  6920. const int ir0 = dr*ith;
  6921. const int ir1 = MIN(ir0 + dr, nr);
  6922. for (int i1 = ir0; i1 < ir1; i1++) {
  6923. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  6924. #ifndef NDEBUG
  6925. for (int i = 0; i < nc; ++i) {
  6926. //printf("p[%d] = %f\n", i, p[i]);
  6927. assert(!isnan(p[i]));
  6928. }
  6929. #endif
  6930. float max = -INFINITY;
  6931. ggml_vec_max_f32(nc, &max, p);
  6932. ggml_float sum = 0.0;
  6933. uint16_t scvt;
  6934. for (int i = 0; i < nc; i++) {
  6935. if (p[i] == -INFINITY) {
  6936. p[i] = 0.0f;
  6937. } else {
  6938. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  6939. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  6940. memcpy(&scvt, &s, sizeof(scvt));
  6941. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  6942. sum += (ggml_float)val;
  6943. p[i] = val;
  6944. }
  6945. }
  6946. assert(sum > 0.0);
  6947. sum = 1.0/sum;
  6948. ggml_vec_scale_f32(nc, p, sum);
  6949. #ifndef NDEBUG
  6950. for (int i = 0; i < nc; ++i) {
  6951. assert(!isnan(p[i]));
  6952. assert(!isinf(p[i]));
  6953. }
  6954. #endif
  6955. }
  6956. }
  6957. static void ggml_compute_forward_soft_max(
  6958. const struct ggml_compute_params * params,
  6959. const struct ggml_tensor * src0,
  6960. struct ggml_tensor * dst) {
  6961. switch (src0->type) {
  6962. case GGML_TYPE_F32:
  6963. {
  6964. ggml_compute_forward_soft_max_f32(params, src0, dst);
  6965. } break;
  6966. default:
  6967. {
  6968. GGML_ASSERT(false);
  6969. } break;
  6970. }
  6971. }
  6972. // ggml_compute_forward_rope
  6973. static void ggml_compute_forward_rope_f32(
  6974. const struct ggml_compute_params * params,
  6975. const struct ggml_tensor * src0,
  6976. const struct ggml_tensor * src1,
  6977. struct ggml_tensor * dst) {
  6978. assert(src1->type == GGML_TYPE_I32);
  6979. assert(ggml_nelements(src1) == 3);
  6980. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6981. return;
  6982. }
  6983. const int n_past = ((int32_t *) src1->data)[0];
  6984. const int n_dims = ((int32_t *) src1->data)[1];
  6985. const int mode = ((int32_t *) src1->data)[2];
  6986. //const int64_t ne0 = src0->ne[0];
  6987. const int64_t ne1 = src0->ne[1];
  6988. const int64_t ne2 = src0->ne[2];
  6989. const int64_t ne3 = src0->ne[3];
  6990. const int nb0 = src0->nb[0];
  6991. const int nb1 = src0->nb[1];
  6992. const int nb2 = src0->nb[2];
  6993. const int nb3 = src0->nb[3];
  6994. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6995. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6996. assert(nb0 == sizeof(float));
  6997. const int ith = params->ith;
  6998. const int nth = params->nth;
  6999. const int nr = ggml_nrows(src0);
  7000. // rows per thread
  7001. const int dr = (nr + nth - 1)/nth;
  7002. // row range for this thread
  7003. const int ir0 = dr*ith;
  7004. const int ir1 = MIN(ir0 + dr, nr);
  7005. // row index used to determine which thread to use
  7006. int ir = 0;
  7007. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7008. const bool is_neox = mode & 2;
  7009. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7010. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7011. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7012. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7013. if (ir++ < ir0) continue;
  7014. if (ir > ir1) break;
  7015. float theta = (float)p;
  7016. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7017. const float cos_theta = cosf(theta);
  7018. const float sin_theta = sinf(theta);
  7019. theta *= theta_scale;
  7020. if (!is_neox) {
  7021. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7022. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7023. const float x0 = src[0];
  7024. const float x1 = src[1];
  7025. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7026. dst_data[1] = x0*sin_theta + x1*cos_theta;
  7027. } else {
  7028. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7029. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7030. const float x0 = src[0];
  7031. const float x1 = src[n_dims/2];
  7032. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7033. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  7034. }
  7035. }
  7036. }
  7037. }
  7038. }
  7039. }
  7040. static void ggml_compute_forward_rope_f16(
  7041. const struct ggml_compute_params * params,
  7042. const struct ggml_tensor * src0,
  7043. const struct ggml_tensor * src1,
  7044. struct ggml_tensor * dst) {
  7045. assert(src1->type == GGML_TYPE_I32);
  7046. assert(ggml_nelements(src1) == 3);
  7047. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7048. return;
  7049. }
  7050. const int n_past = ((int32_t *) src1->data)[0];
  7051. const int n_dims = ((int32_t *) src1->data)[1];
  7052. const int mode = ((int32_t *) src1->data)[2];
  7053. //const int64_t ne0 = src0->ne[0];
  7054. const int64_t ne1 = src0->ne[1];
  7055. const int64_t ne2 = src0->ne[2];
  7056. const int64_t ne3 = src0->ne[3];
  7057. const int nb0 = src0->nb[0];
  7058. const int nb1 = src0->nb[1];
  7059. const int nb2 = src0->nb[2];
  7060. const int nb3 = src0->nb[3];
  7061. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7062. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7063. assert(nb0 == sizeof(ggml_fp16_t));
  7064. const int ith = params->ith;
  7065. const int nth = params->nth;
  7066. const int nr = ggml_nrows(src0);
  7067. // rows per thread
  7068. const int dr = (nr + nth - 1)/nth;
  7069. // row range for this thread
  7070. const int ir0 = dr*ith;
  7071. const int ir1 = MIN(ir0 + dr, nr);
  7072. // row index used to determine which thread to use
  7073. int ir = 0;
  7074. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7075. const bool is_neox = mode & 2;
  7076. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7077. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7078. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7079. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7080. if (ir++ < ir0) continue;
  7081. if (ir > ir1) break;
  7082. float theta = (float)p;
  7083. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7084. const float cos_theta = cosf(theta);
  7085. const float sin_theta = sinf(theta);
  7086. theta *= theta_scale;
  7087. if (!is_neox) {
  7088. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7089. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7090. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7091. const float x1 = GGML_FP16_TO_FP32(src[1]);
  7092. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7093. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7094. } else {
  7095. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7096. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7097. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7098. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  7099. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7100. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7101. }
  7102. }
  7103. }
  7104. }
  7105. }
  7106. }
  7107. static void ggml_compute_forward_rope(
  7108. const struct ggml_compute_params * params,
  7109. const struct ggml_tensor * src0,
  7110. const struct ggml_tensor * src1,
  7111. struct ggml_tensor * dst) {
  7112. switch (src0->type) {
  7113. case GGML_TYPE_F16:
  7114. {
  7115. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  7116. } break;
  7117. case GGML_TYPE_F32:
  7118. {
  7119. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  7120. } break;
  7121. default:
  7122. {
  7123. GGML_ASSERT(false);
  7124. } break;
  7125. }
  7126. }
  7127. // ggml_compute_forward_conv_1d_1s
  7128. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  7129. const struct ggml_compute_params * params,
  7130. const struct ggml_tensor * src0,
  7131. const struct ggml_tensor * src1,
  7132. struct ggml_tensor * dst) {
  7133. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7134. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7135. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7136. int64_t t0 = ggml_perf_time_us();
  7137. UNUSED(t0);
  7138. const int64_t ne00 = src0->ne[0];
  7139. const int64_t ne01 = src0->ne[1];
  7140. const int64_t ne02 = src0->ne[2];
  7141. //const int64_t ne03 = src0->ne[3];
  7142. const int64_t ne10 = src1->ne[0];
  7143. const int64_t ne11 = src1->ne[1];
  7144. //const int64_t ne12 = src1->ne[2];
  7145. //const int64_t ne13 = src1->ne[3];
  7146. //const int64_t ne0 = dst->ne[0];
  7147. //const int64_t ne1 = dst->ne[1];
  7148. //const int64_t ne2 = dst->ne[2];
  7149. //const int64_t ne3 = dst->ne[3];
  7150. //const int64_t ne = ne0*ne1*ne2*ne3;
  7151. const int nb00 = src0->nb[0];
  7152. const int nb01 = src0->nb[1];
  7153. const int nb02 = src0->nb[2];
  7154. //const int nb03 = src0->nb[3];
  7155. const int nb10 = src1->nb[0];
  7156. const int nb11 = src1->nb[1];
  7157. //const int nb12 = src1->nb[2];
  7158. //const int nb13 = src1->nb[3];
  7159. //const int nb0 = dst->nb[0];
  7160. const int nb1 = dst->nb[1];
  7161. //const int nb2 = dst->nb[2];
  7162. //const int nb3 = dst->nb[3];
  7163. const int ith = params->ith;
  7164. const int nth = params->nth;
  7165. const int nk = ne00;
  7166. const int nh = nk/2;
  7167. const int ew0 = ggml_up32(ne01);
  7168. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7169. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7170. GGML_ASSERT(nb10 == sizeof(float));
  7171. if (params->type == GGML_TASK_INIT) {
  7172. // TODO: fix this memset (wsize is overestimated)
  7173. memset(params->wdata, 0, params->wsize);
  7174. // prepare kernel data (src0)
  7175. {
  7176. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7177. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7178. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7179. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7180. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7181. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7182. dst_data[i00*ew0 + i01] = src[i00];
  7183. }
  7184. }
  7185. }
  7186. }
  7187. // prepare source data (src1)
  7188. {
  7189. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7190. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7191. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7192. ggml_fp16_t * dst_data = wdata;
  7193. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7194. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7195. }
  7196. }
  7197. }
  7198. return;
  7199. }
  7200. if (params->type == GGML_TASK_FINALIZE) {
  7201. return;
  7202. }
  7203. // total rows in dst
  7204. const int nr = ne02;
  7205. // rows per thread
  7206. const int dr = (nr + nth - 1)/nth;
  7207. // row range for this thread
  7208. const int ir0 = dr*ith;
  7209. const int ir1 = MIN(ir0 + dr, nr);
  7210. for (int i1 = ir0; i1 < ir1; i1++) {
  7211. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7212. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7213. dst_data[i0] = 0;
  7214. for (int k = -nh; k <= nh; k++) {
  7215. float v = 0.0f;
  7216. ggml_vec_dot_f16(ew0, &v,
  7217. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7218. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7219. dst_data[i0] += v;
  7220. }
  7221. }
  7222. }
  7223. }
  7224. static void ggml_compute_forward_conv_1d_1s_f32(
  7225. const struct ggml_compute_params * params,
  7226. const struct ggml_tensor * src0,
  7227. const struct ggml_tensor * src1,
  7228. struct ggml_tensor * dst) {
  7229. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7230. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7231. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7232. int64_t t0 = ggml_perf_time_us();
  7233. UNUSED(t0);
  7234. const int64_t ne00 = src0->ne[0];
  7235. const int64_t ne01 = src0->ne[1];
  7236. const int64_t ne02 = src0->ne[2];
  7237. //const int64_t ne03 = src0->ne[3];
  7238. const int64_t ne10 = src1->ne[0];
  7239. const int64_t ne11 = src1->ne[1];
  7240. //const int64_t ne12 = src1->ne[2];
  7241. //const int64_t ne13 = src1->ne[3];
  7242. //const int64_t ne0 = dst->ne[0];
  7243. //const int64_t ne1 = dst->ne[1];
  7244. //const int64_t ne2 = dst->ne[2];
  7245. //const int64_t ne3 = dst->ne[3];
  7246. //const int64_t ne = ne0*ne1*ne2*ne3;
  7247. const int nb00 = src0->nb[0];
  7248. const int nb01 = src0->nb[1];
  7249. const int nb02 = src0->nb[2];
  7250. //const int nb03 = src0->nb[3];
  7251. const int nb10 = src1->nb[0];
  7252. const int nb11 = src1->nb[1];
  7253. //const int nb12 = src1->nb[2];
  7254. //const int nb13 = src1->nb[3];
  7255. //const int nb0 = dst->nb[0];
  7256. const int nb1 = dst->nb[1];
  7257. //const int nb2 = dst->nb[2];
  7258. //const int nb3 = dst->nb[3];
  7259. const int ith = params->ith;
  7260. const int nth = params->nth;
  7261. const int nk = ne00;
  7262. const int nh = nk/2;
  7263. const int ew0 = ggml_up32(ne01);
  7264. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7265. GGML_ASSERT(nb00 == sizeof(float));
  7266. GGML_ASSERT(nb10 == sizeof(float));
  7267. if (params->type == GGML_TASK_INIT) {
  7268. // TODO: fix this memset (wsize is overestimated)
  7269. memset(params->wdata, 0, params->wsize);
  7270. // prepare kernel data (src0)
  7271. {
  7272. float * const wdata = (float *) params->wdata + 0;
  7273. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7274. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7275. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7276. float * dst_data = wdata + i02*ew0*ne00;
  7277. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7278. dst_data[i00*ew0 + i01] = src[i00];
  7279. }
  7280. }
  7281. }
  7282. }
  7283. // prepare source data (src1)
  7284. {
  7285. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7286. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7287. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7288. float * dst_data = wdata;
  7289. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7290. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7291. }
  7292. }
  7293. }
  7294. return;
  7295. }
  7296. if (params->type == GGML_TASK_FINALIZE) {
  7297. return;
  7298. }
  7299. // total rows in dst
  7300. const int nr = ne02;
  7301. // rows per thread
  7302. const int dr = (nr + nth - 1)/nth;
  7303. // row range for this thread
  7304. const int ir0 = dr*ith;
  7305. const int ir1 = MIN(ir0 + dr, nr);
  7306. for (int i1 = ir0; i1 < ir1; i1++) {
  7307. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7308. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7309. dst_data[i0] = 0;
  7310. for (int k = -nh; k <= nh; k++) {
  7311. float v = 0.0f;
  7312. ggml_vec_dot_f32(ew0, &v,
  7313. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7314. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7315. dst_data[i0] += v;
  7316. }
  7317. }
  7318. }
  7319. }
  7320. static void ggml_compute_forward_conv_1d_1s(
  7321. const struct ggml_compute_params * params,
  7322. const struct ggml_tensor * src0,
  7323. const struct ggml_tensor * src1,
  7324. struct ggml_tensor * dst) {
  7325. switch (src0->type) {
  7326. case GGML_TYPE_F16:
  7327. {
  7328. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  7329. } break;
  7330. case GGML_TYPE_F32:
  7331. {
  7332. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  7333. } break;
  7334. default:
  7335. {
  7336. GGML_ASSERT(false);
  7337. } break;
  7338. }
  7339. }
  7340. // ggml_compute_forward_conv_1d_2s
  7341. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  7342. const struct ggml_compute_params * params,
  7343. const struct ggml_tensor * src0,
  7344. const struct ggml_tensor * src1,
  7345. struct ggml_tensor * dst) {
  7346. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7347. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7348. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7349. int64_t t0 = ggml_perf_time_us();
  7350. UNUSED(t0);
  7351. const int64_t ne00 = src0->ne[0];
  7352. const int64_t ne01 = src0->ne[1];
  7353. const int64_t ne02 = src0->ne[2];
  7354. //const int64_t ne03 = src0->ne[3];
  7355. const int64_t ne10 = src1->ne[0];
  7356. const int64_t ne11 = src1->ne[1];
  7357. //const int64_t ne12 = src1->ne[2];
  7358. //const int64_t ne13 = src1->ne[3];
  7359. //const int64_t ne0 = dst->ne[0];
  7360. //const int64_t ne1 = dst->ne[1];
  7361. //const int64_t ne2 = dst->ne[2];
  7362. //const int64_t ne3 = dst->ne[3];
  7363. //const int64_t ne = ne0*ne1*ne2*ne3;
  7364. const int nb00 = src0->nb[0];
  7365. const int nb01 = src0->nb[1];
  7366. const int nb02 = src0->nb[2];
  7367. //const int nb03 = src0->nb[3];
  7368. const int nb10 = src1->nb[0];
  7369. const int nb11 = src1->nb[1];
  7370. //const int nb12 = src1->nb[2];
  7371. //const int nb13 = src1->nb[3];
  7372. //const int nb0 = dst->nb[0];
  7373. const int nb1 = dst->nb[1];
  7374. //const int nb2 = dst->nb[2];
  7375. //const int nb3 = dst->nb[3];
  7376. const int ith = params->ith;
  7377. const int nth = params->nth;
  7378. const int nk = ne00;
  7379. const int nh = nk/2;
  7380. const int ew0 = ggml_up32(ne01);
  7381. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7382. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7383. GGML_ASSERT(nb10 == sizeof(float));
  7384. if (params->type == GGML_TASK_INIT) {
  7385. // TODO: fix this memset (wsize is overestimated)
  7386. memset(params->wdata, 0, params->wsize);
  7387. // prepare kernel data (src0)
  7388. {
  7389. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7390. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7391. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7392. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7393. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7394. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7395. dst_data[i00*ew0 + i01] = src[i00];
  7396. }
  7397. }
  7398. }
  7399. }
  7400. // prepare source data (src1)
  7401. {
  7402. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7403. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7404. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7405. ggml_fp16_t * dst_data = wdata;
  7406. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7407. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7408. }
  7409. }
  7410. }
  7411. return;
  7412. }
  7413. if (params->type == GGML_TASK_FINALIZE) {
  7414. return;
  7415. }
  7416. // total rows in dst
  7417. const int nr = ne02;
  7418. // rows per thread
  7419. const int dr = (nr + nth - 1)/nth;
  7420. // row range for this thread
  7421. const int ir0 = dr*ith;
  7422. const int ir1 = MIN(ir0 + dr, nr);
  7423. for (int i1 = ir0; i1 < ir1; i1++) {
  7424. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7425. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7426. dst_data[i0/2] = 0;
  7427. for (int k = -nh; k <= nh; k++) {
  7428. float v = 0.0f;
  7429. ggml_vec_dot_f16(ew0, &v,
  7430. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7431. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7432. dst_data[i0/2] += v;
  7433. }
  7434. }
  7435. }
  7436. }
  7437. static void ggml_compute_forward_conv_1d_2s_f32(
  7438. const struct ggml_compute_params * params,
  7439. const struct ggml_tensor * src0,
  7440. const struct ggml_tensor * src1,
  7441. struct ggml_tensor * dst) {
  7442. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7443. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7444. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7445. int64_t t0 = ggml_perf_time_us();
  7446. UNUSED(t0);
  7447. const int64_t ne00 = src0->ne[0];
  7448. const int64_t ne01 = src0->ne[1];
  7449. const int64_t ne02 = src0->ne[2];
  7450. //const int64_t ne03 = src0->ne[3];
  7451. const int64_t ne10 = src1->ne[0];
  7452. const int64_t ne11 = src1->ne[1];
  7453. //const int64_t ne12 = src1->ne[2];
  7454. //const int64_t ne13 = src1->ne[3];
  7455. //const int64_t ne0 = dst->ne[0];
  7456. //const int64_t ne1 = dst->ne[1];
  7457. //const int64_t ne2 = dst->ne[2];
  7458. //const int64_t ne3 = dst->ne[3];
  7459. //const int64_t ne = ne0*ne1*ne2*ne3;
  7460. const int nb00 = src0->nb[0];
  7461. const int nb01 = src0->nb[1];
  7462. const int nb02 = src0->nb[2];
  7463. //const int nb03 = src0->nb[3];
  7464. const int nb10 = src1->nb[0];
  7465. const int nb11 = src1->nb[1];
  7466. //const int nb12 = src1->nb[2];
  7467. //const int nb13 = src1->nb[3];
  7468. //const int nb0 = dst->nb[0];
  7469. const int nb1 = dst->nb[1];
  7470. //const int nb2 = dst->nb[2];
  7471. //const int nb3 = dst->nb[3];
  7472. const int ith = params->ith;
  7473. const int nth = params->nth;
  7474. const int nk = ne00;
  7475. const int nh = nk/2;
  7476. const int ew0 = ggml_up32(ne01);
  7477. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7478. GGML_ASSERT(nb00 == sizeof(float));
  7479. GGML_ASSERT(nb10 == sizeof(float));
  7480. if (params->type == GGML_TASK_INIT) {
  7481. // TODO: fix this memset (wsize is overestimated)
  7482. memset(params->wdata, 0, params->wsize);
  7483. // prepare kernel data (src0)
  7484. {
  7485. float * const wdata = (float *) params->wdata + 0;
  7486. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7487. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7488. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7489. float * dst_data = wdata + i02*ew0*ne00;
  7490. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7491. dst_data[i00*ew0 + i01] = src[i00];
  7492. }
  7493. }
  7494. }
  7495. }
  7496. // prepare source data (src1)
  7497. {
  7498. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7499. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7500. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7501. float * dst_data = wdata;
  7502. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7503. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7504. }
  7505. }
  7506. }
  7507. return;
  7508. }
  7509. if (params->type == GGML_TASK_FINALIZE) {
  7510. return;
  7511. }
  7512. // total rows in dst
  7513. const int nr = ne02;
  7514. // rows per thread
  7515. const int dr = (nr + nth - 1)/nth;
  7516. // row range for this thread
  7517. const int ir0 = dr*ith;
  7518. const int ir1 = MIN(ir0 + dr, nr);
  7519. for (int i1 = ir0; i1 < ir1; i1++) {
  7520. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7521. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7522. dst_data[i0/2] = 0;
  7523. for (int k = -nh; k <= nh; k++) {
  7524. float v = 0.0f;
  7525. ggml_vec_dot_f32(ew0, &v,
  7526. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7527. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7528. dst_data[i0/2] += v;
  7529. }
  7530. }
  7531. }
  7532. }
  7533. static void ggml_compute_forward_conv_1d_2s(
  7534. const struct ggml_compute_params * params,
  7535. const struct ggml_tensor * src0,
  7536. const struct ggml_tensor * src1,
  7537. struct ggml_tensor * dst) {
  7538. switch (src0->type) {
  7539. case GGML_TYPE_F16:
  7540. {
  7541. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  7542. } break;
  7543. case GGML_TYPE_F32:
  7544. {
  7545. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  7546. } break;
  7547. default:
  7548. {
  7549. GGML_ASSERT(false);
  7550. } break;
  7551. }
  7552. }
  7553. // ggml_compute_forward_flash_attn
  7554. static void ggml_compute_forward_flash_attn_f32(
  7555. const struct ggml_compute_params * params,
  7556. const struct ggml_tensor * q,
  7557. const struct ggml_tensor * k,
  7558. const struct ggml_tensor * v,
  7559. const bool masked,
  7560. struct ggml_tensor * dst) {
  7561. int64_t t0 = ggml_perf_time_us();
  7562. UNUSED(t0);
  7563. const int64_t neq0 = q->ne[0];
  7564. const int64_t neq1 = q->ne[1];
  7565. const int64_t neq2 = q->ne[2];
  7566. const int64_t neq3 = q->ne[3];
  7567. const int64_t nek0 = k->ne[0];
  7568. const int64_t nek1 = k->ne[1];
  7569. //const int64_t nek2 = k->ne[2];
  7570. //const int64_t nek3 = k->ne[3];
  7571. //const int64_t nev0 = v->ne[0];
  7572. const int64_t nev1 = v->ne[1];
  7573. //const int64_t nev2 = v->ne[2];
  7574. //const int64_t nev3 = v->ne[3];
  7575. const int64_t ne0 = dst->ne[0];
  7576. const int64_t ne1 = dst->ne[1];
  7577. //const int64_t ne2 = dst->ne[2];
  7578. //const int64_t ne3 = dst->ne[3];
  7579. const int nbk0 = k->nb[0];
  7580. const int nbk1 = k->nb[1];
  7581. const int nbk2 = k->nb[2];
  7582. const int nbk3 = k->nb[3];
  7583. const int nbq0 = q->nb[0];
  7584. const int nbq1 = q->nb[1];
  7585. const int nbq2 = q->nb[2];
  7586. const int nbq3 = q->nb[3];
  7587. const int nbv0 = v->nb[0];
  7588. const int nbv1 = v->nb[1];
  7589. const int nbv2 = v->nb[2];
  7590. const int nbv3 = v->nb[3];
  7591. const int nb0 = dst->nb[0];
  7592. const int nb1 = dst->nb[1];
  7593. const int nb2 = dst->nb[2];
  7594. const int nb3 = dst->nb[3];
  7595. const int ith = params->ith;
  7596. const int nth = params->nth;
  7597. const int64_t D = neq0;
  7598. const int64_t N = neq1;
  7599. const int64_t P = nek1 - N;
  7600. const int64_t M = P + N;
  7601. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7602. GGML_ASSERT(ne0 == D);
  7603. GGML_ASSERT(ne1 == N);
  7604. GGML_ASSERT(P >= 0);
  7605. GGML_ASSERT(nbq0 == sizeof(float));
  7606. GGML_ASSERT(nbk0 == sizeof(float));
  7607. GGML_ASSERT(nbv0 == sizeof(float));
  7608. GGML_ASSERT(neq0 == D);
  7609. GGML_ASSERT(nek0 == D);
  7610. GGML_ASSERT(nev1 == D);
  7611. GGML_ASSERT(neq1 == N);
  7612. GGML_ASSERT(nek1 == N + P);
  7613. GGML_ASSERT(nev1 == D);
  7614. // dst cannot be transposed or permuted
  7615. GGML_ASSERT(nb0 == sizeof(float));
  7616. GGML_ASSERT(nb0 <= nb1);
  7617. GGML_ASSERT(nb1 <= nb2);
  7618. GGML_ASSERT(nb2 <= nb3);
  7619. if (params->type == GGML_TASK_INIT) {
  7620. return;
  7621. }
  7622. if (params->type == GGML_TASK_FINALIZE) {
  7623. return;
  7624. }
  7625. // parallelize by q rows using ggml_vec_dot_f32
  7626. // total rows in q
  7627. const int nr = neq1*neq2*neq3;
  7628. // rows per thread
  7629. const int dr = (nr + nth - 1)/nth;
  7630. // row range for this thread
  7631. const int ir0 = dr*ith;
  7632. const int ir1 = MIN(ir0 + dr, nr);
  7633. const float scale = 1.0f/sqrtf(D);
  7634. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7635. for (int ir = ir0; ir < ir1; ++ir) {
  7636. // q indices
  7637. const int iq3 = ir/(neq2*neq1);
  7638. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7639. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7640. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  7641. for (int i = M; i < Mup; ++i) {
  7642. S[i] = -INFINITY;
  7643. }
  7644. for (int64_t ic = 0; ic < nek1; ++ic) {
  7645. // k indices
  7646. const int ik3 = iq3;
  7647. const int ik2 = iq2;
  7648. const int ik1 = ic;
  7649. // S indices
  7650. const int i1 = ik1;
  7651. ggml_vec_dot_f32(neq0,
  7652. S + i1,
  7653. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7654. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7655. }
  7656. // scale
  7657. ggml_vec_scale_f32(nek1, S, scale);
  7658. if (masked) {
  7659. for (int64_t i = P; i < M; i++) {
  7660. if (i > P + iq1) {
  7661. S[i] = -INFINITY;
  7662. }
  7663. }
  7664. }
  7665. // softmax
  7666. {
  7667. float max = -INFINITY;
  7668. ggml_vec_max_f32(M, &max, S);
  7669. ggml_float sum = 0.0;
  7670. {
  7671. #ifdef GGML_SOFT_MAX_ACCELERATE
  7672. max = -max;
  7673. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7674. vvexpf(S, S, &Mup);
  7675. ggml_vec_sum_f32(Mup, &sum, S);
  7676. #else
  7677. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7678. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7679. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7680. float * SS = S + i;
  7681. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7682. if (SS[j] == -INFINITY) {
  7683. SS[j] = 0.0f;
  7684. } else {
  7685. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7686. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7687. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7688. sump[j] += (ggml_float)val;
  7689. SS[j] = val;
  7690. }
  7691. }
  7692. }
  7693. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7694. sum += sump[i];
  7695. }
  7696. #endif
  7697. }
  7698. assert(sum > 0.0);
  7699. sum = 1.0/sum;
  7700. ggml_vec_scale_f32(M, S, sum);
  7701. #ifndef NDEBUG
  7702. for (int i = 0; i < M; ++i) {
  7703. assert(!isnan(S[i]));
  7704. assert(!isinf(S[i]));
  7705. }
  7706. #endif
  7707. }
  7708. for (int64_t ic = 0; ic < nev1; ++ic) {
  7709. // dst indices
  7710. const int i1 = iq1;
  7711. const int i2 = iq2;
  7712. const int i3 = iq3;
  7713. ggml_vec_dot_f32(nek1,
  7714. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7715. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7716. S);
  7717. }
  7718. }
  7719. }
  7720. static void ggml_compute_forward_flash_attn_f16(
  7721. const struct ggml_compute_params * params,
  7722. const struct ggml_tensor * q,
  7723. const struct ggml_tensor * k,
  7724. const struct ggml_tensor * v,
  7725. const bool masked,
  7726. struct ggml_tensor * dst) {
  7727. int64_t t0 = ggml_perf_time_us();
  7728. UNUSED(t0);
  7729. const int64_t neq0 = q->ne[0];
  7730. const int64_t neq1 = q->ne[1];
  7731. const int64_t neq2 = q->ne[2];
  7732. const int64_t neq3 = q->ne[3];
  7733. const int64_t nek0 = k->ne[0];
  7734. const int64_t nek1 = k->ne[1];
  7735. //const int64_t nek2 = k->ne[2];
  7736. //const int64_t nek3 = k->ne[3];
  7737. //const int64_t nev0 = v->ne[0];
  7738. const int64_t nev1 = v->ne[1];
  7739. //const int64_t nev2 = v->ne[2];
  7740. //const int64_t nev3 = v->ne[3];
  7741. const int64_t ne0 = dst->ne[0];
  7742. const int64_t ne1 = dst->ne[1];
  7743. //const int64_t ne2 = dst->ne[2];
  7744. //const int64_t ne3 = dst->ne[3];
  7745. const int nbk0 = k->nb[0];
  7746. const int nbk1 = k->nb[1];
  7747. const int nbk2 = k->nb[2];
  7748. const int nbk3 = k->nb[3];
  7749. const int nbq0 = q->nb[0];
  7750. const int nbq1 = q->nb[1];
  7751. const int nbq2 = q->nb[2];
  7752. const int nbq3 = q->nb[3];
  7753. const int nbv0 = v->nb[0];
  7754. const int nbv1 = v->nb[1];
  7755. const int nbv2 = v->nb[2];
  7756. const int nbv3 = v->nb[3];
  7757. const int nb0 = dst->nb[0];
  7758. const int nb1 = dst->nb[1];
  7759. const int nb2 = dst->nb[2];
  7760. const int nb3 = dst->nb[3];
  7761. const int ith = params->ith;
  7762. const int nth = params->nth;
  7763. const int64_t D = neq0;
  7764. const int64_t N = neq1;
  7765. const int64_t P = nek1 - N;
  7766. const int64_t M = P + N;
  7767. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7768. GGML_ASSERT(ne0 == D);
  7769. GGML_ASSERT(ne1 == N);
  7770. GGML_ASSERT(P >= 0);
  7771. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  7772. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  7773. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  7774. GGML_ASSERT(neq0 == D);
  7775. GGML_ASSERT(nek0 == D);
  7776. GGML_ASSERT(nev1 == D);
  7777. GGML_ASSERT(neq1 == N);
  7778. GGML_ASSERT(nek1 == N + P);
  7779. GGML_ASSERT(nev1 == D);
  7780. // dst cannot be transposed or permuted
  7781. GGML_ASSERT(nb0 == sizeof(float));
  7782. GGML_ASSERT(nb0 <= nb1);
  7783. GGML_ASSERT(nb1 <= nb2);
  7784. GGML_ASSERT(nb2 <= nb3);
  7785. if (params->type == GGML_TASK_INIT) {
  7786. return;
  7787. }
  7788. if (params->type == GGML_TASK_FINALIZE) {
  7789. return;
  7790. }
  7791. // parallelize by q rows using ggml_vec_dot_f32
  7792. // total rows in q
  7793. const int nr = neq1*neq2*neq3;
  7794. // rows per thread
  7795. const int dr = (nr + nth - 1)/nth;
  7796. // row range for this thread
  7797. const int ir0 = dr*ith;
  7798. const int ir1 = MIN(ir0 + dr, nr);
  7799. const float scale = 1.0f/sqrtf(D);
  7800. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7801. for (int ir = ir0; ir < ir1; ++ir) {
  7802. // q indices
  7803. const int iq3 = ir/(neq2*neq1);
  7804. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7805. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7806. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  7807. for (int i = M; i < Mup; ++i) {
  7808. S[i] = -INFINITY;
  7809. }
  7810. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  7811. for (int64_t ic = 0; ic < nek1; ++ic) {
  7812. // k indices
  7813. const int ik3 = iq3;
  7814. const int ik2 = iq2;
  7815. const int ik1 = ic;
  7816. // S indices
  7817. const int i1 = ik1;
  7818. ggml_vec_dot_f16(neq0,
  7819. S + i1,
  7820. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7821. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7822. }
  7823. } else {
  7824. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  7825. // k indices
  7826. const int ik3 = iq3;
  7827. const int ik2 = iq2;
  7828. const int ik1 = ic;
  7829. // S indices
  7830. const int i1 = ik1;
  7831. ggml_vec_dot_f16_unroll(neq0, nbk1,
  7832. S + i1,
  7833. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7834. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7835. }
  7836. }
  7837. // scale
  7838. ggml_vec_scale_f32(nek1, S, scale);
  7839. if (masked) {
  7840. for (int64_t i = P; i < M; i++) {
  7841. if (i > P + iq1) {
  7842. S[i] = -INFINITY;
  7843. }
  7844. }
  7845. }
  7846. // softmax
  7847. {
  7848. float max = -INFINITY;
  7849. ggml_vec_max_f32(M, &max, S);
  7850. ggml_float sum = 0.0;
  7851. {
  7852. #ifdef GGML_SOFT_MAX_ACCELERATE
  7853. max = -max;
  7854. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7855. vvexpf(S, S, &Mup);
  7856. ggml_vec_sum_f32(Mup, &sum, S);
  7857. #else
  7858. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7859. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7860. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7861. float * SS = S + i;
  7862. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7863. if (SS[j] == -INFINITY) {
  7864. SS[j] = 0.0f;
  7865. } else {
  7866. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7867. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7868. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7869. sump[j] += (ggml_float)val;
  7870. SS[j] = val;
  7871. }
  7872. }
  7873. }
  7874. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7875. sum += sump[i];
  7876. }
  7877. #endif
  7878. }
  7879. assert(sum > 0.0);
  7880. sum = 1.0/sum;
  7881. ggml_vec_scale_f32(M, S, sum);
  7882. #ifndef NDEBUG
  7883. for (int i = 0; i < M; ++i) {
  7884. assert(!isnan(S[i]));
  7885. assert(!isinf(S[i]));
  7886. }
  7887. #endif
  7888. }
  7889. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  7890. for (int64_t i = 0; i < M; i++) {
  7891. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7892. }
  7893. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  7894. for (int64_t ic = 0; ic < nev1; ++ic) {
  7895. // dst indices
  7896. const int i1 = iq1;
  7897. const int i2 = iq2;
  7898. const int i3 = iq3;
  7899. ggml_vec_dot_f16(nek1,
  7900. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7901. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7902. S16);
  7903. }
  7904. } else {
  7905. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  7906. // dst indices
  7907. const int i1 = iq1;
  7908. const int i2 = iq2;
  7909. const int i3 = iq3;
  7910. ggml_vec_dot_f16_unroll(nek1, nbv1,
  7911. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7912. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7913. S16);
  7914. }
  7915. }
  7916. }
  7917. }
  7918. static void ggml_compute_forward_flash_attn(
  7919. const struct ggml_compute_params * params,
  7920. const struct ggml_tensor * q,
  7921. const struct ggml_tensor * k,
  7922. const struct ggml_tensor * v,
  7923. const bool masked,
  7924. struct ggml_tensor * dst) {
  7925. switch (q->type) {
  7926. case GGML_TYPE_F16:
  7927. {
  7928. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  7929. } break;
  7930. case GGML_TYPE_F32:
  7931. {
  7932. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  7933. } break;
  7934. default:
  7935. {
  7936. GGML_ASSERT(false);
  7937. } break;
  7938. }
  7939. }
  7940. // ggml_compute_forward_flash_ff
  7941. static void ggml_compute_forward_flash_ff_f16(
  7942. const struct ggml_compute_params * params,
  7943. const struct ggml_tensor * a, // F16
  7944. const struct ggml_tensor * b0, // F16 fc_w
  7945. const struct ggml_tensor * b1, // F32 fc_b
  7946. const struct ggml_tensor * c0, // F16 proj_w
  7947. const struct ggml_tensor * c1, // F32 proj_b
  7948. struct ggml_tensor * dst) {
  7949. int64_t t0 = ggml_perf_time_us();
  7950. UNUSED(t0);
  7951. const int64_t nea0 = a->ne[0];
  7952. const int64_t nea1 = a->ne[1];
  7953. const int64_t nea2 = a->ne[2];
  7954. const int64_t nea3 = a->ne[3];
  7955. const int64_t neb00 = b0->ne[0];
  7956. const int64_t neb01 = b0->ne[1];
  7957. //const int64_t neb02 = b0->ne[2];
  7958. //const int64_t neb03 = b0->ne[3];
  7959. const int64_t neb10 = b1->ne[0];
  7960. const int64_t neb11 = b1->ne[1];
  7961. //const int64_t neb12 = b1->ne[2];
  7962. //const int64_t neb13 = b1->ne[3];
  7963. const int64_t nec00 = c0->ne[0];
  7964. const int64_t nec01 = c0->ne[1];
  7965. //const int64_t nec02 = c0->ne[2];
  7966. //const int64_t nec03 = c0->ne[3];
  7967. const int64_t nec10 = c1->ne[0];
  7968. const int64_t nec11 = c1->ne[1];
  7969. //const int64_t nec12 = c1->ne[2];
  7970. //const int64_t nec13 = c1->ne[3];
  7971. const int64_t ne0 = dst->ne[0];
  7972. const int64_t ne1 = dst->ne[1];
  7973. const int64_t ne2 = dst->ne[2];
  7974. //const int64_t ne3 = dst->ne[3];
  7975. const int nba0 = a->nb[0];
  7976. const int nba1 = a->nb[1];
  7977. const int nba2 = a->nb[2];
  7978. const int nba3 = a->nb[3];
  7979. const int nbb00 = b0->nb[0];
  7980. const int nbb01 = b0->nb[1];
  7981. const int nbb02 = b0->nb[2];
  7982. const int nbb03 = b0->nb[3];
  7983. const int nbb10 = b1->nb[0];
  7984. //const int nbb11 = b1->nb[1];
  7985. //const int nbb12 = b1->nb[2];
  7986. //const int nbb13 = b1->nb[3];
  7987. const int nbc00 = c0->nb[0];
  7988. const int nbc01 = c0->nb[1];
  7989. const int nbc02 = c0->nb[2];
  7990. const int nbc03 = c0->nb[3];
  7991. const int nbc10 = c1->nb[0];
  7992. //const int nbc11 = c1->nb[1];
  7993. //const int nbc12 = c1->nb[2];
  7994. //const int nbc13 = c1->nb[3];
  7995. const int nb0 = dst->nb[0];
  7996. const int nb1 = dst->nb[1];
  7997. const int nb2 = dst->nb[2];
  7998. const int nb3 = dst->nb[3];
  7999. const int ith = params->ith;
  8000. const int nth = params->nth;
  8001. const int64_t D = nea0;
  8002. //const int64_t N = nea1;
  8003. const int64_t M = neb01;
  8004. GGML_ASSERT(ne0 == nea0);
  8005. GGML_ASSERT(ne1 == nea1);
  8006. GGML_ASSERT(ne2 == nea2);
  8007. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  8008. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  8009. GGML_ASSERT(nbb10 == sizeof(float));
  8010. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  8011. GGML_ASSERT(nbc10 == sizeof(float));
  8012. GGML_ASSERT(neb00 == D);
  8013. GGML_ASSERT(neb01 == M);
  8014. GGML_ASSERT(neb10 == M);
  8015. GGML_ASSERT(neb11 == 1);
  8016. GGML_ASSERT(nec00 == M);
  8017. GGML_ASSERT(nec01 == D);
  8018. GGML_ASSERT(nec10 == D);
  8019. GGML_ASSERT(nec11 == 1);
  8020. // dst cannot be transposed or permuted
  8021. GGML_ASSERT(nb0 == sizeof(float));
  8022. GGML_ASSERT(nb0 <= nb1);
  8023. GGML_ASSERT(nb1 <= nb2);
  8024. GGML_ASSERT(nb2 <= nb3);
  8025. if (params->type == GGML_TASK_INIT) {
  8026. return;
  8027. }
  8028. if (params->type == GGML_TASK_FINALIZE) {
  8029. return;
  8030. }
  8031. // parallelize by a rows using ggml_vec_dot_f32
  8032. // total rows in a
  8033. const int nr = nea1*nea2*nea3;
  8034. // rows per thread
  8035. const int dr = (nr + nth - 1)/nth;
  8036. // row range for this thread
  8037. const int ir0 = dr*ith;
  8038. const int ir1 = MIN(ir0 + dr, nr);
  8039. for (int ir = ir0; ir < ir1; ++ir) {
  8040. // a indices
  8041. const int ia3 = ir/(nea2*nea1);
  8042. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  8043. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  8044. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  8045. for (int64_t ic = 0; ic < neb01; ++ic) {
  8046. // b0 indices
  8047. const int ib03 = ia3;
  8048. const int ib02 = ia2;
  8049. const int ib01 = ic;
  8050. // S indices
  8051. const int i1 = ib01;
  8052. ggml_vec_dot_f16(nea0,
  8053. S + i1,
  8054. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  8055. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  8056. }
  8057. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  8058. //ggml_vec_gelu_f32(neb01, S, S);
  8059. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  8060. for (int64_t i = 0; i < M; i++) {
  8061. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8062. }
  8063. ggml_vec_gelu_f16(neb01, S16, S16);
  8064. {
  8065. // dst indices
  8066. const int i1 = ia1;
  8067. const int i2 = ia2;
  8068. const int i3 = ia3;
  8069. for (int64_t ic = 0; ic < nec01; ++ic) {
  8070. ggml_vec_dot_f16(neb01,
  8071. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8072. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  8073. S16);
  8074. }
  8075. ggml_vec_add_f32(nec01,
  8076. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8077. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8078. (float *) c1->data);
  8079. }
  8080. }
  8081. }
  8082. static void ggml_compute_forward_flash_ff(
  8083. const struct ggml_compute_params * params,
  8084. const struct ggml_tensor * a,
  8085. const struct ggml_tensor * b0,
  8086. const struct ggml_tensor * b1,
  8087. const struct ggml_tensor * c0,
  8088. const struct ggml_tensor * c1,
  8089. struct ggml_tensor * dst) {
  8090. switch (b0->type) {
  8091. case GGML_TYPE_F16:
  8092. {
  8093. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  8094. } break;
  8095. case GGML_TYPE_F32:
  8096. {
  8097. GGML_ASSERT(false); // TODO
  8098. } break;
  8099. default:
  8100. {
  8101. GGML_ASSERT(false);
  8102. } break;
  8103. }
  8104. }
  8105. // ggml_compute_forward_map_unary
  8106. static void ggml_compute_forward_map_unary_f32(
  8107. const struct ggml_compute_params * params,
  8108. const struct ggml_tensor * src0,
  8109. struct ggml_tensor * dst,
  8110. const ggml_unary_op_f32_t fun) {
  8111. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8112. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8113. return;
  8114. }
  8115. const int n = ggml_nrows(src0);
  8116. const int nc = src0->ne[0];
  8117. assert( dst->nb[0] == sizeof(float));
  8118. assert(src0->nb[0] == sizeof(float));
  8119. for (int i = 0; i < n; i++) {
  8120. fun(nc,
  8121. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8122. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8123. }
  8124. }
  8125. static void ggml_compute_forward_map_unary(
  8126. const struct ggml_compute_params * params,
  8127. const struct ggml_tensor * src0,
  8128. struct ggml_tensor * dst,
  8129. const ggml_unary_op_f32_t fun) {
  8130. switch (src0->type) {
  8131. case GGML_TYPE_F32:
  8132. {
  8133. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  8134. } break;
  8135. default:
  8136. {
  8137. GGML_ASSERT(false);
  8138. } break;
  8139. }
  8140. }
  8141. // ggml_compute_forward_map_binary
  8142. static void ggml_compute_forward_map_binary_f32(
  8143. const struct ggml_compute_params * params,
  8144. const struct ggml_tensor * src0,
  8145. const struct ggml_tensor * src1,
  8146. struct ggml_tensor * dst,
  8147. const ggml_binary_op_f32_t fun) {
  8148. assert(params->ith == 0);
  8149. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8150. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8151. return;
  8152. }
  8153. const int n = ggml_nrows(src0);
  8154. const int nc = src0->ne[0];
  8155. assert( dst->nb[0] == sizeof(float));
  8156. assert(src0->nb[0] == sizeof(float));
  8157. assert(src1->nb[0] == sizeof(float));
  8158. for (int i = 0; i < n; i++) {
  8159. fun(nc,
  8160. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8161. (float *) ((char *) src0->data + i*(src0->nb[1])),
  8162. (float *) ((char *) src1->data + i*(src1->nb[1])));
  8163. }
  8164. }
  8165. static void ggml_compute_forward_map_binary(
  8166. const struct ggml_compute_params * params,
  8167. const struct ggml_tensor * src0,
  8168. const struct ggml_tensor * src1,
  8169. struct ggml_tensor * dst,
  8170. const ggml_binary_op_f32_t fun) {
  8171. switch (src0->type) {
  8172. case GGML_TYPE_F32:
  8173. {
  8174. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  8175. } break;
  8176. default:
  8177. {
  8178. GGML_ASSERT(false);
  8179. } break;
  8180. }
  8181. }
  8182. /////////////////////////////////
  8183. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  8184. GGML_ASSERT(params);
  8185. switch (tensor->op) {
  8186. case GGML_OP_DUP:
  8187. {
  8188. ggml_compute_forward_dup(params, tensor->src0, tensor);
  8189. } break;
  8190. case GGML_OP_ADD:
  8191. {
  8192. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  8193. } break;
  8194. case GGML_OP_SUB:
  8195. {
  8196. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  8197. } break;
  8198. case GGML_OP_MUL:
  8199. {
  8200. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  8201. } break;
  8202. case GGML_OP_DIV:
  8203. {
  8204. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  8205. } break;
  8206. case GGML_OP_SQR:
  8207. {
  8208. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  8209. } break;
  8210. case GGML_OP_SQRT:
  8211. {
  8212. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  8213. } break;
  8214. case GGML_OP_SUM:
  8215. {
  8216. ggml_compute_forward_sum(params, tensor->src0, tensor);
  8217. } break;
  8218. case GGML_OP_MEAN:
  8219. {
  8220. ggml_compute_forward_mean(params, tensor->src0, tensor);
  8221. } break;
  8222. case GGML_OP_REPEAT:
  8223. {
  8224. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  8225. } break;
  8226. case GGML_OP_ABS:
  8227. {
  8228. ggml_compute_forward_abs(params, tensor->src0, tensor);
  8229. } break;
  8230. case GGML_OP_SGN:
  8231. {
  8232. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  8233. } break;
  8234. case GGML_OP_NEG:
  8235. {
  8236. ggml_compute_forward_neg(params, tensor->src0, tensor);
  8237. } break;
  8238. case GGML_OP_STEP:
  8239. {
  8240. ggml_compute_forward_step(params, tensor->src0, tensor);
  8241. } break;
  8242. case GGML_OP_RELU:
  8243. {
  8244. ggml_compute_forward_relu(params, tensor->src0, tensor);
  8245. } break;
  8246. case GGML_OP_GELU:
  8247. {
  8248. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  8249. } break;
  8250. case GGML_OP_SILU:
  8251. {
  8252. ggml_compute_forward_silu(params, tensor->src0, tensor);
  8253. } break;
  8254. case GGML_OP_NORM:
  8255. {
  8256. ggml_compute_forward_norm(params, tensor->src0, tensor);
  8257. } break;
  8258. case GGML_OP_RMS_NORM:
  8259. {
  8260. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  8261. } break;
  8262. case GGML_OP_MUL_MAT:
  8263. {
  8264. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  8265. } break;
  8266. case GGML_OP_SCALE:
  8267. {
  8268. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  8269. } break;
  8270. case GGML_OP_CPY:
  8271. {
  8272. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  8273. } break;
  8274. case GGML_OP_CONT:
  8275. {
  8276. ggml_compute_forward_cont(params, tensor->src0, tensor);
  8277. } break;
  8278. case GGML_OP_RESHAPE:
  8279. {
  8280. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  8281. } break;
  8282. case GGML_OP_VIEW:
  8283. {
  8284. ggml_compute_forward_view(params, tensor->src0);
  8285. } break;
  8286. case GGML_OP_PERMUTE:
  8287. {
  8288. ggml_compute_forward_permute(params, tensor->src0);
  8289. } break;
  8290. case GGML_OP_TRANSPOSE:
  8291. {
  8292. ggml_compute_forward_transpose(params, tensor->src0);
  8293. } break;
  8294. case GGML_OP_GET_ROWS:
  8295. {
  8296. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  8297. } break;
  8298. case GGML_OP_DIAG_MASK_INF:
  8299. {
  8300. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  8301. } break;
  8302. case GGML_OP_SOFT_MAX:
  8303. {
  8304. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  8305. } break;
  8306. case GGML_OP_ROPE:
  8307. {
  8308. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  8309. } break;
  8310. case GGML_OP_CONV_1D_1S:
  8311. {
  8312. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  8313. } break;
  8314. case GGML_OP_CONV_1D_2S:
  8315. {
  8316. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  8317. } break;
  8318. case GGML_OP_FLASH_ATTN:
  8319. {
  8320. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  8321. GGML_ASSERT(t == 0 || t == 1);
  8322. bool masked = t != 0;
  8323. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  8324. } break;
  8325. case GGML_OP_FLASH_FF:
  8326. {
  8327. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  8328. } break;
  8329. case GGML_OP_MAP_UNARY:
  8330. {
  8331. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  8332. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  8333. }
  8334. break;
  8335. case GGML_OP_MAP_BINARY:
  8336. {
  8337. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  8338. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  8339. }
  8340. break;
  8341. case GGML_OP_NONE:
  8342. {
  8343. // nop
  8344. } break;
  8345. case GGML_OP_COUNT:
  8346. {
  8347. GGML_ASSERT(false);
  8348. } break;
  8349. }
  8350. }
  8351. ////////////////////////////////////////////////////////////////////////////////
  8352. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  8353. struct ggml_tensor * src0 = tensor->src0;
  8354. struct ggml_tensor * src1 = tensor->src1;
  8355. switch (tensor->op) {
  8356. case GGML_OP_DUP:
  8357. {
  8358. if (src0->grad) {
  8359. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8360. }
  8361. } break;
  8362. case GGML_OP_ADD:
  8363. {
  8364. if (src0->grad) {
  8365. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8366. }
  8367. if (src1->grad) {
  8368. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  8369. }
  8370. } break;
  8371. case GGML_OP_SUB:
  8372. {
  8373. if (src0->grad) {
  8374. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8375. }
  8376. if (src1->grad) {
  8377. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  8378. }
  8379. } break;
  8380. case GGML_OP_MUL:
  8381. {
  8382. if (src0->grad) {
  8383. src0->grad =
  8384. ggml_add_impl(ctx,
  8385. src0->grad,
  8386. ggml_mul(ctx, src1, tensor->grad),
  8387. inplace);
  8388. }
  8389. if (src1->grad) {
  8390. src1->grad =
  8391. ggml_add_impl(ctx,
  8392. src1->grad,
  8393. ggml_mul(ctx, src0, tensor->grad),
  8394. inplace);
  8395. }
  8396. } break;
  8397. case GGML_OP_DIV:
  8398. {
  8399. if (src0->grad) {
  8400. src0->grad =
  8401. ggml_add_impl(ctx,
  8402. src0->grad,
  8403. ggml_div(ctx, tensor->grad, src1),
  8404. inplace);
  8405. }
  8406. if (src1->grad) {
  8407. src1->grad =
  8408. ggml_sub_impl(ctx,
  8409. src1->grad,
  8410. ggml_mul(ctx,
  8411. tensor->grad,
  8412. ggml_div(ctx, tensor, src1)),
  8413. inplace);
  8414. }
  8415. } break;
  8416. case GGML_OP_SQR:
  8417. {
  8418. if (src0->grad) {
  8419. src0->grad =
  8420. ggml_add_impl(ctx,
  8421. src0->grad,
  8422. ggml_mul(ctx,
  8423. ggml_mul(ctx, src0, tensor->grad),
  8424. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  8425. inplace);
  8426. }
  8427. } break;
  8428. case GGML_OP_SQRT:
  8429. {
  8430. if (src0->grad) {
  8431. src0->grad =
  8432. ggml_add_impl(ctx,
  8433. src0->grad,
  8434. ggml_div(ctx,
  8435. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  8436. tensor),
  8437. inplace);
  8438. }
  8439. } break;
  8440. case GGML_OP_SUM:
  8441. {
  8442. if (src0->grad) {
  8443. src0->grad =
  8444. ggml_add_impl(ctx,
  8445. src0->grad,
  8446. ggml_repeat(ctx, tensor->grad, src0->grad),
  8447. inplace);
  8448. }
  8449. } break;
  8450. case GGML_OP_MEAN:
  8451. {
  8452. GGML_ASSERT(false); // TODO: implement
  8453. } break;
  8454. case GGML_OP_REPEAT:
  8455. {
  8456. if (src0->grad) {
  8457. src0->grad =
  8458. ggml_add_impl(ctx,
  8459. src0->grad,
  8460. ggml_sum(ctx, tensor->grad),
  8461. inplace);
  8462. }
  8463. } break;
  8464. case GGML_OP_ABS:
  8465. {
  8466. if (src0->grad) {
  8467. src0->grad =
  8468. ggml_add_impl(ctx,
  8469. src0->grad,
  8470. ggml_mul(ctx,
  8471. ggml_sgn(ctx, src0),
  8472. tensor->grad),
  8473. inplace);
  8474. }
  8475. } break;
  8476. case GGML_OP_SGN:
  8477. {
  8478. if (src0->grad) {
  8479. // noop
  8480. }
  8481. } break;
  8482. case GGML_OP_NEG:
  8483. {
  8484. if (src0->grad) {
  8485. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  8486. }
  8487. } break;
  8488. case GGML_OP_STEP:
  8489. {
  8490. if (src0->grad) {
  8491. // noop
  8492. }
  8493. } break;
  8494. case GGML_OP_RELU:
  8495. {
  8496. if (src0->grad) {
  8497. src0->grad = ggml_sub_impl(ctx,
  8498. src0->grad,
  8499. ggml_mul(ctx,
  8500. ggml_step(ctx, src0),
  8501. tensor->grad),
  8502. inplace);
  8503. }
  8504. } break;
  8505. case GGML_OP_GELU:
  8506. {
  8507. GGML_ASSERT(false); // TODO: not implemented
  8508. } break;
  8509. case GGML_OP_SILU:
  8510. {
  8511. GGML_ASSERT(false); // TODO: not implemented
  8512. } break;
  8513. case GGML_OP_NORM:
  8514. {
  8515. GGML_ASSERT(false); // TODO: not implemented
  8516. } break;
  8517. case GGML_OP_RMS_NORM:
  8518. {
  8519. GGML_ASSERT(false); // TODO: not implemented
  8520. } break;
  8521. case GGML_OP_MUL_MAT:
  8522. {
  8523. if (src0->grad) {
  8524. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  8525. GGML_ASSERT(false);
  8526. }
  8527. if (src1->grad) {
  8528. src1->grad =
  8529. ggml_add_impl(ctx,
  8530. src1->grad,
  8531. ggml_mul_mat(ctx,
  8532. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  8533. tensor->grad),
  8534. inplace);
  8535. }
  8536. } break;
  8537. case GGML_OP_SCALE:
  8538. {
  8539. GGML_ASSERT(false); // TODO: not implemented
  8540. } break;
  8541. case GGML_OP_CPY:
  8542. {
  8543. GGML_ASSERT(false); // TODO: not implemented
  8544. } break;
  8545. case GGML_OP_CONT:
  8546. {
  8547. GGML_ASSERT(false); // TODO: not implemented
  8548. } break;
  8549. case GGML_OP_RESHAPE:
  8550. {
  8551. GGML_ASSERT(false); // TODO: not implemented
  8552. } break;
  8553. case GGML_OP_VIEW:
  8554. {
  8555. GGML_ASSERT(false); // not supported
  8556. } break;
  8557. case GGML_OP_PERMUTE:
  8558. {
  8559. GGML_ASSERT(false); // TODO: not implemented
  8560. } break;
  8561. case GGML_OP_TRANSPOSE:
  8562. {
  8563. GGML_ASSERT(false); // TODO: not implemented
  8564. } break;
  8565. case GGML_OP_GET_ROWS:
  8566. {
  8567. GGML_ASSERT(false); // TODO: not implemented
  8568. } break;
  8569. case GGML_OP_DIAG_MASK_INF:
  8570. {
  8571. GGML_ASSERT(false); // TODO: not implemented
  8572. } break;
  8573. case GGML_OP_SOFT_MAX:
  8574. {
  8575. GGML_ASSERT(false); // TODO: not implemented
  8576. } break;
  8577. case GGML_OP_ROPE:
  8578. {
  8579. GGML_ASSERT(false); // TODO: not implemented
  8580. } break;
  8581. case GGML_OP_CONV_1D_1S:
  8582. {
  8583. GGML_ASSERT(false); // TODO: not implemented
  8584. } break;
  8585. case GGML_OP_CONV_1D_2S:
  8586. {
  8587. GGML_ASSERT(false); // TODO: not implemented
  8588. } break;
  8589. case GGML_OP_FLASH_ATTN:
  8590. {
  8591. GGML_ASSERT(false); // not supported
  8592. } break;
  8593. case GGML_OP_FLASH_FF:
  8594. {
  8595. GGML_ASSERT(false); // not supported
  8596. } break;
  8597. case GGML_OP_MAP_UNARY:
  8598. case GGML_OP_MAP_BINARY:
  8599. {
  8600. GGML_ASSERT(false); // not supported
  8601. } break;
  8602. case GGML_OP_NONE:
  8603. {
  8604. // nop
  8605. } break;
  8606. case GGML_OP_COUNT:
  8607. {
  8608. GGML_ASSERT(false);
  8609. } break;
  8610. }
  8611. }
  8612. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  8613. if (node->grad == NULL) {
  8614. // this usually happens when we generate intermediate nodes from constants in the backward pass
  8615. // it can also happen during forward pass, if the user performs computations with constants
  8616. if (node->op != GGML_OP_NONE) {
  8617. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  8618. }
  8619. }
  8620. // check if already visited
  8621. for (int i = 0; i < cgraph->n_nodes; i++) {
  8622. if (cgraph->nodes[i] == node) {
  8623. return;
  8624. }
  8625. }
  8626. for (int i = 0; i < cgraph->n_leafs; i++) {
  8627. if (cgraph->leafs[i] == node) {
  8628. return;
  8629. }
  8630. }
  8631. if (node->src0) {
  8632. ggml_visit_parents(cgraph, node->src0);
  8633. }
  8634. if (node->src1) {
  8635. ggml_visit_parents(cgraph, node->src1);
  8636. }
  8637. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  8638. if (node->opt[i]) {
  8639. ggml_visit_parents(cgraph, node->opt[i]);
  8640. }
  8641. }
  8642. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  8643. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  8644. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  8645. cgraph->leafs[cgraph->n_leafs] = node;
  8646. cgraph->n_leafs++;
  8647. } else {
  8648. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  8649. cgraph->nodes[cgraph->n_nodes] = node;
  8650. cgraph->grads[cgraph->n_nodes] = node->grad;
  8651. cgraph->n_nodes++;
  8652. }
  8653. }
  8654. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  8655. if (!expand) {
  8656. cgraph->n_nodes = 0;
  8657. cgraph->n_leafs = 0;
  8658. }
  8659. const int n0 = cgraph->n_nodes;
  8660. UNUSED(n0);
  8661. ggml_visit_parents(cgraph, tensor);
  8662. const int n_new = cgraph->n_nodes - n0;
  8663. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  8664. if (n_new > 0) {
  8665. // the last added node should always be starting point
  8666. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  8667. }
  8668. }
  8669. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  8670. ggml_build_forward_impl(cgraph, tensor, true);
  8671. }
  8672. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  8673. struct ggml_cgraph result = {
  8674. /*.n_nodes =*/ 0,
  8675. /*.n_leafs =*/ 0,
  8676. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  8677. /*.work_size =*/ 0,
  8678. /*.work =*/ NULL,
  8679. /*.nodes =*/ { NULL },
  8680. /*.grads =*/ { NULL },
  8681. /*.leafs =*/ { NULL },
  8682. /*.perf_runs =*/ 0,
  8683. /*.perf_cycles =*/ 0,
  8684. /*.perf_time_us =*/ 0,
  8685. };
  8686. ggml_build_forward_impl(&result, tensor, false);
  8687. return result;
  8688. }
  8689. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  8690. struct ggml_cgraph result = *gf;
  8691. GGML_ASSERT(gf->n_nodes > 0);
  8692. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  8693. if (keep) {
  8694. for (int i = 0; i < gf->n_nodes; i++) {
  8695. struct ggml_tensor * node = gf->nodes[i];
  8696. if (node->grad) {
  8697. node->grad = ggml_dup_tensor(ctx, node);
  8698. gf->grads[i] = node->grad;
  8699. }
  8700. }
  8701. }
  8702. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  8703. struct ggml_tensor * node = gf->nodes[i];
  8704. // because we detached the grad nodes from the original graph, we can afford inplace operations
  8705. if (node->grad) {
  8706. ggml_compute_backward(ctx, node, keep);
  8707. }
  8708. }
  8709. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  8710. struct ggml_tensor * node = gf->nodes[i];
  8711. if (node->is_param) {
  8712. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  8713. ggml_build_forward_impl(&result, node->grad, true);
  8714. }
  8715. }
  8716. return result;
  8717. }
  8718. //
  8719. // thread data
  8720. //
  8721. // synchronization is done via busy loops
  8722. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  8723. //
  8724. #ifdef __APPLE__
  8725. //#include <os/lock.h>
  8726. //
  8727. //typedef os_unfair_lock ggml_lock_t;
  8728. //
  8729. //#define ggml_lock_init(x) UNUSED(x)
  8730. //#define ggml_lock_destroy(x) UNUSED(x)
  8731. //#define ggml_lock_lock os_unfair_lock_lock
  8732. //#define ggml_lock_unlock os_unfair_lock_unlock
  8733. //
  8734. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  8735. typedef int ggml_lock_t;
  8736. #define ggml_lock_init(x) UNUSED(x)
  8737. #define ggml_lock_destroy(x) UNUSED(x)
  8738. #define ggml_lock_lock(x) UNUSED(x)
  8739. #define ggml_lock_unlock(x) UNUSED(x)
  8740. #define GGML_LOCK_INITIALIZER 0
  8741. typedef pthread_t ggml_thread_t;
  8742. #define ggml_thread_create pthread_create
  8743. #define ggml_thread_join pthread_join
  8744. #else
  8745. //typedef pthread_spinlock_t ggml_lock_t;
  8746. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  8747. //#define ggml_lock_destroy pthread_spin_destroy
  8748. //#define ggml_lock_lock pthread_spin_lock
  8749. //#define ggml_lock_unlock pthread_spin_unlock
  8750. typedef int ggml_lock_t;
  8751. #define ggml_lock_init(x) UNUSED(x)
  8752. #define ggml_lock_destroy(x) UNUSED(x)
  8753. #define ggml_lock_lock(x) UNUSED(x)
  8754. #define ggml_lock_unlock(x) UNUSED(x)
  8755. #define GGML_LOCK_INITIALIZER 0
  8756. typedef pthread_t ggml_thread_t;
  8757. #define ggml_thread_create pthread_create
  8758. #define ggml_thread_join pthread_join
  8759. #endif
  8760. struct ggml_compute_state_shared {
  8761. ggml_lock_t spin;
  8762. int n_threads;
  8763. // synchronization primitives
  8764. atomic_int n_ready;
  8765. atomic_bool has_work;
  8766. atomic_bool stop; // stop all threads
  8767. };
  8768. struct ggml_compute_state {
  8769. ggml_thread_t thrd;
  8770. struct ggml_compute_params params;
  8771. struct ggml_tensor * node;
  8772. struct ggml_compute_state_shared * shared;
  8773. };
  8774. static thread_ret_t ggml_graph_compute_thread(void * data) {
  8775. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  8776. const int n_threads = state->shared->n_threads;
  8777. while (true) {
  8778. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  8779. atomic_store(&state->shared->has_work, false);
  8780. } else {
  8781. while (atomic_load(&state->shared->has_work)) {
  8782. if (atomic_load(&state->shared->stop)) {
  8783. return 0;
  8784. }
  8785. ggml_lock_lock (&state->shared->spin);
  8786. ggml_lock_unlock(&state->shared->spin);
  8787. }
  8788. }
  8789. atomic_fetch_sub(&state->shared->n_ready, 1);
  8790. // wait for work
  8791. while (!atomic_load(&state->shared->has_work)) {
  8792. if (atomic_load(&state->shared->stop)) {
  8793. return 0;
  8794. }
  8795. ggml_lock_lock (&state->shared->spin);
  8796. ggml_lock_unlock(&state->shared->spin);
  8797. }
  8798. // check if we should stop
  8799. if (atomic_load(&state->shared->stop)) {
  8800. break;
  8801. }
  8802. if (state->node) {
  8803. if (state->params.ith < state->params.nth) {
  8804. ggml_compute_forward(&state->params, state->node);
  8805. }
  8806. state->node = NULL;
  8807. } else {
  8808. break;
  8809. }
  8810. }
  8811. return 0;
  8812. }
  8813. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  8814. const int n_threads = cgraph->n_threads;
  8815. struct ggml_compute_state_shared state_shared = {
  8816. /*.spin =*/ GGML_LOCK_INITIALIZER,
  8817. /*.n_threads =*/ n_threads,
  8818. /*.n_ready =*/ 0,
  8819. /*.has_work =*/ false,
  8820. /*.stop =*/ false,
  8821. };
  8822. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  8823. // create thread pool
  8824. if (n_threads > 1) {
  8825. ggml_lock_init(&state_shared.spin);
  8826. atomic_store(&state_shared.has_work, true);
  8827. for (int j = 0; j < n_threads - 1; j++) {
  8828. workers[j] = (struct ggml_compute_state) {
  8829. .thrd = 0,
  8830. .params = {
  8831. .type = GGML_TASK_COMPUTE,
  8832. .ith = j + 1,
  8833. .nth = n_threads,
  8834. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8835. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8836. },
  8837. .node = NULL,
  8838. .shared = &state_shared,
  8839. };
  8840. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  8841. GGML_ASSERT(rc == 0);
  8842. UNUSED(rc);
  8843. }
  8844. }
  8845. // initialize tasks + work buffer
  8846. {
  8847. size_t work_size = 0;
  8848. // thread scheduling for the different operations
  8849. for (int i = 0; i < cgraph->n_nodes; i++) {
  8850. struct ggml_tensor * node = cgraph->nodes[i];
  8851. switch (node->op) {
  8852. case GGML_OP_CPY:
  8853. case GGML_OP_DUP:
  8854. {
  8855. node->n_tasks = n_threads;
  8856. size_t cur = 0;
  8857. if (ggml_is_quantized(node->type)) {
  8858. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  8859. }
  8860. work_size = MAX(work_size, cur);
  8861. } break;
  8862. case GGML_OP_ADD:
  8863. {
  8864. node->n_tasks = n_threads;
  8865. size_t cur = 0;
  8866. if (ggml_is_quantized(node->src0->type)) {
  8867. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  8868. }
  8869. work_size = MAX(work_size, cur);
  8870. } break;
  8871. case GGML_OP_SUB:
  8872. case GGML_OP_MUL:
  8873. case GGML_OP_DIV:
  8874. case GGML_OP_SQR:
  8875. case GGML_OP_SQRT:
  8876. case GGML_OP_SUM:
  8877. case GGML_OP_MEAN:
  8878. case GGML_OP_REPEAT:
  8879. case GGML_OP_ABS:
  8880. case GGML_OP_SGN:
  8881. case GGML_OP_NEG:
  8882. case GGML_OP_STEP:
  8883. case GGML_OP_RELU:
  8884. {
  8885. node->n_tasks = 1;
  8886. } break;
  8887. case GGML_OP_GELU:
  8888. {
  8889. node->n_tasks = n_threads;
  8890. } break;
  8891. case GGML_OP_SILU:
  8892. {
  8893. node->n_tasks = n_threads;
  8894. } break;
  8895. case GGML_OP_NORM:
  8896. case GGML_OP_RMS_NORM:
  8897. {
  8898. node->n_tasks = n_threads;
  8899. } break;
  8900. case GGML_OP_MUL_MAT:
  8901. {
  8902. node->n_tasks = n_threads;
  8903. // TODO: use different scheduling for different matrix sizes
  8904. //const int nr0 = ggml_nrows(node->src0);
  8905. //const int nr1 = ggml_nrows(node->src1);
  8906. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  8907. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  8908. size_t cur = 0;
  8909. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  8910. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  8911. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8912. node->n_tasks = 1; // TODO: this actually is doing nothing
  8913. // the threads are still spinning
  8914. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  8915. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  8916. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  8917. //printf("cur = %zu\n", cur);
  8918. } else {
  8919. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  8920. }
  8921. #else
  8922. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  8923. #endif
  8924. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  8925. cur = 0;
  8926. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  8927. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  8928. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8929. node->n_tasks = 1;
  8930. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  8931. } else
  8932. #endif
  8933. {
  8934. cur = GGML_TYPE_SIZE[GGML_TYPE_Q8_0]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  8935. }
  8936. } else {
  8937. GGML_ASSERT(false);
  8938. }
  8939. work_size = MAX(work_size, cur);
  8940. } break;
  8941. case GGML_OP_SCALE:
  8942. {
  8943. node->n_tasks = n_threads;
  8944. } break;
  8945. case GGML_OP_CONT:
  8946. case GGML_OP_RESHAPE:
  8947. case GGML_OP_VIEW:
  8948. case GGML_OP_PERMUTE:
  8949. case GGML_OP_TRANSPOSE:
  8950. case GGML_OP_GET_ROWS:
  8951. case GGML_OP_DIAG_MASK_INF:
  8952. {
  8953. node->n_tasks = 1;
  8954. } break;
  8955. case GGML_OP_SOFT_MAX:
  8956. {
  8957. node->n_tasks = n_threads;
  8958. } break;
  8959. case GGML_OP_ROPE:
  8960. {
  8961. node->n_tasks = n_threads;
  8962. } break;
  8963. case GGML_OP_CONV_1D_1S:
  8964. case GGML_OP_CONV_1D_2S:
  8965. {
  8966. node->n_tasks = n_threads;
  8967. GGML_ASSERT(node->src0->ne[3] == 1);
  8968. GGML_ASSERT(node->src1->ne[2] == 1);
  8969. GGML_ASSERT(node->src1->ne[3] == 1);
  8970. size_t cur = 0;
  8971. const int nk = node->src0->ne[0];
  8972. if (node->src0->type == GGML_TYPE_F16 &&
  8973. node->src1->type == GGML_TYPE_F32) {
  8974. cur = sizeof(ggml_fp16_t)*(
  8975. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  8976. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  8977. );
  8978. } else if (node->src0->type == GGML_TYPE_F32 &&
  8979. node->src1->type == GGML_TYPE_F32) {
  8980. cur = sizeof(float)*(
  8981. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  8982. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  8983. );
  8984. } else {
  8985. GGML_ASSERT(false);
  8986. }
  8987. work_size = MAX(work_size, cur);
  8988. } break;
  8989. case GGML_OP_FLASH_ATTN:
  8990. {
  8991. node->n_tasks = n_threads;
  8992. size_t cur = 0;
  8993. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  8994. if (node->src1->type == GGML_TYPE_F32) {
  8995. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  8996. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  8997. }
  8998. if (node->src1->type == GGML_TYPE_F16) {
  8999. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9000. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9001. }
  9002. work_size = MAX(work_size, cur);
  9003. } break;
  9004. case GGML_OP_FLASH_FF:
  9005. {
  9006. node->n_tasks = n_threads;
  9007. size_t cur = 0;
  9008. if (node->src1->type == GGML_TYPE_F32) {
  9009. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9010. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9011. }
  9012. if (node->src1->type == GGML_TYPE_F16) {
  9013. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9014. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9015. }
  9016. work_size = MAX(work_size, cur);
  9017. } break;
  9018. case GGML_OP_MAP_UNARY:
  9019. case GGML_OP_MAP_BINARY:
  9020. {
  9021. node->n_tasks = 1;
  9022. } break;
  9023. case GGML_OP_NONE:
  9024. {
  9025. node->n_tasks = 1;
  9026. } break;
  9027. case GGML_OP_COUNT:
  9028. {
  9029. GGML_ASSERT(false);
  9030. } break;
  9031. }
  9032. }
  9033. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  9034. GGML_ASSERT(false); // TODO: better handling
  9035. }
  9036. if (work_size > 0 && cgraph->work == NULL) {
  9037. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  9038. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  9039. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  9040. }
  9041. }
  9042. const int64_t perf_start_cycles = ggml_perf_cycles();
  9043. const int64_t perf_start_time_us = ggml_perf_time_us();
  9044. for (int i = 0; i < cgraph->n_nodes; i++) {
  9045. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  9046. struct ggml_tensor * node = cgraph->nodes[i];
  9047. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  9048. //if (node->grad == NULL && node->perf_runs > 0) {
  9049. // continue;
  9050. //}
  9051. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  9052. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  9053. // INIT
  9054. struct ggml_compute_params params = {
  9055. /*.type =*/ GGML_TASK_INIT,
  9056. /*.ith =*/ 0,
  9057. /*.nth =*/ node->n_tasks,
  9058. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9059. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  9060. };
  9061. ggml_compute_forward(&params, node);
  9062. // COMPUTE
  9063. if (node->n_tasks > 1) {
  9064. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9065. atomic_store(&state_shared.has_work, false);
  9066. }
  9067. while (atomic_load(&state_shared.has_work)) {
  9068. ggml_lock_lock (&state_shared.spin);
  9069. ggml_lock_unlock(&state_shared.spin);
  9070. }
  9071. // launch thread pool
  9072. for (int j = 0; j < n_threads - 1; j++) {
  9073. workers[j].params = (struct ggml_compute_params) {
  9074. .type = GGML_TASK_COMPUTE,
  9075. .ith = j + 1,
  9076. .nth = node->n_tasks,
  9077. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9078. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9079. };
  9080. workers[j].node = node;
  9081. }
  9082. atomic_fetch_sub(&state_shared.n_ready, 1);
  9083. while (atomic_load(&state_shared.n_ready) > 0) {
  9084. ggml_lock_lock (&state_shared.spin);
  9085. ggml_lock_unlock(&state_shared.spin);
  9086. }
  9087. atomic_store(&state_shared.has_work, true);
  9088. }
  9089. params.type = GGML_TASK_COMPUTE;
  9090. ggml_compute_forward(&params, node);
  9091. // wait for thread pool
  9092. if (node->n_tasks > 1) {
  9093. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9094. atomic_store(&state_shared.has_work, false);
  9095. }
  9096. while (atomic_load(&state_shared.has_work)) {
  9097. ggml_lock_lock (&state_shared.spin);
  9098. ggml_lock_unlock(&state_shared.spin);
  9099. }
  9100. atomic_fetch_sub(&state_shared.n_ready, 1);
  9101. while (atomic_load(&state_shared.n_ready) != 0) {
  9102. ggml_lock_lock (&state_shared.spin);
  9103. ggml_lock_unlock(&state_shared.spin);
  9104. }
  9105. }
  9106. // FINALIZE
  9107. if (node->n_tasks > 1) {
  9108. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9109. atomic_store(&state_shared.has_work, false);
  9110. }
  9111. while (atomic_load(&state_shared.has_work)) {
  9112. ggml_lock_lock (&state_shared.spin);
  9113. ggml_lock_unlock(&state_shared.spin);
  9114. }
  9115. // launch thread pool
  9116. for (int j = 0; j < n_threads - 1; j++) {
  9117. workers[j].params = (struct ggml_compute_params) {
  9118. .type = GGML_TASK_FINALIZE,
  9119. .ith = j + 1,
  9120. .nth = node->n_tasks,
  9121. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9122. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9123. };
  9124. workers[j].node = node;
  9125. }
  9126. atomic_fetch_sub(&state_shared.n_ready, 1);
  9127. while (atomic_load(&state_shared.n_ready) > 0) {
  9128. ggml_lock_lock (&state_shared.spin);
  9129. ggml_lock_unlock(&state_shared.spin);
  9130. }
  9131. atomic_store(&state_shared.has_work, true);
  9132. }
  9133. params.type = GGML_TASK_FINALIZE;
  9134. ggml_compute_forward(&params, node);
  9135. // wait for thread pool
  9136. if (node->n_tasks > 1) {
  9137. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9138. atomic_store(&state_shared.has_work, false);
  9139. }
  9140. while (atomic_load(&state_shared.has_work)) {
  9141. ggml_lock_lock (&state_shared.spin);
  9142. ggml_lock_unlock(&state_shared.spin);
  9143. }
  9144. atomic_fetch_sub(&state_shared.n_ready, 1);
  9145. while (atomic_load(&state_shared.n_ready) != 0) {
  9146. ggml_lock_lock (&state_shared.spin);
  9147. ggml_lock_unlock(&state_shared.spin);
  9148. }
  9149. }
  9150. // performance stats (node)
  9151. {
  9152. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  9153. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  9154. node->perf_runs++;
  9155. node->perf_cycles += perf_cycles_cur;
  9156. node->perf_time_us += perf_time_us_cur;
  9157. }
  9158. }
  9159. // join thread pool
  9160. if (n_threads > 1) {
  9161. atomic_store(&state_shared.stop, true);
  9162. atomic_store(&state_shared.has_work, true);
  9163. for (int j = 0; j < n_threads - 1; j++) {
  9164. int rc = ggml_thread_join(workers[j].thrd, NULL);
  9165. GGML_ASSERT(rc == 0);
  9166. UNUSED(rc);
  9167. }
  9168. ggml_lock_destroy(&state_shared.spin);
  9169. }
  9170. // performance stats (graph)
  9171. {
  9172. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  9173. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  9174. cgraph->perf_runs++;
  9175. cgraph->perf_cycles += perf_cycles_cur;
  9176. cgraph->perf_time_us += perf_time_us_cur;
  9177. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  9178. __func__, cgraph->perf_runs,
  9179. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  9180. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  9181. (double) perf_time_us_cur / 1000.0,
  9182. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  9183. }
  9184. }
  9185. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  9186. for (int i = 0; i < cgraph->n_nodes; i++) {
  9187. struct ggml_tensor * grad = cgraph->grads[i];
  9188. if (grad) {
  9189. ggml_set_zero(grad);
  9190. }
  9191. }
  9192. }
  9193. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  9194. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  9195. GGML_PRINT("=== GRAPH ===\n");
  9196. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  9197. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  9198. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  9199. for (int i = 0; i < cgraph->n_nodes; i++) {
  9200. struct ggml_tensor * node = cgraph->nodes[i];
  9201. perf_total_per_op_us[node->op] += node->perf_time_us;
  9202. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 ", %" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  9203. i,
  9204. node->ne[0], node->ne[1], node->ne[2],
  9205. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  9206. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  9207. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  9208. (double) node->perf_time_us / 1000.0,
  9209. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  9210. }
  9211. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  9212. for (int i = 0; i < cgraph->n_leafs; i++) {
  9213. struct ggml_tensor * node = cgraph->leafs[i];
  9214. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 "] %8s\n",
  9215. i,
  9216. node->ne[0], node->ne[1],
  9217. GGML_OP_LABEL[node->op]);
  9218. }
  9219. for (int i = 0; i < GGML_OP_COUNT; i++) {
  9220. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  9221. }
  9222. GGML_PRINT("========================================\n");
  9223. }
  9224. // check if node is part of the graph
  9225. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9226. if (cgraph == NULL) {
  9227. return true;
  9228. }
  9229. for (int i = 0; i < cgraph->n_nodes; i++) {
  9230. if (cgraph->nodes[i] == node) {
  9231. return true;
  9232. }
  9233. }
  9234. return false;
  9235. }
  9236. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9237. for (int i = 0; i < cgraph->n_nodes; i++) {
  9238. struct ggml_tensor * parent = cgraph->nodes[i];
  9239. if (parent->grad == node) {
  9240. return parent;
  9241. }
  9242. }
  9243. return NULL;
  9244. }
  9245. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  9246. char color[16];
  9247. FILE * fp = fopen(filename, "w");
  9248. GGML_ASSERT(fp);
  9249. fprintf(fp, "digraph G {\n");
  9250. fprintf(fp, " newrank = true;\n");
  9251. fprintf(fp, " rankdir = LR;\n");
  9252. for (int i = 0; i < gb->n_nodes; i++) {
  9253. struct ggml_tensor * node = gb->nodes[i];
  9254. if (ggml_graph_get_parent(gb, node) != NULL) {
  9255. continue;
  9256. }
  9257. if (node->is_param) {
  9258. snprintf(color, sizeof(color), "yellow");
  9259. } else if (node->grad) {
  9260. if (ggml_graph_find(gf, node)) {
  9261. snprintf(color, sizeof(color), "green");
  9262. } else {
  9263. snprintf(color, sizeof(color), "lightblue");
  9264. }
  9265. } else {
  9266. snprintf(color, sizeof(color), "white");
  9267. }
  9268. fprintf(fp, " \"%p\" [ \
  9269. style = filled; fillcolor = %s; shape = record; \
  9270. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  9271. (void *) node, color,
  9272. i, node->ne[0], node->ne[1],
  9273. GGML_OP_SYMBOL[node->op]);
  9274. if (node->grad) {
  9275. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  9276. } else {
  9277. fprintf(fp, "\"; ]\n");
  9278. }
  9279. }
  9280. for (int i = 0; i < gb->n_leafs; i++) {
  9281. struct ggml_tensor * node = gb->leafs[i];
  9282. snprintf(color, sizeof(color), "pink");
  9283. if (ggml_nelements(node) == 1) {
  9284. fprintf(fp, " \"%p\" [ \
  9285. style = filled; fillcolor = %s; shape = record; \
  9286. label=\"<x>%.1e\"; ]\n",
  9287. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  9288. } else {
  9289. fprintf(fp, " \"%p\" [ \
  9290. style = filled; fillcolor = %s; shape = record; \
  9291. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  9292. (void *) node, color,
  9293. i, node->ne[0], node->ne[1]);
  9294. }
  9295. }
  9296. for (int i = 0; i < gb->n_nodes; i++) {
  9297. struct ggml_tensor * node = gb->nodes[i];
  9298. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  9299. if (node->src0) {
  9300. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  9301. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  9302. parent0 ? (void *) parent0 : (void *) node->src0,
  9303. parent0 ? "g" : "x",
  9304. parent ? (void *) parent : (void *) node,
  9305. parent ? "g" : "x",
  9306. parent ? "empty" : "vee",
  9307. parent ? "dashed" : "solid");
  9308. }
  9309. if (node->src1) {
  9310. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  9311. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  9312. parent1 ? (void *) parent1 : (void *) node->src1,
  9313. parent1 ? "g" : "x",
  9314. parent ? (void *) parent : (void *) node,
  9315. parent ? "g" : "x",
  9316. parent ? "empty" : "vee",
  9317. parent ? "dashed" : "solid");
  9318. }
  9319. }
  9320. for (int i = 0; i < gb->n_leafs; i++) {
  9321. struct ggml_tensor * node = gb->leafs[i];
  9322. if (node->src0) {
  9323. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  9324. (void *) node->src0, "x",
  9325. (void *) node, "x");
  9326. }
  9327. if (node->src1) {
  9328. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  9329. (void *) node->src1, "x",
  9330. (void *) node, "x");
  9331. }
  9332. }
  9333. fprintf(fp, "}\n");
  9334. fclose(fp);
  9335. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  9336. }
  9337. ////////////////////////////////////////////////////////////////////////////////
  9338. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  9339. int i = 0;
  9340. for (int p = 0; p < np; ++p) {
  9341. const int64_t ne = ggml_nelements(ps[p]) ;
  9342. // TODO: add function to set tensor from array
  9343. for (int64_t j = 0; j < ne; ++j) {
  9344. ggml_set_f32_1d(ps[p], j, x[i++]);
  9345. }
  9346. }
  9347. }
  9348. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  9349. int i = 0;
  9350. for (int p = 0; p < np; ++p) {
  9351. const int64_t ne = ggml_nelements(ps[p]) ;
  9352. // TODO: add function to get all elements at once
  9353. for (int64_t j = 0; j < ne; ++j) {
  9354. x[i++] = ggml_get_f32_1d(ps[p], j);
  9355. }
  9356. }
  9357. }
  9358. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  9359. int i = 0;
  9360. for (int p = 0; p < np; ++p) {
  9361. const int64_t ne = ggml_nelements(ps[p]) ;
  9362. // TODO: add function to get all elements at once
  9363. for (int64_t j = 0; j < ne; ++j) {
  9364. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  9365. }
  9366. }
  9367. }
  9368. //
  9369. // ADAM
  9370. //
  9371. // ref: https://arxiv.org/pdf/1412.6980.pdf
  9372. //
  9373. static enum ggml_opt_result ggml_opt_adam(
  9374. struct ggml_context * ctx,
  9375. struct ggml_opt_params params,
  9376. struct ggml_tensor * f,
  9377. struct ggml_cgraph * gf,
  9378. struct ggml_cgraph * gb) {
  9379. GGML_ASSERT(ggml_is_scalar(f));
  9380. gf->n_threads = params.n_threads;
  9381. gb->n_threads = params.n_threads;
  9382. // these will store the parameters we want to optimize
  9383. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9384. int np = 0;
  9385. int nx = 0;
  9386. for (int i = 0; i < gf->n_nodes; ++i) {
  9387. if (gf->nodes[i]->is_param) {
  9388. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9389. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9390. ps[np++] = gf->nodes[i];
  9391. nx += ggml_nelements(gf->nodes[i]);
  9392. }
  9393. }
  9394. // constants
  9395. const float alpha = params.adam.alpha;
  9396. const float beta1 = params.adam.beta1;
  9397. const float beta2 = params.adam.beta2;
  9398. const float eps = params.adam.eps;
  9399. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  9400. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  9401. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  9402. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  9403. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  9404. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  9405. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  9406. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9407. // initialize
  9408. ggml_vec_set_f32(nx, m, 0.0f);
  9409. ggml_vec_set_f32(nx, v, 0.0f);
  9410. // update view
  9411. ggml_opt_get_params(np, ps, x);
  9412. // compute the function value
  9413. ggml_graph_reset (gf);
  9414. ggml_set_f32 (f->grad, 1.0f);
  9415. ggml_graph_compute(ctx, gb);
  9416. float fx_prev = ggml_get_f32_1d(f, 0);
  9417. if (pf) {
  9418. pf[0] = fx_prev;
  9419. }
  9420. int n_no_improvement = 0;
  9421. float fx_best = fx_prev;
  9422. // run the optimizer
  9423. for (int t = 0; t < params.adam.n_iter; ++t) {
  9424. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  9425. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9426. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  9427. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  9428. for (int i = 0; i < np; ++i) {
  9429. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  9430. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  9431. }
  9432. const int64_t t_start_wall = ggml_time_us();
  9433. const int64_t t_start_cpu = ggml_cycles();
  9434. UNUSED(t_start_wall);
  9435. UNUSED(t_start_cpu);
  9436. {
  9437. // update the gradient
  9438. ggml_opt_get_grad(np, ps, g1);
  9439. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  9440. ggml_vec_scale_f32(nx, m, beta1);
  9441. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  9442. // g2 = g1^2
  9443. ggml_vec_sqr_f32 (nx, g2, g1);
  9444. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  9445. ggml_vec_scale_f32(nx, v, beta2);
  9446. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  9447. // m^hat = m_t / (1 - beta1^t)
  9448. // v^hat = v_t / (1 - beta2^t)
  9449. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  9450. ggml_vec_cpy_f32 (nx, mh, m);
  9451. ggml_vec_cpy_f32 (nx, vh, v);
  9452. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  9453. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  9454. ggml_vec_sqrt_f32 (nx, vh, vh);
  9455. ggml_vec_acc1_f32 (nx, vh, eps);
  9456. ggml_vec_div_f32 (nx, mh, mh, vh);
  9457. ggml_vec_sub_f32 (nx, x, x, mh);
  9458. // update the parameters
  9459. ggml_opt_set_params(np, ps, x);
  9460. }
  9461. ggml_graph_reset (gf);
  9462. ggml_set_f32 (f->grad, 1.0f);
  9463. ggml_graph_compute(ctx, gb);
  9464. const float fx = ggml_get_f32_1d(f, 0);
  9465. // check convergence
  9466. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  9467. GGML_PRINT_DEBUG("converged\n");
  9468. return GGML_OPT_OK;
  9469. }
  9470. // delta-based convergence test
  9471. if (pf != NULL) {
  9472. // need at least params.past iterations to start checking for convergence
  9473. if (params.past <= t) {
  9474. const float rate = (pf[t%params.past] - fx)/fx;
  9475. if (fabsf(rate) < params.delta) {
  9476. return GGML_OPT_OK;
  9477. }
  9478. }
  9479. pf[t%params.past] = fx;
  9480. }
  9481. // check for improvement
  9482. if (params.max_no_improvement > 0) {
  9483. if (fx_best > fx) {
  9484. fx_best = fx;
  9485. n_no_improvement = 0;
  9486. } else {
  9487. ++n_no_improvement;
  9488. if (n_no_improvement >= params.max_no_improvement) {
  9489. return GGML_OPT_OK;
  9490. }
  9491. }
  9492. }
  9493. fx_prev = fx;
  9494. {
  9495. const int64_t t_end_cpu = ggml_cycles();
  9496. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  9497. UNUSED(t_end_cpu);
  9498. const int64_t t_end_wall = ggml_time_us();
  9499. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  9500. UNUSED(t_end_wall);
  9501. }
  9502. }
  9503. return GGML_OPT_DID_NOT_CONVERGE;
  9504. }
  9505. //
  9506. // L-BFGS
  9507. //
  9508. // the L-BFGS implementation below is based on the following implementation:
  9509. //
  9510. // https://github.com/chokkan/liblbfgs
  9511. //
  9512. struct ggml_lbfgs_iteration_data {
  9513. float alpha;
  9514. float ys;
  9515. float * s;
  9516. float * y;
  9517. };
  9518. static enum ggml_opt_result linesearch_backtracking(
  9519. struct ggml_context * ctx,
  9520. const struct ggml_opt_params * params,
  9521. int nx,
  9522. float * x,
  9523. float * fx,
  9524. float * g,
  9525. float * d,
  9526. float * step,
  9527. const float * xp,
  9528. struct ggml_tensor * f,
  9529. struct ggml_cgraph * gf,
  9530. struct ggml_cgraph * gb,
  9531. const int np,
  9532. struct ggml_tensor * ps[]) {
  9533. int count = 0;
  9534. float width = 0.0f;
  9535. float dg = 0.0f;
  9536. float finit = 0.0f;
  9537. float dginit = 0.0f;
  9538. float dgtest = 0.0f;
  9539. const float dec = 0.5f;
  9540. const float inc = 2.1f;
  9541. if (*step <= 0.f) {
  9542. return GGML_LINESEARCH_INVALID_PARAMETERS;
  9543. }
  9544. // compute the initial gradient in the search direction
  9545. ggml_vec_dot_f32(nx, &dginit, g, d);
  9546. // make sure that d points to a descent direction
  9547. if (0 < dginit) {
  9548. return GGML_LINESEARCH_FAIL;
  9549. }
  9550. // initialize local variables
  9551. finit = *fx;
  9552. dgtest = params->lbfgs.ftol*dginit;
  9553. while (true) {
  9554. ggml_vec_cpy_f32(nx, x, xp);
  9555. ggml_vec_mad_f32(nx, x, d, *step);
  9556. // evaluate the function and gradient values
  9557. {
  9558. ggml_opt_set_params(np, ps, x);
  9559. ggml_graph_reset (gf);
  9560. ggml_set_f32 (f->grad, 1.0f);
  9561. ggml_graph_compute(ctx, gb);
  9562. ggml_opt_get_grad(np, ps, g);
  9563. *fx = ggml_get_f32_1d(f, 0);
  9564. }
  9565. ++count;
  9566. if (*fx > finit + (*step)*dgtest) {
  9567. width = dec;
  9568. } else {
  9569. // Armijo condition is satisfied
  9570. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  9571. return count;
  9572. }
  9573. ggml_vec_dot_f32(nx, &dg, g, d);
  9574. // check the Wolfe condition
  9575. if (dg < params->lbfgs.wolfe * dginit) {
  9576. width = inc;
  9577. } else {
  9578. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  9579. // regular Wolfe conditions
  9580. return count;
  9581. }
  9582. if(dg > -params->lbfgs.wolfe*dginit) {
  9583. width = dec;
  9584. } else {
  9585. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  9586. return count;
  9587. }
  9588. return count;
  9589. }
  9590. }
  9591. if (*step < params->lbfgs.min_step) {
  9592. return GGML_LINESEARCH_MINIMUM_STEP;
  9593. }
  9594. if (*step > params->lbfgs.max_step) {
  9595. return GGML_LINESEARCH_MAXIMUM_STEP;
  9596. }
  9597. if (params->lbfgs.max_linesearch <= count) {
  9598. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  9599. }
  9600. (*step) *= width;
  9601. }
  9602. return GGML_LINESEARCH_FAIL;
  9603. }
  9604. static enum ggml_opt_result ggml_opt_lbfgs(
  9605. struct ggml_context * ctx,
  9606. struct ggml_opt_params params,
  9607. struct ggml_tensor * f,
  9608. struct ggml_cgraph * gf,
  9609. struct ggml_cgraph * gb) {
  9610. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  9611. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  9612. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  9613. return GGML_OPT_INVALID_WOLFE;
  9614. }
  9615. }
  9616. gf->n_threads = params.n_threads;
  9617. gb->n_threads = params.n_threads;
  9618. const int m = params.lbfgs.m;
  9619. // these will store the parameters we want to optimize
  9620. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9621. int np = 0;
  9622. int nx = 0;
  9623. for (int i = 0; i < gf->n_nodes; ++i) {
  9624. if (gf->nodes[i]->is_param) {
  9625. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9626. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9627. ps[np++] = gf->nodes[i];
  9628. nx += ggml_nelements(gf->nodes[i]);
  9629. }
  9630. }
  9631. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  9632. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  9633. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  9634. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  9635. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  9636. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9637. float fx = 0.0f; // cost function value
  9638. float xnorm = 0.0f; // ||x||
  9639. float gnorm = 0.0f; // ||g||
  9640. float step = 0.0f;
  9641. // initialize x from the graph nodes
  9642. ggml_opt_get_params(np, ps, x);
  9643. // the L-BFGS memory
  9644. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  9645. for (int i = 0; i < m; ++i) {
  9646. lm[i].alpha = 0.0f;
  9647. lm[i].ys = 0.0f;
  9648. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  9649. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  9650. }
  9651. // evaluate the function value and its gradient
  9652. {
  9653. ggml_opt_set_params(np, ps, x);
  9654. ggml_graph_reset (gf);
  9655. ggml_set_f32 (f->grad, 1.0f);
  9656. ggml_graph_compute(ctx, gb);
  9657. ggml_opt_get_grad(np, ps, g);
  9658. fx = ggml_get_f32_1d(f, 0);
  9659. }
  9660. if (pf) {
  9661. pf[0] = fx;
  9662. }
  9663. float fx_best = fx;
  9664. // search direction = -gradient
  9665. ggml_vec_neg_f32(nx, d, g);
  9666. // ||x||, ||g||
  9667. ggml_vec_norm_f32(nx, &xnorm, x);
  9668. ggml_vec_norm_f32(nx, &gnorm, g);
  9669. if (xnorm < 1.0f) {
  9670. xnorm = 1.0f;
  9671. }
  9672. // already optimized
  9673. if (gnorm/xnorm <= params.lbfgs.eps) {
  9674. return GGML_OPT_OK;
  9675. }
  9676. // initial step
  9677. ggml_vec_norm_inv_f32(nx, &step, d);
  9678. int j = 0;
  9679. int k = 1;
  9680. int ls = 0;
  9681. int end = 0;
  9682. int bound = 0;
  9683. int n_no_improvement = 0;
  9684. float ys = 0.0f;
  9685. float yy = 0.0f;
  9686. float beta = 0.0f;
  9687. while (true) {
  9688. // store the current position and gradient vectors
  9689. ggml_vec_cpy_f32(nx, xp, x);
  9690. ggml_vec_cpy_f32(nx, gp, g);
  9691. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  9692. if (ls < 0) {
  9693. // linesearch failed - go back to the previous point and return
  9694. ggml_vec_cpy_f32(nx, x, xp);
  9695. ggml_vec_cpy_f32(nx, g, gp);
  9696. return ls;
  9697. }
  9698. ggml_vec_norm_f32(nx, &xnorm, x);
  9699. ggml_vec_norm_f32(nx, &gnorm, g);
  9700. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9701. if (xnorm < 1.0f) {
  9702. xnorm = 1.0f;
  9703. }
  9704. if (gnorm/xnorm <= params.lbfgs.eps) {
  9705. // converged
  9706. return GGML_OPT_OK;
  9707. }
  9708. // delta-based convergence test
  9709. if (pf != NULL) {
  9710. // need at least params.past iterations to start checking for convergence
  9711. if (params.past <= k) {
  9712. const float rate = (pf[k%params.past] - fx)/fx;
  9713. if (fabsf(rate) < params.delta) {
  9714. return GGML_OPT_OK;
  9715. }
  9716. }
  9717. pf[k%params.past] = fx;
  9718. }
  9719. // check for improvement
  9720. if (params.max_no_improvement > 0) {
  9721. if (fx < fx_best) {
  9722. fx_best = fx;
  9723. n_no_improvement = 0;
  9724. } else {
  9725. n_no_improvement++;
  9726. if (n_no_improvement >= params.max_no_improvement) {
  9727. return GGML_OPT_OK;
  9728. }
  9729. }
  9730. }
  9731. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  9732. // reached the maximum number of iterations
  9733. return GGML_OPT_DID_NOT_CONVERGE;
  9734. }
  9735. // update vectors s and y:
  9736. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  9737. // y_{k+1} = g_{k+1} - g_{k}.
  9738. //
  9739. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  9740. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  9741. // compute scalars ys and yy:
  9742. // ys = y^t \cdot s -> 1 / \rho.
  9743. // yy = y^t \cdot y.
  9744. //
  9745. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  9746. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  9747. lm[end].ys = ys;
  9748. // find new search direction
  9749. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  9750. bound = (m <= k) ? m : k;
  9751. k++;
  9752. end = (end + 1)%m;
  9753. // initialize search direction with -g
  9754. ggml_vec_neg_f32(nx, d, g);
  9755. j = end;
  9756. for (int i = 0; i < bound; ++i) {
  9757. j = (j + m - 1) % m;
  9758. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  9759. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  9760. lm[j].alpha /= lm[j].ys;
  9761. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  9762. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  9763. }
  9764. ggml_vec_scale_f32(nx, d, ys/yy);
  9765. for (int i = 0; i < bound; ++i) {
  9766. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  9767. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  9768. beta /= lm[j].ys;
  9769. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  9770. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  9771. j = (j + 1)%m;
  9772. }
  9773. step = 1.0;
  9774. }
  9775. return GGML_OPT_DID_NOT_CONVERGE;
  9776. }
  9777. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  9778. struct ggml_opt_params result;
  9779. switch (type) {
  9780. case GGML_OPT_ADAM:
  9781. {
  9782. result = (struct ggml_opt_params) {
  9783. .type = GGML_OPT_ADAM,
  9784. .n_threads = 1,
  9785. .past = 0,
  9786. .delta = 1e-5f,
  9787. .max_no_improvement = 100,
  9788. .print_forward_graph = true,
  9789. .print_backward_graph = true,
  9790. .adam = {
  9791. .n_iter = 10000,
  9792. .alpha = 0.001f,
  9793. .beta1 = 0.9f,
  9794. .beta2 = 0.999f,
  9795. .eps = 1e-8f,
  9796. .eps_f = 1e-5f,
  9797. .eps_g = 1e-3f,
  9798. },
  9799. };
  9800. } break;
  9801. case GGML_OPT_LBFGS:
  9802. {
  9803. result = (struct ggml_opt_params) {
  9804. .type = GGML_OPT_LBFGS,
  9805. .n_threads = 1,
  9806. .past = 0,
  9807. .delta = 1e-5f,
  9808. .max_no_improvement = 0,
  9809. .print_forward_graph = true,
  9810. .print_backward_graph = true,
  9811. .lbfgs = {
  9812. .m = 6,
  9813. .n_iter = 100,
  9814. .max_linesearch = 20,
  9815. .eps = 1e-5f,
  9816. .ftol = 1e-4f,
  9817. .wolfe = 0.9f,
  9818. .min_step = 1e-20f,
  9819. .max_step = 1e+20f,
  9820. .linesearch = GGML_LINESEARCH_DEFAULT,
  9821. },
  9822. };
  9823. } break;
  9824. }
  9825. return result;
  9826. }
  9827. enum ggml_opt_result ggml_opt(
  9828. struct ggml_context * ctx,
  9829. struct ggml_opt_params params,
  9830. struct ggml_tensor * f) {
  9831. bool free_ctx = false;
  9832. if (ctx == NULL) {
  9833. struct ggml_init_params params_ctx = {
  9834. .mem_size = 16*1024*1024,
  9835. .mem_buffer = NULL,
  9836. .no_alloc = false,
  9837. };
  9838. ctx = ggml_init(params_ctx);
  9839. if (ctx == NULL) {
  9840. return GGML_OPT_NO_CONTEXT;
  9841. }
  9842. free_ctx = true;
  9843. }
  9844. enum ggml_opt_result result = GGML_OPT_OK;
  9845. // build forward + backward compute graphs
  9846. struct ggml_cgraph gf = ggml_build_forward (f);
  9847. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  9848. switch (params.type) {
  9849. case GGML_OPT_ADAM:
  9850. {
  9851. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  9852. } break;
  9853. case GGML_OPT_LBFGS:
  9854. {
  9855. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  9856. } break;
  9857. }
  9858. if (params.print_forward_graph) {
  9859. ggml_graph_print (&gf);
  9860. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  9861. }
  9862. if (params.print_backward_graph) {
  9863. ggml_graph_print (&gb);
  9864. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  9865. }
  9866. if (free_ctx) {
  9867. ggml_free(ctx);
  9868. }
  9869. return result;
  9870. }
  9871. ////////////////////////////////////////////////////////////////////////////////
  9872. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  9873. assert(k % QK4_0 == 0);
  9874. const int nb = k / QK4_0;
  9875. for (int j = 0; j < n; j += k) {
  9876. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK4_0;
  9877. quantize_row_q4_0_reference(src + j, y, k);
  9878. for (int i = 0; i < nb; i++) {
  9879. for (int l = 0; l < QK4_0; l += 2) {
  9880. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9881. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9882. hist[vi0]++;
  9883. hist[vi1]++;
  9884. }
  9885. }
  9886. }
  9887. return (n/QK4_0*sizeof(block_q4_0));
  9888. }
  9889. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  9890. assert(k % QK4_1 == 0);
  9891. const int nb = k / QK4_1;
  9892. for (int j = 0; j < n; j += k) {
  9893. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK4_1;
  9894. quantize_row_q4_1_reference(src + j, y, k);
  9895. for (int i = 0; i < nb; i++) {
  9896. for (int l = 0; l < QK4_1; l += 2) {
  9897. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9898. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9899. hist[vi0]++;
  9900. hist[vi1]++;
  9901. }
  9902. }
  9903. }
  9904. return (n/QK4_1*sizeof(block_q4_1));
  9905. }
  9906. size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist) {
  9907. assert(k % QK4_2 == 0);
  9908. const int nb = k / QK4_2;
  9909. for (int j = 0; j < n; j += k) {
  9910. block_q4_2 * restrict y = (block_q4_2 *)dst + j/QK4_2;
  9911. //quantize_row_q4_2_reference(src + j, y, k);
  9912. quantize_row_q4_2_rmse(src + j, y, k);
  9913. for (int i = 0; i < nb; i++) {
  9914. for (int l = 0; l < QK4_2; l += 2) {
  9915. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9916. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9917. hist[vi0]++;
  9918. hist[vi1]++;
  9919. }
  9920. }
  9921. }
  9922. return (n/QK4_2*sizeof(block_q4_2));
  9923. }
  9924. size_t ggml_quantize_q4_3(const float * src, void * dst, int n, int k, int64_t * hist) {
  9925. assert(k % QK4_3 == 0);
  9926. const int nb = k / QK4_3;
  9927. for (int j = 0; j < n; j += k) {
  9928. block_q4_3 * restrict y = (block_q4_3 *)dst + j/QK4_3;
  9929. quantize_row_q4_3_reference(src + j, y, k);
  9930. for (int i = 0; i < nb; i++) {
  9931. for (int l = 0; l < QK4_3; l += 2) {
  9932. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9933. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9934. hist[vi0]++;
  9935. hist[vi1]++;
  9936. }
  9937. }
  9938. }
  9939. return (n/QK4_3*sizeof(block_q4_3));
  9940. }
  9941. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  9942. size_t result = 0;
  9943. switch (type) {
  9944. case GGML_TYPE_Q4_0:
  9945. {
  9946. GGML_ASSERT(start % QK4_0 == 0);
  9947. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  9948. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  9949. } break;
  9950. case GGML_TYPE_Q4_1:
  9951. {
  9952. GGML_ASSERT(start % QK4_1 == 0);
  9953. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  9954. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  9955. } break;
  9956. case GGML_TYPE_Q4_2:
  9957. {
  9958. GGML_ASSERT(start % QK4_2 == 0);
  9959. block_q4_2 * block = (block_q4_2*)dst + start / QK4_2;
  9960. result = ggml_quantize_q4_2(src + start, block, n, n, hist);
  9961. } break;
  9962. case GGML_TYPE_Q4_3:
  9963. {
  9964. GGML_ASSERT(start % QK4_3 == 0);
  9965. block_q4_3 * block = (block_q4_3*)dst + start / QK4_3;
  9966. result = ggml_quantize_q4_3(src + start, block, n, n, hist);
  9967. } break;
  9968. default:
  9969. assert(false);
  9970. }
  9971. return result;
  9972. }
  9973. ////////////////////////////////////////////////////////////////////////////////
  9974. int ggml_cpu_has_avx(void) {
  9975. #if defined(__AVX__)
  9976. return 1;
  9977. #else
  9978. return 0;
  9979. #endif
  9980. }
  9981. int ggml_cpu_has_avx2(void) {
  9982. #if defined(__AVX2__)
  9983. return 1;
  9984. #else
  9985. return 0;
  9986. #endif
  9987. }
  9988. int ggml_cpu_has_avx512(void) {
  9989. #if defined(__AVX512F__)
  9990. return 1;
  9991. #else
  9992. return 0;
  9993. #endif
  9994. }
  9995. int ggml_cpu_has_avx512_vbmi(void) {
  9996. #if defined(__AVX512VBMI__)
  9997. return 1;
  9998. #else
  9999. return 0;
  10000. #endif
  10001. }
  10002. int ggml_cpu_has_avx512_vnni(void) {
  10003. #if defined(__AVX512VNNI__)
  10004. return 1;
  10005. #else
  10006. return 0;
  10007. #endif
  10008. }
  10009. int ggml_cpu_has_fma(void) {
  10010. #if defined(__FMA__)
  10011. return 1;
  10012. #else
  10013. return 0;
  10014. #endif
  10015. }
  10016. int ggml_cpu_has_neon(void) {
  10017. #if defined(__ARM_NEON)
  10018. return 1;
  10019. #else
  10020. return 0;
  10021. #endif
  10022. }
  10023. int ggml_cpu_has_arm_fma(void) {
  10024. #if defined(__ARM_FEATURE_FMA)
  10025. return 1;
  10026. #else
  10027. return 0;
  10028. #endif
  10029. }
  10030. int ggml_cpu_has_f16c(void) {
  10031. #if defined(__F16C__)
  10032. return 1;
  10033. #else
  10034. return 0;
  10035. #endif
  10036. }
  10037. int ggml_cpu_has_fp16_va(void) {
  10038. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  10039. return 1;
  10040. #else
  10041. return 0;
  10042. #endif
  10043. }
  10044. int ggml_cpu_has_wasm_simd(void) {
  10045. #if defined(__wasm_simd128__)
  10046. return 1;
  10047. #else
  10048. return 0;
  10049. #endif
  10050. }
  10051. int ggml_cpu_has_blas(void) {
  10052. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  10053. return 1;
  10054. #else
  10055. return 0;
  10056. #endif
  10057. }
  10058. int ggml_cpu_has_cublas(void) {
  10059. #if defined(GGML_USE_CUBLAS)
  10060. return 1;
  10061. #else
  10062. return 0;
  10063. #endif
  10064. }
  10065. int ggml_cpu_has_sse3(void) {
  10066. #if defined(__SSE3__)
  10067. return 1;
  10068. #else
  10069. return 0;
  10070. #endif
  10071. }
  10072. int ggml_cpu_has_vsx(void) {
  10073. #if defined(__POWER9_VECTOR__)
  10074. return 1;
  10075. #else
  10076. return 0;
  10077. #endif
  10078. }
  10079. ////////////////////////////////////////////////////////////////////////////////