convert_hf_to_gguf.py 264 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. import math
  18. import numpy as np
  19. import torch
  20. if TYPE_CHECKING:
  21. from torch import Tensor
  22. if 'NO_LOCAL_GGUF' not in os.environ:
  23. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  24. import gguf
  25. logger = logging.getLogger("hf-to-gguf")
  26. ###### MODEL DEFINITIONS ######
  27. class SentencePieceTokenTypes(IntEnum):
  28. NORMAL = 1
  29. UNKNOWN = 2
  30. CONTROL = 3
  31. USER_DEFINED = 4
  32. UNUSED = 5
  33. BYTE = 6
  34. class ModelType(IntEnum):
  35. TEXT = 1
  36. VISION = 2
  37. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  38. class ModelBase:
  39. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  40. ModelType.TEXT: {},
  41. ModelType.VISION: {},
  42. }
  43. dir_model: Path
  44. ftype: gguf.LlamaFileType
  45. fname_out: Path
  46. is_big_endian: bool
  47. endianess: gguf.GGUFEndian
  48. use_temp_file: bool
  49. lazy: bool
  50. part_names: list[str]
  51. is_safetensors: bool
  52. hparams: dict[str, Any]
  53. block_count: int
  54. tensor_map: gguf.TensorNameMap
  55. tensor_names: set[str] | None
  56. gguf_writer: gguf.GGUFWriter
  57. model_name: str | None
  58. metadata_override: Path | None
  59. dir_model_card: Path
  60. remote_hf_model_id: str | None
  61. # subclasses should define this!
  62. model_arch: gguf.MODEL_ARCH
  63. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
  64. use_temp_file: bool = False, eager: bool = False,
  65. metadata_override: Path | None = None, model_name: str | None = None,
  66. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  67. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None):
  68. if type(self) is ModelBase or \
  69. type(self) is TextModel or \
  70. type(self) is VisionModel:
  71. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  72. self.dir_model = dir_model
  73. self.ftype = ftype
  74. self.fname_out = fname_out
  75. self.is_big_endian = is_big_endian
  76. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  77. self.use_temp_file = use_temp_file
  78. self.lazy = not eager or (remote_hf_model_id is not None)
  79. self.remote_hf_model_id = remote_hf_model_id
  80. if remote_hf_model_id is not None:
  81. self.is_safetensors = True
  82. def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
  83. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  84. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  85. self.tensor_names = set(name for name in remote_tensors.keys())
  86. for name, remote_tensor in gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id).items():
  87. yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
  88. self.get_tensors = get_remote_tensors
  89. else:
  90. self.part_names = ModelBase.get_model_part_names(self.dir_model, "model", ".safetensors")
  91. self.is_safetensors = len(self.part_names) > 0
  92. if not self.is_safetensors:
  93. self.part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  94. self.hparams = ModelBase.load_hparams(self.dir_model) if hparams is None else hparams
  95. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  96. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  97. self.tensor_names = None
  98. self.metadata_override = metadata_override
  99. self.model_name = model_name
  100. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  101. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  102. if self.ftype == gguf.LlamaFileType.GUESSED:
  103. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  104. _, first_tensor = next(self.get_tensors())
  105. if first_tensor.dtype == torch.float16:
  106. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  107. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  108. else:
  109. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  110. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  111. # Configure GGUF Writer
  112. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  113. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  114. @classmethod
  115. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  116. stem, suffix = path.stem, path.suffix
  117. new_name = f"{prefix}{stem}{suffix}"
  118. return path.with_name(new_name)
  119. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  120. key = next((k for k in keys if k in self.hparams), None)
  121. if key is not None:
  122. return self.hparams[key]
  123. if optional:
  124. return None
  125. raise KeyError(f"could not find any of: {keys}")
  126. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  127. tensor_names_from_parts: set[str] = set()
  128. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  129. index_name += ".index.json"
  130. index_file = self.dir_model / index_name
  131. if index_file.is_file():
  132. self.tensor_names = set()
  133. logger.info(f"gguf: loading model weight map from '{index_name}'")
  134. with open(index_file, "r", encoding="utf-8") as f:
  135. index: dict[str, Any] = json.load(f)
  136. weight_map = index.get("weight_map")
  137. if weight_map is None or not isinstance(weight_map, dict):
  138. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  139. self.tensor_names.update(weight_map.keys())
  140. else:
  141. self.tensor_names = tensor_names_from_parts
  142. weight_map = {}
  143. for part_name in self.part_names:
  144. logger.info(f"gguf: loading model part '{part_name}'")
  145. ctx: ContextManager[Any]
  146. if self.is_safetensors:
  147. from safetensors import safe_open
  148. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  149. else:
  150. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  151. with ctx as model_part:
  152. tensor_names_from_parts.update(model_part.keys())
  153. for name in model_part.keys():
  154. if self.is_safetensors:
  155. if self.lazy:
  156. data = model_part.get_slice(name)
  157. data = LazyTorchTensor.from_safetensors_slice(data)
  158. else:
  159. data = model_part.get_tensor(name)
  160. else:
  161. data = model_part[name]
  162. if self.lazy:
  163. data = LazyTorchTensor.from_eager(data)
  164. yield name, data
  165. # verify tensor name presence and identify potentially missing files
  166. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  167. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  168. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  169. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  170. if len(extra) == 0 and len(missing_files) > 0:
  171. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  172. f"Missing tensors: {missing}")
  173. else:
  174. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  175. f"Missing tensors: {missing}\n"
  176. f"Extra tensors: {extra}")
  177. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  178. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  179. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  180. name: str = gguf.TENSOR_NAMES[key]
  181. if "{bid}" in name:
  182. assert bid is not None
  183. name = name.format(bid=bid)
  184. return name + suffix
  185. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  186. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  187. return False
  188. key_name: str = gguf.TENSOR_NAMES[key]
  189. if "{bid}" in key_name:
  190. if bid is None:
  191. return False
  192. key_name = key_name.format(bid=bid)
  193. else:
  194. if bid is not None:
  195. return False
  196. return name == (key_name + suffix)
  197. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  198. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  199. if new_name is None:
  200. raise ValueError(f"Can not map tensor {name!r}")
  201. return new_name
  202. def set_gguf_parameters(self):
  203. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  204. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  205. del bid # unused
  206. return [(self.map_tensor_name(name), data_torch)]
  207. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  208. del name, new_name, bid, n_dims # unused
  209. return False
  210. # some models need extra generated tensors (like rope_freqs)
  211. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  212. return ()
  213. def prepare_tensors(self):
  214. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  215. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  216. # we don't need these
  217. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  218. continue
  219. old_dtype = data_torch.dtype
  220. # convert any unsupported data types to float32
  221. if data_torch.dtype not in (torch.float16, torch.float32):
  222. data_torch = data_torch.to(torch.float32)
  223. # use the first number-like part of the tensor name as the block id
  224. bid = None
  225. for part in name.split("."):
  226. if part.isdecimal():
  227. bid = int(part)
  228. break
  229. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  230. # TODO: why do we squeeze here?
  231. # data = data_torch.squeeze().numpy()
  232. data = data_torch.numpy()
  233. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  234. if len(data.shape) == 0:
  235. data = data_torch.numpy()
  236. n_dims = len(data.shape)
  237. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  238. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  239. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  240. data_qtype = gguf.GGMLQuantizationType.F32
  241. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  242. # Some tensor types are always in float32
  243. if data_qtype is False and (
  244. any(
  245. self.match_model_tensor_name(new_name, key, bid)
  246. for key in (
  247. gguf.MODEL_TENSOR.FFN_GATE_INP,
  248. gguf.MODEL_TENSOR.POS_EMBD,
  249. gguf.MODEL_TENSOR.TOKEN_TYPES,
  250. gguf.MODEL_TENSOR.SSM_CONV1D,
  251. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  252. gguf.MODEL_TENSOR.TIME_MIX_W1,
  253. gguf.MODEL_TENSOR.TIME_MIX_W2,
  254. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  255. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  256. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  257. gguf.MODEL_TENSOR.POSNET_NORM1,
  258. gguf.MODEL_TENSOR.POSNET_NORM2,
  259. )
  260. )
  261. or not new_name.endswith(".weight")
  262. ):
  263. data_qtype = gguf.GGMLQuantizationType.F32
  264. if data_qtype is False and any(
  265. self.match_model_tensor_name(new_name, key, bid)
  266. for key in (
  267. gguf.MODEL_TENSOR.TOKEN_EMBD,
  268. gguf.MODEL_TENSOR.OUTPUT,
  269. )
  270. ):
  271. if self.ftype in (
  272. gguf.LlamaFileType.MOSTLY_TQ1_0,
  273. gguf.LlamaFileType.MOSTLY_TQ2_0,
  274. ):
  275. # TODO: use Q4_K and Q6_K
  276. data_qtype = gguf.GGMLQuantizationType.F16
  277. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  278. if isinstance(data_qtype, bool):
  279. if self.ftype == gguf.LlamaFileType.ALL_F32:
  280. data_qtype = gguf.GGMLQuantizationType.F32
  281. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  282. data_qtype = gguf.GGMLQuantizationType.F16
  283. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  284. data_qtype = gguf.GGMLQuantizationType.BF16
  285. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  286. data_qtype = gguf.GGMLQuantizationType.Q8_0
  287. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  288. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  289. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  290. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  291. else:
  292. raise ValueError(f"Unknown file type: {self.ftype.name}")
  293. try:
  294. data = gguf.quants.quantize(data, data_qtype)
  295. except gguf.QuantError as e:
  296. logger.warning("%s, %s", e, "falling back to F16")
  297. data_qtype = gguf.GGMLQuantizationType.F16
  298. data = gguf.quants.quantize(data, data_qtype)
  299. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  300. # reverse shape to make it similar to the internal ggml dimension order
  301. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  302. # n_dims is implicit in the shape
  303. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  304. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  305. def set_type(self):
  306. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  307. def prepare_metadata(self, vocab_only: bool):
  308. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  309. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  310. # If we are using HF model id, set the metadata name to the model id
  311. if self.remote_hf_model_id:
  312. self.metadata.name = self.remote_hf_model_id
  313. # Fallback to model directory name if metadata name is still missing
  314. if self.metadata.name is None:
  315. self.metadata.name = self.dir_model.name
  316. # Generate parameter weight class (useful for leader boards) if not yet determined
  317. if self.metadata.size_label is None and total_params > 0:
  318. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  319. self.set_type()
  320. logger.info("Set meta model")
  321. self.metadata.set_gguf_meta_model(self.gguf_writer)
  322. logger.info("Set model parameters")
  323. self.set_gguf_parameters()
  324. logger.info("Set model quantization version")
  325. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  326. def write_vocab(self):
  327. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  328. def write(self):
  329. self.prepare_tensors()
  330. self.prepare_metadata(vocab_only=False)
  331. self.gguf_writer.write_header_to_file(path=self.fname_out)
  332. self.gguf_writer.write_kv_data_to_file()
  333. self.gguf_writer.write_tensors_to_file(progress=True)
  334. self.gguf_writer.close()
  335. @staticmethod
  336. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  337. part_names: list[str] = []
  338. for filename in os.listdir(dir_model):
  339. if filename.startswith(prefix) and filename.endswith(suffix):
  340. part_names.append(filename)
  341. part_names.sort()
  342. return part_names
  343. @staticmethod
  344. def load_hparams(dir_model: Path):
  345. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  346. hparams = json.load(f)
  347. architectures = hparams.get("architectures")
  348. if "text_config" in hparams:
  349. hparams = {**hparams, **hparams["text_config"]}
  350. if architectures is not None:
  351. # preserve "architectures" from root level config
  352. hparams["architectures"] = architectures
  353. return hparams
  354. @classmethod
  355. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  356. assert names
  357. def func(modelcls: AnyModel) -> AnyModel:
  358. model_type = ModelType.VISION if modelcls.model_arch == gguf.MODEL_ARCH.CLIP_VISION else ModelType.TEXT
  359. for name in names:
  360. cls._model_classes[model_type][name] = modelcls
  361. return modelcls
  362. return func
  363. @classmethod
  364. def print_registered_models(cls):
  365. for model_type, model_classes in cls._model_classes.items():
  366. logger.error(f"{model_type.name} models:")
  367. for name in sorted(model_classes.keys()):
  368. logger.error(f" - {name}")
  369. @classmethod
  370. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  371. try:
  372. return cls._model_classes[model_type][arch]
  373. except KeyError:
  374. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  375. class TextModel(ModelBase):
  376. @classmethod
  377. def __init_subclass__(cls):
  378. # can't use an abstract property, because overriding it without type errors
  379. # would require using decorated functions instead of simply defining the property
  380. if "model_arch" not in cls.__dict__:
  381. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  382. def set_vocab(self):
  383. self._set_vocab_gpt2()
  384. def prepare_metadata(self, vocab_only: bool):
  385. super().prepare_metadata(vocab_only=vocab_only)
  386. total_params = self.gguf_writer.get_total_parameter_count()[0]
  387. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  388. output_type: str = self.ftype.name.partition("_")[2]
  389. # Filename Output
  390. if self.fname_out.is_dir():
  391. # Generate default filename based on model specification and available metadata
  392. if not vocab_only:
  393. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  394. else:
  395. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  396. # Use the default filename
  397. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  398. else:
  399. # Output path is a custom defined templated filename
  400. # Note: `not is_dir()` is used because `.is_file()` will not detect
  401. # file template strings as it doesn't actually exist as a file
  402. # Process templated file name with the output ftype, useful with the "auto" ftype
  403. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  404. logger.info("Set model tokenizer")
  405. self.set_vocab()
  406. def set_gguf_parameters(self):
  407. self.gguf_writer.add_block_count(self.block_count)
  408. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  409. self.gguf_writer.add_context_length(n_ctx)
  410. logger.info(f"gguf: context length = {n_ctx}")
  411. if (n_embd := self.find_hparam(["hidden_size", "n_embd"], optional=True)) is not None:
  412. self.gguf_writer.add_embedding_length(n_embd)
  413. logger.info(f"gguf: embedding length = {n_embd}")
  414. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  415. self.gguf_writer.add_feed_forward_length(n_ff)
  416. logger.info(f"gguf: feed forward length = {n_ff}")
  417. if (n_head := self.find_hparam(["num_attention_heads", "n_head"], optional=True)) is not None:
  418. self.gguf_writer.add_head_count(n_head)
  419. logger.info(f"gguf: head count = {n_head}")
  420. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  421. self.gguf_writer.add_head_count_kv(n_head_kv)
  422. logger.info(f"gguf: key-value head count = {n_head_kv}")
  423. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  424. self.gguf_writer.add_rope_freq_base(rope_theta)
  425. logger.info(f"gguf: rope theta = {rope_theta}")
  426. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  427. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  428. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  429. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  430. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  431. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  432. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  433. self.gguf_writer.add_expert_count(n_experts)
  434. logger.info(f"gguf: expert count = {n_experts}")
  435. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  436. self.gguf_writer.add_expert_used_count(n_experts_used)
  437. logger.info(f"gguf: experts used count = {n_experts_used}")
  438. if (head_dim := self.hparams.get("head_dim")) is not None:
  439. self.gguf_writer.add_key_length(head_dim)
  440. self.gguf_writer.add_value_length(head_dim)
  441. self.gguf_writer.add_file_type(self.ftype)
  442. logger.info(f"gguf: file type = {self.ftype}")
  443. def write_vocab(self):
  444. if len(self.gguf_writer.tensors) != 1:
  445. raise ValueError('Splitting the vocabulary is not supported')
  446. self.prepare_metadata(vocab_only=True)
  447. self.gguf_writer.write_header_to_file(path=self.fname_out)
  448. self.gguf_writer.write_kv_data_to_file()
  449. self.gguf_writer.close()
  450. def does_token_look_special(self, token: str | bytes) -> bool:
  451. if isinstance(token, (bytes, bytearray)):
  452. token_text = token.decode(encoding="utf-8")
  453. elif isinstance(token, memoryview):
  454. token_text = token.tobytes().decode(encoding="utf-8")
  455. else:
  456. token_text = token
  457. # Some models mark some added tokens which ought to be control tokens as not special.
  458. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  459. seems_special = token_text in (
  460. "<pad>", # deepseek-coder
  461. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  462. )
  463. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  464. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  465. # TODO: should these be marked as UNUSED instead? (maybe not)
  466. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  467. return seems_special
  468. # used for GPT-2 BPE and WordPiece vocabs
  469. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  470. tokens: list[str] = []
  471. toktypes: list[int] = []
  472. from transformers import AutoTokenizer
  473. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  474. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  475. assert max(tokenizer.vocab.values()) < vocab_size
  476. tokpre = self.get_vocab_base_pre(tokenizer)
  477. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  478. added_vocab = tokenizer.get_added_vocab()
  479. added_tokens_decoder = tokenizer.added_tokens_decoder
  480. for i in range(vocab_size):
  481. if i not in reverse_vocab:
  482. tokens.append(f"[PAD{i}]")
  483. toktypes.append(gguf.TokenType.UNUSED)
  484. else:
  485. token: str = reverse_vocab[i]
  486. if token in added_vocab:
  487. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  488. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  489. if not added_tokens_decoder[i].normalized:
  490. previous_token = token
  491. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  492. if previous_token != token:
  493. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  494. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  495. toktypes.append(gguf.TokenType.CONTROL)
  496. else:
  497. # NOTE: this was added for Gemma.
  498. # Encoding and decoding the tokens above isn't sufficient for this case.
  499. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  500. toktypes.append(gguf.TokenType.USER_DEFINED)
  501. else:
  502. toktypes.append(gguf.TokenType.NORMAL)
  503. tokens.append(token)
  504. return tokens, toktypes, tokpre
  505. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  506. # do not modify it manually!
  507. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  508. # Marker: Start get_vocab_base_pre
  509. def get_vocab_base_pre(self, tokenizer) -> str:
  510. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  511. # is specific for the BPE pre-tokenizer used by the model
  512. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  513. # use in llama.cpp to implement the same pre-tokenizer
  514. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  515. chktok = tokenizer.encode(chktxt)
  516. chkhsh = sha256(str(chktok).encode()).hexdigest()
  517. logger.debug(f"chktok: {chktok}")
  518. logger.debug(f"chkhsh: {chkhsh}")
  519. res = None
  520. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  521. # or pull the latest version of the model from Huggingface
  522. # don't edit the hashes manually!
  523. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  524. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  525. res = "llama-bpe"
  526. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  527. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  528. res = "deepseek-llm"
  529. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  530. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  531. res = "deepseek-coder"
  532. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  533. # ref: https://huggingface.co/tiiuae/falcon-7b
  534. res = "falcon"
  535. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  536. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  537. res = "falcon3"
  538. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  539. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  540. res = "bert-bge"
  541. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  542. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  543. res = "bert-bge-large"
  544. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  545. # ref: https://huggingface.co/mosaicml/mpt-7b
  546. res = "mpt"
  547. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  548. # ref: https://huggingface.co/bigcode/starcoder2-3b
  549. res = "starcoder"
  550. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  551. # ref: https://huggingface.co/openai-community/gpt2
  552. res = "gpt-2"
  553. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  554. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  555. res = "stablelm2"
  556. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  557. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  558. res = "refact"
  559. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  560. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  561. res = "command-r"
  562. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  563. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  564. res = "qwen2"
  565. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  566. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  567. res = "olmo"
  568. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  569. # ref: https://huggingface.co/databricks/dbrx-base
  570. res = "dbrx"
  571. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  572. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  573. res = "jina-v1-en"
  574. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  575. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  576. res = "jina-v2-en"
  577. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  578. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  579. res = "jina-v2-es"
  580. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  581. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  582. res = "jina-v2-de"
  583. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  584. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  585. res = "smaug-bpe"
  586. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  587. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  588. res = "poro-chat"
  589. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  590. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  591. res = "jina-v2-code"
  592. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b" or chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  593. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  594. res = "chatglm-bpe"
  595. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  596. # ref: https://huggingface.co/LumiOpen/Viking-7B
  597. res = "viking"
  598. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  599. # ref: https://huggingface.co/core42/jais-13b
  600. res = "jais"
  601. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  602. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  603. res = "codeshell"
  604. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  605. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  606. res = "tekken"
  607. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  608. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  609. res = "smollm"
  610. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  611. # ref: https://huggingface.co/bigscience/bloom
  612. res = "bloom"
  613. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  614. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  615. res = "gpt3-finnish"
  616. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  617. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  618. res = "exaone"
  619. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  620. # ref: https://huggingface.co/microsoft/phi-2
  621. res = "phi-2"
  622. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  623. # ref: https://huggingface.co/facebook/chameleon-7b
  624. res = "chameleon"
  625. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  626. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  627. res = "minerva-7b"
  628. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  629. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  630. res = "roberta-bpe"
  631. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  632. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  633. res = "gigachat"
  634. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  635. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  636. res = "megrez"
  637. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  638. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  639. res = "deepseek-v3"
  640. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  641. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  642. res = "deepseek-r1-qwen"
  643. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  644. # ref: https://huggingface.co/Xenova/gpt-4o
  645. res = "gpt-4o"
  646. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  647. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  648. res = "superbpe"
  649. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  650. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  651. res = "trillion"
  652. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  653. # ref: https://huggingface.co/inclusionAI/Ling-lite
  654. res = "bailingmoe"
  655. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  656. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  657. res = "llama4"
  658. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  659. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  660. res = "glm4"
  661. if res is None:
  662. logger.warning("\n")
  663. logger.warning("**************************************************************************************")
  664. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  665. logger.warning("** There are 2 possible reasons for this:")
  666. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  667. logger.warning("** - the pre-tokenization config has changed upstream")
  668. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  669. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  670. logger.warning("**")
  671. logger.warning(f"** chkhsh: {chkhsh}")
  672. logger.warning("**************************************************************************************")
  673. logger.warning("\n")
  674. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  675. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  676. logger.debug(f"chkhsh: {chkhsh}")
  677. return res
  678. # Marker: End get_vocab_base_pre
  679. def _set_vocab_none(self) -> None:
  680. self.gguf_writer.add_tokenizer_model("none")
  681. def _set_vocab_gpt2(self) -> None:
  682. tokens, toktypes, tokpre = self.get_vocab_base()
  683. self.gguf_writer.add_tokenizer_model("gpt2")
  684. self.gguf_writer.add_tokenizer_pre(tokpre)
  685. self.gguf_writer.add_token_list(tokens)
  686. self.gguf_writer.add_token_types(toktypes)
  687. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  688. special_vocab.add_to_gguf(self.gguf_writer)
  689. def _set_vocab_qwen(self):
  690. dir_model = self.dir_model
  691. hparams = self.hparams
  692. tokens: list[str] = []
  693. toktypes: list[int] = []
  694. from transformers import AutoTokenizer
  695. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  696. vocab_size = hparams["vocab_size"]
  697. assert max(tokenizer.get_vocab().values()) < vocab_size
  698. tokpre = self.get_vocab_base_pre(tokenizer)
  699. merges = []
  700. vocab = {}
  701. mergeable_ranks = tokenizer.mergeable_ranks
  702. for token, rank in mergeable_ranks.items():
  703. vocab[QwenModel.token_bytes_to_string(token)] = rank
  704. if len(token) == 1:
  705. continue
  706. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  707. assert len(merged) == 2
  708. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  709. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  710. added_vocab = tokenizer.special_tokens
  711. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  712. for i in range(vocab_size):
  713. if i not in reverse_vocab:
  714. tokens.append(f"[PAD{i}]")
  715. toktypes.append(gguf.TokenType.UNUSED)
  716. elif reverse_vocab[i] in added_vocab:
  717. tokens.append(reverse_vocab[i])
  718. toktypes.append(gguf.TokenType.CONTROL)
  719. else:
  720. tokens.append(reverse_vocab[i])
  721. toktypes.append(gguf.TokenType.NORMAL)
  722. self.gguf_writer.add_tokenizer_model("gpt2")
  723. self.gguf_writer.add_tokenizer_pre(tokpre)
  724. self.gguf_writer.add_token_list(tokens)
  725. self.gguf_writer.add_token_types(toktypes)
  726. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  727. special_vocab.merges = merges
  728. # only add special tokens when they were not already loaded from config.json
  729. if len(special_vocab.special_token_ids) == 0:
  730. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  731. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  732. # this one is usually not in config.json anyway
  733. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  734. special_vocab.add_to_gguf(self.gguf_writer)
  735. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  736. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  737. self.gguf_writer.add_tokenizer_model("llama")
  738. self.gguf_writer.add_tokenizer_pre("default")
  739. self.gguf_writer.add_token_list(tokens)
  740. self.gguf_writer.add_token_scores(scores)
  741. self.gguf_writer.add_token_types(toktypes)
  742. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  743. special_vocab.add_to_gguf(self.gguf_writer)
  744. def _create_vocab_sentencepiece(self):
  745. from sentencepiece import SentencePieceProcessor
  746. tokenizer_path = self.dir_model / 'tokenizer.model'
  747. if not tokenizer_path.is_file():
  748. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  749. tokenizer = SentencePieceProcessor()
  750. tokenizer.LoadFromFile(str(tokenizer_path))
  751. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  752. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  753. scores: list[float] = [-10000.0] * vocab_size
  754. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  755. for token_id in range(tokenizer.vocab_size()):
  756. piece = tokenizer.IdToPiece(token_id)
  757. text = piece.encode("utf-8")
  758. score = tokenizer.GetScore(token_id)
  759. toktype = SentencePieceTokenTypes.NORMAL
  760. if tokenizer.IsUnknown(token_id):
  761. toktype = SentencePieceTokenTypes.UNKNOWN
  762. elif tokenizer.IsControl(token_id):
  763. toktype = SentencePieceTokenTypes.CONTROL
  764. elif tokenizer.IsUnused(token_id):
  765. toktype = SentencePieceTokenTypes.UNUSED
  766. elif tokenizer.IsByte(token_id):
  767. toktype = SentencePieceTokenTypes.BYTE
  768. tokens[token_id] = text
  769. scores[token_id] = score
  770. toktypes[token_id] = toktype
  771. added_tokens_file = self.dir_model / 'added_tokens.json'
  772. if added_tokens_file.is_file():
  773. with open(added_tokens_file, "r", encoding="utf-8") as f:
  774. added_tokens_json = json.load(f)
  775. for key in added_tokens_json:
  776. token_id = added_tokens_json[key]
  777. if token_id >= vocab_size:
  778. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  779. continue
  780. tokens[token_id] = key.encode("utf-8")
  781. scores[token_id] = -1000.0
  782. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  783. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  784. if tokenizer_config_file.is_file():
  785. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  786. tokenizer_config_json = json.load(f)
  787. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  788. for token_id, token_data in added_tokens_decoder.items():
  789. token_id = int(token_id)
  790. token: str = token_data["content"]
  791. if token_id >= vocab_size:
  792. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  793. continue
  794. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  795. if tokens[token_id] != token.encode("utf-8"):
  796. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  797. if token_data.get("special") or self.does_token_look_special(token):
  798. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  799. else:
  800. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  801. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  802. scores[token_id] = -1000.0
  803. tokens[token_id] = token.encode("utf-8")
  804. if vocab_size > len(tokens):
  805. pad_count = vocab_size - len(tokens)
  806. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  807. for i in range(1, pad_count + 1):
  808. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  809. scores.append(-1000.0)
  810. toktypes.append(SentencePieceTokenTypes.UNUSED)
  811. return tokens, scores, toktypes
  812. def _set_vocab_llama_hf(self):
  813. vocab = gguf.LlamaHfVocab(self.dir_model)
  814. tokens = []
  815. scores = []
  816. toktypes = []
  817. for text, score, toktype in vocab.all_tokens():
  818. tokens.append(text)
  819. scores.append(score)
  820. toktypes.append(toktype)
  821. assert len(tokens) == vocab.vocab_size
  822. self.gguf_writer.add_tokenizer_model("llama")
  823. self.gguf_writer.add_tokenizer_pre("default")
  824. self.gguf_writer.add_token_list(tokens)
  825. self.gguf_writer.add_token_scores(scores)
  826. self.gguf_writer.add_token_types(toktypes)
  827. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  828. special_vocab.add_to_gguf(self.gguf_writer)
  829. def _set_vocab_rwkv_world(self):
  830. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  831. vocab_size = self.hparams.get("vocab_size", 65536)
  832. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  833. toktypes: list[int] = [gguf.TokenType.CONTROL]
  834. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  835. lines = f.readlines()
  836. for line in lines:
  837. parts = line.split(' ')
  838. assert len(parts) >= 3
  839. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  840. token = token.encode("utf-8") if isinstance(token, str) else token
  841. assert isinstance(token, bytes)
  842. assert len(token) == token_len
  843. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  844. tokens.append(token_text.encode("utf-8"))
  845. toktypes.append(gguf.TokenType.NORMAL)
  846. remainder = vocab_size - len(tokens)
  847. assert remainder >= 0
  848. for i in range(len(tokens), vocab_size):
  849. tokens.append(f"[PAD{i}]".encode("utf-8"))
  850. toktypes.append(gguf.TokenType.UNUSED)
  851. self.gguf_writer.add_tokenizer_model("rwkv")
  852. self.gguf_writer.add_token_list(tokens)
  853. self.gguf_writer.add_token_types(toktypes)
  854. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  855. special_vocab.chat_template = "rwkv-world"
  856. # hack: Add '\n\n' as the EOT token to make it chat normally
  857. special_vocab._set_special_token("eot", 261)
  858. special_vocab.add_to_gguf(self.gguf_writer)
  859. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  860. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  861. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  862. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  863. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  864. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  865. assert field # tokenizer model
  866. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  867. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  868. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  869. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  870. assert field # token list
  871. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  872. if model_name == "llama-spm":
  873. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  874. assert field # token scores
  875. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  876. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  877. assert field # token types
  878. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  879. if model_name != "llama-spm":
  880. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  881. assert field # token merges
  882. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  883. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  884. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  885. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  886. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  887. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  888. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  889. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  890. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  891. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  892. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  893. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  894. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  895. class VisionModel(ModelBase):
  896. model_arch = gguf.MODEL_ARCH.CLIP_VISION
  897. n_text_embd = 0
  898. preprocessor_config: dict[str, Any]
  899. global_config: dict[str, Any]
  900. def __init__(self, *args, **kwargs):
  901. super().__init__(*args, **kwargs)
  902. if self.model_arch != gguf.MODEL_ARCH.CLIP_VISION:
  903. raise TypeError("VisionModel must be subclassed with model_arch = gguf.MODEL_ARCH.CLIP_VISION")
  904. # small hack to correct the number of layers
  905. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.CLIP_VISION, 128)
  906. self.n_embd_text = self.find_hparam(["hidden_size", "n_embd"])
  907. assert self.n_embd_text > 0, "n_embd not found in hparams"
  908. if "vision_config" not in self.hparams:
  909. raise ValueError("vision_config not found in hparams")
  910. # move vision config to the top level, while preserving the original hparams in global_config
  911. self.global_config = self.hparams
  912. self.hparams = self.hparams["vision_config"]
  913. # load preprocessor config
  914. with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
  915. self.preprocessor_config = json.load(f)
  916. def set_type(self):
  917. self.gguf_writer.add_type(gguf.GGUFType.CLIP_VISION)
  918. def set_gguf_parameters(self):
  919. self.gguf_writer.add_file_type(self.ftype)
  920. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  921. self.gguf_writer.add_vision_has_vision_encoder(True)
  922. # vision config
  923. self.gguf_writer.add_vision_image_size(self.find_hparam(["image_size"]))
  924. self.gguf_writer.add_vision_patch_size(self.find_hparam(["patch_size"]))
  925. self.gguf_writer.add_vision_embedding_length(self.find_hparam(["hidden_size"]))
  926. self.gguf_writer.add_vision_feed_forward_length(self.find_hparam(["intermediate_size"]))
  927. self.gguf_writer.add_vision_block_count(self.find_hparam(["num_hidden_layers"]))
  928. self.gguf_writer.add_vision_head_count(self.find_hparam(["num_attention_heads"]))
  929. # preprocessor config
  930. self.gguf_writer.add_vision_image_mean(self.preprocessor_config["image_mean"])
  931. self.gguf_writer.add_vision_image_std(self.preprocessor_config["image_mean"])
  932. def write_vocab(self):
  933. raise ValueError("VisionModel does not support vocab writing")
  934. @ModelBase.register("GPTNeoXForCausalLM")
  935. class GPTNeoXModel(TextModel):
  936. model_arch = gguf.MODEL_ARCH.GPTNEOX
  937. def set_gguf_parameters(self):
  938. block_count = self.hparams["num_hidden_layers"]
  939. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  940. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  941. self.gguf_writer.add_block_count(block_count)
  942. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  943. self.gguf_writer.add_rope_dimension_count(
  944. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  945. )
  946. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  947. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  948. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  949. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  950. del bid # unused
  951. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  952. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  953. tensors: list[tuple[str, Tensor]] = []
  954. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  955. # Map bloom-style qkv_linear to gpt-style qkv_linear
  956. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  957. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  958. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  959. data_torch = torch.cat(
  960. (
  961. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  962. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  963. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  964. ),
  965. dim=0,
  966. )
  967. logger.info("re-format attention.linear_qkv.weight")
  968. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  969. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  970. data_torch = torch.cat(
  971. (
  972. qkv_bias[:, 0, :].reshape((n_embed,)),
  973. qkv_bias[:, 1, :].reshape((n_embed,)),
  974. qkv_bias[:, 2, :].reshape((n_embed,)),
  975. ),
  976. dim=0,
  977. )
  978. logger.info("re-format attention.linear_qkv.bias")
  979. tensors.append((self.map_tensor_name(name), data_torch))
  980. return tensors
  981. @ModelBase.register("BloomForCausalLM", "BloomModel")
  982. class BloomModel(TextModel):
  983. model_arch = gguf.MODEL_ARCH.BLOOM
  984. def set_gguf_parameters(self):
  985. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  986. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  987. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  988. self.gguf_writer.add_embedding_length(n_embed)
  989. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  990. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  991. self.gguf_writer.add_head_count(n_head)
  992. self.gguf_writer.add_head_count_kv(n_head)
  993. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  994. self.gguf_writer.add_file_type(self.ftype)
  995. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  996. del bid # unused
  997. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  998. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  999. name = re.sub(r'transformer\.', '', name)
  1000. tensors: list[tuple[str, Tensor]] = []
  1001. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1002. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1003. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1004. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1005. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1006. data_torch = torch.cat(
  1007. (
  1008. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1009. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1010. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1011. ),
  1012. dim=0,
  1013. )
  1014. logger.info("re-format attention.linear_qkv.weight")
  1015. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1016. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1017. data_torch = torch.cat(
  1018. (
  1019. qkv_bias[:, 0, :].reshape((n_embed,)),
  1020. qkv_bias[:, 1, :].reshape((n_embed,)),
  1021. qkv_bias[:, 2, :].reshape((n_embed,)),
  1022. ),
  1023. dim=0,
  1024. )
  1025. logger.info("re-format attention.linear_qkv.bias")
  1026. tensors.append((self.map_tensor_name(name), data_torch))
  1027. return tensors
  1028. @ModelBase.register("MPTForCausalLM")
  1029. class MPTModel(TextModel):
  1030. model_arch = gguf.MODEL_ARCH.MPT
  1031. def set_vocab(self):
  1032. try:
  1033. self._set_vocab_gpt2()
  1034. except Exception:
  1035. # Fallback for SEA-LION model
  1036. self._set_vocab_sentencepiece()
  1037. self.gguf_writer.add_add_bos_token(False)
  1038. self.gguf_writer.add_pad_token_id(3)
  1039. self.gguf_writer.add_eos_token_id(1)
  1040. self.gguf_writer.add_unk_token_id(0)
  1041. def set_gguf_parameters(self):
  1042. block_count = self.hparams["n_layers"]
  1043. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1044. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1045. self.gguf_writer.add_block_count(block_count)
  1046. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1047. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1048. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1049. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1050. self.gguf_writer.add_layer_norm_eps(1e-5)
  1051. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1052. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1053. if self.hparams["attn_config"]["alibi"]:
  1054. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1055. else:
  1056. self.gguf_writer.add_max_alibi_bias(0.0)
  1057. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1058. del bid # unused
  1059. if "scales" in name:
  1060. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1061. new_name = new_name.replace("scales", "act.scales")
  1062. else:
  1063. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1064. return [(new_name, data_torch)]
  1065. @ModelBase.register("OrionForCausalLM")
  1066. class OrionModel(TextModel):
  1067. model_arch = gguf.MODEL_ARCH.ORION
  1068. def set_vocab(self):
  1069. self._set_vocab_sentencepiece()
  1070. def set_gguf_parameters(self):
  1071. block_count = self.hparams["num_hidden_layers"]
  1072. head_count = self.hparams["num_attention_heads"]
  1073. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1074. ctx_length = 0
  1075. if "max_sequence_length" in self.hparams:
  1076. ctx_length = self.hparams["max_sequence_length"]
  1077. elif "max_position_embeddings" in self.hparams:
  1078. ctx_length = self.hparams["max_position_embeddings"]
  1079. elif "model_max_length" in self.hparams:
  1080. ctx_length = self.hparams["model_max_length"]
  1081. else:
  1082. raise ValueError("gguf: can not find ctx length parameter.")
  1083. self.gguf_writer.add_file_type(self.ftype)
  1084. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1085. self.gguf_writer.add_context_length(ctx_length)
  1086. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1087. self.gguf_writer.add_block_count(block_count)
  1088. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1089. self.gguf_writer.add_head_count(head_count)
  1090. self.gguf_writer.add_head_count_kv(head_count_kv)
  1091. # note: config provides rms norm but it is actually layer norm
  1092. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1093. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1094. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1095. class BaichuanModel(TextModel):
  1096. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1097. def set_vocab(self):
  1098. self._set_vocab_sentencepiece()
  1099. def set_gguf_parameters(self):
  1100. block_count = self.hparams["num_hidden_layers"]
  1101. head_count = self.hparams["num_attention_heads"]
  1102. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1103. ctx_length = 0
  1104. if "max_sequence_length" in self.hparams:
  1105. ctx_length = self.hparams["max_sequence_length"]
  1106. elif "max_position_embeddings" in self.hparams:
  1107. ctx_length = self.hparams["max_position_embeddings"]
  1108. elif "model_max_length" in self.hparams:
  1109. ctx_length = self.hparams["model_max_length"]
  1110. else:
  1111. raise ValueError("gguf: can not find ctx length parameter.")
  1112. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1113. self.gguf_writer.add_context_length(ctx_length)
  1114. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1115. self.gguf_writer.add_block_count(block_count)
  1116. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1117. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1118. self.gguf_writer.add_head_count(head_count)
  1119. self.gguf_writer.add_head_count_kv(head_count_kv)
  1120. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1121. self.gguf_writer.add_file_type(self.ftype)
  1122. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1123. if self.hparams["rope_scaling"].get("type") == "linear":
  1124. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1125. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1126. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1127. head_count = self.hparams["num_attention_heads"]
  1128. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1129. tensors: list[tuple[str, Tensor]] = []
  1130. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1131. logger.info(f"Unpacking and permuting layer {bid}")
  1132. tensors = [
  1133. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1134. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1135. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1136. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1137. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1138. self._reverse_hf_part(data_torch, 2)),
  1139. ]
  1140. else:
  1141. tensors = [(self.map_tensor_name(name), data_torch)]
  1142. return tensors
  1143. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1144. if n_kv_head is not None and n_head != n_kv_head:
  1145. n_head //= n_kv_head
  1146. return (
  1147. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1148. .swapaxes(1, 2)
  1149. .reshape(weights.shape)
  1150. )
  1151. def _reverse_hf_permute_part(
  1152. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1153. ) -> Tensor:
  1154. r = weights.shape[0] // 3
  1155. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1156. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1157. r = weights.shape[0] // 3
  1158. return weights[r * n_part:r * n_part + r, ...]
  1159. @ModelBase.register("XverseForCausalLM")
  1160. class XverseModel(TextModel):
  1161. model_arch = gguf.MODEL_ARCH.XVERSE
  1162. def set_vocab(self):
  1163. assert (self.dir_model / "tokenizer.json").is_file()
  1164. dir_model = self.dir_model
  1165. hparams = self.hparams
  1166. tokens: list[bytes] = []
  1167. toktypes: list[int] = []
  1168. from transformers import AutoTokenizer
  1169. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1170. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1171. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1172. # because vocab_size is the count of items, and indexes start at 0.
  1173. max_vocab_index = max(tokenizer.get_vocab().values())
  1174. if max_vocab_index >= vocab_size:
  1175. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1176. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1177. added_vocab = tokenizer.get_added_vocab()
  1178. for token_id in range(vocab_size):
  1179. token_text = reverse_vocab[token_id].encode('utf-8')
  1180. # replace "\x00" to string with length > 0
  1181. if token_text == b"\x00":
  1182. toktype = gguf.TokenType.BYTE # special
  1183. token_text = f"<{token_text}>".encode('utf-8')
  1184. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1185. toktype = gguf.TokenType.BYTE # special
  1186. elif reverse_vocab[token_id] in added_vocab:
  1187. if tokenizer.added_tokens_decoder[token_id].special:
  1188. toktype = gguf.TokenType.CONTROL
  1189. else:
  1190. toktype = gguf.TokenType.USER_DEFINED
  1191. else:
  1192. toktype = gguf.TokenType.NORMAL
  1193. tokens.append(token_text)
  1194. toktypes.append(toktype)
  1195. self.gguf_writer.add_tokenizer_model("llama")
  1196. self.gguf_writer.add_tokenizer_pre("default")
  1197. self.gguf_writer.add_token_list(tokens)
  1198. self.gguf_writer.add_token_types(toktypes)
  1199. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1200. special_vocab.add_to_gguf(self.gguf_writer)
  1201. def set_gguf_parameters(self):
  1202. block_count = self.hparams["num_hidden_layers"]
  1203. head_count = self.hparams["num_attention_heads"]
  1204. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1205. ctx_length = 0
  1206. if "max_sequence_length" in self.hparams:
  1207. ctx_length = self.hparams["max_sequence_length"]
  1208. elif "max_position_embeddings" in self.hparams:
  1209. ctx_length = self.hparams["max_position_embeddings"]
  1210. elif "model_max_length" in self.hparams:
  1211. ctx_length = self.hparams["model_max_length"]
  1212. else:
  1213. raise ValueError("gguf: can not find ctx length parameter.")
  1214. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1215. self.gguf_writer.add_context_length(ctx_length)
  1216. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1217. self.gguf_writer.add_block_count(block_count)
  1218. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1219. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1220. self.gguf_writer.add_head_count(head_count)
  1221. self.gguf_writer.add_head_count_kv(head_count_kv)
  1222. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1223. self.gguf_writer.add_file_type(self.ftype)
  1224. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1225. if self.hparams["rope_scaling"].get("type") == "linear":
  1226. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1227. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1228. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1229. del bid # unused
  1230. head_count = self.hparams["num_attention_heads"]
  1231. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1232. # HF models permute some of the tensors, so we need to undo that
  1233. if name.endswith("q_proj.weight"):
  1234. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1235. if name.endswith("k_proj.weight"):
  1236. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1237. return [(self.map_tensor_name(name), data_torch)]
  1238. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1239. if n_kv_head is not None and n_head != n_kv_head:
  1240. n_head //= n_kv_head
  1241. return (
  1242. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1243. .swapaxes(1, 2)
  1244. .reshape(weights.shape)
  1245. )
  1246. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1247. class FalconModel(TextModel):
  1248. model_arch = gguf.MODEL_ARCH.FALCON
  1249. def set_gguf_parameters(self):
  1250. block_count = self.hparams.get("num_hidden_layers")
  1251. if block_count is None:
  1252. block_count = self.hparams["n_layer"] # old name
  1253. n_head = self.hparams.get("num_attention_heads")
  1254. if n_head is None:
  1255. n_head = self.hparams["n_head"] # old name
  1256. n_head_kv = self.hparams.get("num_kv_heads")
  1257. if n_head_kv is None:
  1258. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1259. self.gguf_writer.add_context_length(2048) # not in config.json
  1260. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1261. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1262. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1263. self.gguf_writer.add_block_count(block_count)
  1264. self.gguf_writer.add_head_count(n_head)
  1265. self.gguf_writer.add_head_count_kv(n_head_kv)
  1266. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1267. self.gguf_writer.add_file_type(self.ftype)
  1268. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1269. del bid # unused
  1270. # QKV tensor transform
  1271. # The original query_key_value tensor contains n_head_kv "kv groups",
  1272. # each consisting of n_head/n_head_kv query weights followed by one key
  1273. # and one value weight (shared by all query heads in the kv group).
  1274. # This layout makes it a big pain to work with in GGML.
  1275. # So we rearrange them here,, so that we have n_head query weights
  1276. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1277. # in contiguous fashion.
  1278. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1279. if "query_key_value" in name:
  1280. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1281. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1282. head_dim = self.hparams["hidden_size"] // n_head
  1283. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1284. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1285. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1286. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1287. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1288. return [(self.map_tensor_name(name), data_torch)]
  1289. @ModelBase.register("GPTBigCodeForCausalLM")
  1290. class StarCoderModel(TextModel):
  1291. model_arch = gguf.MODEL_ARCH.STARCODER
  1292. def set_gguf_parameters(self):
  1293. block_count = self.hparams["n_layer"]
  1294. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1295. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1296. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1297. self.gguf_writer.add_block_count(block_count)
  1298. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1299. self.gguf_writer.add_head_count_kv(1)
  1300. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1301. self.gguf_writer.add_file_type(self.ftype)
  1302. @ModelBase.register("GPTRefactForCausalLM")
  1303. class RefactModel(TextModel):
  1304. model_arch = gguf.MODEL_ARCH.REFACT
  1305. def set_vocab(self):
  1306. super().set_vocab()
  1307. # TODO: how to determine special FIM tokens automatically?
  1308. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1309. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1310. special_vocab._set_special_token("prefix", 1)
  1311. special_vocab._set_special_token("suffix", 3)
  1312. special_vocab._set_special_token("middle", 2)
  1313. special_vocab.chat_template = None # do not add it twice
  1314. special_vocab.add_to_gguf(self.gguf_writer)
  1315. def set_gguf_parameters(self):
  1316. hidden_dim = self.hparams["n_embd"]
  1317. inner_dim = 4 * hidden_dim
  1318. hidden_dim = int(2 * inner_dim / 3)
  1319. multiple_of = 256
  1320. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1321. block_count = self.hparams["n_layer"]
  1322. # refact uses Alibi. So this is from config.json which might be used by training.
  1323. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1324. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1325. self.gguf_writer.add_feed_forward_length(ff_dim)
  1326. self.gguf_writer.add_block_count(block_count)
  1327. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1328. self.gguf_writer.add_head_count_kv(1)
  1329. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1330. self.gguf_writer.add_file_type(self.ftype)
  1331. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1332. hidden_dim = self.hparams["n_embd"]
  1333. inner_dim = 4 * hidden_dim
  1334. hidden_dim = int(2 * inner_dim / 3)
  1335. multiple_of = 256
  1336. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1337. n_head = self.hparams["n_head"]
  1338. n_head_kv = 1
  1339. head_dim = self.hparams["n_embd"] // n_head
  1340. tensors: list[tuple[str, Tensor]] = []
  1341. if bid is not None:
  1342. if name == f"transformer.h.{bid}.attn.kv.weight":
  1343. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1344. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1345. elif name == f"transformer.h.{bid}.attn.q.weight":
  1346. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1347. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1348. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1349. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1350. if len(tensors) == 0:
  1351. tensors.append((self.map_tensor_name(name), data_torch))
  1352. return tensors
  1353. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1354. class StableLMModel(TextModel):
  1355. model_arch = gguf.MODEL_ARCH.STABLELM
  1356. def set_vocab(self):
  1357. if (self.dir_model / "tokenizer.json").is_file():
  1358. self._set_vocab_gpt2()
  1359. else:
  1360. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1361. self._set_vocab_qwen()
  1362. def set_gguf_parameters(self):
  1363. hparams = self.hparams
  1364. block_count = hparams["num_hidden_layers"]
  1365. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1366. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1367. self.gguf_writer.add_block_count(block_count)
  1368. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1369. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1370. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1371. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1372. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1373. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1374. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1375. self.gguf_writer.add_file_type(self.ftype)
  1376. _q_norms: list[dict[str, Tensor]] | None = None
  1377. _k_norms: list[dict[str, Tensor]] | None = None
  1378. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1379. n_head = self.hparams["num_attention_heads"]
  1380. n_kv_head = self.hparams["num_key_value_heads"]
  1381. if name.find("q_layernorm.norms") != -1:
  1382. assert bid is not None
  1383. if self._q_norms is None:
  1384. self._q_norms = [{} for _ in range(self.block_count)]
  1385. self._q_norms[bid][name] = data_torch
  1386. if len(self._q_norms[bid]) >= n_head:
  1387. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1388. else:
  1389. return []
  1390. if name.find("k_layernorm.norms") != -1:
  1391. assert bid is not None
  1392. if self._k_norms is None:
  1393. self._k_norms = [{} for _ in range(self.block_count)]
  1394. self._k_norms[bid][name] = data_torch
  1395. if len(self._k_norms[bid]) >= n_kv_head:
  1396. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1397. else:
  1398. return []
  1399. return [(self.map_tensor_name(name), data_torch)]
  1400. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1401. datas: list[Tensor] = []
  1402. # extract the norms in order
  1403. for xid in range(n_head):
  1404. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1405. datas.append(norms[ename])
  1406. del norms[ename]
  1407. data_torch = torch.stack(datas, dim=0)
  1408. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1409. new_name = self.map_tensor_name(merged_name)
  1410. return [(new_name, data_torch)]
  1411. def prepare_tensors(self):
  1412. super().prepare_tensors()
  1413. if self._q_norms is not None or self._k_norms is not None:
  1414. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1415. norms = (
  1416. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1417. ) + (
  1418. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1419. )
  1420. if len(norms) > 0:
  1421. raise ValueError(f"Unprocessed norms: {norms}")
  1422. @ModelBase.register(
  1423. "LLaMAForCausalLM",
  1424. "LlamaForCausalLM",
  1425. "MistralForCausalLM",
  1426. "MixtralForCausalLM",
  1427. "Idefics3ForConditionalGeneration",
  1428. "SmolVLMForConditionalGeneration")
  1429. class LlamaModel(TextModel):
  1430. model_arch = gguf.MODEL_ARCH.LLAMA
  1431. undo_permute = True
  1432. def __init__(self, *args, **kwargs):
  1433. super().__init__(*args, **kwargs)
  1434. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1435. if self.hparams["architectures"][0] == "SmolVLMForConditionalGeneration":
  1436. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1437. def set_vocab(self):
  1438. try:
  1439. self._set_vocab_sentencepiece()
  1440. except FileNotFoundError:
  1441. try:
  1442. self._set_vocab_llama_hf()
  1443. except (FileNotFoundError, TypeError):
  1444. # Llama 3
  1445. self._set_vocab_gpt2()
  1446. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1447. if self.hparams.get("vocab_size", 32000) == 32016:
  1448. special_vocab = gguf.SpecialVocab(
  1449. self.dir_model, load_merges=False,
  1450. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1451. )
  1452. special_vocab._set_special_token("prefix", 32007)
  1453. special_vocab._set_special_token("suffix", 32008)
  1454. special_vocab._set_special_token("middle", 32009)
  1455. special_vocab._set_special_token("eot", 32010)
  1456. special_vocab.add_to_gguf(self.gguf_writer)
  1457. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1458. if tokenizer_config_file.is_file():
  1459. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1460. tokenizer_config_json = json.load(f)
  1461. if "add_prefix_space" in tokenizer_config_json:
  1462. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1463. # Apply to granite small models only
  1464. if self.hparams.get("vocab_size", 32000) == 49152:
  1465. self.gguf_writer.add_add_bos_token(False)
  1466. def set_gguf_parameters(self):
  1467. super().set_gguf_parameters()
  1468. hparams = self.hparams
  1469. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1470. if "head_dim" in hparams:
  1471. rope_dim = hparams["head_dim"]
  1472. else:
  1473. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1474. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1475. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1476. if self.hparams["rope_scaling"].get("type") == "linear":
  1477. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1478. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1479. @staticmethod
  1480. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1481. if n_head_kv is not None and n_head != n_head_kv:
  1482. n_head = n_head_kv
  1483. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1484. .swapaxes(1, 2)
  1485. .reshape(weights.shape))
  1486. _experts: list[dict[str, Tensor]] | None = None
  1487. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1488. n_head = self.hparams["num_attention_heads"]
  1489. n_kv_head = self.hparams.get("num_key_value_heads")
  1490. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  1491. if is_vision_tensor:
  1492. return [] # skip vision tensors
  1493. elif name.startswith("model.text_model"):
  1494. name = name.replace("text_model.", "") # for SmolVLM
  1495. if self.undo_permute:
  1496. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1497. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1498. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1499. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1500. # process the experts separately
  1501. if name.find("block_sparse_moe.experts") != -1:
  1502. n_experts = self.hparams["num_local_experts"]
  1503. assert bid is not None
  1504. if self._experts is None:
  1505. self._experts = [{} for _ in range(self.block_count)]
  1506. self._experts[bid][name] = data_torch
  1507. if len(self._experts[bid]) >= n_experts * 3:
  1508. tensors: list[tuple[str, Tensor]] = []
  1509. # merge the experts into a single 3d tensor
  1510. for wid in ["w1", "w2", "w3"]:
  1511. datas: list[Tensor] = []
  1512. for xid in range(n_experts):
  1513. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1514. datas.append(self._experts[bid][ename])
  1515. del self._experts[bid][ename]
  1516. data_torch = torch.stack(datas, dim=0)
  1517. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1518. new_name = self.map_tensor_name(merged_name)
  1519. tensors.append((new_name, data_torch))
  1520. return tensors
  1521. else:
  1522. return []
  1523. return [(self.map_tensor_name(name), data_torch)]
  1524. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1525. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1526. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1527. base = self.hparams.get("rope_theta", 10000.0)
  1528. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1529. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1530. factor = rope_scaling.get("factor", 8.0)
  1531. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1532. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1533. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1534. low_freq_wavelen = old_context_len / low_freq_factor
  1535. high_freq_wavelen = old_context_len / high_freq_factor
  1536. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  1537. rope_factors = []
  1538. for freq in freqs:
  1539. wavelen = 2 * math.pi / freq
  1540. if wavelen < high_freq_wavelen:
  1541. rope_factors.append(1)
  1542. elif wavelen > low_freq_wavelen:
  1543. rope_factors.append(factor)
  1544. else:
  1545. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1546. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1547. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1548. def prepare_tensors(self):
  1549. super().prepare_tensors()
  1550. if self._experts is not None:
  1551. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1552. experts = [k for d in self._experts for k in d.keys()]
  1553. if len(experts) > 0:
  1554. raise ValueError(f"Unprocessed experts: {experts}")
  1555. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  1556. class SmolVLMModel(VisionModel):
  1557. def __init__(self, *args, **kwargs):
  1558. super().__init__(*args, **kwargs)
  1559. # fix for SmolVLM2, missing some keys in config.json
  1560. # default values are taken from transformers code
  1561. if self.hparams["model_type"] == "smolvlm_vision":
  1562. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  1563. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  1564. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  1565. self.hparams["num_hidden_layers"] = self.hparams.get("num_hidden_layers", 12)
  1566. def set_gguf_parameters(self):
  1567. super().set_gguf_parameters()
  1568. self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.IDEFICS3)
  1569. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  1570. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  1571. self.gguf_writer.add_vision_use_gelu(True)
  1572. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1573. del bid, new_name, n_dims # unused
  1574. if ".embeddings." in name:
  1575. return gguf.GGMLQuantizationType.F32
  1576. return False
  1577. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1578. del bid # unused
  1579. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  1580. if is_vision_tensor:
  1581. return [(self.map_tensor_name(name), data_torch)]
  1582. return [] # skip other tensors
  1583. @ModelBase.register("Llama4ForConditionalGeneration")
  1584. class Llama4Model(LlamaModel):
  1585. model_arch = gguf.MODEL_ARCH.LLAMA4
  1586. undo_permute = False
  1587. def __init__(self, *args, **kwargs):
  1588. super().__init__(*args, **kwargs)
  1589. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  1590. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  1591. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  1592. def set_vocab(self):
  1593. self._set_vocab_gpt2()
  1594. self.gguf_writer.add_add_bos_token(True)
  1595. def set_gguf_parameters(self):
  1596. super().set_gguf_parameters()
  1597. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  1598. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  1599. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1600. # split the gate_up into gate and up
  1601. if "gate_up_proj" in name:
  1602. name_up = name.replace("gate_up_proj", "up_proj.weight")
  1603. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  1604. dim_half = data_torch.shape[-1] // 2
  1605. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  1606. return [
  1607. (self.map_tensor_name(name_gate), gate_proj_weight),
  1608. (self.map_tensor_name(name_up), up_proj_weight)
  1609. ]
  1610. if name.endswith("down_proj"):
  1611. name += ".weight"
  1612. data_torch = data_torch.transpose(-1, -2)
  1613. if "multi_modal_projector" in name or "vision_model" in name:
  1614. return []
  1615. return super().modify_tensors(data_torch, name, bid)
  1616. @ModelBase.register("Mistral3ForConditionalGeneration")
  1617. class Mistral3Model(LlamaModel):
  1618. model_arch = gguf.MODEL_ARCH.LLAMA
  1619. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1620. name = name.replace("language_model.", "")
  1621. if "multi_modal_projector" in name or "vision_tower" in name:
  1622. return []
  1623. return super().modify_tensors(data_torch, name, bid)
  1624. @ModelBase.register("DeciLMForCausalLM")
  1625. class DeciModel(TextModel):
  1626. model_arch = gguf.MODEL_ARCH.DECI
  1627. @staticmethod
  1628. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  1629. # DeciLM-specific code
  1630. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  1631. return DeciModel._find_multiple(intermediate_size, 256)
  1632. @staticmethod
  1633. def _find_multiple(n: int, k: int) -> int:
  1634. # DeciLM-specific code
  1635. if n % k == 0:
  1636. return n
  1637. return n + k - (n % k)
  1638. def __init__(self, *args, **kwargs):
  1639. super().__init__(*args, **kwargs)
  1640. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1641. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  1642. assert self.block_count == len(_block_configs)
  1643. self._num_kv_heads = list()
  1644. self._num_heads = list()
  1645. _ffn_multipliers = list()
  1646. # ***linear attention layer***
  1647. # if n_heads_in_group is None and replace_with_linear is True
  1648. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  1649. # ***attention-free layer***
  1650. # if n_heads_in_group is None and replace_with_linear is False
  1651. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  1652. # ***normal attention-layer***
  1653. # if n_heads_in_group is not None, then
  1654. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  1655. # _num_heads[il] is num_attention_head
  1656. for il in range(len(_block_configs)):
  1657. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  1658. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  1659. self._num_kv_heads.append(0)
  1660. self._num_heads.append(self.hparams["num_attention_heads"])
  1661. else:
  1662. self._num_kv_heads.append(0)
  1663. self._num_heads.append(0)
  1664. else:
  1665. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  1666. self._num_heads.append(self.hparams["num_attention_heads"])
  1667. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  1668. assert self.block_count == len(self._num_kv_heads)
  1669. assert self.block_count == len(self._num_heads)
  1670. assert self.block_count == len(_ffn_multipliers)
  1671. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  1672. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  1673. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  1674. self._ffn_dims: list[int] = [
  1675. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  1676. for multiplier in _ffn_multipliers
  1677. ]
  1678. def set_vocab(self):
  1679. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  1680. # eos_token from '|eot_id|' to '|end_of_text|'
  1681. if self.hparams.get("vocab_size", 128256) == 128256:
  1682. tokens, toktypes, tokpre = self.get_vocab_base()
  1683. self.gguf_writer.add_tokenizer_model("gpt2")
  1684. self.gguf_writer.add_tokenizer_pre(tokpre)
  1685. self.gguf_writer.add_token_list(tokens)
  1686. self.gguf_writer.add_token_types(toktypes)
  1687. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1688. special_vocab.add_to_gguf(self.gguf_writer)
  1689. else:
  1690. # DeciLM-7B
  1691. self._set_vocab_llama_hf()
  1692. def set_gguf_parameters(self):
  1693. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1694. assert self.block_count == len(self._num_kv_heads)
  1695. assert self.block_count == len(self._num_heads)
  1696. assert self.block_count == len(self._ffn_dims)
  1697. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  1698. self.gguf_writer.add_rope_freq_base(rope_theta)
  1699. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1700. self.gguf_writer.add_head_count(self._num_heads)
  1701. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  1702. self.gguf_writer.add_block_count(self.block_count)
  1703. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1704. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1705. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1706. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1707. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1708. self.gguf_writer.add_file_type(self.ftype)
  1709. else: # DeciLM-7B
  1710. super().set_gguf_parameters()
  1711. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  1712. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  1713. assert self.block_count == len(self._num_kv_heads)
  1714. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1715. hparams = self.hparams
  1716. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1717. if "head_dim" in hparams:
  1718. rope_dim = hparams["head_dim"]
  1719. else:
  1720. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1721. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1722. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1723. if self.hparams["rope_scaling"].get("type") == "linear":
  1724. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1725. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1726. @staticmethod
  1727. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1728. if n_head_kv is not None and n_head != n_head_kv:
  1729. n_head = n_head_kv
  1730. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1731. .swapaxes(1, 2)
  1732. .reshape(weights.shape))
  1733. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1734. n_head = self.hparams["num_attention_heads"]
  1735. if bid is not None:
  1736. if "num_key_value_heads_per_layer" in self.hparams:
  1737. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  1738. elif "block_configs" in self.hparams:
  1739. n_kv_head = self._num_kv_heads[bid]
  1740. n_head = self._num_heads[bid]
  1741. else:
  1742. n_kv_head = self.hparams.get("num_key_value_heads")
  1743. else:
  1744. n_kv_head = self.hparams.get("num_key_value_heads")
  1745. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1746. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  1747. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1748. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  1749. return [(self.map_tensor_name(name), data_torch)]
  1750. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1751. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1752. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1753. base = self.hparams.get("rope_theta", 10000.0)
  1754. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1755. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1756. factor = rope_scaling.get("factor", 8.0)
  1757. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1758. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1759. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1760. low_freq_wavelen = old_context_len / low_freq_factor
  1761. high_freq_wavelen = old_context_len / high_freq_factor
  1762. assert low_freq_wavelen != high_freq_wavelen
  1763. rope_factors = []
  1764. for freq in freqs:
  1765. wavelen = 2 * math.pi / freq
  1766. if wavelen < high_freq_wavelen:
  1767. rope_factors.append(1)
  1768. elif wavelen > low_freq_wavelen:
  1769. rope_factors.append(factor)
  1770. else:
  1771. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1772. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1773. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1774. def prepare_tensors(self):
  1775. super().prepare_tensors()
  1776. @ModelBase.register("BitnetForCausalLM")
  1777. class BitnetModel(TextModel):
  1778. model_arch = gguf.MODEL_ARCH.BITNET
  1779. def set_vocab(self):
  1780. self._set_vocab_sentencepiece()
  1781. def set_gguf_parameters(self):
  1782. super().set_gguf_parameters()
  1783. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1784. self.gguf_writer.add_rope_scaling_factor(1.0)
  1785. def weight_quant(self, weight: Tensor) -> Tensor:
  1786. dtype = weight.dtype
  1787. weight = weight.float()
  1788. scale = weight.abs().mean().clamp(min=1e-5)
  1789. iscale = 1 / scale
  1790. # TODO: multiply by the scale directly instead of inverting it twice
  1791. # (this is also unnecessarily doubly inverted upstream)
  1792. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  1793. result = (weight * iscale).round().clamp(-1, 1) / iscale
  1794. return result.type(dtype)
  1795. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1796. new_name = self.map_tensor_name(name)
  1797. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1798. gguf.MODEL_TENSOR.ATTN_Q,
  1799. gguf.MODEL_TENSOR.ATTN_K,
  1800. gguf.MODEL_TENSOR.ATTN_V,
  1801. gguf.MODEL_TENSOR.ATTN_OUT,
  1802. gguf.MODEL_TENSOR.FFN_UP,
  1803. gguf.MODEL_TENSOR.FFN_DOWN,
  1804. gguf.MODEL_TENSOR.FFN_GATE,
  1805. ]):
  1806. # transform weight into 1/0/-1 (in fp32)
  1807. data_torch = self.weight_quant(data_torch)
  1808. yield (new_name, data_torch)
  1809. @ModelBase.register("GrokForCausalLM")
  1810. class GrokModel(TextModel):
  1811. model_arch = gguf.MODEL_ARCH.GROK
  1812. def set_vocab(self):
  1813. self._set_vocab_sentencepiece()
  1814. def __init__(self, *args, **kwargs):
  1815. super().__init__(*args, **kwargs)
  1816. def set_gguf_parameters(self):
  1817. super().set_gguf_parameters()
  1818. _experts: list[dict[str, Tensor]] | None = None
  1819. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1820. # process the experts separately
  1821. if name.find(".moe.") != -1:
  1822. n_experts = self.hparams["num_local_experts"]
  1823. assert bid is not None
  1824. if self._experts is None:
  1825. self._experts = [{} for _ in range(self.block_count)]
  1826. self._experts[bid][name] = data_torch
  1827. if len(self._experts[bid]) >= n_experts * 3:
  1828. tensors: list[tuple[str, Tensor]] = []
  1829. # merge the experts into a single 3d tensor
  1830. for wid in ["linear", "linear_1", "linear_v"]:
  1831. datas: list[Tensor] = []
  1832. for xid in range(n_experts):
  1833. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1834. datas.append(self._experts[bid][ename])
  1835. del self._experts[bid][ename]
  1836. data_torch = torch.stack(datas, dim=0)
  1837. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1838. new_name = self.map_tensor_name(merged_name)
  1839. tensors.append((new_name, data_torch))
  1840. return tensors
  1841. else:
  1842. return []
  1843. return [(self.map_tensor_name(name), data_torch)]
  1844. @ModelBase.register("DbrxForCausalLM")
  1845. class DbrxModel(TextModel):
  1846. model_arch = gguf.MODEL_ARCH.DBRX
  1847. def set_gguf_parameters(self):
  1848. ffn_config = self.hparams["ffn_config"]
  1849. attn_config = self.hparams["attn_config"]
  1850. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1851. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1852. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1853. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1854. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1855. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1856. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1857. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1858. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1859. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1860. self.gguf_writer.add_layer_norm_eps(1e-5)
  1861. self.gguf_writer.add_file_type(self.ftype)
  1862. logger.info(f"gguf: file type = {self.ftype}")
  1863. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1864. del bid # unused
  1865. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1866. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1867. n_embd = self.hparams["d_model"]
  1868. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1869. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1870. # But llama.cpp moe graph works differently
  1871. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1872. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1873. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1874. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1875. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1876. experts = False
  1877. for exp_tensor_name in exp_tensor_names.keys():
  1878. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1879. experts = True
  1880. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1881. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1882. data_torch = data_torch.permute(*permute_tensor)
  1883. break
  1884. # map tensor names
  1885. # In MoE models the ffn tensors are typically most of the model weights,
  1886. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1887. # Every other model has the weight names ending in .weight,
  1888. # let's assume that is the convention which is not the case for dbrx:
  1889. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1890. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1891. return [(new_name, data_torch)]
  1892. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  1893. del name, new_name, bid # unused
  1894. return n_dims > 1
  1895. @ModelBase.register("MiniCPMForCausalLM")
  1896. class MiniCPMModel(TextModel):
  1897. model_arch = gguf.MODEL_ARCH.MINICPM
  1898. def set_gguf_parameters(self):
  1899. super().set_gguf_parameters()
  1900. embedding_scale = float(self.hparams["scale_emb"])
  1901. self.gguf_writer.add_embedding_scale(embedding_scale)
  1902. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  1903. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  1904. self.gguf_writer.add_residual_scale(residual_scale)
  1905. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  1906. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  1907. self.gguf_writer.add_logit_scale(logit_scale)
  1908. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  1909. if self.hparams.get("rope_scaling") is not None:
  1910. if self.hparams["rope_scaling"].get("type") == "longrope":
  1911. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  1912. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  1913. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1914. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1915. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1916. if rope_scaling is not None:
  1917. long_factors = rope_scaling.get('long_factor', None)
  1918. short_factors = rope_scaling.get('short_factor', None)
  1919. if long_factors is None or short_factors is None:
  1920. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1921. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1922. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1923. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1924. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1925. def set_vocab(self):
  1926. self._set_vocab_sentencepiece()
  1927. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1928. del bid # unused
  1929. n_head = self.hparams["num_attention_heads"]
  1930. n_kv_head = self.hparams.get("num_key_value_heads")
  1931. # HF models permute some of the tensors, so we need to undo that
  1932. if name.endswith(("q_proj.weight")):
  1933. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1934. if name.endswith(("k_proj.weight")):
  1935. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1936. return [(self.map_tensor_name(name), data_torch)]
  1937. @ModelBase.register("MiniCPM3ForCausalLM")
  1938. class MiniCPM3Model(TextModel):
  1939. model_arch = gguf.MODEL_ARCH.MINICPM3
  1940. def set_gguf_parameters(self):
  1941. hparams = self.hparams
  1942. self.gguf_writer.add_file_type(self.ftype)
  1943. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1944. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1945. self.gguf_writer.add_block_count(self.block_count)
  1946. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1947. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1948. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1949. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1950. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1951. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  1952. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  1953. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  1954. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  1955. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  1956. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1957. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1958. if rope_scaling is not None:
  1959. rope_dims = self.hparams["qk_rope_head_dim"]
  1960. long_factors = rope_scaling.get('long_factor', None)
  1961. short_factors = rope_scaling.get('short_factor', None)
  1962. if long_factors is None or short_factors is None:
  1963. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1964. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1965. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1966. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1967. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1968. def set_vocab(self):
  1969. self._set_vocab_sentencepiece()
  1970. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1971. if n_kv_head is not None and n_head != n_kv_head:
  1972. n_head //= n_kv_head
  1973. return (
  1974. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1975. .swapaxes(1, 2)
  1976. .reshape(weights.shape)
  1977. )
  1978. @ModelBase.register("QWenLMHeadModel")
  1979. class QwenModel(TextModel):
  1980. model_arch = gguf.MODEL_ARCH.QWEN
  1981. @staticmethod
  1982. def token_bytes_to_string(b):
  1983. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1984. byte_encoder = bytes_to_unicode()
  1985. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1986. @staticmethod
  1987. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1988. parts = [bytes([b]) for b in token]
  1989. while True:
  1990. min_idx = None
  1991. min_rank = None
  1992. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1993. rank = mergeable_ranks.get(pair[0] + pair[1])
  1994. if rank is not None and (min_rank is None or rank < min_rank):
  1995. min_idx = i
  1996. min_rank = rank
  1997. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1998. break
  1999. assert min_idx is not None
  2000. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2001. return parts
  2002. def set_vocab(self):
  2003. self._set_vocab_qwen()
  2004. def set_gguf_parameters(self):
  2005. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2006. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2007. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2008. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2009. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2010. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2011. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2012. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2013. self.gguf_writer.add_file_type(self.ftype)
  2014. @ModelBase.register("Qwen2ForCausalLM")
  2015. class Qwen2Model(TextModel):
  2016. model_arch = gguf.MODEL_ARCH.QWEN2
  2017. def set_vocab(self):
  2018. try:
  2019. self._set_vocab_sentencepiece()
  2020. except FileNotFoundError:
  2021. self._set_vocab_gpt2()
  2022. def set_gguf_parameters(self):
  2023. super().set_gguf_parameters()
  2024. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2025. if self.hparams["rope_scaling"].get("type") == "yarn":
  2026. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2027. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2028. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  2029. @ModelBase.register("Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2030. class Qwen2VLModel(TextModel):
  2031. model_arch = gguf.MODEL_ARCH.QWEN2VL
  2032. def set_gguf_parameters(self):
  2033. super().set_gguf_parameters()
  2034. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  2035. mrope_section += [0] * max(0, 4 - len(mrope_section))
  2036. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  2037. def set_vocab(self):
  2038. try:
  2039. self._set_vocab_sentencepiece()
  2040. except FileNotFoundError:
  2041. self._set_vocab_gpt2()
  2042. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  2043. for name, data in super().get_tensors():
  2044. if name.startswith("visual."):
  2045. continue
  2046. yield name, data
  2047. @ModelBase.register("WavTokenizerDec")
  2048. class WavTokenizerDecModel(TextModel):
  2049. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  2050. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2051. del bid # unused
  2052. if \
  2053. name.endswith("codebook.cluster_size") or \
  2054. name.endswith("codebook.embed_avg") or \
  2055. name.endswith("codebook.inited"):
  2056. logger.debug(f"Skipping {name!r}")
  2057. return []
  2058. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  2059. return [(self.map_tensor_name(name), data_torch)]
  2060. def set_vocab(self):
  2061. self._set_vocab_none()
  2062. def set_gguf_parameters(self):
  2063. super().set_gguf_parameters()
  2064. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  2065. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  2066. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  2067. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  2068. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  2069. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  2070. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  2071. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  2072. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  2073. self.gguf_writer.add_causal_attention(False)
  2074. @ModelBase.register("Qwen2MoeForCausalLM")
  2075. class Qwen2MoeModel(TextModel):
  2076. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  2077. def set_gguf_parameters(self):
  2078. super().set_gguf_parameters()
  2079. if (n_experts := self.hparams.get("num_experts")) is not None:
  2080. self.gguf_writer.add_expert_count(n_experts)
  2081. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2082. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2083. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  2084. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  2085. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  2086. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  2087. _experts: list[dict[str, Tensor]] | None = None
  2088. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2089. # process the experts separately
  2090. if name.find("experts") != -1:
  2091. n_experts = self.hparams["num_experts"]
  2092. assert bid is not None
  2093. if self._experts is None:
  2094. self._experts = [{} for _ in range(self.block_count)]
  2095. self._experts[bid][name] = data_torch
  2096. if len(self._experts[bid]) >= n_experts * 3:
  2097. tensors: list[tuple[str, Tensor]] = []
  2098. # merge the experts into a single 3d tensor
  2099. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2100. datas: list[Tensor] = []
  2101. for xid in range(n_experts):
  2102. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2103. datas.append(self._experts[bid][ename])
  2104. del self._experts[bid][ename]
  2105. data_torch = torch.stack(datas, dim=0)
  2106. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2107. new_name = self.map_tensor_name(merged_name)
  2108. tensors.append((new_name, data_torch))
  2109. return tensors
  2110. else:
  2111. return []
  2112. return [(self.map_tensor_name(name), data_torch)]
  2113. def prepare_tensors(self):
  2114. super().prepare_tensors()
  2115. if self._experts is not None:
  2116. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2117. experts = [k for d in self._experts for k in d.keys()]
  2118. if len(experts) > 0:
  2119. raise ValueError(f"Unprocessed experts: {experts}")
  2120. @ModelBase.register("Qwen3ForCausalLM")
  2121. class Qwen3Model(Qwen2Model):
  2122. model_arch = gguf.MODEL_ARCH.QWEN3
  2123. @ModelBase.register("Qwen3MoeForCausalLM")
  2124. class Qwen3MoeModel(Qwen2MoeModel):
  2125. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  2126. @ModelBase.register("GPT2LMHeadModel")
  2127. class GPT2Model(TextModel):
  2128. model_arch = gguf.MODEL_ARCH.GPT2
  2129. def set_gguf_parameters(self):
  2130. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2131. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  2132. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2133. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2134. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2135. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2136. self.gguf_writer.add_file_type(self.ftype)
  2137. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2138. del bid # unused
  2139. tensors: list[tuple[str, Tensor]] = []
  2140. # we don't need these
  2141. if name.endswith((".attn.bias", ".attn.masked_bias")):
  2142. return tensors
  2143. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  2144. data_torch = data_torch.transpose(1, 0)
  2145. new_name = self.map_tensor_name(name)
  2146. tensors.append((new_name, data_torch))
  2147. return tensors
  2148. @ModelBase.register("PhiForCausalLM")
  2149. class Phi2Model(TextModel):
  2150. model_arch = gguf.MODEL_ARCH.PHI2
  2151. def set_gguf_parameters(self):
  2152. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2153. rot_pct = self.find_hparam(["partial_rotary_factor"])
  2154. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2155. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2156. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  2157. self.gguf_writer.add_embedding_length(n_embd)
  2158. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  2159. self.gguf_writer.add_block_count(block_count)
  2160. self.gguf_writer.add_head_count(n_head)
  2161. self.gguf_writer.add_head_count_kv(n_head)
  2162. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  2163. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  2164. self.gguf_writer.add_file_type(self.ftype)
  2165. self.gguf_writer.add_add_bos_token(False)
  2166. @ModelBase.register("Phi3ForCausalLM")
  2167. class Phi3MiniModel(TextModel):
  2168. model_arch = gguf.MODEL_ARCH.PHI3
  2169. def set_vocab(self):
  2170. # Phi-4 model uses GPT2Tokenizer
  2171. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2172. if tokenizer_config_file.is_file():
  2173. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2174. tokenizer_config_json = json.load(f)
  2175. tokenizer_class = tokenizer_config_json['tokenizer_class']
  2176. if tokenizer_class == 'GPT2Tokenizer':
  2177. return self._set_vocab_gpt2()
  2178. from sentencepiece import SentencePieceProcessor
  2179. tokenizer_path = self.dir_model / 'tokenizer.model'
  2180. if not tokenizer_path.is_file():
  2181. raise ValueError(f'Error: Missing {tokenizer_path}')
  2182. tokenizer = SentencePieceProcessor()
  2183. tokenizer.LoadFromFile(str(tokenizer_path))
  2184. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2185. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2186. scores: list[float] = [-10000.0] * vocab_size
  2187. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2188. for token_id in range(tokenizer.vocab_size()):
  2189. piece = tokenizer.IdToPiece(token_id)
  2190. text = piece.encode("utf-8")
  2191. score = tokenizer.GetScore(token_id)
  2192. toktype = SentencePieceTokenTypes.NORMAL
  2193. if tokenizer.IsUnknown(token_id):
  2194. toktype = SentencePieceTokenTypes.UNKNOWN
  2195. elif tokenizer.IsControl(token_id):
  2196. toktype = SentencePieceTokenTypes.CONTROL
  2197. elif tokenizer.IsUnused(token_id):
  2198. toktype = SentencePieceTokenTypes.UNUSED
  2199. elif tokenizer.IsByte(token_id):
  2200. toktype = SentencePieceTokenTypes.BYTE
  2201. tokens[token_id] = text
  2202. scores[token_id] = score
  2203. toktypes[token_id] = toktype
  2204. added_tokens_file = self.dir_model / 'added_tokens.json'
  2205. if added_tokens_file.is_file():
  2206. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2207. added_tokens_json = json.load(f)
  2208. for key in added_tokens_json:
  2209. token_id = added_tokens_json[key]
  2210. if token_id >= vocab_size:
  2211. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2212. continue
  2213. tokens[token_id] = key.encode("utf-8")
  2214. scores[token_id] = -1000.0
  2215. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2216. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2217. if tokenizer_config_file.is_file():
  2218. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2219. tokenizer_config_json = json.load(f)
  2220. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2221. for token_id, foken_data in added_tokens_decoder.items():
  2222. token_id = int(token_id)
  2223. token = foken_data["content"].encode("utf-8")
  2224. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2225. if tokens[token_id] != token:
  2226. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2227. tokens[token_id] = token
  2228. scores[token_id] = -1000.0
  2229. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2230. if foken_data.get("special"):
  2231. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2232. tokenizer_file = self.dir_model / 'tokenizer.json'
  2233. if tokenizer_file.is_file():
  2234. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2235. tokenizer_json = json.load(f)
  2236. added_tokens = tokenizer_json.get("added_tokens", [])
  2237. for foken_data in added_tokens:
  2238. token_id = int(foken_data["id"])
  2239. token = foken_data["content"].encode("utf-8")
  2240. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2241. if tokens[token_id] != token:
  2242. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2243. tokens[token_id] = token
  2244. scores[token_id] = -1000.0
  2245. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2246. if foken_data.get("special"):
  2247. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2248. self.gguf_writer.add_tokenizer_model("llama")
  2249. self.gguf_writer.add_tokenizer_pre("default")
  2250. self.gguf_writer.add_token_list(tokens)
  2251. self.gguf_writer.add_token_scores(scores)
  2252. self.gguf_writer.add_token_types(toktypes)
  2253. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2254. special_vocab.add_to_gguf(self.gguf_writer)
  2255. def set_gguf_parameters(self):
  2256. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2257. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2258. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2259. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  2260. rms_eps = self.find_hparam(["rms_norm_eps"])
  2261. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2262. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2263. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2264. rope_dims = int(rot_pct * n_embd) // n_head
  2265. self.gguf_writer.add_context_length(max_pos_embds)
  2266. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  2267. self.gguf_writer.add_embedding_length(n_embd)
  2268. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  2269. self.gguf_writer.add_block_count(block_count)
  2270. self.gguf_writer.add_head_count(n_head)
  2271. self.gguf_writer.add_head_count_kv(n_head_kv)
  2272. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  2273. self.gguf_writer.add_rope_dimension_count(rope_dims)
  2274. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  2275. self.gguf_writer.add_file_type(self.ftype)
  2276. sliding_window = self.hparams.get("sliding_window")
  2277. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  2278. if sliding_window is None:
  2279. sliding_window = 0
  2280. self.gguf_writer.add_sliding_window(sliding_window)
  2281. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2282. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2283. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2284. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2285. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2286. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2287. rope_dims = int(rot_pct * n_embd) // n_head
  2288. # write rope scaling for long context (128k) model
  2289. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2290. if rope_scaling is None:
  2291. return
  2292. scale = max_pos_embds / orig_max_pos_embds
  2293. rope_scaling_type = rope_scaling.get('type', '').lower()
  2294. if len(rope_scaling_type) == 0:
  2295. raise KeyError('Missing the required key rope_scaling.type')
  2296. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  2297. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  2298. elif rope_scaling_type == 'yarn':
  2299. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  2300. else:
  2301. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  2302. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  2303. long_factors = rope_scaling.get('long_factor', None)
  2304. short_factors = rope_scaling.get('short_factor', None)
  2305. if long_factors is None or short_factors is None:
  2306. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2307. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2308. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  2309. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2310. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2311. @ModelBase.register("PhiMoEForCausalLM")
  2312. class PhiMoeModel(Phi3MiniModel):
  2313. model_arch = gguf.MODEL_ARCH.PHIMOE
  2314. _experts: list[dict[str, Tensor]] | None = None
  2315. def set_gguf_parameters(self):
  2316. super().set_gguf_parameters()
  2317. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  2318. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  2319. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2320. # process the experts separately
  2321. if name.find("block_sparse_moe.experts") != -1:
  2322. n_experts = self.hparams["num_local_experts"]
  2323. assert bid is not None
  2324. if self._experts is None:
  2325. self._experts = [{} for _ in range(self.block_count)]
  2326. self._experts[bid][name] = data_torch
  2327. if len(self._experts[bid]) >= n_experts * 3:
  2328. tensors: list[tuple[str, Tensor]] = []
  2329. # merge the experts into a single 3d tensor
  2330. for w_name in ["w1", "w2", "w3"]:
  2331. datas: list[Tensor] = []
  2332. for xid in range(n_experts):
  2333. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  2334. datas.append(self._experts[bid][ename])
  2335. del self._experts[bid][ename]
  2336. data_torch = torch.stack(datas, dim=0)
  2337. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  2338. new_name = self.map_tensor_name(merged_name)
  2339. tensors.append((new_name, data_torch))
  2340. return tensors
  2341. else:
  2342. return []
  2343. return [(self.map_tensor_name(name), data_torch)]
  2344. def prepare_tensors(self):
  2345. super().prepare_tensors()
  2346. if self._experts is not None:
  2347. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2348. experts = [k for d in self._experts for k in d.keys()]
  2349. if len(experts) > 0:
  2350. raise ValueError(f"Unprocessed experts: {experts}")
  2351. @ModelBase.register("PlamoForCausalLM")
  2352. class PlamoModel(TextModel):
  2353. model_arch = gguf.MODEL_ARCH.PLAMO
  2354. def set_vocab(self):
  2355. self._set_vocab_sentencepiece()
  2356. def set_gguf_parameters(self):
  2357. hparams = self.hparams
  2358. block_count = hparams["num_hidden_layers"]
  2359. self.gguf_writer.add_context_length(4096) # not in config.json
  2360. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2361. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2362. self.gguf_writer.add_block_count(block_count)
  2363. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2364. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  2365. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2366. self.gguf_writer.add_file_type(self.ftype)
  2367. def shuffle_attn_q_weight(self, data_torch):
  2368. assert data_torch.size() == (5120, 5120)
  2369. data_torch = data_torch.reshape(8, 5, 128, 5120)
  2370. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  2371. data_torch = torch.reshape(data_torch, (5120, 5120))
  2372. return data_torch
  2373. def shuffle_attn_output_weight(self, data_torch):
  2374. assert data_torch.size() == (5120, 5120)
  2375. data_torch = data_torch.reshape(5120, 8, 5, 128)
  2376. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  2377. data_torch = torch.reshape(data_torch, (5120, 5120))
  2378. return data_torch
  2379. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2380. del bid # unused
  2381. new_name = self.map_tensor_name(name)
  2382. # shuffle for broadcasting of gqa in ggml_mul_mat
  2383. if new_name.endswith("attn_q.weight"):
  2384. data_torch = self.shuffle_attn_q_weight(data_torch)
  2385. elif new_name.endswith("attn_output.weight"):
  2386. data_torch = self.shuffle_attn_output_weight(data_torch)
  2387. return [(new_name, data_torch)]
  2388. @ModelBase.register("CodeShellForCausalLM")
  2389. class CodeShellModel(TextModel):
  2390. model_arch = gguf.MODEL_ARCH.CODESHELL
  2391. def set_gguf_parameters(self):
  2392. block_count = self.hparams["n_layer"]
  2393. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2394. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2395. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2396. self.gguf_writer.add_block_count(block_count)
  2397. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2398. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  2399. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2400. self.gguf_writer.add_file_type(self.ftype)
  2401. self.gguf_writer.add_rope_freq_base(10000.0)
  2402. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2403. self.gguf_writer.add_rope_scaling_factor(1.0)
  2404. _has_tok_embd = False
  2405. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2406. del bid # unused
  2407. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2408. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2409. new_name = self.map_tensor_name(name)
  2410. # assuming token_embd.weight is seen before output.weight
  2411. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  2412. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  2413. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  2414. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  2415. self.tensor_names.remove("transformer.wte.weight")
  2416. elif new_name == tok_embd_name:
  2417. self._has_tok_embd = True
  2418. return [(new_name, data_torch)]
  2419. @ModelBase.register("InternLM2ForCausalLM")
  2420. class InternLM2Model(TextModel):
  2421. model_arch = gguf.MODEL_ARCH.INTERNLM2
  2422. def set_vocab(self):
  2423. # (TODO): Is there a better way?
  2424. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  2425. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  2426. # recognized as an empty string in C++.
  2427. from sentencepiece import SentencePieceProcessor
  2428. from sentencepiece import sentencepiece_model_pb2 as model
  2429. tokenizer_path = self.dir_model / 'tokenizer.model'
  2430. tokens: list[bytes] = []
  2431. scores: list[float] = []
  2432. toktypes: list[int] = []
  2433. if not tokenizer_path.is_file():
  2434. logger.error(f'Error: Missing {tokenizer_path}')
  2435. sys.exit(1)
  2436. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2437. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2438. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2439. tokenizer = SentencePieceProcessor()
  2440. tokenizer.LoadFromFile(str(tokenizer_path))
  2441. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2442. for token_id in range(vocab_size):
  2443. piece = tokenizer.IdToPiece(token_id)
  2444. text = piece.encode("utf-8")
  2445. score = tokenizer.GetScore(token_id)
  2446. if text == b"\x00":
  2447. # (TODO): fixme
  2448. # Hack here and replace the \x00 characters.
  2449. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  2450. text = "🐉".encode("utf-8")
  2451. toktype = SentencePieceTokenTypes.NORMAL
  2452. if tokenizer.IsUnknown(token_id):
  2453. toktype = SentencePieceTokenTypes.UNKNOWN
  2454. elif tokenizer.IsControl(token_id):
  2455. toktype = SentencePieceTokenTypes.CONTROL
  2456. elif tokenizer.IsUnused(token_id):
  2457. toktype = SentencePieceTokenTypes.UNUSED
  2458. elif tokenizer.IsByte(token_id):
  2459. toktype = SentencePieceTokenTypes.BYTE
  2460. # take care of ununsed raw token
  2461. if piece.startswith('[UNUSED'):
  2462. toktype = SentencePieceTokenTypes.UNUSED
  2463. tokens.append(text)
  2464. scores.append(score)
  2465. toktypes.append(toktype)
  2466. added_tokens_file = self.dir_model / 'added_tokens.json'
  2467. if added_tokens_file.is_file():
  2468. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2469. added_tokens_json = json.load(f)
  2470. for key in added_tokens_json:
  2471. tokens.append(key.encode("utf-8"))
  2472. scores.append(-1000.0)
  2473. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  2474. chat_eos_token = '<|im_end|>'
  2475. chat_eos_token_id = None
  2476. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2477. if tokenizer_config_file.is_file():
  2478. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2479. tokenizer_config_json = json.load(f)
  2480. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2481. for token_id, foken_data in added_tokens_decoder.items():
  2482. token_id = int(token_id)
  2483. token = foken_data["content"]
  2484. if token == chat_eos_token:
  2485. chat_eos_token_id = token_id
  2486. token = token.encode("utf-8")
  2487. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2488. if tokens[token_id] != token:
  2489. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2490. tokens[token_id] = token
  2491. scores[token_id] = -1000.0
  2492. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2493. if foken_data.get("special"):
  2494. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2495. tokenizer_file = self.dir_model / 'tokenizer.json'
  2496. if tokenizer_file.is_file():
  2497. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2498. tokenizer_json = json.load(f)
  2499. added_tokens = tokenizer_json.get("added_tokens", [])
  2500. for foken_data in added_tokens:
  2501. token_id = int(foken_data["id"])
  2502. token = foken_data["content"]
  2503. if token == chat_eos_token:
  2504. chat_eos_token_id = token_id
  2505. token = token.encode("utf-8")
  2506. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2507. if tokens[token_id] != token:
  2508. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2509. tokens[token_id] = token
  2510. scores[token_id] = -1000.0
  2511. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2512. if foken_data.get("special"):
  2513. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2514. self.gguf_writer.add_tokenizer_model("llama")
  2515. self.gguf_writer.add_tokenizer_pre("default")
  2516. self.gguf_writer.add_token_list(tokens)
  2517. self.gguf_writer.add_token_scores(scores)
  2518. self.gguf_writer.add_token_types(toktypes)
  2519. self.gguf_writer.add_add_space_prefix(add_prefix)
  2520. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2521. old_eos = special_vocab.special_token_ids["eos"]
  2522. if chat_eos_token_id is not None:
  2523. # For the chat model, we replace the eos with '<|im_end|>'.
  2524. # TODO: this is a hack, should be fixed
  2525. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  2526. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  2527. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  2528. " in chat mode so that the conversation can end normally.")
  2529. special_vocab.add_to_gguf(self.gguf_writer)
  2530. def set_gguf_parameters(self):
  2531. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2532. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2533. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2534. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2535. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  2536. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2537. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2538. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  2539. self.gguf_writer.add_file_type(self.ftype)
  2540. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2541. if self.hparams["rope_scaling"].get("type") == "linear":
  2542. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2543. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2544. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2545. num_heads = self.hparams["num_attention_heads"]
  2546. num_kv_heads = self.hparams["num_key_value_heads"]
  2547. n_embd = self.hparams["hidden_size"]
  2548. q_per_kv = num_heads // num_kv_heads
  2549. head_dim = n_embd // num_heads
  2550. num_groups = num_heads // q_per_kv
  2551. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  2552. qkv = data_torch
  2553. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  2554. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  2555. # The model weights of q and k equire additional reshape.
  2556. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  2557. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  2558. v = v.reshape((-1, v.shape[-1]))
  2559. return [
  2560. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  2561. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  2562. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  2563. ]
  2564. else:
  2565. return [(self.map_tensor_name(name), data_torch)]
  2566. @ModelBase.register("InternLM3ForCausalLM")
  2567. class InternLM3Model(TextModel):
  2568. model_arch = gguf.MODEL_ARCH.LLAMA
  2569. def set_vocab(self):
  2570. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  2571. self.gguf_writer.add_tokenizer_model("llama")
  2572. self.gguf_writer.add_tokenizer_pre("default")
  2573. self.gguf_writer.add_token_list(tokens)
  2574. self.gguf_writer.add_token_scores(scores)
  2575. self.gguf_writer.add_token_types(toktypes)
  2576. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2577. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2578. if tokenizer_config_file.is_file():
  2579. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2580. tokenizer_config_json = json.load(f)
  2581. if "add_prefix_space" in tokenizer_config_json:
  2582. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  2583. if "added_tokens_decoder" in tokenizer_config_json:
  2584. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  2585. if token_data.get("special"):
  2586. token_id = int(token_id)
  2587. token = token_data["content"]
  2588. special_vocab._set_special_token(token, token_id)
  2589. # update eos token
  2590. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  2591. special_vocab.special_token_ids["eos"] = token_id
  2592. special_vocab.add_to_gguf(self.gguf_writer)
  2593. def set_gguf_parameters(self):
  2594. super().set_gguf_parameters()
  2595. hparams = self.hparams
  2596. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2597. if "head_dim" in hparams:
  2598. rope_dim = hparams["head_dim"]
  2599. else:
  2600. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2601. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2602. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2603. if self.hparams["rope_scaling"].get("type") == "linear" or self.hparams["rope_scaling"].get("rope_type") == "linear":
  2604. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2605. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2606. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2607. n_head = self.hparams["num_attention_heads"]
  2608. n_kv_head = self.hparams.get("num_key_value_heads")
  2609. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2610. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2611. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2612. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2613. return [(self.map_tensor_name(name), data_torch)]
  2614. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel")
  2615. class BertModel(TextModel):
  2616. model_arch = gguf.MODEL_ARCH.BERT
  2617. def __init__(self, *args, **kwargs):
  2618. super().__init__(*args, **kwargs)
  2619. self.vocab_size = None
  2620. def set_gguf_parameters(self):
  2621. super().set_gguf_parameters()
  2622. self.gguf_writer.add_causal_attention(False)
  2623. # get pooling path
  2624. pooling_path = None
  2625. module_path = self.dir_model / "modules.json"
  2626. if module_path.is_file():
  2627. with open(module_path, encoding="utf-8") as f:
  2628. modules = json.load(f)
  2629. for mod in modules:
  2630. if mod["type"] == "sentence_transformers.models.Pooling":
  2631. pooling_path = mod["path"]
  2632. break
  2633. # get pooling type
  2634. if pooling_path is not None:
  2635. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  2636. pooling = json.load(f)
  2637. if pooling["pooling_mode_mean_tokens"]:
  2638. pooling_type = gguf.PoolingType.MEAN
  2639. elif pooling["pooling_mode_cls_token"]:
  2640. pooling_type = gguf.PoolingType.CLS
  2641. else:
  2642. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  2643. self.gguf_writer.add_pooling_type(pooling_type)
  2644. def set_vocab(self):
  2645. tokens, toktypes, tokpre = self.get_vocab_base()
  2646. self.vocab_size = len(tokens)
  2647. # we need this to validate the size of the token_type embeddings
  2648. # though currently we are passing all zeros to the token_type embeddings
  2649. # "Sequence A" or "Sequence B"
  2650. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2651. # convert to phantom space vocab
  2652. def phantom(tok):
  2653. if tok.startswith("[") and tok.endswith("]"):
  2654. return tok
  2655. if tok.startswith("##"):
  2656. return tok[2:]
  2657. return "\u2581" + tok
  2658. tokens = list(map(phantom, tokens))
  2659. # add vocab to gguf
  2660. self.gguf_writer.add_tokenizer_model("bert")
  2661. self.gguf_writer.add_tokenizer_pre(tokpre)
  2662. self.gguf_writer.add_token_list(tokens)
  2663. self.gguf_writer.add_token_types(toktypes)
  2664. # handle special tokens
  2665. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2666. special_vocab.add_to_gguf(self.gguf_writer)
  2667. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2668. del bid # unused
  2669. if name.startswith("bert."):
  2670. name = name[5:]
  2671. if name.endswith(".gamma"):
  2672. name = name[:-6] + ".weight"
  2673. if name.endswith(".beta"):
  2674. name = name[:-5] + ".bias"
  2675. # we are only using BERT for embeddings so we don't need the pooling layer
  2676. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2677. return [] # we don't need these
  2678. if name.startswith("cls.predictions"):
  2679. return []
  2680. if name.startswith("cls.seq_relationship"):
  2681. return []
  2682. return [(self.map_tensor_name(name), data_torch)]
  2683. @ModelBase.register("RobertaModel")
  2684. class RobertaModel(BertModel):
  2685. model_arch = gguf.MODEL_ARCH.BERT
  2686. def __init__(self, *args, **kwargs):
  2687. super().__init__(*args, **kwargs)
  2688. # we need the pad_token_id to know how to chop down position_embd matrix
  2689. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2690. self._position_offset = 1 + pad_token_id
  2691. if "max_position_embeddings" in self.hparams:
  2692. self.hparams["max_position_embeddings"] -= self._position_offset
  2693. else:
  2694. self._position_offset = None
  2695. def set_vocab(self):
  2696. """Support BPE tokenizers for roberta models"""
  2697. bpe_tok_path = self.dir_model / "tokenizer.json"
  2698. if bpe_tok_path.exists():
  2699. self._set_vocab_gpt2()
  2700. self.gguf_writer.add_add_bos_token(True)
  2701. self.gguf_writer.add_add_eos_token(True)
  2702. # we need this to validate the size of the token_type embeddings
  2703. # though currently we are passing all zeros to the token_type embeddings
  2704. # "Sequence A" or "Sequence B"
  2705. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2706. else:
  2707. return super().set_vocab()
  2708. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2709. # if name starts with "roberta.", remove the prefix
  2710. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2711. if name.startswith("roberta."):
  2712. name = name[8:]
  2713. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2714. if name == "embeddings.position_embeddings.weight":
  2715. if self._position_offset is not None:
  2716. data_torch = data_torch[self._position_offset:,:]
  2717. return super().modify_tensors(data_torch, name, bid)
  2718. @ModelBase.register("NomicBertModel")
  2719. class NomicBertModel(BertModel):
  2720. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  2721. def __init__(self, *args, **kwargs):
  2722. super().__init__(*args, **kwargs)
  2723. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  2724. self.hparams["n_ctx"] = 2048
  2725. # SwigLU activation
  2726. assert self.hparams["activation_function"] == "swiglu"
  2727. # this doesn't do anything in the HF version
  2728. assert self.hparams["causal"] is False
  2729. # no bias tensors
  2730. assert self.hparams["qkv_proj_bias"] is False
  2731. assert self.hparams["mlp_fc1_bias"] is False
  2732. assert self.hparams["mlp_fc2_bias"] is False
  2733. # norm at end of layer
  2734. assert self.hparams["prenorm"] is False
  2735. # standard RoPE
  2736. assert self.hparams["rotary_emb_fraction"] == 1.0
  2737. assert self.hparams["rotary_emb_interleaved"] is False
  2738. assert self.hparams["rotary_emb_scale_base"] is None
  2739. def set_gguf_parameters(self):
  2740. super().set_gguf_parameters()
  2741. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2742. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  2743. class XLMRobertaModel(BertModel):
  2744. model_arch = gguf.MODEL_ARCH.BERT
  2745. def __init__(self, *args, **kwargs):
  2746. super().__init__(*args, **kwargs)
  2747. # we need the pad_token_id to know how to chop down position_embd matrix
  2748. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2749. self._position_offset = 1 + pad_token_id
  2750. if "max_position_embeddings" in self.hparams:
  2751. self.hparams["max_position_embeddings"] -= self._position_offset
  2752. else:
  2753. self._position_offset = None
  2754. def set_vocab(self):
  2755. # to avoid TypeError: Descriptors cannot be created directly
  2756. # exception when importing sentencepiece_model_pb2
  2757. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2758. from sentencepiece import SentencePieceProcessor
  2759. from sentencepiece import sentencepiece_model_pb2 as model
  2760. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2761. if not tokenizer_path.is_file():
  2762. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2763. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2764. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2765. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2766. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2767. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2768. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2769. tokenizer = SentencePieceProcessor()
  2770. tokenizer.LoadFromFile(str(tokenizer_path))
  2771. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2772. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2773. scores: list[float] = [-10000.0] * vocab_size
  2774. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2775. for token_id in range(tokenizer.vocab_size()):
  2776. piece = tokenizer.IdToPiece(token_id)
  2777. text = piece.encode("utf-8")
  2778. score = tokenizer.GetScore(token_id)
  2779. toktype = SentencePieceTokenTypes.NORMAL
  2780. if tokenizer.IsUnknown(token_id):
  2781. toktype = SentencePieceTokenTypes.UNKNOWN
  2782. elif tokenizer.IsControl(token_id):
  2783. toktype = SentencePieceTokenTypes.CONTROL
  2784. elif tokenizer.IsUnused(token_id):
  2785. toktype = SentencePieceTokenTypes.UNUSED
  2786. elif tokenizer.IsByte(token_id):
  2787. toktype = SentencePieceTokenTypes.BYTE
  2788. tokens[token_id] = text
  2789. scores[token_id] = score
  2790. toktypes[token_id] = toktype
  2791. if vocab_size > len(tokens):
  2792. pad_count = vocab_size - len(tokens)
  2793. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2794. for i in range(1, pad_count + 1):
  2795. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2796. scores.append(-1000.0)
  2797. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2798. # realign tokens (see HF tokenizer code)
  2799. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  2800. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  2801. toktypes = [
  2802. SentencePieceTokenTypes.CONTROL,
  2803. SentencePieceTokenTypes.CONTROL,
  2804. SentencePieceTokenTypes.CONTROL,
  2805. SentencePieceTokenTypes.UNKNOWN,
  2806. ] + toktypes[3:-1]
  2807. self.gguf_writer.add_tokenizer_model("t5")
  2808. self.gguf_writer.add_tokenizer_pre("default")
  2809. self.gguf_writer.add_token_list(tokens)
  2810. self.gguf_writer.add_token_scores(scores)
  2811. self.gguf_writer.add_token_types(toktypes)
  2812. self.gguf_writer.add_add_space_prefix(add_prefix)
  2813. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2814. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2815. if precompiled_charsmap:
  2816. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2817. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2818. special_vocab.add_to_gguf(self.gguf_writer)
  2819. self.gguf_writer.add_add_bos_token(True)
  2820. self.gguf_writer.add_add_eos_token(True)
  2821. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2822. # if name starts with "roberta.", remove the prefix
  2823. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2824. if name.startswith("roberta."):
  2825. name = name[8:]
  2826. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2827. if name == "embeddings.position_embeddings.weight":
  2828. if self._position_offset is not None:
  2829. data_torch = data_torch[self._position_offset:,:]
  2830. return super().modify_tensors(data_torch, name, bid)
  2831. @ModelBase.register("GemmaForCausalLM")
  2832. class GemmaModel(TextModel):
  2833. model_arch = gguf.MODEL_ARCH.GEMMA
  2834. def set_vocab(self):
  2835. self._set_vocab_sentencepiece()
  2836. # TODO: these special tokens should be exported only for the CodeGemma family
  2837. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2838. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2839. special_vocab._set_special_token("prefix", 67)
  2840. special_vocab._set_special_token("suffix", 69)
  2841. special_vocab._set_special_token("middle", 68)
  2842. special_vocab._set_special_token("fsep", 70)
  2843. special_vocab._set_special_token("eot", 107)
  2844. special_vocab.chat_template = None # do not add it twice
  2845. special_vocab.add_to_gguf(self.gguf_writer)
  2846. self.gguf_writer.add_add_space_prefix(False)
  2847. def set_gguf_parameters(self):
  2848. hparams = self.hparams
  2849. block_count = hparams["num_hidden_layers"]
  2850. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2851. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2852. self.gguf_writer.add_block_count(block_count)
  2853. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2854. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2855. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2856. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2857. self.gguf_writer.add_key_length(hparams["head_dim"])
  2858. self.gguf_writer.add_value_length(hparams["head_dim"])
  2859. self.gguf_writer.add_file_type(self.ftype)
  2860. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2861. del bid # unused
  2862. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2863. # To prevent errors, skip loading lm_head.weight.
  2864. if name == "lm_head.weight":
  2865. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2866. return []
  2867. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2868. if name.endswith("norm.weight"):
  2869. data_torch = data_torch + 1
  2870. return [(self.map_tensor_name(name), data_torch)]
  2871. @ModelBase.register("Gemma2ForCausalLM")
  2872. class Gemma2Model(TextModel):
  2873. model_arch = gguf.MODEL_ARCH.GEMMA2
  2874. def set_vocab(self):
  2875. self._set_vocab_sentencepiece()
  2876. self.gguf_writer.add_add_space_prefix(False)
  2877. def set_gguf_parameters(self):
  2878. hparams = self.hparams
  2879. block_count = hparams["num_hidden_layers"]
  2880. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2881. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2882. self.gguf_writer.add_block_count(block_count)
  2883. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2884. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2885. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2886. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2887. self.gguf_writer.add_key_length(hparams["head_dim"])
  2888. self.gguf_writer.add_value_length(hparams["head_dim"])
  2889. self.gguf_writer.add_file_type(self.ftype)
  2890. self.gguf_writer.add_attn_logit_softcapping(
  2891. self.hparams["attn_logit_softcapping"]
  2892. )
  2893. self.gguf_writer.add_final_logit_softcapping(
  2894. self.hparams["final_logit_softcapping"]
  2895. )
  2896. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2897. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2898. del bid # unused
  2899. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2900. # To prevent errors, skip loading lm_head.weight.
  2901. if name == "lm_head.weight":
  2902. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2903. return []
  2904. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2905. if name.endswith("norm.weight"):
  2906. data_torch = data_torch + 1
  2907. return [(self.map_tensor_name(name), data_torch)]
  2908. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  2909. class Gemma3Model(TextModel):
  2910. model_arch = gguf.MODEL_ARCH.GEMMA3
  2911. def set_vocab(self):
  2912. self._set_vocab_sentencepiece()
  2913. self.gguf_writer.add_add_space_prefix(False)
  2914. def set_gguf_parameters(self):
  2915. hparams = self.hparams
  2916. block_count = hparams["num_hidden_layers"]
  2917. # some default values are not specified in the hparams
  2918. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  2919. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2920. self.gguf_writer.add_block_count(block_count)
  2921. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2922. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  2923. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  2924. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  2925. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  2926. self.gguf_writer.add_file_type(self.ftype)
  2927. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  2928. # both attn_logit_softcapping and final_logit_softcapping are removed in Gemma3
  2929. assert hparams.get("attn_logit_softcapping") is None
  2930. assert hparams.get("final_logit_softcapping") is None
  2931. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  2932. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  2933. if hparams.get("rope_scaling") is not None:
  2934. assert hparams["rope_scaling"]["rope_type"] == "linear"
  2935. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  2936. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2937. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  2938. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2939. del bid # unused
  2940. if name.startswith("language_model."):
  2941. name = name.replace("language_model.", "")
  2942. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  2943. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  2944. return [] # skip vision tensors
  2945. # remove OOV (out-of-vocabulary) rows in token_embd
  2946. if "embed_tokens.weight" in name:
  2947. vocab = self._create_vocab_sentencepiece()
  2948. tokens = vocab[0]
  2949. data_torch = data_torch[:len(tokens)]
  2950. # ref code in Gemma3RMSNorm
  2951. # output = output * (1.0 + self.weight.float())
  2952. if name.endswith("norm.weight"):
  2953. data_torch = data_torch + 1
  2954. return [(self.map_tensor_name(name), data_torch)]
  2955. @ModelBase.register("Gemma3ForConditionalGeneration")
  2956. class Gemma3VisionModel(VisionModel):
  2957. def set_gguf_parameters(self):
  2958. super().set_gguf_parameters()
  2959. hparams = self.hparams
  2960. self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.GEMMA3)
  2961. # default values below are taken from HF tranformers code
  2962. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  2963. self.gguf_writer.add_vision_use_gelu(True)
  2964. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2965. del bid, new_name, n_dims # unused
  2966. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  2967. if "input_projection" in name:
  2968. return gguf.GGMLQuantizationType.F16
  2969. if ".embeddings." in name:
  2970. return gguf.GGMLQuantizationType.F32
  2971. return False
  2972. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2973. del bid # unused
  2974. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  2975. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  2976. # process vision tensors
  2977. name = name.replace("_weight", ".weight")
  2978. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  2979. # the other norm values are part of SigLIP model, and they are already correct
  2980. # ref code: Gemma3RMSNorm
  2981. if "soft_emb_norm.weight" in name:
  2982. logger.info(f"Correcting norm value for '{name}'")
  2983. data_torch = data_torch + 1
  2984. return [(self.map_tensor_name(name), data_torch)]
  2985. return [] # skip other tensors
  2986. @ModelBase.register("Starcoder2ForCausalLM")
  2987. class StarCoder2Model(TextModel):
  2988. model_arch = gguf.MODEL_ARCH.STARCODER2
  2989. @ModelBase.register("Rwkv6ForCausalLM")
  2990. class Rwkv6Model(TextModel):
  2991. model_arch = gguf.MODEL_ARCH.RWKV6
  2992. def set_vocab(self):
  2993. self._set_vocab_rwkv_world()
  2994. def set_gguf_parameters(self):
  2995. block_count = self.hparams["num_hidden_layers"]
  2996. head_size = self.hparams["head_size"]
  2997. hidden_size = self.hparams["hidden_size"]
  2998. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  2999. rescale_every_n_layers = self.hparams["rescale_every"]
  3000. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  3001. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  3002. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  3003. # RWKV isn't context limited
  3004. self.gguf_writer.add_context_length(1048576)
  3005. self.gguf_writer.add_embedding_length(hidden_size)
  3006. self.gguf_writer.add_block_count(block_count)
  3007. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3008. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  3009. self.gguf_writer.add_wkv_head_size(head_size)
  3010. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  3011. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  3012. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3013. self.gguf_writer.add_file_type(self.ftype)
  3014. # required by llama.cpp, unused
  3015. self.gguf_writer.add_head_count(0)
  3016. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3017. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3018. new_name = self.map_tensor_name(name)
  3019. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  3020. new_name += ".weight"
  3021. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  3022. data_torch = data_torch.transpose(0, 1)
  3023. if new_name.endswith("time_mix_w2.weight"):
  3024. data_torch = data_torch.permute(0, 2, 1)
  3025. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  3026. data_torch = data_torch.squeeze()
  3027. try:
  3028. rescale_every_n_layers = self.hparams["rescale_every"]
  3029. if rescale_every_n_layers > 0:
  3030. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  3031. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  3032. except KeyError:
  3033. pass
  3034. # concat time_mix_lerp weights to reduce some cpu overhead
  3035. # also reduces the number of tensors in the model
  3036. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  3037. try:
  3038. self.lerp_weights[bid][new_name] = data_torch
  3039. except KeyError:
  3040. self.lerp_weights[bid] = {new_name: data_torch}
  3041. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  3042. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3043. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  3044. yield (new_name, data)
  3045. return
  3046. yield (new_name, data_torch)
  3047. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  3048. class RWKV6Qwen2Model(Rwkv6Model):
  3049. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  3050. def set_vocab(self):
  3051. try:
  3052. self._set_vocab_sentencepiece()
  3053. except FileNotFoundError:
  3054. self._set_vocab_gpt2()
  3055. def set_gguf_parameters(self):
  3056. block_count = self.hparams["num_hidden_layers"]
  3057. num_attention_heads = self.hparams["num_attention_heads"]
  3058. num_key_value_heads = self.hparams["num_key_value_heads"]
  3059. hidden_size = self.hparams["hidden_size"]
  3060. head_size = hidden_size // num_attention_heads
  3061. rms_norm_eps = self.hparams["rms_norm_eps"]
  3062. intermediate_size = self.hparams["intermediate_size"]
  3063. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  3064. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  3065. # RWKV isn't context limited
  3066. self.gguf_writer.add_context_length(1048576)
  3067. self.gguf_writer.add_embedding_length(hidden_size)
  3068. self.gguf_writer.add_block_count(block_count)
  3069. self.gguf_writer.add_wkv_head_size(head_size)
  3070. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  3071. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  3072. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3073. self.gguf_writer.add_file_type(self.ftype)
  3074. # special parameters for time_mixing in RWKV6QWEN2
  3075. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3076. self.gguf_writer.add_token_shift_count(1)
  3077. # RWKV6QWEN2 use grouped key/value like GQA
  3078. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  3079. # required by llama.cpp, unused
  3080. self.gguf_writer.add_head_count(0)
  3081. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3082. for new_name, data in super().modify_tensors(data_torch, name, bid):
  3083. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  3084. data = data.view(5, -1, data.shape[-1])
  3085. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  3086. # permute them here to avoid code changes
  3087. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  3088. if "w2" in new_name:
  3089. data = data.view(5, -1, data.shape[-1])
  3090. yield (new_name, data)
  3091. continue
  3092. yield (new_name, data)
  3093. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  3094. class Rwkv7Model(TextModel):
  3095. model_arch = gguf.MODEL_ARCH.RWKV7
  3096. def set_vocab(self):
  3097. self._set_vocab_rwkv_world()
  3098. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  3099. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  3100. def set_gguf_parameters(self):
  3101. block_count = self.hparams["num_hidden_layers"]
  3102. try:
  3103. head_size = self.hparams["head_size"]
  3104. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  3105. except KeyError:
  3106. head_size = self.hparams["head_dim"]
  3107. layer_norm_eps = self.hparams["norm_eps"]
  3108. hidden_size = self.hparams["hidden_size"]
  3109. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  3110. # ICLR: In-Context-Learning-Rate
  3111. try:
  3112. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3113. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3114. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  3115. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  3116. except KeyError:
  3117. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3118. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3119. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  3120. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  3121. # RWKV isn't context limited
  3122. self.gguf_writer.add_context_length(1048576)
  3123. self.gguf_writer.add_embedding_length(hidden_size)
  3124. self.gguf_writer.add_block_count(block_count)
  3125. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3126. self.gguf_writer.add_wkv_head_size(head_size)
  3127. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3128. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3129. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3130. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3131. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3132. self.gguf_writer.add_file_type(self.ftype)
  3133. # required by llama.cpp, unused
  3134. self.gguf_writer.add_head_count(0)
  3135. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3136. lora_needs_transpose: bool = True
  3137. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3138. # unify tensor names here to make life easier
  3139. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  3140. name = name.replace("self_attn", "attention").replace("attn", "attention")
  3141. name = name.replace("time_mixer.", "")
  3142. # lora layer names in fla-hub's impl
  3143. if "_lora.lora" in name:
  3144. self.lora_needs_transpose = False
  3145. name = name.replace("_lora.lora.0.weight", "1.weight")
  3146. name = name.replace("_lora.lora.2.weight", "2.weight")
  3147. name = name.replace("_lora.lora.2.bias", "0.weight")
  3148. name = name.replace("feed_forward_norm", "ln2")
  3149. name = name.replace("g_norm", "ln_x")
  3150. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  3151. # some models have dummy v0/v1/v2 on first layer while others don't
  3152. # ignore them all since they are not used
  3153. return
  3154. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  3155. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  3156. if bid is not None and "attention.x_" in name:
  3157. if "attention.x_x" in name:
  3158. # already concatenated
  3159. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3160. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  3161. yield (new_name, data)
  3162. else:
  3163. try:
  3164. self.lerp_weights[bid][name] = data_torch
  3165. except KeyError:
  3166. self.lerp_weights[bid] = {name: data_torch}
  3167. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  3168. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3169. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  3170. yield (new_name, data)
  3171. return
  3172. else:
  3173. data_torch = data_torch.squeeze()
  3174. new_name = self.map_tensor_name(name)
  3175. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  3176. new_name += ".weight"
  3177. if self.lora_needs_transpose and any(
  3178. new_name.endswith(t) for t in [
  3179. "time_mix_w1.weight", "time_mix_w2.weight",
  3180. "time_mix_a1.weight", "time_mix_a2.weight",
  3181. "time_mix_v1.weight", "time_mix_v2.weight",
  3182. "time_mix_g1.weight", "time_mix_g2.weight",
  3183. ]
  3184. ):
  3185. data_torch = data_torch.transpose(0, 1)
  3186. if 'r_k' in new_name:
  3187. data_torch = data_torch.flatten()
  3188. if bid == 0 and "time_mix_a" in new_name:
  3189. # dummy v0/v1/v2 on first layer
  3190. # easist way to make llama happy
  3191. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  3192. yield (new_name, data_torch)
  3193. @ModelBase.register("RwkvHybridForCausalLM")
  3194. class ARwkv7Model(Rwkv7Model):
  3195. model_arch = gguf.MODEL_ARCH.ARWKV7
  3196. def set_vocab(self):
  3197. try:
  3198. self._set_vocab_sentencepiece()
  3199. except FileNotFoundError:
  3200. self._set_vocab_gpt2()
  3201. def set_gguf_parameters(self):
  3202. block_count = self.hparams["num_hidden_layers"]
  3203. hidden_size = self.hparams["hidden_size"]
  3204. head_size = self.hparams["head_size"]
  3205. rms_norm_eps = self.hparams["rms_norm_eps"]
  3206. intermediate_size = self.hparams["intermediate_size"]
  3207. wkv_has_gate = self.hparams["wkv_has_gate"]
  3208. assert self.hparams["wkv_version"] == 7
  3209. # ICLR: In-Context-Learning-Rate
  3210. lora_rank_decay = 64
  3211. lora_rank_iclr = 64
  3212. lora_rank_value_residual_mix = 32
  3213. lora_rank_gate = 128 if wkv_has_gate else 0
  3214. # RWKV isn't context limited
  3215. self.gguf_writer.add_context_length(1048576)
  3216. self.gguf_writer.add_embedding_length(hidden_size)
  3217. self.gguf_writer.add_block_count(block_count)
  3218. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3219. self.gguf_writer.add_wkv_head_size(head_size)
  3220. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3221. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3222. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3223. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3224. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3225. self.gguf_writer.add_file_type(self.ftype)
  3226. self.gguf_writer.add_token_shift_count(1)
  3227. # required by llama.cpp, unused
  3228. self.gguf_writer.add_head_count(0)
  3229. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  3230. class MambaModel(TextModel):
  3231. model_arch = gguf.MODEL_ARCH.MAMBA
  3232. def set_vocab(self):
  3233. vocab_size = self.hparams["vocab_size"]
  3234. # Round vocab size to next multiple of 8
  3235. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  3236. # pad using ceiling division
  3237. # ref: https://stackoverflow.com/a/17511341/22827863
  3238. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  3239. self.hparams["vocab_size"] = vocab_size
  3240. if (self.dir_model / "tokenizer.json").is_file():
  3241. self._set_vocab_gpt2()
  3242. elif (self.dir_model / "tokenizer.model").is_file():
  3243. self._set_vocab_sentencepiece()
  3244. else:
  3245. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  3246. self._set_vocab_builtin("gpt-neox", vocab_size)
  3247. def set_gguf_parameters(self):
  3248. d_model = self.find_hparam(["hidden_size", "d_model"])
  3249. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  3250. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  3251. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  3252. # ceiling division
  3253. # ref: https://stackoverflow.com/a/17511341/22827863
  3254. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  3255. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  3256. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  3257. use_dt_b_c_norm = False
  3258. # For falconmamba we do apply RMS norm on B / DT and C layers
  3259. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  3260. use_dt_b_c_norm = True
  3261. # Fail early for models which don't have a block expansion factor of 2
  3262. assert d_inner == 2 * d_model
  3263. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  3264. self.gguf_writer.add_embedding_length(d_model)
  3265. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  3266. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  3267. self.gguf_writer.add_block_count(self.block_count)
  3268. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  3269. self.gguf_writer.add_ssm_inner_size(d_inner)
  3270. self.gguf_writer.add_ssm_state_size(d_state)
  3271. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  3272. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3273. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  3274. self.gguf_writer.add_file_type(self.ftype)
  3275. _tok_embd = None
  3276. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3277. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3278. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3279. new_name = self.map_tensor_name(name)
  3280. if name.endswith(".A_log"):
  3281. logger.debug("A_log --> A ==> " + new_name)
  3282. data_torch = -torch.exp(data_torch)
  3283. # [4 1 8192 1] -> [4 8192 1 1]
  3284. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  3285. data_torch = data_torch.squeeze()
  3286. # assuming token_embd.weight is seen before output.weight
  3287. if self._tok_embd is not None and new_name == output_name:
  3288. if torch.equal(self._tok_embd, data_torch):
  3289. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  3290. return []
  3291. elif new_name == tok_embd_name:
  3292. self._tok_embd = data_torch
  3293. return [(new_name, data_torch)]
  3294. @ModelBase.register("CohereForCausalLM")
  3295. class CommandR2Model(TextModel):
  3296. model_arch = gguf.MODEL_ARCH.COMMAND_R
  3297. def __init__(self, *args, **kwargs):
  3298. super().__init__(*args, **kwargs)
  3299. # max_position_embeddings = 8192 in config.json but model was actually
  3300. # trained on 128k context length
  3301. # aya-23 models don't have model_max_length specified
  3302. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  3303. def set_gguf_parameters(self):
  3304. super().set_gguf_parameters()
  3305. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3306. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3307. @ModelBase.register("Cohere2ForCausalLM")
  3308. class Cohere2Model(TextModel):
  3309. model_arch = gguf.MODEL_ARCH.COHERE2
  3310. def set_gguf_parameters(self):
  3311. super().set_gguf_parameters()
  3312. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3313. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3314. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3315. rotary_pct = self.hparams["rotary_pct"]
  3316. hidden_size = self.hparams["hidden_size"]
  3317. num_attention_heads = self.hparams["num_attention_heads"]
  3318. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  3319. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3320. @ModelBase.register("OlmoForCausalLM")
  3321. @ModelBase.register("OLMoForCausalLM")
  3322. class OlmoModel(TextModel):
  3323. model_arch = gguf.MODEL_ARCH.OLMO
  3324. def set_gguf_parameters(self):
  3325. super().set_gguf_parameters()
  3326. self.gguf_writer.add_layer_norm_eps(1e-5)
  3327. clip_qkv = self.hparams.get("clip_qkv")
  3328. if clip_qkv is not None:
  3329. self.gguf_writer.add_clamp_kqv(clip_qkv)
  3330. # Same as super class, but permuting q_proj, k_proj
  3331. # Copied from: LlamaModel
  3332. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3333. del bid # unused
  3334. n_head = self.hparams["num_attention_heads"]
  3335. n_kv_head = self.hparams.get("num_key_value_heads")
  3336. if name.endswith("q_proj.weight"):
  3337. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3338. if name.endswith("k_proj.weight"):
  3339. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3340. return [(self.map_tensor_name(name), data_torch)]
  3341. @ModelBase.register("Olmo2ForCausalLM")
  3342. class Olmo2Model(TextModel):
  3343. model_arch = gguf.MODEL_ARCH.OLMO2
  3344. @ModelBase.register("OlmoeForCausalLM")
  3345. class OlmoeModel(TextModel):
  3346. model_arch = gguf.MODEL_ARCH.OLMOE
  3347. def set_gguf_parameters(self):
  3348. super().set_gguf_parameters()
  3349. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  3350. if (n_experts := self.hparams.get("num_experts")) is not None:
  3351. self.gguf_writer.add_expert_count(n_experts)
  3352. _experts: list[dict[str, Tensor]] | None = None
  3353. # Copied from: Qwen2MoeModel
  3354. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3355. # process the experts separately
  3356. if name.find("experts") != -1:
  3357. n_experts = self.hparams["num_experts"]
  3358. assert bid is not None
  3359. if self._experts is None:
  3360. self._experts = [{} for _ in range(self.block_count)]
  3361. self._experts[bid][name] = data_torch
  3362. if len(self._experts[bid]) >= n_experts * 3:
  3363. tensors: list[tuple[str, Tensor]] = []
  3364. # merge the experts into a single 3d tensor
  3365. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3366. datas: list[Tensor] = []
  3367. for xid in range(n_experts):
  3368. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3369. datas.append(self._experts[bid][ename])
  3370. del self._experts[bid][ename]
  3371. data_torch = torch.stack(datas, dim=0)
  3372. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3373. new_name = self.map_tensor_name(merged_name)
  3374. tensors.append((new_name, data_torch))
  3375. return tensors
  3376. else:
  3377. return []
  3378. return [(self.map_tensor_name(name), data_torch)]
  3379. # Copied from: Qwen2MoeModel
  3380. def prepare_tensors(self):
  3381. super().prepare_tensors()
  3382. if self._experts is not None:
  3383. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3384. experts = [k for d in self._experts for k in d.keys()]
  3385. if len(experts) > 0:
  3386. raise ValueError(f"Unprocessed experts: {experts}")
  3387. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  3388. class JinaBertV2Model(BertModel):
  3389. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  3390. def __init__(self, *args, **kwargs):
  3391. super().__init__(*args, **kwargs)
  3392. self.intermediate_size = self.hparams["intermediate_size"]
  3393. def get_tensors(self):
  3394. for name, data in super().get_tensors():
  3395. if 'gated_layer' in name:
  3396. d1 = data[:self.intermediate_size, :]
  3397. name1 = name.replace('gated_layers', 'gated_layers_w')
  3398. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  3399. d2 = data[self.intermediate_size:, :]
  3400. name2 = name.replace('gated_layers', 'gated_layers_v')
  3401. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  3402. yield name1, d1
  3403. yield name2, d2
  3404. continue
  3405. yield name, data
  3406. def set_vocab(self):
  3407. tokenizer_class = 'BertTokenizer'
  3408. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  3409. tokenizer_class = json.load(f)['tokenizer_class']
  3410. if tokenizer_class == 'BertTokenizer':
  3411. super().set_vocab()
  3412. elif tokenizer_class == 'RobertaTokenizer':
  3413. self._set_vocab_gpt2()
  3414. self.gguf_writer.add_token_type_count(2)
  3415. else:
  3416. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  3417. self.gguf_writer.add_add_bos_token(True)
  3418. self.gguf_writer.add_add_eos_token(True)
  3419. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3420. # if name starts with "bert.", remove the prefix
  3421. # e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  3422. if name.startswith("bert."):
  3423. name = name[5:]
  3424. return super().modify_tensors(data_torch, name, bid)
  3425. @ModelBase.register("OpenELMForCausalLM")
  3426. class OpenELMModel(TextModel):
  3427. model_arch = gguf.MODEL_ARCH.OPENELM
  3428. @staticmethod
  3429. def _make_divisible(v: float | int, divisor: int) -> int:
  3430. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  3431. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  3432. # Make sure that round down does not go down by more than 10%.
  3433. if new_v < 0.9 * v:
  3434. new_v += divisor
  3435. return new_v
  3436. def __init__(self, *args, **kwargs):
  3437. super().__init__(*args, **kwargs)
  3438. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  3439. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  3440. self._n_embd: int = self.hparams["model_dim"]
  3441. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  3442. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  3443. self._ffn_dims: list[int] = [
  3444. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  3445. for multiplier in ffn_multipliers
  3446. ]
  3447. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  3448. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  3449. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  3450. def set_vocab(self):
  3451. try:
  3452. self._set_vocab_sentencepiece()
  3453. except FileNotFoundError:
  3454. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  3455. def set_gguf_parameters(self):
  3456. n_embd = self._n_embd
  3457. head_dim = self.hparams["head_dim"]
  3458. rot_pct = 1.0
  3459. assert self.block_count == len(self._num_kv_heads)
  3460. assert self.block_count == len(self._num_query_heads)
  3461. assert self.block_count == len(self._ffn_dims)
  3462. self.gguf_writer.add_block_count(self.block_count)
  3463. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  3464. self.gguf_writer.add_embedding_length(n_embd)
  3465. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  3466. self.gguf_writer.add_head_count(self._num_query_heads)
  3467. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  3468. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  3469. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  3470. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  3471. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  3472. self.gguf_writer.add_key_length(head_dim)
  3473. self.gguf_writer.add_value_length(head_dim)
  3474. self.gguf_writer.add_file_type(self.ftype)
  3475. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  3476. if "n_layers" in keys:
  3477. return self.hparams["num_transformer_layers"]
  3478. return super().find_hparam(keys, optional)
  3479. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3480. # split ff
  3481. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  3482. ff_dim = self._ffn_dims[bid]
  3483. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  3484. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  3485. return
  3486. yield (self.map_tensor_name(name), data_torch)
  3487. @ModelBase.register("ArcticForCausalLM")
  3488. class ArcticModel(TextModel):
  3489. model_arch = gguf.MODEL_ARCH.ARCTIC
  3490. def set_vocab(self):
  3491. # The reason for using a custom implementation here is that the
  3492. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  3493. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  3494. from sentencepiece import SentencePieceProcessor
  3495. tokenizer_path = self.dir_model / 'tokenizer.model'
  3496. if not tokenizer_path.is_file():
  3497. logger.error(f'Error: Missing {tokenizer_path}')
  3498. sys.exit(1)
  3499. # Read the whole vocabulary from the tokenizer.model file
  3500. tokenizer = SentencePieceProcessor()
  3501. tokenizer.LoadFromFile(str(tokenizer_path))
  3502. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3503. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3504. scores: list[float] = [-10000.0] * vocab_size
  3505. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3506. for token_id in range(tokenizer.vocab_size()):
  3507. piece = tokenizer.IdToPiece(token_id)
  3508. text = piece.encode("utf-8")
  3509. score = tokenizer.GetScore(token_id)
  3510. toktype = SentencePieceTokenTypes.NORMAL
  3511. if tokenizer.IsUnknown(token_id):
  3512. toktype = SentencePieceTokenTypes.UNKNOWN
  3513. elif tokenizer.IsControl(token_id):
  3514. toktype = SentencePieceTokenTypes.CONTROL
  3515. elif tokenizer.IsUnused(token_id):
  3516. toktype = SentencePieceTokenTypes.UNUSED
  3517. elif tokenizer.IsByte(token_id):
  3518. toktype = SentencePieceTokenTypes.BYTE
  3519. tokens[token_id] = text
  3520. scores[token_id] = score
  3521. toktypes[token_id] = toktype
  3522. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  3523. # of information about added/redefined tokens and modify them accordingly.
  3524. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3525. if tokenizer_config_file.is_file():
  3526. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3527. tokenizer_config_json = json.load(f)
  3528. if "added_tokens_decoder" in tokenizer_config_json:
  3529. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  3530. for token_id, token_json in added_tokens_decoder.items():
  3531. token_id = int(token_id)
  3532. if token_id >= vocab_size:
  3533. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3534. continue
  3535. token_content = token_json["content"]
  3536. token_type = SentencePieceTokenTypes.USER_DEFINED
  3537. token_score = -10000.0
  3538. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  3539. # Set the score to 0.0 as in the original tokenizer.model
  3540. if ("special" in token_json) and token_json["special"]:
  3541. if token_content == tokenizer_config_json["unk_token"]:
  3542. token_type = SentencePieceTokenTypes.UNKNOWN
  3543. else:
  3544. token_type = SentencePieceTokenTypes.CONTROL
  3545. token_score = 0.0
  3546. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  3547. tokens[token_id] = token_content.encode("utf-8")
  3548. toktypes[token_id] = token_type
  3549. scores[token_id] = token_score
  3550. self.gguf_writer.add_tokenizer_model("llama")
  3551. self.gguf_writer.add_tokenizer_pre("default")
  3552. self.gguf_writer.add_token_list(tokens)
  3553. self.gguf_writer.add_token_scores(scores)
  3554. self.gguf_writer.add_token_types(toktypes)
  3555. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3556. special_vocab.add_to_gguf(self.gguf_writer)
  3557. def set_gguf_parameters(self):
  3558. super().set_gguf_parameters()
  3559. hparams = self.hparams
  3560. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3561. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  3562. _experts: list[dict[str, Tensor]] | None = None
  3563. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3564. n_head = self.hparams["num_attention_heads"]
  3565. n_kv_head = self.hparams.get("num_key_value_heads")
  3566. if name.endswith("q_proj.weight"):
  3567. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3568. if name.endswith("k_proj.weight"):
  3569. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3570. # process the experts separately
  3571. if name.find("block_sparse_moe.experts") != -1:
  3572. n_experts = self.hparams["num_local_experts"]
  3573. assert bid is not None
  3574. if self._experts is None:
  3575. self._experts = [{} for _ in range(self.block_count)]
  3576. self._experts[bid][name] = data_torch
  3577. if len(self._experts[bid]) >= n_experts * 3:
  3578. tensors: list[tuple[str, Tensor]] = []
  3579. # merge the experts into a single 3d tensor
  3580. for wid in ["w1", "w2", "w3"]:
  3581. datas: list[Tensor] = []
  3582. for xid in range(n_experts):
  3583. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  3584. datas.append(self._experts[bid][ename])
  3585. del self._experts[bid][ename]
  3586. data_torch = torch.stack(datas, dim=0)
  3587. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  3588. new_name = self.map_tensor_name(merged_name)
  3589. tensors.append((new_name, data_torch))
  3590. return tensors
  3591. else:
  3592. return []
  3593. return [(self.map_tensor_name(name), data_torch)]
  3594. def prepare_tensors(self):
  3595. super().prepare_tensors()
  3596. if self._experts is not None:
  3597. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3598. experts = [k for d in self._experts for k in d.keys()]
  3599. if len(experts) > 0:
  3600. raise ValueError(f"Unprocessed experts: {experts}")
  3601. @ModelBase.register("DeepseekForCausalLM")
  3602. class DeepseekModel(TextModel):
  3603. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  3604. def set_vocab(self):
  3605. try:
  3606. self._set_vocab_sentencepiece()
  3607. except FileNotFoundError:
  3608. self._set_vocab_gpt2()
  3609. def set_gguf_parameters(self):
  3610. super().set_gguf_parameters()
  3611. hparams = self.hparams
  3612. if "head_dim" in hparams:
  3613. rope_dim = hparams["head_dim"]
  3614. else:
  3615. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3616. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3617. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3618. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3619. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3620. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3621. self.gguf_writer.add_expert_weights_scale(1.0)
  3622. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3623. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3624. _experts: list[dict[str, Tensor]] | None = None
  3625. @staticmethod
  3626. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  3627. if n_head_kv is not None and n_head != n_head_kv:
  3628. n_head = n_head_kv
  3629. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  3630. .swapaxes(1, 2)
  3631. .reshape(weights.shape))
  3632. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3633. n_head = self.hparams["num_attention_heads"]
  3634. n_kv_head = self.hparams.get("num_key_value_heads")
  3635. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3636. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  3637. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3638. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  3639. # process the experts separately
  3640. if name.find("mlp.experts") != -1:
  3641. n_experts = self.hparams["n_routed_experts"]
  3642. assert bid is not None
  3643. if self._experts is None:
  3644. self._experts = [{} for _ in range(self.block_count)]
  3645. self._experts[bid][name] = data_torch
  3646. if len(self._experts[bid]) >= n_experts * 3:
  3647. tensors: list[tuple[str, Tensor]] = []
  3648. # merge the experts into a single 3d tensor
  3649. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3650. datas: list[Tensor] = []
  3651. for xid in range(n_experts):
  3652. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3653. datas.append(self._experts[bid][ename])
  3654. del self._experts[bid][ename]
  3655. data_torch = torch.stack(datas, dim=0)
  3656. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3657. new_name = self.map_tensor_name(merged_name)
  3658. tensors.append((new_name, data_torch))
  3659. return tensors
  3660. else:
  3661. return []
  3662. return [(self.map_tensor_name(name), data_torch)]
  3663. def prepare_tensors(self):
  3664. super().prepare_tensors()
  3665. if self._experts is not None:
  3666. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3667. experts = [k for d in self._experts for k in d.keys()]
  3668. if len(experts) > 0:
  3669. raise ValueError(f"Unprocessed experts: {experts}")
  3670. @ModelBase.register("DeepseekV2ForCausalLM")
  3671. @ModelBase.register("DeepseekV3ForCausalLM")
  3672. class DeepseekV2Model(TextModel):
  3673. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  3674. def set_vocab(self):
  3675. self._set_vocab_gpt2()
  3676. def set_gguf_parameters(self):
  3677. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  3678. self.hparams["num_key_value_heads"] = 1
  3679. super().set_gguf_parameters()
  3680. hparams = self.hparams
  3681. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3682. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3683. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  3684. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  3685. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  3686. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  3687. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  3688. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  3689. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  3690. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  3691. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3692. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3693. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3694. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  3695. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  3696. if hparams["scoring_func"] == "sigmoid":
  3697. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  3698. elif hparams["scoring_func"] == "softmax":
  3699. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  3700. else:
  3701. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  3702. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  3703. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  3704. if self.hparams["rope_scaling"].get("type") == "yarn":
  3705. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  3706. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  3707. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  3708. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  3709. _experts: list[dict[str, Tensor]] | None = None
  3710. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3711. # rename e_score_correction_bias tensors
  3712. if name.endswith("e_score_correction_bias"):
  3713. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  3714. # skip Multi-Token Prediction (MTP) layers
  3715. block_count = self.hparams["num_hidden_layers"]
  3716. match = re.match(r"model.layers.(\d+)", name)
  3717. if match and int(match.group(1)) >= block_count:
  3718. return []
  3719. # process the experts separately
  3720. if name.find("mlp.experts") != -1:
  3721. n_experts = self.hparams["n_routed_experts"]
  3722. assert bid is not None
  3723. if self._experts is None:
  3724. self._experts = [{} for _ in range(self.block_count)]
  3725. self._experts[bid][name] = data_torch
  3726. if len(self._experts[bid]) >= n_experts * 3:
  3727. tensors: list[tuple[str, Tensor]] = []
  3728. # merge the experts into a single 3d tensor
  3729. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3730. datas: list[Tensor] = []
  3731. for xid in range(n_experts):
  3732. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3733. datas.append(self._experts[bid][ename])
  3734. del self._experts[bid][ename]
  3735. data_torch = torch.stack(datas, dim=0)
  3736. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3737. new_name = self.map_tensor_name(merged_name)
  3738. tensors.append((new_name, data_torch))
  3739. return tensors
  3740. else:
  3741. return []
  3742. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  3743. if name.endswith("kv_b_proj.weight"):
  3744. name_kb = name.replace("kv_b_proj", "k_b_proj")
  3745. name_vb = name.replace("kv_b_proj", "v_b_proj")
  3746. n_head_kv = self.hparams["num_key_value_heads"]
  3747. v_head_dim = self.hparams["v_head_dim"]
  3748. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  3749. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  3750. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  3751. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  3752. k_b = k_b.transpose(1, 2)
  3753. return [
  3754. (self.map_tensor_name(name_kb), k_b),
  3755. (self.map_tensor_name(name_vb), v_b)
  3756. ]
  3757. return [(self.map_tensor_name(name), data_torch)]
  3758. def prepare_tensors(self):
  3759. super().prepare_tensors()
  3760. if self._experts is not None:
  3761. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3762. experts = [k for d in self._experts for k in d.keys()]
  3763. if len(experts) > 0:
  3764. raise ValueError(f"Unprocessed experts: {experts}")
  3765. @ModelBase.register("PLMForCausalLM")
  3766. class PLMModel(TextModel):
  3767. model_arch = gguf.MODEL_ARCH.PLM
  3768. def set_vocab(self):
  3769. self._set_vocab_gpt2()
  3770. def set_gguf_parameters(self):
  3771. super().set_gguf_parameters()
  3772. hparams = self.hparams
  3773. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3774. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  3775. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  3776. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  3777. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  3778. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3779. return [(self.map_tensor_name(name), data_torch)]
  3780. def prepare_tensors(self):
  3781. super().prepare_tensors()
  3782. @ModelBase.register("T5WithLMHeadModel")
  3783. @ModelBase.register("T5ForConditionalGeneration")
  3784. @ModelBase.register("MT5ForConditionalGeneration")
  3785. @ModelBase.register("UMT5ForConditionalGeneration")
  3786. class T5Model(TextModel):
  3787. model_arch = gguf.MODEL_ARCH.T5
  3788. def __init__(self, *args, **kwargs):
  3789. super().__init__(*args, **kwargs)
  3790. self.shared_token_embeddings_found = False
  3791. def set_vocab(self):
  3792. # to avoid TypeError: Descriptors cannot be created directly
  3793. # exception when importing sentencepiece_model_pb2
  3794. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3795. from sentencepiece import SentencePieceProcessor
  3796. from sentencepiece import sentencepiece_model_pb2 as model
  3797. tokenizer_path = self.dir_model / 'tokenizer.model'
  3798. # many older models use spiece.model tokenizer model filename
  3799. if not tokenizer_path.is_file():
  3800. tokenizer_path = self.dir_model / 'spiece.model'
  3801. if not tokenizer_path.is_file():
  3802. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3803. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3804. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3805. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  3806. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  3807. # assure the tokenizer model file name is correct
  3808. assert tokenizer_path.name == 'tokenizer.model'
  3809. return self._set_vocab_sentencepiece()
  3810. else:
  3811. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3812. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3813. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3814. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3815. tokenizer = SentencePieceProcessor()
  3816. tokenizer.LoadFromFile(str(tokenizer_path))
  3817. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3818. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3819. scores: list[float] = [-10000.0] * vocab_size
  3820. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3821. for token_id in range(tokenizer.vocab_size()):
  3822. piece = tokenizer.IdToPiece(token_id)
  3823. text = piece.encode("utf-8")
  3824. score = tokenizer.GetScore(token_id)
  3825. toktype = SentencePieceTokenTypes.NORMAL
  3826. if tokenizer.IsUnknown(token_id):
  3827. toktype = SentencePieceTokenTypes.UNKNOWN
  3828. elif tokenizer.IsControl(token_id):
  3829. toktype = SentencePieceTokenTypes.CONTROL
  3830. elif tokenizer.IsUnused(token_id):
  3831. toktype = SentencePieceTokenTypes.UNUSED
  3832. elif tokenizer.IsByte(token_id):
  3833. toktype = SentencePieceTokenTypes.BYTE
  3834. tokens[token_id] = text
  3835. scores[token_id] = score
  3836. toktypes[token_id] = toktype
  3837. added_tokens_file = self.dir_model / 'added_tokens.json'
  3838. if added_tokens_file.is_file():
  3839. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3840. added_tokens_json = json.load(f)
  3841. for key in added_tokens_json:
  3842. token_id = added_tokens_json[key]
  3843. if token_id >= vocab_size:
  3844. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3845. continue
  3846. tokens[token_id] = key.encode("utf-8")
  3847. scores[token_id] = -1000.0
  3848. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3849. if vocab_size > len(tokens):
  3850. pad_count = vocab_size - len(tokens)
  3851. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3852. for i in range(1, pad_count + 1):
  3853. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3854. scores.append(-1000.0)
  3855. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3856. self.gguf_writer.add_tokenizer_model("t5")
  3857. self.gguf_writer.add_tokenizer_pre("default")
  3858. self.gguf_writer.add_token_list(tokens)
  3859. self.gguf_writer.add_token_scores(scores)
  3860. self.gguf_writer.add_token_types(toktypes)
  3861. self.gguf_writer.add_add_space_prefix(add_prefix)
  3862. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3863. if precompiled_charsmap:
  3864. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3865. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3866. special_vocab.add_to_gguf(self.gguf_writer)
  3867. self.gguf_writer.add_add_bos_token(False)
  3868. self.gguf_writer.add_add_eos_token(True)
  3869. def set_gguf_parameters(self):
  3870. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  3871. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  3872. n_ctx = 512
  3873. self.gguf_writer.add_context_length(n_ctx)
  3874. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  3875. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  3876. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3877. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  3878. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  3879. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  3880. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3881. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  3882. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  3883. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  3884. self.gguf_writer.add_file_type(self.ftype)
  3885. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3886. del bid # unused
  3887. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  3888. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  3889. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  3890. # and decoder and ignore the remaining ones.
  3891. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  3892. if not self.shared_token_embeddings_found:
  3893. name = "shared.weight"
  3894. self.shared_token_embeddings_found = True
  3895. else:
  3896. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  3897. return []
  3898. return [(self.map_tensor_name(name), data_torch)]
  3899. @ModelBase.register("T5EncoderModel")
  3900. class T5EncoderModel(TextModel):
  3901. model_arch = gguf.MODEL_ARCH.T5ENCODER
  3902. def __init__(self, *args, **kwargs):
  3903. super().__init__(*args, **kwargs)
  3904. self.shared_token_embeddings_found = False
  3905. def set_vocab(self):
  3906. # to avoid TypeError: Descriptors cannot be created directly
  3907. # exception when importing sentencepiece_model_pb2
  3908. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3909. from sentencepiece import SentencePieceProcessor
  3910. from sentencepiece import sentencepiece_model_pb2 as model
  3911. tokenizer_path = self.dir_model / 'tokenizer.model'
  3912. # many older models use spiece.model tokenizer model filename
  3913. if not tokenizer_path.is_file():
  3914. tokenizer_path = self.dir_model / 'spiece.model'
  3915. if not tokenizer_path.is_file():
  3916. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3917. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3918. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3919. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  3920. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  3921. # assure the tokenizer model file name is correct
  3922. assert tokenizer_path.name == 'tokenizer.model'
  3923. return self._set_vocab_sentencepiece()
  3924. else:
  3925. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3926. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3927. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3928. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3929. tokenizer = SentencePieceProcessor()
  3930. tokenizer.LoadFromFile(str(tokenizer_path))
  3931. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3932. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3933. scores: list[float] = [-10000.0] * vocab_size
  3934. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3935. for token_id in range(tokenizer.vocab_size()):
  3936. piece = tokenizer.IdToPiece(token_id)
  3937. text = piece.encode("utf-8")
  3938. score = tokenizer.GetScore(token_id)
  3939. toktype = SentencePieceTokenTypes.NORMAL
  3940. if tokenizer.IsUnknown(token_id):
  3941. toktype = SentencePieceTokenTypes.UNKNOWN
  3942. elif tokenizer.IsControl(token_id):
  3943. toktype = SentencePieceTokenTypes.CONTROL
  3944. elif tokenizer.IsUnused(token_id):
  3945. toktype = SentencePieceTokenTypes.UNUSED
  3946. elif tokenizer.IsByte(token_id):
  3947. toktype = SentencePieceTokenTypes.BYTE
  3948. tokens[token_id] = text
  3949. scores[token_id] = score
  3950. toktypes[token_id] = toktype
  3951. added_tokens_file = self.dir_model / 'added_tokens.json'
  3952. if added_tokens_file.is_file():
  3953. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3954. added_tokens_json = json.load(f)
  3955. for key in added_tokens_json:
  3956. token_id = added_tokens_json[key]
  3957. if token_id >= vocab_size:
  3958. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3959. continue
  3960. tokens[token_id] = key.encode("utf-8")
  3961. scores[token_id] = -1000.0
  3962. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3963. if vocab_size > len(tokens):
  3964. pad_count = vocab_size - len(tokens)
  3965. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3966. for i in range(1, pad_count + 1):
  3967. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3968. scores.append(-1000.0)
  3969. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3970. self.gguf_writer.add_tokenizer_model("t5")
  3971. self.gguf_writer.add_tokenizer_pre("default")
  3972. self.gguf_writer.add_token_list(tokens)
  3973. self.gguf_writer.add_token_scores(scores)
  3974. self.gguf_writer.add_token_types(toktypes)
  3975. self.gguf_writer.add_add_space_prefix(add_prefix)
  3976. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3977. if precompiled_charsmap:
  3978. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3979. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3980. special_vocab.add_to_gguf(self.gguf_writer)
  3981. self.gguf_writer.add_add_bos_token(False)
  3982. self.gguf_writer.add_add_eos_token(True)
  3983. def set_gguf_parameters(self):
  3984. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  3985. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  3986. n_ctx = 512
  3987. self.gguf_writer.add_context_length(n_ctx)
  3988. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  3989. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  3990. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3991. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  3992. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  3993. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  3994. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3995. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  3996. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  3997. self.gguf_writer.add_file_type(self.ftype)
  3998. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3999. del bid # unused
  4000. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  4001. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  4002. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  4003. # and decoder and ignore the remaining ones.
  4004. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  4005. if not self.shared_token_embeddings_found:
  4006. name = "shared.weight"
  4007. self.shared_token_embeddings_found = True
  4008. else:
  4009. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  4010. return []
  4011. return [(self.map_tensor_name(name), data_torch)]
  4012. @ModelBase.register("JAISLMHeadModel")
  4013. class JaisModel(TextModel):
  4014. model_arch = gguf.MODEL_ARCH.JAIS
  4015. def __init__(self, *args, **kwargs):
  4016. super().__init__(*args, **kwargs)
  4017. # SwigLU activation
  4018. assert self.hparams["activation_function"] == "swiglu"
  4019. # ALiBi position embedding
  4020. assert self.hparams["position_embedding_type"] == "alibi"
  4021. # Embeddings scale
  4022. self.embeddings_scale = 1.0
  4023. if 'mup_embeddings_scale' in self.hparams:
  4024. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  4025. elif 'embeddings_scale' in self.hparams:
  4026. self.embeddings_scale = self.hparams['embeddings_scale']
  4027. else:
  4028. assert False
  4029. self.width_scale = 1.0
  4030. if 'mup_output_alpha' in self.hparams:
  4031. assert 'mup_width_scale' in self.hparams
  4032. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  4033. elif 'width_scale' in self.hparams:
  4034. self.width_scale = self.hparams['width_scale']
  4035. else:
  4036. assert False
  4037. self.max_alibi_bias = 8.0
  4038. def set_vocab(self):
  4039. self._set_vocab_gpt2()
  4040. def set_gguf_parameters(self):
  4041. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  4042. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  4043. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  4044. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  4045. self.gguf_writer.add_head_count(self.hparams["n_head"])
  4046. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4047. self.gguf_writer.add_file_type(self.ftype)
  4048. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4049. del bid # unused
  4050. tensors: list[tuple[str, Tensor]] = []
  4051. # we don't need these
  4052. if name.endswith((".attn.bias")):
  4053. return tensors
  4054. if name.endswith(("relative_pe.slopes")):
  4055. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  4056. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  4057. # but Jais's PyTorch model simply precalculates the slope values and places them
  4058. # in relative_pes.slopes
  4059. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  4060. first_val = float(data_torch[0].item())
  4061. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  4062. return tensors
  4063. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  4064. data_torch = data_torch.transpose(1, 0)
  4065. new_name = self.map_tensor_name(name)
  4066. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  4067. tensors.append((new_name, data_torch * self.embeddings_scale))
  4068. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  4069. tensors.append((new_name, data_torch * self.width_scale))
  4070. else:
  4071. tensors.append((new_name, data_torch))
  4072. return tensors
  4073. def prepare_tensors(self):
  4074. super().prepare_tensors()
  4075. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  4076. @ModelBase.register("Glm4ForCausalLM")
  4077. class Glm4Model(TextModel):
  4078. model_arch = gguf.MODEL_ARCH.GLM4
  4079. def set_vocab(self):
  4080. from transformers import AutoTokenizer
  4081. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  4082. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4083. tokens, toktypes, tokpre = self.get_vocab_base()
  4084. self.gguf_writer.add_tokenizer_model("gpt2")
  4085. self.gguf_writer.add_tokenizer_pre(tokpre)
  4086. self.gguf_writer.add_token_list(tokens)
  4087. self.gguf_writer.add_token_types(toktypes)
  4088. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4089. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4090. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  4091. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  4092. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"])
  4093. special_vocab.add_to_gguf(self.gguf_writer)
  4094. def set_gguf_parameters(self):
  4095. super().set_gguf_parameters()
  4096. rope_dim = self.hparams["head_dim"]
  4097. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  4098. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  4099. if self.hparams["rope_scaling"].get("type") == "yarn":
  4100. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4101. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  4102. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  4103. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  4104. class ChatGLMModel(TextModel):
  4105. model_arch = gguf.MODEL_ARCH.CHATGLM
  4106. def set_vocab_chatglm3(self):
  4107. dir_model = self.dir_model
  4108. hparams = self.hparams
  4109. tokens: list[bytes] = []
  4110. toktypes: list[int] = []
  4111. scores: list[float] = []
  4112. from transformers import AutoTokenizer
  4113. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  4114. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  4115. assert max(tokenizer.get_vocab().values()) < vocab_size
  4116. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  4117. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  4118. for token_id in range(vocab_size):
  4119. piece = tokenizer._convert_id_to_token(token_id)
  4120. if token_id == 0:
  4121. piece = "<unk>"
  4122. elif token_id == 1:
  4123. piece = "<bos>"
  4124. elif token_id == 2:
  4125. piece = "<eos>"
  4126. text = piece.encode("utf-8")
  4127. score = 0.0
  4128. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  4129. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  4130. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  4131. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  4132. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  4133. if piece in special_tokens:
  4134. toktype = SentencePieceTokenTypes.CONTROL
  4135. elif len(piece) == 0:
  4136. text = f"[PAD{token_id}]".encode("utf-8")
  4137. toktype = SentencePieceTokenTypes.UNUSED
  4138. else:
  4139. toktype = SentencePieceTokenTypes.USER_DEFINED
  4140. tokens.append(text)
  4141. scores.append(score)
  4142. toktypes.append(toktype)
  4143. continue
  4144. toktype = SentencePieceTokenTypes.NORMAL
  4145. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  4146. toktype = SentencePieceTokenTypes.UNKNOWN
  4147. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  4148. toktype = SentencePieceTokenTypes.CONTROL
  4149. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  4150. toktype = SentencePieceTokenTypes.UNUSED
  4151. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  4152. toktype = SentencePieceTokenTypes.BYTE
  4153. tokens.append(text)
  4154. scores.append(score)
  4155. toktypes.append(toktype)
  4156. self.gguf_writer.add_tokenizer_model("llama")
  4157. # glm3 needs prefix and suffix formatted as:
  4158. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  4159. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  4160. self.gguf_writer.add_token_list(tokens)
  4161. self.gguf_writer.add_token_scores(scores)
  4162. self.gguf_writer.add_token_types(toktypes)
  4163. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4164. special_vocab.add_to_gguf(self.gguf_writer)
  4165. @staticmethod
  4166. def token_bytes_to_string(b):
  4167. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  4168. byte_encoder = bytes_to_unicode()
  4169. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  4170. @staticmethod
  4171. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  4172. parts = [bytes([b]) for b in token]
  4173. while True:
  4174. min_idx = None
  4175. min_rank = None
  4176. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  4177. rank = mergeable_ranks.get(pair[0] + pair[1])
  4178. if rank is not None and (min_rank is None or rank < min_rank):
  4179. min_idx = i
  4180. min_rank = rank
  4181. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  4182. break
  4183. assert min_idx is not None
  4184. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  4185. return parts
  4186. def set_vocab(self):
  4187. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  4188. self.set_vocab_chatglm3()
  4189. return
  4190. dir_model = self.dir_model
  4191. hparams = self.hparams
  4192. tokens: list[str] = []
  4193. toktypes: list[int] = []
  4194. from transformers import AutoTokenizer
  4195. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  4196. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  4197. assert max(tokenizer.get_vocab().values()) < vocab_size
  4198. tokens, toktypes, tokpre = self.get_vocab_base()
  4199. self.gguf_writer.add_tokenizer_model("gpt2")
  4200. self.gguf_writer.add_tokenizer_pre(tokpre)
  4201. self.gguf_writer.add_token_list(tokens)
  4202. self.gguf_writer.add_token_types(toktypes)
  4203. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4204. # only add special tokens when they were not already loaded from config.json
  4205. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4206. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  4207. # this one is usually not in config.json anyway
  4208. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  4209. special_vocab.add_to_gguf(self.gguf_writer)
  4210. def set_gguf_parameters(self):
  4211. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  4212. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  4213. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  4214. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  4215. self.gguf_writer.add_embedding_length(n_embed)
  4216. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  4217. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  4218. self.gguf_writer.add_head_count(n_head)
  4219. self.gguf_writer.add_head_count_kv(n_head_kv)
  4220. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  4221. self.gguf_writer.add_file_type(self.ftype)
  4222. if "attention_dim" in self.hparams:
  4223. rope_dim = self.hparams["attention_dim"]
  4224. else:
  4225. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  4226. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  4227. self.gguf_writer.add_add_bos_token(False)
  4228. rope_freq = 10000
  4229. if "rope_ratio" in self.hparams:
  4230. rope_freq = rope_freq * self.hparams["rope_ratio"]
  4231. self.gguf_writer.add_rope_freq_base(rope_freq)
  4232. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4233. del bid # unused
  4234. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  4235. return []
  4236. name = name.removeprefix("transformer.")
  4237. return [(self.map_tensor_name(name), data_torch)]
  4238. @ModelBase.register("NemotronForCausalLM")
  4239. class NemotronModel(TextModel):
  4240. model_arch = gguf.MODEL_ARCH.NEMOTRON
  4241. def set_vocab(self):
  4242. self._set_vocab_sentencepiece()
  4243. self.gguf_writer.add_pad_token_id(0)
  4244. self.gguf_writer.add_unk_token_id(1)
  4245. def set_gguf_parameters(self):
  4246. super().set_gguf_parameters()
  4247. hparams = self.hparams
  4248. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4249. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  4250. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  4251. # * Partial RoPE
  4252. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  4253. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  4254. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  4255. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  4256. # * RopeScaling for Nemotron
  4257. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  4258. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4259. else:
  4260. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4261. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  4262. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4263. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  4264. # model.layers.{l}.input_layernorm.weight
  4265. # model.layers.{l}.post_attention_layernorm.weight
  4266. # model.norm.weight
  4267. if name.endswith("norm.weight"):
  4268. data_torch = data_torch + 1
  4269. return [(self.map_tensor_name(name), data_torch)]
  4270. @ModelBase.register("ExaoneForCausalLM")
  4271. class ExaoneModel(TextModel):
  4272. model_arch = gguf.MODEL_ARCH.EXAONE
  4273. def set_gguf_parameters(self):
  4274. hparams = self.hparams
  4275. assert (hparams["activation_function"] == "silu")
  4276. max_position_embeddings = hparams["max_position_embeddings"]
  4277. embed_dim = hparams["hidden_size"]
  4278. num_heads = hparams["num_attention_heads"]
  4279. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  4280. layer_norm_eps = hparams["layer_norm_epsilon"]
  4281. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  4282. num_layers = hparams["num_layers"]
  4283. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  4284. # attention_dropout_rate = hparams["attention_dropout"]
  4285. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  4286. # embed_dropout_rate = hparams["embed_dropout"]
  4287. self.gguf_writer.add_embedding_length(embed_dim)
  4288. self.gguf_writer.add_head_count(num_heads)
  4289. self.gguf_writer.add_head_count_kv(num_kv_heads)
  4290. self.gguf_writer.add_context_length(max_position_embeddings)
  4291. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  4292. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4293. self.gguf_writer.add_block_count(num_layers)
  4294. self.gguf_writer.add_file_type(self.ftype)
  4295. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  4296. self.gguf_writer.add_rope_freq_base(rope_theta)
  4297. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  4298. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  4299. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  4300. if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
  4301. if hparams["rope_scaling"].get("type") == "linear":
  4302. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4303. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  4304. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4305. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  4306. if rope_scaling.get("rope_type", '').lower() == "llama3":
  4307. base = self.hparams.get("rope_theta", 10000.0)
  4308. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  4309. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  4310. factor = rope_scaling.get("factor", 8.0)
  4311. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  4312. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  4313. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  4314. low_freq_wavelen = old_context_len / low_freq_factor
  4315. high_freq_wavelen = old_context_len / high_freq_factor
  4316. assert low_freq_wavelen != high_freq_wavelen
  4317. rope_factors = []
  4318. for freq in freqs:
  4319. wavelen = 2 * math.pi / freq
  4320. if wavelen < high_freq_wavelen:
  4321. rope_factors.append(1)
  4322. elif wavelen > low_freq_wavelen:
  4323. rope_factors.append(factor)
  4324. else:
  4325. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  4326. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  4327. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  4328. @ModelBase.register("GraniteForCausalLM")
  4329. class GraniteModel(LlamaModel):
  4330. """Conversion for IBM's GraniteForCausalLM"""
  4331. model_arch = gguf.MODEL_ARCH.GRANITE
  4332. def set_gguf_parameters(self):
  4333. """Granite uses standard llama parameters with the following differences:
  4334. - No head_dim support
  4335. - New multiplier params:
  4336. - attention_scale
  4337. - embedding_scale
  4338. - residual_scale
  4339. - logits_scaling
  4340. """
  4341. if head_dim := self.hparams.pop("head_dim", None):
  4342. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  4343. super().set_gguf_parameters()
  4344. # NOTE: Convert _multiplier params to _scale params for naming
  4345. # consistency
  4346. if attention_scale := self.hparams.get("attention_multiplier"):
  4347. self.gguf_writer.add_attention_scale(attention_scale)
  4348. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  4349. if embedding_scale := self.hparams.get("embedding_multiplier"):
  4350. self.gguf_writer.add_embedding_scale(embedding_scale)
  4351. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  4352. if residual_scale := self.hparams.get("residual_multiplier"):
  4353. self.gguf_writer.add_residual_scale(residual_scale)
  4354. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  4355. if logits_scale := self.hparams.get("logits_scaling"):
  4356. self.gguf_writer.add_logit_scale(logits_scale)
  4357. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  4358. @ModelBase.register("GraniteMoeForCausalLM")
  4359. class GraniteMoeModel(GraniteModel):
  4360. """Conversion for IBM's GraniteMoeForCausalLM"""
  4361. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  4362. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4363. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  4364. is used. This essentially merges w1 and w3 into a single tensor with 2x
  4365. the hidden size that is then split during forward. To keep compatibility
  4366. with existing mixtral support, we pull them apart here.
  4367. """
  4368. if name.endswith("block_sparse_moe.input_linear.weight"):
  4369. ffn_dim = self.hparams["intermediate_size"]
  4370. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  4371. gate, up = data_torch[..., :ffn_dim, :], data_torch[..., ffn_dim:, :]
  4372. return [
  4373. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  4374. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  4375. ]
  4376. return super().modify_tensors(data_torch, name, bid)
  4377. @ModelBase.register("BailingMoeForCausalLM")
  4378. class BailingMoeModel(TextModel):
  4379. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  4380. def set_vocab(self):
  4381. self._set_vocab_gpt2()
  4382. def set_gguf_parameters(self):
  4383. super().set_gguf_parameters()
  4384. hparams = self.hparams
  4385. rope_dim = hparams.get("head_dim") or hparams["hidden_size"] // hparams["num_attention_heads"]
  4386. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4387. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4388. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4389. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4390. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4391. self.gguf_writer.add_expert_weights_scale(1.0)
  4392. self.gguf_writer.add_expert_count(hparams["num_experts"])
  4393. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  4394. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  4395. _experts: list[dict[str, Tensor]] | None = None
  4396. @staticmethod
  4397. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  4398. if n_head_kv is not None and n_head != n_head_kv:
  4399. n_head = n_head_kv
  4400. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  4401. .swapaxes(1, 2)
  4402. .reshape(weights.shape))
  4403. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4404. n_head = self.hparams["num_attention_heads"]
  4405. n_kv_head = self.hparams.get("num_key_value_heads")
  4406. n_embd = self.hparams["hidden_size"]
  4407. head_dim = self.hparams.get("head_dim") or n_embd // n_head
  4408. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  4409. if name.endswith("attention.dense.weight"):
  4410. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  4411. elif name.endswith("query_key_value.weight"):
  4412. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  4413. return [
  4414. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  4415. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  4416. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  4417. ]
  4418. elif name.find("mlp.experts") != -1:
  4419. n_experts = self.hparams["num_experts"]
  4420. assert bid is not None
  4421. tensors: list[tuple[str, Tensor]] = []
  4422. if self._experts is None:
  4423. self._experts = [{} for _ in range(self.block_count)]
  4424. self._experts[bid][name] = data_torch
  4425. if len(self._experts[bid]) >= n_experts * 3:
  4426. # merge the experts into a single 3d tensor
  4427. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4428. datas: list[Tensor] = []
  4429. for xid in range(n_experts):
  4430. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4431. datas.append(self._experts[bid][ename])
  4432. del self._experts[bid][ename]
  4433. data_torch = torch.stack(datas, dim=0)
  4434. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4435. new_name = self.map_tensor_name(merged_name)
  4436. tensors.append((new_name, data_torch))
  4437. return tensors
  4438. new_name = self.map_tensor_name(name)
  4439. if new_name == output_name and self.hparams.get("norm_head"):
  4440. data_torch = data_torch.float()
  4441. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  4442. return [(new_name, data_torch)]
  4443. def prepare_tensors(self):
  4444. super().prepare_tensors()
  4445. if self._experts is not None:
  4446. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4447. experts = [k for d in self._experts for k in d.keys()]
  4448. if len(experts) > 0:
  4449. raise ValueError(f"Unprocessed experts: {experts}")
  4450. @ModelBase.register("ChameleonForConditionalGeneration")
  4451. @ModelBase.register("ChameleonForCausalLM") # obsolete
  4452. class ChameleonModel(TextModel):
  4453. model_arch = gguf.MODEL_ARCH.CHAMELEON
  4454. def set_gguf_parameters(self):
  4455. super().set_gguf_parameters()
  4456. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  4457. def set_vocab(self):
  4458. self._set_vocab_gpt2()
  4459. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4460. # ignore image tokenizer for now
  4461. # TODO: remove this once image support is implemented for Chameleon
  4462. if name.startswith("model.vqmodel"):
  4463. return []
  4464. n_head = self.hparams["num_attention_heads"]
  4465. n_kv_head = self.hparams.get("num_key_value_heads")
  4466. hidden_dim = self.hparams.get("hidden_size")
  4467. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4468. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4469. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4470. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4471. if name.endswith(("q_norm.weight", "q_norm.bias")):
  4472. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  4473. if name.endswith(("k_norm.weight", "k_norm.bias")):
  4474. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  4475. return [(self.map_tensor_name(name), data_torch)]
  4476. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  4477. @staticmethod
  4478. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  4479. head_dim = hidden_dim // n_heads
  4480. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  4481. data_torch = data_torch.repeat_interleave(n_heads, 0)
  4482. return data_torch
  4483. ###### CONVERSION LOGIC ######
  4484. # tree of lazy tensors
  4485. class LazyTorchTensor(gguf.LazyBase):
  4486. _tensor_type = torch.Tensor
  4487. # to keep the type-checker happy
  4488. dtype: torch.dtype
  4489. shape: torch.Size
  4490. # only used when converting a torch.Tensor to a np.ndarray
  4491. _dtype_map: dict[torch.dtype, type] = {
  4492. torch.float16: np.float16,
  4493. torch.float32: np.float32,
  4494. }
  4495. # used for safetensors slices
  4496. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  4497. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  4498. _dtype_str_map: dict[str, torch.dtype] = {
  4499. "F64": torch.float64,
  4500. "F32": torch.float32,
  4501. "BF16": torch.bfloat16,
  4502. "F16": torch.float16,
  4503. # "U64": torch.uint64,
  4504. "I64": torch.int64,
  4505. # "U32": torch.uint32,
  4506. "I32": torch.int32,
  4507. # "U16": torch.uint16,
  4508. "I16": torch.int16,
  4509. "U8": torch.uint8,
  4510. "I8": torch.int8,
  4511. "BOOL": torch.bool,
  4512. "F8_E4M3": torch.float8_e4m3fn,
  4513. "F8_E5M2": torch.float8_e5m2,
  4514. }
  4515. def numpy(self) -> gguf.LazyNumpyTensor:
  4516. dtype = self._dtype_map[self.dtype]
  4517. return gguf.LazyNumpyTensor(
  4518. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  4519. args=(self,),
  4520. func=(lambda s: s.numpy())
  4521. )
  4522. @classmethod
  4523. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  4524. return torch.empty(size=shape, dtype=dtype, device="meta")
  4525. @classmethod
  4526. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  4527. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  4528. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  4529. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  4530. return cast(torch.Tensor, lazy)
  4531. @classmethod
  4532. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  4533. dtype = cls._dtype_str_map[remote_tensor.dtype]
  4534. shape = remote_tensor.shape
  4535. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  4536. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  4537. return cast(torch.Tensor, lazy)
  4538. @classmethod
  4539. def __torch_function__(cls, func, types, args=(), kwargs=None):
  4540. del types # unused
  4541. if kwargs is None:
  4542. kwargs = {}
  4543. if func is torch.Tensor.numpy:
  4544. return args[0].numpy()
  4545. return cls._wrap_fn(func)(*args, **kwargs)
  4546. def parse_args() -> argparse.Namespace:
  4547. parser = argparse.ArgumentParser(
  4548. description="Convert a huggingface model to a GGML compatible file")
  4549. parser.add_argument(
  4550. "--vocab-only", action="store_true",
  4551. help="extract only the vocab",
  4552. )
  4553. parser.add_argument(
  4554. "--outfile", type=Path,
  4555. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  4556. )
  4557. parser.add_argument(
  4558. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  4559. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  4560. )
  4561. parser.add_argument(
  4562. "--bigendian", action="store_true",
  4563. help="model is executed on big endian machine",
  4564. )
  4565. parser.add_argument(
  4566. "model", type=Path,
  4567. help="directory containing model file",
  4568. nargs="?",
  4569. )
  4570. parser.add_argument(
  4571. "--use-temp-file", action="store_true",
  4572. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  4573. )
  4574. parser.add_argument(
  4575. "--no-lazy", action="store_true",
  4576. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  4577. )
  4578. parser.add_argument(
  4579. "--model-name", type=str, default=None,
  4580. help="name of the model",
  4581. )
  4582. parser.add_argument(
  4583. "--verbose", action="store_true",
  4584. help="increase output verbosity",
  4585. )
  4586. parser.add_argument(
  4587. "--split-max-tensors", type=int, default=0,
  4588. help="max tensors in each split",
  4589. )
  4590. parser.add_argument(
  4591. "--split-max-size", type=str, default="0",
  4592. help="max size per split N(M|G)",
  4593. )
  4594. parser.add_argument(
  4595. "--dry-run", action="store_true",
  4596. help="only print out a split plan and exit, without writing any new files",
  4597. )
  4598. parser.add_argument(
  4599. "--no-tensor-first-split", action="store_true",
  4600. help="do not add tensors to the first split (disabled by default)"
  4601. )
  4602. parser.add_argument(
  4603. "--metadata", type=Path,
  4604. help="Specify the path for an authorship metadata override file"
  4605. )
  4606. parser.add_argument(
  4607. "--print-supported-models", action="store_true",
  4608. help="Print the supported models"
  4609. )
  4610. parser.add_argument(
  4611. "--remote", action="store_true",
  4612. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  4613. )
  4614. parser.add_argument(
  4615. "--mmproj", action="store_true",
  4616. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  4617. )
  4618. args = parser.parse_args()
  4619. if not args.print_supported_models and args.model is None:
  4620. parser.error("the following arguments are required: model")
  4621. return args
  4622. def split_str_to_n_bytes(split_str: str) -> int:
  4623. if split_str.endswith("K"):
  4624. n = int(split_str[:-1]) * 1000
  4625. elif split_str.endswith("M"):
  4626. n = int(split_str[:-1]) * 1000 * 1000
  4627. elif split_str.endswith("G"):
  4628. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  4629. elif split_str.isnumeric():
  4630. n = int(split_str)
  4631. else:
  4632. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  4633. if n < 0:
  4634. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  4635. return n
  4636. def main() -> None:
  4637. args = parse_args()
  4638. if args.print_supported_models:
  4639. logger.error("Supported models:")
  4640. ModelBase.print_registered_models()
  4641. sys.exit(0)
  4642. if args.verbose:
  4643. logging.basicConfig(level=logging.DEBUG)
  4644. else:
  4645. logging.basicConfig(level=logging.INFO)
  4646. dir_model = args.model
  4647. if args.remote:
  4648. from huggingface_hub import snapshot_download
  4649. local_dir = snapshot_download(
  4650. repo_id=str(dir_model),
  4651. allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
  4652. dir_model = Path(local_dir)
  4653. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  4654. if not dir_model.is_dir():
  4655. logger.error(f'Error: {args.model} is not a directory')
  4656. sys.exit(1)
  4657. ftype_map: dict[str, gguf.LlamaFileType] = {
  4658. "f32": gguf.LlamaFileType.ALL_F32,
  4659. "f16": gguf.LlamaFileType.MOSTLY_F16,
  4660. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  4661. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  4662. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  4663. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  4664. "auto": gguf.LlamaFileType.GUESSED,
  4665. }
  4666. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  4667. if args.use_temp_file and is_split:
  4668. logger.error("Error: Cannot use temp file when splitting")
  4669. sys.exit(1)
  4670. if args.outfile is not None:
  4671. fname_out = args.outfile
  4672. elif args.remote:
  4673. # if remote, use the model ID as the output file name
  4674. fname_out = Path("./" + str(args.model).replace("/", "-") + "-{ftype}.gguf")
  4675. else:
  4676. fname_out = dir_model
  4677. logger.info(f"Loading model: {dir_model.name}")
  4678. hparams = ModelBase.load_hparams(dir_model)
  4679. if args.mmproj:
  4680. if "mmproj" not in fname_out.name:
  4681. fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")
  4682. with torch.inference_mode():
  4683. output_type = ftype_map[args.outtype]
  4684. model_architecture = hparams["architectures"][0]
  4685. model_type = ModelType.VISION if args.mmproj else ModelType.TEXT
  4686. try:
  4687. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  4688. except NotImplementedError:
  4689. logger.error(f"Model {model_architecture} is not supported")
  4690. sys.exit(1)
  4691. model_instance = model_class(dir_model, output_type, fname_out,
  4692. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  4693. eager=args.no_lazy,
  4694. metadata_override=args.metadata, model_name=args.model_name,
  4695. split_max_tensors=args.split_max_tensors,
  4696. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  4697. small_first_shard=args.no_tensor_first_split,
  4698. remote_hf_model_id=str(args.model) if args.remote else None)
  4699. if args.vocab_only:
  4700. logger.info("Exporting model vocab...")
  4701. model_instance.write_vocab()
  4702. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  4703. else:
  4704. logger.info("Exporting model...")
  4705. model_instance.write()
  4706. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  4707. logger.info(f"Model successfully exported to {out_path}")
  4708. if __name__ == '__main__':
  4709. main()