llama-bench.cpp 71 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878
  1. #include <algorithm>
  2. #include <array>
  3. #include <cassert>
  4. #include <chrono>
  5. #include <cinttypes>
  6. #include <clocale>
  7. #include <cmath>
  8. #include <cstdio>
  9. #include <cstdlib>
  10. #include <cstring>
  11. #include <ctime>
  12. #include <iterator>
  13. #include <map>
  14. #include <numeric>
  15. #include <regex>
  16. #include <sstream>
  17. #include <string>
  18. #include <thread>
  19. #include <vector>
  20. #include "common.h"
  21. #include "ggml.h"
  22. #include "llama.h"
  23. #ifdef _WIN32
  24. # define WIN32_LEAN_AND_MEAN
  25. # ifndef NOMINMAX
  26. # define NOMINMAX
  27. # endif
  28. # include <windows.h>
  29. #endif
  30. // utils
  31. static uint64_t get_time_ns() {
  32. using clock = std::chrono::high_resolution_clock;
  33. return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
  34. }
  35. static bool tensor_buft_override_equal(const llama_model_tensor_buft_override& a, const llama_model_tensor_buft_override& b) {
  36. if (a.pattern != b.pattern) {
  37. // cString comparison that may be null
  38. if (a.pattern == nullptr || b.pattern == nullptr) {
  39. return false;
  40. }
  41. if (strcmp(a.pattern, b.pattern) != 0) {
  42. return false;
  43. }
  44. }
  45. if (a.buft != b.buft) {
  46. return false;
  47. }
  48. return true;
  49. }
  50. static bool vec_tensor_buft_override_equal(const std::vector<llama_model_tensor_buft_override>& a, const std::vector<llama_model_tensor_buft_override>& b) {
  51. if (a.size() != b.size()) {
  52. return false;
  53. }
  54. for (size_t i = 0; i < a.size(); i++) {
  55. if (!tensor_buft_override_equal(a[i], b[i])) {
  56. return false;
  57. }
  58. }
  59. return true;
  60. }
  61. static bool vec_vec_tensor_buft_override_equal(const std::vector<std::vector<llama_model_tensor_buft_override>>& a, const std::vector<std::vector<llama_model_tensor_buft_override>>& b) {
  62. if (a.size() != b.size()) {
  63. return false;
  64. }
  65. for (size_t i = 0; i < a.size(); i++) {
  66. if (!vec_tensor_buft_override_equal(a[i], b[i])) {
  67. return false;
  68. }
  69. }
  70. return true;
  71. }
  72. template <class T> static std::string join(const std::vector<T> & values, const std::string & delim) {
  73. std::ostringstream str;
  74. for (size_t i = 0; i < values.size(); i++) {
  75. str << values[i];
  76. if (i < values.size() - 1) {
  77. str << delim;
  78. }
  79. }
  80. return str.str();
  81. }
  82. template <typename T, typename F> static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
  83. std::vector<std::string> str_values;
  84. std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
  85. return str_values;
  86. }
  87. template <typename T> static T avg(const std::vector<T> & v) {
  88. if (v.empty()) {
  89. return 0;
  90. }
  91. T sum = std::accumulate(v.begin(), v.end(), T(0));
  92. return sum / (T) v.size();
  93. }
  94. template <typename T> static T stdev(const std::vector<T> & v) {
  95. if (v.size() <= 1) {
  96. return 0;
  97. }
  98. T mean = avg(v);
  99. T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
  100. T stdev = std::sqrt(sq_sum / (T) (v.size() - 1) - mean * mean * (T) v.size() / (T) (v.size() - 1));
  101. return stdev;
  102. }
  103. static std::string get_cpu_info() {
  104. std::vector<std::string> cpu_list;
  105. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  106. auto * dev = ggml_backend_dev_get(i);
  107. auto dev_type = ggml_backend_dev_type(dev);
  108. if (dev_type == GGML_BACKEND_DEVICE_TYPE_CPU || dev_type == GGML_BACKEND_DEVICE_TYPE_ACCEL) {
  109. cpu_list.push_back(ggml_backend_dev_description(dev));
  110. }
  111. }
  112. return join(cpu_list, ", ");
  113. }
  114. static std::string get_gpu_info() {
  115. std::vector<std::string> gpu_list;
  116. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  117. auto * dev = ggml_backend_dev_get(i);
  118. auto dev_type = ggml_backend_dev_type(dev);
  119. if (dev_type == GGML_BACKEND_DEVICE_TYPE_GPU) {
  120. gpu_list.push_back(ggml_backend_dev_description(dev));
  121. }
  122. }
  123. return join(gpu_list, ", ");
  124. }
  125. // command line params
  126. enum output_formats { NONE, CSV, JSON, JSONL, MARKDOWN, SQL };
  127. static const char * output_format_str(output_formats format) {
  128. switch (format) {
  129. case NONE:
  130. return "none";
  131. case CSV:
  132. return "csv";
  133. case JSON:
  134. return "json";
  135. case JSONL:
  136. return "jsonl";
  137. case MARKDOWN:
  138. return "md";
  139. case SQL:
  140. return "sql";
  141. default:
  142. GGML_ABORT("invalid output format");
  143. }
  144. }
  145. static bool output_format_from_str(const std::string & s, output_formats & format) {
  146. if (s == "none") {
  147. format = NONE;
  148. } else if (s == "csv") {
  149. format = CSV;
  150. } else if (s == "json") {
  151. format = JSON;
  152. } else if (s == "jsonl") {
  153. format = JSONL;
  154. } else if (s == "md") {
  155. format = MARKDOWN;
  156. } else if (s == "sql") {
  157. format = SQL;
  158. } else {
  159. return false;
  160. }
  161. return true;
  162. }
  163. static const char * split_mode_str(llama_split_mode mode) {
  164. switch (mode) {
  165. case LLAMA_SPLIT_MODE_NONE:
  166. return "none";
  167. case LLAMA_SPLIT_MODE_LAYER:
  168. return "layer";
  169. case LLAMA_SPLIT_MODE_ROW:
  170. return "row";
  171. default:
  172. GGML_ABORT("invalid split mode");
  173. }
  174. }
  175. static std::string pair_str(const std::pair<int, int> & p) {
  176. static char buf[32];
  177. snprintf(buf, sizeof(buf), "%d,%d", p.first, p.second);
  178. return buf;
  179. }
  180. struct cmd_params {
  181. std::vector<std::string> model;
  182. std::vector<int> n_prompt;
  183. std::vector<int> n_gen;
  184. std::vector<std::pair<int, int>> n_pg;
  185. std::vector<int> n_depth;
  186. std::vector<int> n_batch;
  187. std::vector<int> n_ubatch;
  188. std::vector<ggml_type> type_k;
  189. std::vector<ggml_type> type_v;
  190. std::vector<int> n_threads;
  191. std::vector<std::string> cpu_mask;
  192. std::vector<bool> cpu_strict;
  193. std::vector<int> poll;
  194. std::vector<int> n_gpu_layers;
  195. std::vector<std::string> rpc_servers;
  196. std::vector<llama_split_mode> split_mode;
  197. std::vector<int> main_gpu;
  198. std::vector<bool> no_kv_offload;
  199. std::vector<bool> flash_attn;
  200. std::vector<std::vector<float>> tensor_split;
  201. std::vector<std::vector<llama_model_tensor_buft_override>> tensor_buft_overrides;
  202. std::vector<bool> use_mmap;
  203. std::vector<bool> embeddings;
  204. ggml_numa_strategy numa;
  205. int reps;
  206. ggml_sched_priority prio;
  207. int delay;
  208. bool verbose;
  209. bool progress;
  210. output_formats output_format;
  211. output_formats output_format_stderr;
  212. };
  213. static const cmd_params cmd_params_defaults = {
  214. /* model */ { "models/7B/ggml-model-q4_0.gguf" },
  215. /* n_prompt */ { 512 },
  216. /* n_gen */ { 128 },
  217. /* n_pg */ {},
  218. /* n_depth */ { 0 },
  219. /* n_batch */ { 2048 },
  220. /* n_ubatch */ { 512 },
  221. /* type_k */ { GGML_TYPE_F16 },
  222. /* type_v */ { GGML_TYPE_F16 },
  223. /* n_threads */ { cpu_get_num_math() },
  224. /* cpu_mask */ { "0x0" },
  225. /* cpu_strict */ { false },
  226. /* poll */ { 50 },
  227. /* n_gpu_layers */ { 99 },
  228. /* rpc_servers */ { "" },
  229. /* split_mode */ { LLAMA_SPLIT_MODE_LAYER },
  230. /* main_gpu */ { 0 },
  231. /* no_kv_offload */ { false },
  232. /* flash_attn */ { false },
  233. /* tensor_split */ { std::vector<float>(llama_max_devices(), 0.0f) },
  234. /* tensor_buft_overrides*/ { std::vector<llama_model_tensor_buft_override>{{nullptr,nullptr}} },
  235. /* use_mmap */ { true },
  236. /* embeddings */ { false },
  237. /* numa */ GGML_NUMA_STRATEGY_DISABLED,
  238. /* reps */ 5,
  239. /* prio */ GGML_SCHED_PRIO_NORMAL,
  240. /* delay */ 0,
  241. /* verbose */ false,
  242. /* progress */ false,
  243. /* output_format */ MARKDOWN,
  244. /* output_format_stderr */ NONE,
  245. };
  246. static void print_usage(int /* argc */, char ** argv) {
  247. printf("usage: %s [options]\n", argv[0]);
  248. printf("\n");
  249. printf("options:\n");
  250. printf(" -h, --help\n");
  251. printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
  252. printf(" -p, --n-prompt <n> (default: %s)\n",
  253. join(cmd_params_defaults.n_prompt, ",").c_str());
  254. printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
  255. printf(" -pg <pp,tg> (default: %s)\n",
  256. join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str());
  257. printf(" -d, --n-depth <n> (default: %s)\n", join(cmd_params_defaults.n_depth, ",").c_str());
  258. printf(" -b, --batch-size <n> (default: %s)\n",
  259. join(cmd_params_defaults.n_batch, ",").c_str());
  260. printf(" -ub, --ubatch-size <n> (default: %s)\n",
  261. join(cmd_params_defaults.n_ubatch, ",").c_str());
  262. printf(" -ctk, --cache-type-k <t> (default: %s)\n",
  263. join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
  264. printf(" -ctv, --cache-type-v <t> (default: %s)\n",
  265. join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
  266. printf(" -t, --threads <n> (default: %s)\n",
  267. join(cmd_params_defaults.n_threads, ",").c_str());
  268. printf(" -C, --cpu-mask <hex,hex> (default: %s)\n",
  269. join(cmd_params_defaults.cpu_mask, ",").c_str());
  270. printf(" --cpu-strict <0|1> (default: %s)\n",
  271. join(cmd_params_defaults.cpu_strict, ",").c_str());
  272. printf(" --poll <0...100> (default: %s)\n", join(cmd_params_defaults.poll, ",").c_str());
  273. printf(" -ngl, --n-gpu-layers <n> (default: %s)\n",
  274. join(cmd_params_defaults.n_gpu_layers, ",").c_str());
  275. if (llama_supports_rpc()) {
  276. printf(" -rpc, --rpc <rpc_servers> (default: %s)\n",
  277. join(cmd_params_defaults.rpc_servers, ",").c_str());
  278. }
  279. printf(" -sm, --split-mode <none|layer|row> (default: %s)\n",
  280. join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
  281. printf(" -mg, --main-gpu <i> (default: %s)\n",
  282. join(cmd_params_defaults.main_gpu, ",").c_str());
  283. printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n",
  284. join(cmd_params_defaults.no_kv_offload, ",").c_str());
  285. printf(" -fa, --flash-attn <0|1> (default: %s)\n",
  286. join(cmd_params_defaults.flash_attn, ",").c_str());
  287. printf(" -mmp, --mmap <0|1> (default: %s)\n",
  288. join(cmd_params_defaults.use_mmap, ",").c_str());
  289. printf(" --numa <distribute|isolate|numactl> (default: disabled)\n");
  290. printf(" -embd, --embeddings <0|1> (default: %s)\n",
  291. join(cmd_params_defaults.embeddings, ",").c_str());
  292. printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
  293. printf(" -ot --override-tensors <tensor name pattern>=<buffer type>;... (default: disabled)\n");
  294. printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
  295. printf(" --prio <0|1|2|3> (default: %d)\n", cmd_params_defaults.prio);
  296. printf(" --delay <0...N> (seconds) (default: %d)\n", cmd_params_defaults.delay);
  297. printf(" -o, --output <csv|json|jsonl|md|sql> (default: %s)\n",
  298. output_format_str(cmd_params_defaults.output_format));
  299. printf(" -oe, --output-err <csv|json|jsonl|md|sql> (default: %s)\n",
  300. output_format_str(cmd_params_defaults.output_format_stderr));
  301. printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
  302. printf(" --progress (default: %s)\n", cmd_params_defaults.progress ? "1" : "0");
  303. printf("\n");
  304. printf(
  305. "Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter "
  306. "multiple times.\n");
  307. }
  308. static ggml_type ggml_type_from_name(const std::string & s) {
  309. if (s == "f16") {
  310. return GGML_TYPE_F16;
  311. }
  312. if (s == "bf16") {
  313. return GGML_TYPE_BF16;
  314. }
  315. if (s == "q8_0") {
  316. return GGML_TYPE_Q8_0;
  317. }
  318. if (s == "q4_0") {
  319. return GGML_TYPE_Q4_0;
  320. }
  321. if (s == "q4_1") {
  322. return GGML_TYPE_Q4_1;
  323. }
  324. if (s == "q5_0") {
  325. return GGML_TYPE_Q5_0;
  326. }
  327. if (s == "q5_1") {
  328. return GGML_TYPE_Q5_1;
  329. }
  330. if (s == "iq4_nl") {
  331. return GGML_TYPE_IQ4_NL;
  332. }
  333. return GGML_TYPE_COUNT;
  334. }
  335. static cmd_params parse_cmd_params(int argc, char ** argv) {
  336. cmd_params params;
  337. std::string arg;
  338. bool invalid_param = false;
  339. const std::string arg_prefix = "--";
  340. const char split_delim = ',';
  341. params.verbose = cmd_params_defaults.verbose;
  342. params.output_format = cmd_params_defaults.output_format;
  343. params.output_format_stderr = cmd_params_defaults.output_format_stderr;
  344. params.reps = cmd_params_defaults.reps;
  345. params.numa = cmd_params_defaults.numa;
  346. params.prio = cmd_params_defaults.prio;
  347. params.delay = cmd_params_defaults.delay;
  348. params.progress = cmd_params_defaults.progress;
  349. for (int i = 1; i < argc; i++) {
  350. arg = argv[i];
  351. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  352. std::replace(arg.begin(), arg.end(), '_', '-');
  353. }
  354. if (arg == "-h" || arg == "--help") {
  355. print_usage(argc, argv);
  356. exit(0);
  357. } else if (arg == "-m" || arg == "--model") {
  358. if (++i >= argc) {
  359. invalid_param = true;
  360. break;
  361. }
  362. auto p = string_split<std::string>(argv[i], split_delim);
  363. params.model.insert(params.model.end(), p.begin(), p.end());
  364. } else if (arg == "-p" || arg == "--n-prompt") {
  365. if (++i >= argc) {
  366. invalid_param = true;
  367. break;
  368. }
  369. auto p = string_split<int>(argv[i], split_delim);
  370. params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
  371. } else if (arg == "-n" || arg == "--n-gen") {
  372. if (++i >= argc) {
  373. invalid_param = true;
  374. break;
  375. }
  376. auto p = string_split<int>(argv[i], split_delim);
  377. params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
  378. } else if (arg == "-pg") {
  379. if (++i >= argc) {
  380. invalid_param = true;
  381. break;
  382. }
  383. auto p = string_split<std::string>(argv[i], ',');
  384. if (p.size() != 2) {
  385. invalid_param = true;
  386. break;
  387. }
  388. params.n_pg.push_back({ std::stoi(p[0]), std::stoi(p[1]) });
  389. } else if (arg == "-d" || arg == "--n-depth") {
  390. if (++i >= argc) {
  391. invalid_param = true;
  392. break;
  393. }
  394. auto p = string_split<int>(argv[i], split_delim);
  395. params.n_depth.insert(params.n_depth.end(), p.begin(), p.end());
  396. } else if (arg == "-b" || arg == "--batch-size") {
  397. if (++i >= argc) {
  398. invalid_param = true;
  399. break;
  400. }
  401. auto p = string_split<int>(argv[i], split_delim);
  402. params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
  403. } else if (arg == "-ub" || arg == "--ubatch-size") {
  404. if (++i >= argc) {
  405. invalid_param = true;
  406. break;
  407. }
  408. auto p = string_split<int>(argv[i], split_delim);
  409. params.n_ubatch.insert(params.n_ubatch.end(), p.begin(), p.end());
  410. } else if (arg == "-ctk" || arg == "--cache-type-k") {
  411. if (++i >= argc) {
  412. invalid_param = true;
  413. break;
  414. }
  415. auto p = string_split<std::string>(argv[i], split_delim);
  416. std::vector<ggml_type> types;
  417. for (const auto & t : p) {
  418. ggml_type gt = ggml_type_from_name(t);
  419. if (gt == GGML_TYPE_COUNT) {
  420. invalid_param = true;
  421. break;
  422. }
  423. types.push_back(gt);
  424. }
  425. if (invalid_param) {
  426. break;
  427. }
  428. params.type_k.insert(params.type_k.end(), types.begin(), types.end());
  429. } else if (arg == "-ctv" || arg == "--cache-type-v") {
  430. if (++i >= argc) {
  431. invalid_param = true;
  432. break;
  433. }
  434. auto p = string_split<std::string>(argv[i], split_delim);
  435. std::vector<ggml_type> types;
  436. for (const auto & t : p) {
  437. ggml_type gt = ggml_type_from_name(t);
  438. if (gt == GGML_TYPE_COUNT) {
  439. invalid_param = true;
  440. break;
  441. }
  442. types.push_back(gt);
  443. }
  444. if (invalid_param) {
  445. break;
  446. }
  447. params.type_v.insert(params.type_v.end(), types.begin(), types.end());
  448. } else if (arg == "-t" || arg == "--threads") {
  449. if (++i >= argc) {
  450. invalid_param = true;
  451. break;
  452. }
  453. auto p = string_split<int>(argv[i], split_delim);
  454. params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
  455. } else if (arg == "-C" || arg == "--cpu-mask") {
  456. if (++i >= argc) {
  457. invalid_param = true;
  458. break;
  459. }
  460. auto p = string_split<std::string>(argv[i], split_delim);
  461. params.cpu_mask.insert(params.cpu_mask.end(), p.begin(), p.end());
  462. } else if (arg == "--cpu-strict") {
  463. if (++i >= argc) {
  464. invalid_param = true;
  465. break;
  466. }
  467. auto p = string_split<bool>(argv[i], split_delim);
  468. params.cpu_strict.insert(params.cpu_strict.end(), p.begin(), p.end());
  469. } else if (arg == "--poll") {
  470. if (++i >= argc) {
  471. invalid_param = true;
  472. break;
  473. }
  474. auto p = string_split<int>(argv[i], split_delim);
  475. params.poll.insert(params.poll.end(), p.begin(), p.end());
  476. } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
  477. if (++i >= argc) {
  478. invalid_param = true;
  479. break;
  480. }
  481. auto p = string_split<int>(argv[i], split_delim);
  482. params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
  483. } else if (llama_supports_rpc() && (arg == "-rpc" || arg == "--rpc")) {
  484. if (++i >= argc) {
  485. invalid_param = true;
  486. break;
  487. }
  488. params.rpc_servers.push_back(argv[i]);
  489. } else if (arg == "-sm" || arg == "--split-mode") {
  490. if (++i >= argc) {
  491. invalid_param = true;
  492. break;
  493. }
  494. auto p = string_split<std::string>(argv[i], split_delim);
  495. std::vector<llama_split_mode> modes;
  496. for (const auto & m : p) {
  497. llama_split_mode mode;
  498. if (m == "none") {
  499. mode = LLAMA_SPLIT_MODE_NONE;
  500. } else if (m == "layer") {
  501. mode = LLAMA_SPLIT_MODE_LAYER;
  502. } else if (m == "row") {
  503. mode = LLAMA_SPLIT_MODE_ROW;
  504. } else {
  505. invalid_param = true;
  506. break;
  507. }
  508. modes.push_back(mode);
  509. }
  510. if (invalid_param) {
  511. break;
  512. }
  513. params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
  514. } else if (arg == "-mg" || arg == "--main-gpu") {
  515. if (++i >= argc) {
  516. invalid_param = true;
  517. break;
  518. }
  519. params.main_gpu = string_split<int>(argv[i], split_delim);
  520. } else if (arg == "-nkvo" || arg == "--no-kv-offload") {
  521. if (++i >= argc) {
  522. invalid_param = true;
  523. break;
  524. }
  525. auto p = string_split<bool>(argv[i], split_delim);
  526. params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
  527. } else if (arg == "--numa") {
  528. if (++i >= argc) {
  529. invalid_param = true;
  530. break;
  531. } else {
  532. std::string value(argv[i]);
  533. /**/ if (value == "distribute" || value == "") {
  534. params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE;
  535. } else if (value == "isolate") {
  536. params.numa = GGML_NUMA_STRATEGY_ISOLATE;
  537. } else if (value == "numactl") {
  538. params.numa = GGML_NUMA_STRATEGY_NUMACTL;
  539. } else {
  540. invalid_param = true;
  541. break;
  542. }
  543. }
  544. } else if (arg == "-fa" || arg == "--flash-attn") {
  545. if (++i >= argc) {
  546. invalid_param = true;
  547. break;
  548. }
  549. auto p = string_split<bool>(argv[i], split_delim);
  550. params.flash_attn.insert(params.flash_attn.end(), p.begin(), p.end());
  551. } else if (arg == "-mmp" || arg == "--mmap") {
  552. if (++i >= argc) {
  553. invalid_param = true;
  554. break;
  555. }
  556. auto p = string_split<bool>(argv[i], split_delim);
  557. params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
  558. } else if (arg == "-embd" || arg == "--embeddings") {
  559. if (++i >= argc) {
  560. invalid_param = true;
  561. break;
  562. }
  563. auto p = string_split<bool>(argv[i], split_delim);
  564. params.embeddings.insert(params.embeddings.end(), p.begin(), p.end());
  565. } else if (arg == "-ts" || arg == "--tensor-split") {
  566. if (++i >= argc) {
  567. invalid_param = true;
  568. break;
  569. }
  570. for (auto ts : string_split<std::string>(argv[i], split_delim)) {
  571. // split string by ; and /
  572. const std::regex regex{ R"([;/]+)" };
  573. std::sregex_token_iterator it{ ts.begin(), ts.end(), regex, -1 };
  574. std::vector<std::string> split_arg{ it, {} };
  575. GGML_ASSERT(split_arg.size() <= llama_max_devices());
  576. std::vector<float> tensor_split(llama_max_devices());
  577. for (size_t i = 0; i < llama_max_devices(); ++i) {
  578. if (i < split_arg.size()) {
  579. tensor_split[i] = std::stof(split_arg[i]);
  580. } else {
  581. tensor_split[i] = 0.0f;
  582. }
  583. }
  584. params.tensor_split.push_back(tensor_split);
  585. }
  586. } else if (arg == "-ot" || arg == "--override-tensor") {
  587. if (++i >= argc) {
  588. invalid_param = true;
  589. break;
  590. }
  591. auto value = argv[i];
  592. /* static */ std::map<std::string, ggml_backend_buffer_type_t> buft_list;
  593. if (buft_list.empty()) {
  594. // enumerate all the devices and add their buffer types to the list
  595. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  596. auto * dev = ggml_backend_dev_get(i);
  597. auto * buft = ggml_backend_dev_buffer_type(dev);
  598. if (buft) {
  599. buft_list[ggml_backend_buft_name(buft)] = buft;
  600. }
  601. }
  602. }
  603. auto override_group_span_len = std::strcspn(value, ",");
  604. bool last_group = false;
  605. do {
  606. if (override_group_span_len == 0) {
  607. // Adds an empty override-tensors for an empty span
  608. params.tensor_buft_overrides.push_back({{}});
  609. if (value[override_group_span_len] == '\0') {
  610. value = &value[override_group_span_len];
  611. last_group = true;
  612. } else {
  613. value = &value[override_group_span_len + 1];
  614. override_group_span_len = std::strcspn(value, ",");
  615. }
  616. continue;
  617. }
  618. // Stamps null terminators into the argv
  619. // value for this option to avoid the
  620. // memory leak present in the implementation
  621. // over in arg.cpp. Acceptable because we
  622. // only parse these args once in this program.
  623. auto override_group = value;
  624. if (value[override_group_span_len] == '\0') {
  625. value = &value[override_group_span_len];
  626. last_group = true;
  627. } else {
  628. value[override_group_span_len] = '\0';
  629. value = &value[override_group_span_len + 1];
  630. }
  631. std::vector<llama_model_tensor_buft_override> group_tensor_buft_overrides{};
  632. auto override_span_len = std::strcspn(override_group, ";");
  633. while (override_span_len > 0) {
  634. auto override = override_group;
  635. if (override_group[override_span_len] != '\0') {
  636. override_group[override_span_len] = '\0';
  637. override_group = &override_group[override_span_len + 1];
  638. } else {
  639. override_group = &override_group[override_span_len];
  640. }
  641. auto tensor_name_span_len = std::strcspn(override, "=");
  642. if (tensor_name_span_len >= override_span_len) {
  643. invalid_param = true;
  644. break;
  645. }
  646. override[tensor_name_span_len] = '\0';
  647. auto tensor_name = override;
  648. auto buffer_type = &override[tensor_name_span_len + 1];
  649. if (buft_list.find(buffer_type) == buft_list.end()) {
  650. printf("Available buffer types:\n");
  651. for (const auto & it : buft_list) {
  652. printf(" %s\n", ggml_backend_buft_name(it.second));
  653. }
  654. invalid_param = true;
  655. break;
  656. }
  657. group_tensor_buft_overrides.push_back({tensor_name, buft_list.at(buffer_type)});
  658. override_span_len = std::strcspn(override_group, ";");
  659. }
  660. if (invalid_param) {
  661. break;
  662. }
  663. group_tensor_buft_overrides.push_back({nullptr,nullptr});
  664. params.tensor_buft_overrides.push_back(group_tensor_buft_overrides);
  665. override_group_span_len = std::strcspn(value, ",");
  666. } while (!last_group);
  667. } else if (arg == "-r" || arg == "--repetitions") {
  668. if (++i >= argc) {
  669. invalid_param = true;
  670. break;
  671. }
  672. params.reps = std::stoi(argv[i]);
  673. } else if (arg == "--prio") {
  674. if (++i >= argc) {
  675. invalid_param = true;
  676. break;
  677. }
  678. params.prio = (enum ggml_sched_priority) std::stoi(argv[i]);
  679. } else if (arg == "--delay") {
  680. if (++i >= argc) {
  681. invalid_param = true;
  682. break;
  683. }
  684. params.delay = std::stoi(argv[i]);
  685. } else if (arg == "-o" || arg == "--output") {
  686. if (++i >= argc) {
  687. invalid_param = true;
  688. break;
  689. }
  690. invalid_param = !output_format_from_str(argv[i], params.output_format);
  691. } else if (arg == "-oe" || arg == "--output-err") {
  692. if (++i >= argc) {
  693. invalid_param = true;
  694. break;
  695. }
  696. invalid_param = !output_format_from_str(argv[i], params.output_format_stderr);
  697. } else if (arg == "-v" || arg == "--verbose") {
  698. params.verbose = true;
  699. } else if (arg == "--progress") {
  700. params.progress = true;
  701. } else {
  702. invalid_param = true;
  703. break;
  704. }
  705. }
  706. if (invalid_param) {
  707. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  708. print_usage(argc, argv);
  709. exit(1);
  710. }
  711. // set defaults
  712. if (params.model.empty()) {
  713. params.model = cmd_params_defaults.model;
  714. }
  715. if (params.n_prompt.empty()) {
  716. params.n_prompt = cmd_params_defaults.n_prompt;
  717. }
  718. if (params.n_gen.empty()) {
  719. params.n_gen = cmd_params_defaults.n_gen;
  720. }
  721. if (params.n_pg.empty()) {
  722. params.n_pg = cmd_params_defaults.n_pg;
  723. }
  724. if (params.n_depth.empty()) {
  725. params.n_depth = cmd_params_defaults.n_depth;
  726. }
  727. if (params.n_batch.empty()) {
  728. params.n_batch = cmd_params_defaults.n_batch;
  729. }
  730. if (params.n_ubatch.empty()) {
  731. params.n_ubatch = cmd_params_defaults.n_ubatch;
  732. }
  733. if (params.type_k.empty()) {
  734. params.type_k = cmd_params_defaults.type_k;
  735. }
  736. if (params.type_v.empty()) {
  737. params.type_v = cmd_params_defaults.type_v;
  738. }
  739. if (params.n_gpu_layers.empty()) {
  740. params.n_gpu_layers = cmd_params_defaults.n_gpu_layers;
  741. }
  742. if (params.rpc_servers.empty()) {
  743. params.rpc_servers = cmd_params_defaults.rpc_servers;
  744. }
  745. if (params.split_mode.empty()) {
  746. params.split_mode = cmd_params_defaults.split_mode;
  747. }
  748. if (params.main_gpu.empty()) {
  749. params.main_gpu = cmd_params_defaults.main_gpu;
  750. }
  751. if (params.no_kv_offload.empty()) {
  752. params.no_kv_offload = cmd_params_defaults.no_kv_offload;
  753. }
  754. if (params.flash_attn.empty()) {
  755. params.flash_attn = cmd_params_defaults.flash_attn;
  756. }
  757. if (params.tensor_split.empty()) {
  758. params.tensor_split = cmd_params_defaults.tensor_split;
  759. }
  760. if (params.tensor_buft_overrides.empty()) {
  761. params.tensor_buft_overrides = cmd_params_defaults.tensor_buft_overrides;
  762. }
  763. if (params.use_mmap.empty()) {
  764. params.use_mmap = cmd_params_defaults.use_mmap;
  765. }
  766. if (params.embeddings.empty()) {
  767. params.embeddings = cmd_params_defaults.embeddings;
  768. }
  769. if (params.n_threads.empty()) {
  770. params.n_threads = cmd_params_defaults.n_threads;
  771. }
  772. if (params.cpu_mask.empty()) {
  773. params.cpu_mask = cmd_params_defaults.cpu_mask;
  774. }
  775. if (params.cpu_strict.empty()) {
  776. params.cpu_strict = cmd_params_defaults.cpu_strict;
  777. }
  778. if (params.poll.empty()) {
  779. params.poll = cmd_params_defaults.poll;
  780. }
  781. return params;
  782. }
  783. struct cmd_params_instance {
  784. std::string model;
  785. int n_prompt;
  786. int n_gen;
  787. int n_depth;
  788. int n_batch;
  789. int n_ubatch;
  790. ggml_type type_k;
  791. ggml_type type_v;
  792. int n_threads;
  793. std::string cpu_mask;
  794. bool cpu_strict;
  795. int poll;
  796. int n_gpu_layers;
  797. std::string rpc_servers_str;
  798. llama_split_mode split_mode;
  799. int main_gpu;
  800. bool no_kv_offload;
  801. bool flash_attn;
  802. std::vector<float> tensor_split;
  803. std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
  804. bool use_mmap;
  805. bool embeddings;
  806. llama_model_params to_llama_mparams() const {
  807. llama_model_params mparams = llama_model_default_params();
  808. mparams.n_gpu_layers = n_gpu_layers;
  809. if (!rpc_servers_str.empty()) {
  810. auto rpc_servers = string_split<std::string>(rpc_servers_str, ',');
  811. // add RPC devices
  812. if (!rpc_servers.empty()) {
  813. ggml_backend_reg_t rpc_reg = ggml_backend_reg_by_name("RPC");
  814. if (!rpc_reg) {
  815. fprintf(stderr, "%s: failed to find RPC backend\n", __func__);
  816. exit(1);
  817. }
  818. typedef ggml_backend_dev_t (*ggml_backend_rpc_add_device_t)(const char * endpoint);
  819. ggml_backend_rpc_add_device_t ggml_backend_rpc_add_device_fn = (ggml_backend_rpc_add_device_t) ggml_backend_reg_get_proc_address(rpc_reg, "ggml_backend_rpc_add_device");
  820. if (!ggml_backend_rpc_add_device_fn) {
  821. fprintf(stderr, "%s: failed to find RPC device add function\n", __func__);
  822. exit(1);
  823. }
  824. static std::vector<ggml_backend_dev_t> devices;
  825. devices.clear();
  826. for (const std::string & server : rpc_servers) {
  827. ggml_backend_dev_t dev = ggml_backend_rpc_add_device_fn(server.c_str());
  828. if (dev) {
  829. devices.push_back(dev);
  830. } else {
  831. fprintf(stderr, "%s: failed to add RPC device for server '%s'\n", __func__, server.c_str());
  832. exit(1);
  833. }
  834. }
  835. devices.push_back(nullptr);
  836. mparams.devices = devices.data();
  837. }
  838. }
  839. mparams.split_mode = split_mode;
  840. mparams.main_gpu = main_gpu;
  841. mparams.tensor_split = tensor_split.data();
  842. mparams.use_mmap = use_mmap;
  843. if (tensor_buft_overrides.empty()) {
  844. mparams.tensor_buft_overrides = nullptr;
  845. } else {
  846. GGML_ASSERT(tensor_buft_overrides.back().pattern == nullptr && "Tensor buffer overrides not terminated with empty pattern");
  847. mparams.tensor_buft_overrides = tensor_buft_overrides.data();
  848. }
  849. return mparams;
  850. }
  851. bool equal_mparams(const cmd_params_instance & other) const {
  852. return model == other.model && n_gpu_layers == other.n_gpu_layers && rpc_servers_str == other.rpc_servers_str &&
  853. split_mode == other.split_mode && main_gpu == other.main_gpu && use_mmap == other.use_mmap &&
  854. tensor_split == other.tensor_split && vec_tensor_buft_override_equal(tensor_buft_overrides, other.tensor_buft_overrides);
  855. }
  856. llama_context_params to_llama_cparams() const {
  857. llama_context_params cparams = llama_context_default_params();
  858. cparams.n_ctx = n_prompt + n_gen + n_depth;
  859. cparams.n_batch = n_batch;
  860. cparams.n_ubatch = n_ubatch;
  861. cparams.type_k = type_k;
  862. cparams.type_v = type_v;
  863. cparams.offload_kqv = !no_kv_offload;
  864. cparams.flash_attn = flash_attn;
  865. cparams.embeddings = embeddings;
  866. return cparams;
  867. }
  868. };
  869. static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
  870. std::vector<cmd_params_instance> instances;
  871. // this ordering minimizes the number of times that each model needs to be reloaded
  872. // clang-format off
  873. for (const auto & m : params.model)
  874. for (const auto & nl : params.n_gpu_layers)
  875. for (const auto & rpc : params.rpc_servers)
  876. for (const auto & sm : params.split_mode)
  877. for (const auto & mg : params.main_gpu)
  878. for (const auto & ts : params.tensor_split)
  879. for (const auto & ot : params.tensor_buft_overrides)
  880. for (const auto & mmp : params.use_mmap)
  881. for (const auto & embd : params.embeddings)
  882. for (const auto & nb : params.n_batch)
  883. for (const auto & nub : params.n_ubatch)
  884. for (const auto & tk : params.type_k)
  885. for (const auto & tv : params.type_v)
  886. for (const auto & nkvo : params.no_kv_offload)
  887. for (const auto & fa : params.flash_attn)
  888. for (const auto & nt : params.n_threads)
  889. for (const auto & cm : params.cpu_mask)
  890. for (const auto & cs : params.cpu_strict)
  891. for (const auto & nd : params.n_depth)
  892. for (const auto & pl : params.poll) {
  893. for (const auto & n_prompt : params.n_prompt) {
  894. if (n_prompt == 0) {
  895. continue;
  896. }
  897. cmd_params_instance instance = {
  898. /* .model = */ m,
  899. /* .n_prompt = */ n_prompt,
  900. /* .n_gen = */ 0,
  901. /* .n_depth = */ nd,
  902. /* .n_batch = */ nb,
  903. /* .n_ubatch = */ nub,
  904. /* .type_k = */ tk,
  905. /* .type_v = */ tv,
  906. /* .n_threads = */ nt,
  907. /* .cpu_mask = */ cm,
  908. /* .cpu_strict = */ cs,
  909. /* .poll = */ pl,
  910. /* .n_gpu_layers = */ nl,
  911. /* .rpc_servers = */ rpc,
  912. /* .split_mode = */ sm,
  913. /* .main_gpu = */ mg,
  914. /* .no_kv_offload= */ nkvo,
  915. /* .flash_attn = */ fa,
  916. /* .tensor_split = */ ts,
  917. /* .tensor_buft_overrides = */ ot,
  918. /* .use_mmap = */ mmp,
  919. /* .embeddings = */ embd,
  920. };
  921. instances.push_back(instance);
  922. }
  923. for (const auto & n_gen : params.n_gen) {
  924. if (n_gen == 0) {
  925. continue;
  926. }
  927. cmd_params_instance instance = {
  928. /* .model = */ m,
  929. /* .n_prompt = */ 0,
  930. /* .n_gen = */ n_gen,
  931. /* .n_depth = */ nd,
  932. /* .n_batch = */ nb,
  933. /* .n_ubatch = */ nub,
  934. /* .type_k = */ tk,
  935. /* .type_v = */ tv,
  936. /* .n_threads = */ nt,
  937. /* .cpu_mask = */ cm,
  938. /* .cpu_strict = */ cs,
  939. /* .poll = */ pl,
  940. /* .n_gpu_layers = */ nl,
  941. /* .rpc_servers = */ rpc,
  942. /* .split_mode = */ sm,
  943. /* .main_gpu = */ mg,
  944. /* .no_kv_offload= */ nkvo,
  945. /* .flash_attn = */ fa,
  946. /* .tensor_split = */ ts,
  947. /* .tensor_buft_overrides = */ ot,
  948. /* .use_mmap = */ mmp,
  949. /* .embeddings = */ embd,
  950. };
  951. instances.push_back(instance);
  952. }
  953. for (const auto & n_pg : params.n_pg) {
  954. if (n_pg.first == 0 && n_pg.second == 0) {
  955. continue;
  956. }
  957. cmd_params_instance instance = {
  958. /* .model = */ m,
  959. /* .n_prompt = */ n_pg.first,
  960. /* .n_gen = */ n_pg.second,
  961. /* .n_depth = */ nd,
  962. /* .n_batch = */ nb,
  963. /* .n_ubatch = */ nub,
  964. /* .type_k = */ tk,
  965. /* .type_v = */ tv,
  966. /* .n_threads = */ nt,
  967. /* .cpu_mask = */ cm,
  968. /* .cpu_strict = */ cs,
  969. /* .poll = */ pl,
  970. /* .n_gpu_layers = */ nl,
  971. /* .rpc_servers = */ rpc,
  972. /* .split_mode = */ sm,
  973. /* .main_gpu = */ mg,
  974. /* .no_kv_offload= */ nkvo,
  975. /* .flash_attn = */ fa,
  976. /* .tensor_split = */ ts,
  977. /* .tensor_buft_overrides = */ ot,
  978. /* .use_mmap = */ mmp,
  979. /* .embeddings = */ embd,
  980. };
  981. instances.push_back(instance);
  982. }
  983. }
  984. // clang-format on
  985. return instances;
  986. }
  987. struct test {
  988. static const std::string build_commit;
  989. static const int build_number;
  990. const std::string cpu_info;
  991. const std::string gpu_info;
  992. std::string model_filename;
  993. std::string model_type;
  994. uint64_t model_size;
  995. uint64_t model_n_params;
  996. int n_batch;
  997. int n_ubatch;
  998. int n_threads;
  999. std::string cpu_mask;
  1000. bool cpu_strict;
  1001. int poll;
  1002. ggml_type type_k;
  1003. ggml_type type_v;
  1004. int n_gpu_layers;
  1005. llama_split_mode split_mode;
  1006. int main_gpu;
  1007. bool no_kv_offload;
  1008. bool flash_attn;
  1009. std::vector<float> tensor_split;
  1010. std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
  1011. bool use_mmap;
  1012. bool embeddings;
  1013. int n_prompt;
  1014. int n_gen;
  1015. int n_depth;
  1016. std::string test_time;
  1017. std::vector<uint64_t> samples_ns;
  1018. test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) :
  1019. cpu_info(get_cpu_info()),
  1020. gpu_info(get_gpu_info()) {
  1021. model_filename = inst.model;
  1022. char buf[128];
  1023. llama_model_desc(lmodel, buf, sizeof(buf));
  1024. model_type = buf;
  1025. model_size = llama_model_size(lmodel);
  1026. model_n_params = llama_model_n_params(lmodel);
  1027. n_batch = inst.n_batch;
  1028. n_ubatch = inst.n_ubatch;
  1029. n_threads = inst.n_threads;
  1030. cpu_mask = inst.cpu_mask;
  1031. cpu_strict = inst.cpu_strict;
  1032. poll = inst.poll;
  1033. type_k = inst.type_k;
  1034. type_v = inst.type_v;
  1035. n_gpu_layers = inst.n_gpu_layers;
  1036. split_mode = inst.split_mode;
  1037. main_gpu = inst.main_gpu;
  1038. no_kv_offload = inst.no_kv_offload;
  1039. flash_attn = inst.flash_attn;
  1040. tensor_split = inst.tensor_split;
  1041. tensor_buft_overrides = inst.tensor_buft_overrides;
  1042. use_mmap = inst.use_mmap;
  1043. embeddings = inst.embeddings;
  1044. n_prompt = inst.n_prompt;
  1045. n_gen = inst.n_gen;
  1046. n_depth = inst.n_depth;
  1047. // RFC 3339 date-time format
  1048. time_t t = time(NULL);
  1049. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  1050. test_time = buf;
  1051. (void) ctx;
  1052. }
  1053. uint64_t avg_ns() const { return ::avg(samples_ns); }
  1054. uint64_t stdev_ns() const { return ::stdev(samples_ns); }
  1055. std::vector<double> get_ts() const {
  1056. int n_tokens = n_prompt + n_gen;
  1057. std::vector<double> ts;
  1058. std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts),
  1059. [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
  1060. return ts;
  1061. }
  1062. double avg_ts() const { return ::avg(get_ts()); }
  1063. double stdev_ts() const { return ::stdev(get_ts()); }
  1064. static std::string get_backend() {
  1065. std::vector<std::string> backends;
  1066. for (size_t i = 0; i < ggml_backend_reg_count(); i++) {
  1067. auto * reg = ggml_backend_reg_get(i);
  1068. std::string name = ggml_backend_reg_name(reg);
  1069. if (name != "CPU") {
  1070. backends.push_back(ggml_backend_reg_name(reg));
  1071. }
  1072. }
  1073. return backends.empty() ? "CPU" : join(backends, ",");
  1074. }
  1075. static const std::vector<std::string> & get_fields() {
  1076. static const std::vector<std::string> fields = {
  1077. "build_commit", "build_number", "cpu_info", "gpu_info", "backends", "model_filename",
  1078. "model_type", "model_size", "model_n_params", "n_batch", "n_ubatch", "n_threads",
  1079. "cpu_mask", "cpu_strict", "poll", "type_k", "type_v", "n_gpu_layers",
  1080. "split_mode", "main_gpu", "no_kv_offload", "flash_attn", "tensor_split", "use_mmap",
  1081. "embeddings", "n_prompt", "n_gen", "n_depth", "test_time", "avg_ns",
  1082. "split_mode", "main_gpu", "no_kv_offload", "flash_attn", "tensor_split", "tensor_buft_overrides",
  1083. "use_mmap", "embeddings", "n_prompt", "n_gen", "n_depth", "test_time",
  1084. "avg_ns", "stddev_ns", "avg_ts", "stddev_ts",
  1085. };
  1086. return fields;
  1087. }
  1088. enum field_type { STRING, BOOL, INT, FLOAT };
  1089. static field_type get_field_type(const std::string & field) {
  1090. if (field == "build_number" || field == "n_batch" || field == "n_ubatch" || field == "n_threads" ||
  1091. field == "poll" || field == "model_size" || field == "model_n_params" || field == "n_gpu_layers" ||
  1092. field == "main_gpu" || field == "n_prompt" || field == "n_gen" || field == "n_depth" ||
  1093. field == "avg_ns" || field == "stddev_ns") {
  1094. return INT;
  1095. }
  1096. if (field == "f16_kv" || field == "no_kv_offload" || field == "cpu_strict" || field == "flash_attn" ||
  1097. field == "use_mmap" || field == "embeddings") {
  1098. return BOOL;
  1099. }
  1100. if (field == "avg_ts" || field == "stddev_ts") {
  1101. return FLOAT;
  1102. }
  1103. return STRING;
  1104. }
  1105. std::vector<std::string> get_values() const {
  1106. std::string tensor_split_str;
  1107. std::string tensor_buft_overrides_str;
  1108. int max_nonzero = 0;
  1109. for (size_t i = 0; i < llama_max_devices(); i++) {
  1110. if (tensor_split[i] > 0) {
  1111. max_nonzero = i;
  1112. }
  1113. }
  1114. for (int i = 0; i <= max_nonzero; i++) {
  1115. char buf[32];
  1116. snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
  1117. tensor_split_str += buf;
  1118. if (i < max_nonzero) {
  1119. tensor_split_str += "/";
  1120. }
  1121. }
  1122. if (tensor_buft_overrides.size() == 1) {
  1123. // Last element of tensor_buft_overrides is always a null pattern
  1124. // so if it is only one element long, it must be a null pattern.
  1125. GGML_ASSERT(tensor_buft_overrides[0].pattern == nullptr);
  1126. tensor_buft_overrides_str += "none";
  1127. } else {
  1128. for (size_t i = 0; i < tensor_buft_overrides.size()-1; i++) {
  1129. // Last element of tensor_buft_overrides is always a null pattern
  1130. if (tensor_buft_overrides[i].pattern == nullptr) {
  1131. tensor_buft_overrides_str += "none";
  1132. } else {
  1133. tensor_buft_overrides_str += tensor_buft_overrides[i].pattern;
  1134. tensor_buft_overrides_str += "=";
  1135. tensor_buft_overrides_str += ggml_backend_buft_name(tensor_buft_overrides[i].buft);
  1136. }
  1137. if (i + 2 < tensor_buft_overrides.size()) {
  1138. tensor_buft_overrides_str += ";";
  1139. }
  1140. }
  1141. }
  1142. std::vector<std::string> values = { build_commit,
  1143. std::to_string(build_number),
  1144. cpu_info,
  1145. gpu_info,
  1146. get_backend(),
  1147. model_filename,
  1148. model_type,
  1149. std::to_string(model_size),
  1150. std::to_string(model_n_params),
  1151. std::to_string(n_batch),
  1152. std::to_string(n_ubatch),
  1153. std::to_string(n_threads),
  1154. cpu_mask,
  1155. std::to_string(cpu_strict),
  1156. std::to_string(poll),
  1157. ggml_type_name(type_k),
  1158. ggml_type_name(type_v),
  1159. std::to_string(n_gpu_layers),
  1160. split_mode_str(split_mode),
  1161. std::to_string(main_gpu),
  1162. std::to_string(no_kv_offload),
  1163. std::to_string(flash_attn),
  1164. tensor_split_str,
  1165. tensor_buft_overrides_str,
  1166. std::to_string(use_mmap),
  1167. std::to_string(embeddings),
  1168. std::to_string(n_prompt),
  1169. std::to_string(n_gen),
  1170. std::to_string(n_depth),
  1171. test_time,
  1172. std::to_string(avg_ns()),
  1173. std::to_string(stdev_ns()),
  1174. std::to_string(avg_ts()),
  1175. std::to_string(stdev_ts()) };
  1176. return values;
  1177. }
  1178. std::map<std::string, std::string> get_map() const {
  1179. std::map<std::string, std::string> map;
  1180. auto fields = get_fields();
  1181. auto values = get_values();
  1182. std::transform(fields.begin(), fields.end(), values.begin(), std::inserter(map, map.end()),
  1183. std::make_pair<const std::string &, const std::string &>);
  1184. return map;
  1185. }
  1186. };
  1187. const std::string test::build_commit = LLAMA_COMMIT;
  1188. const int test::build_number = LLAMA_BUILD_NUMBER;
  1189. struct printer {
  1190. virtual ~printer() {}
  1191. FILE * fout;
  1192. virtual void print_header(const cmd_params & params) { (void) params; }
  1193. virtual void print_test(const test & t) = 0;
  1194. virtual void print_footer() {}
  1195. };
  1196. struct csv_printer : public printer {
  1197. static std::string escape_csv(const std::string & field) {
  1198. std::string escaped = "\"";
  1199. for (auto c : field) {
  1200. if (c == '"') {
  1201. escaped += "\"";
  1202. }
  1203. escaped += c;
  1204. }
  1205. escaped += "\"";
  1206. return escaped;
  1207. }
  1208. void print_header(const cmd_params & params) override {
  1209. std::vector<std::string> fields = test::get_fields();
  1210. fprintf(fout, "%s\n", join(fields, ",").c_str());
  1211. (void) params;
  1212. }
  1213. void print_test(const test & t) override {
  1214. std::vector<std::string> values = t.get_values();
  1215. std::transform(values.begin(), values.end(), values.begin(), escape_csv);
  1216. fprintf(fout, "%s\n", join(values, ",").c_str());
  1217. }
  1218. };
  1219. static std::string escape_json(const std::string & value) {
  1220. std::string escaped;
  1221. for (auto c : value) {
  1222. if (c == '"') {
  1223. escaped += "\\\"";
  1224. } else if (c == '\\') {
  1225. escaped += "\\\\";
  1226. } else if (c <= 0x1f) {
  1227. char buf[8];
  1228. snprintf(buf, sizeof(buf), "\\u%04x", c);
  1229. escaped += buf;
  1230. } else {
  1231. escaped += c;
  1232. }
  1233. }
  1234. return escaped;
  1235. }
  1236. static std::string format_json_value(const std::string & field, const std::string & value) {
  1237. switch (test::get_field_type(field)) {
  1238. case test::STRING:
  1239. return "\"" + escape_json(value) + "\"";
  1240. case test::BOOL:
  1241. return value == "0" ? "false" : "true";
  1242. default:
  1243. return value;
  1244. }
  1245. }
  1246. struct json_printer : public printer {
  1247. bool first = true;
  1248. void print_header(const cmd_params & params) override {
  1249. fprintf(fout, "[\n");
  1250. (void) params;
  1251. }
  1252. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  1253. assert(fields.size() == values.size());
  1254. for (size_t i = 0; i < fields.size(); i++) {
  1255. fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(),
  1256. format_json_value(fields.at(i), values.at(i)).c_str());
  1257. }
  1258. }
  1259. void print_test(const test & t) override {
  1260. if (first) {
  1261. first = false;
  1262. } else {
  1263. fprintf(fout, ",\n");
  1264. }
  1265. fprintf(fout, " {\n");
  1266. print_fields(test::get_fields(), t.get_values());
  1267. fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
  1268. fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
  1269. fprintf(fout, " }");
  1270. fflush(fout);
  1271. }
  1272. void print_footer() override { fprintf(fout, "\n]\n"); }
  1273. };
  1274. struct jsonl_printer : public printer {
  1275. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  1276. assert(fields.size() == values.size());
  1277. for (size_t i = 0; i < fields.size(); i++) {
  1278. fprintf(fout, "\"%s\": %s, ", fields.at(i).c_str(), format_json_value(fields.at(i), values.at(i)).c_str());
  1279. }
  1280. }
  1281. void print_test(const test & t) override {
  1282. fprintf(fout, "{");
  1283. print_fields(test::get_fields(), t.get_values());
  1284. fprintf(fout, "\"samples_ns\": [ %s ],", join(t.samples_ns, ", ").c_str());
  1285. fprintf(fout, "\"samples_ts\": [ %s ]", join(t.get_ts(), ", ").c_str());
  1286. fprintf(fout, "}\n");
  1287. fflush(fout);
  1288. }
  1289. };
  1290. struct markdown_printer : public printer {
  1291. std::vector<std::string> fields;
  1292. static int get_field_width(const std::string & field) {
  1293. if (field == "model") {
  1294. return -30;
  1295. }
  1296. if (field == "t/s") {
  1297. return 20;
  1298. }
  1299. if (field == "size" || field == "params") {
  1300. return 10;
  1301. }
  1302. if (field == "n_gpu_layers") {
  1303. return 3;
  1304. }
  1305. if (field == "n_threads") {
  1306. return 7;
  1307. }
  1308. if (field == "n_batch") {
  1309. return 7;
  1310. }
  1311. if (field == "n_ubatch") {
  1312. return 8;
  1313. }
  1314. if (field == "type_k" || field == "type_v") {
  1315. return 6;
  1316. }
  1317. if (field == "split_mode") {
  1318. return 5;
  1319. }
  1320. if (field == "flash_attn") {
  1321. return 2;
  1322. }
  1323. if (field == "use_mmap") {
  1324. return 4;
  1325. }
  1326. if (field == "test") {
  1327. return 15;
  1328. }
  1329. int width = std::max((int) field.length(), 10);
  1330. if (test::get_field_type(field) == test::STRING) {
  1331. return -width;
  1332. }
  1333. return width;
  1334. }
  1335. static std::string get_field_display_name(const std::string & field) {
  1336. if (field == "n_gpu_layers") {
  1337. return "ngl";
  1338. }
  1339. if (field == "split_mode") {
  1340. return "sm";
  1341. }
  1342. if (field == "n_threads") {
  1343. return "threads";
  1344. }
  1345. if (field == "no_kv_offload") {
  1346. return "nkvo";
  1347. }
  1348. if (field == "flash_attn") {
  1349. return "fa";
  1350. }
  1351. if (field == "use_mmap") {
  1352. return "mmap";
  1353. }
  1354. if (field == "embeddings") {
  1355. return "embd";
  1356. }
  1357. if (field == "tensor_split") {
  1358. return "ts";
  1359. }
  1360. if (field == "tensor_buft_overrides") {
  1361. return "ot";
  1362. }
  1363. return field;
  1364. }
  1365. void print_header(const cmd_params & params) override {
  1366. // select fields to print
  1367. fields.emplace_back("model");
  1368. fields.emplace_back("size");
  1369. fields.emplace_back("params");
  1370. fields.emplace_back("backend");
  1371. bool is_cpu_backend = test::get_backend().find("CPU") != std::string::npos ||
  1372. test::get_backend().find("BLAS") != std::string::npos;
  1373. if (!is_cpu_backend) {
  1374. fields.emplace_back("n_gpu_layers");
  1375. }
  1376. if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
  1377. fields.emplace_back("n_threads");
  1378. }
  1379. if (params.cpu_mask.size() > 1 || params.cpu_mask != cmd_params_defaults.cpu_mask) {
  1380. fields.emplace_back("cpu_mask");
  1381. }
  1382. if (params.cpu_strict.size() > 1 || params.cpu_strict != cmd_params_defaults.cpu_strict) {
  1383. fields.emplace_back("cpu_strict");
  1384. }
  1385. if (params.poll.size() > 1 || params.poll != cmd_params_defaults.poll) {
  1386. fields.emplace_back("poll");
  1387. }
  1388. if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
  1389. fields.emplace_back("n_batch");
  1390. }
  1391. if (params.n_ubatch.size() > 1 || params.n_ubatch != cmd_params_defaults.n_ubatch) {
  1392. fields.emplace_back("n_ubatch");
  1393. }
  1394. if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
  1395. fields.emplace_back("type_k");
  1396. }
  1397. if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
  1398. fields.emplace_back("type_v");
  1399. }
  1400. if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
  1401. fields.emplace_back("main_gpu");
  1402. }
  1403. if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
  1404. fields.emplace_back("split_mode");
  1405. }
  1406. if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
  1407. fields.emplace_back("no_kv_offload");
  1408. }
  1409. if (params.flash_attn.size() > 1 || params.flash_attn != cmd_params_defaults.flash_attn) {
  1410. fields.emplace_back("flash_attn");
  1411. }
  1412. if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
  1413. fields.emplace_back("tensor_split");
  1414. }
  1415. if (params.tensor_buft_overrides.size() > 1 || !vec_vec_tensor_buft_override_equal(params.tensor_buft_overrides, cmd_params_defaults.tensor_buft_overrides)) {
  1416. fields.emplace_back("tensor_buft_overrides");
  1417. }
  1418. if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
  1419. fields.emplace_back("use_mmap");
  1420. }
  1421. if (params.embeddings.size() > 1 || params.embeddings != cmd_params_defaults.embeddings) {
  1422. fields.emplace_back("embeddings");
  1423. }
  1424. fields.emplace_back("test");
  1425. fields.emplace_back("t/s");
  1426. fprintf(fout, "|");
  1427. for (const auto & field : fields) {
  1428. fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
  1429. }
  1430. fprintf(fout, "\n");
  1431. fprintf(fout, "|");
  1432. for (const auto & field : fields) {
  1433. int width = get_field_width(field);
  1434. fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
  1435. }
  1436. fprintf(fout, "\n");
  1437. }
  1438. void print_test(const test & t) override {
  1439. std::map<std::string, std::string> vmap = t.get_map();
  1440. fprintf(fout, "|");
  1441. for (const auto & field : fields) {
  1442. std::string value;
  1443. char buf[128];
  1444. if (field == "model") {
  1445. value = t.model_type;
  1446. } else if (field == "size") {
  1447. if (t.model_size < 1024 * 1024 * 1024) {
  1448. snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
  1449. } else {
  1450. snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
  1451. }
  1452. value = buf;
  1453. } else if (field == "params") {
  1454. if (t.model_n_params < 1000 * 1000 * 1000) {
  1455. snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
  1456. } else {
  1457. snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
  1458. }
  1459. value = buf;
  1460. } else if (field == "backend") {
  1461. value = test::get_backend();
  1462. } else if (field == "test") {
  1463. if (t.n_prompt > 0 && t.n_gen == 0) {
  1464. snprintf(buf, sizeof(buf), "pp%d", t.n_prompt);
  1465. } else if (t.n_gen > 0 && t.n_prompt == 0) {
  1466. snprintf(buf, sizeof(buf), "tg%d", t.n_gen);
  1467. } else {
  1468. snprintf(buf, sizeof(buf), "pp%d+tg%d", t.n_prompt, t.n_gen);
  1469. }
  1470. if (t.n_depth > 0) {
  1471. int len = strlen(buf);
  1472. snprintf(buf + len, sizeof(buf) - len, " @ d%d", t.n_depth);
  1473. }
  1474. value = buf;
  1475. } else if (field == "t/s") {
  1476. snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
  1477. value = buf;
  1478. } else if (vmap.find(field) != vmap.end()) {
  1479. value = vmap.at(field);
  1480. } else {
  1481. assert(false);
  1482. exit(1);
  1483. }
  1484. int width = get_field_width(field);
  1485. if (field == "t/s") {
  1486. // HACK: the utf-8 character is 2 bytes
  1487. width += 1;
  1488. }
  1489. fprintf(fout, " %*s |", width, value.c_str());
  1490. }
  1491. fprintf(fout, "\n");
  1492. }
  1493. void print_footer() override {
  1494. fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
  1495. }
  1496. };
  1497. struct sql_printer : public printer {
  1498. static std::string get_sql_field_type(const std::string & field) {
  1499. switch (test::get_field_type(field)) {
  1500. case test::STRING:
  1501. return "TEXT";
  1502. case test::BOOL:
  1503. case test::INT:
  1504. return "INTEGER";
  1505. case test::FLOAT:
  1506. return "REAL";
  1507. default:
  1508. assert(false);
  1509. exit(1);
  1510. }
  1511. }
  1512. void print_header(const cmd_params & params) override {
  1513. std::vector<std::string> fields = test::get_fields();
  1514. fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
  1515. for (size_t i = 0; i < fields.size(); i++) {
  1516. fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(),
  1517. i < fields.size() - 1 ? "," : "");
  1518. }
  1519. fprintf(fout, ");\n");
  1520. fprintf(fout, "\n");
  1521. (void) params;
  1522. }
  1523. void print_test(const test & t) override {
  1524. fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
  1525. fprintf(fout, "VALUES (");
  1526. std::vector<std::string> values = t.get_values();
  1527. for (size_t i = 0; i < values.size(); i++) {
  1528. fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
  1529. }
  1530. fprintf(fout, ");\n");
  1531. }
  1532. };
  1533. static void test_prompt(llama_context * ctx, int n_prompt, int n_batch, int n_threads) {
  1534. llama_set_n_threads(ctx, n_threads, n_threads);
  1535. const llama_model * model = llama_get_model(ctx);
  1536. const llama_vocab * vocab = llama_model_get_vocab(model);
  1537. const int32_t n_vocab = llama_vocab_n_tokens(vocab);
  1538. std::vector<llama_token> tokens(n_batch);
  1539. int n_processed = 0;
  1540. while (n_processed < n_prompt) {
  1541. int n_tokens = std::min(n_prompt - n_processed, n_batch);
  1542. tokens[0] = n_processed == 0 && llama_vocab_get_add_bos(vocab) ? llama_vocab_bos(vocab) : std::rand() % n_vocab;
  1543. for (int i = 1; i < n_tokens; i++) {
  1544. tokens[i] = std::rand() % n_vocab;
  1545. }
  1546. llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens));
  1547. n_processed += n_tokens;
  1548. }
  1549. llama_synchronize(ctx);
  1550. }
  1551. static void test_gen(llama_context * ctx, int n_gen, int n_threads) {
  1552. llama_set_n_threads(ctx, n_threads, n_threads);
  1553. const llama_model * model = llama_get_model(ctx);
  1554. const llama_vocab * vocab = llama_model_get_vocab(model);
  1555. const int32_t n_vocab = llama_vocab_n_tokens(vocab);
  1556. llama_token token = llama_vocab_get_add_bos(vocab) ? llama_vocab_bos(vocab) : std::rand() % n_vocab;
  1557. for (int i = 0; i < n_gen; i++) {
  1558. llama_decode(ctx, llama_batch_get_one(&token, 1));
  1559. llama_synchronize(ctx);
  1560. token = std::rand() % n_vocab;
  1561. }
  1562. }
  1563. static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
  1564. (void) level;
  1565. (void) text;
  1566. (void) user_data;
  1567. }
  1568. static std::unique_ptr<printer> create_printer(output_formats format) {
  1569. switch (format) {
  1570. case NONE:
  1571. return nullptr;
  1572. case CSV:
  1573. return std::unique_ptr<printer>(new csv_printer());
  1574. case JSON:
  1575. return std::unique_ptr<printer>(new json_printer());
  1576. case JSONL:
  1577. return std::unique_ptr<printer>(new jsonl_printer());
  1578. case MARKDOWN:
  1579. return std::unique_ptr<printer>(new markdown_printer());
  1580. case SQL:
  1581. return std::unique_ptr<printer>(new sql_printer());
  1582. }
  1583. GGML_ABORT("fatal error");
  1584. }
  1585. int main(int argc, char ** argv) {
  1586. // try to set locale for unicode characters in markdown
  1587. setlocale(LC_CTYPE, ".UTF-8");
  1588. #if !defined(NDEBUG)
  1589. fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
  1590. #endif
  1591. #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
  1592. fprintf(stderr, "warning: debug build, performance may be affected\n");
  1593. #endif
  1594. #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
  1595. fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
  1596. #endif
  1597. cmd_params params = parse_cmd_params(argc, argv);
  1598. // initialize backends
  1599. ggml_backend_load_all();
  1600. auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  1601. if (!cpu_dev) {
  1602. fprintf(stderr, "%s: error: CPU backend is not loaded\n", __func__);
  1603. return 1;
  1604. }
  1605. auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
  1606. auto * ggml_threadpool_new_fn = (decltype(ggml_threadpool_new) *) ggml_backend_reg_get_proc_address(cpu_reg, "ggml_threadpool_new");
  1607. auto * ggml_threadpool_free_fn = (decltype(ggml_threadpool_free) *) ggml_backend_reg_get_proc_address(cpu_reg, "ggml_threadpool_free");
  1608. // initialize llama.cpp
  1609. if (!params.verbose) {
  1610. llama_log_set(llama_null_log_callback, NULL);
  1611. }
  1612. llama_backend_init();
  1613. llama_numa_init(params.numa);
  1614. set_process_priority(params.prio);
  1615. // initialize printer
  1616. std::unique_ptr<printer> p = create_printer(params.output_format);
  1617. std::unique_ptr<printer> p_err = create_printer(params.output_format_stderr);
  1618. if (p) {
  1619. p->fout = stdout;
  1620. p->print_header(params);
  1621. }
  1622. if (p_err) {
  1623. p_err->fout = stderr;
  1624. p_err->print_header(params);
  1625. }
  1626. std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
  1627. llama_model * lmodel = nullptr;
  1628. const cmd_params_instance * prev_inst = nullptr;
  1629. int params_idx = 0;
  1630. auto params_count = params_instances.size();
  1631. for (const auto & inst : params_instances) {
  1632. params_idx++;
  1633. if (params.progress) {
  1634. fprintf(stderr, "llama-bench: benchmark %d/%zu: starting\n", params_idx, params_count);
  1635. }
  1636. // keep the same model between tests when possible
  1637. if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
  1638. if (lmodel) {
  1639. llama_model_free(lmodel);
  1640. }
  1641. lmodel = llama_model_load_from_file(inst.model.c_str(), inst.to_llama_mparams());
  1642. if (lmodel == NULL) {
  1643. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
  1644. return 1;
  1645. }
  1646. prev_inst = &inst;
  1647. }
  1648. llama_context * ctx = llama_init_from_model(lmodel, inst.to_llama_cparams());
  1649. if (ctx == NULL) {
  1650. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
  1651. llama_model_free(lmodel);
  1652. return 1;
  1653. }
  1654. test t(inst, lmodel, ctx);
  1655. llama_kv_self_clear(ctx);
  1656. // cool off before the test
  1657. if (params.delay) {
  1658. std::this_thread::sleep_for(std::chrono::seconds(params.delay));
  1659. }
  1660. struct ggml_threadpool_params tpp = ggml_threadpool_params_default(t.n_threads);
  1661. if (!parse_cpu_mask(t.cpu_mask, tpp.cpumask)) {
  1662. fprintf(stderr, "%s: failed to parse cpu-mask: %s\n", __func__, t.cpu_mask.c_str());
  1663. exit(1);
  1664. }
  1665. tpp.strict_cpu = t.cpu_strict;
  1666. tpp.poll = t.poll;
  1667. tpp.prio = params.prio;
  1668. struct ggml_threadpool * threadpool = ggml_threadpool_new_fn(&tpp);
  1669. if (!threadpool) {
  1670. fprintf(stderr, "%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads);
  1671. exit(1);
  1672. }
  1673. llama_attach_threadpool(ctx, threadpool, NULL);
  1674. // warmup run
  1675. if (t.n_prompt > 0) {
  1676. if (params.progress) {
  1677. fprintf(stderr, "llama-bench: benchmark %d/%zu: warmup prompt run\n", params_idx, params_count);
  1678. }
  1679. //test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
  1680. test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads);
  1681. }
  1682. if (t.n_gen > 0) {
  1683. if (params.progress) {
  1684. fprintf(stderr, "llama-bench: benchmark %d/%zu: warmup generation run\n", params_idx, params_count);
  1685. }
  1686. test_gen(ctx, 1, t.n_threads);
  1687. }
  1688. for (int i = 0; i < params.reps; i++) {
  1689. llama_kv_self_clear(ctx);
  1690. if (t.n_depth > 0) {
  1691. if (params.progress) {
  1692. fprintf(stderr, "llama-bench: benchmark %d/%zu: depth run %d/%d\n", params_idx, params_count,
  1693. i + 1, params.reps);
  1694. }
  1695. test_prompt(ctx, t.n_depth, t.n_batch, t.n_threads);
  1696. }
  1697. uint64_t t_start = get_time_ns();
  1698. if (t.n_prompt > 0) {
  1699. if (params.progress) {
  1700. fprintf(stderr, "llama-bench: benchmark %d/%zu: prompt run %d/%d\n", params_idx, params_count,
  1701. i + 1, params.reps);
  1702. }
  1703. test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads);
  1704. }
  1705. if (t.n_gen > 0) {
  1706. if (params.progress) {
  1707. fprintf(stderr, "llama-bench: benchmark %d/%zu: generation run %d/%d\n", params_idx, params_count,
  1708. i + 1, params.reps);
  1709. }
  1710. test_gen(ctx, t.n_gen, t.n_threads);
  1711. }
  1712. uint64_t t_ns = get_time_ns() - t_start;
  1713. t.samples_ns.push_back(t_ns);
  1714. }
  1715. if (p) {
  1716. p->print_test(t);
  1717. fflush(p->fout);
  1718. }
  1719. if (p_err) {
  1720. p_err->print_test(t);
  1721. fflush(p_err->fout);
  1722. }
  1723. llama_perf_context_print(ctx);
  1724. llama_free(ctx);
  1725. ggml_threadpool_free_fn(threadpool);
  1726. }
  1727. llama_model_free(lmodel);
  1728. if (p) {
  1729. p->print_footer();
  1730. }
  1731. if (p_err) {
  1732. p_err->print_footer();
  1733. }
  1734. llama_backend_free();
  1735. return 0;
  1736. }