utils.h 3.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105
  1. // Various helper functions and utilities
  2. #pragma once
  3. #include <string>
  4. #include <map>
  5. #include <vector>
  6. #include <random>
  7. #include <thread>
  8. //
  9. // CLI argument parsing
  10. //
  11. struct gpt_params {
  12. int32_t seed = -1; // RNG seed
  13. int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
  14. int32_t n_predict = 128; // new tokens to predict
  15. int32_t repeat_last_n = 64; // last n tokens to penalize
  16. // sampling parameters
  17. int32_t top_k = 40; // unused
  18. float top_p = 0.95f;
  19. float temp = 0.80f;
  20. float repeat_penalty = 1.30f;
  21. int32_t n_batch = 8; // batch size for prompt processing
  22. std::string model = "models/lamma-7B/ggml-model.bin"; // model path
  23. std::string prompt;
  24. };
  25. bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
  26. void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
  27. std::string gpt_random_prompt(std::mt19937 & rng);
  28. //
  29. // Vocab utils
  30. //
  31. struct gpt_vocab {
  32. using id = int32_t;
  33. using token = std::string;
  34. std::map<token, id> token_to_id;
  35. std::map<id, token> id_to_token;
  36. };
  37. void replace(std::string & str, const std::string & needle, const std::string & replacement);
  38. // poor-man's JSON parsing
  39. std::map<std::string, int32_t> json_parse(const std::string & fname);
  40. // split text into tokens
  41. //
  42. // ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53
  43. //
  44. // Regex (Python):
  45. // r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
  46. //
  47. // Regex (C++):
  48. // R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)"
  49. //
  50. std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text);
  51. // TODO: this is probably wrong, but I cannot figure out how this tokenizer works ..
  52. // ref: https://github.com/google/sentencepiece
  53. std::vector<gpt_vocab::id> llama_tokenize(const gpt_vocab & vocab, const std::string & text, bool bos);
  54. // load the tokens from encoder.json
  55. bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab);
  56. // sample next token given probabilities for each embedding
  57. //
  58. // - consider only the top K tokens
  59. // - from them, consider only the top tokens with cumulative probability > P
  60. //
  61. // TODO: not sure if this implementation is correct
  62. // TODO: temperature is not implemented
  63. //
  64. gpt_vocab::id gpt_sample_top_k_top_p(
  65. const gpt_vocab & vocab,
  66. const float * logits,
  67. int top_k,
  68. double top_p,
  69. double temp,
  70. std::mt19937 & rng);
  71. gpt_vocab::id llama_sample_top_p(
  72. const gpt_vocab & vocab,
  73. const float * logits,
  74. std::vector<gpt_vocab::id> & last_n_tokens,
  75. double repeat_penalty,
  76. double top_p,
  77. double temp,
  78. std::mt19937 & rng);
  79. //
  80. // Quantization
  81. //
  82. size_t ggml_quantize_q4_0(float * src, void * dst, int n, int k, int qk, int64_t * hist);
  83. size_t ggml_quantize_q4_1(float * src, void * dst, int n, int k, int qk, int64_t * hist);