convert-hf-to-gguf.py 109 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546
  1. #!/usr/bin/env python3
  2. from __future__ import annotations
  3. import logging
  4. import argparse
  5. import contextlib
  6. import json
  7. import os
  8. import re
  9. import sys
  10. from enum import IntEnum
  11. from pathlib import Path
  12. from hashlib import sha256
  13. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Sequence, TypeVar, cast
  14. import numpy as np
  15. import torch
  16. if TYPE_CHECKING:
  17. from torch import Tensor
  18. if 'NO_LOCAL_GGUF' not in os.environ:
  19. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  20. import gguf
  21. from convert import LlamaHfVocab
  22. logger = logging.getLogger("hf-to-gguf")
  23. ###### MODEL DEFINITIONS ######
  24. class SentencePieceTokenTypes(IntEnum):
  25. NORMAL = 1
  26. UNKNOWN = 2
  27. CONTROL = 3
  28. USER_DEFINED = 4
  29. UNUSED = 5
  30. BYTE = 6
  31. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  32. class Model:
  33. _model_classes: dict[str, type[Model]] = {}
  34. dir_model: Path
  35. ftype: int
  36. is_big_endian: bool
  37. endianess: gguf.GGUFEndian
  38. use_temp_file: bool
  39. lazy: bool
  40. part_names: list[str]
  41. is_safetensors: bool
  42. hparams: dict[str, Any]
  43. block_count: int
  44. tensor_map: gguf.TensorNameMap
  45. tensor_names: set[str] | None
  46. fname_out: Path
  47. gguf_writer: gguf.GGUFWriter
  48. # subclasses should define this!
  49. model_arch: gguf.MODEL_ARCH
  50. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool, use_temp_file: bool, eager: bool):
  51. if type(self) is Model:
  52. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  53. self.dir_model = dir_model
  54. self.ftype = ftype
  55. self.is_big_endian = is_big_endian
  56. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  57. self.use_temp_file = use_temp_file
  58. self.lazy = not eager
  59. self.part_names = Model.get_model_part_names(self.dir_model, ".safetensors")
  60. self.is_safetensors = len(self.part_names) > 0
  61. if not self.is_safetensors:
  62. self.part_names = Model.get_model_part_names(self.dir_model, ".bin")
  63. self.hparams = Model.load_hparams(self.dir_model)
  64. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
  65. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  66. self.tensor_names = None
  67. if self.ftype == gguf.LlamaFileType.GUESSED:
  68. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  69. _, first_tensor = next(self.get_tensors())
  70. if first_tensor.dtype == torch.float16:
  71. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  72. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  73. else:
  74. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  75. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  76. ftype_up: str = self.ftype.name.partition("_")[2].upper()
  77. ftype_lw: str = ftype_up.lower()
  78. # allow templating the file name with the output ftype, useful with the "auto" ftype
  79. self.fname_out = fname_out.parent / fname_out.name.format(ftype_lw, outtype=ftype_lw, ftype=ftype_lw, OUTTYPE=ftype_up, FTYPE=ftype_up)
  80. self.gguf_writer = gguf.GGUFWriter(self.fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file)
  81. @classmethod
  82. def __init_subclass__(cls):
  83. # can't use an abstract property, because overriding it without type errors
  84. # would require using decorated functions instead of simply defining the property
  85. if "model_arch" not in cls.__dict__:
  86. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  87. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  88. key = next((k for k in keys if k in self.hparams), None)
  89. if key is not None:
  90. return self.hparams[key]
  91. if optional:
  92. return None
  93. raise KeyError(f"could not find any of: {keys}")
  94. def set_vocab(self):
  95. self._set_vocab_gpt2()
  96. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  97. tensor_names_from_parts: set[str] = set()
  98. if len(self.part_names) > 1:
  99. self.tensor_names = set()
  100. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  101. index_name += ".index.json"
  102. logger.info(f"gguf: loading model weight map from '{index_name}'")
  103. with open(self.dir_model / index_name, "r", encoding="utf-8") as f:
  104. index: dict[str, Any] = json.load(f)
  105. weight_map = index.get("weight_map")
  106. if weight_map is None or not isinstance(weight_map, dict):
  107. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  108. self.tensor_names.update(weight_map.keys())
  109. else:
  110. self.tensor_names = tensor_names_from_parts
  111. for part_name in self.part_names:
  112. logger.info(f"gguf: loading model part '{part_name}'")
  113. ctx: ContextManager[Any]
  114. if self.is_safetensors:
  115. from safetensors import safe_open
  116. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  117. else:
  118. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  119. with ctx as model_part:
  120. tensor_names_from_parts.update(model_part.keys())
  121. for name in model_part.keys():
  122. data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
  123. if self.lazy:
  124. data = LazyTorchTensor.from_eager(data)
  125. yield name, data
  126. # only verify tensor name presence; it doesn't matter if they are not in the right files
  127. if len(sym_diff := tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  128. raise ValueError(f"Mismatch between weight map and model parts for tensor names: {sym_diff}")
  129. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  130. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  131. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  132. name: str = gguf.TENSOR_NAMES[key]
  133. if "{bid}" in name:
  134. assert bid is not None
  135. name = name.format(bid=bid)
  136. return name + suffix
  137. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  138. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  139. return False
  140. key_name: str = gguf.TENSOR_NAMES[key]
  141. if "{bid}" in key_name:
  142. if bid is None:
  143. return False
  144. key_name = key_name.format(bid=bid)
  145. else:
  146. if bid is not None:
  147. return False
  148. return name == (key_name + suffix)
  149. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  150. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  151. if new_name is None:
  152. raise ValueError(f"Can not map tensor {name!r}")
  153. return new_name
  154. def set_gguf_parameters(self):
  155. self.gguf_writer.add_name(self.dir_model.name)
  156. self.gguf_writer.add_block_count(self.block_count)
  157. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  158. self.gguf_writer.add_context_length(n_ctx)
  159. logger.info(f"gguf: context length = {n_ctx}")
  160. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  161. self.gguf_writer.add_embedding_length(n_embd)
  162. logger.info(f"gguf: embedding length = {n_embd}")
  163. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  164. self.gguf_writer.add_feed_forward_length(n_ff)
  165. logger.info(f"gguf: feed forward length = {n_ff}")
  166. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  167. self.gguf_writer.add_head_count(n_head)
  168. logger.info(f"gguf: head count = {n_head}")
  169. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  170. self.gguf_writer.add_head_count_kv(n_head_kv)
  171. logger.info(f"gguf: key-value head count = {n_head_kv}")
  172. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  173. self.gguf_writer.add_rope_freq_base(rope_theta)
  174. logger.info(f"gguf: rope theta = {rope_theta}")
  175. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  176. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  177. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  178. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  179. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  180. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  181. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  182. self.gguf_writer.add_expert_count(n_experts)
  183. logger.info(f"gguf: expert count = {n_experts}")
  184. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  185. self.gguf_writer.add_expert_used_count(n_experts_used)
  186. logger.info(f"gguf: experts used count = {n_experts_used}")
  187. self.gguf_writer.add_file_type(self.ftype)
  188. logger.info(f"gguf: file type = {self.ftype}")
  189. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  190. del bid # unused
  191. return [(self.map_tensor_name(name), data_torch)]
  192. def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  193. del name, new_name, bid, n_dims # unused
  194. return False
  195. def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  196. del name, new_name, bid, n_dims # unused
  197. return False
  198. def write_tensors(self):
  199. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  200. for name, data_torch in self.get_tensors():
  201. # we don't need these
  202. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  203. continue
  204. old_dtype = data_torch.dtype
  205. # convert any unsupported data types to float32
  206. if data_torch.dtype not in (torch.float16, torch.float32):
  207. data_torch = data_torch.to(torch.float32)
  208. # use the first number-like part of the tensor name as the block id
  209. bid = None
  210. for part in name.split("."):
  211. if part.isdecimal():
  212. bid = int(part)
  213. break
  214. for new_name, data in ((n, d.squeeze().numpy()) for n, d in self.modify_tensors(data_torch, name, bid)):
  215. data: np.ndarray = data # type hint
  216. n_dims = len(data.shape)
  217. data_dtype = data.dtype
  218. data_qtype: gguf.GGMLQuantizationType | None = None
  219. # when both are True, f32 should win
  220. extra_f32 = self.extra_f32_tensors(name, new_name, bid, n_dims)
  221. extra_f16 = self.extra_f16_tensors(name, new_name, bid, n_dims)
  222. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  223. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  224. extra_f32 = any(cond for cond in (
  225. extra_f32,
  226. n_dims == 1,
  227. new_name.endswith("_norm.weight"),
  228. ))
  229. # Some tensor types are always in float32
  230. extra_f32 = extra_f32 or any(self.match_model_tensor_name(new_name, key, bid) for key in (
  231. gguf.MODEL_TENSOR.FFN_GATE_INP,
  232. gguf.MODEL_TENSOR.POS_EMBD,
  233. gguf.MODEL_TENSOR.TOKEN_TYPES,
  234. ))
  235. # if f16 desired, convert any float32 2-dim weight tensors to float16
  236. extra_f16 = any(cond for cond in (
  237. extra_f16,
  238. (name.endswith(".weight") and n_dims >= 2),
  239. ))
  240. if self.ftype != gguf.LlamaFileType.ALL_F32 and extra_f16 and not extra_f32:
  241. if self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  242. data = gguf.quantize_bf16(data)
  243. assert data.dtype == np.int16
  244. data_qtype = gguf.GGMLQuantizationType.BF16
  245. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0 and gguf.can_quantize_to_q8_0(data):
  246. data = gguf.quantize_q8_0(data)
  247. assert data.dtype == np.uint8
  248. data_qtype = gguf.GGMLQuantizationType.Q8_0
  249. else: # default to float16 for quantized tensors
  250. if data_dtype != np.float16:
  251. data = data.astype(np.float16)
  252. data_qtype = gguf.GGMLQuantizationType.F16
  253. if data_qtype is None: # by default, convert to float32
  254. if data_dtype != np.float32:
  255. data = data.astype(np.float32)
  256. data_qtype = gguf.GGMLQuantizationType.F32
  257. block_size, type_size = gguf.GGML_QUANT_SIZES[data_qtype]
  258. # reverse shape to make it similar to the internal ggml dimension order
  259. shape_str = f"""{{{', '.join(str(n) for n in reversed(
  260. (*data.shape[:-1], data.shape[-1] * data.dtype.itemsize // type_size * block_size))
  261. )}}}"""
  262. # n_dims is implicit in the shape
  263. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  264. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  265. def write(self):
  266. self.write_tensors()
  267. self.gguf_writer.write_header_to_file()
  268. self.gguf_writer.write_kv_data_to_file()
  269. self.gguf_writer.write_tensors_to_file(progress=True)
  270. self.gguf_writer.close()
  271. def write_vocab(self):
  272. self.gguf_writer.write_header_to_file()
  273. self.gguf_writer.write_kv_data_to_file()
  274. self.gguf_writer.close()
  275. @staticmethod
  276. def get_model_part_names(dir_model: Path, suffix: str) -> list[str]:
  277. part_names: list[str] = []
  278. for filename in os.listdir(dir_model):
  279. if filename.endswith(suffix):
  280. part_names.append(filename)
  281. part_names.sort()
  282. return part_names
  283. @staticmethod
  284. def load_hparams(dir_model: Path):
  285. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  286. return json.load(f)
  287. @classmethod
  288. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  289. assert names
  290. def func(modelcls: AnyModel) -> AnyModel:
  291. for name in names:
  292. cls._model_classes[name] = modelcls
  293. return modelcls
  294. return func
  295. @classmethod
  296. def from_model_architecture(cls, arch: str) -> type[Model]:
  297. try:
  298. return cls._model_classes[arch]
  299. except KeyError:
  300. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  301. # used for GPT-2 BPE and WordPiece vocabs
  302. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  303. tokens: list[str] = []
  304. toktypes: list[int] = []
  305. from transformers import AutoTokenizer
  306. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  307. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  308. assert max(tokenizer.vocab.values()) < vocab_size
  309. tokpre = self.get_vocab_base_pre(tokenizer)
  310. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  311. added_vocab = tokenizer.get_added_vocab()
  312. for i in range(vocab_size):
  313. if i not in reverse_vocab:
  314. tokens.append(f"[PAD{i}]")
  315. toktypes.append(gguf.TokenType.USER_DEFINED)
  316. elif reverse_vocab[i] in added_vocab:
  317. tokens.append(reverse_vocab[i])
  318. if tokenizer.added_tokens_decoder[i].special:
  319. toktypes.append(gguf.TokenType.CONTROL)
  320. else:
  321. toktypes.append(gguf.TokenType.USER_DEFINED)
  322. else:
  323. tokens.append(reverse_vocab[i])
  324. toktypes.append(gguf.TokenType.NORMAL)
  325. return tokens, toktypes, tokpre
  326. # NOTE: this function is generated by convert-hf-to-gguf-update.py
  327. # do not modify it manually!
  328. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  329. def get_vocab_base_pre(self, tokenizer) -> str:
  330. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  331. # is specific for the BPE pre-tokenizer used by the model
  332. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  333. # use in llama.cpp to implement the same pre-tokenizer
  334. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  335. chktok = tokenizer.encode(chktxt)
  336. chkhsh = sha256(str(chktok).encode()).hexdigest()
  337. logger.debug(f"chktok: {chktok}")
  338. logger.debug(f"chkhsh: {chkhsh}")
  339. res = None
  340. # NOTE: if you get an error here, you need to update the convert-hf-to-gguf-update.py script
  341. # or pull the latest version of the model from Huggingface
  342. # don't edit the hashes manually!
  343. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  344. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  345. res = "llama-bpe"
  346. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  347. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  348. res = "deepseek-llm"
  349. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  350. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  351. res = "deepseek-coder"
  352. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  353. # ref: https://huggingface.co/tiiuae/falcon-7b
  354. res = "falcon"
  355. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  356. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  357. res = "bert-bge"
  358. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  359. # ref: https://huggingface.co/mosaicml/mpt-7b
  360. res = "mpt"
  361. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  362. # ref: https://huggingface.co/bigcode/starcoder2-3b
  363. res = "starcoder"
  364. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  365. # ref: https://huggingface.co/openai-community/gpt2
  366. res = "gpt-2"
  367. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  368. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  369. res = "refact"
  370. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  371. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  372. res = "command-r"
  373. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  374. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  375. res = "qwen2"
  376. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  377. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  378. res = "olmo"
  379. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  380. # ref: https://huggingface.co/databricks/dbrx-base
  381. res = "dbrx"
  382. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  383. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  384. res = "jina-v2-en"
  385. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  386. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  387. res = "jina-v2-es"
  388. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  389. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  390. res = "jina-v2-de"
  391. if res is None:
  392. logger.warning("\n")
  393. logger.warning("**************************************************************************************")
  394. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  395. logger.warning("** There are 2 possible reasons for this:")
  396. logger.warning("** - the model has not been added to convert-hf-to-gguf-update.py yet")
  397. logger.warning("** - the pre-tokenization config has changed upstream")
  398. logger.warning("** Check your model files and convert-hf-to-gguf-update.py and update them accordingly.")
  399. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  400. logger.warning("**")
  401. logger.warning(f"** chkhsh: {chkhsh}")
  402. logger.warning("**************************************************************************************")
  403. logger.warning("\n")
  404. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  405. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  406. logger.debug(f"chkhsh: {chkhsh}")
  407. return res
  408. def _set_vocab_gpt2(self) -> None:
  409. tokens, toktypes, tokpre = self.get_vocab_base()
  410. self.gguf_writer.add_tokenizer_model("gpt2")
  411. self.gguf_writer.add_tokenizer_pre(tokpre)
  412. self.gguf_writer.add_token_list(tokens)
  413. self.gguf_writer.add_token_types(toktypes)
  414. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  415. special_vocab.add_to_gguf(self.gguf_writer)
  416. def _set_vocab_qwen(self):
  417. dir_model = self.dir_model
  418. hparams = self.hparams
  419. tokens: list[str] = []
  420. toktypes: list[int] = []
  421. from transformers import AutoTokenizer
  422. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  423. vocab_size = hparams["vocab_size"]
  424. assert max(tokenizer.get_vocab().values()) < vocab_size
  425. tokpre = self.get_vocab_base_pre(tokenizer)
  426. merges = []
  427. vocab = {}
  428. mergeable_ranks = tokenizer.mergeable_ranks
  429. for token, rank in mergeable_ranks.items():
  430. vocab[QwenModel.token_bytes_to_string(token)] = rank
  431. if len(token) == 1:
  432. continue
  433. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  434. assert len(merged) == 2
  435. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  436. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  437. added_vocab = tokenizer.special_tokens
  438. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in (vocab | added_vocab).items()}
  439. for i in range(vocab_size):
  440. if i not in reverse_vocab:
  441. tokens.append(f"[PAD{i}]")
  442. toktypes.append(gguf.TokenType.USER_DEFINED)
  443. elif reverse_vocab[i] in added_vocab:
  444. tokens.append(reverse_vocab[i])
  445. toktypes.append(gguf.TokenType.CONTROL)
  446. else:
  447. tokens.append(reverse_vocab[i])
  448. toktypes.append(gguf.TokenType.NORMAL)
  449. self.gguf_writer.add_tokenizer_model("gpt2")
  450. self.gguf_writer.add_tokenizer_pre(tokpre)
  451. self.gguf_writer.add_token_list(tokens)
  452. self.gguf_writer.add_token_types(toktypes)
  453. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  454. special_vocab.merges = merges
  455. # only add special tokens when they were not already loaded from config.json
  456. if len(special_vocab.special_token_ids) == 0:
  457. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  458. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  459. # this one is usually not in config.json anyway
  460. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  461. special_vocab.add_to_gguf(self.gguf_writer)
  462. def _set_vocab_sentencepiece(self):
  463. from sentencepiece import SentencePieceProcessor
  464. tokenizer_path = self.dir_model / 'tokenizer.model'
  465. tokens: list[bytes] = []
  466. scores: list[float] = []
  467. toktypes: list[int] = []
  468. if not tokenizer_path.is_file():
  469. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  470. tokenizer = SentencePieceProcessor()
  471. tokenizer.LoadFromFile(str(tokenizer_path))
  472. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  473. for token_id in range(tokenizer.vocab_size()):
  474. piece = tokenizer.IdToPiece(token_id)
  475. text = piece.encode("utf-8")
  476. score = tokenizer.GetScore(token_id)
  477. toktype = SentencePieceTokenTypes.NORMAL
  478. if tokenizer.IsUnknown(token_id):
  479. toktype = SentencePieceTokenTypes.UNKNOWN
  480. elif tokenizer.IsControl(token_id):
  481. toktype = SentencePieceTokenTypes.CONTROL
  482. elif tokenizer.IsUnused(token_id):
  483. toktype = SentencePieceTokenTypes.UNUSED
  484. elif tokenizer.IsByte(token_id):
  485. toktype = SentencePieceTokenTypes.BYTE
  486. tokens.append(text)
  487. scores.append(score)
  488. toktypes.append(toktype)
  489. added_tokens_file = self.dir_model / 'added_tokens.json'
  490. if added_tokens_file.is_file():
  491. with open(added_tokens_file, "r", encoding="utf-8") as f:
  492. added_tokens_json = json.load(f)
  493. for key in added_tokens_json:
  494. key = key.encode("utf-8")
  495. if key not in tokens:
  496. tokens.append(key)
  497. scores.append(-1000.0)
  498. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  499. if vocab_size > len(tokens):
  500. pad_count = vocab_size - len(tokens)
  501. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  502. for i in range(1, pad_count + 1):
  503. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  504. scores.append(-1000.0)
  505. toktypes.append(SentencePieceTokenTypes.UNUSED)
  506. assert len(tokens) == vocab_size
  507. self.gguf_writer.add_tokenizer_model("llama")
  508. self.gguf_writer.add_tokenizer_pre("default")
  509. self.gguf_writer.add_token_list(tokens)
  510. self.gguf_writer.add_token_scores(scores)
  511. self.gguf_writer.add_token_types(toktypes)
  512. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  513. special_vocab.add_to_gguf(self.gguf_writer)
  514. def _set_vocab_llama_hf(self):
  515. vocab = LlamaHfVocab(self.dir_model)
  516. tokens = []
  517. scores = []
  518. toktypes = []
  519. for text, score, toktype in vocab.all_tokens():
  520. tokens.append(text)
  521. scores.append(score)
  522. toktypes.append(toktype)
  523. assert len(tokens) == vocab.vocab_size
  524. self.gguf_writer.add_tokenizer_model("llama")
  525. self.gguf_writer.add_tokenizer_pre("default")
  526. self.gguf_writer.add_token_list(tokens)
  527. self.gguf_writer.add_token_scores(scores)
  528. self.gguf_writer.add_token_types(toktypes)
  529. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  530. special_vocab.add_to_gguf(self.gguf_writer)
  531. @Model.register("GPTNeoXForCausalLM")
  532. class GPTNeoXModel(Model):
  533. model_arch = gguf.MODEL_ARCH.GPTNEOX
  534. def set_gguf_parameters(self):
  535. block_count = self.hparams["num_hidden_layers"]
  536. self.gguf_writer.add_name(self.dir_model.name)
  537. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  538. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  539. self.gguf_writer.add_block_count(block_count)
  540. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  541. self.gguf_writer.add_rope_dimension_count(
  542. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  543. )
  544. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  545. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  546. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  547. @Model.register("BloomForCausalLM")
  548. class BloomModel(Model):
  549. model_arch = gguf.MODEL_ARCH.BLOOM
  550. def set_gguf_parameters(self):
  551. self.gguf_writer.add_name("Bloom")
  552. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  553. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  554. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  555. self.gguf_writer.add_embedding_length(n_embed)
  556. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  557. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  558. self.gguf_writer.add_head_count(n_head)
  559. self.gguf_writer.add_head_count_kv(n_head)
  560. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  561. self.gguf_writer.add_file_type(self.ftype)
  562. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  563. del bid # unused
  564. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  565. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  566. name = re.sub(r'transformer\.', '', name)
  567. tensors: list[tuple[str, Tensor]] = []
  568. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  569. # Map bloom-style qkv_linear to gpt-style qkv_linear
  570. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  571. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  572. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  573. data_torch = torch.cat(
  574. (
  575. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  576. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  577. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  578. ),
  579. dim=0,
  580. )
  581. logger.info("re-format attention.linear_qkv.weight")
  582. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  583. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  584. data_torch = torch.cat(
  585. (
  586. qkv_bias[:, 0, :].reshape((n_embed,)),
  587. qkv_bias[:, 1, :].reshape((n_embed,)),
  588. qkv_bias[:, 2, :].reshape((n_embed,)),
  589. ),
  590. dim=0,
  591. )
  592. logger.info("re-format attention.linear_qkv.bias")
  593. tensors.append((self.map_tensor_name(name), data_torch))
  594. if name == "word_embeddings.weight":
  595. assert self.tensor_names is not None
  596. # TODO: tie them at runtime, don't duplicate in the model file
  597. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  598. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  599. return tensors
  600. @Model.register("MPTForCausalLM")
  601. class MPTModel(Model):
  602. model_arch = gguf.MODEL_ARCH.MPT
  603. def set_vocab(self):
  604. try:
  605. self._set_vocab_gpt2()
  606. except Exception:
  607. # Fallback for SEA-LION model
  608. self._set_vocab_sentencepiece()
  609. self.gguf_writer.add_add_bos_token(False)
  610. self.gguf_writer.add_pad_token_id(3)
  611. self.gguf_writer.add_eos_token_id(1)
  612. self.gguf_writer.add_unk_token_id(0)
  613. def set_gguf_parameters(self):
  614. block_count = self.hparams["n_layers"]
  615. self.gguf_writer.add_name(self.dir_model.name)
  616. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  617. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  618. self.gguf_writer.add_block_count(block_count)
  619. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  620. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  621. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  622. self.gguf_writer.add_head_count_kv(kv_n_heads)
  623. self.gguf_writer.add_layer_norm_eps(1e-5)
  624. if self.hparams["attn_config"]["clip_qkv"] is not None:
  625. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  626. if self.hparams["attn_config"]["alibi"]:
  627. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  628. else:
  629. self.gguf_writer.add_max_alibi_bias(0.0)
  630. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  631. del bid # unused
  632. if "scales" in name:
  633. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  634. new_name = new_name.replace("scales", "act.scales")
  635. else:
  636. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  637. return [(new_name, data_torch)]
  638. @Model.register("OrionForCausalLM")
  639. class OrionModel(Model):
  640. model_arch = gguf.MODEL_ARCH.ORION
  641. def set_vocab(self):
  642. self._set_vocab_sentencepiece()
  643. def set_gguf_parameters(self):
  644. block_count = self.hparams["num_hidden_layers"]
  645. head_count = self.hparams["num_attention_heads"]
  646. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  647. hf_repo = self.hparams.get("_name_or_path", "")
  648. ctx_length = 0
  649. if "max_sequence_length" in self.hparams:
  650. ctx_length = self.hparams["max_sequence_length"]
  651. elif "max_position_embeddings" in self.hparams:
  652. ctx_length = self.hparams["max_position_embeddings"]
  653. elif "model_max_length" in self.hparams:
  654. ctx_length = self.hparams["model_max_length"]
  655. else:
  656. raise ValueError("gguf: can not find ctx length parameter.")
  657. self.gguf_writer.add_file_type(self.ftype)
  658. self.gguf_writer.add_name(self.dir_model.name)
  659. self.gguf_writer.add_source_hf_repo(hf_repo)
  660. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  661. self.gguf_writer.add_context_length(ctx_length)
  662. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  663. self.gguf_writer.add_block_count(block_count)
  664. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  665. self.gguf_writer.add_head_count(head_count)
  666. self.gguf_writer.add_head_count_kv(head_count_kv)
  667. # note: config provides rms norm but it is actually layer norm
  668. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  669. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  670. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  671. class BaichuanModel(Model):
  672. model_arch = gguf.MODEL_ARCH.BAICHUAN
  673. def set_vocab(self):
  674. self._set_vocab_sentencepiece()
  675. def set_gguf_parameters(self):
  676. block_count = self.hparams["num_hidden_layers"]
  677. head_count = self.hparams["num_attention_heads"]
  678. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  679. hf_repo = self.hparams.get("_name_or_path", "")
  680. ctx_length = 0
  681. if "max_sequence_length" in self.hparams:
  682. ctx_length = self.hparams["max_sequence_length"]
  683. elif "max_position_embeddings" in self.hparams:
  684. ctx_length = self.hparams["max_position_embeddings"]
  685. elif "model_max_length" in self.hparams:
  686. ctx_length = self.hparams["model_max_length"]
  687. else:
  688. raise ValueError("gguf: can not find ctx length parameter.")
  689. self.gguf_writer.add_name(self.dir_model.name)
  690. self.gguf_writer.add_source_hf_repo(hf_repo)
  691. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  692. self.gguf_writer.add_context_length(ctx_length)
  693. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  694. self.gguf_writer.add_block_count(block_count)
  695. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  696. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  697. self.gguf_writer.add_head_count(head_count)
  698. self.gguf_writer.add_head_count_kv(head_count_kv)
  699. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  700. self.gguf_writer.add_file_type(self.ftype)
  701. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  702. if self.hparams["rope_scaling"].get("type") == "linear":
  703. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  704. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  705. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  706. head_count = self.hparams["num_attention_heads"]
  707. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  708. tensors: list[tuple[str, Tensor]] = []
  709. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  710. logger.info(f"Unpacking and permuting layer {bid}")
  711. tensors = [
  712. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  713. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  714. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  715. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  716. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  717. self._reverse_hf_part(data_torch, 2)),
  718. ]
  719. else:
  720. tensors = [(self.map_tensor_name(name), data_torch)]
  721. return tensors
  722. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  723. if n_kv_head is not None and n_head != n_kv_head:
  724. n_head //= n_kv_head
  725. return (
  726. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  727. .swapaxes(1, 2)
  728. .reshape(weights.shape)
  729. )
  730. def _reverse_hf_permute_part(
  731. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  732. ) -> Tensor:
  733. r = weights.shape[0] // 3
  734. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  735. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  736. r = weights.shape[0] // 3
  737. return weights[r * n_part:r * n_part + r, ...]
  738. @Model.register("XverseForCausalLM")
  739. class XverseModel(Model):
  740. model_arch = gguf.MODEL_ARCH.XVERSE
  741. def set_vocab(self):
  742. assert (self.dir_model / "tokenizer.json").is_file()
  743. dir_model = self.dir_model
  744. hparams = self.hparams
  745. tokens: list[bytes] = []
  746. toktypes: list[int] = []
  747. from transformers import AutoTokenizer
  748. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  749. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  750. assert max(tokenizer.vocab.values()) < vocab_size
  751. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  752. added_vocab = tokenizer.get_added_vocab()
  753. for token_id in range(vocab_size):
  754. token_text = reverse_vocab[token_id].encode('utf-8')
  755. # replace "\x00" to string with length > 0
  756. if token_text == b"\x00":
  757. toktype = gguf.TokenType.BYTE # special
  758. token_text = f"<{token_text}>".encode('utf-8')
  759. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  760. toktype = gguf.TokenType.BYTE # special
  761. elif reverse_vocab[token_id] in added_vocab:
  762. if tokenizer.added_tokens_decoder[token_id].special:
  763. toktype = gguf.TokenType.CONTROL
  764. else:
  765. toktype = gguf.TokenType.USER_DEFINED
  766. else:
  767. toktype = gguf.TokenType.NORMAL
  768. tokens.append(token_text)
  769. toktypes.append(toktype)
  770. self.gguf_writer.add_tokenizer_model("llama")
  771. self.gguf_writer.add_tokenizer_pre("default")
  772. self.gguf_writer.add_token_list(tokens)
  773. self.gguf_writer.add_token_types(toktypes)
  774. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  775. special_vocab.add_to_gguf(self.gguf_writer)
  776. def set_gguf_parameters(self):
  777. block_count = self.hparams["num_hidden_layers"]
  778. head_count = self.hparams["num_attention_heads"]
  779. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  780. hf_repo = self.hparams.get("_name_or_path", "")
  781. ctx_length = 0
  782. if "max_sequence_length" in self.hparams:
  783. ctx_length = self.hparams["max_sequence_length"]
  784. elif "max_position_embeddings" in self.hparams:
  785. ctx_length = self.hparams["max_position_embeddings"]
  786. elif "model_max_length" in self.hparams:
  787. ctx_length = self.hparams["model_max_length"]
  788. else:
  789. raise ValueError("gguf: can not find ctx length parameter.")
  790. self.gguf_writer.add_name(self.dir_model.name)
  791. self.gguf_writer.add_source_hf_repo(hf_repo)
  792. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  793. self.gguf_writer.add_context_length(ctx_length)
  794. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  795. self.gguf_writer.add_block_count(block_count)
  796. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  797. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  798. self.gguf_writer.add_head_count(head_count)
  799. self.gguf_writer.add_head_count_kv(head_count_kv)
  800. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  801. self.gguf_writer.add_file_type(self.ftype)
  802. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  803. if self.hparams["rope_scaling"].get("type") == "linear":
  804. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  805. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  806. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  807. del bid # unused
  808. head_count = self.hparams["num_attention_heads"]
  809. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  810. # HF models permute some of the tensors, so we need to undo that
  811. if name.endswith("q_proj.weight"):
  812. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  813. if name.endswith("k_proj.weight"):
  814. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  815. return [(self.map_tensor_name(name), data_torch)]
  816. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  817. if n_kv_head is not None and n_head != n_kv_head:
  818. n_head //= n_kv_head
  819. return (
  820. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  821. .swapaxes(1, 2)
  822. .reshape(weights.shape)
  823. )
  824. @Model.register("FalconForCausalLM", "RWForCausalLM")
  825. class FalconModel(Model):
  826. model_arch = gguf.MODEL_ARCH.FALCON
  827. def set_gguf_parameters(self):
  828. block_count = self.hparams.get("num_hidden_layers")
  829. if block_count is None:
  830. block_count = self.hparams["n_layer"] # old name
  831. n_head = self.hparams.get("num_attention_heads")
  832. if n_head is None:
  833. n_head = self.hparams["n_head"] # old name
  834. n_head_kv = self.hparams.get("num_kv_heads")
  835. if n_head_kv is None:
  836. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  837. self.gguf_writer.add_name("Falcon")
  838. self.gguf_writer.add_context_length(2048) # not in config.json
  839. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  840. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  841. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  842. self.gguf_writer.add_block_count(block_count)
  843. self.gguf_writer.add_head_count(n_head)
  844. self.gguf_writer.add_head_count_kv(n_head_kv)
  845. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  846. self.gguf_writer.add_file_type(self.ftype)
  847. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  848. del bid # unused
  849. # QKV tensor transform
  850. # The original query_key_value tensor contains n_head_kv "kv groups",
  851. # each consisting of n_head/n_head_kv query weights followed by one key
  852. # and one value weight (shared by all query heads in the kv group).
  853. # This layout makes it a big pain to work with in GGML.
  854. # So we rearrange them here,, so that we have n_head query weights
  855. # followed by n_head_kv key weights followed by n_head_kv value weights,
  856. # in contiguous fashion.
  857. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  858. if "query_key_value" in name:
  859. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  860. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  861. head_dim = self.hparams["hidden_size"] // n_head
  862. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  863. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  864. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  865. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  866. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  867. return [(self.map_tensor_name(name), data_torch)]
  868. @Model.register("GPTBigCodeForCausalLM")
  869. class StarCoderModel(Model):
  870. model_arch = gguf.MODEL_ARCH.STARCODER
  871. def set_gguf_parameters(self):
  872. block_count = self.hparams["n_layer"]
  873. self.gguf_writer.add_name("StarCoder")
  874. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  875. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  876. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  877. self.gguf_writer.add_block_count(block_count)
  878. self.gguf_writer.add_head_count(self.hparams["n_head"])
  879. self.gguf_writer.add_head_count_kv(1)
  880. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  881. self.gguf_writer.add_file_type(self.ftype)
  882. @Model.register("GPTRefactForCausalLM")
  883. class RefactModel(Model):
  884. model_arch = gguf.MODEL_ARCH.REFACT
  885. def set_vocab(self):
  886. super().set_vocab()
  887. # TODO: how to determine special FIM tokens automatically?
  888. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  889. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  890. special_vocab._set_special_token("prefix", 1)
  891. special_vocab._set_special_token("suffix", 3)
  892. special_vocab._set_special_token("middle", 2)
  893. special_vocab._set_special_token("fsep", 4) # is this correct?
  894. special_vocab.add_to_gguf(self.gguf_writer)
  895. def set_gguf_parameters(self):
  896. hidden_dim = self.hparams["n_embd"]
  897. inner_dim = 4 * hidden_dim
  898. hidden_dim = int(2 * inner_dim / 3)
  899. multiple_of = 256
  900. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  901. block_count = self.hparams["n_layer"]
  902. self.gguf_writer.add_name("Refact")
  903. # refact uses Alibi. So this is from config.json which might be used by training.
  904. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  905. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  906. self.gguf_writer.add_feed_forward_length(ff_dim)
  907. self.gguf_writer.add_block_count(block_count)
  908. self.gguf_writer.add_head_count(self.hparams["n_head"])
  909. self.gguf_writer.add_head_count_kv(1)
  910. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  911. self.gguf_writer.add_file_type(self.ftype)
  912. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  913. hidden_dim = self.hparams["n_embd"]
  914. inner_dim = 4 * hidden_dim
  915. hidden_dim = int(2 * inner_dim / 3)
  916. multiple_of = 256
  917. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  918. n_head = self.hparams["n_head"]
  919. n_head_kv = 1
  920. head_dim = self.hparams["n_embd"] // n_head
  921. tensors: list[tuple[str, Tensor]] = []
  922. if bid is not None:
  923. if name == f"transformer.h.{bid}.attn.kv.weight":
  924. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  925. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  926. elif name == f"transformer.h.{bid}.attn.q.weight":
  927. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  928. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  929. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  930. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  931. if len(tensors) == 0:
  932. tensors.append((self.map_tensor_name(name), data_torch))
  933. return tensors
  934. @Model.register("PersimmonForCausalLM")
  935. class PersimmonModel(Model):
  936. model_arch = gguf.MODEL_ARCH.PERSIMMON
  937. def set_gguf_parameters(self):
  938. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  939. head_count = self.hparams["num_attention_heads"]
  940. head_count_kv = head_count
  941. hidden_size = self.hparams["hidden_size"]
  942. self.gguf_writer.add_name('persimmon-8b-chat')
  943. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  944. self.gguf_writer.add_embedding_length(hidden_size)
  945. self.gguf_writer.add_block_count(block_count)
  946. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  947. # NOTE: not sure about this change - why does the model not have a rope dimension count when it is smaller
  948. # than the head size?
  949. # ref: https://github.com/ggerganov/llama.cpp/pull/4889
  950. # self.gguf_writer.add_rope_dimension_count(hidden_size // head_count)
  951. self.gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2)
  952. self.gguf_writer.add_head_count(head_count)
  953. self.gguf_writer.add_head_count_kv(head_count_kv)
  954. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  955. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  956. def set_vocab(self):
  957. self._set_vocab_sentencepiece()
  958. # self.gguf_writer.add_bos_token_id(71013)
  959. # self.gguf_writer.add_eos_token_id(71013)
  960. def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  961. del name, new_name, bid, n_dims # unused
  962. # TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
  963. return True
  964. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  965. class StableLMModel(Model):
  966. model_arch = gguf.MODEL_ARCH.STABLELM
  967. def set_vocab(self):
  968. if (self.dir_model / "tokenizer.json").is_file():
  969. self._set_vocab_gpt2()
  970. else:
  971. # StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab
  972. self._set_vocab_qwen()
  973. def set_gguf_parameters(self):
  974. hparams = self.hparams
  975. block_count = hparams["num_hidden_layers"]
  976. self.gguf_writer.add_name(self.dir_model.name)
  977. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  978. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  979. self.gguf_writer.add_block_count(block_count)
  980. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  981. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  982. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  983. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  984. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  985. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  986. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  987. self.gguf_writer.add_file_type(self.ftype)
  988. _q_norms: list[dict[str, Tensor]] | None = None
  989. _k_norms: list[dict[str, Tensor]] | None = None
  990. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  991. n_head = self.hparams["num_attention_heads"]
  992. n_kv_head = self.hparams["num_key_value_heads"]
  993. if name.find("q_layernorm.norms") != -1:
  994. assert bid is not None
  995. if self._q_norms is None:
  996. self._q_norms = [{} for _ in range(self.block_count)]
  997. self._q_norms[bid][name] = data_torch
  998. if len(self._q_norms[bid]) >= n_head:
  999. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1000. else:
  1001. return []
  1002. if name.find("k_layernorm.norms") != -1:
  1003. assert bid is not None
  1004. if self._k_norms is None:
  1005. self._k_norms = [{} for _ in range(self.block_count)]
  1006. self._k_norms[bid][name] = data_torch
  1007. if len(self._k_norms[bid]) >= n_kv_head:
  1008. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1009. else:
  1010. return []
  1011. return [(self.map_tensor_name(name), data_torch)]
  1012. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1013. datas: list[Tensor] = []
  1014. # extract the norms in order
  1015. for xid in range(n_head):
  1016. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1017. datas.append(norms[ename])
  1018. del norms[ename]
  1019. data_torch = torch.stack(datas, dim=0)
  1020. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1021. new_name = self.map_tensor_name(merged_name)
  1022. return [(new_name, data_torch)]
  1023. def write_tensors(self):
  1024. super().write_tensors()
  1025. if self._q_norms is not None or self._k_norms is not None:
  1026. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1027. norms = (
  1028. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1029. ) + (
  1030. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1031. )
  1032. if len(norms) > 0:
  1033. raise ValueError(f"Unprocessed norms: {norms}")
  1034. @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1035. class LlamaModel(Model):
  1036. model_arch = gguf.MODEL_ARCH.LLAMA
  1037. def set_vocab(self):
  1038. try:
  1039. self. _set_vocab_sentencepiece()
  1040. except FileNotFoundError:
  1041. try:
  1042. self._set_vocab_llama_hf()
  1043. except (FileNotFoundError, TypeError):
  1044. # Llama 3
  1045. self._set_vocab_gpt2()
  1046. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1047. if self.hparams.get("vocab_size", 32000) == 32016:
  1048. special_vocab = gguf.SpecialVocab(
  1049. self.dir_model, load_merges=False,
  1050. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1051. )
  1052. special_vocab._set_special_token("prefix", 32007)
  1053. special_vocab._set_special_token("suffix", 32008)
  1054. special_vocab._set_special_token("middle", 32009)
  1055. special_vocab._set_special_token("eot", 32010)
  1056. special_vocab.add_to_gguf(self.gguf_writer)
  1057. def set_gguf_parameters(self):
  1058. super().set_gguf_parameters()
  1059. hparams = self.hparams
  1060. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1061. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  1062. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1063. if self.hparams["rope_scaling"].get("type") == "linear":
  1064. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1065. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1066. @staticmethod
  1067. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1068. if n_head_kv is not None and n_head != n_head_kv:
  1069. n_head = n_head_kv
  1070. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1071. .swapaxes(1, 2)
  1072. .reshape(weights.shape))
  1073. _experts: list[dict[str, Tensor]] | None = None
  1074. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1075. n_head = self.hparams["num_attention_heads"]
  1076. n_kv_head = self.hparams.get("num_key_value_heads")
  1077. if name.endswith("q_proj.weight"):
  1078. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1079. if name.endswith("k_proj.weight"):
  1080. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1081. # process the experts separately
  1082. if name.find("block_sparse_moe.experts") != -1:
  1083. n_experts = self.hparams["num_local_experts"]
  1084. assert bid is not None
  1085. if self._experts is None:
  1086. self._experts = [{} for _ in range(self.block_count)]
  1087. self._experts[bid][name] = data_torch
  1088. if len(self._experts[bid]) >= n_experts * 3:
  1089. tensors: list[tuple[str, Tensor]] = []
  1090. # merge the experts into a single 3d tensor
  1091. for wid in ["w1", "w2", "w3"]:
  1092. datas: list[Tensor] = []
  1093. for xid in range(n_experts):
  1094. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1095. datas.append(self._experts[bid][ename])
  1096. del self._experts[bid][ename]
  1097. data_torch = torch.stack(datas, dim=0)
  1098. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1099. new_name = self.map_tensor_name(merged_name)
  1100. tensors.append((new_name, data_torch))
  1101. return tensors
  1102. else:
  1103. return []
  1104. return [(self.map_tensor_name(name), data_torch)]
  1105. def write_tensors(self):
  1106. super().write_tensors()
  1107. if self._experts is not None:
  1108. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1109. experts = [k for d in self._experts for k in d.keys()]
  1110. if len(experts) > 0:
  1111. raise ValueError(f"Unprocessed experts: {experts}")
  1112. @Model.register("GrokForCausalLM")
  1113. class GrokModel(Model):
  1114. model_arch = gguf.MODEL_ARCH.GROK
  1115. def set_vocab(self):
  1116. self._set_vocab_sentencepiece()
  1117. def __init__(self, *args, **kwargs):
  1118. super().__init__(*args, **kwargs)
  1119. def set_gguf_parameters(self):
  1120. super().set_gguf_parameters()
  1121. self.gguf_writer.add_name("Grok")
  1122. _experts: list[dict[str, Tensor]] | None = None
  1123. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1124. # process the experts separately
  1125. if name.find(".moe.") != -1:
  1126. n_experts = self.hparams["num_local_experts"]
  1127. assert bid is not None
  1128. if self._experts is None:
  1129. self._experts = [{} for _ in range(self.block_count)]
  1130. self._experts[bid][name] = data_torch
  1131. if len(self._experts[bid]) >= n_experts * 3:
  1132. tensors: list[tuple[str, Tensor]] = []
  1133. # merge the experts into a single 3d tensor
  1134. for wid in ["linear", "linear_1", "linear_v"]:
  1135. datas: list[Tensor] = []
  1136. for xid in range(n_experts):
  1137. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1138. datas.append(self._experts[bid][ename])
  1139. del self._experts[bid][ename]
  1140. data_torch = torch.stack(datas, dim=0)
  1141. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1142. new_name = self.map_tensor_name(merged_name)
  1143. tensors.append((new_name, data_torch))
  1144. return tensors
  1145. else:
  1146. return []
  1147. return [(self.map_tensor_name(name), data_torch)]
  1148. @Model.register("DbrxForCausalLM")
  1149. class DbrxModel(Model):
  1150. model_arch = gguf.MODEL_ARCH.DBRX
  1151. def set_gguf_parameters(self):
  1152. ffn_config = self.hparams["ffn_config"]
  1153. attn_config = self.hparams["attn_config"]
  1154. self.gguf_writer.add_name(self.hparams["model_type"])
  1155. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1156. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1157. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1158. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1159. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1160. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1161. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1162. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1163. self.gguf_writer.add_file_type(self.ftype)
  1164. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1165. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1166. self.gguf_writer.add_layer_norm_eps(1e-5)
  1167. self.gguf_writer.add_file_type(self.ftype)
  1168. logger.info(f"gguf: file type = {self.ftype}")
  1169. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1170. del bid # unused
  1171. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1172. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1173. n_embd = self.hparams["d_model"]
  1174. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1175. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1176. # But llama.cpp moe graph works differently
  1177. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1178. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1179. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1180. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1181. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1182. experts = False
  1183. for exp_tensor_name in exp_tensor_names.keys():
  1184. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1185. experts = True
  1186. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1187. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1188. data_torch = data_torch.permute(*permute_tensor)
  1189. break
  1190. # map tensor names
  1191. # In MoE models the ffn tensors are typically most of the model weights,
  1192. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1193. # Every other model has the weight names ending in .weight,
  1194. # let's assume that is the convention which is not the case for dbrx:
  1195. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1196. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1197. return [(new_name, data_torch)]
  1198. def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  1199. del name, new_name, bid # unused
  1200. return n_dims > 1
  1201. @Model.register("MiniCPMForCausalLM")
  1202. class MiniCPMModel(Model):
  1203. model_arch = gguf.MODEL_ARCH.MINICPM
  1204. def set_gguf_parameters(self):
  1205. block_count = self.hparams["num_hidden_layers"]
  1206. self.gguf_writer.add_name("MiniCPM")
  1207. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1208. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1209. self.gguf_writer.add_block_count(block_count)
  1210. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1211. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1212. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1213. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1214. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1215. self.gguf_writer.add_file_type(self.ftype)
  1216. def set_vocab(self):
  1217. self._set_vocab_llama_hf()
  1218. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1219. if n_kv_head is not None and n_head != n_kv_head:
  1220. n_head //= n_kv_head
  1221. return (
  1222. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1223. .swapaxes(1, 2)
  1224. .reshape(weights.shape)
  1225. )
  1226. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1227. del bid # unused
  1228. n_head = self.hparams["num_attention_heads"]
  1229. n_kv_head = self.hparams.get("num_key_value_heads")
  1230. # HF models permute some of the tensors, so we need to undo that
  1231. if name.endswith(("q_proj.weight")):
  1232. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1233. if name.endswith(("k_proj.weight")):
  1234. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1235. return [(self.map_tensor_name(name), data_torch)]
  1236. @Model.register("QWenLMHeadModel")
  1237. class QwenModel(Model):
  1238. model_arch = gguf.MODEL_ARCH.QWEN
  1239. @staticmethod
  1240. def token_bytes_to_string(b):
  1241. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1242. byte_encoder = bytes_to_unicode()
  1243. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1244. @staticmethod
  1245. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1246. parts = [bytes([b]) for b in token]
  1247. while True:
  1248. min_idx = None
  1249. min_rank = None
  1250. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1251. rank = mergeable_ranks.get(pair[0] + pair[1])
  1252. if rank is not None and (min_rank is None or rank < min_rank):
  1253. min_idx = i
  1254. min_rank = rank
  1255. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1256. break
  1257. assert min_idx is not None
  1258. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1259. return parts
  1260. def set_vocab(self):
  1261. self._set_vocab_qwen()
  1262. def set_gguf_parameters(self):
  1263. self.gguf_writer.add_name("Qwen")
  1264. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1265. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1266. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1267. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1268. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1269. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1270. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1271. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1272. self.gguf_writer.add_file_type(self.ftype)
  1273. @Model.register("Qwen2ForCausalLM")
  1274. class Qwen2Model(Model):
  1275. model_arch = gguf.MODEL_ARCH.QWEN2
  1276. def set_vocab(self):
  1277. try:
  1278. self._set_vocab_sentencepiece()
  1279. except FileNotFoundError:
  1280. self._set_vocab_gpt2()
  1281. @Model.register("Qwen2MoeForCausalLM")
  1282. class Qwen2MoeModel(Model):
  1283. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1284. def set_gguf_parameters(self):
  1285. super().set_gguf_parameters()
  1286. if (n_experts := self.hparams.get("num_experts")) is not None:
  1287. self.gguf_writer.add_expert_count(n_experts)
  1288. _experts: list[dict[str, Tensor]] | None = None
  1289. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1290. # process the experts separately
  1291. if name.find("experts") != -1:
  1292. n_experts = self.hparams["num_experts"]
  1293. assert bid is not None
  1294. if self._experts is None:
  1295. self._experts = [{} for _ in range(self.block_count)]
  1296. self._experts[bid][name] = data_torch
  1297. if len(self._experts[bid]) >= n_experts * 3:
  1298. tensors: list[tuple[str, Tensor]] = []
  1299. # merge the experts into a single 3d tensor
  1300. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1301. datas: list[Tensor] = []
  1302. for xid in range(n_experts):
  1303. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1304. datas.append(self._experts[bid][ename])
  1305. del self._experts[bid][ename]
  1306. data_torch = torch.stack(datas, dim=0)
  1307. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1308. new_name = self.map_tensor_name(merged_name)
  1309. tensors.append((new_name, data_torch))
  1310. return tensors
  1311. else:
  1312. return []
  1313. return [(self.map_tensor_name(name), data_torch)]
  1314. def write_tensors(self):
  1315. super().write_tensors()
  1316. if self._experts is not None:
  1317. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1318. experts = [k for d in self._experts for k in d.keys()]
  1319. if len(experts) > 0:
  1320. raise ValueError(f"Unprocessed experts: {experts}")
  1321. @Model.register("GPT2LMHeadModel")
  1322. class GPT2Model(Model):
  1323. model_arch = gguf.MODEL_ARCH.GPT2
  1324. def set_gguf_parameters(self):
  1325. self.gguf_writer.add_name(self.dir_model.name)
  1326. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1327. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1328. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1329. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1330. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1331. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1332. self.gguf_writer.add_file_type(self.ftype)
  1333. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1334. del bid # unused
  1335. tensors: list[tuple[str, Tensor]] = []
  1336. # we don't need these
  1337. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1338. return tensors
  1339. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1340. data_torch = data_torch.transpose(1, 0)
  1341. new_name = self.map_tensor_name(name)
  1342. tensors.append((new_name, data_torch))
  1343. # note: GPT2 output is tied to (same as) wte in original model
  1344. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1345. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1346. return tensors
  1347. @Model.register("PhiForCausalLM")
  1348. class Phi2Model(Model):
  1349. model_arch = gguf.MODEL_ARCH.PHI2
  1350. def set_gguf_parameters(self):
  1351. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1352. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1353. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1354. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1355. self.gguf_writer.add_name("Phi2")
  1356. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1357. self.gguf_writer.add_embedding_length(n_embd)
  1358. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1359. self.gguf_writer.add_block_count(block_count)
  1360. self.gguf_writer.add_head_count(n_head)
  1361. self.gguf_writer.add_head_count_kv(n_head)
  1362. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1363. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1364. self.gguf_writer.add_file_type(self.ftype)
  1365. self.gguf_writer.add_add_bos_token(False)
  1366. @Model.register("Phi3ForCausalLM")
  1367. class Phi3MiniModel(Model):
  1368. model_arch = gguf.MODEL_ARCH.PHI3
  1369. def set_vocab(self):
  1370. from sentencepiece import SentencePieceProcessor
  1371. tokenizer_path = self.dir_model / 'tokenizer.model'
  1372. if not tokenizer_path.is_file():
  1373. raise ValueError(f'Error: Missing {tokenizer_path}')
  1374. tokenizer = SentencePieceProcessor()
  1375. tokenizer.LoadFromFile(str(tokenizer_path))
  1376. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1377. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1378. scores: list[float] = [-10000.0] * vocab_size
  1379. toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
  1380. for token_id in range(tokenizer.vocab_size()):
  1381. piece = tokenizer.IdToPiece(token_id)
  1382. text = piece.encode("utf-8")
  1383. score = tokenizer.GetScore(token_id)
  1384. toktype = SentencePieceTokenTypes.NORMAL
  1385. if tokenizer.IsUnknown(token_id):
  1386. toktype = SentencePieceTokenTypes.UNKNOWN
  1387. elif tokenizer.IsControl(token_id):
  1388. toktype = SentencePieceTokenTypes.CONTROL
  1389. elif tokenizer.IsUnused(token_id):
  1390. toktype = SentencePieceTokenTypes.UNUSED
  1391. elif tokenizer.IsByte(token_id):
  1392. toktype = SentencePieceTokenTypes.BYTE
  1393. tokens[token_id] = text
  1394. scores[token_id] = score
  1395. toktypes[token_id] = toktype
  1396. added_tokens_file = self.dir_model / 'added_tokens.json'
  1397. if added_tokens_file.is_file():
  1398. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1399. added_tokens_json = json.load(f)
  1400. for key in added_tokens_json:
  1401. token_id = added_tokens_json[key]
  1402. if (token_id >= vocab_size):
  1403. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1404. continue
  1405. tokens[token_id] = key.encode("utf-8")
  1406. scores[token_id] = -1000.0
  1407. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1408. self.gguf_writer.add_tokenizer_model("llama")
  1409. self.gguf_writer.add_tokenizer_pre("default")
  1410. self.gguf_writer.add_token_list(tokens)
  1411. self.gguf_writer.add_token_scores(scores)
  1412. self.gguf_writer.add_token_types(toktypes)
  1413. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1414. special_vocab.add_to_gguf(self.gguf_writer)
  1415. def set_gguf_parameters(self):
  1416. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1417. rot_pct = 1.0
  1418. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1419. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1420. rms_eps = self.find_hparam(["rms_norm_eps"])
  1421. self.gguf_writer.add_name("Phi3")
  1422. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1423. self.gguf_writer.add_embedding_length(n_embd)
  1424. self.gguf_writer.add_feed_forward_length(8192)
  1425. self.gguf_writer.add_block_count(block_count)
  1426. self.gguf_writer.add_head_count(n_head)
  1427. self.gguf_writer.add_head_count_kv(n_head)
  1428. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  1429. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1430. self.gguf_writer.add_file_type(self.ftype)
  1431. @Model.register("PlamoForCausalLM")
  1432. class PlamoModel(Model):
  1433. model_arch = gguf.MODEL_ARCH.PLAMO
  1434. def set_vocab(self):
  1435. self._set_vocab_sentencepiece()
  1436. def set_gguf_parameters(self):
  1437. hparams = self.hparams
  1438. block_count = hparams["num_hidden_layers"]
  1439. self.gguf_writer.add_name("PLaMo")
  1440. self.gguf_writer.add_context_length(4096) # not in config.json
  1441. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1442. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1443. self.gguf_writer.add_block_count(block_count)
  1444. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1445. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1446. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1447. self.gguf_writer.add_file_type(self.ftype)
  1448. def shuffle_attn_q_weight(self, data_torch):
  1449. assert data_torch.size() == (5120, 5120)
  1450. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1451. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1452. data_torch = torch.reshape(data_torch, (5120, 5120))
  1453. return data_torch
  1454. def shuffle_attn_output_weight(self, data_torch):
  1455. assert data_torch.size() == (5120, 5120)
  1456. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1457. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1458. data_torch = torch.reshape(data_torch, (5120, 5120))
  1459. return data_torch
  1460. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1461. del bid # unused
  1462. new_name = self.map_tensor_name(name)
  1463. # shuffle for broadcasting of gqa in ggml_mul_mat
  1464. if new_name.endswith("attn_q.weight"):
  1465. data_torch = self.shuffle_attn_q_weight(data_torch)
  1466. elif new_name.endswith("attn_output.weight"):
  1467. data_torch = self.shuffle_attn_output_weight(data_torch)
  1468. return [(new_name, data_torch)]
  1469. @Model.register("CodeShellForCausalLM")
  1470. class CodeShellModel(Model):
  1471. model_arch = gguf.MODEL_ARCH.CODESHELL
  1472. def set_gguf_parameters(self):
  1473. block_count = self.hparams["n_layer"]
  1474. self.gguf_writer.add_name("CodeShell")
  1475. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1476. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1477. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1478. self.gguf_writer.add_block_count(block_count)
  1479. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1480. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1481. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1482. self.gguf_writer.add_file_type(self.ftype)
  1483. self.gguf_writer.add_rope_freq_base(10000.0)
  1484. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1485. self.gguf_writer.add_rope_scaling_factor(1.0)
  1486. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1487. del bid # unused
  1488. new_name = self.map_tensor_name(name)
  1489. tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
  1490. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1491. assert self.tensor_names is not None
  1492. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  1493. # copy tok_embd.weight to output.weight
  1494. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1495. return tensors
  1496. @Model.register("InternLM2ForCausalLM")
  1497. class InternLM2Model(Model):
  1498. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1499. def set_vocab(self):
  1500. # (TODO): Is there a better way?
  1501. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1502. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1503. # recognized as an empty string in C++.
  1504. from sentencepiece import SentencePieceProcessor
  1505. from sentencepiece import sentencepiece_model_pb2 as model
  1506. tokenizer_path = self.dir_model / 'tokenizer.model'
  1507. tokens: list[bytes] = []
  1508. scores: list[float] = []
  1509. toktypes: list[int] = []
  1510. if not tokenizer_path.is_file():
  1511. logger.error(f'Error: Missing {tokenizer_path}')
  1512. sys.exit(1)
  1513. sentencepiece_model = model.ModelProto()
  1514. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1515. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1516. tokenizer = SentencePieceProcessor()
  1517. tokenizer.LoadFromFile(str(tokenizer_path))
  1518. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1519. for token_id in range(vocab_size):
  1520. piece = tokenizer.IdToPiece(token_id)
  1521. text = piece.encode("utf-8")
  1522. score = tokenizer.GetScore(token_id)
  1523. if text == b"\x00":
  1524. # (TODO): fixme
  1525. # Hack here and replace the \x00 characters.
  1526. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  1527. text = "🐉".encode("utf-8")
  1528. toktype = SentencePieceTokenTypes.NORMAL
  1529. if tokenizer.IsUnknown(token_id):
  1530. toktype = SentencePieceTokenTypes.UNKNOWN
  1531. elif tokenizer.IsControl(token_id):
  1532. toktype = SentencePieceTokenTypes.CONTROL
  1533. elif tokenizer.IsUnused(token_id):
  1534. toktype = SentencePieceTokenTypes.UNUSED
  1535. elif tokenizer.IsByte(token_id):
  1536. toktype = SentencePieceTokenTypes.BYTE
  1537. tokens.append(text)
  1538. scores.append(score)
  1539. toktypes.append(toktype)
  1540. added_tokens_file = self.dir_model / 'added_tokens.json'
  1541. if added_tokens_file.is_file():
  1542. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1543. added_tokens_json = json.load(f)
  1544. for key in added_tokens_json:
  1545. tokens.append(key.encode("utf-8"))
  1546. scores.append(-1000.0)
  1547. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1548. self.gguf_writer.add_tokenizer_model("llama")
  1549. self.gguf_writer.add_tokenizer_pre("default")
  1550. self.gguf_writer.add_token_list(tokens)
  1551. self.gguf_writer.add_token_scores(scores)
  1552. self.gguf_writer.add_token_types(toktypes)
  1553. self.gguf_writer.add_add_space_prefix(add_prefix)
  1554. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1555. old_eos = special_vocab.special_token_ids["eos"]
  1556. if "chat" in os.path.basename(self.dir_model.absolute()):
  1557. # For the chat model, we replace the eos with '<|im_end|>'.
  1558. # TODO: this is a hack, should be fixed
  1559. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  1560. special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
  1561. logger.warning(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
  1562. in chat mode so that the conversation can end normally.")
  1563. special_vocab.add_to_gguf(self.gguf_writer)
  1564. def _try_get_sft_eos(self, tokenizer):
  1565. unused_145_list = tokenizer.Encode('[UNUSED_TOKEN_145]')
  1566. im_end_list = tokenizer.Encode('<|im_end|>')
  1567. eos_token = None
  1568. assert (len(unused_145_list) == 1) ^ (len(im_end_list) == 1)
  1569. if len(unused_145_list) == 1:
  1570. eos_token = unused_145_list[0]
  1571. if len(im_end_list) == 1:
  1572. eos_token = im_end_list[0]
  1573. assert eos_token
  1574. return eos_token
  1575. def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int):
  1576. if n_head_kv is not None and n_head != n_head_kv:
  1577. n_head = n_head_kv
  1578. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1579. .swapaxes(1, 2)
  1580. .reshape(weights.shape))
  1581. def set_gguf_parameters(self):
  1582. self.gguf_writer.add_name("InternLM2")
  1583. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1584. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1585. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1586. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1587. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1588. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1589. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1590. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1591. self.gguf_writer.add_file_type(self.ftype)
  1592. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1593. num_heads = self.hparams["num_attention_heads"]
  1594. num_kv_heads = self.hparams["num_key_value_heads"]
  1595. hidden_size = self.hparams["hidden_size"]
  1596. q_per_kv = num_heads // num_kv_heads
  1597. head_dim = hidden_size // num_heads
  1598. num_groups = num_heads // q_per_kv
  1599. qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv"
  1600. if re.match(qkv_pattern, name):
  1601. bid = re.findall(qkv_pattern, name)[0]
  1602. qkv = data_torch
  1603. # qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
  1604. qkv = qkv.T.reshape((-1, num_groups, q_per_kv + 2, head_dim))
  1605. q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :]
  1606. # The model weights of q and k equire additional reshape.
  1607. # q = self._hf_permute_qk(rearrange(q, " o g n i -> o (g n i)").T, num_heads, num_heads)
  1608. q = self._hf_permute_qk(q.reshape((q.shape[0], -1)).T, num_heads, num_heads)
  1609. # k = self._hf_permute_qk(rearrange(k, " o g n i -> o (g n i)").T, num_heads, num_kv_heads)
  1610. k = self._hf_permute_qk(k.reshape((k.shape[0], -1)).T, num_heads, num_kv_heads)
  1611. # v = rearrange(v, " o g n i -> o (g n i)").T
  1612. v = v.reshape((v.shape[0], -1)).T
  1613. return [
  1614. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  1615. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  1616. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  1617. ]
  1618. else:
  1619. return [(self.map_tensor_name(name), data_torch)]
  1620. @Model.register("BertModel", "CamembertModel")
  1621. class BertModel(Model):
  1622. model_arch = gguf.MODEL_ARCH.BERT
  1623. def __init__(self, *args, **kwargs):
  1624. super().__init__(*args, **kwargs)
  1625. self.vocab_size = None
  1626. def set_gguf_parameters(self):
  1627. super().set_gguf_parameters()
  1628. self.gguf_writer.add_causal_attention(False)
  1629. # get pooling path
  1630. pooling_path = None
  1631. module_path = self.dir_model / "modules.json"
  1632. if module_path.is_file():
  1633. with open(module_path, encoding="utf-8") as f:
  1634. modules = json.load(f)
  1635. for mod in modules:
  1636. if mod["type"] == "sentence_transformers.models.Pooling":
  1637. pooling_path = mod["path"]
  1638. break
  1639. # get pooling type
  1640. if pooling_path is not None:
  1641. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1642. pooling = json.load(f)
  1643. if pooling["pooling_mode_mean_tokens"]:
  1644. pooling_type = gguf.PoolingType.MEAN
  1645. elif pooling["pooling_mode_cls_token"]:
  1646. pooling_type = gguf.PoolingType.CLS
  1647. else:
  1648. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  1649. self.gguf_writer.add_pooling_type(pooling_type)
  1650. def set_vocab(self):
  1651. tokens, toktypes, tokpre = self.get_vocab_base()
  1652. self.vocab_size = len(tokens)
  1653. # we need this to validate the size of the token_type embeddings
  1654. # though currently we are passing all zeros to the token_type embeddings
  1655. self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
  1656. # convert to phantom space vocab
  1657. def phantom(tok):
  1658. if tok.startswith("[") and tok.endswith("]"):
  1659. return tok
  1660. if tok.startswith("##"):
  1661. return tok[2:]
  1662. return "\u2581" + tok
  1663. tokens = list(map(phantom, tokens))
  1664. # add vocab to gguf
  1665. self.gguf_writer.add_tokenizer_model("bert")
  1666. self.gguf_writer.add_tokenizer_pre(tokpre)
  1667. self.gguf_writer.add_token_list(tokens)
  1668. self.gguf_writer.add_token_types(toktypes)
  1669. # handle special tokens
  1670. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1671. special_vocab.add_to_gguf(self.gguf_writer)
  1672. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1673. del bid # unused
  1674. # we are only using BERT for embeddings so we don't need the pooling layer
  1675. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  1676. return [] # we don't need these
  1677. return [(self.map_tensor_name(name), data_torch)]
  1678. @Model.register("NomicBertModel")
  1679. class NomicBertModel(BertModel):
  1680. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  1681. def __init__(self, *args, **kwargs):
  1682. super().__init__(*args, **kwargs)
  1683. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  1684. self.hparams["n_ctx"] = 2048
  1685. # SwigLU activation
  1686. assert self.hparams["activation_function"] == "swiglu"
  1687. # this doesn't do anything in the HF version
  1688. assert self.hparams["causal"] is False
  1689. # no bias tensors
  1690. assert self.hparams["qkv_proj_bias"] is False
  1691. assert self.hparams["mlp_fc1_bias"] is False
  1692. assert self.hparams["mlp_fc2_bias"] is False
  1693. # norm at end of layer
  1694. assert self.hparams["prenorm"] is False
  1695. # standard RoPE
  1696. assert self.hparams["rotary_emb_fraction"] == 1.0
  1697. assert self.hparams["rotary_emb_interleaved"] is False
  1698. assert self.hparams["rotary_emb_scale_base"] is None
  1699. def set_gguf_parameters(self):
  1700. super().set_gguf_parameters()
  1701. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1702. @Model.register("GemmaForCausalLM")
  1703. class GemmaModel(Model):
  1704. model_arch = gguf.MODEL_ARCH.GEMMA
  1705. def set_vocab(self):
  1706. self._set_vocab_sentencepiece()
  1707. # TODO: these special tokens should be exported only for the CodeGemma family
  1708. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1709. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  1710. special_vocab._set_special_token("prefix", 67)
  1711. special_vocab._set_special_token("suffix", 69)
  1712. special_vocab._set_special_token("middle", 68)
  1713. special_vocab._set_special_token("fsep", 70)
  1714. special_vocab._set_special_token("eot", 107)
  1715. special_vocab.add_to_gguf(self.gguf_writer)
  1716. def set_gguf_parameters(self):
  1717. hparams = self.hparams
  1718. block_count = hparams["num_hidden_layers"]
  1719. self.gguf_writer.add_name(self.dir_model.name)
  1720. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1721. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1722. self.gguf_writer.add_block_count(block_count)
  1723. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1724. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1725. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  1726. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1727. self.gguf_writer.add_key_length(hparams["head_dim"])
  1728. self.gguf_writer.add_value_length(hparams["head_dim"])
  1729. self.gguf_writer.add_file_type(self.ftype)
  1730. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1731. del bid # unused
  1732. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  1733. # To prevent errors, skip loading lm_head.weight.
  1734. if name == "lm_head.weight":
  1735. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  1736. return []
  1737. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  1738. if name.endswith("norm.weight"):
  1739. data_torch = data_torch + 1
  1740. return [(self.map_tensor_name(name), data_torch)]
  1741. @Model.register("Starcoder2ForCausalLM")
  1742. class StarCoder2Model(Model):
  1743. model_arch = gguf.MODEL_ARCH.STARCODER2
  1744. @Model.register("MambaForCausalLM", "MambaLMHeadModel")
  1745. class MambaModel(Model):
  1746. model_arch = gguf.MODEL_ARCH.MAMBA
  1747. def set_vocab(self):
  1748. vocab_size = self.hparams["vocab_size"]
  1749. # Round vocab size to next multiple of 8
  1750. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  1751. # pad using ceiling division
  1752. # ref: https://stackoverflow.com/a/17511341/22827863
  1753. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  1754. self.hparams["vocab_size"] = vocab_size
  1755. if (self.dir_model / "tokenizer.json").is_file():
  1756. self._set_vocab_gpt2()
  1757. elif (self.dir_model / "tokenizer.model").is_file():
  1758. self._set_vocab_sentencepiece()
  1759. else:
  1760. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  1761. tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf"
  1762. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1763. neox_reader = gguf.GGUFReader(tokenizer_path, "r")
  1764. field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1765. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8") if field else "gpt2")
  1766. field = neox_reader.get_field(gguf.Keys.Tokenizer.PRE)
  1767. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else "mpt")
  1768. field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1769. assert field
  1770. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1771. field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1772. assert field
  1773. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1774. field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1775. assert field
  1776. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1777. field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)
  1778. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0] if field else 1)
  1779. field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)
  1780. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0] if field else 0)
  1781. field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)
  1782. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0] if field else 0)
  1783. field = neox_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)
  1784. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0] if field else 0)
  1785. def set_gguf_parameters(self):
  1786. d_model = self.find_hparam(["hidden_size", "d_model"])
  1787. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  1788. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  1789. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  1790. # ceiling division
  1791. # ref: https://stackoverflow.com/a/17511341/22827863
  1792. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  1793. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  1794. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  1795. # Fail early for models which don't have a block expansion factor of 2
  1796. assert d_inner == 2 * d_model
  1797. self.gguf_writer.add_name(self.dir_model.name)
  1798. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  1799. self.gguf_writer.add_embedding_length(d_model)
  1800. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  1801. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  1802. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1803. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  1804. self.gguf_writer.add_ssm_inner_size(d_inner)
  1805. self.gguf_writer.add_ssm_state_size(d_state)
  1806. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  1807. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  1808. self.gguf_writer.add_file_type(self.ftype)
  1809. _tok_embd = None
  1810. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1811. del bid # unused
  1812. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  1813. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  1814. new_name = self.map_tensor_name(name)
  1815. if name.endswith(".A_log"):
  1816. logger.debug("A_log --> A ==> " + new_name)
  1817. data_torch = -torch.exp(data_torch)
  1818. # assuming token_embd.weight is seen before output.weight
  1819. if self._tok_embd is not None and new_name == output_name:
  1820. if torch.equal(self._tok_embd, data_torch):
  1821. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  1822. return []
  1823. elif new_name == tok_embd_name:
  1824. self._tok_embd = data_torch
  1825. return [(new_name, data_torch)]
  1826. def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  1827. del n_dims # unused
  1828. return bid is not None and new_name in (
  1829. self.format_tensor_name(n, bid, ".weight" if name.endswith(".weight") else "") for n in [
  1830. gguf.MODEL_TENSOR.SSM_CONV1D,
  1831. gguf.MODEL_TENSOR.SSM_X,
  1832. gguf.MODEL_TENSOR.SSM_DT,
  1833. gguf.MODEL_TENSOR.SSM_A,
  1834. gguf.MODEL_TENSOR.SSM_D,
  1835. ]
  1836. )
  1837. @Model.register("CohereForCausalLM")
  1838. class CommandR2Model(Model):
  1839. model_arch = gguf.MODEL_ARCH.COMMAND_R
  1840. def __init__(self, *args, **kwargs):
  1841. super().__init__(*args, **kwargs)
  1842. # max_position_embeddings = 8192 in config.json but model was actually
  1843. # trained on 128k context length
  1844. self.hparams["max_position_embeddings"] = self.hparams["model_max_length"]
  1845. def set_gguf_parameters(self):
  1846. super().set_gguf_parameters()
  1847. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  1848. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  1849. @Model.register("OlmoForCausalLM")
  1850. @Model.register("OLMoForCausalLM")
  1851. class OlmoModel(Model):
  1852. model_arch = gguf.MODEL_ARCH.OLMO
  1853. def set_gguf_parameters(self):
  1854. super().set_gguf_parameters()
  1855. self.gguf_writer.add_layer_norm_eps(1e-5)
  1856. clip_qkv = self.hparams.get("clip_qkv")
  1857. if clip_qkv is not None:
  1858. self.gguf_writer.add_clamp_kqv(clip_qkv)
  1859. # Same as super class, but permuting q_proj, k_proj
  1860. # Copied from: LlamaModel
  1861. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1862. del bid # unused
  1863. n_head = self.hparams["num_attention_heads"]
  1864. n_kv_head = self.hparams.get("num_key_value_heads")
  1865. if name.endswith("q_proj.weight"):
  1866. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1867. if name.endswith("k_proj.weight"):
  1868. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1869. return [(self.map_tensor_name(name), data_torch)]
  1870. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  1871. class JinaBertV2Model(BertModel):
  1872. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  1873. def __init__(self, *args, **kwargs):
  1874. super().__init__(*args, **kwargs)
  1875. self.intermediate_size = self.hparams["intermediate_size"]
  1876. def get_tensors(self):
  1877. for name, data in super().get_tensors():
  1878. if 'gated_layers' in name:
  1879. d1 = data[:self.intermediate_size, :]
  1880. name1 = name.replace('gated_layers', 'gated_layers_w')
  1881. d2 = data[self.intermediate_size:, :]
  1882. name2 = name.replace('gated_layers', 'gated_layers_v')
  1883. yield name1, d1
  1884. yield name2, d2
  1885. continue
  1886. yield name, data
  1887. def set_vocab(self, *args, **kwargs):
  1888. tokenizer_class = 'BertTokenizer'
  1889. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  1890. tokenizer_class = json.load(f)['tokenizer_class']
  1891. if tokenizer_class == 'BertTokenizer':
  1892. super().set_vocab()
  1893. elif tokenizer_class == 'RobertaTokenizer':
  1894. self._set_vocab_gpt2()
  1895. self.gguf_writer.add_token_type_count(2)
  1896. else:
  1897. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  1898. self.gguf_writer.add_add_bos_token(True)
  1899. self.gguf_writer.add_add_eos_token(True)
  1900. ###### CONVERSION LOGIC ######
  1901. # tree of lazy tensors
  1902. class LazyTorchTensor(gguf.LazyBase):
  1903. _tensor_type = torch.Tensor
  1904. # to keep the type-checker happy
  1905. dtype: torch.dtype
  1906. shape: torch.Size
  1907. # only used when converting a torch.Tensor to a np.ndarray
  1908. _dtype_map: dict[torch.dtype, type] = {
  1909. torch.float16: np.float16,
  1910. torch.float32: np.float32,
  1911. }
  1912. def numpy(self) -> gguf.LazyNumpyTensor:
  1913. dtype = self._dtype_map[self.dtype]
  1914. return gguf.LazyNumpyTensor(
  1915. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  1916. lazy=self._lazy,
  1917. args=(self,),
  1918. func=(lambda s: s[0].numpy())
  1919. )
  1920. @classmethod
  1921. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: torch.Size) -> Tensor:
  1922. return torch.empty(size=shape, dtype=dtype, device="meta")
  1923. @classmethod
  1924. def __torch_function__(cls, func, types, args=(), kwargs=None):
  1925. del types # unused
  1926. if kwargs is None:
  1927. kwargs = {}
  1928. if func is torch.Tensor.numpy:
  1929. return args[0].numpy()
  1930. return LazyTorchTensor._wrap_fn(func)(*args, **kwargs)
  1931. def parse_args() -> argparse.Namespace:
  1932. parser = argparse.ArgumentParser(
  1933. description="Convert a huggingface model to a GGML compatible file")
  1934. parser.add_argument(
  1935. "--vocab-only", action="store_true",
  1936. help="extract only the vocab",
  1937. )
  1938. parser.add_argument(
  1939. "--awq-path", type=Path, default=None,
  1940. help="Path to scale awq cache file",
  1941. )
  1942. parser.add_argument(
  1943. "--outfile", type=Path,
  1944. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  1945. )
  1946. parser.add_argument(
  1947. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16",
  1948. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  1949. )
  1950. parser.add_argument(
  1951. "--bigendian", action="store_true",
  1952. help="model is executed on big endian machine",
  1953. )
  1954. parser.add_argument(
  1955. "model", type=Path,
  1956. help="directory containing model file",
  1957. )
  1958. parser.add_argument(
  1959. "--use-temp-file", action="store_true",
  1960. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  1961. )
  1962. parser.add_argument(
  1963. "--no-lazy", action="store_true",
  1964. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  1965. )
  1966. parser.add_argument(
  1967. "--model-name", type=str, default=None,
  1968. help="name of the model",
  1969. )
  1970. parser.add_argument(
  1971. "--verbose", action="store_true",
  1972. help="increase output verbosity",
  1973. )
  1974. return parser.parse_args()
  1975. def main() -> None:
  1976. args = parse_args()
  1977. logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
  1978. dir_model = args.model
  1979. if args.awq_path:
  1980. sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
  1981. from awq.apply_awq import add_scale_weights # type: ignore[import-not-found]
  1982. tmp_model_path = args.model / "weighted_model"
  1983. dir_model = tmp_model_path
  1984. if tmp_model_path.is_dir():
  1985. logger.info(f"{tmp_model_path} exists as a weighted model.")
  1986. else:
  1987. tmp_model_path.mkdir(parents=True, exist_ok=True)
  1988. logger.info("Saving new weighted model ...")
  1989. add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
  1990. logger.info(f"Saved weighted model at {tmp_model_path}.")
  1991. if not dir_model.is_dir():
  1992. logger.error(f'Error: {args.model} is not a directory')
  1993. sys.exit(1)
  1994. ftype_map: dict[str, gguf.LlamaFileType] = {
  1995. "f32": gguf.LlamaFileType.ALL_F32,
  1996. "f16": gguf.LlamaFileType.MOSTLY_F16,
  1997. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  1998. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  1999. "auto": gguf.LlamaFileType.GUESSED,
  2000. }
  2001. if args.outfile is not None:
  2002. fname_out = args.outfile
  2003. else:
  2004. # output in the same directory as the model by default
  2005. fname_out = dir_model / 'ggml-model-{ftype}.gguf'
  2006. logger.info(f"Loading model: {dir_model.name}")
  2007. hparams = Model.load_hparams(dir_model)
  2008. with torch.inference_mode():
  2009. model_class = Model.from_model_architecture(hparams["architectures"][0])
  2010. model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file, args.no_lazy)
  2011. logger.info("Set model parameters")
  2012. model_instance.set_gguf_parameters()
  2013. logger.info("Set model tokenizer")
  2014. model_instance.set_vocab()
  2015. model_instance.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  2016. if args.vocab_only:
  2017. logger.info(f"Exporting model vocab to '{model_instance.fname_out}'")
  2018. model_instance.write_vocab()
  2019. else:
  2020. logger.info(f"Exporting model to '{model_instance.fname_out}'")
  2021. model_instance.write()
  2022. logger.info(f"Model successfully exported to '{model_instance.fname_out}'")
  2023. if __name__ == '__main__':
  2024. main()