utils.h 3.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107
  1. // Various helper functions and utilities
  2. #pragma once
  3. #include <string>
  4. #include <map>
  5. #include <vector>
  6. #include <random>
  7. #include <thread>
  8. //
  9. // CLI argument parsing
  10. //
  11. struct gpt_params {
  12. int32_t seed = -1; // RNG seed
  13. int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
  14. int32_t n_predict = 128; // new tokens to predict
  15. int32_t repeat_last_n = 64; // last n tokens to penalize
  16. int32_t n_ctx = 512; //context size
  17. bool memory_f16 = false; // use f16 instead of f32 for memory kv
  18. // sampling parameters
  19. int32_t top_k = 40;
  20. float top_p = 0.95f;
  21. float temp = 0.80f;
  22. float repeat_penalty = 1.30f;
  23. int32_t n_batch = 8; // batch size for prompt processing
  24. std::string model = "models/lamma-7B/ggml-model.bin"; // model path
  25. std::string prompt = "";
  26. bool random_prompt = false;
  27. bool use_color = false; // use color to distinguish generations and inputs
  28. bool interactive = false; // interactive mode
  29. bool interactive_start = false; // reverse prompt immediately
  30. std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
  31. bool instruct = false; // instruction mode (used for Alpaca models)
  32. bool ignore_eos = false; // do not stop generating after eos
  33. };
  34. bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
  35. void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
  36. std::string gpt_random_prompt(std::mt19937 & rng);
  37. //
  38. // Model file parsing
  39. //
  40. #define FILE_MAGIC_UNVERSIONED 0x67676d6c // pre-versioned files
  41. #define FILE_MAGIC 0x67676d66 // 'ggmf' in hex
  42. #define FILE_VERSION 1
  43. //
  44. // Vocab utils
  45. //
  46. struct llama_vocab {
  47. using id = int32_t;
  48. using token = std::string;
  49. std::map<token, id> token_to_id;
  50. std::map<id, token> id_to_token;
  51. std::map<id, float> score;
  52. };
  53. void replace(std::string & str, const std::string & needle, const std::string & replacement);
  54. // poor-man's JSON parsing
  55. std::map<std::string, int32_t> json_parse(const std::string & fname);
  56. // TODO: temporary until #77 is merged, need this now for some tokenizer tests
  57. bool llama_vocab_load(const std::string & fname, llama_vocab & vocab);
  58. // TODO: this is probably wrong, but I cannot figure out how this tokenizer works ..
  59. // ref: https://github.com/google/sentencepiece
  60. std::vector<llama_vocab::id> llama_tokenize(const llama_vocab & vocab, const std::string & text, bool bos);
  61. // sample next token given probabilities for each embedding
  62. //
  63. // - consider only the top K tokens
  64. // - from them, consider only the top tokens with cumulative probability > P
  65. //
  66. llama_vocab::id llama_sample_top_p_top_k(
  67. const llama_vocab & vocab,
  68. const float * logits,
  69. std::vector<llama_vocab::id> & last_n_tokens,
  70. double repeat_penalty,
  71. int top_k,
  72. double top_p,
  73. double temp,
  74. std::mt19937 & rng);
  75. // filer to top K tokens from list of logits
  76. void sample_top_k(std::vector<std::pair<double, llama_vocab::id>> & logits_id, int top_k);
  77. //
  78. // Quantization
  79. //
  80. size_t ggml_quantize_q4_0(float * src, void * dst, int n, int k, int qk, int64_t * hist);
  81. size_t ggml_quantize_q4_1(float * src, void * dst, int n, int k, int qk, int64_t * hist);