clip.cpp 174 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160
  1. // NOTE: This is modified from clip.cpp only for LLaVA,
  2. // so there might be still unnecessary artifacts hanging around
  3. // I'll gradually clean and extend it
  4. // Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
  5. #include "clip.h"
  6. #include "clip-impl.h"
  7. #include "ggml.h"
  8. #include "ggml-cpp.h"
  9. #include "ggml-cpu.h"
  10. #include "ggml-alloc.h"
  11. #include "ggml-backend.h"
  12. #include "gguf.h"
  13. #include <cassert>
  14. #include <cmath>
  15. #include <cstdlib>
  16. #include <cstring>
  17. #include <fstream>
  18. #include <map>
  19. #include <regex>
  20. #include <stdexcept>
  21. #include <unordered_set>
  22. #include <vector>
  23. #include <sstream>
  24. #include <cinttypes>
  25. #include <limits>
  26. #include <array>
  27. #include <numeric>
  28. #include <functional>
  29. struct clip_logger_state g_logger_state = {GGML_LOG_LEVEL_CONT, clip_log_callback_default, NULL};
  30. enum ffn_op_type {
  31. FFN_GELU,
  32. FFN_GELU_ERF,
  33. FFN_SILU,
  34. FFN_GELU_QUICK,
  35. };
  36. enum norm_type {
  37. NORM_TYPE_NORMAL,
  38. NORM_TYPE_RMS,
  39. };
  40. //#define CLIP_DEBUG_FUNCTIONS
  41. #ifdef CLIP_DEBUG_FUNCTIONS
  42. static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
  43. std::ofstream file(filename, std::ios::binary);
  44. if (!file.is_open()) {
  45. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  46. return;
  47. }
  48. // PPM header: P6 format, width, height, and max color value
  49. file << "P6\n" << img.nx << " " << img.ny << "\n255\n";
  50. // Write pixel data
  51. for (size_t i = 0; i < img.buf.size(); i += 3) {
  52. // PPM expects binary data in RGB format, which matches our image buffer
  53. file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
  54. }
  55. file.close();
  56. }
  57. static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
  58. std::ofstream file(filename, std::ios::binary);
  59. if (!file.is_open()) {
  60. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  61. return;
  62. }
  63. int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
  64. int bytesPerPixel = 3;
  65. int widthInBytes = img.nx * bytesPerPixel;
  66. int paddingAmount = (4 - (widthInBytes % 4)) % 4;
  67. int stride = widthInBytes + paddingAmount;
  68. // Bitmap file header
  69. unsigned char fileHeader[14] = {
  70. 'B','M', // Signature
  71. 0,0,0,0, // Image file size in bytes
  72. 0,0,0,0, // Reserved
  73. 54,0,0,0 // Start of pixel array
  74. };
  75. // Total file size
  76. fileSize = 54 + (stride * img.ny);
  77. fileHeader[2] = (unsigned char)(fileSize);
  78. fileHeader[3] = (unsigned char)(fileSize >> 8);
  79. fileHeader[4] = (unsigned char)(fileSize >> 16);
  80. fileHeader[5] = (unsigned char)(fileSize >> 24);
  81. // Bitmap information header (BITMAPINFOHEADER)
  82. unsigned char infoHeader[40] = {
  83. 40,0,0,0, // Size of this header (40 bytes)
  84. 0,0,0,0, // Image width
  85. 0,0,0,0, // Image height
  86. 1,0, // Number of color planes
  87. 24,0, // Bits per pixel
  88. 0,0,0,0, // No compression
  89. 0,0,0,0, // Image size (can be 0 for no compression)
  90. 0,0,0,0, // X pixels per meter (not specified)
  91. 0,0,0,0, // Y pixels per meter (not specified)
  92. 0,0,0,0, // Total colors (color table not used)
  93. 0,0,0,0 // Important colors (all are important)
  94. };
  95. // Width and height in the information header
  96. infoHeader[4] = (unsigned char)(img.nx);
  97. infoHeader[5] = (unsigned char)(img.nx >> 8);
  98. infoHeader[6] = (unsigned char)(img.nx >> 16);
  99. infoHeader[7] = (unsigned char)(img.nx >> 24);
  100. infoHeader[8] = (unsigned char)(img.ny);
  101. infoHeader[9] = (unsigned char)(img.ny >> 8);
  102. infoHeader[10] = (unsigned char)(img.ny >> 16);
  103. infoHeader[11] = (unsigned char)(img.ny >> 24);
  104. // Write file headers
  105. file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
  106. file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));
  107. // Pixel data
  108. std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
  109. for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
  110. for (int x = 0; x < img.nx; ++x) {
  111. // Each pixel
  112. size_t pixelIndex = (y * img.nx + x) * 3;
  113. unsigned char pixel[3] = {
  114. img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
  115. img.buf[pixelIndex + 1],
  116. img.buf[pixelIndex]
  117. };
  118. file.write(reinterpret_cast<char*>(pixel), 3);
  119. }
  120. // Write padding for the row
  121. file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
  122. }
  123. file.close();
  124. }
  125. // debug function to convert f32 to u8
  126. static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
  127. dst.nx = src.nx;
  128. dst.ny = src.ny;
  129. dst.buf.resize(3 * src.nx * src.ny);
  130. for (size_t i = 0; i < src.buf.size(); ++i) {
  131. dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
  132. }
  133. }
  134. #endif
  135. //
  136. // clip layers
  137. //
  138. enum patch_merge_type {
  139. PATCH_MERGE_FLAT,
  140. PATCH_MERGE_SPATIAL_UNPAD,
  141. };
  142. struct clip_hparams {
  143. int32_t image_size;
  144. int32_t patch_size;
  145. int32_t n_embd;
  146. int32_t n_ff;
  147. int32_t projection_dim;
  148. int32_t n_head;
  149. int32_t n_layer;
  150. int32_t proj_scale_factor = 0; // idefics3
  151. float image_mean[3];
  152. float image_std[3];
  153. // for models using dynamic image size, we need to have a smaller image size to warmup
  154. // otherwise, user will get OOM everytime they load the model
  155. int32_t warmup_image_size = 0;
  156. int32_t warmup_audio_size = 3000;
  157. ffn_op_type ffn_op = FFN_GELU;
  158. patch_merge_type mm_patch_merge_type = PATCH_MERGE_FLAT;
  159. float eps = 1e-6;
  160. float rope_theta = 0.0;
  161. std::vector<clip_image_size> image_res_candidates; // for llava-uhd style models
  162. int32_t image_crop_resolution;
  163. std::unordered_set<int32_t> vision_feature_layer;
  164. int32_t attn_window_size = 0;
  165. int32_t n_wa_pattern = 0;
  166. int32_t spatial_merge_size = 0;
  167. // audio
  168. int32_t n_mel_bins = 0; // whisper preprocessor
  169. int32_t proj_stack_factor = 0; // ultravox
  170. // legacy
  171. bool has_llava_projector = false;
  172. int minicpmv_version = 0;
  173. };
  174. struct clip_layer {
  175. // attention
  176. ggml_tensor * k_w = nullptr;
  177. ggml_tensor * k_b = nullptr;
  178. ggml_tensor * q_w = nullptr;
  179. ggml_tensor * q_b = nullptr;
  180. ggml_tensor * v_w = nullptr;
  181. ggml_tensor * v_b = nullptr;
  182. ggml_tensor * o_w = nullptr;
  183. ggml_tensor * o_b = nullptr;
  184. ggml_tensor * k_norm = nullptr;
  185. ggml_tensor * q_norm = nullptr;
  186. // layernorm 1
  187. ggml_tensor * ln_1_w = nullptr;
  188. ggml_tensor * ln_1_b = nullptr;
  189. ggml_tensor * ff_up_w = nullptr;
  190. ggml_tensor * ff_up_b = nullptr;
  191. ggml_tensor * ff_gate_w = nullptr;
  192. ggml_tensor * ff_gate_b = nullptr;
  193. ggml_tensor * ff_down_w = nullptr;
  194. ggml_tensor * ff_down_b = nullptr;
  195. // layernorm 2
  196. ggml_tensor * ln_2_w = nullptr;
  197. ggml_tensor * ln_2_b = nullptr;
  198. // layer scale (no bias)
  199. ggml_tensor * ls_1_w = nullptr;
  200. ggml_tensor * ls_2_w = nullptr;
  201. };
  202. struct clip_model {
  203. clip_modality modality = CLIP_MODALITY_VISION;
  204. projector_type proj_type = PROJECTOR_TYPE_MLP;
  205. clip_hparams hparams;
  206. // embeddings
  207. ggml_tensor * class_embedding = nullptr;
  208. ggml_tensor * patch_embeddings_0 = nullptr;
  209. ggml_tensor * patch_embeddings_1 = nullptr; // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
  210. ggml_tensor * patch_bias = nullptr;
  211. ggml_tensor * position_embeddings = nullptr;
  212. ggml_tensor * pre_ln_w = nullptr;
  213. ggml_tensor * pre_ln_b = nullptr;
  214. std::vector<clip_layer> layers;
  215. ggml_tensor * post_ln_w;
  216. ggml_tensor * post_ln_b;
  217. ggml_tensor * projection; // TODO: rename it to fc (fully connected layer)
  218. ggml_tensor * mm_fc_w;
  219. ggml_tensor * mm_fc_b;
  220. // LLaVA projection
  221. ggml_tensor * mm_input_norm_w = nullptr;
  222. ggml_tensor * mm_0_w = nullptr;
  223. ggml_tensor * mm_0_b = nullptr;
  224. ggml_tensor * mm_2_w = nullptr;
  225. ggml_tensor * mm_2_b = nullptr;
  226. ggml_tensor * image_newline = nullptr;
  227. // Yi type models with mlp+normalization projection
  228. ggml_tensor * mm_1_w = nullptr; // Yi type models have 0, 1, 3, 4
  229. ggml_tensor * mm_1_b = nullptr;
  230. ggml_tensor * mm_3_w = nullptr;
  231. ggml_tensor * mm_3_b = nullptr;
  232. ggml_tensor * mm_4_w = nullptr;
  233. ggml_tensor * mm_4_b = nullptr;
  234. // GLMV-Edge projection
  235. ggml_tensor * mm_model_adapter_conv_w = nullptr;
  236. ggml_tensor * mm_model_adapter_conv_b = nullptr;
  237. ggml_tensor * mm_glm_tok_boi = nullptr;
  238. ggml_tensor * mm_glm_tok_eoi = nullptr;
  239. // MobileVLM projection
  240. ggml_tensor * mm_model_mlp_1_w = nullptr;
  241. ggml_tensor * mm_model_mlp_1_b = nullptr;
  242. ggml_tensor * mm_model_mlp_3_w = nullptr;
  243. ggml_tensor * mm_model_mlp_3_b = nullptr;
  244. ggml_tensor * mm_model_block_1_block_0_0_w = nullptr;
  245. ggml_tensor * mm_model_block_1_block_0_1_w = nullptr;
  246. ggml_tensor * mm_model_block_1_block_0_1_b = nullptr;
  247. ggml_tensor * mm_model_block_1_block_1_fc1_w = nullptr;
  248. ggml_tensor * mm_model_block_1_block_1_fc1_b = nullptr;
  249. ggml_tensor * mm_model_block_1_block_1_fc2_w = nullptr;
  250. ggml_tensor * mm_model_block_1_block_1_fc2_b = nullptr;
  251. ggml_tensor * mm_model_block_1_block_2_0_w = nullptr;
  252. ggml_tensor * mm_model_block_1_block_2_1_w = nullptr;
  253. ggml_tensor * mm_model_block_1_block_2_1_b = nullptr;
  254. ggml_tensor * mm_model_block_2_block_0_0_w = nullptr;
  255. ggml_tensor * mm_model_block_2_block_0_1_w = nullptr;
  256. ggml_tensor * mm_model_block_2_block_0_1_b = nullptr;
  257. ggml_tensor * mm_model_block_2_block_1_fc1_w = nullptr;
  258. ggml_tensor * mm_model_block_2_block_1_fc1_b = nullptr;
  259. ggml_tensor * mm_model_block_2_block_1_fc2_w = nullptr;
  260. ggml_tensor * mm_model_block_2_block_1_fc2_b = nullptr;
  261. ggml_tensor * mm_model_block_2_block_2_0_w = nullptr;
  262. ggml_tensor * mm_model_block_2_block_2_1_w = nullptr;
  263. ggml_tensor * mm_model_block_2_block_2_1_b = nullptr;
  264. // MobileVLM_V2 projection
  265. ggml_tensor * mm_model_mlp_0_w = nullptr;
  266. ggml_tensor * mm_model_mlp_0_b = nullptr;
  267. ggml_tensor * mm_model_mlp_2_w = nullptr;
  268. ggml_tensor * mm_model_mlp_2_b = nullptr;
  269. ggml_tensor * mm_model_peg_0_w = nullptr;
  270. ggml_tensor * mm_model_peg_0_b = nullptr;
  271. // MINICPMV projection
  272. ggml_tensor * mm_model_pos_embed_k = nullptr;
  273. ggml_tensor * mm_model_query = nullptr;
  274. ggml_tensor * mm_model_proj = nullptr;
  275. ggml_tensor * mm_model_kv_proj = nullptr;
  276. ggml_tensor * mm_model_attn_q_w = nullptr;
  277. ggml_tensor * mm_model_attn_q_b = nullptr;
  278. ggml_tensor * mm_model_attn_k_w = nullptr;
  279. ggml_tensor * mm_model_attn_k_b = nullptr;
  280. ggml_tensor * mm_model_attn_v_w = nullptr;
  281. ggml_tensor * mm_model_attn_v_b = nullptr;
  282. ggml_tensor * mm_model_attn_o_w = nullptr;
  283. ggml_tensor * mm_model_attn_o_b = nullptr;
  284. ggml_tensor * mm_model_ln_q_w = nullptr;
  285. ggml_tensor * mm_model_ln_q_b = nullptr;
  286. ggml_tensor * mm_model_ln_kv_w = nullptr;
  287. ggml_tensor * mm_model_ln_kv_b = nullptr;
  288. ggml_tensor * mm_model_ln_post_w = nullptr;
  289. ggml_tensor * mm_model_ln_post_b = nullptr;
  290. // gemma3
  291. ggml_tensor * mm_input_proj_w = nullptr;
  292. ggml_tensor * mm_soft_emb_norm_w = nullptr;
  293. // pixtral
  294. ggml_tensor * token_embd_img_break = nullptr;
  295. ggml_tensor * mm_patch_merger_w = nullptr;
  296. // ultravox / whisper encoder
  297. ggml_tensor * conv1d_1_w = nullptr;
  298. ggml_tensor * conv1d_1_b = nullptr;
  299. ggml_tensor * conv1d_2_w = nullptr;
  300. ggml_tensor * conv1d_2_b = nullptr;
  301. ggml_tensor * mm_norm_pre_w = nullptr;
  302. ggml_tensor * mm_norm_mid_w = nullptr;
  303. };
  304. struct clip_ctx {
  305. clip_model model;
  306. gguf_context_ptr ctx_gguf;
  307. ggml_context_ptr ctx_data;
  308. std::vector<uint8_t> buf_compute_meta;
  309. std::vector<ggml_backend_t> backend_ptrs;
  310. std::vector<ggml_backend_buffer_type_t> backend_buft;
  311. ggml_backend_t backend;
  312. ggml_backend_t backend_cpu;
  313. ggml_backend_buffer_ptr buf;
  314. int max_nodes = 8192;
  315. ggml_backend_sched_ptr sched;
  316. // for debugging
  317. bool debug_graph = false;
  318. std::vector<ggml_tensor *> debug_print_tensors;
  319. clip_ctx(clip_context_params & ctx_params) {
  320. debug_graph = std::getenv("MTMD_DEBUG_GRAPH") != nullptr;
  321. backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr);
  322. if (!backend_cpu) {
  323. throw std::runtime_error("failed to initialize CPU backend");
  324. }
  325. backend = ctx_params.use_gpu
  326. ? ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_GPU, nullptr)
  327. : nullptr;
  328. if (backend) {
  329. LOG_INF("%s: CLIP using %s backend\n", __func__, ggml_backend_name(backend));
  330. backend_ptrs.push_back(backend);
  331. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  332. } else {
  333. backend = backend_cpu;
  334. LOG_INF("%s: CLIP using CPU backend\n", __func__);
  335. }
  336. backend_ptrs.push_back(backend_cpu);
  337. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend_cpu));
  338. sched.reset(
  339. ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false, true)
  340. );
  341. }
  342. ~clip_ctx() {
  343. ggml_backend_free(backend);
  344. if (backend != backend_cpu) {
  345. ggml_backend_free(backend_cpu);
  346. }
  347. }
  348. // this function is added so that we don't change too much of the existing code
  349. projector_type proj_type() const {
  350. return model.proj_type;
  351. }
  352. };
  353. struct clip_graph {
  354. clip_ctx * ctx;
  355. const clip_model & model;
  356. const clip_hparams & hparams;
  357. // we only support single image per batch
  358. const clip_image_f32 & img;
  359. const int patch_size;
  360. const int n_patches_x;
  361. const int n_patches_y;
  362. const int n_patches;
  363. const int n_embd;
  364. const int n_head;
  365. const int d_head;
  366. const int n_layer;
  367. const float eps;
  368. const float kq_scale;
  369. ggml_context_ptr ctx0_ptr;
  370. ggml_context * ctx0;
  371. ggml_cgraph * gf;
  372. clip_graph(clip_ctx * ctx, const clip_image_f32 & img) :
  373. ctx(ctx),
  374. model(ctx->model),
  375. hparams(model.hparams),
  376. img(img),
  377. patch_size(hparams.patch_size),
  378. n_patches_x(img.nx / patch_size),
  379. n_patches_y(img.ny / patch_size),
  380. n_patches(n_patches_x * n_patches_y),
  381. n_embd(hparams.n_embd),
  382. n_head(hparams.n_head),
  383. d_head(n_embd / n_head),
  384. n_layer(hparams.n_layer),
  385. eps(hparams.eps),
  386. kq_scale(1.0f / sqrtf((float)d_head)) {
  387. struct ggml_init_params params = {
  388. /*.mem_size =*/ ctx->buf_compute_meta.size(),
  389. /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
  390. /*.no_alloc =*/ true,
  391. };
  392. ctx0_ptr.reset(ggml_init(params));
  393. ctx0 = ctx0_ptr.get();
  394. gf = ggml_new_graph_custom(ctx0, ctx->max_nodes, false);
  395. }
  396. ggml_cgraph * build_siglip() {
  397. ggml_tensor * inp = build_inp();
  398. ggml_tensor * cur = build_vit(
  399. inp, n_patches,
  400. NORM_TYPE_NORMAL,
  401. hparams.ffn_op,
  402. model.position_embeddings,
  403. nullptr);
  404. if (ctx->proj_type() == PROJECTOR_TYPE_GEMMA3) {
  405. const int batch_size = 1;
  406. GGML_ASSERT(n_patches_x == n_patches_y);
  407. const int patches_per_image = n_patches_x;
  408. const int kernel_size = hparams.proj_scale_factor;
  409. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  410. cur = ggml_reshape_4d(ctx0, cur, patches_per_image, patches_per_image, n_embd, batch_size);
  411. // doing a pool2d to reduce the number of output tokens
  412. cur = ggml_pool_2d(ctx0, cur, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0);
  413. cur = ggml_reshape_3d(ctx0, cur, cur->ne[0] * cur->ne[0], n_embd, batch_size);
  414. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  415. // apply norm before projection
  416. cur = ggml_rms_norm(ctx0, cur, eps);
  417. cur = ggml_mul(ctx0, cur, model.mm_soft_emb_norm_w);
  418. // apply projection
  419. cur = ggml_mul_mat(ctx0,
  420. ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)),
  421. cur);
  422. } else if (ctx->proj_type() == PROJECTOR_TYPE_IDEFICS3) {
  423. // https://github.com/huggingface/transformers/blob/0a950e0bbe1ed58d5401a6b547af19f15f0c195e/src/transformers/models/idefics3/modeling_idefics3.py#L578
  424. const int scale_factor = model.hparams.proj_scale_factor;
  425. const int n_embd = cur->ne[0];
  426. const int seq = cur->ne[1];
  427. const int bsz = 1; // batch size, always 1 for now since we don't support batching
  428. const int height = std::sqrt(seq);
  429. const int width = std::sqrt(seq);
  430. GGML_ASSERT(scale_factor != 0);
  431. cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height, bsz);
  432. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  433. cur = ggml_reshape_4d(ctx0, ggml_cont(ctx0, cur),
  434. n_embd * scale_factor * scale_factor,
  435. height / scale_factor,
  436. width / scale_factor,
  437. bsz);
  438. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  439. cur = ggml_reshape_3d(ctx0, ggml_cont(ctx0, cur),
  440. n_embd * scale_factor * scale_factor,
  441. seq / (scale_factor * scale_factor),
  442. bsz);
  443. cur = ggml_mul_mat(ctx0, model.projection, cur);
  444. } else {
  445. GGML_ABORT("SigLIP: Unsupported projector type");
  446. }
  447. // build the graph
  448. ggml_build_forward_expand(gf, cur);
  449. return gf;
  450. }
  451. ggml_cgraph * build_pixtral() {
  452. const int n_merge = hparams.spatial_merge_size;
  453. // 2D input positions
  454. ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  455. ggml_set_name(pos_h, "pos_h");
  456. ggml_set_input(pos_h);
  457. ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  458. ggml_set_name(pos_w, "pos_w");
  459. ggml_set_input(pos_w);
  460. auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
  461. return build_rope_2d(ctx0, cur, pos_h, pos_w, hparams.rope_theta, true);
  462. };
  463. ggml_tensor * inp = build_inp();
  464. ggml_tensor * cur = build_vit(
  465. inp, n_patches,
  466. NORM_TYPE_RMS,
  467. hparams.ffn_op,
  468. nullptr, // no learned pos embd
  469. add_pos);
  470. // mistral small 3.1 patch merger
  471. // ref: https://github.com/huggingface/transformers/blob/7a3e208892c06a5e278144eaf38c8599a42f53e7/src/transformers/models/mistral3/modeling_mistral3.py#L67
  472. if (model.mm_patch_merger_w) {
  473. GGML_ASSERT(hparams.spatial_merge_size > 0);
  474. cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.mm_input_norm_w);
  475. // reshape image tokens to 2D grid
  476. cur = ggml_reshape_3d(ctx0, cur, n_embd, n_patches_x, n_patches_y);
  477. cur = ggml_permute(ctx0, cur, 2, 0, 1, 3); // [x, y, n_embd]
  478. cur = ggml_cont(ctx0, cur);
  479. // torch.nn.functional.unfold is just an im2col under the hood
  480. // we just need a dummy kernel to make it work
  481. ggml_tensor * kernel = ggml_view_3d(ctx0, cur, n_merge, n_merge, cur->ne[2], 0, 0, 0);
  482. cur = ggml_im2col(ctx0, kernel, cur, n_merge, n_merge, 0, 0, 1, 1, true, inp->type);
  483. // project to n_embd
  484. cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
  485. cur = ggml_mul_mat(ctx0, model.mm_patch_merger_w, cur);
  486. }
  487. // LlavaMultiModalProjector (always using GELU activation)
  488. {
  489. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  490. if (model.mm_1_b) {
  491. cur = ggml_add(ctx0, cur, model.mm_1_b);
  492. }
  493. cur = ggml_gelu(ctx0, cur);
  494. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  495. if (model.mm_2_b) {
  496. cur = ggml_add(ctx0, cur, model.mm_2_b);
  497. }
  498. }
  499. // arrangement of the [IMG_BREAK] token
  500. {
  501. // not efficient, but works
  502. // the trick is to view the embeddings as a 3D tensor with shape [n_embd, n_patches_per_row, n_rows]
  503. // and then concatenate the [IMG_BREAK] token to the end of each row, aka n_patches_per_row dimension
  504. // after the concatenation, we have a tensor with shape [n_embd, n_patches_per_row + 1, n_rows]
  505. const int p_y = n_merge > 0 ? n_patches_y / n_merge : n_patches_y;
  506. const int p_x = n_merge > 0 ? n_patches_x / n_merge : n_patches_x;
  507. const int p_total = p_x * p_y;
  508. const int n_embd_text = cur->ne[0];
  509. const int n_tokens_output = p_total + p_y - 1; // one [IMG_BREAK] per row, except the last row
  510. ggml_tensor * tmp = ggml_reshape_3d(ctx0, cur, n_embd_text, p_x, p_y);
  511. ggml_tensor * tok = ggml_new_tensor_3d(ctx0, tmp->type, n_embd_text, 1, p_y);
  512. tok = ggml_scale(ctx0, tok, 0.0); // clear the tensor
  513. tok = ggml_add(ctx0, tok, model.token_embd_img_break);
  514. tmp = ggml_concat(ctx0, tmp, tok, 1);
  515. cur = ggml_view_2d(ctx0, tmp,
  516. n_embd_text, n_tokens_output,
  517. ggml_row_size(tmp->type, n_embd_text), 0);
  518. }
  519. // build the graph
  520. ggml_build_forward_expand(gf, cur);
  521. return gf;
  522. }
  523. // Qwen2VL and Qwen2.5VL use M-RoPE
  524. ggml_cgraph * build_qwen2vl() {
  525. GGML_ASSERT(model.patch_bias == nullptr);
  526. GGML_ASSERT(model.class_embedding == nullptr);
  527. const int batch_size = 1;
  528. const bool use_window_attn = hparams.n_wa_pattern > 0;
  529. const int n_wa_pattern = hparams.n_wa_pattern;
  530. const int n_pos = n_patches;
  531. const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position
  532. norm_type norm_t = ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL
  533. ? NORM_TYPE_RMS // qwen 2.5 vl
  534. : NORM_TYPE_NORMAL; // qwen 2 vl
  535. int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
  536. ggml_tensor * inp_raw = build_inp_raw();
  537. ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  538. GGML_ASSERT(img.nx % (patch_size * 2) == 0);
  539. GGML_ASSERT(img.ny % (patch_size * 2) == 0);
  540. // second conv dimension
  541. {
  542. auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  543. inp = ggml_add(ctx0, inp, inp_1);
  544. inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 2, 0, 3)); // [w, h, c, b] -> [c, w, h, b]
  545. inp = ggml_reshape_4d(
  546. ctx0, inp,
  547. n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
  548. inp = ggml_reshape_4d(
  549. ctx0, inp,
  550. n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
  551. inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 0, 2, 1, 3));
  552. inp = ggml_reshape_3d(
  553. ctx0, inp,
  554. n_embd, n_patches_x * n_patches_y, batch_size);
  555. }
  556. ggml_tensor * inpL = inp;
  557. ggml_tensor * window_mask = nullptr;
  558. ggml_tensor * window_idx = nullptr;
  559. ggml_tensor * inv_window_idx = nullptr;
  560. ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
  561. ggml_set_name(positions, "positions");
  562. ggml_set_input(positions);
  563. // pre-layernorm
  564. if (model.pre_ln_w) {
  565. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
  566. }
  567. if (use_window_attn) {
  568. // handle window attention inputs
  569. inv_window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
  570. ggml_set_name(inv_window_idx, "inv_window_idx");
  571. ggml_set_input(inv_window_idx);
  572. // mask for window attention
  573. window_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_pos, n_pos);
  574. ggml_set_name(window_mask, "window_mask");
  575. ggml_set_input(window_mask);
  576. // inpL shape: [n_embd, n_patches_x * n_patches_y, batch_size]
  577. GGML_ASSERT(batch_size == 1);
  578. inpL = ggml_reshape_2d(ctx0, inpL, n_embd * 4, n_patches_x * n_patches_y * batch_size / 4);
  579. inpL = ggml_get_rows(ctx0, inpL, inv_window_idx);
  580. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_patches_x * n_patches_y, batch_size);
  581. }
  582. // loop over layers
  583. for (int il = 0; il < n_layer; il++) {
  584. auto & layer = model.layers[il];
  585. const bool full_attn = use_window_attn ? (il + 1) % n_wa_pattern == 0 : true;
  586. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  587. // layernorm1
  588. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
  589. cb(cur, "ln1", il);
  590. // self-attention
  591. {
  592. ggml_tensor * Qcur = ggml_add(ctx0,
  593. ggml_mul_mat(ctx0, layer.q_w, cur), layer.q_b);
  594. ggml_tensor * Kcur = ggml_add(ctx0,
  595. ggml_mul_mat(ctx0, layer.k_w, cur), layer.k_b);
  596. ggml_tensor * Vcur = ggml_add(ctx0,
  597. ggml_mul_mat(ctx0, layer.v_w, cur), layer.v_b);
  598. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_patches);
  599. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_patches);
  600. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_patches);
  601. cb(Qcur, "Qcur", il);
  602. cb(Kcur, "Kcur", il);
  603. cb(Vcur, "Vcur", il);
  604. // apply M-RoPE
  605. Qcur = ggml_rope_multi(
  606. ctx0, Qcur, positions, nullptr,
  607. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  608. Kcur = ggml_rope_multi(
  609. ctx0, Kcur, positions, nullptr,
  610. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  611. cb(Qcur, "Qcur_rope", il);
  612. cb(Kcur, "Kcur_rope", il);
  613. ggml_tensor * attn_mask = full_attn ? nullptr : window_mask;
  614. cur = build_attn(layer.o_w, layer.o_b,
  615. Qcur, Kcur, Vcur, attn_mask, kq_scale, il);
  616. cb(cur, "attn_out", il);
  617. }
  618. // re-add the layer input, e.g., residual
  619. cur = ggml_add(ctx0, cur, inpL);
  620. inpL = cur; // inpL = residual, cur = hidden_states
  621. cb(cur, "ffn_inp", il);
  622. // layernorm2
  623. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
  624. cb(cur, "ffn_inp_normed", il);
  625. // ffn
  626. cur = build_ffn(cur,
  627. layer.ff_up_w, layer.ff_up_b,
  628. layer.ff_gate_w, layer.ff_gate_b,
  629. layer.ff_down_w, layer.ff_down_b,
  630. hparams.ffn_op, il);
  631. cb(cur, "ffn_out", il);
  632. // residual 2
  633. cur = ggml_add(ctx0, inpL, cur);
  634. cb(cur, "layer_out", il);
  635. inpL = cur;
  636. }
  637. // post-layernorm
  638. if (model.post_ln_w) {
  639. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
  640. }
  641. // multimodal projection
  642. ggml_tensor * embeddings = inpL;
  643. embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);
  644. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  645. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  646. // GELU activation
  647. embeddings = ggml_gelu(ctx0, embeddings);
  648. // Second linear layer
  649. embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
  650. embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
  651. if (use_window_attn) {
  652. window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
  653. ggml_set_name(window_idx, "window_idx");
  654. ggml_set_input(window_idx);
  655. // embeddings shape: [n_embd, n_patches_x * n_patches_y, batch_size]
  656. GGML_ASSERT(batch_size == 1);
  657. embeddings = ggml_reshape_2d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4);
  658. embeddings = ggml_get_rows(ctx0, embeddings, window_idx);
  659. embeddings = ggml_reshape_3d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4, batch_size);
  660. }
  661. // build the graph
  662. ggml_build_forward_expand(gf, embeddings);
  663. return gf;
  664. }
  665. ggml_cgraph * build_minicpmv() {
  666. const int batch_size = 1;
  667. GGML_ASSERT(model.class_embedding == nullptr);
  668. const int n_pos = n_patches;
  669. // position embeddings for the projector (not for ViT)
  670. int n_output_dim = clip_n_mmproj_embd(ctx);
  671. ggml_tensor * pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_output_dim, n_pos, batch_size);
  672. ggml_set_name(pos_embed, "pos_embed");
  673. ggml_set_input(pos_embed);
  674. // for selecting learned pos embd, used by ViT
  675. struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  676. ggml_set_name(positions, "positions");
  677. ggml_set_input(positions);
  678. ggml_tensor * learned_pos_embd = ggml_get_rows(ctx0, model.position_embeddings, positions);
  679. ggml_tensor * inp = build_inp();
  680. ggml_tensor * embeddings = build_vit(
  681. inp, n_patches,
  682. NORM_TYPE_NORMAL,
  683. hparams.ffn_op,
  684. learned_pos_embd,
  685. nullptr);
  686. // resampler projector (it is just another transformer)
  687. ggml_tensor * q = model.mm_model_query;
  688. ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
  689. // norm
  690. q = build_norm(q, model.mm_model_ln_q_w, model.mm_model_ln_q_b, NORM_TYPE_NORMAL, eps, -1);
  691. v = build_norm(v, model.mm_model_ln_kv_w, model.mm_model_ln_kv_b, NORM_TYPE_NORMAL, eps, -1);
  692. // k = v + pos_embed
  693. ggml_tensor * k = ggml_add(ctx0, v, pos_embed);
  694. // attention
  695. {
  696. int n_embd = clip_n_mmproj_embd(ctx);
  697. const int d_head = 128;
  698. int n_head = n_embd/d_head;
  699. int num_query = 96;
  700. if (ctx->model.hparams.minicpmv_version == 2) {
  701. num_query = 96;
  702. } else if (ctx->model.hparams.minicpmv_version == 3) {
  703. num_query = 64;
  704. } else if (ctx->model.hparams.minicpmv_version == 4) {
  705. num_query = 64;
  706. }
  707. ggml_tensor * Q = ggml_add(ctx0,
  708. ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q),
  709. model.mm_model_attn_q_b);
  710. ggml_tensor * K = ggml_add(ctx0,
  711. ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k),
  712. model.mm_model_attn_k_b);
  713. ggml_tensor * V = ggml_add(ctx0,
  714. ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v),
  715. model.mm_model_attn_v_b);
  716. Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_query);
  717. K = ggml_reshape_3d(ctx0, K, d_head, n_head, n_pos);
  718. V = ggml_reshape_3d(ctx0, V, d_head, n_head, n_pos);
  719. cb(Q, "resampler_Q", -1);
  720. cb(K, "resampler_K", -1);
  721. cb(V, "resampler_V", -1);
  722. embeddings = build_attn(
  723. model.mm_model_attn_o_w,
  724. model.mm_model_attn_o_b,
  725. Q, K, V, nullptr, kq_scale, -1);
  726. cb(embeddings, "resampler_attn_out", -1);
  727. }
  728. // layernorm
  729. embeddings = build_norm(embeddings, model.mm_model_ln_post_w, model.mm_model_ln_post_b, NORM_TYPE_NORMAL, eps, -1);
  730. // projection
  731. embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
  732. // build the graph
  733. ggml_build_forward_expand(gf, embeddings);
  734. return gf;
  735. }
  736. ggml_cgraph * build_internvl() {
  737. GGML_ASSERT(model.class_embedding != nullptr);
  738. GGML_ASSERT(model.position_embeddings != nullptr);
  739. const int n_pos = n_patches + 1;
  740. ggml_tensor * inp = build_inp();
  741. // add CLS token
  742. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  743. // The larger models use a different ViT, which uses RMS norm instead of layer norm
  744. // ref: https://github.com/ggml-org/llama.cpp/pull/13443#issuecomment-2869786188
  745. norm_type norm_t = (hparams.n_embd == 3200 && hparams.n_layer == 45)
  746. ? NORM_TYPE_RMS // 6B ViT (Used by InternVL 2.5/3 - 26B, 38B, 78B)
  747. : NORM_TYPE_NORMAL; // 300M ViT (Used by all smaller InternVL models)
  748. ggml_tensor * cur = build_vit(
  749. inp, n_pos,
  750. norm_t,
  751. hparams.ffn_op,
  752. model.position_embeddings,
  753. nullptr);
  754. // remove CLS token
  755. cur = ggml_view_2d(ctx0, cur,
  756. n_embd, n_patches,
  757. ggml_row_size(cur->type, n_embd), 0);
  758. // pixel shuffle
  759. {
  760. const int scale_factor = model.hparams.proj_scale_factor;
  761. const int bsz = 1; // batch size, always 1 for now since we don't support batching
  762. const int height = n_patches_y;
  763. const int width = n_patches_x;
  764. GGML_ASSERT(scale_factor > 0);
  765. cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, height / scale_factor, width, bsz);
  766. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  767. cur = ggml_reshape_4d(ctx0, ggml_cont(ctx0, cur),
  768. n_embd * scale_factor * scale_factor,
  769. height / scale_factor,
  770. width / scale_factor,
  771. bsz);
  772. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  773. // flatten to 2D
  774. cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, cur),
  775. n_embd * scale_factor * scale_factor,
  776. cur->ne[1] * cur->ne[2]);
  777. }
  778. // projector (always using GELU activation)
  779. {
  780. // projector LayerNorm uses pytorch's default eps = 1e-5
  781. // ref: https://huggingface.co/OpenGVLab/InternVL3-8B-Instruct/blob/a34d3e4e129a5856abfd6aa6de79776484caa14e/modeling_internvl_chat.py#L79
  782. cur = build_norm(cur, model.mm_0_w, model.mm_0_b, NORM_TYPE_NORMAL, 1e-5, -1);
  783. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  784. cur = ggml_add(ctx0, cur, model.mm_1_b);
  785. cur = ggml_gelu(ctx0, cur);
  786. cur = ggml_mul_mat(ctx0, model.mm_3_w, cur);
  787. cur = ggml_add(ctx0, cur, model.mm_3_b);
  788. }
  789. // build the graph
  790. ggml_build_forward_expand(gf, cur);
  791. return gf;
  792. }
  793. ggml_cgraph * build_llama4() {
  794. GGML_ASSERT(model.class_embedding != nullptr);
  795. GGML_ASSERT(model.position_embeddings != nullptr);
  796. const int n_pos = n_patches + 1; // +1 for [CLS]
  797. // 2D input positions
  798. ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  799. ggml_set_name(pos_h, "pos_h");
  800. ggml_set_input(pos_h);
  801. ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  802. ggml_set_name(pos_w, "pos_w");
  803. ggml_set_input(pos_w);
  804. ggml_tensor * inp = build_inp_raw();
  805. // Llama4UnfoldConvolution
  806. {
  807. ggml_tensor * kernel = ggml_reshape_4d(ctx0, model.patch_embeddings_0,
  808. patch_size, patch_size, 3, n_embd);
  809. inp = ggml_im2col(ctx0, kernel, inp, patch_size, patch_size, 0, 0, 1, 1, true, inp->type);
  810. inp = ggml_mul_mat(ctx0, model.patch_embeddings_0, inp);
  811. inp = ggml_reshape_2d(ctx0, inp, n_embd, n_patches);
  812. cb(inp, "patch_conv", -1);
  813. }
  814. // add CLS token
  815. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  816. // build ViT with 2D position embeddings
  817. auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
  818. // first half is X axis and second half is Y axis
  819. // ref: https://github.com/huggingface/transformers/blob/40a493c7ed4f19f08eadb0639cf26d49bfa5e180/src/transformers/models/llama4/modeling_llama4.py#L1312
  820. // ref: https://github.com/Blaizzy/mlx-vlm/blob/a57156aa87b33cca6e5ee6cfc14dd4ef8f611be6/mlx_vlm/models/llama4/vision.py#L441
  821. return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
  822. };
  823. ggml_tensor * cur = build_vit(
  824. inp, n_pos,
  825. NORM_TYPE_NORMAL,
  826. hparams.ffn_op,
  827. model.position_embeddings,
  828. add_pos);
  829. // remove CLS token
  830. cur = ggml_view_2d(ctx0, cur,
  831. n_embd, n_patches,
  832. ggml_row_size(cur->type, n_embd), 0);
  833. // pixel shuffle
  834. // based on Llama4VisionPixelShuffleMLP
  835. // https://github.com/huggingface/transformers/blob/2932f318a20d9e54cc7aea052e040164d85de7d6/src/transformers/models/llama4/modeling_llama4.py#L1151
  836. {
  837. const int scale_factor = model.hparams.proj_scale_factor;
  838. const int bsz = 1; // batch size, always 1 for now since we don't support batching
  839. GGML_ASSERT(scale_factor > 0);
  840. GGML_ASSERT(n_patches_x == n_patches_y); // llama4 only supports square images
  841. cur = ggml_reshape_4d(ctx0, cur,
  842. n_embd * scale_factor,
  843. n_patches_x / scale_factor,
  844. n_patches_y,
  845. bsz);
  846. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  847. cur = ggml_reshape_4d(ctx0, ggml_cont(ctx0, cur),
  848. n_embd * scale_factor * scale_factor,
  849. n_patches_x / scale_factor,
  850. n_patches_y / scale_factor,
  851. bsz);
  852. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  853. // flatten to 2D
  854. cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, cur),
  855. n_embd * scale_factor * scale_factor,
  856. n_patches / scale_factor / scale_factor);
  857. cb(cur, "pixel_shuffle", -1);
  858. }
  859. // based on Llama4VisionMLP2 (always uses GELU activation, no bias)
  860. {
  861. cur = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, cur);
  862. cur = ggml_gelu(ctx0, cur);
  863. cur = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, cur);
  864. cur = ggml_gelu(ctx0, cur);
  865. cb(cur, "adapter_mlp", -1);
  866. }
  867. // Llama4MultiModalProjector
  868. cur = ggml_mul_mat(ctx0, model.mm_model_proj, cur);
  869. cb(cur, "projected", -1);
  870. // build the graph
  871. ggml_build_forward_expand(gf, cur);
  872. return gf;
  873. }
  874. // this graph is used by llava, granite and glm
  875. // due to having embedding_stack (used by granite), we cannot reuse build_vit
  876. ggml_cgraph * build_llava() {
  877. const int batch_size = 1;
  878. const int n_pos = n_patches + (model.class_embedding ? 1 : 0);
  879. GGML_ASSERT(n_patches_x == n_patches_y && "only square images supported");
  880. // Calculate the deepest feature layer based on hparams and projector type
  881. int max_feature_layer = n_layer;
  882. {
  883. // Get the index of the second to last layer; this is the default for models that have a llava projector
  884. int il_last = hparams.n_layer - 1;
  885. int deepest_feature_layer = -1;
  886. if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV || ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
  887. il_last += 1;
  888. }
  889. // If we set explicit vision feature layers, only go up to the deepest one
  890. // NOTE: only used by granite-vision models for now
  891. for (const auto & feature_layer : hparams.vision_feature_layer) {
  892. if (feature_layer > deepest_feature_layer) {
  893. deepest_feature_layer = feature_layer;
  894. }
  895. }
  896. max_feature_layer = deepest_feature_layer < 0 ? il_last : deepest_feature_layer;
  897. }
  898. ggml_tensor * inp = build_inp();
  899. // concat class_embeddings and patch_embeddings
  900. if (model.class_embedding) {
  901. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  902. }
  903. ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  904. ggml_set_name(positions, "positions");
  905. ggml_set_input(positions);
  906. inp = ggml_add(ctx0, inp, ggml_get_rows(ctx0, model.position_embeddings, positions));
  907. ggml_tensor * inpL = inp;
  908. // pre-layernorm
  909. if (model.pre_ln_w) {
  910. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, NORM_TYPE_NORMAL, eps, -1);
  911. cb(inpL, "pre_ln", -1);
  912. }
  913. std::vector<ggml_tensor *> embedding_stack;
  914. const auto & vision_feature_layer = hparams.vision_feature_layer;
  915. // loop over layers
  916. for (int il = 0; il < max_feature_layer; il++) {
  917. auto & layer = model.layers[il];
  918. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  919. // If this is an embedding feature layer, save the output.
  920. // NOTE: 0 index here refers to the input to the encoder.
  921. if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
  922. embedding_stack.push_back(cur);
  923. }
  924. // layernorm1
  925. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
  926. cb(cur, "layer_inp_normed", il);
  927. // self-attention
  928. {
  929. ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
  930. if (layer.q_b) {
  931. Qcur = ggml_add(ctx0, Qcur, layer.q_b);
  932. }
  933. ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
  934. if (layer.k_b) {
  935. Kcur = ggml_add(ctx0, Kcur, layer.k_b);
  936. }
  937. ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
  938. if (layer.v_b) {
  939. Vcur = ggml_add(ctx0, Vcur, layer.v_b);
  940. }
  941. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
  942. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
  943. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
  944. cb(Qcur, "Qcur", il);
  945. cb(Kcur, "Kcur", il);
  946. cb(Vcur, "Vcur", il);
  947. cur = build_attn(layer.o_w, layer.o_b,
  948. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  949. cb(cur, "attn_out", il);
  950. }
  951. // re-add the layer input, e.g., residual
  952. cur = ggml_add(ctx0, cur, inpL);
  953. inpL = cur; // inpL = residual, cur = hidden_states
  954. cb(cur, "ffn_inp", il);
  955. // layernorm2
  956. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
  957. cb(cur, "ffn_inp_normed", il);
  958. // ffn
  959. cur = build_ffn(cur,
  960. layer.ff_up_w, layer.ff_up_b,
  961. layer.ff_gate_w, layer.ff_gate_b,
  962. layer.ff_down_w, layer.ff_down_b,
  963. hparams.ffn_op, il);
  964. cb(cur, "ffn_out", il);
  965. // residual 2
  966. cur = ggml_add(ctx0, inpL, cur);
  967. cb(cur, "layer_out", il);
  968. inpL = cur;
  969. }
  970. // post-layernorm
  971. if (model.post_ln_w) {
  972. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, NORM_TYPE_NORMAL, eps, -1);
  973. }
  974. ggml_tensor * embeddings = inpL;
  975. // process vision feature layers (used by granite)
  976. {
  977. // final layer is a vision feature layer
  978. if (vision_feature_layer.find(max_feature_layer) != vision_feature_layer.end()) {
  979. embedding_stack.push_back(inpL);
  980. }
  981. // If feature layers are explicitly set, stack them (if we have multiple)
  982. if (!embedding_stack.empty()) {
  983. embeddings = embedding_stack[0];
  984. for (size_t i = 1; i < embedding_stack.size(); i++) {
  985. embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
  986. }
  987. }
  988. }
  989. // llava projector (also used by granite)
  990. if (ctx->model.hparams.has_llava_projector) {
  991. embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
  992. ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  993. ggml_set_name(patches, "patches");
  994. ggml_set_input(patches);
  995. // shape [1, 576, 1024]
  996. // ne is whcn, ne = [1024, 576, 1, 1]
  997. embeddings = ggml_get_rows(ctx0, embeddings, patches);
  998. // print_tensor_info(embeddings, "embeddings");
  999. // llava projector
  1000. if (ctx->proj_type() == PROJECTOR_TYPE_MLP) {
  1001. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  1002. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  1003. embeddings = ggml_gelu(ctx0, embeddings);
  1004. if (model.mm_2_w) {
  1005. embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
  1006. embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
  1007. }
  1008. }
  1009. else if (ctx->proj_type() == PROJECTOR_TYPE_MLP_NORM) {
  1010. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  1011. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  1012. // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
  1013. // First LayerNorm
  1014. embeddings = ggml_norm(ctx0, embeddings, eps);
  1015. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
  1016. model.mm_1_b);
  1017. // GELU activation
  1018. embeddings = ggml_gelu(ctx0, embeddings);
  1019. // Second linear layer
  1020. embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
  1021. embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);
  1022. // Second LayerNorm
  1023. embeddings = ggml_norm(ctx0, embeddings, eps);
  1024. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
  1025. model.mm_4_b);
  1026. }
  1027. else if (ctx->proj_type() == PROJECTOR_TYPE_LDP) {
  1028. // MobileVLM projector
  1029. int n_patch = 24;
  1030. ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
  1031. mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
  1032. mlp_1 = ggml_gelu(ctx0, mlp_1);
  1033. ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
  1034. mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
  1035. // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]
  1036. // block 1
  1037. ggml_tensor * block_1 = nullptr;
  1038. {
  1039. // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
  1040. mlp_3 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_3, 1, 0, 2, 3));
  1041. mlp_3 = ggml_reshape_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
  1042. // stride = 1, padding = 1, bias is nullptr
  1043. block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
  1044. // layer norm
  1045. // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  1046. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  1047. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  1048. block_1 = ggml_norm(ctx0, block_1, eps);
  1049. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
  1050. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  1051. // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  1052. // hardswish
  1053. ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  1054. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  1055. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  1056. // pointwise conv
  1057. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  1058. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
  1059. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
  1060. block_1 = ggml_relu(ctx0, block_1);
  1061. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
  1062. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
  1063. block_1 = ggml_hardsigmoid(ctx0, block_1);
  1064. // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
  1065. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  1066. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  1067. int w = block_1->ne[0], h = block_1->ne[1];
  1068. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  1069. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  1070. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  1071. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
  1072. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  1073. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  1074. block_1 = ggml_norm(ctx0, block_1, eps);
  1075. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
  1076. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  1077. // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  1078. // residual
  1079. block_1 = ggml_add(ctx0, mlp_3, block_1);
  1080. }
  1081. // block_2
  1082. {
  1083. // stride = 2
  1084. block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
  1085. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  1086. // layer norm
  1087. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  1088. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  1089. block_1 = ggml_norm(ctx0, block_1, eps);
  1090. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
  1091. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  1092. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  1093. // hardswish
  1094. ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  1095. // not sure the parameters is right for globalAvgPooling
  1096. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  1097. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  1098. // pointwise conv
  1099. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  1100. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
  1101. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
  1102. block_1 = ggml_relu(ctx0, block_1);
  1103. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
  1104. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
  1105. block_1 = ggml_hardsigmoid(ctx0, block_1);
  1106. // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  1107. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  1108. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  1109. int w = block_1->ne[0], h = block_1->ne[1];
  1110. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  1111. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  1112. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  1113. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
  1114. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  1115. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  1116. block_1 = ggml_norm(ctx0, block_1, eps);
  1117. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
  1118. block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
  1119. // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
  1120. }
  1121. embeddings = block_1;
  1122. }
  1123. else if (ctx->proj_type() == PROJECTOR_TYPE_LDPV2)
  1124. {
  1125. int n_patch = 24;
  1126. ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
  1127. mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
  1128. mlp_0 = ggml_gelu(ctx0, mlp_0);
  1129. ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
  1130. mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
  1131. // mlp_2 ne = [2048, 576, 1, 1]
  1132. // // AVG Pool Layer 2*2, strides = 2
  1133. mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 0, 2, 3));
  1134. // mlp_2 ne = [576, 2048, 1, 1]
  1135. mlp_2 = ggml_reshape_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
  1136. // mlp_2 ne [24, 24, 2048, 1]
  1137. mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
  1138. // weight ne = [3, 3, 2048, 1]
  1139. ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
  1140. peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
  1141. peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
  1142. mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
  1143. peg_0 = ggml_add(ctx0, peg_0, mlp_2);
  1144. peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
  1145. embeddings = peg_0;
  1146. }
  1147. else {
  1148. GGML_ABORT("fatal error");
  1149. }
  1150. }
  1151. // glm projector
  1152. else if (ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
  1153. size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
  1154. embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings,1,0,2,3));
  1155. embeddings = ggml_reshape_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
  1156. embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
  1157. embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
  1158. embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
  1159. embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
  1160. // GLU
  1161. {
  1162. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
  1163. embeddings = ggml_norm(ctx0, embeddings, eps);
  1164. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
  1165. embeddings = ggml_gelu_inplace(ctx0, embeddings);
  1166. ggml_tensor * x = embeddings;
  1167. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
  1168. x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
  1169. embeddings = ggml_silu_inplace(ctx0, embeddings);
  1170. embeddings = ggml_mul(ctx0, embeddings,x);
  1171. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
  1172. }
  1173. // arrangement of BOI/EOI token embeddings
  1174. // note: these embeddings are not present in text model, hence we cannot process them as text tokens
  1175. // see: https://huggingface.co/THUDM/glm-edge-v-2b/blob/main/siglip.py#L53
  1176. {
  1177. embeddings = ggml_concat(ctx0, model.mm_glm_tok_boi, embeddings, 1); // BOI
  1178. embeddings = ggml_concat(ctx0, embeddings, model.mm_glm_tok_eoi, 1); // EOI
  1179. }
  1180. }
  1181. else {
  1182. GGML_ABORT("llava: unknown projector type");
  1183. }
  1184. // build the graph
  1185. ggml_build_forward_expand(gf, embeddings);
  1186. return gf;
  1187. }
  1188. // whisper encoder with custom projector
  1189. ggml_cgraph * build_whisper_enc() {
  1190. const int n_frames = img.nx;
  1191. const int n_pos = n_frames / 2;
  1192. GGML_ASSERT(model.position_embeddings->ne[1] >= n_pos);
  1193. ggml_tensor * inp = build_inp_raw(1);
  1194. // conv1d block
  1195. {
  1196. // convolution + gelu
  1197. ggml_tensor * cur = ggml_conv_1d_ph(ctx0, model.conv1d_1_w, inp, 1, 1);
  1198. cur = ggml_add(ctx0, cur, model.conv1d_1_b);
  1199. cur = ggml_gelu_erf(ctx0, cur);
  1200. cur = ggml_conv_1d_ph(ctx0, model.conv1d_2_w, cur, 2, 1);
  1201. cur = ggml_add(ctx0, cur, model.conv1d_2_b);
  1202. cur = ggml_gelu_erf(ctx0, cur);
  1203. // transpose
  1204. inp = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  1205. cb(inp, "after_conv1d", -1);
  1206. }
  1207. // sanity check (only check one layer, but it should be the same for all)
  1208. GGML_ASSERT(model.layers[0].ln_1_w && model.layers[0].ln_1_b);
  1209. GGML_ASSERT(model.layers[0].ln_2_w && model.layers[0].ln_2_b);
  1210. GGML_ASSERT(model.layers[0].q_b);
  1211. GGML_ASSERT(model.layers[0].v_b);
  1212. GGML_ASSERT(!model.layers[0].k_b); // no bias for k
  1213. GGML_ASSERT(model.post_ln_w && model.post_ln_b);
  1214. ggml_tensor * pos_embd_selected = ggml_view_2d(
  1215. ctx0, model.position_embeddings,
  1216. model.position_embeddings->ne[0], n_pos,
  1217. model.position_embeddings->nb[1], 0
  1218. );
  1219. ggml_tensor * cur = build_vit(
  1220. inp, n_pos,
  1221. NORM_TYPE_NORMAL,
  1222. hparams.ffn_op,
  1223. pos_embd_selected,
  1224. nullptr);
  1225. cb(cur, "after_transformer", -1);
  1226. if (ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX) {
  1227. // StackAudioFrames
  1228. // https://huggingface.co/fixie-ai/ultravox-v0_5-llama-3_2-1b/blob/main/ultravox_model.py
  1229. {
  1230. int64_t stride = n_embd * hparams.proj_stack_factor;
  1231. int64_t padded_len = GGML_PAD(ggml_nelements(cur), stride);
  1232. int64_t pad = padded_len - ggml_nelements(cur);
  1233. if (pad > 0) {
  1234. cur = ggml_view_1d(ctx0, cur, ggml_nelements(cur), 0);
  1235. cur = ggml_pad(ctx0, cur, pad, 0, 0, 0);
  1236. }
  1237. cur = ggml_view_2d(ctx0, cur, stride, padded_len / stride,
  1238. ggml_row_size(cur->type, stride), 0);
  1239. }
  1240. cb(cur, "after_stacked", -1);
  1241. // UltravoxProjector
  1242. {
  1243. // pre-norm
  1244. cur = ggml_rms_norm(ctx0, cur, 1e-6);
  1245. cur = ggml_mul(ctx0, cur, model.mm_norm_pre_w);
  1246. // ffn in
  1247. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  1248. // swiglu
  1249. {
  1250. int64_t split_point = cur->ne[0] / 2;
  1251. ggml_tensor * x0 = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, split_point, cur->ne[1], cur->nb[1], 0));
  1252. ggml_tensor * x1 = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, split_point, cur->ne[1], cur->nb[1], split_point * ggml_element_size(cur)));
  1253. // see SwiGLU in ultravox_model.py, the second half passed through is silu, not the first half
  1254. x1 = ggml_silu(ctx0, x1);
  1255. cur = ggml_mul(ctx0, x0, x1);
  1256. }
  1257. // mid-norm
  1258. cur = ggml_rms_norm(ctx0, cur, 1e-6);
  1259. cur = ggml_mul(ctx0, cur, model.mm_norm_mid_w);
  1260. // ffn out
  1261. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  1262. }
  1263. } else if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2A) {
  1264. // projector
  1265. cur = ggml_mul_mat(ctx0, model.mm_fc_w, cur);
  1266. cur = ggml_add(ctx0, cur, model.mm_fc_b);
  1267. } else {
  1268. GGML_ABORT("%s: unknown projector type", __func__);
  1269. }
  1270. cb(cur, "projected", -1);
  1271. ggml_build_forward_expand(gf, cur);
  1272. return gf;
  1273. }
  1274. private:
  1275. //
  1276. // utility functions
  1277. //
  1278. void cb(ggml_tensor * cur0, const char * name, int il) const {
  1279. if (ctx->debug_graph) {
  1280. ggml_tensor * cur = ggml_cpy(ctx0, cur0, ggml_dup_tensor(ctx0, cur0));
  1281. std::string cur_name = il >= 0 ? std::string(name) + "_" + std::to_string(il) : name;
  1282. ggml_set_name(cur, cur_name.c_str());
  1283. ggml_set_output(cur);
  1284. ggml_build_forward_expand(gf, cur);
  1285. ctx->debug_print_tensors.push_back(cur);
  1286. }
  1287. }
  1288. // build vision transformer (ViT) cgraph
  1289. // this function should cover most of the models
  1290. // if your model has specific features, you should probably duplicate this function
  1291. ggml_tensor * build_vit(
  1292. ggml_tensor * inp,
  1293. int64_t n_pos,
  1294. norm_type norm_t,
  1295. ffn_op_type ffn_t,
  1296. ggml_tensor * learned_pos_embd,
  1297. std::function<ggml_tensor *(ggml_tensor *, const clip_layer &)> add_pos
  1298. ) {
  1299. if (learned_pos_embd) {
  1300. inp = ggml_add(ctx0, inp, learned_pos_embd);
  1301. cb(inp, "pos_embed", -1);
  1302. }
  1303. ggml_tensor * inpL = inp;
  1304. // pre-layernorm
  1305. if (model.pre_ln_w) {
  1306. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
  1307. cb(inpL, "pre_ln", -1);
  1308. }
  1309. // loop over layers
  1310. for (int il = 0; il < n_layer; il++) {
  1311. auto & layer = model.layers[il];
  1312. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  1313. // layernorm1
  1314. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
  1315. cb(cur, "layer_inp_normed", il);
  1316. // self-attention
  1317. {
  1318. ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
  1319. if (layer.q_b) {
  1320. Qcur = ggml_add(ctx0, Qcur, layer.q_b);
  1321. }
  1322. ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
  1323. if (layer.k_b) {
  1324. Kcur = ggml_add(ctx0, Kcur, layer.k_b);
  1325. }
  1326. ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
  1327. if (layer.v_b) {
  1328. Vcur = ggml_add(ctx0, Vcur, layer.v_b);
  1329. }
  1330. if (layer.q_norm) {
  1331. Qcur = build_norm(Qcur, layer.q_norm, NULL, norm_t, eps, il);
  1332. cb(Qcur, "Qcur_norm", il);
  1333. }
  1334. if (layer.k_norm) {
  1335. Kcur = build_norm(Kcur, layer.k_norm, NULL, norm_t, eps, il);
  1336. cb(Kcur, "Kcur_norm", il);
  1337. }
  1338. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
  1339. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
  1340. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
  1341. cb(Qcur, "Qcur", il);
  1342. cb(Kcur, "Kcur", il);
  1343. cb(Vcur, "Vcur", il);
  1344. if (add_pos) {
  1345. Qcur = add_pos(Qcur, layer);
  1346. Kcur = add_pos(Kcur, layer);
  1347. cb(Qcur, "Qcur_pos", il);
  1348. cb(Kcur, "Kcur_pos", il);
  1349. }
  1350. cur = build_attn(layer.o_w, layer.o_b,
  1351. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  1352. cb(cur, "attn_out", il);
  1353. }
  1354. if (layer.ls_1_w) {
  1355. cur = ggml_mul(ctx0, cur, layer.ls_1_w);
  1356. cb(cur, "attn_out_scaled", il);
  1357. }
  1358. // re-add the layer input, e.g., residual
  1359. cur = ggml_add(ctx0, cur, inpL);
  1360. inpL = cur; // inpL = residual, cur = hidden_states
  1361. cb(cur, "ffn_inp", il);
  1362. // layernorm2
  1363. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
  1364. cb(cur, "ffn_inp_normed", il);
  1365. // ffn
  1366. cur = build_ffn(cur,
  1367. layer.ff_up_w, layer.ff_up_b,
  1368. layer.ff_gate_w, layer.ff_gate_b,
  1369. layer.ff_down_w, layer.ff_down_b,
  1370. ffn_t, il);
  1371. cb(cur, "ffn_out", il);
  1372. if (layer.ls_2_w) {
  1373. cur = ggml_mul(ctx0, cur, layer.ls_2_w);
  1374. cb(cur, "ffn_out_scaled", il);
  1375. }
  1376. // residual 2
  1377. cur = ggml_add(ctx0, inpL, cur);
  1378. cb(cur, "layer_out", il);
  1379. inpL = cur;
  1380. }
  1381. // TODO @ngxson : find a way to move this outside
  1382. if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2A) {
  1383. ggml_tensor * cur = inpL;
  1384. cur = ggml_transpose(ctx0, cur);
  1385. cur = ggml_cont(ctx0, cur);
  1386. cur = ggml_pool_1d(ctx0, cur, GGML_OP_POOL_AVG, 2, 2, 0);
  1387. cur = ggml_transpose(ctx0, cur);
  1388. cur = ggml_cont(ctx0, cur);
  1389. inpL = cur;
  1390. }
  1391. // post-layernorm
  1392. if (model.post_ln_w) {
  1393. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, -1);
  1394. }
  1395. return inpL;
  1396. }
  1397. // build the input after conv2d (inp_raw --> patches)
  1398. // returns tensor with shape [n_embd, n_patches]
  1399. ggml_tensor * build_inp() {
  1400. ggml_tensor * inp_raw = build_inp_raw();
  1401. ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  1402. inp = ggml_reshape_2d(ctx0, inp, n_patches, n_embd);
  1403. inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
  1404. if (model.patch_bias) {
  1405. inp = ggml_add(ctx0, inp, model.patch_bias);
  1406. cb(inp, "patch_bias", -1);
  1407. }
  1408. return inp;
  1409. }
  1410. ggml_tensor * build_inp_raw(int channels = 3) {
  1411. ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, img.nx, img.ny, channels);
  1412. ggml_set_name(inp_raw, "inp_raw");
  1413. ggml_set_input(inp_raw);
  1414. return inp_raw;
  1415. }
  1416. ggml_tensor * build_norm(
  1417. ggml_tensor * cur,
  1418. ggml_tensor * mw,
  1419. ggml_tensor * mb,
  1420. norm_type type,
  1421. float norm_eps,
  1422. int il) const {
  1423. cur = type == NORM_TYPE_RMS
  1424. ? ggml_rms_norm(ctx0, cur, norm_eps)
  1425. : ggml_norm(ctx0, cur, norm_eps);
  1426. if (mw || mb) {
  1427. cb(cur, "norm", il);
  1428. }
  1429. if (mw) {
  1430. cur = ggml_mul(ctx0, cur, mw);
  1431. if (mb) {
  1432. cb(cur, "norm_w", il);
  1433. }
  1434. }
  1435. if (mb) {
  1436. cur = ggml_add(ctx0, cur, mb);
  1437. }
  1438. return cur;
  1439. }
  1440. ggml_tensor * build_ffn(
  1441. ggml_tensor * cur,
  1442. ggml_tensor * up,
  1443. ggml_tensor * up_b,
  1444. ggml_tensor * gate,
  1445. ggml_tensor * gate_b,
  1446. ggml_tensor * down,
  1447. ggml_tensor * down_b,
  1448. ffn_op_type type_op,
  1449. int il) const {
  1450. ggml_tensor * tmp = up ? ggml_mul_mat(ctx0, up, cur) : cur;
  1451. cb(tmp, "ffn_up", il);
  1452. if (up_b) {
  1453. tmp = ggml_add(ctx0, tmp, up_b);
  1454. cb(tmp, "ffn_up_b", il);
  1455. }
  1456. if (gate) {
  1457. cur = ggml_mul_mat(ctx0, gate, cur);
  1458. cb(cur, "ffn_gate", il);
  1459. if (gate_b) {
  1460. cur = ggml_add(ctx0, cur, gate_b);
  1461. cb(cur, "ffn_gate_b", il);
  1462. }
  1463. } else {
  1464. cur = tmp;
  1465. }
  1466. switch (type_op) {
  1467. case FFN_SILU:
  1468. {
  1469. cur = ggml_silu(ctx0, cur);
  1470. cb(cur, "ffn_silu", il);
  1471. } break;
  1472. case FFN_GELU:
  1473. {
  1474. cur = ggml_gelu(ctx0, cur);
  1475. cb(cur, "ffn_gelu", il);
  1476. } break;
  1477. case FFN_GELU_ERF:
  1478. {
  1479. cur = ggml_gelu_erf(ctx0, cur);
  1480. cb(cur, "ggml_gelu_erf", il);
  1481. } break;
  1482. case FFN_GELU_QUICK:
  1483. {
  1484. cur = ggml_gelu_quick(ctx0, cur);
  1485. cb(cur, "ffn_relu", il);
  1486. } break;
  1487. }
  1488. // we only support parallel ffn for now
  1489. if (gate) {
  1490. cur = ggml_mul(ctx0, cur, tmp);
  1491. cb(cur, "ffn_gate_par", il);
  1492. }
  1493. if (down) {
  1494. cur = ggml_mul_mat(ctx0, down, cur);
  1495. }
  1496. if (down_b) {
  1497. cb(cur, "ffn_down", il);
  1498. }
  1499. if (down_b) {
  1500. cur = ggml_add(ctx0, cur, down_b);
  1501. }
  1502. return cur;
  1503. }
  1504. ggml_tensor * build_attn(
  1505. ggml_tensor * wo,
  1506. ggml_tensor * wo_b,
  1507. ggml_tensor * q_cur,
  1508. ggml_tensor * k_cur,
  1509. ggml_tensor * v_cur,
  1510. ggml_tensor * kq_mask,
  1511. float kq_scale,
  1512. int il) const {
  1513. // these nodes are added to the graph together so that they are not reordered
  1514. // by doing so, the number of splits in the graph is reduced
  1515. ggml_build_forward_expand(gf, q_cur);
  1516. ggml_build_forward_expand(gf, k_cur);
  1517. ggml_build_forward_expand(gf, v_cur);
  1518. ggml_tensor * q = ggml_permute(ctx0, q_cur, 0, 2, 1, 3);
  1519. //cb(q, "q", il);
  1520. ggml_tensor * k = ggml_permute(ctx0, k_cur, 0, 2, 1, 3);
  1521. //cb(k, "k", il);
  1522. ggml_tensor * v = ggml_permute(ctx0, v_cur, 1, 2, 0, 3);
  1523. v = ggml_cont(ctx0, v);
  1524. //cb(k, "v", il);
  1525. ggml_tensor * cur;
  1526. // TODO @ngxson : support flash attention
  1527. {
  1528. const auto n_tokens = q->ne[1];
  1529. const auto n_head = q->ne[2];
  1530. // const auto n_kv = k->ne[1]; // for flash attention
  1531. ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  1532. // F32 may not needed for vision encoders?
  1533. // ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  1534. kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, 0.0f);
  1535. ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
  1536. cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  1537. cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
  1538. }
  1539. cb(cur, "kqv_out", il);
  1540. if (wo) {
  1541. cur = ggml_mul_mat(ctx0, wo, cur);
  1542. }
  1543. if (wo_b) {
  1544. cur = ggml_add(ctx0, cur, wo_b);
  1545. }
  1546. return cur;
  1547. }
  1548. // implementation of the 2D RoPE without adding a new op in ggml
  1549. // this is not efficient (use double the memory), but works on all backends
  1550. // TODO: there was a more efficient which relies on ggml_view and ggml_rope_ext_inplace, but the rope inplace does not work well with non-contiguous tensors ; we should fix that and revert back to the original implementation in https://github.com/ggml-org/llama.cpp/pull/13065
  1551. static ggml_tensor * build_rope_2d(
  1552. ggml_context * ctx0,
  1553. ggml_tensor * cur,
  1554. ggml_tensor * pos_a, // first half
  1555. ggml_tensor * pos_b, // second half
  1556. const float freq_base,
  1557. const bool interleave_freq
  1558. ) {
  1559. const int64_t n_dim = cur->ne[0];
  1560. const int64_t n_head = cur->ne[1];
  1561. const int64_t n_pos = cur->ne[2];
  1562. // for example, if we have cur tensor of shape (n_dim=8, n_head, n_pos)
  1563. // we will have a list of 4 inv_freq: 1e-0, 1e-1, 1e-2, 1e-3
  1564. // first half of cur will use 1e-0, 1e-2 (even)
  1565. // second half of cur will use 1e-1, 1e-3 (odd)
  1566. // the trick here is to rotate just half of n_dim, so inv_freq will automatically be even
  1567. // ^ don't ask me why, it's math! -2(2i) / n_dim == -2i / (n_dim/2)
  1568. // then for the second half, we use freq_scale to shift the inv_freq
  1569. // ^ why? replace (2i) with (2i+1) in the above equation
  1570. const float freq_scale_odd = interleave_freq
  1571. ? std::pow(freq_base, (float)-2/n_dim)
  1572. : 1.0;
  1573. // first half
  1574. ggml_tensor * first;
  1575. {
  1576. first = ggml_view_3d(ctx0, cur,
  1577. n_dim/2, n_head, n_pos,
  1578. ggml_row_size(cur->type, n_dim),
  1579. ggml_row_size(cur->type, n_dim*n_head),
  1580. 0);
  1581. first = ggml_rope_ext(
  1582. ctx0,
  1583. first,
  1584. pos_a, // positions
  1585. nullptr, // freq factors
  1586. n_dim/2, // n_dims
  1587. 0, 0, freq_base,
  1588. 1.0f, 0.0f, 1.0f, 0.0f, 0.0f
  1589. );
  1590. }
  1591. // second half
  1592. ggml_tensor * second;
  1593. {
  1594. second = ggml_view_3d(ctx0, cur,
  1595. n_dim/2, n_head, n_pos,
  1596. ggml_row_size(cur->type, n_dim),
  1597. ggml_row_size(cur->type, n_dim*n_head),
  1598. n_dim/2 * ggml_element_size(cur));
  1599. second = ggml_cont(ctx0, second); // copy, because ggml_rope don't play well with non-contiguous tensors
  1600. second = ggml_rope_ext(
  1601. ctx0,
  1602. second,
  1603. pos_b, // positions
  1604. nullptr, // freq factors
  1605. n_dim/2, // n_dims
  1606. 0, 0, freq_base,
  1607. freq_scale_odd,
  1608. 0.0f, 1.0f, 0.0f, 0.0f
  1609. );
  1610. }
  1611. cur = ggml_concat(ctx0, first, second, 0);
  1612. return cur;
  1613. }
  1614. };
  1615. static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs) {
  1616. GGML_ASSERT(imgs.entries.size() == 1 && "n_batch > 1 is not supported");
  1617. clip_graph graph(ctx, *imgs.entries[0]);
  1618. ggml_cgraph * res;
  1619. switch (ctx->proj_type()) {
  1620. case PROJECTOR_TYPE_GEMMA3:
  1621. case PROJECTOR_TYPE_IDEFICS3:
  1622. {
  1623. res = graph.build_siglip();
  1624. } break;
  1625. case PROJECTOR_TYPE_PIXTRAL:
  1626. {
  1627. res = graph.build_pixtral();
  1628. } break;
  1629. case PROJECTOR_TYPE_QWEN2VL:
  1630. case PROJECTOR_TYPE_QWEN25VL:
  1631. {
  1632. res = graph.build_qwen2vl();
  1633. } break;
  1634. case PROJECTOR_TYPE_MINICPMV:
  1635. {
  1636. res = graph.build_minicpmv();
  1637. } break;
  1638. case PROJECTOR_TYPE_INTERNVL:
  1639. {
  1640. res = graph.build_internvl();
  1641. } break;
  1642. case PROJECTOR_TYPE_LLAMA4:
  1643. {
  1644. res = graph.build_llama4();
  1645. } break;
  1646. case PROJECTOR_TYPE_ULTRAVOX:
  1647. case PROJECTOR_TYPE_QWEN2A:
  1648. {
  1649. res = graph.build_whisper_enc();
  1650. } break;
  1651. default:
  1652. {
  1653. res = graph.build_llava();
  1654. } break;
  1655. }
  1656. return res;
  1657. }
  1658. struct clip_model_loader {
  1659. ggml_context_ptr ctx_meta;
  1660. gguf_context_ptr ctx_gguf;
  1661. std::string fname;
  1662. size_t model_size = 0; // in bytes
  1663. bool has_vision = false;
  1664. bool has_audio = false;
  1665. // TODO @ngxson : we should not pass clip_ctx here, it should be clip_model
  1666. clip_model_loader(const char * fname) : fname(fname) {
  1667. struct ggml_context * meta = nullptr;
  1668. struct gguf_init_params params = {
  1669. /*.no_alloc = */ true,
  1670. /*.ctx = */ &meta,
  1671. };
  1672. ctx_gguf = gguf_context_ptr(gguf_init_from_file(fname, params));
  1673. if (!ctx_gguf.get()) {
  1674. throw std::runtime_error(string_format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
  1675. }
  1676. ctx_meta.reset(meta);
  1677. const int n_tensors = gguf_get_n_tensors(ctx_gguf.get());
  1678. // print gguf info
  1679. {
  1680. std::string name;
  1681. get_string(KEY_NAME, name, false);
  1682. std::string description;
  1683. get_string(KEY_DESCRIPTION, description, false);
  1684. LOG_INF("%s: model name: %s\n", __func__, name.c_str());
  1685. LOG_INF("%s: description: %s\n", __func__, description.c_str());
  1686. LOG_INF("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx_gguf.get()));
  1687. LOG_INF("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx_gguf.get()));
  1688. LOG_INF("%s: n_tensors: %d\n", __func__, n_tensors);
  1689. LOG_INF("%s: n_kv: %d\n", __func__, (int)gguf_get_n_kv(ctx_gguf.get()));
  1690. LOG_INF("\n");
  1691. }
  1692. // modalities
  1693. {
  1694. get_bool(KEY_HAS_VISION_ENC, has_vision, false);
  1695. get_bool(KEY_HAS_AUDIO_ENC, has_audio, false);
  1696. if (has_vision) {
  1697. LOG_INF("%s: has vision encoder\n", __func__);
  1698. }
  1699. if (has_audio) {
  1700. LOG_INF("%s: has audio encoder\n", __func__);
  1701. }
  1702. }
  1703. // tensors
  1704. {
  1705. for (int i = 0; i < n_tensors; ++i) {
  1706. const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
  1707. const size_t offset = gguf_get_tensor_offset(ctx_gguf.get(), i);
  1708. enum ggml_type type = gguf_get_tensor_type(ctx_gguf.get(), i);
  1709. ggml_tensor * cur = ggml_get_tensor(meta, name);
  1710. size_t tensor_size = ggml_nbytes(cur);
  1711. model_size += tensor_size;
  1712. LOG_DBG("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
  1713. __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
  1714. }
  1715. }
  1716. }
  1717. void load_hparams(clip_model & model, clip_modality modality) {
  1718. auto & hparams = model.hparams;
  1719. std::string log_ffn_op; // for logging
  1720. // sanity check
  1721. if (modality == CLIP_MODALITY_VISION) {
  1722. GGML_ASSERT(has_vision);
  1723. } else if (modality == CLIP_MODALITY_AUDIO) {
  1724. GGML_ASSERT(has_audio);
  1725. }
  1726. model.modality = modality;
  1727. // projector type
  1728. std::string proj_type;
  1729. {
  1730. get_string(KEY_PROJ_TYPE, proj_type, false);
  1731. if (!proj_type.empty()) {
  1732. model.proj_type = clip_projector_type_from_string(proj_type);
  1733. }
  1734. if (model.proj_type == PROJECTOR_TYPE_UNKNOWN) {
  1735. throw std::runtime_error(string_format("%s: unknown projector type: %s\n", __func__, proj_type.c_str()));
  1736. }
  1737. // correct arch for multimodal models
  1738. if (model.proj_type == PROJECTOR_TYPE_QWEN25O) {
  1739. model.proj_type = modality == CLIP_MODALITY_VISION
  1740. ? PROJECTOR_TYPE_QWEN25VL
  1741. : PROJECTOR_TYPE_QWEN2A;
  1742. }
  1743. }
  1744. const bool is_vision = model.modality == CLIP_MODALITY_VISION;
  1745. const bool is_audio = model.modality == CLIP_MODALITY_AUDIO;
  1746. // other hparams
  1747. {
  1748. const char * prefix = is_vision ? "vision" : "audio";
  1749. get_u32(string_format(KEY_N_EMBD, prefix), hparams.n_embd);
  1750. get_u32(string_format(KEY_N_HEAD, prefix), hparams.n_head);
  1751. get_u32(string_format(KEY_N_FF, prefix), hparams.n_ff);
  1752. get_u32(string_format(KEY_N_BLOCK, prefix), hparams.n_layer);
  1753. get_u32(string_format(KEY_PROJ_DIM, prefix), hparams.projection_dim);
  1754. get_f32(string_format(KEY_LAYER_NORM_EPS, prefix), hparams.eps);
  1755. if (is_vision) {
  1756. get_u32(KEY_IMAGE_SIZE, hparams.image_size);
  1757. get_u32(KEY_PATCH_SIZE, hparams.patch_size);
  1758. get_u32(KEY_IMAGE_CROP_RESOLUTION, hparams.image_crop_resolution, false);
  1759. get_i32(KEY_MINICPMV_VERSION, hparams.minicpmv_version, false); // legacy
  1760. } else if (is_audio) {
  1761. get_u32(KEY_A_NUM_MEL_BINS, hparams.n_mel_bins);
  1762. } else {
  1763. GGML_ASSERT(false && "unknown modality");
  1764. }
  1765. // for pinpoints, we need to convert it into a list of resolution candidates
  1766. {
  1767. std::vector<int> pinpoints;
  1768. get_arr_int(KEY_IMAGE_GRID_PINPOINTS, pinpoints, false);
  1769. if (!pinpoints.empty()) {
  1770. for (size_t i = 0; i < pinpoints.size(); i += 2) {
  1771. hparams.image_res_candidates.push_back({
  1772. pinpoints[i],
  1773. pinpoints[i+1],
  1774. });
  1775. }
  1776. }
  1777. }
  1778. // default warmup value
  1779. hparams.warmup_image_size = hparams.image_size;
  1780. hparams.has_llava_projector = model.proj_type == PROJECTOR_TYPE_MLP
  1781. || model.proj_type == PROJECTOR_TYPE_MLP_NORM
  1782. || model.proj_type == PROJECTOR_TYPE_LDP
  1783. || model.proj_type == PROJECTOR_TYPE_LDPV2;
  1784. {
  1785. bool use_gelu = false;
  1786. bool use_silu = false;
  1787. get_bool(KEY_USE_GELU, use_gelu, false);
  1788. get_bool(KEY_USE_SILU, use_silu, false);
  1789. if (use_gelu && use_silu) {
  1790. throw std::runtime_error(string_format("%s: both use_gelu and use_silu are set to true\n", __func__));
  1791. }
  1792. if (use_gelu) {
  1793. hparams.ffn_op = FFN_GELU;
  1794. log_ffn_op = "gelu";
  1795. } else if (use_silu) {
  1796. hparams.ffn_op = FFN_SILU;
  1797. log_ffn_op = "silu";
  1798. } else {
  1799. hparams.ffn_op = FFN_GELU_QUICK;
  1800. log_ffn_op = "gelu_quick";
  1801. }
  1802. }
  1803. {
  1804. std::string mm_patch_merge_type;
  1805. get_string(KEY_MM_PATCH_MERGE_TYPE, mm_patch_merge_type, false);
  1806. if (mm_patch_merge_type == "spatial_unpad") {
  1807. hparams.mm_patch_merge_type = PATCH_MERGE_SPATIAL_UNPAD;
  1808. }
  1809. }
  1810. if (is_vision) {
  1811. int idx_mean = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_MEAN);
  1812. int idx_std = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_STD);
  1813. GGML_ASSERT(idx_mean >= 0 && "image_mean not found");
  1814. GGML_ASSERT(idx_std >= 0 && "image_std not found");
  1815. const float * mean_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_mean);
  1816. const float * std_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_std);
  1817. for (int i = 0; i < 3; ++i) {
  1818. hparams.image_mean[i] = mean_data[i];
  1819. hparams.image_std[i] = std_data[i];
  1820. }
  1821. }
  1822. // Load the vision feature layer indices if they are explicitly provided;
  1823. // if multiple vision feature layers are present, the values will be concatenated
  1824. // to form the final visual features.
  1825. // NOTE: gguf conversions should standardize the values of the vision feature layer to
  1826. // be non-negative, since we use -1 to mark values as unset here.
  1827. std::vector<int> vision_feature_layer;
  1828. get_arr_int(KEY_FEATURE_LAYER, vision_feature_layer, false);
  1829. // convert std::vector to std::unordered_set
  1830. for (auto & layer : vision_feature_layer) {
  1831. hparams.vision_feature_layer.insert(layer);
  1832. }
  1833. // model-specific params
  1834. switch (model.proj_type) {
  1835. case PROJECTOR_TYPE_MINICPMV:
  1836. {
  1837. if (hparams.minicpmv_version == 0) {
  1838. hparams.minicpmv_version = 2; // default to 2 if not set
  1839. }
  1840. } break;
  1841. case PROJECTOR_TYPE_IDEFICS3:
  1842. case PROJECTOR_TYPE_INTERNVL:
  1843. {
  1844. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
  1845. } break;
  1846. case PROJECTOR_TYPE_PIXTRAL:
  1847. {
  1848. hparams.rope_theta = 10000.0f;
  1849. hparams.warmup_image_size = hparams.patch_size * 8;
  1850. // Mistral Small 2506 needs 1024x1024 image size cap to prevent OOM
  1851. // ref: https://github.com/ggml-org/llama.cpp/issues/14310
  1852. hparams.image_size = 1024;
  1853. get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.spatial_merge_size, false);
  1854. } break;
  1855. case PROJECTOR_TYPE_GEMMA3:
  1856. {
  1857. // default value (used by all model sizes in gemma 3 family)
  1858. // number of patches for each **side** is reduced by a factor of 4
  1859. hparams.proj_scale_factor = 4;
  1860. // test model (tinygemma3) has a different value, we optionally read it
  1861. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
  1862. } break;
  1863. case PROJECTOR_TYPE_QWEN2VL:
  1864. {
  1865. // max image size = sqrt(max_pixels) = 3584
  1866. // ref: https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct/blob/main/preprocessor_config.json
  1867. // however, the model use unreasonable memory past 1024 size, we force it to 1024 otherwise it's unusable
  1868. // ref: https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct/discussions/10
  1869. hparams.image_size = 1024;
  1870. hparams.warmup_image_size = hparams.patch_size * 8;
  1871. } break;
  1872. case PROJECTOR_TYPE_QWEN25VL:
  1873. {
  1874. // max image size = sqrt(max_pixels)
  1875. // https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct/blob/main/preprocessor_config.json
  1876. // however, the model use unreasonable memory past 1024 size, we force it to 1024 otherwise it's unusable
  1877. // ref: https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct/discussions/10
  1878. hparams.image_size = 1024;
  1879. hparams.warmup_image_size = hparams.patch_size * 8;
  1880. get_u32(KEY_WIN_ATTN_PATTERN, hparams.n_wa_pattern);
  1881. } break;
  1882. case PROJECTOR_TYPE_LLAMA4:
  1883. {
  1884. hparams.rope_theta = 10000.0f;
  1885. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor);
  1886. set_llava_uhd_res_candidates(model, 3);
  1887. } break;
  1888. case PROJECTOR_TYPE_ULTRAVOX:
  1889. case PROJECTOR_TYPE_QWEN2A:
  1890. {
  1891. bool require_stack = model.proj_type == PROJECTOR_TYPE_ULTRAVOX;
  1892. get_u32(KEY_A_PROJ_STACK_FACTOR, hparams.proj_stack_factor, require_stack);
  1893. if (hparams.n_mel_bins != 128) {
  1894. throw std::runtime_error(string_format("%s: only 128 mel bins are supported for ultravox\n", __func__));
  1895. }
  1896. hparams.ffn_op = FFN_GELU_ERF;
  1897. log_ffn_op = "gelu_erf"; // temporary solution for logging
  1898. } break;
  1899. default:
  1900. break;
  1901. }
  1902. LOG_INF("%s: projector: %s\n", __func__, proj_type.c_str());
  1903. LOG_INF("%s: n_embd: %d\n", __func__, hparams.n_embd);
  1904. LOG_INF("%s: n_head: %d\n", __func__, hparams.n_head);
  1905. LOG_INF("%s: n_ff: %d\n", __func__, hparams.n_ff);
  1906. LOG_INF("%s: n_layer: %d\n", __func__, hparams.n_layer);
  1907. LOG_INF("%s: ffn_op: %s\n", __func__, log_ffn_op.c_str());
  1908. LOG_INF("%s: projection_dim: %d\n", __func__, hparams.projection_dim);
  1909. if (is_vision) {
  1910. LOG_INF("\n--- vision hparams ---\n");
  1911. LOG_INF("%s: image_size: %d\n", __func__, hparams.image_size);
  1912. LOG_INF("%s: patch_size: %d\n", __func__, hparams.patch_size);
  1913. LOG_INF("%s: has_llava_proj: %d\n", __func__, hparams.has_llava_projector);
  1914. LOG_INF("%s: minicpmv_version: %d\n", __func__, hparams.minicpmv_version);
  1915. LOG_INF("%s: proj_scale_factor: %d\n", __func__, hparams.proj_scale_factor);
  1916. LOG_INF("%s: n_wa_pattern: %d\n", __func__, hparams.n_wa_pattern);
  1917. } else if (is_audio) {
  1918. LOG_INF("\n--- audio hparams ---\n");
  1919. LOG_INF("%s: n_mel_bins: %d\n", __func__, hparams.n_mel_bins);
  1920. LOG_INF("%s: proj_stack_factor: %d\n", __func__, hparams.proj_stack_factor);
  1921. }
  1922. LOG_INF("\n");
  1923. LOG_INF("%s: model size: %.2f MiB\n", __func__, model_size / 1024.0 / 1024.0);
  1924. LOG_INF("%s: metadata size: %.2f MiB\n", __func__, ggml_get_mem_size(ctx_meta.get()) / 1024.0 / 1024.0);
  1925. }
  1926. }
  1927. void load_tensors(clip_ctx & ctx_clip) {
  1928. auto & model = ctx_clip.model;
  1929. auto & hparams = model.hparams;
  1930. std::map<std::string, size_t> tensor_offset;
  1931. std::vector<ggml_tensor *> tensors_to_load;
  1932. // TODO @ngxson : support both audio and video in the future
  1933. const char * prefix = model.modality == CLIP_MODALITY_AUDIO ? "a" : "v";
  1934. // get offsets
  1935. for (int64_t i = 0; i < gguf_get_n_tensors(ctx_gguf.get()); ++i) {
  1936. const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
  1937. tensor_offset[name] = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), i);
  1938. }
  1939. // create data context
  1940. struct ggml_init_params params = {
  1941. /*.mem_size =*/ (gguf_get_n_tensors(ctx_gguf.get()) + 1) * ggml_tensor_overhead(),
  1942. /*.mem_buffer =*/ NULL,
  1943. /*.no_alloc =*/ true,
  1944. };
  1945. ctx_clip.ctx_data.reset(ggml_init(params));
  1946. if (!ctx_clip.ctx_data) {
  1947. throw std::runtime_error(string_format("%s: failed to init ggml context\n", __func__));
  1948. }
  1949. // helper function
  1950. auto get_tensor = [&](const std::string & name, bool required = true) {
  1951. ggml_tensor * cur = ggml_get_tensor(ctx_meta.get(), name.c_str());
  1952. if (!cur && required) {
  1953. throw std::runtime_error(string_format("%s: unable to find tensor %s\n", __func__, name.c_str()));
  1954. }
  1955. if (cur) {
  1956. tensors_to_load.push_back(cur);
  1957. // add tensors to context
  1958. ggml_tensor * data_tensor = ggml_dup_tensor(ctx_clip.ctx_data.get(), cur);
  1959. ggml_set_name(data_tensor, cur->name);
  1960. cur = data_tensor;
  1961. }
  1962. return cur;
  1963. };
  1964. model.class_embedding = get_tensor(TN_CLASS_EMBD, false);
  1965. model.pre_ln_w = get_tensor(string_format(TN_LN_PRE, prefix, "weight"), false);
  1966. model.pre_ln_b = get_tensor(string_format(TN_LN_PRE, prefix, "bias"), false);
  1967. model.post_ln_w = get_tensor(string_format(TN_LN_POST, prefix, "weight"), false);
  1968. model.post_ln_b = get_tensor(string_format(TN_LN_POST, prefix, "bias"), false);
  1969. model.patch_bias = get_tensor(TN_PATCH_BIAS, false);
  1970. model.patch_embeddings_0 = get_tensor(TN_PATCH_EMBD, false);
  1971. model.patch_embeddings_1 = get_tensor(TN_PATCH_EMBD_1, false);
  1972. model.position_embeddings = get_tensor(string_format(TN_POS_EMBD, prefix), false);
  1973. // layers
  1974. model.layers.resize(hparams.n_layer);
  1975. for (int il = 0; il < hparams.n_layer; ++il) {
  1976. auto & layer = model.layers[il];
  1977. layer.k_w = get_tensor(string_format(TN_ATTN_K, prefix, il, "weight"));
  1978. layer.q_w = get_tensor(string_format(TN_ATTN_Q, prefix, il, "weight"));
  1979. layer.v_w = get_tensor(string_format(TN_ATTN_V, prefix, il, "weight"));
  1980. layer.o_w = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "weight"));
  1981. layer.k_norm = get_tensor(string_format(TN_ATTN_K_NORM, prefix, il, "weight"), false);
  1982. layer.q_norm = get_tensor(string_format(TN_ATTN_Q_NORM, prefix, il, "weight"), false);
  1983. layer.ln_1_w = get_tensor(string_format(TN_LN_1, prefix, il, "weight"), false);
  1984. layer.ln_2_w = get_tensor(string_format(TN_LN_2, prefix, il, "weight"), false);
  1985. layer.ls_1_w = get_tensor(string_format(TN_LS_1, prefix, il, "weight"), false); // no bias
  1986. layer.ls_2_w = get_tensor(string_format(TN_LS_2, prefix, il, "weight"), false); // no bias
  1987. layer.k_b = get_tensor(string_format(TN_ATTN_K, prefix, il, "bias"), false);
  1988. layer.q_b = get_tensor(string_format(TN_ATTN_Q, prefix, il, "bias"), false);
  1989. layer.v_b = get_tensor(string_format(TN_ATTN_V, prefix, il, "bias"), false);
  1990. layer.o_b = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "bias"), false);
  1991. layer.ln_1_b = get_tensor(string_format(TN_LN_1, prefix, il, "bias"), false);
  1992. layer.ln_2_b = get_tensor(string_format(TN_LN_2, prefix, il, "bias"), false);
  1993. // ffn
  1994. layer.ff_up_w = get_tensor(string_format(TN_FFN_UP, prefix, il, "weight"));
  1995. layer.ff_up_b = get_tensor(string_format(TN_FFN_UP, prefix, il, "bias"), false);
  1996. layer.ff_gate_w = get_tensor(string_format(TN_FFN_GATE, prefix, il, "weight"), false);
  1997. layer.ff_gate_b = get_tensor(string_format(TN_FFN_GATE, prefix, il, "bias"), false);
  1998. layer.ff_down_w = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "weight"));
  1999. layer.ff_down_b = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "bias"), false);
  2000. // some models already exported with legacy (incorrect) naming which is quite messy, let's fix it here
  2001. // note: Qwen model converted from the old surgery script has n_ff = 0, so we cannot use n_ff to check!
  2002. if (layer.ff_up_w && layer.ff_down_w && layer.ff_down_w->ne[0] == hparams.n_embd) {
  2003. // swap up and down weights
  2004. ggml_tensor * tmp = layer.ff_up_w;
  2005. layer.ff_up_w = layer.ff_down_w;
  2006. layer.ff_down_w = tmp;
  2007. // swap up and down biases
  2008. tmp = layer.ff_up_b;
  2009. layer.ff_up_b = layer.ff_down_b;
  2010. layer.ff_down_b = tmp;
  2011. }
  2012. }
  2013. switch (model.proj_type) {
  2014. case PROJECTOR_TYPE_MLP:
  2015. case PROJECTOR_TYPE_MLP_NORM:
  2016. {
  2017. // LLaVA projection
  2018. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"), false);
  2019. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"), false);
  2020. // Yi-type llava
  2021. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"), false);
  2022. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  2023. // missing in Yi-type llava
  2024. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"), false);
  2025. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  2026. // Yi-type llava
  2027. model.mm_3_w = get_tensor(string_format(TN_LLAVA_PROJ, 3, "weight"), false);
  2028. model.mm_3_b = get_tensor(string_format(TN_LLAVA_PROJ, 3, "bias"), false);
  2029. model.mm_4_w = get_tensor(string_format(TN_LLAVA_PROJ, 4, "weight"), false);
  2030. model.mm_4_b = get_tensor(string_format(TN_LLAVA_PROJ, 4, "bias"), false);
  2031. if (model.mm_3_w) {
  2032. // TODO: this is a hack to support Yi-type llava
  2033. model.proj_type = PROJECTOR_TYPE_MLP_NORM;
  2034. }
  2035. model.image_newline = get_tensor(TN_IMAGE_NEWLINE, false);
  2036. } break;
  2037. case PROJECTOR_TYPE_LDP:
  2038. {
  2039. // MobileVLM projection
  2040. model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  2041. model.mm_model_mlp_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
  2042. model.mm_model_mlp_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
  2043. model.mm_model_mlp_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
  2044. model.mm_model_block_1_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
  2045. model.mm_model_block_1_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
  2046. model.mm_model_block_1_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
  2047. model.mm_model_block_1_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
  2048. model.mm_model_block_1_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
  2049. model.mm_model_block_1_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
  2050. model.mm_model_block_1_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
  2051. model.mm_model_block_1_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
  2052. model.mm_model_block_1_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
  2053. model.mm_model_block_1_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
  2054. model.mm_model_block_2_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
  2055. model.mm_model_block_2_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
  2056. model.mm_model_block_2_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
  2057. model.mm_model_block_2_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
  2058. model.mm_model_block_2_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
  2059. model.mm_model_block_2_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
  2060. model.mm_model_block_2_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
  2061. model.mm_model_block_2_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
  2062. model.mm_model_block_2_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
  2063. model.mm_model_block_2_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
  2064. } break;
  2065. case PROJECTOR_TYPE_LDPV2:
  2066. {
  2067. // MobilVLM_V2 projection
  2068. model.mm_model_mlp_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
  2069. model.mm_model_mlp_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
  2070. model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
  2071. model.mm_model_mlp_2_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "bias"));
  2072. model.mm_model_peg_0_w = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "weight"));
  2073. model.mm_model_peg_0_b = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "bias"));
  2074. } break;
  2075. case PROJECTOR_TYPE_MINICPMV:
  2076. {
  2077. // model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
  2078. model.mm_model_pos_embed_k = get_tensor(TN_MINICPMV_POS_EMBD_K);
  2079. model.mm_model_query = get_tensor(TN_MINICPMV_QUERY);
  2080. model.mm_model_proj = get_tensor(TN_MINICPMV_PROJ);
  2081. model.mm_model_kv_proj = get_tensor(TN_MINICPMV_KV_PROJ);
  2082. model.mm_model_attn_q_w = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "weight"));
  2083. model.mm_model_attn_k_w = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "weight"));
  2084. model.mm_model_attn_v_w = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "weight"));
  2085. model.mm_model_attn_q_b = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "bias"));
  2086. model.mm_model_attn_k_b = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "bias"));
  2087. model.mm_model_attn_v_b = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "bias"));
  2088. model.mm_model_attn_o_w = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "weight"));
  2089. model.mm_model_attn_o_b = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "bias"));
  2090. model.mm_model_ln_q_w = get_tensor(string_format(TN_MINICPMV_LN, "q", "weight"));
  2091. model.mm_model_ln_q_b = get_tensor(string_format(TN_MINICPMV_LN, "q", "bias"));
  2092. model.mm_model_ln_kv_w = get_tensor(string_format(TN_MINICPMV_LN, "kv", "weight"));
  2093. model.mm_model_ln_kv_b = get_tensor(string_format(TN_MINICPMV_LN, "kv", "bias"));
  2094. model.mm_model_ln_post_w = get_tensor(string_format(TN_MINICPMV_LN, "post", "weight"));
  2095. model.mm_model_ln_post_b = get_tensor(string_format(TN_MINICPMV_LN, "post", "bias"));
  2096. } break;
  2097. case PROJECTOR_TYPE_GLM_EDGE:
  2098. {
  2099. model.mm_model_adapter_conv_w = get_tensor(string_format(TN_GLM_ADAPER_CONV, "weight"));
  2100. model.mm_model_adapter_conv_b = get_tensor(string_format(TN_GLM_ADAPER_CONV, "bias"));
  2101. model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR, "weight"));
  2102. model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "weight"));
  2103. model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "bias"));
  2104. model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H, "weight"));
  2105. model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE, "weight"));
  2106. model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H, "weight"));
  2107. model.mm_glm_tok_boi = get_tensor(string_format(TN_TOK_GLM_BOI, "weight"));
  2108. model.mm_glm_tok_eoi = get_tensor(string_format(TN_TOK_GLM_EOI, "weight"));
  2109. } break;
  2110. case PROJECTOR_TYPE_QWEN2VL:
  2111. case PROJECTOR_TYPE_QWEN25VL:
  2112. {
  2113. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
  2114. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
  2115. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2116. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
  2117. } break;
  2118. case PROJECTOR_TYPE_GEMMA3:
  2119. {
  2120. model.mm_input_proj_w = get_tensor(TN_MM_INP_PROJ);
  2121. model.mm_soft_emb_norm_w = get_tensor(TN_MM_SOFT_EMB_N);
  2122. } break;
  2123. case PROJECTOR_TYPE_IDEFICS3:
  2124. {
  2125. model.projection = get_tensor(TN_MM_PROJECTOR);
  2126. } break;
  2127. case PROJECTOR_TYPE_PIXTRAL:
  2128. {
  2129. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  2130. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  2131. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2132. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  2133. // [IMG_BREAK] token embedding
  2134. model.token_embd_img_break = get_tensor(TN_TOK_IMG_BREAK);
  2135. // for mistral small 3.1
  2136. model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false);
  2137. model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
  2138. } break;
  2139. case PROJECTOR_TYPE_ULTRAVOX:
  2140. {
  2141. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  2142. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  2143. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  2144. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  2145. model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
  2146. model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
  2147. model.mm_norm_pre_w = get_tensor(string_format(TN_MM_NORM_PRE, "weight"));
  2148. model.mm_norm_mid_w = get_tensor(string_format(TN_MM_NORM_MID, "weight"));
  2149. } break;
  2150. case PROJECTOR_TYPE_QWEN2A:
  2151. {
  2152. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  2153. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  2154. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  2155. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  2156. model.mm_fc_w = get_tensor(string_format(TN_MM_AUDIO_FC, "weight"));
  2157. model.mm_fc_b = get_tensor(string_format(TN_MM_AUDIO_FC, "bias"));
  2158. } break;
  2159. case PROJECTOR_TYPE_INTERNVL:
  2160. {
  2161. model.mm_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
  2162. model.mm_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
  2163. model.mm_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  2164. model.mm_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
  2165. model.mm_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
  2166. model.mm_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
  2167. } break;
  2168. case PROJECTOR_TYPE_LLAMA4:
  2169. {
  2170. model.mm_model_proj = get_tensor(TN_MM_PROJECTOR);
  2171. model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  2172. model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
  2173. } break;
  2174. default:
  2175. GGML_ASSERT(false && "unknown projector type");
  2176. }
  2177. // load data
  2178. {
  2179. std::vector<uint8_t> read_buf;
  2180. auto fin = std::ifstream(fname, std::ios::binary);
  2181. if (!fin) {
  2182. throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str()));
  2183. }
  2184. // alloc memory and offload data
  2185. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(ctx_clip.backend);
  2186. ctx_clip.buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(ctx_clip.ctx_data.get(), buft));
  2187. ggml_backend_buffer_set_usage(ctx_clip.buf.get(), GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  2188. for (auto & t : tensors_to_load) {
  2189. ggml_tensor * cur = ggml_get_tensor(ctx_clip.ctx_data.get(), t->name);
  2190. const size_t offset = tensor_offset[t->name];
  2191. fin.seekg(offset, std::ios::beg);
  2192. if (!fin) {
  2193. throw std::runtime_error(string_format("%s: failed to seek for tensor %s\n", __func__, t->name));
  2194. }
  2195. size_t num_bytes = ggml_nbytes(cur);
  2196. if (ggml_backend_buft_is_host(buft)) {
  2197. // for the CPU and Metal backend, we can read directly into the tensor
  2198. fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
  2199. } else {
  2200. // read into a temporary buffer first, then copy to device memory
  2201. read_buf.resize(num_bytes);
  2202. fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
  2203. ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
  2204. }
  2205. }
  2206. fin.close();
  2207. LOG_DBG("%s: loaded %zu tensors from %s\n", __func__, tensors_to_load.size(), fname.c_str());
  2208. }
  2209. }
  2210. void alloc_compute_meta(clip_ctx & ctx_clip) {
  2211. const auto & hparams = ctx_clip.model.hparams;
  2212. ctx_clip.buf_compute_meta.resize(ctx_clip.max_nodes * ggml_tensor_overhead() + ggml_graph_overhead());
  2213. // create a fake batch
  2214. clip_image_f32_batch batch;
  2215. clip_image_f32_ptr img(clip_image_f32_init());
  2216. if (ctx_clip.model.modality == CLIP_MODALITY_VISION) {
  2217. img->nx = hparams.warmup_image_size;
  2218. img->ny = hparams.warmup_image_size;
  2219. } else {
  2220. img->nx = hparams.warmup_audio_size;
  2221. img->ny = hparams.n_mel_bins;
  2222. }
  2223. batch.entries.push_back(std::move(img));
  2224. ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch);
  2225. ggml_backend_sched_reserve(ctx_clip.sched.get(), gf);
  2226. for (size_t i = 0; i < ctx_clip.backend_ptrs.size(); ++i) {
  2227. ggml_backend_t backend = ctx_clip.backend_ptrs[i];
  2228. ggml_backend_buffer_type_t buft = ctx_clip.backend_buft[i];
  2229. size_t size = ggml_backend_sched_get_buffer_size(ctx_clip.sched.get(), backend);
  2230. if (size > 1) {
  2231. LOG_INF("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  2232. ggml_backend_buft_name(buft),
  2233. size / 1024.0 / 1024.0);
  2234. }
  2235. }
  2236. }
  2237. void get_bool(const std::string & key, bool & output, bool required = true) {
  2238. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2239. if (i < 0) {
  2240. if (required) throw std::runtime_error("Key not found: " + key);
  2241. return;
  2242. }
  2243. output = gguf_get_val_bool(ctx_gguf.get(), i);
  2244. }
  2245. void get_i32(const std::string & key, int & output, bool required = true) {
  2246. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2247. if (i < 0) {
  2248. if (required) throw std::runtime_error("Key not found: " + key);
  2249. return;
  2250. }
  2251. output = gguf_get_val_i32(ctx_gguf.get(), i);
  2252. }
  2253. void get_u32(const std::string & key, int & output, bool required = true) {
  2254. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2255. if (i < 0) {
  2256. if (required) throw std::runtime_error("Key not found: " + key);
  2257. return;
  2258. }
  2259. output = gguf_get_val_u32(ctx_gguf.get(), i);
  2260. }
  2261. void get_f32(const std::string & key, float & output, bool required = true) {
  2262. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2263. if (i < 0) {
  2264. if (required) throw std::runtime_error("Key not found: " + key);
  2265. return;
  2266. }
  2267. output = gguf_get_val_f32(ctx_gguf.get(), i);
  2268. }
  2269. void get_string(const std::string & key, std::string & output, bool required = true) {
  2270. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2271. if (i < 0) {
  2272. if (required) throw std::runtime_error("Key not found: " + key);
  2273. return;
  2274. }
  2275. output = std::string(gguf_get_val_str(ctx_gguf.get(), i));
  2276. }
  2277. void get_arr_int(const std::string & key, std::vector<int> & output, bool required = true) {
  2278. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2279. if (i < 0) {
  2280. if (required) throw std::runtime_error("Key not found: " + key);
  2281. return;
  2282. }
  2283. int n = gguf_get_arr_n(ctx_gguf.get(), i);
  2284. output.resize(n);
  2285. const int32_t * values = (const int32_t *)gguf_get_arr_data(ctx_gguf.get(), i);
  2286. for (int i = 0; i < n; ++i) {
  2287. output[i] = values[i];
  2288. }
  2289. }
  2290. void set_llava_uhd_res_candidates(clip_model & model, const int max_patches_per_side) {
  2291. auto & hparams = model.hparams;
  2292. for (int x = 1; x <= max_patches_per_side; x++) {
  2293. for (int y = 1; y <= max_patches_per_side; y++) {
  2294. if (x == 1 && y == 1) {
  2295. continue; // skip the first point
  2296. }
  2297. hparams.image_res_candidates.push_back(clip_image_size{
  2298. x*hparams.image_size,
  2299. y*hparams.image_size,
  2300. });
  2301. }
  2302. }
  2303. }
  2304. };
  2305. struct clip_init_result clip_init(const char * fname, struct clip_context_params ctx_params) {
  2306. g_logger_state.verbosity_thold = ctx_params.verbosity;
  2307. clip_ctx * ctx_vision = nullptr;
  2308. clip_ctx * ctx_audio = nullptr;
  2309. try {
  2310. clip_model_loader loader(fname);
  2311. if (loader.has_vision) {
  2312. ctx_vision = new clip_ctx(ctx_params);
  2313. loader.load_hparams(ctx_vision->model, CLIP_MODALITY_VISION);
  2314. loader.load_tensors(*ctx_vision);
  2315. loader.alloc_compute_meta(*ctx_vision);
  2316. }
  2317. if (loader.has_audio) {
  2318. ctx_audio = new clip_ctx(ctx_params);
  2319. loader.load_hparams(ctx_audio->model, CLIP_MODALITY_AUDIO);
  2320. loader.load_tensors(*ctx_audio);
  2321. loader.alloc_compute_meta(*ctx_audio);
  2322. }
  2323. } catch (const std::exception & e) {
  2324. LOG_ERR("%s: failed to load model '%s': %s\n", __func__, fname, e.what());
  2325. if (ctx_vision) {
  2326. delete ctx_vision;
  2327. }
  2328. if (ctx_audio) {
  2329. delete ctx_audio;
  2330. }
  2331. return {nullptr, nullptr};
  2332. }
  2333. return {ctx_vision, ctx_audio};
  2334. }
  2335. struct clip_image_size * clip_image_size_init() {
  2336. struct clip_image_size * load_image_size = new struct clip_image_size();
  2337. load_image_size->width = 448;
  2338. load_image_size->height = 448;
  2339. return load_image_size;
  2340. }
  2341. struct clip_image_u8 * clip_image_u8_init() {
  2342. return new clip_image_u8();
  2343. }
  2344. struct clip_image_f32 * clip_image_f32_init() {
  2345. return new clip_image_f32();
  2346. }
  2347. struct clip_image_f32_batch * clip_image_f32_batch_init() {
  2348. return new clip_image_f32_batch();
  2349. }
  2350. unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny) {
  2351. if (nx) *nx = img->nx;
  2352. if (ny) *ny = img->ny;
  2353. return img->buf.data();
  2354. }
  2355. void clip_image_size_free(struct clip_image_size * load_image_size) {
  2356. if (load_image_size == nullptr) {
  2357. return;
  2358. }
  2359. delete load_image_size;
  2360. }
  2361. void clip_image_u8_free(struct clip_image_u8 * img) { if (img) delete img; }
  2362. void clip_image_f32_free(struct clip_image_f32 * img) { if (img) delete img; }
  2363. void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) { if (batch) delete batch; }
  2364. void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) { if (batch) delete batch; }
  2365. size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch) {
  2366. return batch->entries.size();
  2367. }
  2368. size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx) {
  2369. if (idx < 0 || idx >= (int)batch->entries.size()) {
  2370. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  2371. return 0;
  2372. }
  2373. return batch->entries[idx]->nx;
  2374. }
  2375. size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx) {
  2376. if (idx < 0 || idx >= (int)batch->entries.size()) {
  2377. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  2378. return 0;
  2379. }
  2380. return batch->entries[idx]->ny;
  2381. }
  2382. clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx) {
  2383. if (idx < 0 || idx >= (int)batch->entries.size()) {
  2384. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  2385. return nullptr;
  2386. }
  2387. return batch->entries[idx].get();
  2388. }
  2389. void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) {
  2390. img->nx = nx;
  2391. img->ny = ny;
  2392. img->buf.resize(3 * nx * ny);
  2393. memcpy(img->buf.data(), rgb_pixels, img->buf.size());
  2394. }
  2395. // Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
  2396. static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32 & dst, const float mean[3], const float std[3]) {
  2397. dst.nx = src.nx;
  2398. dst.ny = src.ny;
  2399. dst.buf.resize(src.buf.size());
  2400. // TODO @ngxson : seems like this could be done more efficiently on cgraph
  2401. for (size_t i = 0; i < src.buf.size(); ++i) {
  2402. int c = i % 3; // rgb
  2403. dst.buf[i] = (static_cast<float>(src.buf[i]) / 255.0f - mean[c]) / std[c];
  2404. }
  2405. }
  2406. // set of tools to manupulate images
  2407. // in the future, we can have HW acceleration by allowing this struct to access 3rd party lib like imagick or opencv
  2408. struct image_manipulation {
  2409. // Bilinear resize function
  2410. static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int target_width, int target_height) {
  2411. dst.nx = target_width;
  2412. dst.ny = target_height;
  2413. dst.buf.resize(3 * target_width * target_height);
  2414. float x_ratio = static_cast<float>(src.nx - 1) / target_width;
  2415. float y_ratio = static_cast<float>(src.ny - 1) / target_height;
  2416. for (int y = 0; y < target_height; y++) {
  2417. for (int x = 0; x < target_width; x++) {
  2418. float px = x_ratio * x;
  2419. float py = y_ratio * y;
  2420. int x_floor = static_cast<int>(px);
  2421. int y_floor = static_cast<int>(py);
  2422. float x_lerp = px - x_floor;
  2423. float y_lerp = py - y_floor;
  2424. for (int c = 0; c < 3; c++) {
  2425. float top = lerp(
  2426. static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
  2427. static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
  2428. x_lerp
  2429. );
  2430. float bottom = lerp(
  2431. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
  2432. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
  2433. x_lerp
  2434. );
  2435. dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(lerp(top, bottom, y_lerp));
  2436. }
  2437. }
  2438. }
  2439. }
  2440. // Bicubic resize function
  2441. // part of image will be cropped if the aspect ratio is different
  2442. static bool bicubic_resize(const clip_image_u8 & img, clip_image_u8 & dst, int target_width, int target_height) {
  2443. const int nx = img.nx;
  2444. const int ny = img.ny;
  2445. dst.nx = target_width;
  2446. dst.ny = target_height;
  2447. dst.buf.resize(3 * target_width * target_height);
  2448. float Cc;
  2449. float C[5];
  2450. float d0, d2, d3, a0, a1, a2, a3;
  2451. int i, j, k, jj;
  2452. int x, y;
  2453. float dx, dy;
  2454. float tx, ty;
  2455. tx = (float)nx / (float)target_width;
  2456. ty = (float)ny / (float)target_height;
  2457. // Bicubic interpolation; adapted from ViT.cpp, inspired from :
  2458. // -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
  2459. // -> https://en.wikipedia.org/wiki/Bicubic_interpolation
  2460. for (i = 0; i < target_height; i++) {
  2461. for (j = 0; j < target_width; j++) {
  2462. x = (int)(tx * j);
  2463. y = (int)(ty * i);
  2464. dx = tx * j - x;
  2465. dy = ty * i - y;
  2466. for (k = 0; k < 3; k++) {
  2467. for (jj = 0; jj <= 3; jj++) {
  2468. d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  2469. d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  2470. d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  2471. a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  2472. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  2473. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  2474. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  2475. C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;
  2476. d0 = C[0] - C[1];
  2477. d2 = C[2] - C[1];
  2478. d3 = C[3] - C[1];
  2479. a0 = C[1];
  2480. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  2481. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  2482. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  2483. Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
  2484. const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
  2485. dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
  2486. }
  2487. }
  2488. }
  2489. }
  2490. return true;
  2491. }
  2492. // llava-1.6 type of resize_and_pad
  2493. // if the ratio is not 1:1, padding with pad_color will be applied
  2494. // pad_color is single channel, default is 0 (black)
  2495. static void resize_and_pad_image(const clip_image_u8 & image, clip_image_u8 & dst, const clip_image_size & target_resolution, std::array<uint8_t, 3> pad_color = {0, 0, 0}) {
  2496. int target_width = target_resolution.width;
  2497. int target_height = target_resolution.height;
  2498. float scale_w = static_cast<float>(target_width) / image.nx;
  2499. float scale_h = static_cast<float>(target_height) / image.ny;
  2500. int new_width, new_height;
  2501. if (scale_w < scale_h) {
  2502. new_width = target_width;
  2503. new_height = std::min(static_cast<int>(std::ceil(image.ny * scale_w)), target_height);
  2504. } else {
  2505. new_height = target_height;
  2506. new_width = std::min(static_cast<int>(std::ceil(image.nx * scale_h)), target_width);
  2507. }
  2508. clip_image_u8 resized_image;
  2509. bicubic_resize(image, resized_image, new_width, new_height);
  2510. clip_image_u8 padded_image;
  2511. padded_image.nx = target_width;
  2512. padded_image.ny = target_height;
  2513. padded_image.buf.resize(3 * target_width * target_height);
  2514. // Fill the padded image with the fill color
  2515. for (size_t i = 0; i < padded_image.buf.size(); i += 3) {
  2516. padded_image.buf[i] = pad_color[0];
  2517. padded_image.buf[i + 1] = pad_color[1];
  2518. padded_image.buf[i + 2] = pad_color[2];
  2519. }
  2520. // Calculate padding offsets
  2521. int pad_x = (target_width - new_width) / 2;
  2522. int pad_y = (target_height - new_height) / 2;
  2523. // Copy the resized image into the center of the padded buffer
  2524. for (int y = 0; y < new_height; ++y) {
  2525. for (int x = 0; x < new_width; ++x) {
  2526. for (int c = 0; c < 3; ++c) {
  2527. padded_image.buf[3 * ((y + pad_y) * target_width + (x + pad_x)) + c] = resized_image.buf[3 * (y * new_width + x) + c];
  2528. }
  2529. }
  2530. }
  2531. dst = std::move(padded_image);
  2532. }
  2533. static void crop_image(const clip_image_u8 & image, clip_image_u8 & dst, int x, int y, int w, int h) {
  2534. dst.nx = w;
  2535. dst.ny = h;
  2536. dst.buf.resize(3 * w * h);
  2537. for (int i = 0; i < h; ++i) {
  2538. for (int j = 0; j < w; ++j) {
  2539. int src_idx = 3 * ((y + i)*image.nx + (x + j));
  2540. int dst_idx = 3 * (i*w + j);
  2541. dst.buf[dst_idx] = image.buf[src_idx];
  2542. dst.buf[dst_idx + 1] = image.buf[src_idx + 1];
  2543. dst.buf[dst_idx + 2] = image.buf[src_idx + 2];
  2544. }
  2545. }
  2546. }
  2547. // calculate the size of the **resized** image, while preserving the aspect ratio
  2548. // the calculated size will be aligned to the nearest multiple of align_size
  2549. // if H or W size is larger than max_dimension, it will be resized to max_dimension
  2550. static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int max_dimension) {
  2551. if (inp_size.width <= 0 || inp_size.height <= 0 || align_size <= 0 || max_dimension <= 0) {
  2552. return {0, 0};
  2553. }
  2554. float scale = std::min(1.0f, std::min(static_cast<float>(max_dimension) / inp_size.width,
  2555. static_cast<float>(max_dimension) / inp_size.height));
  2556. float target_width_f = static_cast<float>(inp_size.width) * scale;
  2557. float target_height_f = static_cast<float>(inp_size.height) * scale;
  2558. int aligned_width = CLIP_ALIGN((int)target_width_f, align_size);
  2559. int aligned_height = CLIP_ALIGN((int)target_height_f, align_size);
  2560. return {aligned_width, aligned_height};
  2561. }
  2562. private:
  2563. static inline int clip(int x, int lower, int upper) {
  2564. return std::max(lower, std::min(x, upper));
  2565. }
  2566. // Linear interpolation between two points
  2567. static inline float lerp(float s, float e, float t) {
  2568. return s + (e - s) * t;
  2569. }
  2570. };
  2571. /**
  2572. * implementation of LLaVA-UHD:
  2573. * - https://arxiv.org/pdf/2403.11703
  2574. * - https://github.com/thunlp/LLaVA-UHD
  2575. * - https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
  2576. *
  2577. * overview:
  2578. * - an image always have a single overview (downscaled image)
  2579. * - an image can have 0 or multiple slices, depending on the image size
  2580. * - each slice can then be considered as a separate image
  2581. *
  2582. * for example:
  2583. *
  2584. * [overview] --> [slice 1] --> [slice 2]
  2585. * | |
  2586. * +--> [slice 3] --> [slice 4]
  2587. */
  2588. struct llava_uhd {
  2589. struct slice_coordinates {
  2590. int x;
  2591. int y;
  2592. clip_image_size size;
  2593. };
  2594. struct slice_instructions {
  2595. clip_image_size overview_size; // size of downscaled image
  2596. clip_image_size refined_size; // size of image right before slicing (must be multiple of slice size)
  2597. clip_image_size grid_size; // grid_size.width * grid_size.height = number of slices
  2598. std::vector<slice_coordinates> slices;
  2599. bool padding_refined = false; // if true, refine image will be padded to the grid size (e.g. llava-1.6)
  2600. };
  2601. static slice_instructions get_slice_instructions(struct clip_ctx * ctx, const clip_image_size & original_size) {
  2602. slice_instructions res;
  2603. const int patch_size = clip_get_patch_size(ctx);
  2604. const int slice_size = clip_get_image_size(ctx);
  2605. const int original_width = original_size.width;
  2606. const int original_height = original_size.height;
  2607. const bool has_slices = original_size.width > slice_size || original_size.height > slice_size;
  2608. const bool has_pinpoints = !ctx->model.hparams.image_res_candidates.empty();
  2609. if (!has_slices) {
  2610. // skip slicing logic
  2611. res.overview_size = clip_image_size{slice_size, slice_size};
  2612. res.refined_size = clip_image_size{0, 0};
  2613. res.grid_size = clip_image_size{0, 0};
  2614. return res;
  2615. }
  2616. if (has_pinpoints) {
  2617. // has pinpoints, use them to calculate the grid size (e.g. llava-1.6)
  2618. auto refine_size = llava_uhd::select_best_resolution(
  2619. original_size,
  2620. ctx->model.hparams.image_res_candidates);
  2621. res.overview_size = clip_image_size{slice_size, slice_size};
  2622. res.refined_size = refine_size;
  2623. res.grid_size = clip_image_size{0, 0};
  2624. res.padding_refined = true;
  2625. LOG_DBG("%s: using pinpoints for slicing\n", __func__);
  2626. LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d\n",
  2627. __func__, original_width, original_height,
  2628. res.overview_size.width, res.overview_size.height,
  2629. res.refined_size.width, res.refined_size.height);
  2630. for (int y = 0; y < refine_size.height; y += slice_size) {
  2631. for (int x = 0; x < refine_size.width; x += slice_size) {
  2632. slice_coordinates slice;
  2633. slice.x = x;
  2634. slice.y = y;
  2635. slice.size.width = std::min(slice_size, refine_size.width - x);
  2636. slice.size.height = std::min(slice_size, refine_size.height - y);
  2637. res.slices.push_back(slice);
  2638. LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
  2639. __func__, (int)res.slices.size() - 1,
  2640. slice.x, slice.y, slice.size.width, slice.size.height);
  2641. }
  2642. }
  2643. res.grid_size.height = refine_size.height / slice_size;
  2644. res.grid_size.width = refine_size.width / slice_size;
  2645. LOG_DBG("%s: grid size: %d x %d\n", __func__, res.grid_size.width, res.grid_size.height);
  2646. return res;
  2647. }
  2648. // no pinpoints, dynamically calculate the grid size (e.g. minicpmv)
  2649. auto best_size = get_best_resize(original_size, slice_size, patch_size, !has_slices);
  2650. res.overview_size = best_size;
  2651. {
  2652. const int max_slice_nums = 9; // TODO: this is only used by minicpmv, maybe remove it
  2653. const float log_ratio = log((float)original_width / original_height);
  2654. const float ratio = (float)original_width * original_height / (slice_size * slice_size);
  2655. const int multiple = fmin(ceil(ratio), max_slice_nums);
  2656. auto best_grid = get_best_grid(max_slice_nums, multiple, log_ratio);
  2657. auto refine_size = get_refine_size(original_size, best_grid, slice_size, patch_size, true);
  2658. res.grid_size = best_grid;
  2659. res.refined_size = refine_size;
  2660. LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d, grid size: %d x %d\n",
  2661. __func__, original_width, original_height,
  2662. res.overview_size.width, res.overview_size.height,
  2663. res.refined_size.width, res.refined_size.height,
  2664. res.grid_size.width, res.grid_size.height);
  2665. int width = refine_size.width;
  2666. int height = refine_size.height;
  2667. int grid_x = int(width / best_grid.width);
  2668. int grid_y = int(height / best_grid.height);
  2669. for (int patches_y = 0, ic = 0;
  2670. patches_y < refine_size.height && ic < best_grid.height;
  2671. patches_y += grid_y, ic += 1) {
  2672. for (int patches_x = 0, jc = 0;
  2673. patches_x < refine_size.width && jc < best_grid.width;
  2674. patches_x += grid_x, jc += 1) {
  2675. slice_coordinates slice;
  2676. slice.x = patches_x;
  2677. slice.y = patches_y;
  2678. slice.size.width = grid_x;
  2679. slice.size.height = grid_y;
  2680. res.slices.push_back(slice);
  2681. LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
  2682. __func__, (int)res.slices.size() - 1,
  2683. slice.x, slice.y, slice.size.width, slice.size.height);
  2684. }
  2685. }
  2686. }
  2687. return res;
  2688. }
  2689. static std::vector<clip_image_u8_ptr> slice_image(const clip_image_u8 * img, const slice_instructions & inst) {
  2690. std::vector<clip_image_u8_ptr> output;
  2691. // resize to overview size
  2692. clip_image_u8_ptr resized_img(clip_image_u8_init());
  2693. image_manipulation::bicubic_resize(*img, *resized_img, inst.overview_size.width, inst.overview_size.height);
  2694. output.push_back(std::move(resized_img));
  2695. if (inst.slices.empty()) {
  2696. // no slices, just return the resized image
  2697. return output;
  2698. }
  2699. // resize to refined size
  2700. clip_image_u8_ptr refined_img(clip_image_u8_init());
  2701. if (inst.padding_refined) {
  2702. image_manipulation::resize_and_pad_image(*img, *refined_img, inst.refined_size);
  2703. } else {
  2704. image_manipulation::bilinear_resize(*img, *refined_img, inst.refined_size.width, inst.refined_size.height);
  2705. }
  2706. // create slices
  2707. for (const auto & slice : inst.slices) {
  2708. int x = slice.x;
  2709. int y = slice.y;
  2710. int w = slice.size.width;
  2711. int h = slice.size.height;
  2712. clip_image_u8_ptr img_slice(clip_image_u8_init());
  2713. image_manipulation::crop_image(*refined_img, *img_slice, x, y, w, h);
  2714. output.push_back(std::move(img_slice));
  2715. }
  2716. return output;
  2717. }
  2718. private:
  2719. static clip_image_size get_best_resize(const clip_image_size & original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
  2720. int width = original_size.width;
  2721. int height = original_size.height;
  2722. if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
  2723. float r = static_cast<float>(width) / height;
  2724. height = static_cast<int>(scale_resolution / std::sqrt(r));
  2725. width = static_cast<int>(height * r);
  2726. }
  2727. clip_image_size res;
  2728. res.width = ensure_divide(width, patch_size);
  2729. res.height = ensure_divide(height, patch_size);
  2730. return res;
  2731. }
  2732. static clip_image_size resize_maintain_aspect_ratio(const clip_image_size & orig, const clip_image_size & target_max) {
  2733. float scale_width = static_cast<float>(target_max.width) / orig.width;
  2734. float scale_height = static_cast<float>(target_max.height) / orig.height;
  2735. float scale = std::min(scale_width, scale_height);
  2736. return clip_image_size{
  2737. static_cast<int>(orig.width * scale),
  2738. static_cast<int>(orig.height * scale),
  2739. };
  2740. }
  2741. /**
  2742. * Selects the best resolution from a list of possible resolutions based on the original size.
  2743. *
  2744. * For example, when given a list of resolutions:
  2745. * - 100x100
  2746. * - 200x100
  2747. * - 100x200
  2748. * - 200x200
  2749. *
  2750. * And an input image of size 111x200, then 100x200 is the best fit (least wasted resolution).
  2751. *
  2752. * @param original_size The original size of the image
  2753. * @param possible_resolutions A list of possible resolutions
  2754. * @return The best fit resolution
  2755. */
  2756. static clip_image_size select_best_resolution(const clip_image_size & original_size, const std::vector<clip_image_size> & possible_resolutions) {
  2757. clip_image_size best_fit;
  2758. int min_wasted_area = std::numeric_limits<int>::max();
  2759. int max_effective_resolution = 0;
  2760. for (const clip_image_size & candidate : possible_resolutions) {
  2761. auto target_size = resize_maintain_aspect_ratio(original_size, candidate);
  2762. int effective_resolution = std::min(
  2763. target_size.width * target_size.height,
  2764. original_size.width * original_size.height);
  2765. int wasted_area = (candidate.width * candidate.height) - effective_resolution;
  2766. if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_area < min_wasted_area)) {
  2767. max_effective_resolution = effective_resolution;
  2768. min_wasted_area = wasted_area;
  2769. best_fit = candidate;
  2770. }
  2771. LOG_DBG("%s: candidate: %d x %d, target: %d x %d, wasted: %d, effective: %d\n", __func__, candidate.width, candidate.height, target_size.width, target_size.height, wasted_area, effective_resolution);
  2772. }
  2773. return best_fit;
  2774. }
  2775. static int ensure_divide(int length, int patch_size) {
  2776. return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
  2777. }
  2778. static clip_image_size get_refine_size(const clip_image_size & original_size, const clip_image_size & grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
  2779. int width = original_size.width;
  2780. int height = original_size.height;
  2781. int grid_x = grid.width;
  2782. int grid_y = grid.height;
  2783. int refine_width = ensure_divide(width, grid_x);
  2784. int refine_height = ensure_divide(height, grid_y);
  2785. clip_image_size grid_size;
  2786. grid_size.width = refine_width / grid_x;
  2787. grid_size.height = refine_height / grid_y;
  2788. auto best_grid_size = get_best_resize(grid_size, scale_resolution, patch_size, allow_upscale);
  2789. int best_grid_width = best_grid_size.width;
  2790. int best_grid_height = best_grid_size.height;
  2791. clip_image_size refine_size;
  2792. refine_size.width = best_grid_width * grid_x;
  2793. refine_size.height = best_grid_height * grid_y;
  2794. return refine_size;
  2795. }
  2796. static clip_image_size get_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
  2797. std::vector<int> candidate_split_grids_nums;
  2798. for (int i : {multiple - 1, multiple, multiple + 1}) {
  2799. if (i == 1 || i > max_slice_nums) {
  2800. continue;
  2801. }
  2802. candidate_split_grids_nums.push_back(i);
  2803. }
  2804. std::vector<clip_image_size> candidate_grids;
  2805. for (int split_grids_nums : candidate_split_grids_nums) {
  2806. int m = 1;
  2807. while (m <= split_grids_nums) {
  2808. if (split_grids_nums % m == 0) {
  2809. candidate_grids.push_back(clip_image_size{m, split_grids_nums / m});
  2810. }
  2811. ++m;
  2812. }
  2813. }
  2814. clip_image_size best_grid{1, 1};
  2815. float min_error = std::numeric_limits<float>::infinity();
  2816. for (const auto& grid : candidate_grids) {
  2817. float error = std::abs(log_ratio - std::log(1.0 * grid.width / grid.height));
  2818. if (error < min_error) {
  2819. best_grid = grid;
  2820. min_error = error;
  2821. }
  2822. }
  2823. return best_grid;
  2824. }
  2825. };
  2826. // returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
  2827. // res_imgs memory is being allocated here, previous allocations will be freed if found
  2828. bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) {
  2829. clip_image_size original_size{img->nx, img->ny};
  2830. bool pad_to_square = true;
  2831. auto & params = ctx->model.hparams;
  2832. // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
  2833. if (params.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD) {
  2834. pad_to_square = false;
  2835. }
  2836. if (clip_is_minicpmv(ctx)) {
  2837. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  2838. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  2839. for (size_t i = 0; i < imgs.size(); ++i) {
  2840. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  2841. clip_image_f32_ptr res(clip_image_f32_init());
  2842. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  2843. res_imgs->entries.push_back(std::move(res));
  2844. }
  2845. res_imgs->grid_x = inst.grid_size.width;
  2846. res_imgs->grid_y = inst.grid_size.height;
  2847. return true;
  2848. } else if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL) {
  2849. clip_image_u8 resized;
  2850. auto patch_size = params.patch_size * 2;
  2851. auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, patch_size, params.image_size);
  2852. image_manipulation::bicubic_resize(*img, resized, new_size.width, new_size.height);
  2853. clip_image_f32_ptr img_f32(clip_image_f32_init());
  2854. // clip_image_f32_ptr res(clip_image_f32_init());
  2855. normalize_image_u8_to_f32(resized, *img_f32, params.image_mean, params.image_std);
  2856. // res_imgs->data[0] = *res;
  2857. res_imgs->entries.push_back(std::move(img_f32));
  2858. return true;
  2859. }
  2860. else if (ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE
  2861. || ctx->proj_type() == PROJECTOR_TYPE_GEMMA3
  2862. || ctx->proj_type() == PROJECTOR_TYPE_IDEFICS3
  2863. || ctx->proj_type() == PROJECTOR_TYPE_INTERNVL // TODO @ngxson : support dynamic resolution
  2864. ) {
  2865. clip_image_u8 resized_image;
  2866. int sz = params.image_size;
  2867. image_manipulation::resize_and_pad_image(*img, resized_image, {sz, sz});
  2868. clip_image_f32_ptr img_f32(clip_image_f32_init());
  2869. //clip_image_save_to_bmp(resized_image, "resized.bmp");
  2870. normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
  2871. res_imgs->entries.push_back(std::move(img_f32));
  2872. return true;
  2873. } else if (ctx->proj_type() == PROJECTOR_TYPE_PIXTRAL) {
  2874. clip_image_u8 resized_image;
  2875. auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, params.patch_size, params.image_size);
  2876. image_manipulation::bilinear_resize(*img, resized_image, new_size.width, new_size.height);
  2877. clip_image_f32_ptr img_f32(clip_image_f32_init());
  2878. normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
  2879. res_imgs->entries.push_back(std::move(img_f32));
  2880. return true;
  2881. } else if (ctx->proj_type() == PROJECTOR_TYPE_LLAMA4) {
  2882. GGML_ASSERT(!params.image_res_candidates.empty());
  2883. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  2884. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  2885. for (size_t i = 0; i < imgs.size(); ++i) {
  2886. clip_image_f32_ptr res(clip_image_f32_init());
  2887. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  2888. res_imgs->entries.push_back(std::move(res));
  2889. }
  2890. res_imgs->grid_x = inst.grid_size.width;
  2891. res_imgs->grid_y = inst.grid_size.height;
  2892. return true;
  2893. }
  2894. // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
  2895. // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
  2896. clip_image_u8_ptr temp(clip_image_u8_init()); // we will keep the input image data here temporarily
  2897. if (pad_to_square) {
  2898. // for llava-1.5, we resize image to a square, and pad the shorter side with a background color
  2899. // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
  2900. const int longer_side = std::max(img->nx, img->ny);
  2901. temp->nx = longer_side;
  2902. temp->ny = longer_side;
  2903. temp->buf.resize(3 * longer_side * longer_side);
  2904. // background color in RGB from LLaVA (this is the mean rgb color * 255)
  2905. const std::array<uint8_t, 3> pad_color = {122, 116, 104};
  2906. // resize the image to the target_size
  2907. image_manipulation::resize_and_pad_image(*img, *temp, clip_image_size{params.image_size, params.image_size}, pad_color);
  2908. clip_image_f32_ptr res(clip_image_f32_init());
  2909. normalize_image_u8_to_f32(*temp, *res, params.image_mean, params.image_std);
  2910. res_imgs->entries.push_back(std::move(res));
  2911. return true;
  2912. } else if (!params.image_res_candidates.empty()) {
  2913. // "spatial_unpad" with "anyres" processing for llava-1.6
  2914. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  2915. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  2916. for (size_t i = 0; i < imgs.size(); ++i) {
  2917. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  2918. clip_image_f32_ptr res(clip_image_f32_init());
  2919. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  2920. res_imgs->entries.push_back(std::move(res));
  2921. }
  2922. return true;
  2923. }
  2924. GGML_ASSERT(false && "Unknown image preprocessing type");
  2925. }
  2926. ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
  2927. return ctx->model.image_newline;
  2928. }
  2929. void clip_free(clip_ctx * ctx) {
  2930. if (ctx == nullptr) {
  2931. return;
  2932. }
  2933. delete ctx;
  2934. }
  2935. // deprecated
  2936. size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
  2937. const int32_t nx = ctx->model.hparams.image_size;
  2938. const int32_t ny = ctx->model.hparams.image_size;
  2939. return clip_embd_nbytes_by_img(ctx, nx, ny);
  2940. }
  2941. size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_w, int img_h) {
  2942. clip_image_f32 img;
  2943. img.nx = img_w;
  2944. img.ny = img_h;
  2945. return clip_n_output_tokens(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float);
  2946. }
  2947. int32_t clip_get_image_size(const struct clip_ctx * ctx) {
  2948. return ctx->model.hparams.image_size;
  2949. }
  2950. int32_t clip_get_patch_size(const struct clip_ctx * ctx) {
  2951. return ctx->model.hparams.patch_size;
  2952. }
  2953. int32_t clip_get_hidden_size(const struct clip_ctx * ctx) {
  2954. return ctx->model.hparams.n_embd;
  2955. }
  2956. const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
  2957. return ctx->model.hparams.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD ? "spatial_unpad" : "flat";
  2958. }
  2959. int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  2960. const auto & params = ctx->model.hparams;
  2961. const int n_total = clip_n_output_tokens(ctx, img);
  2962. if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL) {
  2963. return img->nx / (params.patch_size * 2) + (int)(img->nx % params.patch_size > 0);
  2964. }
  2965. return n_total;
  2966. }
  2967. int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  2968. const auto & params = ctx->model.hparams;
  2969. if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL) {
  2970. return img->ny / (params.patch_size * 2) + (int)(img->ny % params.patch_size > 0);
  2971. }
  2972. return 1;
  2973. }
  2974. int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  2975. const auto & params = ctx->model.hparams;
  2976. // only for models using fixed size square images
  2977. int n_patches_sq = (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
  2978. projector_type proj = ctx->proj_type();
  2979. switch (proj) {
  2980. case PROJECTOR_TYPE_MLP:
  2981. case PROJECTOR_TYPE_MLP_NORM:
  2982. {
  2983. // do nothing
  2984. } break;
  2985. case PROJECTOR_TYPE_LDP:
  2986. case PROJECTOR_TYPE_LDPV2:
  2987. case PROJECTOR_TYPE_GLM_EDGE:
  2988. {
  2989. n_patches_sq /= 4;
  2990. if (ctx->model.mm_glm_tok_boi) {
  2991. n_patches_sq += 2; // for BOI and EOI token embeddings
  2992. }
  2993. } break;
  2994. case PROJECTOR_TYPE_MINICPMV:
  2995. {
  2996. if (params.minicpmv_version == 2) {
  2997. n_patches_sq = 96;
  2998. } else if (params.minicpmv_version == 3) {
  2999. n_patches_sq = 64;
  3000. } else if (params.minicpmv_version == 4) {
  3001. n_patches_sq = 64;
  3002. } else {
  3003. GGML_ABORT("Unknown minicpmv version");
  3004. }
  3005. } break;
  3006. case PROJECTOR_TYPE_QWEN2VL:
  3007. case PROJECTOR_TYPE_QWEN25VL:
  3008. {
  3009. // dynamic size
  3010. int patch_size = params.patch_size * 2;
  3011. int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0);
  3012. int y_patch = img->ny / patch_size + (int)(img->ny % patch_size > 0);
  3013. n_patches_sq = x_patch * y_patch;
  3014. } break;
  3015. case PROJECTOR_TYPE_GEMMA3:
  3016. {
  3017. int n_per_side = params.image_size / params.patch_size;
  3018. int n_per_side_2d_pool = n_per_side / params.proj_scale_factor;
  3019. n_patches_sq = n_per_side_2d_pool * n_per_side_2d_pool;
  3020. } break;
  3021. case PROJECTOR_TYPE_IDEFICS3:
  3022. case PROJECTOR_TYPE_INTERNVL:
  3023. {
  3024. // both W and H are divided by proj_scale_factor
  3025. n_patches_sq /= (params.proj_scale_factor * params.proj_scale_factor);
  3026. } break;
  3027. case PROJECTOR_TYPE_PIXTRAL:
  3028. {
  3029. // dynamic size
  3030. int n_merge = params.spatial_merge_size;
  3031. int n_patches_x = img->nx / params.patch_size / (n_merge > 0 ? n_merge : 1);
  3032. int n_patches_y = img->ny / params.patch_size / (n_merge > 0 ? n_merge : 1);
  3033. n_patches_sq = n_patches_y * n_patches_x + n_patches_y - 1; // + one [IMG_BREAK] per row, except the last row
  3034. } break;
  3035. case PROJECTOR_TYPE_LLAMA4:
  3036. {
  3037. int scale_factor = ctx->model.hparams.proj_scale_factor;
  3038. n_patches_sq /= (scale_factor * scale_factor);
  3039. } break;
  3040. case PROJECTOR_TYPE_ULTRAVOX:
  3041. {
  3042. const int proj_stack_factor = ctx->model.hparams.proj_stack_factor;
  3043. const int n_len = CLIP_ALIGN(img->nx, proj_stack_factor);
  3044. n_patches_sq = n_len / proj_stack_factor / 2;
  3045. } break;
  3046. case PROJECTOR_TYPE_QWEN2A:
  3047. {
  3048. // divide by 2 because of whisper
  3049. // another divide by 2 because of nn.AvgPool1d(2, stride=2)
  3050. n_patches_sq = img->nx / 4;
  3051. } break;
  3052. default:
  3053. GGML_ABORT("unsupported projector type");
  3054. }
  3055. return n_patches_sq;
  3056. }
  3057. static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) {
  3058. assert(embed_dim % 2 == 0);
  3059. int H = pos.size();
  3060. int W = pos[0].size();
  3061. std::vector<float> omega(embed_dim / 2);
  3062. for (int i = 0; i < embed_dim / 2; ++i) {
  3063. omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2));
  3064. }
  3065. std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
  3066. for (int h = 0; h < H; ++h) {
  3067. for (int w = 0; w < W; ++w) {
  3068. for (int d = 0; d < embed_dim / 2; ++d) {
  3069. float out_value = pos[h][w] * omega[d];
  3070. emb[h][w][d] = sin(out_value);
  3071. emb[h][w][d + embed_dim / 2] = cos(out_value);
  3072. }
  3073. }
  3074. }
  3075. return emb;
  3076. }
  3077. static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) {
  3078. assert(embed_dim % 2 == 0);
  3079. std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2)
  3080. std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2)
  3081. int H = emb_h.size();
  3082. int W = emb_h[0].size();
  3083. std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
  3084. for (int h = 0; h < H; ++h) {
  3085. for (int w = 0; w < W; ++w) {
  3086. for (int d = 0; d < embed_dim / 2; ++d) {
  3087. emb[h][w][d] = emb_h[h][w][d];
  3088. emb[h][w][d + embed_dim / 2] = emb_w[h][w][d];
  3089. }
  3090. }
  3091. }
  3092. return emb;
  3093. }
  3094. static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) {
  3095. int grid_h_size = image_size.first;
  3096. int grid_w_size = image_size.second;
  3097. std::vector<float> grid_h(grid_h_size);
  3098. std::vector<float> grid_w(grid_w_size);
  3099. for (int i = 0; i < grid_h_size; ++i) {
  3100. grid_h[i] = static_cast<float>(i);
  3101. }
  3102. for (int i = 0; i < grid_w_size; ++i) {
  3103. grid_w[i] = static_cast<float>(i);
  3104. }
  3105. std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size));
  3106. for (int h = 0; h < grid_h_size; ++h) {
  3107. for (int w = 0; w < grid_w_size; ++w) {
  3108. grid[h][w] = grid_w[w];
  3109. }
  3110. }
  3111. std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid};
  3112. for (int h = 0; h < grid_h_size; ++h) {
  3113. for (int w = 0; w < grid_w_size; ++w) {
  3114. grid_2d[0][h][w] = grid_h[h];
  3115. grid_2d[1][h][w] = grid_w[w];
  3116. }
  3117. }
  3118. std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d);
  3119. int H = image_size.first;
  3120. int W = image_size.second;
  3121. std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim));
  3122. for (int h = 0; h < H; ++h) {
  3123. for (int w = 0; w < W; ++w) {
  3124. pos_embed_2d[w * H + h] = pos_embed_3d[h][w];
  3125. }
  3126. }
  3127. return pos_embed_2d;
  3128. }
  3129. bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
  3130. clip_image_f32_batch imgs;
  3131. clip_image_f32_ptr img_copy(clip_image_f32_init());
  3132. *img_copy = *img;
  3133. imgs.entries.push_back(std::move(img_copy));
  3134. return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
  3135. }
  3136. bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs_c_ptr, float * vec) {
  3137. const clip_image_f32_batch & imgs = *imgs_c_ptr;
  3138. int batch_size = imgs.entries.size();
  3139. // TODO @ngxson : implement batch size > 1 as a loop
  3140. // we don't need true batching support because the cgraph will gonna be big anyway
  3141. if (batch_size != 1) {
  3142. return false; // only support batch size of 1
  3143. }
  3144. // build the inference graph
  3145. ctx->debug_print_tensors.clear();
  3146. ggml_backend_sched_reset(ctx->sched.get());
  3147. ggml_cgraph * gf = clip_image_build_graph(ctx, imgs);
  3148. ggml_backend_sched_alloc_graph(ctx->sched.get(), gf);
  3149. // set inputs
  3150. const auto & model = ctx->model;
  3151. const auto & hparams = model.hparams;
  3152. const int image_size_width = imgs.entries[0]->nx;
  3153. const int image_size_height = imgs.entries[0]->ny;
  3154. const int patch_size = hparams.patch_size;
  3155. const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
  3156. const int n_pos = num_patches + (model.class_embedding ? 1 : 0);
  3157. const int pos_w = image_size_width / patch_size;
  3158. const int pos_h = image_size_height / patch_size;
  3159. const bool use_window_attn = hparams.n_wa_pattern > 0; // for qwen2.5vl
  3160. auto get_inp_tensor = [&gf](const char * name) {
  3161. ggml_tensor * inp = ggml_graph_get_tensor(gf, name);
  3162. if (inp == nullptr) {
  3163. GGML_ABORT("Failed to get tensor %s", name);
  3164. }
  3165. if (!(inp->flags & GGML_TENSOR_FLAG_INPUT)) {
  3166. GGML_ABORT("Tensor %s is not an input tensor", name);
  3167. }
  3168. return inp;
  3169. };
  3170. auto set_input_f32 = [&get_inp_tensor](const char * name, std::vector<float> & values) {
  3171. ggml_tensor * cur = get_inp_tensor(name);
  3172. GGML_ASSERT(cur->type == GGML_TYPE_F32);
  3173. GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
  3174. ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
  3175. };
  3176. auto set_input_i32 = [&get_inp_tensor](const char * name, std::vector<int32_t> & values) {
  3177. ggml_tensor * cur = get_inp_tensor(name);
  3178. GGML_ASSERT(cur->type == GGML_TYPE_I32);
  3179. GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
  3180. ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
  3181. };
  3182. // set input pixel values
  3183. if (!imgs.is_audio) {
  3184. size_t nelem = 0;
  3185. for (const auto & img : imgs.entries) {
  3186. nelem += img->nx * img->ny * 3;
  3187. }
  3188. std::vector<float> inp_raw(nelem);
  3189. // layout of data (note: the channel dim is unrolled to better visualize the layout):
  3190. //
  3191. // ┌──W──┐
  3192. // │ H │ channel = R
  3193. // ├─────┤ │
  3194. // │ H │ channel = G
  3195. // ├─────┤ │
  3196. // │ H │ channel = B
  3197. // └─────┘ │
  3198. // ──────┘ x B
  3199. for (size_t i = 0; i < imgs.entries.size(); i++) {
  3200. const int nx = imgs.entries[i]->nx;
  3201. const int ny = imgs.entries[i]->ny;
  3202. const int n = nx * ny;
  3203. for (int b = 0; b < batch_size; b++) {
  3204. float * batch_entry = inp_raw.data() + b * (3*n);
  3205. for (int y = 0; y < ny; y++) {
  3206. for (int x = 0; x < nx; x++) {
  3207. size_t base_src = 3*(y * nx + x); // idx of the first channel
  3208. size_t base_dst = y * nx + x; // idx of the first channel
  3209. batch_entry[ base_dst] = imgs.entries[b]->buf[base_src ];
  3210. batch_entry[1*n + base_dst] = imgs.entries[b]->buf[base_src + 1];
  3211. batch_entry[2*n + base_dst] = imgs.entries[b]->buf[base_src + 2];
  3212. }
  3213. }
  3214. }
  3215. }
  3216. set_input_f32("inp_raw", inp_raw);
  3217. } else {
  3218. // audio input
  3219. GGML_ASSERT(imgs.entries.size() == 1);
  3220. const auto & mel_inp = imgs.entries[0];
  3221. const int n_step = mel_inp->nx;
  3222. const int n_mel = mel_inp->ny;
  3223. std::vector<float> inp_raw(n_step * n_mel);
  3224. std::memcpy(inp_raw.data(), mel_inp->buf.data(), n_step * n_mel * sizeof(float));
  3225. set_input_f32("inp_raw", inp_raw);
  3226. }
  3227. // set input per projector
  3228. switch (ctx->model.proj_type) {
  3229. case PROJECTOR_TYPE_MINICPMV:
  3230. {
  3231. // inspired from siglip:
  3232. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
  3233. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
  3234. std::vector<int32_t> positions(pos_h * pos_w);
  3235. int bucket_coords_h[1024];
  3236. int bucket_coords_w[1024];
  3237. for (int i = 0; i < pos_h; i++){
  3238. bucket_coords_h[i] = std::floor(70.0*i/pos_h);
  3239. }
  3240. for (int i = 0; i < pos_w; i++){
  3241. bucket_coords_w[i] = std::floor(70.0*i/pos_w);
  3242. }
  3243. for (int i = 0, id = 0; i < pos_h; i++){
  3244. for (int j = 0; j < pos_w; j++){
  3245. positions[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
  3246. }
  3247. }
  3248. set_input_i32("positions", positions);
  3249. // inspired from resampler of Qwen-VL:
  3250. // -> https://huggingface.co/Qwen/Qwen-VL/tree/main
  3251. // -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
  3252. int embed_dim = clip_n_mmproj_embd(ctx);
  3253. // TODO @ngxson : this is very inefficient, can we do this using ggml_sin and ggml_cos?
  3254. auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
  3255. std::vector<float> pos_embed(embed_dim * pos_w * pos_h);
  3256. for(int i = 0; i < pos_w * pos_h; ++i){
  3257. for(int j = 0; j < embed_dim; ++j){
  3258. pos_embed[i * embed_dim + j] = pos_embed_t[i][j];
  3259. }
  3260. }
  3261. set_input_f32("pos_embed", pos_embed);
  3262. } break;
  3263. case PROJECTOR_TYPE_QWEN2VL:
  3264. {
  3265. const int merge_ratio = 2;
  3266. const int pw = image_size_width / patch_size;
  3267. const int ph = image_size_height / patch_size;
  3268. std::vector<int> positions(n_pos * 4);
  3269. int ptr = 0;
  3270. for (int y = 0; y < ph; y += merge_ratio) {
  3271. for (int x = 0; x < pw; x += merge_ratio) {
  3272. for (int dy = 0; dy < 2; dy++) {
  3273. for (int dx = 0; dx < 2; dx++) {
  3274. positions[ ptr] = y + dy;
  3275. positions[ num_patches + ptr] = x + dx;
  3276. positions[2 * num_patches + ptr] = y + dy;
  3277. positions[3 * num_patches + ptr] = x + dx;
  3278. ptr++;
  3279. }
  3280. }
  3281. }
  3282. }
  3283. set_input_i32("positions", positions);
  3284. } break;
  3285. case PROJECTOR_TYPE_QWEN25VL:
  3286. {
  3287. // pw * ph = number of tokens output by ViT after apply patch merger
  3288. // ipw * ipw = number of vision token been processed inside ViT
  3289. const int merge_ratio = 2;
  3290. const int pw = image_size_width / patch_size / merge_ratio;
  3291. const int ph = image_size_height / patch_size / merge_ratio;
  3292. const int ipw = image_size_width / patch_size;
  3293. const int iph = image_size_height / patch_size;
  3294. std::vector<int> idx (ph * pw);
  3295. std::vector<int> inv_idx(ph * pw);
  3296. if (use_window_attn) {
  3297. const int attn_window_size = 112;
  3298. const int grid_window = attn_window_size / patch_size / merge_ratio;
  3299. int dst = 0;
  3300. // [num_vision_tokens, num_vision_tokens] attention mask tensor
  3301. std::vector<float> mask(pow(ipw * iph, 2), std::numeric_limits<float>::lowest());
  3302. int mask_row = 0;
  3303. for (int y = 0; y < ph; y += grid_window) {
  3304. for (int x = 0; x < pw; x += grid_window) {
  3305. const int win_h = std::min(grid_window, ph - y);
  3306. const int win_w = std::min(grid_window, pw - x);
  3307. const int dst_0 = dst;
  3308. // group all tokens belong to the same window togather (to a continue range)
  3309. for (int dy = 0; dy < win_h; dy++) {
  3310. for (int dx = 0; dx < win_w; dx++) {
  3311. const int src = (y + dy) * pw + (x + dx);
  3312. GGML_ASSERT(src < (int)idx.size());
  3313. GGML_ASSERT(dst < (int)inv_idx.size());
  3314. idx [src] = dst;
  3315. inv_idx[dst] = src;
  3316. dst++;
  3317. }
  3318. }
  3319. for (int r=0; r < win_h * win_w * merge_ratio * merge_ratio; r++) {
  3320. int row_offset = mask_row * (ipw * iph);
  3321. std::fill(
  3322. mask.begin() + row_offset + (dst_0 * merge_ratio * merge_ratio),
  3323. mask.begin() + row_offset + (dst * merge_ratio * merge_ratio),
  3324. 0.0);
  3325. mask_row++;
  3326. }
  3327. }
  3328. }
  3329. set_input_i32("window_idx", idx);
  3330. set_input_i32("inv_window_idx", inv_idx);
  3331. set_input_f32("window_mask", mask);
  3332. } else {
  3333. for (int i = 0; i < ph * pw; i++) {
  3334. idx[i] = i;
  3335. }
  3336. }
  3337. const int mpow = merge_ratio * merge_ratio;
  3338. std::vector<int> positions(n_pos * 4);
  3339. int ptr = 0;
  3340. for (int y = 0; y < iph; y += merge_ratio) {
  3341. for (int x = 0; x < ipw; x += merge_ratio) {
  3342. for (int dy = 0; dy < 2; dy++) {
  3343. for (int dx = 0; dx < 2; dx++) {
  3344. auto remap = idx[ptr / mpow];
  3345. remap = (remap * mpow) + (ptr % mpow);
  3346. positions[ remap] = y + dy;
  3347. positions[ num_patches + remap] = x + dx;
  3348. positions[2 * num_patches + remap] = y + dy;
  3349. positions[3 * num_patches + remap] = x + dx;
  3350. ptr++;
  3351. }
  3352. }
  3353. }
  3354. }
  3355. set_input_i32("positions", positions);
  3356. } break;
  3357. case PROJECTOR_TYPE_PIXTRAL:
  3358. {
  3359. // set the 2D positions
  3360. int n_patches_per_col = image_size_width / patch_size;
  3361. std::vector<int> pos_data(n_pos);
  3362. // dimension H
  3363. for (int i = 0; i < n_pos; i++) {
  3364. pos_data[i] = i / n_patches_per_col;
  3365. }
  3366. set_input_i32("pos_h", pos_data);
  3367. // dimension W
  3368. for (int i = 0; i < n_pos; i++) {
  3369. pos_data[i] = i % n_patches_per_col;
  3370. }
  3371. set_input_i32("pos_w", pos_data);
  3372. } break;
  3373. case PROJECTOR_TYPE_GLM_EDGE:
  3374. {
  3375. // llava and other models
  3376. std::vector<int32_t> positions(n_pos);
  3377. for (int i = 0; i < n_pos; i++) {
  3378. positions[i] = i;
  3379. }
  3380. set_input_i32("positions", positions);
  3381. } break;
  3382. case PROJECTOR_TYPE_MLP:
  3383. case PROJECTOR_TYPE_MLP_NORM:
  3384. case PROJECTOR_TYPE_LDP:
  3385. case PROJECTOR_TYPE_LDPV2:
  3386. {
  3387. // llava and other models
  3388. std::vector<int32_t> positions(n_pos);
  3389. for (int i = 0; i < n_pos; i++) {
  3390. positions[i] = i;
  3391. }
  3392. set_input_i32("positions", positions);
  3393. // The patches vector is used to get rows to index into the embeds with;
  3394. // we should skip dim 0 only if we have CLS to avoid going out of bounds
  3395. // when retrieving the rows.
  3396. int patch_offset = model.class_embedding ? 1 : 0;
  3397. std::vector<int32_t> patches(num_patches);
  3398. for (int i = 0; i < num_patches; i++) {
  3399. patches[i] = i + patch_offset;
  3400. }
  3401. set_input_i32("patches", patches);
  3402. } break;
  3403. case PROJECTOR_TYPE_GEMMA3:
  3404. case PROJECTOR_TYPE_IDEFICS3:
  3405. case PROJECTOR_TYPE_INTERNVL:
  3406. case PROJECTOR_TYPE_QWEN2A:
  3407. case PROJECTOR_TYPE_ULTRAVOX:
  3408. {
  3409. // do nothing
  3410. } break;
  3411. case PROJECTOR_TYPE_LLAMA4:
  3412. {
  3413. // set the 2D positions
  3414. int n_patches_per_col = image_size_width / patch_size;
  3415. std::vector<int> pos_data(num_patches + 1, 0); // +1 for the [CLS] token
  3416. // last pos is always kept 0, it's for CLS
  3417. // dimension H
  3418. for (int i = 0; i < num_patches; i++) {
  3419. pos_data[i] = (i / n_patches_per_col) + 1;
  3420. }
  3421. set_input_i32("pos_h", pos_data);
  3422. // dimension W
  3423. for (int i = 0; i < num_patches; i++) {
  3424. pos_data[i] = (i % n_patches_per_col) + 1;
  3425. }
  3426. set_input_i32("pos_w", pos_data);
  3427. } break;
  3428. default:
  3429. GGML_ABORT("Unknown projector type");
  3430. }
  3431. // ggml_backend_cpu_set_n_threads(ctx->backend_cpu, n_threads);
  3432. ggml_backend_dev_t dev = ggml_backend_get_device(ctx->backend_cpu);
  3433. ggml_backend_reg_t reg = dev ? ggml_backend_dev_backend_reg(dev) : nullptr;
  3434. if (reg) {
  3435. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  3436. if (ggml_backend_set_n_threads_fn) {
  3437. ggml_backend_set_n_threads_fn(ctx->backend_cpu, n_threads);
  3438. }
  3439. }
  3440. auto status = ggml_backend_sched_graph_compute(ctx->sched.get(), gf);
  3441. if (status != GGML_STATUS_SUCCESS) {
  3442. LOG_ERR("%s: ggml_backend_sched_graph_compute failed with error %d\n", __func__, status);
  3443. return false;
  3444. }
  3445. // print debug nodes
  3446. if (ctx->debug_graph) {
  3447. LOG_INF("\n\n---\n\n");
  3448. LOG_INF("\n\nDebug graph:\n\n");
  3449. for (ggml_tensor * t : ctx->debug_print_tensors) {
  3450. std::vector<uint8_t> data(ggml_nbytes(t));
  3451. ggml_backend_tensor_get(t, data.data(), 0, ggml_nbytes(t));
  3452. print_tensor_shape(t);
  3453. print_tensor_data(t, data.data(), 3);
  3454. }
  3455. }
  3456. // the last node is the embedding tensor
  3457. ggml_tensor * embeddings = ggml_graph_node(gf, -1);
  3458. // sanity check (only support batch size of 1 for now)
  3459. const int n_tokens_out = embeddings->ne[1];
  3460. const int expected_n_tokens_out = clip_n_output_tokens(ctx, imgs.entries[0].get());
  3461. if (n_tokens_out != expected_n_tokens_out) {
  3462. LOG_ERR("%s: expected output %d tokens, got %d\n", __func__, expected_n_tokens_out, n_tokens_out);
  3463. GGML_ABORT("Invalid number of output tokens");
  3464. }
  3465. // copy the embeddings to the location passed by the user
  3466. ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
  3467. return true;
  3468. }
  3469. int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
  3470. const auto & hparams = ctx->model.hparams;
  3471. switch (ctx->model.proj_type) {
  3472. case PROJECTOR_TYPE_LDP:
  3473. return ctx->model.mm_model_block_1_block_2_1_b->ne[0];
  3474. case PROJECTOR_TYPE_LDPV2:
  3475. return ctx->model.mm_model_peg_0_b->ne[0];
  3476. case PROJECTOR_TYPE_MLP:
  3477. case PROJECTOR_TYPE_PIXTRAL:
  3478. return ctx->model.mm_2_w->ne[1];
  3479. case PROJECTOR_TYPE_MLP_NORM:
  3480. return ctx->model.mm_3_b->ne[0];
  3481. case PROJECTOR_TYPE_MINICPMV:
  3482. if (hparams.minicpmv_version == 2) {
  3483. return 4096;
  3484. } else if (hparams.minicpmv_version == 3) {
  3485. return 3584;
  3486. } else if (hparams.minicpmv_version == 4) {
  3487. return 3584;
  3488. }
  3489. GGML_ABORT("Unknown minicpmv version");
  3490. case PROJECTOR_TYPE_GLM_EDGE:
  3491. return ctx->model.mm_model_mlp_3_w->ne[1];
  3492. case PROJECTOR_TYPE_QWEN2VL:
  3493. case PROJECTOR_TYPE_QWEN25VL:
  3494. return ctx->model.mm_1_b->ne[0];
  3495. case PROJECTOR_TYPE_GEMMA3:
  3496. return ctx->model.mm_input_proj_w->ne[0];
  3497. case PROJECTOR_TYPE_IDEFICS3:
  3498. return ctx->model.projection->ne[1];
  3499. case PROJECTOR_TYPE_ULTRAVOX:
  3500. return ctx->model.mm_2_w->ne[1];
  3501. case PROJECTOR_TYPE_INTERNVL:
  3502. return ctx->model.mm_3_w->ne[1];
  3503. case PROJECTOR_TYPE_LLAMA4:
  3504. return ctx->model.mm_model_proj->ne[1];
  3505. case PROJECTOR_TYPE_QWEN2A:
  3506. return ctx->model.mm_fc_w->ne[1];
  3507. default:
  3508. GGML_ABORT("Unknown projector type");
  3509. }
  3510. }
  3511. int clip_is_minicpmv(const struct clip_ctx * ctx) {
  3512. if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV) {
  3513. return ctx->model.hparams.minicpmv_version;
  3514. }
  3515. return 0;
  3516. }
  3517. bool clip_is_glm(const struct clip_ctx * ctx) {
  3518. return ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE;
  3519. }
  3520. bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
  3521. return ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL
  3522. || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL;
  3523. }
  3524. bool clip_is_llava(const struct clip_ctx * ctx) {
  3525. return ctx->model.hparams.has_llava_projector;
  3526. }
  3527. bool clip_is_gemma3(const struct clip_ctx * ctx) {
  3528. return ctx->proj_type() == PROJECTOR_TYPE_GEMMA3;
  3529. }
  3530. bool clip_has_vision_encoder(const struct clip_ctx * ctx) {
  3531. return ctx->model.modality == CLIP_MODALITY_VISION;
  3532. }
  3533. bool clip_has_audio_encoder(const struct clip_ctx * ctx) {
  3534. return ctx->model.modality == CLIP_MODALITY_AUDIO;
  3535. }
  3536. bool clip_has_whisper_encoder(const struct clip_ctx * ctx) {
  3537. return ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX
  3538. || ctx->proj_type() == PROJECTOR_TYPE_QWEN2A;
  3539. }
  3540. bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
  3541. clip_image_f32 clip_img;
  3542. clip_img.buf.resize(h * w * 3);
  3543. for (int i = 0; i < h*w*3; i++)
  3544. {
  3545. clip_img.buf[i] = img[i];
  3546. }
  3547. clip_img.nx = w;
  3548. clip_img.ny = h;
  3549. clip_image_encode(ctx, n_threads, &clip_img, vec);
  3550. return true;
  3551. }
  3552. //
  3553. // API used internally with mtmd
  3554. //
  3555. projector_type clip_get_projector_type(const struct clip_ctx * ctx) {
  3556. return ctx->proj_type();
  3557. }
  3558. void clip_image_f32_batch_add_mel(struct clip_image_f32_batch * batch, int n_mel, int n_frames, float * mel) {
  3559. clip_image_f32 * audio = new clip_image_f32;
  3560. audio->nx = n_frames;
  3561. audio->ny = n_mel;
  3562. audio->buf.resize(n_frames * n_mel);
  3563. std::memcpy(audio->buf.data(), mel, n_frames * n_mel * sizeof(float));
  3564. batch->entries.push_back(clip_image_f32_ptr(audio));
  3565. batch->is_audio = true;
  3566. }