convert_hf_to_gguf.py 522 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. from gguf.vocab import MistralTokenizerType, MistralVocab
  27. try:
  28. from mistral_common.tokens.tokenizers.base import TokenizerVersion # pyright: ignore[reportMissingImports]
  29. from mistral_common.tokens.tokenizers.multimodal import DATASET_MEAN as _MISTRAL_COMMON_DATASET_MEAN, DATASET_STD as _MISTRAL_COMMON_DATASET_STD # pyright: ignore[reportMissingImports]
  30. from mistral_common.tokens.tokenizers.tekken import Tekkenizer # pyright: ignore[reportMissingImports]
  31. from mistral_common.tokens.tokenizers.sentencepiece import ( # pyright: ignore[reportMissingImports]
  32. SentencePieceTokenizer,
  33. )
  34. _mistral_common_installed = True
  35. _mistral_import_error_msg = ""
  36. except ImportError:
  37. _MISTRAL_COMMON_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
  38. _MISTRAL_COMMON_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
  39. _mistral_common_installed = False
  40. TokenizerVersion = None
  41. Tekkenizer = None
  42. SentencePieceTokenizer = None
  43. _mistral_import_error_msg = (
  44. "Mistral format requires `mistral-common` to be installed. Please run "
  45. "`pip install mistral-common[image,audio]` to install it."
  46. )
  47. logger = logging.getLogger("hf-to-gguf")
  48. ###### MODEL DEFINITIONS ######
  49. class SentencePieceTokenTypes(IntEnum):
  50. NORMAL = 1
  51. UNKNOWN = 2
  52. CONTROL = 3
  53. USER_DEFINED = 4
  54. UNUSED = 5
  55. BYTE = 6
  56. class ModelType(IntEnum):
  57. TEXT = 1
  58. MMPROJ = 2
  59. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  60. class ModelBase:
  61. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  62. ModelType.TEXT: {},
  63. ModelType.MMPROJ: {},
  64. }
  65. dir_model: Path
  66. ftype: gguf.LlamaFileType
  67. fname_out: Path
  68. is_big_endian: bool
  69. endianess: gguf.GGUFEndian
  70. use_temp_file: bool
  71. lazy: bool
  72. dry_run: bool
  73. hparams: dict[str, Any]
  74. model_tensors: dict[str, Callable[[], Tensor]]
  75. gguf_writer: gguf.GGUFWriter
  76. model_name: str | None
  77. metadata_override: Path | None
  78. dir_model_card: Path
  79. remote_hf_model_id: str | None
  80. # subclasses should define this!
  81. model_arch: gguf.MODEL_ARCH
  82. # subclasses should initialize this!
  83. block_count: int
  84. tensor_map: gguf.TensorNameMap
  85. # Mistral format specifics
  86. is_mistral_format: bool = False
  87. disable_mistral_community_chat_template: bool = False
  88. sentence_transformers_dense_modules: bool = False
  89. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  90. use_temp_file: bool = False, eager: bool = False,
  91. metadata_override: Path | None = None, model_name: str | None = None,
  92. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  93. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None,
  94. disable_mistral_community_chat_template: bool = False,
  95. sentence_transformers_dense_modules: bool = False):
  96. if type(self) is ModelBase or \
  97. type(self) is TextModel or \
  98. type(self) is MmprojModel:
  99. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  100. if self.is_mistral_format and not _mistral_common_installed:
  101. raise ImportError(_mistral_import_error_msg)
  102. self.dir_model = dir_model
  103. self.ftype = ftype
  104. self.fname_out = fname_out
  105. self.is_big_endian = is_big_endian
  106. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  107. self.use_temp_file = use_temp_file
  108. self.lazy = not eager or (remote_hf_model_id is not None)
  109. self.dry_run = dry_run
  110. self.remote_hf_model_id = remote_hf_model_id
  111. self.sentence_transformers_dense_modules = sentence_transformers_dense_modules
  112. self.hparams = ModelBase.load_hparams(self.dir_model, self.is_mistral_format) if hparams is None else hparams
  113. self.model_tensors = self.index_tensors(remote_hf_model_id=remote_hf_model_id)
  114. self.metadata_override = metadata_override
  115. self.model_name = model_name
  116. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  117. # Apply heuristics to figure out typical tensor encoding based on first tensor's dtype
  118. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  119. if self.ftype == gguf.LlamaFileType.GUESSED:
  120. for _, tensor in self.get_tensors():
  121. if tensor.dim() < 2:
  122. continue
  123. if tensor.dtype == torch.bfloat16:
  124. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  125. logger.info("heuristics detected bfloat16 tensor dtype, setting --outtype bf16")
  126. break
  127. elif tensor.dtype == torch.float16:
  128. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  129. logger.info("heuristics detected float16 tensor dtype, setting --outtype f16")
  130. break
  131. else:
  132. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  133. logger.info("heuristics unable to detect tensor dtype, defaulting to --outtype f16")
  134. self.dequant_model()
  135. # Configure GGUF Writer
  136. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  137. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  138. # Mistral specific
  139. self.disable_mistral_community_chat_template = disable_mistral_community_chat_template
  140. @classmethod
  141. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  142. stem, suffix = path.stem, path.suffix
  143. new_name = f"{prefix}{stem}{suffix}"
  144. return path.with_name(new_name)
  145. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  146. key = next((k for k in keys if k in self.hparams), None)
  147. if key is not None:
  148. return self.hparams[key]
  149. if optional:
  150. return None
  151. raise KeyError(f"could not find any of: {keys}")
  152. def index_tensors(self, remote_hf_model_id: str | None = None) -> dict[str, Callable[[], Tensor]]:
  153. tensors: dict[str, Callable[[], Tensor]] = {}
  154. if remote_hf_model_id is not None:
  155. is_safetensors = True
  156. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  157. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  158. for name, remote_tensor in remote_tensors.items():
  159. tensors[name] = lambda r=remote_tensor: LazyTorchTensor.from_remote_tensor(r)
  160. return tensors
  161. prefix = "model" if not self.is_mistral_format else "consolidated"
  162. part_names: list[str] = ModelBase.get_model_part_names(self.dir_model, prefix, ".safetensors")
  163. is_safetensors: bool = len(part_names) > 0
  164. if not is_safetensors:
  165. part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  166. tensor_names_from_index: set[str] = set()
  167. if not self.is_mistral_format:
  168. index_name = "model.safetensors" if is_safetensors else "pytorch_model.bin"
  169. index_name += ".index.json"
  170. index_file = self.dir_model / index_name
  171. if index_file.is_file():
  172. logger.info(f"gguf: loading model weight map from '{index_name}'")
  173. with open(index_file, "r", encoding="utf-8") as f:
  174. index: dict[str, Any] = json.load(f)
  175. weight_map = index.get("weight_map")
  176. if weight_map is None or not isinstance(weight_map, dict):
  177. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  178. tensor_names_from_index.update(weight_map.keys())
  179. part_dict: dict[str, None] = dict.fromkeys(weight_map.values(), None)
  180. part_names = sorted(part_dict.keys())
  181. else:
  182. weight_map = {}
  183. else:
  184. weight_map = {}
  185. for part_name in part_names:
  186. logger.info(f"gguf: indexing model part '{part_name}'")
  187. ctx: ContextManager[Any]
  188. if is_safetensors:
  189. ctx = cast(ContextManager[Any], gguf.utility.SafetensorsLocal(self.dir_model / part_name))
  190. else:
  191. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  192. with ctx as model_part:
  193. assert model_part is not None
  194. for name in model_part.keys():
  195. if is_safetensors:
  196. data: gguf.utility.LocalTensor = model_part[name]
  197. if self.lazy:
  198. data_gen = lambda data=data: LazyTorchTensor.from_local_tensor(data) # noqa: E731
  199. else:
  200. dtype = LazyTorchTensor._dtype_str_map[data.dtype]
  201. data_gen = lambda data=data, dtype=dtype: torch.from_numpy(data.mmap_bytes()).view(dtype).reshape(data.shape) # noqa: E731
  202. else:
  203. data_torch: Tensor = model_part[name]
  204. if self.lazy:
  205. data_gen = lambda data=data_torch: LazyTorchTensor.from_eager(data) # noqa: E731
  206. else:
  207. data_gen = lambda data=data_torch: data # noqa: E731
  208. tensors[name] = data_gen
  209. # verify tensor name presence and identify potentially missing files
  210. if len(tensor_names_from_index) > 0:
  211. tensor_names_from_parts = set(tensors.keys())
  212. if len(tensor_names_from_parts.symmetric_difference(tensor_names_from_index)) > 0:
  213. missing = sorted(tensor_names_from_index.difference(tensor_names_from_parts))
  214. extra = sorted(tensor_names_from_parts.difference(tensor_names_from_index))
  215. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  216. if len(extra) == 0 and len(missing_files) > 0:
  217. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  218. f"Missing tensors: {missing}")
  219. else:
  220. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  221. f"Missing tensors: {missing}\n"
  222. f"Extra tensors: {extra}")
  223. return tensors
  224. def dequant_model(self):
  225. tensors_to_remove: list[str] = []
  226. new_tensors: dict[str, Callable[[], Tensor]] = {}
  227. if (quant_config := self.hparams.get("quantization_config")) and isinstance(quant_config, dict):
  228. quant_method = quant_config.get("quant_method")
  229. def dequant_bitnet(weight: Tensor, scale: Tensor) -> Tensor:
  230. weight = weight.view(torch.uint8)
  231. orig_shape = weight.shape
  232. shift = torch.tensor([0, 2, 4, 6], dtype=torch.uint8).reshape((4, *(1 for _ in range(len(orig_shape)))))
  233. data = weight.unsqueeze(0).expand((4, *orig_shape)) >> shift
  234. data = data & 3
  235. data = (data.float() - 1).reshape((orig_shape[0] * 4, *orig_shape[1:]))
  236. # The scale is inverted
  237. return data / scale.float()
  238. def dequant_simple(weight: Tensor, scale: Tensor, block_size: Sequence[int] | None = None) -> Tensor:
  239. scale = scale.float()
  240. if block_size is not None:
  241. for i, size in enumerate(block_size):
  242. scale = scale.repeat_interleave(size, i)
  243. # unpad the scale (e.g. when the tensor size isn't a multiple of the block size)
  244. scale = scale[tuple(slice(0, size) for size in weight.shape)]
  245. return weight.float() * scale
  246. # ref: https://github.com/ModelCloud/GPTQModel/blob/037c5c0f6c9e33c500d975b038d02e7ca437546d/gptqmodel/nn_modules/qlinear/__init__.py#L437-L476
  247. def dequant_gptq(g_idx: Tensor, qweight: Tensor, qzeros: Tensor, scales: Tensor) -> Tensor:
  248. bits = quant_config["bits"]
  249. assert bits in (2, 3, 4, 8)
  250. assert qweight.dtype == qzeros.dtype
  251. maxq = (2 ** bits) - 1
  252. weight = None
  253. zeros = None
  254. pack_dtype_bits = qweight.dtype.itemsize * 8
  255. if bits in [2, 4, 8]:
  256. pack_factor = pack_dtype_bits // bits
  257. wf = torch.tensor(list(range(0, pack_dtype_bits, bits)), dtype=torch.int32).unsqueeze(0)
  258. if self.lazy:
  259. wf = LazyTorchTensor.from_eager(wf)
  260. zeros = torch.bitwise_right_shift(
  261. qzeros.unsqueeze(2).expand(-1, -1, pack_factor),
  262. wf.unsqueeze(0)
  263. ).to(torch.int16 if bits == 8 else torch.int8)
  264. zeros = torch.bitwise_and(zeros, maxq).reshape(scales.shape)
  265. weight = torch.bitwise_and(
  266. torch.bitwise_right_shift(
  267. qweight.unsqueeze(1).expand(-1, pack_factor, -1),
  268. wf.unsqueeze(-1)
  269. ).to(torch.int16 if bits == 8 else torch.int8),
  270. maxq
  271. )
  272. elif bits == 3:
  273. raise NotImplementedError("3-bit gptq dequantization is not yet implemented")
  274. assert weight is not None
  275. assert zeros is not None
  276. weight = weight.reshape(weight.shape[0] * weight.shape[1], weight.shape[2])
  277. # gptq_v2 doesn't need to offset zeros
  278. if quant_config.get("checkpoint_format", "gptq") == "gptq":
  279. zeros += 1
  280. return (scales[g_idx].float() * (weight - zeros[g_idx]).float()).T
  281. def dequant_packed(w: Tensor, scale: Tensor, shape_tensor: Tensor, zero_point: Tensor | None, num_bits: int, group_size: int):
  282. assert w.dtype == torch.int32
  283. shape = tuple(shape_tensor.tolist())
  284. assert len(shape) == 2
  285. mask = (1 << num_bits) - 1
  286. shifts = torch.arange(0, 32 - (num_bits - 1), num_bits, dtype=torch.int32)
  287. if self.lazy:
  288. shifts = LazyTorchTensor.from_eager(shifts)
  289. if zero_point is None:
  290. offset = 1 << (num_bits - 1)
  291. else:
  292. assert len(zero_point.shape) == 2
  293. offset = (zero_point.unsqueeze(1) >> shifts.reshape(1, -1, 1)) & mask
  294. offset = offset.reshape(-1, zero_point.shape[1])
  295. # trim padding, and prepare for broadcast
  296. # NOTE: the zero-point is packed along dim 0
  297. offset = offset[:shape[0], :].unsqueeze(-1)
  298. # extract values
  299. # NOTE: the weights are packed along dim 1
  300. unpacked = (w.unsqueeze(-1) >> shifts.reshape(1, 1, -1)) & mask
  301. unpacked = unpacked.reshape(shape[0], -1)
  302. # trim padding
  303. unpacked = unpacked[:, :shape[1]]
  304. # prepare for broadcast of the scale
  305. unpacked = unpacked.reshape(shape[0], (unpacked.shape[-1] + group_size - 1) // group_size, group_size)
  306. unpacked = unpacked - offset
  307. return (unpacked * scale.unsqueeze(-1).float()).reshape(shape)
  308. if quant_method == "bitnet":
  309. for name in self.model_tensors.keys():
  310. if name.endswith(".weight_scale"):
  311. weight_name = name.removesuffix("_scale")
  312. w = self.model_tensors[weight_name]
  313. s = self.model_tensors[name]
  314. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_bitnet(w(), s())
  315. tensors_to_remove.append(name)
  316. elif quant_method == "fp8":
  317. block_size = quant_config.get("weight_block_size")
  318. for name in self.model_tensors.keys():
  319. if name.endswith(".weight_scale_inv"):
  320. weight_name = name.removesuffix("_scale_inv")
  321. w = self.model_tensors[weight_name]
  322. s = self.model_tensors[name]
  323. self.model_tensors[weight_name] = lambda w=w, s=s, bs=block_size: dequant_simple(w(), s(), bs)
  324. tensors_to_remove.append(name)
  325. if name.endswith(".activation_scale"): # unused
  326. tensors_to_remove.append(name)
  327. # mistral format
  328. if name.endswith(".qscale_weight"):
  329. weight_name = name.removesuffix("qscale_weight") + "weight"
  330. w = self.model_tensors[weight_name]
  331. s = self.model_tensors[name]
  332. self.model_tensors[weight_name] = lambda w=w, s=s, bs=block_size: dequant_simple(w(), s(), bs)
  333. tensors_to_remove.append(name)
  334. if name.endswith(".qscale_act"):
  335. tensors_to_remove.append(name)
  336. elif quant_method == "gptq":
  337. for name in self.model_tensors.keys():
  338. if name.endswith(".qweight"):
  339. base_name = name.removesuffix(".qweight")
  340. g_idx = self.model_tensors[base_name + ".g_idx"]
  341. qweight = self.model_tensors[base_name + ".qweight"]
  342. qzeros = self.model_tensors[base_name + ".qzeros"]
  343. scales = self.model_tensors[base_name + ".scales"]
  344. new_tensors[base_name + ".weight"] = (
  345. lambda g=g_idx, z=qzeros, w=qweight, s=scales: dequant_gptq(
  346. g(), w(), z(), s()
  347. )
  348. )
  349. tensors_to_remove += [
  350. base_name + n
  351. for n in (
  352. ".g_idx",
  353. ".qzeros",
  354. ".qweight",
  355. ".scales",
  356. )
  357. ]
  358. elif quant_method == "compressed-tensors":
  359. quant_format = quant_config["format"]
  360. groups = quant_config["config_groups"]
  361. if len(groups) > 1:
  362. raise NotImplementedError("Can't handle multiple config groups for compressed-tensors yet")
  363. weight_config = tuple(groups.values())[0]["weights"]
  364. if quant_format == "float-quantized" or quant_format == "int-quantized" or quant_format == "naive-quantized":
  365. block_size = weight_config.get("block_structure", None)
  366. strategy = weight_config.get("strategy")
  367. assert strategy == "channel" or strategy == "block"
  368. assert weight_config.get("group_size") is None # didn't find a model using this yet
  369. for name in self.model_tensors.keys():
  370. if name.endswith(".weight_scale"):
  371. weight_name = name.removesuffix("_scale")
  372. w = self.model_tensors[weight_name]
  373. s = self.model_tensors[name]
  374. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_simple(w(), s(), block_size)
  375. tensors_to_remove.append(name)
  376. elif quant_format == "pack-quantized":
  377. assert weight_config.get("strategy") == "group"
  378. assert weight_config.get("type", "int") == "int"
  379. num_bits = weight_config.get("num_bits")
  380. group_size = weight_config.get("group_size")
  381. assert isinstance(num_bits, int)
  382. assert isinstance(group_size, int)
  383. for name in self.model_tensors.keys():
  384. if name.endswith(".weight_packed"):
  385. base_name = name.removesuffix("_packed")
  386. w = self.model_tensors[name]
  387. scale = self.model_tensors[base_name + "_scale"]
  388. shape = self.model_tensors[base_name + "_shape"]
  389. zero_point = self.model_tensors.get(base_name + "_zero_point", lambda: None)
  390. new_tensors[base_name] = (
  391. lambda w=w, scale=scale, shape=shape, zero_point=zero_point: dequant_packed(
  392. w(), scale(), shape(), zero_point(), num_bits, group_size,
  393. )
  394. )
  395. tensors_to_remove += [base_name + n for n in ("_packed", "_shape", "_scale")]
  396. if (base_name + "_zero_point") in self.model_tensors:
  397. tensors_to_remove.append(base_name + "_zero_point")
  398. else:
  399. raise NotImplementedError(f"Quant format {quant_format!r} for method {quant_method!r} is not yet supported")
  400. else:
  401. raise NotImplementedError(f"Quant method is not yet supported: {quant_method!r}")
  402. for name in tensors_to_remove:
  403. if name in self.model_tensors:
  404. del self.model_tensors[name]
  405. for name, value in new_tensors.items():
  406. self.model_tensors[name] = value
  407. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  408. for name, gen in self.model_tensors.items():
  409. yield name, gen()
  410. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  411. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  412. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  413. name: str = gguf.TENSOR_NAMES[key]
  414. if "{bid}" in name:
  415. assert bid is not None
  416. name = name.format(bid=bid)
  417. return name + suffix
  418. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  419. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  420. return False
  421. key_name: str = gguf.TENSOR_NAMES[key]
  422. if "{bid}" in key_name:
  423. if bid is None:
  424. return False
  425. key_name = key_name.format(bid=bid)
  426. else:
  427. if bid is not None:
  428. return False
  429. return name == (key_name + suffix)
  430. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  431. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  432. if new_name is None:
  433. raise ValueError(f"Can not map tensor {name!r}")
  434. return new_name
  435. def set_gguf_parameters(self):
  436. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  437. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  438. del bid # unused
  439. return [(self.map_tensor_name(name), data_torch)]
  440. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  441. del name, new_name, bid, n_dims # unused
  442. return False
  443. # some models need extra generated tensors (like rope_freqs)
  444. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  445. return ()
  446. def prepare_tensors(self):
  447. # Handle empty tensor_map for models with block_count=0 (like MobileNetV5)
  448. if self.tensor_map.mapping:
  449. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  450. else:
  451. max_name_len = len("vision_encoder.weight,") # Default reasonable length
  452. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  453. # we don't need these
  454. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  455. continue
  456. old_dtype = data_torch.dtype
  457. # convert any unsupported data types to float32
  458. if data_torch.dtype not in (torch.float16, torch.float32):
  459. data_torch = data_torch.to(torch.float32)
  460. # use the first number-like part of the tensor name as the block id
  461. bid = None
  462. for part in name.split("."):
  463. if part.isdecimal():
  464. bid = int(part)
  465. break
  466. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  467. # TODO: why do we squeeze here?
  468. # data = data_torch.squeeze().numpy()
  469. data = data_torch.numpy()
  470. n_dims = len(data.shape)
  471. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  472. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  473. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  474. data_qtype = gguf.GGMLQuantizationType.F32
  475. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  476. # Some tensor types are always in float32
  477. if data_qtype is False and (
  478. any(
  479. self.match_model_tensor_name(new_name, key, bid)
  480. for key in (
  481. gguf.MODEL_TENSOR.FFN_GATE_INP,
  482. gguf.MODEL_TENSOR.POS_EMBD,
  483. gguf.MODEL_TENSOR.TOKEN_TYPES,
  484. gguf.MODEL_TENSOR.SSM_CONV1D,
  485. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  486. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  487. gguf.MODEL_TENSOR.TIME_MIX_W1,
  488. gguf.MODEL_TENSOR.TIME_MIX_W2,
  489. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  490. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  491. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  492. gguf.MODEL_TENSOR.POSNET_NORM1,
  493. gguf.MODEL_TENSOR.POSNET_NORM2,
  494. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  495. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  496. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  497. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  498. )
  499. )
  500. or new_name[-7:] not in (".weight", ".lora_a", ".lora_b")
  501. ):
  502. data_qtype = gguf.GGMLQuantizationType.F32
  503. if data_qtype is False and any(
  504. self.match_model_tensor_name(new_name, key, bid)
  505. for key in (
  506. gguf.MODEL_TENSOR.TOKEN_EMBD,
  507. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  508. gguf.MODEL_TENSOR.OUTPUT,
  509. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  510. gguf.MODEL_TENSOR.LAUREL_L,
  511. gguf.MODEL_TENSOR.LAUREL_R,
  512. )
  513. ):
  514. if self.ftype in (
  515. gguf.LlamaFileType.MOSTLY_TQ1_0,
  516. gguf.LlamaFileType.MOSTLY_TQ2_0,
  517. ):
  518. # TODO: use Q4_K and Q6_K
  519. data_qtype = gguf.GGMLQuantizationType.F16
  520. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  521. if isinstance(data_qtype, bool):
  522. if self.ftype == gguf.LlamaFileType.ALL_F32:
  523. data_qtype = gguf.GGMLQuantizationType.F32
  524. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  525. data_qtype = gguf.GGMLQuantizationType.F16
  526. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  527. data_qtype = gguf.GGMLQuantizationType.BF16
  528. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  529. data_qtype = gguf.GGMLQuantizationType.Q8_0
  530. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  531. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  532. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  533. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  534. else:
  535. raise ValueError(f"Unknown file type: {self.ftype.name}")
  536. try:
  537. data = gguf.quants.quantize(data, data_qtype)
  538. except gguf.QuantError as e:
  539. logger.warning("%s, %s", e, "falling back to F16")
  540. data_qtype = gguf.GGMLQuantizationType.F16
  541. data = gguf.quants.quantize(data, data_qtype)
  542. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  543. # reverse shape to make it similar to the internal ggml dimension order
  544. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  545. # n_dims is implicit in the shape
  546. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  547. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  548. def set_type(self):
  549. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  550. def prepare_metadata(self, vocab_only: bool):
  551. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  552. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  553. # If we are using HF model id, set the metadata name to the model id
  554. if self.remote_hf_model_id:
  555. self.metadata.name = self.remote_hf_model_id
  556. # Fallback to model directory name if metadata name is still missing
  557. if self.metadata.name is None:
  558. self.metadata.name = self.dir_model.name
  559. # Generate parameter weight class (useful for leader boards) if not yet determined
  560. if self.metadata.size_label is None and total_params > 0:
  561. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  562. self.set_type()
  563. logger.info("Set meta model")
  564. self.metadata.set_gguf_meta_model(self.gguf_writer)
  565. logger.info("Set model parameters")
  566. self.set_gguf_parameters()
  567. logger.info("Set model quantization version")
  568. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  569. def write_vocab(self):
  570. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  571. def write(self):
  572. self.prepare_tensors()
  573. self.prepare_metadata(vocab_only=False)
  574. self.gguf_writer.write_header_to_file(path=self.fname_out)
  575. self.gguf_writer.write_kv_data_to_file()
  576. self.gguf_writer.write_tensors_to_file(progress=True)
  577. self.gguf_writer.close()
  578. @staticmethod
  579. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  580. part_names: list[str] = []
  581. for filename in os.listdir(dir_model):
  582. if filename.startswith(prefix) and filename.endswith(suffix):
  583. part_names.append(filename)
  584. part_names.sort()
  585. return part_names
  586. @staticmethod
  587. def load_hparams(dir_model: Path, is_mistral_format: bool):
  588. if is_mistral_format:
  589. with open(dir_model / "params.json", "r", encoding="utf-8") as f:
  590. config = json.load(f)
  591. return config
  592. try:
  593. # for security reason, we don't allow loading remote code by default
  594. # if a model need remote code, we will fallback to config.json
  595. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  596. except Exception as e:
  597. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  598. logger.warning("Trying to load config.json instead")
  599. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  600. config = json.load(f)
  601. if "llm_config" in config:
  602. # rename for InternVL
  603. config["text_config"] = config["llm_config"]
  604. if "lm_config" in config:
  605. # rename for GlmASR
  606. config["text_config"] = config["lm_config"]
  607. if "thinker_config" in config:
  608. # rename for Qwen2.5-Omni
  609. config["text_config"] = config["thinker_config"]["text_config"]
  610. if "lfm" in config:
  611. # rename for LFM2-Audio
  612. config["text_config"] = config["lfm"]
  613. return config
  614. @classmethod
  615. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  616. assert names
  617. def func(modelcls: AnyModel) -> AnyModel:
  618. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  619. for name in names:
  620. cls._model_classes[model_type][name] = modelcls
  621. return modelcls
  622. return func
  623. @classmethod
  624. def print_registered_models(cls):
  625. for model_type, model_classes in cls._model_classes.items():
  626. logger.error(f"{model_type.name} models:")
  627. for name in sorted(model_classes.keys()):
  628. logger.error(f" - {name}")
  629. @classmethod
  630. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  631. try:
  632. return cls._model_classes[model_type][arch]
  633. except KeyError:
  634. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  635. class TextModel(ModelBase):
  636. model_type = ModelType.TEXT
  637. hf_arch: str
  638. def __init__(self, *args, **kwargs):
  639. super().__init__(*args, **kwargs)
  640. if not self.is_mistral_format:
  641. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  642. else:
  643. self.hf_arch = ""
  644. if "text_config" in self.hparams:
  645. # move the text_config to the root level
  646. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  647. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  648. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  649. self.rope_parameters = self.hparams.get("rope_parameters", self.hparams.get("rope_scaling")) or {}
  650. rope_theta = self.find_hparam(["global_rope_theta", "rope_global_theta", "rope_theta_global", "rope_theta", "rotary_emb_base"], optional=True)
  651. local_rope_theta = self.find_hparam(["local_rope_theta", "rope_local_theta", "rope_theta_local", "swa_rope_theta", "rope_local_base_freq"], optional=True)
  652. # Ensure "rope_theta" and "rope_type" is mirrored in rope_parameters
  653. if "full_attention" not in self.rope_parameters and "sliding_attention" not in self.rope_parameters:
  654. if local_rope_theta is not None:
  655. self.rope_parameters["sliding_attention"] = {"rope_theta": local_rope_theta}
  656. if "rope_theta" not in self.rope_parameters and rope_theta is not None:
  657. self.rope_parameters["rope_theta"] = rope_theta
  658. if "rope_type" not in self.rope_parameters and (rope_type := self.rope_parameters.get("type")) is not None:
  659. self.rope_parameters["rope_type"] = rope_type
  660. @classmethod
  661. def __init_subclass__(cls):
  662. # can't use an abstract property, because overriding it without type errors
  663. # would require using decorated functions instead of simply defining the property
  664. if "model_arch" not in cls.__dict__:
  665. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  666. def set_vocab(self):
  667. self._set_vocab_gpt2()
  668. def prepare_metadata(self, vocab_only: bool):
  669. super().prepare_metadata(vocab_only=vocab_only)
  670. total_params = self.gguf_writer.get_total_parameter_count()[0]
  671. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  672. output_type: str = self.ftype.name.partition("_")[2]
  673. # Filename Output
  674. if self.fname_out.is_dir():
  675. # Generate default filename based on model specification and available metadata
  676. if not vocab_only:
  677. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  678. else:
  679. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  680. # Use the default filename
  681. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  682. else:
  683. # Output path is a custom defined templated filename
  684. # Note: `not is_dir()` is used because `.is_file()` will not detect
  685. # file template strings as it doesn't actually exist as a file
  686. # Process templated file name with the output ftype, useful with the "auto" ftype
  687. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  688. logger.info("Set model tokenizer")
  689. self.set_vocab()
  690. def set_gguf_parameters(self):
  691. self.gguf_writer.add_block_count(self.block_count)
  692. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length", "max_sequence_length", "model_max_length"], optional=True)) is not None:
  693. self.gguf_writer.add_context_length(n_ctx)
  694. logger.info(f"gguf: context length = {n_ctx}")
  695. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  696. self.gguf_writer.add_embedding_length(n_embd)
  697. logger.info(f"gguf: embedding length = {n_embd}")
  698. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  699. self.gguf_writer.add_feed_forward_length(n_ff)
  700. logger.info(f"gguf: feed forward length = {n_ff}")
  701. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  702. self.gguf_writer.add_head_count(n_head)
  703. logger.info(f"gguf: head count = {n_head}")
  704. if (n_head_kv := self.find_hparam(["num_key_value_heads", "n_kv_heads"], optional=True)) is not None:
  705. self.gguf_writer.add_head_count_kv(n_head_kv)
  706. logger.info(f"gguf: key-value head count = {n_head_kv}")
  707. # TODO: Handle "sliding_attention" similarly when models start implementing it
  708. rope_params = self.rope_parameters.get("full_attention", self.rope_parameters)
  709. if (rope_type := rope_params.get("rope_type")) is not None:
  710. rope_factor = rope_params.get("factor")
  711. rope_gguf_type = gguf.RopeScalingType.NONE
  712. if rope_type == "linear" and rope_factor is not None:
  713. rope_gguf_type = gguf.RopeScalingType.LINEAR
  714. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  715. self.gguf_writer.add_rope_scaling_factor(rope_factor)
  716. elif rope_type == "yarn" and rope_factor is not None:
  717. rope_gguf_type = gguf.RopeScalingType.YARN
  718. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  719. self.gguf_writer.add_rope_scaling_factor(rope_factor)
  720. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_params["original_max_position_embeddings"])
  721. if (yarn_ext_factor := rope_params.get("extrapolation_factor")) is not None:
  722. self.gguf_writer.add_rope_scaling_yarn_ext_factor(yarn_ext_factor)
  723. if (yarn_attn_factor := rope_params.get("attention_factor", rope_params.get("attn_factor"))) is not None:
  724. self.gguf_writer.add_rope_scaling_yarn_attn_factor(yarn_attn_factor)
  725. if (yarn_beta_fast := rope_params.get("beta_fast")) is not None:
  726. self.gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_beta_fast)
  727. if (yarn_beta_slow := rope_params.get("beta_slow")) is not None:
  728. self.gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_beta_slow)
  729. # self.gguf_writer.add_rope_scaling_yarn_log_mul(rope_params["mscale_all_dim"])
  730. elif rope_type == "su" or rope_type == "longrope":
  731. rope_gguf_type = gguf.RopeScalingType.LONGROPE
  732. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  733. elif rope_type == "dynamic":
  734. # HunYuan, handled in model class
  735. pass
  736. elif rope_type.lower() == "llama3":
  737. # Handled in generate_extra_tensors
  738. pass
  739. else:
  740. logger.warning(f"Unknown RoPE type: {rope_type}")
  741. logger.info(f"gguf: rope scaling type = {rope_gguf_type.name}")
  742. if "mrope_section" in self.rope_parameters:
  743. mrope_section = self.rope_parameters["mrope_section"]
  744. # Pad to 4 dimensions [time, height, width, extra]
  745. while len(mrope_section) < 4:
  746. mrope_section.append(0)
  747. self.gguf_writer.add_rope_dimension_sections(mrope_section[:4])
  748. logger.info(f"gguf: mrope sections: {mrope_section[:4]}")
  749. if (rope_theta := rope_params.get("rope_theta")) is not None:
  750. self.gguf_writer.add_rope_freq_base(rope_theta)
  751. logger.info(f"gguf: rope theta = {rope_theta}")
  752. if (local_rope_theta := self.rope_parameters.get("sliding_attention", {}).get("rope_theta")) is not None:
  753. self.gguf_writer.add_rope_freq_base_swa(local_rope_theta)
  754. logger.info(f"gguf: rope theta swa = {local_rope_theta}")
  755. if (f_rms_eps := self.find_hparam(["rms_norm_eps", "norm_eps"], optional=True)) is not None:
  756. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  757. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  758. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  759. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  760. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  761. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  762. self.gguf_writer.add_expert_count(n_experts)
  763. logger.info(f"gguf: expert count = {n_experts}")
  764. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  765. self.gguf_writer.add_expert_used_count(n_experts_used)
  766. logger.info(f"gguf: experts used count = {n_experts_used}")
  767. if (n_expert_groups := self.hparams.get("n_group")) is not None:
  768. self.gguf_writer.add_expert_group_count(n_expert_groups)
  769. logger.info(f"gguf: expert groups count = {n_expert_groups}")
  770. if (n_group_used := self.hparams.get("topk_group")) is not None:
  771. self.gguf_writer.add_expert_group_used_count(n_group_used)
  772. logger.info(f"gguf: expert groups used count = {n_group_used}")
  773. if (score_func := self.find_hparam(["score_function", "scoring_func", "score_func"], optional=True)) is not None:
  774. if score_func == "sigmoid":
  775. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  776. elif score_func == "softmax":
  777. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  778. else:
  779. raise ValueError(f"Unsupported expert score gating function value: {score_func}")
  780. logger.info(f"gguf: expert score gating function = {score_func}")
  781. if (head_dim := self.hparams.get("head_dim")) is not None:
  782. self.gguf_writer.add_key_length(head_dim)
  783. self.gguf_writer.add_value_length(head_dim)
  784. self.gguf_writer.add_file_type(self.ftype)
  785. logger.info(f"gguf: file type = {self.ftype}")
  786. def write_vocab(self):
  787. if len(self.gguf_writer.tensors) != 1:
  788. raise ValueError('Splitting the vocabulary is not supported')
  789. self.prepare_metadata(vocab_only=True)
  790. self.gguf_writer.write_header_to_file(path=self.fname_out)
  791. self.gguf_writer.write_kv_data_to_file()
  792. self.gguf_writer.close()
  793. def does_token_look_special(self, token: str | bytes) -> bool:
  794. if isinstance(token, (bytes, bytearray)):
  795. token_text = token.decode(encoding="utf-8")
  796. elif isinstance(token, memoryview):
  797. token_text = token.tobytes().decode(encoding="utf-8")
  798. else:
  799. token_text = token
  800. # Some models mark some added tokens which ought to be control tokens as not special.
  801. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  802. seems_special = token_text in (
  803. "<pad>", # deepseek-coder
  804. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  805. )
  806. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  807. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  808. # TODO: should these be marked as UNUSED instead? (maybe not)
  809. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  810. return seems_special
  811. # used for GPT-2 BPE and WordPiece vocabs
  812. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  813. tokens: list[str] = []
  814. toktypes: list[int] = []
  815. from transformers import AutoTokenizer
  816. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  817. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  818. assert max(tokenizer.vocab.values()) < vocab_size
  819. tokpre = self.get_vocab_base_pre(tokenizer)
  820. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  821. added_vocab = tokenizer.get_added_vocab()
  822. added_tokens_decoder = tokenizer.added_tokens_decoder
  823. for i in range(vocab_size):
  824. if i not in reverse_vocab:
  825. tokens.append(f"[PAD{i}]")
  826. toktypes.append(gguf.TokenType.UNUSED)
  827. else:
  828. token: str = reverse_vocab[i]
  829. if token in added_vocab:
  830. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  831. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  832. if not added_tokens_decoder[i].normalized:
  833. previous_token = token
  834. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  835. if previous_token != token:
  836. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  837. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  838. toktypes.append(gguf.TokenType.CONTROL)
  839. else:
  840. # NOTE: this was added for Gemma.
  841. # Encoding and decoding the tokens above isn't sufficient for this case.
  842. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  843. toktypes.append(gguf.TokenType.USER_DEFINED)
  844. else:
  845. toktypes.append(gguf.TokenType.NORMAL)
  846. tokens.append(token)
  847. return tokens, toktypes, tokpre
  848. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  849. # do not modify it manually!
  850. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  851. # Marker: Start get_vocab_base_pre
  852. def get_vocab_base_pre(self, tokenizer) -> str:
  853. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  854. # is specific for the BPE pre-tokenizer used by the model
  855. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  856. # use in llama.cpp to implement the same pre-tokenizer
  857. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  858. chktok = tokenizer.encode(chktxt)
  859. chkhsh = sha256(str(chktok).encode()).hexdigest()
  860. logger.debug(f"chktok: {chktok}")
  861. logger.debug(f"chkhsh: {chkhsh}")
  862. res = None
  863. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  864. # or pull the latest version of the model from Huggingface
  865. # don't edit the hashes manually!
  866. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  867. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  868. res = "chatglm-bpe"
  869. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  870. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  871. res = "chatglm-bpe"
  872. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  873. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  874. res = "glm4"
  875. if chkhsh == "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902":
  876. # ref: https://huggingface.co/zai-org/GLM-4.5-Air
  877. res = "glm4"
  878. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  879. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  880. res = "minerva-7b"
  881. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  882. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  883. res = "hunyuan"
  884. if chkhsh == "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6":
  885. # ref: https://huggingface.co/tencent/Hunyuan-4B-Instruct
  886. res = "hunyuan-dense"
  887. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  888. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  889. res = "falcon-h1"
  890. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  891. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  892. res = "falcon-h1"
  893. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  894. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  895. res = "falcon-h1"
  896. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  897. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  898. res = "falcon-h1"
  899. if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
  900. # ref: https://huggingface.co/moonshotai/Kimi-K2-Base
  901. res = "kimi-k2"
  902. if chkhsh == "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c":
  903. # ref: https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
  904. res = "qwen2"
  905. if chkhsh == "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273":
  906. # ref: https://huggingface.co/alvarobartt/grok-2-tokenizer
  907. res = "grok-2"
  908. if chkhsh == "b3d1dd861f1d4c5c0d2569ce36baf3f90fe8a102db3de50dd71ff860d91be3df":
  909. # ref: https://huggingface.co/aari1995/German_Semantic_V3
  910. res = "jina-v2-de"
  911. if chkhsh == "cdf5f35325780597efd76153d4d1c16778f766173908894c04afc20108536267":
  912. # ref: https://huggingface.co/zai-org/GLM-4.7-Flash
  913. res = "glm4"
  914. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  915. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  916. res = "llama-bpe"
  917. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  918. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  919. res = "deepseek-llm"
  920. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  921. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  922. res = "deepseek-coder"
  923. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  924. # ref: https://huggingface.co/tiiuae/falcon-7b
  925. res = "falcon"
  926. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  927. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  928. res = "bert-bge"
  929. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  930. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  931. res = "falcon3"
  932. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  933. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  934. res = "bert-bge-large"
  935. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  936. # ref: https://huggingface.co/mosaicml/mpt-7b
  937. res = "mpt"
  938. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  939. # ref: https://huggingface.co/bigcode/starcoder2-3b
  940. res = "starcoder"
  941. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  942. # ref: https://huggingface.co/openai-community/gpt2
  943. res = "gpt-2"
  944. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  945. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  946. res = "stablelm2"
  947. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  948. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  949. res = "refact"
  950. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  951. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  952. res = "command-r"
  953. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  954. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  955. res = "qwen2"
  956. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  957. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  958. res = "olmo"
  959. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  960. # ref: https://huggingface.co/databricks/dbrx-base
  961. res = "dbrx"
  962. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  963. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  964. res = "jina-v1-en"
  965. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  966. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  967. res = "jina-v2-en"
  968. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  969. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  970. res = "jina-v2-es"
  971. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  972. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  973. res = "jina-v2-de"
  974. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  975. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  976. res = "smaug-bpe"
  977. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  978. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  979. res = "poro-chat"
  980. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  981. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  982. res = "jina-v2-code"
  983. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  984. # ref: https://huggingface.co/LumiOpen/Viking-7B
  985. res = "viking"
  986. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  987. # ref: https://huggingface.co/core42/jais-13b
  988. res = "jais"
  989. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  990. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  991. res = "codeshell"
  992. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  993. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  994. res = "tekken"
  995. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  996. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  997. res = "smollm"
  998. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  999. # ref: https://huggingface.co/bigscience/bloom
  1000. res = "bloom"
  1001. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  1002. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  1003. res = "gpt3-finnish"
  1004. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  1005. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  1006. res = "exaone"
  1007. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  1008. # ref: https://huggingface.co/microsoft/phi-2
  1009. res = "phi-2"
  1010. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  1011. # ref: https://huggingface.co/facebook/chameleon-7b
  1012. res = "chameleon"
  1013. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  1014. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  1015. res = "roberta-bpe"
  1016. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  1017. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  1018. res = "gigachat"
  1019. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  1020. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  1021. res = "megrez"
  1022. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  1023. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  1024. res = "deepseek-v3"
  1025. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  1026. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  1027. res = "deepseek-r1-qwen"
  1028. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  1029. # ref: https://huggingface.co/Xenova/gpt-4o
  1030. res = "gpt-4o"
  1031. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  1032. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  1033. res = "superbpe"
  1034. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  1035. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  1036. res = "trillion"
  1037. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  1038. # ref: https://huggingface.co/inclusionAI/Ling-lite
  1039. res = "bailingmoe"
  1040. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  1041. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  1042. res = "llama4"
  1043. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  1044. # ref: https://huggingface.co/mistral-community/pixtral-12b
  1045. res = "pixtral"
  1046. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  1047. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  1048. res = "seed-coder"
  1049. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  1050. # ref: https://huggingface.co/skt/A.X-4.0
  1051. res = "a.x-4.0"
  1052. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  1053. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  1054. res = "midm-2.0"
  1055. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  1056. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  1057. res = "lfm2"
  1058. if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
  1059. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
  1060. res = "exaone4"
  1061. if chkhsh == "a1e163ecab2e718a4c829d1148b6e86824ec36163bb71941c3dca9cd5ac25756":
  1062. # ref: https://huggingface.co/JetBrains/Mellum-4b-base
  1063. res = "mellum"
  1064. if chkhsh == "a0b64b4385f123663873756336c085744376d015ff328bb1d901598f63c44152":
  1065. # ref: https://huggingface.co/answerdotai/ModernBERT-base
  1066. res = "modern-bert"
  1067. if chkhsh == "49fc0303c9e0d2c2c565c510f64b2d9b271276acdcdadff733249eda9f7d59df":
  1068. # ref: https://huggingface.co/arcee-ai/Trinity-Tokenizer
  1069. res = "afmoe"
  1070. if chkhsh == "9b1be57e70d20d9501b2b3186e792d81181ae36ada3903c26f9fea418cf87206":
  1071. # ref: https://huggingface.co/inclusionAI/Ling-mini-base-2.0
  1072. res = "bailingmoe2"
  1073. if chkhsh == "53e325976a6e142379c19b09afcae354f2f496f147afa8f9e189a33fe4e3024e":
  1074. # ref: https://huggingface.co/ibm-granite/granite-docling-258M
  1075. res = "granite-docling"
  1076. if chkhsh == "f4f37b6c8eb9ea29b3eac6bb8c8487c5ab7885f8d8022e67edc1c68ce8403e95":
  1077. # ref: https://huggingface.co/MiniMaxAI/MiniMax-M2
  1078. res = "minimax-m2"
  1079. if chkhsh == "4a2e2abae11ca2b86d570fc5b44be4d5eb5e72cc8f22dd136a94b37da83ab665":
  1080. # ref: https://huggingface.co/KORMo-Team/KORMo-tokenizer
  1081. res = "kormo"
  1082. if chkhsh == "9d70134b369a70e5735009b6de918f7581b5211f7c074d1f89f753aea8248af1":
  1083. # ref: https://huggingface.co/tencent/Youtu-LLM-2B
  1084. res = "youtu"
  1085. if chkhsh == "16389f0a1f51ee53e562ffd51c371dc508639ab0e4261502071836e50e223e91":
  1086. # ref: https://huggingface.co/upstage/Solar-Open-100B
  1087. res = "solar-open"
  1088. if chkhsh == "6c81ce329e0802883b22eabab0d3fa48357337ef1ecb45443828bf1f6254833f":
  1089. # ref: https://huggingface.co/LGAI-EXAONE/K-EXAONE-236B-A23B
  1090. res = "exaone-moe"
  1091. if res is None:
  1092. logger.warning("\n")
  1093. logger.warning("**************************************************************************************")
  1094. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  1095. logger.warning("** There are 2 possible reasons for this:")
  1096. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  1097. logger.warning("** - the pre-tokenization config has changed upstream")
  1098. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  1099. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  1100. logger.warning("**")
  1101. logger.warning(f"** chkhsh: {chkhsh}")
  1102. logger.warning("**************************************************************************************")
  1103. logger.warning("\n")
  1104. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  1105. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  1106. logger.debug(f"chkhsh: {chkhsh}")
  1107. return res
  1108. # Marker: End get_vocab_base_pre
  1109. def _set_vocab_none(self) -> None:
  1110. self.gguf_writer.add_tokenizer_model("none")
  1111. def _set_vocab_gpt2(self) -> None:
  1112. tokens, toktypes, tokpre = self.get_vocab_base()
  1113. self.gguf_writer.add_tokenizer_model("gpt2")
  1114. self.gguf_writer.add_tokenizer_pre(tokpre)
  1115. self.gguf_writer.add_token_list(tokens)
  1116. self.gguf_writer.add_token_types(toktypes)
  1117. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1118. special_vocab.add_to_gguf(self.gguf_writer)
  1119. def _set_vocab_qwen(self):
  1120. dir_model = self.dir_model
  1121. hparams = self.hparams
  1122. tokens: list[str] = []
  1123. toktypes: list[int] = []
  1124. from transformers import AutoTokenizer
  1125. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  1126. vocab_size = hparams["vocab_size"]
  1127. assert max(tokenizer.get_vocab().values()) < vocab_size
  1128. tokpre = self.get_vocab_base_pre(tokenizer)
  1129. merges = []
  1130. vocab = {}
  1131. mergeable_ranks = tokenizer.mergeable_ranks
  1132. for token, rank in mergeable_ranks.items():
  1133. vocab[QwenModel.token_bytes_to_string(token)] = rank
  1134. if len(token) == 1:
  1135. continue
  1136. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  1137. assert len(merged) == 2
  1138. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  1139. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  1140. added_vocab = tokenizer.special_tokens
  1141. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  1142. for i in range(vocab_size):
  1143. if i not in reverse_vocab:
  1144. tokens.append(f"[PAD{i}]")
  1145. toktypes.append(gguf.TokenType.UNUSED)
  1146. elif reverse_vocab[i] in added_vocab:
  1147. tokens.append(reverse_vocab[i])
  1148. toktypes.append(gguf.TokenType.CONTROL)
  1149. else:
  1150. tokens.append(reverse_vocab[i])
  1151. toktypes.append(gguf.TokenType.NORMAL)
  1152. self.gguf_writer.add_tokenizer_model("gpt2")
  1153. self.gguf_writer.add_tokenizer_pre(tokpre)
  1154. self.gguf_writer.add_token_list(tokens)
  1155. self.gguf_writer.add_token_types(toktypes)
  1156. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  1157. special_vocab.merges = merges
  1158. # only add special tokens when they were not already loaded from config.json
  1159. if len(special_vocab.special_token_ids) == 0:
  1160. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  1161. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  1162. # this one is usually not in config.json anyway
  1163. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  1164. special_vocab.add_to_gguf(self.gguf_writer)
  1165. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  1166. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  1167. self.gguf_writer.add_tokenizer_model("llama")
  1168. self.gguf_writer.add_tokenizer_pre("default")
  1169. self.gguf_writer.add_token_list(tokens)
  1170. self.gguf_writer.add_token_scores(scores)
  1171. self.gguf_writer.add_token_types(toktypes)
  1172. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1173. special_vocab.add_to_gguf(self.gguf_writer)
  1174. def _create_vocab_sentencepiece(self):
  1175. from sentencepiece import SentencePieceProcessor
  1176. tokenizer_path = self.dir_model / 'tokenizer.model'
  1177. if not tokenizer_path.is_file():
  1178. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  1179. tokenizer = SentencePieceProcessor()
  1180. tokenizer.LoadFromFile(str(tokenizer_path))
  1181. vocab_size = self.find_hparam([
  1182. "vocab_size_per_layer_input", # gemma3n
  1183. "vocab_size",
  1184. ], optional=True) or tokenizer.vocab_size()
  1185. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1186. scores: list[float] = [-10000.0] * vocab_size
  1187. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1188. for token_id in range(tokenizer.vocab_size()):
  1189. if token_id >= vocab_size:
  1190. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  1191. break
  1192. piece = tokenizer.IdToPiece(token_id)
  1193. text = piece.encode("utf-8")
  1194. score = tokenizer.GetScore(token_id)
  1195. toktype = SentencePieceTokenTypes.NORMAL
  1196. if tokenizer.IsUnknown(token_id):
  1197. toktype = SentencePieceTokenTypes.UNKNOWN
  1198. elif tokenizer.IsControl(token_id):
  1199. toktype = SentencePieceTokenTypes.CONTROL
  1200. elif tokenizer.IsUnused(token_id):
  1201. toktype = SentencePieceTokenTypes.UNUSED
  1202. elif tokenizer.IsByte(token_id):
  1203. toktype = SentencePieceTokenTypes.BYTE
  1204. tokens[token_id] = text
  1205. scores[token_id] = score
  1206. toktypes[token_id] = toktype
  1207. added_tokens_file = self.dir_model / 'added_tokens.json'
  1208. if added_tokens_file.is_file():
  1209. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1210. added_tokens_json = json.load(f)
  1211. for key in added_tokens_json:
  1212. token_id = added_tokens_json[key]
  1213. if token_id >= vocab_size:
  1214. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1215. continue
  1216. tokens[token_id] = key.encode("utf-8")
  1217. scores[token_id] = -1000.0
  1218. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1219. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1220. if tokenizer_config_file.is_file():
  1221. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1222. tokenizer_config_json = json.load(f)
  1223. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1224. for token_id, token_data in added_tokens_decoder.items():
  1225. token_id = int(token_id)
  1226. token: str = token_data["content"]
  1227. if token_id >= vocab_size:
  1228. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1229. continue
  1230. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1231. if tokens[token_id] != token.encode("utf-8"):
  1232. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  1233. if token_data.get("special") or self.does_token_look_special(token):
  1234. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1235. else:
  1236. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  1237. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1238. scores[token_id] = -1000.0
  1239. tokens[token_id] = token.encode("utf-8")
  1240. if vocab_size > len(tokens):
  1241. pad_count = vocab_size - len(tokens)
  1242. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  1243. for i in range(1, pad_count + 1):
  1244. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  1245. scores.append(-1000.0)
  1246. toktypes.append(SentencePieceTokenTypes.UNUSED)
  1247. return tokens, scores, toktypes
  1248. def _set_vocab_llama_hf(self):
  1249. vocab = gguf.LlamaHfVocab(self.dir_model)
  1250. tokens = []
  1251. scores = []
  1252. toktypes = []
  1253. for text, score, toktype in vocab.all_tokens():
  1254. tokens.append(text)
  1255. scores.append(score)
  1256. toktypes.append(toktype)
  1257. assert len(tokens) == vocab.vocab_size
  1258. self.gguf_writer.add_tokenizer_model("llama")
  1259. self.gguf_writer.add_tokenizer_pre("default")
  1260. self.gguf_writer.add_token_list(tokens)
  1261. self.gguf_writer.add_token_scores(scores)
  1262. self.gguf_writer.add_token_types(toktypes)
  1263. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1264. special_vocab.add_to_gguf(self.gguf_writer)
  1265. def _set_vocab_rwkv_world(self):
  1266. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  1267. vocab_size = self.hparams.get("vocab_size", 65536)
  1268. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  1269. toktypes: list[int] = [gguf.TokenType.CONTROL]
  1270. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  1271. lines = f.readlines()
  1272. for line in lines:
  1273. parts = line.split(' ')
  1274. assert len(parts) >= 3
  1275. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  1276. token = token.encode("utf-8") if isinstance(token, str) else token
  1277. assert isinstance(token, bytes)
  1278. assert len(token) == token_len
  1279. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  1280. tokens.append(token_text.encode("utf-8"))
  1281. toktypes.append(gguf.TokenType.NORMAL)
  1282. remainder = vocab_size - len(tokens)
  1283. assert remainder >= 0
  1284. for i in range(len(tokens), vocab_size):
  1285. tokens.append(f"[PAD{i}]".encode("utf-8"))
  1286. toktypes.append(gguf.TokenType.UNUSED)
  1287. self.gguf_writer.add_tokenizer_model("rwkv")
  1288. self.gguf_writer.add_token_list(tokens)
  1289. self.gguf_writer.add_token_types(toktypes)
  1290. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  1291. if special_vocab.chat_template is None:
  1292. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  1293. if template_path.is_file():
  1294. with open(template_path, "r", encoding="utf-8") as f:
  1295. template = f.read()
  1296. else:
  1297. template = "rwkv-world"
  1298. special_vocab.chat_template = template
  1299. # hack: Add '\n\n' as the EOT token to make it chat normally
  1300. special_vocab._set_special_token("eot", 261)
  1301. # hack: Override these as they have already been set (incorrectly)
  1302. special_vocab.special_token_ids["bos"] = 0
  1303. special_vocab.special_token_ids["eos"] = 0
  1304. special_vocab.add_to_gguf(self.gguf_writer)
  1305. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  1306. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  1307. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1308. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  1309. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  1310. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1311. assert field # tokenizer model
  1312. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  1313. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  1314. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  1315. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1316. assert field # token list
  1317. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1318. if model_name == "llama-spm":
  1319. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  1320. assert field # token scores
  1321. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1322. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1323. assert field # token types
  1324. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1325. if model_name != "llama-spm":
  1326. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1327. assert field # token merges
  1328. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1329. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  1330. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  1331. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  1332. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  1333. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  1334. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  1335. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  1336. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  1337. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  1338. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  1339. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  1340. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  1341. def _try_set_pooling_type(self) -> None:
  1342. # get pooling path
  1343. pooling_path = None
  1344. module_path = self.dir_model / "modules.json"
  1345. if module_path.is_file():
  1346. with open(module_path, encoding="utf-8") as f:
  1347. modules = json.load(f)
  1348. for mod in modules:
  1349. if mod["type"] == "sentence_transformers.models.Pooling":
  1350. pooling_path = mod["path"]
  1351. break
  1352. # get pooling type
  1353. if pooling_path is not None:
  1354. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1355. pooling = json.load(f)
  1356. if pooling["pooling_mode_mean_tokens"]:
  1357. pooling_type = gguf.PoolingType.MEAN
  1358. elif pooling["pooling_mode_cls_token"]:
  1359. pooling_type = gguf.PoolingType.CLS
  1360. elif pooling["pooling_mode_lasttoken"]:
  1361. pooling_type = gguf.PoolingType.LAST
  1362. else:
  1363. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  1364. self.gguf_writer.add_pooling_type(pooling_type)
  1365. def _set_vocab_glmedge(self):
  1366. from transformers import AutoTokenizer
  1367. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  1368. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1369. tokens, toktypes, tokpre = self.get_vocab_base()
  1370. self.gguf_writer.add_tokenizer_model("gpt2")
  1371. self.gguf_writer.add_tokenizer_pre(tokpre)
  1372. self.gguf_writer.add_token_list(tokens)
  1373. self.gguf_writer.add_token_types(toktypes)
  1374. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  1375. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  1376. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  1377. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  1378. special_vocab.add_to_gguf(self.gguf_writer)
  1379. def _set_vocab_interns1(self):
  1380. tokens: list[str] = []
  1381. toktypes: list[int] = []
  1382. from transformers import AutoTokenizer
  1383. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  1384. vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
  1385. vocab_size = self.hparams.get("vocab_size", len(vocab))
  1386. assert max(vocab.values()) < vocab_size
  1387. tokpre = self.get_vocab_base_pre(tokenizer)
  1388. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
  1389. added_vocab = tokenizer.get_added_vocab()
  1390. added_tokens_decoder = tokenizer.added_tokens_decoder
  1391. for i in range(vocab_size):
  1392. if i not in reverse_vocab:
  1393. tokens.append(f"[PAD{i}]")
  1394. toktypes.append(gguf.TokenType.UNUSED)
  1395. else:
  1396. token: str = reverse_vocab[i]
  1397. if token in added_vocab:
  1398. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  1399. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  1400. if not added_tokens_decoder[i].normalized:
  1401. previous_token = token
  1402. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  1403. if previous_token != token:
  1404. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  1405. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  1406. toktypes.append(gguf.TokenType.CONTROL)
  1407. else:
  1408. toktypes.append(gguf.TokenType.USER_DEFINED)
  1409. else:
  1410. toktypes.append(gguf.TokenType.NORMAL)
  1411. tokens.append(token)
  1412. self.gguf_writer.add_tokenizer_model("gpt2")
  1413. self.gguf_writer.add_tokenizer_pre(tokpre)
  1414. self.gguf_writer.add_token_list(tokens)
  1415. self.gguf_writer.add_token_types(toktypes)
  1416. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1417. special_vocab._set_special_token("bos", 151643)
  1418. special_vocab.add_to_gguf(self.gguf_writer)
  1419. def _set_vocab_mistral(self):
  1420. if not _mistral_common_installed:
  1421. raise ImportError(_mistral_import_error_msg)
  1422. vocab = MistralVocab(self.dir_model)
  1423. logger.info(
  1424. f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
  1425. )
  1426. self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
  1427. tokens = []
  1428. scores = []
  1429. toktypes = []
  1430. for text, score, toktype in vocab.all_tokens():
  1431. tokens.append(text)
  1432. scores.append(score)
  1433. toktypes.append(toktype)
  1434. assert len(tokens) == vocab.vocab_size, (
  1435. f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
  1436. )
  1437. if vocab.tokenizer_type == MistralTokenizerType.tekken:
  1438. self.gguf_writer.add_tokenizer_pre("tekken")
  1439. self.gguf_writer.add_token_merges(
  1440. vocab.extract_vocab_merges_from_model()
  1441. )
  1442. logger.info(
  1443. f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
  1444. )
  1445. self.gguf_writer.add_bos_token_id(vocab.bos_id)
  1446. self.gguf_writer.add_eos_token_id(vocab.eos_id)
  1447. self.gguf_writer.add_unk_token_id(vocab.unk_id)
  1448. self.gguf_writer.add_pad_token_id(vocab.pad_id)
  1449. self.gguf_writer.add_token_list(tokens)
  1450. self.gguf_writer.add_token_scores(scores)
  1451. self.gguf_writer.add_token_types(toktypes)
  1452. self.gguf_writer.add_vocab_size(vocab.vocab_size)
  1453. self.gguf_writer.add_add_bos_token(True)
  1454. self.gguf_writer.add_add_eos_token(False)
  1455. local_template_file_path = self.dir_model / "chat_template.jinja"
  1456. if self.is_mistral_format and local_template_file_path.is_file():
  1457. # Ministral-3 and other new Mistral models come with chat templates.
  1458. # ref: https://huggingface.co/mistralai/Ministral-3-14B-Instruct-2512/tree/main
  1459. logger.info("Using an existing Mistral local chat template.")
  1460. with open(local_template_file_path, "r", encoding="utf-8") as f:
  1461. template = f.read()
  1462. elif not self.is_mistral_format or not self.disable_mistral_community_chat_template:
  1463. template_dir = Path(__file__).parent / "models/templates/"
  1464. # Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
  1465. if self.is_mistral_format:
  1466. logger.info(
  1467. "Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
  1468. "Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
  1469. )
  1470. template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
  1471. else:
  1472. logger.info("Not using a Mistral local or community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
  1473. template = None
  1474. if template is not None:
  1475. self.gguf_writer.add_chat_template(template)
  1476. def _set_vocab_plamo(self):
  1477. # PLaMo models use a custom tokenizer with a .jsonl file
  1478. tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
  1479. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  1480. if not tokenizer_jsonl_path.is_file():
  1481. raise FileNotFoundError(f"PLaMo tokenizer file not found: {tokenizer_jsonl_path}")
  1482. # Load tokenizer config
  1483. with open(tokenizer_config_path, "r", encoding="utf-8") as f:
  1484. tokenizer_config = json.load(f)
  1485. # Load tokens from JSONL file (actually a list format)
  1486. tokens = []
  1487. scores = []
  1488. toktypes = []
  1489. with open(tokenizer_jsonl_path, "r", encoding="utf-8") as f:
  1490. for line_num, line in enumerate(f):
  1491. if line.strip():
  1492. token_data = json.loads(line)
  1493. # Format: [token, score, type, ?, ?, ?, ?]
  1494. token = token_data[0].encode("utf-8")
  1495. score = float(token_data[1])
  1496. token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
  1497. tokens.append(token)
  1498. scores.append(score)
  1499. if token_type_str == "UNKNOWN":
  1500. toktypes.append(gguf.TokenType.UNKNOWN)
  1501. elif token_type_str == "CONTROL":
  1502. toktypes.append(gguf.TokenType.CONTROL)
  1503. elif token_type_str == "BYTE":
  1504. toktypes.append(gguf.TokenType.BYTE)
  1505. else:
  1506. token_str = token_data[0]
  1507. if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
  1508. toktypes.append(gguf.TokenType.CONTROL)
  1509. else:
  1510. toktypes.append(gguf.TokenType.NORMAL)
  1511. vocab_size = self.hparams["vocab_size"]
  1512. if vocab_size > len(tokens):
  1513. pad_count = vocab_size - len(tokens)
  1514. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  1515. for i in range(1, pad_count + 1):
  1516. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  1517. scores.append(-1000.0)
  1518. toktypes.append(gguf.TokenType.UNUSED)
  1519. self.gguf_writer.add_tokenizer_model("plamo2")
  1520. self.gguf_writer.add_tokenizer_pre("default")
  1521. self.gguf_writer.add_token_list(tokens)
  1522. self.gguf_writer.add_token_scores(scores)
  1523. self.gguf_writer.add_token_types(toktypes)
  1524. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
  1525. token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
  1526. self.gguf_writer.add_bos_token_id(token_id)
  1527. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
  1528. token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
  1529. self.gguf_writer.add_eos_token_id(token_id)
  1530. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
  1531. token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
  1532. self.gguf_writer.add_pad_token_id(token_id)
  1533. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
  1534. token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
  1535. self.gguf_writer.add_sep_token_id(token_id)
  1536. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
  1537. token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
  1538. self.gguf_writer.add_unk_token_id(token_id)
  1539. # Add <|plamo:op|> as EOT to ensure appropriate end of generation
  1540. self.gguf_writer.add_eot_token_id(4)
  1541. self.gguf_writer.add_add_space_prefix(False)
  1542. class MmprojModel(ModelBase):
  1543. model_type = ModelType.MMPROJ
  1544. model_arch = gguf.MODEL_ARCH.MMPROJ
  1545. preprocessor_config: dict[str, Any]
  1546. global_config: dict[str, Any]
  1547. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth", "encoder_layers"]
  1548. has_vision_encoder: bool = True # by default
  1549. has_audio_encoder: bool = False
  1550. # for models having multiple encoders, we need to separate their hparams
  1551. hparams_vision: dict[str, Any] | None = None
  1552. hparams_audio: dict[str, Any] | None = None
  1553. def __init__(self, *args, **kwargs):
  1554. super().__init__(*args, **kwargs)
  1555. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1556. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1557. # get n_embd of the text model
  1558. if not self.is_mistral_format:
  1559. if "text_config" not in self.hparams:
  1560. self.hparams["text_config"] = {}
  1561. if "audio_config" not in self.hparams:
  1562. self.hparams["audio_config"] = {}
  1563. text_config = {**self.hparams, **self.hparams["text_config"]}
  1564. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1565. else:
  1566. text_config = {
  1567. k: v for k, v in self.hparams.items() if k not in ["vision_encoder", "audio_encoder"]
  1568. }
  1569. self.n_embd_text = text_config.get("hidden_dim", 0)
  1570. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1571. # move vision config to the top level, while preserving the original hparams in global_config
  1572. import copy
  1573. self.global_config = copy.deepcopy(self.hparams)
  1574. self.hparams_vision = self.get_vision_config()
  1575. self.hparams_audio = self.get_audio_config()
  1576. if self.hparams_vision is None and self.hparams_audio is None:
  1577. raise ValueError("vision_config / audio_config not found in hparams")
  1578. # for compat with vision-only models
  1579. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1580. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1581. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1582. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1583. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1584. # load preprocessor config
  1585. self.preprocessor_config = {}
  1586. # prefer preprocessor_config.json if possible
  1587. preprocessor_config_path = self.dir_model / "preprocessor_config.json"
  1588. if preprocessor_config_path.is_file():
  1589. with open(preprocessor_config_path, "r", encoding="utf-8") as f:
  1590. self.preprocessor_config = json.load(f)
  1591. # prefer processor_config.json if possible
  1592. processor_config_path = self.dir_model / "processor_config.json"
  1593. if processor_config_path.is_file():
  1594. with open(processor_config_path, "r", encoding="utf-8") as f:
  1595. cfg = json.load(f)
  1596. # move image_processor to root level for compat
  1597. if "image_processor" in cfg:
  1598. cfg = {
  1599. **cfg,
  1600. **cfg["image_processor"],
  1601. }
  1602. # merge configs
  1603. self.preprocessor_config = {**self.preprocessor_config, **cfg}
  1604. def get_vision_config(self) -> dict[str, Any] | None:
  1605. config_name = "vision_config" if not self.is_mistral_format else "vision_encoder"
  1606. return self.global_config.get(config_name)
  1607. def get_audio_config(self) -> dict[str, Any] | None:
  1608. mm_config_key = "whisper_config" if "whisper_config" in self.hparams else "audio_config"
  1609. return self.global_config.get(mm_config_key)
  1610. def set_type(self):
  1611. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1612. def prepare_metadata(self, vocab_only: bool):
  1613. super().prepare_metadata(vocab_only=vocab_only)
  1614. output_type: str = self.ftype.name.partition("_")[2]
  1615. if self.fname_out.is_dir():
  1616. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=output_type, model_type=None)
  1617. self.fname_out = self.fname_out / f"mmproj-{fname_default}.gguf"
  1618. else:
  1619. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  1620. def set_gguf_parameters(self):
  1621. self.gguf_writer.add_file_type(self.ftype)
  1622. if self.has_vision_encoder:
  1623. self.gguf_writer.add_clip_has_vision_encoder(True)
  1624. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1625. # vision config
  1626. self.image_size = self.find_vparam(["image_size"])
  1627. self.gguf_writer.add_vision_image_size(self.image_size)
  1628. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1629. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1630. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1631. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1632. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads", "num_heads"]))
  1633. # preprocessor config
  1634. image_mean = _MISTRAL_COMMON_DATASET_MEAN if self.is_mistral_format else self.preprocessor_config["image_mean"]
  1635. image_std = _MISTRAL_COMMON_DATASET_STD if self.is_mistral_format else self.preprocessor_config["image_std"]
  1636. self.gguf_writer.add_vision_image_mean(image_mean)
  1637. self.gguf_writer.add_vision_image_std(image_std)
  1638. if self.has_audio_encoder:
  1639. self.gguf_writer.add_clip_has_audio_encoder(True)
  1640. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1641. # audio config
  1642. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1643. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1644. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1645. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1646. if not self.has_vision_encoder and not self.has_audio_encoder:
  1647. raise ValueError("MmprojModel must have either vision or audio encoder")
  1648. def write_vocab(self):
  1649. raise ValueError("MmprojModel does not support vocab writing")
  1650. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1651. assert self.hparams_vision is not None
  1652. return self._find_param(self.hparams_vision, keys, optional)
  1653. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1654. assert self.hparams_audio is not None
  1655. return self._find_param(self.hparams_audio, keys, optional)
  1656. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1657. key = next((k for k in keys if k in obj), None)
  1658. if key is not None:
  1659. return obj[key]
  1660. if optional:
  1661. return None
  1662. raise KeyError(f"could not find any of: {keys}")
  1663. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1664. del bid, name, n_dims # unused
  1665. if ".patch_embd.weight" in new_name or ".patch_merger.weight" in new_name:
  1666. return gguf.GGMLQuantizationType.F16 if self.ftype == gguf.LlamaFileType.MOSTLY_F16 else gguf.GGMLQuantizationType.F32
  1667. return False
  1668. @ModelBase.register("GPTNeoXForCausalLM")
  1669. class GPTNeoXModel(TextModel):
  1670. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1671. def set_gguf_parameters(self):
  1672. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1673. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1674. self.gguf_writer.add_block_count(self.block_count)
  1675. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1676. self.gguf_writer.add_rope_dimension_count(
  1677. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1678. )
  1679. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1680. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1681. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1682. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1683. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1684. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1685. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1686. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1687. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1688. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1689. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1690. data_torch = torch.cat(
  1691. (
  1692. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1693. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1694. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1695. ),
  1696. dim=0,
  1697. )
  1698. logger.info("re-format attention.linear_qkv.weight")
  1699. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1700. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1701. data_torch = torch.cat(
  1702. (
  1703. qkv_bias[:, 0, :].reshape((n_embed,)),
  1704. qkv_bias[:, 1, :].reshape((n_embed,)),
  1705. qkv_bias[:, 2, :].reshape((n_embed,)),
  1706. ),
  1707. dim=0,
  1708. )
  1709. logger.info("re-format attention.linear_qkv.bias")
  1710. yield from super().modify_tensors(data_torch, name, bid)
  1711. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1712. class BloomModel(TextModel):
  1713. model_arch = gguf.MODEL_ARCH.BLOOM
  1714. def set_gguf_parameters(self):
  1715. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1716. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1717. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1718. self.gguf_writer.add_embedding_length(n_embed)
  1719. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1720. self.gguf_writer.add_block_count(self.block_count)
  1721. self.gguf_writer.add_head_count(n_head)
  1722. self.gguf_writer.add_head_count_kv(n_head)
  1723. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1724. self.gguf_writer.add_file_type(self.ftype)
  1725. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1726. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1727. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1728. name = re.sub(r'transformer\.', '', name)
  1729. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1730. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1731. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1732. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1733. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1734. data_torch = torch.cat(
  1735. (
  1736. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1737. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1738. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1739. ),
  1740. dim=0,
  1741. )
  1742. logger.info("re-format attention.linear_qkv.weight")
  1743. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1744. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1745. data_torch = torch.cat(
  1746. (
  1747. qkv_bias[:, 0, :].reshape((n_embed,)),
  1748. qkv_bias[:, 1, :].reshape((n_embed,)),
  1749. qkv_bias[:, 2, :].reshape((n_embed,)),
  1750. ),
  1751. dim=0,
  1752. )
  1753. logger.info("re-format attention.linear_qkv.bias")
  1754. yield from super().modify_tensors(data_torch, name, bid)
  1755. @ModelBase.register("MPTForCausalLM")
  1756. class MPTModel(TextModel):
  1757. model_arch = gguf.MODEL_ARCH.MPT
  1758. def set_vocab(self):
  1759. try:
  1760. self._set_vocab_gpt2()
  1761. except Exception:
  1762. # Fallback for SEA-LION model
  1763. self._set_vocab_sentencepiece()
  1764. self.gguf_writer.add_add_bos_token(False)
  1765. self.gguf_writer.add_pad_token_id(3)
  1766. self.gguf_writer.add_eos_token_id(1)
  1767. self.gguf_writer.add_unk_token_id(0)
  1768. def set_gguf_parameters(self):
  1769. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1770. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1771. self.gguf_writer.add_block_count(self.block_count)
  1772. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1773. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1774. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1775. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1776. self.gguf_writer.add_layer_norm_eps(1e-5)
  1777. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1778. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1779. if self.hparams["attn_config"]["alibi"]:
  1780. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1781. else:
  1782. self.gguf_writer.add_max_alibi_bias(0.0)
  1783. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1784. if "scales" in name:
  1785. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1786. new_name = new_name.replace("scales", "act.scales")
  1787. else:
  1788. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1789. yield from super().modify_tensors(data_torch, new_name, bid)
  1790. @ModelBase.register("OrionForCausalLM")
  1791. class OrionModel(TextModel):
  1792. model_arch = gguf.MODEL_ARCH.ORION
  1793. def set_vocab(self):
  1794. self._set_vocab_sentencepiece()
  1795. def set_gguf_parameters(self):
  1796. head_count = self.hparams["num_attention_heads"]
  1797. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1798. ctx_length = 0
  1799. if "max_sequence_length" in self.hparams:
  1800. ctx_length = self.hparams["max_sequence_length"]
  1801. elif "max_position_embeddings" in self.hparams:
  1802. ctx_length = self.hparams["max_position_embeddings"]
  1803. elif "model_max_length" in self.hparams:
  1804. ctx_length = self.hparams["model_max_length"]
  1805. else:
  1806. raise ValueError("gguf: can not find ctx length parameter.")
  1807. self.gguf_writer.add_file_type(self.ftype)
  1808. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1809. self.gguf_writer.add_context_length(ctx_length)
  1810. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1811. self.gguf_writer.add_block_count(self.block_count)
  1812. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1813. self.gguf_writer.add_head_count(head_count)
  1814. self.gguf_writer.add_head_count_kv(head_count_kv)
  1815. # note: config provides rms norm but it is actually layer norm
  1816. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1817. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1818. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1819. class BaichuanModel(TextModel):
  1820. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1821. def set_vocab(self):
  1822. self._set_vocab_sentencepiece()
  1823. def set_gguf_parameters(self):
  1824. super().set_gguf_parameters()
  1825. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1826. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1827. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1828. head_count = self.hparams["num_attention_heads"]
  1829. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1830. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1831. logger.info(f"Unpacking and permuting layer {bid}")
  1832. yield from [
  1833. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1834. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1835. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1836. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1837. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1838. self._reverse_hf_part(data_torch, 2)),
  1839. ]
  1840. else:
  1841. yield from self.modify_tensors(data_torch, self.map_tensor_name(name), bid)
  1842. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1843. if n_kv_head is not None and n_head != n_kv_head:
  1844. n_head //= n_kv_head
  1845. return (
  1846. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1847. .swapaxes(1, 2)
  1848. .reshape(weights.shape)
  1849. )
  1850. def _reverse_hf_permute_part(
  1851. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1852. ) -> Tensor:
  1853. r = weights.shape[0] // 3
  1854. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1855. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1856. r = weights.shape[0] // 3
  1857. return weights[r * n_part:r * n_part + r, ...]
  1858. @ModelBase.register("XverseForCausalLM")
  1859. class XverseModel(TextModel):
  1860. model_arch = gguf.MODEL_ARCH.XVERSE
  1861. def set_vocab(self):
  1862. assert (self.dir_model / "tokenizer.json").is_file()
  1863. dir_model = self.dir_model
  1864. hparams = self.hparams
  1865. tokens: list[bytes] = []
  1866. toktypes: list[int] = []
  1867. from transformers import AutoTokenizer
  1868. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1869. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1870. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1871. # because vocab_size is the count of items, and indexes start at 0.
  1872. max_vocab_index = max(tokenizer.get_vocab().values())
  1873. if max_vocab_index >= vocab_size:
  1874. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1875. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1876. added_vocab = tokenizer.get_added_vocab()
  1877. for token_id in range(vocab_size):
  1878. token_text = reverse_vocab[token_id].encode('utf-8')
  1879. # replace "\x00" to string with length > 0
  1880. if token_text == b"\x00":
  1881. toktype = gguf.TokenType.BYTE # special
  1882. token_text = f"<{token_text}>".encode('utf-8')
  1883. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1884. toktype = gguf.TokenType.BYTE # special
  1885. elif reverse_vocab[token_id] in added_vocab:
  1886. if tokenizer.added_tokens_decoder[token_id].special:
  1887. toktype = gguf.TokenType.CONTROL
  1888. else:
  1889. toktype = gguf.TokenType.USER_DEFINED
  1890. else:
  1891. toktype = gguf.TokenType.NORMAL
  1892. tokens.append(token_text)
  1893. toktypes.append(toktype)
  1894. self.gguf_writer.add_tokenizer_model("llama")
  1895. self.gguf_writer.add_tokenizer_pre("default")
  1896. self.gguf_writer.add_token_list(tokens)
  1897. self.gguf_writer.add_token_types(toktypes)
  1898. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1899. special_vocab.add_to_gguf(self.gguf_writer)
  1900. def set_gguf_parameters(self):
  1901. super().set_gguf_parameters()
  1902. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1903. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1904. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1905. head_count = self.hparams["num_attention_heads"]
  1906. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1907. # HF models permute some of the tensors, so we need to undo that
  1908. if name.endswith("q_proj.weight"):
  1909. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1910. if name.endswith("k_proj.weight"):
  1911. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1912. yield from super().modify_tensors(data_torch, name, bid)
  1913. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1914. if n_kv_head is not None and n_head != n_kv_head:
  1915. n_head //= n_kv_head
  1916. return (
  1917. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1918. .swapaxes(1, 2)
  1919. .reshape(weights.shape)
  1920. )
  1921. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1922. class FalconModel(TextModel):
  1923. model_arch = gguf.MODEL_ARCH.FALCON
  1924. def set_gguf_parameters(self):
  1925. n_head = self.hparams.get("num_attention_heads")
  1926. if n_head is None:
  1927. n_head = self.hparams["n_head"] # old name
  1928. n_head_kv = self.hparams.get("num_kv_heads")
  1929. if n_head_kv is None:
  1930. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1931. self.gguf_writer.add_context_length(2048) # not in config.json
  1932. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1933. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1934. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1935. self.gguf_writer.add_block_count(self.block_count)
  1936. self.gguf_writer.add_head_count(n_head)
  1937. self.gguf_writer.add_head_count_kv(n_head_kv)
  1938. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1939. self.gguf_writer.add_file_type(self.ftype)
  1940. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1941. # QKV tensor transform
  1942. # The original query_key_value tensor contains n_head_kv "kv groups",
  1943. # each consisting of n_head/n_head_kv query weights followed by one key
  1944. # and one value weight (shared by all query heads in the kv group).
  1945. # This layout makes it a big pain to work with in GGML.
  1946. # So we rearrange them here,, so that we have n_head query weights
  1947. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1948. # in contiguous fashion.
  1949. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1950. if "query_key_value" in name:
  1951. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1952. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1953. head_dim = self.hparams["hidden_size"] // n_head
  1954. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1955. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1956. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1957. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1958. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1959. yield from super().modify_tensors(data_torch, name, bid)
  1960. @ModelBase.register("GPTBigCodeForCausalLM")
  1961. class StarCoderModel(TextModel):
  1962. model_arch = gguf.MODEL_ARCH.STARCODER
  1963. def set_gguf_parameters(self):
  1964. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1965. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1966. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1967. self.gguf_writer.add_block_count(self.block_count)
  1968. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1969. self.gguf_writer.add_head_count_kv(1)
  1970. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1971. self.gguf_writer.add_file_type(self.ftype)
  1972. @ModelBase.register("GPTRefactForCausalLM")
  1973. class RefactModel(TextModel):
  1974. model_arch = gguf.MODEL_ARCH.REFACT
  1975. def set_vocab(self):
  1976. super().set_vocab()
  1977. # TODO: how to determine special FIM tokens automatically?
  1978. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1979. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1980. special_vocab._set_special_token("prefix", 1)
  1981. special_vocab._set_special_token("suffix", 3)
  1982. special_vocab._set_special_token("middle", 2)
  1983. special_vocab.chat_template = None # do not add it twice
  1984. special_vocab.add_to_gguf(self.gguf_writer)
  1985. def set_gguf_parameters(self):
  1986. hidden_dim = self.hparams["n_embd"]
  1987. inner_dim = 4 * hidden_dim
  1988. hidden_dim = int(2 * inner_dim / 3)
  1989. multiple_of = 256
  1990. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1991. # refact uses Alibi. So this is from config.json which might be used by training.
  1992. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1993. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1994. self.gguf_writer.add_feed_forward_length(ff_dim)
  1995. self.gguf_writer.add_block_count(self.block_count)
  1996. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1997. self.gguf_writer.add_head_count_kv(1)
  1998. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1999. self.gguf_writer.add_file_type(self.ftype)
  2000. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2001. hidden_dim = self.hparams["n_embd"]
  2002. inner_dim = 4 * hidden_dim
  2003. hidden_dim = int(2 * inner_dim / 3)
  2004. multiple_of = 256
  2005. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  2006. n_head = self.hparams["n_head"]
  2007. n_head_kv = 1
  2008. head_dim = self.hparams["n_embd"] // n_head
  2009. if bid is not None:
  2010. if name == f"transformer.h.{bid}.attn.kv.weight":
  2011. yield from super().modify_tensors(data_torch[:n_head_kv * head_dim], self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), bid)
  2012. yield from super().modify_tensors(data_torch[n_head_kv * head_dim:], self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), bid)
  2013. return
  2014. if name == f"transformer.h.{bid}.attn.q.weight":
  2015. yield from super().modify_tensors(data_torch, self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), bid)
  2016. return
  2017. if name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  2018. yield from super().modify_tensors(data_torch[:ff_dim], self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), bid)
  2019. yield from super().modify_tensors(data_torch[ff_dim:], self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), bid)
  2020. return
  2021. yield from super().modify_tensors(data_torch, name, bid)
  2022. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  2023. class StableLMModel(TextModel):
  2024. model_arch = gguf.MODEL_ARCH.STABLELM
  2025. def set_vocab(self):
  2026. if (self.dir_model / "tokenizer.json").is_file():
  2027. self._set_vocab_gpt2()
  2028. else:
  2029. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  2030. self._set_vocab_qwen()
  2031. def set_gguf_parameters(self):
  2032. hparams = self.hparams
  2033. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2034. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2035. self.gguf_writer.add_block_count(self.block_count)
  2036. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2037. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  2038. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  2039. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2040. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2041. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  2042. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  2043. self.gguf_writer.add_file_type(self.ftype)
  2044. _q_norms: list[dict[str, Tensor]] | None = None
  2045. _k_norms: list[dict[str, Tensor]] | None = None
  2046. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2047. n_head = self.hparams["num_attention_heads"]
  2048. n_kv_head = self.hparams["num_key_value_heads"]
  2049. if name.find("q_layernorm.norms") != -1:
  2050. assert bid is not None
  2051. if self._q_norms is None:
  2052. self._q_norms = [{} for _ in range(self.block_count)]
  2053. self._q_norms[bid][name] = data_torch
  2054. if len(self._q_norms[bid]) >= n_head:
  2055. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  2056. else:
  2057. return
  2058. if name.find("k_layernorm.norms") != -1:
  2059. assert bid is not None
  2060. if self._k_norms is None:
  2061. self._k_norms = [{} for _ in range(self.block_count)]
  2062. self._k_norms[bid][name] = data_torch
  2063. if len(self._k_norms[bid]) >= n_kv_head:
  2064. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  2065. else:
  2066. return
  2067. yield from super().modify_tensors(data_torch, name, bid)
  2068. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  2069. datas: list[Tensor] = []
  2070. # extract the norms in order
  2071. for xid in range(n_head):
  2072. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  2073. datas.append(norms[ename])
  2074. del norms[ename]
  2075. data_torch = torch.stack(datas, dim=0)
  2076. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  2077. yield from super().modify_tensors(data_torch, merged_name, bid)
  2078. def prepare_tensors(self):
  2079. super().prepare_tensors()
  2080. if self._q_norms is not None or self._k_norms is not None:
  2081. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  2082. norms = (
  2083. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  2084. ) + (
  2085. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  2086. )
  2087. if len(norms) > 0:
  2088. raise ValueError(f"Unprocessed norms: {norms}")
  2089. @ModelBase.register(
  2090. "LLaMAForCausalLM",
  2091. "LlamaForCausalLM",
  2092. "MistralForCausalLM",
  2093. "MixtralForCausalLM",
  2094. "VLlama3ForCausalLM",
  2095. "LlavaForConditionalGeneration",
  2096. "VoxtralForConditionalGeneration",
  2097. "IQuestCoderForCausalLM",
  2098. "LlamaModel")
  2099. class LlamaModel(TextModel):
  2100. model_arch = gguf.MODEL_ARCH.LLAMA
  2101. undo_permute = True
  2102. def __init__(self, *args, **kwargs):
  2103. super().__init__(*args, **kwargs)
  2104. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  2105. if self.hf_arch == "VLlama3ForCausalLM":
  2106. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  2107. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  2108. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  2109. def set_vocab(self):
  2110. if self.origin_hf_arch == "GlmasrModel":
  2111. return self._set_vocab_glmedge()
  2112. if self.is_mistral_format:
  2113. return self._set_vocab_mistral()
  2114. path_tekken_json = self.dir_model / "tekken.json"
  2115. path_tokenizer_json = self.dir_model / "tokenizer.json"
  2116. if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
  2117. self._set_vocab_mistral()
  2118. try:
  2119. self._set_vocab_sentencepiece()
  2120. except FileNotFoundError:
  2121. try:
  2122. self._set_vocab_llama_hf()
  2123. except (FileNotFoundError, TypeError):
  2124. # Llama 3
  2125. self._set_vocab_gpt2()
  2126. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  2127. if self.hparams.get("vocab_size", 32000) == 32016:
  2128. special_vocab = gguf.SpecialVocab(
  2129. self.dir_model, load_merges=False,
  2130. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  2131. )
  2132. special_vocab._set_special_token("prefix", 32007)
  2133. special_vocab._set_special_token("suffix", 32008)
  2134. special_vocab._set_special_token("middle", 32009)
  2135. special_vocab._set_special_token("eot", 32010)
  2136. special_vocab.add_to_gguf(self.gguf_writer)
  2137. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2138. if tokenizer_config_file.is_file():
  2139. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2140. tokenizer_config_json = json.load(f)
  2141. if "add_prefix_space" in tokenizer_config_json:
  2142. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  2143. # Apply to granite small models only
  2144. if self.hparams.get("vocab_size", 32000) == 49152:
  2145. self.gguf_writer.add_add_bos_token(False)
  2146. def set_gguf_parameters(self):
  2147. super().set_gguf_parameters()
  2148. hparams = self.hparams
  2149. if not self.is_mistral_format:
  2150. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2151. if (rope_dim := hparams.get("head_dim")) is None:
  2152. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2153. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2154. @staticmethod
  2155. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2156. if n_head_kv is not None and n_head != n_head_kv:
  2157. n_head = n_head_kv
  2158. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2159. .swapaxes(1, 2)
  2160. .reshape(weights.shape))
  2161. _experts: list[dict[str, Tensor]] | None = None
  2162. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2163. n_head = self.find_hparam(["n_heads", "num_attention_heads"])
  2164. n_kv_head = self.find_hparam(["n_kv_heads", "num_key_value_heads"])
  2165. vision_prefixes = [
  2166. "vision_encoder.",
  2167. "vision_language_adapter.",
  2168. "patch_merger.",
  2169. "pre_mm_projector_norm",
  2170. "audio_encoder.",
  2171. ]
  2172. is_multimodal_tensor = "vision_tower" in name \
  2173. or "vision_model" in name \
  2174. or "audio_tower" in name \
  2175. or "model.connector" in name \
  2176. or "multi_modal_projector" in name \
  2177. or any(
  2178. name.startswith(prefix)
  2179. for prefix in vision_prefixes
  2180. )
  2181. if is_multimodal_tensor:
  2182. return # skip vision tensors
  2183. elif self.hf_arch == "LlamaModel":
  2184. name = "model." + name
  2185. elif name.startswith("model.text_model"):
  2186. name = name.replace("text_model.", "") # for SmolVLM
  2187. elif name.startswith("language_model."):
  2188. name = name.replace("language_model.", "") # for the rest
  2189. if self.undo_permute:
  2190. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2191. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2192. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2193. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2194. # process the experts separately
  2195. if name.find("block_sparse_moe.experts") != -1:
  2196. n_experts = self.hparams["num_local_experts"]
  2197. assert bid is not None
  2198. if self._experts is None:
  2199. self._experts = [{} for _ in range(self.block_count)]
  2200. self._experts[bid][name] = data_torch
  2201. if len(self._experts[bid]) >= n_experts * 3:
  2202. # merge the experts into a single 3d tensor
  2203. for wid in ["w1", "w2", "w3"]:
  2204. datas: list[Tensor] = []
  2205. for xid in range(n_experts):
  2206. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2207. datas.append(self._experts[bid][ename])
  2208. del self._experts[bid][ename]
  2209. data_torch = torch.stack(datas, dim=0)
  2210. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2211. yield from super().modify_tensors(data_torch, merged_name, bid)
  2212. return
  2213. else:
  2214. return
  2215. yield from super().modify_tensors(data_torch, name, bid)
  2216. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2217. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  2218. if rope_params.get("rope_type", '').lower() == "llama3":
  2219. base = rope_params.get("rope_theta", 10000.0)
  2220. if (dim := self.hparams.get("head_dim")) is None:
  2221. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2222. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2223. factor = rope_params.get("factor", 8.0)
  2224. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  2225. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  2226. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2227. low_freq_wavelen = old_context_len / low_freq_factor
  2228. high_freq_wavelen = old_context_len / high_freq_factor
  2229. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  2230. rope_factors = []
  2231. for freq in freqs:
  2232. wavelen = 2 * math.pi / freq
  2233. if wavelen < high_freq_wavelen:
  2234. rope_factors.append(1)
  2235. elif wavelen > low_freq_wavelen:
  2236. rope_factors.append(factor)
  2237. else:
  2238. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2239. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2240. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2241. def prepare_tensors(self):
  2242. super().prepare_tensors()
  2243. if self._experts is not None:
  2244. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2245. experts = [k for d in self._experts for k in d.keys()]
  2246. if len(experts) > 0:
  2247. raise ValueError(f"Unprocessed experts: {experts}")
  2248. @ModelBase.register("ArceeForCausalLM")
  2249. class ArceeModel(LlamaModel):
  2250. model_arch = gguf.MODEL_ARCH.ARCEE
  2251. def set_gguf_parameters(self):
  2252. super().set_gguf_parameters()
  2253. self._try_set_pooling_type()
  2254. @ModelBase.register("AfmoeForCausalLM")
  2255. class AfmoeModel(LlamaModel):
  2256. model_arch = gguf.MODEL_ARCH.AFMOE
  2257. def set_gguf_parameters(self):
  2258. super().set_gguf_parameters()
  2259. # MoE parameters
  2260. if (n_experts := self.hparams.get("num_experts")) is not None:
  2261. self.gguf_writer.add_expert_count(n_experts)
  2262. if (n_shared_experts := self.hparams.get("num_shared_experts")) is not None:
  2263. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  2264. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2265. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2266. if (n_dense_layers := self.hparams.get("num_dense_layers")) is not None:
  2267. self.gguf_writer.add_leading_dense_block_count(n_dense_layers)
  2268. # Route normalization and scaling
  2269. if (route_norm := self.hparams.get("route_norm")) is not None:
  2270. self.gguf_writer.add_expert_weights_norm(route_norm)
  2271. if (route_scale := self.hparams.get("route_scale")) is not None:
  2272. self.gguf_writer.add_expert_weights_scale(route_scale)
  2273. # Sliding window attention
  2274. if (sliding_window := self.hparams.get("sliding_window")) is not None:
  2275. self.gguf_writer.add_sliding_window(sliding_window)
  2276. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2277. # Handle expert weights - they're already merged in the HF format
  2278. # process the experts separately
  2279. if name.find("mlp.experts") != -1:
  2280. n_experts = self.hparams["num_experts"]
  2281. assert bid is not None
  2282. if self._experts is None:
  2283. self._experts = [{} for _ in range(self.block_count)]
  2284. self._experts[bid][name] = data_torch
  2285. if len(self._experts[bid]) >= n_experts * 3:
  2286. # merge the experts into a single 3d tensor
  2287. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  2288. datas: list[Tensor] = []
  2289. for xid in range(n_experts):
  2290. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2291. datas.append(self._experts[bid][ename_to_retrieve])
  2292. del self._experts[bid][ename_to_retrieve]
  2293. data_torch = torch.stack(datas, dim=0)
  2294. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2295. yield from super().modify_tensors(data_torch, merged_name, bid)
  2296. return
  2297. else:
  2298. return
  2299. if name.endswith(".expert_bias"):
  2300. name = name.replace(".expert_bias", ".expert_bias.bias")
  2301. yield from super().modify_tensors(data_torch, name, bid)
  2302. @ModelBase.register(
  2303. "LlavaForConditionalGeneration", # pixtral
  2304. "Mistral3ForConditionalGeneration", # mistral small 3.1
  2305. )
  2306. class LlavaVisionModel(MmprojModel):
  2307. img_break_tok_id = -1
  2308. use_break_tok = True
  2309. def __init__(self, *args, **kwargs):
  2310. super().__init__(*args, **kwargs)
  2311. if self.hparams.get("model_type") == "pixtral":
  2312. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  2313. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  2314. if self.use_break_tok:
  2315. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  2316. elif self.is_mistral_format:
  2317. # hparams is already vision config here so norm_eps is only defined in global_config.
  2318. self.hparams["norm_eps"] = self.global_config.get("norm_eps", None)
  2319. assert self.hparams["norm_eps"] is not None, "norm_eps not found in params.json"
  2320. if self.use_break_tok:
  2321. self.img_break_tok_id = self.find_vparam(["image_break_token_id"])
  2322. else:
  2323. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  2324. logger.info(f"Image break token id: {self.img_break_tok_id}")
  2325. def get_token_id(self, token: str) -> int:
  2326. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2327. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2328. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  2329. for id_, token_data in added_tokens_decoder.items():
  2330. if token_data["content"] == token:
  2331. return int(id_)
  2332. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  2333. def set_gguf_parameters(self):
  2334. super().set_gguf_parameters()
  2335. hparams = self.hparams
  2336. if hparams.get("model_type") == "pixtral":
  2337. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  2338. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2339. # hidden_act
  2340. if hparams["hidden_act"] == "silu":
  2341. self.gguf_writer.add_vision_use_silu(True)
  2342. elif hparams["hidden_act"] == "gelu":
  2343. self.gguf_writer.add_vision_use_gelu(True)
  2344. else:
  2345. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2346. # spatial_merge_size
  2347. if "spatial_merge_size" in self.global_config:
  2348. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  2349. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2350. n_head = (
  2351. self.hparams["num_attention_heads"] if not self.is_mistral_format else self.find_vparam(["num_attention_heads"])
  2352. )
  2353. n_kv_head = n_head
  2354. valid_prefixes = (
  2355. "multi_modal_projector.",
  2356. "vision_tower.",
  2357. "vision_encoder.",
  2358. "vision_language_adapter.",
  2359. "patch_merger.",
  2360. "pre_mm_projector_norm",
  2361. )
  2362. if any(name.startswith(prefix) for prefix in valid_prefixes):
  2363. # process vision tensors
  2364. if name.endswith(("q_proj.weight", "q_proj.bias")) and not self.is_mistral_format:
  2365. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2366. if name.endswith(("k_proj.weight", "k_proj.bias")) and not self.is_mistral_format:
  2367. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2368. yield from super().modify_tensors(data_torch, name, bid)
  2369. return
  2370. embed_key = "embed_tokens.weight" if not self.is_mistral_format else "tok_embeddings.weight"
  2371. if self.img_break_tok_id > 0 and embed_key in name:
  2372. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  2373. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  2374. img_break_embd = data_torch[self.img_break_tok_id]
  2375. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  2376. yield from super().modify_tensors(img_break_embd, name, bid)
  2377. return # skip other tensors
  2378. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  2379. class SmolVLMModel(MmprojModel):
  2380. def __init__(self, *args, **kwargs):
  2381. super().__init__(*args, **kwargs)
  2382. if self.hparams["model_type"] == "smolvlm_vision":
  2383. # fix for SmolVLM2, missing some keys in config.json
  2384. # default values are taken from transformers code
  2385. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  2386. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  2387. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  2388. def set_gguf_parameters(self):
  2389. super().set_gguf_parameters()
  2390. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  2391. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  2392. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  2393. self.gguf_writer.add_vision_use_gelu(True)
  2394. # Add the preprocessor longest edge size
  2395. preproc_image_size = self.preprocessor_config.get("size", {}).get("longest_edge", self.image_size)
  2396. self.gguf_writer.add_vision_preproc_image_size(preproc_image_size)
  2397. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2398. if ".embeddings." in name:
  2399. return gguf.GGMLQuantizationType.F32
  2400. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2401. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2402. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  2403. if is_vision_tensor:
  2404. yield from super().modify_tensors(data_torch, name, bid)
  2405. return # skip other tensors
  2406. @ModelBase.register(
  2407. "Llama4ForConditionalGeneration",
  2408. "Llama4ForCausalLM",
  2409. )
  2410. class Llama4Model(LlamaModel):
  2411. model_arch = gguf.MODEL_ARCH.LLAMA4
  2412. undo_permute = False
  2413. def __init__(self, *args, **kwargs):
  2414. super().__init__(*args, **kwargs)
  2415. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  2416. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  2417. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  2418. def set_vocab(self):
  2419. self._set_vocab_gpt2()
  2420. def set_gguf_parameters(self):
  2421. super().set_gguf_parameters()
  2422. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  2423. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  2424. if "layer_types" in self.hparams:
  2425. if all(lt == "full_attention" for lt in self.hparams["layer_types"]):
  2426. # all layers are full attention (for MobileLLM), disable swa
  2427. self.gguf_writer.add_sliding_window(0)
  2428. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2429. if name.startswith("language_model."):
  2430. name = name.replace("language_model.", "")
  2431. # split the gate_up into gate and up
  2432. if "gate_up_proj" in name:
  2433. name_up = name.replace("gate_up_proj", "up_proj.weight")
  2434. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  2435. dim_half = data_torch.shape[-1] // 2
  2436. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  2437. yield from super().modify_tensors(gate_proj_weight, name_gate, bid)
  2438. yield from super().modify_tensors(up_proj_weight, name_up, bid)
  2439. return
  2440. if name.endswith("down_proj"):
  2441. name += ".weight"
  2442. data_torch = data_torch.transpose(-1, -2)
  2443. if "multi_modal_projector" in name or "vision_model" in name:
  2444. return
  2445. yield from super().modify_tensors(data_torch, name, bid)
  2446. @ModelBase.register("Llama4ForConditionalGeneration")
  2447. class Llama4VisionModel(MmprojModel):
  2448. def set_gguf_parameters(self):
  2449. super().set_gguf_parameters()
  2450. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  2451. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  2452. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  2453. assert self.hparams["hidden_act"] == "gelu"
  2454. self.gguf_writer.add_vision_use_gelu(True)
  2455. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2456. if "multi_modal_projector" in name or "vision_model" in name:
  2457. # process vision tensors
  2458. if "positional_embedding_vlm" in name and ".weight" not in name:
  2459. name += ".weight"
  2460. if "multi_modal_projector.linear_1" in name:
  2461. # despite the name with number postfix, this is a single fully connected layer
  2462. yield (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)
  2463. else:
  2464. yield from super().modify_tensors(data_torch, name, bid)
  2465. @ModelBase.register(
  2466. "Mistral3ForConditionalGeneration",
  2467. "Ministral3ForCausalLM",
  2468. )
  2469. class Mistral3Model(LlamaModel):
  2470. model_arch = gguf.MODEL_ARCH.MISTRAL3
  2471. def __init__(self, *args, **kwargs):
  2472. super().__init__(*args, **kwargs)
  2473. # for compatibility, we use LLAMA arch for older models
  2474. # TODO: remove this once everyone has migrated to newer version of llama.cpp
  2475. if self.hparams.get("model_type") != "ministral3":
  2476. self.model_arch = gguf.MODEL_ARCH.LLAMA
  2477. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
  2478. self.gguf_writer.add_architecture()
  2479. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  2480. def set_gguf_parameters(self):
  2481. super().set_gguf_parameters()
  2482. rope_params = self.rope_parameters
  2483. if self.hparams.get("model_type") == "ministral3":
  2484. assert rope_params, "ministral3 must have 'rope_parameters' config"
  2485. assert rope_params["rope_type"] == "yarn", "ministral3 rope_type must be 'yarn'"
  2486. self.gguf_writer.add_rope_scaling_yarn_log_mul(rope_params["mscale_all_dim"])
  2487. self.gguf_writer.add_attn_temperature_scale(rope_params["llama_4_scaling_beta"])
  2488. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2489. name = name.replace("language_model.", "")
  2490. if "multi_modal_projector" in name or "vision_tower" in name:
  2491. return
  2492. yield from super().modify_tensors(data_torch, name, bid)
  2493. @ModelBase.register("DeciLMForCausalLM")
  2494. class DeciModel(TextModel):
  2495. model_arch = gguf.MODEL_ARCH.DECI
  2496. @staticmethod
  2497. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  2498. # DeciLM-specific code
  2499. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  2500. return DeciModel._find_multiple(intermediate_size, 256)
  2501. @staticmethod
  2502. def _find_multiple(n: int, k: int) -> int:
  2503. # DeciLM-specific code
  2504. if n % k == 0:
  2505. return n
  2506. return n + k - (n % k)
  2507. def __init__(self, *args, **kwargs):
  2508. super().__init__(*args, **kwargs)
  2509. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2510. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  2511. assert self.block_count == len(_block_configs)
  2512. self._num_kv_heads = list()
  2513. self._num_heads = list()
  2514. _ffn_multipliers = list()
  2515. # ***linear attention layer***
  2516. # if n_heads_in_group is None and replace_with_linear is True
  2517. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  2518. # ***attention-free layer***
  2519. # if n_heads_in_group is None and replace_with_linear is False
  2520. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  2521. # ***normal attention-layer***
  2522. # if n_heads_in_group is not None, then
  2523. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  2524. # _num_heads[il] is num_attention_head
  2525. # ***dummy layer*** for nemotron 253B
  2526. # if n_heads_in_group is None and ffn_mult is None
  2527. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  2528. for il in range(len(_block_configs)):
  2529. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  2530. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  2531. self._num_kv_heads.append(0)
  2532. self._num_heads.append(self.hparams["num_attention_heads"])
  2533. else:
  2534. self._num_kv_heads.append(0)
  2535. self._num_heads.append(0)
  2536. else:
  2537. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  2538. self._num_heads.append(self.hparams["num_attention_heads"])
  2539. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  2540. _ffn_multipliers.append(0.0)
  2541. else:
  2542. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  2543. assert self.block_count == len(self._num_kv_heads)
  2544. assert self.block_count == len(self._num_heads)
  2545. assert self.block_count == len(_ffn_multipliers)
  2546. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2547. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  2548. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  2549. self._ffn_dims: list[int] = [
  2550. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  2551. for multiplier in _ffn_multipliers
  2552. ]
  2553. def set_vocab(self):
  2554. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  2555. # eos_token from '|eot_id|' to '|end_of_text|'
  2556. if self.hparams.get("vocab_size", 128256) == 128256:
  2557. tokens, toktypes, tokpre = self.get_vocab_base()
  2558. self.gguf_writer.add_tokenizer_model("gpt2")
  2559. self.gguf_writer.add_tokenizer_pre(tokpre)
  2560. self.gguf_writer.add_token_list(tokens)
  2561. self.gguf_writer.add_token_types(toktypes)
  2562. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  2563. special_vocab.add_to_gguf(self.gguf_writer)
  2564. else:
  2565. # DeciLM-7B
  2566. self._set_vocab_llama_hf()
  2567. def set_gguf_parameters(self):
  2568. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2569. assert self.block_count == len(self._num_kv_heads)
  2570. assert self.block_count == len(self._num_heads)
  2571. assert self.block_count == len(self._ffn_dims)
  2572. if (rope_theta := self.rope_parameters.get("rope_theta")) is not None:
  2573. self.gguf_writer.add_rope_freq_base(rope_theta)
  2574. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2575. self.gguf_writer.add_head_count(self._num_heads)
  2576. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2577. self.gguf_writer.add_block_count(self.block_count)
  2578. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2579. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2580. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2581. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2582. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2583. self.gguf_writer.add_file_type(self.ftype)
  2584. else: # DeciLM-7B
  2585. super().set_gguf_parameters()
  2586. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  2587. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  2588. assert self.block_count == len(self._num_kv_heads)
  2589. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2590. hparams = self.hparams
  2591. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2592. if (rope_dim := hparams.get("head_dim")) is None:
  2593. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2594. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2595. @staticmethod
  2596. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2597. if n_head_kv is not None and n_head != n_head_kv:
  2598. n_head = n_head_kv
  2599. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2600. .swapaxes(1, 2)
  2601. .reshape(weights.shape))
  2602. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2603. n_head = self.hparams["num_attention_heads"]
  2604. if bid is not None:
  2605. if "num_key_value_heads_per_layer" in self.hparams:
  2606. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  2607. elif "block_configs" in self.hparams:
  2608. n_kv_head = self._num_kv_heads[bid]
  2609. n_head = self._num_heads[bid]
  2610. else:
  2611. n_kv_head = self.hparams.get("num_key_value_heads")
  2612. else:
  2613. n_kv_head = self.hparams.get("num_key_value_heads")
  2614. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2615. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  2616. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2617. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  2618. yield from super().modify_tensors(data_torch, name, bid)
  2619. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2620. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  2621. if rope_params.get("rope_type", '').lower() == "llama3":
  2622. base = rope_params.get("rope_theta", 10000.0)
  2623. if (dim := self.hparams.get("head_dim")) is None:
  2624. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2625. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2626. factor = rope_params.get("factor", 8.0)
  2627. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  2628. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  2629. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2630. low_freq_wavelen = old_context_len / low_freq_factor
  2631. high_freq_wavelen = old_context_len / high_freq_factor
  2632. assert low_freq_wavelen != high_freq_wavelen
  2633. rope_factors = []
  2634. for freq in freqs:
  2635. wavelen = 2 * math.pi / freq
  2636. if wavelen < high_freq_wavelen:
  2637. rope_factors.append(1)
  2638. elif wavelen > low_freq_wavelen:
  2639. rope_factors.append(factor)
  2640. else:
  2641. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2642. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2643. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2644. def prepare_tensors(self):
  2645. super().prepare_tensors()
  2646. @ModelBase.register("BitnetForCausalLM")
  2647. class BitnetModel(TextModel):
  2648. model_arch = gguf.MODEL_ARCH.BITNET
  2649. def set_vocab(self):
  2650. self._set_vocab_sentencepiece()
  2651. def set_gguf_parameters(self):
  2652. super().set_gguf_parameters()
  2653. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2654. self.gguf_writer.add_rope_scaling_factor(1.0)
  2655. def weight_quant(self, weight: Tensor) -> Tensor:
  2656. dtype = weight.dtype
  2657. weight = weight.float()
  2658. scale = weight.abs().mean().clamp(min=1e-5)
  2659. iscale = 1 / scale
  2660. # TODO: multiply by the scale directly instead of inverting it twice
  2661. # (this is also unnecessarily doubly inverted upstream)
  2662. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2663. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2664. return result.type(dtype)
  2665. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2666. new_name = self.map_tensor_name(name)
  2667. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2668. gguf.MODEL_TENSOR.ATTN_Q,
  2669. gguf.MODEL_TENSOR.ATTN_K,
  2670. gguf.MODEL_TENSOR.ATTN_V,
  2671. gguf.MODEL_TENSOR.ATTN_OUT,
  2672. gguf.MODEL_TENSOR.FFN_UP,
  2673. gguf.MODEL_TENSOR.FFN_DOWN,
  2674. gguf.MODEL_TENSOR.FFN_GATE,
  2675. ]):
  2676. # transform weight into 1/0/-1 (in fp32)
  2677. data_torch = self.weight_quant(data_torch)
  2678. yield from super().modify_tensors(data_torch, name, bid)
  2679. @ModelBase.register("GrokForCausalLM", "Grok1ForCausalLM")
  2680. class GrokModel(TextModel):
  2681. model_arch = gguf.MODEL_ARCH.GROK
  2682. def set_vocab(self):
  2683. if (self.dir_model / 'tokenizer.model').is_file():
  2684. self._set_vocab_sentencepiece()
  2685. return
  2686. if not (self.dir_model / 'tokenizer.json').is_file() or not (self.dir_model / 'chat_template.jinja').is_file():
  2687. logger.error('Error: Missing vocab and chat template, download files from https://huggingface.co/alvarobartt/grok-2-tokenizer')
  2688. sys.exit(1)
  2689. self._set_vocab_gpt2()
  2690. def __init__(self, *args, **kwargs):
  2691. super().__init__(*args, **kwargs)
  2692. def set_gguf_parameters(self):
  2693. super().set_gguf_parameters()
  2694. self.gguf_writer.add_attn_logit_softcapping(self.hparams.get("attn_logit_softcapping", 30.0))
  2695. self.gguf_writer.add_router_logit_softcapping(self.hparams.get("router_logit_softcapping", 30.0))
  2696. if (final_logit_softcap := self.hparams.get("final_logit_softcapping")):
  2697. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  2698. if (rope_dim := self.hparams.get("head_dim")) is None:
  2699. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2700. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2701. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2702. # Treat "original" as "yarn", seems to have been a mistake
  2703. if self.hparams.get("rope_type") in ("yarn", "original"):
  2704. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2705. self.gguf_writer.add_rope_scaling_factor(self.hparams["scaling_factor"])
  2706. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["original_max_position_embeddings"])
  2707. self.gguf_writer.add_rope_scaling_yarn_ext_factor(self.hparams["extrapolation_factor"])
  2708. self.gguf_writer.add_rope_scaling_yarn_attn_factor(self.hparams["attn_factor"])
  2709. self.gguf_writer.add_rope_scaling_yarn_beta_fast(self.hparams["beta_fast"])
  2710. self.gguf_writer.add_rope_scaling_yarn_beta_slow(self.hparams["beta_slow"])
  2711. if temp_len := self.hparams.get("attn_temperature_len"):
  2712. self.gguf_writer.add_attn_temperature_length(temp_len)
  2713. self.gguf_writer.add_attn_output_scale(self.hparams.get("attn_output_multiplier", rope_dim**-0.5))
  2714. self.gguf_writer.add_embedding_scale(self.hparams["embedding_multiplier_scale"])
  2715. self.gguf_writer.add_logit_scale(self.hparams["output_multiplier_scale"])
  2716. _experts: list[dict[str, list[Tensor]]] | None = None
  2717. _cur_expert = ""
  2718. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2719. deferred: list[tuple[Tensor, str, int | None]] = []
  2720. is_expert = ".moe." in name or ".block_sparse_moe.experts." in name
  2721. if not is_expert:
  2722. deferred.append((data_torch, name, bid))
  2723. # process the experts separately
  2724. if is_expert or self._cur_expert:
  2725. n_experts = self.hparams["num_local_experts"]
  2726. assert bid is not None
  2727. if self._experts is None:
  2728. self._experts = [{} for _ in range(self.block_count)]
  2729. # concatenate split tensors
  2730. if name in self._experts[bid]:
  2731. self._cur_expert = name
  2732. self._experts[bid][name].append(data_torch)
  2733. return
  2734. elif is_expert:
  2735. self._cur_expert = name
  2736. self._experts[bid][name] = [data_torch]
  2737. return
  2738. else:
  2739. self._cur_expert = ""
  2740. for bid in range(self.block_count):
  2741. if len(self._experts[bid]) >= n_experts * 3:
  2742. # merge the experts into a single 3d tensor
  2743. for wid in [("linear", "w1", 0), ("linear_1", "w2", 1), ("linear_v", "w3", 0)]:
  2744. datas: list[Tensor] = []
  2745. for xid in range(n_experts):
  2746. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid[0]}.weight"
  2747. if ename not in self._experts[bid]:
  2748. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid[1]}.weight"
  2749. tensor_list = self._experts[bid][ename]
  2750. datas.append(torch.cat(tensor_list, dim=wid[2]) if len(tensor_list) > 1 else tensor_list[0])
  2751. del self._experts[bid][ename]
  2752. data_torch = torch.stack(datas, dim=0)
  2753. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid[0]}.weight"
  2754. yield from super().modify_tensors(data_torch, merged_name, bid)
  2755. for t in deferred:
  2756. yield from super().modify_tensors(*t)
  2757. @ModelBase.register("DbrxForCausalLM")
  2758. class DbrxModel(TextModel):
  2759. model_arch = gguf.MODEL_ARCH.DBRX
  2760. def set_gguf_parameters(self):
  2761. ffn_config = self.hparams["ffn_config"]
  2762. attn_config = self.hparams["attn_config"]
  2763. self.gguf_writer.add_block_count(self.block_count)
  2764. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2765. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2766. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2767. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2768. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2769. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2770. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2771. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2772. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2773. self.gguf_writer.add_layer_norm_eps(1e-5)
  2774. self.gguf_writer.add_file_type(self.ftype)
  2775. logger.info(f"gguf: file type = {self.ftype}")
  2776. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2777. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2778. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2779. n_embd = self.hparams["d_model"]
  2780. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2781. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2782. # But llama.cpp moe graph works differently
  2783. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2784. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2785. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2786. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2787. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2788. experts = False
  2789. for exp_tensor_name in exp_tensor_names.keys():
  2790. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2791. experts = True
  2792. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2793. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2794. data_torch = data_torch.permute(*permute_tensor)
  2795. break
  2796. # map tensor names
  2797. # In MoE models the ffn tensors are typically most of the model weights,
  2798. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2799. # Every other model has the weight names ending in .weight,
  2800. # let's assume that is the convention which is not the case for dbrx:
  2801. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2802. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2803. yield from super().modify_tensors(data_torch, new_name, bid)
  2804. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2805. del name, new_name, bid # unused
  2806. return n_dims > 1
  2807. @ModelBase.register("MiniCPMForCausalLM")
  2808. class MiniCPMModel(TextModel):
  2809. model_arch = gguf.MODEL_ARCH.MINICPM
  2810. def set_gguf_parameters(self):
  2811. super().set_gguf_parameters()
  2812. embedding_scale = float(self.hparams["scale_emb"])
  2813. self.gguf_writer.add_embedding_scale(embedding_scale)
  2814. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2815. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2816. self.gguf_writer.add_residual_scale(residual_scale)
  2817. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2818. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2819. self.gguf_writer.add_logit_scale(logit_scale)
  2820. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2821. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2822. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2823. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2824. if rope_scaling is not None:
  2825. long_factors = rope_scaling.get('long_factor', None)
  2826. short_factors = rope_scaling.get('short_factor', None)
  2827. if long_factors is None or short_factors is None:
  2828. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2829. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2830. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2831. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2832. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2833. def set_vocab(self):
  2834. self._set_vocab_sentencepiece()
  2835. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2836. n_head = self.hparams["num_attention_heads"]
  2837. n_kv_head = self.hparams.get("num_key_value_heads")
  2838. # HF models permute some of the tensors, so we need to undo that
  2839. if name.endswith(("q_proj.weight")):
  2840. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2841. if name.endswith(("k_proj.weight")):
  2842. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2843. yield from super().modify_tensors(data_torch, name, bid)
  2844. @ModelBase.register("MiniCPM3ForCausalLM")
  2845. class MiniCPM3Model(TextModel):
  2846. model_arch = gguf.MODEL_ARCH.MINICPM3
  2847. def set_gguf_parameters(self):
  2848. hparams = self.hparams
  2849. self.gguf_writer.add_file_type(self.ftype)
  2850. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2851. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2852. self.gguf_writer.add_block_count(self.block_count)
  2853. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2854. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2855. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2856. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2857. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2858. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2859. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2860. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2861. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2862. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2863. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2864. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2865. if rope_scaling is not None:
  2866. rope_dims = self.hparams["qk_rope_head_dim"]
  2867. long_factors = rope_scaling.get('long_factor', None)
  2868. short_factors = rope_scaling.get('short_factor', None)
  2869. if long_factors is None or short_factors is None:
  2870. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2871. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2872. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2873. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2874. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2875. def set_vocab(self):
  2876. self._set_vocab_sentencepiece()
  2877. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2878. if n_kv_head is not None and n_head != n_kv_head:
  2879. n_head //= n_kv_head
  2880. return (
  2881. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2882. .swapaxes(1, 2)
  2883. .reshape(weights.shape)
  2884. )
  2885. @ModelBase.register("QWenLMHeadModel")
  2886. class QwenModel(TextModel):
  2887. model_arch = gguf.MODEL_ARCH.QWEN
  2888. @staticmethod
  2889. def token_bytes_to_string(b):
  2890. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2891. byte_encoder = bytes_to_unicode()
  2892. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2893. @staticmethod
  2894. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2895. parts = [bytes([b]) for b in token]
  2896. while True:
  2897. min_idx = None
  2898. min_rank = None
  2899. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2900. rank = mergeable_ranks.get(pair[0] + pair[1])
  2901. if rank is not None and (min_rank is None or rank < min_rank):
  2902. min_idx = i
  2903. min_rank = rank
  2904. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2905. break
  2906. assert min_idx is not None
  2907. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2908. return parts
  2909. def set_vocab(self):
  2910. self._set_vocab_qwen()
  2911. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration", "KORMoForCausalLM", "AudioFlamingo3ForConditionalGeneration")
  2912. class Qwen2Model(TextModel):
  2913. model_arch = gguf.MODEL_ARCH.QWEN2
  2914. def set_vocab(self):
  2915. try:
  2916. self._set_vocab_sentencepiece()
  2917. except FileNotFoundError:
  2918. self._set_vocab_gpt2()
  2919. def set_gguf_parameters(self):
  2920. super().set_gguf_parameters()
  2921. self._try_set_pooling_type()
  2922. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2923. if self.hf_arch == "Qwen2Model":
  2924. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2925. if "language_model." in name:
  2926. name = name.replace("language_model.", "") # for InternVL
  2927. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2928. or name.startswith("vision_model") or name.startswith("audio_tower") \
  2929. or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  2930. # skip vision and audio tensors
  2931. return
  2932. yield from super().modify_tensors(data_torch, name, bid)
  2933. @ModelBase.register("DreamModel")
  2934. class DreamModel(TextModel):
  2935. model_arch = gguf.MODEL_ARCH.DREAM
  2936. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2937. tokens: list[str] = []
  2938. toktypes: list[int] = []
  2939. from transformers import AutoTokenizer
  2940. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2941. vocab_dict = tokenizer.get_vocab()
  2942. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2943. assert max(vocab_dict.values()) < vocab_size
  2944. tokpre = self.get_vocab_base_pre(tokenizer)
  2945. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2946. added_vocab = tokenizer.get_added_vocab()
  2947. for i in range(vocab_size):
  2948. if i not in reverse_vocab:
  2949. tokens.append(f"[PAD{i}]")
  2950. toktypes.append(gguf.TokenType.UNUSED)
  2951. elif reverse_vocab[i] in added_vocab:
  2952. tokens.append(reverse_vocab[i])
  2953. # Check if it's a special token - treat special tokens as CONTROL tokens
  2954. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2955. if tokenizer.added_tokens_decoder[i].special:
  2956. toktypes.append(gguf.TokenType.CONTROL)
  2957. else:
  2958. toktypes.append(gguf.TokenType.USER_DEFINED)
  2959. else:
  2960. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2961. toktypes.append(gguf.TokenType.CONTROL)
  2962. else:
  2963. tokens.append(reverse_vocab[i])
  2964. toktypes.append(gguf.TokenType.NORMAL)
  2965. return tokens, toktypes, tokpre
  2966. def set_vocab(self):
  2967. try:
  2968. self._set_vocab_sentencepiece()
  2969. except FileNotFoundError:
  2970. self._set_vocab_gpt2()
  2971. def set_gguf_parameters(self):
  2972. super().set_gguf_parameters()
  2973. self._try_set_pooling_type()
  2974. # Dream models use non-causal attention for diffusion
  2975. self.gguf_writer.add_causal_attention(False)
  2976. # Add Dream-specific parameters
  2977. mask_token_id = self.hparams.get("mask_token_id")
  2978. if mask_token_id is not None:
  2979. self.gguf_writer.add_mask_token_id(mask_token_id)
  2980. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2981. # Dream model tensors should be mapped directly since it's the base model
  2982. yield from super().modify_tensors(data_torch, name, bid)
  2983. @ModelBase.register("LLaDAModelLM")
  2984. class LLaDAModel(TextModel):
  2985. model_arch = gguf.MODEL_ARCH.LLADA
  2986. undo_permute = True
  2987. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2988. tokens: list[str] = []
  2989. toktypes: list[int] = []
  2990. from transformers import AutoTokenizer
  2991. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2992. vocab_dict = tokenizer.get_vocab()
  2993. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2994. assert max(vocab_dict.values()) < vocab_size
  2995. tokpre = self.get_vocab_base_pre(tokenizer)
  2996. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2997. added_vocab = tokenizer.get_added_vocab()
  2998. for i in range(vocab_size):
  2999. if i not in reverse_vocab:
  3000. tokens.append(f"[PAD{i}]")
  3001. toktypes.append(gguf.TokenType.UNUSED)
  3002. elif reverse_vocab[i] in added_vocab:
  3003. tokens.append(reverse_vocab[i])
  3004. # Check if it's a special token - treat special tokens as CONTROL tokens
  3005. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  3006. if tokenizer.added_tokens_decoder[i].special:
  3007. toktypes.append(gguf.TokenType.CONTROL)
  3008. else:
  3009. toktypes.append(gguf.TokenType.USER_DEFINED)
  3010. else:
  3011. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  3012. toktypes.append(gguf.TokenType.CONTROL)
  3013. else:
  3014. tokens.append(reverse_vocab[i])
  3015. toktypes.append(gguf.TokenType.NORMAL)
  3016. return tokens, toktypes, tokpre
  3017. def set_vocab(self):
  3018. self._set_vocab_gpt2()
  3019. # LLaDA specific parameters
  3020. self.gguf_writer.add_add_bos_token(True)
  3021. def set_gguf_parameters(self):
  3022. super().set_gguf_parameters()
  3023. self._try_set_pooling_type()
  3024. # Add parameters similar to LlamaModel
  3025. hparams = self.hparams
  3026. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3027. if (rope_dim := hparams.get("head_dim")) is None:
  3028. n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
  3029. rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
  3030. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3031. # Set context length for LLaDA
  3032. context_length = self.hparams.get("max_sequence_length", 4096)
  3033. self.gguf_writer.add_context_length(context_length)
  3034. # Set embedding length (dimension size)
  3035. embedding_length = self.hparams.get("d_model", 4096)
  3036. self.gguf_writer.add_embedding_length(embedding_length)
  3037. # Set feed forward length (MLP hidden size)
  3038. feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
  3039. self.gguf_writer.add_feed_forward_length(feed_forward_length)
  3040. # LLaDA models use non-causal attention for diffusion, similar to Dream
  3041. self.gguf_writer.add_causal_attention(False)
  3042. # LLaDA models don't shift their logits
  3043. self.gguf_writer.add_diffusion_shift_logits(False)
  3044. @staticmethod
  3045. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  3046. if n_head_kv is not None and n_head != n_head_kv:
  3047. n_head = n_head_kv
  3048. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  3049. .swapaxes(1, 2)
  3050. .reshape(weights.shape))
  3051. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3052. n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
  3053. n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))
  3054. if self.undo_permute:
  3055. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3056. data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
  3057. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3058. data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)
  3059. # LLaDA model tensors should be mapped directly since it's the base model
  3060. yield from super().modify_tensors(data_torch, name, bid)
  3061. @ModelBase.register("Ernie4_5_ForCausalLM", "Ernie4_5ForCausalLM")
  3062. class Ernie4_5Model(TextModel):
  3063. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  3064. def set_vocab(self):
  3065. self._set_vocab_sentencepiece()
  3066. def set_gguf_parameters(self):
  3067. super().set_gguf_parameters()
  3068. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3069. num_heads = self.hparams["num_attention_heads"]
  3070. num_kv_heads = self.hparams["num_key_value_heads"]
  3071. if (head_dim := self.hparams.get("head_dim")) is None:
  3072. head_dim = self.hparams["hidden_size"] // num_heads
  3073. if "ernie." in name:
  3074. name = name.replace("ernie.", "model.")
  3075. # split the qkv weights
  3076. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  3077. if "qkv_proj" in name:
  3078. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  3079. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  3080. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  3081. total_q_dim = num_heads * head_dim
  3082. total_k_dim = num_kv_heads * head_dim
  3083. total_v_dim = num_kv_heads * head_dim
  3084. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  3085. yield from super().modify_tensors(q_proj_weight, name_q, bid)
  3086. yield from super().modify_tensors(k_proj_weight, name_k, bid)
  3087. yield from super().modify_tensors(v_proj_weight, name_v, bid)
  3088. # split the up_gate_proj into gate and up
  3089. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  3090. elif "up_gate_proj" in name:
  3091. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  3092. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  3093. dim_half = data_torch.shape[0] // 2
  3094. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  3095. yield from super().modify_tensors(gate_proj_weight, name_gate, bid)
  3096. yield from super().modify_tensors(up_proj_weight, name_up, bid)
  3097. else:
  3098. yield from super().modify_tensors(data_torch, name, bid)
  3099. @ModelBase.register("Ernie4_5_MoeForCausalLM")
  3100. class Ernie4_5MoeModel(Ernie4_5Model):
  3101. model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
  3102. _experts: list[dict[str, Tensor]] | None = None
  3103. def __init__(self, *args, **kwargs):
  3104. super().__init__(*args, **kwargs)
  3105. self._experts = [{} for _ in range(self.block_count)]
  3106. def set_gguf_parameters(self):
  3107. super().set_gguf_parameters()
  3108. self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
  3109. self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
  3110. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
  3111. self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
  3112. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3113. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3114. if (shared_expert_count := self.hparams.get('moe_num_shared_experts')) is not None:
  3115. self.gguf_writer.add_expert_shared_count(shared_expert_count)
  3116. if shared_expert_count > 0 and (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
  3117. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
  3118. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3119. # Modify correction bias name as in DeepseekV2
  3120. if name.endswith("e_score_correction_bias"):
  3121. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  3122. # skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
  3123. match = re.match(r"model.mtp_block.(\d+)", name)
  3124. if match:
  3125. return
  3126. # skip all other MTP tensors for now
  3127. match = re.match(r"model.mtp_emb_norm.(\d+)", name)
  3128. if match:
  3129. return
  3130. match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
  3131. if match:
  3132. return
  3133. match = re.match(r"model.mtp_linear_proj.(\d+)", name)
  3134. if match:
  3135. return
  3136. # process the experts separately
  3137. if name.find("mlp.experts") != -1:
  3138. n_experts = self.hparams["moe_num_experts"]
  3139. assert bid is not None
  3140. if self._experts is None:
  3141. self._experts = [{} for _ in range(self.block_count)]
  3142. self._experts[bid][name] = data_torch
  3143. if len(self._experts[bid]) >= n_experts * 3:
  3144. # merge the experts into a single 3d tensor
  3145. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  3146. datas: list[Tensor] = []
  3147. for xid in range(n_experts):
  3148. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3149. datas.append(self._experts[bid][ename_to_retrieve])
  3150. del self._experts[bid][ename_to_retrieve]
  3151. data_torch = torch.stack(datas, dim=0)
  3152. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3153. yield from super().modify_tensors(data_torch, merged_name, bid)
  3154. else:
  3155. yield from super().modify_tensors(data_torch, name, bid)
  3156. def prepare_tensors(self):
  3157. super().prepare_tensors()
  3158. if self._experts is not None:
  3159. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3160. experts = [k for d in self._experts for k in d.keys()]
  3161. if len(experts) > 0:
  3162. raise ValueError(f"Unprocessed experts: {experts}")
  3163. @ModelBase.register(
  3164. "Qwen2VLModel",
  3165. "Qwen2VLForConditionalGeneration",
  3166. "Qwen2_5_VLForConditionalGeneration",
  3167. "Qwen2_5OmniModel",
  3168. )
  3169. class Qwen2VLModel(TextModel):
  3170. model_arch = gguf.MODEL_ARCH.QWEN2VL
  3171. def set_gguf_parameters(self):
  3172. super().set_gguf_parameters()
  3173. def set_vocab(self):
  3174. try:
  3175. self._set_vocab_sentencepiece()
  3176. except FileNotFoundError:
  3177. self._set_vocab_gpt2()
  3178. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3179. if name.startswith("thinker."):
  3180. name = name.replace("thinker.", "")
  3181. if name.startswith("visual") or name.startswith("audio") or \
  3182. name.startswith("talker") or name.startswith("token2wav"):
  3183. # skip multimodal tensors
  3184. return
  3185. yield from super().modify_tensors(data_torch, name, bid)
  3186. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  3187. class Qwen2VLVisionModel(MmprojModel):
  3188. def __init__(self, *args, **kwargs):
  3189. super().__init__(*args, **kwargs)
  3190. assert self.hparams_vision is not None
  3191. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  3192. # rename config.json values
  3193. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3194. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3195. if "embed_dim" in self.hparams_vision: # qwen2vl
  3196. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  3197. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  3198. def set_gguf_parameters(self):
  3199. super().set_gguf_parameters()
  3200. assert self.hparams_vision is not None
  3201. hparams = self.hparams_vision
  3202. model_type = self.global_config['model_type']
  3203. if model_type == 'qwen2_vl':
  3204. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  3205. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  3206. if model_type == 'qwen2_5_omni':
  3207. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  3208. else:
  3209. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  3210. self.gguf_writer.add_vision_use_silu(True)
  3211. # find n_wa_pattern (window attention pattern)
  3212. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  3213. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  3214. n_wa_pattern = fullatt_block_indexes[0] + 1
  3215. # validate n_wa_pattern
  3216. for i in range(1, len(fullatt_block_indexes)):
  3217. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  3218. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  3219. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  3220. else:
  3221. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  3222. # default values below are taken from HF tranformers code
  3223. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  3224. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3225. if ".position_embd." in new_name:
  3226. return gguf.GGMLQuantizationType.F32
  3227. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3228. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3229. if name.startswith("visual."):
  3230. # process visual tensors
  3231. # split QKV tensors if needed
  3232. if ".qkv." in name:
  3233. if data_torch.ndim == 2: # weight
  3234. c3, _ = data_torch.shape
  3235. else: # bias
  3236. c3 = data_torch.shape[0]
  3237. assert c3 % 3 == 0
  3238. c = c3 // 3
  3239. wq = data_torch[:c]
  3240. wk = data_torch[c: c * 2]
  3241. wv = data_torch[c * 2:]
  3242. yield from super().modify_tensors(wq, name.replace("qkv", "q"), bid)
  3243. yield from super().modify_tensors(wk, name.replace("qkv", "k"), bid)
  3244. yield from super().modify_tensors(wv, name.replace("qkv", "v"), bid)
  3245. elif 'patch_embed.proj.weight' in name:
  3246. # split Conv3D into Conv2Ds
  3247. c1, c2, kt, kh, kw = data_torch.shape
  3248. del c1, c2, kh, kw # unused
  3249. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  3250. yield (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...])
  3251. yield (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...])
  3252. else:
  3253. yield from super().modify_tensors(data_torch, name, bid)
  3254. @ModelBase.register("Qwen2_5OmniModel")
  3255. class Qwen25OmniModel(Qwen2VLVisionModel):
  3256. has_vision_encoder = True
  3257. has_audio_encoder = True
  3258. def __init__(self, *args, **kwargs):
  3259. super().__init__(*args, **kwargs)
  3260. assert self.hparams_audio is not None
  3261. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  3262. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  3263. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  3264. def set_gguf_parameters(self):
  3265. super().set_gguf_parameters()
  3266. assert self.hparams_audio is not None
  3267. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  3268. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  3269. def get_vision_config(self) -> dict[str, Any] | None:
  3270. return self.global_config["thinker_config"].get("vision_config")
  3271. def get_audio_config(self) -> dict[str, Any] | None:
  3272. return self.global_config["thinker_config"].get("audio_config")
  3273. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3274. # SinusoidsPositionEmbedding
  3275. assert self.hparams_audio is not None
  3276. max_timescale = 10000
  3277. length = 1500
  3278. channels = self.hparams_audio["hidden_size"]
  3279. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  3280. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  3281. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  3282. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  3283. yield ("audio_tower.embed_positions.weight", pos_embd)
  3284. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3285. if ".conv" in name and ".weight" in name:
  3286. return gguf.GGMLQuantizationType.F16
  3287. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3288. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3289. if name.startswith("thinker."):
  3290. name = name.replace("thinker.", "")
  3291. if name.startswith("audio_tower"):
  3292. # process audio tensors
  3293. if "conv1.bias" in name or "conv2.bias" in name:
  3294. # transpose conv1 and conv2 bias
  3295. data_torch = data_torch.unsqueeze(-1)
  3296. if "audio_bos_eos_token" in name:
  3297. # this tensor is left unused in transformers code
  3298. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  3299. return
  3300. yield from super().modify_tensors(data_torch, name, bid)
  3301. @ModelBase.register("InternVisionModel")
  3302. class InternVisionModel(MmprojModel):
  3303. def set_gguf_parameters(self):
  3304. assert self.hparams_vision is not None
  3305. if isinstance(self.hparams_vision['image_size'], list):
  3306. self.hparams_vision['image_size'] = self.hparams_vision['image_size'][0]
  3307. if isinstance(self.hparams_vision['patch_size'], list):
  3308. self.hparams_vision['patch_size'] = self.hparams_vision['patch_size'][0]
  3309. super().set_gguf_parameters()
  3310. hparams = self.hparams
  3311. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  3312. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  3313. # hidden_act
  3314. if hparams["hidden_act"] == "silu":
  3315. self.gguf_writer.add_vision_use_silu(True)
  3316. elif hparams["hidden_act"] == "gelu":
  3317. self.gguf_writer.add_vision_use_gelu(True)
  3318. else:
  3319. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  3320. # downsample_ratio
  3321. downsample_ratio = self.global_config.get("downsample_ratio")
  3322. assert downsample_ratio is not None
  3323. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  3324. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3325. if ".position_embd." in new_name:
  3326. return gguf.GGMLQuantizationType.F32
  3327. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3328. def _mapping_interns1_name(self, name):
  3329. names_map = {
  3330. "model.multi_modal_projector.layer_norm.bias": "mlp1.0.bias",
  3331. "model.multi_modal_projector.layer_norm.weight": "mlp1.0.weight",
  3332. "model.multi_modal_projector.linear_1.bias": "mlp1.1.bias",
  3333. "model.multi_modal_projector.linear_1.weight": "mlp1.1.weight",
  3334. "model.multi_modal_projector.linear_2.bias": "mlp1.3.bias",
  3335. "model.multi_modal_projector.linear_2.weight": "mlp1.3.weight",
  3336. }
  3337. if name in names_map:
  3338. name = names_map[name]
  3339. return name
  3340. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3341. vision_prefix = ['vision_model', 'mlp', 'model.vision_tower', 'model.multi_modal_projector']
  3342. # deal with intern-s1 special case
  3343. name = self._mapping_interns1_name(name)
  3344. if any([name.startswith(prefix) for prefix in vision_prefix]):
  3345. # process visual tensors
  3346. # correct name
  3347. if name.startswith("vision_model"):
  3348. name = "vision_tower." + name
  3349. if (".ls" in name or ".lambda_" in name or "position_embedding" in name) and not name.endswith(".weight"):
  3350. name += ".weight"
  3351. # split QKV tensors if needed
  3352. if ".qkv." in name:
  3353. if data_torch.ndim == 2: # weight
  3354. c3, _ = data_torch.shape
  3355. else: # bias
  3356. c3 = data_torch.shape[0]
  3357. assert c3 % 3 == 0
  3358. c = c3 // 3
  3359. wq = data_torch[:c]
  3360. wk = data_torch[c: c * 2]
  3361. wv = data_torch[c * 2:]
  3362. yield from super().modify_tensors(wq, name.replace("attn.qkv", "self_attn.q_proj"), bid)
  3363. yield from super().modify_tensors(wk, name.replace("attn.qkv", "self_attn.k_proj"), bid)
  3364. yield from super().modify_tensors(wv, name.replace("attn.qkv", "self_attn.v_proj"), bid)
  3365. else:
  3366. yield from super().modify_tensors(data_torch, name, bid)
  3367. @ModelBase.register("WavTokenizerDec")
  3368. class WavTokenizerDecModel(TextModel):
  3369. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  3370. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3371. if \
  3372. name.endswith("codebook.cluster_size") or \
  3373. name.endswith("codebook.embed_avg") or \
  3374. name.endswith("codebook.inited"):
  3375. logger.debug(f"Skipping {name!r}")
  3376. return
  3377. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  3378. yield from super().modify_tensors(data_torch, name, bid)
  3379. def set_vocab(self):
  3380. self._set_vocab_none()
  3381. def set_gguf_parameters(self):
  3382. super().set_gguf_parameters()
  3383. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  3384. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  3385. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  3386. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  3387. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  3388. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  3389. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  3390. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  3391. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  3392. self.gguf_writer.add_causal_attention(False)
  3393. @ModelBase.register("Qwen2MoeForCausalLM")
  3394. class Qwen2MoeModel(TextModel):
  3395. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  3396. def set_gguf_parameters(self):
  3397. super().set_gguf_parameters()
  3398. if (n_experts := self.hparams.get("num_experts")) is not None:
  3399. self.gguf_writer.add_expert_count(n_experts)
  3400. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3401. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3402. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  3403. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  3404. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  3405. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  3406. _experts: list[dict[str, Tensor]] | None = None
  3407. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3408. # process the experts separately
  3409. name = name.replace("language_model.", "") # InternVL
  3410. # handle aggregated expert tensors
  3411. # GGUF stores dimensions reversed from PyTorch, so:
  3412. # PyTorch (A,B,C) -> GGUF writes [C,B,A] -> GGML reads ne={C,B,A}
  3413. # Input shapes from HF: (n_expert, n_ff_exp, n_embd) or (n_expert, n_embd, n_ff_exp)
  3414. # Expected GGML ne: {n_embd, n_ff_exp, n_expert} for gate/up, {n_ff_exp, n_embd, n_expert} for down
  3415. if name.endswith("mlp.experts.down_proj") or name.endswith("mlp.experts.down_proj.weight"):
  3416. mapped = f"{name}.weight" if not name.endswith(".weight") else name
  3417. # Input: (n_expert=128, n_ff_exp=768, n_embd=2048)
  3418. # Want GGML ne: {n_ff_exp, n_embd, n_expert} = {768, 2048, 128}
  3419. # Need PyTorch: (128, 2048, 768) [reversed of GGML]
  3420. # So: permute(0, 2, 1): (128, 768, 2048) -> (128, 2048, 768)
  3421. permuted = data_torch.permute(0, 2, 1).contiguous()
  3422. yield from super().modify_tensors(permuted, mapped, bid)
  3423. return
  3424. if name.endswith("mlp.experts.gate_up_proj") or name.endswith("mlp.experts.gate_up_proj.weight"):
  3425. if data_torch.ndim < 3 or data_torch.shape[-1] % 2 != 0:
  3426. raise ValueError(f"Unexpected gate_up_proj shape for {name}: {tuple(data_torch.shape)}")
  3427. split_dim = data_torch.shape[-1] // 2
  3428. gate = data_torch[..., :split_dim].contiguous()
  3429. up = data_torch[..., split_dim:].contiguous()
  3430. # Input gate/up: (n_expert=128, n_embd=2048, n_ff_exp=768)
  3431. # Want GGML ne: {n_embd, n_ff_exp, n_expert} = {2048, 768, 128}
  3432. # Need PyTorch: (128, 768, 2048) [reversed of GGML]
  3433. # So: permute(0, 2, 1): (128, 2048, 768) -> (128, 768, 2048)
  3434. base_name = name.removesuffix(".weight")
  3435. base = base_name.rsplit('.', 1)[0]
  3436. mapped_gate = f"{base}.gate_proj.weight"
  3437. mapped_up = f"{base}.up_proj.weight"
  3438. perm_gate = gate.permute(0, 2, 1).contiguous()
  3439. perm_up = up.permute(0, 2, 1).contiguous()
  3440. yield from super().modify_tensors(perm_gate, mapped_gate, bid)
  3441. yield from super().modify_tensors(perm_up, mapped_up, bid)
  3442. return
  3443. if name.startswith("mlp") or name.startswith("vision_model") or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector") or name.startswith("model.visual"):
  3444. # skip visual tensors
  3445. return
  3446. if name.find("experts") != -1:
  3447. n_experts = self.hparams["num_experts"]
  3448. assert bid is not None
  3449. if self._experts is None:
  3450. self._experts = [{} for _ in range(self.block_count)]
  3451. self._experts[bid][name] = data_torch
  3452. if len(self._experts[bid]) >= n_experts * 3:
  3453. # merge the experts into a single 3d tensor
  3454. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3455. datas: list[Tensor] = []
  3456. for xid in range(n_experts):
  3457. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3458. datas.append(self._experts[bid][ename])
  3459. del self._experts[bid][ename]
  3460. data_torch = torch.stack(datas, dim=0)
  3461. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3462. yield from super().modify_tensors(data_torch, merged_name, bid)
  3463. return
  3464. else:
  3465. return
  3466. yield from super().modify_tensors(data_torch, name, bid)
  3467. def prepare_tensors(self):
  3468. super().prepare_tensors()
  3469. if self._experts is not None:
  3470. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3471. experts = [k for d in self._experts for k in d.keys()]
  3472. if len(experts) > 0:
  3473. raise ValueError(f"Unprocessed experts: {experts}")
  3474. @ModelBase.register("Qwen3ForCausalLM")
  3475. class Qwen3Model(Qwen2Model):
  3476. model_arch = gguf.MODEL_ARCH.QWEN3
  3477. # extra logic for rerank models
  3478. is_rerank: bool = False
  3479. is_tied_embeddings: bool = False
  3480. token_false_id: int | None = None
  3481. token_true_id: int | None = None
  3482. def __init__(self, *args, **kwargs):
  3483. super().__init__(*args, **kwargs)
  3484. # track for intern-s1-mini
  3485. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  3486. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3487. # a bit hacky, but currently the only way to detect if this is a rerank model
  3488. # ref: https://huggingface.co/Qwen/Qwen3-Reranker-0.6B
  3489. readme_path = self.dir_model / "README.md"
  3490. readme_text = ""
  3491. if readme_path.exists():
  3492. with readme_path.open("r", encoding="utf-8") as f:
  3493. readme_text = f.read()
  3494. if "# Qwen3-Reranker" in readme_text:
  3495. self._find_rerank_config()
  3496. def set_vocab(self):
  3497. # deal with intern-s1-mini
  3498. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3499. self._set_vocab_interns1()
  3500. return
  3501. super().set_vocab()
  3502. def _find_rerank_config(self):
  3503. from transformers import AutoTokenizer
  3504. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3505. self.is_rerank = True
  3506. self.is_tied_embeddings = self.hparams.get("tie_word_embeddings", False)
  3507. self.token_false_id = tokenizer.convert_tokens_to_ids("no")
  3508. self.token_true_id = tokenizer.convert_tokens_to_ids("yes")
  3509. self.sep_token_id = tokenizer.convert_tokens_to_ids("|")
  3510. assert self.token_false_id is not None and self.token_true_id is not None
  3511. def set_gguf_parameters(self):
  3512. super().set_gguf_parameters()
  3513. if self.is_rerank:
  3514. self.gguf_writer.add_pooling_type(gguf.PoolingType.RANK)
  3515. self.gguf_writer.add_classifier_output_labels(["yes", "no"])
  3516. self.gguf_writer.add_chat_template([{
  3517. "name": "rerank",
  3518. "template": "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n"
  3519. "<|im_start|>user\n<Instruct>: Given a web search query, retrieve relevant passages that answer the query\n<Query>: {query}\n<Document>: {document}<|im_end|>\n"
  3520. "<|im_start|>assistant\n<think>\n\n</think>\n\n"
  3521. }])
  3522. def _get_cls_out_tensor(self, data_torch: Tensor) -> Tensor:
  3523. # extract "yes" and "no" tokens from the output lm_head tensor
  3524. false_row = data_torch[self.token_false_id]
  3525. true_row = data_torch[self.token_true_id]
  3526. return torch.stack([true_row, false_row], dim=0)
  3527. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3528. if "model.vision_" in name:
  3529. # skip multimodal tensors
  3530. return
  3531. if self.is_rerank:
  3532. is_tied_head = self.is_tied_embeddings and "embed_tokens" in name
  3533. is_real_head = not self.is_tied_embeddings and "lm_head" in name
  3534. if is_tied_head or is_real_head:
  3535. cls_out_head = (
  3536. gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.CLS_OUT] + ".weight",
  3537. self._get_cls_out_tensor(data_torch),
  3538. )
  3539. yield cls_out_head
  3540. if is_tied_head:
  3541. yield from super().modify_tensors(data_torch, name, bid)
  3542. return
  3543. yield from super().modify_tensors(data_torch, name, bid)
  3544. @ModelBase.register("Qwen3MoeForCausalLM")
  3545. class Qwen3MoeModel(Qwen2MoeModel):
  3546. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  3547. def __init__(self, *args, **kwargs):
  3548. super().__init__(*args, **kwargs)
  3549. hparams = ModelBase.load_hparams(self.dir_model, False)
  3550. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3551. def set_vocab(self):
  3552. # deal with intern-s1
  3553. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3554. self._set_vocab_interns1()
  3555. return
  3556. super().set_vocab()
  3557. @ModelBase.register("Qwen3NextForCausalLM")
  3558. class Qwen3NextModel(Qwen2MoeModel):
  3559. model_arch = gguf.MODEL_ARCH.QWEN3NEXT
  3560. def set_gguf_parameters(self):
  3561. super().set_gguf_parameters()
  3562. self.gguf_writer.add_ssm_conv_kernel(self.hparams["linear_conv_kernel_dim"])
  3563. self.gguf_writer.add_ssm_state_size(self.hparams["linear_key_head_dim"])
  3564. self.gguf_writer.add_ssm_group_count(self.hparams["linear_num_key_heads"])
  3565. self.gguf_writer.add_ssm_time_step_rank(self.hparams["linear_num_value_heads"])
  3566. self.gguf_writer.add_ssm_inner_size(self.hparams["linear_value_head_dim"] * self.hparams["linear_num_value_heads"])
  3567. if (rope_dim := self.hparams.get("head_dim")) is None:
  3568. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  3569. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.25)))
  3570. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3571. if name.startswith("mtp"):
  3572. return # ignore MTP layers for now
  3573. if name.endswith(".A_log"):
  3574. data_torch = -torch.exp(data_torch)
  3575. elif name.endswith(".dt_bias"):
  3576. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  3577. elif "conv1d" in name:
  3578. data_torch = data_torch.squeeze()
  3579. elif name.endswith("norm.weight") and not name.endswith("linear_attn.norm.weight"):
  3580. data_torch = data_torch + 1
  3581. if "in_proj_qkvz.weight" in name:
  3582. # original order: [q, k, v, z] * head_count
  3583. # corrected order: [q * head_count, k * head_count, v * head_count, z * head_count]
  3584. head_k_dim = self.hparams["linear_key_head_dim"]
  3585. head_v_dim = self.hparams["linear_value_head_dim"]
  3586. num_v_heads = self.hparams["linear_num_value_heads"]
  3587. num_k_heads = self.hparams["linear_num_key_heads"]
  3588. hidden_size = self.hparams["hidden_size"]
  3589. split_arg_list_qkvz = [
  3590. head_k_dim, # q partition
  3591. head_k_dim, # k partition
  3592. (num_v_heads // num_k_heads * head_v_dim), # v partition
  3593. (num_v_heads // num_k_heads * head_v_dim), # z partition
  3594. ]
  3595. # view as (n_embd, head_count, [q+k+v+z])
  3596. data_torch = data_torch.permute(1, 0).contiguous()
  3597. data_torch = data_torch.view(-1, num_k_heads, sum(split_arg_list_qkvz))
  3598. # split into q, k, v, z
  3599. q, k, v, z = torch.split(data_torch, split_arg_list_qkvz, dim=-1)
  3600. # flatten dim + head_count
  3601. q = q.contiguous().view(hidden_size, -1)
  3602. k = k.contiguous().view(hidden_size, -1)
  3603. v = v.contiguous().view(hidden_size, -1)
  3604. z = z.contiguous().view(hidden_size, -1)
  3605. # stack back
  3606. qkv = torch.cat([q, k, v], dim=-1).permute(1, 0).contiguous()
  3607. z = z.permute(1, 0).contiguous()
  3608. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_QKV, bid, ".weight"), qkv)
  3609. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_GATE, bid, ".weight"), z)
  3610. else:
  3611. yield from super().modify_tensors(data_torch, name, bid)
  3612. @ModelBase.register("RND1")
  3613. class RND1Model(Qwen2MoeModel):
  3614. model_arch = gguf.MODEL_ARCH.RND1
  3615. def set_gguf_parameters(self):
  3616. super().set_gguf_parameters()
  3617. # RND1 specific parameters
  3618. # RND1 uses bidirectional attention
  3619. self.gguf_writer.add_causal_attention(False)
  3620. if (mask_token_id := self.hparams.get("mask_token_id")) is not None:
  3621. self.gguf_writer.add_mask_token_id(mask_token_id)
  3622. @ModelBase.register("Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration")
  3623. class Qwen3VLVisionModel(MmprojModel):
  3624. def __init__(self, *args, **kwargs):
  3625. super().__init__(*args, **kwargs)
  3626. assert self.hparams_vision is not None
  3627. # Compute image_size if not present
  3628. if "image_size" not in self.hparams_vision:
  3629. # For Qwen3VL/Qwen3VLMoe, compute from num_position_embeddings
  3630. num_pos = self.hparams_vision.get("num_position_embeddings", 2304)
  3631. patch_size = self.hparams_vision.get("patch_size", 16)
  3632. # num_position_embeddings = (image_size / patch_size) ** 2
  3633. # So image_size = sqrt(num_position_embeddings) * patch_size
  3634. image_size = int(num_pos**0.5 * patch_size)
  3635. self.hparams_vision["image_size"] = image_size
  3636. # Rename config values for compatibility
  3637. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3638. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3639. self.is_deepstack_layers = [False] * int(self.hparams_vision["num_hidden_layers"] or 0)
  3640. for idx in self.hparams_vision.get("deepstack_visual_indexes", []):
  3641. self.is_deepstack_layers[idx] = True
  3642. def set_gguf_parameters(self):
  3643. super().set_gguf_parameters()
  3644. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN3VL)
  3645. self.gguf_writer.add_vision_use_gelu(True)
  3646. if self.hparams_vision is not None:
  3647. merge_size = self.hparams_vision.get("spatial_merge_size")
  3648. if merge_size is not None:
  3649. self.gguf_writer.add_vision_spatial_merge_size(int(merge_size))
  3650. # Use text config's rms_norm_eps for vision attention layernorm eps
  3651. rms_norm_eps = self.global_config.get("text_config", {}).get("rms_norm_eps", 1e-6)
  3652. self.gguf_writer.add_vision_attention_layernorm_eps(rms_norm_eps)
  3653. if self.is_deepstack_layers:
  3654. self.gguf_writer.add_vision_is_deepstack_layers(self.is_deepstack_layers)
  3655. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3656. assert self.hparams_vision is not None
  3657. # Skip text model tensors - they go in the text model file
  3658. if name.startswith("model.language_model.") or name.startswith("lm_head."):
  3659. return
  3660. if name.startswith("model.visual."):
  3661. name = name.replace("model.visual.", "visual.", 1)
  3662. if name.startswith("visual.deepstack_merger_list."):
  3663. prefix, rest = name.split(".", maxsplit=3)[2:]
  3664. # prefix is the layer index, convert to absolute clip layer index!
  3665. idx = self.hparams_vision.get("deepstack_visual_indexes", [])[int(prefix)]
  3666. target = rest
  3667. tensor_type: gguf.MODEL_TENSOR
  3668. if target.startswith("norm."):
  3669. tensor_type = gguf.MODEL_TENSOR.V_DS_NORM
  3670. suffix = target.split(".", 1)[1]
  3671. elif target.startswith("linear_fc1."):
  3672. tensor_type = gguf.MODEL_TENSOR.V_DS_FC1
  3673. suffix = target.split(".", 1)[1]
  3674. elif target.startswith("linear_fc2."):
  3675. tensor_type = gguf.MODEL_TENSOR.V_DS_FC2
  3676. suffix = target.split(".", 1)[1]
  3677. else:
  3678. raise ValueError(f"Unexpected deepstack tensor: {name}")
  3679. new_name = self.format_tensor_name(tensor_type, idx, suffix=f".{suffix}")
  3680. yield from super().modify_tensors(data_torch, new_name, bid)
  3681. return
  3682. if name.startswith("visual.merger."):
  3683. suffix = name.split(".", 2)[2]
  3684. if suffix.startswith("linear_fc"):
  3685. fc_idx_str, tail = suffix.split(".", 1)
  3686. fc_num = int(fc_idx_str.replace("linear_fc", ""))
  3687. # Qwen3VL has linear_fc1 and linear_fc2
  3688. # Map to indices 0 and 2 (matching Qwen2VL which uses indices 0 and 2)
  3689. if fc_num == 1:
  3690. fc_idx = 0
  3691. elif fc_num == 2:
  3692. fc_idx = 2
  3693. else:
  3694. raise ValueError(f"unexpected fc index {fc_num} in {name}")
  3695. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, fc_idx, suffix=f".{tail}")
  3696. elif suffix.startswith("norm."):
  3697. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_POST_NORM, suffix=f".{suffix.split('.', 1)[1]}")
  3698. else:
  3699. raise ValueError(f"Unexpected merger tensor: {name}")
  3700. yield (new_name, data_torch)
  3701. return
  3702. if name == "visual.patch_embed.proj.weight":
  3703. # split Conv3D into Conv2Ds along temporal dimension
  3704. c1, c2, kt, _, _ = data_torch.shape
  3705. del c1, c2
  3706. if kt != 2:
  3707. raise ValueError("Current implementation only supports temporal_patch_size of 2")
  3708. yield (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight", data_torch[:, :, 0, ...])
  3709. yield (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...])
  3710. return
  3711. if name == "visual.patch_embed.proj.bias":
  3712. # Include the bias - it's used by the C++ code
  3713. yield (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".bias", data_torch)
  3714. return
  3715. if name.startswith("visual."):
  3716. yield from super().modify_tensors(data_torch, name, bid)
  3717. return
  3718. # Fall back to parent class for other tensors
  3719. yield from super().modify_tensors(data_torch, name, bid)
  3720. @ModelBase.register("Glm4vForConditionalGeneration", "Glm4vMoeForConditionalGeneration")
  3721. class Glm4VVisionModel(Qwen3VLVisionModel):
  3722. def set_gguf_parameters(self):
  3723. MmprojModel.set_gguf_parameters(self) # skip Qwen3VLVisionModel parameters
  3724. assert self.hparams_vision is not None
  3725. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GLM4V)
  3726. hidden_act = str(self.hparams_vision.get("hidden_act", "")).lower()
  3727. if hidden_act == "gelu":
  3728. self.gguf_writer.add_vision_use_gelu(True)
  3729. elif hidden_act == "silu":
  3730. self.gguf_writer.add_vision_use_silu(True)
  3731. rms_norm_eps = self.hparams_vision.get("rms_norm_eps", 1e-5)
  3732. self.gguf_writer.add_vision_attention_layernorm_eps(rms_norm_eps)
  3733. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3734. if name.startswith("model.visual."):
  3735. name = name.replace("model.visual.", "visual.")
  3736. if name.startswith("visual.merger."):
  3737. yield from ModelBase.modify_tensors(self, data_torch, name, bid)
  3738. return
  3739. yield from super().modify_tensors(data_torch, name, bid)
  3740. @ModelBase.register("Qwen3VLForConditionalGeneration")
  3741. class Qwen3VLTextModel(Qwen3Model):
  3742. model_arch = gguf.MODEL_ARCH.QWEN3VL
  3743. def set_gguf_parameters(self):
  3744. super().set_gguf_parameters()
  3745. # Handle MRoPE (Multi-axis Rotary Position Embedding) for Qwen3-VL
  3746. vision_config = self.hparams.get("vision_config", {})
  3747. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3748. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3749. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3750. # Skip vision tensors - they go in the mmproj file
  3751. if name.startswith("model.visual."):
  3752. return
  3753. yield from super().modify_tensors(data_torch, name, bid)
  3754. @ModelBase.register("Qwen3VLMoeForConditionalGeneration")
  3755. class Qwen3VLMoeTextModel(Qwen3MoeModel):
  3756. model_arch = gguf.MODEL_ARCH.QWEN3VLMOE
  3757. def set_gguf_parameters(self):
  3758. super().set_gguf_parameters()
  3759. vision_config = self.hparams.get("vision_config", {})
  3760. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3761. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3762. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3763. # Skip vision tensors - they go in the mmproj file
  3764. if name.startswith("model.visual."):
  3765. return
  3766. yield from super().modify_tensors(data_torch, name, bid)
  3767. @ModelBase.register("GPT2LMHeadModel")
  3768. class GPT2Model(TextModel):
  3769. model_arch = gguf.MODEL_ARCH.GPT2
  3770. def set_gguf_parameters(self):
  3771. self.gguf_writer.add_block_count(self.block_count)
  3772. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  3773. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3774. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3775. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3776. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3777. self.gguf_writer.add_file_type(self.ftype)
  3778. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3779. # we don't need these
  3780. if name.endswith((".attn.bias", ".attn.masked_bias")):
  3781. yield from super().modify_tensors(data_torch, name, bid)
  3782. return
  3783. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  3784. data_torch = data_torch.transpose(1, 0)
  3785. new_name = self.map_tensor_name(name)
  3786. yield from super().modify_tensors(data_torch, new_name, bid)
  3787. @ModelBase.register("PhiForCausalLM")
  3788. class Phi2Model(TextModel):
  3789. model_arch = gguf.MODEL_ARCH.PHI2
  3790. def set_gguf_parameters(self):
  3791. rot_pct = self.find_hparam(["partial_rotary_factor"])
  3792. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3793. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3794. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  3795. self.gguf_writer.add_embedding_length(n_embd)
  3796. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  3797. self.gguf_writer.add_block_count(self.block_count)
  3798. self.gguf_writer.add_head_count(n_head)
  3799. self.gguf_writer.add_head_count_kv(n_head)
  3800. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  3801. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3802. self.gguf_writer.add_file_type(self.ftype)
  3803. self.gguf_writer.add_add_bos_token(False)
  3804. @ModelBase.register("Phi3ForCausalLM")
  3805. class Phi3MiniModel(TextModel):
  3806. model_arch = gguf.MODEL_ARCH.PHI3
  3807. def set_vocab(self):
  3808. # Phi-4 model uses GPT2Tokenizer
  3809. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3810. if tokenizer_config_file.is_file():
  3811. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3812. tokenizer_config_json = json.load(f)
  3813. tokenizer_class = tokenizer_config_json['tokenizer_class']
  3814. if tokenizer_class == 'GPT2Tokenizer':
  3815. return self._set_vocab_gpt2()
  3816. from sentencepiece import SentencePieceProcessor
  3817. tokenizer_path = self.dir_model / 'tokenizer.model'
  3818. if not tokenizer_path.is_file():
  3819. raise ValueError(f'Error: Missing {tokenizer_path}')
  3820. tokenizer = SentencePieceProcessor()
  3821. tokenizer.LoadFromFile(str(tokenizer_path))
  3822. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3823. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3824. scores: list[float] = [-10000.0] * vocab_size
  3825. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3826. for token_id in range(tokenizer.vocab_size()):
  3827. piece = tokenizer.IdToPiece(token_id)
  3828. text = piece.encode("utf-8")
  3829. score = tokenizer.GetScore(token_id)
  3830. toktype = SentencePieceTokenTypes.NORMAL
  3831. if tokenizer.IsUnknown(token_id):
  3832. toktype = SentencePieceTokenTypes.UNKNOWN
  3833. elif tokenizer.IsControl(token_id):
  3834. toktype = SentencePieceTokenTypes.CONTROL
  3835. elif tokenizer.IsUnused(token_id):
  3836. toktype = SentencePieceTokenTypes.UNUSED
  3837. elif tokenizer.IsByte(token_id):
  3838. toktype = SentencePieceTokenTypes.BYTE
  3839. tokens[token_id] = text
  3840. scores[token_id] = score
  3841. toktypes[token_id] = toktype
  3842. added_tokens_file = self.dir_model / 'added_tokens.json'
  3843. if added_tokens_file.is_file():
  3844. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3845. added_tokens_json = json.load(f)
  3846. for key in added_tokens_json:
  3847. token_id = added_tokens_json[key]
  3848. if token_id >= vocab_size:
  3849. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3850. continue
  3851. tokens[token_id] = key.encode("utf-8")
  3852. scores[token_id] = -1000.0
  3853. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3854. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3855. if tokenizer_config_file.is_file():
  3856. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3857. tokenizer_config_json = json.load(f)
  3858. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3859. for token_id, foken_data in added_tokens_decoder.items():
  3860. token_id = int(token_id)
  3861. token = foken_data["content"].encode("utf-8")
  3862. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3863. if tokens[token_id] != token:
  3864. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3865. tokens[token_id] = token
  3866. scores[token_id] = -1000.0
  3867. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3868. if foken_data.get("special"):
  3869. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3870. tokenizer_file = self.dir_model / 'tokenizer.json'
  3871. if tokenizer_file.is_file():
  3872. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3873. tokenizer_json = json.load(f)
  3874. added_tokens = tokenizer_json.get("added_tokens", [])
  3875. for foken_data in added_tokens:
  3876. token_id = int(foken_data["id"])
  3877. token = foken_data["content"].encode("utf-8")
  3878. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3879. if tokens[token_id] != token:
  3880. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3881. tokens[token_id] = token
  3882. scores[token_id] = -1000.0
  3883. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3884. if foken_data.get("special"):
  3885. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3886. self.gguf_writer.add_tokenizer_model("llama")
  3887. self.gguf_writer.add_tokenizer_pre("default")
  3888. self.gguf_writer.add_token_list(tokens)
  3889. self.gguf_writer.add_token_scores(scores)
  3890. self.gguf_writer.add_token_types(toktypes)
  3891. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3892. special_vocab.add_to_gguf(self.gguf_writer)
  3893. def set_gguf_parameters(self):
  3894. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3895. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3896. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  3897. rms_eps = self.find_hparam(["rms_norm_eps"])
  3898. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3899. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3900. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3901. rope_dims = int(rot_pct * n_embd) // n_head
  3902. self.gguf_writer.add_context_length(max_pos_embds)
  3903. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  3904. self.gguf_writer.add_embedding_length(n_embd)
  3905. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  3906. self.gguf_writer.add_block_count(self.block_count)
  3907. self.gguf_writer.add_head_count(n_head)
  3908. self.gguf_writer.add_head_count_kv(n_head_kv)
  3909. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  3910. self.gguf_writer.add_rope_dimension_count(rope_dims)
  3911. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("full_attention", self.rope_parameters)["rope_theta"])
  3912. self.gguf_writer.add_file_type(self.ftype)
  3913. sliding_window = self.hparams.get("sliding_window")
  3914. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  3915. if sliding_window is None:
  3916. sliding_window = 0
  3917. self.gguf_writer.add_sliding_window(sliding_window)
  3918. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3919. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3920. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3921. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3922. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3923. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3924. rope_dims = int(rot_pct * n_embd) // n_head
  3925. # write rope scaling for long context (128k) model
  3926. rope_scaling = self.find_hparam(['rope_scaling'], True)
  3927. if rope_scaling is None:
  3928. return
  3929. scale = max_pos_embds / orig_max_pos_embds
  3930. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  3931. if len(rope_scaling_type) == 0:
  3932. raise KeyError('Missing the required key rope_scaling.type')
  3933. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  3934. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  3935. elif rope_scaling_type == 'yarn':
  3936. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  3937. else:
  3938. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  3939. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  3940. long_factors = rope_scaling.get('long_factor', None)
  3941. short_factors = rope_scaling.get('short_factor', None)
  3942. if long_factors is None or short_factors is None:
  3943. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  3944. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  3945. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  3946. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  3947. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  3948. @ModelBase.register("PhiMoEForCausalLM")
  3949. class PhiMoeModel(Phi3MiniModel):
  3950. model_arch = gguf.MODEL_ARCH.PHIMOE
  3951. _experts: list[dict[str, Tensor]] | None = None
  3952. def set_gguf_parameters(self):
  3953. super().set_gguf_parameters()
  3954. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  3955. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  3956. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3957. # process the experts separately
  3958. if name.find("block_sparse_moe.experts") != -1:
  3959. n_experts = self.hparams["num_local_experts"]
  3960. assert bid is not None
  3961. if self._experts is None:
  3962. self._experts = [{} for _ in range(self.block_count)]
  3963. self._experts[bid][name] = data_torch
  3964. if len(self._experts[bid]) >= n_experts * 3:
  3965. # merge the experts into a single 3d tensor
  3966. for w_name in ["w1", "w2", "w3"]:
  3967. datas: list[Tensor] = []
  3968. for xid in range(n_experts):
  3969. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  3970. datas.append(self._experts[bid][ename])
  3971. del self._experts[bid][ename]
  3972. data_torch = torch.stack(datas, dim=0)
  3973. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  3974. yield from super().modify_tensors(data_torch, merged_name, bid)
  3975. return
  3976. else:
  3977. return
  3978. yield from super().modify_tensors(data_torch, name, bid)
  3979. def prepare_tensors(self):
  3980. super().prepare_tensors()
  3981. if self._experts is not None:
  3982. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3983. experts = [k for d in self._experts for k in d.keys()]
  3984. if len(experts) > 0:
  3985. raise ValueError(f"Unprocessed experts: {experts}")
  3986. @ModelBase.register("PlamoForCausalLM")
  3987. class PlamoModel(TextModel):
  3988. model_arch = gguf.MODEL_ARCH.PLAMO
  3989. def set_vocab(self):
  3990. self._set_vocab_sentencepiece()
  3991. def set_gguf_parameters(self):
  3992. hparams = self.hparams
  3993. self.gguf_writer.add_context_length(4096) # not in config.json
  3994. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3995. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3996. self.gguf_writer.add_block_count(self.block_count)
  3997. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3998. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  3999. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  4000. self.gguf_writer.add_file_type(self.ftype)
  4001. def shuffle_attn_q_weight(self, data_torch):
  4002. assert data_torch.size() == (5120, 5120)
  4003. data_torch = data_torch.reshape(8, 5, 128, 5120)
  4004. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  4005. data_torch = torch.reshape(data_torch, (5120, 5120))
  4006. return data_torch
  4007. def shuffle_attn_output_weight(self, data_torch):
  4008. assert data_torch.size() == (5120, 5120)
  4009. data_torch = data_torch.reshape(5120, 8, 5, 128)
  4010. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  4011. data_torch = torch.reshape(data_torch, (5120, 5120))
  4012. return data_torch
  4013. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4014. new_name = self.map_tensor_name(name)
  4015. # shuffle for broadcasting of gqa in ggml_mul_mat
  4016. if new_name.endswith("attn_q.weight"):
  4017. data_torch = self.shuffle_attn_q_weight(data_torch)
  4018. elif new_name.endswith("attn_output.weight"):
  4019. data_torch = self.shuffle_attn_output_weight(data_torch)
  4020. yield from super().modify_tensors(data_torch, name, bid)
  4021. @ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
  4022. class Plamo2Model(TextModel):
  4023. model_arch = gguf.MODEL_ARCH.PLAMO2
  4024. def set_vocab(self):
  4025. self._set_vocab_plamo()
  4026. def set_gguf_parameters(self):
  4027. hparams = self.hparams
  4028. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4029. # Which layers are Mamba layers
  4030. # PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
  4031. # This logic matches modeling_plamo.py's is_mamba function
  4032. mamba_step = hparams.get("mamba_step", 2)
  4033. mamba_enabled = hparams.get("mamba_enabled", True)
  4034. num_key_value_heads = []
  4035. num_attention_heads = []
  4036. if mamba_enabled:
  4037. for i in range(self.block_count):
  4038. if self.block_count <= (mamba_step // 2):
  4039. # use attention in last layer
  4040. is_mamba = (i != self.block_count - 1)
  4041. else:
  4042. is_mamba = (i % mamba_step) != (mamba_step // 2)
  4043. if is_mamba:
  4044. num_key_value_heads.append(0)
  4045. num_attention_heads.append(0)
  4046. else:
  4047. num_key_value_heads.append(hparams.get("num_key_value_heads", 4))
  4048. num_attention_heads.append(hparams.get("num_attention_heads", 32))
  4049. if num_key_value_heads and num_attention_heads:
  4050. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  4051. self.gguf_writer.add_head_count(num_attention_heads)
  4052. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
  4053. self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
  4054. self.gguf_writer.add_key_length(hparams.get("hidden_size_per_head", 128))
  4055. self.gguf_writer.add_value_length(hparams.get("hidden_size_per_head", 128))
  4056. self.gguf_writer.add_block_count(self.block_count)
  4057. self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
  4058. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("rope_theta", 10000))
  4059. # Mamba parameters
  4060. self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
  4061. self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
  4062. self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
  4063. intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
  4064. self.gguf_writer.add_ssm_inner_size(intermediate_size)
  4065. self.gguf_writer.add_ssm_group_count(0)
  4066. # MLP feed forward parameters (for attention layers)
  4067. self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 13312))
  4068. self.gguf_writer.add_file_type(self.ftype)
  4069. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4070. if name.endswith(".A_log"):
  4071. data_torch = -torch.exp(data_torch)
  4072. elif name.endswith(".dt_bias"):
  4073. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  4074. elif name.endswith(".dt_norm_weight"):
  4075. name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
  4076. elif name.endswith(".B_norm_weight"):
  4077. name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
  4078. elif name.endswith(".C_norm_weight"):
  4079. name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
  4080. elif name.endswith(".k_weight"):
  4081. name = name.rpartition(".k_weight")[0] + ".k.weight"
  4082. elif name.endswith(".q_weight"):
  4083. name = name.rpartition(".q_weight")[0] + ".q.weight"
  4084. elif name.endswith(".conv1d.weight"):
  4085. data_torch = torch.squeeze(data_torch) # remove (, 1, )
  4086. assert data_torch.ndim == 2
  4087. elif name.endswith(".pre_mixer_norm.weight"):
  4088. data_torch += 1.0
  4089. elif name.endswith(".post_mixer_norm.weight"):
  4090. data_torch += 1.0 / 5
  4091. elif name.endswith(".pre_mlp_norm.weight"):
  4092. data_torch += 1.0
  4093. elif name.endswith(".post_mlp_norm.weight"):
  4094. data_torch += 1.0 / (5**1.5)
  4095. elif name.endswith(".norm.weight"):
  4096. data_torch += 1.0
  4097. yield from super().modify_tensors(data_torch, name, bid)
  4098. @ModelBase.register("Plamo3ForCausalLM", "PLaMo3ForCausalLM")
  4099. class Plamo3Model(TextModel):
  4100. model_arch = gguf.MODEL_ARCH.PLAMO3
  4101. def set_vocab(self):
  4102. self._set_vocab_plamo()
  4103. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  4104. tokenizer_config = {}
  4105. if tokenizer_config_path.is_file():
  4106. with open(tokenizer_config_path, encoding="utf-8") as f:
  4107. tokenizer_config = json.load(f)
  4108. chat_template = tokenizer_config.get("chat_template")
  4109. chat_template_jinja = self.dir_model / "chat_template.jinja"
  4110. if chat_template_jinja.is_file():
  4111. with open(chat_template_jinja, encoding="utf-8") as f:
  4112. chat_template = f.read()
  4113. if chat_template:
  4114. self.gguf_writer.add_chat_template(chat_template)
  4115. def set_gguf_parameters(self):
  4116. super().set_gguf_parameters()
  4117. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4118. if (sliding_window := self.find_hparam(["window_size", "sliding_window"], optional=True)) is not None:
  4119. self.gguf_writer.add_sliding_window(sliding_window)
  4120. self.gguf_writer.add_sliding_window_pattern(self.hparams["sliding_window_pattern"])
  4121. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4122. if name.endswith(".pre_mixer_norm.weight"):
  4123. data_torch = data_torch + 1.0
  4124. elif name.endswith(".post_mixer_norm.weight"):
  4125. data_torch = data_torch + 1.0 / 5
  4126. elif name.endswith(".pre_mlp_norm.weight"):
  4127. data_torch = data_torch + 1.0
  4128. elif name.endswith(".post_mlp_norm.weight"):
  4129. data_torch = data_torch + 1.0 / (5**1.5)
  4130. elif name.endswith((".mixer.q_norm.weight", ".mixer.k_norm.weight")):
  4131. data_torch = data_torch + 1.0
  4132. elif name.endswith(".norm.weight"):
  4133. data_torch = data_torch + 1.0
  4134. yield from super().modify_tensors(data_torch, name, bid)
  4135. @ModelBase.register("CodeShellForCausalLM")
  4136. class CodeShellModel(TextModel):
  4137. model_arch = gguf.MODEL_ARCH.CODESHELL
  4138. def set_gguf_parameters(self):
  4139. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  4140. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  4141. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  4142. self.gguf_writer.add_block_count(self.block_count)
  4143. self.gguf_writer.add_head_count(self.hparams["n_head"])
  4144. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  4145. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4146. self.gguf_writer.add_file_type(self.ftype)
  4147. self.gguf_writer.add_rope_freq_base(10000.0)
  4148. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4149. self.gguf_writer.add_rope_scaling_factor(1.0)
  4150. @ModelBase.register("InternLM2ForCausalLM")
  4151. class InternLM2Model(TextModel):
  4152. model_arch = gguf.MODEL_ARCH.INTERNLM2
  4153. def set_vocab(self):
  4154. # (TODO): Is there a better way?
  4155. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  4156. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  4157. # recognized as an empty string in C++.
  4158. from sentencepiece import SentencePieceProcessor
  4159. from sentencepiece import sentencepiece_model_pb2 as model
  4160. tokenizer_path = self.dir_model / 'tokenizer.model'
  4161. tokens: list[bytes] = []
  4162. scores: list[float] = []
  4163. toktypes: list[int] = []
  4164. if not tokenizer_path.is_file():
  4165. logger.error(f'Error: Missing {tokenizer_path}')
  4166. sys.exit(1)
  4167. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4168. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4169. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4170. tokenizer = SentencePieceProcessor()
  4171. tokenizer.LoadFromFile(str(tokenizer_path))
  4172. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4173. for token_id in range(vocab_size):
  4174. piece = tokenizer.IdToPiece(token_id)
  4175. text = piece.encode("utf-8")
  4176. score = tokenizer.GetScore(token_id)
  4177. if text == b"\x00":
  4178. # (TODO): fixme
  4179. # Hack here and replace the \x00 characters.
  4180. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  4181. text = "🐉".encode("utf-8")
  4182. toktype = SentencePieceTokenTypes.NORMAL
  4183. if tokenizer.IsUnknown(token_id):
  4184. toktype = SentencePieceTokenTypes.UNKNOWN
  4185. elif tokenizer.IsControl(token_id):
  4186. toktype = SentencePieceTokenTypes.CONTROL
  4187. elif tokenizer.IsUnused(token_id):
  4188. toktype = SentencePieceTokenTypes.UNUSED
  4189. elif tokenizer.IsByte(token_id):
  4190. toktype = SentencePieceTokenTypes.BYTE
  4191. # take care of ununsed raw token
  4192. if piece.startswith('[UNUSED'):
  4193. toktype = SentencePieceTokenTypes.UNUSED
  4194. tokens.append(text)
  4195. scores.append(score)
  4196. toktypes.append(toktype)
  4197. added_tokens_file = self.dir_model / 'added_tokens.json'
  4198. if added_tokens_file.is_file():
  4199. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4200. added_tokens_json = json.load(f)
  4201. for key in added_tokens_json:
  4202. tokens.append(key.encode("utf-8"))
  4203. scores.append(-1000.0)
  4204. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  4205. chat_eos_token = '<|im_end|>'
  4206. chat_eos_token_id = None
  4207. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4208. if tokenizer_config_file.is_file():
  4209. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4210. tokenizer_config_json = json.load(f)
  4211. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  4212. for token_id, foken_data in added_tokens_decoder.items():
  4213. token_id = int(token_id)
  4214. token = foken_data["content"]
  4215. if token == chat_eos_token:
  4216. chat_eos_token_id = token_id
  4217. token = token.encode("utf-8")
  4218. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  4219. if tokens[token_id] != token:
  4220. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  4221. tokens[token_id] = token
  4222. scores[token_id] = -1000.0
  4223. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4224. if foken_data.get("special"):
  4225. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4226. tokenizer_file = self.dir_model / 'tokenizer.json'
  4227. if tokenizer_file.is_file():
  4228. with open(tokenizer_file, "r", encoding="utf-8") as f:
  4229. tokenizer_json = json.load(f)
  4230. added_tokens = tokenizer_json.get("added_tokens", [])
  4231. for foken_data in added_tokens:
  4232. token_id = int(foken_data["id"])
  4233. token = foken_data["content"]
  4234. if token == chat_eos_token:
  4235. chat_eos_token_id = token_id
  4236. token = token.encode("utf-8")
  4237. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  4238. if tokens[token_id] != token:
  4239. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  4240. tokens[token_id] = token
  4241. scores[token_id] = -1000.0
  4242. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4243. if foken_data.get("special"):
  4244. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4245. self.gguf_writer.add_tokenizer_model("llama")
  4246. self.gguf_writer.add_tokenizer_pre("default")
  4247. self.gguf_writer.add_token_list(tokens)
  4248. self.gguf_writer.add_token_scores(scores)
  4249. self.gguf_writer.add_token_types(toktypes)
  4250. self.gguf_writer.add_add_space_prefix(add_prefix)
  4251. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4252. old_eos = special_vocab.special_token_ids["eos"]
  4253. if chat_eos_token_id is not None:
  4254. # For the chat model, we replace the eos with '<|im_end|>'.
  4255. # TODO: this is a hack, should be fixed
  4256. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  4257. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  4258. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  4259. " in chat mode so that the conversation can end normally.")
  4260. special_vocab.add_to_gguf(self.gguf_writer)
  4261. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4262. num_heads = self.hparams["num_attention_heads"]
  4263. num_kv_heads = self.hparams["num_key_value_heads"]
  4264. n_embd = self.hparams["hidden_size"]
  4265. q_per_kv = num_heads // num_kv_heads
  4266. head_dim = n_embd // num_heads
  4267. num_groups = num_heads // q_per_kv
  4268. name = name.replace("language_model.", "") # InternVL
  4269. if name.startswith("mlp") or name.startswith("vision_model"):
  4270. # skip visual tensors
  4271. return
  4272. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  4273. qkv = data_torch
  4274. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  4275. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  4276. # The model weights of q and k equire additional reshape.
  4277. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  4278. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  4279. v = v.reshape((-1, v.shape[-1]))
  4280. yield from super().modify_tensors(q, self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), bid)
  4281. yield from super().modify_tensors(k, self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), bid)
  4282. yield from super().modify_tensors(v, self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), bid)
  4283. else:
  4284. yield from super().modify_tensors(data_torch, name, bid)
  4285. @ModelBase.register("InternLM3ForCausalLM")
  4286. class InternLM3Model(TextModel):
  4287. model_arch = gguf.MODEL_ARCH.LLAMA
  4288. def set_vocab(self):
  4289. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  4290. self.gguf_writer.add_tokenizer_model("llama")
  4291. self.gguf_writer.add_tokenizer_pre("default")
  4292. self.gguf_writer.add_token_list(tokens)
  4293. self.gguf_writer.add_token_scores(scores)
  4294. self.gguf_writer.add_token_types(toktypes)
  4295. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4296. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4297. if tokenizer_config_file.is_file():
  4298. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4299. tokenizer_config_json = json.load(f)
  4300. if "add_prefix_space" in tokenizer_config_json:
  4301. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  4302. if "added_tokens_decoder" in tokenizer_config_json:
  4303. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  4304. if token_data.get("special"):
  4305. token_id = int(token_id)
  4306. token = token_data["content"]
  4307. special_vocab._set_special_token(token, token_id)
  4308. # update eos token
  4309. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  4310. special_vocab.special_token_ids["eos"] = token_id
  4311. special_vocab.add_to_gguf(self.gguf_writer)
  4312. def set_gguf_parameters(self):
  4313. super().set_gguf_parameters()
  4314. hparams = self.hparams
  4315. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4316. if (rope_dim := hparams.get("head_dim")) is None:
  4317. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  4318. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4319. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4320. n_head = self.hparams["num_attention_heads"]
  4321. n_kv_head = self.hparams.get("num_key_value_heads")
  4322. name = name.replace("language_model.", "") # InternVL
  4323. if name.startswith("mlp") or name.startswith("vision_model"):
  4324. # skip visual tensors
  4325. return
  4326. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4327. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4328. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4329. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4330. yield from super().modify_tensors(data_torch, name, bid)
  4331. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  4332. class BertModel(TextModel):
  4333. model_arch = gguf.MODEL_ARCH.BERT
  4334. def __init__(self, *args, **kwargs):
  4335. super().__init__(*args, **kwargs)
  4336. self.vocab_size = None
  4337. if cls_out_labels := self.hparams.get("id2label"):
  4338. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  4339. # Remove dummy labels added by AutoConfig
  4340. cls_out_labels = None
  4341. self.cls_out_labels = cls_out_labels
  4342. def set_gguf_parameters(self):
  4343. super().set_gguf_parameters()
  4344. self.gguf_writer.add_causal_attention(False)
  4345. self._try_set_pooling_type()
  4346. if self.cls_out_labels:
  4347. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  4348. def set_vocab(self):
  4349. tokens, toktypes, tokpre = self.get_vocab_base()
  4350. self.vocab_size = len(tokens)
  4351. # we need this to validate the size of the token_type embeddings
  4352. # though currently we are passing all zeros to the token_type embeddings
  4353. # "Sequence A" or "Sequence B"
  4354. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4355. # convert to phantom space vocab
  4356. def phantom(tok, toktype):
  4357. if toktype == gguf.TokenType.CONTROL:
  4358. return tok
  4359. if tok.startswith("##"):
  4360. return tok[2:]
  4361. return "\u2581" + tok
  4362. assert len(tokens) == len(toktypes)
  4363. tokens = list(map(phantom, tokens, toktypes))
  4364. # add vocab to gguf
  4365. self.gguf_writer.add_tokenizer_model("bert")
  4366. self.gguf_writer.add_tokenizer_pre(tokpre)
  4367. self.gguf_writer.add_token_list(tokens)
  4368. self.gguf_writer.add_token_types(toktypes)
  4369. # handle special tokens
  4370. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4371. special_vocab.add_to_gguf(self.gguf_writer)
  4372. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4373. if name.startswith("bert."):
  4374. name = name[5:]
  4375. if name.endswith(".gamma"):
  4376. name = name[:-6] + ".weight"
  4377. if name.endswith(".beta"):
  4378. name = name[:-5] + ".bias"
  4379. # we are only using BERT for embeddings so we don't need the pooling layer
  4380. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  4381. return # we don't need these
  4382. if name.startswith("cls.predictions"):
  4383. return
  4384. if name.startswith("cls.seq_relationship"):
  4385. return
  4386. if self.cls_out_labels:
  4387. # For BertForSequenceClassification (direct projection layer)
  4388. if name == "classifier.weight":
  4389. name = "classifier.out_proj.weight"
  4390. if name == "classifier.bias":
  4391. name = "classifier.out_proj.bias"
  4392. yield from super().modify_tensors(data_torch, name, bid)
  4393. def _xlmroberta_tokenizer_init(self) -> None:
  4394. # we need the pad_token_id to know how to chop down position_embd matrix
  4395. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4396. self._position_offset = 1 + pad_token_id
  4397. if "max_position_embeddings" in self.hparams:
  4398. self.hparams["max_position_embeddings"] -= self._position_offset
  4399. else:
  4400. self._position_offset = None
  4401. def _xlmroberta_set_vocab(self) -> None:
  4402. # to avoid TypeError: Descriptors cannot be created directly
  4403. # exception when importing sentencepiece_model_pb2
  4404. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4405. from sentencepiece import SentencePieceProcessor
  4406. from sentencepiece import sentencepiece_model_pb2 as model
  4407. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  4408. tokenizer_json = {}
  4409. tokenizer_config_json = {}
  4410. if not tokenizer_path.is_file():
  4411. tokenizer_path = self.dir_model / 'tokenizer.json'
  4412. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  4413. if not tokenizer_path.is_file():
  4414. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4415. from base64 import b64decode
  4416. from transformers import AutoTokenizer
  4417. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  4418. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  4419. tokenizer_json = json.load(fp)
  4420. if tokenizer_config_path.is_file():
  4421. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  4422. tokenizer_config_json = json.load(fp)
  4423. add_prefix = tokenizer.add_prefix_space
  4424. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  4425. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  4426. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  4427. else:
  4428. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4429. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4430. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4431. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4432. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4433. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4434. tokenizer = SentencePieceProcessor()
  4435. tokenizer.LoadFromFile(str(tokenizer_path))
  4436. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  4437. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4438. scores: list[float] = [-10000.0] * vocab_size
  4439. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4440. if isinstance(tokenizer, SentencePieceProcessor):
  4441. for token_id in range(tokenizer.vocab_size()):
  4442. piece = tokenizer.IdToPiece(token_id)
  4443. text = piece.encode("utf-8")
  4444. score = tokenizer.GetScore(token_id)
  4445. toktype = SentencePieceTokenTypes.NORMAL
  4446. if tokenizer.IsUnknown(token_id):
  4447. toktype = SentencePieceTokenTypes.UNKNOWN
  4448. elif tokenizer.IsControl(token_id):
  4449. toktype = SentencePieceTokenTypes.CONTROL
  4450. elif tokenizer.IsUnused(token_id):
  4451. toktype = SentencePieceTokenTypes.UNUSED
  4452. elif tokenizer.IsByte(token_id):
  4453. toktype = SentencePieceTokenTypes.BYTE
  4454. tokens[token_id] = text
  4455. scores[token_id] = score
  4456. toktypes[token_id] = toktype
  4457. else:
  4458. added_vocab = tokenizer.get_added_vocab()
  4459. unk_token = tokenizer_config_json.get("unk_token")
  4460. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  4461. for token_id in range(tokenizer.vocab_size):
  4462. piece = tokenizer._convert_id_to_token(token_id)
  4463. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  4464. text = piece.encode("utf-8")
  4465. score = tokenizer_json["model"]["vocab"][token_id][1]
  4466. toktype = SentencePieceTokenTypes.NORMAL
  4467. if token_id == unk_token_id:
  4468. toktype = SentencePieceTokenTypes.UNKNOWN
  4469. elif token_id in tokenizer.all_special_ids:
  4470. toktype = SentencePieceTokenTypes.CONTROL
  4471. elif token_id in added_vocab.values():
  4472. toktype = SentencePieceTokenTypes.USER_DEFINED
  4473. # No reliable way to detect this, but jina doesn't have any
  4474. # elif tokenizer.IsByte(token_id):
  4475. # toktype = SentencePieceTokenTypes.BYTE
  4476. tokens[token_id] = text
  4477. scores[token_id] = score
  4478. toktypes[token_id] = toktype
  4479. if isinstance(tokenizer, SentencePieceProcessor):
  4480. # realign tokens (see HF tokenizer code)
  4481. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  4482. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  4483. toktypes = [
  4484. SentencePieceTokenTypes.CONTROL,
  4485. SentencePieceTokenTypes.CONTROL,
  4486. SentencePieceTokenTypes.CONTROL,
  4487. SentencePieceTokenTypes.UNKNOWN,
  4488. ] + toktypes[3:-1]
  4489. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  4490. # Add mask token missing from sentencepiece.bpe.model
  4491. tokens[250001] = b'<mask>'
  4492. scores[250001] = 0.0
  4493. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  4494. self.gguf_writer.add_tokenizer_model("t5")
  4495. self.gguf_writer.add_tokenizer_pre("default")
  4496. self.gguf_writer.add_token_list(tokens)
  4497. self.gguf_writer.add_token_scores(scores)
  4498. self.gguf_writer.add_token_types(toktypes)
  4499. self.gguf_writer.add_add_space_prefix(add_prefix)
  4500. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4501. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4502. if precompiled_charsmap:
  4503. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4504. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4505. special_vocab.add_to_gguf(self.gguf_writer)
  4506. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  4507. class DistilBertModel(BertModel):
  4508. model_arch = gguf.MODEL_ARCH.BERT
  4509. def set_gguf_parameters(self):
  4510. self.gguf_writer.add_layer_norm_eps(1e-12)
  4511. logger.info("gguf: layer norm epsilon = 1e-12")
  4512. super().set_gguf_parameters()
  4513. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4514. if name.startswith("distilbert."):
  4515. name = name[11:]
  4516. # These layers act as MLM head, so we don't need them
  4517. if name.startswith("vocab_"):
  4518. return
  4519. yield from super().modify_tensors(data_torch, name, bid)
  4520. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  4521. class RobertaModel(BertModel):
  4522. model_arch = gguf.MODEL_ARCH.BERT
  4523. def __init__(self, *args, **kwargs):
  4524. super().__init__(*args, **kwargs)
  4525. # we need the pad_token_id to know how to chop down position_embd matrix
  4526. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4527. self._position_offset = 1 + pad_token_id
  4528. if "max_position_embeddings" in self.hparams:
  4529. self.hparams["max_position_embeddings"] -= self._position_offset
  4530. else:
  4531. self._position_offset = None
  4532. def set_vocab(self):
  4533. """Support BPE tokenizers for roberta models"""
  4534. bpe_tok_path = self.dir_model / "tokenizer.json"
  4535. if bpe_tok_path.exists():
  4536. self._set_vocab_gpt2()
  4537. # we need this to validate the size of the token_type embeddings
  4538. # though currently we are passing all zeros to the token_type embeddings
  4539. # "Sequence A" or "Sequence B"
  4540. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4541. else:
  4542. return super().set_vocab()
  4543. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4544. # if name starts with "roberta.", remove the prefix
  4545. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4546. if name.startswith("roberta."):
  4547. name = name[8:]
  4548. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4549. if name == "embeddings.position_embeddings.weight":
  4550. if self._position_offset is not None:
  4551. data_torch = data_torch[self._position_offset:,:]
  4552. yield from super().modify_tensors(data_torch, name, bid)
  4553. @ModelBase.register("NomicBertModel")
  4554. class NomicBertModel(BertModel):
  4555. model_arch = gguf.MODEL_ARCH.BERT
  4556. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4557. hparams = kwargs.pop("hparams", None)
  4558. if hparams is None:
  4559. hparams = ModelBase.load_hparams(dir_model, False)
  4560. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  4561. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  4562. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4563. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  4564. if self._tokenizer_is_xlmroberta:
  4565. self._xlmroberta_tokenizer_init()
  4566. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  4567. if npos == 8192 and mtp == 2048:
  4568. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  4569. elif npos == 2048 and mtp == 2048:
  4570. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  4571. else:
  4572. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  4573. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  4574. # this doesn't do anything in the HF version
  4575. assert self.hparams["causal"] is False
  4576. # no bias tensors unless MoE
  4577. assert self.hparams["qkv_proj_bias"] == self.is_moe
  4578. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  4579. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  4580. # norm at end of layer
  4581. assert self.hparams["prenorm"] is False
  4582. # standard RoPE
  4583. assert self.hparams["rotary_emb_fraction"] == 1.0
  4584. assert self.hparams["rotary_emb_interleaved"] is False
  4585. assert self.hparams["rotary_emb_scale_base"] is None
  4586. def set_vocab(self) -> None:
  4587. if self._tokenizer_is_xlmroberta:
  4588. return self._xlmroberta_set_vocab()
  4589. return super().set_vocab()
  4590. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  4591. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  4592. if "mlp.experts.bias" in name:
  4593. return # Explicitly return.
  4594. if "mlp.experts.mlp.w1" in name:
  4595. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4596. name += ".weight"
  4597. if "mlp.experts.mlp.w2" in name:
  4598. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4599. data_torch = data_torch.transpose(1, 2)
  4600. name += ".weight"
  4601. yield from super().modify_tensors(data_torch, name, bid)
  4602. def set_gguf_parameters(self):
  4603. super().set_gguf_parameters()
  4604. if self.is_moe:
  4605. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  4606. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4607. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  4608. def _is_tokenizer_xlmroberta(self) -> bool:
  4609. with open(self.dir_model / "tokenizer.json") as f:
  4610. tokenizer_json = json.load(f)
  4611. toktyp = tokenizer_json["model"]["type"]
  4612. if toktyp == "Unigram":
  4613. return True
  4614. if toktyp == "WordPiece":
  4615. return False
  4616. raise ValueError(f"unknown tokenizer: {toktyp}")
  4617. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  4618. class NeoBert(BertModel):
  4619. model_arch = gguf.MODEL_ARCH.NEO_BERT
  4620. def set_gguf_parameters(self):
  4621. super().set_gguf_parameters()
  4622. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  4623. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  4624. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  4625. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4626. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  4627. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  4628. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  4629. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  4630. def modify_tensors(self, data_torch, name, bid):
  4631. if name.startswith("decoder."):
  4632. return
  4633. if name.startswith("model."):
  4634. name = name[6:]
  4635. yield from super().modify_tensors(data_torch, name, bid)
  4636. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  4637. class XLMRobertaModel(BertModel):
  4638. model_arch = gguf.MODEL_ARCH.BERT
  4639. _lora_files = {}
  4640. _lora_names = []
  4641. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4642. hparams = kwargs.pop("hparams", None)
  4643. if hparams is None:
  4644. hparams = ModelBase.load_hparams(dir_model, False)
  4645. if lora_names := hparams.get("lora_adaptations"):
  4646. self._lora_names = lora_names
  4647. self.model_arch = gguf.MODEL_ARCH.JINA_BERT_V3
  4648. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4649. self._xlmroberta_tokenizer_init()
  4650. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4651. if self._lora_names:
  4652. for name in self._lora_names:
  4653. fname = self.add_prefix_to_filename(self.fname_out, f"lora-{name}-")
  4654. self._lora_files[name] = gguf.GGUFWriter(fname, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file, dry_run=self.dry_run)
  4655. return super().generate_extra_tensors()
  4656. def set_type(self):
  4657. for lora_writer in self._lora_files.values():
  4658. lora_writer.add_type(gguf.GGUFType.ADAPTER)
  4659. lora_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
  4660. super().set_type()
  4661. def set_vocab(self):
  4662. self._xlmroberta_set_vocab()
  4663. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4664. # if name starts with "roberta.", remove the prefix
  4665. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4666. if name.startswith("roberta."):
  4667. name = name[8:]
  4668. # jina-embeddings-v3
  4669. if ".parametrizations." in name:
  4670. name = name.replace(".parametrizations.", ".")
  4671. if name.endswith(".original"):
  4672. name = name[:-9]
  4673. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4674. if name == "embeddings.position_embeddings.weight":
  4675. if self._position_offset is not None:
  4676. data_torch = data_torch[self._position_offset:,:]
  4677. if name.endswith(".0.lora_A") or name.endswith(".0.lora_B"):
  4678. if name.startswith("pooler.dense"):
  4679. return
  4680. num_loras = data_torch.size(0)
  4681. assert num_loras == len(self._lora_names)
  4682. # Split out each LoRA in their own GGUF
  4683. for i, lora_writer in enumerate(self._lora_files.values()):
  4684. new_name = self.map_tensor_name(name[:-9]) + name[-7:].lower()
  4685. data = data_torch[i, :, :]
  4686. # Transpose/flip token_embd/types into correct shape
  4687. if new_name == "token_embd.weight.lora_b":
  4688. data = data.T
  4689. elif new_name.startswith("token_types.weight."):
  4690. new_name = new_name[:-1] + ("a" if new_name[-1:] == "b" else "b")
  4691. lora_writer.add_tensor(new_name, data.float().numpy(), raw_dtype=gguf.GGMLQuantizationType.F32)
  4692. return
  4693. yield from super().modify_tensors(data_torch, name, bid)
  4694. def set_gguf_parameters(self):
  4695. super().set_gguf_parameters()
  4696. # jina-embeddings-v3
  4697. lora_alpha = self.hparams.get("lora_alpha")
  4698. if lora_prompt_prefixes := self.hparams.get("task_instructions"):
  4699. assert self._lora_files and all(lora_name in lora_prompt_prefixes for lora_name in self._lora_files.keys())
  4700. for lora_name, lora_writer in self._lora_files.items():
  4701. lora_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, lora_alpha if lora_alpha is not None else 1.0)
  4702. lora_writer.add_string(gguf.Keys.Adapter.LORA_TASK_NAME, lora_name)
  4703. if lora_prompt_prefixes:
  4704. lora_writer.add_string(gguf.Keys.Adapter.LORA_PROMPT_PREFIX, lora_prompt_prefixes[lora_name])
  4705. def write(self):
  4706. super().write()
  4707. for lora_writer in self._lora_files.values():
  4708. lora_writer.write_header_to_file()
  4709. lora_writer.write_kv_data_to_file()
  4710. lora_writer.write_tensors_to_file(progress=True)
  4711. lora_writer.close()
  4712. @ModelBase.register("GemmaForCausalLM")
  4713. class GemmaModel(TextModel):
  4714. model_arch = gguf.MODEL_ARCH.GEMMA
  4715. def set_vocab(self):
  4716. self._set_vocab_sentencepiece()
  4717. # TODO: these special tokens should be exported only for the CodeGemma family
  4718. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  4719. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  4720. special_vocab._set_special_token("prefix", 67)
  4721. special_vocab._set_special_token("suffix", 69)
  4722. special_vocab._set_special_token("middle", 68)
  4723. special_vocab._set_special_token("fsep", 70)
  4724. special_vocab._set_special_token("eot", 107)
  4725. special_vocab.chat_template = None # do not add it twice
  4726. special_vocab.add_to_gguf(self.gguf_writer)
  4727. self.gguf_writer.add_add_space_prefix(False)
  4728. def set_gguf_parameters(self):
  4729. hparams = self.hparams
  4730. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4731. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4732. self.gguf_writer.add_block_count(self.block_count)
  4733. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4734. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4735. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4736. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4737. self.gguf_writer.add_key_length(hparams["head_dim"])
  4738. self.gguf_writer.add_value_length(hparams["head_dim"])
  4739. self.gguf_writer.add_file_type(self.ftype)
  4740. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4741. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4742. # To prevent errors, skip loading lm_head.weight.
  4743. if name == "lm_head.weight":
  4744. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4745. return
  4746. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4747. if name.endswith("norm.weight"):
  4748. data_torch = data_torch + 1
  4749. yield from super().modify_tensors(data_torch, name, bid)
  4750. @ModelBase.register("Gemma2ForCausalLM")
  4751. class Gemma2Model(TextModel):
  4752. model_arch = gguf.MODEL_ARCH.GEMMA2
  4753. def set_vocab(self):
  4754. self._set_vocab_sentencepiece()
  4755. self.gguf_writer.add_add_space_prefix(False)
  4756. def set_gguf_parameters(self):
  4757. hparams = self.hparams
  4758. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4759. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4760. self.gguf_writer.add_block_count(self.block_count)
  4761. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4762. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4763. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4764. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4765. self.gguf_writer.add_key_length(hparams["head_dim"])
  4766. self.gguf_writer.add_value_length(hparams["head_dim"])
  4767. self.gguf_writer.add_file_type(self.ftype)
  4768. self.gguf_writer.add_attn_logit_softcapping(
  4769. self.hparams["attn_logit_softcapping"]
  4770. )
  4771. self.gguf_writer.add_final_logit_softcapping(
  4772. self.hparams["final_logit_softcapping"]
  4773. )
  4774. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4775. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4776. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4777. # To prevent errors, skip loading lm_head.weight.
  4778. if name == "lm_head.weight":
  4779. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4780. return
  4781. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4782. if name.endswith("norm.weight"):
  4783. data_torch = data_torch + 1
  4784. yield from super().modify_tensors(data_torch, name, bid)
  4785. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  4786. class Gemma3Model(TextModel):
  4787. model_arch = gguf.MODEL_ARCH.GEMMA3
  4788. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  4789. def set_vocab(self):
  4790. if (self.dir_model / "tokenizer.model").is_file():
  4791. self._set_vocab_sentencepiece()
  4792. self.gguf_writer.add_add_space_prefix(False)
  4793. else:
  4794. self._set_vocab_gpt2()
  4795. def set_gguf_parameters(self):
  4796. super().set_gguf_parameters()
  4797. hparams = self.hparams
  4798. # some default values are not specified in the hparams
  4799. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  4800. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  4801. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  4802. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  4803. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  4804. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("full_attention", self.rope_parameters).get("rope_theta", 1_000_000.0)) # for global layers
  4805. # attn_logit_softcapping is removed in Gemma3
  4806. assert hparams.get("attn_logit_softcapping") is None
  4807. if (final_logit_softcap := hparams.get("final_logit_softcapping")):
  4808. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  4809. if hparams.get("sliding_window_pattern") != 1:
  4810. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  4811. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  4812. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4813. if "language_model." in name:
  4814. name = name.replace("language_model.", "")
  4815. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4816. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4817. return # skip vision tensors
  4818. # remove OOV (out-of-vocabulary) rows in token_embd
  4819. if "embed_tokens.weight" in name:
  4820. if (self.dir_model / "tokenizer.model").is_file():
  4821. tokens = self._create_vocab_sentencepiece()[0]
  4822. else:
  4823. tokens = self.get_vocab_base()[0]
  4824. data_torch = data_torch[:len(tokens)]
  4825. # ref code in Gemma3RMSNorm
  4826. # output = output * (1.0 + self.weight.float())
  4827. # note: this is not the case on gemma3n
  4828. if name.endswith("norm.weight"):
  4829. data_torch = data_torch + self.norm_shift
  4830. yield from super().modify_tensors(data_torch, name, bid)
  4831. @ModelBase.register("Gemma3TextModel")
  4832. class EmbeddingGemma(Gemma3Model):
  4833. model_arch = gguf.MODEL_ARCH.GEMMA_EMBEDDING
  4834. module_paths = []
  4835. dense_features_dims = {}
  4836. def __init__(self, *args, **kwargs):
  4837. super().__init__(*args, **kwargs)
  4838. if self.sentence_transformers_dense_modules:
  4839. # read modules.json to determine if model has Dense layers
  4840. modules_file = self.dir_model / "modules.json"
  4841. if modules_file.is_file():
  4842. with open(modules_file, encoding="utf-8") as modules_json_file:
  4843. mods = json.load(modules_json_file)
  4844. for mod in mods:
  4845. if mod["type"] == "sentence_transformers.models.Dense":
  4846. mod_path = mod["path"]
  4847. # check if model.safetensors file for Dense layer exists
  4848. model_tensors_file = self.dir_model / mod_path / "model.safetensors"
  4849. if model_tensors_file.is_file():
  4850. self.module_paths.append(mod_path)
  4851. # read config.json of the Dense layer to get in/out features
  4852. mod_conf_file = self.dir_model / mod_path / "config.json"
  4853. if mod_conf_file.is_file():
  4854. with open(mod_conf_file, encoding="utf-8") as mod_conf_json_file:
  4855. mod_conf = json.load(mod_conf_json_file)
  4856. # hparams dense_2_feat_out and dense_3_feat_in are required when loading model's dense weights
  4857. prefix = self._get_dense_prefix(mod_path)
  4858. if mod_conf["in_features"] is not None and mod_conf["out_features"] is not None:
  4859. self.dense_features_dims[prefix] = (mod_conf["in_features"], mod_conf["out_features"])
  4860. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4861. from safetensors.torch import load_file
  4862. module_paths = list(self.module_paths)
  4863. for i, module_path in enumerate(module_paths):
  4864. tensors_file = self.dir_model / module_path / "model.safetensors"
  4865. local_tensors = load_file(tensors_file)
  4866. tensor_name = self._get_dense_prefix(module_path)
  4867. for name, local_tensor in local_tensors.items():
  4868. if not name.endswith(".weight"):
  4869. continue
  4870. orig_name = name.replace("linear", tensor_name)
  4871. name = self.map_tensor_name(orig_name)
  4872. yield name, local_tensor.clone()
  4873. @staticmethod
  4874. def _get_dense_prefix(module_path) -> str:
  4875. """Get the tensor name prefix for the Dense layer from module path."""
  4876. tensor_name = "dense_2" if module_path == "2_Dense" else "dense_3"
  4877. return tensor_name
  4878. def set_gguf_parameters(self):
  4879. super().set_gguf_parameters()
  4880. # Override the sliding window size as it gets adjusted by the Gemma3TextConfig
  4881. # constructor. We want to use the value from the original model's config.json.
  4882. # ref: https://github.com/huggingface/transformers/pull/40700
  4883. with open(self.dir_model / "config.json", "r", encoding="utf-8") as f:
  4884. config = json.load(f)
  4885. orig_sliding_window = config.get("sliding_window")
  4886. if orig_sliding_window is None:
  4887. raise ValueError("sliding_window not found in model config - this is required for the model")
  4888. logger.info(f"Using original sliding_window from config: {orig_sliding_window} "
  4889. f"instead of {self.hparams['sliding_window']}")
  4890. self.gguf_writer.add_sliding_window(orig_sliding_window)
  4891. if self.sentence_transformers_dense_modules:
  4892. for dense, dims in self.dense_features_dims.items():
  4893. logger.info(f"Setting dense layer {dense} in/out features to {dims}")
  4894. self.gguf_writer.add_dense_features_dims(dense, dims[0], dims[1])
  4895. self._try_set_pooling_type()
  4896. @ModelBase.register("Gemma3ForConditionalGeneration")
  4897. class Gemma3VisionModel(MmprojModel):
  4898. def set_gguf_parameters(self):
  4899. super().set_gguf_parameters()
  4900. hparams = self.hparams
  4901. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  4902. # default values below are taken from HF tranformers code
  4903. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  4904. self.gguf_writer.add_vision_use_gelu(True)
  4905. # calculate proj_scale_factor (used by tinygemma3 test model)
  4906. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  4907. n_per_side = int(image_seq_length ** 0.5)
  4908. image_size = self.hparams["image_size"]
  4909. patch_size = self.hparams["patch_size"]
  4910. proj_scale_factor = (image_size // patch_size) // n_per_side
  4911. if proj_scale_factor > 0 and proj_scale_factor != 4:
  4912. # we only need to write this if it's not the default value
  4913. # in this case, we are converting a test model
  4914. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  4915. def tensor_force_quant(self, name, new_name, bid, n_dims):
  4916. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  4917. if "input_projection" in name:
  4918. return gguf.GGMLQuantizationType.F16
  4919. if ".embeddings." in name:
  4920. return gguf.GGMLQuantizationType.F32
  4921. return super().tensor_force_quant(name, new_name, bid, n_dims)
  4922. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4923. if "vision_model.head." in name:
  4924. return # skip redundant tensors for tinygemma3
  4925. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4926. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4927. # process vision tensors
  4928. name = name.replace("_weight", ".weight")
  4929. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  4930. # the other norm values are part of SigLIP model, and they are already correct
  4931. # ref code: Gemma3RMSNorm
  4932. if "soft_emb_norm.weight" in name:
  4933. logger.info(f"Correcting norm value for '{name}'")
  4934. data_torch = data_torch + 1
  4935. yield from super().modify_tensors(data_torch, name, bid)
  4936. return # skip other tensors
  4937. class ConformerAudioModel(MmprojModel):
  4938. _batch_norm_tensors: list[dict[str, Tensor]] | None = None
  4939. @staticmethod
  4940. def is_audio_tensor(name: str):
  4941. return any(p in name for p in ["audio", "codebook", "conformer", "depth_embedding", "depthformer", "depth_linear"])
  4942. def tensor_force_quant(self, name, new_name, bid, n_dims):
  4943. if ConformerAudioModel.is_audio_tensor(name):
  4944. if ".conv" in name or "_conv" in name and ".weight" in name:
  4945. return gguf.GGMLQuantizationType.F32
  4946. return super().tensor_force_quant(name, new_name, bid, n_dims)
  4947. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4948. # fold running_mean, running_var and eps into weight and bias for batch_norm
  4949. if "batch_norm" in name:
  4950. if self._batch_norm_tensors is None:
  4951. self._batch_norm_tensors = [{} for _ in range(self.block_count)]
  4952. assert bid is not None
  4953. self._batch_norm_tensors[bid][name] = data_torch
  4954. if len(self._batch_norm_tensors[bid]) < 5:
  4955. return
  4956. weight = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.weight"]
  4957. bias = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.bias"]
  4958. running_mean = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.running_mean"]
  4959. running_var = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.running_var"]
  4960. eps = 1e-5 # default value
  4961. a = weight / torch.sqrt(running_var + eps)
  4962. b = bias - running_mean * a
  4963. yield from super().modify_tensors(a, f"conformer.layers.{bid}.conv.batch_norm.weight", bid)
  4964. yield from super().modify_tensors(b, f"conformer.layers.{bid}.conv.batch_norm.bias", bid)
  4965. return
  4966. # reshape conv weights
  4967. if name.startswith("conformer.pre_encode.conv.") and name.endswith(".bias"):
  4968. data_torch = data_torch[:, None, None]
  4969. if "conv.depthwise_conv" in name and name.endswith(".weight"):
  4970. assert data_torch.shape[1] == 1
  4971. data_torch = data_torch.reshape(data_torch.shape[0], data_torch.shape[2])
  4972. if "conv.pointwise_conv" in name and name.endswith(".weight"):
  4973. assert data_torch.shape[2] == 1
  4974. data_torch = data_torch.reshape(data_torch.shape[0], data_torch.shape[1])
  4975. yield from super().modify_tensors(data_torch, name, bid)
  4976. @ModelBase.register("Gemma3nForConditionalGeneration")
  4977. class Gemma3nVisionAudioModel(ConformerAudioModel):
  4978. has_audio_encoder = True
  4979. has_vision_encoder = True
  4980. # Double indexed mapping for MobileNetV5 blocks (not supported by tensor_mapping.py)
  4981. # This is the only known model having this, so we prefer implementing it outside of tensor_mapping.py
  4982. block_tensor_mapping = {
  4983. "model.vision_tower.timm_model.blocks.{bid}.{sid}.conv_exp.weight": "v.blk.{bid}.{sid}.conv_exp.weight",
  4984. "model.vision_tower.timm_model.blocks.{bid}.{sid}.bn1.weight": "v.blk.{bid}.{sid}.bn1.weight",
  4985. "model.vision_tower.timm_model.blocks.{bid}.{sid}.conv_pwl.weight": "v.blk.{bid}.{sid}.conv_pwl.weight",
  4986. "model.vision_tower.timm_model.blocks.{bid}.{sid}.bn2.weight": "v.blk.{bid}.{sid}.bn2.weight",
  4987. "model.vision_tower.timm_model.blocks.{bid}.{sid}.dw_start.conv.weight": "v.blk.{bid}.{sid}.dw_start.conv.weight",
  4988. "model.vision_tower.timm_model.blocks.{bid}.{sid}.dw_start.bn.weight": "v.blk.{bid}.{sid}.dw_start.bn.weight",
  4989. "model.vision_tower.timm_model.blocks.{bid}.{sid}.dw_mid.conv.weight": "v.blk.{bid}.{sid}.dw_mid.conv.weight",
  4990. "model.vision_tower.timm_model.blocks.{bid}.{sid}.dw_mid.bn.weight": "v.blk.{bid}.{sid}.dw_mid.bn.weight",
  4991. "model.vision_tower.timm_model.blocks.{bid}.{sid}.pw_exp.conv.weight": "v.blk.{bid}.{sid}.pw_exp.conv.weight",
  4992. "model.vision_tower.timm_model.blocks.{bid}.{sid}.pw_exp.bn.weight": "v.blk.{bid}.{sid}.pw_exp.bn.weight",
  4993. "model.vision_tower.timm_model.blocks.{bid}.{sid}.pw_proj.conv.weight": "v.blk.{bid}.{sid}.pw_proj.conv.weight",
  4994. "model.vision_tower.timm_model.blocks.{bid}.{sid}.pw_proj.bn.weight": "v.blk.{bid}.{sid}.pw_proj.bn.weight",
  4995. "model.vision_tower.timm_model.blocks.{bid}.{sid}.layer_scale.gamma": "v.blk.{bid}.{sid}.layer_scale.gamma",
  4996. "model.vision_tower.timm_model.blocks.{bid}.{sid}.attn.query.proj.weight": "v.blk.{bid}.{sid}.attn.query.proj.weight",
  4997. "model.vision_tower.timm_model.blocks.{bid}.{sid}.attn.key.proj.weight": "v.blk.{bid}.{sid}.attn.key.proj.weight",
  4998. "model.vision_tower.timm_model.blocks.{bid}.{sid}.attn.value.proj.weight": "v.blk.{bid}.{sid}.attn.value.proj.weight",
  4999. "model.vision_tower.timm_model.blocks.{bid}.{sid}.attn.output.proj.weight": "v.blk.{bid}.{sid}.attn.output.proj.weight",
  5000. "model.vision_tower.timm_model.blocks.{bid}.{sid}.attn.key.down_conv.weight": "v.blk.{bid}.{sid}.attn.key.down_conv.weight",
  5001. "model.vision_tower.timm_model.blocks.{bid}.{sid}.attn.key.norm.weight": "v.blk.{bid}.{sid}.attn.key.norm.weight",
  5002. "model.vision_tower.timm_model.blocks.{bid}.{sid}.attn.value.down_conv.weight": "v.blk.{bid}.{sid}.attn.value.down_conv.weight",
  5003. "model.vision_tower.timm_model.blocks.{bid}.{sid}.attn.value.norm.weight": "v.blk.{bid}.{sid}.attn.value.norm.weight",
  5004. "model.vision_tower.timm_model.blocks.{bid}.{sid}.norm.weight": "v.blk.{bid}.{sid}.norm.weight",
  5005. }
  5006. def __init__(self, *args, **kwargs):
  5007. # Parent init will call find_hparam which now returns 0 for empty keys
  5008. super().__init__(*args, **kwargs)
  5009. assert self.hparams_vision is not None
  5010. self.hparams_vision["n_layers"] = 128 # fake value for audio encoder, vision encoder doesn't use it
  5011. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("intermediate_size", 2048) * 4
  5012. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_attention_heads", 8)
  5013. # MobileNetV5 does not use image_mean/std
  5014. self.preprocessor_config["image_mean"] = [0.0 ,0.0 , 0.0]
  5015. self.preprocessor_config["image_std"] = [1.0 ,1.0 ,1.0]
  5016. self.hparams_vision["image_size"] = self.preprocessor_config.get(
  5017. "size", {"height": 768, "width": 768}
  5018. )["height"]
  5019. # Image sequence length (256 tokens = 16x16 for Gemma3n)
  5020. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  5021. image_size = self.hparams_vision["image_size"]
  5022. self.hparams_vision["patch_size"] = image_size // image_seq_length
  5023. # remap audio hparams
  5024. assert self.hparams_audio is not None
  5025. self.hparams_audio["n_layers"] = self.hparams_audio["conf_num_hidden_layers"]
  5026. self.hparams_audio["num_attention_heads"] = self.hparams_audio["conf_num_attention_heads"]
  5027. self.hparams_audio["feat_in"] = self.hparams_audio["input_feat_size"]
  5028. self.hparams_audio["intermediate_size"] = self.hparams_audio.get("intermediate_size", 6144)
  5029. def set_gguf_parameters(self):
  5030. super().set_gguf_parameters()
  5031. # vision params
  5032. self.gguf_writer.add_clip_vision_projector_type(gguf.VisionProjectorType.GEMMA3NV)
  5033. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-6))
  5034. # audio params
  5035. assert self.hparams_audio is not None
  5036. self.gguf_writer.add_clip_audio_projector_type(gguf.VisionProjectorType.GEMMA3NA)
  5037. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["feat_in"])
  5038. self.gguf_writer.add_audio_attention_layernorm_eps(1e-5)
  5039. def tensor_force_quant(self, name, new_name, bid, n_dims):
  5040. # Force quantization settings for specific tensor types
  5041. if "input_projection" in name or "input_proj" in name:
  5042. return gguf.GGMLQuantizationType.F16
  5043. if ".embeddings." in name or "stem" in name:
  5044. return gguf.GGMLQuantizationType.F32
  5045. return super().tensor_force_quant(name, new_name, bid, n_dims)
  5046. def custom_map(self, name: str) -> str:
  5047. """Parses names like model.vision_tower.timm_model.blocks.1.2.suffix and applies template mapping."""
  5048. parts = name.split(".")
  5049. # MobileNet blocks have at least 7 parts: model, vision_tower, timm_model, blocks, bid, sid, and suffix
  5050. if len(parts) >= 7:
  5051. bid, sid = parts[4], parts[5]
  5052. suffix = ".".join(parts[6:])
  5053. template = f"model.vision_tower.timm_model.blocks.{{bid}}.{{sid}}.{suffix}"
  5054. if template in self.block_tensor_mapping:
  5055. return self.block_tensor_mapping[template].format(bid=bid, sid=sid)
  5056. raise ValueError(f"Unknown name: {name}")
  5057. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5058. if (ConformerAudioModel.is_audio_tensor(name)):
  5059. name = name.replace("model.audio_tower.conformer.", "conformer.layers.")
  5060. yield from super().modify_tensors(data_torch, name, bid)
  5061. # Gemma3n uses
  5062. # - model.embed_vision.* for projection layers
  5063. # - model.vision_tower.* for vision encoder
  5064. # Skip non-vision tensors
  5065. if not (name.startswith("model.embed_vision.") or name.startswith("model.vision_tower.")):
  5066. return
  5067. if name.startswith("model.vision_tower.timm_model.blocks."):
  5068. # Double-indexed block tensors through custom logic
  5069. new_name = self.custom_map(name)
  5070. else:
  5071. # Route non-repeating (conv_stem, msfa, embedding, etc.) and un-catched through tensor_mapping.py
  5072. new_name = self.map_tensor_name(name)
  5073. if new_name.endswith("conv_stem.conv.bias") or new_name.endswith("layer_scale.gamma"):
  5074. data_torch = data_torch.unsqueeze(0).unsqueeze(-1).unsqueeze(-1) # [1, C, 1, 1]
  5075. yield from super().modify_tensors(data_torch, new_name, bid)
  5076. @ModelBase.register("Gemma3nForCausalLM", "Gemma3nForConditionalGeneration")
  5077. class Gemma3NModel(Gemma3Model):
  5078. model_arch = gguf.MODEL_ARCH.GEMMA3N
  5079. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  5080. _altup_proj: list[Tensor] = []
  5081. _altup_unembd: list[Tensor] = []
  5082. def __init__(self, *args, **kwargs):
  5083. super().__init__(*args, **kwargs)
  5084. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  5085. self._altup_proj = [
  5086. torch.Tensor(), # to be replaced
  5087. torch.Tensor(), # to be replaced
  5088. torch.Tensor(), # to be replaced
  5089. ]
  5090. self._altup_unembd = [
  5091. torch.Tensor(), # to be replaced
  5092. torch.Tensor(), # to be replaced
  5093. torch.Tensor(), # to be replaced
  5094. ]
  5095. def set_vocab(self):
  5096. # For Gemma3n multimodal models, we need the FULL vocab_size (262400)
  5097. # which includes special tokens from 262144-262399 for vision/audio.
  5098. # The vocab_size_per_layer_input (262144) is only the embedding size per layer.
  5099. # Temporarily override the hparams lookup order to prioritize vocab_size.
  5100. # Store original vocab_size_per_layer_input if it exists
  5101. vocab_size_per_layer_input = self.hparams.get("vocab_size_per_layer_input")
  5102. # Temporarily remove vocab_size_per_layer_input to force using vocab_size
  5103. if vocab_size_per_layer_input is not None:
  5104. del self.hparams["vocab_size_per_layer_input"]
  5105. # Call parent set_vocab which will now use vocab_size (262400)
  5106. super().set_vocab()
  5107. # Restore vocab_size_per_layer_input for later use
  5108. if vocab_size_per_layer_input is not None:
  5109. self.hparams["vocab_size_per_layer_input"] = vocab_size_per_layer_input
  5110. def set_gguf_parameters(self):
  5111. super().set_gguf_parameters()
  5112. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  5113. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  5114. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  5115. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  5116. activation_sparsity_scale = []
  5117. for s in self.hparams["activation_sparsity_pattern"]:
  5118. normal_dist = torch.distributions.normal.Normal(0, 1)
  5119. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  5120. activation_sparsity_scale.append(std_multiplier.item())
  5121. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  5122. sliding_window_pattern = []
  5123. for t in self.hparams["layer_types"]:
  5124. sliding_window_pattern.append(t == "sliding_attention")
  5125. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  5126. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  5127. has_all = all(m.numel() > 0 for m in matrices)
  5128. if not has_all:
  5129. return None
  5130. else:
  5131. return torch.stack(matrices, dim=0)
  5132. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5133. if name.endswith("_scale"):
  5134. name = name + ".weight"
  5135. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  5136. if "language_model." not in name:
  5137. return # skip non-language model tensors
  5138. # Pad token embeddings for vision/audio special tokens (262144-262399)
  5139. if "embed_tokens.weight" in name or "embed_tokens_per_layer" in name:
  5140. # Move to CPU to avoid meta device issues during padding
  5141. data_torch = data_torch.to(device="cpu")
  5142. vocab_size = self.hparams.get("vocab_size", 262400)
  5143. current_size = data_torch.shape[0] # First dimension is vocab_size
  5144. if current_size < vocab_size:
  5145. # Pad with zeros for vision/audio tokens (they get embeddings from vision tower)
  5146. padding_size = vocab_size - current_size
  5147. tensor_type = "per-layer embeddings" if "per_layer" in name else "token embeddings"
  5148. logger.info(f"Padding {tensor_type} shape {list(data_torch.shape)} from {current_size} to {vocab_size} (adding {padding_size} vision/audio token slots)")
  5149. # Create padding with zeros (vision tokens won't use these embeddings)
  5150. padding = torch.zeros((padding_size, data_torch.shape[1]), dtype=data_torch.dtype, device=data_torch.device)
  5151. data_torch = torch.cat([data_torch, padding], dim=0)
  5152. # Continue with normal processing
  5153. name = name.replace("language_model.", "")
  5154. yield from super().modify_tensors(data_torch, name, bid)
  5155. return
  5156. if "altup_unembed_projections" in name:
  5157. data_torch = data_torch.to(device="cpu")
  5158. # altup_unembed matrices are [hidden_size, hidden_size], NOT vocab-based
  5159. # They should NOT be padded
  5160. if ".0." in name:
  5161. self._altup_unembd[0] = data_torch
  5162. elif ".1." in name:
  5163. self._altup_unembd[1] = data_torch
  5164. elif ".2." in name:
  5165. self._altup_unembd[2] = data_torch
  5166. else:
  5167. raise ValueError(f"Unknown name: {name}")
  5168. out = self._stack_matrices(self._altup_unembd)
  5169. if out is not None:
  5170. yield from super().modify_tensors(out, "model.altup_unembed_projections.weight", bid)
  5171. return
  5172. else:
  5173. return
  5174. if "altup_projections" in name:
  5175. data_torch = data_torch.to(device="cpu")
  5176. if ".0." in name:
  5177. self._altup_proj[0] = data_torch
  5178. elif ".1." in name:
  5179. self._altup_proj[1] = data_torch
  5180. elif ".2." in name:
  5181. self._altup_proj[2] = data_torch
  5182. else:
  5183. raise ValueError(f"Unknown name: {name}")
  5184. out = self._stack_matrices(self._altup_proj)
  5185. if out is not None:
  5186. yield from super().modify_tensors(out, "model.altup_projections.weight", bid)
  5187. return
  5188. else:
  5189. return
  5190. yield from super().modify_tensors(data_torch, name, bid)
  5191. @ModelBase.register("Starcoder2ForCausalLM")
  5192. class StarCoder2Model(TextModel):
  5193. model_arch = gguf.MODEL_ARCH.STARCODER2
  5194. @ModelBase.register("Rwkv6ForCausalLM")
  5195. class Rwkv6Model(TextModel):
  5196. model_arch = gguf.MODEL_ARCH.RWKV6
  5197. def set_vocab(self):
  5198. self._set_vocab_rwkv_world()
  5199. def set_gguf_parameters(self):
  5200. head_size = self.hparams["head_size"]
  5201. hidden_size = self.hparams["hidden_size"]
  5202. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  5203. rescale_every_n_layers = self.hparams["rescale_every"]
  5204. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  5205. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  5206. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  5207. # RWKV isn't context limited
  5208. self.gguf_writer.add_context_length(1048576)
  5209. self.gguf_writer.add_embedding_length(hidden_size)
  5210. self.gguf_writer.add_block_count(self.block_count)
  5211. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  5212. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  5213. self.gguf_writer.add_wkv_head_size(head_size)
  5214. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  5215. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  5216. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5217. self.gguf_writer.add_file_type(self.ftype)
  5218. # required by llama.cpp, unused
  5219. self.gguf_writer.add_head_count(0)
  5220. lerp_weights: dict[int, dict[str, Tensor]] = {}
  5221. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5222. new_name = self.map_tensor_name(name)
  5223. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  5224. new_name += ".weight"
  5225. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  5226. data_torch = data_torch.transpose(0, 1)
  5227. if new_name.endswith("time_mix_w2.weight"):
  5228. data_torch = data_torch.permute(0, 2, 1)
  5229. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  5230. data_torch = data_torch.squeeze()
  5231. try:
  5232. rescale_every_n_layers = self.hparams["rescale_every"]
  5233. if rescale_every_n_layers > 0:
  5234. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  5235. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  5236. except KeyError:
  5237. pass
  5238. # concat time_mix_lerp weights to reduce some cpu overhead
  5239. # also reduces the number of tensors in the model
  5240. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  5241. try:
  5242. self.lerp_weights[bid][new_name] = data_torch
  5243. except KeyError:
  5244. self.lerp_weights[bid] = {new_name: data_torch}
  5245. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  5246. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5247. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  5248. yield (new_name, data)
  5249. return
  5250. yield (new_name, data_torch)
  5251. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  5252. class RWKV6Qwen2Model(Rwkv6Model):
  5253. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  5254. def set_vocab(self):
  5255. try:
  5256. self._set_vocab_sentencepiece()
  5257. except FileNotFoundError:
  5258. self._set_vocab_gpt2()
  5259. def set_gguf_parameters(self):
  5260. num_attention_heads = self.hparams["num_attention_heads"]
  5261. num_key_value_heads = self.hparams["num_key_value_heads"]
  5262. hidden_size = self.hparams["hidden_size"]
  5263. head_size = hidden_size // num_attention_heads
  5264. rms_norm_eps = self.hparams["rms_norm_eps"]
  5265. intermediate_size = self.hparams["intermediate_size"]
  5266. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  5267. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  5268. # RWKV isn't context limited
  5269. self.gguf_writer.add_context_length(1048576)
  5270. self.gguf_writer.add_embedding_length(hidden_size)
  5271. self.gguf_writer.add_block_count(self.block_count)
  5272. self.gguf_writer.add_wkv_head_size(head_size)
  5273. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  5274. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  5275. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5276. self.gguf_writer.add_file_type(self.ftype)
  5277. # special parameters for time_mixing in RWKV6QWEN2
  5278. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5279. self.gguf_writer.add_token_shift_count(1)
  5280. # RWKV6QWEN2 use grouped key/value like GQA
  5281. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  5282. # required by llama.cpp, unused
  5283. self.gguf_writer.add_head_count(0)
  5284. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5285. for new_name, data in super().modify_tensors(data_torch, name, bid):
  5286. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  5287. data = data.view(5, -1, data.shape[-1])
  5288. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  5289. # permute them here to avoid code changes
  5290. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  5291. if "w2" in new_name:
  5292. data = data.view(5, -1, data.shape[-1])
  5293. yield (new_name, data)
  5294. continue
  5295. yield (new_name, data)
  5296. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  5297. class Rwkv7Model(TextModel):
  5298. model_arch = gguf.MODEL_ARCH.RWKV7
  5299. def set_vocab(self):
  5300. self._set_vocab_rwkv_world()
  5301. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  5302. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  5303. def set_gguf_parameters(self):
  5304. try:
  5305. head_size = self.hparams["head_size"]
  5306. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  5307. except KeyError:
  5308. head_size = self.hparams["head_dim"]
  5309. layer_norm_eps = self.hparams["norm_eps"]
  5310. hidden_size = self.hparams["hidden_size"]
  5311. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  5312. # ICLR: In-Context-Learning-Rate
  5313. try:
  5314. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5315. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5316. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  5317. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  5318. except KeyError:
  5319. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5320. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5321. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  5322. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  5323. # RWKV isn't context limited
  5324. self.gguf_writer.add_context_length(1048576)
  5325. self.gguf_writer.add_embedding_length(hidden_size)
  5326. self.gguf_writer.add_block_count(self.block_count)
  5327. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  5328. self.gguf_writer.add_wkv_head_size(head_size)
  5329. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5330. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5331. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5332. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5333. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5334. self.gguf_writer.add_file_type(self.ftype)
  5335. # required by llama.cpp, unused
  5336. self.gguf_writer.add_head_count(0)
  5337. lerp_weights: dict[int, dict[str, Tensor]] = {}
  5338. lora_needs_transpose: bool = True
  5339. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5340. # unify tensor names here to make life easier
  5341. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  5342. name = name.replace("self_attn", "attention").replace("attn", "attention")
  5343. name = name.replace("time_mixer.", "")
  5344. # lora layer names in fla-hub's impl
  5345. if "_lora.lora" in name:
  5346. self.lora_needs_transpose = False
  5347. name = name.replace("_lora.lora.0.weight", "1.weight")
  5348. name = name.replace("_lora.lora.2.weight", "2.weight")
  5349. name = name.replace("_lora.lora.2.bias", "0.weight")
  5350. name = name.replace("feed_forward_norm", "ln2")
  5351. name = name.replace("g_norm", "ln_x")
  5352. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  5353. # some models have dummy v0/v1/v2 on first layer while others don't
  5354. # ignore them all since they are not used
  5355. return
  5356. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  5357. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  5358. if bid is not None and "attention.x_" in name:
  5359. if "attention.x_x" in name:
  5360. # already concatenated
  5361. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5362. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  5363. yield (new_name, data)
  5364. else:
  5365. try:
  5366. self.lerp_weights[bid][name] = data_torch
  5367. except KeyError:
  5368. self.lerp_weights[bid] = {name: data_torch}
  5369. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  5370. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5371. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  5372. yield (new_name, data)
  5373. return
  5374. else:
  5375. data_torch = data_torch.squeeze()
  5376. new_name = self.map_tensor_name(name)
  5377. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  5378. new_name += ".weight"
  5379. if self.lora_needs_transpose and any(
  5380. new_name.endswith(t) for t in [
  5381. "time_mix_w1.weight", "time_mix_w2.weight",
  5382. "time_mix_a1.weight", "time_mix_a2.weight",
  5383. "time_mix_v1.weight", "time_mix_v2.weight",
  5384. "time_mix_g1.weight", "time_mix_g2.weight",
  5385. ]
  5386. ):
  5387. data_torch = data_torch.transpose(0, 1)
  5388. if 'r_k' in new_name:
  5389. data_torch = data_torch.flatten()
  5390. if bid == 0 and "time_mix_a" in new_name:
  5391. # dummy v0/v1/v2 on first layer
  5392. # easist way to make llama happy
  5393. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  5394. yield (new_name, data_torch)
  5395. @ModelBase.register("RwkvHybridForCausalLM")
  5396. class ARwkv7Model(Rwkv7Model):
  5397. model_arch = gguf.MODEL_ARCH.ARWKV7
  5398. def set_vocab(self):
  5399. try:
  5400. self._set_vocab_sentencepiece()
  5401. except FileNotFoundError:
  5402. self._set_vocab_gpt2()
  5403. def set_gguf_parameters(self):
  5404. hidden_size = self.hparams["hidden_size"]
  5405. head_size = self.hparams["head_size"]
  5406. rms_norm_eps = self.hparams["rms_norm_eps"]
  5407. intermediate_size = self.hparams["intermediate_size"]
  5408. wkv_has_gate = self.hparams["wkv_has_gate"]
  5409. assert self.hparams["wkv_version"] == 7
  5410. # ICLR: In-Context-Learning-Rate
  5411. lora_rank_decay = 64
  5412. lora_rank_iclr = 64
  5413. lora_rank_value_residual_mix = 32
  5414. lora_rank_gate = 128 if wkv_has_gate else 0
  5415. # RWKV isn't context limited
  5416. self.gguf_writer.add_context_length(1048576)
  5417. self.gguf_writer.add_embedding_length(hidden_size)
  5418. self.gguf_writer.add_block_count(self.block_count)
  5419. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5420. self.gguf_writer.add_wkv_head_size(head_size)
  5421. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5422. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5423. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5424. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5425. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5426. self.gguf_writer.add_file_type(self.ftype)
  5427. self.gguf_writer.add_token_shift_count(1)
  5428. # required by llama.cpp, unused
  5429. self.gguf_writer.add_head_count(0)
  5430. @ModelBase.register("MaincoderForCausalLM")
  5431. class MaincoderModel(TextModel):
  5432. model_arch = gguf.MODEL_ARCH.MAINCODER
  5433. def set_gguf_parameters(self):
  5434. super().set_gguf_parameters()
  5435. if (head_dim := self.hparams.get("head_dim")) is not None:
  5436. self.gguf_writer.add_rope_dimension_count(head_dim)
  5437. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  5438. class MambaModel(TextModel):
  5439. model_arch = gguf.MODEL_ARCH.MAMBA
  5440. def __init__(self, dir_model: Path, *args, **kwargs):
  5441. # Avoid using AutoConfig for hparams
  5442. hparams = kwargs.pop("hparams", None)
  5443. if hparams is None:
  5444. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5445. hparams = json.load(f)
  5446. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5447. def set_vocab(self):
  5448. vocab_size = self.hparams["vocab_size"]
  5449. # Round vocab size to next multiple of 8
  5450. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  5451. # pad using ceiling division
  5452. # ref: https://stackoverflow.com/a/17511341/22827863
  5453. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5454. self.hparams["vocab_size"] = vocab_size
  5455. if (self.dir_model / "tokenizer.json").is_file():
  5456. self._set_vocab_gpt2()
  5457. elif (self.dir_model / "tokenizer.model").is_file():
  5458. self._set_vocab_sentencepiece()
  5459. else:
  5460. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5461. self._set_vocab_builtin("gpt-neox", vocab_size)
  5462. def set_gguf_parameters(self):
  5463. d_model = self.find_hparam(["hidden_size", "d_model"])
  5464. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5465. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  5466. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  5467. # ceiling division
  5468. # ref: https://stackoverflow.com/a/17511341/22827863
  5469. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5470. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  5471. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5472. use_dt_b_c_norm = False
  5473. # For falconmamba we do apply RMS norm on B / DT and C layers
  5474. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  5475. use_dt_b_c_norm = True
  5476. # Fail early for models which don't have a block expansion factor of 2
  5477. assert d_inner == 2 * d_model
  5478. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5479. self.gguf_writer.add_embedding_length(d_model)
  5480. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5481. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5482. self.gguf_writer.add_block_count(self.block_count)
  5483. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5484. self.gguf_writer.add_ssm_inner_size(d_inner)
  5485. self.gguf_writer.add_ssm_state_size(d_state)
  5486. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5487. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5488. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  5489. self.gguf_writer.add_file_type(self.ftype)
  5490. _tok_embd = None
  5491. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5492. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  5493. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  5494. new_name = self.map_tensor_name(name)
  5495. if name.endswith(".A_log"):
  5496. logger.debug("A_log --> A ==> " + new_name)
  5497. data_torch = -torch.exp(data_torch)
  5498. # [4 1 8192 1] -> [4 8192 1 1]
  5499. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5500. data_torch = data_torch.squeeze()
  5501. # assuming token_embd.weight is seen before output.weight
  5502. if self._tok_embd is not None and new_name == output_name:
  5503. if torch.equal(self._tok_embd, data_torch):
  5504. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  5505. return
  5506. elif new_name == tok_embd_name:
  5507. self._tok_embd = data_torch
  5508. yield from super().modify_tensors(data_torch, new_name, bid)
  5509. @ModelBase.register("Mamba2ForCausalLM")
  5510. class Mamba2Model(TextModel):
  5511. model_arch = gguf.MODEL_ARCH.MAMBA2
  5512. def __init__(self, dir_model: Path, *args, **kwargs):
  5513. # Avoid using AutoConfig for hparams
  5514. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  5515. hparams = kwargs.pop("hparams", None)
  5516. if hparams is None:
  5517. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5518. hparams = json.load(f)
  5519. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5520. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  5521. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  5522. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  5523. def set_vocab(self):
  5524. vocab_size = self.hparams["vocab_size"]
  5525. # Round vocab size to next multiple of 16
  5526. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  5527. # pad using ceiling division
  5528. # ref: https://stackoverflow.com/a/17511341/22827863
  5529. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5530. self.hparams["vocab_size"] = vocab_size
  5531. if (self.dir_model / "tokenizer.model").is_file():
  5532. self._set_vocab_sentencepiece()
  5533. elif (self.dir_model / "tokenizer.model.v3").is_file():
  5534. # mamba-codestral
  5535. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  5536. elif (self.dir_model / "tokenizer.json").is_file():
  5537. self._set_vocab_gpt2()
  5538. else:
  5539. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5540. self._set_vocab_builtin("gpt-neox", vocab_size)
  5541. def set_gguf_parameters(self):
  5542. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5543. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  5544. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  5545. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5546. # Fail early for models which don't have a block expansion factor of 2
  5547. # TODO: does this really matter?
  5548. # skip the assertion for FalconH1 Model
  5549. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  5550. assert self.d_inner == 2 * self.d_model
  5551. assert self.d_inner % head_dim == 0
  5552. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5553. self.gguf_writer.add_embedding_length(self.d_model)
  5554. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5555. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5556. self.gguf_writer.add_block_count(self.block_count)
  5557. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5558. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  5559. self.gguf_writer.add_ssm_state_size(d_state)
  5560. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  5561. self.gguf_writer.add_ssm_group_count(self.n_group)
  5562. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5563. self.gguf_writer.add_file_type(self.ftype)
  5564. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5565. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  5566. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  5567. name = name.removeprefix("model.")
  5568. if name.endswith(".dt_bias"):
  5569. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  5570. new_name = self.map_tensor_name(name)
  5571. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5572. data_torch = data_torch.squeeze()
  5573. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  5574. gguf.MODEL_TENSOR.SSM_A,
  5575. gguf.MODEL_TENSOR.SSM_D,
  5576. ]):
  5577. # unsqueeze A to use similar shape semantics as Mamba-1
  5578. # (D is also unsqueezed, but for more straightforward broadcast internally)
  5579. data_torch = data_torch.reshape((*data_torch.shape, 1))
  5580. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  5581. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  5582. if name.endswith(".A_log"):
  5583. logger.debug("A_log --> A ==> " + new_name)
  5584. data_torch = -torch.exp(data_torch)
  5585. yield (new_name, data_torch)
  5586. @ModelBase.register("JambaForCausalLM")
  5587. class JambaModel(TextModel):
  5588. model_arch = gguf.MODEL_ARCH.JAMBA
  5589. def set_vocab(self):
  5590. if (self.dir_model / "tokenizer.model").is_file():
  5591. self._set_vocab_sentencepiece()
  5592. else:
  5593. self._set_vocab_llama_hf()
  5594. self.gguf_writer.add_add_space_prefix(False)
  5595. def set_gguf_parameters(self):
  5596. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  5597. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  5598. d_inner = self.hparams["mamba_expand"] * d_model
  5599. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  5600. # ceiling division
  5601. # ref: https://stackoverflow.com/a/17511341/22827863
  5602. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5603. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  5604. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  5605. n_kv_head = self.hparams["num_key_value_heads"]
  5606. attn_offset = self.hparams["attn_layer_offset"]
  5607. attn_period = self.hparams["attn_layer_period"]
  5608. n_kv_vec = [0 for _ in range(attn_offset)] + [
  5609. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  5610. ]
  5611. self.gguf_writer.add_block_count(self.block_count)
  5612. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  5613. self.gguf_writer.add_embedding_length(d_model)
  5614. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  5615. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  5616. self.gguf_writer.add_head_count_kv(n_kv_vec)
  5617. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5618. self.gguf_writer.add_ssm_inner_size(d_inner)
  5619. self.gguf_writer.add_ssm_state_size(d_state)
  5620. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5621. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5622. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  5623. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  5624. self.gguf_writer.add_file_type(self.ftype)
  5625. _experts: list[dict[str, Tensor]] | None = None
  5626. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5627. # Mini-Jamba
  5628. name = name.replace(".moe.", ".feed_forward.")
  5629. if bid is not None:
  5630. moe_offset = self.hparams["expert_layer_offset"]
  5631. moe_period = self.hparams["expert_layer_period"]
  5632. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  5633. name = name.replace(".experts.0.", ".")
  5634. # process the experts separately
  5635. if ".feed_forward.experts." in name:
  5636. n_experts = self.hparams["num_experts"]
  5637. assert bid is not None
  5638. if self._experts is None:
  5639. self._experts = [{} for _ in range(self.block_count)]
  5640. self._experts[bid][name] = data_torch
  5641. if len(self._experts[bid]) >= n_experts * 3:
  5642. # merge the experts into a single 3d tensor
  5643. for wid in ["down_proj", "gate_proj", "up_proj"]:
  5644. datas: list[Tensor] = []
  5645. for xid in range(n_experts):
  5646. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  5647. datas.append(self._experts[bid][ename])
  5648. del self._experts[bid][ename]
  5649. data_torch = torch.stack(datas, dim=0)
  5650. # using the same merged name as qwen2moe
  5651. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  5652. new_name = self.map_tensor_name(merged_name)
  5653. yield new_name, data_torch
  5654. return
  5655. new_name = self.map_tensor_name(name)
  5656. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5657. data_torch = data_torch.squeeze()
  5658. if name.endswith(".A_log"):
  5659. logger.debug("A_log --> A ==> " + new_name)
  5660. data_torch = -torch.exp(data_torch)
  5661. yield (new_name, data_torch)
  5662. def prepare_tensors(self):
  5663. super().prepare_tensors()
  5664. if self._experts is not None:
  5665. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5666. experts = [k for d in self._experts for k in d.keys()]
  5667. if len(experts) > 0:
  5668. raise ValueError(f"Unprocessed experts: {experts}")
  5669. @ModelBase.register("CohereForCausalLM")
  5670. class CommandR2Model(TextModel):
  5671. model_arch = gguf.MODEL_ARCH.COMMAND_R
  5672. def __init__(self, *args, **kwargs):
  5673. super().__init__(*args, **kwargs)
  5674. # max_position_embeddings = 8192 in config.json but model was actually
  5675. # trained on 128k context length
  5676. # aya-23 models don't have model_max_length specified
  5677. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  5678. def set_gguf_parameters(self):
  5679. super().set_gguf_parameters()
  5680. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5681. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5682. @ModelBase.register("Cohere2ForCausalLM")
  5683. class Cohere2Model(TextModel):
  5684. model_arch = gguf.MODEL_ARCH.COHERE2
  5685. def set_gguf_parameters(self):
  5686. super().set_gguf_parameters()
  5687. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5688. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5689. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  5690. rotary_pct = self.hparams["rotary_pct"]
  5691. hidden_size = self.hparams["hidden_size"]
  5692. num_attention_heads = self.hparams["num_attention_heads"]
  5693. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  5694. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5695. @ModelBase.register("OlmoForCausalLM")
  5696. @ModelBase.register("OLMoForCausalLM")
  5697. class OlmoModel(TextModel):
  5698. model_arch = gguf.MODEL_ARCH.OLMO
  5699. def set_gguf_parameters(self):
  5700. super().set_gguf_parameters()
  5701. self.gguf_writer.add_layer_norm_eps(1e-5)
  5702. clip_qkv = self.hparams.get("clip_qkv")
  5703. if clip_qkv is not None:
  5704. self.gguf_writer.add_clamp_kqv(clip_qkv)
  5705. # Same as super class, but permuting q_proj, k_proj
  5706. # Copied from: LlamaModel
  5707. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5708. n_head = self.hparams["num_attention_heads"]
  5709. n_kv_head = self.hparams.get("num_key_value_heads")
  5710. if name.endswith("q_proj.weight"):
  5711. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5712. if name.endswith("k_proj.weight"):
  5713. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5714. yield from super().modify_tensors(data_torch, name, bid)
  5715. @ModelBase.register("SeedOssForCausalLM")
  5716. class SeedOssModel(TextModel):
  5717. model_arch = gguf.MODEL_ARCH.SEED_OSS
  5718. @ModelBase.register("Olmo2ForCausalLM")
  5719. @ModelBase.register("Olmo3ForCausalLM")
  5720. class Olmo2Model(TextModel):
  5721. model_arch = gguf.MODEL_ARCH.OLMO2
  5722. def set_gguf_parameters(self):
  5723. super().set_gguf_parameters()
  5724. if "sliding_window" in self.hparams:
  5725. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5726. sliding_window_pattern = []
  5727. if "layer_types" in self.hparams:
  5728. sliding_window_pattern = [t == "sliding_attention" for t in self.hparams["layer_types"]]
  5729. else:
  5730. # Olmo2 does not use sliding window attention.
  5731. # Olmo3 defaults to using sliding window for all layers except every 4th.
  5732. for i in range(self.hparams["num_hidden_layers"]):
  5733. sliding_window_pattern.append((i + 1) % 4 != 0)
  5734. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  5735. @ModelBase.register("OlmoeForCausalLM")
  5736. class OlmoeModel(TextModel):
  5737. model_arch = gguf.MODEL_ARCH.OLMOE
  5738. def set_gguf_parameters(self):
  5739. super().set_gguf_parameters()
  5740. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  5741. if (n_experts := self.hparams.get("num_experts")) is not None:
  5742. self.gguf_writer.add_expert_count(n_experts)
  5743. _experts: list[dict[str, Tensor]] | None = None
  5744. # Copied from: Qwen2MoeModel
  5745. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5746. # process the experts separately
  5747. if name.find("experts") != -1:
  5748. n_experts = self.hparams["num_experts"]
  5749. assert bid is not None
  5750. if self._experts is None:
  5751. self._experts = [{} for _ in range(self.block_count)]
  5752. self._experts[bid][name] = data_torch
  5753. if len(self._experts[bid]) >= n_experts * 3:
  5754. # merge the experts into a single 3d tensor
  5755. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5756. datas: list[Tensor] = []
  5757. for xid in range(n_experts):
  5758. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5759. datas.append(self._experts[bid][ename])
  5760. del self._experts[bid][ename]
  5761. data_torch = torch.stack(datas, dim=0)
  5762. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5763. yield from super().modify_tensors(data_torch, merged_name, bid)
  5764. return
  5765. else:
  5766. return
  5767. yield from super().modify_tensors(data_torch, name, bid)
  5768. # Copied from: Qwen2MoeModel
  5769. def prepare_tensors(self):
  5770. super().prepare_tensors()
  5771. if self._experts is not None:
  5772. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5773. experts = [k for d in self._experts for k in d.keys()]
  5774. if len(experts) > 0:
  5775. raise ValueError(f"Unprocessed experts: {experts}")
  5776. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  5777. class JinaBertV2Model(BertModel):
  5778. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  5779. def set_vocab(self):
  5780. tokenizer_class = 'BertTokenizer'
  5781. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  5782. tokenizer_class = json.load(f)['tokenizer_class']
  5783. if tokenizer_class == 'BertTokenizer':
  5784. super().set_vocab()
  5785. elif tokenizer_class == 'RobertaTokenizer':
  5786. self._set_vocab_gpt2()
  5787. self.gguf_writer.add_token_type_count(2)
  5788. else:
  5789. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  5790. @ModelBase.register("OpenELMForCausalLM")
  5791. class OpenELMModel(TextModel):
  5792. model_arch = gguf.MODEL_ARCH.OPENELM
  5793. @staticmethod
  5794. def _make_divisible(v: float | int, divisor: int) -> int:
  5795. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  5796. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  5797. # Make sure that round down does not go down by more than 10%.
  5798. if new_v < 0.9 * v:
  5799. new_v += divisor
  5800. return new_v
  5801. def __init__(self, *args, **kwargs):
  5802. super().__init__(*args, **kwargs)
  5803. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  5804. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  5805. self._n_embd: int = self.hparams["model_dim"]
  5806. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  5807. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  5808. self._ffn_dims: list[int] = [
  5809. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  5810. for multiplier in ffn_multipliers
  5811. ]
  5812. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  5813. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  5814. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  5815. def set_vocab(self):
  5816. try:
  5817. self._set_vocab_sentencepiece()
  5818. except FileNotFoundError:
  5819. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  5820. def set_gguf_parameters(self):
  5821. n_embd = self._n_embd
  5822. head_dim = self.hparams["head_dim"]
  5823. rot_pct = 1.0
  5824. assert self.block_count == len(self._num_kv_heads)
  5825. assert self.block_count == len(self._num_query_heads)
  5826. assert self.block_count == len(self._ffn_dims)
  5827. self.gguf_writer.add_block_count(self.block_count)
  5828. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  5829. self.gguf_writer.add_embedding_length(n_embd)
  5830. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  5831. self.gguf_writer.add_head_count(self._num_query_heads)
  5832. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  5833. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  5834. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  5835. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  5836. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  5837. self.gguf_writer.add_key_length(head_dim)
  5838. self.gguf_writer.add_value_length(head_dim)
  5839. self.gguf_writer.add_file_type(self.ftype)
  5840. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  5841. if "n_layers" in keys:
  5842. return self.hparams["num_transformer_layers"]
  5843. return super().find_hparam(keys, optional)
  5844. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5845. # split ff
  5846. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  5847. ff_dim = self._ffn_dims[bid]
  5848. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  5849. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  5850. return
  5851. yield (self.map_tensor_name(name), data_torch)
  5852. @ModelBase.register("ArcticForCausalLM")
  5853. class ArcticModel(TextModel):
  5854. model_arch = gguf.MODEL_ARCH.ARCTIC
  5855. def set_vocab(self):
  5856. # The reason for using a custom implementation here is that the
  5857. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  5858. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  5859. from sentencepiece import SentencePieceProcessor
  5860. tokenizer_path = self.dir_model / 'tokenizer.model'
  5861. if not tokenizer_path.is_file():
  5862. logger.error(f'Error: Missing {tokenizer_path}')
  5863. sys.exit(1)
  5864. # Read the whole vocabulary from the tokenizer.model file
  5865. tokenizer = SentencePieceProcessor()
  5866. tokenizer.LoadFromFile(str(tokenizer_path))
  5867. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5868. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5869. scores: list[float] = [-10000.0] * vocab_size
  5870. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5871. for token_id in range(tokenizer.vocab_size()):
  5872. piece = tokenizer.IdToPiece(token_id)
  5873. text = piece.encode("utf-8")
  5874. score = tokenizer.GetScore(token_id)
  5875. toktype = SentencePieceTokenTypes.NORMAL
  5876. if tokenizer.IsUnknown(token_id):
  5877. toktype = SentencePieceTokenTypes.UNKNOWN
  5878. elif tokenizer.IsControl(token_id):
  5879. toktype = SentencePieceTokenTypes.CONTROL
  5880. elif tokenizer.IsUnused(token_id):
  5881. toktype = SentencePieceTokenTypes.UNUSED
  5882. elif tokenizer.IsByte(token_id):
  5883. toktype = SentencePieceTokenTypes.BYTE
  5884. tokens[token_id] = text
  5885. scores[token_id] = score
  5886. toktypes[token_id] = toktype
  5887. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  5888. # of information about added/redefined tokens and modify them accordingly.
  5889. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  5890. if tokenizer_config_file.is_file():
  5891. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  5892. tokenizer_config_json = json.load(f)
  5893. if "added_tokens_decoder" in tokenizer_config_json:
  5894. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  5895. for token_id, token_json in added_tokens_decoder.items():
  5896. token_id = int(token_id)
  5897. if token_id >= vocab_size:
  5898. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5899. continue
  5900. token_content = token_json["content"]
  5901. token_type = SentencePieceTokenTypes.USER_DEFINED
  5902. token_score = -10000.0
  5903. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  5904. # Set the score to 0.0 as in the original tokenizer.model
  5905. if ("special" in token_json) and token_json["special"]:
  5906. if token_content == tokenizer_config_json["unk_token"]:
  5907. token_type = SentencePieceTokenTypes.UNKNOWN
  5908. else:
  5909. token_type = SentencePieceTokenTypes.CONTROL
  5910. token_score = 0.0
  5911. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  5912. tokens[token_id] = token_content.encode("utf-8")
  5913. toktypes[token_id] = token_type
  5914. scores[token_id] = token_score
  5915. self.gguf_writer.add_tokenizer_model("llama")
  5916. self.gguf_writer.add_tokenizer_pre("default")
  5917. self.gguf_writer.add_token_list(tokens)
  5918. self.gguf_writer.add_token_scores(scores)
  5919. self.gguf_writer.add_token_types(toktypes)
  5920. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5921. special_vocab.add_to_gguf(self.gguf_writer)
  5922. def set_gguf_parameters(self):
  5923. super().set_gguf_parameters()
  5924. hparams = self.hparams
  5925. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5926. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  5927. _experts: list[dict[str, Tensor]] | None = None
  5928. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5929. n_head = self.hparams["num_attention_heads"]
  5930. n_kv_head = self.hparams.get("num_key_value_heads")
  5931. if name.endswith("q_proj.weight"):
  5932. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5933. if name.endswith("k_proj.weight"):
  5934. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5935. # process the experts separately
  5936. if name.find("block_sparse_moe.experts") != -1:
  5937. n_experts = self.hparams["num_local_experts"]
  5938. assert bid is not None
  5939. if self._experts is None:
  5940. self._experts = [{} for _ in range(self.block_count)]
  5941. self._experts[bid][name] = data_torch
  5942. if len(self._experts[bid]) >= n_experts * 3:
  5943. # merge the experts into a single 3d tensor
  5944. for wid in ["w1", "w2", "w3"]:
  5945. datas: list[Tensor] = []
  5946. for xid in range(n_experts):
  5947. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  5948. datas.append(self._experts[bid][ename])
  5949. del self._experts[bid][ename]
  5950. data_torch = torch.stack(datas, dim=0)
  5951. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  5952. yield from super().modify_tensors(data_torch, merged_name, bid)
  5953. return
  5954. else:
  5955. return
  5956. yield from super().modify_tensors(data_torch, name, bid)
  5957. def prepare_tensors(self):
  5958. super().prepare_tensors()
  5959. if self._experts is not None:
  5960. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5961. experts = [k for d in self._experts for k in d.keys()]
  5962. if len(experts) > 0:
  5963. raise ValueError(f"Unprocessed experts: {experts}")
  5964. @ModelBase.register("DeepseekForCausalLM")
  5965. class DeepseekModel(TextModel):
  5966. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  5967. def set_vocab(self):
  5968. try:
  5969. self._set_vocab_sentencepiece()
  5970. except FileNotFoundError:
  5971. self._set_vocab_gpt2()
  5972. def set_gguf_parameters(self):
  5973. super().set_gguf_parameters()
  5974. hparams = self.hparams
  5975. if (rope_dim := hparams.get("head_dim")) is None:
  5976. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5977. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5978. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5979. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5980. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5981. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5982. self.gguf_writer.add_expert_weights_scale(1.0)
  5983. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5984. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5985. _experts: list[dict[str, Tensor]] | None = None
  5986. @staticmethod
  5987. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  5988. if n_head_kv is not None and n_head != n_head_kv:
  5989. n_head = n_head_kv
  5990. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  5991. .swapaxes(1, 2)
  5992. .reshape(weights.shape))
  5993. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5994. n_head = self.hparams["num_attention_heads"]
  5995. n_kv_head = self.hparams.get("num_key_value_heads")
  5996. if name.endswith(("q_proj.weight", "q_proj.bias")):
  5997. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  5998. if name.endswith(("k_proj.weight", "k_proj.bias")):
  5999. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  6000. # process the experts separately
  6001. if name.find("mlp.experts") != -1:
  6002. n_experts = self.hparams["n_routed_experts"]
  6003. assert bid is not None
  6004. if self._experts is None:
  6005. self._experts = [{} for _ in range(self.block_count)]
  6006. self._experts[bid][name] = data_torch
  6007. if len(self._experts[bid]) >= n_experts * 3:
  6008. # merge the experts into a single 3d tensor
  6009. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6010. datas: list[Tensor] = []
  6011. for xid in range(n_experts):
  6012. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6013. datas.append(self._experts[bid][ename])
  6014. del self._experts[bid][ename]
  6015. data_torch = torch.stack(datas, dim=0)
  6016. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6017. yield from super().modify_tensors(data_torch, merged_name, bid)
  6018. return
  6019. else:
  6020. return
  6021. yield from super().modify_tensors(data_torch, name, bid)
  6022. def prepare_tensors(self):
  6023. super().prepare_tensors()
  6024. if self._experts is not None:
  6025. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6026. experts = [k for d in self._experts for k in d.keys()]
  6027. if len(experts) > 0:
  6028. raise ValueError(f"Unprocessed experts: {experts}")
  6029. @ModelBase.register(
  6030. "DeepseekV2ForCausalLM",
  6031. "DeepseekV3ForCausalLM",
  6032. "KimiVLForConditionalGeneration",
  6033. "YoutuForCausalLM",
  6034. "YoutuVLForConditionalGeneration",
  6035. )
  6036. class DeepseekV2Model(TextModel):
  6037. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  6038. def set_vocab(self):
  6039. try:
  6040. self._set_vocab_gpt2()
  6041. return
  6042. except Exception:
  6043. pass
  6044. from transformers import AutoTokenizer
  6045. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6046. tokpre = self.get_vocab_base_pre(tokenizer)
  6047. if tokpre == "kimi-k2":
  6048. # Build merges list using the approach similar to HunYuanMoE
  6049. merges = []
  6050. vocab = {}
  6051. mergeable_ranks = tokenizer.model._mergeable_ranks
  6052. for token, rank in mergeable_ranks.items():
  6053. vocab[QwenModel.token_bytes_to_string(token)] = rank
  6054. if len(token) == 1:
  6055. continue
  6056. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  6057. if len(merged) == 2:
  6058. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  6059. # Build token list
  6060. vocab_size = self.hparams["vocab_size"]
  6061. special_tokens = tokenizer.special_tokens
  6062. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  6063. tokens: list[str] = []
  6064. toktypes: list[int] = []
  6065. for i in range(vocab_size):
  6066. if i not in reverse_vocab:
  6067. tokens.append(f"[PAD{i}]")
  6068. toktypes.append(gguf.TokenType.UNUSED)
  6069. else:
  6070. token = reverse_vocab[i]
  6071. tokens.append(token)
  6072. if i in special_tokens.values():
  6073. toktypes.append(gguf.TokenType.CONTROL)
  6074. else:
  6075. toktypes.append(gguf.TokenType.NORMAL)
  6076. self.gguf_writer.add_tokenizer_model("gpt2")
  6077. self.gguf_writer.add_tokenizer_pre(tokpre)
  6078. self.gguf_writer.add_token_list(tokens)
  6079. self.gguf_writer.add_token_types(toktypes)
  6080. self.gguf_writer.add_token_merges(merges)
  6081. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  6082. special_vocab.add_to_gguf(self.gguf_writer)
  6083. else:
  6084. raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
  6085. def set_gguf_parameters(self):
  6086. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  6087. self.hparams["num_key_value_heads"] = 1
  6088. super().set_gguf_parameters()
  6089. hparams = self.hparams
  6090. # first_k_dense_replace: number of leading layers using dense FFN instead of MoE
  6091. # For non-MoE models (like Youtu), set to n_layer to use dense FFN for all layers
  6092. # For MoE models (like DeepSeek-V2), this is the number of leading non-MoE layers
  6093. has_moe = hparams.get("n_routed_experts") is not None
  6094. first_k_dense_replace = hparams.get("first_k_dense_replace")
  6095. if first_k_dense_replace is None:
  6096. # Default: if no MoE, all layers are dense; if MoE, none are dense
  6097. first_k_dense_replace = hparams["num_hidden_layers"] if not has_moe else 0
  6098. self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
  6099. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6100. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  6101. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  6102. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  6103. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  6104. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  6105. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  6106. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  6107. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  6108. # MoE parameters (required by C++ code for DEEPSEEK2 arch)
  6109. # For non-MoE models like Youtu, use intermediate_size as expert_feed_forward_length
  6110. moe_intermediate_size = self.find_hparam(["moe_intermediate_size", "intermediate_size"], optional=False)
  6111. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6112. if (n_routed_experts := hparams.get("n_routed_experts")) is not None:
  6113. self.gguf_writer.add_expert_count(n_routed_experts)
  6114. # expert_shared_count is required by C++ code, default to 0 for non-MoE models
  6115. n_shared_experts = hparams.get("n_shared_experts", 0)
  6116. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  6117. # When not set, C++ code will use scale_w = false to skip the no-op scaling
  6118. if (routed_scaling_factor := hparams.get("routed_scaling_factor")) is not None:
  6119. self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
  6120. if (norm_topk_prob := hparams.get("norm_topk_prob")) is not None and norm_topk_prob:
  6121. self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
  6122. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  6123. if (rope_mscale_all := self.rope_parameters.get("mscale_all_dim")) is not None:
  6124. # [TAG_DEEPSEEK2_YARN_LOG_MUL_FIX]
  6125. # note: for legacy reasons, this is not consistent with the other usages of self.gguf_writer.add_rope_scaling_yarn_log_mul
  6126. # ref https://github.com/ggml-org/llama.cpp/pull/17945
  6127. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_mscale_all)
  6128. _experts: list[dict[str, Tensor]] | None = None
  6129. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6130. # skip vision tensors and remove "language_model." for Kimi-VL
  6131. if "vision_tower" in name or "multi_modal_projector" in name:
  6132. return
  6133. if name.startswith("siglip2.") or name.startswith("merger."):
  6134. return
  6135. if name.startswith("language_model."):
  6136. name = name.replace("language_model.", "")
  6137. # skip lm_head.weight if tie_word_embeddings is True
  6138. if self.hparams.get("tie_word_embeddings", False):
  6139. if name == "lm_head.weight" or name == "model.lm_head.weight":
  6140. logger.info("Skipping tied output layer 'lm_head.weight' (will use token_embd.weight)")
  6141. return
  6142. # rename e_score_correction_bias tensors
  6143. if name.endswith("e_score_correction_bias"):
  6144. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6145. # skip Multi-Token Prediction (MTP) layers
  6146. block_count = self.hparams["num_hidden_layers"]
  6147. match = re.match(r"model.layers.(\d+)", name)
  6148. if match and int(match.group(1)) >= block_count:
  6149. return
  6150. # process the experts separately
  6151. if name.find("mlp.experts") != -1:
  6152. n_experts = self.hparams["n_routed_experts"]
  6153. assert bid is not None
  6154. if self._experts is None:
  6155. self._experts = [{} for _ in range(self.block_count)]
  6156. self._experts[bid][name] = data_torch
  6157. if len(self._experts[bid]) >= n_experts * 3:
  6158. # merge the experts into a single 3d tensor
  6159. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6160. datas: list[Tensor] = []
  6161. for xid in range(n_experts):
  6162. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6163. datas.append(self._experts[bid][ename])
  6164. del self._experts[bid][ename]
  6165. data_torch = torch.stack(datas, dim=0)
  6166. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6167. yield from super().modify_tensors(data_torch, merged_name, bid)
  6168. return
  6169. else:
  6170. return
  6171. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  6172. if name.endswith("kv_b_proj.weight"):
  6173. name_kb = name.replace("kv_b_proj", "k_b_proj")
  6174. name_vb = name.replace("kv_b_proj", "v_b_proj")
  6175. n_head_kv = self.hparams["num_key_value_heads"]
  6176. v_head_dim = self.hparams["v_head_dim"]
  6177. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  6178. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  6179. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  6180. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  6181. k_b = k_b.transpose(1, 2)
  6182. yield from super().modify_tensors(k_b, name_kb, bid)
  6183. yield from super().modify_tensors(v_b, name_vb, bid)
  6184. return
  6185. yield from super().modify_tensors(data_torch, name, bid)
  6186. def prepare_tensors(self):
  6187. super().prepare_tensors()
  6188. if self._experts is not None:
  6189. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6190. experts = [k for d in self._experts for k in d.keys()]
  6191. if len(experts) > 0:
  6192. raise ValueError(f"Unprocessed experts: {experts}")
  6193. @ModelBase.register("MiniMaxM2ForCausalLM")
  6194. class MiniMaxM2Model(TextModel):
  6195. model_arch = gguf.MODEL_ARCH.MINIMAXM2
  6196. _experts_cache: dict[int, dict[str, Tensor]] = {}
  6197. def __init__(self, *args, **kwargs):
  6198. super().__init__(*args, **kwargs)
  6199. self.hparams["num_experts"] = self.hparams["num_local_experts"]
  6200. def set_gguf_parameters(self):
  6201. super().set_gguf_parameters()
  6202. self.gguf_writer.add_expert_feed_forward_length(self.find_hparam(["intermediate_size"]))
  6203. self.gguf_writer.add_rope_dimension_count(self.find_hparam(["rotary_dim"]))
  6204. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  6205. if name.endswith("e_score_correction_bias"):
  6206. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6207. # merge expert weights
  6208. if 'experts' in name:
  6209. n_experts = self.hparams["num_experts"]
  6210. assert bid is not None
  6211. expert_cache = self._experts_cache.setdefault(bid, {})
  6212. expert_cache[name] = data_torch
  6213. expert_weights = ["w1", "w2", "w3"]
  6214. # not enough expert weights to merge
  6215. if len(expert_cache) < n_experts * len(expert_weights):
  6216. return
  6217. for w_name in expert_weights:
  6218. datas: list[Tensor] = []
  6219. for xid in range(n_experts):
  6220. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  6221. datas.append(expert_cache[ename])
  6222. del expert_cache[ename]
  6223. data_torch = torch.stack(datas, dim=0)
  6224. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  6225. new_name = self.map_tensor_name(merged_name)
  6226. yield from super().modify_tensors(data_torch, new_name, bid)
  6227. del self._experts_cache[bid]
  6228. return
  6229. yield from super().modify_tensors(data_torch, name, bid)
  6230. @ModelBase.register("MiMoV2FlashForCausalLM")
  6231. class MimoV2Model(TextModel):
  6232. model_arch = gguf.MODEL_ARCH.MIMO2
  6233. def set_gguf_parameters(self):
  6234. super().set_gguf_parameters()
  6235. assert self.hparams["swa_head_dim"] == self.hparams["head_dim"]
  6236. assert self.hparams["swa_num_attention_heads"] == self.hparams["num_attention_heads"]
  6237. assert self.hparams["swa_v_head_dim"] == self.hparams["v_head_dim"]
  6238. assert self.hparams["topk_method"] == "noaux_tc"
  6239. n_head_kv = self.hparams["num_key_value_heads"]
  6240. n_head_kv_swa = self.hparams["swa_num_key_value_heads"]
  6241. n_head_kv_arr = [n_head_kv_swa if use_swa == 1 else n_head_kv for use_swa in self.hparams["hybrid_layer_pattern"]]
  6242. self.gguf_writer.add_head_count_kv(n_head_kv_arr)
  6243. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  6244. self.gguf_writer.add_sliding_window_pattern(self.hparams["hybrid_layer_pattern"])
  6245. self.gguf_writer.add_value_length(self.hparams["v_head_dim"])
  6246. self.gguf_writer.add_expert_count(self.hparams["n_routed_experts"])
  6247. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  6248. rope_dim = int(self.hparams["head_dim"] * self.hparams["partial_rotary_factor"])
  6249. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6250. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon", 1e-5))
  6251. _experts: list[dict[str, Tensor]] | None = None
  6252. def modify_tensors(self, data_torch, name, bid):
  6253. if name.endswith("e_score_correction_bias"):
  6254. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6255. if "attention_sink" in name and not name.endswith(".weight"):
  6256. name += ".weight"
  6257. # TODO: mimo v2 does not indicate the number of next-token-prediction layers, therefore we cannot do the same way as GLM4_MOE
  6258. if "model.mtp." in name:
  6259. return
  6260. # process the experts separately
  6261. if name.find("mlp.experts") != -1:
  6262. n_experts = self.hparams["n_routed_experts"]
  6263. assert bid is not None
  6264. if self._experts is None:
  6265. self._experts = [{} for _ in range(self.block_count)]
  6266. self._experts[bid][name] = data_torch
  6267. if len(self._experts[bid]) >= n_experts * 3:
  6268. # merge the experts into a single 3d tensor
  6269. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  6270. datas: list[Tensor] = []
  6271. for xid in range(n_experts):
  6272. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6273. datas.append(self._experts[bid][ename_to_retrieve])
  6274. del self._experts[bid][ename_to_retrieve]
  6275. data_torch = torch.stack(datas, dim=0)
  6276. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6277. yield from super().modify_tensors(data_torch, merged_name, bid)
  6278. return
  6279. else:
  6280. return
  6281. yield from super().modify_tensors(data_torch, name, bid)
  6282. def prepare_tensors(self):
  6283. super().prepare_tensors()
  6284. if self._experts is not None:
  6285. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6286. experts = [k for d in self._experts for k in d.keys()]
  6287. if len(experts) > 0:
  6288. raise ValueError(f"Unprocessed experts: {experts}")
  6289. @ModelBase.register("PanguEmbeddedForCausalLM")
  6290. class PanguEmbeddedModel(TextModel):
  6291. model_arch = gguf.MODEL_ARCH.PANGU_EMBED
  6292. def set_vocab(self):
  6293. self._set_vocab_sentencepiece()
  6294. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  6295. if tokenizer_config_file.is_file():
  6296. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  6297. tokenizer_config_json = json.load(f)
  6298. if "add_prefix_space" in tokenizer_config_json:
  6299. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  6300. def set_gguf_parameters(self):
  6301. super().set_gguf_parameters()
  6302. hparams = self.hparams
  6303. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6304. # PanguEmbedded's hparam loaded from config.json without head_dim
  6305. if (rope_dim := hparams.get("head_dim")) is None:
  6306. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  6307. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6308. if hparams.get("head_dim") is None:
  6309. self.gguf_writer.add_key_length(rope_dim)
  6310. self.gguf_writer.add_value_length(rope_dim)
  6311. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6312. if name == "lm_head.weight":
  6313. if self.hparams.get("tie_word_embeddings", False):
  6314. logger.info("Skipping tied output layer 'lm_head.weight'")
  6315. return
  6316. yield from super().modify_tensors(data_torch, name, bid)
  6317. @ModelBase.register("Dots1ForCausalLM")
  6318. class Dots1Model(Qwen2MoeModel):
  6319. model_arch = gguf.MODEL_ARCH.DOTS1
  6320. def __init__(self, *args, **kwargs):
  6321. super().__init__(*args, **kwargs)
  6322. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  6323. def set_gguf_parameters(self):
  6324. super().set_gguf_parameters()
  6325. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  6326. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  6327. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  6328. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  6329. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  6330. if name.endswith("e_score_correction_bias"):
  6331. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6332. if "shared_experts" in name:
  6333. yield from ModelBase.modify_tensors(self, data_torch, name, bid)
  6334. else:
  6335. yield from super().modify_tensors(data_torch, name, bid)
  6336. @ModelBase.register("PLMForCausalLM")
  6337. class PLMModel(TextModel):
  6338. model_arch = gguf.MODEL_ARCH.PLM
  6339. def set_vocab(self):
  6340. self._set_vocab_gpt2()
  6341. def set_gguf_parameters(self):
  6342. super().set_gguf_parameters()
  6343. hparams = self.hparams
  6344. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6345. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  6346. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  6347. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  6348. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  6349. def prepare_tensors(self):
  6350. super().prepare_tensors()
  6351. @ModelBase.register("T5WithLMHeadModel")
  6352. @ModelBase.register("T5ForConditionalGeneration")
  6353. @ModelBase.register("MT5ForConditionalGeneration")
  6354. @ModelBase.register("UMT5ForConditionalGeneration")
  6355. @ModelBase.register("UMT5Model")
  6356. class T5Model(TextModel):
  6357. model_arch = gguf.MODEL_ARCH.T5
  6358. def __init__(self, *args, **kwargs):
  6359. super().__init__(*args, **kwargs)
  6360. self.shared_token_embeddings_found = False
  6361. def set_vocab(self):
  6362. # to avoid TypeError: Descriptors cannot be created directly
  6363. # exception when importing sentencepiece_model_pb2
  6364. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  6365. from sentencepiece import SentencePieceProcessor
  6366. from sentencepiece import sentencepiece_model_pb2 as model
  6367. tokenizer_path = self.dir_model / 'tokenizer.model'
  6368. # many older models use spiece.model tokenizer model filename
  6369. if not tokenizer_path.is_file():
  6370. tokenizer_path = self.dir_model / 'spiece.model'
  6371. if not tokenizer_path.is_file():
  6372. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6373. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6374. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6375. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6376. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6377. # assure the tokenizer model file name is correct
  6378. assert tokenizer_path.name == 'tokenizer.model'
  6379. return self._set_vocab_sentencepiece()
  6380. else:
  6381. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6382. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6383. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6384. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6385. tokenizer = SentencePieceProcessor()
  6386. tokenizer.LoadFromFile(str(tokenizer_path))
  6387. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6388. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6389. scores: list[float] = [-10000.0] * vocab_size
  6390. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6391. for token_id in range(tokenizer.vocab_size()):
  6392. piece = tokenizer.IdToPiece(token_id)
  6393. text = piece.encode("utf-8")
  6394. score = tokenizer.GetScore(token_id)
  6395. toktype = SentencePieceTokenTypes.NORMAL
  6396. if tokenizer.IsUnknown(token_id):
  6397. toktype = SentencePieceTokenTypes.UNKNOWN
  6398. elif tokenizer.IsControl(token_id):
  6399. toktype = SentencePieceTokenTypes.CONTROL
  6400. elif tokenizer.IsUnused(token_id):
  6401. toktype = SentencePieceTokenTypes.UNUSED
  6402. elif tokenizer.IsByte(token_id):
  6403. toktype = SentencePieceTokenTypes.BYTE
  6404. tokens[token_id] = text
  6405. scores[token_id] = score
  6406. toktypes[token_id] = toktype
  6407. added_tokens_file = self.dir_model / 'added_tokens.json'
  6408. if added_tokens_file.is_file():
  6409. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6410. added_tokens_json = json.load(f)
  6411. for key in added_tokens_json:
  6412. token_id = added_tokens_json[key]
  6413. if token_id >= vocab_size:
  6414. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6415. continue
  6416. tokens[token_id] = key.encode("utf-8")
  6417. scores[token_id] = -1000.0
  6418. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6419. if vocab_size > len(tokens):
  6420. pad_count = vocab_size - len(tokens)
  6421. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6422. for i in range(1, pad_count + 1):
  6423. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6424. scores.append(-1000.0)
  6425. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6426. self.gguf_writer.add_tokenizer_model("t5")
  6427. self.gguf_writer.add_tokenizer_pre("default")
  6428. self.gguf_writer.add_token_list(tokens)
  6429. self.gguf_writer.add_token_scores(scores)
  6430. self.gguf_writer.add_token_types(toktypes)
  6431. self.gguf_writer.add_add_space_prefix(add_prefix)
  6432. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6433. if precompiled_charsmap:
  6434. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6435. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6436. special_vocab.add_to_gguf(self.gguf_writer)
  6437. def set_gguf_parameters(self):
  6438. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6439. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6440. n_ctx = 512
  6441. self.gguf_writer.add_context_length(n_ctx)
  6442. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6443. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6444. self.gguf_writer.add_block_count(self.block_count)
  6445. if (dec_n_layer := self.hparams.get("num_decoder_layers")) is not None:
  6446. self.gguf_writer.add_decoder_block_count(dec_n_layer)
  6447. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6448. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6449. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6450. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6451. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6452. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6453. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  6454. self.gguf_writer.add_file_type(self.ftype)
  6455. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6456. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6457. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6458. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6459. # and decoder and ignore the remaining ones.
  6460. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6461. if not self.shared_token_embeddings_found:
  6462. name = "shared.weight"
  6463. self.shared_token_embeddings_found = True
  6464. else:
  6465. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6466. return
  6467. yield from super().modify_tensors(data_torch, name, bid)
  6468. @ModelBase.register("T5EncoderModel")
  6469. class T5EncoderModel(TextModel):
  6470. model_arch = gguf.MODEL_ARCH.T5ENCODER
  6471. def __init__(self, *args, **kwargs):
  6472. super().__init__(*args, **kwargs)
  6473. self.shared_token_embeddings_found = False
  6474. def set_vocab(self):
  6475. # to avoid TypeError: Descriptors cannot be created directly
  6476. # exception when importing sentencepiece_model_pb2
  6477. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  6478. from sentencepiece import SentencePieceProcessor
  6479. from sentencepiece import sentencepiece_model_pb2 as model
  6480. tokenizer_path = self.dir_model / 'tokenizer.model'
  6481. # many older models use spiece.model tokenizer model filename
  6482. if not tokenizer_path.is_file():
  6483. tokenizer_path = self.dir_model / 'spiece.model'
  6484. if not tokenizer_path.is_file():
  6485. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6486. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6487. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6488. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6489. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6490. # assure the tokenizer model file name is correct
  6491. assert tokenizer_path.name == 'tokenizer.model'
  6492. return self._set_vocab_sentencepiece()
  6493. else:
  6494. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6495. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6496. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6497. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6498. tokenizer = SentencePieceProcessor()
  6499. tokenizer.LoadFromFile(str(tokenizer_path))
  6500. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6501. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6502. scores: list[float] = [-10000.0] * vocab_size
  6503. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6504. for token_id in range(tokenizer.vocab_size()):
  6505. piece = tokenizer.IdToPiece(token_id)
  6506. text = piece.encode("utf-8")
  6507. score = tokenizer.GetScore(token_id)
  6508. toktype = SentencePieceTokenTypes.NORMAL
  6509. if tokenizer.IsUnknown(token_id):
  6510. toktype = SentencePieceTokenTypes.UNKNOWN
  6511. elif tokenizer.IsControl(token_id):
  6512. toktype = SentencePieceTokenTypes.CONTROL
  6513. elif tokenizer.IsUnused(token_id):
  6514. toktype = SentencePieceTokenTypes.UNUSED
  6515. elif tokenizer.IsByte(token_id):
  6516. toktype = SentencePieceTokenTypes.BYTE
  6517. tokens[token_id] = text
  6518. scores[token_id] = score
  6519. toktypes[token_id] = toktype
  6520. added_tokens_file = self.dir_model / 'added_tokens.json'
  6521. if added_tokens_file.is_file():
  6522. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6523. added_tokens_json = json.load(f)
  6524. for key in added_tokens_json:
  6525. token_id = added_tokens_json[key]
  6526. if token_id >= vocab_size:
  6527. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6528. continue
  6529. tokens[token_id] = key.encode("utf-8")
  6530. scores[token_id] = -1000.0
  6531. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6532. if vocab_size > len(tokens):
  6533. pad_count = vocab_size - len(tokens)
  6534. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6535. for i in range(1, pad_count + 1):
  6536. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6537. scores.append(-1000.0)
  6538. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6539. self.gguf_writer.add_tokenizer_model("t5")
  6540. self.gguf_writer.add_tokenizer_pre("default")
  6541. self.gguf_writer.add_token_list(tokens)
  6542. self.gguf_writer.add_token_scores(scores)
  6543. self.gguf_writer.add_token_types(toktypes)
  6544. self.gguf_writer.add_add_space_prefix(add_prefix)
  6545. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6546. if precompiled_charsmap:
  6547. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6548. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6549. special_vocab.add_to_gguf(self.gguf_writer)
  6550. def set_gguf_parameters(self):
  6551. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6552. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6553. n_ctx = 512
  6554. self.gguf_writer.add_context_length(n_ctx)
  6555. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6556. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6557. self.gguf_writer.add_block_count(self.block_count)
  6558. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6559. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6560. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6561. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6562. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6563. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6564. self.gguf_writer.add_file_type(self.ftype)
  6565. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6566. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6567. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6568. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6569. # and decoder and ignore the remaining ones.
  6570. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6571. if not self.shared_token_embeddings_found:
  6572. name = "shared.weight"
  6573. self.shared_token_embeddings_found = True
  6574. else:
  6575. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6576. return
  6577. yield from super().modify_tensors(data_torch, name, bid)
  6578. @ModelBase.register("JAISLMHeadModel")
  6579. class JaisModel(TextModel):
  6580. model_arch = gguf.MODEL_ARCH.JAIS
  6581. def __init__(self, *args, **kwargs):
  6582. super().__init__(*args, **kwargs)
  6583. # SwigLU activation
  6584. assert self.hparams["activation_function"] == "swiglu"
  6585. # ALiBi position embedding
  6586. assert self.hparams["position_embedding_type"] == "alibi"
  6587. # Embeddings scale
  6588. self.embeddings_scale = 1.0
  6589. if 'mup_embeddings_scale' in self.hparams:
  6590. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  6591. elif 'embeddings_scale' in self.hparams:
  6592. self.embeddings_scale = self.hparams['embeddings_scale']
  6593. else:
  6594. assert False
  6595. self.width_scale = 1.0
  6596. if 'mup_output_alpha' in self.hparams:
  6597. assert 'mup_width_scale' in self.hparams
  6598. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  6599. elif 'width_scale' in self.hparams:
  6600. self.width_scale = self.hparams['width_scale']
  6601. else:
  6602. assert False
  6603. self.max_alibi_bias = 8.0
  6604. def set_vocab(self):
  6605. self._set_vocab_gpt2()
  6606. def set_gguf_parameters(self):
  6607. self.gguf_writer.add_block_count(self.block_count)
  6608. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  6609. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  6610. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  6611. self.gguf_writer.add_head_count(self.hparams["n_head"])
  6612. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6613. self.gguf_writer.add_file_type(self.ftype)
  6614. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6615. # we don't need these
  6616. if name.endswith((".attn.bias")):
  6617. return
  6618. if name.endswith(("relative_pe.slopes")):
  6619. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  6620. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  6621. # but Jais's PyTorch model simply precalculates the slope values and places them
  6622. # in relative_pes.slopes
  6623. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  6624. first_val = float(data_torch[0].item())
  6625. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  6626. return
  6627. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  6628. data_torch = data_torch.transpose(1, 0)
  6629. new_name = self.map_tensor_name(name)
  6630. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  6631. yield from super().modify_tensors(data_torch * self.embeddings_scale, new_name, bid)
  6632. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  6633. yield from super().modify_tensors(data_torch * self.width_scale, new_name, bid)
  6634. else:
  6635. yield from super().modify_tensors(data_torch, new_name, bid)
  6636. def prepare_tensors(self):
  6637. super().prepare_tensors()
  6638. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  6639. @ModelBase.register("Glm4ForCausalLM", "Glm4vForConditionalGeneration")
  6640. class Glm4Model(TextModel):
  6641. model_arch = gguf.MODEL_ARCH.GLM4
  6642. use_mrope = False
  6643. partial_rotary_factor = 0.5
  6644. def __init__(self, *args, **kwargs):
  6645. super().__init__(*args, **kwargs)
  6646. self.partial_rotary_factor = self.rope_parameters.get("partial_rotary_factor", 0.5)
  6647. if "mrope_section" in self.rope_parameters:
  6648. self.use_mrope = True
  6649. logger.info("Q/K weight will need to be permuted for M-RoPE")
  6650. def set_vocab(self):
  6651. from transformers import AutoTokenizer
  6652. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6653. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6654. tokens, toktypes, tokpre = self.get_vocab_base()
  6655. self.gguf_writer.add_tokenizer_model("gpt2")
  6656. self.gguf_writer.add_tokenizer_pre(tokpre)
  6657. self.gguf_writer.add_token_list(tokens)
  6658. self.gguf_writer.add_token_types(toktypes)
  6659. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6660. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6661. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6662. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6663. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6664. special_vocab.add_to_gguf(self.gguf_writer)
  6665. def set_gguf_parameters(self):
  6666. super().set_gguf_parameters()
  6667. if (rope_dim := self.hparams.get("head_dim")) is None:
  6668. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6669. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.partial_rotary_factor))
  6670. @staticmethod
  6671. def normal_to_neox(weights: Tensor, n_head: int, n_head_kv: int, head_dim: int, partial_rotary_factor: float) -> Tensor:
  6672. orig_shape = weights.shape
  6673. if len(orig_shape) == 1:
  6674. weights = weights.unsqueeze(1) # [out_dim, 1]
  6675. if len(weights.shape) != 2:
  6676. raise ValueError("Only 1D and 2D tensors are supported.")
  6677. n_effective_heads = weights.shape[0] // head_dim
  6678. if n_head_kv is not None and n_effective_heads != n_head:
  6679. if n_effective_heads != n_head_kv:
  6680. raise AssertionError(f"Mismatch in effective heads: computed {n_effective_heads}, expected {n_head} or {n_head_kv}")
  6681. rotary_dim = int(head_dim * partial_rotary_factor)
  6682. if rotary_dim % 2 != 0:
  6683. raise ValueError("rotary_dim must be even.")
  6684. reshaped = weights.reshape(n_effective_heads, head_dim, -1)
  6685. rot_part = reshaped[:, :rotary_dim, :]
  6686. non_rot_part = reshaped[:, rotary_dim:, :]
  6687. permuted_rot = torch.cat((rot_part[:, ::2, :], rot_part[:, 1::2, :]), dim=1)
  6688. combined = torch.cat((permuted_rot, non_rot_part), dim=1)
  6689. result = combined.reshape(weights.shape)
  6690. return result if len(orig_shape) != 1 else result.squeeze(1)
  6691. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6692. if name.startswith("model.visual."): # ignore visual part of Glm4v
  6693. return
  6694. elif name.startswith("model.language_model."):
  6695. name = name.replace("language_model.", "") # for Glm4v
  6696. if self.use_mrope:
  6697. n_head = self.hparams["num_attention_heads"]
  6698. n_kv_head = self.hparams["num_key_value_heads"]
  6699. n_embd = self.hparams["hidden_size"]
  6700. head_dim = n_embd // n_head
  6701. # because llama.cpp M-RoPE kernel only supports Neox ordering, we have to permute the weights here
  6702. if name.endswith(("q_proj.weight", "q_proj.bias")):
  6703. data_torch = Glm4Model.normal_to_neox(data_torch, n_head, n_head, head_dim, self.partial_rotary_factor)
  6704. if name.endswith(("k_proj.weight", "k_proj.bias")):
  6705. data_torch = Glm4Model.normal_to_neox(data_torch, n_head, n_kv_head, head_dim, self.partial_rotary_factor)
  6706. yield from super().modify_tensors(data_torch, name, bid)
  6707. @ModelBase.register("Glm4MoeForCausalLM", "Glm4vMoeForConditionalGeneration")
  6708. class Glm4MoeModel(TextModel):
  6709. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  6710. def __init__(self, *args, **kwargs):
  6711. super().__init__(*args, **kwargs)
  6712. # GLM4_MOE has num_hidden_layers + 1 actual layers (including NextN layer)
  6713. self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
  6714. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  6715. def set_vocab(self):
  6716. from transformers import AutoTokenizer
  6717. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  6718. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6719. tokens, toktypes, tokpre = self.get_vocab_base()
  6720. self.gguf_writer.add_tokenizer_model("gpt2")
  6721. self.gguf_writer.add_tokenizer_pre(tokpre)
  6722. self.gguf_writer.add_token_list(tokens)
  6723. self.gguf_writer.add_token_types(toktypes)
  6724. # Special tokens
  6725. # Note: Using <|endoftext|> (151329) for eot causes endless generation
  6726. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
  6727. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
  6728. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
  6729. special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
  6730. special_vocab.add_to_gguf(self.gguf_writer)
  6731. def set_gguf_parameters(self):
  6732. super().set_gguf_parameters()
  6733. if (rope_dim := self.hparams.get("head_dim")) is None:
  6734. rope_dim = (
  6735. self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6736. )
  6737. self.gguf_writer.add_rope_dimension_count(
  6738. int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5))
  6739. )
  6740. # MoE parameters - Use only routed expert count (shared experts handled separately)
  6741. if (n_routed_experts := self.hparams.get("n_routed_experts")) is not None:
  6742. self.gguf_writer.add_expert_count(n_routed_experts)
  6743. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  6744. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6745. if (n_shared_experts := self.hparams.get("n_shared_experts")) is not None:
  6746. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  6747. if (first_k_dense_replace := self.hparams.get("first_k_dense_replace")) is not None:
  6748. self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
  6749. # Expert gating function (sigmoid for GLM4_MOE)
  6750. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  6751. # Routed scaling factor
  6752. if (routed_scaling_factor := self.hparams.get("routed_scaling_factor")) is not None:
  6753. self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
  6754. # Normalise topk probabilities
  6755. if (norm_topk_prob := self.hparams.get("norm_topk_prob")) is not None:
  6756. self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
  6757. # NextN/MTP prediction layers
  6758. if (num_nextn_predict_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  6759. self.gguf_writer.add_nextn_predict_layers(num_nextn_predict_layers)
  6760. _experts: list[dict[str, Tensor]] | None = None
  6761. # note: unlike GLM4V non-MoE, we don't need to permute Q/K here since GLM4V_MOE uses Neox ordering already
  6762. def modify_tensors(
  6763. self, data_torch: Tensor, name: str, bid: int | None
  6764. ) -> Iterable[tuple[str, Tensor]]:
  6765. if name.startswith("model.visual."): # ignore visual part
  6766. return
  6767. elif name.startswith("model.language_model."):
  6768. name = name.replace("language_model.", "") # for multimodal variants
  6769. # Handle main token embedding (but not layer-specific NextN embeddings)
  6770. if name == "model.embed_tokens.weight" and ".layers." not in name:
  6771. yield from super().modify_tensors(data_torch, "token_embd.weight", bid)
  6772. return
  6773. # Handle routed experts
  6774. if name.find("mlp.experts") != -1:
  6775. n_experts = self.hparams["n_routed_experts"]
  6776. assert bid is not None
  6777. if self._experts is None:
  6778. self._experts = [{} for _ in range(self.block_count)]
  6779. self._experts[bid][name] = data_torch
  6780. if len(self._experts[bid]) >= n_experts * 3:
  6781. # merge the experts into a single 3d tensor
  6782. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6783. datas: list[Tensor] = []
  6784. for xid in range(n_experts):
  6785. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6786. datas.append(self._experts[bid][ename])
  6787. del self._experts[bid][ename]
  6788. data_torch = torch.stack(datas, dim=0)
  6789. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6790. yield from super().modify_tensors(data_torch, merged_name, bid)
  6791. return
  6792. else:
  6793. return
  6794. if name.endswith("e_score_correction_bias"):
  6795. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6796. yield from super().modify_tensors(data_torch, name, bid)
  6797. def prepare_tensors(self):
  6798. super().prepare_tensors()
  6799. if self._experts is not None:
  6800. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6801. experts = [k for d in self._experts for k in d.keys()]
  6802. if len(experts) > 0:
  6803. raise ValueError(f"Unprocessed experts: {experts}")
  6804. @ModelBase.register("Glm4MoeLiteForCausalLM")
  6805. class Glm4MoeLiteModel(DeepseekV2Model):
  6806. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  6807. # copied from Glm4MoeModel
  6808. def set_vocab(self):
  6809. from transformers import AutoTokenizer
  6810. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  6811. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6812. tokens, toktypes, tokpre = self.get_vocab_base()
  6813. self.gguf_writer.add_tokenizer_model("gpt2")
  6814. self.gguf_writer.add_tokenizer_pre(tokpre)
  6815. self.gguf_writer.add_token_list(tokens)
  6816. self.gguf_writer.add_token_types(toktypes)
  6817. # Special tokens
  6818. # Note: Using <|endoftext|> (151329) for eot causes endless generation
  6819. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
  6820. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
  6821. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
  6822. special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
  6823. special_vocab.add_to_gguf(self.gguf_writer)
  6824. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  6825. class ChatGLMModel(TextModel):
  6826. model_arch = gguf.MODEL_ARCH.CHATGLM
  6827. def set_vocab_chatglm3(self):
  6828. dir_model = self.dir_model
  6829. hparams = self.hparams
  6830. tokens: list[bytes] = []
  6831. toktypes: list[int] = []
  6832. scores: list[float] = []
  6833. from transformers import AutoTokenizer
  6834. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6835. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  6836. assert max(tokenizer.get_vocab().values()) < vocab_size
  6837. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  6838. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  6839. for token_id in range(vocab_size):
  6840. piece = tokenizer._convert_id_to_token(token_id)
  6841. if token_id == 0:
  6842. piece = "<unk>"
  6843. elif token_id == 1:
  6844. piece = "<bos>"
  6845. elif token_id == 2:
  6846. piece = "<eos>"
  6847. text = piece.encode("utf-8")
  6848. score = 0.0
  6849. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  6850. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  6851. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  6852. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  6853. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  6854. if piece in special_tokens:
  6855. toktype = SentencePieceTokenTypes.CONTROL
  6856. elif len(piece) == 0:
  6857. text = f"[PAD{token_id}]".encode("utf-8")
  6858. toktype = SentencePieceTokenTypes.UNUSED
  6859. else:
  6860. toktype = SentencePieceTokenTypes.USER_DEFINED
  6861. tokens.append(text)
  6862. scores.append(score)
  6863. toktypes.append(toktype)
  6864. continue
  6865. toktype = SentencePieceTokenTypes.NORMAL
  6866. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  6867. toktype = SentencePieceTokenTypes.UNKNOWN
  6868. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  6869. toktype = SentencePieceTokenTypes.CONTROL
  6870. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  6871. toktype = SentencePieceTokenTypes.UNUSED
  6872. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  6873. toktype = SentencePieceTokenTypes.BYTE
  6874. tokens.append(text)
  6875. scores.append(score)
  6876. toktypes.append(toktype)
  6877. self.gguf_writer.add_tokenizer_model("llama")
  6878. # glm3 needs prefix and suffix formatted as:
  6879. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  6880. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  6881. self.gguf_writer.add_token_list(tokens)
  6882. self.gguf_writer.add_token_scores(scores)
  6883. self.gguf_writer.add_token_types(toktypes)
  6884. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6885. special_vocab.add_to_gguf(self.gguf_writer)
  6886. @staticmethod
  6887. def token_bytes_to_string(b):
  6888. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  6889. byte_encoder = bytes_to_unicode()
  6890. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  6891. @staticmethod
  6892. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  6893. parts = [bytes([b]) for b in token]
  6894. while True:
  6895. min_idx = None
  6896. min_rank = None
  6897. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  6898. rank = mergeable_ranks.get(pair[0] + pair[1])
  6899. if rank is not None and (min_rank is None or rank < min_rank):
  6900. min_idx = i
  6901. min_rank = rank
  6902. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  6903. break
  6904. assert min_idx is not None
  6905. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  6906. return parts
  6907. def set_vocab(self):
  6908. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  6909. self.set_vocab_chatglm3()
  6910. return
  6911. dir_model = self.dir_model
  6912. hparams = self.hparams
  6913. tokens: list[str] = []
  6914. toktypes: list[int] = []
  6915. from transformers import AutoTokenizer
  6916. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6917. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  6918. assert max(tokenizer.get_vocab().values()) < vocab_size
  6919. tokens, toktypes, tokpre = self.get_vocab_base()
  6920. self.gguf_writer.add_tokenizer_model("gpt2")
  6921. self.gguf_writer.add_tokenizer_pre(tokpre)
  6922. self.gguf_writer.add_token_list(tokens)
  6923. self.gguf_writer.add_token_types(toktypes)
  6924. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6925. # only add special tokens when they were not already loaded from config.json
  6926. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6927. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6928. # this one is usually not in config.json anyway
  6929. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6930. special_vocab.add_to_gguf(self.gguf_writer)
  6931. def set_gguf_parameters(self):
  6932. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  6933. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  6934. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  6935. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  6936. self.gguf_writer.add_embedding_length(n_embed)
  6937. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  6938. self.gguf_writer.add_block_count(self.block_count)
  6939. self.gguf_writer.add_head_count(n_head)
  6940. self.gguf_writer.add_head_count_kv(n_head_kv)
  6941. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  6942. self.gguf_writer.add_file_type(self.ftype)
  6943. if "attention_dim" in self.hparams:
  6944. rope_dim = self.hparams["attention_dim"]
  6945. else:
  6946. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6947. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  6948. self.gguf_writer.add_add_bos_token(False)
  6949. rope_freq = 10000
  6950. if "rope_ratio" in self.hparams:
  6951. rope_freq = rope_freq * self.hparams["rope_ratio"]
  6952. self.gguf_writer.add_rope_freq_base(rope_freq)
  6953. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6954. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  6955. return
  6956. name = name.removeprefix("transformer.")
  6957. yield from super().modify_tensors(data_torch, name, bid)
  6958. @ModelBase.register("NemotronForCausalLM")
  6959. class NemotronModel(TextModel):
  6960. model_arch = gguf.MODEL_ARCH.NEMOTRON
  6961. def set_vocab(self):
  6962. self._set_vocab_sentencepiece()
  6963. self.gguf_writer.add_pad_token_id(0)
  6964. self.gguf_writer.add_unk_token_id(1)
  6965. def set_gguf_parameters(self):
  6966. super().set_gguf_parameters()
  6967. hparams = self.hparams
  6968. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6969. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  6970. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  6971. # * Partial RoPE
  6972. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  6973. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  6974. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  6975. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  6976. # * RopeScaling for Nemotron
  6977. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  6978. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6979. else:
  6980. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6981. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  6982. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6983. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  6984. # model.layers.{l}.input_layernorm.weight
  6985. # model.layers.{l}.post_attention_layernorm.weight
  6986. # model.norm.weight
  6987. if name.endswith("norm.weight"):
  6988. data_torch = data_torch + 1
  6989. yield from super().modify_tensors(data_torch, name, bid)
  6990. @ModelBase.register("ExaoneForCausalLM")
  6991. class ExaoneModel(TextModel):
  6992. model_arch = gguf.MODEL_ARCH.EXAONE
  6993. def set_gguf_parameters(self):
  6994. super().set_gguf_parameters()
  6995. hparams = self.hparams
  6996. assert (hparams["activation_function"] == "silu")
  6997. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  6998. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  6999. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  7000. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  7001. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  7002. if rope_params.get("rope_type", '').lower() == "llama3":
  7003. base = self.rope_parameters.get("rope_theta", 10000.0)
  7004. if (dim := self.hparams.get("head_dim")) is None:
  7005. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  7006. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  7007. factor = rope_params.get("factor", 8.0)
  7008. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  7009. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  7010. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  7011. low_freq_wavelen = old_context_len / low_freq_factor
  7012. high_freq_wavelen = old_context_len / high_freq_factor
  7013. assert low_freq_wavelen != high_freq_wavelen
  7014. rope_factors = []
  7015. for freq in freqs:
  7016. wavelen = 2 * math.pi / freq
  7017. if wavelen < high_freq_wavelen:
  7018. rope_factors.append(1)
  7019. elif wavelen > low_freq_wavelen:
  7020. rope_factors.append(factor)
  7021. else:
  7022. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  7023. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  7024. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  7025. @ModelBase.register("Exaone4ForCausalLM")
  7026. class Exaone4Model(TextModel):
  7027. model_arch = gguf.MODEL_ARCH.EXAONE4
  7028. def set_vocab(self):
  7029. tokens, toktypes, tokpre = self.get_vocab_base()
  7030. self.gguf_writer.add_tokenizer_model("gpt2")
  7031. self.gguf_writer.add_tokenizer_pre(tokpre)
  7032. self.gguf_writer.add_token_list(tokens)
  7033. self.gguf_writer.add_token_types(toktypes)
  7034. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  7035. special_vocab.add_to_gguf(self.gguf_writer)
  7036. def set_gguf_parameters(self):
  7037. super().set_gguf_parameters()
  7038. hparams = self.hparams
  7039. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7040. if hparams.get("sliding_window") is not None:
  7041. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  7042. if "layer_types" in hparams:
  7043. self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
  7044. elif "sliding_window_pattern" in hparams:
  7045. sliding_window_pattern = []
  7046. if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
  7047. for i in range(hparams["num_hidden_layers"]):
  7048. sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
  7049. if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
  7050. for i in range(hparams["num_hidden_layers"]):
  7051. sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
  7052. if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
  7053. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  7054. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  7055. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  7056. if rope_params.get("rope_type", '').lower() == "llama3":
  7057. base = rope_params.get("rope_theta", 10_000.0)
  7058. if (dim := self.hparams.get("head_dim")) is None:
  7059. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  7060. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  7061. factor = rope_params.get("factor", 16.0)
  7062. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  7063. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  7064. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  7065. low_freq_wavelen = old_context_len / low_freq_factor
  7066. high_freq_wavelen = old_context_len / high_freq_factor
  7067. rope_factors = []
  7068. for freq in freqs:
  7069. wavelen = 2 * math.pi / freq
  7070. if wavelen < high_freq_wavelen:
  7071. rope_factors.append(1)
  7072. elif wavelen > low_freq_wavelen:
  7073. rope_factors.append(factor)
  7074. else:
  7075. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  7076. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  7077. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  7078. @ModelBase.register("ExaoneMoEForCausalLM")
  7079. class ExaoneMoEModel(Exaone4Model):
  7080. model_arch = gguf.MODEL_ARCH.EXAONE_MOE
  7081. def __init__(self, *args, **kwargs):
  7082. super().__init__(*args, **kwargs)
  7083. self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
  7084. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  7085. def set_gguf_parameters(self):
  7086. super().set_gguf_parameters()
  7087. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  7088. moe_intermediate_size = self.hparams["moe_intermediate_size"]
  7089. num_shared_experts = self.hparams["num_shared_experts"]
  7090. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  7091. self.gguf_writer.add_expert_shared_count(num_shared_experts)
  7092. self.gguf_writer.add_expert_shared_feed_forward_length(moe_intermediate_size * num_shared_experts)
  7093. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  7094. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  7095. n_dense_layer = self.hparams.get("first_k_dense_replace", self.hparams.get("first_last_k_dense_replace", 0))
  7096. self.gguf_writer.add_leading_dense_block_count(n_dense_layer)
  7097. self.gguf_writer.add_nextn_predict_layers(self.hparams.get("num_nextn_predict_layers", 0))
  7098. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7099. _experts: list[dict[str, Tensor]] | None = None
  7100. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7101. if name.startswith("mtp."):
  7102. if name.find("layers.") != -1:
  7103. # `mtp.layers.0.[module_name]` format
  7104. name = name.replace(f"mtp.layers.{bid}", f"model.layers.{bid + self.hparams['num_hidden_layers']}")
  7105. else:
  7106. # mtp fc/norm weights
  7107. remapper = {
  7108. "mtp.fc": "model.layers.{bid}.eh_proj",
  7109. "mtp.pre_fc_norm_embedding": "model.layers.{bid}.enorm",
  7110. "mtp.pre_fc_norm_hidden": "model.layers.{bid}.hnorm",
  7111. "mtp.norm": "model.layers.{bid}.shared_head.norm",
  7112. }
  7113. _n = Path(name)
  7114. new_name = remapper[_n.stem] + _n.suffix
  7115. # set shared weights for all NextN/MTP layers
  7116. for bid in range(self.hparams['num_hidden_layers'], self.block_count):
  7117. yield from super().modify_tensors(data_torch, new_name.format(bid=bid), bid)
  7118. return
  7119. if name.endswith("e_score_correction_bias"):
  7120. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  7121. if name.find("mlp.experts") != -1:
  7122. n_experts = self.hparams["num_experts"]
  7123. assert bid is not None
  7124. if self._experts is None:
  7125. self._experts = [{} for _ in range(self.block_count)]
  7126. self._experts[bid][name] = data_torch
  7127. if len(self._experts[bid]) >= n_experts * 3:
  7128. # merge the experts into a single 3d tensor
  7129. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7130. datas: list[Tensor] = []
  7131. for xid in range(n_experts):
  7132. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7133. datas.append(self._experts[bid][ename])
  7134. del self._experts[bid][ename]
  7135. data_torch = torch.stack(datas, dim=0)
  7136. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7137. new_name = self.map_tensor_name(merged_name)
  7138. yield from super().modify_tensors(data_torch, new_name, bid)
  7139. return
  7140. else:
  7141. return
  7142. yield from super().modify_tensors(data_torch, name, bid)
  7143. def prepare_tensors(self):
  7144. super().prepare_tensors()
  7145. if self._experts is not None:
  7146. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7147. experts = [k for d in self._experts for k in d.keys()]
  7148. if len(experts) > 0:
  7149. raise ValueError(f"Unprocessed experts: {experts}")
  7150. @ModelBase.register("GraniteForCausalLM")
  7151. class GraniteModel(LlamaModel):
  7152. """Conversion for IBM's GraniteForCausalLM"""
  7153. model_arch = gguf.MODEL_ARCH.GRANITE
  7154. def set_gguf_parameters(self):
  7155. """Granite uses standard llama parameters with the following differences:
  7156. - No head_dim support
  7157. - New multiplier params:
  7158. - attention_scale
  7159. - embedding_scale
  7160. - residual_scale
  7161. - logits_scaling
  7162. """
  7163. if head_dim := self.hparams.pop("head_dim", None):
  7164. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  7165. super().set_gguf_parameters()
  7166. # NOTE: Convert _multiplier params to _scale params for naming
  7167. # consistency
  7168. if attention_scale := self.hparams.get("attention_multiplier"):
  7169. self.gguf_writer.add_attention_scale(attention_scale)
  7170. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  7171. if embedding_scale := self.hparams.get("embedding_multiplier"):
  7172. self.gguf_writer.add_embedding_scale(embedding_scale)
  7173. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  7174. if residual_scale := self.hparams.get("residual_multiplier"):
  7175. self.gguf_writer.add_residual_scale(residual_scale)
  7176. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  7177. if logits_scale := self.hparams.get("logits_scaling"):
  7178. self.gguf_writer.add_logit_scale(logits_scale)
  7179. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  7180. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  7181. class GraniteMoeModel(GraniteModel):
  7182. """Conversion for IBM's GraniteMoeForCausalLM"""
  7183. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  7184. def set_gguf_parameters(self):
  7185. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  7186. - shared_intermediate_size
  7187. """
  7188. super().set_gguf_parameters()
  7189. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  7190. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  7191. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  7192. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7193. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  7194. is used. This essentially merges w1 and w3 into a single tensor with 2x
  7195. the hidden size that is then split during forward. To keep compatibility
  7196. with existing mixtral support, we pull them apart here.
  7197. """
  7198. if name.endswith("block_sparse_moe.input_linear.weight"):
  7199. ffn_dim = self.hparams["intermediate_size"]
  7200. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  7201. gate, up = data_torch.split(ffn_dim, dim=-2)
  7202. yield from super().modify_tensors(gate, self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), bid)
  7203. yield from super().modify_tensors(up, self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), bid)
  7204. has_experts = bool(self.hparams.get('num_local_experts'))
  7205. if name.endswith("shared_mlp.input_linear.weight"):
  7206. ffn_dim = self.hparams["shared_intermediate_size"]
  7207. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  7208. gate, up = data_torch.split(ffn_dim, dim=-2)
  7209. if has_experts:
  7210. yield from super().modify_tensors(gate,self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), bid)
  7211. yield from super().modify_tensors(up, self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), bid)
  7212. return
  7213. yield from super().modify_tensors(gate, self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), bid)
  7214. yield from super().modify_tensors(up, self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), bid)
  7215. return
  7216. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  7217. yield from super().modify_tensors(data_torch, self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), bid)
  7218. return
  7219. yield from super().modify_tensors(data_torch, name, bid)
  7220. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  7221. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  7222. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  7223. layers and optionally uses MoE w/ a shared expert"""
  7224. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  7225. undo_permute = True
  7226. def __init__(self, *args, **kwargs):
  7227. # Hybrid mamba models use a prefix for the mamba-specific params.
  7228. # TODO: Extend this if the prefix(es) need to be configurable
  7229. self.hparam_prefixes = ["mamba"]
  7230. super().__init__(*args, **kwargs)
  7231. # Lists of which layers use ssm vs attention
  7232. self._attn_layers = self.get_attn_layers()
  7233. self._ssm_layers = [
  7234. i for i in range(self.block_count)
  7235. if i not in self._attn_layers
  7236. ]
  7237. # There are some models in this family that are non-hybrid, but keep the
  7238. # same parent class by setting all layers to "attention." If this is the
  7239. # case, the model architecture needs to be updated to a standard
  7240. # "granite" or "granitemoe" model
  7241. if not self._ssm_layers:
  7242. has_experts = self.find_hparam(["num_experts_per_tok"], optional=True)
  7243. new_arch = (
  7244. gguf.MODEL_ARCH.GRANITE_MOE
  7245. if has_experts else
  7246. gguf.MODEL_ARCH.GRANITE
  7247. )
  7248. self.model_arch = new_arch
  7249. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[new_arch]
  7250. self.gguf_writer.add_architecture()
  7251. # n_group and d_inner are used during reshape_tensors for mamba2
  7252. # NOTE: Explicitly include hparam prefix prefix for d_model to
  7253. # disambiguate with top-level head_dim
  7254. # NOTE 2: If needed for future models, this can be isolated in a method
  7255. # to separate the prefix setting and teh keys used
  7256. self.d_model = self.find_hparam([f"{self.hparam_prefixes[0]}_head_dim", "hidden_size", "d_model"])
  7257. self.n_group = self.find_hparam(["n_groups", "num_groups"])
  7258. self.d_inner = self.find_hparam(["expand", "num_heads"]) * self.d_model
  7259. def get_attn_layers(self):
  7260. # Explicit list of layer type names
  7261. if layer_types := self.hparams.get("layer_types"):
  7262. return [
  7263. i for i, typ in enumerate(layer_types)
  7264. if typ == "attention"
  7265. ]
  7266. # Layer types indicated by index or period
  7267. attn_layers = self.hparams.get("attn_layer_indices", [])
  7268. if not attn_layers:
  7269. attn_period = self.hparams.get("attn_layer_period")
  7270. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  7271. attn_offset = self.hparams.get("attn_layer_offset")
  7272. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  7273. attn_layers = [
  7274. i for i in range(self.block_count)
  7275. if i % attn_period == attn_offset
  7276. ]
  7277. return attn_layers
  7278. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  7279. prefixed = []
  7280. for pfx in self.hparam_prefixes:
  7281. prefixed.extend(
  7282. "_".join([pfx, k])
  7283. for k in keys
  7284. )
  7285. keys = list(keys) + prefixed
  7286. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  7287. def modify_tensors(
  7288. self, data_torch: Tensor, name: str, bid: int | None
  7289. ) -> Iterable[tuple[str, Tensor]]:
  7290. if (
  7291. name.endswith("block_sparse_moe.input_linear.weight")
  7292. or "shared_mlp" in name
  7293. ):
  7294. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  7295. # Determine whether this is a mamba layer or an attention layer
  7296. if bid in self._ssm_layers:
  7297. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  7298. elif bid in self._attn_layers:
  7299. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  7300. yield from super().modify_tensors(data_torch, name, bid)
  7301. def set_gguf_parameters(self):
  7302. """This method merges params from both parents and some that are
  7303. specific to this model. The result is some duplication of how the params
  7304. get set. The following warnings are expected during conversion:
  7305. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  7306. WARNING:Duplicated key name 'granitehybrid.context_length'
  7307. """
  7308. GraniteMoeModel.set_gguf_parameters(self)
  7309. ## Mamba mixer params ##
  7310. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  7311. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state", "state_dim", "ssm_state_size"]))
  7312. self.gguf_writer.add_ssm_group_count(self.n_group)
  7313. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  7314. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  7315. # in llama.cpp
  7316. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads", "num_heads"]))
  7317. ## Attention params ##
  7318. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  7319. head_count_kv_vec = [
  7320. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  7321. ]
  7322. if rope_dim := self.hparams.get("attn_rotary_emb"):
  7323. self.gguf_writer.add_rope_dimension_count(rope_dim)
  7324. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  7325. ## If Bamba or non-hybrid, use rope, otherwise don't
  7326. use_rope = (
  7327. "BambaForCausalLM" in self.hparams["architectures"]
  7328. or not self._ssm_layers
  7329. )
  7330. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  7331. if not use_rope:
  7332. self.gguf_writer.add_context_length(2**20)
  7333. ## Validation ##
  7334. d_head = self.find_hparam(["d_head"], optional=True) or 64
  7335. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  7336. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  7337. def set_vocab(self):
  7338. self.hparams["pad_vocab_size_multiple"] = 8
  7339. Mamba2Model.set_vocab(self)
  7340. @ModelBase.register("NemotronHForCausalLM")
  7341. class NemotronHModel(GraniteHybridModel):
  7342. """Hybrid mamba2/attention model from NVIDIA"""
  7343. model_arch = gguf.MODEL_ARCH.NEMOTRON_H
  7344. is_moe: bool = False
  7345. def __init__(self, *args, **kwargs):
  7346. # We have to determine the correct model architecture (MoE vs non-MoE) before
  7347. # calling the parent __init__. This is because the parent constructor
  7348. # uses self.model_arch to build the tensor name map, and all MoE-specific
  7349. # mappings would be missed if it were called with the default non-MoE arch.
  7350. hparams = ModelBase.load_hparams(args[0], self.is_mistral_format)
  7351. if "num_experts_per_tok" in hparams:
  7352. self.model_arch = gguf.MODEL_ARCH.NEMOTRON_H_MOE
  7353. self.is_moe = True
  7354. super().__init__(*args, **kwargs)
  7355. # Save the top-level head_dim for later
  7356. self.head_dim = self.hparams.get("head_dim", self.hparams.get("attention_head_dim"))
  7357. assert self.head_dim is not None, "Could not find the attention head dim in config"
  7358. # Don't use expand to calculate d_inner
  7359. self.d_inner = self.find_hparam(["num_heads"]) * self.d_model
  7360. # Update the ssm / attn / mlp layers
  7361. # M: Mamba2, *: Attention, -: MLP
  7362. # MoE:
  7363. # M: Mamba2, *: Attention, E: Expert
  7364. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  7365. self._ssm_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "M"]
  7366. self._mlp_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == ("E" if self.is_moe else "-")]
  7367. def get_attn_layers(self):
  7368. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  7369. assert len(hybrid_override_pattern) == self.block_count, "Mismatch between hybrid override and num_hidden_layers!"
  7370. return [i for i, val in enumerate(hybrid_override_pattern) if val == "*"]
  7371. def set_gguf_parameters(self):
  7372. super().set_gguf_parameters()
  7373. self.gguf_writer.add_key_length(self.head_dim)
  7374. self.gguf_writer.add_value_length(self.head_dim)
  7375. # Set feed_forward_length
  7376. # NOTE: This will trigger an override warning. This is preferrable to
  7377. # duplicating all the parent logic
  7378. if not self.is_moe:
  7379. n_ff = self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"])
  7380. self.gguf_writer.add_feed_forward_length([
  7381. n_ff if i in self._mlp_layers else 0 for i in range(self.block_count)
  7382. ])
  7383. else:
  7384. moe_intermediate_size = self.hparams["moe_intermediate_size"]
  7385. self.gguf_writer.add_feed_forward_length([
  7386. moe_intermediate_size if i in self._mlp_layers else 0 for i in range(self.block_count)
  7387. ])
  7388. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  7389. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  7390. self.gguf_writer.add_expert_shared_feed_forward_length(self.hparams["moe_shared_expert_intermediate_size"])
  7391. self.gguf_writer.add_expert_count(self.hparams["n_routed_experts"])
  7392. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  7393. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  7394. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  7395. self.gguf_writer.add_expert_group_count(self.hparams["n_group"])
  7396. # number of experts used per token (top-k)
  7397. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  7398. self.gguf_writer.add_expert_used_count(n_experts_used)
  7399. def set_vocab(self):
  7400. super().set_vocab()
  7401. # The tokenizer _does_ add a BOS token (via post_processor type
  7402. # TemplateProcessing) but does not set add_bos_token to true in the
  7403. # config, so we need to explicitly override it here.
  7404. if not self.is_moe:
  7405. self.gguf_writer.add_add_bos_token(True)
  7406. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7407. if self.is_moe and bid is not None:
  7408. if name.endswith("mixer.gate.e_score_correction_bias"):
  7409. new_name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  7410. yield from super().modify_tensors(data_torch, new_name, bid)
  7411. return
  7412. if name.endswith("mixer.dt_bias"):
  7413. new_name = name.replace("dt_bias", "dt.bias")
  7414. yield from super().modify_tensors(data_torch, new_name, bid)
  7415. return
  7416. if name.endswith("mixer.conv1d.weight"):
  7417. squeezed_data = data_torch.squeeze()
  7418. yield from super().modify_tensors(squeezed_data, name, bid)
  7419. return
  7420. if name.endswith("mixer.A_log"):
  7421. transformed_data = -torch.exp(data_torch)
  7422. reshaped_data = transformed_data.squeeze().reshape(-1, 1)
  7423. yield from super().modify_tensors(reshaped_data, name, bid)
  7424. return
  7425. if name.endswith("mixer.D"):
  7426. reshaped_data = data_torch.squeeze().reshape(-1, 1)
  7427. yield from super().modify_tensors(reshaped_data, name, bid)
  7428. return
  7429. if name.endswith("mixer.norm.weight"):
  7430. reshaped_data = data_torch.reshape(self.n_group, -1)
  7431. yield from super().modify_tensors(reshaped_data, name, bid)
  7432. return
  7433. if name.find("mixer.experts") != -1:
  7434. n_experts = self.hparams["n_routed_experts"]
  7435. assert bid is not None
  7436. if self._experts is None:
  7437. self._experts = [{} for _ in range(self.block_count)]
  7438. self._experts[bid][name] = data_torch
  7439. if len(self._experts[bid]) >= n_experts * 2:
  7440. # merge the experts into a single tensor
  7441. for w_name in ["down_proj", "up_proj"]:
  7442. datas: list[Tensor] = []
  7443. for xid in range(n_experts):
  7444. ename = f"backbone.layers.{bid}.mixer.experts.{xid}.{w_name}.weight"
  7445. datas.append(self._experts[bid][ename])
  7446. del self._experts[bid][ename]
  7447. data_torch = torch.stack(datas, dim=0)
  7448. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7449. yield from super().modify_tensors(data_torch, merged_name, bid)
  7450. return
  7451. else:
  7452. return
  7453. yield from super().modify_tensors(data_torch, name, bid)
  7454. def prepare_tensors(self):
  7455. super().prepare_tensors()
  7456. if self._experts is not None:
  7457. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7458. experts = [k for d in self._experts for k in d.keys()]
  7459. if len(experts) > 0:
  7460. raise ValueError(f"Unprocessed experts: {experts}")
  7461. @ModelBase.register("LlamaBidirectionalModel")
  7462. class LlamaEmbedNemotronModel(LlamaModel):
  7463. model_arch = gguf.MODEL_ARCH.LLAMA_EMBED
  7464. @ModelBase.register("BailingMoeForCausalLM")
  7465. class BailingMoeModel(TextModel):
  7466. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  7467. def set_vocab(self):
  7468. self._set_vocab_gpt2()
  7469. def set_gguf_parameters(self):
  7470. super().set_gguf_parameters()
  7471. hparams = self.hparams
  7472. if (rope_dim := hparams.get("head_dim")) is None:
  7473. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  7474. self.gguf_writer.add_rope_dimension_count(rope_dim)
  7475. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  7476. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7477. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  7478. self.gguf_writer.add_expert_weights_scale(1.0)
  7479. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7480. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  7481. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  7482. _experts: list[dict[str, Tensor]] | None = None
  7483. @staticmethod
  7484. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  7485. if n_head_kv is not None and n_head != n_head_kv:
  7486. n_head = n_head_kv
  7487. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  7488. .swapaxes(1, 2)
  7489. .reshape(weights.shape))
  7490. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7491. n_head = self.hparams["num_attention_heads"]
  7492. n_kv_head = self.hparams.get("num_key_value_heads")
  7493. n_embd = self.hparams["hidden_size"]
  7494. if (head_dim := self.hparams.get("head_dim")) is None:
  7495. head_dim = n_embd // n_head
  7496. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  7497. if name.endswith("attention.dense.weight"):
  7498. yield from super().modify_tensors(data_torch, self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), bid)
  7499. return
  7500. elif name.endswith("query_key_value.weight"):
  7501. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  7502. yield from super().modify_tensors(BailingMoeModel.permute(q, n_head, n_head), self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), bid)
  7503. yield from super().modify_tensors(BailingMoeModel.permute(k, n_head, n_kv_head), self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), bid)
  7504. yield from super().modify_tensors(v,self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), bid)
  7505. return
  7506. elif name.find("mlp.experts") != -1:
  7507. n_experts = self.hparams["num_experts"]
  7508. assert bid is not None
  7509. if self._experts is None:
  7510. self._experts = [{} for _ in range(self.block_count)]
  7511. self._experts[bid][name] = data_torch
  7512. if len(self._experts[bid]) >= n_experts * 3:
  7513. # merge the experts into a single 3d tensor
  7514. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7515. datas: list[Tensor] = []
  7516. for xid in range(n_experts):
  7517. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7518. datas.append(self._experts[bid][ename])
  7519. del self._experts[bid][ename]
  7520. data_torch = torch.stack(datas, dim=0)
  7521. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7522. new_name = self.map_tensor_name(merged_name)
  7523. yield from super().modify_tensors(data_torch, new_name, bid)
  7524. return
  7525. new_name = self.map_tensor_name(name)
  7526. if new_name == output_name and self.hparams.get("norm_head"):
  7527. data_torch = data_torch.float()
  7528. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  7529. yield from super().modify_tensors(data_torch, new_name, bid)
  7530. def prepare_tensors(self):
  7531. super().prepare_tensors()
  7532. if self._experts is not None:
  7533. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7534. experts = [k for d in self._experts for k in d.keys()]
  7535. if len(experts) > 0:
  7536. raise ValueError(f"Unprocessed experts: {experts}")
  7537. @ModelBase.register("BailingMoeV2ForCausalLM")
  7538. class BailingMoeV2Model(TextModel):
  7539. model_arch = gguf.MODEL_ARCH.BAILINGMOE2
  7540. def __init__(self, *args, **kwargs):
  7541. super().__init__(*args, **kwargs)
  7542. if nextn_layers := self.hparams.get("num_nextn_predict_layers", 0):
  7543. self.block_count = self.hparams["num_hidden_layers"] + nextn_layers
  7544. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  7545. def set_vocab(self):
  7546. self._set_vocab_gpt2()
  7547. def set_gguf_parameters(self):
  7548. super().set_gguf_parameters()
  7549. hparams = self.hparams
  7550. if (rope_dim := hparams.get("head_dim")) is None:
  7551. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  7552. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  7553. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  7554. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7555. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  7556. self.gguf_writer.add_expert_shared_feed_forward_length(hparams.get("moe_shared_expert_intermediate_size", hparams["moe_intermediate_size"] * hparams["num_shared_experts"]))
  7557. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  7558. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7559. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  7560. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  7561. if (nextn_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  7562. self.gguf_writer.add_nextn_predict_layers(nextn_layers)
  7563. _experts: list[dict[str, Tensor]] | None = None
  7564. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7565. if "mlp.experts" in name:
  7566. n_experts = self.hparams["num_experts"]
  7567. assert bid is not None
  7568. if self._experts is None:
  7569. self._experts = [{} for _ in range(self.block_count)]
  7570. self._experts[bid][name] = data_torch
  7571. if len(self._experts[bid]) >= n_experts * 3:
  7572. # merge the experts into a single 3d tensor
  7573. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7574. datas: list[Tensor] = []
  7575. for xid in range(n_experts):
  7576. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7577. datas.append(self._experts[bid][ename])
  7578. del self._experts[bid][ename]
  7579. data_torch = torch.stack(datas, dim=0)
  7580. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7581. yield from super().modify_tensors(data_torch, merged_name, bid)
  7582. return
  7583. if name.endswith(".expert_bias"):
  7584. name = name.replace(".expert_bias", ".expert_bias.bias")
  7585. yield from super().modify_tensors(data_torch, name, bid)
  7586. def prepare_tensors(self):
  7587. super().prepare_tensors()
  7588. if self._experts is not None:
  7589. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7590. experts = [k for d in self._experts for k in d.keys()]
  7591. if len(experts) > 0:
  7592. raise ValueError(f"Unprocessed experts: {experts}")
  7593. @ModelBase.register("GroveMoeForCausalLM", "modeling_grove_moe.GroveMoeForCausalLM")
  7594. class GroveMoeModel(TextModel):
  7595. model_arch = gguf.MODEL_ARCH.GROVEMOE
  7596. def set_gguf_parameters(self):
  7597. super().set_gguf_parameters()
  7598. if (n_experts := self.hparams.get("num_experts")) is not None:
  7599. self.gguf_writer.add_expert_count(n_experts)
  7600. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  7601. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  7602. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  7603. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L299
  7604. self.gguf_writer.add_expert_chunk_feed_forward_length(self.hparams.get("head_dim") or 128)
  7605. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L298
  7606. self.gguf_writer.add_experts_per_group(2)
  7607. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L376
  7608. self.gguf_writer.add_expert_group_scale(0.05)
  7609. _experts: list[dict[str, Tensor]] | None = None
  7610. _chunk_experts: list[dict[str, Tensor]] | None = None
  7611. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7612. if name.endswith(".expert_bias"):
  7613. # FIXME?: Unused https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L303
  7614. return
  7615. # process the experts separately
  7616. if name.find("chunk_experts") != -1:
  7617. n_experts = self.hparams["num_experts"] // 2 # see add_experts_per_group
  7618. assert bid is not None
  7619. if self._chunk_experts is None:
  7620. self._chunk_experts = [{} for _ in range(self.block_count)]
  7621. self._chunk_experts[bid][name] = data_torch
  7622. if len(self._chunk_experts[bid]) >= n_experts * 3:
  7623. # merge the experts into a single 3d tensor
  7624. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7625. datas: list[Tensor] = []
  7626. for xid in range(n_experts):
  7627. ename = f"model.layers.{bid}.mlp.chunk_experts.{xid}.{w_name}.weight"
  7628. datas.append(self._chunk_experts[bid][ename])
  7629. del self._chunk_experts[bid][ename]
  7630. data_torch = torch.stack(datas, dim=0)
  7631. merged_name = f"model.layers.{bid}.mlp.chunk_experts.{w_name}.weight"
  7632. yield from super().modify_tensors(data_torch, merged_name, bid)
  7633. return
  7634. else:
  7635. return
  7636. elif name.find("experts") != -1:
  7637. n_experts = self.hparams["num_experts"]
  7638. assert bid is not None
  7639. if self._experts is None:
  7640. self._experts = [{} for _ in range(self.block_count)]
  7641. self._experts[bid][name] = data_torch
  7642. if len(self._experts[bid]) >= n_experts * 3:
  7643. # merge the experts into a single 3d tensor
  7644. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7645. datas: list[Tensor] = []
  7646. for xid in range(n_experts):
  7647. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7648. datas.append(self._experts[bid][ename])
  7649. del self._experts[bid][ename]
  7650. data_torch = torch.stack(datas, dim=0)
  7651. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7652. yield from super().modify_tensors(data_torch, merged_name, bid)
  7653. return
  7654. else:
  7655. return
  7656. yield from super().modify_tensors(data_torch, name, bid)
  7657. def prepare_tensors(self):
  7658. super().prepare_tensors()
  7659. if self._chunk_experts is not None:
  7660. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7661. chunk_experts = [k for d in self._chunk_experts for k in d.keys()]
  7662. if len(chunk_experts) > 0:
  7663. raise ValueError(f"Unprocessed adjugate experts: {chunk_experts}")
  7664. if self._experts is not None:
  7665. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7666. experts = [k for d in self._experts for k in d.keys()]
  7667. if len(experts) > 0:
  7668. raise ValueError(f"Unprocessed experts: {experts}")
  7669. @ModelBase.register("ChameleonForConditionalGeneration")
  7670. @ModelBase.register("ChameleonForCausalLM") # obsolete
  7671. class ChameleonModel(TextModel):
  7672. model_arch = gguf.MODEL_ARCH.CHAMELEON
  7673. def set_gguf_parameters(self):
  7674. super().set_gguf_parameters()
  7675. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  7676. def set_vocab(self):
  7677. self._set_vocab_gpt2()
  7678. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7679. # ignore image tokenizer for now
  7680. # TODO: remove this once image support is implemented for Chameleon
  7681. if name.startswith("model.vqmodel"):
  7682. return
  7683. n_head = self.hparams["num_attention_heads"]
  7684. n_kv_head = self.hparams.get("num_key_value_heads")
  7685. hidden_dim = self.hparams.get("hidden_size")
  7686. if name.endswith(("q_proj.weight", "q_proj.bias")):
  7687. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  7688. if name.endswith(("k_proj.weight", "k_proj.bias")):
  7689. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  7690. if name.endswith(("q_norm.weight", "q_norm.bias")):
  7691. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  7692. if name.endswith(("k_norm.weight", "k_norm.bias")):
  7693. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  7694. yield from super().modify_tensors(data_torch, name, bid)
  7695. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  7696. @staticmethod
  7697. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  7698. head_dim = hidden_dim // n_heads
  7699. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  7700. data_torch = data_torch.repeat_interleave(n_heads, 0)
  7701. return data_torch
  7702. @ModelBase.register("UltravoxModel")
  7703. class UltravoxModel(TextModel):
  7704. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  7705. def __init__(self, *args, **kwargs):
  7706. super().__init__(*args, **kwargs)
  7707. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  7708. @ModelBase.register("GlmasrModel")
  7709. class GlmASRWhisperEncoderModel(MmprojModel):
  7710. has_vision_encoder = False
  7711. has_audio_encoder = True
  7712. def __init__(self, *args, **kwargs):
  7713. super().__init__(*args, **kwargs)
  7714. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  7715. self.hparams["hidden_size"] = self.hparams["d_model"]
  7716. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  7717. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  7718. def set_gguf_parameters(self):
  7719. super().set_gguf_parameters()
  7720. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GLMA)
  7721. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  7722. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  7723. self.gguf_writer.add_audio_stack_factor(self.global_config["merge_factor"])
  7724. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7725. if ".conv" in name and ".weight" in name:
  7726. return gguf.GGMLQuantizationType.F16
  7727. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7728. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7729. if name.startswith("model.") or name.startswith("lm_head."):
  7730. # skip language model tensors
  7731. return
  7732. if name.startswith("audio_encoder.whisper."):
  7733. name = name.replace("audio_encoder.whisper.","audio_tower.")
  7734. if "audio_encoder.layer_norm." in name or "audio_encoder.proj." in name:
  7735. name = name.replace("audio_encoder.", "audio_encoder.adapting.")
  7736. if name.startswith("audio_encoder.audio_bos_eos_token."):
  7737. yield from super().modify_tensors(data_torch[0], "model.vision.boi", bid)
  7738. yield from super().modify_tensors(data_torch[1], "model.vision.eoi", bid)
  7739. return
  7740. if name.startswith("audio_encoder.adapting."):
  7741. name = name.replace("audio_encoder.adapting.","audio.multi_modal_projector.")
  7742. if ".layer_norm." in name:
  7743. name = name.replace(".layer_norm.", ".ln_pre.")
  7744. if ".0." in name:
  7745. name = name.replace(".0.", ".linear_1.")
  7746. if ".2." in name:
  7747. name = name.replace(".2.", ".linear_2.")
  7748. if ".proj." in name:
  7749. return
  7750. if "conv1.bias" in name or "conv2.bias" in name:
  7751. # transpose conv1 and conv2 bias
  7752. data_torch = data_torch.unsqueeze(-1)
  7753. yield from super().modify_tensors(data_torch, name, bid)
  7754. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  7755. class WhisperEncoderModel(MmprojModel):
  7756. has_vision_encoder = False # no vision encoder
  7757. has_audio_encoder = True
  7758. def __init__(self, *args, **kwargs):
  7759. super().__init__(*args, **kwargs)
  7760. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  7761. self.hparams["hidden_size"] = self.hparams["d_model"]
  7762. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  7763. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  7764. def set_gguf_parameters(self):
  7765. super().set_gguf_parameters()
  7766. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  7767. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  7768. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  7769. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7770. if ".conv" in name and ".weight" in name:
  7771. return gguf.GGMLQuantizationType.F16
  7772. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7773. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7774. if name.startswith("language_model."):
  7775. # skip language model tensors
  7776. return
  7777. # prevent clash naming with vision tensors
  7778. if name.startswith("multi_modal_projector"):
  7779. name = "audio." + name
  7780. if "conv1.bias" in name or "conv2.bias" in name:
  7781. # transpose conv1 and conv2 bias
  7782. data_torch = data_torch.unsqueeze(-1)
  7783. yield from super().modify_tensors(data_torch, name, bid)
  7784. @ModelBase.register("UltravoxModel")
  7785. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  7786. has_vision_encoder = False # no vision encoder
  7787. has_audio_encoder = True
  7788. def set_gguf_parameters(self):
  7789. super().set_gguf_parameters()
  7790. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
  7791. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  7792. @ModelBase.register("VoxtralForConditionalGeneration")
  7793. class VoxtralWhisperEncoderModel(WhisperEncoderModel):
  7794. has_vision_encoder = False # no vision encoder
  7795. has_audio_encoder = True
  7796. def set_gguf_parameters(self):
  7797. super().set_gguf_parameters()
  7798. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.VOXTRAL)
  7799. self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
  7800. @ModelBase.register("AudioFlamingo3ForConditionalGeneration")
  7801. class AudioFlamingo3WhisperEncoderModel(WhisperEncoderModel):
  7802. def set_gguf_parameters(self):
  7803. super().set_gguf_parameters()
  7804. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.MUSIC_FLAMINGO)
  7805. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7806. if ".conv" in name and ".weight" in name:
  7807. # Was trained in BF16, being safe, avoiding quantizing to FP16
  7808. return gguf.GGMLQuantizationType.F32
  7809. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7810. @ModelBase.register("FalconH1ForCausalLM")
  7811. class FalconH1Model(Mamba2Model):
  7812. model_arch = gguf.MODEL_ARCH.FALCON_H1
  7813. def __init__(self, *args, **kwargs):
  7814. # Set the hparam prefixes for Falcon Mamba2
  7815. self.hparam_prefixes = ["mamba"]
  7816. # Initialize the base Mamba2Model
  7817. super().__init__(*args, **kwargs)
  7818. # Use Llama conversion for attention
  7819. self._transformer_model_class = LlamaModel
  7820. # n_group and d_inner are used during reshape_tensors for mamba2
  7821. self.n_group = self.find_hparam(["n_groups"])
  7822. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  7823. self.d_head = self.find_hparam(["d_head"])
  7824. # Initialize any Falcon Mamba2 specific attributes
  7825. self.has_attention = True # Falcon Mamba2 has attention components
  7826. # Load Falcon-H1 multipliers from hyperparameters
  7827. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  7828. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  7829. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  7830. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  7831. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  7832. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  7833. self.intermediate_size = self.find_hparam(["intermediate_size"])
  7834. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  7835. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  7836. prefixed = []
  7837. for pfx in self.hparam_prefixes:
  7838. prefixed.extend(
  7839. "_".join([pfx, k])
  7840. for k in keys
  7841. )
  7842. keys = list(keys) + prefixed
  7843. return super().find_hparam(keys, *args, **kwargs)
  7844. def set_vocab(self):
  7845. self._set_vocab_gpt2()
  7846. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7847. tensors = list(super().modify_tensors(data_torch, name, bid))
  7848. tensor = tensors[0][1]
  7849. if "down_proj" in name:
  7850. tensor = tensor * self.mlp_multipliers[1]
  7851. elif "gate_proj" in name:
  7852. tensor = tensor * self.mlp_multipliers[0]
  7853. elif "k_proj" in name:
  7854. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  7855. elif "q_proj" in name:
  7856. tensor = tensor * self.attention_in_multiplier
  7857. elif "v_proj" in name:
  7858. tensor = tensor * self.attention_in_multiplier
  7859. elif "o_proj" in name:
  7860. tensor = tensor * self.attention_out_multiplier
  7861. elif "out_proj" in name:
  7862. tensor = tensor * self.ssm_out_multiplier
  7863. elif "in_proj" in name:
  7864. tensor = tensor * self.ssm_in_multiplier
  7865. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  7866. intermediate_size = self.hparams["mamba_d_ssm"]
  7867. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  7868. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  7869. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  7870. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  7871. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  7872. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  7873. elif "lm_head" in name:
  7874. tensor = tensor * self.hparams["lm_head_multiplier"]
  7875. elif "embed_tokens" in name:
  7876. tensor = tensor * self.hparams["embedding_multiplier"]
  7877. elif "mamba.norm" in name:
  7878. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  7879. tensors = [(tensors[0][0], tensor)]
  7880. return tensors
  7881. def set_gguf_parameters(self):
  7882. super().set_gguf_parameters()
  7883. ## General Params ##
  7884. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7885. # Override some Mamba2 defaults
  7886. self.gguf_writer.add_block_count(self.block_count)
  7887. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  7888. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  7889. ## Attention params ##
  7890. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  7891. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  7892. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  7893. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  7894. ## Validation ##
  7895. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  7896. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  7897. # Add any other Falcon Mamba2 specific configuration
  7898. self.gguf_writer.add_rope_freq_base(self.rope_parameters["rope_theta"])
  7899. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  7900. class HunYuanMoEModel(TextModel):
  7901. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  7902. def set_vocab(self):
  7903. from transformers import AutoTokenizer
  7904. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7905. # 1. Get the pre-tokenizer identifier hash
  7906. tokpre = self.get_vocab_base_pre(tokenizer)
  7907. # 2. Reverse-engineer the merges list from mergeable_ranks
  7908. merges = []
  7909. vocab = {}
  7910. mergeable_ranks = tokenizer.mergeable_ranks
  7911. for token, rank in mergeable_ranks.items():
  7912. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7913. if len(token) == 1:
  7914. continue
  7915. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7916. if len(merged) == 2: # todo this is an assert in Qwen, why?
  7917. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7918. # 3. Generate the tokens and toktypes lists
  7919. vocab_size = self.hparams["vocab_size"]
  7920. assert tokenizer.vocab_size == vocab_size
  7921. special_tokens = tokenizer.special_tokens
  7922. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7923. tokens: list[str] = []
  7924. toktypes: list[int] = []
  7925. for i in range(vocab_size):
  7926. if i not in reverse_vocab:
  7927. tokens.append(f"[PAD{i}]")
  7928. toktypes.append(gguf.TokenType.UNUSED)
  7929. else:
  7930. token = reverse_vocab[i]
  7931. tokens.append(token)
  7932. if i in special_tokens.values():
  7933. toktypes.append(gguf.TokenType.CONTROL)
  7934. else:
  7935. toktypes.append(gguf.TokenType.NORMAL)
  7936. # 4. Write all vocab-related fields to the GGUF writer
  7937. self.gguf_writer.add_tokenizer_model("gpt2")
  7938. self.gguf_writer.add_tokenizer_pre(tokpre)
  7939. self.gguf_writer.add_token_list(tokens)
  7940. self.gguf_writer.add_token_types(toktypes)
  7941. self.gguf_writer.add_token_merges(merges)
  7942. # 5. Add special tokens and chat templates
  7943. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7944. special_vocab.add_to_gguf(self.gguf_writer)
  7945. # FIX for BOS token: Overwrite incorrect id read from config.json
  7946. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  7947. def set_gguf_parameters(self):
  7948. super().set_gguf_parameters()
  7949. hparams = self.hparams
  7950. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7951. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  7952. moe_intermediate_size = hparams["moe_intermediate_size"]
  7953. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  7954. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  7955. moe_topk = hparams["moe_topk"]
  7956. assert all(topk == moe_topk[0] for topk in moe_topk)
  7957. self.gguf_writer.add_expert_used_count(moe_topk[0])
  7958. moe_shared_expert = hparams["num_shared_expert"]
  7959. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  7960. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  7961. # Rope
  7962. if self.rope_parameters.get("rope_type") == "dynamic":
  7963. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7964. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7965. alpha = self.rope_parameters.get("alpha", 1000)
  7966. base = self.rope_parameters.get("rope_theta", 10000.0)
  7967. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  7968. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  7969. self.gguf_writer.add_rope_freq_base(scaled_base)
  7970. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7971. self.gguf_writer.add_rope_scaling_factor(1)
  7972. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7973. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7974. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7975. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7976. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7977. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7978. _experts: list[dict[str, Tensor]] | None = None
  7979. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7980. if name == "lm_head.weight":
  7981. if self.hparams.get("tie_word_embeddings", False):
  7982. logger.info("Skipping tied output layer 'lm_head.weight'")
  7983. return
  7984. if name.find("mlp.experts") != -1:
  7985. n_experts = self.hparams["num_experts"]
  7986. assert bid is not None
  7987. if self._experts is None:
  7988. self._experts = [{} for _ in range(self.block_count)]
  7989. self._experts[bid][name] = data_torch
  7990. if len(self._experts[bid]) >= n_experts * 3:
  7991. # merge the experts into a single 3d tensor
  7992. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7993. datas: list[Tensor] = []
  7994. for xid in range(n_experts):
  7995. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7996. datas.append(self._experts[bid][ename])
  7997. del self._experts[bid][ename]
  7998. data_torch = torch.stack(datas, dim=0)
  7999. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  8000. yield from super().modify_tensors(data_torch, merged_name, bid)
  8001. return
  8002. else:
  8003. return
  8004. yield from super().modify_tensors(data_torch, name, bid)
  8005. def prepare_tensors(self):
  8006. super().prepare_tensors()
  8007. if self._experts is not None:
  8008. experts = [k for d in self._experts for k in d.keys()]
  8009. if len(experts) > 0:
  8010. raise ValueError(f"Unprocessed experts: {experts}")
  8011. @ModelBase.register("LLaDAMoEModel", "LLaDAMoEModelLM")
  8012. class LLaDAMoEModel(TextModel):
  8013. model_arch = gguf.MODEL_ARCH.LLADA_MOE
  8014. def set_gguf_parameters(self):
  8015. super().set_gguf_parameters()
  8016. if (n_experts := self.hparams.get("num_experts")) is not None:
  8017. self.gguf_writer.add_expert_count(n_experts)
  8018. if (expert_intermediate_size := self.hparams.get("expert_intermediate_size")) is not None:
  8019. self.gguf_writer.add_expert_feed_forward_length(expert_intermediate_size)
  8020. # number of experts used per token (top-k)
  8021. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  8022. self.gguf_writer.add_expert_used_count(n_experts_used)
  8023. self.gguf_writer.add_mask_token_id(156895)
  8024. self.gguf_writer.add_causal_attention(False)
  8025. self.gguf_writer.add_diffusion_shift_logits(False)
  8026. _experts: list[dict[str, Tensor]] | None = None
  8027. # Copied from: Qwen2MoeModel
  8028. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8029. # process the experts separately
  8030. if name.find("experts") != -1:
  8031. n_experts = self.hparams["num_experts"]
  8032. assert bid is not None
  8033. if self._experts is None:
  8034. self._experts = [{} for _ in range(self.block_count)]
  8035. self._experts[bid][name] = data_torch
  8036. if len(self._experts[bid]) >= n_experts * 3:
  8037. # merge the experts into a single 3d tensor
  8038. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  8039. datas: list[Tensor] = []
  8040. for xid in range(n_experts):
  8041. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  8042. datas.append(self._experts[bid][ename])
  8043. del self._experts[bid][ename]
  8044. data_torch = torch.stack(datas, dim=0)
  8045. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  8046. yield from super().modify_tensors(data_torch, merged_name, bid)
  8047. return
  8048. else:
  8049. return
  8050. yield from super().modify_tensors(data_torch, name, bid)
  8051. # Copied from: Qwen2MoeModel
  8052. def prepare_tensors(self):
  8053. super().prepare_tensors()
  8054. if self._experts is not None:
  8055. # flatten `list[dict[str, Tensor]]` into `list[str]`
  8056. experts = [k for d in self._experts for k in d.keys()]
  8057. if len(experts) > 0:
  8058. raise ValueError(f"Unprocessed experts: {experts}")
  8059. @ModelBase.register("HunYuanDenseV1ForCausalLM")
  8060. class HunYuanModel(TextModel):
  8061. model_arch = gguf.MODEL_ARCH.HUNYUAN_DENSE
  8062. def set_vocab(self):
  8063. if (self.dir_model / "tokenizer.json").is_file():
  8064. self._set_vocab_gpt2()
  8065. else:
  8066. from transformers import AutoTokenizer
  8067. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  8068. # 1. Get the pre-tokenizer identifier hash
  8069. tokpre = self.get_vocab_base_pre(tokenizer)
  8070. # 2. Reverse-engineer the merges list from mergeable_ranks
  8071. merges = []
  8072. vocab = {}
  8073. mergeable_ranks = tokenizer.mergeable_ranks
  8074. for token, rank in mergeable_ranks.items():
  8075. vocab[QwenModel.token_bytes_to_string(token)] = rank
  8076. if len(token) == 1:
  8077. continue
  8078. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  8079. if len(merged) == 2:
  8080. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  8081. # 3. Generate the tokens and toktypes lists
  8082. vocab_size = self.hparams["vocab_size"]
  8083. assert tokenizer.vocab_size == vocab_size
  8084. special_tokens = tokenizer.special_tokens
  8085. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  8086. tokens: list[str] = []
  8087. toktypes: list[int] = []
  8088. for i in range(vocab_size):
  8089. if i not in reverse_vocab:
  8090. tokens.append(f"[PAD{i}]")
  8091. toktypes.append(gguf.TokenType.UNUSED)
  8092. else:
  8093. token = reverse_vocab[i]
  8094. tokens.append(token)
  8095. if i in special_tokens.values():
  8096. toktypes.append(gguf.TokenType.CONTROL)
  8097. else:
  8098. toktypes.append(gguf.TokenType.NORMAL)
  8099. # 4. Write all vocab-related fields to the GGUF writer
  8100. self.gguf_writer.add_tokenizer_model("gpt2")
  8101. self.gguf_writer.add_tokenizer_pre(tokpre)
  8102. self.gguf_writer.add_token_list(tokens)
  8103. self.gguf_writer.add_token_types(toktypes)
  8104. self.gguf_writer.add_token_merges(merges)
  8105. # 5. Add special tokens and chat templates
  8106. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  8107. special_vocab.add_to_gguf(self.gguf_writer)
  8108. # FIX for BOS token: Overwrite incorrect id read from config.json
  8109. if self.hparams['hidden_size'] == 4096:
  8110. self.gguf_writer.add_bos_token_id(127958) # only for 7b dense, fix <|bos|> token
  8111. def set_gguf_parameters(self):
  8112. super().set_gguf_parameters()
  8113. hparams = self.hparams
  8114. # Rope
  8115. if self.rope_parameters.get("rope_type") == "dynamic":
  8116. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  8117. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  8118. alpha = self.rope_parameters.get("alpha", 50)
  8119. base = self.rope_parameters.get("rope_theta", 10000.0)
  8120. dim = hparams["head_dim"]
  8121. scaled_base = base * (alpha ** (dim / (dim - 2)))
  8122. self.gguf_writer.add_rope_freq_base(scaled_base)
  8123. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  8124. self.gguf_writer.add_rope_scaling_factor(1)
  8125. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  8126. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  8127. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  8128. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  8129. assert base == 10000.0 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  8130. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  8131. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8132. if name == "lm_head.weight":
  8133. if self.hparams.get("tie_word_embeddings", False):
  8134. logger.info("Skipping tied output layer 'lm_head.weight'")
  8135. return
  8136. yield from super().modify_tensors(data_torch, name, bid)
  8137. @ModelBase.register("SmolLM3ForCausalLM")
  8138. class SmolLM3Model(LlamaModel):
  8139. model_arch = gguf.MODEL_ARCH.SMOLLM3
  8140. @ModelBase.register("GptOssForCausalLM")
  8141. class GptOssModel(TextModel):
  8142. model_arch = gguf.MODEL_ARCH.GPT_OSS
  8143. # TODO: remove once MXFP4 is supported more generally
  8144. def dequant_model(self):
  8145. quant_config = self.hparams.get("quantization_config")
  8146. if quant_config is not None and quant_config.get("quant_method") == "mxfp4":
  8147. return
  8148. return super().dequant_model()
  8149. def transform_nibble_layout(self, tensor):
  8150. assert tensor.dtype == torch.uint8
  8151. assert tensor.shape[-1] == 16
  8152. # swap nibbles
  8153. t_lo = tensor & 0x0F
  8154. t_hi = tensor & 0xF0
  8155. t_swapped = (t_lo << 4) | (t_hi >> 4)
  8156. tensor = t_swapped
  8157. # transform aaaa...bbbb... to abababab...
  8158. blk_a, blk_b = tensor.chunk(2, dim=-1)
  8159. # get a_
  8160. blk_a0 = (blk_a & 0xF0).view(-1, 1)
  8161. blk_a1 = (blk_a << 4).view(-1, 1)
  8162. blk_a = torch.stack((blk_a0, blk_a1), dim=2).view(tensor.shape)
  8163. # get _b
  8164. blk_b0 = (blk_b >> 4).view(-1, 1)
  8165. blk_b1 = (blk_b & 0x0F).view(-1, 1)
  8166. blk_b = torch.stack((blk_b0, blk_b1), dim=2).view(tensor.shape)
  8167. # swap once more
  8168. out = blk_a | blk_b
  8169. out_h = out & 0xF0
  8170. out_l = out & 0x0F
  8171. out = (out_h >> 4) | (out_l << 4)
  8172. return out
  8173. def repack_mxfp4(self, new_name: str, blocks: Tensor, scales: Tensor):
  8174. assert blocks.dtype == torch.uint8
  8175. assert scales.dtype == torch.uint8
  8176. scales = scales.unsqueeze(-1)
  8177. assert len(blocks.shape) == 4
  8178. assert len(scales.shape) == 4
  8179. blocks = self.transform_nibble_layout(blocks)
  8180. new_data = torch.concat((scales, blocks), dim=-1)
  8181. new_shape = [new_data.shape[0], new_data.shape[1], new_data.shape[2] * 32]
  8182. logger.info(f"Repacked {new_name} with shape {new_shape} and quantization MXFP4")
  8183. # flatten last dim
  8184. new_data = new_data.view(new_data.shape[0], new_data.shape[1], new_data.shape[2] * new_data.shape[3])
  8185. new_data = new_data.numpy()
  8186. self.gguf_writer.add_tensor(new_name, new_data, raw_dtype=gguf.GGMLQuantizationType.MXFP4)
  8187. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  8188. blocks0: Tensor = torch.zeros(1)
  8189. blocks1: Tensor = torch.zeros(1)
  8190. # we assume that tensors are loaded in the correct order
  8191. for name, data_torch in self.get_tensors():
  8192. if "mlp.experts.down_proj_blocks" in name:
  8193. blocks0 = data_torch
  8194. elif "mlp.experts.down_proj_scales" in name:
  8195. new_name = self.map_tensor_name(name.replace("_scales", ".weight"))
  8196. self.repack_mxfp4(new_name, blocks0, data_torch)
  8197. elif "mlp.experts.gate_up_proj_blocks" in name:
  8198. blocks0, blocks1 = data_torch[:, ::2, :, :], data_torch[:, 1::2, :, :]
  8199. elif "mlp.experts.gate_up_proj_scales" in name:
  8200. scales0, scales1 = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  8201. new_name_gate = self.map_tensor_name(name.replace("gate_up_proj_scales", "gate_proj.weight"))
  8202. new_name_up = self.map_tensor_name(name.replace("gate_up_proj_scales", "up_proj.weight"))
  8203. self.repack_mxfp4(new_name_gate, blocks0, scales0)
  8204. self.repack_mxfp4(new_name_up, blocks1, scales1)
  8205. return []
  8206. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8207. if "sinks" in name:
  8208. name += ".weight"
  8209. # correct naming for down_proj
  8210. if "down_proj" in name:
  8211. if name.endswith("_bias"):
  8212. name = name.replace("down_proj_bias", "down_proj.bias")
  8213. elif "_blocks" not in name and "_scales" not in name:
  8214. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  8215. name = name.replace("down_proj", "down_proj.weight")
  8216. data_torch = data_torch.transpose(-1, -2)
  8217. else:
  8218. # otherwise, it should already be repacked to ggml MXFP4 format
  8219. return
  8220. # split the gate_up into gate and up
  8221. if "gate_up_proj" in name:
  8222. if name.endswith("_bias"):
  8223. name_up = name.replace("gate_up_proj_bias", "up_proj.bias")
  8224. name_gate = name.replace("gate_up_proj_bias", "gate_proj.bias")
  8225. gate_proj_bias, up_proj_bias = data_torch[..., ::2], data_torch[..., 1::2]
  8226. yield from super().modify_tensors(gate_proj_bias, name_gate, bid)
  8227. yield from super().modify_tensors(up_proj_bias, name_up, bid)
  8228. elif "_blocks" not in name and "_scales" not in name:
  8229. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  8230. name_up = name.replace("gate_up_proj", "up_proj.weight")
  8231. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  8232. data_torch = data_torch.transpose(-1, -2)
  8233. gate_proj_weight, up_proj_weight = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  8234. yield from super().modify_tensors(gate_proj_weight, name_gate, bid)
  8235. yield from super().modify_tensors(up_proj_weight, name_up, bid)
  8236. else:
  8237. yield from super().modify_tensors(data_torch, name, bid)
  8238. def set_vocab(self):
  8239. self._set_vocab_gpt2()
  8240. def set_gguf_parameters(self):
  8241. super().set_gguf_parameters()
  8242. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  8243. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size"])
  8244. @ModelBase.register("Lfm2ForCausalLM", "LFM2ForCausalLM")
  8245. class LFM2Model(TextModel):
  8246. model_arch = gguf.MODEL_ARCH.LFM2
  8247. def _add_feed_forward_length(self):
  8248. ff_dim = self.hparams["block_ff_dim"]
  8249. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  8250. ff_dim = self.hparams["block_ff_dim"]
  8251. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  8252. multiple_of = self.hparams["block_multiple_of"]
  8253. if auto_adjust_ff_dim:
  8254. ff_dim = int(2 * ff_dim / 3)
  8255. # custom dim factor multiplier
  8256. if ffn_dim_multiplier is not None:
  8257. ff_dim = int(ffn_dim_multiplier * ff_dim)
  8258. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  8259. self.gguf_writer.add_feed_forward_length(ff_dim)
  8260. def set_gguf_parameters(self):
  8261. # set num_key_value_heads only for attention layers
  8262. self.hparams["num_key_value_heads"] = [
  8263. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  8264. for layer_type in self.hparams["layer_types"]
  8265. ]
  8266. super().set_gguf_parameters()
  8267. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  8268. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  8269. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  8270. self._add_feed_forward_length()
  8271. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8272. if self._is_vision_tensor(name) or ConformerAudioModel.is_audio_tensor(name):
  8273. # skip multimodal tensors
  8274. return
  8275. name = name.replace("language_model.", "") # vision
  8276. name = name.replace("lfm.", "model.") # audio
  8277. # conv op requires 2d tensor
  8278. if 'conv.conv' in name:
  8279. data_torch = data_torch.squeeze(1)
  8280. yield from super().modify_tensors(data_torch, name, bid)
  8281. def _is_vision_tensor(self, name: str) -> bool:
  8282. return "vision_tower" in name or "multi_modal_projector" in name
  8283. @ModelBase.register("Lfm2Model")
  8284. class LFM2ColBertModel(LFM2Model):
  8285. model_arch = gguf.MODEL_ARCH.LFM2
  8286. dense_tensor_name = "dense_2"
  8287. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8288. if not name.startswith(self.dense_tensor_name):
  8289. name = "model." + name
  8290. yield from super().modify_tensors(data_torch, name, bid)
  8291. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  8292. # dense tensor is stored in a separate safetensors file
  8293. from safetensors.torch import load_file
  8294. tensors_file = self.dir_model / "1_Dense" / "model.safetensors"
  8295. assert tensors_file.is_file()
  8296. tensor = load_file(tensors_file)["linear.weight"]
  8297. self.gguf_writer.add_embedding_length_out(tensor.shape[0])
  8298. yield f"{self.dense_tensor_name}.weight", tensor.clone()
  8299. @ModelBase.register("Lfm2MoeForCausalLM")
  8300. class LFM2MoeModel(TextModel):
  8301. model_arch = gguf.MODEL_ARCH.LFM2MOE
  8302. def set_gguf_parameters(self):
  8303. # set num_key_value_heads only for attention layers
  8304. self.hparams["num_key_value_heads"] = [
  8305. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  8306. for layer_type in self.hparams["layer_types"]
  8307. ]
  8308. super().set_gguf_parameters()
  8309. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  8310. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  8311. self.gguf_writer.add_leading_dense_block_count(self.hparams["num_dense_layers"])
  8312. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  8313. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  8314. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  8315. # cache for experts weights for merging
  8316. _experts_cache: dict[int, dict[str, Tensor]] = {}
  8317. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8318. # conv op requires 2d tensor
  8319. if 'conv.conv' in name:
  8320. data_torch = data_torch.squeeze(1)
  8321. if name.endswith(".expert_bias"):
  8322. name = name.replace(".expert_bias", ".expert_bias.bias")
  8323. # merge expert weights
  8324. if 'experts' in name:
  8325. n_experts = self.hparams["num_experts"]
  8326. assert bid is not None
  8327. expert_cache = self._experts_cache.setdefault(bid, {})
  8328. expert_cache[name] = data_torch
  8329. expert_weights = ["w1", "w2", "w3"]
  8330. # not enough expert weights to merge
  8331. if len(expert_cache) < n_experts * len(expert_weights):
  8332. return
  8333. for w_name in expert_weights:
  8334. datas: list[Tensor] = []
  8335. for xid in range(n_experts):
  8336. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{w_name}.weight"
  8337. datas.append(expert_cache[ename])
  8338. del expert_cache[ename]
  8339. data_torch = torch.stack(datas, dim=0)
  8340. merged_name = f"layers.{bid}.feed_forward.experts.{w_name}.weight"
  8341. yield from super().modify_tensors(data_torch, merged_name, bid)
  8342. del self._experts_cache[bid]
  8343. return
  8344. yield from super().modify_tensors(data_torch, name, bid)
  8345. def prepare_tensors(self):
  8346. super().prepare_tensors()
  8347. assert not self._experts_cache
  8348. @ModelBase.register("Lfm2VlForConditionalGeneration")
  8349. class LFM2VLModel(MmprojModel):
  8350. def __init__(self, *args, **kwargs):
  8351. super().__init__(*args, **kwargs)
  8352. assert self.hparams_vision is not None
  8353. # TODO(tarek): for dynamic resolution image_size is not specified, setting here for compatibility
  8354. self.hparams_vision["image_size"] = 256
  8355. def set_gguf_parameters(self):
  8356. super().set_gguf_parameters()
  8357. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2)
  8358. self.gguf_writer.add_vision_attention_layernorm_eps(self.find_vparam(["layer_norm_eps"]))
  8359. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("downsample_factor", 2))
  8360. self.gguf_writer.add_vision_use_gelu(True)
  8361. # python notation, e.g. for vision_feature_layer == -1, we pick last layer -> vision_feature_layers_to_drop = 0
  8362. vision_feature_layers_to_drop = -(self.global_config.get("vision_feature_layer", -1) + 1)
  8363. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys) - vision_feature_layers_to_drop)
  8364. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8365. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  8366. if is_vision_tensor:
  8367. # remove "model." prefix
  8368. name = name.replace("model.vision_tower.", "vision_tower.")
  8369. name = name.replace("model.multi_modal_projector.", "multi_modal_projector.")
  8370. if "patch_embedding.weight" in name:
  8371. data_torch = data_torch.view(data_torch.shape[0], 16, 16, 3).permute(0, 3, 1, 2)
  8372. yield from super().modify_tensors(data_torch, name, bid)
  8373. return
  8374. return # skip other tensors
  8375. @ModelBase.register("Lfm2AudioForConditionalGeneration")
  8376. class LFM2AudioModel(ConformerAudioModel):
  8377. has_vision_encoder = False
  8378. has_audio_encoder = True
  8379. model_name = "Lfm2AudioEncoder"
  8380. def get_audio_config(self) -> dict[str, Any] | None:
  8381. return self.global_config.get("encoder")
  8382. def set_gguf_parameters(self):
  8383. assert self.hparams_audio is not None
  8384. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  8385. self.hparams_audio["intermediate_size"] = self.hparams_audio["d_model"]
  8386. self.hparams_audio["num_attention_heads"] = self.hparams_audio["n_heads"]
  8387. super().set_gguf_parameters()
  8388. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2A)
  8389. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["feat_in"])
  8390. self.gguf_writer.add_audio_attention_layernorm_eps(1e-5)
  8391. def modify_tensors(self, data_torch, name, bid):
  8392. # skip language model tensors
  8393. if name.startswith("lfm."):
  8394. return
  8395. # for training only
  8396. if any(p in name for p in ["audio_loss_weight"]):
  8397. return
  8398. # for audio output
  8399. if any(p in name for p in ["codebook_offsets", "depth_embeddings", "depth_linear", "depthformer"]):
  8400. return
  8401. yield from super().modify_tensors(data_torch, name, bid)
  8402. @ModelBase.register("SmallThinkerForCausalLM")
  8403. class SmallThinkerModel(TextModel):
  8404. model_arch = gguf.MODEL_ARCH.SMALLTHINKER
  8405. def set_gguf_parameters(self):
  8406. super().set_gguf_parameters()
  8407. if (n_experts := self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))) is not None:
  8408. self.gguf_writer.add_expert_count(n_experts)
  8409. if (n_experts_used := self.hparams.get("num_experts_per_tok", self.hparams.get("moe_num_active_primary_experts"))) is not None:
  8410. self.gguf_writer.add_expert_used_count(n_experts_used)
  8411. if (moe_intermediate_size := self.hparams.get("moe_ffn_hidden_size")) is not None:
  8412. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  8413. self.gguf_writer.add_feed_forward_length(moe_intermediate_size)
  8414. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  8415. if (self.hparams.get('moe_primary_router_apply_softmax')):
  8416. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  8417. else:
  8418. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  8419. sliding_window_layout = self.hparams.get("sliding_window_layout")
  8420. if sliding_window_layout:
  8421. for i in sliding_window_layout:
  8422. if i != 0:
  8423. sliding_window = self.hparams.get("sliding_window_size")
  8424. if sliding_window:
  8425. self.gguf_writer.add_sliding_window(sliding_window)
  8426. break
  8427. _experts: list[dict[str, Tensor]] | None = None
  8428. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8429. # process the experts separately
  8430. if name.find("experts") != -1:
  8431. n_experts = self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))
  8432. assert bid is not None
  8433. if self._experts is None:
  8434. self._experts = [{} for _ in range(self.block_count)]
  8435. self._experts[bid][name] = data_torch
  8436. if len(self._experts[bid]) >= n_experts * 3:
  8437. # merge the experts into a single 3d tensor
  8438. for w_name in ["down", "gate", "up"]:
  8439. datas: list[Tensor] = []
  8440. for xid in range(n_experts):
  8441. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  8442. datas.append(self._experts[bid][ename])
  8443. del self._experts[bid][ename]
  8444. data_torch = torch.stack(datas, dim=0)
  8445. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  8446. yield from super().modify_tensors(data_torch, merged_name, bid)
  8447. return
  8448. else:
  8449. return
  8450. yield from super().modify_tensors(data_torch, name, bid)
  8451. def prepare_tensors(self):
  8452. super().prepare_tensors()
  8453. if self._experts is not None:
  8454. # flatten `list[dict[str, Tensor]]` into `list[str]`
  8455. experts = [k for d in self._experts for k in d.keys()]
  8456. if len(experts) > 0:
  8457. raise ValueError(f"Unprocessed experts: {experts}")
  8458. @ModelBase.register("ModernBertModel", "ModernBertForMaskedLM", "ModernBertForSequenceClassification")
  8459. class ModernBertModel(BertModel):
  8460. model_arch = gguf.MODEL_ARCH.MODERN_BERT
  8461. def set_vocab(self):
  8462. self.gguf_writer.add_add_bos_token(True)
  8463. self.gguf_writer.add_add_eos_token(True)
  8464. self.gguf_writer.add_add_sep_token(True)
  8465. self._set_vocab_gpt2()
  8466. def set_gguf_parameters(self):
  8467. super().set_gguf_parameters()
  8468. self.gguf_writer.add_sliding_window(self.hparams["local_attention"])
  8469. if (sliding_window_pattern := self.hparams.get("global_attn_every_n_layers")) is not None:
  8470. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  8471. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  8472. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  8473. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8474. # these layers act as MLM head, so we don't need them
  8475. if name.startswith("decoder."):
  8476. return
  8477. if name.startswith("model."):
  8478. name = name[6:]
  8479. yield from super().modify_tensors(data_torch, name, bid)
  8480. @ModelBase.register("ApertusForCausalLM")
  8481. class ApertusModel(LlamaModel):
  8482. model_arch = gguf.MODEL_ARCH.APERTUS
  8483. undo_permute = False
  8484. _alpha_n = {}
  8485. _alpha_p = {}
  8486. _beta = {}
  8487. _eps = {}
  8488. def modify_tensors(self, data_torch, name, bid):
  8489. # Handle xIELU activation parameters
  8490. n_layers = self.hparams["num_hidden_layers"]
  8491. if name.endswith(".act_fn.alpha_n"):
  8492. self._alpha_n[bid] = data_torch.to("cpu").float().item()
  8493. if (len(self._alpha_n) == n_layers):
  8494. self.gguf_writer.add_xielu_alpha_n([self._alpha_n[k] for k in sorted(self._alpha_n)])
  8495. return
  8496. if name.endswith(".act_fn.alpha_p"):
  8497. self._alpha_p[bid] = data_torch.to("cpu").float().item()
  8498. if (len(self._alpha_p) == n_layers):
  8499. self.gguf_writer.add_xielu_alpha_p([self._alpha_p[k] for k in sorted(self._alpha_p)])
  8500. return
  8501. if name.endswith(".act_fn.beta"):
  8502. self._beta[bid] = data_torch.to("cpu").float().item()
  8503. if (len(self._beta) == n_layers):
  8504. self.gguf_writer.add_xielu_beta([self._beta[k] for k in sorted(self._beta)])
  8505. return
  8506. if name.endswith(".act_fn.eps"):
  8507. self._eps[bid] = data_torch.to("cpu").float().item()
  8508. if (len(self._eps) == n_layers):
  8509. self.gguf_writer.add_xielu_eps([self._eps[k] for k in sorted(self._eps)])
  8510. return
  8511. yield from super().modify_tensors(data_torch, name, bid)
  8512. class MistralModel(LlamaModel):
  8513. model_arch = gguf.MODEL_ARCH.MISTRAL3
  8514. model_name = "Mistral"
  8515. hf_arch = ""
  8516. is_mistral_format = True
  8517. undo_permute = False
  8518. def __init__(self, *args, **kwargs):
  8519. super().__init__(*args, **kwargs)
  8520. # for compatibility, we use LLAMA arch for older models
  8521. # TODO: remove this once everyone migrates to newer version of llama.cpp
  8522. if "llama_4_scaling" not in self.hparams:
  8523. self.model_arch = gguf.MODEL_ARCH.LLAMA
  8524. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
  8525. self.gguf_writer.add_architecture()
  8526. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  8527. def dequant_model(self):
  8528. # transform quantization config into HF format
  8529. quant_config = self.hparams.get("quantization")
  8530. if quant_config is not None:
  8531. assert quant_config["qformat_weight"] == "fp8_e4m3"
  8532. self.hparams["quantization_config"] = {
  8533. "activation_scheme": "static",
  8534. "quant_method": "fp8",
  8535. "weight_block_size": None,
  8536. }
  8537. return super().dequant_model()
  8538. @staticmethod
  8539. def get_community_chat_template(vocab: MistralVocab, templates_dir: Path, is_mistral_format: bool):
  8540. assert TokenizerVersion is not None and Tekkenizer is not None and SentencePieceTokenizer is not None, _mistral_import_error_msg
  8541. assert isinstance(vocab.tokenizer, (Tekkenizer, SentencePieceTokenizer)), (
  8542. f"Expected Tekkenizer or SentencePieceTokenizer, got {type(vocab.tokenizer)}"
  8543. )
  8544. if vocab.tokenizer.version == TokenizerVersion.v1:
  8545. return "mistral-v1"
  8546. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.spm:
  8547. return "mistral-v3"
  8548. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  8549. return "mistral-v3-tekken"
  8550. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.spm:
  8551. return "mistral-v7"
  8552. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  8553. return "mistral-v7-tekken"
  8554. elif vocab.tokenizer.version == TokenizerVersion.v11:
  8555. template_file = "Mistral-Small-3.2-24B-Instruct-2506.jinja"
  8556. elif vocab.tokenizer.version == TokenizerVersion.v13:
  8557. template_file = "unsloth-mistral-Devstral-Small-2507.jinja"
  8558. else:
  8559. err_message = f"Unknown tokenizer type: {vocab.tokenizer_type} and version {vocab.tokenizer.version}"
  8560. if is_mistral_format:
  8561. err_message += (
  8562. " . Please pass --disable-mistral-community-chat-template argument to the CLI "
  8563. "if you want to skip this error and use the Mistral official `mistral-common` pre-processing library."
  8564. )
  8565. raise ValueError(err_message)
  8566. template_path = templates_dir / template_file
  8567. if not template_path.exists():
  8568. raise FileNotFoundError(f"Template file not found: {template_path}")
  8569. with open(template_path, "r", encoding="utf-8") as f:
  8570. template = f.read()
  8571. return template
  8572. def set_gguf_parameters(self):
  8573. super().set_gguf_parameters()
  8574. MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
  8575. @staticmethod
  8576. def set_mistral_config(gguf_writer: gguf.GGUFWriter, hparams: dict):
  8577. if "yarn" in hparams:
  8578. yarn_params = hparams["yarn"]
  8579. gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  8580. gguf_writer.add_rope_scaling_factor(yarn_params["factor"])
  8581. gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_params["beta"])
  8582. gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_params["alpha"])
  8583. gguf_writer.add_rope_scaling_yarn_log_mul(1.0) # mscale_all_dim
  8584. gguf_writer.add_rope_scaling_orig_ctx_len(yarn_params["original_max_position_embeddings"])
  8585. if "llama_4_scaling" in hparams:
  8586. gguf_writer.add_attn_temperature_scale(hparams["llama_4_scaling"]["beta"])
  8587. class MistralMoeModel(DeepseekV2Model):
  8588. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  8589. model_name = "Mistral"
  8590. hf_arch = ""
  8591. is_mistral_format = True
  8592. def __init__(self, *args, **kwargs):
  8593. super().__init__(*args, **kwargs)
  8594. logger.info("Using MistralMoeModel")
  8595. # remap hparams from Mistral MoE format to DeepseekV2 format
  8596. # we do this way to be able to reuse DeepseekV2Model set_gguf_parameters logic
  8597. # ref: https://github.com/vllm-project/vllm/blob/b294e28db2c5dee61bc25157664edcada8b90b31/vllm/transformers_utils/configs/mistral.py
  8598. config = self.hparams
  8599. # Mistral key -> HF key
  8600. config_mapping = {
  8601. "dim": "hidden_size",
  8602. "norm_eps": "rms_norm_eps",
  8603. "n_kv_heads": "num_key_value_heads",
  8604. "n_layers": "num_hidden_layers",
  8605. "n_heads": "num_attention_heads",
  8606. "hidden_dim": "intermediate_size",
  8607. }
  8608. # HF key -> (Mistral key, default value)
  8609. top_level_mapping_with_default = {
  8610. "model_type": ("model_type", "transformer"),
  8611. "hidden_act": ("activation", "silu"),
  8612. "tie_word_embeddings": ("tied_embeddings", False),
  8613. "max_seq_len": ("max_seq_len", config.get("max_position_embeddings", 128_000)),
  8614. "max_position_embeddings": ("max_position_embeddings", 128_000),
  8615. }
  8616. # mapping top-level keys
  8617. for key, new_key in config_mapping.items():
  8618. if key in config:
  8619. config[new_key] = config[key]
  8620. for new_key, (key, default_value) in top_level_mapping_with_default.items():
  8621. config[new_key] = config.get(key, default_value)
  8622. # mapping MoE-specific keys
  8623. moe_config_map = {
  8624. "route_every_n": "moe_layer_freq",
  8625. "first_k_dense_replace": "first_k_dense_replace",
  8626. "num_experts_per_tok": "num_experts_per_tok",
  8627. "num_experts": "n_routed_experts",
  8628. "expert_hidden_dim": "moe_intermediate_size",
  8629. "routed_scale": "routed_scaling_factor",
  8630. "num_shared_experts": "n_shared_experts",
  8631. "num_expert_groups": "n_group",
  8632. "num_expert_groups_per_tok": "topk_group",
  8633. }
  8634. moe = config["moe"]
  8635. for key, new_key in moe_config_map.items():
  8636. if key in moe:
  8637. config[new_key] = moe[key]
  8638. # provide missing values
  8639. config["topk_method"] = None
  8640. config["norm_topk_prob"] = True
  8641. config["scoring_func"] = "softmax"
  8642. def set_vocab(self):
  8643. self._set_vocab_mistral()
  8644. def set_gguf_parameters(self):
  8645. super().set_gguf_parameters()
  8646. MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
  8647. yarn_params = self.hparams["yarn"]
  8648. self.gguf_writer.add_attn_temperature_length(yarn_params["original_max_position_embeddings"])
  8649. # [TAG_DEEPSEEK2_YARN_LOG_MUL_FIX]
  8650. # note: for legacy reasons, this is not consistent with the other usages of self.gguf_writer.add_rope_scaling_yarn_log_mul
  8651. # ref https://github.com/ggml-org/llama.cpp/pull/17945
  8652. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1) # mscale_all_dim * 0.1
  8653. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  8654. if name.startswith("vision_") or name.startswith("patch_merger.") or "mm_projector" in name:
  8655. return
  8656. # rename certain tensors so that we can reuse DeepseekV2Model modify_tensors logic
  8657. if name.endswith(".qscale_act"):
  8658. name = name.replace(".qscale_act", ".input_scale")
  8659. if name.endswith(".qscale_weight"):
  8660. name = name.replace(".qscale_weight", ".weight_scale")
  8661. if ".wkv_b." in name:
  8662. name = name.replace(".wkv_b.", ".kv_b_proj.")
  8663. if ".experts." in name:
  8664. name = name.replace(".experts.", ".mlp.experts.")
  8665. name = name.replace(".w1.", ".gate_proj.")
  8666. name = name.replace(".w2.", ".down_proj.")
  8667. name = name.replace(".w3.", ".up_proj.")
  8668. name = "model." + name
  8669. yield from super().modify_tensors(data_torch, name, bid)
  8670. class PixtralModel(LlavaVisionModel):
  8671. model_name = "Pixtral"
  8672. hf_arch = ""
  8673. is_mistral_format = True
  8674. def set_gguf_parameters(self):
  8675. super().set_gguf_parameters()
  8676. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  8677. self.gguf_writer.add_vision_attention_layernorm_eps(
  8678. self.find_hparam(["norm_eps"])
  8679. )
  8680. self.gguf_writer.add_rope_freq_base(self.find_vparam(["rope_theta"]))
  8681. self.gguf_writer.add_vision_use_silu(True)
  8682. # spatial_merge_size
  8683. if self.find_vparam(["mm_projector_id"]) == "patch_merge":
  8684. self.gguf_writer.add_vision_spatial_merge_size(
  8685. self.find_vparam(["spatial_merge_size"])
  8686. )
  8687. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  8688. if name == "vision_language_adapter.w_in.weight":
  8689. return "mm.1.weight"
  8690. elif name == "vision_language_adapter.w_out.weight":
  8691. return "mm.2.weight"
  8692. return super().map_tensor_name(name, try_suffixes)
  8693. @ModelBase.register("LightOnOCRForConditionalGeneration")
  8694. class LightOnOCRVisionModel(LlavaVisionModel):
  8695. is_mistral_format = False
  8696. use_break_tok = False
  8697. def set_gguf_parameters(self):
  8698. super().set_gguf_parameters()
  8699. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LIGHTONOCR)
  8700. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  8701. name = name.replace("model.vision_encoder.", "vision_tower.")
  8702. name = name.replace("model.vision_projection.", "multi_modal_projector.")
  8703. yield from super().modify_tensors(data_torch, name, bid)
  8704. @ModelBase.register("KimiVLForConditionalGeneration")
  8705. class KimiVLModel(MmprojModel):
  8706. def __init__(self, *args, **kwargs):
  8707. super().__init__(*args, **kwargs)
  8708. assert self.hparams_vision is not None
  8709. self.hparams_vision["image_size"] = 64 * 14 # for compatibility
  8710. def set_gguf_parameters(self):
  8711. super().set_gguf_parameters()
  8712. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.KIMIVL)
  8713. self.gguf_writer.add_vision_use_gelu(True)
  8714. self.gguf_writer.add_vision_projector_scale_factor(2)
  8715. # eps is the same as pytorch's default value
  8716. assert self.hparams_vision is not None
  8717. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-5))
  8718. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8719. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  8720. if is_vision_tensor:
  8721. if "pos_emb.weight" in name:
  8722. data_torch = data_torch.view(data_torch.shape[0] * data_torch.shape[1], data_torch.shape[2])
  8723. if "wqkv" in name:
  8724. split_dim = 0 if "weight" in name else -1
  8725. wq, wk, wv = data_torch.chunk(3, dim=split_dim)
  8726. yield from super().modify_tensors(wq, name.replace("wqkv", "wq"), bid)
  8727. yield from super().modify_tensors(wk, name.replace("wqkv", "wk"), bid)
  8728. yield from super().modify_tensors(wv, name.replace("wqkv", "wv"), bid)
  8729. else:
  8730. yield from super().modify_tensors(data_torch, name, bid)
  8731. @ModelBase.register("CogVLMForCausalLM")
  8732. class CogVLMVisionModel(MmprojModel):
  8733. def set_gguf_parameters(self):
  8734. super().set_gguf_parameters()
  8735. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-6))
  8736. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.COGVLM)
  8737. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8738. if not name.startswith("model.vision."):
  8739. return
  8740. yield from super().modify_tensors(data_torch, name, bid)
  8741. @ModelBase.register("CogVLMForCausalLM")
  8742. class CogVLMModel(LlamaModel):
  8743. model_arch = gguf.MODEL_ARCH.COGVLM
  8744. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8745. # block vision tensors
  8746. if name.startswith("model.vision."):
  8747. return
  8748. yield from super().modify_tensors(data_torch, name, bid)
  8749. @ModelBase.register("JanusForConditionalGeneration")
  8750. class JanusProModel(LlamaModel):
  8751. model_arch = gguf.MODEL_ARCH.LLAMA # reuse Llama arch
  8752. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8753. # Skip vision, aligner, and generation tensors
  8754. skip_prefixes = (
  8755. 'model.vision_model.',
  8756. 'model.aligner.',
  8757. 'model.vqmodel.',
  8758. 'model.generation_embeddings.',
  8759. 'model.generation_aligner.',
  8760. 'model.generation_head.',
  8761. )
  8762. if name.startswith(skip_prefixes):
  8763. return
  8764. if name.startswith('model.language_model.'):
  8765. name = name.replace('model.language_model.', 'model.')
  8766. elif name.startswith('language_model.'):
  8767. name = name.replace('language_model.', '')
  8768. yield from super().modify_tensors(data_torch, name, bid)
  8769. @ModelBase.register("JanusForConditionalGeneration")
  8770. class JanusProVisionModel(MmprojModel):
  8771. def __init__(self, *args, **kwargs):
  8772. super().__init__(*args, **kwargs)
  8773. assert self.hparams_vision is not None
  8774. if "intermediate_size" not in self.hparams_vision:
  8775. mlp_ratio = self.hparams_vision.get("mlp_ratio")
  8776. hidden_size = self.hparams_vision.get("hidden_size")
  8777. if mlp_ratio is not None and hidden_size is not None:
  8778. self.hparams_vision["intermediate_size"] = int(round(hidden_size * mlp_ratio))
  8779. def set_gguf_parameters(self):
  8780. super().set_gguf_parameters()
  8781. assert self.hparams_vision is not None
  8782. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.JANUS_PRO)
  8783. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-6))
  8784. hidden_act = str(self.hparams_vision.get("hidden_act", "")).lower()
  8785. if hidden_act == "gelu":
  8786. self.gguf_writer.add_vision_use_gelu(True)
  8787. elif hidden_act == "silu":
  8788. self.gguf_writer.add_vision_use_silu(True)
  8789. def _map_aligner_tensor(self, data_torch: Tensor, name: str) -> Iterable[tuple[str, Tensor]]:
  8790. """Map aligner tensors to projector format"""
  8791. suffix = ".bias" if name.endswith(".bias") else ".weight"
  8792. if name.startswith("model.aligner."):
  8793. local_name = name[len("model.aligner."):]
  8794. elif name.startswith("aligner."):
  8795. local_name = name[len("aligner."):]
  8796. else:
  8797. raise ValueError(f"Unsupported Janus aligner prefix: {name}")
  8798. if local_name.startswith("fc1."):
  8799. mm_index = 0
  8800. elif local_name.startswith("hidden_layers."):
  8801. parts = local_name.split(".", 2)
  8802. if len(parts) < 3:
  8803. raise ValueError(f"Unexpected Janus aligner tensor name: {name}")
  8804. mm_index = int(parts[1]) + 1
  8805. else:
  8806. raise ValueError(f"Unsupported Janus aligner tensor: {name}")
  8807. tensor_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, mm_index, suffix=suffix)
  8808. return [(tensor_name, data_torch)]
  8809. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8810. # Skip language model tensors as they will be handled by `JanusProModel`
  8811. if name.startswith(('model.language_model.', 'language_model.')):
  8812. return
  8813. # Skip generation-related components
  8814. skip_generation_prefixes = (
  8815. 'model.vqmodel.',
  8816. 'vqmodel.',
  8817. 'model.generation_embeddings.',
  8818. 'generation_embeddings.',
  8819. 'model.generation_aligner.',
  8820. 'generation_aligner.',
  8821. 'model.generation_head.',
  8822. 'generation_head.',
  8823. )
  8824. if name.startswith(skip_generation_prefixes):
  8825. return
  8826. # Handle aligner tensors
  8827. if name.startswith(('model.aligner.', 'aligner.')):
  8828. yield from self._map_aligner_tensor(data_torch, name)
  8829. return
  8830. # Handle vision tensors
  8831. if name.startswith(('model.vision_model.', 'vision_model.')):
  8832. yield from super().modify_tensors(data_torch, name, bid)
  8833. return
  8834. return
  8835. @ModelBase.register("YoutuVLForConditionalGeneration")
  8836. class YoutuVLVisionModel(MmprojModel):
  8837. def __init__(self, *args, **kwargs):
  8838. super().__init__(*args, **kwargs)
  8839. assert self.hparams_vision is not None
  8840. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  8841. def set_gguf_parameters(self):
  8842. super().set_gguf_parameters()
  8843. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.YOUTUVL)
  8844. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-6))
  8845. # Handle activation function
  8846. hidden_act = str(self.hparams.get("hidden_act", "gelu_pytorch_tanh")).lower()
  8847. if hidden_act in ("gelu", "gelu_pytorch_tanh", "gelu_fast", "gelu_new", "gelu_accurate"):
  8848. self.gguf_writer.add_vision_use_gelu(True)
  8849. elif hidden_act == "silu":
  8850. self.gguf_writer.add_vision_use_silu(True)
  8851. else:
  8852. raise ValueError(f"Unsupported activation function for YOUTUVL: {hidden_act}")
  8853. self.gguf_writer.add_vision_spatial_merge_size(self.hparams.get("spatial_merge_size", 2))
  8854. window_size = self.hparams.get("window_size")
  8855. if window_size is not None:
  8856. self.gguf_writer.add_vision_window_size(window_size)
  8857. # fullatt_block_indexes contains explicit layer indices that use full attention
  8858. # e.g., [2, 5, 8, 11] means layers 2, 5, 8, 11 use full attention
  8859. # All other layers use window attention
  8860. fullatt_block_indexes = self.hparams.get("fullatt_block_indexes")
  8861. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for youtuvl"
  8862. # Store the explicit layer indices for YoutuVL (irregular pattern approach)
  8863. self.gguf_writer.add_vision_wa_layer_indexes(layers=fullatt_block_indexes)
  8864. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8865. # Skip language model tensors
  8866. skip_prefixes = ('lm_head.', 'model.layers.', 'model.embed_tokens.', 'model.norm.')
  8867. if name.startswith(skip_prefixes):
  8868. return
  8869. # Try to map the tensor using TensorNameMap (handles vision encoder and projector)
  8870. try:
  8871. yield from super().modify_tensors(data_torch, name, bid)
  8872. except ValueError:
  8873. # If mapping fails, log warning and skip
  8874. logger.warning(f"Cannot map tensor: {name}")
  8875. return
  8876. @ModelBase.register("SolarOpenForCausalLM")
  8877. class SolarOpenModel(Glm4MoeModel):
  8878. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  8879. def set_vocab(self):
  8880. from transformers import AutoTokenizer
  8881. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  8882. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  8883. tokens, toktypes, tokpre = self.get_vocab_base()
  8884. self.gguf_writer.add_tokenizer_model("gpt2")
  8885. self.gguf_writer.add_tokenizer_pre(tokpre)
  8886. self.gguf_writer.add_token_list(tokens)
  8887. self.gguf_writer.add_token_types(toktypes)
  8888. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  8889. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|endoftext|>"])
  8890. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<unk>"])
  8891. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|startoftext|>"])
  8892. special_vocab.add_to_gguf(self.gguf_writer)
  8893. ###### CONVERSION LOGIC ######
  8894. # tree of lazy tensors
  8895. class LazyTorchTensor(gguf.LazyBase):
  8896. _tensor_type = torch.Tensor
  8897. # to keep the type-checker happy
  8898. dtype: torch.dtype
  8899. shape: torch.Size
  8900. # only used when converting a torch.Tensor to a np.ndarray
  8901. _dtype_map: dict[torch.dtype, type] = {
  8902. torch.float16: np.float16,
  8903. torch.float32: np.float32,
  8904. torch.uint8: np.uint8,
  8905. }
  8906. # only used when byteswapping data. Only correct size is needed
  8907. _dtype_byteswap_map: dict[torch.dtype, type] = {
  8908. torch.float64: np.float64,
  8909. torch.float32: np.float32,
  8910. torch.bfloat16: np.float16,
  8911. torch.float16: np.float16,
  8912. torch.int64: np.int64,
  8913. torch.uint64: np.uint64,
  8914. torch.int32: np.int32,
  8915. torch.uint32: np.uint32,
  8916. torch.int16: np.int16,
  8917. torch.uint16: np.uint16,
  8918. torch.int8: np.int8,
  8919. torch.uint8: np.uint8,
  8920. torch.bool: np.uint8,
  8921. torch.float8_e4m3fn: np.uint8,
  8922. torch.float8_e5m2: np.uint8,
  8923. }
  8924. # used for safetensors slices
  8925. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  8926. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  8927. _dtype_str_map: dict[str, torch.dtype] = {
  8928. "F64": torch.float64,
  8929. "F32": torch.float32,
  8930. "BF16": torch.bfloat16,
  8931. "F16": torch.float16,
  8932. # "U64": torch.uint64,
  8933. "I64": torch.int64,
  8934. # "U32": torch.uint32,
  8935. "I32": torch.int32,
  8936. # "U16": torch.uint16,
  8937. "I16": torch.int16,
  8938. "U8": torch.uint8,
  8939. "I8": torch.int8,
  8940. "BOOL": torch.bool,
  8941. "F8_E4M3": torch.float8_e4m3fn,
  8942. "F8_E5M2": torch.float8_e5m2,
  8943. }
  8944. def numpy(self) -> gguf.LazyNumpyTensor:
  8945. dtype = self._dtype_map[self.dtype]
  8946. return gguf.LazyNumpyTensor(
  8947. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  8948. args=(self,),
  8949. func=(lambda s: s.numpy())
  8950. )
  8951. @classmethod
  8952. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  8953. return torch.empty(size=shape, dtype=dtype, device="meta")
  8954. @classmethod
  8955. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  8956. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  8957. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  8958. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[...] if len(s.get_shape()) == 0 else s[:])
  8959. return cast(torch.Tensor, lazy)
  8960. @classmethod
  8961. def from_local_tensor(cls, t: gguf.utility.LocalTensor) -> Tensor:
  8962. def load_tensor(tensor: gguf.utility.LocalTensor) -> Tensor:
  8963. def byteswap_tensor(tensor: np.ndarray, dtype: type) -> np.ndarray:
  8964. if sys.byteorder == 'big':
  8965. # switch data back to big endian
  8966. tensor = tensor.view(dtype).byteswap(inplace=False)
  8967. return tensor
  8968. dtype = cls._dtype_str_map[tensor.dtype]
  8969. numpy_dtype = cls._dtype_byteswap_map[dtype]
  8970. return torch.from_numpy(byteswap_tensor(tensor.mmap_bytes(), numpy_dtype)).view(dtype).reshape(tensor.shape)
  8971. dtype = cls._dtype_str_map[t.dtype]
  8972. shape = t.shape
  8973. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(t,), func=lambda r: load_tensor(r))
  8974. return cast(torch.Tensor, lazy)
  8975. @classmethod
  8976. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  8977. def byteswap_tensor(tensor: np.ndarray, dtype: type) -> np.ndarray:
  8978. if sys.byteorder == 'big':
  8979. # switch data back to big endian
  8980. tensor = tensor.view(dtype).byteswap(inplace=False)
  8981. return tensor
  8982. dtype = cls._dtype_str_map[remote_tensor.dtype]
  8983. numpy_dtype = cls._dtype_byteswap_map[dtype]
  8984. shape = remote_tensor.shape
  8985. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  8986. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.from_numpy(byteswap_tensor(np.frombuffer(r.data(), dtype=numpy_dtype), numpy_dtype)).view(dtype).reshape(shape))
  8987. return cast(torch.Tensor, lazy)
  8988. @classmethod
  8989. def __torch_function__(cls, func, types, args=(), kwargs=None):
  8990. del types # unused
  8991. if kwargs is None:
  8992. kwargs = {}
  8993. if func is torch.Tensor.numpy:
  8994. return args[0].numpy()
  8995. return cls._wrap_fn(func)(*args, **kwargs)
  8996. def parse_args() -> argparse.Namespace:
  8997. parser = argparse.ArgumentParser(
  8998. description="Convert a huggingface model to a GGML compatible file")
  8999. parser.add_argument(
  9000. "--vocab-only", action="store_true",
  9001. help="extract only the vocab",
  9002. )
  9003. parser.add_argument(
  9004. "--outfile", type=Path,
  9005. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  9006. )
  9007. parser.add_argument(
  9008. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="auto",
  9009. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type",
  9010. )
  9011. parser.add_argument(
  9012. "--bigendian", action="store_true",
  9013. help="model is executed on big endian machine",
  9014. )
  9015. parser.add_argument(
  9016. "model", type=str,
  9017. help="directory containing model file or huggingface repository ID (if --remote)",
  9018. nargs="?",
  9019. )
  9020. parser.add_argument(
  9021. "--use-temp-file", action="store_true",
  9022. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  9023. )
  9024. parser.add_argument(
  9025. "--no-lazy", action="store_true",
  9026. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  9027. )
  9028. parser.add_argument(
  9029. "--model-name", type=str, default=None,
  9030. help="name of the model",
  9031. )
  9032. parser.add_argument(
  9033. "--verbose", action="store_true",
  9034. help="increase output verbosity",
  9035. )
  9036. parser.add_argument(
  9037. "--split-max-tensors", type=int, default=0,
  9038. help="max tensors in each split",
  9039. )
  9040. parser.add_argument(
  9041. "--split-max-size", type=str, default="0",
  9042. help="max size per split N(M|G)",
  9043. )
  9044. parser.add_argument(
  9045. "--dry-run", action="store_true",
  9046. help="only print out a split plan and exit, without writing any new files",
  9047. )
  9048. parser.add_argument(
  9049. "--no-tensor-first-split", action="store_true",
  9050. help="do not add tensors to the first split (disabled by default)"
  9051. )
  9052. parser.add_argument(
  9053. "--metadata", type=Path,
  9054. help="Specify the path for an authorship metadata override file"
  9055. )
  9056. parser.add_argument(
  9057. "--print-supported-models", action="store_true",
  9058. help="Print the supported models"
  9059. )
  9060. parser.add_argument(
  9061. "--remote", action="store_true",
  9062. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  9063. )
  9064. parser.add_argument(
  9065. "--mmproj", action="store_true",
  9066. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  9067. )
  9068. parser.add_argument(
  9069. "--mistral-format", action="store_true",
  9070. help="Whether the model is stored following the Mistral format.",
  9071. )
  9072. parser.add_argument(
  9073. "--disable-mistral-community-chat-template", action="store_true",
  9074. help=(
  9075. "Whether to disable usage of Mistral community chat templates. If set, use the Mistral official `mistral-common` library for tokenization and detokenization of Mistral models. "
  9076. "Using `mistral-common` ensure correctness and zero-day support of tokenization for models converted from the Mistral format but requires to manually setup the tokenization server."
  9077. )
  9078. )
  9079. parser.add_argument(
  9080. "--sentence-transformers-dense-modules", action="store_true",
  9081. help=("Whether to include sentence-transformers dense modules. "
  9082. "It can be used for sentence-transformers models, like google/embeddinggemma-300m. "
  9083. "Default these modules are not included.")
  9084. )
  9085. args = parser.parse_args()
  9086. if not args.print_supported_models and args.model is None:
  9087. parser.error("the following arguments are required: model")
  9088. return args
  9089. def split_str_to_n_bytes(split_str: str) -> int:
  9090. if split_str.endswith("K"):
  9091. n = int(split_str[:-1]) * 1000
  9092. elif split_str.endswith("M"):
  9093. n = int(split_str[:-1]) * 1000 * 1000
  9094. elif split_str.endswith("G"):
  9095. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  9096. elif split_str.isnumeric():
  9097. n = int(split_str)
  9098. else:
  9099. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  9100. if n < 0:
  9101. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  9102. return n
  9103. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  9104. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  9105. # maybe we should fallback to text model's arch in that case, since not many models have both
  9106. text_config = hparams.get("text_config", {})
  9107. vision_config = hparams.get("vision_config", {})
  9108. arch = None
  9109. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  9110. arch = arches[0]
  9111. elif "ssm_cfg" in hparams:
  9112. # For non-hf Mamba and Mamba2 models
  9113. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  9114. # if "architectures" is found in the sub-config, use that instead
  9115. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  9116. arch = text_config["architectures"][0]
  9117. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  9118. arch = vision_config["architectures"][0]
  9119. if arch is None:
  9120. raise ValueError("Failed to detect model architecture")
  9121. return arch
  9122. def main() -> None:
  9123. args = parse_args()
  9124. if args.print_supported_models:
  9125. logger.error("Supported models:")
  9126. ModelBase.print_registered_models()
  9127. sys.exit(0)
  9128. if args.verbose:
  9129. logging.basicConfig(level=logging.DEBUG)
  9130. else:
  9131. logging.basicConfig(level=logging.INFO)
  9132. if args.remote:
  9133. hf_repo_id = args.model
  9134. from huggingface_hub import snapshot_download
  9135. allowed_patterns = ["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"]
  9136. if args.sentence_transformers_dense_modules:
  9137. # include sentence-transformers dense modules safetensors files
  9138. allowed_patterns.append("*.safetensors")
  9139. local_dir = snapshot_download(
  9140. repo_id=hf_repo_id,
  9141. allow_patterns=allowed_patterns)
  9142. dir_model = Path(local_dir)
  9143. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  9144. else:
  9145. hf_repo_id = None
  9146. dir_model = Path(args.model)
  9147. if not dir_model.is_dir():
  9148. logger.error(f'Error: {dir_model} is not a directory')
  9149. sys.exit(1)
  9150. ftype_map: dict[str, gguf.LlamaFileType] = {
  9151. "f32": gguf.LlamaFileType.ALL_F32,
  9152. "f16": gguf.LlamaFileType.MOSTLY_F16,
  9153. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  9154. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  9155. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  9156. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  9157. "auto": gguf.LlamaFileType.GUESSED,
  9158. }
  9159. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  9160. if args.use_temp_file and is_split:
  9161. logger.error("Error: Cannot use temp file when splitting")
  9162. sys.exit(1)
  9163. if args.outfile is not None:
  9164. fname_out = args.outfile
  9165. elif hf_repo_id:
  9166. # if remote, use the model ID as the output file name
  9167. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  9168. else:
  9169. fname_out = dir_model
  9170. logger.info(f"Loading model: {dir_model.name}")
  9171. is_mistral_format = args.mistral_format
  9172. if is_mistral_format and not _mistral_common_installed:
  9173. raise ImportError(_mistral_import_error_msg)
  9174. disable_mistral_community_chat_template = args.disable_mistral_community_chat_template
  9175. with torch.inference_mode():
  9176. output_type = ftype_map[args.outtype]
  9177. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  9178. hparams = ModelBase.load_hparams(dir_model, is_mistral_format)
  9179. if not is_mistral_format:
  9180. model_architecture = get_model_architecture(hparams, model_type)
  9181. logger.info(f"Model architecture: {model_architecture}")
  9182. try:
  9183. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  9184. except NotImplementedError:
  9185. logger.error(f"Model {model_architecture} is not supported")
  9186. sys.exit(1)
  9187. elif args.mmproj:
  9188. assert hparams.get("vision_encoder") is not None, "This model does not support multimodal"
  9189. model_class = PixtralModel
  9190. elif "moe" in hparams:
  9191. model_class = MistralMoeModel
  9192. else:
  9193. model_class = MistralModel
  9194. model_instance = model_class(dir_model, output_type, fname_out,
  9195. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  9196. eager=args.no_lazy,
  9197. metadata_override=args.metadata, model_name=args.model_name,
  9198. split_max_tensors=args.split_max_tensors,
  9199. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  9200. small_first_shard=args.no_tensor_first_split,
  9201. remote_hf_model_id=hf_repo_id, disable_mistral_community_chat_template=disable_mistral_community_chat_template,
  9202. sentence_transformers_dense_modules=args.sentence_transformers_dense_modules
  9203. )
  9204. if args.vocab_only:
  9205. logger.info("Exporting model vocab...")
  9206. model_instance.write_vocab()
  9207. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  9208. else:
  9209. logger.info("Exporting model...")
  9210. model_instance.write()
  9211. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  9212. logger.info(f"Model successfully exported to {out_path}")
  9213. if __name__ == '__main__':
  9214. main()