convert-hf-to-gguf.py 90 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103
  1. #!/usr/bin/env python3
  2. from __future__ import annotations
  3. import argparse
  4. import contextlib
  5. import json
  6. import os
  7. import re
  8. import sys
  9. from abc import ABC, abstractmethod
  10. from enum import IntEnum
  11. from pathlib import Path
  12. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterator, Sequence, TypeVar, cast
  13. import numpy as np
  14. import torch
  15. if TYPE_CHECKING:
  16. from torch import Tensor
  17. if 'NO_LOCAL_GGUF' not in os.environ:
  18. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  19. import gguf
  20. from convert import HfVocab
  21. ###### MODEL DEFINITIONS ######
  22. class SentencePieceTokenTypes(IntEnum):
  23. NORMAL = 1
  24. UNKNOWN = 2
  25. CONTROL = 3
  26. USER_DEFINED = 4
  27. UNUSED = 5
  28. BYTE = 6
  29. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  30. class Model(ABC):
  31. _model_classes: dict[str, type[Model]] = {}
  32. def __init__(self, dir_model: Path, ftype: int, fname_out: Path, is_big_endian: bool):
  33. self.dir_model = dir_model
  34. self.ftype = ftype
  35. self.fname_out = fname_out
  36. self.is_big_endian = is_big_endian
  37. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  38. self.is_safetensors = self._is_model_safetensors()
  39. self.num_parts = Model.count_model_parts(self.dir_model, ".safetensors" if self.is_safetensors else ".bin")
  40. self.part_names = self._get_part_names()
  41. self.hparams = Model.load_hparams(self.dir_model)
  42. self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=False)
  43. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
  44. @property
  45. @abstractmethod
  46. def model_arch(self) -> gguf.MODEL_ARCH:
  47. pass
  48. def find_hparam(self, keys: Sequence[str], optional: bool = False) -> Any:
  49. key = next((k for k in keys if k in self.hparams), None)
  50. if key is not None:
  51. return self.hparams[key]
  52. if optional:
  53. return None
  54. raise KeyError(f"could not find any of: {keys}")
  55. def set_vocab(self):
  56. self._set_vocab_gpt2()
  57. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  58. for part_name in self.part_names:
  59. print(f"gguf: loading model part '{part_name}'")
  60. ctx: ContextManager[Any]
  61. if self.is_safetensors:
  62. from safetensors import safe_open
  63. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  64. else:
  65. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  66. with ctx as model_part:
  67. for name in model_part.keys():
  68. data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
  69. yield name, data
  70. def set_gguf_parameters(self):
  71. self.gguf_writer.add_name(self.dir_model.name)
  72. self.gguf_writer.add_block_count(self.block_count)
  73. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  74. self.gguf_writer.add_context_length(n_ctx)
  75. print(f"gguf: context length = {n_ctx}")
  76. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  77. self.gguf_writer.add_embedding_length(n_embd)
  78. print(f"gguf: embedding length = {n_embd}")
  79. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  80. self.gguf_writer.add_feed_forward_length(n_ff)
  81. print(f"gguf: feed forward length = {n_ff}")
  82. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  83. self.gguf_writer.add_head_count(n_head)
  84. print(f"gguf: head count = {n_head}")
  85. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  86. self.gguf_writer.add_head_count_kv(n_head_kv)
  87. print(f"gguf: key-value head count = {n_head_kv}")
  88. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  89. self.gguf_writer.add_rope_freq_base(rope_theta)
  90. print(f"gguf: rope theta = {rope_theta}")
  91. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  92. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  93. print(f"gguf: rms norm epsilon = {f_rms_eps}")
  94. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  95. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  96. print(f"gguf: layer norm epsilon = {f_norm_eps}")
  97. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  98. self.gguf_writer.add_expert_count(n_experts)
  99. print(f"gguf: expert count = {n_experts}")
  100. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  101. self.gguf_writer.add_expert_used_count(n_experts_used)
  102. print(f"gguf: experts used count = {n_experts_used}")
  103. self.gguf_writer.add_file_type(self.ftype)
  104. print(f"gguf: file type = {self.ftype}")
  105. def write_tensors(self):
  106. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  107. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  108. for name, data_torch in self.get_tensors():
  109. # we don't need these
  110. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  111. continue
  112. old_dtype = data_torch.dtype
  113. # convert any unsupported data types to float32
  114. if data_torch.dtype not in (torch.float16, torch.float32):
  115. data_torch = data_torch.to(torch.float32)
  116. data = data_torch.squeeze().numpy()
  117. # map tensor names
  118. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  119. if new_name is None:
  120. print(f"Can not map tensor {name!r}")
  121. sys.exit()
  122. n_dims = len(data.shape)
  123. data_dtype = data.dtype
  124. # if f32 desired, convert any float16 to float32
  125. if self.ftype == 0 and data_dtype == np.float16:
  126. data = data.astype(np.float32)
  127. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  128. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  129. data = data.astype(np.float32)
  130. # if f16 desired, convert any float32 2-dim weight tensors to float16
  131. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  132. data = data.astype(np.float16)
  133. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  134. self.gguf_writer.add_tensor(new_name, data)
  135. def write(self):
  136. self.write_tensors()
  137. self.gguf_writer.write_header_to_file()
  138. self.gguf_writer.write_kv_data_to_file()
  139. self.gguf_writer.write_tensors_to_file()
  140. self.gguf_writer.close()
  141. def write_vocab(self):
  142. self.gguf_writer.write_header_to_file()
  143. self.gguf_writer.write_kv_data_to_file()
  144. self.gguf_writer.close()
  145. @staticmethod
  146. def count_model_parts(dir_model: Path, prefix: str) -> int:
  147. num_parts = 0
  148. for filename in os.listdir(dir_model):
  149. if filename.endswith(prefix):
  150. num_parts += 1
  151. return num_parts
  152. @staticmethod
  153. def load_hparams(dir_model):
  154. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  155. return json.load(f)
  156. @classmethod
  157. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  158. assert names
  159. def func(modelcls: type[Model]):
  160. for name in names:
  161. cls._model_classes[name] = modelcls
  162. return modelcls
  163. return func
  164. @classmethod
  165. def from_model_architecture(cls, arch):
  166. try:
  167. return cls._model_classes[arch]
  168. except KeyError:
  169. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  170. def _is_model_safetensors(self) -> bool:
  171. return Model.count_model_parts(self.dir_model, ".safetensors") > 0
  172. def _get_part_names(self):
  173. if self.is_safetensors:
  174. if self.num_parts == 1: # there's only one .safetensors file
  175. return ("model.safetensors",)
  176. return (f"model-{n:05}-of-{self.num_parts:05}.safetensors" for n in range(1, self.num_parts + 1))
  177. if self.num_parts == 1: # there's only one .bin file
  178. return ("pytorch_model.bin",)
  179. return (f"pytorch_model-{n:05}-of-{self.num_parts:05}.bin" for n in range(1, self.num_parts + 1))
  180. def _set_vocab_gpt2(self):
  181. dir_model = self.dir_model
  182. hparams = self.hparams
  183. tokens: list[bytearray] = []
  184. toktypes: list[int] = []
  185. from transformers import AutoTokenizer
  186. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  187. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  188. assert max(tokenizer.vocab.values()) < vocab_size
  189. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  190. added_vocab = tokenizer.get_added_vocab()
  191. for i in range(vocab_size):
  192. if i not in reverse_vocab:
  193. pad_token = f"[PAD{i}]".encode('utf-8')
  194. tokens.append(bytearray(pad_token))
  195. toktypes.append(gguf.TokenType.USER_DEFINED)
  196. elif reverse_vocab[i] in added_vocab:
  197. tokens.append(reverse_vocab[i])
  198. if tokenizer.added_tokens_decoder[i].special:
  199. toktypes.append(gguf.TokenType.CONTROL)
  200. else:
  201. toktypes.append(gguf.TokenType.USER_DEFINED)
  202. else:
  203. tokens.append(reverse_vocab[i])
  204. toktypes.append(gguf.TokenType.NORMAL)
  205. self.gguf_writer.add_tokenizer_model("gpt2")
  206. self.gguf_writer.add_token_list(tokens)
  207. self.gguf_writer.add_token_types(toktypes)
  208. special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
  209. special_vocab.add_to_gguf(self.gguf_writer)
  210. def _set_vocab_qwen(self):
  211. dir_model = self.dir_model
  212. hparams = self.hparams
  213. tokens: list[bytearray] = []
  214. toktypes: list[int] = []
  215. from transformers import AutoTokenizer
  216. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  217. vocab_size = hparams["vocab_size"]
  218. assert max(tokenizer.get_vocab().values()) < vocab_size
  219. merges = []
  220. vocab = {}
  221. mergeable_ranks = tokenizer.mergeable_ranks
  222. for token, rank in mergeable_ranks.items():
  223. vocab[QwenModel.token_bytes_to_string(token)] = rank
  224. if len(token) == 1:
  225. continue
  226. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  227. assert len(merged) == 2
  228. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  229. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  230. added_vocab = tokenizer.special_tokens
  231. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in (vocab | added_vocab).items()}
  232. for i in range(vocab_size):
  233. if i not in reverse_vocab:
  234. pad_token = f"[PAD{i}]".encode("utf-8")
  235. tokens.append(bytearray(pad_token))
  236. toktypes.append(gguf.TokenType.USER_DEFINED)
  237. elif reverse_vocab[i] in added_vocab:
  238. tokens.append(reverse_vocab[i])
  239. toktypes.append(gguf.TokenType.CONTROL)
  240. else:
  241. tokens.append(reverse_vocab[i])
  242. toktypes.append(gguf.TokenType.NORMAL)
  243. self.gguf_writer.add_tokenizer_model("gpt2")
  244. self.gguf_writer.add_token_list(tokens)
  245. self.gguf_writer.add_token_types(toktypes)
  246. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  247. special_vocab.merges = merges
  248. # only add special tokens when they were not already loaded from config.json
  249. if len(special_vocab.special_token_ids) == 0:
  250. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  251. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  252. # this one is usually not in config.json anyway
  253. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  254. special_vocab.add_to_gguf(self.gguf_writer)
  255. def _set_vocab_sentencepiece(self):
  256. from sentencepiece import SentencePieceProcessor
  257. tokenizer_path = self.dir_model / 'tokenizer.model'
  258. tokens: list[bytes] = []
  259. scores: list[float] = []
  260. toktypes: list[int] = []
  261. if not tokenizer_path.is_file():
  262. print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
  263. sys.exit(1)
  264. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  265. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  266. for token_id in range(tokenizer.vocab_size()):
  267. piece = tokenizer.id_to_piece(token_id)
  268. text = piece.encode("utf-8")
  269. score = tokenizer.get_score(token_id)
  270. toktype = SentencePieceTokenTypes.NORMAL
  271. if tokenizer.is_unknown(token_id):
  272. toktype = SentencePieceTokenTypes.UNKNOWN
  273. elif tokenizer.is_control(token_id):
  274. toktype = SentencePieceTokenTypes.CONTROL
  275. elif tokenizer.is_unused(token_id):
  276. toktype = SentencePieceTokenTypes.UNUSED
  277. elif tokenizer.is_byte(token_id):
  278. toktype = SentencePieceTokenTypes.BYTE
  279. tokens.append(text)
  280. scores.append(score)
  281. toktypes.append(toktype)
  282. added_tokens_file = self.dir_model / 'added_tokens.json'
  283. if added_tokens_file.is_file():
  284. with open(added_tokens_file, "r", encoding="utf-8") as f:
  285. added_tokens_json = json.load(f)
  286. for key in added_tokens_json:
  287. key = key.encode("utf-8")
  288. if key not in tokens:
  289. tokens.append(key)
  290. scores.append(-1000.0)
  291. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  292. assert len(tokens) == vocab_size
  293. self.gguf_writer.add_tokenizer_model("llama")
  294. self.gguf_writer.add_token_list(tokens)
  295. self.gguf_writer.add_token_scores(scores)
  296. self.gguf_writer.add_token_types(toktypes)
  297. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  298. special_vocab.add_to_gguf(self.gguf_writer)
  299. def _set_vocab_hf(self):
  300. path = self.dir_model
  301. added_tokens_path = self.dir_model
  302. vocab = HfVocab(
  303. path, added_tokens_path if added_tokens_path.exists() else None
  304. )
  305. tokens = []
  306. scores = []
  307. toktypes = []
  308. for text, score, toktype in vocab.all_tokens():
  309. tokens.append(text)
  310. scores.append(score)
  311. toktypes.append(toktype)
  312. assert len(tokens) == vocab.vocab_size
  313. self.gguf_writer.add_tokenizer_model("llama")
  314. self.gguf_writer.add_token_list(tokens)
  315. self.gguf_writer.add_token_scores(scores)
  316. self.gguf_writer.add_token_types(toktypes)
  317. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  318. special_vocab.add_to_gguf(self.gguf_writer)
  319. @Model.register("GPTNeoXForCausalLM")
  320. class GPTNeoXModel(Model):
  321. model_arch = gguf.MODEL_ARCH.GPTNEOX
  322. def set_gguf_parameters(self):
  323. block_count = self.hparams["num_hidden_layers"]
  324. self.gguf_writer.add_name(self.dir_model.name)
  325. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  326. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  327. self.gguf_writer.add_block_count(block_count)
  328. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  329. self.gguf_writer.add_rope_dimension_count(
  330. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  331. )
  332. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  333. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  334. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  335. @Model.register("BloomForCausalLM")
  336. class BloomModel(Model):
  337. model_arch = gguf.MODEL_ARCH.BLOOM
  338. def set_gguf_parameters(self):
  339. self.gguf_writer.add_name("Bloom")
  340. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  341. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  342. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  343. self.gguf_writer.add_embedding_length(n_embed)
  344. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  345. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  346. self.gguf_writer.add_head_count(n_head)
  347. self.gguf_writer.add_head_count_kv(n_head)
  348. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  349. self.gguf_writer.add_file_type(self.ftype)
  350. def write_tensors(self):
  351. block_count = self.hparams["n_layer"]
  352. tensors = dict(self.get_tensors())
  353. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  354. has_lm_head = True
  355. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  356. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  357. for name, data_torch in tensors.items():
  358. if "lm_head.weight" not in tensors.keys() and "output.weight" not in tensors.keys():
  359. has_lm_head = False
  360. name = re.sub(r'transformer\.', '', name)
  361. old_dtype = data_torch.dtype
  362. # convert any unsupported data types to float32
  363. if data_torch.dtype not in (torch.float16, torch.float32):
  364. data_torch = data_torch.to(torch.float32)
  365. data = data_torch.squeeze().numpy()
  366. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  367. # Map bloom-style qkv_linear to gpt-style qkv_linear
  368. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  369. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  370. qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed))
  371. data = np.concatenate(
  372. (
  373. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  374. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  375. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  376. ),
  377. axis=0,
  378. )
  379. print("re-format attention.linear_qkv.weight")
  380. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  381. qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
  382. data = np.concatenate(
  383. (
  384. qkv_bias[:, 0, :].reshape((n_embed,)),
  385. qkv_bias[:, 1, :].reshape((n_embed,)),
  386. qkv_bias[:, 2, :].reshape((n_embed,)),
  387. ),
  388. axis=0,
  389. )
  390. print("re-format attention.linear_qkv.bias")
  391. # map tensor names
  392. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  393. if new_name is None:
  394. print(f"Can not map tensor {name!r}")
  395. sys.exit()
  396. n_dims = len(data.shape)
  397. data_dtype = data.dtype
  398. # if f32 desired, convert any float16 to float32
  399. if self.ftype == 0 and data_dtype == np.float16:
  400. data = data.astype(np.float32)
  401. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  402. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  403. data = data.astype(np.float32)
  404. # if f16 desired, convert any float32 2-dim weight tensors to float16
  405. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  406. data = data.astype(np.float16)
  407. print(f"=> {new_name}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  408. self.gguf_writer.add_tensor(new_name, data)
  409. if not has_lm_head and name == "word_embeddings.weight":
  410. self.gguf_writer.add_tensor("output.weight", data)
  411. print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  412. @Model.register("MPTForCausalLM")
  413. class MPTModel(Model):
  414. model_arch = gguf.MODEL_ARCH.MPT
  415. def set_gguf_parameters(self):
  416. block_count = self.hparams["n_layers"]
  417. self.gguf_writer.add_name(self.dir_model.name)
  418. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  419. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  420. self.gguf_writer.add_block_count(block_count)
  421. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  422. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  423. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  424. self.gguf_writer.add_head_count_kv(kv_n_heads)
  425. self.gguf_writer.add_layer_norm_eps(1e-5)
  426. if self.hparams["attn_config"]["clip_qkv"] is not None:
  427. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  428. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  429. def write_tensors(self):
  430. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers"))
  431. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  432. for name, data_torch in self.get_tensors():
  433. # we don't need these
  434. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  435. continue
  436. old_dtype = data_torch.dtype
  437. # convert any unsupported data types to float32
  438. if data_torch.dtype not in (torch.float16, torch.float32):
  439. data_torch = data_torch.to(torch.float32)
  440. data = data_torch.squeeze().numpy()
  441. # map tensor names
  442. if "scales" in name:
  443. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  444. if new_name is not None:
  445. new_name = new_name.replace("scales", "act.scales")
  446. else:
  447. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  448. if new_name is None:
  449. print(f"Can not map tensor {name!r}")
  450. sys.exit()
  451. n_dims = len(data.shape)
  452. data_dtype = data.dtype
  453. # if f32 desired, convert any float16 to float32
  454. if self.ftype == 0 and data_dtype == np.float16:
  455. data = data.astype(np.float32)
  456. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  457. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  458. data = data.astype(np.float32)
  459. # if f16 desired, convert any float32 2-dim weight tensors to float16
  460. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  461. data = data.astype(np.float16)
  462. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  463. self.gguf_writer.add_tensor(new_name, data)
  464. @Model.register("OrionForCausalLM")
  465. class OrionModel(Model):
  466. model_arch = gguf.MODEL_ARCH.ORION
  467. def set_vocab(self):
  468. self._set_vocab_sentencepiece()
  469. def set_gguf_parameters(self):
  470. block_count = self.hparams["num_hidden_layers"]
  471. head_count = self.hparams["num_attention_heads"]
  472. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  473. hf_repo = self.hparams.get("_name_or_path", "")
  474. ctx_length = 0
  475. if "max_sequence_length" in self.hparams:
  476. ctx_length = self.hparams["max_sequence_length"]
  477. elif "max_position_embeddings" in self.hparams:
  478. ctx_length = self.hparams["max_position_embeddings"]
  479. elif "model_max_length" in self.hparams:
  480. ctx_length = self.hparams["model_max_length"]
  481. else:
  482. print("gguf: can not find ctx length parameter.")
  483. sys.exit()
  484. self.gguf_writer.add_file_type(self.ftype)
  485. self.gguf_writer.add_name(self.dir_model.name)
  486. self.gguf_writer.add_source_hf_repo(hf_repo)
  487. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  488. self.gguf_writer.add_context_length(ctx_length)
  489. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  490. self.gguf_writer.add_block_count(block_count)
  491. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  492. self.gguf_writer.add_head_count(head_count)
  493. self.gguf_writer.add_head_count_kv(head_count_kv)
  494. # note: config provides rms norm but it is actually layer norm
  495. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  496. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  497. def write_tensors(self):
  498. # Collect tensors from generator object
  499. model_kv = dict(self.get_tensors())
  500. block_count = self.hparams["num_hidden_layers"]
  501. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  502. for name, data_torch in model_kv.items():
  503. # we don't need these
  504. if name.endswith(".rotary_emb.inv_freq"):
  505. continue
  506. old_dtype = data_torch.dtype
  507. # convert any unsupported data types to float32
  508. if data_torch.dtype not in (torch.float16, torch.float32):
  509. data_torch = data_torch.to(torch.float32)
  510. data = data_torch.squeeze().numpy()
  511. # map tensor names
  512. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  513. if new_name is None:
  514. print(f"Can not map tensor {name!r}")
  515. sys.exit()
  516. n_dims = len(data.shape)
  517. data_dtype = data.dtype
  518. # if f32 desired, convert any float16 to float32
  519. if self.ftype == 0 and data_dtype == np.float16:
  520. data = data.astype(np.float32)
  521. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  522. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  523. data = data.astype(np.float32)
  524. # if f16 desired, convert any float32 2-dim weight tensors to float16
  525. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  526. data = data.astype(np.float16)
  527. print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  528. self.gguf_writer.add_tensor(new_name, data)
  529. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  530. class BaichuanModel(Model):
  531. model_arch = gguf.MODEL_ARCH.BAICHUAN
  532. def set_vocab(self):
  533. self._set_vocab_sentencepiece()
  534. def set_gguf_parameters(self):
  535. block_count = self.hparams["num_hidden_layers"]
  536. head_count = self.hparams["num_attention_heads"]
  537. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  538. hf_repo = self.hparams.get("_name_or_path", "")
  539. ctx_length = 0
  540. if "max_sequence_length" in self.hparams:
  541. ctx_length = self.hparams["max_sequence_length"]
  542. elif "max_position_embeddings" in self.hparams:
  543. ctx_length = self.hparams["max_position_embeddings"]
  544. elif "model_max_length" in self.hparams:
  545. ctx_length = self.hparams["model_max_length"]
  546. else:
  547. print("gguf: can not find ctx length parameter.")
  548. sys.exit()
  549. self.gguf_writer.add_name(self.dir_model.name)
  550. self.gguf_writer.add_source_hf_repo(hf_repo)
  551. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  552. self.gguf_writer.add_context_length(ctx_length)
  553. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  554. self.gguf_writer.add_block_count(block_count)
  555. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  556. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  557. self.gguf_writer.add_head_count(head_count)
  558. self.gguf_writer.add_head_count_kv(head_count_kv)
  559. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  560. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  561. if self.hparams["rope_scaling"].get("type") == "linear":
  562. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  563. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  564. def write_tensors(self):
  565. # Collect tensors from generator object
  566. model_kv = dict(self.get_tensors())
  567. block_count = self.hparams["num_hidden_layers"]
  568. head_count = self.hparams["num_attention_heads"]
  569. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  570. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  571. for i in range(block_count):
  572. if (w := model_kv.get(f"model.layers.{i}.self_attn.W_pack.weight")) is not None:
  573. print(f"Unpacking and permuting layer {i}")
  574. model_kv[f"model.layers.{i}.self_attn.q_proj.weight"] = \
  575. self._reverse_hf_permute_part(w, 0, head_count, head_count)
  576. model_kv[f"model.layers.{i}.self_attn.k_proj.weight"] = \
  577. self._reverse_hf_permute_part(w, 1, head_count, head_count_kv)
  578. model_kv[f"model.layers.{i}.self_attn.v_proj.weight"] = \
  579. self._reverse_hf_part(w, 2)
  580. del model_kv[f"model.layers.{i}.self_attn.W_pack.weight"]
  581. for name, data_torch in model_kv.items():
  582. # we don't need these
  583. if name.endswith(".rotary_emb.inv_freq"):
  584. continue
  585. old_dtype = data_torch.dtype
  586. # convert any unsupported data types to float32
  587. if data_torch.dtype not in (torch.float16, torch.float32):
  588. data_torch = data_torch.to(torch.float32)
  589. data = data_torch.squeeze().numpy()
  590. # map tensor names
  591. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  592. if new_name is None:
  593. print(f"Can not map tensor {name!r}")
  594. sys.exit()
  595. n_dims = len(data.shape)
  596. data_dtype = data.dtype
  597. # if f32 desired, convert any float16 to float32
  598. if self.ftype == 0 and data_dtype == np.float16:
  599. data = data.astype(np.float32)
  600. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  601. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  602. data = data.astype(np.float32)
  603. # if f16 desired, convert any float32 2-dim weight tensors to float16
  604. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  605. data = data.astype(np.float16)
  606. print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  607. self.gguf_writer.add_tensor(new_name, data)
  608. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  609. if n_kv_head is not None and n_head != n_kv_head:
  610. n_head //= n_kv_head
  611. return (
  612. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  613. .swapaxes(1, 2)
  614. .reshape(weights.shape)
  615. )
  616. def _reverse_hf_permute_part(
  617. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  618. ) -> Tensor:
  619. r = weights.shape[0] // 3
  620. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  621. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  622. r = weights.shape[0] // 3
  623. return weights[r * n_part:r * n_part + r, ...]
  624. @Model.register("FalconForCausalLM", "RWForCausalLM")
  625. class FalconModel(Model):
  626. model_arch = gguf.MODEL_ARCH.FALCON
  627. def set_gguf_parameters(self):
  628. block_count = self.hparams.get("num_hidden_layers")
  629. if block_count is None:
  630. block_count = self.hparams["n_layer"] # old name
  631. n_head = self.hparams.get("num_attention_heads")
  632. if n_head is None:
  633. n_head = self.hparams["n_head"] # old name
  634. n_head_kv = self.hparams.get("num_kv_heads")
  635. if n_head_kv is None:
  636. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  637. self.gguf_writer.add_name("Falcon")
  638. self.gguf_writer.add_context_length(2048) # not in config.json
  639. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  640. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  641. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  642. self.gguf_writer.add_block_count(block_count)
  643. self.gguf_writer.add_head_count(n_head)
  644. self.gguf_writer.add_head_count_kv(n_head_kv)
  645. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  646. self.gguf_writer.add_file_type(self.ftype)
  647. def write_tensors(self):
  648. block_count = self.hparams.get("num_hidden_layers")
  649. if block_count is None:
  650. block_count = self.hparams["n_layer"] # old name
  651. n_head = self.hparams.get("num_attention_heads")
  652. if n_head is None:
  653. n_head = self.hparams["n_head"] # old name
  654. n_head_kv = self.hparams.get("num_kv_heads")
  655. if n_head_kv is None:
  656. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  657. head_dim = self.hparams["hidden_size"] // n_head
  658. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  659. for name, data_torch in self.get_tensors():
  660. old_dtype = data_torch.dtype
  661. # convert any unsupported data types to float32
  662. if data_torch.dtype not in (torch.float16, torch.float32):
  663. data_torch = data_torch.to(torch.float32)
  664. # QKV tensor transform
  665. # The original query_key_value tensor contains n_head_kv "kv groups",
  666. # each consisting of n_head/n_head_kv query weights followed by one key
  667. # and one value weight (shared by all query heads in the kv group).
  668. # This layout makes it a big pain to work with in GGML.
  669. # So we rearrange them here,, so that we have n_head query weights
  670. # followed by n_head_kv key weights followed by n_head_kv value weights,
  671. # in contiguous fashion.
  672. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  673. if "query_key_value" in name:
  674. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  675. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  676. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  677. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  678. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  679. data = data_torch.squeeze().numpy()
  680. # map tensor names
  681. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  682. if new_name is None:
  683. print(f"Can not map tensor {name!r}")
  684. sys.exit()
  685. n_dims = len(data.shape)
  686. data_dtype = data.dtype
  687. # if f32 desired, convert any float16 to float32
  688. if self.ftype == 0 and data_dtype == np.float16:
  689. data = data.astype(np.float32)
  690. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  691. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  692. data = data.astype(np.float32)
  693. # if f16 desired, convert any float32 2-dim weight tensors to float16
  694. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  695. data = data.astype(np.float16)
  696. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  697. self.gguf_writer.add_tensor(new_name, data)
  698. @Model.register("GPTBigCodeForCausalLM")
  699. class StarCoderModel(Model):
  700. model_arch = gguf.MODEL_ARCH.STARCODER
  701. def set_gguf_parameters(self):
  702. block_count = self.hparams["n_layer"]
  703. self.gguf_writer.add_name("StarCoder")
  704. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  705. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  706. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  707. self.gguf_writer.add_block_count(block_count)
  708. self.gguf_writer.add_head_count(self.hparams["n_head"])
  709. self.gguf_writer.add_head_count_kv(1)
  710. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  711. self.gguf_writer.add_file_type(self.ftype)
  712. @Model.register("GPTRefactForCausalLM")
  713. class RefactModel(Model):
  714. model_arch = gguf.MODEL_ARCH.REFACT
  715. def set_gguf_parameters(self):
  716. hidden_dim = self.hparams["n_embd"]
  717. inner_dim = 4 * hidden_dim
  718. hidden_dim = int(2 * inner_dim / 3)
  719. multiple_of = 256
  720. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  721. block_count = self.hparams["n_layer"]
  722. self.gguf_writer.add_name("Refact")
  723. # refact uses Alibi. So this is from config.json which might be used by training.
  724. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  725. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  726. self.gguf_writer.add_feed_forward_length(ff_dim)
  727. self.gguf_writer.add_block_count(block_count)
  728. self.gguf_writer.add_head_count(self.hparams["n_head"])
  729. self.gguf_writer.add_head_count_kv(1)
  730. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  731. self.gguf_writer.add_file_type(self.ftype)
  732. def write_tensors(self):
  733. hidden_dim = self.hparams["n_embd"]
  734. inner_dim = 4 * hidden_dim
  735. hidden_dim = int(2 * inner_dim / 3)
  736. multiple_of = 256
  737. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  738. n_head = self.hparams["n_head"]
  739. n_head_kv = 1
  740. head_dim = self.hparams["n_embd"] // n_head
  741. block_count = self.hparams["n_layer"]
  742. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  743. tensors = dict(self.get_tensors())
  744. for i in range(block_count):
  745. if (w := tensors.get(f"transformer.h.{i}.attn.kv.weight")) is not None:
  746. tensors[f"model.layers.{i}.self_attn.k_proj.weight"] = w[:n_head_kv * head_dim]
  747. tensors[f"model.layers.{i}.self_attn.v_proj.weight"] = w[n_head_kv * head_dim:]
  748. del tensors[f"transformer.h.{i}.attn.kv.weight"]
  749. if (w := tensors.get(f"transformer.h.{i}.attn.q.weight")) is not None:
  750. tensors[f"model.layers.{i}.self_attn.q_proj.weight"] = w
  751. del tensors[f"transformer.h.{i}.attn.q.weight"]
  752. if (w := tensors.get(f"transformer.h.{i}.mlp.gate_up_proj.weight")) is not None:
  753. tensors[f"model.layers.{i}.mlp.gate_proj.weight"] = w[:ff_dim]
  754. tensors[f"model.layers.{i}.mlp.up_proj.weight"] = w[ff_dim:]
  755. del tensors[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
  756. for name, data_torch in tensors.items():
  757. old_dtype = data_torch.dtype
  758. # convert any unsupported data types to float32
  759. if data_torch.dtype not in (torch.float16, torch.float32):
  760. data_torch = data_torch.to(torch.float32)
  761. data = data_torch.squeeze().numpy()
  762. # map tensor names
  763. new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
  764. if new_name is None:
  765. print(f"Can not map tensor {name!r}")
  766. sys.exit()
  767. n_dims = len(data.shape)
  768. data_dtype = data.dtype
  769. # if f32 desired, convert any float16 to float32
  770. if self.ftype == 0 and data_dtype == np.float16:
  771. data = data.astype(np.float32)
  772. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  773. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  774. data = data.astype(np.float32)
  775. # if f16 desired, convert any float32 2-dim weight tensors to float16
  776. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  777. data = data.astype(np.float16)
  778. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  779. self.gguf_writer.add_tensor(new_name, data)
  780. @Model.register("PersimmonForCausalLM")
  781. class PersimmonModel(Model):
  782. model_arch = gguf.MODEL_ARCH.PERSIMMON
  783. def set_gguf_parameters(self):
  784. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  785. head_count = self.hparams["num_attention_heads"]
  786. head_count_kv = head_count
  787. hidden_size = self.hparams["hidden_size"]
  788. self.gguf_writer.add_name('persimmon-8b-chat')
  789. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  790. self.gguf_writer.add_embedding_length(hidden_size)
  791. self.gguf_writer.add_block_count(block_count)
  792. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  793. # NOTE: not sure about this change - why does the model not have a rope dimension count when it is smaller
  794. # than the head size?
  795. # ref: https://github.com/ggerganov/llama.cpp/pull/4889
  796. # self.gguf_writer.add_rope_dimension_count(hidden_size // head_count)
  797. self.gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2)
  798. self.gguf_writer.add_head_count(head_count)
  799. self.gguf_writer.add_head_count_kv(head_count_kv)
  800. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  801. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  802. def set_vocab(self):
  803. self._set_vocab_sentencepiece()
  804. # self.gguf_writer.add_bos_token_id(71013)
  805. # self.gguf_writer.add_eos_token_id(71013)
  806. def write_tensors(self):
  807. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  808. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  809. for name, data_torch in self.get_tensors():
  810. if name.endswith(".self_attention.rotary_emb.inv_freq"):
  811. continue
  812. old_dtype = data_torch.dtype
  813. # TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
  814. data = data_torch.to(torch.float32).squeeze().numpy()
  815. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  816. if new_name is None:
  817. print(f"Can not map tensor {name!r}")
  818. sys.exit()
  819. n_dims = len(data.shape)
  820. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  821. self.gguf_writer.add_tensor(new_name, data)
  822. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  823. class StableLMModel(Model):
  824. model_arch = gguf.MODEL_ARCH.STABLELM
  825. def set_vocab(self):
  826. if (self.dir_model / "tokenizer.json").is_file():
  827. self._set_vocab_gpt2()
  828. else:
  829. # StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab
  830. self._set_vocab_qwen()
  831. def set_gguf_parameters(self):
  832. hparams = self.hparams
  833. block_count = hparams["num_hidden_layers"]
  834. self.gguf_writer.add_name(self.dir_model.name)
  835. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  836. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  837. self.gguf_writer.add_block_count(block_count)
  838. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  839. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  840. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  841. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  842. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  843. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  844. @Model.register("MixtralForCausalLM")
  845. class MixtralModel(Model):
  846. model_arch = gguf.MODEL_ARCH.LLAMA
  847. def set_vocab(self):
  848. self._set_vocab_sentencepiece()
  849. @Model.register("GrokForCausalLM")
  850. class GrokModel(Model):
  851. model_arch = gguf.MODEL_ARCH.GROK
  852. def set_vocab(self):
  853. self._set_vocab_sentencepiece()
  854. def __init__(self, *args, **kwargs):
  855. super().__init__(*args, **kwargs)
  856. def set_gguf_parameters(self):
  857. super().set_gguf_parameters()
  858. self.gguf_writer.add_name("Grok")
  859. @Model.register("MiniCPMForCausalLM")
  860. class MiniCPMModel(Model):
  861. model_arch = gguf.MODEL_ARCH.MINICPM
  862. def set_gguf_parameters(self):
  863. block_count = self.hparams["num_hidden_layers"]
  864. self.gguf_writer.add_name("MiniCPM")
  865. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  866. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  867. self.gguf_writer.add_block_count(block_count)
  868. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  869. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  870. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  871. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  872. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  873. self.gguf_writer.add_file_type(self.ftype)
  874. def set_vocab(self):
  875. self._set_vocab_hf()
  876. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  877. if n_kv_head is not None and n_head != n_kv_head:
  878. n_head //= n_kv_head
  879. return (
  880. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  881. .swapaxes(1, 2)
  882. .reshape(weights.shape)
  883. )
  884. def write_tensors(self):
  885. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  886. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  887. n_head = self.hparams.get("num_attention_heads")
  888. n_kv_head = self.hparams.get("num_key_value_heads")
  889. for name, data_torch in self.get_tensors():
  890. # we don't need these
  891. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  892. continue
  893. old_dtype = data_torch.dtype
  894. # convert any unsupported data types to float32
  895. if data_torch.dtype not in (torch.float16, torch.float32):
  896. data_torch = data_torch.to(torch.float32)
  897. # HF models permute some of the tensors, so we need to undo that
  898. if name.endswith(("q_proj.weight")):
  899. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  900. if name.endswith(("k_proj.weight")):
  901. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  902. data = data_torch.squeeze().numpy()
  903. # map tensor names
  904. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  905. if new_name is None:
  906. print(f"Can not map tensor {name!r}")
  907. sys.exit()
  908. n_dims = len(data.shape)
  909. data_dtype = data.dtype
  910. # if f32 desired, convert any float16 to float32
  911. if self.ftype == 0 and data_dtype == np.float16:
  912. data = data.astype(np.float32)
  913. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  914. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  915. data = data.astype(np.float32)
  916. # if f16 desired, convert any float32 2-dim weight tensors to float16
  917. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  918. data = data.astype(np.float16)
  919. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  920. self.gguf_writer.add_tensor(new_name, data)
  921. @Model.register("QWenLMHeadModel")
  922. class QwenModel(Model):
  923. model_arch = gguf.MODEL_ARCH.QWEN
  924. @staticmethod
  925. def token_bytes_to_string(b):
  926. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  927. byte_encoder = bytes_to_unicode()
  928. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  929. @staticmethod
  930. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  931. parts = [bytes([b]) for b in token]
  932. while True:
  933. min_idx = None
  934. min_rank = None
  935. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  936. rank = mergeable_ranks.get(pair[0] + pair[1])
  937. if rank is not None and (min_rank is None or rank < min_rank):
  938. min_idx = i
  939. min_rank = rank
  940. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  941. break
  942. assert min_idx is not None
  943. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  944. return parts
  945. def set_vocab(self):
  946. self._set_vocab_qwen()
  947. def set_gguf_parameters(self):
  948. self.gguf_writer.add_name("Qwen")
  949. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  950. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  951. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  952. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  953. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  954. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  955. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  956. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  957. def write_tensors(self):
  958. block_count = self.hparams["num_hidden_layers"]
  959. model_kv = dict(self.get_tensors())
  960. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  961. for name, data_torch in model_kv.items():
  962. # we don't need these
  963. if name.endswith(".rotary_emb.inv_freq"):
  964. continue
  965. old_dtype = data_torch.dtype
  966. # convert any unsupported data types to float32
  967. if data_torch.dtype not in (torch.float16, torch.float32):
  968. data_torch = data_torch.to(torch.float32)
  969. data = data_torch.squeeze().numpy()
  970. # map tensor names
  971. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  972. if new_name is None:
  973. print(f"Can not map tensor {name!r}")
  974. sys.exit()
  975. n_dims = len(data.shape)
  976. data_dtype = data.dtype
  977. # if f32 desired, convert any float16 to float32
  978. if self.ftype == 0 and data_dtype == np.float16:
  979. data = data.astype(np.float32)
  980. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  981. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  982. data = data.astype(np.float32)
  983. # if f16 desired, convert any float32 2-dim weight tensors to float16
  984. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  985. data = data.astype(np.float16)
  986. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  987. self.gguf_writer.add_tensor(new_name, data)
  988. @Model.register("Qwen2ForCausalLM")
  989. class Qwen2Model(Model):
  990. model_arch = gguf.MODEL_ARCH.QWEN2
  991. @Model.register("GPT2LMHeadModel")
  992. class GPT2Model(Model):
  993. model_arch = gguf.MODEL_ARCH.GPT2
  994. def set_gguf_parameters(self):
  995. self.gguf_writer.add_name(self.dir_model.name)
  996. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  997. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  998. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  999. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1000. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1001. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1002. self.gguf_writer.add_file_type(self.ftype)
  1003. def write_tensors(self):
  1004. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1005. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1006. for name, data_torch in self.get_tensors():
  1007. # we don't need these
  1008. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq", ".attn.bias", ".attn.masked_bias")):
  1009. continue
  1010. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1011. data_torch = data_torch.transpose(1, 0)
  1012. old_dtype = data_torch.dtype
  1013. # convert any unsupported data types to float32
  1014. if data_torch.dtype not in (torch.float16, torch.float32):
  1015. data_torch = data_torch.to(torch.float32)
  1016. data = data_torch.squeeze().numpy()
  1017. # map tensor names
  1018. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1019. if new_name is None:
  1020. print(f"Can not map tensor {name!r}")
  1021. sys.exit()
  1022. n_dims = len(data.shape)
  1023. data_dtype = data.dtype
  1024. # if f32 desired, convert any float16 to float32
  1025. if self.ftype == 0 and data_dtype == np.float16:
  1026. data = data.astype(np.float32)
  1027. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1028. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1029. data = data.astype(np.float32)
  1030. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1031. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1032. data = data.astype(np.float16)
  1033. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1034. self.gguf_writer.add_tensor(new_name, data)
  1035. # note: GPT2 output is tied to (same as) wte in original model
  1036. if new_name == "token_embd.weight":
  1037. print(f"output.weight, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1038. self.gguf_writer.add_tensor("output.weight", data)
  1039. @Model.register("PhiForCausalLM")
  1040. class Phi2Model(Model):
  1041. model_arch = gguf.MODEL_ARCH.PHI2
  1042. def set_gguf_parameters(self):
  1043. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1044. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1045. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1046. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1047. self.gguf_writer.add_name("Phi2")
  1048. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1049. self.gguf_writer.add_embedding_length(n_embd)
  1050. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1051. self.gguf_writer.add_block_count(block_count)
  1052. self.gguf_writer.add_head_count(n_head)
  1053. self.gguf_writer.add_head_count_kv(n_head)
  1054. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1055. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1056. self.gguf_writer.add_file_type(self.ftype)
  1057. self.gguf_writer.add_add_bos_token(False)
  1058. @Model.register("PlamoForCausalLM")
  1059. class PlamoModel(Model):
  1060. model_arch = gguf.MODEL_ARCH.PLAMO
  1061. def set_vocab(self):
  1062. self._set_vocab_sentencepiece()
  1063. def set_gguf_parameters(self):
  1064. hparams = self.hparams
  1065. block_count = hparams["num_hidden_layers"]
  1066. self.gguf_writer.add_name("PLaMo")
  1067. self.gguf_writer.add_context_length(4096) # not in config.json
  1068. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1069. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1070. self.gguf_writer.add_block_count(block_count)
  1071. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1072. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1073. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1074. def shuffle_attn_q_weight(self, data_torch):
  1075. assert data_torch.size() == (5120, 5120)
  1076. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1077. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1078. data_torch = torch.reshape(data_torch, (5120, 5120))
  1079. return data_torch
  1080. def shuffle_attn_output_weight(self, data_torch):
  1081. assert data_torch.size() == (5120, 5120)
  1082. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1083. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1084. data_torch = torch.reshape(data_torch, (5120, 5120))
  1085. return data_torch
  1086. def write_tensors(self):
  1087. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  1088. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1089. for name, data_torch in self.get_tensors():
  1090. if "self_attn.rotary_emb.inv_freq" in name:
  1091. continue
  1092. # map tensor names
  1093. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1094. if new_name is None:
  1095. print(f"Can not map tensor {name!r}")
  1096. sys.exit()
  1097. # shuffle for broadcasting of gqa in ggml_mul_mat
  1098. if new_name.endswith("attn_q.weight"):
  1099. data_torch = self.shuffle_attn_q_weight(data_torch)
  1100. elif new_name.endswith("attn_output.weight"):
  1101. data_torch = self.shuffle_attn_output_weight(data_torch)
  1102. old_dtype = data_torch.dtype
  1103. # convert any unsupported data types to float32
  1104. if data_torch.dtype not in (torch.float16, torch.float32):
  1105. data_torch = data_torch.to(torch.float32)
  1106. data = data_torch.squeeze().numpy()
  1107. n_dims = len(data.shape)
  1108. data_dtype = data.dtype
  1109. # if f32 desired, convert any float16 to float32
  1110. if self.ftype == 0 and data_dtype == np.float16:
  1111. data = data.astype(np.float32)
  1112. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1113. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1114. data = data.astype(np.float32)
  1115. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1116. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1117. data = data.astype(np.float16)
  1118. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1119. self.gguf_writer.add_tensor(new_name, data)
  1120. @Model.register("CodeShellForCausalLM")
  1121. class CodeShellModel(Model):
  1122. model_arch = gguf.MODEL_ARCH.CODESHELL
  1123. def set_gguf_parameters(self):
  1124. block_count = self.hparams["n_layer"]
  1125. self.gguf_writer.add_name("CodeShell")
  1126. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1127. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1128. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1129. self.gguf_writer.add_block_count(block_count)
  1130. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1131. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1132. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1133. self.gguf_writer.add_file_type(self.ftype)
  1134. self.gguf_writer.add_rope_freq_base(10000.0)
  1135. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1136. self.gguf_writer.add_rope_scaling_factor(1.0)
  1137. def write_tensors(self):
  1138. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1139. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1140. tensors = dict(self.get_tensors())
  1141. has_lm_head = "lm_head.weight" in tensors.keys() or "output.weight" in tensors.keys()
  1142. for name, data_torch in tensors.items():
  1143. # we don't need these
  1144. if name.endswith((".attn.rotary_emb.inv_freq")):
  1145. continue
  1146. old_dtype = data_torch.dtype
  1147. # convert any unsupported data types to float32
  1148. if data_torch.dtype not in (torch.float16, torch.float32):
  1149. data_torch = data_torch.to(torch.float32)
  1150. data = data_torch.squeeze().numpy()
  1151. # map tensor names
  1152. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1153. if new_name is None:
  1154. print(f"Can not map tensor {name!r}")
  1155. sys.exit()
  1156. n_dims = len(data.shape)
  1157. data_dtype = data.dtype
  1158. # if f32 desired, convert any float16 to float32
  1159. if self.ftype == 0 and data_dtype == np.float16:
  1160. data = data.astype(np.float32)
  1161. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1162. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1163. data = data.astype(np.float32)
  1164. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1165. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1166. data = data.astype(np.float16)
  1167. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1168. self.gguf_writer.add_tensor(new_name, data)
  1169. if not has_lm_head and name == "transformer.wte.weight":
  1170. self.gguf_writer.add_tensor("output.weight", data)
  1171. print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  1172. @Model.register("InternLM2ForCausalLM")
  1173. class InternLM2Model(Model):
  1174. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1175. def set_vocab(self):
  1176. # (TODO): Is there a better way?
  1177. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1178. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1179. # recognized as an empty string in C++.
  1180. from sentencepiece import SentencePieceProcessor
  1181. from sentencepiece import sentencepiece_model_pb2 as model
  1182. tokenizer_path = self.dir_model / 'tokenizer.model'
  1183. tokens: list[bytes] = []
  1184. scores: list[float] = []
  1185. toktypes: list[int] = []
  1186. if not tokenizer_path.is_file():
  1187. print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
  1188. sys.exit(1)
  1189. sentencepiece_model = model.ModelProto()
  1190. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1191. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1192. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  1193. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1194. for token_id in range(vocab_size):
  1195. piece = tokenizer.id_to_piece(token_id)
  1196. text = piece.encode("utf-8")
  1197. score = tokenizer.get_score(token_id)
  1198. if text == b"\x00":
  1199. # (TODO): fixme
  1200. # Hack here and replace the \x00 characters.
  1201. print(f"InternLM2 convert token '{text}' to '🐉'!")
  1202. text = "🐉"
  1203. toktype = SentencePieceTokenTypes.NORMAL
  1204. if tokenizer.is_unknown(token_id):
  1205. toktype = SentencePieceTokenTypes.UNKNOWN
  1206. elif tokenizer.is_control(token_id):
  1207. toktype = SentencePieceTokenTypes.CONTROL
  1208. elif tokenizer.is_unused(token_id):
  1209. toktype = SentencePieceTokenTypes.UNUSED
  1210. elif tokenizer.is_byte(token_id):
  1211. toktype = SentencePieceTokenTypes.BYTE
  1212. tokens.append(text)
  1213. scores.append(score)
  1214. toktypes.append(toktype)
  1215. added_tokens_file = self.dir_model / 'added_tokens.json'
  1216. if added_tokens_file.is_file():
  1217. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1218. added_tokens_json = json.load(f)
  1219. for key in added_tokens_json:
  1220. tokens.append(key.encode("utf-8"))
  1221. scores.append(-1000.0)
  1222. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1223. self.gguf_writer.add_tokenizer_model("llama")
  1224. self.gguf_writer.add_token_list(tokens)
  1225. self.gguf_writer.add_token_scores(scores)
  1226. self.gguf_writer.add_token_types(toktypes)
  1227. self.gguf_writer.add_add_space_prefix(add_prefix)
  1228. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1229. old_eos = special_vocab.special_token_ids["eos"]
  1230. if "chat" in os.path.basename(self.dir_model.absolute()):
  1231. # For the chat model, we replace the eos with '<|im_end|>'.
  1232. special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
  1233. print(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
  1234. in chat mode so that the conversation can end normally.")
  1235. special_vocab.add_to_gguf(self.gguf_writer)
  1236. def _try_get_sft_eos(self, tokenizer):
  1237. unused_145_list = tokenizer.encode('[UNUSED_TOKEN_145]')
  1238. im_end_list = tokenizer.encode('<|im_end|>')
  1239. assert (len(unused_145_list) == 1) ^ (len(im_end_list) == 1)
  1240. if len(unused_145_list) == 1:
  1241. eos_token = unused_145_list[0]
  1242. if len(im_end_list) == 1:
  1243. eos_token = im_end_list[0]
  1244. return eos_token
  1245. def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int):
  1246. if n_head_kv is not None and n_head != n_head_kv:
  1247. n_head = n_head_kv
  1248. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1249. .swapaxes(1, 2)
  1250. .reshape(weights.shape))
  1251. def set_gguf_parameters(self):
  1252. self.gguf_writer.add_name("InternLM2")
  1253. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1254. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1255. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1256. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1257. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1258. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1259. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1260. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1261. def post_write_tensors(self, tensor_map, name, data_torch):
  1262. old_dtype = data_torch.dtype
  1263. # convert any unsupported data types to float32
  1264. if data_torch.dtype not in (torch.float16, torch.float32):
  1265. data_torch = data_torch.to(torch.float32)
  1266. data = data_torch.squeeze().numpy()
  1267. # map tensor names
  1268. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1269. if new_name is None:
  1270. print(f"Can not map tensor {name!r}")
  1271. sys.exit()
  1272. n_dims = len(data.shape)
  1273. data_dtype = data.dtype
  1274. # if f32 desired, convert any float16 to float32
  1275. if self.ftype == 0 and data_dtype == np.float16:
  1276. data = data.astype(np.float32)
  1277. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1278. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1279. data = data.astype(np.float32)
  1280. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1281. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1282. data = data.astype(np.float16)
  1283. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1284. self.gguf_writer.add_tensor(new_name, data)
  1285. def write_tensors(self):
  1286. from einops import rearrange
  1287. num_heads = self.hparams.get("num_attention_heads")
  1288. num_kv_heads = self.hparams.get("num_key_value_heads")
  1289. hidden_size = self.hparams.get("hidden_size")
  1290. q_per_kv = num_heads // num_kv_heads
  1291. head_dim = hidden_size // num_heads
  1292. num_groups = num_heads // q_per_kv
  1293. block_count = self.hparams["num_hidden_layers"]
  1294. model_kv = dict(self.get_tensors())
  1295. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1296. qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv"
  1297. for name, data_torch in model_kv.items():
  1298. # we don't need these
  1299. if name.endswith(".rotary_emb.inv_freq"):
  1300. continue
  1301. if re.match(qkv_pattern, name):
  1302. bid = re.findall(qkv_pattern, name)[0]
  1303. qkv = data_torch
  1304. qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
  1305. q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :]
  1306. # The model weights of q and k equire additional reshape.
  1307. q = self._hf_permute_qk(rearrange(q, " o g n i -> o (g n i)").T, num_heads, num_heads)
  1308. k = self._hf_permute_qk(rearrange(k, " o g n i -> o (g n i)").T, num_heads, num_kv_heads)
  1309. v = rearrange(v, " o g n i -> o (g n i)").T
  1310. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wq.weight", q)
  1311. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wk.weight", k)
  1312. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wv.weight", v)
  1313. else:
  1314. self.post_write_tensors(tensor_map, name, data_torch)
  1315. @Model.register("BertModel", "CamembertModel")
  1316. class BertModel(Model):
  1317. model_arch = gguf.MODEL_ARCH.BERT
  1318. def __init__(self, *args, **kwargs):
  1319. super().__init__(*args, **kwargs)
  1320. self.vocab_size = None
  1321. def set_gguf_parameters(self):
  1322. super().set_gguf_parameters()
  1323. self.gguf_writer.add_causal_attention(False)
  1324. # get pooling path
  1325. pooling_path = None
  1326. module_path = self.dir_model / "modules.json"
  1327. if module_path.is_file():
  1328. with open(module_path, encoding="utf-8") as f:
  1329. modules = json.load(f)
  1330. for mod in modules:
  1331. if mod["type"] == "sentence_transformers.models.Pooling":
  1332. pooling_path = mod["path"]
  1333. break
  1334. # get pooling type
  1335. if pooling_path is not None:
  1336. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1337. pooling = json.load(f)
  1338. if pooling["pooling_mode_mean_tokens"]:
  1339. pooling_type = gguf.PoolingType.MEAN
  1340. elif pooling["pooling_mode_cls_token"]:
  1341. pooling_type = gguf.PoolingType.CLS
  1342. else:
  1343. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  1344. self.gguf_writer.add_pooling_type(pooling_type)
  1345. def set_vocab(self):
  1346. path = self.dir_model
  1347. added_tokens_path = self.dir_model if self.dir_model.exists() else None
  1348. # use huggingface vocab to get all tokens
  1349. vocab = HfVocab(path, added_tokens_path)
  1350. tokens, scores, toktypes = zip(*vocab.all_tokens())
  1351. assert len(tokens) == vocab.vocab_size
  1352. self.vocab_size = vocab.vocab_size
  1353. # we need this to validate the size of the token_type embeddings
  1354. # though currently we are passing all zeros to the token_type embeddings
  1355. n_token_types = len(set(toktypes))
  1356. self.gguf_writer.add_token_type_count(n_token_types)
  1357. # convert to phantom space vocab
  1358. def phantom(tok, typ):
  1359. if tok.startswith(b"[") and tok.endswith(b"]"):
  1360. return tok
  1361. if tok.startswith(b"##"):
  1362. return tok[2:]
  1363. return b"\xe2\x96\x81" + tok
  1364. tokens = tuple(phantom(t, y) for t, y in zip(tokens, toktypes))
  1365. # set up bos and eos tokens (cls and sep)
  1366. self.gguf_writer.add_bos_token_id(vocab.tokenizer.cls_token_id)
  1367. self.gguf_writer.add_eos_token_id(vocab.tokenizer.sep_token_id)
  1368. # add vocab to gguf
  1369. self.gguf_writer.add_tokenizer_model("bert")
  1370. self.gguf_writer.add_token_list(tokens)
  1371. self.gguf_writer.add_token_scores(scores)
  1372. self.gguf_writer.add_token_types(toktypes)
  1373. # handle special tokens
  1374. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1375. special_vocab.add_to_gguf(self.gguf_writer)
  1376. def write_tensors(self):
  1377. tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  1378. tensors = dict(self.get_tensors())
  1379. for name, data_torch in tensors.items():
  1380. # we are only using BERT for embeddings so we don't need the pooling layer
  1381. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  1382. continue # we don't need these
  1383. # map tensor names
  1384. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1385. if new_name is None:
  1386. print(f"Can not map tensor {name!r}")
  1387. sys.exit()
  1388. data = data_torch.squeeze().numpy()
  1389. n_dims = len(data.shape)
  1390. new_dtype: type[np.floating[Any]]
  1391. if (
  1392. self.ftype == 1 and name.endswith(".weight") and n_dims == 2
  1393. and name != "embeddings.token_type_embeddings.weight" # not used with get_rows, must be F32
  1394. ):
  1395. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1396. new_dtype = np.float16
  1397. else:
  1398. # if f32 desired, convert any float16 to float32
  1399. new_dtype = np.float32
  1400. print(f"{new_name}, n_dims = {n_dims}, {data_torch.dtype} --> {new_dtype}")
  1401. if data.dtype != new_dtype:
  1402. data = data.astype(new_dtype)
  1403. self.gguf_writer.add_tensor(new_name, data)
  1404. @Model.register("NomicBertModel")
  1405. class NomicBertModel(BertModel):
  1406. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  1407. def __init__(self, *args, **kwargs):
  1408. super().__init__(*args, **kwargs)
  1409. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  1410. self.hparams["n_ctx"] = 2048
  1411. # SwigLU activation
  1412. assert self.hparams["activation_function"] == "swiglu"
  1413. # this doesn't do anything in the HF version
  1414. assert self.hparams["causal"] is False
  1415. # no bias tensors
  1416. assert self.hparams["qkv_proj_bias"] is False
  1417. assert self.hparams["mlp_fc1_bias"] is False
  1418. assert self.hparams["mlp_fc2_bias"] is False
  1419. # norm at end of layer
  1420. assert self.hparams["prenorm"] is False
  1421. # standard RoPE
  1422. assert self.hparams["rotary_emb_fraction"] == 1.0
  1423. assert self.hparams["rotary_emb_interleaved"] is False
  1424. assert self.hparams["rotary_emb_scale_base"] is None
  1425. def set_gguf_parameters(self):
  1426. super().set_gguf_parameters()
  1427. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1428. def get_tensors(self):
  1429. assert self.vocab_size is not None
  1430. for name, data in super().get_tensors():
  1431. # Nomic Embed's token embeddings tensor is padded, but llama.cpp wants tensor sizes to match exactly.
  1432. if name == 'embeddings.word_embeddings.weight' and data.shape[1] != self.vocab_size:
  1433. rounded_vocab_size = (self.vocab_size + 63) // 64 * 64
  1434. assert data.shape == (rounded_vocab_size, self.hparams["n_embd"])
  1435. data = data[:self.vocab_size, :]
  1436. yield name, data
  1437. @Model.register("GemmaForCausalLM")
  1438. class GemmaModel(Model):
  1439. model_arch = gguf.MODEL_ARCH.GEMMA
  1440. def set_vocab(self):
  1441. self._set_vocab_sentencepiece()
  1442. def set_gguf_parameters(self):
  1443. hparams = self.hparams
  1444. block_count = hparams["num_hidden_layers"]
  1445. self.gguf_writer.add_name(self.dir_model.name)
  1446. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1447. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1448. self.gguf_writer.add_block_count(block_count)
  1449. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1450. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1451. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  1452. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1453. self.gguf_writer.add_key_length(hparams["head_dim"])
  1454. self.gguf_writer.add_value_length(hparams["head_dim"])
  1455. self.gguf_writer.add_file_type(self.ftype)
  1456. def write_tensors(self):
  1457. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1458. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1459. for name, data_torch in self.get_tensors():
  1460. old_dtype = data_torch.dtype
  1461. # convert any unsupported data types to float32
  1462. if data_torch.dtype not in (torch.float16, torch.float32):
  1463. data_torch = data_torch.to(torch.float32)
  1464. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  1465. if name.endswith("norm.weight"):
  1466. data_torch = data_torch + 1
  1467. data = data_torch.squeeze().numpy()
  1468. # map tensor names
  1469. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1470. if new_name is None:
  1471. print(f"Can not map tensor {name!r}")
  1472. sys.exit()
  1473. n_dims = len(data.shape)
  1474. data_dtype = data.dtype
  1475. data = data.astype(np.float32)
  1476. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1477. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1478. data = data.astype(np.float16)
  1479. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1480. self.gguf_writer.add_tensor(new_name, data)
  1481. @Model.register("Starcoder2ForCausalLM")
  1482. class StarCoder2Model(Model):
  1483. model_arch = gguf.MODEL_ARCH.STARCODER2
  1484. @Model.register("MambaForCausalLM", "MambaLMHeadModel")
  1485. class MambaModel(Model):
  1486. model_arch = gguf.MODEL_ARCH.MAMBA
  1487. def set_vocab(self):
  1488. vocab_size = self.hparams["vocab_size"]
  1489. # Round vocab size to next multiple of 8
  1490. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  1491. # pad using ceiling division
  1492. # ref: https://stackoverflow.com/a/17511341/22827863
  1493. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  1494. self.hparams["vocab_size"] = vocab_size
  1495. if (self.dir_model / "tokenizer.json").is_file():
  1496. self._set_vocab_gpt2()
  1497. else:
  1498. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  1499. tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf"
  1500. print(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1501. neox_reader = gguf.GGUFReader(tokenizer_path, "r")
  1502. field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1503. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]))
  1504. field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1505. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1506. field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1507. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1508. field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1509. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1510. field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)
  1511. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  1512. field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)
  1513. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  1514. field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)
  1515. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  1516. def set_gguf_parameters(self):
  1517. d_model = self.find_hparam(["hidden_size", "d_model"])
  1518. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  1519. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  1520. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  1521. # ceiling division
  1522. # ref: https://stackoverflow.com/a/17511341/22827863
  1523. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  1524. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  1525. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  1526. # Fail early for models which don't have a block expansion factor of 2
  1527. assert d_inner == 2 * d_model
  1528. self.gguf_writer.add_name(self.dir_model.name)
  1529. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  1530. self.gguf_writer.add_embedding_length(d_model)
  1531. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  1532. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  1533. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1534. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  1535. self.gguf_writer.add_ssm_inner_size(d_inner)
  1536. self.gguf_writer.add_ssm_state_size(d_state)
  1537. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  1538. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  1539. self.gguf_writer.add_file_type(self.ftype)
  1540. def write_tensors(self):
  1541. block_count = self.hparams["n_layer"]
  1542. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1543. tok_embd = None
  1544. tok_embd_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.TOKEN_EMBD] + ".weight"
  1545. output_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.OUTPUT] + ".weight"
  1546. for name, data_torch in self.get_tensors():
  1547. old_dtype = data_torch.dtype
  1548. # convert any unsupported data types to float32
  1549. if data_torch.dtype not in (torch.float16, torch.float32):
  1550. data_torch = data_torch.to(torch.float32)
  1551. # map tensor names
  1552. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1553. if new_name is None:
  1554. print(f"Can not map tensor {name!r}")
  1555. sys.exit()
  1556. if name.endswith(".A_log"):
  1557. print("A_log --> A ==> " + new_name)
  1558. data_torch = -torch.exp(data_torch)
  1559. # assuming token_embd.weight is seen before output.weight
  1560. if tok_embd is not None and new_name == output_name:
  1561. if torch.equal(tok_embd, data_torch):
  1562. print(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  1563. continue
  1564. if new_name == tok_embd_name:
  1565. tok_embd = data_torch
  1566. data = data_torch.squeeze().numpy()
  1567. n_dims = len(data.shape)
  1568. data_dtype = data.dtype
  1569. # if f32 desired, convert any float16 to float32
  1570. if self.ftype == 0 and data_dtype == np.float16:
  1571. data = data.astype(np.float32)
  1572. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1573. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1574. data = data.astype(np.float32)
  1575. # if f16 desired, convert big float32 2-dim weight tensors to float16
  1576. if self.ftype == 1 and data_dtype == np.float32 and new_name.removesuffix(".weight").endswith((".ssm_in", ".ssm_out", "token_embd", "output")) and n_dims == 2:
  1577. data = data.astype(np.float16)
  1578. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1579. self.gguf_writer.add_tensor(new_name, data)
  1580. @Model.register("CohereForCausalLM")
  1581. class CommandR2Model(Model):
  1582. model_arch = gguf.MODEL_ARCH.COMMAND_R
  1583. def __init__(self, *args, **kwargs):
  1584. super().__init__(*args, **kwargs)
  1585. # max_position_embeddings = 8192 in config.json but model was actually
  1586. # trained on 128k context length
  1587. self.hparams["max_position_embeddings"] = self.hparams["model_max_length"]
  1588. def set_gguf_parameters(self):
  1589. super().set_gguf_parameters()
  1590. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  1591. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  1592. ###### CONVERSION LOGIC ######
  1593. def parse_args() -> argparse.Namespace:
  1594. parser = argparse.ArgumentParser(
  1595. description="Convert a huggingface model to a GGML compatible file")
  1596. parser.add_argument(
  1597. "--vocab-only", action="store_true",
  1598. help="extract only the vocab",
  1599. )
  1600. parser.add_argument(
  1601. "--awq-path", type=Path, default=None,
  1602. help="Path to scale awq cache file")
  1603. parser.add_argument(
  1604. "--outfile", type=Path,
  1605. help="path to write to; default: based on input",
  1606. )
  1607. parser.add_argument(
  1608. "--outtype", type=str, choices=["f32", "f16"], default="f16",
  1609. help="output format - use f32 for float32, f16 for float16",
  1610. )
  1611. parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine")
  1612. parser.add_argument(
  1613. "model", type=Path,
  1614. help="directory containing model file",
  1615. )
  1616. return parser.parse_args()
  1617. def main() -> None:
  1618. args = parse_args()
  1619. dir_model = args.model
  1620. if args.awq_path:
  1621. sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
  1622. from awq.apply_awq import add_scale_weights # type: ignore[import-not-found]
  1623. tmp_model_path = args.model / "weighted_model"
  1624. dir_model = tmp_model_path
  1625. if tmp_model_path.is_dir():
  1626. print(f"{tmp_model_path} exists as a weighted model.")
  1627. else:
  1628. tmp_model_path.mkdir(parents=True, exist_ok=True)
  1629. print("Saving new weighted model ...")
  1630. add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
  1631. print(f"Saved weighted model at {tmp_model_path}.")
  1632. if not dir_model.is_dir():
  1633. print(f'Error: {args.model} is not a directory', file=sys.stderr)
  1634. sys.exit(1)
  1635. ftype_map = {
  1636. "f32": gguf.GGMLQuantizationType.F32,
  1637. "f16": gguf.GGMLQuantizationType.F16,
  1638. }
  1639. if args.outfile is not None:
  1640. fname_out = args.outfile
  1641. else:
  1642. # output in the same directory as the model by default
  1643. fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
  1644. print(f"Loading model: {dir_model.name}")
  1645. hparams = Model.load_hparams(dir_model)
  1646. with torch.inference_mode():
  1647. model_class = Model.from_model_architecture(hparams["architectures"][0])
  1648. model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian)
  1649. print("Set model parameters")
  1650. model_instance.set_gguf_parameters()
  1651. print("Set model tokenizer")
  1652. model_instance.set_vocab()
  1653. if args.vocab_only:
  1654. print(f"Exporting model vocab to '{fname_out}'")
  1655. model_instance.write_vocab()
  1656. else:
  1657. print(f"Exporting model to '{fname_out}'")
  1658. model_instance.write()
  1659. print(f"Model successfully exported to '{fname_out}'")
  1660. if __name__ == '__main__':
  1661. main()