ggml.c 486 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #if defined(GGML_USE_ACCELERATE)
  116. #include <Accelerate/Accelerate.h>
  117. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  118. #include "ggml-opencl.h"
  119. #endif
  120. #elif defined(GGML_USE_OPENBLAS)
  121. #include <cblas.h>
  122. #elif defined(GGML_USE_CUBLAS)
  123. #include "ggml-cuda.h"
  124. #elif defined(GGML_USE_CLBLAST)
  125. #include "ggml-opencl.h"
  126. #endif
  127. #undef MIN
  128. #undef MAX
  129. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  130. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  131. // floating point type used to accumulate sums
  132. typedef double ggml_float;
  133. // 16-bit float
  134. // on Arm, we use __fp16
  135. // on x86, we use uint16_t
  136. #ifdef __ARM_NEON
  137. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  138. //
  139. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  140. //
  141. #include <arm_neon.h>
  142. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  143. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  144. #define GGML_FP16_TO_FP32(x) ((float) (x))
  145. #define GGML_FP32_TO_FP16(x) (x)
  146. #else
  147. #ifdef __wasm_simd128__
  148. #include <wasm_simd128.h>
  149. #else
  150. #ifdef __POWER9_VECTOR__
  151. #include <altivec.h>
  152. #undef bool
  153. #define bool _Bool
  154. #else
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #include <intrin.h>
  157. #else
  158. #include <immintrin.h>
  159. #endif
  160. #endif
  161. #endif
  162. #ifdef __F16C__
  163. #ifdef _MSC_VER
  164. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  165. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  166. #else
  167. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  168. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  169. #endif
  170. #elif defined(__POWER9_VECTOR__)
  171. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  172. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  173. /* the inline asm below is about 12% faster than the lookup method */
  174. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  175. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  176. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  177. register float f;
  178. register double d;
  179. __asm__(
  180. "mtfprd %0,%2\n"
  181. "xscvhpdp %0,%0\n"
  182. "frsp %1,%0\n" :
  183. /* temp */ "=d"(d),
  184. /* out */ "=f"(f):
  185. /* in */ "r"(h));
  186. return f;
  187. }
  188. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  189. register double d;
  190. register ggml_fp16_t r;
  191. __asm__( /* xscvdphp can work on double or single precision */
  192. "xscvdphp %0,%2\n"
  193. "mffprd %1,%0\n" :
  194. /* temp */ "=d"(d),
  195. /* out */ "=r"(r):
  196. /* in */ "f"(f));
  197. return r;
  198. }
  199. #else
  200. // FP16 <-> FP32
  201. // ref: https://github.com/Maratyszcza/FP16
  202. static inline float fp32_from_bits(uint32_t w) {
  203. union {
  204. uint32_t as_bits;
  205. float as_value;
  206. } fp32;
  207. fp32.as_bits = w;
  208. return fp32.as_value;
  209. }
  210. static inline uint32_t fp32_to_bits(float f) {
  211. union {
  212. float as_value;
  213. uint32_t as_bits;
  214. } fp32;
  215. fp32.as_value = f;
  216. return fp32.as_bits;
  217. }
  218. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  219. const uint32_t w = (uint32_t) h << 16;
  220. const uint32_t sign = w & UINT32_C(0x80000000);
  221. const uint32_t two_w = w + w;
  222. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  223. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  224. const float exp_scale = 0x1.0p-112f;
  225. #else
  226. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  227. #endif
  228. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  229. const uint32_t magic_mask = UINT32_C(126) << 23;
  230. const float magic_bias = 0.5f;
  231. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  232. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  233. const uint32_t result = sign |
  234. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  235. return fp32_from_bits(result);
  236. }
  237. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  238. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  239. const float scale_to_inf = 0x1.0p+112f;
  240. const float scale_to_zero = 0x1.0p-110f;
  241. #else
  242. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  243. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  244. #endif
  245. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  246. const uint32_t w = fp32_to_bits(f);
  247. const uint32_t shl1_w = w + w;
  248. const uint32_t sign = w & UINT32_C(0x80000000);
  249. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  250. if (bias < UINT32_C(0x71000000)) {
  251. bias = UINT32_C(0x71000000);
  252. }
  253. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  254. const uint32_t bits = fp32_to_bits(base);
  255. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  256. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  257. const uint32_t nonsign = exp_bits + mantissa_bits;
  258. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  259. }
  260. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  261. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  262. #endif // __F16C__
  263. #endif // __ARM_NEON
  264. //
  265. // global data
  266. //
  267. // precomputed gelu table for f16 (128 KB)
  268. static ggml_fp16_t table_gelu_f16[1 << 16];
  269. // precomputed silu table for f16 (128 KB)
  270. static ggml_fp16_t table_silu_f16[1 << 16];
  271. // precomputed exp table for f16 (128 KB)
  272. static ggml_fp16_t table_exp_f16[1 << 16];
  273. // precomputed f32 table for f16 (256 KB)
  274. static float table_f32_f16[1 << 16];
  275. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  276. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  277. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  278. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  279. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  280. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  281. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  282. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  283. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  284. // precomputed tables for expanding 8bits to 8 bytes:
  285. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  286. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  287. #endif
  288. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  289. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  290. // This is also true for POWER9.
  291. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  292. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  293. uint16_t s;
  294. memcpy(&s, &f, sizeof(uint16_t));
  295. return table_f32_f16[s];
  296. }
  297. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  298. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  299. #endif
  300. // note: do not use these inside ggml.c
  301. // these are meant to be used via the ggml.h API
  302. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  303. return (float) GGML_FP16_TO_FP32(x);
  304. }
  305. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  306. return GGML_FP32_TO_FP16(x);
  307. }
  308. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
  309. for (size_t i = 0; i < n; i++) {
  310. y[i] = GGML_FP16_TO_FP32(x[i]);
  311. }
  312. }
  313. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
  314. size_t i = 0;
  315. #if defined(__F16C__)
  316. for (; i + 7 < n; i += 8) {
  317. __m256 x_vec = _mm256_loadu_ps(x + i);
  318. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  319. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  320. }
  321. for(; i + 3 < n; i += 4) {
  322. __m128 x_vec = _mm_loadu_ps(x + i);
  323. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  324. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  325. }
  326. #endif
  327. for (; i < n; i++) {
  328. y[i] = GGML_FP32_TO_FP16(x[i]);
  329. }
  330. }
  331. //
  332. // timing
  333. //
  334. #if defined(_MSC_VER) || defined(__MINGW32__)
  335. static int64_t timer_freq;
  336. void ggml_time_init(void) {
  337. LARGE_INTEGER frequency;
  338. QueryPerformanceFrequency(&frequency);
  339. timer_freq = frequency.QuadPart;
  340. }
  341. int64_t ggml_time_ms(void) {
  342. LARGE_INTEGER t;
  343. QueryPerformanceCounter(&t);
  344. return (t.QuadPart * 1000) / timer_freq;
  345. }
  346. int64_t ggml_time_us(void) {
  347. LARGE_INTEGER t;
  348. QueryPerformanceCounter(&t);
  349. return (t.QuadPart * 1000000) / timer_freq;
  350. }
  351. #else
  352. void ggml_time_init(void) {}
  353. int64_t ggml_time_ms(void) {
  354. struct timespec ts;
  355. clock_gettime(CLOCK_MONOTONIC, &ts);
  356. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  357. }
  358. int64_t ggml_time_us(void) {
  359. struct timespec ts;
  360. clock_gettime(CLOCK_MONOTONIC, &ts);
  361. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  362. }
  363. #endif
  364. int64_t ggml_cycles(void) {
  365. return clock();
  366. }
  367. int64_t ggml_cycles_per_ms(void) {
  368. return CLOCKS_PER_SEC/1000;
  369. }
  370. #ifdef GGML_PERF
  371. #define ggml_perf_time_ms() ggml_time_ms()
  372. #define ggml_perf_time_us() ggml_time_us()
  373. #define ggml_perf_cycles() ggml_cycles()
  374. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  375. #else
  376. #define ggml_perf_time_ms() 0
  377. #define ggml_perf_time_us() 0
  378. #define ggml_perf_cycles() 0
  379. #define ggml_perf_cycles_per_ms() 0
  380. #endif
  381. //
  382. // cache line
  383. //
  384. #if defined(__cpp_lib_hardware_interference_size)
  385. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  386. #else
  387. #if defined(__POWER9_VECTOR__)
  388. #define CACHE_LINE_SIZE 128
  389. #else
  390. #define CACHE_LINE_SIZE 64
  391. #endif
  392. #endif
  393. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  394. //
  395. // quantization
  396. //
  397. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  398. // multiply int8_t, add results pairwise twice
  399. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  400. // Get absolute values of x vectors
  401. const __m128i ax = _mm_sign_epi8(x, x);
  402. // Sign the values of the y vectors
  403. const __m128i sy = _mm_sign_epi8(y, x);
  404. // Perform multiplication and create 16-bit values
  405. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  406. const __m128i ones = _mm_set1_epi16(1);
  407. return _mm_madd_epi16(ones, dot);
  408. }
  409. #if __AVX__ || __AVX2__ || __AVX512F__
  410. // horizontally add 8 floats
  411. static inline float hsum_float_8(const __m256 x) {
  412. __m128 res = _mm256_extractf128_ps(x, 1);
  413. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  414. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  415. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  416. return _mm_cvtss_f32(res);
  417. }
  418. // horizontally add 8 int32_t
  419. static inline int hsum_i32_8(const __m256i a) {
  420. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  421. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  422. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  423. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  424. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  425. }
  426. // horizontally add 4 int32_t
  427. static inline int hsum_i32_4(const __m128i a) {
  428. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  429. const __m128i sum64 = _mm_add_epi32(hi64, a);
  430. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  431. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  432. }
  433. #if __AVX2__ || __AVX512F__
  434. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  435. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  436. uint32_t x32;
  437. memcpy(&x32, x, sizeof(uint32_t));
  438. const __m256i shuf_mask = _mm256_set_epi64x(
  439. 0x0303030303030303, 0x0202020202020202,
  440. 0x0101010101010101, 0x0000000000000000);
  441. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  442. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  443. bytes = _mm256_or_si256(bytes, bit_mask);
  444. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  445. }
  446. // Unpack 32 4-bit fields into 32 bytes
  447. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  448. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  449. {
  450. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  451. const __m256i bytes = _mm256_set_m128i(_mm_srli_epi16(tmp, 4), tmp);
  452. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  453. return _mm256_and_si256(lowMask, bytes);
  454. }
  455. // add int16_t pairwise and return as float vector
  456. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  457. const __m256i ones = _mm256_set1_epi16(1);
  458. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  459. return _mm256_cvtepi32_ps(summed_pairs);
  460. }
  461. // multiply int8_t, add results pairwise twice and return as float vector
  462. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  463. // Get absolute values of x vectors
  464. const __m256i ax = _mm256_sign_epi8(x, x);
  465. // Sign the values of the y vectors
  466. const __m256i sy = _mm256_sign_epi8(y, x);
  467. #if __AVXVNNI__
  468. const __m256i zero = _mm256_setzero_si256();
  469. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  470. return _mm256_cvtepi32_ps(summed_pairs);
  471. #else
  472. // Perform multiplication and create 16-bit values
  473. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  474. return sum_i16_pairs_float(dot);
  475. #endif
  476. }
  477. static inline __m128i packNibbles( __m256i bytes )
  478. {
  479. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  480. #if __AVX512F__
  481. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  482. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  483. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  484. #else
  485. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  486. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  487. __m256i low = _mm256_and_si256( lowByte, bytes );
  488. high = _mm256_srli_epi16( high, 4 );
  489. bytes = _mm256_or_si256( low, high );
  490. // Compress uint16_t lanes into bytes
  491. __m128i r0 = _mm256_castsi256_si128( bytes );
  492. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  493. return _mm_packus_epi16( r0, r1 );
  494. #endif
  495. }
  496. #elif defined(__AVX__)
  497. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  498. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  499. uint32_t x32;
  500. memcpy(&x32, x, sizeof(uint32_t));
  501. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  502. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  503. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  504. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  505. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  506. bytesl = _mm_or_si128(bytesl, bit_mask);
  507. bytesh = _mm_or_si128(bytesh, bit_mask);
  508. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  509. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  510. return _mm256_set_m128i(bytesh, bytesl);
  511. }
  512. // Unpack 32 4-bit fields into 32 bytes
  513. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  514. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  515. {
  516. // Load 16 bytes from memory
  517. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  518. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  519. const __m128i lowMask = _mm_set1_epi8(0xF);
  520. tmpl = _mm_and_si128(lowMask, tmpl);
  521. tmph = _mm_and_si128(lowMask, tmph);
  522. return _mm256_set_m128i(tmph, tmpl);
  523. }
  524. // add int16_t pairwise and return as float vector
  525. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  526. const __m128i ones = _mm_set1_epi16(1);
  527. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  528. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  529. const __m256i summed_pairs = _mm256_set_m128i(summed_pairsh, summed_pairsl);
  530. return _mm256_cvtepi32_ps(summed_pairs);
  531. }
  532. // multiply int8_t, add results pairwise twice and return as float vector
  533. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  534. const __m128i xl = _mm256_castsi256_si128(x);
  535. const __m128i xh = _mm256_extractf128_si256(x, 1);
  536. const __m128i yl = _mm256_castsi256_si128(y);
  537. const __m128i yh = _mm256_extractf128_si256(y, 1);
  538. // Get absolute values of x vectors
  539. const __m128i axl = _mm_sign_epi8(xl, xl);
  540. const __m128i axh = _mm_sign_epi8(xh, xh);
  541. // Sign the values of the y vectors
  542. const __m128i syl = _mm_sign_epi8(yl, xl);
  543. const __m128i syh = _mm_sign_epi8(yh, xh);
  544. // Perform multiplication and create 16-bit values
  545. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  546. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  547. return sum_i16_pairs_float(doth, dotl);
  548. }
  549. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  550. {
  551. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  552. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  553. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  554. __m128i low = _mm_and_si128( lowByte, bytes1 );
  555. high = _mm_srli_epi16( high, 4 );
  556. bytes1 = _mm_or_si128( low, high );
  557. high = _mm_andnot_si128( lowByte, bytes2 );
  558. low = _mm_and_si128( lowByte, bytes2 );
  559. high = _mm_srli_epi16( high, 4 );
  560. bytes2 = _mm_or_si128( low, high );
  561. return _mm_packus_epi16( bytes1, bytes2);
  562. }
  563. #endif
  564. #elif defined(__SSSE3__)
  565. // horizontally add 4x4 floats
  566. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  567. __m128 res_0 =_mm_hadd_ps(a, b);
  568. __m128 res_1 =_mm_hadd_ps(c, d);
  569. __m128 res =_mm_hadd_ps(res_0, res_1);
  570. res =_mm_hadd_ps(res, res);
  571. res =_mm_hadd_ps(res, res);
  572. return _mm_cvtss_f32(res);
  573. }
  574. #endif // __AVX__ || __AVX2__ || __AVX512F__
  575. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  576. #if __ARM_NEON
  577. #if !defined(__aarch64__)
  578. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  579. return
  580. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  581. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  582. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  583. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  584. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  585. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  586. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  587. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  588. }
  589. inline static int16_t vaddvq_s8(int8x16_t v) {
  590. return
  591. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  592. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  593. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  594. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  595. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  596. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  597. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  598. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  599. }
  600. inline static int32_t vaddvq_s16(int16x8_t v) {
  601. return
  602. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  603. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  604. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  605. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  606. }
  607. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  608. return
  609. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  610. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  611. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  612. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  613. }
  614. inline static int32_t vaddvq_s32(int32x4_t v) {
  615. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  616. }
  617. inline static float vaddvq_f32(float32x4_t v) {
  618. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  619. }
  620. float vminvq_f32(float32x4_t v) {
  621. return
  622. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  623. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  624. }
  625. float vmaxvq_f32(float32x4_t v) {
  626. return
  627. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  628. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  629. }
  630. int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  631. int32x4_t res;
  632. res[0] = roundf(vgetq_lane_f32(v, 0));
  633. res[1] = roundf(vgetq_lane_f32(v, 1));
  634. res[2] = roundf(vgetq_lane_f32(v, 2));
  635. res[3] = roundf(vgetq_lane_f32(v, 3));
  636. return res;
  637. }
  638. #endif
  639. #endif
  640. #define QK4_0 32
  641. typedef struct {
  642. float d; // delta
  643. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  644. } block_q4_0;
  645. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  646. #define QK4_1 32
  647. typedef struct {
  648. float d; // delta
  649. float m; // min
  650. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  651. } block_q4_1;
  652. static_assert(sizeof(block_q4_1) == 2 * sizeof(float) + QK4_1 / 2, "wrong q4_1 block size/padding");
  653. #define QK5_0 32
  654. typedef struct {
  655. ggml_fp16_t d; // delta
  656. uint8_t qh[4]; // 5-th bit of quants
  657. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  658. } block_q5_0;
  659. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  660. #define QK5_1 32
  661. typedef struct {
  662. ggml_fp16_t d; // delta
  663. ggml_fp16_t m; // min
  664. uint8_t qh[4]; // 5-th bit of quants
  665. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  666. } block_q5_1;
  667. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  668. #define QK8_0 32
  669. typedef struct {
  670. float d; // delta
  671. int8_t qs[QK8_0]; // quants
  672. } block_q8_0;
  673. static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  674. #define QK8_1 32
  675. typedef struct {
  676. float d; // delta
  677. float s; // d * sum(qs[i])
  678. int8_t qs[QK8_1]; // quants
  679. } block_q8_1;
  680. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  681. // reference implementation for deterministic creation of model files
  682. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  683. static const int qk = QK4_0;
  684. assert(k % qk == 0);
  685. const int nb = k / qk;
  686. for (int i = 0; i < nb; i++) {
  687. float amax = 0.0f; // absolute max
  688. float max = 0.0f;
  689. for (int j = 0; j < qk; j++) {
  690. const float v = x[i*qk + j];
  691. if (amax < fabsf(v)) {
  692. amax = fabsf(v);
  693. max = v;
  694. }
  695. }
  696. const float d = max / -8;
  697. const float id = d ? 1.0f/d : 0.0f;
  698. y[i].d = d;
  699. for (int j = 0; j < qk/2; ++j) {
  700. const float x0 = x[i*qk + 0 + j]*id;
  701. const float x1 = x[i*qk + qk/2 + j]*id;
  702. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  703. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  704. y[i].qs[j] = xi0;
  705. y[i].qs[j] |= xi1 << 4;
  706. }
  707. }
  708. }
  709. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  710. quantize_row_q4_0_reference(x, y, k);
  711. }
  712. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  713. const int qk = QK4_1;
  714. assert(k % qk == 0);
  715. const int nb = k / qk;
  716. for (int i = 0; i < nb; i++) {
  717. float min = FLT_MAX;
  718. float max = -FLT_MAX;
  719. for (int j = 0; j < qk; j++) {
  720. const float v = x[i*qk + j];
  721. if (v < min) min = v;
  722. if (v > max) max = v;
  723. }
  724. const float d = (max - min) / ((1 << 4) - 1);
  725. const float id = d ? 1.0f/d : 0.0f;
  726. y[i].d = d;
  727. y[i].m = min;
  728. for (int j = 0; j < qk/2; ++j) {
  729. const float x0 = (x[i*qk + 0 + j] - min)*id;
  730. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  731. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  732. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  733. y[i].qs[j] = xi0;
  734. y[i].qs[j] |= xi1 << 4;
  735. }
  736. }
  737. }
  738. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  739. quantize_row_q4_1_reference(x, y, k);
  740. }
  741. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  742. static const int qk = QK5_0;
  743. assert(k % qk == 0);
  744. const int nb = k / qk;
  745. for (int i = 0; i < nb; i++) {
  746. float amax = 0.0f; // absolute max
  747. float max = 0.0f;
  748. for (int j = 0; j < qk; j++) {
  749. const float v = x[i*qk + j];
  750. if (amax < fabsf(v)) {
  751. amax = fabsf(v);
  752. max = v;
  753. }
  754. }
  755. const float d = max / -16;
  756. const float id = d ? 1.0f/d : 0.0f;
  757. y[i].d = GGML_FP32_TO_FP16(d);
  758. uint32_t qh = 0;
  759. for (int j = 0; j < qk/2; ++j) {
  760. const float x0 = x[i*qk + 0 + j]*id;
  761. const float x1 = x[i*qk + qk/2 + j]*id;
  762. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  763. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  764. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  765. // get the 5-th bit and store it in qh at the right position
  766. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  767. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  768. }
  769. memcpy(&y[i].qh, &qh, sizeof(qh));
  770. }
  771. }
  772. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  773. quantize_row_q5_0_reference(x, y, k);
  774. }
  775. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  776. const int qk = QK5_1;
  777. assert(k % qk == 0);
  778. const int nb = k / qk;
  779. for (int i = 0; i < nb; i++) {
  780. float min = FLT_MAX;
  781. float max = -FLT_MAX;
  782. for (int j = 0; j < qk; j++) {
  783. const float v = x[i*qk + j];
  784. if (v < min) min = v;
  785. if (v > max) max = v;
  786. }
  787. const float d = (max - min) / ((1 << 5) - 1);
  788. const float id = d ? 1.0f/d : 0.0f;
  789. y[i].d = GGML_FP32_TO_FP16(d);
  790. y[i].m = GGML_FP32_TO_FP16(min);
  791. uint32_t qh = 0;
  792. for (int j = 0; j < qk/2; ++j) {
  793. const float x0 = (x[i*qk + 0 + j] - min)*id;
  794. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  795. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  796. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  797. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  798. // get the 5-th bit and store it in qh at the right position
  799. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  800. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  801. }
  802. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  803. }
  804. }
  805. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  806. quantize_row_q5_1_reference(x, y, k);
  807. }
  808. // reference implementation for deterministic creation of model files
  809. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  810. assert(k % QK8_0 == 0);
  811. const int nb = k / QK8_0;
  812. for (int i = 0; i < nb; i++) {
  813. float amax = 0.0f; // absolute max
  814. for (int j = 0; j < QK8_0; j++) {
  815. const float v = x[i*QK8_0 + j];
  816. amax = MAX(amax, fabsf(v));
  817. }
  818. const float d = amax / ((1 << 7) - 1);
  819. const float id = d ? 1.0f/d : 0.0f;
  820. y[i].d = d;
  821. for (int j = 0; j < QK8_0; ++j) {
  822. const float x0 = x[i*QK8_0 + j]*id;
  823. y[i].qs[j] = roundf(x0);
  824. }
  825. }
  826. }
  827. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  828. assert(QK8_0 == 32);
  829. assert(k % QK8_0 == 0);
  830. const int nb = k / QK8_0;
  831. block_q8_0 * restrict y = vy;
  832. #if defined(__ARM_NEON)
  833. for (int i = 0; i < nb; i++) {
  834. float32x4_t srcv [8];
  835. float32x4_t asrcv[8];
  836. float32x4_t amaxv[8];
  837. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  838. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  839. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  840. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  841. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  842. const float amax = vmaxvq_f32(amaxv[0]);
  843. const float d = amax / ((1 << 7) - 1);
  844. const float id = d ? 1.0f/d : 0.0f;
  845. y[i].d = d;
  846. for (int j = 0; j < 8; j++) {
  847. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  848. const int32x4_t vi = vcvtnq_s32_f32(v);
  849. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  850. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  851. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  852. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  853. }
  854. }
  855. #elif defined(__AVX2__) || defined(__AVX__)
  856. for (int i = 0; i < nb; i++) {
  857. // Load elements into 4 AVX vectors
  858. __m256 v0 = _mm256_loadu_ps( x );
  859. __m256 v1 = _mm256_loadu_ps( x + 8 );
  860. __m256 v2 = _mm256_loadu_ps( x + 16 );
  861. __m256 v3 = _mm256_loadu_ps( x + 24 );
  862. x += 32;
  863. // Compute max(abs(e)) for the block
  864. const __m256 signBit = _mm256_set1_ps( -0.0f );
  865. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  866. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  867. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  868. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  869. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  870. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  871. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  872. const float maxScalar = _mm_cvtss_f32( max4 );
  873. // Quantize these floats
  874. const float d = maxScalar / 127.f;
  875. y[i].d = d;
  876. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  877. const __m256 mul = _mm256_set1_ps( id );
  878. // Apply the multiplier
  879. v0 = _mm256_mul_ps( v0, mul );
  880. v1 = _mm256_mul_ps( v1, mul );
  881. v2 = _mm256_mul_ps( v2, mul );
  882. v3 = _mm256_mul_ps( v3, mul );
  883. // Round to nearest integer
  884. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  885. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  886. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  887. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  888. // Convert floats to integers
  889. __m256i i0 = _mm256_cvtps_epi32( v0 );
  890. __m256i i1 = _mm256_cvtps_epi32( v1 );
  891. __m256i i2 = _mm256_cvtps_epi32( v2 );
  892. __m256i i3 = _mm256_cvtps_epi32( v3 );
  893. #if defined(__AVX2__)
  894. // Convert int32 to int16
  895. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  896. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  897. // Convert int16 to int8
  898. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  899. // We got our precious signed bytes, but the order is now wrong
  900. // These AVX2 pack instructions process 16-byte pieces independently
  901. // The following instruction is fixing the order
  902. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  903. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  904. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  905. #else
  906. // Since we don't have in AVX some necessary functions,
  907. // we split the registers in half and call AVX2 analogs from SSE
  908. __m128i ni0 = _mm256_castsi256_si128( i0 );
  909. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  910. __m128i ni2 = _mm256_castsi256_si128( i1 );
  911. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  912. __m128i ni4 = _mm256_castsi256_si128( i2 );
  913. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  914. __m128i ni6 = _mm256_castsi256_si128( i3 );
  915. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  916. // Convert int32 to int16
  917. ni0 = _mm_packs_epi32( ni0, ni1 );
  918. ni2 = _mm_packs_epi32( ni2, ni3 );
  919. ni4 = _mm_packs_epi32( ni4, ni5 );
  920. ni6 = _mm_packs_epi32( ni6, ni7 );
  921. // Convert int16 to int8
  922. ni0 = _mm_packs_epi16( ni0, ni2 );
  923. ni4 = _mm_packs_epi16( ni4, ni6 );
  924. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  925. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  926. #endif
  927. }
  928. #else
  929. // scalar
  930. quantize_row_q8_0_reference(x, y, k);
  931. #endif
  932. }
  933. // reference implementation for deterministic creation of model files
  934. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  935. assert(QK8_1 == 32);
  936. assert(k % QK8_1 == 0);
  937. const int nb = k / QK8_1;
  938. for (int i = 0; i < nb; i++) {
  939. float amax = 0.0f; // absolute max
  940. for (int j = 0; j < QK8_1; j++) {
  941. const float v = x[i*QK8_1 + j];
  942. amax = MAX(amax, fabsf(v));
  943. }
  944. const float d = amax / ((1 << 7) - 1);
  945. const float id = d ? 1.0f/d : 0.0f;
  946. y[i].d = d;
  947. int sum = 0;
  948. for (int j = 0; j < QK8_1/2; ++j) {
  949. const float v0 = x[i*QK8_1 + j]*id;
  950. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  951. y[i].qs[ j] = roundf(v0);
  952. y[i].qs[QK8_1/2 + j] = roundf(v1);
  953. sum += y[i].qs[ j];
  954. sum += y[i].qs[QK8_1/2 + j];
  955. }
  956. y[i].s = d * sum;
  957. }
  958. }
  959. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  960. assert(k % QK8_1 == 0);
  961. const int nb = k / QK8_1;
  962. block_q8_1 * restrict y = vy;
  963. #if defined(__ARM_NEON)
  964. for (int i = 0; i < nb; i++) {
  965. float32x4_t srcv [8];
  966. float32x4_t asrcv[8];
  967. float32x4_t amaxv[8];
  968. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  969. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  970. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  971. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  972. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  973. const float amax = vmaxvq_f32(amaxv[0]);
  974. const float d = amax / ((1 << 7) - 1);
  975. const float id = d ? 1.0f/d : 0.0f;
  976. y[i].d = d;
  977. int32x4_t accv = vdupq_n_s32(0);
  978. for (int j = 0; j < 8; j++) {
  979. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  980. const int32x4_t vi = vcvtnq_s32_f32(v);
  981. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  982. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  983. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  984. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  985. accv = vaddq_s32(accv, vi);
  986. }
  987. y[i].s = d * vaddvq_s32(accv);
  988. }
  989. #elif defined(__AVX2__) || defined(__AVX__)
  990. for (int i = 0; i < nb; i++) {
  991. // Load elements into 4 AVX vectors
  992. __m256 v0 = _mm256_loadu_ps( x );
  993. __m256 v1 = _mm256_loadu_ps( x + 8 );
  994. __m256 v2 = _mm256_loadu_ps( x + 16 );
  995. __m256 v3 = _mm256_loadu_ps( x + 24 );
  996. x += 32;
  997. // Compute max(abs(e)) for the block
  998. const __m256 signBit = _mm256_set1_ps( -0.0f );
  999. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1000. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1001. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1002. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1003. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1004. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1005. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1006. const float maxScalar = _mm_cvtss_f32( max4 );
  1007. // Quantize these floats
  1008. const float d = maxScalar / 127.f;
  1009. y[i].d = d;
  1010. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1011. const __m256 mul = _mm256_set1_ps( id );
  1012. // Apply the multiplier
  1013. v0 = _mm256_mul_ps( v0, mul );
  1014. v1 = _mm256_mul_ps( v1, mul );
  1015. v2 = _mm256_mul_ps( v2, mul );
  1016. v3 = _mm256_mul_ps( v3, mul );
  1017. // Round to nearest integer
  1018. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1019. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1020. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1021. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1022. // Convert floats to integers
  1023. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1024. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1025. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1026. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1027. #if defined(__AVX2__)
  1028. // Compute the sum of the quants and set y[i].s
  1029. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1030. // Convert int32 to int16
  1031. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1032. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1033. // Convert int16 to int8
  1034. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1035. // We got our precious signed bytes, but the order is now wrong
  1036. // These AVX2 pack instructions process 16-byte pieces independently
  1037. // The following instruction is fixing the order
  1038. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1039. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1040. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1041. #else
  1042. // Since we don't have in AVX some necessary functions,
  1043. // we split the registers in half and call AVX2 analogs from SSE
  1044. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1045. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1046. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1047. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1048. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1049. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1050. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1051. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1052. // Compute the sum of the quants and set y[i].s
  1053. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1054. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1055. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1056. // Convert int32 to int16
  1057. ni0 = _mm_packs_epi32( ni0, ni1 );
  1058. ni2 = _mm_packs_epi32( ni2, ni3 );
  1059. ni4 = _mm_packs_epi32( ni4, ni5 );
  1060. ni6 = _mm_packs_epi32( ni6, ni7 );
  1061. // Convert int16 to int8
  1062. ni0 = _mm_packs_epi16( ni0, ni2 );
  1063. ni4 = _mm_packs_epi16( ni4, ni6 );
  1064. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1065. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1066. #endif
  1067. }
  1068. #else
  1069. // scalar
  1070. quantize_row_q8_1_reference(x, y, k);
  1071. #endif
  1072. }
  1073. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1074. static const int qk = QK4_0;
  1075. assert(k % qk == 0);
  1076. const int nb = k / qk;
  1077. for (int i = 0; i < nb; i++) {
  1078. const float d = x[i].d;
  1079. for (int j = 0; j < qk/2; ++j) {
  1080. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1081. const int x1 = (x[i].qs[j] >> 4) - 8;
  1082. y[i*qk + j + 0 ] = x0*d;
  1083. y[i*qk + j + qk/2] = x1*d;
  1084. }
  1085. }
  1086. }
  1087. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1088. static const int qk = QK4_1;
  1089. assert(k % qk == 0);
  1090. const int nb = k / qk;
  1091. for (int i = 0; i < nb; i++) {
  1092. const float d = x[i].d;
  1093. const float m = x[i].m;
  1094. for (int j = 0; j < qk/2; ++j) {
  1095. const int x0 = (x[i].qs[j] & 0x0F);
  1096. const int x1 = (x[i].qs[j] >> 4);
  1097. y[i*qk + j + 0 ] = x0*d + m;
  1098. y[i*qk + j + qk/2] = x1*d + m;
  1099. }
  1100. }
  1101. }
  1102. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1103. static const int qk = QK5_0;
  1104. assert(k % qk == 0);
  1105. const int nb = k / qk;
  1106. for (int i = 0; i < nb; i++) {
  1107. const float d = GGML_FP16_TO_FP32(x[i].d);
  1108. uint32_t qh;
  1109. memcpy(&qh, x[i].qh, sizeof(qh));
  1110. for (int j = 0; j < qk/2; ++j) {
  1111. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1112. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1113. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1114. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1115. y[i*qk + j + 0 ] = x0*d;
  1116. y[i*qk + j + qk/2] = x1*d;
  1117. }
  1118. }
  1119. }
  1120. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1121. static const int qk = QK5_1;
  1122. assert(k % qk == 0);
  1123. const int nb = k / qk;
  1124. for (int i = 0; i < nb; i++) {
  1125. const float d = GGML_FP16_TO_FP32(x[i].d);
  1126. const float m = GGML_FP16_TO_FP32(x[i].m);
  1127. uint32_t qh;
  1128. memcpy(&qh, x[i].qh, sizeof(qh));
  1129. for (int j = 0; j < qk/2; ++j) {
  1130. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1131. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1132. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1133. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1134. y[i*qk + j + 0 ] = x0*d + m;
  1135. y[i*qk + j + qk/2] = x1*d + m;
  1136. }
  1137. }
  1138. }
  1139. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1140. static const int qk = QK8_0;
  1141. assert(k % qk == 0);
  1142. const int nb = k / qk;
  1143. const block_q8_0 * restrict x = vx;
  1144. for (int i = 0; i < nb; i++) {
  1145. const float d = x[i].d;
  1146. for (int j = 0; j < qk; ++j) {
  1147. y[i*qk + j] = x[i].qs[j]*d;
  1148. }
  1149. }
  1150. }
  1151. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1152. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1153. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1154. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1155. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1156. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1157. [GGML_TYPE_Q4_0] = {
  1158. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_0,
  1159. .quantize_row_q = quantize_row_q4_0,
  1160. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1161. .quantize_row_q_dot = quantize_row_q8_0,
  1162. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1163. .vec_dot_type = GGML_TYPE_Q8_0,
  1164. },
  1165. [GGML_TYPE_Q4_1] = {
  1166. .dequantize_row_q = (dequantize_row_q_t)dequantize_row_q4_1,
  1167. .quantize_row_q = quantize_row_q4_1,
  1168. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1169. .quantize_row_q_dot = quantize_row_q8_1,
  1170. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1171. .vec_dot_type = GGML_TYPE_Q8_1,
  1172. },
  1173. [GGML_TYPE_Q5_0] = {
  1174. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_0,
  1175. .quantize_row_q = quantize_row_q5_0,
  1176. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1177. .quantize_row_q_dot = quantize_row_q8_0,
  1178. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1179. .vec_dot_type = GGML_TYPE_Q8_0,
  1180. },
  1181. [GGML_TYPE_Q5_1] = {
  1182. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_1,
  1183. .quantize_row_q = quantize_row_q5_1,
  1184. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1185. .quantize_row_q_dot = quantize_row_q8_1,
  1186. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1187. .vec_dot_type = GGML_TYPE_Q8_1,
  1188. },
  1189. [GGML_TYPE_Q8_0] = {
  1190. .dequantize_row_q = dequantize_row_q8_0,
  1191. .quantize_row_q = quantize_row_q8_0,
  1192. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1193. .quantize_row_q_dot = quantize_row_q8_0,
  1194. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1195. .vec_dot_type = GGML_TYPE_Q8_0,
  1196. },
  1197. [GGML_TYPE_Q8_1] = {
  1198. .dequantize_row_q = NULL, // TODO
  1199. .quantize_row_q = quantize_row_q8_1,
  1200. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1201. .quantize_row_q_dot = quantize_row_q8_1,
  1202. .vec_dot_q = NULL, // TODO
  1203. .vec_dot_type = GGML_TYPE_Q8_1,
  1204. },
  1205. };
  1206. // For internal test use
  1207. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1208. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1209. return quantize_fns[i];
  1210. }
  1211. //
  1212. // simd mappings
  1213. //
  1214. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1215. // we then implement the fundamental computation operations below using only these macros
  1216. // adding support for new architectures requires to define the corresponding SIMD macros
  1217. //
  1218. // GGML_F32_STEP / GGML_F16_STEP
  1219. // number of elements to process in a single step
  1220. //
  1221. // GGML_F32_EPR / GGML_F16_EPR
  1222. // number of elements to fit in a single register
  1223. //
  1224. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1225. #define GGML_SIMD
  1226. // F32 NEON
  1227. #define GGML_F32_STEP 16
  1228. #define GGML_F32_EPR 4
  1229. #define GGML_F32x4 float32x4_t
  1230. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1231. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1232. #define GGML_F32x4_LOAD vld1q_f32
  1233. #define GGML_F32x4_STORE vst1q_f32
  1234. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1235. #define GGML_F32x4_ADD vaddq_f32
  1236. #define GGML_F32x4_MUL vmulq_f32
  1237. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1238. #define GGML_F32x4_REDUCE(res, x) \
  1239. { \
  1240. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1241. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1242. } \
  1243. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1244. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1245. } \
  1246. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1247. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1248. } \
  1249. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1250. }
  1251. #define GGML_F32_VEC GGML_F32x4
  1252. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1253. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1254. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1255. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1256. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1257. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1258. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1259. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1260. // F16 NEON
  1261. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1262. #define GGML_F16_STEP 32
  1263. #define GGML_F16_EPR 8
  1264. #define GGML_F16x8 float16x8_t
  1265. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1266. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1267. #define GGML_F16x8_LOAD vld1q_f16
  1268. #define GGML_F16x8_STORE vst1q_f16
  1269. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1270. #define GGML_F16x8_ADD vaddq_f16
  1271. #define GGML_F16x8_MUL vmulq_f16
  1272. #define GGML_F16x8_REDUCE(res, x) \
  1273. { \
  1274. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1275. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1276. } \
  1277. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1278. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1279. } \
  1280. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1281. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1282. } \
  1283. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1284. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1285. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1286. }
  1287. #define GGML_F16_VEC GGML_F16x8
  1288. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1289. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1290. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1291. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1292. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1293. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1294. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1295. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1296. #else
  1297. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1298. // and take advantage of the vcvt_ functions to convert to/from FP16
  1299. #define GGML_F16_STEP 16
  1300. #define GGML_F16_EPR 4
  1301. #define GGML_F32Cx4 float32x4_t
  1302. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1303. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1304. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1305. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1306. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1307. #define GGML_F32Cx4_ADD vaddq_f32
  1308. #define GGML_F32Cx4_MUL vmulq_f32
  1309. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1310. #define GGML_F16_VEC GGML_F32Cx4
  1311. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1312. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1313. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1314. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1315. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1316. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1317. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1318. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1319. #endif
  1320. #elif defined(__AVX__)
  1321. #define GGML_SIMD
  1322. // F32 AVX
  1323. #define GGML_F32_STEP 32
  1324. #define GGML_F32_EPR 8
  1325. #define GGML_F32x8 __m256
  1326. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1327. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1328. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1329. #define GGML_F32x8_STORE _mm256_storeu_ps
  1330. #if defined(__FMA__)
  1331. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1332. #else
  1333. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1334. #endif
  1335. #define GGML_F32x8_ADD _mm256_add_ps
  1336. #define GGML_F32x8_MUL _mm256_mul_ps
  1337. #define GGML_F32x8_REDUCE(res, x) \
  1338. { \
  1339. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1340. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1341. } \
  1342. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1343. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1344. } \
  1345. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1346. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1347. } \
  1348. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1349. _mm256_extractf128_ps(x[0], 1)); \
  1350. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1351. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1352. }
  1353. // TODO: is this optimal ?
  1354. #define GGML_F32_VEC GGML_F32x8
  1355. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1356. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1357. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1358. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1359. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1360. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1361. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1362. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1363. // F16 AVX
  1364. #define GGML_F16_STEP 32
  1365. #define GGML_F16_EPR 8
  1366. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1367. #define GGML_F32Cx8 __m256
  1368. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1369. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1370. #if defined(__F16C__)
  1371. // the _mm256_cvt intrinsics require F16C
  1372. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1373. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1374. #else
  1375. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1376. float tmp[8];
  1377. for (int i = 0; i < 8; i++)
  1378. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1379. return _mm256_loadu_ps(tmp);
  1380. }
  1381. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1382. float arr[8];
  1383. _mm256_storeu_ps(arr, y);
  1384. for (int i = 0; i < 8; i++)
  1385. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1386. }
  1387. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1388. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1389. #endif
  1390. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1391. #define GGML_F32Cx8_ADD _mm256_add_ps
  1392. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1393. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1394. #define GGML_F16_VEC GGML_F32Cx8
  1395. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1396. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1397. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1398. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1399. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1400. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1401. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1402. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1403. #elif defined(__POWER9_VECTOR__)
  1404. #define GGML_SIMD
  1405. // F32 POWER9
  1406. #define GGML_F32_STEP 32
  1407. #define GGML_F32_EPR 4
  1408. #define GGML_F32x4 vector float
  1409. #define GGML_F32x4_ZERO 0.0f
  1410. #define GGML_F32x4_SET1 vec_splats
  1411. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1412. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1413. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1414. #define GGML_F32x4_ADD vec_add
  1415. #define GGML_F32x4_MUL vec_mul
  1416. #define GGML_F32x4_REDUCE(res, x) \
  1417. { \
  1418. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1419. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1420. } \
  1421. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1422. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1423. } \
  1424. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1425. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1426. } \
  1427. res = vec_extract(x[0], 0) + \
  1428. vec_extract(x[0], 1) + \
  1429. vec_extract(x[0], 2) + \
  1430. vec_extract(x[0], 3); \
  1431. }
  1432. #define GGML_F32_VEC GGML_F32x4
  1433. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1434. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1435. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1436. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1437. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1438. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1439. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1440. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1441. // F16 POWER9
  1442. #define GGML_F16_STEP GGML_F32_STEP
  1443. #define GGML_F16_EPR GGML_F32_EPR
  1444. #define GGML_F16_VEC GGML_F32x4
  1445. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1446. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1447. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1448. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1449. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1450. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1451. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1452. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1453. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1454. #define GGML_F16_VEC_STORE(p, r, i) \
  1455. if (i & 0x1) \
  1456. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1457. r[i - GGML_ENDIAN_BYTE(0)]), \
  1458. 0, p - GGML_F16_EPR)
  1459. #elif defined(__wasm_simd128__)
  1460. #define GGML_SIMD
  1461. // F32 WASM
  1462. #define GGML_F32_STEP 16
  1463. #define GGML_F32_EPR 4
  1464. #define GGML_F32x4 v128_t
  1465. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1466. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1467. #define GGML_F32x4_LOAD wasm_v128_load
  1468. #define GGML_F32x4_STORE wasm_v128_store
  1469. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1470. #define GGML_F32x4_ADD wasm_f32x4_add
  1471. #define GGML_F32x4_MUL wasm_f32x4_mul
  1472. #define GGML_F32x4_REDUCE(res, x) \
  1473. { \
  1474. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1475. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1476. } \
  1477. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1478. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1479. } \
  1480. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1481. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1482. } \
  1483. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1484. wasm_f32x4_extract_lane(x[0], 1) + \
  1485. wasm_f32x4_extract_lane(x[0], 2) + \
  1486. wasm_f32x4_extract_lane(x[0], 3); \
  1487. }
  1488. #define GGML_F32_VEC GGML_F32x4
  1489. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1490. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1491. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1492. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1493. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1494. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1495. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1496. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1497. // F16 WASM
  1498. #define GGML_F16_STEP 16
  1499. #define GGML_F16_EPR 4
  1500. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1501. float tmp[4];
  1502. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1503. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1504. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1505. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1506. return wasm_v128_load(tmp);
  1507. }
  1508. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1509. float tmp[4];
  1510. wasm_v128_store(tmp, x);
  1511. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1512. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1513. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1514. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1515. }
  1516. #define GGML_F16x4 v128_t
  1517. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1518. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1519. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1520. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1521. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1522. #define GGML_F16x4_ADD wasm_f32x4_add
  1523. #define GGML_F16x4_MUL wasm_f32x4_mul
  1524. #define GGML_F16x4_REDUCE(res, x) \
  1525. { \
  1526. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1527. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1528. } \
  1529. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1530. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1531. } \
  1532. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1533. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1534. } \
  1535. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1536. wasm_f32x4_extract_lane(x[0], 1) + \
  1537. wasm_f32x4_extract_lane(x[0], 2) + \
  1538. wasm_f32x4_extract_lane(x[0], 3); \
  1539. }
  1540. #define GGML_F16_VEC GGML_F16x4
  1541. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1542. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1543. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1544. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1545. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1546. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1547. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1548. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1549. #elif defined(__SSE3__)
  1550. #define GGML_SIMD
  1551. // F32 SSE
  1552. #define GGML_F32_STEP 32
  1553. #define GGML_F32_EPR 4
  1554. #define GGML_F32x4 __m128
  1555. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1556. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1557. #define GGML_F32x4_LOAD _mm_loadu_ps
  1558. #define GGML_F32x4_STORE _mm_storeu_ps
  1559. #if defined(__FMA__)
  1560. // TODO: Does this work?
  1561. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1562. #else
  1563. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1564. #endif
  1565. #define GGML_F32x4_ADD _mm_add_ps
  1566. #define GGML_F32x4_MUL _mm_mul_ps
  1567. #define GGML_F32x4_REDUCE(res, x) \
  1568. { \
  1569. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1570. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1571. } \
  1572. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1573. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1574. } \
  1575. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1576. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1577. } \
  1578. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1579. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1580. }
  1581. // TODO: is this optimal ?
  1582. #define GGML_F32_VEC GGML_F32x4
  1583. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1584. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1585. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1586. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1587. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1588. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1589. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1590. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1591. // F16 SSE
  1592. #define GGML_F16_STEP 32
  1593. #define GGML_F16_EPR 4
  1594. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1595. float tmp[4];
  1596. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1597. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1598. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1599. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1600. return _mm_loadu_ps(tmp);
  1601. }
  1602. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1603. float arr[4];
  1604. _mm_storeu_ps(arr, y);
  1605. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1606. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1607. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1608. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1609. }
  1610. #define GGML_F32Cx4 __m128
  1611. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1612. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1613. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1614. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1615. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1616. #define GGML_F32Cx4_ADD _mm_add_ps
  1617. #define GGML_F32Cx4_MUL _mm_mul_ps
  1618. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1619. #define GGML_F16_VEC GGML_F32Cx4
  1620. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1621. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1622. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1623. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1624. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1625. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1626. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1627. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1628. #endif
  1629. // GGML_F32_ARR / GGML_F16_ARR
  1630. // number of registers to use per step
  1631. #ifdef GGML_SIMD
  1632. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1633. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1634. #endif
  1635. //
  1636. // fundamental operations
  1637. //
  1638. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1639. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1640. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1641. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1642. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1643. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1644. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1645. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1646. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1647. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1648. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1649. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1650. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1651. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1652. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1653. #ifdef GGML_SIMD
  1654. float sumf = 0.0f;
  1655. const int np = (n & ~(GGML_F32_STEP - 1));
  1656. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1657. GGML_F32_VEC ax[GGML_F32_ARR];
  1658. GGML_F32_VEC ay[GGML_F32_ARR];
  1659. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1660. for (int j = 0; j < GGML_F32_ARR; j++) {
  1661. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1662. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1663. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1664. }
  1665. }
  1666. // reduce sum0..sum3 to sum0
  1667. GGML_F32_VEC_REDUCE(sumf, sum);
  1668. // leftovers
  1669. for (int i = np; i < n; ++i) {
  1670. sumf += x[i]*y[i];
  1671. }
  1672. #else
  1673. // scalar
  1674. ggml_float sumf = 0.0;
  1675. for (int i = 0; i < n; ++i) {
  1676. sumf += (ggml_float)(x[i]*y[i]);
  1677. }
  1678. #endif
  1679. *s = sumf;
  1680. }
  1681. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1682. ggml_float sumf = 0.0;
  1683. #if defined(GGML_SIMD)
  1684. const int np = (n & ~(GGML_F16_STEP - 1));
  1685. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1686. GGML_F16_VEC ax[GGML_F16_ARR];
  1687. GGML_F16_VEC ay[GGML_F16_ARR];
  1688. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1689. for (int j = 0; j < GGML_F16_ARR; j++) {
  1690. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1691. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1692. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1693. }
  1694. }
  1695. // reduce sum0..sum3 to sum0
  1696. GGML_F16_VEC_REDUCE(sumf, sum);
  1697. // leftovers
  1698. for (int i = np; i < n; ++i) {
  1699. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1700. }
  1701. #else
  1702. for (int i = 0; i < n; ++i) {
  1703. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1704. }
  1705. #endif
  1706. *s = sumf;
  1707. }
  1708. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1709. const int qk = QK8_0;
  1710. const int nb = n / qk;
  1711. assert(n % qk == 0);
  1712. assert(nb % 2 == 0);
  1713. const block_q4_0 * restrict x = vx;
  1714. const block_q8_0 * restrict y = vy;
  1715. #if defined(__ARM_NEON)
  1716. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1717. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1718. for (int i = 0; i < nb; i += 2) {
  1719. const block_q4_0 * restrict x0 = &x[i + 0];
  1720. const block_q4_0 * restrict x1 = &x[i + 1];
  1721. const block_q8_0 * restrict y0 = &y[i + 0];
  1722. const block_q8_0 * restrict y1 = &y[i + 1];
  1723. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1724. const int8x16_t s8b = vdupq_n_s8(0x8);
  1725. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1726. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1727. // 4-bit -> 8-bit
  1728. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1729. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1730. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1731. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1732. // sub 8
  1733. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1734. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1735. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1736. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1737. // load y
  1738. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1739. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1740. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1741. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1742. #if defined(__ARM_FEATURE_DOTPROD)
  1743. // dot product into int32x4_t
  1744. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1745. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1746. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  1747. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  1748. #else
  1749. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  1750. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  1751. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  1752. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  1753. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  1754. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  1755. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  1756. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  1757. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1758. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1759. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1760. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1761. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  1762. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  1763. #endif
  1764. }
  1765. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  1766. #elif defined(__AVX2__)
  1767. // Initialize accumulator with zeros
  1768. __m256 acc = _mm256_setzero_ps();
  1769. // Main loop
  1770. for (int i = 0; i < nb; ++i) {
  1771. /* Compute combined scale for the block */
  1772. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1773. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  1774. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1775. const __m256i off = _mm256_set1_epi8( 8 );
  1776. bx = _mm256_sub_epi8( bx, off );
  1777. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  1778. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  1779. /* Multiply q with scale and accumulate */
  1780. acc = _mm256_fmadd_ps( d, q, acc );
  1781. }
  1782. *s = hsum_float_8(acc);
  1783. #elif defined(__AVX__)
  1784. // Initialize accumulator with zeros
  1785. __m256 acc = _mm256_setzero_ps();
  1786. // Main loop
  1787. for (int i = 0; i < nb; ++i) {
  1788. // Compute combined scale for the block
  1789. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1790. const __m128i lowMask = _mm_set1_epi8(0xF);
  1791. const __m128i off = _mm_set1_epi8(8);
  1792. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  1793. __m128i bx = _mm_and_si128(lowMask, tmp);
  1794. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  1795. bx = _mm_sub_epi8(bx, off);
  1796. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  1797. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  1798. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1799. bx = _mm_sub_epi8(bx, off);
  1800. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  1801. // Convert int32_t to float
  1802. __m256 p = _mm256_cvtepi32_ps(_mm256_set_m128i(i32_0, i32_1));
  1803. // Apply the scale, and accumulate
  1804. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1805. }
  1806. *s = hsum_float_8(acc);
  1807. #elif defined(__SSSE3__)
  1808. // set constants
  1809. const __m128i lowMask = _mm_set1_epi8(0xF);
  1810. const __m128i off = _mm_set1_epi8(8);
  1811. // Initialize accumulator with zeros
  1812. __m128 acc_0 = _mm_setzero_ps();
  1813. __m128 acc_1 = _mm_setzero_ps();
  1814. __m128 acc_2 = _mm_setzero_ps();
  1815. __m128 acc_3 = _mm_setzero_ps();
  1816. // First round without accumulation
  1817. {
  1818. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  1819. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  1820. // Compute combined scale for the block 0 and 1
  1821. const __m128 d_0_1 = _mm_mul_ps( _mm_set1_ps( x[0].d ), _mm_set1_ps( y[0].d ) );
  1822. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  1823. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1824. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  1825. bx_0 = _mm_sub_epi8(bx_0, off);
  1826. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1827. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1828. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  1829. bx_1 = _mm_sub_epi8(bx_1, off);
  1830. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1831. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  1832. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  1833. // Compute combined scale for the block 2 and 3
  1834. const __m128 d_2_3 = _mm_mul_ps( _mm_set1_ps( x[1].d ), _mm_set1_ps( y[1].d ) );
  1835. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  1836. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  1837. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  1838. bx_2 = _mm_sub_epi8(bx_2, off);
  1839. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1840. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  1841. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  1842. bx_3 = _mm_sub_epi8(bx_3, off);
  1843. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1844. // Convert int32_t to float
  1845. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  1846. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  1847. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  1848. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  1849. // Apply the scale
  1850. acc_0 = _mm_mul_ps( d_0_1, p0 );
  1851. acc_1 = _mm_mul_ps( d_0_1, p1 );
  1852. acc_2 = _mm_mul_ps( d_2_3, p2 );
  1853. acc_3 = _mm_mul_ps( d_2_3, p3 );
  1854. }
  1855. // Main loop
  1856. for (int i = 2; i < nb; i+=2) {
  1857. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  1858. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  1859. // Compute combined scale for the block 0 and 1
  1860. const __m128 d_0_1 = _mm_mul_ps( _mm_set1_ps( x[i].d ), _mm_set1_ps( y[i].d ) );
  1861. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  1862. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1863. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  1864. bx_0 = _mm_sub_epi8(bx_0, off);
  1865. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1866. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1867. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1868. bx_1 = _mm_sub_epi8(bx_1, off);
  1869. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1870. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  1871. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  1872. // Compute combined scale for the block 2 and 3
  1873. const __m128 d_2_3 = _mm_mul_ps( _mm_set1_ps( x[i + 1].d ), _mm_set1_ps( y[i + 1].d ) );
  1874. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  1875. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  1876. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  1877. bx_2 = _mm_sub_epi8(bx_2, off);
  1878. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1879. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  1880. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  1881. bx_3 = _mm_sub_epi8(bx_3, off);
  1882. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1883. // Convert int32_t to float
  1884. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  1885. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  1886. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  1887. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  1888. // Apply the scale
  1889. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  1890. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  1891. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  1892. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  1893. // Acummulate
  1894. acc_0 = _mm_add_ps(p0_d, acc_0);
  1895. acc_1 = _mm_add_ps(p1_d, acc_1);
  1896. acc_2 = _mm_add_ps(p2_d, acc_2);
  1897. acc_3 = _mm_add_ps(p3_d, acc_3);
  1898. }
  1899. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  1900. #else
  1901. // scalar
  1902. float sumf = 0.0;
  1903. for (int i = 0; i < nb; i++) {
  1904. int sumi = 0;
  1905. for (int j = 0; j < qk/2; ++j) {
  1906. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  1907. const int v1 = (x[i].qs[j] >> 4) - 8;
  1908. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  1909. }
  1910. sumf += (x[i].d*y[i].d)*sumi;
  1911. }
  1912. *s = sumf;
  1913. #endif
  1914. }
  1915. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1916. const int qk = QK8_1;
  1917. const int nb = n / qk;
  1918. assert(n % qk == 0);
  1919. assert(nb % 2 == 0);
  1920. const block_q4_1 * restrict x = vx;
  1921. const block_q8_1 * restrict y = vy;
  1922. // TODO: add WASM SIMD
  1923. #if defined(__ARM_NEON)
  1924. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1925. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1926. float summs = 0;
  1927. for (int i = 0; i < nb; i += 2) {
  1928. const block_q4_1 * restrict x0 = &x[i + 0];
  1929. const block_q4_1 * restrict x1 = &x[i + 1];
  1930. const block_q8_1 * restrict y0 = &y[i + 0];
  1931. const block_q8_1 * restrict y1 = &y[i + 1];
  1932. summs += x0->m * y0->s + x1->m * y1->s;
  1933. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1934. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1935. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1936. // 4-bit -> 8-bit
  1937. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1938. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1939. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1940. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1941. // load y
  1942. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1943. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1944. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1945. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1946. #if defined(__ARM_FEATURE_DOTPROD)
  1947. // dot product into int32x4_t
  1948. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  1949. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  1950. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  1951. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  1952. #else
  1953. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  1954. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  1955. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  1956. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  1957. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  1958. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  1959. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  1960. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  1961. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1962. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1963. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1964. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1965. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  1966. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  1967. #endif
  1968. }
  1969. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  1970. #elif defined(__AVX2__) || defined(__AVX__)
  1971. // Initialize accumulator with zeros
  1972. __m256 acc = _mm256_setzero_ps();
  1973. float summs = 0;
  1974. // Main loop
  1975. for (int i = 0; i < nb; ++i) {
  1976. const float * d0 = &x[i].d;
  1977. const float * d1 = &y[i].d;
  1978. summs += x[i].m * y[i].s;
  1979. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1980. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1981. // Compute combined scales
  1982. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  1983. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1984. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  1985. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  1986. const __m256 xy = mul_sum_i8_pairs_float(bx, by);
  1987. // Accumulate d0*d1*x*y
  1988. #if defined(__AVX2__)
  1989. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  1990. #else
  1991. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  1992. #endif
  1993. }
  1994. *s = hsum_float_8(acc) + summs;
  1995. #else
  1996. // scalar
  1997. float sumf = 0.0;
  1998. for (int i = 0; i < nb; i++) {
  1999. int sumi = 0;
  2000. for (int j = 0; j < qk/2; ++j) {
  2001. const int v0 = (x[i].qs[j] & 0x0F);
  2002. const int v1 = (x[i].qs[j] >> 4);
  2003. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2004. }
  2005. sumf += (x[i].d*y[i].d)*sumi + x[i].m*y[i].s;
  2006. }
  2007. *s = sumf;
  2008. #endif
  2009. }
  2010. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2011. const int qk = QK8_0;
  2012. const int nb = n / qk;
  2013. assert(n % qk == 0);
  2014. assert(nb % 2 == 0);
  2015. assert(qk == QK5_0);
  2016. const block_q5_0 * restrict x = vx;
  2017. const block_q8_0 * restrict y = vy;
  2018. #if defined(__ARM_NEON)
  2019. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2020. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2021. uint32_t qh0;
  2022. uint32_t qh1;
  2023. uint64_t tmp0[4];
  2024. uint64_t tmp1[4];
  2025. for (int i = 0; i < nb; i += 2) {
  2026. const block_q5_0 * restrict x0 = &x[i];
  2027. const block_q5_0 * restrict x1 = &x[i + 1];
  2028. const block_q8_0 * restrict y0 = &y[i];
  2029. const block_q8_0 * restrict y1 = &y[i + 1];
  2030. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2031. // extract the 5th bit via lookup table ((!b) << 4)
  2032. memcpy(&qh0, x0->qh, sizeof(qh0));
  2033. memcpy(&qh1, x1->qh, sizeof(qh1));
  2034. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2035. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2036. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2037. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2038. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2039. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2040. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2041. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2042. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2043. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2044. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2045. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2046. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2047. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2048. // 4-bit -> 8-bit
  2049. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2050. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2051. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2052. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2053. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2054. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2055. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2056. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2057. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2058. // load y
  2059. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2060. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2061. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2062. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2063. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2064. const float x1d = GGML_FP16_TO_FP32(x1->d);
  2065. #if defined(__ARM_FEATURE_DOTPROD)
  2066. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2067. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2068. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), x0d*y0->d);
  2069. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2070. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2071. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), x1d*y1->d);
  2072. #else
  2073. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2074. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2075. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2076. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2077. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2078. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2079. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2080. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2081. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2082. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2083. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2084. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2085. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2086. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1d*y1->d);
  2087. #endif
  2088. }
  2089. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2090. #elif defined(__wasm_simd128__)
  2091. v128_t sumv = wasm_f32x4_splat(0.0f);
  2092. uint32_t qh;
  2093. uint64_t tmp[4];
  2094. // TODO: check if unrolling this is better
  2095. for (int i = 0; i < nb; ++i) {
  2096. const block_q5_0 * restrict x0 = &x[i];
  2097. const block_q8_0 * restrict y0 = &y[i];
  2098. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2099. const v128_t s16b = wasm_i8x16_splat(0x10);
  2100. // extract the 5th bit
  2101. memcpy(&qh, x0->qh, sizeof(qh));
  2102. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2103. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2104. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2105. tmp[3] = table_b2b_1[(qh >> 24) ];
  2106. const v128_t qhl = wasm_v128_load(tmp + 0);
  2107. const v128_t qhh = wasm_v128_load(tmp + 2);
  2108. const v128_t v0 = wasm_v128_load(x0->qs);
  2109. // 4-bit -> 8-bit
  2110. const v128_t v0l = wasm_v128_and (v0, m4b);
  2111. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2112. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2113. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2114. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2115. // load y
  2116. const v128_t v1l = wasm_v128_load(y0->qs);
  2117. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2118. // int8x16 -> int16x8
  2119. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2120. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2121. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2122. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2123. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2124. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2125. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2126. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2127. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2128. // dot product
  2129. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2130. wasm_i32x4_add(
  2131. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2132. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2133. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2134. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d)));
  2135. }
  2136. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2137. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2138. #elif defined(__AVX2__)
  2139. // Initialize accumulator with zeros
  2140. __m256 acc = _mm256_setzero_ps();
  2141. // Main loop
  2142. for (int i = 0; i < nb; i++) {
  2143. /* Compute combined scale for the block */
  2144. const __m256 d = _mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)), _mm256_broadcast_ss(&y[i].d));
  2145. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2146. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2147. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2148. bx = _mm256_or_si256(bx, bxhi);
  2149. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2150. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2151. /* Multiply q with scale and accumulate */
  2152. acc = _mm256_fmadd_ps(d, q, acc);
  2153. }
  2154. *s = hsum_float_8(acc);
  2155. #elif defined(__AVX__)
  2156. // Initialize accumulator with zeros
  2157. __m256 acc = _mm256_setzero_ps();
  2158. __m128i mask = _mm_set1_epi8((char)0xF0);
  2159. // Main loop
  2160. for (int i = 0; i < nb; i++) {
  2161. /* Compute combined scale for the block */
  2162. const __m256 d = _mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)), _mm256_broadcast_ss(&y[i].d));
  2163. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2164. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2165. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2166. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2167. bxhil = _mm_andnot_si128(bxhil, mask);
  2168. bxhih = _mm_andnot_si128(bxhih, mask);
  2169. __m128i bxl = _mm256_castsi256_si128(bx);
  2170. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2171. bxl = _mm_or_si128(bxl, bxhil);
  2172. bxh = _mm_or_si128(bxh, bxhih);
  2173. bx = _mm256_set_m128i(bxh, bxl);
  2174. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2175. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2176. /* Multiply q with scale and accumulate */
  2177. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2178. }
  2179. *s = hsum_float_8(acc);
  2180. #else
  2181. // scalar
  2182. float sumf = 0.0;
  2183. for (int i = 0; i < nb; i++) {
  2184. uint32_t qh;
  2185. memcpy(&qh, x[i].qh, sizeof(qh));
  2186. int sumi = 0;
  2187. for (int j = 0; j < qk/2; ++j) {
  2188. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2189. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2190. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2191. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2192. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2193. }
  2194. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi;
  2195. }
  2196. *s = sumf;
  2197. #endif
  2198. }
  2199. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2200. const int qk = QK8_1;
  2201. const int nb = n / qk;
  2202. assert(n % qk == 0);
  2203. assert(nb % 2 == 0);
  2204. assert(qk == QK5_1);
  2205. const block_q5_1 * restrict x = vx;
  2206. const block_q8_1 * restrict y = vy;
  2207. #if defined(__ARM_NEON)
  2208. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2209. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2210. float summs0 = 0.0f;
  2211. float summs1 = 0.0f;
  2212. uint32_t qh0;
  2213. uint32_t qh1;
  2214. uint64_t tmp0[4];
  2215. uint64_t tmp1[4];
  2216. for (int i = 0; i < nb; i += 2) {
  2217. const block_q5_1 * restrict x0 = &x[i];
  2218. const block_q5_1 * restrict x1 = &x[i + 1];
  2219. const block_q8_1 * restrict y0 = &y[i];
  2220. const block_q8_1 * restrict y1 = &y[i + 1];
  2221. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2222. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2223. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2224. // extract the 5th bit via lookup table ((b) << 4)
  2225. memcpy(&qh0, x0->qh, sizeof(qh0));
  2226. memcpy(&qh1, x1->qh, sizeof(qh1));
  2227. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2228. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2229. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2230. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2231. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2232. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2233. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2234. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2235. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2236. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2237. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2238. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2239. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2240. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2241. // 4-bit -> 8-bit
  2242. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2243. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2244. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2245. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2246. // add high bit
  2247. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2248. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2249. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2250. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2251. // load y
  2252. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2253. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2254. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2255. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2256. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2257. const float x1d = GGML_FP16_TO_FP32(x1->d);
  2258. #if defined(__ARM_FEATURE_DOTPROD)
  2259. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2260. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2261. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), x0d*y0->d);
  2262. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2263. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2264. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), x1d*y1->d);
  2265. #else
  2266. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2267. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2268. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2269. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2270. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2271. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2272. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2273. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2274. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2275. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2276. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2277. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2278. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2279. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1d*y1->d);
  2280. #endif
  2281. }
  2282. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2283. #elif defined(__wasm_simd128__)
  2284. v128_t sumv = wasm_f32x4_splat(0.0f);
  2285. float summs = 0.0f;
  2286. uint32_t qh;
  2287. uint64_t tmp[4];
  2288. // TODO: check if unrolling this is better
  2289. for (int i = 0; i < nb; ++i) {
  2290. const block_q5_1 * restrict x0 = &x[i];
  2291. const block_q8_1 * restrict y0 = &y[i];
  2292. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2293. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2294. // extract the 5th bit
  2295. memcpy(&qh, x0->qh, sizeof(qh));
  2296. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2297. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2298. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2299. tmp[3] = table_b2b_0[(qh >> 24) ];
  2300. const v128_t qhl = wasm_v128_load(tmp + 0);
  2301. const v128_t qhh = wasm_v128_load(tmp + 2);
  2302. const v128_t v0 = wasm_v128_load(x0->qs);
  2303. // 4-bit -> 8-bit
  2304. const v128_t v0l = wasm_v128_and (v0, m4b);
  2305. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2306. static bool x = true;
  2307. // add high bit
  2308. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2309. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2310. // load y
  2311. const v128_t v1l = wasm_v128_load(y0->qs);
  2312. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2313. // int8x16 -> int16x8
  2314. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2315. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2316. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2317. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2318. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2319. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2320. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2321. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2322. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2323. // dot product
  2324. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2325. wasm_i32x4_add(
  2326. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2327. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2328. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2329. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d)));
  2330. }
  2331. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2332. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2333. #elif defined(__AVX2__)
  2334. // Initialize accumulator with zeros
  2335. __m256 acc = _mm256_setzero_ps();
  2336. float summs = 0.0f;
  2337. // Main loop
  2338. for (int i = 0; i < nb; i++) {
  2339. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2340. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2341. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2342. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2343. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2344. bx = _mm256_or_si256(bx, bxhi);
  2345. const __m256 dy = _mm256_broadcast_ss(&y[i].d);
  2346. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2347. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2348. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2349. }
  2350. *s = hsum_float_8(acc) + summs;
  2351. #elif defined(__AVX__)
  2352. // Initialize accumulator with zeros
  2353. __m256 acc = _mm256_setzero_ps();
  2354. __m128i mask = _mm_set1_epi8(0x10);
  2355. float summs = 0.0f;
  2356. // Main loop
  2357. for (int i = 0; i < nb; i++) {
  2358. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2359. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2360. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2361. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2362. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2363. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2364. bxhil = _mm_and_si128(bxhil, mask);
  2365. bxhih = _mm_and_si128(bxhih, mask);
  2366. __m128i bxl = _mm256_castsi256_si128(bx);
  2367. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2368. bxl = _mm_or_si128(bxl, bxhil);
  2369. bxh = _mm_or_si128(bxh, bxhih);
  2370. bx = _mm256_set_m128i(bxh, bxl);
  2371. const __m256 dy = _mm256_broadcast_ss(&y[i].d);
  2372. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2373. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2374. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2375. }
  2376. *s = hsum_float_8(acc) + summs;
  2377. #else
  2378. // scalar
  2379. float sumf = 0.0;
  2380. for (int i = 0; i < nb; i++) {
  2381. uint32_t qh;
  2382. memcpy(&qh, x[i].qh, sizeof(qh));
  2383. int sumi = 0;
  2384. for (int j = 0; j < qk/2; ++j) {
  2385. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2386. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2387. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2388. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2389. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2390. }
  2391. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2392. }
  2393. *s = sumf;
  2394. #endif
  2395. }
  2396. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2397. const int qk = QK8_0;
  2398. const int nb = n / qk;
  2399. assert(n % qk == 0);
  2400. assert(nb % 2 == 0);
  2401. const block_q8_0 * restrict x = vx;
  2402. const block_q8_0 * restrict y = vy;
  2403. #if defined(__ARM_NEON)
  2404. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2405. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2406. for (int i = 0; i < nb; i += 2) {
  2407. const block_q8_0 * restrict x0 = &x[i + 0];
  2408. const block_q8_0 * restrict x1 = &x[i + 1];
  2409. const block_q8_0 * restrict y0 = &y[i + 0];
  2410. const block_q8_0 * restrict y1 = &y[i + 1];
  2411. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2412. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2413. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2414. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2415. // load y
  2416. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2417. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2418. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2419. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2420. #if defined(__ARM_FEATURE_DOTPROD)
  2421. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2422. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2423. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), x0->d*y0->d);
  2424. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2425. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2426. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), x1->d*y1->d);
  2427. #else
  2428. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2429. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2430. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2431. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2432. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2433. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2434. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2435. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2436. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2437. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2438. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2439. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2440. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), x0->d*y0->d);
  2441. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), x1->d*y1->d);
  2442. #endif
  2443. }
  2444. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2445. #elif defined(__AVX2__) || defined(__AVX__)
  2446. // Initialize accumulator with zeros
  2447. __m256 acc = _mm256_setzero_ps();
  2448. // Main loop
  2449. for (int i = 0; i < nb; ++i) {
  2450. // Compute combined scale for the block
  2451. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2452. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2453. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2454. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2455. // Multiply q with scale and accumulate
  2456. #if defined(__AVX2__)
  2457. acc = _mm256_fmadd_ps( d, q, acc );
  2458. #else
  2459. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2460. #endif
  2461. }
  2462. *s = hsum_float_8(acc);
  2463. #else
  2464. // scalar
  2465. float sumf = 0.0;
  2466. for (int i = 0; i < nb; i++) {
  2467. int sumi = 0;
  2468. for (int j = 0; j < qk; j++) {
  2469. sumi += x[i].qs[j]*y[i].qs[j];
  2470. }
  2471. sumf += (x[i].d*y[i].d)*sumi;
  2472. }
  2473. *s = sumf;
  2474. #endif
  2475. }
  2476. // compute GGML_VEC_DOT_UNROLL dot products at once
  2477. // xs - x row stride in bytes
  2478. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2479. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2480. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2481. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2482. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2483. }
  2484. #if defined(GGML_SIMD)
  2485. const int np = (n & ~(GGML_F16_STEP - 1));
  2486. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2487. GGML_F16_VEC ax[GGML_F16_ARR];
  2488. GGML_F16_VEC ay[GGML_F16_ARR];
  2489. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2490. for (int j = 0; j < GGML_F16_ARR; j++) {
  2491. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2492. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2493. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2494. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2495. }
  2496. }
  2497. }
  2498. // reduce sum0..sum3 to sum0
  2499. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2500. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2501. }
  2502. // leftovers
  2503. for (int i = np; i < n; ++i) {
  2504. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2505. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2506. }
  2507. }
  2508. #else
  2509. for (int i = 0; i < n; ++i) {
  2510. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2511. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2512. }
  2513. }
  2514. #endif
  2515. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2516. s[i] = sumf[i];
  2517. }
  2518. }
  2519. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2520. #if defined(GGML_SIMD)
  2521. const int np = (n & ~(GGML_F32_STEP - 1));
  2522. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2523. GGML_F32_VEC ax[GGML_F32_ARR];
  2524. GGML_F32_VEC ay[GGML_F32_ARR];
  2525. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2526. for (int j = 0; j < GGML_F32_ARR; j++) {
  2527. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2528. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2529. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2530. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2531. }
  2532. }
  2533. // leftovers
  2534. for (int i = np; i < n; ++i) {
  2535. y[i] += x[i]*v;
  2536. }
  2537. #else
  2538. // scalar
  2539. for (int i = 0; i < n; ++i) {
  2540. y[i] += x[i]*v;
  2541. }
  2542. #endif
  2543. }
  2544. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2545. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2546. #if defined(GGML_SIMD)
  2547. const int np = (n & ~(GGML_F32_STEP - 1));
  2548. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2549. GGML_F32_VEC ay[GGML_F32_ARR];
  2550. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2551. for (int j = 0; j < GGML_F32_ARR; j++) {
  2552. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2553. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2554. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2555. }
  2556. }
  2557. // leftovers
  2558. for (int i = np; i < n; ++i) {
  2559. y[i] *= v;
  2560. }
  2561. #else
  2562. // scalar
  2563. for (int i = 0; i < n; ++i) {
  2564. y[i] *= v;
  2565. }
  2566. #endif
  2567. }
  2568. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2569. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2570. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2571. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2572. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2573. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2574. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2575. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2576. static const float GELU_COEF_A = 0.044715f;
  2577. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2578. inline static float ggml_gelu_f32(float x) {
  2579. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2580. }
  2581. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2582. const uint16_t * i16 = (const uint16_t *) x;
  2583. for (int i = 0; i < n; ++i) {
  2584. y[i] = table_gelu_f16[i16[i]];
  2585. }
  2586. }
  2587. #ifdef GGML_GELU_FP16
  2588. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2589. uint16_t t;
  2590. for (int i = 0; i < n; ++i) {
  2591. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2592. memcpy(&t, &fp16, sizeof(uint16_t));
  2593. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2594. }
  2595. }
  2596. #else
  2597. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2598. for (int i = 0; i < n; ++i) {
  2599. y[i] = ggml_gelu_f32(x[i]);
  2600. }
  2601. }
  2602. #endif
  2603. // Sigmoid Linear Unit (SiLU) function
  2604. inline static float ggml_silu_f32(float x) {
  2605. return x/(1.0f + expf(-x));
  2606. }
  2607. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2608. // const uint16_t * i16 = (const uint16_t *) x;
  2609. // for (int i = 0; i < n; ++i) {
  2610. // y[i] = table_silu_f16[i16[i]];
  2611. // }
  2612. //}
  2613. #ifdef GGML_SILU_FP16
  2614. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2615. uint16_t t;
  2616. for (int i = 0; i < n; ++i) {
  2617. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2618. memcpy(&t, &fp16, sizeof(uint16_t));
  2619. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2620. }
  2621. }
  2622. #else
  2623. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2624. for (int i = 0; i < n; ++i) {
  2625. y[i] = ggml_silu_f32(x[i]);
  2626. }
  2627. }
  2628. #endif
  2629. inline static float ggml_silu_backward_f32(float x, float dy) {
  2630. const float s = 1.0f/(1.0f + expf(-x));
  2631. return dy*s*(1.0f + x*(1.0f - s));
  2632. }
  2633. #ifdef GGML_SILU_FP16
  2634. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2635. for (int i = 0; i < n; ++i) {
  2636. // we did not use x[i] to compute forward silu but its f16 equivalent
  2637. // take derivative at f16 of x[i]:
  2638. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2639. float usedx = GGML_FP16_TO_FP32(fp16);
  2640. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2641. }
  2642. }
  2643. #else
  2644. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2645. for (int i = 0; i < n; ++i) {
  2646. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2647. }
  2648. }
  2649. #endif
  2650. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2651. #ifndef GGML_USE_ACCELERATE
  2652. ggml_float sum = 0.0;
  2653. for (int i = 0; i < n; ++i) {
  2654. sum += (ggml_float)x[i];
  2655. }
  2656. *s = sum;
  2657. #else
  2658. vDSP_sve(x, 1, s, n);
  2659. #endif
  2660. }
  2661. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2662. ggml_float sum = 0.0;
  2663. for (int i = 0; i < n; ++i) {
  2664. sum += (ggml_float)x[i];
  2665. }
  2666. *s = sum;
  2667. }
  2668. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2669. #ifndef GGML_USE_ACCELERATE
  2670. float max = -INFINITY;
  2671. for (int i = 0; i < n; ++i) {
  2672. max = MAX(max, x[i]);
  2673. }
  2674. *s = max;
  2675. #else
  2676. vDSP_maxv(x, 1, s, n);
  2677. #endif
  2678. }
  2679. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2680. ggml_vec_norm_f32(n, s, x);
  2681. *s = 1.f/(*s);
  2682. }
  2683. //
  2684. // logging
  2685. //
  2686. #if (GGML_DEBUG >= 1)
  2687. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2688. #else
  2689. #define GGML_PRINT_DEBUG(...)
  2690. #endif
  2691. #if (GGML_DEBUG >= 5)
  2692. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2693. #else
  2694. #define GGML_PRINT_DEBUG_5(...)
  2695. #endif
  2696. #if (GGML_DEBUG >= 10)
  2697. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2698. #else
  2699. #define GGML_PRINT_DEBUG_10(...)
  2700. #endif
  2701. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2702. //
  2703. // data types
  2704. //
  2705. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2706. [GGML_TYPE_F32] = 1,
  2707. [GGML_TYPE_F16] = 1,
  2708. [GGML_TYPE_Q4_0] = QK4_0,
  2709. [GGML_TYPE_Q4_1] = QK4_1,
  2710. [GGML_TYPE_Q5_0] = QK5_0,
  2711. [GGML_TYPE_Q5_1] = QK5_1,
  2712. [GGML_TYPE_Q8_0] = QK8_0,
  2713. [GGML_TYPE_Q8_1] = QK8_1,
  2714. [GGML_TYPE_I8] = 1,
  2715. [GGML_TYPE_I16] = 1,
  2716. [GGML_TYPE_I32] = 1,
  2717. };
  2718. static_assert(GGML_TYPE_COUNT == 13, "GGML_BLCK_SIZE is outdated");
  2719. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2720. [GGML_TYPE_F32] = sizeof(float),
  2721. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2722. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2723. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2724. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  2725. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  2726. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2727. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2728. [GGML_TYPE_I8] = sizeof(int8_t),
  2729. [GGML_TYPE_I16] = sizeof(int16_t),
  2730. [GGML_TYPE_I32] = sizeof(int32_t),
  2731. };
  2732. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_SIZE is outdated");
  2733. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2734. [GGML_TYPE_F32] = "f32",
  2735. [GGML_TYPE_F16] = "f16",
  2736. [GGML_TYPE_Q4_0] = "q4_0",
  2737. [GGML_TYPE_Q4_1] = "q4_1",
  2738. [GGML_TYPE_Q5_0] = "q5_0",
  2739. [GGML_TYPE_Q5_1] = "q5_1",
  2740. [GGML_TYPE_Q8_0] = "q8_0",
  2741. [GGML_TYPE_Q8_1] = "q8_1",
  2742. [GGML_TYPE_I8] = "i8",
  2743. [GGML_TYPE_I16] = "i16",
  2744. [GGML_TYPE_I32] = "i32",
  2745. };
  2746. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_NAME is outdated");
  2747. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2748. [GGML_TYPE_F32] = false,
  2749. [GGML_TYPE_F16] = false,
  2750. [GGML_TYPE_Q4_0] = true,
  2751. [GGML_TYPE_Q4_1] = true,
  2752. [GGML_TYPE_Q5_0] = true,
  2753. [GGML_TYPE_Q5_1] = true,
  2754. [GGML_TYPE_Q8_0] = true,
  2755. [GGML_TYPE_Q8_1] = true,
  2756. [GGML_TYPE_I8] = false,
  2757. [GGML_TYPE_I16] = false,
  2758. [GGML_TYPE_I32] = false,
  2759. };
  2760. static_assert(GGML_TYPE_COUNT == 13, "GGML_IS_QUANTIZED is outdated");
  2761. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2762. "NONE",
  2763. "DUP",
  2764. "ADD",
  2765. "ADD1",
  2766. "ACC",
  2767. "SUB",
  2768. "MUL",
  2769. "DIV",
  2770. "SQR",
  2771. "SQRT",
  2772. "LOG",
  2773. "SUM",
  2774. "SUM_ROWS",
  2775. "MEAN",
  2776. "REPEAT",
  2777. "ABS",
  2778. "SGN",
  2779. "NEG",
  2780. "STEP",
  2781. "RELU",
  2782. "GELU",
  2783. "SILU",
  2784. "SILU_BACK",
  2785. "NORM",
  2786. "RMS_NORM",
  2787. "RMS_NORM_BACK",
  2788. "MUL_MAT",
  2789. "SCALE",
  2790. "SET",
  2791. "CPY",
  2792. "CONT",
  2793. "RESHAPE",
  2794. "VIEW",
  2795. "PERMUTE",
  2796. "TRANSPOSE",
  2797. "GET_ROWS",
  2798. "GET_ROWS_BACK",
  2799. "DIAG",
  2800. "DIAG_MASK_INF",
  2801. "DIAG_MASK_ZERO",
  2802. "SOFT_MAX",
  2803. "ROPE",
  2804. "ROPE_BACK",
  2805. "ALIBI",
  2806. "CONV_1D_1S",
  2807. "CONV_1D_2S",
  2808. "FLASH_ATTN",
  2809. "FLASH_FF",
  2810. "MAP_UNARY",
  2811. "MAP_BINARY",
  2812. };
  2813. static_assert(GGML_OP_COUNT == 50, "GGML_OP_COUNT != 50");
  2814. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2815. "none",
  2816. "x",
  2817. "x+y",
  2818. "x+y",
  2819. "view(x,nb,offset)+=y->x",
  2820. "x-y",
  2821. "x*y",
  2822. "x/y",
  2823. "x^2",
  2824. "√x",
  2825. "log(x)",
  2826. "Σx",
  2827. "Σx_k",
  2828. "Σx/n",
  2829. "repeat(x)",
  2830. "abs(x)",
  2831. "sgn(x)",
  2832. "-x",
  2833. "step(x)",
  2834. "relu(x)",
  2835. "gelu(x)",
  2836. "silu(x)",
  2837. "silu_back(x)",
  2838. "norm(x)",
  2839. "rms_norm(x)",
  2840. "rms_norm_back(x)",
  2841. "X*Y",
  2842. "x*v",
  2843. "y-\\>view(x)",
  2844. "x-\\>y",
  2845. "cont(x)",
  2846. "reshape(x)",
  2847. "view(x)",
  2848. "permute(x)",
  2849. "transpose(x)",
  2850. "get_rows(x)",
  2851. "get_rows_back(x)",
  2852. "diag(x)",
  2853. "diag_mask_inf(x)",
  2854. "diag_mask_zero(x)",
  2855. "soft_max(x)",
  2856. "rope(x)",
  2857. "rope_back(x)",
  2858. "alibi(x)",
  2859. "conv_1d_1s(x)",
  2860. "conv_1d_2s(x)",
  2861. "flash_attn(x)",
  2862. "flash_ff(x)",
  2863. "f(x)",
  2864. "f(x,y)",
  2865. };
  2866. static_assert(GGML_OP_COUNT == 50, "GGML_OP_COUNT != 50");
  2867. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2868. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2869. //
  2870. // ggml context
  2871. //
  2872. struct ggml_context {
  2873. size_t mem_size;
  2874. void * mem_buffer;
  2875. bool mem_buffer_owned;
  2876. bool no_alloc;
  2877. int n_objects;
  2878. struct ggml_object * objects_begin;
  2879. struct ggml_object * objects_end;
  2880. struct ggml_scratch scratch;
  2881. struct ggml_scratch scratch_save;
  2882. };
  2883. struct ggml_context_container {
  2884. bool used;
  2885. struct ggml_context context;
  2886. };
  2887. //
  2888. // compute types
  2889. //
  2890. enum ggml_task_type {
  2891. GGML_TASK_INIT = 0,
  2892. GGML_TASK_COMPUTE,
  2893. GGML_TASK_FINALIZE,
  2894. };
  2895. struct ggml_compute_params {
  2896. enum ggml_task_type type;
  2897. int ith, nth;
  2898. // work buffer for all threads
  2899. size_t wsize;
  2900. void * wdata;
  2901. };
  2902. //
  2903. // ggml state
  2904. //
  2905. struct ggml_state {
  2906. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2907. };
  2908. // global state
  2909. static struct ggml_state g_state;
  2910. static atomic_int g_state_barrier = 0;
  2911. // barrier via spin lock
  2912. inline static void ggml_critical_section_start(void) {
  2913. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2914. while (processing > 0) {
  2915. // wait for other threads to finish
  2916. atomic_fetch_sub(&g_state_barrier, 1);
  2917. sched_yield(); // TODO: reconsider this
  2918. processing = atomic_fetch_add(&g_state_barrier, 1);
  2919. }
  2920. }
  2921. // TODO: make this somehow automatically executed
  2922. // some sort of "sentry" mechanism
  2923. inline static void ggml_critical_section_end(void) {
  2924. atomic_fetch_sub(&g_state_barrier, 1);
  2925. }
  2926. ////////////////////////////////////////////////////////////////////////////////
  2927. void ggml_print_object(const struct ggml_object * obj) {
  2928. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2929. obj->offs, obj->size, (const void *) obj->next);
  2930. }
  2931. void ggml_print_objects(const struct ggml_context * ctx) {
  2932. struct ggml_object * obj = ctx->objects_begin;
  2933. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2934. while (obj != NULL) {
  2935. ggml_print_object(obj);
  2936. obj = obj->next;
  2937. }
  2938. GGML_PRINT("%s: --- end ---\n", __func__);
  2939. }
  2940. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2941. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2942. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2943. }
  2944. int ggml_nrows(const struct ggml_tensor * tensor) {
  2945. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2946. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2947. }
  2948. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2949. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2950. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2951. }
  2952. int ggml_blck_size(enum ggml_type type) {
  2953. return GGML_BLCK_SIZE[type];
  2954. }
  2955. size_t ggml_type_size(enum ggml_type type) {
  2956. return GGML_TYPE_SIZE[type];
  2957. }
  2958. float ggml_type_sizef(enum ggml_type type) {
  2959. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2960. }
  2961. const char * ggml_type_name(enum ggml_type type) {
  2962. return GGML_TYPE_NAME[type];
  2963. }
  2964. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2965. return GGML_TYPE_SIZE[tensor->type];
  2966. }
  2967. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2968. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2969. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2970. }
  2971. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2972. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2973. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2974. }
  2975. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2976. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2977. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2978. }
  2979. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2980. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2981. return
  2982. (t0->ne[0] == t1->ne[0]) &&
  2983. (t0->ne[2] == t1->ne[2]) &&
  2984. (t0->ne[3] == t1->ne[3]);
  2985. }
  2986. bool ggml_is_quantized(enum ggml_type type) {
  2987. return GGML_IS_QUANTIZED[type];
  2988. }
  2989. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2990. enum ggml_type wtype = GGML_TYPE_COUNT;
  2991. switch (ftype) {
  2992. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2993. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2994. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2995. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2996. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2997. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2998. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2999. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3000. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3001. }
  3002. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3003. return wtype;
  3004. }
  3005. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3006. return tensor->nb[0] > tensor->nb[1];
  3007. }
  3008. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3009. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3010. return
  3011. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3012. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3013. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3014. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3015. }
  3016. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3017. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3018. return
  3019. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3020. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3021. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3022. }
  3023. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3024. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3025. return
  3026. (t0->ne[0] == t1->ne[0] ) &&
  3027. (t0->ne[1] == t1->ne[1] ) &&
  3028. (t0->ne[2] == t1->ne[2] ) &&
  3029. (t0->ne[3] == t1->ne[3] );
  3030. }
  3031. // check if t1 can be represented as a repeatition of t0
  3032. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3033. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3034. return
  3035. (t1->ne[0]%t0->ne[0] == 0) &&
  3036. (t1->ne[1]%t0->ne[1] == 0) &&
  3037. (t1->ne[2]%t0->ne[2] == 0) &&
  3038. (t1->ne[3]%t0->ne[3] == 0);
  3039. }
  3040. static inline int ggml_up32(int n) {
  3041. return (n + 31) & ~31;
  3042. }
  3043. //static inline int ggml_up64(int n) {
  3044. // return (n + 63) & ~63;
  3045. //}
  3046. static inline int ggml_up(int n, int m) {
  3047. // assert m is a power of 2
  3048. GGML_ASSERT((m & (m - 1)) == 0);
  3049. return (n + m - 1) & ~(m - 1);
  3050. }
  3051. // assert that pointer is aligned to GGML_MEM_ALIGN
  3052. #define ggml_assert_aligned(ptr) \
  3053. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3054. ////////////////////////////////////////////////////////////////////////////////
  3055. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3056. // make this function thread safe
  3057. ggml_critical_section_start();
  3058. static bool is_first_call = true;
  3059. if (is_first_call) {
  3060. // initialize time system (required on Windows)
  3061. ggml_time_init();
  3062. // initialize GELU, SILU and EXP F32 tables
  3063. {
  3064. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3065. ggml_fp16_t ii;
  3066. for (int i = 0; i < (1 << 16); ++i) {
  3067. uint16_t ui = i;
  3068. memcpy(&ii, &ui, sizeof(ii));
  3069. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3070. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3071. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3072. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3073. }
  3074. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3075. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3076. }
  3077. // initialize g_state
  3078. {
  3079. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3080. g_state = (struct ggml_state) {
  3081. /*.contexts =*/ { { 0 } },
  3082. };
  3083. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3084. g_state.contexts[i].used = false;
  3085. }
  3086. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3087. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3088. }
  3089. #if defined(GGML_USE_CUBLAS)
  3090. ggml_init_cublas();
  3091. #elif defined(GGML_USE_CLBLAST)
  3092. ggml_cl_init();
  3093. #endif
  3094. is_first_call = false;
  3095. }
  3096. // find non-used context in g_state
  3097. struct ggml_context * ctx = NULL;
  3098. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3099. if (!g_state.contexts[i].used) {
  3100. g_state.contexts[i].used = true;
  3101. ctx = &g_state.contexts[i].context;
  3102. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3103. break;
  3104. }
  3105. }
  3106. if (ctx == NULL) {
  3107. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3108. ggml_critical_section_end();
  3109. return NULL;
  3110. }
  3111. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3112. *ctx = (struct ggml_context) {
  3113. /*.mem_size =*/ mem_size,
  3114. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3115. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3116. /*.no_alloc =*/ params.no_alloc,
  3117. /*.n_objects =*/ 0,
  3118. /*.objects_begin =*/ NULL,
  3119. /*.objects_end =*/ NULL,
  3120. /*.scratch =*/ { 0, 0, NULL, },
  3121. /*.scratch_save =*/ { 0, 0, NULL, },
  3122. };
  3123. GGML_ASSERT(ctx->mem_buffer != NULL);
  3124. ggml_assert_aligned(ctx->mem_buffer);
  3125. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3126. ggml_critical_section_end();
  3127. return ctx;
  3128. }
  3129. void ggml_free(struct ggml_context * ctx) {
  3130. // make this function thread safe
  3131. ggml_critical_section_start();
  3132. bool found = false;
  3133. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3134. if (&g_state.contexts[i].context == ctx) {
  3135. g_state.contexts[i].used = false;
  3136. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3137. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3138. if (ctx->mem_buffer_owned) {
  3139. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3140. }
  3141. found = true;
  3142. break;
  3143. }
  3144. }
  3145. if (!found) {
  3146. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3147. }
  3148. ggml_critical_section_end();
  3149. }
  3150. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3151. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3152. }
  3153. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3154. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3155. ctx->scratch = scratch;
  3156. return result;
  3157. }
  3158. // IMPORTANT:
  3159. // when creating "opt" tensors, always save and load the scratch buffer
  3160. // this is an error prone process, but it is necessary to support inplace
  3161. // operators when using scratch buffers
  3162. // TODO: implement a better way
  3163. void ggml_scratch_save(struct ggml_context * ctx) {
  3164. ctx->scratch_save = ctx->scratch;
  3165. ctx->scratch.data = NULL;
  3166. }
  3167. void ggml_scratch_load(struct ggml_context * ctx) {
  3168. ctx->scratch = ctx->scratch_save;
  3169. }
  3170. ////////////////////////////////////////////////////////////////////////////////
  3171. struct ggml_tensor * ggml_new_tensor_impl(
  3172. struct ggml_context * ctx,
  3173. enum ggml_type type,
  3174. int n_dims,
  3175. const int64_t* ne,
  3176. void* data) {
  3177. // always insert objects at the end of the context's memory pool
  3178. struct ggml_object * obj_cur = ctx->objects_end;
  3179. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3180. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3181. const size_t cur_end = cur_offs + cur_size;
  3182. size_t size_needed = 0;
  3183. if (data == NULL && !ctx->no_alloc) {
  3184. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3185. for (int i = 1; i < n_dims; i++) {
  3186. size_needed *= ne[i];
  3187. }
  3188. // align to GGML_MEM_ALIGN
  3189. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3190. }
  3191. char * const mem_buffer = ctx->mem_buffer;
  3192. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3193. if (ctx->scratch.data == NULL || data != NULL) {
  3194. size_needed += sizeof(struct ggml_tensor);
  3195. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3196. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3197. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3198. assert(false);
  3199. return NULL;
  3200. }
  3201. *obj_new = (struct ggml_object) {
  3202. .offs = cur_end + GGML_OBJECT_SIZE,
  3203. .size = size_needed,
  3204. .next = NULL,
  3205. };
  3206. } else {
  3207. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3208. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  3209. assert(false);
  3210. return NULL;
  3211. }
  3212. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  3213. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3214. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  3215. assert(false);
  3216. return NULL;
  3217. }
  3218. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3219. *obj_new = (struct ggml_object) {
  3220. .offs = cur_end + GGML_OBJECT_SIZE,
  3221. .size = sizeof(struct ggml_tensor),
  3222. .next = NULL,
  3223. };
  3224. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3225. ctx->scratch.offs += size_needed;
  3226. }
  3227. if (obj_cur != NULL) {
  3228. obj_cur->next = obj_new;
  3229. } else {
  3230. // this is the first object in this context
  3231. ctx->objects_begin = obj_new;
  3232. }
  3233. ctx->objects_end = obj_new;
  3234. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3235. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3236. ggml_assert_aligned(result);
  3237. *result = (struct ggml_tensor) {
  3238. /*.type =*/ type,
  3239. /*.backend =*/ GGML_BACKEND_CPU,
  3240. /*.n_dims =*/ n_dims,
  3241. /*.ne =*/ { 1, 1, 1, 1 },
  3242. /*.nb =*/ { 0, 0, 0, 0 },
  3243. /*.op =*/ GGML_OP_NONE,
  3244. /*.is_param =*/ false,
  3245. /*.grad =*/ NULL,
  3246. /*.src0 =*/ NULL,
  3247. /*.src1 =*/ NULL,
  3248. /*.opt =*/ { NULL },
  3249. /*.n_tasks =*/ 0,
  3250. /*.perf_runs =*/ 0,
  3251. /*.perf_cycles =*/ 0,
  3252. /*.perf_time_us =*/ 0,
  3253. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3254. /*.name =*/ { 0 },
  3255. /*.pad =*/ { 0 },
  3256. };
  3257. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3258. //ggml_assert_aligned(result->data);
  3259. for (int i = 0; i < n_dims; i++) {
  3260. result->ne[i] = ne[i];
  3261. }
  3262. result->nb[0] = GGML_TYPE_SIZE[type];
  3263. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3264. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3265. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3266. }
  3267. ctx->n_objects++;
  3268. return result;
  3269. }
  3270. struct ggml_tensor * ggml_new_tensor(
  3271. struct ggml_context * ctx,
  3272. enum ggml_type type,
  3273. int n_dims,
  3274. const int64_t * ne) {
  3275. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3276. }
  3277. struct ggml_tensor * ggml_new_tensor_1d(
  3278. struct ggml_context * ctx,
  3279. enum ggml_type type,
  3280. int64_t ne0) {
  3281. return ggml_new_tensor(ctx, type, 1, &ne0);
  3282. }
  3283. struct ggml_tensor * ggml_new_tensor_2d(
  3284. struct ggml_context * ctx,
  3285. enum ggml_type type,
  3286. int64_t ne0,
  3287. int64_t ne1) {
  3288. const int64_t ne[2] = { ne0, ne1 };
  3289. return ggml_new_tensor(ctx, type, 2, ne);
  3290. }
  3291. struct ggml_tensor * ggml_new_tensor_3d(
  3292. struct ggml_context * ctx,
  3293. enum ggml_type type,
  3294. int64_t ne0,
  3295. int64_t ne1,
  3296. int64_t ne2) {
  3297. const int64_t ne[3] = { ne0, ne1, ne2 };
  3298. return ggml_new_tensor(ctx, type, 3, ne);
  3299. }
  3300. struct ggml_tensor * ggml_new_tensor_4d(
  3301. struct ggml_context * ctx,
  3302. enum ggml_type type,
  3303. int64_t ne0,
  3304. int64_t ne1,
  3305. int64_t ne2,
  3306. int64_t ne3) {
  3307. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3308. return ggml_new_tensor(ctx, type, 4, ne);
  3309. }
  3310. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3311. ggml_scratch_save(ctx);
  3312. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3313. ggml_scratch_load(ctx);
  3314. ggml_set_i32(result, value);
  3315. return result;
  3316. }
  3317. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3318. ggml_scratch_save(ctx);
  3319. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3320. ggml_scratch_load(ctx);
  3321. ggml_set_f32(result, value);
  3322. return result;
  3323. }
  3324. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3325. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3326. }
  3327. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3328. memset(tensor->data, 0, ggml_nbytes(tensor));
  3329. return tensor;
  3330. }
  3331. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3332. const int n = ggml_nrows(tensor);
  3333. const int nc = tensor->ne[0];
  3334. const size_t n1 = tensor->nb[1];
  3335. char * const data = tensor->data;
  3336. switch (tensor->type) {
  3337. case GGML_TYPE_I8:
  3338. {
  3339. assert(tensor->nb[0] == sizeof(int8_t));
  3340. for (int i = 0; i < n; i++) {
  3341. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3342. }
  3343. } break;
  3344. case GGML_TYPE_I16:
  3345. {
  3346. assert(tensor->nb[0] == sizeof(int16_t));
  3347. for (int i = 0; i < n; i++) {
  3348. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3349. }
  3350. } break;
  3351. case GGML_TYPE_I32:
  3352. {
  3353. assert(tensor->nb[0] == sizeof(int32_t));
  3354. for (int i = 0; i < n; i++) {
  3355. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3356. }
  3357. } break;
  3358. case GGML_TYPE_F16:
  3359. {
  3360. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3361. for (int i = 0; i < n; i++) {
  3362. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3363. }
  3364. } break;
  3365. case GGML_TYPE_F32:
  3366. {
  3367. assert(tensor->nb[0] == sizeof(float));
  3368. for (int i = 0; i < n; i++) {
  3369. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3370. }
  3371. } break;
  3372. default:
  3373. {
  3374. GGML_ASSERT(false);
  3375. } break;
  3376. }
  3377. return tensor;
  3378. }
  3379. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3380. const int n = ggml_nrows(tensor);
  3381. const int nc = tensor->ne[0];
  3382. const size_t n1 = tensor->nb[1];
  3383. char * const data = tensor->data;
  3384. switch (tensor->type) {
  3385. case GGML_TYPE_I8:
  3386. {
  3387. assert(tensor->nb[0] == sizeof(int8_t));
  3388. for (int i = 0; i < n; i++) {
  3389. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3390. }
  3391. } break;
  3392. case GGML_TYPE_I16:
  3393. {
  3394. assert(tensor->nb[0] == sizeof(int16_t));
  3395. for (int i = 0; i < n; i++) {
  3396. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3397. }
  3398. } break;
  3399. case GGML_TYPE_I32:
  3400. {
  3401. assert(tensor->nb[0] == sizeof(int32_t));
  3402. for (int i = 0; i < n; i++) {
  3403. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3404. }
  3405. } break;
  3406. case GGML_TYPE_F16:
  3407. {
  3408. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3409. for (int i = 0; i < n; i++) {
  3410. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3411. }
  3412. } break;
  3413. case GGML_TYPE_F32:
  3414. {
  3415. assert(tensor->nb[0] == sizeof(float));
  3416. for (int i = 0; i < n; i++) {
  3417. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3418. }
  3419. } break;
  3420. default:
  3421. {
  3422. GGML_ASSERT(false);
  3423. } break;
  3424. }
  3425. return tensor;
  3426. }
  3427. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3428. switch (tensor->type) {
  3429. case GGML_TYPE_I8:
  3430. {
  3431. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3432. return ((int8_t *)(tensor->data))[i];
  3433. } break;
  3434. case GGML_TYPE_I16:
  3435. {
  3436. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3437. return ((int16_t *)(tensor->data))[i];
  3438. } break;
  3439. case GGML_TYPE_I32:
  3440. {
  3441. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3442. return ((int32_t *)(tensor->data))[i];
  3443. } break;
  3444. case GGML_TYPE_F16:
  3445. {
  3446. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3447. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3448. } break;
  3449. case GGML_TYPE_F32:
  3450. {
  3451. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3452. return ((float *)(tensor->data))[i];
  3453. } break;
  3454. default:
  3455. {
  3456. GGML_ASSERT(false);
  3457. } break;
  3458. }
  3459. return 0.0f;
  3460. }
  3461. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3462. switch (tensor->type) {
  3463. case GGML_TYPE_I8:
  3464. {
  3465. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3466. ((int8_t *)(tensor->data))[i] = value;
  3467. } break;
  3468. case GGML_TYPE_I16:
  3469. {
  3470. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3471. ((int16_t *)(tensor->data))[i] = value;
  3472. } break;
  3473. case GGML_TYPE_I32:
  3474. {
  3475. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3476. ((int32_t *)(tensor->data))[i] = value;
  3477. } break;
  3478. case GGML_TYPE_F16:
  3479. {
  3480. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3481. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3482. } break;
  3483. case GGML_TYPE_F32:
  3484. {
  3485. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3486. ((float *)(tensor->data))[i] = value;
  3487. } break;
  3488. default:
  3489. {
  3490. GGML_ASSERT(false);
  3491. } break;
  3492. }
  3493. }
  3494. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3495. switch (tensor->type) {
  3496. case GGML_TYPE_I8:
  3497. {
  3498. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3499. return ((int8_t *)(tensor->data))[i];
  3500. } break;
  3501. case GGML_TYPE_I16:
  3502. {
  3503. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3504. return ((int16_t *)(tensor->data))[i];
  3505. } break;
  3506. case GGML_TYPE_I32:
  3507. {
  3508. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3509. return ((int32_t *)(tensor->data))[i];
  3510. } break;
  3511. case GGML_TYPE_F16:
  3512. {
  3513. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3514. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3515. } break;
  3516. case GGML_TYPE_F32:
  3517. {
  3518. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3519. return ((float *)(tensor->data))[i];
  3520. } break;
  3521. default:
  3522. {
  3523. GGML_ASSERT(false);
  3524. } break;
  3525. }
  3526. return 0.0f;
  3527. }
  3528. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3529. switch (tensor->type) {
  3530. case GGML_TYPE_I8:
  3531. {
  3532. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3533. ((int8_t *)(tensor->data))[i] = value;
  3534. } break;
  3535. case GGML_TYPE_I16:
  3536. {
  3537. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3538. ((int16_t *)(tensor->data))[i] = value;
  3539. } break;
  3540. case GGML_TYPE_I32:
  3541. {
  3542. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3543. ((int32_t *)(tensor->data))[i] = value;
  3544. } break;
  3545. case GGML_TYPE_F16:
  3546. {
  3547. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3548. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3549. } break;
  3550. case GGML_TYPE_F32:
  3551. {
  3552. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3553. ((float *)(tensor->data))[i] = value;
  3554. } break;
  3555. default:
  3556. {
  3557. GGML_ASSERT(false);
  3558. } break;
  3559. }
  3560. }
  3561. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3562. return tensor->data;
  3563. }
  3564. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3565. assert(tensor->type == GGML_TYPE_F32);
  3566. return (float *)(tensor->data);
  3567. }
  3568. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3569. return tensor->name;
  3570. }
  3571. void ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3572. strncpy(tensor->name, name, sizeof(tensor->name));
  3573. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3574. }
  3575. struct ggml_tensor * ggml_view_tensor(
  3576. struct ggml_context * ctx,
  3577. const struct ggml_tensor * src) {
  3578. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3579. result->nb[0] = src->nb[0];
  3580. result->nb[1] = src->nb[1];
  3581. result->nb[2] = src->nb[2];
  3582. result->nb[3] = src->nb[3];
  3583. return result;
  3584. }
  3585. ////////////////////////////////////////////////////////////////////////////////
  3586. // ggml_dup
  3587. struct ggml_tensor * ggml_dup_impl(
  3588. struct ggml_context * ctx,
  3589. struct ggml_tensor * a,
  3590. bool inplace) {
  3591. bool is_node = false;
  3592. if (!inplace && (a->grad)) {
  3593. is_node = true;
  3594. }
  3595. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3596. result->op = GGML_OP_DUP;
  3597. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3598. result->src0 = a;
  3599. result->src1 = NULL;
  3600. return result;
  3601. }
  3602. struct ggml_tensor * ggml_dup(
  3603. struct ggml_context * ctx,
  3604. struct ggml_tensor * a) {
  3605. return ggml_dup_impl(ctx, a, false);
  3606. }
  3607. struct ggml_tensor * ggml_dup_inplace(
  3608. struct ggml_context * ctx,
  3609. struct ggml_tensor * a) {
  3610. return ggml_dup_impl(ctx, a, true);
  3611. }
  3612. // ggml_add
  3613. struct ggml_tensor * ggml_add_impl(
  3614. struct ggml_context * ctx,
  3615. struct ggml_tensor * a,
  3616. struct ggml_tensor * b,
  3617. bool inplace) {
  3618. GGML_ASSERT(ggml_are_same_shape(a, b));
  3619. bool is_node = false;
  3620. if (!inplace && (a->grad || b->grad)) {
  3621. is_node = true;
  3622. }
  3623. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3624. result->op = GGML_OP_ADD;
  3625. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3626. result->src0 = a;
  3627. result->src1 = b;
  3628. return result;
  3629. }
  3630. struct ggml_tensor * ggml_add(
  3631. struct ggml_context * ctx,
  3632. struct ggml_tensor * a,
  3633. struct ggml_tensor * b) {
  3634. return ggml_add_impl(ctx, a, b, false);
  3635. }
  3636. struct ggml_tensor * ggml_add_inplace(
  3637. struct ggml_context * ctx,
  3638. struct ggml_tensor * a,
  3639. struct ggml_tensor * b) {
  3640. return ggml_add_impl(ctx, a, b, true);
  3641. }
  3642. // ggml_add1
  3643. struct ggml_tensor * ggml_add1_impl(
  3644. struct ggml_context * ctx,
  3645. struct ggml_tensor * a,
  3646. struct ggml_tensor * b,
  3647. bool inplace) {
  3648. GGML_ASSERT(ggml_is_scalar(b));
  3649. GGML_ASSERT(ggml_is_padded_1d(a));
  3650. bool is_node = false;
  3651. if (!inplace && (a->grad || b->grad)) {
  3652. is_node = true;
  3653. }
  3654. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3655. result->op = GGML_OP_ADD1;
  3656. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3657. result->src0 = a;
  3658. result->src1 = b;
  3659. return result;
  3660. }
  3661. struct ggml_tensor * ggml_add1(
  3662. struct ggml_context * ctx,
  3663. struct ggml_tensor * a,
  3664. struct ggml_tensor * b) {
  3665. return ggml_add1_impl(ctx, a, b, false);
  3666. }
  3667. struct ggml_tensor * ggml_add1_inplace(
  3668. struct ggml_context * ctx,
  3669. struct ggml_tensor * a,
  3670. struct ggml_tensor * b) {
  3671. return ggml_add1_impl(ctx, a, b, true);
  3672. }
  3673. // ggml_acc
  3674. struct ggml_tensor * ggml_acc_impl(
  3675. struct ggml_context * ctx,
  3676. struct ggml_tensor * a,
  3677. struct ggml_tensor * b,
  3678. size_t nb1,
  3679. size_t nb2,
  3680. size_t nb3,
  3681. size_t offset,
  3682. bool inplace) {
  3683. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3684. GGML_ASSERT(ggml_is_contiguous(a));
  3685. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3686. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3687. bool is_node = false;
  3688. if (!inplace && (a->grad || b->grad)) {
  3689. is_node = true;
  3690. }
  3691. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3692. ggml_scratch_save(ctx);
  3693. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  3694. ((int32_t *) c->data)[0] = nb1;
  3695. ((int32_t *) c->data)[1] = nb2;
  3696. ((int32_t *) c->data)[2] = nb3;
  3697. ((int32_t *) c->data)[3] = offset;
  3698. ((int32_t *) c->data)[4] = inplace ? 1 : 0;
  3699. ggml_scratch_load(ctx);
  3700. result->op = GGML_OP_ACC;
  3701. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3702. result->src0 = a;
  3703. result->src1 = b;
  3704. result->opt[0] = c;
  3705. return result;
  3706. }
  3707. struct ggml_tensor * ggml_acc(
  3708. struct ggml_context * ctx,
  3709. struct ggml_tensor * a,
  3710. struct ggml_tensor * b,
  3711. size_t nb1,
  3712. size_t nb2,
  3713. size_t nb3,
  3714. size_t offset) {
  3715. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3716. }
  3717. struct ggml_tensor * ggml_acc_inplace(
  3718. struct ggml_context * ctx,
  3719. struct ggml_tensor * a,
  3720. struct ggml_tensor * b,
  3721. size_t nb1,
  3722. size_t nb2,
  3723. size_t nb3,
  3724. size_t offset) {
  3725. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3726. }
  3727. // ggml_sub
  3728. struct ggml_tensor * ggml_sub_impl(
  3729. struct ggml_context * ctx,
  3730. struct ggml_tensor * a,
  3731. struct ggml_tensor * b,
  3732. bool inplace) {
  3733. GGML_ASSERT(ggml_are_same_shape(a, b));
  3734. bool is_node = false;
  3735. if (!inplace && (a->grad || b->grad)) {
  3736. is_node = true;
  3737. }
  3738. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3739. result->op = GGML_OP_SUB;
  3740. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3741. result->src0 = a;
  3742. result->src1 = b;
  3743. return result;
  3744. }
  3745. struct ggml_tensor * ggml_sub(
  3746. struct ggml_context * ctx,
  3747. struct ggml_tensor * a,
  3748. struct ggml_tensor * b) {
  3749. return ggml_sub_impl(ctx, a, b, false);
  3750. }
  3751. struct ggml_tensor * ggml_sub_inplace(
  3752. struct ggml_context * ctx,
  3753. struct ggml_tensor * a,
  3754. struct ggml_tensor * b) {
  3755. return ggml_sub_impl(ctx, a, b, true);
  3756. }
  3757. // ggml_mul
  3758. struct ggml_tensor * ggml_mul_impl(
  3759. struct ggml_context * ctx,
  3760. struct ggml_tensor * a,
  3761. struct ggml_tensor * b,
  3762. bool inplace) {
  3763. GGML_ASSERT(ggml_are_same_shape(a, b));
  3764. bool is_node = false;
  3765. if (!inplace && (a->grad || b->grad)) {
  3766. is_node = true;
  3767. }
  3768. if (inplace) {
  3769. GGML_ASSERT(is_node == false);
  3770. }
  3771. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3772. result->op = GGML_OP_MUL;
  3773. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3774. result->src0 = a;
  3775. result->src1 = b;
  3776. return result;
  3777. }
  3778. struct ggml_tensor * ggml_mul(
  3779. struct ggml_context * ctx,
  3780. struct ggml_tensor * a,
  3781. struct ggml_tensor * b) {
  3782. return ggml_mul_impl(ctx, a, b, false);
  3783. }
  3784. struct ggml_tensor * ggml_mul_inplace(
  3785. struct ggml_context * ctx,
  3786. struct ggml_tensor * a,
  3787. struct ggml_tensor * b) {
  3788. return ggml_mul_impl(ctx, a, b, true);
  3789. }
  3790. // ggml_div
  3791. struct ggml_tensor * ggml_div_impl(
  3792. struct ggml_context * ctx,
  3793. struct ggml_tensor * a,
  3794. struct ggml_tensor * b,
  3795. bool inplace) {
  3796. GGML_ASSERT(ggml_are_same_shape(a, b));
  3797. bool is_node = false;
  3798. if (!inplace && (a->grad || b->grad)) {
  3799. is_node = true;
  3800. }
  3801. if (inplace) {
  3802. GGML_ASSERT(is_node == false);
  3803. }
  3804. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3805. result->op = GGML_OP_DIV;
  3806. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3807. result->src0 = a;
  3808. result->src1 = b;
  3809. return result;
  3810. }
  3811. struct ggml_tensor * ggml_div(
  3812. struct ggml_context * ctx,
  3813. struct ggml_tensor * a,
  3814. struct ggml_tensor * b) {
  3815. return ggml_div_impl(ctx, a, b, false);
  3816. }
  3817. struct ggml_tensor * ggml_div_inplace(
  3818. struct ggml_context * ctx,
  3819. struct ggml_tensor * a,
  3820. struct ggml_tensor * b) {
  3821. return ggml_div_impl(ctx, a, b, true);
  3822. }
  3823. // ggml_sqr
  3824. struct ggml_tensor * ggml_sqr_impl(
  3825. struct ggml_context * ctx,
  3826. struct ggml_tensor * a,
  3827. bool inplace) {
  3828. bool is_node = false;
  3829. if (!inplace && (a->grad)) {
  3830. is_node = true;
  3831. }
  3832. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3833. result->op = GGML_OP_SQR;
  3834. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3835. result->src0 = a;
  3836. result->src1 = NULL;
  3837. return result;
  3838. }
  3839. struct ggml_tensor * ggml_sqr(
  3840. struct ggml_context * ctx,
  3841. struct ggml_tensor * a) {
  3842. return ggml_sqr_impl(ctx, a, false);
  3843. }
  3844. struct ggml_tensor * ggml_sqr_inplace(
  3845. struct ggml_context * ctx,
  3846. struct ggml_tensor * a) {
  3847. return ggml_sqr_impl(ctx, a, true);
  3848. }
  3849. // ggml_sqrt
  3850. struct ggml_tensor * ggml_sqrt_impl(
  3851. struct ggml_context * ctx,
  3852. struct ggml_tensor * a,
  3853. bool inplace) {
  3854. bool is_node = false;
  3855. if (!inplace && (a->grad)) {
  3856. is_node = true;
  3857. }
  3858. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3859. result->op = GGML_OP_SQRT;
  3860. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3861. result->src0 = a;
  3862. result->src1 = NULL;
  3863. return result;
  3864. }
  3865. struct ggml_tensor * ggml_sqrt(
  3866. struct ggml_context * ctx,
  3867. struct ggml_tensor * a) {
  3868. return ggml_sqrt_impl(ctx, a, false);
  3869. }
  3870. struct ggml_tensor * ggml_sqrt_inplace(
  3871. struct ggml_context * ctx,
  3872. struct ggml_tensor * a) {
  3873. return ggml_sqrt_impl(ctx, a, true);
  3874. }
  3875. // ggml_log
  3876. struct ggml_tensor * ggml_log_impl(
  3877. struct ggml_context * ctx,
  3878. struct ggml_tensor * a,
  3879. bool inplace) {
  3880. bool is_node = false;
  3881. if (!inplace && (a->grad)) {
  3882. is_node = true;
  3883. }
  3884. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3885. result->op = GGML_OP_LOG;
  3886. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3887. result->src0 = a;
  3888. result->src1 = NULL;
  3889. return result;
  3890. }
  3891. struct ggml_tensor * ggml_log(
  3892. struct ggml_context * ctx,
  3893. struct ggml_tensor * a) {
  3894. return ggml_log_impl(ctx, a, false);
  3895. }
  3896. struct ggml_tensor * ggml_log_inplace(
  3897. struct ggml_context * ctx,
  3898. struct ggml_tensor * a) {
  3899. return ggml_log_impl(ctx, a, true);
  3900. }
  3901. // ggml_sum
  3902. struct ggml_tensor * ggml_sum(
  3903. struct ggml_context * ctx,
  3904. struct ggml_tensor * a) {
  3905. bool is_node = false;
  3906. if (a->grad) {
  3907. is_node = true;
  3908. }
  3909. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3910. result->op = GGML_OP_SUM;
  3911. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3912. result->src0 = a;
  3913. result->src1 = NULL;
  3914. return result;
  3915. }
  3916. // ggml_sum_rows
  3917. struct ggml_tensor * ggml_sum_rows(
  3918. struct ggml_context * ctx,
  3919. struct ggml_tensor * a) {
  3920. bool is_node = false;
  3921. if (a->grad) {
  3922. is_node = true;
  3923. }
  3924. int64_t ne[4] = {1,1,1,1};
  3925. for (int i=1; i<a->n_dims; ++i) {
  3926. ne[i] = a->ne[i];
  3927. }
  3928. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  3929. result->op = GGML_OP_SUM_ROWS;
  3930. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3931. result->src0 = a;
  3932. result->src1 = NULL;
  3933. return result;
  3934. }
  3935. // ggml_mean
  3936. struct ggml_tensor * ggml_mean(
  3937. struct ggml_context * ctx,
  3938. struct ggml_tensor * a) {
  3939. bool is_node = false;
  3940. if (a->grad) {
  3941. GGML_ASSERT(false); // TODO: implement
  3942. is_node = true;
  3943. }
  3944. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3945. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3946. result->op = GGML_OP_MEAN;
  3947. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3948. result->src0 = a;
  3949. result->src1 = NULL;
  3950. return result;
  3951. }
  3952. // ggml_repeat
  3953. struct ggml_tensor * ggml_repeat(
  3954. struct ggml_context * ctx,
  3955. struct ggml_tensor * a,
  3956. struct ggml_tensor * b) {
  3957. GGML_ASSERT(ggml_can_repeat(a, b));
  3958. bool is_node = false;
  3959. if (a->grad) {
  3960. is_node = true;
  3961. }
  3962. if (ggml_are_same_shape(a, b) && !is_node) {
  3963. return a;
  3964. }
  3965. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3966. result->op = GGML_OP_REPEAT;
  3967. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3968. result->src0 = a;
  3969. result->src1 = b;
  3970. return result;
  3971. }
  3972. // ggml_abs
  3973. struct ggml_tensor * ggml_abs_impl(
  3974. struct ggml_context * ctx,
  3975. struct ggml_tensor * a,
  3976. bool inplace) {
  3977. bool is_node = false;
  3978. if (!inplace && (a->grad)) {
  3979. is_node = true;
  3980. }
  3981. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3982. result->op = GGML_OP_ABS;
  3983. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3984. result->src0 = a;
  3985. result->src1 = NULL;
  3986. return result;
  3987. }
  3988. struct ggml_tensor * ggml_abs(
  3989. struct ggml_context * ctx,
  3990. struct ggml_tensor * a) {
  3991. return ggml_abs_impl(ctx, a, false);
  3992. }
  3993. struct ggml_tensor * ggml_abs_inplace(
  3994. struct ggml_context * ctx,
  3995. struct ggml_tensor * a) {
  3996. return ggml_abs_impl(ctx, a, true);
  3997. }
  3998. // ggml_sgn
  3999. struct ggml_tensor * ggml_sgn_impl(
  4000. struct ggml_context * ctx,
  4001. struct ggml_tensor * a,
  4002. bool inplace) {
  4003. bool is_node = false;
  4004. if (!inplace && (a->grad)) {
  4005. is_node = true;
  4006. }
  4007. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4008. result->op = GGML_OP_SGN;
  4009. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4010. result->src0 = a;
  4011. result->src1 = NULL;
  4012. return result;
  4013. }
  4014. struct ggml_tensor * ggml_sgn(
  4015. struct ggml_context * ctx,
  4016. struct ggml_tensor * a) {
  4017. return ggml_sgn_impl(ctx, a, false);
  4018. }
  4019. struct ggml_tensor * ggml_sgn_inplace(
  4020. struct ggml_context * ctx,
  4021. struct ggml_tensor * a) {
  4022. return ggml_sgn_impl(ctx, a, true);
  4023. }
  4024. // ggml_neg
  4025. struct ggml_tensor * ggml_neg_impl(
  4026. struct ggml_context * ctx,
  4027. struct ggml_tensor * a,
  4028. bool inplace) {
  4029. bool is_node = false;
  4030. if (!inplace && (a->grad)) {
  4031. is_node = true;
  4032. }
  4033. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4034. result->op = GGML_OP_NEG;
  4035. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4036. result->src0 = a;
  4037. result->src1 = NULL;
  4038. return result;
  4039. }
  4040. struct ggml_tensor * ggml_neg(
  4041. struct ggml_context * ctx,
  4042. struct ggml_tensor * a) {
  4043. return ggml_neg_impl(ctx, a, false);
  4044. }
  4045. struct ggml_tensor * ggml_neg_inplace(
  4046. struct ggml_context * ctx,
  4047. struct ggml_tensor * a) {
  4048. return ggml_neg_impl(ctx, a, true);
  4049. }
  4050. // ggml_step
  4051. struct ggml_tensor * ggml_step_impl(
  4052. struct ggml_context * ctx,
  4053. struct ggml_tensor * a,
  4054. bool inplace) {
  4055. bool is_node = false;
  4056. if (!inplace && (a->grad)) {
  4057. is_node = true;
  4058. }
  4059. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4060. result->op = GGML_OP_STEP;
  4061. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4062. result->src0 = a;
  4063. result->src1 = NULL;
  4064. return result;
  4065. }
  4066. struct ggml_tensor * ggml_step(
  4067. struct ggml_context * ctx,
  4068. struct ggml_tensor * a) {
  4069. return ggml_step_impl(ctx, a, false);
  4070. }
  4071. struct ggml_tensor * ggml_step_inplace(
  4072. struct ggml_context * ctx,
  4073. struct ggml_tensor * a) {
  4074. return ggml_step_impl(ctx, a, true);
  4075. }
  4076. // ggml_relu
  4077. struct ggml_tensor * ggml_relu_impl(
  4078. struct ggml_context * ctx,
  4079. struct ggml_tensor * a,
  4080. bool inplace) {
  4081. bool is_node = false;
  4082. if (!inplace && (a->grad)) {
  4083. is_node = true;
  4084. }
  4085. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4086. result->op = GGML_OP_RELU;
  4087. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4088. result->src0 = a;
  4089. result->src1 = NULL;
  4090. return result;
  4091. }
  4092. struct ggml_tensor * ggml_relu(
  4093. struct ggml_context * ctx,
  4094. struct ggml_tensor * a) {
  4095. return ggml_relu_impl(ctx, a, false);
  4096. }
  4097. struct ggml_tensor * ggml_relu_inplace(
  4098. struct ggml_context * ctx,
  4099. struct ggml_tensor * a) {
  4100. return ggml_relu_impl(ctx, a, true);
  4101. }
  4102. // ggml_gelu
  4103. struct ggml_tensor * ggml_gelu_impl(
  4104. struct ggml_context * ctx,
  4105. struct ggml_tensor * a,
  4106. bool inplace) {
  4107. bool is_node = false;
  4108. if (!inplace && (a->grad)) {
  4109. is_node = true;
  4110. }
  4111. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4112. result->op = GGML_OP_GELU;
  4113. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4114. result->src0 = a;
  4115. result->src1 = NULL;
  4116. return result;
  4117. }
  4118. struct ggml_tensor * ggml_gelu(
  4119. struct ggml_context * ctx,
  4120. struct ggml_tensor * a) {
  4121. return ggml_gelu_impl(ctx, a, false);
  4122. }
  4123. struct ggml_tensor * ggml_gelu_inplace(
  4124. struct ggml_context * ctx,
  4125. struct ggml_tensor * a) {
  4126. return ggml_gelu_impl(ctx, a, true);
  4127. }
  4128. // ggml_silu
  4129. struct ggml_tensor * ggml_silu_impl(
  4130. struct ggml_context * ctx,
  4131. struct ggml_tensor * a,
  4132. bool inplace) {
  4133. bool is_node = false;
  4134. if (!inplace && (a->grad)) {
  4135. is_node = true;
  4136. }
  4137. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4138. result->op = GGML_OP_SILU;
  4139. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4140. result->src0 = a;
  4141. result->src1 = NULL;
  4142. return result;
  4143. }
  4144. struct ggml_tensor * ggml_silu(
  4145. struct ggml_context * ctx,
  4146. struct ggml_tensor * a) {
  4147. return ggml_silu_impl(ctx, a, false);
  4148. }
  4149. struct ggml_tensor * ggml_silu_inplace(
  4150. struct ggml_context * ctx,
  4151. struct ggml_tensor * a) {
  4152. return ggml_silu_impl(ctx, a, true);
  4153. }
  4154. // ggml_silu_back
  4155. struct ggml_tensor * ggml_silu_back(
  4156. struct ggml_context * ctx,
  4157. struct ggml_tensor * a,
  4158. struct ggml_tensor * b) {
  4159. bool is_node = false;
  4160. if (a->grad || b->grad) {
  4161. // TODO: implement backward
  4162. is_node = true;
  4163. }
  4164. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4165. result->op = GGML_OP_SILU_BACK;
  4166. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4167. result->src0 = a;
  4168. result->src1 = b;
  4169. return result;
  4170. }
  4171. // ggml_norm
  4172. struct ggml_tensor * ggml_norm_impl(
  4173. struct ggml_context * ctx,
  4174. struct ggml_tensor * a,
  4175. bool inplace) {
  4176. bool is_node = false;
  4177. if (!inplace && (a->grad)) {
  4178. GGML_ASSERT(false); // TODO: implement backward
  4179. is_node = true;
  4180. }
  4181. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4182. result->op = GGML_OP_NORM;
  4183. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4184. result->src0 = a;
  4185. result->src1 = NULL; // TODO: maybe store epsilon here?
  4186. return result;
  4187. }
  4188. struct ggml_tensor * ggml_norm(
  4189. struct ggml_context * ctx,
  4190. struct ggml_tensor * a) {
  4191. return ggml_norm_impl(ctx, a, false);
  4192. }
  4193. struct ggml_tensor * ggml_norm_inplace(
  4194. struct ggml_context * ctx,
  4195. struct ggml_tensor * a) {
  4196. return ggml_norm_impl(ctx, a, true);
  4197. }
  4198. struct ggml_tensor * ggml_rms_norm_impl(
  4199. struct ggml_context * ctx,
  4200. struct ggml_tensor * a,
  4201. bool inplace) {
  4202. bool is_node = false;
  4203. if (!inplace && (a->grad)) {
  4204. is_node = true;
  4205. }
  4206. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4207. result->op = GGML_OP_RMS_NORM;
  4208. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4209. result->src0 = a;
  4210. result->src1 = NULL; // TODO: maybe store epsilon here?
  4211. return result;
  4212. }
  4213. struct ggml_tensor * ggml_rms_norm(
  4214. struct ggml_context * ctx,
  4215. struct ggml_tensor * a) {
  4216. return ggml_rms_norm_impl(ctx, a, false);
  4217. }
  4218. struct ggml_tensor * ggml_rms_norm_inplace(
  4219. struct ggml_context * ctx,
  4220. struct ggml_tensor * a) {
  4221. return ggml_rms_norm_impl(ctx, a, true);
  4222. }
  4223. struct ggml_tensor * ggml_rms_norm_back(
  4224. struct ggml_context * ctx,
  4225. struct ggml_tensor * a,
  4226. struct ggml_tensor * b) {
  4227. bool is_node = false;
  4228. if (a->grad) {
  4229. // TODO: implement backward
  4230. is_node = true;
  4231. }
  4232. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4233. result->op = GGML_OP_RMS_NORM_BACK;
  4234. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4235. result->src0 = a;
  4236. result->src1 = b;
  4237. return result;
  4238. }
  4239. // ggml_mul_mat
  4240. struct ggml_tensor * ggml_mul_mat(
  4241. struct ggml_context * ctx,
  4242. struct ggml_tensor * a,
  4243. struct ggml_tensor * b) {
  4244. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4245. GGML_ASSERT(!ggml_is_transposed(a));
  4246. bool is_node = false;
  4247. if (a->grad || b->grad) {
  4248. is_node = true;
  4249. }
  4250. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4251. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4252. result->op = GGML_OP_MUL_MAT;
  4253. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4254. result->src0 = a;
  4255. result->src1 = b;
  4256. return result;
  4257. }
  4258. // ggml_scale
  4259. struct ggml_tensor * ggml_scale_impl(
  4260. struct ggml_context * ctx,
  4261. struct ggml_tensor * a,
  4262. struct ggml_tensor * b,
  4263. bool inplace) {
  4264. GGML_ASSERT(ggml_is_scalar(b));
  4265. GGML_ASSERT(ggml_is_padded_1d(a));
  4266. bool is_node = false;
  4267. if (!inplace && (a->grad || b->grad)) {
  4268. is_node = true;
  4269. }
  4270. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4271. result->op = GGML_OP_SCALE;
  4272. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4273. result->src0 = a;
  4274. result->src1 = b;
  4275. return result;
  4276. }
  4277. struct ggml_tensor * ggml_scale(
  4278. struct ggml_context * ctx,
  4279. struct ggml_tensor * a,
  4280. struct ggml_tensor * b) {
  4281. return ggml_scale_impl(ctx, a, b, false);
  4282. }
  4283. struct ggml_tensor * ggml_scale_inplace(
  4284. struct ggml_context * ctx,
  4285. struct ggml_tensor * a,
  4286. struct ggml_tensor * b) {
  4287. return ggml_scale_impl(ctx, a, b, true);
  4288. }
  4289. // ggml_set
  4290. struct ggml_tensor * ggml_set_impl(
  4291. struct ggml_context * ctx,
  4292. struct ggml_tensor * a,
  4293. struct ggml_tensor * b,
  4294. size_t nb1,
  4295. size_t nb2,
  4296. size_t nb3,
  4297. size_t offset,
  4298. bool inplace) {
  4299. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4300. bool is_node = false;
  4301. if (!inplace && (a->grad || b->grad)) {
  4302. is_node = true;
  4303. }
  4304. // make a view of the destination
  4305. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4306. ggml_scratch_save(ctx);
  4307. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4308. (( int32_t * ) c->data)[0] = nb1;
  4309. (( int32_t * ) c->data)[1] = nb2;
  4310. (( int32_t * ) c->data)[2] = nb3;
  4311. (( int32_t * ) c->data)[3] = offset;
  4312. (( int32_t * ) c->data)[4] = inplace ? 1 : 0;
  4313. ggml_scratch_load(ctx);
  4314. result->op = GGML_OP_SET;
  4315. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4316. result->src0 = a;
  4317. result->src1 = b;
  4318. result->opt[0] = c;
  4319. return result;
  4320. }
  4321. struct ggml_tensor * ggml_set(
  4322. struct ggml_context * ctx,
  4323. struct ggml_tensor * a,
  4324. struct ggml_tensor * b,
  4325. size_t nb1,
  4326. size_t nb2,
  4327. size_t nb3,
  4328. size_t offset) {
  4329. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4330. }
  4331. struct ggml_tensor * ggml_set_inplace(
  4332. struct ggml_context * ctx,
  4333. struct ggml_tensor * a,
  4334. struct ggml_tensor * b,
  4335. size_t nb1,
  4336. size_t nb2,
  4337. size_t nb3,
  4338. size_t offset) {
  4339. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4340. }
  4341. struct ggml_tensor * ggml_set_1d(
  4342. struct ggml_context * ctx,
  4343. struct ggml_tensor * a,
  4344. struct ggml_tensor * b,
  4345. size_t offset) {
  4346. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4347. }
  4348. struct ggml_tensor * ggml_set_1d_inplace(
  4349. struct ggml_context * ctx,
  4350. struct ggml_tensor * a,
  4351. struct ggml_tensor * b,
  4352. size_t offset) {
  4353. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4354. }
  4355. struct ggml_tensor * ggml_set_2d(
  4356. struct ggml_context * ctx,
  4357. struct ggml_tensor * a,
  4358. struct ggml_tensor * b,
  4359. size_t nb1,
  4360. size_t offset) {
  4361. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4362. }
  4363. struct ggml_tensor * ggml_set_2d_inplace(
  4364. struct ggml_context * ctx,
  4365. struct ggml_tensor * a,
  4366. struct ggml_tensor * b,
  4367. size_t nb1,
  4368. size_t offset) {
  4369. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4370. }
  4371. // ggml_cpy
  4372. struct ggml_tensor * ggml_cpy_impl(
  4373. struct ggml_context * ctx,
  4374. struct ggml_tensor * a,
  4375. struct ggml_tensor * b,
  4376. bool inplace) {
  4377. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4378. bool is_node = false;
  4379. if (!inplace && (a->grad || b->grad)) {
  4380. is_node = true;
  4381. }
  4382. // make a view of the destination
  4383. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4384. result->op = GGML_OP_CPY;
  4385. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4386. result->src0 = a;
  4387. result->src1 = b;
  4388. return result;
  4389. }
  4390. struct ggml_tensor * ggml_cpy(
  4391. struct ggml_context * ctx,
  4392. struct ggml_tensor * a,
  4393. struct ggml_tensor * b) {
  4394. return ggml_cpy_impl(ctx, a, b, false);
  4395. }
  4396. struct ggml_tensor * ggml_cpy_inplace(
  4397. struct ggml_context * ctx,
  4398. struct ggml_tensor * a,
  4399. struct ggml_tensor * b) {
  4400. return ggml_cpy_impl(ctx, a, b, true);
  4401. }
  4402. // ggml_cont
  4403. struct ggml_tensor * ggml_cont_impl(
  4404. struct ggml_context * ctx,
  4405. struct ggml_tensor * a,
  4406. bool inplace) {
  4407. bool is_node = false;
  4408. if (!inplace && a->grad) {
  4409. is_node = true;
  4410. }
  4411. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4412. result->op = GGML_OP_CONT;
  4413. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4414. result->src0 = a;
  4415. result->src1 = NULL;
  4416. return result;
  4417. }
  4418. struct ggml_tensor * ggml_cont(
  4419. struct ggml_context * ctx,
  4420. struct ggml_tensor * a) {
  4421. return ggml_cont_impl(ctx, a, false);
  4422. }
  4423. struct ggml_tensor * ggml_cont_inplace(
  4424. struct ggml_context * ctx,
  4425. struct ggml_tensor * a) {
  4426. return ggml_cont_impl(ctx, a, true);
  4427. }
  4428. // ggml_reshape
  4429. struct ggml_tensor * ggml_reshape(
  4430. struct ggml_context * ctx,
  4431. struct ggml_tensor * a,
  4432. struct ggml_tensor * b) {
  4433. GGML_ASSERT(ggml_is_contiguous(a));
  4434. GGML_ASSERT(ggml_is_contiguous(b));
  4435. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4436. bool is_node = false;
  4437. if (a->grad) {
  4438. is_node = true;
  4439. }
  4440. if (b->grad) {
  4441. // gradient propagation is not supported
  4442. //GGML_ASSERT(false);
  4443. }
  4444. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4445. result->op = GGML_OP_RESHAPE;
  4446. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4447. result->src0 = a;
  4448. result->src1 = NULL;
  4449. return result;
  4450. }
  4451. struct ggml_tensor * ggml_reshape_1d(
  4452. struct ggml_context * ctx,
  4453. struct ggml_tensor * a,
  4454. int64_t ne0) {
  4455. GGML_ASSERT(ggml_is_contiguous(a));
  4456. GGML_ASSERT(ggml_nelements(a) == ne0);
  4457. bool is_node = false;
  4458. if (a->grad) {
  4459. is_node = true;
  4460. }
  4461. const int64_t ne[1] = { ne0 };
  4462. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  4463. result->op = GGML_OP_RESHAPE;
  4464. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4465. result->src0 = a;
  4466. result->src1 = NULL;
  4467. return result;
  4468. }
  4469. struct ggml_tensor * ggml_reshape_2d(
  4470. struct ggml_context * ctx,
  4471. struct ggml_tensor * a,
  4472. int64_t ne0,
  4473. int64_t ne1) {
  4474. GGML_ASSERT(ggml_is_contiguous(a));
  4475. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4476. bool is_node = false;
  4477. if (a->grad) {
  4478. is_node = true;
  4479. }
  4480. const int64_t ne[2] = { ne0, ne1 };
  4481. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4482. result->op = GGML_OP_RESHAPE;
  4483. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4484. result->src0 = a;
  4485. result->src1 = NULL;
  4486. return result;
  4487. }
  4488. struct ggml_tensor * ggml_reshape_3d(
  4489. struct ggml_context * ctx,
  4490. struct ggml_tensor * a,
  4491. int64_t ne0,
  4492. int64_t ne1,
  4493. int64_t ne2) {
  4494. GGML_ASSERT(ggml_is_contiguous(a));
  4495. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4496. bool is_node = false;
  4497. if (a->grad) {
  4498. is_node = true;
  4499. }
  4500. const int64_t ne[3] = { ne0, ne1, ne2 };
  4501. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4502. result->op = GGML_OP_RESHAPE;
  4503. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4504. result->src0 = a;
  4505. result->src1 = NULL;
  4506. return result;
  4507. }
  4508. struct ggml_tensor * ggml_reshape_4d(
  4509. struct ggml_context * ctx,
  4510. struct ggml_tensor * a,
  4511. int64_t ne0,
  4512. int64_t ne1,
  4513. int64_t ne2,
  4514. int64_t ne3) {
  4515. GGML_ASSERT(ggml_is_contiguous(a));
  4516. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4517. bool is_node = false;
  4518. if (a->grad) {
  4519. is_node = true;
  4520. }
  4521. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4522. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  4523. result->op = GGML_OP_RESHAPE;
  4524. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4525. result->src0 = a;
  4526. result->src1 = NULL;
  4527. return result;
  4528. }
  4529. // ggml_view_1d
  4530. struct ggml_tensor * ggml_view_1d(
  4531. struct ggml_context * ctx,
  4532. struct ggml_tensor * a,
  4533. int64_t ne0,
  4534. size_t offset) {
  4535. bool is_node = false;
  4536. if (a->grad) {
  4537. is_node = true;
  4538. }
  4539. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4540. result->op = GGML_OP_VIEW;
  4541. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4542. result->src0 = a;
  4543. result->src1 = NULL;
  4544. if (is_node) {
  4545. memcpy(result->padding, &offset, sizeof(offset));
  4546. }
  4547. return result;
  4548. }
  4549. // ggml_view_2d
  4550. struct ggml_tensor * ggml_view_2d(
  4551. struct ggml_context * ctx,
  4552. struct ggml_tensor * a,
  4553. int64_t ne0,
  4554. int64_t ne1,
  4555. size_t nb1,
  4556. size_t offset) {
  4557. bool is_node = false;
  4558. if (a->grad) {
  4559. is_node = true;
  4560. }
  4561. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4562. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4563. result->nb[1] = nb1;
  4564. result->nb[2] = result->nb[1]*ne1;
  4565. result->nb[3] = result->nb[2];
  4566. result->op = GGML_OP_VIEW;
  4567. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4568. result->src0 = a;
  4569. result->src1 = NULL;
  4570. if (is_node) {
  4571. memcpy(result->padding, &offset, sizeof(offset));
  4572. }
  4573. return result;
  4574. }
  4575. // ggml_view_3d
  4576. struct ggml_tensor * ggml_view_3d(
  4577. struct ggml_context * ctx,
  4578. struct ggml_tensor * a,
  4579. int64_t ne0,
  4580. int64_t ne1,
  4581. int64_t ne2,
  4582. size_t nb1,
  4583. size_t nb2,
  4584. size_t offset) {
  4585. bool is_node = false;
  4586. if (a->grad) {
  4587. is_node = true;
  4588. }
  4589. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4590. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4591. result->nb[1] = nb1;
  4592. result->nb[2] = nb2;
  4593. result->nb[3] = result->nb[2]*ne2;
  4594. result->op = GGML_OP_VIEW;
  4595. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4596. result->src0 = a;
  4597. result->src1 = NULL;
  4598. if (is_node) {
  4599. memcpy(result->padding, &offset, sizeof(offset));
  4600. }
  4601. return result;
  4602. }
  4603. // ggml_view_4d
  4604. struct ggml_tensor * ggml_view_4d(
  4605. struct ggml_context * ctx,
  4606. struct ggml_tensor * a,
  4607. int64_t ne0,
  4608. int64_t ne1,
  4609. int64_t ne2,
  4610. int64_t ne3,
  4611. size_t nb1,
  4612. size_t nb2,
  4613. size_t nb3,
  4614. size_t offset) {
  4615. bool is_node = false;
  4616. if (a->grad) {
  4617. is_node = true;
  4618. }
  4619. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  4620. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
  4621. result->nb[1] = nb1;
  4622. result->nb[2] = nb2;
  4623. result->nb[3] = nb3;
  4624. result->op = GGML_OP_VIEW;
  4625. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4626. result->src0 = a;
  4627. result->src1 = NULL;
  4628. if (is_node) {
  4629. memcpy(result->padding, &offset, sizeof(offset));
  4630. }
  4631. return result;
  4632. }
  4633. // ggml_permute
  4634. struct ggml_tensor * ggml_permute(
  4635. struct ggml_context * ctx,
  4636. struct ggml_tensor * a,
  4637. int axis0,
  4638. int axis1,
  4639. int axis2,
  4640. int axis3) {
  4641. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4642. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4643. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4644. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4645. GGML_ASSERT(axis0 != axis1);
  4646. GGML_ASSERT(axis0 != axis2);
  4647. GGML_ASSERT(axis0 != axis3);
  4648. GGML_ASSERT(axis1 != axis2);
  4649. GGML_ASSERT(axis1 != axis3);
  4650. GGML_ASSERT(axis2 != axis3);
  4651. bool is_node = false;
  4652. if (a->grad) {
  4653. is_node = true;
  4654. }
  4655. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4656. int ne[GGML_MAX_DIMS];
  4657. int nb[GGML_MAX_DIMS];
  4658. ne[axis0] = a->ne[0];
  4659. ne[axis1] = a->ne[1];
  4660. ne[axis2] = a->ne[2];
  4661. ne[axis3] = a->ne[3];
  4662. nb[axis0] = a->nb[0];
  4663. nb[axis1] = a->nb[1];
  4664. nb[axis2] = a->nb[2];
  4665. nb[axis3] = a->nb[3];
  4666. result->ne[0] = ne[0];
  4667. result->ne[1] = ne[1];
  4668. result->ne[2] = ne[2];
  4669. result->ne[3] = ne[3];
  4670. result->nb[0] = nb[0];
  4671. result->nb[1] = nb[1];
  4672. result->nb[2] = nb[2];
  4673. result->nb[3] = nb[3];
  4674. result->op = GGML_OP_PERMUTE;
  4675. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4676. result->src0 = a;
  4677. result->src1 = NULL;
  4678. if (is_node) {
  4679. result->padding[0] = axis0;
  4680. result->padding[1] = axis1;
  4681. result->padding[2] = axis2;
  4682. result->padding[3] = axis3;
  4683. }
  4684. return result;
  4685. }
  4686. // ggml_transpose
  4687. struct ggml_tensor * ggml_transpose(
  4688. struct ggml_context * ctx,
  4689. struct ggml_tensor * a) {
  4690. bool is_node = false;
  4691. if (a->grad) {
  4692. is_node = true;
  4693. }
  4694. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4695. result->ne[0] = a->ne[1];
  4696. result->ne[1] = a->ne[0];
  4697. result->nb[0] = a->nb[1];
  4698. result->nb[1] = a->nb[0];
  4699. result->op = GGML_OP_TRANSPOSE;
  4700. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4701. result->src0 = a;
  4702. result->src1 = NULL;
  4703. return result;
  4704. }
  4705. // ggml_get_rows
  4706. struct ggml_tensor * ggml_get_rows(
  4707. struct ggml_context * ctx,
  4708. struct ggml_tensor * a,
  4709. struct ggml_tensor * b) {
  4710. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4711. bool is_node = false;
  4712. if (a->grad || b->grad) {
  4713. is_node = true;
  4714. }
  4715. // TODO: implement non F32 return
  4716. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4717. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4718. result->op = GGML_OP_GET_ROWS;
  4719. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4720. result->src0 = a;
  4721. result->src1 = b;
  4722. return result;
  4723. }
  4724. // ggml_get_rows_back
  4725. struct ggml_tensor * ggml_get_rows_back(
  4726. struct ggml_context * ctx,
  4727. struct ggml_tensor * a,
  4728. struct ggml_tensor * b,
  4729. struct ggml_tensor * c) {
  4730. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4731. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4732. bool is_node = false;
  4733. if (a->grad || b->grad) {
  4734. is_node = true;
  4735. }
  4736. // TODO: implement non F32 return
  4737. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4738. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4739. result->op = GGML_OP_GET_ROWS_BACK;
  4740. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4741. result->src0 = a;
  4742. result->src1 = b;
  4743. result->opt[0] = c;
  4744. return result;
  4745. }
  4746. // ggml_diag
  4747. struct ggml_tensor * ggml_diag(
  4748. struct ggml_context * ctx,
  4749. struct ggml_tensor * a) {
  4750. GGML_ASSERT(a->ne[1] == 1);
  4751. bool is_node = false;
  4752. if (a->grad) {
  4753. is_node = true;
  4754. }
  4755. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4756. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  4757. result->op = GGML_OP_DIAG;
  4758. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4759. result->src0 = a;
  4760. result->src1 = NULL;
  4761. return result;
  4762. }
  4763. // ggml_diag_mask_inf
  4764. struct ggml_tensor * ggml_diag_mask_inf_impl(
  4765. struct ggml_context * ctx,
  4766. struct ggml_tensor * a,
  4767. int n_past,
  4768. bool inplace) {
  4769. bool is_node = false;
  4770. if (a->grad) {
  4771. is_node = true;
  4772. }
  4773. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4774. ggml_scratch_save(ctx);
  4775. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4776. ((int32_t *) b->data)[0] = n_past;
  4777. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  4778. ggml_scratch_load(ctx);
  4779. result->op = GGML_OP_DIAG_MASK_INF;
  4780. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4781. result->src0 = a;
  4782. result->src1 = b;
  4783. return result;
  4784. }
  4785. struct ggml_tensor * ggml_diag_mask_inf(
  4786. struct ggml_context * ctx,
  4787. struct ggml_tensor * a,
  4788. int n_past) {
  4789. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4790. }
  4791. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4792. struct ggml_context * ctx,
  4793. struct ggml_tensor * a,
  4794. int n_past) {
  4795. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4796. }
  4797. // ggml_diag_mask_zero
  4798. struct ggml_tensor * ggml_diag_mask_zero_impl(
  4799. struct ggml_context * ctx,
  4800. struct ggml_tensor * a,
  4801. int n_past,
  4802. bool inplace) {
  4803. bool is_node = false;
  4804. if (a->grad) {
  4805. is_node = true;
  4806. }
  4807. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4808. ggml_scratch_save(ctx);
  4809. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4810. ggml_set_name(b, "n_past, inplace");
  4811. ((int32_t *) b->data)[0] = n_past;
  4812. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  4813. ggml_scratch_load(ctx);
  4814. result->op = GGML_OP_DIAG_MASK_ZERO;
  4815. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4816. result->src0 = a;
  4817. result->src1 = b;
  4818. return result;
  4819. }
  4820. struct ggml_tensor * ggml_diag_mask_zero(
  4821. struct ggml_context * ctx,
  4822. struct ggml_tensor * a,
  4823. int n_past) {
  4824. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4825. }
  4826. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4827. struct ggml_context * ctx,
  4828. struct ggml_tensor * a,
  4829. int n_past) {
  4830. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4831. }
  4832. // ggml_soft_max
  4833. struct ggml_tensor * ggml_soft_max_impl(
  4834. struct ggml_context * ctx,
  4835. struct ggml_tensor * a,
  4836. bool inplace) {
  4837. bool is_node = false;
  4838. if (a->grad) {
  4839. is_node = true;
  4840. }
  4841. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4842. result->op = GGML_OP_SOFT_MAX;
  4843. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4844. result->src0 = a;
  4845. result->src1 = NULL;
  4846. return result;
  4847. }
  4848. struct ggml_tensor * ggml_soft_max(
  4849. struct ggml_context * ctx,
  4850. struct ggml_tensor * a) {
  4851. return ggml_soft_max_impl(ctx, a, false);
  4852. }
  4853. struct ggml_tensor * ggml_soft_max_inplace(
  4854. struct ggml_context * ctx,
  4855. struct ggml_tensor * a) {
  4856. return ggml_soft_max_impl(ctx, a, true);
  4857. }
  4858. // ggml_rope
  4859. struct ggml_tensor * ggml_rope_impl(
  4860. struct ggml_context * ctx,
  4861. struct ggml_tensor * a,
  4862. int n_past,
  4863. int n_dims,
  4864. int mode,
  4865. bool inplace) {
  4866. GGML_ASSERT(n_past >= 0);
  4867. bool is_node = false;
  4868. if (!inplace && a->grad) {
  4869. is_node = true;
  4870. }
  4871. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4872. ggml_scratch_save(ctx);
  4873. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4874. ((int32_t *) b->data)[0] = n_past;
  4875. ((int32_t *) b->data)[1] = n_dims;
  4876. ((int32_t *) b->data)[2] = mode;
  4877. ggml_scratch_load(ctx);
  4878. result->op = GGML_OP_ROPE;
  4879. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4880. result->src0 = a;
  4881. result->src1 = b;
  4882. return result;
  4883. }
  4884. struct ggml_tensor * ggml_rope(
  4885. struct ggml_context * ctx,
  4886. struct ggml_tensor * a,
  4887. int n_past,
  4888. int n_dims,
  4889. int mode) {
  4890. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, false);
  4891. }
  4892. struct ggml_tensor * ggml_rope_inplace(
  4893. struct ggml_context * ctx,
  4894. struct ggml_tensor * a,
  4895. int n_past,
  4896. int n_dims,
  4897. int mode) {
  4898. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, true);
  4899. }
  4900. // ggml_rope_back
  4901. struct ggml_tensor * ggml_rope_back(
  4902. struct ggml_context * ctx,
  4903. struct ggml_tensor * a,
  4904. int n_past,
  4905. int n_dims,
  4906. int mode) {
  4907. GGML_ASSERT(n_past >= 0);
  4908. bool is_node = false;
  4909. if (a->grad) {
  4910. GGML_ASSERT(false); // TODO: implement backward
  4911. is_node = true;
  4912. }
  4913. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4914. ggml_scratch_save(ctx);
  4915. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4916. ggml_set_name(b, "n_past, n_dims, mode");
  4917. ((int32_t *) b->data)[0] = n_past;
  4918. ((int32_t *) b->data)[1] = n_dims;
  4919. ((int32_t *) b->data)[2] = mode;
  4920. ggml_scratch_load(ctx);
  4921. result->op = GGML_OP_ROPE_BACK;
  4922. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4923. result->src0 = a;
  4924. result->src1 = b;
  4925. return result;
  4926. }
  4927. // ggml_alibi
  4928. struct ggml_tensor * ggml_alibi(
  4929. struct ggml_context * ctx,
  4930. struct ggml_tensor * a,
  4931. int n_past,
  4932. int n_head) {
  4933. GGML_ASSERT(n_past >= 0);
  4934. bool is_node = false;
  4935. if (a->grad) {
  4936. GGML_ASSERT(false); // TODO: implement backward
  4937. is_node = true;
  4938. }
  4939. // TODO: when implement backward, fix this:
  4940. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4941. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4942. ggml_scratch_save(ctx);
  4943. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4944. ((int32_t *) b->data)[0] = n_past;
  4945. ((int32_t *) b->data)[1] = n_head;
  4946. ggml_scratch_load(ctx);
  4947. result->op = GGML_OP_ALIBI;
  4948. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4949. result->src0 = a;
  4950. result->src1 = b;
  4951. return result;
  4952. }
  4953. // ggml_conv_1d_1s
  4954. struct ggml_tensor * ggml_conv_1d_1s(
  4955. struct ggml_context * ctx,
  4956. struct ggml_tensor * a,
  4957. struct ggml_tensor * b) {
  4958. GGML_ASSERT(ggml_is_matrix(b));
  4959. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4960. GGML_ASSERT(a->ne[3] == 1);
  4961. bool is_node = false;
  4962. if (a->grad || b->grad) {
  4963. GGML_ASSERT(false); // TODO: implement backward
  4964. is_node = true;
  4965. }
  4966. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  4967. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4968. result->op = GGML_OP_CONV_1D_1S;
  4969. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4970. result->src0 = a;
  4971. result->src1 = b;
  4972. return result;
  4973. }
  4974. // ggml_conv_1d_2s
  4975. struct ggml_tensor * ggml_conv_1d_2s(
  4976. struct ggml_context * ctx,
  4977. struct ggml_tensor * a,
  4978. struct ggml_tensor * b) {
  4979. GGML_ASSERT(ggml_is_matrix(b));
  4980. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4981. GGML_ASSERT(a->ne[3] == 1);
  4982. bool is_node = false;
  4983. if (a->grad || b->grad) {
  4984. GGML_ASSERT(false); // TODO: implement backward
  4985. is_node = true;
  4986. }
  4987. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  4988. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4989. result->op = GGML_OP_CONV_1D_2S;
  4990. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4991. result->src0 = a;
  4992. result->src1 = b;
  4993. return result;
  4994. }
  4995. // ggml_flash_attn
  4996. struct ggml_tensor * ggml_flash_attn(
  4997. struct ggml_context * ctx,
  4998. struct ggml_tensor * q,
  4999. struct ggml_tensor * k,
  5000. struct ggml_tensor * v,
  5001. bool masked) {
  5002. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5003. // TODO: check if vT can be multiplied by (k*qT)
  5004. bool is_node = false;
  5005. if (q->grad || k->grad || v->grad) {
  5006. GGML_ASSERT(false); // TODO: implement backward
  5007. is_node = true;
  5008. }
  5009. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5010. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  5011. result->op = GGML_OP_FLASH_ATTN;
  5012. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5013. result->src0 = q;
  5014. result->src1 = k;
  5015. result->opt[0] = v;
  5016. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  5017. return result;
  5018. }
  5019. // ggml_flash_ff
  5020. struct ggml_tensor * ggml_flash_ff(
  5021. struct ggml_context * ctx,
  5022. struct ggml_tensor * a,
  5023. struct ggml_tensor * b0,
  5024. struct ggml_tensor * b1,
  5025. struct ggml_tensor * c0,
  5026. struct ggml_tensor * c1) {
  5027. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5028. // TODO: more checks
  5029. bool is_node = false;
  5030. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5031. GGML_ASSERT(false); // TODO: implement backward
  5032. is_node = true;
  5033. }
  5034. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5035. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  5036. result->op = GGML_OP_FLASH_FF;
  5037. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5038. result->src0 = a;
  5039. result->src1 = b0;
  5040. result->opt[0] = b1;
  5041. result->opt[1] = c0;
  5042. result->opt[2] = c1;
  5043. return result;
  5044. }
  5045. // ggml_map_unary
  5046. struct ggml_tensor * ggml_map_unary_impl_f32(
  5047. struct ggml_context * ctx,
  5048. struct ggml_tensor * a,
  5049. const ggml_unary_op_f32_t fun,
  5050. bool inplace) {
  5051. bool is_node = false;
  5052. if (!inplace && a->grad) {
  5053. is_node = true;
  5054. }
  5055. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5056. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5057. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5058. result->op = GGML_OP_MAP_UNARY;
  5059. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5060. result->src0 = a;
  5061. result->opt[0] = addr_tensor;
  5062. return result;
  5063. }
  5064. struct ggml_tensor * ggml_map_unary_f32(
  5065. struct ggml_context * ctx,
  5066. struct ggml_tensor * a,
  5067. const ggml_unary_op_f32_t fun) {
  5068. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5069. }
  5070. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5071. struct ggml_context * ctx,
  5072. struct ggml_tensor * a,
  5073. const ggml_unary_op_f32_t fun) {
  5074. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5075. }
  5076. // ggml_map_binary
  5077. struct ggml_tensor * ggml_map_binary_impl_f32(
  5078. struct ggml_context * ctx,
  5079. struct ggml_tensor * a,
  5080. struct ggml_tensor * b,
  5081. const ggml_binary_op_f32_t fun,
  5082. bool inplace) {
  5083. GGML_ASSERT(ggml_are_same_shape(a, b));
  5084. bool is_node = false;
  5085. if (!inplace && (a->grad || b->grad)) {
  5086. is_node = true;
  5087. }
  5088. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5089. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5090. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5091. result->op = GGML_OP_MAP_BINARY;
  5092. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5093. result->src0 = a;
  5094. result->src1 = b;
  5095. result->opt[0] = addr_tensor;
  5096. return result;
  5097. }
  5098. struct ggml_tensor * ggml_map_binary_f32(
  5099. struct ggml_context * ctx,
  5100. struct ggml_tensor * a,
  5101. struct ggml_tensor * b,
  5102. const ggml_binary_op_f32_t fun) {
  5103. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5104. }
  5105. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5106. struct ggml_context * ctx,
  5107. struct ggml_tensor * a,
  5108. struct ggml_tensor * b,
  5109. const ggml_binary_op_f32_t fun) {
  5110. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5111. }
  5112. ////////////////////////////////////////////////////////////////////////////////
  5113. void ggml_set_param(
  5114. struct ggml_context * ctx,
  5115. struct ggml_tensor * tensor) {
  5116. tensor->is_param = true;
  5117. GGML_ASSERT(tensor->grad == NULL);
  5118. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5119. }
  5120. // ggml_compute_forward_dup
  5121. static void ggml_compute_forward_dup_same_cont(
  5122. const struct ggml_compute_params * params,
  5123. const struct ggml_tensor * src0,
  5124. struct ggml_tensor * dst) {
  5125. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5126. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5127. GGML_ASSERT(src0->type == dst->type);
  5128. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5129. return;
  5130. }
  5131. const size_t nb00 = src0->nb[0];
  5132. const size_t nb0 = dst->nb[0];
  5133. const int ith = params->ith; // thread index
  5134. const int nth = params->nth; // number of threads
  5135. // parallelize by elements
  5136. const int ne = ggml_nelements(dst);
  5137. const int dr = (ne + nth - 1) / nth;
  5138. const int ie0 = dr * ith;
  5139. const int ie1 = MIN(ie0 + dr, ne);
  5140. if (ie0 < ie1) {
  5141. memcpy(
  5142. ((char *) dst->data + ie0*nb0),
  5143. ((char *) src0->data + ie0*nb00),
  5144. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5145. }
  5146. }
  5147. static void ggml_compute_forward_dup_f16(
  5148. const struct ggml_compute_params * params,
  5149. const struct ggml_tensor * src0,
  5150. struct ggml_tensor * dst) {
  5151. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5152. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5153. return;
  5154. }
  5155. const int64_t ne00 = src0->ne[0];
  5156. const int64_t ne01 = src0->ne[1];
  5157. const int64_t ne02 = src0->ne[2];
  5158. const int64_t ne03 = src0->ne[3];
  5159. const int64_t ne0 = dst->ne[0];
  5160. const int64_t ne1 = dst->ne[1];
  5161. const int64_t ne2 = dst->ne[2];
  5162. const int64_t ne3 = dst->ne[3];
  5163. const size_t nb00 = src0->nb[0];
  5164. const size_t nb01 = src0->nb[1];
  5165. const size_t nb02 = src0->nb[2];
  5166. const size_t nb03 = src0->nb[3];
  5167. const size_t nb0 = dst->nb[0];
  5168. const size_t nb1 = dst->nb[1];
  5169. const size_t nb2 = dst->nb[2];
  5170. const size_t nb3 = dst->nb[3];
  5171. const int ith = params->ith; // thread index
  5172. const int nth = params->nth; // number of threads
  5173. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5174. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5175. return;
  5176. }
  5177. // parallelize by rows
  5178. const int nr = ne01;
  5179. // number of rows per thread
  5180. const int dr = (nr + nth - 1) / nth;
  5181. // row range for this thread
  5182. const int ir0 = dr * ith;
  5183. const int ir1 = MIN(ir0 + dr, nr);
  5184. if (src0->type == dst->type &&
  5185. ne00 == ne0 &&
  5186. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5187. // copy by rows
  5188. const size_t rs = ne00*nb00;
  5189. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5190. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5191. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5192. memcpy(
  5193. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5194. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5195. rs);
  5196. }
  5197. }
  5198. }
  5199. return;
  5200. }
  5201. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5202. if (ggml_is_contiguous(dst)) {
  5203. if (nb00 == sizeof(ggml_fp16_t)) {
  5204. if (dst->type == GGML_TYPE_F16) {
  5205. size_t id = 0;
  5206. const size_t rs = ne00 * nb00;
  5207. char * dst_ptr = (char *) dst->data;
  5208. for (int i03 = 0; i03 < ne03; i03++) {
  5209. for (int i02 = 0; i02 < ne02; i02++) {
  5210. id += rs * ir0;
  5211. for (int i01 = ir0; i01 < ir1; i01++) {
  5212. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5213. memcpy(dst_ptr + id, src0_ptr, rs);
  5214. id += rs;
  5215. }
  5216. id += rs * (ne01 - ir1);
  5217. }
  5218. }
  5219. } else if (dst->type == GGML_TYPE_F32) {
  5220. size_t id = 0;
  5221. float * dst_ptr = (float *) dst->data;
  5222. for (int i03 = 0; i03 < ne03; i03++) {
  5223. for (int i02 = 0; i02 < ne02; i02++) {
  5224. id += ne00 * ir0;
  5225. for (int i01 = ir0; i01 < ir1; i01++) {
  5226. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5227. for (int i00 = 0; i00 < ne00; i00++) {
  5228. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5229. id++;
  5230. }
  5231. }
  5232. id += ne00 * (ne01 - ir1);
  5233. }
  5234. }
  5235. } else if (ggml_is_quantized(dst->type)) {
  5236. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5237. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5238. size_t id = 0;
  5239. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5240. char * dst_ptr = (char *) dst->data;
  5241. for (int i03 = 0; i03 < ne03; i03++) {
  5242. for (int i02 = 0; i02 < ne02; i02++) {
  5243. id += rs * ir0;
  5244. for (int i01 = ir0; i01 < ir1; i01++) {
  5245. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5246. for (int i00 = 0; i00 < ne00; i00++) {
  5247. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5248. }
  5249. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5250. id += rs;
  5251. }
  5252. id += rs * (ne01 - ir1);
  5253. }
  5254. }
  5255. } else {
  5256. GGML_ASSERT(false); // TODO: implement
  5257. }
  5258. } else {
  5259. //printf("%s: this is not optimal - fix me\n", __func__);
  5260. if (dst->type == GGML_TYPE_F32) {
  5261. size_t id = 0;
  5262. float * dst_ptr = (float *) dst->data;
  5263. for (int i03 = 0; i03 < ne03; i03++) {
  5264. for (int i02 = 0; i02 < ne02; i02++) {
  5265. id += ne00 * ir0;
  5266. for (int i01 = ir0; i01 < ir1; i01++) {
  5267. for (int i00 = 0; i00 < ne00; i00++) {
  5268. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5269. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5270. id++;
  5271. }
  5272. }
  5273. id += ne00 * (ne01 - ir1);
  5274. }
  5275. }
  5276. } else if (dst->type == GGML_TYPE_F16) {
  5277. size_t id = 0;
  5278. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5279. for (int i03 = 0; i03 < ne03; i03++) {
  5280. for (int i02 = 0; i02 < ne02; i02++) {
  5281. id += ne00 * ir0;
  5282. for (int i01 = ir0; i01 < ir1; i01++) {
  5283. for (int i00 = 0; i00 < ne00; i00++) {
  5284. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5285. dst_ptr[id] = *src0_ptr;
  5286. id++;
  5287. }
  5288. }
  5289. id += ne00 * (ne01 - ir1);
  5290. }
  5291. }
  5292. } else {
  5293. GGML_ASSERT(false); // TODO: implement
  5294. }
  5295. }
  5296. return;
  5297. }
  5298. // dst counters
  5299. int64_t i10 = 0;
  5300. int64_t i11 = 0;
  5301. int64_t i12 = 0;
  5302. int64_t i13 = 0;
  5303. if (dst->type == GGML_TYPE_F16) {
  5304. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5305. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5306. i10 += ne00 * ir0;
  5307. while (i10 >= ne0) {
  5308. i10 -= ne0;
  5309. if (++i11 == ne1) {
  5310. i11 = 0;
  5311. if (++i12 == ne2) {
  5312. i12 = 0;
  5313. if (++i13 == ne3) {
  5314. i13 = 0;
  5315. }
  5316. }
  5317. }
  5318. }
  5319. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5320. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5321. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5322. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5323. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5324. if (++i10 == ne00) {
  5325. i10 = 0;
  5326. if (++i11 == ne01) {
  5327. i11 = 0;
  5328. if (++i12 == ne02) {
  5329. i12 = 0;
  5330. if (++i13 == ne03) {
  5331. i13 = 0;
  5332. }
  5333. }
  5334. }
  5335. }
  5336. }
  5337. }
  5338. i10 += ne00 * (ne01 - ir1);
  5339. while (i10 >= ne0) {
  5340. i10 -= ne0;
  5341. if (++i11 == ne1) {
  5342. i11 = 0;
  5343. if (++i12 == ne2) {
  5344. i12 = 0;
  5345. if (++i13 == ne3) {
  5346. i13 = 0;
  5347. }
  5348. }
  5349. }
  5350. }
  5351. }
  5352. }
  5353. } else if (dst->type == GGML_TYPE_F32) {
  5354. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5355. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5356. i10 += ne00 * ir0;
  5357. while (i10 >= ne0) {
  5358. i10 -= ne0;
  5359. if (++i11 == ne1) {
  5360. i11 = 0;
  5361. if (++i12 == ne2) {
  5362. i12 = 0;
  5363. if (++i13 == ne3) {
  5364. i13 = 0;
  5365. }
  5366. }
  5367. }
  5368. }
  5369. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5370. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5371. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5372. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5373. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5374. if (++i10 == ne0) {
  5375. i10 = 0;
  5376. if (++i11 == ne1) {
  5377. i11 = 0;
  5378. if (++i12 == ne2) {
  5379. i12 = 0;
  5380. if (++i13 == ne3) {
  5381. i13 = 0;
  5382. }
  5383. }
  5384. }
  5385. }
  5386. }
  5387. }
  5388. i10 += ne00 * (ne01 - ir1);
  5389. while (i10 >= ne0) {
  5390. i10 -= ne0;
  5391. if (++i11 == ne1) {
  5392. i11 = 0;
  5393. if (++i12 == ne2) {
  5394. i12 = 0;
  5395. if (++i13 == ne3) {
  5396. i13 = 0;
  5397. }
  5398. }
  5399. }
  5400. }
  5401. }
  5402. }
  5403. } else {
  5404. GGML_ASSERT(false); // TODO: implement
  5405. }
  5406. }
  5407. static void ggml_compute_forward_dup_f32(
  5408. const struct ggml_compute_params * params,
  5409. const struct ggml_tensor * src0,
  5410. struct ggml_tensor * dst) {
  5411. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5412. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5413. return;
  5414. }
  5415. const int64_t ne00 = src0->ne[0];
  5416. const int64_t ne01 = src0->ne[1];
  5417. const int64_t ne02 = src0->ne[2];
  5418. const int64_t ne03 = src0->ne[3];
  5419. const int64_t ne0 = dst->ne[0];
  5420. const int64_t ne1 = dst->ne[1];
  5421. const int64_t ne2 = dst->ne[2];
  5422. const int64_t ne3 = dst->ne[3];
  5423. const size_t nb00 = src0->nb[0];
  5424. const size_t nb01 = src0->nb[1];
  5425. const size_t nb02 = src0->nb[2];
  5426. const size_t nb03 = src0->nb[3];
  5427. const size_t nb0 = dst->nb[0];
  5428. const size_t nb1 = dst->nb[1];
  5429. const size_t nb2 = dst->nb[2];
  5430. const size_t nb3 = dst->nb[3];
  5431. const int ith = params->ith; // thread index
  5432. const int nth = params->nth; // number of threads
  5433. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5434. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5435. return;
  5436. }
  5437. // parallelize by rows
  5438. const int nr = ne01;
  5439. // number of rows per thread
  5440. const int dr = (nr + nth - 1) / nth;
  5441. // row range for this thread
  5442. const int ir0 = dr * ith;
  5443. const int ir1 = MIN(ir0 + dr, nr);
  5444. if (src0->type == dst->type &&
  5445. ne00 == ne0 &&
  5446. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5447. // copy by rows
  5448. const size_t rs = ne00*nb00;
  5449. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5450. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5451. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5452. memcpy(
  5453. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5454. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5455. rs);
  5456. }
  5457. }
  5458. }
  5459. return;
  5460. }
  5461. if (ggml_is_contiguous(dst)) {
  5462. // TODO: simplify
  5463. if (nb00 == sizeof(float)) {
  5464. if (dst->type == GGML_TYPE_F32) {
  5465. size_t id = 0;
  5466. const size_t rs = ne00 * nb00;
  5467. char * dst_ptr = (char *) dst->data;
  5468. for (int i03 = 0; i03 < ne03; i03++) {
  5469. for (int i02 = 0; i02 < ne02; i02++) {
  5470. id += rs * ir0;
  5471. for (int i01 = ir0; i01 < ir1; i01++) {
  5472. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5473. memcpy(dst_ptr + id, src0_ptr, rs);
  5474. id += rs;
  5475. }
  5476. id += rs * (ne01 - ir1);
  5477. }
  5478. }
  5479. } else if (dst->type == GGML_TYPE_F16) {
  5480. size_t id = 0;
  5481. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5482. for (int i03 = 0; i03 < ne03; i03++) {
  5483. for (int i02 = 0; i02 < ne02; i02++) {
  5484. id += ne00 * ir0;
  5485. for (int i01 = ir0; i01 < ir1; i01++) {
  5486. for (int i00 = 0; i00 < ne00; i00++) {
  5487. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5488. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5489. id++;
  5490. }
  5491. }
  5492. id += ne00 * (ne01 - ir1);
  5493. }
  5494. }
  5495. } else if (ggml_is_quantized(dst->type)) {
  5496. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5497. size_t id = 0;
  5498. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5499. char * dst_ptr = (char *) dst->data;
  5500. for (int i03 = 0; i03 < ne03; i03++) {
  5501. for (int i02 = 0; i02 < ne02; i02++) {
  5502. id += rs * ir0;
  5503. for (int i01 = ir0; i01 < ir1; i01++) {
  5504. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5505. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5506. id += rs;
  5507. }
  5508. id += rs * (ne01 - ir1);
  5509. }
  5510. }
  5511. } else {
  5512. GGML_ASSERT(false); // TODO: implement
  5513. }
  5514. } else {
  5515. //printf("%s: this is not optimal - fix me\n", __func__);
  5516. if (dst->type == GGML_TYPE_F32) {
  5517. size_t id = 0;
  5518. float * dst_ptr = (float *) dst->data;
  5519. for (int i03 = 0; i03 < ne03; i03++) {
  5520. for (int i02 = 0; i02 < ne02; i02++) {
  5521. id += ne00 * ir0;
  5522. for (int i01 = ir0; i01 < ir1; i01++) {
  5523. for (int i00 = 0; i00 < ne00; i00++) {
  5524. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5525. dst_ptr[id] = *src0_ptr;
  5526. id++;
  5527. }
  5528. }
  5529. id += ne00 * (ne01 - ir1);
  5530. }
  5531. }
  5532. } else if (dst->type == GGML_TYPE_F16) {
  5533. size_t id = 0;
  5534. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5535. for (int i03 = 0; i03 < ne03; i03++) {
  5536. for (int i02 = 0; i02 < ne02; i02++) {
  5537. id += ne00 * ir0;
  5538. for (int i01 = ir0; i01 < ir1; i01++) {
  5539. for (int i00 = 0; i00 < ne00; i00++) {
  5540. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5541. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5542. id++;
  5543. }
  5544. }
  5545. id += ne00 * (ne01 - ir1);
  5546. }
  5547. }
  5548. } else {
  5549. GGML_ASSERT(false); // TODO: implement
  5550. }
  5551. }
  5552. return;
  5553. }
  5554. // dst counters
  5555. int64_t i10 = 0;
  5556. int64_t i11 = 0;
  5557. int64_t i12 = 0;
  5558. int64_t i13 = 0;
  5559. if (dst->type == GGML_TYPE_F32) {
  5560. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5561. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5562. i10 += ne00 * ir0;
  5563. while (i10 >= ne0) {
  5564. i10 -= ne0;
  5565. if (++i11 == ne1) {
  5566. i11 = 0;
  5567. if (++i12 == ne2) {
  5568. i12 = 0;
  5569. if (++i13 == ne3) {
  5570. i13 = 0;
  5571. }
  5572. }
  5573. }
  5574. }
  5575. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5576. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5577. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5578. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5579. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5580. if (++i10 == ne0) {
  5581. i10 = 0;
  5582. if (++i11 == ne1) {
  5583. i11 = 0;
  5584. if (++i12 == ne2) {
  5585. i12 = 0;
  5586. if (++i13 == ne3) {
  5587. i13 = 0;
  5588. }
  5589. }
  5590. }
  5591. }
  5592. }
  5593. }
  5594. i10 += ne00 * (ne01 - ir1);
  5595. while (i10 >= ne0) {
  5596. i10 -= ne0;
  5597. if (++i11 == ne1) {
  5598. i11 = 0;
  5599. if (++i12 == ne2) {
  5600. i12 = 0;
  5601. if (++i13 == ne3) {
  5602. i13 = 0;
  5603. }
  5604. }
  5605. }
  5606. }
  5607. }
  5608. }
  5609. } else if (dst->type == GGML_TYPE_F16) {
  5610. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5611. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5612. i10 += ne00 * ir0;
  5613. while (i10 >= ne0) {
  5614. i10 -= ne0;
  5615. if (++i11 == ne1) {
  5616. i11 = 0;
  5617. if (++i12 == ne2) {
  5618. i12 = 0;
  5619. if (++i13 == ne3) {
  5620. i13 = 0;
  5621. }
  5622. }
  5623. }
  5624. }
  5625. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5626. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5627. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5628. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5629. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5630. if (++i10 == ne0) {
  5631. i10 = 0;
  5632. if (++i11 == ne1) {
  5633. i11 = 0;
  5634. if (++i12 == ne2) {
  5635. i12 = 0;
  5636. if (++i13 == ne3) {
  5637. i13 = 0;
  5638. }
  5639. }
  5640. }
  5641. }
  5642. }
  5643. }
  5644. i10 += ne00 * (ne01 - ir1);
  5645. while (i10 >= ne0) {
  5646. i10 -= ne0;
  5647. if (++i11 == ne1) {
  5648. i11 = 0;
  5649. if (++i12 == ne2) {
  5650. i12 = 0;
  5651. if (++i13 == ne3) {
  5652. i13 = 0;
  5653. }
  5654. }
  5655. }
  5656. }
  5657. }
  5658. }
  5659. } else {
  5660. GGML_ASSERT(false); // TODO: implement
  5661. }
  5662. }
  5663. static void ggml_compute_forward_dup(
  5664. const struct ggml_compute_params * params,
  5665. const struct ggml_tensor * src0,
  5666. struct ggml_tensor * dst) {
  5667. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5668. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5669. return;
  5670. }
  5671. switch (src0->type) {
  5672. case GGML_TYPE_F16:
  5673. {
  5674. ggml_compute_forward_dup_f16(params, src0, dst);
  5675. } break;
  5676. case GGML_TYPE_F32:
  5677. {
  5678. ggml_compute_forward_dup_f32(params, src0, dst);
  5679. } break;
  5680. default:
  5681. {
  5682. GGML_ASSERT(false);
  5683. } break;
  5684. }
  5685. }
  5686. // ggml_compute_forward_add
  5687. static void ggml_compute_forward_add_f32(
  5688. const struct ggml_compute_params * params,
  5689. const struct ggml_tensor * src0,
  5690. const struct ggml_tensor * src1,
  5691. struct ggml_tensor * dst) {
  5692. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5693. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5694. return;
  5695. }
  5696. const int ith = params->ith;
  5697. const int nth = params->nth;
  5698. const int nr = ggml_nrows(src0);
  5699. const int64_t ne0 = src0->ne[0];
  5700. const int64_t ne1 = src0->ne[1];
  5701. const int64_t ne2 = src0->ne[2];
  5702. const size_t nb00 = src0->nb[0];
  5703. const size_t nb01 = src0->nb[1];
  5704. const size_t nb02 = src0->nb[2];
  5705. const size_t nb03 = src0->nb[3];
  5706. const size_t nb10 = src1->nb[0];
  5707. const size_t nb11 = src1->nb[1];
  5708. const size_t nb12 = src1->nb[2];
  5709. const size_t nb13 = src1->nb[3];
  5710. const size_t nb0 = dst->nb[0];
  5711. const size_t nb1 = dst->nb[1];
  5712. const size_t nb2 = dst->nb[2];
  5713. const size_t nb3 = dst->nb[3];
  5714. GGML_ASSERT( nb0 == sizeof(float));
  5715. GGML_ASSERT(nb00 == sizeof(float));
  5716. // rows per thread
  5717. const int dr = (nr + nth - 1)/nth;
  5718. // row range for this thread
  5719. const int ir0 = dr*ith;
  5720. const int ir1 = MIN(ir0 + dr, nr);
  5721. if (nb10 == sizeof(float)) {
  5722. for (int ir = ir0; ir < ir1; ++ir) {
  5723. // src0, src1 and dst are same shape => same indices
  5724. const int i3 = ir/(ne2*ne1);
  5725. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5726. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5727. #ifdef GGML_USE_ACCELERATE
  5728. vDSP_vadd(
  5729. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  5730. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  5731. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  5732. ne0);
  5733. #else
  5734. ggml_vec_add_f32(ne0,
  5735. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  5736. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  5737. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  5738. #endif
  5739. // }
  5740. // }
  5741. }
  5742. } else {
  5743. // src1 is not contiguous
  5744. for (int ir = ir0; ir < ir1; ++ir) {
  5745. // src0, src1 and dst are same shape => same indices
  5746. const int i3 = ir/(ne2*ne1);
  5747. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5748. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5749. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  5750. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5751. for (int i0 = 0; i0 < ne0; i0++) {
  5752. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  5753. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5754. }
  5755. }
  5756. }
  5757. }
  5758. static void ggml_compute_forward_add_f16_f32(
  5759. const struct ggml_compute_params * params,
  5760. const struct ggml_tensor * src0,
  5761. const struct ggml_tensor * src1,
  5762. struct ggml_tensor * dst) {
  5763. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5764. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5765. return;
  5766. }
  5767. const int ith = params->ith;
  5768. const int nth = params->nth;
  5769. const int nr = ggml_nrows(src0);
  5770. const int64_t ne0 = src0->ne[0];
  5771. const int64_t ne1 = src0->ne[1];
  5772. const int64_t ne2 = src0->ne[2];
  5773. const size_t nb00 = src0->nb[0];
  5774. const size_t nb01 = src0->nb[1];
  5775. const size_t nb02 = src0->nb[2];
  5776. const size_t nb03 = src0->nb[3];
  5777. const size_t nb10 = src1->nb[0];
  5778. const size_t nb11 = src1->nb[1];
  5779. const size_t nb12 = src1->nb[2];
  5780. const size_t nb13 = src1->nb[3];
  5781. const size_t nb0 = dst->nb[0];
  5782. const size_t nb1 = dst->nb[1];
  5783. const size_t nb2 = dst->nb[2];
  5784. const size_t nb3 = dst->nb[3];
  5785. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5786. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5787. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5788. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5789. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5790. // rows per thread
  5791. const int dr = (nr + nth - 1)/nth;
  5792. // row range for this thread
  5793. const int ir0 = dr*ith;
  5794. const int ir1 = MIN(ir0 + dr, nr);
  5795. if (nb10 == sizeof(float)) {
  5796. for (int ir = ir0; ir < ir1; ++ir) {
  5797. // src0, src1 and dst are same shape => same indices
  5798. const int i3 = ir/(ne2*ne1);
  5799. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5800. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5801. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5802. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5803. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5804. for (int i = 0; i < ne0; i++) {
  5805. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  5806. }
  5807. }
  5808. }
  5809. else {
  5810. // src1 is not contiguous
  5811. GGML_ASSERT(false);
  5812. }
  5813. }
  5814. static void ggml_compute_forward_add_f16_f16(
  5815. const struct ggml_compute_params * params,
  5816. const struct ggml_tensor * src0,
  5817. const struct ggml_tensor * src1,
  5818. struct ggml_tensor * dst) {
  5819. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5820. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5821. return;
  5822. }
  5823. const int ith = params->ith;
  5824. const int nth = params->nth;
  5825. const int nr = ggml_nrows(src0);
  5826. const int64_t ne0 = src0->ne[0];
  5827. const int64_t ne1 = src0->ne[1];
  5828. const int64_t ne2 = src0->ne[2];
  5829. const size_t nb00 = src0->nb[0];
  5830. const size_t nb01 = src0->nb[1];
  5831. const size_t nb02 = src0->nb[2];
  5832. const size_t nb03 = src0->nb[3];
  5833. const size_t nb10 = src1->nb[0];
  5834. const size_t nb11 = src1->nb[1];
  5835. const size_t nb12 = src1->nb[2];
  5836. const size_t nb13 = src1->nb[3];
  5837. const size_t nb0 = dst->nb[0];
  5838. const size_t nb1 = dst->nb[1];
  5839. const size_t nb2 = dst->nb[2];
  5840. const size_t nb3 = dst->nb[3];
  5841. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5842. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5843. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5844. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5845. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5846. // rows per thread
  5847. const int dr = (nr + nth - 1)/nth;
  5848. // row range for this thread
  5849. const int ir0 = dr*ith;
  5850. const int ir1 = MIN(ir0 + dr, nr);
  5851. if (nb10 == sizeof(ggml_fp16_t)) {
  5852. for (int ir = ir0; ir < ir1; ++ir) {
  5853. // src0, src1 and dst are same shape => same indices
  5854. const int i3 = ir/(ne2*ne1);
  5855. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5856. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5857. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5858. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5859. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5860. for (int i = 0; i < ne0; i++) {
  5861. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  5862. }
  5863. }
  5864. }
  5865. else {
  5866. // src1 is not contiguous
  5867. GGML_ASSERT(false);
  5868. }
  5869. }
  5870. static void ggml_compute_forward_add_q_f32(
  5871. const struct ggml_compute_params * params,
  5872. const struct ggml_tensor * src0,
  5873. const struct ggml_tensor * src1,
  5874. struct ggml_tensor * dst) {
  5875. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5876. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5877. return;
  5878. }
  5879. const int nr = ggml_nrows(src0);
  5880. const int64_t ne00 = src0->ne[0];
  5881. const int64_t ne01 = src0->ne[1];
  5882. const int64_t ne02 = src0->ne[2];
  5883. //const int64_t ne03 = src0->ne[3];
  5884. const size_t nb00 = src0->nb[0];
  5885. const size_t nb01 = src0->nb[1];
  5886. const size_t nb02 = src0->nb[2];
  5887. const size_t nb03 = src0->nb[3];
  5888. const size_t nb10 = src1->nb[0];
  5889. const size_t nb11 = src1->nb[1];
  5890. const size_t nb12 = src1->nb[2];
  5891. const size_t nb13 = src1->nb[3];
  5892. const size_t nb0 = dst->nb[0];
  5893. const size_t nb1 = dst->nb[1];
  5894. const size_t nb2 = dst->nb[2];
  5895. const size_t nb3 = dst->nb[3];
  5896. const int ith = params->ith;
  5897. const int nth = params->nth;
  5898. const enum ggml_type type = src0->type;
  5899. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5900. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5901. // we don't support permuted src0 or src1
  5902. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  5903. GGML_ASSERT(nb10 == sizeof(float));
  5904. // dst cannot be transposed or permuted
  5905. GGML_ASSERT(nb0 <= nb1);
  5906. GGML_ASSERT(nb1 <= nb2);
  5907. GGML_ASSERT(nb2 <= nb3);
  5908. GGML_ASSERT(ggml_is_quantized(src0->type));
  5909. GGML_ASSERT(dst->type == src0->type);
  5910. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5911. // rows per thread
  5912. const int dr = (nr + nth - 1)/nth;
  5913. // row range for this thread
  5914. const int ir0 = dr*ith;
  5915. const int ir1 = MIN(ir0 + dr, nr);
  5916. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5917. for (int ir = ir0; ir < ir1; ++ir) {
  5918. // src0 indices
  5919. const int i03 = ir/(ne02*ne01);
  5920. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5921. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5922. // src1 and dst are same shape as src0 => same indices
  5923. const int i13 = i03;
  5924. const int i12 = i02;
  5925. const int i11 = i01;
  5926. const int i3 = i03;
  5927. const int i2 = i02;
  5928. const int i1 = i01;
  5929. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5930. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5931. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  5932. assert(ne00 % 32 == 0);
  5933. // unquantize row from src0 to temp buffer
  5934. dequantize_row_q(src0_row, wdata, ne00);
  5935. // add src1
  5936. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5937. // quantize row to dst
  5938. quantize_row_q(wdata, dst_row, ne00);
  5939. }
  5940. }
  5941. static void ggml_compute_forward_add(
  5942. const struct ggml_compute_params * params,
  5943. const struct ggml_tensor * src0,
  5944. const struct ggml_tensor * src1,
  5945. struct ggml_tensor * dst) {
  5946. switch (src0->type) {
  5947. case GGML_TYPE_F32:
  5948. {
  5949. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5950. } break;
  5951. case GGML_TYPE_F16:
  5952. {
  5953. if (src1->type == GGML_TYPE_F16) {
  5954. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5955. }
  5956. else if (src1->type == GGML_TYPE_F32) {
  5957. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5958. }
  5959. else {
  5960. GGML_ASSERT(false);
  5961. }
  5962. } break;
  5963. case GGML_TYPE_Q4_0:
  5964. case GGML_TYPE_Q4_1:
  5965. case GGML_TYPE_Q5_0:
  5966. case GGML_TYPE_Q5_1:
  5967. case GGML_TYPE_Q8_0:
  5968. {
  5969. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5970. } break;
  5971. default:
  5972. {
  5973. GGML_ASSERT(false);
  5974. } break;
  5975. }
  5976. }
  5977. // ggml_compute_forward_add1
  5978. static void ggml_compute_forward_add1_f32(
  5979. const struct ggml_compute_params * params,
  5980. const struct ggml_tensor * src0,
  5981. const struct ggml_tensor * src1,
  5982. struct ggml_tensor * dst) {
  5983. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5984. GGML_ASSERT(ggml_is_scalar(src1));
  5985. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5986. return;
  5987. }
  5988. const int ith = params->ith;
  5989. const int nth = params->nth;
  5990. const int nr = ggml_nrows(src0);
  5991. const int64_t ne0 = src0->ne[0];
  5992. const int64_t ne1 = src0->ne[1];
  5993. const int64_t ne2 = src0->ne[2];
  5994. const size_t nb00 = src0->nb[0];
  5995. const size_t nb01 = src0->nb[1];
  5996. const size_t nb02 = src0->nb[2];
  5997. const size_t nb03 = src0->nb[3];
  5998. const size_t nb0 = dst->nb[0];
  5999. const size_t nb1 = dst->nb[1];
  6000. const size_t nb2 = dst->nb[2];
  6001. const size_t nb3 = dst->nb[3];
  6002. GGML_ASSERT( nb0 == sizeof(float));
  6003. GGML_ASSERT(nb00 == sizeof(float));
  6004. // rows per thread
  6005. const int dr = (nr + nth - 1)/nth;
  6006. // row range for this thread
  6007. const int ir0 = dr*ith;
  6008. const int ir1 = MIN(ir0 + dr, nr);
  6009. for (int ir = ir0; ir < ir1; ++ir) {
  6010. // src0 and dst are same shape => same indices
  6011. const int i3 = ir/(ne2*ne1);
  6012. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6013. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6014. #ifdef GGML_USE_ACCELERATE
  6015. UNUSED(ggml_vec_add1_f32);
  6016. vDSP_vadd(
  6017. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6018. (float *) ((char *) src1->data), 0,
  6019. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6020. ne0);
  6021. #else
  6022. ggml_vec_add1_f32(ne0,
  6023. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6024. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6025. *(float *) src1->data);
  6026. #endif
  6027. }
  6028. }
  6029. static void ggml_compute_forward_add1_f16_f32(
  6030. const struct ggml_compute_params * params,
  6031. const struct ggml_tensor * src0,
  6032. const struct ggml_tensor * src1,
  6033. struct ggml_tensor * dst) {
  6034. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6035. GGML_ASSERT(ggml_is_scalar(src1));
  6036. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6037. return;
  6038. }
  6039. // scalar to add
  6040. const float v = *(float *) src1->data;
  6041. const int ith = params->ith;
  6042. const int nth = params->nth;
  6043. const int nr = ggml_nrows(src0);
  6044. const int64_t ne0 = src0->ne[0];
  6045. const int64_t ne1 = src0->ne[1];
  6046. const int64_t ne2 = src0->ne[2];
  6047. const size_t nb00 = src0->nb[0];
  6048. const size_t nb01 = src0->nb[1];
  6049. const size_t nb02 = src0->nb[2];
  6050. const size_t nb03 = src0->nb[3];
  6051. const size_t nb0 = dst->nb[0];
  6052. const size_t nb1 = dst->nb[1];
  6053. const size_t nb2 = dst->nb[2];
  6054. const size_t nb3 = dst->nb[3];
  6055. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6056. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6057. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6058. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6059. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6060. // rows per thread
  6061. const int dr = (nr + nth - 1)/nth;
  6062. // row range for this thread
  6063. const int ir0 = dr*ith;
  6064. const int ir1 = MIN(ir0 + dr, nr);
  6065. for (int ir = ir0; ir < ir1; ++ir) {
  6066. // src0 and dst are same shape => same indices
  6067. const int i3 = ir/(ne2*ne1);
  6068. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6069. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6070. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6071. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6072. for (int i = 0; i < ne0; i++) {
  6073. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6074. }
  6075. }
  6076. }
  6077. static void ggml_compute_forward_add1_f16_f16(
  6078. const struct ggml_compute_params * params,
  6079. const struct ggml_tensor * src0,
  6080. const struct ggml_tensor * src1,
  6081. struct ggml_tensor * dst) {
  6082. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6083. GGML_ASSERT(ggml_is_scalar(src1));
  6084. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6085. return;
  6086. }
  6087. // scalar to add
  6088. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6089. const int ith = params->ith;
  6090. const int nth = params->nth;
  6091. const int nr = ggml_nrows(src0);
  6092. const int64_t ne0 = src0->ne[0];
  6093. const int64_t ne1 = src0->ne[1];
  6094. const int64_t ne2 = src0->ne[2];
  6095. const size_t nb00 = src0->nb[0];
  6096. const size_t nb01 = src0->nb[1];
  6097. const size_t nb02 = src0->nb[2];
  6098. const size_t nb03 = src0->nb[3];
  6099. const size_t nb0 = dst->nb[0];
  6100. const size_t nb1 = dst->nb[1];
  6101. const size_t nb2 = dst->nb[2];
  6102. const size_t nb3 = dst->nb[3];
  6103. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6104. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6105. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6106. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6107. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6108. // rows per thread
  6109. const int dr = (nr + nth - 1)/nth;
  6110. // row range for this thread
  6111. const int ir0 = dr*ith;
  6112. const int ir1 = MIN(ir0 + dr, nr);
  6113. for (int ir = ir0; ir < ir1; ++ir) {
  6114. // src0 and dst are same shape => same indices
  6115. const int i3 = ir/(ne2*ne1);
  6116. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6117. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6118. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6119. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6120. for (int i = 0; i < ne0; i++) {
  6121. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6122. }
  6123. }
  6124. }
  6125. static void ggml_compute_forward_add1_q_f32(
  6126. const struct ggml_compute_params * params,
  6127. const struct ggml_tensor * src0,
  6128. const struct ggml_tensor * src1,
  6129. struct ggml_tensor * dst) {
  6130. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6131. GGML_ASSERT(ggml_is_scalar(src1));
  6132. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6133. return;
  6134. }
  6135. // scalar to add
  6136. const float v = *(float *) src1->data;
  6137. const int ith = params->ith;
  6138. const int nth = params->nth;
  6139. const int nr = ggml_nrows(src0);
  6140. const int64_t ne0 = src0->ne[0];
  6141. const int64_t ne1 = src0->ne[1];
  6142. const int64_t ne2 = src0->ne[2];
  6143. const size_t nb00 = src0->nb[0];
  6144. const size_t nb01 = src0->nb[1];
  6145. const size_t nb02 = src0->nb[2];
  6146. const size_t nb03 = src0->nb[3];
  6147. const size_t nb0 = dst->nb[0];
  6148. const size_t nb1 = dst->nb[1];
  6149. const size_t nb2 = dst->nb[2];
  6150. const size_t nb3 = dst->nb[3];
  6151. const enum ggml_type type = src0->type;
  6152. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6153. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6154. // we don't support permuted src0
  6155. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6156. // dst cannot be transposed or permuted
  6157. GGML_ASSERT(nb0 <= nb1);
  6158. GGML_ASSERT(nb1 <= nb2);
  6159. GGML_ASSERT(nb2 <= nb3);
  6160. GGML_ASSERT(ggml_is_quantized(src0->type));
  6161. GGML_ASSERT(dst->type == src0->type);
  6162. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6163. // rows per thread
  6164. const int dr = (nr + nth - 1)/nth;
  6165. // row range for this thread
  6166. const int ir0 = dr*ith;
  6167. const int ir1 = MIN(ir0 + dr, nr);
  6168. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6169. for (int ir = ir0; ir < ir1; ++ir) {
  6170. // src0 and dst are same shape => same indices
  6171. const int i3 = ir/(ne2*ne1);
  6172. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6173. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6174. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6175. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6176. assert(ne0 % 32 == 0);
  6177. // unquantize row from src0 to temp buffer
  6178. dequantize_row_q(src0_row, wdata, ne0);
  6179. // add src1
  6180. ggml_vec_acc1_f32(ne0, wdata, v);
  6181. // quantize row to dst
  6182. quantize_row_q(wdata, dst_row, ne0);
  6183. }
  6184. }
  6185. static void ggml_compute_forward_add1(
  6186. const struct ggml_compute_params * params,
  6187. const struct ggml_tensor * src0,
  6188. const struct ggml_tensor * src1,
  6189. struct ggml_tensor * dst) {
  6190. switch (src0->type) {
  6191. case GGML_TYPE_F32:
  6192. {
  6193. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6194. } break;
  6195. case GGML_TYPE_F16:
  6196. {
  6197. if (src1->type == GGML_TYPE_F16) {
  6198. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6199. }
  6200. else if (src1->type == GGML_TYPE_F32) {
  6201. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6202. }
  6203. else {
  6204. GGML_ASSERT(false);
  6205. }
  6206. } break;
  6207. case GGML_TYPE_Q4_0:
  6208. case GGML_TYPE_Q4_1:
  6209. case GGML_TYPE_Q5_0:
  6210. case GGML_TYPE_Q5_1:
  6211. case GGML_TYPE_Q8_0:
  6212. case GGML_TYPE_Q8_1:
  6213. {
  6214. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6215. } break;
  6216. default:
  6217. {
  6218. GGML_ASSERT(false);
  6219. } break;
  6220. }
  6221. }
  6222. // ggml_compute_forward_acc
  6223. static void ggml_compute_forward_acc_f32(
  6224. const struct ggml_compute_params * params,
  6225. const struct ggml_tensor * src0,
  6226. const struct ggml_tensor * src1,
  6227. const struct ggml_tensor * opt0,
  6228. struct ggml_tensor * dst) {
  6229. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6230. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6231. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  6232. GGML_ASSERT(ggml_nelements(opt0) == 5);
  6233. // view src0 and dst with these strides and data offset inbytes during acc
  6234. // nb0 is implicitely element_size because src0 and dst are contiguous
  6235. size_t nb1 = ((int32_t *) opt0->data)[0];
  6236. size_t nb2 = ((int32_t *) opt0->data)[1];
  6237. size_t nb3 = ((int32_t *) opt0->data)[2];
  6238. size_t offset = ((int32_t *) opt0->data)[3];
  6239. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  6240. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6241. // memcpy needs to be synchronized across threads to avoid race conditions.
  6242. // => do it in INIT phase
  6243. memcpy(
  6244. ((char *) dst->data),
  6245. ((char *) src0->data),
  6246. ggml_nbytes(dst));
  6247. }
  6248. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6249. return;
  6250. }
  6251. const int ith = params->ith;
  6252. const int nth = params->nth;
  6253. const int nr = ggml_nrows(src1);
  6254. const int nc = src1->ne[0];
  6255. const int64_t ne10 = src1->ne[0];
  6256. const int64_t ne11 = src1->ne[1];
  6257. const int64_t ne12 = src1->ne[2];
  6258. const int64_t ne13 = src1->ne[3];
  6259. const size_t nb10 = src1->nb[0];
  6260. const size_t nb11 = src1->nb[1];
  6261. const size_t nb12 = src1->nb[2];
  6262. const size_t nb13 = src1->nb[3];
  6263. // src0 and dst as viewed during acc
  6264. const size_t nb0 = ggml_element_size(src0);
  6265. const size_t nb00 = nb0;
  6266. const size_t nb01 = nb1;
  6267. const size_t nb02 = nb2;
  6268. const size_t nb03 = nb3;
  6269. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6270. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6271. GGML_ASSERT(nb10 == sizeof(float));
  6272. // rows per thread
  6273. const int dr = (nr + nth - 1)/nth;
  6274. // row range for this thread
  6275. const int ir0 = dr*ith;
  6276. const int ir1 = MIN(ir0 + dr, nr);
  6277. for (int ir = ir0; ir < ir1; ++ir) {
  6278. // src0 and dst are viewed with shape of src1 and offset
  6279. // => same indices
  6280. const int i3 = ir/(ne12*ne11);
  6281. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6282. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6283. #ifdef GGML_USE_ACCELERATE
  6284. vDSP_vadd(
  6285. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6286. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6287. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6288. #else
  6289. ggml_vec_add_f32(nc,
  6290. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6291. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6292. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6293. #endif
  6294. }
  6295. }
  6296. static void ggml_compute_forward_acc(
  6297. const struct ggml_compute_params * params,
  6298. const struct ggml_tensor * src0,
  6299. const struct ggml_tensor * src1,
  6300. const struct ggml_tensor * opt0,
  6301. struct ggml_tensor * dst) {
  6302. switch (src0->type) {
  6303. case GGML_TYPE_F32:
  6304. {
  6305. ggml_compute_forward_acc_f32(params, src0, src1, opt0, dst);
  6306. } break;
  6307. case GGML_TYPE_F16:
  6308. case GGML_TYPE_Q4_0:
  6309. case GGML_TYPE_Q4_1:
  6310. case GGML_TYPE_Q5_0:
  6311. case GGML_TYPE_Q5_1:
  6312. case GGML_TYPE_Q8_0:
  6313. case GGML_TYPE_Q8_1:
  6314. default:
  6315. {
  6316. GGML_ASSERT(false);
  6317. } break;
  6318. }
  6319. }
  6320. // ggml_compute_forward_sub
  6321. static void ggml_compute_forward_sub_f32(
  6322. const struct ggml_compute_params * params,
  6323. const struct ggml_tensor * src0,
  6324. const struct ggml_tensor * src1,
  6325. struct ggml_tensor * dst) {
  6326. assert(params->ith == 0);
  6327. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6328. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6329. return;
  6330. }
  6331. const int nr = ggml_nrows(src0);
  6332. const int64_t ne0 = src0->ne[0];
  6333. const int64_t ne1 = src0->ne[1];
  6334. const int64_t ne2 = src0->ne[2];
  6335. const size_t nb00 = src0->nb[0];
  6336. const size_t nb01 = src0->nb[1];
  6337. const size_t nb02 = src0->nb[2];
  6338. const size_t nb03 = src0->nb[3];
  6339. const size_t nb10 = src1->nb[0];
  6340. const size_t nb11 = src1->nb[1];
  6341. const size_t nb12 = src1->nb[2];
  6342. const size_t nb13 = src1->nb[3];
  6343. const size_t nb0 = dst->nb[0];
  6344. const size_t nb1 = dst->nb[1];
  6345. const size_t nb2 = dst->nb[2];
  6346. const size_t nb3 = dst->nb[3];
  6347. GGML_ASSERT( nb0 == sizeof(float));
  6348. GGML_ASSERT(nb00 == sizeof(float));
  6349. if (nb10 == sizeof(float)) {
  6350. for (int ir = 0; ir < nr; ++ir) {
  6351. // src0, src1 and dst are same shape => same indices
  6352. const int i3 = ir/(ne2*ne1);
  6353. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6354. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6355. #ifdef GGML_USE_ACCELERATE
  6356. vDSP_vsub(
  6357. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6358. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6359. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6360. ne0);
  6361. #else
  6362. ggml_vec_sub_f32(ne0,
  6363. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6364. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6365. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6366. #endif
  6367. // }
  6368. // }
  6369. }
  6370. } else {
  6371. // src1 is not contiguous
  6372. for (int ir = 0; ir < nr; ++ir) {
  6373. // src0, src1 and dst are same shape => same indices
  6374. const int i3 = ir/(ne2*ne1);
  6375. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6376. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6377. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6378. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6379. for (int i0 = 0; i0 < ne0; i0++) {
  6380. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6381. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6382. }
  6383. }
  6384. }
  6385. }
  6386. static void ggml_compute_forward_sub(
  6387. const struct ggml_compute_params * params,
  6388. const struct ggml_tensor * src0,
  6389. const struct ggml_tensor * src1,
  6390. struct ggml_tensor * dst) {
  6391. switch (src0->type) {
  6392. case GGML_TYPE_F32:
  6393. {
  6394. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6395. } break;
  6396. default:
  6397. {
  6398. GGML_ASSERT(false);
  6399. } break;
  6400. }
  6401. }
  6402. // ggml_compute_forward_mul
  6403. static void ggml_compute_forward_mul_f32(
  6404. const struct ggml_compute_params * params,
  6405. const struct ggml_tensor * src0,
  6406. const struct ggml_tensor * src1,
  6407. struct ggml_tensor * dst) {
  6408. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6409. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6410. return;
  6411. }
  6412. const int ith = params->ith;
  6413. const int nth = params->nth;
  6414. const int nr = ggml_nrows(src0);
  6415. const int64_t ne0 = src0->ne[0];
  6416. const int64_t ne1 = src0->ne[1];
  6417. const int64_t ne2 = src0->ne[2];
  6418. const size_t nb00 = src0->nb[0];
  6419. const size_t nb01 = src0->nb[1];
  6420. const size_t nb02 = src0->nb[2];
  6421. const size_t nb03 = src0->nb[3];
  6422. const size_t nb10 = src1->nb[0];
  6423. const size_t nb11 = src1->nb[1];
  6424. const size_t nb12 = src1->nb[2];
  6425. const size_t nb13 = src1->nb[3];
  6426. const size_t nb0 = dst->nb[0];
  6427. const size_t nb1 = dst->nb[1];
  6428. const size_t nb2 = dst->nb[2];
  6429. const size_t nb3 = dst->nb[3];
  6430. GGML_ASSERT( nb0 == sizeof(float));
  6431. GGML_ASSERT(nb00 == sizeof(float));
  6432. if (nb10 == sizeof(float)) {
  6433. for (int ir = ith; ir < nr; ir += nth) {
  6434. // src0, src1 and dst are same shape => same indices
  6435. const int i3 = ir/(ne2*ne1);
  6436. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6437. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6438. #ifdef GGML_USE_ACCELERATE
  6439. UNUSED(ggml_vec_mul_f32);
  6440. vDSP_vmul(
  6441. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6442. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6443. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6444. ne0);
  6445. #else
  6446. ggml_vec_mul_f32(ne0,
  6447. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6448. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6449. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6450. #endif
  6451. // }
  6452. // }
  6453. }
  6454. } else {
  6455. // src1 is not contiguous
  6456. for (int ir = ith; ir < nr; ir += nth) {
  6457. // src0, src1 and dst are same shape => same indices
  6458. const int i3 = ir/(ne2*ne1);
  6459. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6460. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6461. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6462. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6463. for (int i0 = 0; i0 < ne0; i0++) {
  6464. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6465. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6466. }
  6467. }
  6468. }
  6469. }
  6470. static void ggml_compute_forward_mul(
  6471. const struct ggml_compute_params * params,
  6472. const struct ggml_tensor * src0,
  6473. const struct ggml_tensor * src1,
  6474. struct ggml_tensor * dst) {
  6475. switch (src0->type) {
  6476. case GGML_TYPE_F32:
  6477. {
  6478. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6479. } break;
  6480. default:
  6481. {
  6482. GGML_ASSERT(false);
  6483. } break;
  6484. }
  6485. }
  6486. // ggml_compute_forward_div
  6487. static void ggml_compute_forward_div_f32(
  6488. const struct ggml_compute_params * params,
  6489. const struct ggml_tensor * src0,
  6490. const struct ggml_tensor * src1,
  6491. struct ggml_tensor * dst) {
  6492. assert(params->ith == 0);
  6493. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6494. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6495. return;
  6496. }
  6497. const int nr = ggml_nrows(src0);
  6498. const int64_t ne0 = src0->ne[0];
  6499. const int64_t ne1 = src0->ne[1];
  6500. const int64_t ne2 = src0->ne[2];
  6501. const size_t nb00 = src0->nb[0];
  6502. const size_t nb01 = src0->nb[1];
  6503. const size_t nb02 = src0->nb[2];
  6504. const size_t nb03 = src0->nb[3];
  6505. const size_t nb10 = src1->nb[0];
  6506. const size_t nb11 = src1->nb[1];
  6507. const size_t nb12 = src1->nb[2];
  6508. const size_t nb13 = src1->nb[3];
  6509. const size_t nb0 = dst->nb[0];
  6510. const size_t nb1 = dst->nb[1];
  6511. const size_t nb2 = dst->nb[2];
  6512. const size_t nb3 = dst->nb[3];
  6513. GGML_ASSERT( nb0 == sizeof(float));
  6514. GGML_ASSERT(nb00 == sizeof(float));
  6515. if (nb10 == sizeof(float)) {
  6516. for (int ir = 0; ir < nr; ++ir) {
  6517. // src0, src1 and dst are same shape => same indices
  6518. const int i3 = ir/(ne2*ne1);
  6519. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6520. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6521. #ifdef GGML_USE_ACCELERATE
  6522. vDSP_vdiv(
  6523. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6524. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6525. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6526. ne0);
  6527. #else
  6528. ggml_vec_div_f32(ne0,
  6529. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6530. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6531. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6532. #endif
  6533. // }
  6534. // }
  6535. }
  6536. } else {
  6537. // src1 is not contiguous
  6538. for (int ir = 0; ir < nr; ++ir) {
  6539. // src0, src1 and dst are same shape => same indices
  6540. const int i3 = ir/(ne2*ne1);
  6541. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6542. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6543. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6544. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6545. for (int i0 = 0; i0 < ne0; i0++) {
  6546. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6547. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6548. }
  6549. }
  6550. }
  6551. }
  6552. static void ggml_compute_forward_div(
  6553. const struct ggml_compute_params * params,
  6554. const struct ggml_tensor * src0,
  6555. const struct ggml_tensor * src1,
  6556. struct ggml_tensor * dst) {
  6557. switch (src0->type) {
  6558. case GGML_TYPE_F32:
  6559. {
  6560. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6561. } break;
  6562. default:
  6563. {
  6564. GGML_ASSERT(false);
  6565. } break;
  6566. }
  6567. }
  6568. // ggml_compute_forward_sqr
  6569. static void ggml_compute_forward_sqr_f32(
  6570. const struct ggml_compute_params * params,
  6571. const struct ggml_tensor * src0,
  6572. struct ggml_tensor * dst) {
  6573. assert(params->ith == 0);
  6574. assert(ggml_are_same_shape(src0, dst));
  6575. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6576. return;
  6577. }
  6578. const int n = ggml_nrows(src0);
  6579. const int nc = src0->ne[0];
  6580. assert( dst->nb[0] == sizeof(float));
  6581. assert(src0->nb[0] == sizeof(float));
  6582. for (int i = 0; i < n; i++) {
  6583. ggml_vec_sqr_f32(nc,
  6584. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6585. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6586. }
  6587. }
  6588. static void ggml_compute_forward_sqr(
  6589. const struct ggml_compute_params * params,
  6590. const struct ggml_tensor * src0,
  6591. struct ggml_tensor * dst) {
  6592. switch (src0->type) {
  6593. case GGML_TYPE_F32:
  6594. {
  6595. ggml_compute_forward_sqr_f32(params, src0, dst);
  6596. } break;
  6597. default:
  6598. {
  6599. GGML_ASSERT(false);
  6600. } break;
  6601. }
  6602. }
  6603. // ggml_compute_forward_sqrt
  6604. static void ggml_compute_forward_sqrt_f32(
  6605. const struct ggml_compute_params * params,
  6606. const struct ggml_tensor * src0,
  6607. struct ggml_tensor * dst) {
  6608. assert(params->ith == 0);
  6609. assert(ggml_are_same_shape(src0, dst));
  6610. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6611. return;
  6612. }
  6613. const int n = ggml_nrows(src0);
  6614. const int nc = src0->ne[0];
  6615. assert( dst->nb[0] == sizeof(float));
  6616. assert(src0->nb[0] == sizeof(float));
  6617. for (int i = 0; i < n; i++) {
  6618. ggml_vec_sqrt_f32(nc,
  6619. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6620. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6621. }
  6622. }
  6623. static void ggml_compute_forward_sqrt(
  6624. const struct ggml_compute_params * params,
  6625. const struct ggml_tensor * src0,
  6626. struct ggml_tensor * dst) {
  6627. switch (src0->type) {
  6628. case GGML_TYPE_F32:
  6629. {
  6630. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6631. } break;
  6632. default:
  6633. {
  6634. GGML_ASSERT(false);
  6635. } break;
  6636. }
  6637. }
  6638. // ggml_compute_forward_log
  6639. static void ggml_compute_forward_log_f32(
  6640. const struct ggml_compute_params * params,
  6641. const struct ggml_tensor * src0,
  6642. struct ggml_tensor * dst) {
  6643. GGML_ASSERT(params->ith == 0);
  6644. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6645. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6646. return;
  6647. }
  6648. const int n = ggml_nrows(src0);
  6649. const int nc = src0->ne[0];
  6650. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6651. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6652. for (int i = 0; i < n; i++) {
  6653. ggml_vec_log_f32(nc,
  6654. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6655. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6656. }
  6657. }
  6658. static void ggml_compute_forward_log(
  6659. const struct ggml_compute_params * params,
  6660. const struct ggml_tensor * src0,
  6661. struct ggml_tensor * dst) {
  6662. switch (src0->type) {
  6663. case GGML_TYPE_F32:
  6664. {
  6665. ggml_compute_forward_log_f32(params, src0, dst);
  6666. } break;
  6667. default:
  6668. {
  6669. GGML_ASSERT(false);
  6670. } break;
  6671. }
  6672. }
  6673. // ggml_compute_forward_sum
  6674. static void ggml_compute_forward_sum_f32(
  6675. const struct ggml_compute_params * params,
  6676. const struct ggml_tensor * src0,
  6677. struct ggml_tensor * dst) {
  6678. assert(params->ith == 0);
  6679. assert(ggml_is_scalar(dst));
  6680. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6681. return;
  6682. }
  6683. assert(ggml_is_scalar(dst));
  6684. assert(src0->nb[0] == sizeof(float));
  6685. const int64_t ne00 = src0->ne[0];
  6686. const int64_t ne01 = src0->ne[1];
  6687. const int64_t ne02 = src0->ne[2];
  6688. const int64_t ne03 = src0->ne[3];
  6689. const size_t nb01 = src0->nb[1];
  6690. const size_t nb02 = src0->nb[2];
  6691. const size_t nb03 = src0->nb[3];
  6692. ggml_float sum = 0;
  6693. ggml_float row_sum = 0;
  6694. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6695. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6696. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6697. ggml_vec_sum_ggf(ne00,
  6698. &row_sum,
  6699. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6700. sum += row_sum;
  6701. }
  6702. }
  6703. }
  6704. ((float *) dst->data)[0] = sum;
  6705. }
  6706. static void ggml_compute_forward_sum(
  6707. const struct ggml_compute_params * params,
  6708. const struct ggml_tensor * src0,
  6709. struct ggml_tensor * dst) {
  6710. switch (src0->type) {
  6711. case GGML_TYPE_F32:
  6712. {
  6713. ggml_compute_forward_sum_f32(params, src0, dst);
  6714. } break;
  6715. default:
  6716. {
  6717. GGML_ASSERT(false);
  6718. } break;
  6719. }
  6720. }
  6721. // ggml_compute_forward_sum_rows
  6722. static void ggml_compute_forward_sum_rows_f32(
  6723. const struct ggml_compute_params * params,
  6724. const struct ggml_tensor * src0,
  6725. struct ggml_tensor * dst) {
  6726. GGML_ASSERT(params->ith == 0);
  6727. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6728. return;
  6729. }
  6730. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6731. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6732. const int64_t ne00 = src0->ne[0];
  6733. const int64_t ne01 = src0->ne[1];
  6734. const int64_t ne02 = src0->ne[2];
  6735. const int64_t ne03 = src0->ne[3];
  6736. const int64_t ne0 = dst->ne[0];
  6737. const int64_t ne1 = dst->ne[1];
  6738. const int64_t ne2 = dst->ne[2];
  6739. const int64_t ne3 = dst->ne[3];
  6740. GGML_ASSERT(ne0 == 1);
  6741. GGML_ASSERT(ne1 == ne01);
  6742. GGML_ASSERT(ne2 == ne02);
  6743. GGML_ASSERT(ne3 == ne03);
  6744. const size_t nb01 = src0->nb[1];
  6745. const size_t nb02 = src0->nb[2];
  6746. const size_t nb03 = src0->nb[3];
  6747. const size_t nb1 = dst->nb[1];
  6748. const size_t nb2 = dst->nb[2];
  6749. const size_t nb3 = dst->nb[3];
  6750. for (int64_t i3 = 0; i3 < ne03; i3++) {
  6751. for (int64_t i2 = 0; i2 < ne02; i2++) {
  6752. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6753. float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  6754. float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  6755. float row_sum = 0;
  6756. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  6757. dst_row[0] = row_sum;
  6758. }
  6759. }
  6760. }
  6761. }
  6762. static void ggml_compute_forward_sum_rows(
  6763. const struct ggml_compute_params * params,
  6764. const struct ggml_tensor * src0,
  6765. struct ggml_tensor * dst) {
  6766. switch (src0->type) {
  6767. case GGML_TYPE_F32:
  6768. {
  6769. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  6770. } break;
  6771. default:
  6772. {
  6773. GGML_ASSERT(false);
  6774. } break;
  6775. }
  6776. }
  6777. // ggml_compute_forward_mean
  6778. static void ggml_compute_forward_mean_f32(
  6779. const struct ggml_compute_params * params,
  6780. const struct ggml_tensor * src0,
  6781. struct ggml_tensor * dst) {
  6782. assert(params->ith == 0);
  6783. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6784. return;
  6785. }
  6786. assert(src0->nb[0] == sizeof(float));
  6787. const int64_t ne00 = src0->ne[0];
  6788. const int64_t ne01 = src0->ne[1];
  6789. const int64_t ne02 = src0->ne[2];
  6790. const int64_t ne03 = src0->ne[3];
  6791. const size_t nb01 = src0->nb[1];
  6792. const size_t nb02 = src0->nb[2];
  6793. const size_t nb03 = src0->nb[3];
  6794. const int64_t ne0 = dst->ne[0];
  6795. const int64_t ne1 = dst->ne[1];
  6796. const int64_t ne2 = dst->ne[2];
  6797. const int64_t ne3 = dst->ne[3];
  6798. assert(ne0 == 1);
  6799. assert(ne1 == ne01);
  6800. assert(ne2 == ne02);
  6801. assert(ne3 == ne03);
  6802. UNUSED(ne0);
  6803. UNUSED(ne1);
  6804. UNUSED(ne2);
  6805. UNUSED(ne3);
  6806. const size_t nb1 = dst->nb[1];
  6807. const size_t nb2 = dst->nb[2];
  6808. const size_t nb3 = dst->nb[3];
  6809. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6810. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6811. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6812. ggml_vec_sum_f32(ne00,
  6813. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6814. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6815. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6816. }
  6817. }
  6818. }
  6819. }
  6820. static void ggml_compute_forward_mean(
  6821. const struct ggml_compute_params * params,
  6822. const struct ggml_tensor * src0,
  6823. struct ggml_tensor * dst) {
  6824. switch (src0->type) {
  6825. case GGML_TYPE_F32:
  6826. {
  6827. ggml_compute_forward_mean_f32(params, src0, dst);
  6828. } break;
  6829. default:
  6830. {
  6831. GGML_ASSERT(false);
  6832. } break;
  6833. }
  6834. }
  6835. // ggml_compute_forward_repeat
  6836. static void ggml_compute_forward_repeat_f32(
  6837. const struct ggml_compute_params * params,
  6838. const struct ggml_tensor * src0,
  6839. struct ggml_tensor * dst) {
  6840. GGML_ASSERT(params->ith == 0);
  6841. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6842. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6843. return;
  6844. }
  6845. const int64_t ne0 = dst->ne[0];
  6846. const int64_t ne1 = dst->ne[1];
  6847. const int64_t ne2 = dst->ne[2];
  6848. const int64_t ne3 = dst->ne[3];
  6849. const int64_t ne00 = src0->ne[0];
  6850. const int64_t ne01 = src0->ne[1];
  6851. const int64_t ne02 = src0->ne[2];
  6852. const int64_t ne03 = src0->ne[3];
  6853. const size_t nb0 = dst->nb[0];
  6854. const size_t nb1 = dst->nb[1];
  6855. const size_t nb2 = dst->nb[2];
  6856. const size_t nb3 = dst->nb[3];
  6857. const size_t nb00 = src0->nb[0];
  6858. const size_t nb01 = src0->nb[1];
  6859. const size_t nb02 = src0->nb[2];
  6860. const size_t nb03 = src0->nb[3];
  6861. // guaranteed to be an integer due to the check in ggml_can_repeat
  6862. const int nr0 = (int)(ne0/ne00);
  6863. const int nr1 = (int)(ne1/ne01);
  6864. const int nr2 = (int)(ne2/ne02);
  6865. const int nr3 = (int)(ne3/ne03);
  6866. // TODO: support for transposed / permuted tensors
  6867. GGML_ASSERT(nb0 == sizeof(float));
  6868. GGML_ASSERT(nb00 == sizeof(float));
  6869. // TODO: maybe this is not optimal?
  6870. for (int i3 = 0; i3 < nr3; i3++) {
  6871. for (int k3 = 0; k3 < ne03; k3++) {
  6872. for (int i2 = 0; i2 < nr2; i2++) {
  6873. for (int k2 = 0; k2 < ne02; k2++) {
  6874. for (int i1 = 0; i1 < nr1; i1++) {
  6875. for (int k1 = 0; k1 < ne01; k1++) {
  6876. for (int i0 = 0; i0 < nr0; i0++) {
  6877. ggml_vec_cpy_f32(ne00,
  6878. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  6879. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  6880. }
  6881. }
  6882. }
  6883. }
  6884. }
  6885. }
  6886. }
  6887. }
  6888. static void ggml_compute_forward_repeat(
  6889. const struct ggml_compute_params * params,
  6890. const struct ggml_tensor * src0,
  6891. struct ggml_tensor * dst) {
  6892. switch (src0->type) {
  6893. case GGML_TYPE_F32:
  6894. {
  6895. ggml_compute_forward_repeat_f32(params, src0, dst);
  6896. } break;
  6897. default:
  6898. {
  6899. GGML_ASSERT(false);
  6900. } break;
  6901. }
  6902. }
  6903. // ggml_compute_forward_abs
  6904. static void ggml_compute_forward_abs_f32(
  6905. const struct ggml_compute_params * params,
  6906. const struct ggml_tensor * src0,
  6907. struct ggml_tensor * dst) {
  6908. assert(params->ith == 0);
  6909. assert(ggml_are_same_shape(src0, dst));
  6910. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6911. return;
  6912. }
  6913. const int n = ggml_nrows(src0);
  6914. const int nc = src0->ne[0];
  6915. assert(dst->nb[0] == sizeof(float));
  6916. assert(src0->nb[0] == sizeof(float));
  6917. for (int i = 0; i < n; i++) {
  6918. ggml_vec_abs_f32(nc,
  6919. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6920. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6921. }
  6922. }
  6923. static void ggml_compute_forward_abs(
  6924. const struct ggml_compute_params * params,
  6925. const struct ggml_tensor * src0,
  6926. struct ggml_tensor * dst) {
  6927. switch (src0->type) {
  6928. case GGML_TYPE_F32:
  6929. {
  6930. ggml_compute_forward_abs_f32(params, src0, dst);
  6931. } break;
  6932. default:
  6933. {
  6934. GGML_ASSERT(false);
  6935. } break;
  6936. }
  6937. }
  6938. // ggml_compute_forward_sgn
  6939. static void ggml_compute_forward_sgn_f32(
  6940. const struct ggml_compute_params * params,
  6941. const struct ggml_tensor * src0,
  6942. struct ggml_tensor * dst) {
  6943. assert(params->ith == 0);
  6944. assert(ggml_are_same_shape(src0, dst));
  6945. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6946. return;
  6947. }
  6948. const int n = ggml_nrows(src0);
  6949. const int nc = src0->ne[0];
  6950. assert(dst->nb[0] == sizeof(float));
  6951. assert(src0->nb[0] == sizeof(float));
  6952. for (int i = 0; i < n; i++) {
  6953. ggml_vec_sgn_f32(nc,
  6954. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6955. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6956. }
  6957. }
  6958. static void ggml_compute_forward_sgn(
  6959. const struct ggml_compute_params * params,
  6960. const struct ggml_tensor * src0,
  6961. struct ggml_tensor * dst) {
  6962. switch (src0->type) {
  6963. case GGML_TYPE_F32:
  6964. {
  6965. ggml_compute_forward_sgn_f32(params, src0, dst);
  6966. } break;
  6967. default:
  6968. {
  6969. GGML_ASSERT(false);
  6970. } break;
  6971. }
  6972. }
  6973. // ggml_compute_forward_neg
  6974. static void ggml_compute_forward_neg_f32(
  6975. const struct ggml_compute_params * params,
  6976. const struct ggml_tensor * src0,
  6977. struct ggml_tensor * dst) {
  6978. assert(params->ith == 0);
  6979. assert(ggml_are_same_shape(src0, dst));
  6980. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6981. return;
  6982. }
  6983. const int n = ggml_nrows(src0);
  6984. const int nc = src0->ne[0];
  6985. assert(dst->nb[0] == sizeof(float));
  6986. assert(src0->nb[0] == sizeof(float));
  6987. for (int i = 0; i < n; i++) {
  6988. ggml_vec_neg_f32(nc,
  6989. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6990. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6991. }
  6992. }
  6993. static void ggml_compute_forward_neg(
  6994. const struct ggml_compute_params * params,
  6995. const struct ggml_tensor * src0,
  6996. struct ggml_tensor * dst) {
  6997. switch (src0->type) {
  6998. case GGML_TYPE_F32:
  6999. {
  7000. ggml_compute_forward_neg_f32(params, src0, dst);
  7001. } break;
  7002. default:
  7003. {
  7004. GGML_ASSERT(false);
  7005. } break;
  7006. }
  7007. }
  7008. // ggml_compute_forward_step
  7009. static void ggml_compute_forward_step_f32(
  7010. const struct ggml_compute_params * params,
  7011. const struct ggml_tensor * src0,
  7012. struct ggml_tensor * dst) {
  7013. assert(params->ith == 0);
  7014. assert(ggml_are_same_shape(src0, dst));
  7015. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7016. return;
  7017. }
  7018. const int n = ggml_nrows(src0);
  7019. const int nc = src0->ne[0];
  7020. assert(dst->nb[0] == sizeof(float));
  7021. assert(src0->nb[0] == sizeof(float));
  7022. for (int i = 0; i < n; i++) {
  7023. ggml_vec_step_f32(nc,
  7024. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7025. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7026. }
  7027. }
  7028. static void ggml_compute_forward_step(
  7029. const struct ggml_compute_params * params,
  7030. const struct ggml_tensor * src0,
  7031. struct ggml_tensor * dst) {
  7032. switch (src0->type) {
  7033. case GGML_TYPE_F32:
  7034. {
  7035. ggml_compute_forward_step_f32(params, src0, dst);
  7036. } break;
  7037. default:
  7038. {
  7039. GGML_ASSERT(false);
  7040. } break;
  7041. }
  7042. }
  7043. // ggml_compute_forward_relu
  7044. static void ggml_compute_forward_relu_f32(
  7045. const struct ggml_compute_params * params,
  7046. const struct ggml_tensor * src0,
  7047. struct ggml_tensor * dst) {
  7048. assert(params->ith == 0);
  7049. assert(ggml_are_same_shape(src0, dst));
  7050. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7051. return;
  7052. }
  7053. const int n = ggml_nrows(src0);
  7054. const int nc = src0->ne[0];
  7055. assert(dst->nb[0] == sizeof(float));
  7056. assert(src0->nb[0] == sizeof(float));
  7057. for (int i = 0; i < n; i++) {
  7058. ggml_vec_relu_f32(nc,
  7059. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7060. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7061. }
  7062. }
  7063. static void ggml_compute_forward_relu(
  7064. const struct ggml_compute_params * params,
  7065. const struct ggml_tensor * src0,
  7066. struct ggml_tensor * dst) {
  7067. switch (src0->type) {
  7068. case GGML_TYPE_F32:
  7069. {
  7070. ggml_compute_forward_relu_f32(params, src0, dst);
  7071. } break;
  7072. default:
  7073. {
  7074. GGML_ASSERT(false);
  7075. } break;
  7076. }
  7077. }
  7078. // ggml_compute_forward_gelu
  7079. static void ggml_compute_forward_gelu_f32(
  7080. const struct ggml_compute_params * params,
  7081. const struct ggml_tensor * src0,
  7082. struct ggml_tensor * dst) {
  7083. GGML_ASSERT(ggml_is_contiguous(src0));
  7084. GGML_ASSERT(ggml_is_contiguous(dst));
  7085. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7086. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7087. return;
  7088. }
  7089. const int ith = params->ith;
  7090. const int nth = params->nth;
  7091. const int nc = src0->ne[0];
  7092. const int nr = ggml_nrows(src0);
  7093. // rows per thread
  7094. const int dr = (nr + nth - 1)/nth;
  7095. // row range for this thread
  7096. const int ir0 = dr*ith;
  7097. const int ir1 = MIN(ir0 + dr, nr);
  7098. for (int i1 = ir0; i1 < ir1; i1++) {
  7099. ggml_vec_gelu_f32(nc,
  7100. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7101. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7102. #ifndef NDEBUG
  7103. for (int k = 0; k < nc; k++) {
  7104. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7105. UNUSED(x);
  7106. assert(!isnan(x));
  7107. assert(!isinf(x));
  7108. }
  7109. #endif
  7110. }
  7111. }
  7112. static void ggml_compute_forward_gelu(
  7113. const struct ggml_compute_params * params,
  7114. const struct ggml_tensor * src0,
  7115. struct ggml_tensor * dst) {
  7116. switch (src0->type) {
  7117. case GGML_TYPE_F32:
  7118. {
  7119. ggml_compute_forward_gelu_f32(params, src0, dst);
  7120. } break;
  7121. default:
  7122. {
  7123. GGML_ASSERT(false);
  7124. } break;
  7125. }
  7126. //printf("XXXXXXXX gelu\n");
  7127. }
  7128. // ggml_compute_forward_silu
  7129. static void ggml_compute_forward_silu_f32(
  7130. const struct ggml_compute_params * params,
  7131. const struct ggml_tensor * src0,
  7132. struct ggml_tensor * dst) {
  7133. GGML_ASSERT(ggml_is_contiguous(src0));
  7134. GGML_ASSERT(ggml_is_contiguous(dst));
  7135. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7136. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7137. return;
  7138. }
  7139. const int ith = params->ith;
  7140. const int nth = params->nth;
  7141. const int nc = src0->ne[0];
  7142. const int nr = ggml_nrows(src0);
  7143. // rows per thread
  7144. const int dr = (nr + nth - 1)/nth;
  7145. // row range for this thread
  7146. const int ir0 = dr*ith;
  7147. const int ir1 = MIN(ir0 + dr, nr);
  7148. for (int i1 = ir0; i1 < ir1; i1++) {
  7149. ggml_vec_silu_f32(nc,
  7150. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7151. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7152. #ifndef NDEBUG
  7153. for (int k = 0; k < nc; k++) {
  7154. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7155. UNUSED(x);
  7156. assert(!isnan(x));
  7157. assert(!isinf(x));
  7158. }
  7159. #endif
  7160. }
  7161. }
  7162. static void ggml_compute_forward_silu(
  7163. const struct ggml_compute_params * params,
  7164. const struct ggml_tensor * src0,
  7165. struct ggml_tensor * dst) {
  7166. switch (src0->type) {
  7167. case GGML_TYPE_F32:
  7168. {
  7169. ggml_compute_forward_silu_f32(params, src0, dst);
  7170. } break;
  7171. default:
  7172. {
  7173. GGML_ASSERT(false);
  7174. } break;
  7175. }
  7176. }
  7177. // ggml_compute_forward_silu_back
  7178. static void ggml_compute_forward_silu_back_f32(
  7179. const struct ggml_compute_params * params,
  7180. const struct ggml_tensor * src0,
  7181. const struct ggml_tensor * grad,
  7182. struct ggml_tensor * dst) {
  7183. GGML_ASSERT(ggml_is_contiguous(grad));
  7184. GGML_ASSERT(ggml_is_contiguous(src0));
  7185. GGML_ASSERT(ggml_is_contiguous(dst));
  7186. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7187. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7188. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7189. return;
  7190. }
  7191. const int ith = params->ith;
  7192. const int nth = params->nth;
  7193. const int nc = src0->ne[0];
  7194. const int nr = ggml_nrows(src0);
  7195. // rows per thread
  7196. const int dr = (nr + nth - 1)/nth;
  7197. // row range for this thread
  7198. const int ir0 = dr*ith;
  7199. const int ir1 = MIN(ir0 + dr, nr);
  7200. for (int i1 = ir0; i1 < ir1; i1++) {
  7201. ggml_vec_silu_backward_f32(nc,
  7202. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7203. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7204. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7205. #ifndef NDEBUG
  7206. for (int k = 0; k < nc; k++) {
  7207. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7208. UNUSED(x);
  7209. assert(!isnan(x));
  7210. assert(!isinf(x));
  7211. }
  7212. #endif
  7213. }
  7214. }
  7215. static void ggml_compute_forward_silu_back(
  7216. const struct ggml_compute_params * params,
  7217. const struct ggml_tensor * src0,
  7218. const struct ggml_tensor * grad,
  7219. struct ggml_tensor * dst) {
  7220. switch (src0->type) {
  7221. case GGML_TYPE_F32:
  7222. {
  7223. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7224. } break;
  7225. default:
  7226. {
  7227. GGML_ASSERT(false);
  7228. } break;
  7229. }
  7230. }
  7231. // ggml_compute_forward_norm
  7232. static void ggml_compute_forward_norm_f32(
  7233. const struct ggml_compute_params * params,
  7234. const struct ggml_tensor * src0,
  7235. struct ggml_tensor * dst) {
  7236. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7237. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7238. return;
  7239. }
  7240. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7241. const int ith = params->ith;
  7242. const int nth = params->nth;
  7243. const int64_t ne00 = src0->ne[0];
  7244. const int64_t ne01 = src0->ne[1];
  7245. const int64_t ne02 = src0->ne[2];
  7246. const int64_t ne03 = src0->ne[3];
  7247. const size_t nb01 = src0->nb[1];
  7248. const size_t nb02 = src0->nb[2];
  7249. const size_t nb03 = src0->nb[3];
  7250. const size_t nb1 = dst->nb[1];
  7251. const size_t nb2 = dst->nb[2];
  7252. const size_t nb3 = dst->nb[3];
  7253. const float eps = 1e-5f; // TODO: make this a parameter
  7254. // TODO: optimize
  7255. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7256. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7257. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7258. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7259. ggml_float sum = 0.0;
  7260. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7261. sum += (ggml_float)x[i00];
  7262. }
  7263. float mean = sum/ne00;
  7264. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7265. ggml_float sum2 = 0.0;
  7266. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7267. float v = x[i00] - mean;
  7268. y[i00] = v;
  7269. sum2 += (ggml_float)(v*v);
  7270. }
  7271. float variance = sum2/ne00;
  7272. const float scale = 1.0f/sqrtf(variance + eps);
  7273. ggml_vec_scale_f32(ne00, y, scale);
  7274. }
  7275. }
  7276. }
  7277. }
  7278. static void ggml_compute_forward_norm(
  7279. const struct ggml_compute_params * params,
  7280. const struct ggml_tensor * src0,
  7281. struct ggml_tensor * dst) {
  7282. switch (src0->type) {
  7283. case GGML_TYPE_F32:
  7284. {
  7285. ggml_compute_forward_norm_f32(params, src0, dst);
  7286. } break;
  7287. default:
  7288. {
  7289. GGML_ASSERT(false);
  7290. } break;
  7291. }
  7292. }
  7293. static void ggml_compute_forward_rms_norm_f32(
  7294. const struct ggml_compute_params * params,
  7295. const struct ggml_tensor * src0,
  7296. struct ggml_tensor * dst) {
  7297. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7298. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7299. return;
  7300. }
  7301. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7302. const int ith = params->ith;
  7303. const int nth = params->nth;
  7304. const int64_t ne00 = src0->ne[0];
  7305. const int64_t ne01 = src0->ne[1];
  7306. const int64_t ne02 = src0->ne[2];
  7307. const int64_t ne03 = src0->ne[3];
  7308. const size_t nb01 = src0->nb[1];
  7309. const size_t nb02 = src0->nb[2];
  7310. const size_t nb03 = src0->nb[3];
  7311. const size_t nb1 = dst->nb[1];
  7312. const size_t nb2 = dst->nb[2];
  7313. const size_t nb3 = dst->nb[3];
  7314. const float eps = 1e-6f; // TODO: make this a parameter
  7315. // TODO: optimize
  7316. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7317. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7318. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7319. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7320. ggml_float sum = 0.0;
  7321. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7322. sum += (ggml_float)(x[i00] * x[i00]);
  7323. }
  7324. float mean = sum/ne00;
  7325. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7326. memcpy(y, x, ne00 * sizeof(float));
  7327. // for (int i00 = 0; i00 < ne00; i00++) {
  7328. // y[i00] = x[i00];
  7329. // }
  7330. const float scale = 1.0f/sqrtf(mean + eps);
  7331. ggml_vec_scale_f32(ne00, y, scale);
  7332. }
  7333. }
  7334. }
  7335. }
  7336. static void ggml_compute_forward_rms_norm(
  7337. const struct ggml_compute_params * params,
  7338. const struct ggml_tensor * src0,
  7339. struct ggml_tensor * dst) {
  7340. switch (src0->type) {
  7341. case GGML_TYPE_F32:
  7342. {
  7343. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7344. } break;
  7345. default:
  7346. {
  7347. GGML_ASSERT(false);
  7348. } break;
  7349. }
  7350. }
  7351. static void ggml_compute_forward_rms_norm_back_f32(
  7352. const struct ggml_compute_params * params,
  7353. const struct ggml_tensor * src0,
  7354. const struct ggml_tensor * src1,
  7355. struct ggml_tensor * dst) {
  7356. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7357. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7358. return;
  7359. }
  7360. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7361. const int ith = params->ith;
  7362. const int nth = params->nth;
  7363. const int64_t ne00 = src0->ne[0];
  7364. const int64_t ne01 = src0->ne[1];
  7365. const int64_t ne02 = src0->ne[2];
  7366. const int64_t ne03 = src0->ne[3];
  7367. const size_t nb01 = src0->nb[1];
  7368. const size_t nb02 = src0->nb[2];
  7369. const size_t nb03 = src0->nb[3];
  7370. const size_t nb11 = src1->nb[1];
  7371. const size_t nb12 = src1->nb[2];
  7372. const size_t nb13 = src1->nb[3];
  7373. const size_t nb1 = dst->nb[1];
  7374. const size_t nb2 = dst->nb[2];
  7375. const size_t nb3 = dst->nb[3];
  7376. const float eps = 1e-6f; // TODO: make this a parameter
  7377. // TODO: optimize
  7378. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7379. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7380. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7381. // src1 is same shape as src0 => same indices
  7382. const int64_t i11 = i01;
  7383. const int64_t i12 = i02;
  7384. const int64_t i13 = i03;
  7385. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7386. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7387. ggml_float sum_xx = 0.0;
  7388. ggml_float sum_xdz = 0.0;
  7389. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7390. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7391. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7392. }
  7393. //const float mean = (float)(sum_xx)/ne00;
  7394. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7395. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7396. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7397. // we could cache rms from forward pass to improve performance.
  7398. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7399. //const float rms = sqrtf(mean_eps);
  7400. const float rrms = 1.0f / sqrtf(mean_eps);
  7401. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7402. {
  7403. // z = rms_norm(x)
  7404. //
  7405. // rms_norm(src0) =
  7406. // scale(
  7407. // src0,
  7408. // div(
  7409. // 1,
  7410. // sqrt(
  7411. // add(
  7412. // scale(
  7413. // sum(
  7414. // sqr(
  7415. // src0)),
  7416. // (1.0/N)),
  7417. // eps))));
  7418. // postorder:
  7419. // ## op args grad
  7420. // 00 param src0 grad[#00]
  7421. // 01 const 1
  7422. // 02 sqr (#00) grad[#02]
  7423. // 03 sum (#02) grad[#03]
  7424. // 04 const 1/N
  7425. // 05 scale (#03, #04) grad[#05]
  7426. // 06 const eps
  7427. // 07 add (#05, #06) grad[#07]
  7428. // 08 sqrt (#07) grad[#08]
  7429. // 09 div (#01,#08) grad[#09]
  7430. // 10 scale (#00,#09) grad[#10]
  7431. //
  7432. // backward pass, given grad[#10]
  7433. // #10: scale
  7434. // grad[#00] += scale(grad[#10],#09)
  7435. // grad[#09] += sum(mul(grad[#10],#00))
  7436. // #09: div
  7437. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7438. // #08: sqrt
  7439. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7440. // #07: add
  7441. // grad[#05] += grad[#07]
  7442. // #05: scale
  7443. // grad[#03] += scale(grad[#05],#04)
  7444. // #03: sum
  7445. // grad[#02] += repeat(grad[#03], #02)
  7446. // #02:
  7447. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7448. //
  7449. // substitute and simplify:
  7450. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7451. // grad[#02] = repeat(grad[#03], #02)
  7452. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7453. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7454. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7455. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7456. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7457. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7458. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7459. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7460. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7461. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7462. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7463. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7464. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7465. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7466. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7467. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7468. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7469. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7470. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7471. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7472. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7473. // a = b*c + d*e
  7474. // a = b*c*f/f + d*e*f/f
  7475. // a = (b*c*f + d*e*f)*(1/f)
  7476. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  7477. // a = (b + d*e/c)*c
  7478. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  7479. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  7480. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  7481. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  7482. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  7483. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  7484. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  7485. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  7486. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7487. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7488. }
  7489. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7490. // post-order:
  7491. // dx := x
  7492. // dx := scale(dx,-mean_xdz/mean_eps)
  7493. // dx := add(dx, dz)
  7494. // dx := scale(dx, rrms)
  7495. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7496. ggml_vec_cpy_f32 (ne00, dx, x);
  7497. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  7498. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  7499. ggml_vec_acc_f32 (ne00, dx, dz);
  7500. ggml_vec_scale_f32(ne00, dx, rrms);
  7501. }
  7502. }
  7503. }
  7504. }
  7505. static void ggml_compute_forward_rms_norm_back(
  7506. const struct ggml_compute_params * params,
  7507. const struct ggml_tensor * src0,
  7508. const struct ggml_tensor * src1,
  7509. struct ggml_tensor * dst) {
  7510. switch (src0->type) {
  7511. case GGML_TYPE_F32:
  7512. {
  7513. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  7514. } break;
  7515. default:
  7516. {
  7517. GGML_ASSERT(false);
  7518. } break;
  7519. }
  7520. }
  7521. // ggml_compute_forward_mul_mat
  7522. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7523. // helper function to determine if it is better to use BLAS or not
  7524. // for large matrices, BLAS is faster
  7525. static bool ggml_compute_forward_mul_mat_use_blas(
  7526. const struct ggml_tensor * src0,
  7527. const struct ggml_tensor * src1,
  7528. struct ggml_tensor * dst) {
  7529. //const int64_t ne00 = src0->ne[0];
  7530. //const int64_t ne01 = src0->ne[1];
  7531. const int64_t ne10 = src1->ne[0];
  7532. const int64_t ne0 = dst->ne[0];
  7533. const int64_t ne1 = dst->ne[1];
  7534. // TODO: find the optimal values for these
  7535. if (ggml_is_contiguous(src0) &&
  7536. ggml_is_contiguous(src1) &&
  7537. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  7538. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  7539. return true;
  7540. }
  7541. return false;
  7542. }
  7543. #endif
  7544. static void ggml_compute_forward_mul_mat_f32(
  7545. const struct ggml_compute_params * params,
  7546. const struct ggml_tensor * src0,
  7547. const struct ggml_tensor * src1,
  7548. struct ggml_tensor * dst) {
  7549. int64_t t0 = ggml_perf_time_us();
  7550. UNUSED(t0);
  7551. const int64_t ne00 = src0->ne[0];
  7552. const int64_t ne01 = src0->ne[1];
  7553. const int64_t ne02 = src0->ne[2];
  7554. const int64_t ne03 = src0->ne[3];
  7555. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7556. const int64_t ne10 = src1->ne[0];
  7557. #endif
  7558. const int64_t ne11 = src1->ne[1];
  7559. #ifndef NDEBUG
  7560. const int64_t ne12 = src1->ne[2];
  7561. const int64_t ne13 = src1->ne[3];
  7562. const int64_t ne0 = dst->ne[0];
  7563. const int64_t ne1 = dst->ne[1];
  7564. const int64_t ne2 = dst->ne[2];
  7565. const int64_t ne3 = dst->ne[3];
  7566. const int nb00 = src0->nb[0];
  7567. #endif
  7568. const int nb01 = src0->nb[1];
  7569. const int nb02 = src0->nb[2];
  7570. const int nb03 = src0->nb[3];
  7571. #ifndef NDEBUG
  7572. const int nb10 = src1->nb[0];
  7573. #endif
  7574. const int nb11 = src1->nb[1];
  7575. const int nb12 = src1->nb[2];
  7576. const int nb13 = src1->nb[3];
  7577. const int nb0 = dst->nb[0];
  7578. const int nb1 = dst->nb[1];
  7579. const int nb2 = dst->nb[2];
  7580. const int nb3 = dst->nb[3];
  7581. const int ith = params->ith;
  7582. const int nth = params->nth;
  7583. assert(ne02 == ne12);
  7584. assert(ne03 == ne13);
  7585. assert(ne2 == ne12);
  7586. assert(ne3 == ne13);
  7587. // we don't support permuted src0 or src1
  7588. assert(nb00 == sizeof(float));
  7589. assert(nb10 == sizeof(float));
  7590. // dst cannot be transposed or permuted
  7591. assert(nb0 == sizeof(float));
  7592. assert(nb0 <= nb1);
  7593. assert(nb1 <= nb2);
  7594. assert(nb2 <= nb3);
  7595. assert(ne0 == ne01);
  7596. assert(ne1 == ne11);
  7597. assert(ne2 == ne02);
  7598. assert(ne3 == ne03);
  7599. // nb01 >= nb00 - src0 is not transposed
  7600. // compute by src0 rows
  7601. #if defined(GGML_USE_CUBLAS)
  7602. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  7603. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7604. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7605. }
  7606. return;
  7607. }
  7608. #endif
  7609. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7610. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7611. if (params->ith != 0) {
  7612. return;
  7613. }
  7614. if (params->type == GGML_TASK_INIT) {
  7615. return;
  7616. }
  7617. if (params->type == GGML_TASK_FINALIZE) {
  7618. return;
  7619. }
  7620. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7621. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7622. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  7623. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7624. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7625. #if defined(GGML_USE_CLBLAST)
  7626. // zT = y * xT
  7627. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  7628. ne11, ne01, ne10,
  7629. 1.0f, y, ne10,
  7630. x, ne10,
  7631. 0.0f, d, ne01,
  7632. GGML_TYPE_F32);
  7633. #else
  7634. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7635. ne11, ne01, ne10,
  7636. 1.0f, y, ne10,
  7637. x, ne00,
  7638. 0.0f, d, ne01);
  7639. #endif
  7640. }
  7641. }
  7642. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7643. return;
  7644. }
  7645. #endif
  7646. if (params->type == GGML_TASK_INIT) {
  7647. return;
  7648. }
  7649. if (params->type == GGML_TASK_FINALIZE) {
  7650. return;
  7651. }
  7652. // parallelize by src0 rows using ggml_vec_dot_f32
  7653. // total rows in src0
  7654. const int nr = ne01*ne02*ne03;
  7655. // rows per thread
  7656. const int dr = (nr + nth - 1)/nth;
  7657. // row range for this thread
  7658. const int ir0 = dr*ith;
  7659. const int ir1 = MIN(ir0 + dr, nr);
  7660. for (int ir = ir0; ir < ir1; ++ir) {
  7661. // src0 indices
  7662. const int i03 = ir/(ne02*ne01);
  7663. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7664. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7665. for (int64_t ic = 0; ic < ne11; ++ic) {
  7666. // src1 indices
  7667. const int i13 = i03;
  7668. const int i12 = i02;
  7669. const int i11 = ic;
  7670. // dst indices
  7671. const int i0 = i01;
  7672. const int i1 = i11;
  7673. const int i2 = i02;
  7674. const int i3 = i03;
  7675. ggml_vec_dot_f32(ne00,
  7676. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7677. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  7678. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  7679. }
  7680. }
  7681. //int64_t t1 = ggml_perf_time_us();
  7682. //static int64_t acc = 0;
  7683. //acc += t1 - t0;
  7684. //if (t1 - t0 > 10) {
  7685. // printf("\n");
  7686. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7687. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7688. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7689. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  7690. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7691. //}
  7692. }
  7693. static void ggml_compute_forward_mul_mat_f16_f32(
  7694. const struct ggml_compute_params * params,
  7695. const struct ggml_tensor * src0,
  7696. const struct ggml_tensor * src1,
  7697. struct ggml_tensor * dst) {
  7698. int64_t t0 = ggml_perf_time_us();
  7699. UNUSED(t0);
  7700. const int64_t ne00 = src0->ne[0];
  7701. const int64_t ne01 = src0->ne[1];
  7702. const int64_t ne02 = src0->ne[2];
  7703. const int64_t ne03 = src0->ne[3];
  7704. const int64_t ne10 = src1->ne[0];
  7705. const int64_t ne11 = src1->ne[1];
  7706. const int64_t ne12 = src1->ne[2];
  7707. const int64_t ne13 = src1->ne[3];
  7708. const int64_t ne0 = dst->ne[0];
  7709. const int64_t ne1 = dst->ne[1];
  7710. const int64_t ne2 = dst->ne[2];
  7711. const int64_t ne3 = dst->ne[3];
  7712. //const int64_t ne = ne0*ne1*ne2*ne3;
  7713. const int nb00 = src0->nb[0];
  7714. const int nb01 = src0->nb[1];
  7715. const int nb02 = src0->nb[2];
  7716. const int nb03 = src0->nb[3];
  7717. const int nb10 = src1->nb[0];
  7718. const int nb11 = src1->nb[1];
  7719. const int nb12 = src1->nb[2];
  7720. const int nb13 = src1->nb[3];
  7721. const int nb0 = dst->nb[0];
  7722. const int nb1 = dst->nb[1];
  7723. const int nb2 = dst->nb[2];
  7724. const int nb3 = dst->nb[3];
  7725. const int ith = params->ith;
  7726. const int nth = params->nth;
  7727. GGML_ASSERT(ne02 == ne12);
  7728. GGML_ASSERT(ne03 == ne13);
  7729. GGML_ASSERT(ne2 == ne12);
  7730. GGML_ASSERT(ne3 == ne13);
  7731. // TODO: we don't support permuted src0
  7732. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7733. // dst cannot be transposed or permuted
  7734. GGML_ASSERT(nb0 == sizeof(float));
  7735. GGML_ASSERT(nb0 <= nb1);
  7736. GGML_ASSERT(nb1 <= nb2);
  7737. GGML_ASSERT(nb2 <= nb3);
  7738. GGML_ASSERT(ne0 == ne01);
  7739. GGML_ASSERT(ne1 == ne11);
  7740. GGML_ASSERT(ne2 == ne02);
  7741. GGML_ASSERT(ne3 == ne03);
  7742. // nb01 >= nb00 - src0 is not transposed
  7743. // compute by src0 rows
  7744. #if defined(GGML_USE_CUBLAS)
  7745. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  7746. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7747. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7748. }
  7749. return;
  7750. }
  7751. #endif
  7752. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7753. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7754. GGML_ASSERT(nb10 == sizeof(float));
  7755. if (params->ith != 0) {
  7756. return;
  7757. }
  7758. if (params->type == GGML_TASK_INIT) {
  7759. return;
  7760. }
  7761. if (params->type == GGML_TASK_FINALIZE) {
  7762. return;
  7763. }
  7764. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7765. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7766. float * const wdata = params->wdata;
  7767. {
  7768. size_t id = 0;
  7769. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  7770. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  7771. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  7772. }
  7773. }
  7774. assert(id*sizeof(float) <= params->wsize);
  7775. }
  7776. #if defined(GGML_USE_CLBLAST)
  7777. const float * x = wdata;
  7778. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7779. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7780. // zT = y * xT
  7781. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  7782. ne11, ne01, ne10,
  7783. 1.0f, y, ne10,
  7784. x, ne10,
  7785. 0.0f, d, ne01,
  7786. GGML_TYPE_F32);
  7787. #else
  7788. const float * x = wdata;
  7789. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7790. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7791. // zT = y * xT
  7792. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7793. ne11, ne01, ne10,
  7794. 1.0f, y, ne10,
  7795. x, ne00,
  7796. 0.0f, d, ne01);
  7797. #endif
  7798. }
  7799. }
  7800. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  7801. return;
  7802. }
  7803. #endif
  7804. if (params->type == GGML_TASK_INIT) {
  7805. ggml_fp16_t * const wdata = params->wdata;
  7806. size_t id = 0;
  7807. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7808. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7809. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7810. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  7811. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  7812. }
  7813. }
  7814. }
  7815. }
  7816. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  7817. return;
  7818. }
  7819. if (params->type == GGML_TASK_FINALIZE) {
  7820. return;
  7821. }
  7822. // fp16 -> half the size, so divide by 2
  7823. // TODO: do not support transposed src1
  7824. assert(nb10/2 == sizeof(ggml_fp16_t));
  7825. // parallelize by src0 rows using ggml_vec_dot_f16
  7826. // total rows in src0
  7827. const int nr = ne01*ne02*ne03;
  7828. // rows per thread
  7829. const int dr = (nr + nth - 1)/nth;
  7830. // row range for this thread
  7831. const int ir0 = dr*ith;
  7832. const int ir1 = MIN(ir0 + dr, nr);
  7833. ggml_fp16_t * wdata = params->wdata;
  7834. for (int ir = ir0; ir < ir1; ++ir) {
  7835. // src0 indices
  7836. const int i03 = ir/(ne02*ne01);
  7837. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7838. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7839. const int i13 = i03;
  7840. const int i12 = i02;
  7841. const int i0 = i01;
  7842. const int i2 = i02;
  7843. const int i3 = i03;
  7844. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7845. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  7846. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  7847. for (int64_t ic = 0; ic < ne11; ++ic) {
  7848. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  7849. }
  7850. }
  7851. //int64_t t1 = ggml_time_us();
  7852. //static int64_t acc = 0;
  7853. //acc += t1 - t0;
  7854. //if (t1 - t0 > 10) {
  7855. // printf("\n");
  7856. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7857. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7858. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7859. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7860. //}
  7861. }
  7862. static void ggml_compute_forward_mul_mat_q_f32(
  7863. const struct ggml_compute_params * params,
  7864. const struct ggml_tensor * src0,
  7865. const struct ggml_tensor * src1,
  7866. struct ggml_tensor * dst) {
  7867. int64_t t0 = ggml_perf_time_us();
  7868. UNUSED(t0);
  7869. const int64_t ne00 = src0->ne[0];
  7870. const int64_t ne01 = src0->ne[1];
  7871. const int64_t ne02 = src0->ne[2];
  7872. const int64_t ne03 = src0->ne[3];
  7873. const int64_t ne10 = src1->ne[0];
  7874. const int64_t ne11 = src1->ne[1];
  7875. const int64_t ne12 = src1->ne[2];
  7876. const int64_t ne13 = src1->ne[3];
  7877. const int64_t ne0 = dst->ne[0];
  7878. const int64_t ne1 = dst->ne[1];
  7879. const int64_t ne2 = dst->ne[2];
  7880. const int64_t ne3 = dst->ne[3];
  7881. const int nb00 = src0->nb[0];
  7882. const int nb01 = src0->nb[1];
  7883. const int nb02 = src0->nb[2];
  7884. const int nb03 = src0->nb[3];
  7885. const int nb10 = src1->nb[0];
  7886. const int nb11 = src1->nb[1];
  7887. const int nb12 = src1->nb[2];
  7888. const int nb13 = src1->nb[3];
  7889. const int nb0 = dst->nb[0];
  7890. const int nb1 = dst->nb[1];
  7891. const int nb2 = dst->nb[2];
  7892. const int nb3 = dst->nb[3];
  7893. const int ith = params->ith;
  7894. const int nth = params->nth;
  7895. GGML_ASSERT(ne02 == ne12);
  7896. GGML_ASSERT(ne03 == ne13);
  7897. GGML_ASSERT(ne2 == ne12);
  7898. GGML_ASSERT(ne3 == ne13);
  7899. const enum ggml_type type = src0->type;
  7900. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  7901. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  7902. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  7903. // we don't support permuted src0 or src1
  7904. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  7905. GGML_ASSERT(nb10 == sizeof(float));
  7906. // dst cannot be transposed or permuted
  7907. GGML_ASSERT(nb0 == sizeof(float));
  7908. GGML_ASSERT(nb0 <= nb1);
  7909. GGML_ASSERT(nb1 <= nb2);
  7910. GGML_ASSERT(nb2 <= nb3);
  7911. GGML_ASSERT(ne0 == ne01);
  7912. GGML_ASSERT(ne1 == ne11);
  7913. GGML_ASSERT(ne2 == ne02);
  7914. GGML_ASSERT(ne3 == ne03);
  7915. // nb01 >= nb00 - src0 is not transposed
  7916. // compute by src0 rows
  7917. #if defined(GGML_USE_CUBLAS)
  7918. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  7919. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7920. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7921. }
  7922. return;
  7923. }
  7924. #endif
  7925. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7926. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7927. if (params->ith != 0) {
  7928. return;
  7929. }
  7930. if (params->type == GGML_TASK_INIT) {
  7931. return;
  7932. }
  7933. if (params->type == GGML_TASK_FINALIZE) {
  7934. return;
  7935. }
  7936. float * const wdata = params->wdata;
  7937. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  7938. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7939. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7940. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7941. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7942. #if defined(GGML_USE_CLBLAST)
  7943. const void* x = (char *) src0->data + i03*nb03 + i02*nb02;
  7944. #else
  7945. {
  7946. size_t id = 0;
  7947. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  7948. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  7949. id += ne00;
  7950. }
  7951. assert(id*sizeof(float) <= params->wsize);
  7952. }
  7953. const float * x = wdata;
  7954. #endif
  7955. #if defined(GGML_USE_CLBLAST)
  7956. // zT = y * xT
  7957. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  7958. ne11, ne01, ne10,
  7959. 1.0f, y, ne10,
  7960. x, ne10,
  7961. 0.0f, d, ne01,
  7962. type);
  7963. #else
  7964. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7965. ne11, ne01, ne10,
  7966. 1.0f, y, ne10,
  7967. x, ne00,
  7968. 0.0f, d, ne01);
  7969. #endif
  7970. }
  7971. }
  7972. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7973. return;
  7974. }
  7975. #endif
  7976. if (params->type == GGML_TASK_INIT) {
  7977. char * wdata = params->wdata;
  7978. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  7979. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7980. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7981. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7982. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  7983. wdata += row_size;
  7984. }
  7985. }
  7986. }
  7987. return;
  7988. }
  7989. if (params->type == GGML_TASK_FINALIZE) {
  7990. return;
  7991. }
  7992. // parallelize by src0 rows using ggml_vec_dot_q
  7993. // total rows in src0
  7994. const int nr = ne01*ne02*ne03;
  7995. // rows per thread
  7996. const int dr = (nr + nth - 1)/nth;
  7997. // row range for this thread
  7998. const int ir0 = dr*ith;
  7999. const int ir1 = MIN(ir0 + dr, nr);
  8000. void * wdata = params->wdata;
  8001. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8002. for (int ir = ir0; ir < ir1; ++ir) {
  8003. // src0 indices
  8004. const int i03 = ir/(ne02*ne01);
  8005. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8006. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8007. const int i13 = i03;
  8008. const int i12 = i02;
  8009. const int i0 = i01;
  8010. const int i2 = i02;
  8011. const int i3 = i03;
  8012. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8013. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  8014. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8015. assert(ne00 % 32 == 0);
  8016. for (int64_t ic = 0; ic < ne11; ++ic) {
  8017. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  8018. }
  8019. }
  8020. //int64_t t1 = ggml_time_us();
  8021. //static int64_t acc = 0;
  8022. //acc += t1 - t0;
  8023. //if (t1 - t0 > 10) {
  8024. // printf("\n");
  8025. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8026. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8027. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8028. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8029. //}
  8030. }
  8031. static void ggml_compute_forward_mul_mat(
  8032. const struct ggml_compute_params * params,
  8033. const struct ggml_tensor * src0,
  8034. const struct ggml_tensor * src1,
  8035. struct ggml_tensor * dst) {
  8036. switch (src0->type) {
  8037. case GGML_TYPE_Q4_0:
  8038. case GGML_TYPE_Q4_1:
  8039. case GGML_TYPE_Q5_0:
  8040. case GGML_TYPE_Q5_1:
  8041. case GGML_TYPE_Q8_0:
  8042. case GGML_TYPE_Q8_1:
  8043. {
  8044. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  8045. } break;
  8046. case GGML_TYPE_F16:
  8047. {
  8048. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  8049. } break;
  8050. case GGML_TYPE_F32:
  8051. {
  8052. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  8053. } break;
  8054. default:
  8055. {
  8056. GGML_ASSERT(false);
  8057. } break;
  8058. }
  8059. }
  8060. // ggml_compute_forward_scale
  8061. static void ggml_compute_forward_scale_f32(
  8062. const struct ggml_compute_params * params,
  8063. const struct ggml_tensor * src0,
  8064. const struct ggml_tensor * src1,
  8065. struct ggml_tensor * dst) {
  8066. GGML_ASSERT(ggml_is_contiguous(src0));
  8067. GGML_ASSERT(ggml_is_contiguous(dst));
  8068. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8069. GGML_ASSERT(ggml_is_scalar(src1));
  8070. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8071. return;
  8072. }
  8073. // scale factor
  8074. const float v = *(float *) src1->data;
  8075. const int ith = params->ith;
  8076. const int nth = params->nth;
  8077. const int nc = src0->ne[0];
  8078. const int nr = ggml_nrows(src0);
  8079. // rows per thread
  8080. const int dr = (nr + nth - 1)/nth;
  8081. // row range for this thread
  8082. const int ir0 = dr*ith;
  8083. const int ir1 = MIN(ir0 + dr, nr);
  8084. const size_t nb01 = src0->nb[1];
  8085. const size_t nb1 = dst->nb[1];
  8086. for (int i1 = ir0; i1 < ir1; i1++) {
  8087. if (dst->data != src0->data) {
  8088. // src0 is same shape as dst => same indices
  8089. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8090. }
  8091. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8092. }
  8093. }
  8094. static void ggml_compute_forward_scale(
  8095. const struct ggml_compute_params * params,
  8096. const struct ggml_tensor * src0,
  8097. const struct ggml_tensor * src1,
  8098. struct ggml_tensor * dst) {
  8099. switch (src0->type) {
  8100. case GGML_TYPE_F32:
  8101. {
  8102. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8103. } break;
  8104. default:
  8105. {
  8106. GGML_ASSERT(false);
  8107. } break;
  8108. }
  8109. }
  8110. // ggml_compute_forward_set
  8111. static void ggml_compute_forward_set_f32(
  8112. const struct ggml_compute_params * params,
  8113. const struct ggml_tensor * src0,
  8114. const struct ggml_tensor * src1,
  8115. const struct ggml_tensor * opt0,
  8116. struct ggml_tensor * dst) {
  8117. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8118. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8119. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  8120. GGML_ASSERT(ggml_nelements(opt0) == 5);
  8121. // view src0 and dst with these strides and data offset inbytes during set
  8122. // nb0 is implicitely element_size because src0 and dst are contiguous
  8123. size_t nb1 = ((int32_t *) opt0->data)[0];
  8124. size_t nb2 = ((int32_t *) opt0->data)[1];
  8125. size_t nb3 = ((int32_t *) opt0->data)[2];
  8126. size_t offset = ((int32_t *) opt0->data)[3];
  8127. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  8128. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8129. // memcpy needs to be synchronized across threads to avoid race conditions.
  8130. // => do it in INIT phase
  8131. memcpy(
  8132. ((char *) dst->data),
  8133. ((char *) src0->data),
  8134. ggml_nbytes(dst));
  8135. }
  8136. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8137. return;
  8138. }
  8139. const int ith = params->ith;
  8140. const int nth = params->nth;
  8141. const int nr = ggml_nrows(src1);
  8142. const int nc = src1->ne[0];
  8143. const int64_t ne10 = src1->ne[0];
  8144. const int64_t ne11 = src1->ne[1];
  8145. const int64_t ne12 = src1->ne[2];
  8146. const int64_t ne13 = src1->ne[3];
  8147. const size_t nb10 = src1->nb[0];
  8148. const size_t nb11 = src1->nb[1];
  8149. const size_t nb12 = src1->nb[2];
  8150. const size_t nb13 = src1->nb[3];
  8151. // src0 and dst as viewed during set
  8152. const size_t nb0 = ggml_element_size(src0);
  8153. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8154. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8155. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8156. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8157. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 < ggml_nbytes(dst));
  8158. GGML_ASSERT(nb10 == sizeof(float));
  8159. // rows per thread
  8160. const int dr = (nr + nth - 1)/nth;
  8161. // row range for this thread
  8162. const int ir0 = dr*ith;
  8163. const int ir1 = MIN(ir0 + dr, nr);
  8164. for (int ir = ir0; ir < ir1; ++ir) {
  8165. // src0 and dst are viewed with shape of src1 and offset
  8166. // => same indices
  8167. const int i3 = ir/(ne12*ne11);
  8168. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8169. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8170. ggml_vec_cpy_f32(nc,
  8171. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8172. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8173. }
  8174. }
  8175. static void ggml_compute_forward_set(
  8176. const struct ggml_compute_params * params,
  8177. const struct ggml_tensor * src0,
  8178. const struct ggml_tensor * src1,
  8179. const struct ggml_tensor * opt0,
  8180. struct ggml_tensor * dst) {
  8181. switch (src0->type) {
  8182. case GGML_TYPE_F32:
  8183. {
  8184. ggml_compute_forward_set_f32(params, src0, src1, opt0, dst);
  8185. } break;
  8186. case GGML_TYPE_F16:
  8187. case GGML_TYPE_Q4_0:
  8188. case GGML_TYPE_Q4_1:
  8189. case GGML_TYPE_Q5_0:
  8190. case GGML_TYPE_Q5_1:
  8191. case GGML_TYPE_Q8_0:
  8192. case GGML_TYPE_Q8_1:
  8193. default:
  8194. {
  8195. GGML_ASSERT(false);
  8196. } break;
  8197. }
  8198. }
  8199. // ggml_compute_forward_cpy
  8200. static void ggml_compute_forward_cpy(
  8201. const struct ggml_compute_params * params,
  8202. const struct ggml_tensor * src0,
  8203. struct ggml_tensor * dst) {
  8204. ggml_compute_forward_dup(params, src0, dst);
  8205. }
  8206. // ggml_compute_forward_cont
  8207. static void ggml_compute_forward_cont(
  8208. const struct ggml_compute_params * params,
  8209. const struct ggml_tensor * src0,
  8210. struct ggml_tensor * dst) {
  8211. ggml_compute_forward_dup(params, src0, dst);
  8212. }
  8213. // ggml_compute_forward_reshape
  8214. static void ggml_compute_forward_reshape(
  8215. const struct ggml_compute_params * params,
  8216. const struct ggml_tensor * src0,
  8217. struct ggml_tensor * dst) {
  8218. // NOP
  8219. UNUSED(params);
  8220. UNUSED(src0);
  8221. UNUSED(dst);
  8222. }
  8223. // ggml_compute_forward_view
  8224. static void ggml_compute_forward_view(
  8225. const struct ggml_compute_params * params,
  8226. const struct ggml_tensor * src0) {
  8227. // NOP
  8228. UNUSED(params);
  8229. UNUSED(src0);
  8230. }
  8231. // ggml_compute_forward_permute
  8232. static void ggml_compute_forward_permute(
  8233. const struct ggml_compute_params * params,
  8234. const struct ggml_tensor * src0) {
  8235. // NOP
  8236. UNUSED(params);
  8237. UNUSED(src0);
  8238. }
  8239. // ggml_compute_forward_transpose
  8240. static void ggml_compute_forward_transpose(
  8241. const struct ggml_compute_params * params,
  8242. const struct ggml_tensor * src0) {
  8243. // NOP
  8244. UNUSED(params);
  8245. UNUSED(src0);
  8246. }
  8247. // ggml_compute_forward_get_rows
  8248. static void ggml_compute_forward_get_rows_q(
  8249. const struct ggml_compute_params * params,
  8250. const struct ggml_tensor * src0,
  8251. const struct ggml_tensor * src1,
  8252. struct ggml_tensor * dst) {
  8253. assert(params->ith == 0);
  8254. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8255. return;
  8256. }
  8257. const int nc = src0->ne[0];
  8258. const int nr = ggml_nelements(src1);
  8259. const enum ggml_type type = src0->type;
  8260. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8261. assert( dst->ne[0] == nc);
  8262. assert( dst->ne[1] == nr);
  8263. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  8264. for (int i = 0; i < nr; ++i) {
  8265. const int r = ((int32_t *) src1->data)[i];
  8266. dequantize_row_q(
  8267. (const void *) ((char *) src0->data + r*src0->nb[1]),
  8268. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  8269. }
  8270. }
  8271. static void ggml_compute_forward_get_rows_f16(
  8272. const struct ggml_compute_params * params,
  8273. const struct ggml_tensor * src0,
  8274. const struct ggml_tensor * src1,
  8275. struct ggml_tensor * dst) {
  8276. assert(params->ith == 0);
  8277. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8278. return;
  8279. }
  8280. const int nc = src0->ne[0];
  8281. const int nr = ggml_nelements(src1);
  8282. assert( dst->ne[0] == nc);
  8283. assert( dst->ne[1] == nr);
  8284. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8285. for (int i = 0; i < nr; ++i) {
  8286. const int r = ((int32_t *) src1->data)[i];
  8287. for (int j = 0; j < nc; ++j) {
  8288. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  8289. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  8290. }
  8291. }
  8292. }
  8293. static void ggml_compute_forward_get_rows_f32(
  8294. const struct ggml_compute_params * params,
  8295. const struct ggml_tensor * src0,
  8296. const struct ggml_tensor * src1,
  8297. struct ggml_tensor * dst) {
  8298. assert(params->ith == 0);
  8299. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8300. return;
  8301. }
  8302. const int nc = src0->ne[0];
  8303. const int nr = ggml_nelements(src1);
  8304. assert( dst->ne[0] == nc);
  8305. assert( dst->ne[1] == nr);
  8306. assert(src0->nb[0] == sizeof(float));
  8307. for (int i = 0; i < nr; ++i) {
  8308. const int r = ((int32_t *) src1->data)[i];
  8309. ggml_vec_cpy_f32(nc,
  8310. (float *) ((char *) dst->data + i*dst->nb[1]),
  8311. (float *) ((char *) src0->data + r*src0->nb[1]));
  8312. }
  8313. }
  8314. static void ggml_compute_forward_get_rows(
  8315. const struct ggml_compute_params * params,
  8316. const struct ggml_tensor * src0,
  8317. const struct ggml_tensor * src1,
  8318. struct ggml_tensor * dst) {
  8319. switch (src0->type) {
  8320. case GGML_TYPE_Q4_0:
  8321. case GGML_TYPE_Q4_1:
  8322. case GGML_TYPE_Q5_0:
  8323. case GGML_TYPE_Q5_1:
  8324. case GGML_TYPE_Q8_0:
  8325. case GGML_TYPE_Q8_1:
  8326. {
  8327. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8328. } break;
  8329. case GGML_TYPE_F16:
  8330. {
  8331. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8332. } break;
  8333. case GGML_TYPE_F32:
  8334. {
  8335. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8336. } break;
  8337. default:
  8338. {
  8339. GGML_ASSERT(false);
  8340. } break;
  8341. }
  8342. //static bool first = true;
  8343. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8344. //if (first) {
  8345. // first = false;
  8346. //} else {
  8347. // for (int k = 0; k < dst->ne[1]; ++k) {
  8348. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8349. // for (int i = 0; i < 16; ++i) {
  8350. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8351. // }
  8352. // printf("\n");
  8353. // }
  8354. // printf("\n");
  8355. // }
  8356. // printf("\n");
  8357. // exit(0);
  8358. //}
  8359. }
  8360. // ggml_compute_forward_get_rows_back
  8361. static void ggml_compute_forward_get_rows_back_f32_f16(
  8362. const struct ggml_compute_params * params,
  8363. const struct ggml_tensor * src0,
  8364. const struct ggml_tensor * src1,
  8365. const struct ggml_tensor * opt0,
  8366. struct ggml_tensor * dst) {
  8367. GGML_ASSERT(params->ith == 0);
  8368. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  8369. GGML_ASSERT(ggml_is_contiguous(opt0));
  8370. GGML_ASSERT(ggml_is_contiguous(dst));
  8371. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8372. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8373. return;
  8374. }
  8375. const int nc = src0->ne[0];
  8376. const int nr = ggml_nelements(src1);
  8377. GGML_ASSERT( dst->ne[0] == nc);
  8378. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  8379. for (int i = 0; i < nr; ++i) {
  8380. const int r = ((int32_t *) src1->data)[i];
  8381. for (int j = 0; j < nc; ++j) {
  8382. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  8383. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  8384. }
  8385. }
  8386. }
  8387. static void ggml_compute_forward_get_rows_back_f32(
  8388. const struct ggml_compute_params * params,
  8389. const struct ggml_tensor * src0,
  8390. const struct ggml_tensor * src1,
  8391. const struct ggml_tensor * opt0,
  8392. struct ggml_tensor * dst) {
  8393. GGML_ASSERT(params->ith == 0);
  8394. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  8395. GGML_ASSERT(ggml_is_contiguous(opt0));
  8396. GGML_ASSERT(ggml_is_contiguous(dst));
  8397. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8398. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8399. return;
  8400. }
  8401. const int nc = src0->ne[0];
  8402. const int nr = ggml_nelements(src1);
  8403. GGML_ASSERT( dst->ne[0] == nc);
  8404. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8405. for (int i = 0; i < nr; ++i) {
  8406. const int r = ((int32_t *) src1->data)[i];
  8407. ggml_vec_add_f32(nc,
  8408. (float *) ((char *) dst->data + r*dst->nb[1]),
  8409. (float *) ((char *) dst->data + r*dst->nb[1]),
  8410. (float *) ((char *) src0->data + i*src0->nb[1]));
  8411. }
  8412. }
  8413. static void ggml_compute_forward_get_rows_back(
  8414. const struct ggml_compute_params * params,
  8415. const struct ggml_tensor * src0,
  8416. const struct ggml_tensor * src1,
  8417. const struct ggml_tensor * opt0,
  8418. struct ggml_tensor * dst) {
  8419. switch (src0->type) {
  8420. case GGML_TYPE_F16:
  8421. {
  8422. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  8423. } break;
  8424. case GGML_TYPE_F32:
  8425. {
  8426. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  8427. } break;
  8428. default:
  8429. {
  8430. GGML_ASSERT(false);
  8431. } break;
  8432. }
  8433. //static bool first = true;
  8434. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8435. //if (first) {
  8436. // first = false;
  8437. //} else {
  8438. // for (int k = 0; k < dst->ne[1]; ++k) {
  8439. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8440. // for (int i = 0; i < 16; ++i) {
  8441. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8442. // }
  8443. // printf("\n");
  8444. // }
  8445. // printf("\n");
  8446. // }
  8447. // printf("\n");
  8448. // exit(0);
  8449. //}
  8450. }
  8451. // ggml_compute_forward_diag
  8452. static void ggml_compute_forward_diag_f32(
  8453. const struct ggml_compute_params * params,
  8454. const struct ggml_tensor * src0,
  8455. struct ggml_tensor * dst) {
  8456. GGML_ASSERT(params->ith == 0);
  8457. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8458. return;
  8459. }
  8460. // TODO: handle transposed/permuted matrices
  8461. const int ne00 = src0->ne[0];
  8462. const int ne01 = src0->ne[1];
  8463. const int ne02 = src0->ne[2];
  8464. const int ne03 = src0->ne[3];
  8465. const int ne0 = dst->ne[0];
  8466. const int ne1 = dst->ne[1];
  8467. const int ne2 = dst->ne[2];
  8468. const int ne3 = dst->ne[3];
  8469. GGML_ASSERT(ne00 == ne0);
  8470. GGML_ASSERT(ne00 == ne1);
  8471. GGML_ASSERT(ne01 == 1);
  8472. GGML_ASSERT(ne02 == ne2);
  8473. GGML_ASSERT(ne03 == ne3);
  8474. const int nb00 = src0->nb[0];
  8475. //const int nb01 = src0->nb[1];
  8476. const int nb02 = src0->nb[2];
  8477. const int nb03 = src0->nb[3];
  8478. const int nb0 = dst->nb[0];
  8479. const int nb1 = dst->nb[1];
  8480. const int nb2 = dst->nb[2];
  8481. const int nb3 = dst->nb[3];
  8482. GGML_ASSERT(nb00 == sizeof(float));
  8483. GGML_ASSERT(nb0 == sizeof(float));
  8484. for (int i3 = 0; i3 < ne3; i3++) {
  8485. for (int i2 = 0; i2 < ne2; i2++) {
  8486. for (int i1 = 0; i1 < ne1; i1++) {
  8487. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8488. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  8489. for (int i0 = 0; i0 < i1; i0++) {
  8490. d[i0] = 0;
  8491. }
  8492. d[i1] = s[i1];
  8493. for (int i0 = i1+1; i0 < ne0; i0++) {
  8494. d[i0] = 0;
  8495. }
  8496. }
  8497. }
  8498. }
  8499. }
  8500. static void ggml_compute_forward_diag(
  8501. const struct ggml_compute_params * params,
  8502. const struct ggml_tensor * src0,
  8503. struct ggml_tensor * dst) {
  8504. switch (src0->type) {
  8505. case GGML_TYPE_F32:
  8506. {
  8507. ggml_compute_forward_diag_f32(params, src0, dst);
  8508. } break;
  8509. default:
  8510. {
  8511. GGML_ASSERT(false);
  8512. } break;
  8513. }
  8514. }
  8515. // ggml_compute_forward_diag_mask_inf
  8516. static void ggml_compute_forward_diag_mask_f32(
  8517. const struct ggml_compute_params * params,
  8518. const struct ggml_tensor * src0,
  8519. const struct ggml_tensor * src1,
  8520. struct ggml_tensor * dst,
  8521. const float value) {
  8522. assert(src1->type == GGML_TYPE_I32);
  8523. assert(ggml_nelements(src1) == 2);
  8524. const int ith = params->ith;
  8525. const int nth = params->nth;
  8526. const int n_past = ((int32_t *) src1->data)[0];
  8527. const bool inplace = (bool)((int32_t *) src1->data)[1];
  8528. assert(n_past >= 0);
  8529. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8530. // memcpy needs to be synchronized across threads to avoid race conditions.
  8531. // => do it in INIT phase
  8532. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  8533. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8534. memcpy(
  8535. ((char *) dst->data),
  8536. ((char *) src0->data),
  8537. ggml_nbytes(dst));
  8538. }
  8539. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8540. return;
  8541. }
  8542. // TODO: handle transposed/permuted matrices
  8543. const int n = ggml_nrows(src0);
  8544. const int nc = src0->ne[0];
  8545. const int nr = src0->ne[1];
  8546. const int nz = n/nr;
  8547. assert( dst->nb[0] == sizeof(float));
  8548. assert(src0->nb[0] == sizeof(float));
  8549. for (int k = 0; k < nz; k++) {
  8550. for (int j = ith; j < nr; j += nth) {
  8551. for (int i = n_past; i < nc; i++) {
  8552. if (i > n_past + j) {
  8553. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  8554. }
  8555. }
  8556. }
  8557. }
  8558. }
  8559. static void ggml_compute_forward_diag_mask_inf(
  8560. const struct ggml_compute_params * params,
  8561. const struct ggml_tensor * src0,
  8562. const struct ggml_tensor * src1,
  8563. struct ggml_tensor * dst) {
  8564. switch (src0->type) {
  8565. case GGML_TYPE_F32:
  8566. {
  8567. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, -INFINITY);
  8568. } break;
  8569. default:
  8570. {
  8571. GGML_ASSERT(false);
  8572. } break;
  8573. }
  8574. }
  8575. static void ggml_compute_forward_diag_mask_zero(
  8576. const struct ggml_compute_params * params,
  8577. const struct ggml_tensor * src0,
  8578. const struct ggml_tensor * src1,
  8579. struct ggml_tensor * dst) {
  8580. switch (src0->type) {
  8581. case GGML_TYPE_F32:
  8582. {
  8583. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, 0);
  8584. } break;
  8585. default:
  8586. {
  8587. GGML_ASSERT(false);
  8588. } break;
  8589. }
  8590. }
  8591. // ggml_compute_forward_soft_max
  8592. static void ggml_compute_forward_soft_max_f32(
  8593. const struct ggml_compute_params * params,
  8594. const struct ggml_tensor * src0,
  8595. struct ggml_tensor * dst) {
  8596. GGML_ASSERT(ggml_is_contiguous(src0));
  8597. GGML_ASSERT(ggml_is_contiguous(dst));
  8598. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8599. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8600. return;
  8601. }
  8602. // TODO: handle transposed/permuted matrices
  8603. const int ith = params->ith;
  8604. const int nth = params->nth;
  8605. const int nc = src0->ne[0];
  8606. const int nr = ggml_nrows(src0);
  8607. // rows per thread
  8608. const int dr = (nr + nth - 1)/nth;
  8609. // row range for this thread
  8610. const int ir0 = dr*ith;
  8611. const int ir1 = MIN(ir0 + dr, nr);
  8612. for (int i1 = ir0; i1 < ir1; i1++) {
  8613. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  8614. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  8615. #ifndef NDEBUG
  8616. for (int i = 0; i < nc; ++i) {
  8617. //printf("p[%d] = %f\n", i, p[i]);
  8618. assert(!isnan(sp[i]));
  8619. }
  8620. #endif
  8621. float max = -INFINITY;
  8622. ggml_vec_max_f32(nc, &max, sp);
  8623. ggml_float sum = 0.0;
  8624. uint16_t scvt;
  8625. for (int i = 0; i < nc; i++) {
  8626. if (sp[i] == -INFINITY) {
  8627. dp[i] = 0.0f;
  8628. } else {
  8629. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  8630. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  8631. memcpy(&scvt, &s, sizeof(scvt));
  8632. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  8633. sum += (ggml_float)val;
  8634. dp[i] = val;
  8635. }
  8636. }
  8637. assert(sum > 0.0);
  8638. sum = 1.0/sum;
  8639. ggml_vec_scale_f32(nc, dp, sum);
  8640. #ifndef NDEBUG
  8641. for (int i = 0; i < nc; ++i) {
  8642. assert(!isnan(dp[i]));
  8643. assert(!isinf(dp[i]));
  8644. }
  8645. #endif
  8646. }
  8647. }
  8648. static void ggml_compute_forward_soft_max(
  8649. const struct ggml_compute_params * params,
  8650. const struct ggml_tensor * src0,
  8651. struct ggml_tensor * dst) {
  8652. switch (src0->type) {
  8653. case GGML_TYPE_F32:
  8654. {
  8655. ggml_compute_forward_soft_max_f32(params, src0, dst);
  8656. } break;
  8657. default:
  8658. {
  8659. GGML_ASSERT(false);
  8660. } break;
  8661. }
  8662. }
  8663. // ggml_compute_forward_alibi
  8664. static void ggml_compute_forward_alibi_f32(
  8665. const struct ggml_compute_params * params,
  8666. const struct ggml_tensor * src0,
  8667. const struct ggml_tensor * src1,
  8668. struct ggml_tensor * dst) {
  8669. assert(params->ith == 0);
  8670. assert(src1->type == GGML_TYPE_I32);
  8671. assert(ggml_nelements(src1) == 2);
  8672. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8673. return;
  8674. }
  8675. const int n_past = ((int32_t *) src1->data)[0];
  8676. const int n_head = ((int32_t *) src1->data)[1];
  8677. assert(n_past >= 0);
  8678. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8679. const int ne1 = src0->ne[1]; // seq_len_without_past
  8680. //const int ne2 = src0->ne[2]; // n_head -> this is k
  8681. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8682. const int n = ggml_nrows(src0);
  8683. const int ne2_ne3 = n/ne1; // ne2*ne3
  8684. const int nb0 = src0->nb[0];
  8685. const int nb1 = src0->nb[1];
  8686. const int nb2 = src0->nb[2];
  8687. //const int nb3 = src0->nb[3];
  8688. assert(nb0 == sizeof(float));
  8689. assert(ne1 + n_past == ne0); (void) n_past;
  8690. // add alibi to src0 (KQ_scaled)
  8691. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8692. const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
  8693. const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
  8694. for (int i = 0; i < ne0; i++) {
  8695. for (int j = 0; j < ne1; j++) {
  8696. for (int k = 0; k < ne2_ne3; k++) {
  8697. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8698. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8699. // TODO: k*nb2 or k*nb3
  8700. float m_k;
  8701. if (k < n_heads_log2_floor) {
  8702. m_k = powf(m0, k + 1);
  8703. } else {
  8704. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8705. }
  8706. pdst[0] = i * m_k + src[0];
  8707. }
  8708. }
  8709. }
  8710. }
  8711. static void ggml_compute_forward_alibi_f16(
  8712. const struct ggml_compute_params * params,
  8713. const struct ggml_tensor * src0,
  8714. const struct ggml_tensor * src1,
  8715. struct ggml_tensor * dst) {
  8716. assert(params->ith == 0);
  8717. assert(src1->type == GGML_TYPE_I32);
  8718. assert(ggml_nelements(src1) == 2);
  8719. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8720. return;
  8721. }
  8722. const int n_past = ((int32_t *) src1->data)[0];
  8723. const int n_head = ((int32_t *) src1->data)[1];
  8724. assert(n_past >= 0);
  8725. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8726. const int ne1 = src0->ne[1]; // seq_len_without_past
  8727. //const int ne2 = src0->ne[2]; // n_head -> this is k
  8728. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8729. const int n = ggml_nrows(src0);
  8730. const int ne2_ne3 = n/ne1; // ne2*ne3
  8731. const int nb0 = src0->nb[0];
  8732. const int nb1 = src0->nb[1];
  8733. const int nb2 = src0->nb[2];
  8734. //const int nb3 = src0->nb[3];
  8735. assert(nb0 == sizeof(ggml_fp16_t));
  8736. assert(ne1 + n_past == ne0); (void) n_past;
  8737. // add alibi to src0 (KQ_scaled)
  8738. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8739. const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
  8740. const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
  8741. for (int i = 0; i < ne0; i++) {
  8742. for (int j = 0; j < ne1; j++) {
  8743. for (int k = 0; k < ne2_ne3; k++) {
  8744. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8745. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8746. // TODO: k*nb2 or k*nb3
  8747. float m_k;
  8748. if (k < n_heads_log2_floor) {
  8749. m_k = powf(m0, k + 1);
  8750. } else {
  8751. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8752. }
  8753. // we return F32
  8754. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  8755. }
  8756. }
  8757. }
  8758. }
  8759. static void ggml_compute_forward_alibi(
  8760. const struct ggml_compute_params * params,
  8761. const struct ggml_tensor * src0,
  8762. const struct ggml_tensor * src1,
  8763. struct ggml_tensor * dst) {
  8764. switch (src0->type) {
  8765. case GGML_TYPE_F16:
  8766. {
  8767. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  8768. } break;
  8769. case GGML_TYPE_F32:
  8770. {
  8771. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  8772. } break;
  8773. case GGML_TYPE_Q4_0:
  8774. case GGML_TYPE_Q4_1:
  8775. case GGML_TYPE_Q5_0:
  8776. case GGML_TYPE_Q5_1:
  8777. case GGML_TYPE_Q8_0:
  8778. case GGML_TYPE_Q8_1:
  8779. case GGML_TYPE_I8:
  8780. case GGML_TYPE_I16:
  8781. case GGML_TYPE_I32:
  8782. case GGML_TYPE_COUNT:
  8783. {
  8784. GGML_ASSERT(false);
  8785. } break;
  8786. }
  8787. }
  8788. // ggml_compute_forward_rope
  8789. static void ggml_compute_forward_rope_f32(
  8790. const struct ggml_compute_params * params,
  8791. const struct ggml_tensor * src0,
  8792. const struct ggml_tensor * src1,
  8793. struct ggml_tensor * dst) {
  8794. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  8795. GGML_ASSERT(ggml_nelements(src1) == 3);
  8796. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8797. return;
  8798. }
  8799. const int n_past = ((int32_t *) src1->data)[0];
  8800. const int n_dims = ((int32_t *) src1->data)[1];
  8801. const int mode = ((int32_t *) src1->data)[2];
  8802. assert(n_past >= 0);
  8803. const size_t nb00 = src0->nb[0];
  8804. const size_t nb01 = src0->nb[1];
  8805. const size_t nb02 = src0->nb[2];
  8806. const size_t nb03 = src0->nb[3];
  8807. const int64_t ne0 = dst->ne[0];
  8808. const int64_t ne1 = dst->ne[1];
  8809. const int64_t ne2 = dst->ne[2];
  8810. const int64_t ne3 = dst->ne[3];
  8811. const size_t nb0 = dst->nb[0];
  8812. const size_t nb1 = dst->nb[1];
  8813. const size_t nb2 = dst->nb[2];
  8814. const size_t nb3 = dst->nb[3];
  8815. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  8816. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  8817. GGML_ASSERT(nb00 == sizeof(float));
  8818. const int ith = params->ith;
  8819. const int nth = params->nth;
  8820. const int nr = ggml_nrows(dst);
  8821. GGML_ASSERT(n_dims <= ne0);
  8822. GGML_ASSERT(n_dims % 2 == 0);
  8823. // rows per thread
  8824. const int dr = (nr + nth - 1)/nth;
  8825. // row range for this thread
  8826. const int ir0 = dr*ith;
  8827. const int ir1 = MIN(ir0 + dr, nr);
  8828. // row index used to determine which thread to use
  8829. int ir = 0;
  8830. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  8831. const bool is_neox = mode & 2;
  8832. for (int64_t i3 = 0; i3 < ne3; i3++) {
  8833. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  8834. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  8835. for (int64_t i1 = 0; i1 < ne1; i1++) {
  8836. if (ir++ < ir0) continue;
  8837. if (ir > ir1) break;
  8838. float theta = (float)p;
  8839. if (!is_neox) {
  8840. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  8841. const float cos_theta = cosf(theta);
  8842. const float sin_theta = sinf(theta);
  8843. theta *= theta_scale;
  8844. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  8845. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  8846. const float x0 = src[0];
  8847. const float x1 = src[1];
  8848. dst_data[0] = x0*cos_theta - x1*sin_theta;
  8849. dst_data[1] = x0*sin_theta + x1*cos_theta;
  8850. }
  8851. } else {
  8852. // TODO: this is probably wrong, but I can't figure it out ..
  8853. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  8854. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  8855. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  8856. const float cos_theta = cosf(theta);
  8857. const float sin_theta = sinf(theta);
  8858. theta *= theta_scale;
  8859. const int64_t i0 = ib*n_dims + ic/2;
  8860. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  8861. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  8862. const float x0 = src[0];
  8863. const float x1 = src[n_dims/2];
  8864. dst_data[0] = x0*cos_theta - x1*sin_theta;
  8865. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  8866. }
  8867. }
  8868. }
  8869. }
  8870. }
  8871. }
  8872. }
  8873. static void ggml_compute_forward_rope_f16(
  8874. const struct ggml_compute_params * params,
  8875. const struct ggml_tensor * src0,
  8876. const struct ggml_tensor * src1,
  8877. struct ggml_tensor * dst) {
  8878. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  8879. GGML_ASSERT(ggml_nelements(src1) == 3);
  8880. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8881. return;
  8882. }
  8883. const int n_past = ((int32_t *) src1->data)[0];
  8884. const int n_dims = ((int32_t *) src1->data)[1];
  8885. const int mode = ((int32_t *) src1->data)[2];
  8886. assert(n_past >= 0);
  8887. const size_t nb00 = src0->nb[0];
  8888. const size_t nb01 = src0->nb[1];
  8889. const size_t nb02 = src0->nb[2];
  8890. const size_t nb03 = src0->nb[3];
  8891. const int64_t ne0 = dst->ne[0];
  8892. const int64_t ne1 = dst->ne[1];
  8893. const int64_t ne2 = dst->ne[2];
  8894. const int64_t ne3 = dst->ne[3];
  8895. const size_t nb0 = dst->nb[0];
  8896. const size_t nb1 = dst->nb[1];
  8897. const size_t nb2 = dst->nb[2];
  8898. const size_t nb3 = dst->nb[3];
  8899. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  8900. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  8901. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8902. const int ith = params->ith;
  8903. const int nth = params->nth;
  8904. const int nr = ggml_nrows(dst);
  8905. GGML_ASSERT(n_dims <= ne0);
  8906. GGML_ASSERT(n_dims % 2 == 0);
  8907. // rows per thread
  8908. const int dr = (nr + nth - 1)/nth;
  8909. // row range for this thread
  8910. const int ir0 = dr*ith;
  8911. const int ir1 = MIN(ir0 + dr, nr);
  8912. // row index used to determine which thread to use
  8913. int ir = 0;
  8914. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  8915. const bool is_neox = mode & 2;
  8916. for (int64_t i3 = 0; i3 < ne3; i3++) {
  8917. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  8918. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  8919. for (int64_t i1 = 0; i1 < ne1; i1++) {
  8920. if (ir++ < ir0) continue;
  8921. if (ir > ir1) break;
  8922. float theta = (float)p;
  8923. if (!is_neox) {
  8924. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  8925. const float cos_theta = cosf(theta);
  8926. const float sin_theta = sinf(theta);
  8927. theta *= theta_scale;
  8928. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  8929. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  8930. const float x0 = GGML_FP16_TO_FP32(src[0]);
  8931. const float x1 = GGML_FP16_TO_FP32(src[1]);
  8932. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  8933. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  8934. }
  8935. } else {
  8936. // TODO: this is probably wrong, but I can't figure it out ..
  8937. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  8938. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  8939. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  8940. const float cos_theta = cosf(theta);
  8941. const float sin_theta = sinf(theta);
  8942. theta *= theta_scale;
  8943. const int64_t i0 = ib*n_dims + ic/2;
  8944. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  8945. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  8946. const float x0 = GGML_FP16_TO_FP32(src[0]);
  8947. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  8948. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  8949. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  8950. }
  8951. }
  8952. }
  8953. }
  8954. }
  8955. }
  8956. }
  8957. static void ggml_compute_forward_rope(
  8958. const struct ggml_compute_params * params,
  8959. const struct ggml_tensor * src0,
  8960. const struct ggml_tensor * src1,
  8961. struct ggml_tensor * dst) {
  8962. switch (src0->type) {
  8963. case GGML_TYPE_F16:
  8964. {
  8965. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  8966. } break;
  8967. case GGML_TYPE_F32:
  8968. {
  8969. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  8970. } break;
  8971. default:
  8972. {
  8973. GGML_ASSERT(false);
  8974. } break;
  8975. }
  8976. }
  8977. // ggml_compute_forward_rope_back
  8978. static void ggml_compute_forward_rope_back_f32(
  8979. const struct ggml_compute_params * params,
  8980. const struct ggml_tensor * src0,
  8981. const struct ggml_tensor * src1,
  8982. struct ggml_tensor * dst) {
  8983. assert(src1->type == GGML_TYPE_I32);
  8984. assert(ggml_nelements(src1) == 3);
  8985. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8986. return;
  8987. }
  8988. // y = rope(x, src1)
  8989. // dx = rope_back(dy, src1)
  8990. // src0 is dy, src1 contains options
  8991. const int n_past = ((int32_t *) src1->data)[0];
  8992. const int n_dims = ((int32_t *) src1->data)[1];
  8993. const int mode = ((int32_t *) src1->data)[2];
  8994. assert(n_past >= 0);
  8995. const size_t nb00 = src0->nb[0];
  8996. const size_t nb01 = src0->nb[1];
  8997. const size_t nb02 = src0->nb[2];
  8998. const size_t nb03 = src0->nb[3];
  8999. const int64_t ne0 = dst->ne[0];
  9000. const int64_t ne1 = dst->ne[1];
  9001. const int64_t ne2 = dst->ne[2];
  9002. const int64_t ne3 = dst->ne[3];
  9003. const size_t nb0 = dst->nb[0];
  9004. const size_t nb1 = dst->nb[1];
  9005. const size_t nb2 = dst->nb[2];
  9006. const size_t nb3 = dst->nb[3];
  9007. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9008. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9009. assert(nb0 == sizeof(float));
  9010. const int ith = params->ith;
  9011. const int nth = params->nth;
  9012. const int nr = ggml_nrows(dst);
  9013. // rows per thread
  9014. const int dr = (nr + nth - 1)/nth;
  9015. // row range for this thread
  9016. const int ir0 = dr*ith;
  9017. const int ir1 = MIN(ir0 + dr, nr);
  9018. // row index used to determine which thread to use
  9019. int ir = 0;
  9020. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9021. const bool is_neox = mode & 2;
  9022. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9023. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9024. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9025. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9026. if (ir++ < ir0) continue;
  9027. if (ir > ir1) break;
  9028. float theta = (float)p;
  9029. if (!is_neox) {
  9030. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9031. const float cos_theta = cosf(theta);
  9032. const float sin_theta = sinf(theta);
  9033. theta *= theta_scale;
  9034. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9035. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9036. const float dy0 = dy[0];
  9037. const float dy1 = dy[1];
  9038. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9039. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  9040. }
  9041. } else {
  9042. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9043. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9044. const float cos_theta = cosf(theta);
  9045. const float sin_theta = sinf(theta);
  9046. theta *= theta_scale;
  9047. const int64_t i0 = ib*n_dims + ic/2;
  9048. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9049. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9050. const float dy0 = dy[0];
  9051. const float dy1 = dy[n_dims/2];
  9052. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9053. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  9054. }
  9055. }
  9056. }
  9057. }
  9058. }
  9059. }
  9060. }
  9061. static void ggml_compute_forward_rope_back_f16(
  9062. const struct ggml_compute_params * params,
  9063. const struct ggml_tensor * src0,
  9064. const struct ggml_tensor * src1,
  9065. struct ggml_tensor * dst) {
  9066. assert(src1->type == GGML_TYPE_I32);
  9067. assert(ggml_nelements(src1) == 3);
  9068. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9069. return;
  9070. }
  9071. // y = rope(x, src1)
  9072. // dx = rope_back(dy, src1)
  9073. // src0 is dy, src1 contains options
  9074. const int n_past = ((int32_t *) src1->data)[0];
  9075. const int n_dims = ((int32_t *) src1->data)[1];
  9076. const int mode = ((int32_t *) src1->data)[2];
  9077. assert(n_past >= 0);
  9078. const size_t nb00 = src0->nb[0];
  9079. const size_t nb01 = src0->nb[1];
  9080. const size_t nb02 = src0->nb[2];
  9081. const size_t nb03 = src0->nb[3];
  9082. const int64_t ne0 = dst->ne[0];
  9083. const int64_t ne1 = dst->ne[1];
  9084. const int64_t ne2 = dst->ne[2];
  9085. const int64_t ne3 = dst->ne[3];
  9086. const size_t nb0 = dst->nb[0];
  9087. const size_t nb1 = dst->nb[1];
  9088. const size_t nb2 = dst->nb[2];
  9089. const size_t nb3 = dst->nb[3];
  9090. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9091. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9092. assert(nb0 == sizeof(ggml_fp16_t));
  9093. const int ith = params->ith;
  9094. const int nth = params->nth;
  9095. const int nr = ggml_nrows(dst);
  9096. // rows per thread
  9097. const int dr = (nr + nth - 1)/nth;
  9098. // row range for this thread
  9099. const int ir0 = dr*ith;
  9100. const int ir1 = MIN(ir0 + dr, nr);
  9101. // row index used to determine which thread to use
  9102. int ir = 0;
  9103. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9104. const bool is_neox = mode & 2;
  9105. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9106. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9107. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9108. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9109. if (ir++ < ir0) continue;
  9110. if (ir > ir1) break;
  9111. float theta = (float)p;
  9112. if (!is_neox) {
  9113. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9114. const float cos_theta = cosf(theta);
  9115. const float sin_theta = sinf(theta);
  9116. theta *= theta_scale;
  9117. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9118. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9119. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9120. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  9121. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9122. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9123. }
  9124. } else {
  9125. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9126. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9127. const float cos_theta = cosf(theta);
  9128. const float sin_theta = sinf(theta);
  9129. theta *= theta_scale;
  9130. const int64_t i0 = ib*n_dims + ic/2;
  9131. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9132. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9133. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9134. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  9135. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9136. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9137. }
  9138. }
  9139. }
  9140. }
  9141. }
  9142. }
  9143. }
  9144. static void ggml_compute_forward_rope_back(
  9145. const struct ggml_compute_params * params,
  9146. const struct ggml_tensor * src0,
  9147. const struct ggml_tensor * src1,
  9148. struct ggml_tensor * dst) {
  9149. switch (src0->type) {
  9150. case GGML_TYPE_F16:
  9151. {
  9152. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  9153. } break;
  9154. case GGML_TYPE_F32:
  9155. {
  9156. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  9157. } break;
  9158. default:
  9159. {
  9160. GGML_ASSERT(false);
  9161. } break;
  9162. }
  9163. }
  9164. // ggml_compute_forward_conv_1d_1s
  9165. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  9166. const struct ggml_compute_params * params,
  9167. const struct ggml_tensor * src0,
  9168. const struct ggml_tensor * src1,
  9169. struct ggml_tensor * dst) {
  9170. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9171. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9172. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9173. int64_t t0 = ggml_perf_time_us();
  9174. UNUSED(t0);
  9175. const int64_t ne00 = src0->ne[0];
  9176. const int64_t ne01 = src0->ne[1];
  9177. const int64_t ne02 = src0->ne[2];
  9178. //const int64_t ne03 = src0->ne[3];
  9179. const int64_t ne10 = src1->ne[0];
  9180. const int64_t ne11 = src1->ne[1];
  9181. //const int64_t ne12 = src1->ne[2];
  9182. //const int64_t ne13 = src1->ne[3];
  9183. //const int64_t ne0 = dst->ne[0];
  9184. //const int64_t ne1 = dst->ne[1];
  9185. //const int64_t ne2 = dst->ne[2];
  9186. //const int64_t ne3 = dst->ne[3];
  9187. //const int64_t ne = ne0*ne1*ne2*ne3;
  9188. const int nb00 = src0->nb[0];
  9189. const int nb01 = src0->nb[1];
  9190. const int nb02 = src0->nb[2];
  9191. //const int nb03 = src0->nb[3];
  9192. const int nb10 = src1->nb[0];
  9193. const int nb11 = src1->nb[1];
  9194. //const int nb12 = src1->nb[2];
  9195. //const int nb13 = src1->nb[3];
  9196. //const int nb0 = dst->nb[0];
  9197. const int nb1 = dst->nb[1];
  9198. //const int nb2 = dst->nb[2];
  9199. //const int nb3 = dst->nb[3];
  9200. const int ith = params->ith;
  9201. const int nth = params->nth;
  9202. const int nk = ne00;
  9203. const int nh = nk/2;
  9204. const int ew0 = ggml_up32(ne01);
  9205. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9206. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9207. GGML_ASSERT(nb10 == sizeof(float));
  9208. if (params->type == GGML_TASK_INIT) {
  9209. // TODO: fix this memset (wsize is overestimated)
  9210. memset(params->wdata, 0, params->wsize);
  9211. // prepare kernel data (src0)
  9212. {
  9213. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9214. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9215. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9216. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9217. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  9218. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9219. dst_data[i00*ew0 + i01] = src[i00];
  9220. }
  9221. }
  9222. }
  9223. }
  9224. // prepare source data (src1)
  9225. {
  9226. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  9227. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9228. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9229. ggml_fp16_t * dst_data = wdata;
  9230. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9231. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9232. }
  9233. }
  9234. }
  9235. return;
  9236. }
  9237. if (params->type == GGML_TASK_FINALIZE) {
  9238. return;
  9239. }
  9240. // total rows in dst
  9241. const int nr = ne02;
  9242. // rows per thread
  9243. const int dr = (nr + nth - 1)/nth;
  9244. // row range for this thread
  9245. const int ir0 = dr*ith;
  9246. const int ir1 = MIN(ir0 + dr, nr);
  9247. for (int i1 = ir0; i1 < ir1; i1++) {
  9248. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9249. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  9250. dst_data[i0] = 0;
  9251. for (int k = -nh; k <= nh; k++) {
  9252. float v = 0.0f;
  9253. ggml_vec_dot_f16(ew0, &v,
  9254. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9255. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9256. dst_data[i0] += v;
  9257. }
  9258. }
  9259. }
  9260. }
  9261. static void ggml_compute_forward_conv_1d_1s_f32(
  9262. const struct ggml_compute_params * params,
  9263. const struct ggml_tensor * src0,
  9264. const struct ggml_tensor * src1,
  9265. struct ggml_tensor * dst) {
  9266. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9267. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9268. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9269. int64_t t0 = ggml_perf_time_us();
  9270. UNUSED(t0);
  9271. const int64_t ne00 = src0->ne[0];
  9272. const int64_t ne01 = src0->ne[1];
  9273. const int64_t ne02 = src0->ne[2];
  9274. //const int64_t ne03 = src0->ne[3];
  9275. const int64_t ne10 = src1->ne[0];
  9276. const int64_t ne11 = src1->ne[1];
  9277. //const int64_t ne12 = src1->ne[2];
  9278. //const int64_t ne13 = src1->ne[3];
  9279. //const int64_t ne0 = dst->ne[0];
  9280. //const int64_t ne1 = dst->ne[1];
  9281. //const int64_t ne2 = dst->ne[2];
  9282. //const int64_t ne3 = dst->ne[3];
  9283. //const int64_t ne = ne0*ne1*ne2*ne3;
  9284. const int nb00 = src0->nb[0];
  9285. const int nb01 = src0->nb[1];
  9286. const int nb02 = src0->nb[2];
  9287. //const int nb03 = src0->nb[3];
  9288. const int nb10 = src1->nb[0];
  9289. const int nb11 = src1->nb[1];
  9290. //const int nb12 = src1->nb[2];
  9291. //const int nb13 = src1->nb[3];
  9292. //const int nb0 = dst->nb[0];
  9293. const int nb1 = dst->nb[1];
  9294. //const int nb2 = dst->nb[2];
  9295. //const int nb3 = dst->nb[3];
  9296. const int ith = params->ith;
  9297. const int nth = params->nth;
  9298. const int nk = ne00;
  9299. const int nh = nk/2;
  9300. const int ew0 = ggml_up32(ne01);
  9301. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9302. GGML_ASSERT(nb00 == sizeof(float));
  9303. GGML_ASSERT(nb10 == sizeof(float));
  9304. if (params->type == GGML_TASK_INIT) {
  9305. // TODO: fix this memset (wsize is overestimated)
  9306. memset(params->wdata, 0, params->wsize);
  9307. // prepare kernel data (src0)
  9308. {
  9309. float * const wdata = (float *) params->wdata + 0;
  9310. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9311. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9312. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9313. float * dst_data = wdata + i02*ew0*ne00;
  9314. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9315. dst_data[i00*ew0 + i01] = src[i00];
  9316. }
  9317. }
  9318. }
  9319. }
  9320. // prepare source data (src1)
  9321. {
  9322. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  9323. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9324. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9325. float * dst_data = wdata;
  9326. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9327. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  9328. }
  9329. }
  9330. }
  9331. return;
  9332. }
  9333. if (params->type == GGML_TASK_FINALIZE) {
  9334. return;
  9335. }
  9336. // total rows in dst
  9337. const int nr = ne02;
  9338. // rows per thread
  9339. const int dr = (nr + nth - 1)/nth;
  9340. // row range for this thread
  9341. const int ir0 = dr*ith;
  9342. const int ir1 = MIN(ir0 + dr, nr);
  9343. for (int i1 = ir0; i1 < ir1; i1++) {
  9344. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9345. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  9346. dst_data[i0] = 0;
  9347. for (int k = -nh; k <= nh; k++) {
  9348. float v = 0.0f;
  9349. ggml_vec_dot_f32(ew0, &v,
  9350. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9351. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9352. dst_data[i0] += v;
  9353. }
  9354. }
  9355. }
  9356. }
  9357. static void ggml_compute_forward_conv_1d_1s(
  9358. const struct ggml_compute_params * params,
  9359. const struct ggml_tensor * src0,
  9360. const struct ggml_tensor * src1,
  9361. struct ggml_tensor * dst) {
  9362. switch (src0->type) {
  9363. case GGML_TYPE_F16:
  9364. {
  9365. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  9366. } break;
  9367. case GGML_TYPE_F32:
  9368. {
  9369. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  9370. } break;
  9371. default:
  9372. {
  9373. GGML_ASSERT(false);
  9374. } break;
  9375. }
  9376. }
  9377. // ggml_compute_forward_conv_1d_2s
  9378. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  9379. const struct ggml_compute_params * params,
  9380. const struct ggml_tensor * src0,
  9381. const struct ggml_tensor * src1,
  9382. struct ggml_tensor * dst) {
  9383. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9384. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9385. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9386. int64_t t0 = ggml_perf_time_us();
  9387. UNUSED(t0);
  9388. const int64_t ne00 = src0->ne[0];
  9389. const int64_t ne01 = src0->ne[1];
  9390. const int64_t ne02 = src0->ne[2];
  9391. //const int64_t ne03 = src0->ne[3];
  9392. const int64_t ne10 = src1->ne[0];
  9393. const int64_t ne11 = src1->ne[1];
  9394. //const int64_t ne12 = src1->ne[2];
  9395. //const int64_t ne13 = src1->ne[3];
  9396. //const int64_t ne0 = dst->ne[0];
  9397. //const int64_t ne1 = dst->ne[1];
  9398. //const int64_t ne2 = dst->ne[2];
  9399. //const int64_t ne3 = dst->ne[3];
  9400. //const int64_t ne = ne0*ne1*ne2*ne3;
  9401. const int nb00 = src0->nb[0];
  9402. const int nb01 = src0->nb[1];
  9403. const int nb02 = src0->nb[2];
  9404. //const int nb03 = src0->nb[3];
  9405. const int nb10 = src1->nb[0];
  9406. const int nb11 = src1->nb[1];
  9407. //const int nb12 = src1->nb[2];
  9408. //const int nb13 = src1->nb[3];
  9409. //const int nb0 = dst->nb[0];
  9410. const int nb1 = dst->nb[1];
  9411. //const int nb2 = dst->nb[2];
  9412. //const int nb3 = dst->nb[3];
  9413. const int ith = params->ith;
  9414. const int nth = params->nth;
  9415. const int nk = ne00;
  9416. const int nh = nk/2;
  9417. const int ew0 = ggml_up32(ne01);
  9418. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9419. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9420. GGML_ASSERT(nb10 == sizeof(float));
  9421. if (params->type == GGML_TASK_INIT) {
  9422. // TODO: fix this memset (wsize is overestimated)
  9423. memset(params->wdata, 0, params->wsize);
  9424. // prepare kernel data (src0)
  9425. {
  9426. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9427. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9428. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9429. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9430. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  9431. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9432. dst_data[i00*ew0 + i01] = src[i00];
  9433. }
  9434. }
  9435. }
  9436. }
  9437. // prepare source data (src1)
  9438. {
  9439. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  9440. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9441. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9442. ggml_fp16_t * dst_data = wdata;
  9443. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9444. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9445. }
  9446. }
  9447. }
  9448. return;
  9449. }
  9450. if (params->type == GGML_TASK_FINALIZE) {
  9451. return;
  9452. }
  9453. // total rows in dst
  9454. const int nr = ne02;
  9455. // rows per thread
  9456. const int dr = (nr + nth - 1)/nth;
  9457. // row range for this thread
  9458. const int ir0 = dr*ith;
  9459. const int ir1 = MIN(ir0 + dr, nr);
  9460. for (int i1 = ir0; i1 < ir1; i1++) {
  9461. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9462. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  9463. dst_data[i0/2] = 0;
  9464. for (int k = -nh; k <= nh; k++) {
  9465. float v = 0.0f;
  9466. ggml_vec_dot_f16(ew0, &v,
  9467. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9468. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9469. dst_data[i0/2] += v;
  9470. }
  9471. }
  9472. }
  9473. }
  9474. static void ggml_compute_forward_conv_1d_2s_f32(
  9475. const struct ggml_compute_params * params,
  9476. const struct ggml_tensor * src0,
  9477. const struct ggml_tensor * src1,
  9478. struct ggml_tensor * dst) {
  9479. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9480. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9481. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9482. int64_t t0 = ggml_perf_time_us();
  9483. UNUSED(t0);
  9484. const int64_t ne00 = src0->ne[0];
  9485. const int64_t ne01 = src0->ne[1];
  9486. const int64_t ne02 = src0->ne[2];
  9487. //const int64_t ne03 = src0->ne[3];
  9488. const int64_t ne10 = src1->ne[0];
  9489. const int64_t ne11 = src1->ne[1];
  9490. //const int64_t ne12 = src1->ne[2];
  9491. //const int64_t ne13 = src1->ne[3];
  9492. //const int64_t ne0 = dst->ne[0];
  9493. //const int64_t ne1 = dst->ne[1];
  9494. //const int64_t ne2 = dst->ne[2];
  9495. //const int64_t ne3 = dst->ne[3];
  9496. //const int64_t ne = ne0*ne1*ne2*ne3;
  9497. const int nb00 = src0->nb[0];
  9498. const int nb01 = src0->nb[1];
  9499. const int nb02 = src0->nb[2];
  9500. //const int nb03 = src0->nb[3];
  9501. const int nb10 = src1->nb[0];
  9502. const int nb11 = src1->nb[1];
  9503. //const int nb12 = src1->nb[2];
  9504. //const int nb13 = src1->nb[3];
  9505. //const int nb0 = dst->nb[0];
  9506. const int nb1 = dst->nb[1];
  9507. //const int nb2 = dst->nb[2];
  9508. //const int nb3 = dst->nb[3];
  9509. const int ith = params->ith;
  9510. const int nth = params->nth;
  9511. const int nk = ne00;
  9512. const int nh = nk/2;
  9513. const int ew0 = ggml_up32(ne01);
  9514. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9515. GGML_ASSERT(nb00 == sizeof(float));
  9516. GGML_ASSERT(nb10 == sizeof(float));
  9517. if (params->type == GGML_TASK_INIT) {
  9518. // TODO: fix this memset (wsize is overestimated)
  9519. memset(params->wdata, 0, params->wsize);
  9520. // prepare kernel data (src0)
  9521. {
  9522. float * const wdata = (float *) params->wdata + 0;
  9523. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9524. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9525. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9526. float * dst_data = wdata + i02*ew0*ne00;
  9527. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9528. dst_data[i00*ew0 + i01] = src[i00];
  9529. }
  9530. }
  9531. }
  9532. }
  9533. // prepare source data (src1)
  9534. {
  9535. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  9536. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9537. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9538. float * dst_data = wdata;
  9539. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9540. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  9541. }
  9542. }
  9543. }
  9544. return;
  9545. }
  9546. if (params->type == GGML_TASK_FINALIZE) {
  9547. return;
  9548. }
  9549. // total rows in dst
  9550. const int nr = ne02;
  9551. // rows per thread
  9552. const int dr = (nr + nth - 1)/nth;
  9553. // row range for this thread
  9554. const int ir0 = dr*ith;
  9555. const int ir1 = MIN(ir0 + dr, nr);
  9556. for (int i1 = ir0; i1 < ir1; i1++) {
  9557. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9558. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  9559. dst_data[i0/2] = 0;
  9560. for (int k = -nh; k <= nh; k++) {
  9561. float v = 0.0f;
  9562. ggml_vec_dot_f32(ew0, &v,
  9563. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9564. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9565. dst_data[i0/2] += v;
  9566. }
  9567. }
  9568. }
  9569. }
  9570. static void ggml_compute_forward_conv_1d_2s(
  9571. const struct ggml_compute_params * params,
  9572. const struct ggml_tensor * src0,
  9573. const struct ggml_tensor * src1,
  9574. struct ggml_tensor * dst) {
  9575. switch (src0->type) {
  9576. case GGML_TYPE_F16:
  9577. {
  9578. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  9579. } break;
  9580. case GGML_TYPE_F32:
  9581. {
  9582. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  9583. } break;
  9584. default:
  9585. {
  9586. GGML_ASSERT(false);
  9587. } break;
  9588. }
  9589. }
  9590. // ggml_compute_forward_flash_attn
  9591. static void ggml_compute_forward_flash_attn_f32(
  9592. const struct ggml_compute_params * params,
  9593. const struct ggml_tensor * q,
  9594. const struct ggml_tensor * k,
  9595. const struct ggml_tensor * v,
  9596. const bool masked,
  9597. struct ggml_tensor * dst) {
  9598. int64_t t0 = ggml_perf_time_us();
  9599. UNUSED(t0);
  9600. const int64_t neq0 = q->ne[0];
  9601. const int64_t neq1 = q->ne[1];
  9602. const int64_t neq2 = q->ne[2];
  9603. const int64_t neq3 = q->ne[3];
  9604. const int64_t nek0 = k->ne[0];
  9605. const int64_t nek1 = k->ne[1];
  9606. //const int64_t nek2 = k->ne[2];
  9607. //const int64_t nek3 = k->ne[3];
  9608. //const int64_t nev0 = v->ne[0];
  9609. const int64_t nev1 = v->ne[1];
  9610. //const int64_t nev2 = v->ne[2];
  9611. //const int64_t nev3 = v->ne[3];
  9612. const int64_t ne0 = dst->ne[0];
  9613. const int64_t ne1 = dst->ne[1];
  9614. //const int64_t ne2 = dst->ne[2];
  9615. //const int64_t ne3 = dst->ne[3];
  9616. const int nbk0 = k->nb[0];
  9617. const int nbk1 = k->nb[1];
  9618. const int nbk2 = k->nb[2];
  9619. const int nbk3 = k->nb[3];
  9620. const int nbq0 = q->nb[0];
  9621. const int nbq1 = q->nb[1];
  9622. const int nbq2 = q->nb[2];
  9623. const int nbq3 = q->nb[3];
  9624. const int nbv0 = v->nb[0];
  9625. const int nbv1 = v->nb[1];
  9626. const int nbv2 = v->nb[2];
  9627. const int nbv3 = v->nb[3];
  9628. const int nb0 = dst->nb[0];
  9629. const int nb1 = dst->nb[1];
  9630. const int nb2 = dst->nb[2];
  9631. const int nb3 = dst->nb[3];
  9632. const int ith = params->ith;
  9633. const int nth = params->nth;
  9634. const int64_t D = neq0;
  9635. const int64_t N = neq1;
  9636. const int64_t P = nek1 - N;
  9637. const int64_t M = P + N;
  9638. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  9639. GGML_ASSERT(ne0 == D);
  9640. GGML_ASSERT(ne1 == N);
  9641. GGML_ASSERT(P >= 0);
  9642. GGML_ASSERT(nbq0 == sizeof(float));
  9643. GGML_ASSERT(nbk0 == sizeof(float));
  9644. GGML_ASSERT(nbv0 == sizeof(float));
  9645. GGML_ASSERT(neq0 == D);
  9646. GGML_ASSERT(nek0 == D);
  9647. GGML_ASSERT(nev1 == D);
  9648. GGML_ASSERT(neq1 == N);
  9649. GGML_ASSERT(nek1 == N + P);
  9650. GGML_ASSERT(nev1 == D);
  9651. // dst cannot be transposed or permuted
  9652. GGML_ASSERT(nb0 == sizeof(float));
  9653. GGML_ASSERT(nb0 <= nb1);
  9654. GGML_ASSERT(nb1 <= nb2);
  9655. GGML_ASSERT(nb2 <= nb3);
  9656. if (params->type == GGML_TASK_INIT) {
  9657. return;
  9658. }
  9659. if (params->type == GGML_TASK_FINALIZE) {
  9660. return;
  9661. }
  9662. // parallelize by q rows using ggml_vec_dot_f32
  9663. // total rows in q
  9664. const int nr = neq1*neq2*neq3;
  9665. // rows per thread
  9666. const int dr = (nr + nth - 1)/nth;
  9667. // row range for this thread
  9668. const int ir0 = dr*ith;
  9669. const int ir1 = MIN(ir0 + dr, nr);
  9670. const float scale = 1.0f/sqrtf(D);
  9671. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  9672. for (int ir = ir0; ir < ir1; ++ir) {
  9673. // q indices
  9674. const int iq3 = ir/(neq2*neq1);
  9675. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  9676. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  9677. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  9678. for (int i = M; i < Mup; ++i) {
  9679. S[i] = -INFINITY;
  9680. }
  9681. for (int64_t ic = 0; ic < nek1; ++ic) {
  9682. // k indices
  9683. const int ik3 = iq3;
  9684. const int ik2 = iq2;
  9685. const int ik1 = ic;
  9686. // S indices
  9687. const int i1 = ik1;
  9688. ggml_vec_dot_f32(neq0,
  9689. S + i1,
  9690. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  9691. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  9692. }
  9693. // scale
  9694. ggml_vec_scale_f32(nek1, S, scale);
  9695. if (masked) {
  9696. for (int64_t i = P; i < M; i++) {
  9697. if (i > P + iq1) {
  9698. S[i] = -INFINITY;
  9699. }
  9700. }
  9701. }
  9702. // softmax
  9703. {
  9704. float max = -INFINITY;
  9705. ggml_vec_max_f32(M, &max, S);
  9706. ggml_float sum = 0.0;
  9707. {
  9708. #ifdef GGML_SOFT_MAX_ACCELERATE
  9709. max = -max;
  9710. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  9711. vvexpf(S, S, &Mup);
  9712. ggml_vec_sum_f32(Mup, &sum, S);
  9713. #else
  9714. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  9715. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  9716. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  9717. float * SS = S + i;
  9718. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  9719. if (SS[j] == -INFINITY) {
  9720. SS[j] = 0.0f;
  9721. } else {
  9722. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  9723. memcpy(&scvt[j], &s, sizeof(uint16_t));
  9724. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  9725. sump[j] += (ggml_float)val;
  9726. SS[j] = val;
  9727. }
  9728. }
  9729. }
  9730. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  9731. sum += sump[i];
  9732. }
  9733. #endif
  9734. }
  9735. assert(sum > 0.0);
  9736. sum = 1.0/sum;
  9737. ggml_vec_scale_f32(M, S, sum);
  9738. #ifndef NDEBUG
  9739. for (int i = 0; i < M; ++i) {
  9740. assert(!isnan(S[i]));
  9741. assert(!isinf(S[i]));
  9742. }
  9743. #endif
  9744. }
  9745. for (int64_t ic = 0; ic < nev1; ++ic) {
  9746. // dst indices
  9747. const int i1 = iq1;
  9748. const int i2 = iq2;
  9749. const int i3 = iq3;
  9750. ggml_vec_dot_f32(nek1,
  9751. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  9752. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  9753. S);
  9754. }
  9755. }
  9756. }
  9757. static void ggml_compute_forward_flash_attn_f16(
  9758. const struct ggml_compute_params * params,
  9759. const struct ggml_tensor * q,
  9760. const struct ggml_tensor * k,
  9761. const struct ggml_tensor * v,
  9762. const bool masked,
  9763. struct ggml_tensor * dst) {
  9764. int64_t t0 = ggml_perf_time_us();
  9765. UNUSED(t0);
  9766. const int64_t neq0 = q->ne[0];
  9767. const int64_t neq1 = q->ne[1];
  9768. const int64_t neq2 = q->ne[2];
  9769. const int64_t neq3 = q->ne[3];
  9770. const int64_t nek0 = k->ne[0];
  9771. const int64_t nek1 = k->ne[1];
  9772. //const int64_t nek2 = k->ne[2];
  9773. //const int64_t nek3 = k->ne[3];
  9774. //const int64_t nev0 = v->ne[0];
  9775. const int64_t nev1 = v->ne[1];
  9776. //const int64_t nev2 = v->ne[2];
  9777. //const int64_t nev3 = v->ne[3];
  9778. const int64_t ne0 = dst->ne[0];
  9779. const int64_t ne1 = dst->ne[1];
  9780. //const int64_t ne2 = dst->ne[2];
  9781. //const int64_t ne3 = dst->ne[3];
  9782. const int nbk0 = k->nb[0];
  9783. const int nbk1 = k->nb[1];
  9784. const int nbk2 = k->nb[2];
  9785. const int nbk3 = k->nb[3];
  9786. const int nbq0 = q->nb[0];
  9787. const int nbq1 = q->nb[1];
  9788. const int nbq2 = q->nb[2];
  9789. const int nbq3 = q->nb[3];
  9790. const int nbv0 = v->nb[0];
  9791. const int nbv1 = v->nb[1];
  9792. const int nbv2 = v->nb[2];
  9793. const int nbv3 = v->nb[3];
  9794. const int nb0 = dst->nb[0];
  9795. const int nb1 = dst->nb[1];
  9796. const int nb2 = dst->nb[2];
  9797. const int nb3 = dst->nb[3];
  9798. const int ith = params->ith;
  9799. const int nth = params->nth;
  9800. const int64_t D = neq0;
  9801. const int64_t N = neq1;
  9802. const int64_t P = nek1 - N;
  9803. const int64_t M = P + N;
  9804. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  9805. GGML_ASSERT(ne0 == D);
  9806. GGML_ASSERT(ne1 == N);
  9807. GGML_ASSERT(P >= 0);
  9808. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  9809. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  9810. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  9811. GGML_ASSERT(neq0 == D);
  9812. GGML_ASSERT(nek0 == D);
  9813. GGML_ASSERT(nev1 == D);
  9814. GGML_ASSERT(neq1 == N);
  9815. GGML_ASSERT(nek1 == N + P);
  9816. GGML_ASSERT(nev1 == D);
  9817. // dst cannot be transposed or permuted
  9818. GGML_ASSERT(nb0 == sizeof(float));
  9819. GGML_ASSERT(nb0 <= nb1);
  9820. GGML_ASSERT(nb1 <= nb2);
  9821. GGML_ASSERT(nb2 <= nb3);
  9822. if (params->type == GGML_TASK_INIT) {
  9823. return;
  9824. }
  9825. if (params->type == GGML_TASK_FINALIZE) {
  9826. return;
  9827. }
  9828. // parallelize by q rows using ggml_vec_dot_f32
  9829. // total rows in q
  9830. const int nr = neq1*neq2*neq3;
  9831. // rows per thread
  9832. const int dr = (nr + nth - 1)/nth;
  9833. // row range for this thread
  9834. const int ir0 = dr*ith;
  9835. const int ir1 = MIN(ir0 + dr, nr);
  9836. const float scale = 1.0f/sqrtf(D);
  9837. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  9838. for (int ir = ir0; ir < ir1; ++ir) {
  9839. // q indices
  9840. const int iq3 = ir/(neq2*neq1);
  9841. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  9842. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  9843. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  9844. for (int i = M; i < Mup; ++i) {
  9845. S[i] = -INFINITY;
  9846. }
  9847. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  9848. for (int64_t ic = 0; ic < nek1; ++ic) {
  9849. // k indices
  9850. const int ik3 = iq3;
  9851. const int ik2 = iq2;
  9852. const int ik1 = ic;
  9853. // S indices
  9854. const int i1 = ik1;
  9855. ggml_vec_dot_f16(neq0,
  9856. S + i1,
  9857. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  9858. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  9859. }
  9860. } else {
  9861. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  9862. // k indices
  9863. const int ik3 = iq3;
  9864. const int ik2 = iq2;
  9865. const int ik1 = ic;
  9866. // S indices
  9867. const int i1 = ik1;
  9868. ggml_vec_dot_f16_unroll(neq0, nbk1,
  9869. S + i1,
  9870. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  9871. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  9872. }
  9873. }
  9874. // scale
  9875. ggml_vec_scale_f32(nek1, S, scale);
  9876. if (masked) {
  9877. for (int64_t i = P; i < M; i++) {
  9878. if (i > P + iq1) {
  9879. S[i] = -INFINITY;
  9880. }
  9881. }
  9882. }
  9883. // softmax
  9884. {
  9885. float max = -INFINITY;
  9886. ggml_vec_max_f32(M, &max, S);
  9887. ggml_float sum = 0.0;
  9888. {
  9889. #ifdef GGML_SOFT_MAX_ACCELERATE
  9890. max = -max;
  9891. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  9892. vvexpf(S, S, &Mup);
  9893. ggml_vec_sum_f32(Mup, &sum, S);
  9894. #else
  9895. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  9896. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  9897. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  9898. float * SS = S + i;
  9899. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  9900. if (SS[j] == -INFINITY) {
  9901. SS[j] = 0.0f;
  9902. } else {
  9903. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  9904. memcpy(&scvt[j], &s, sizeof(uint16_t));
  9905. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  9906. sump[j] += (ggml_float)val;
  9907. SS[j] = val;
  9908. }
  9909. }
  9910. }
  9911. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  9912. sum += sump[i];
  9913. }
  9914. #endif
  9915. }
  9916. assert(sum > 0.0);
  9917. sum = 1.0/sum;
  9918. ggml_vec_scale_f32(M, S, sum);
  9919. #ifndef NDEBUG
  9920. for (int i = 0; i < M; ++i) {
  9921. assert(!isnan(S[i]));
  9922. assert(!isinf(S[i]));
  9923. }
  9924. #endif
  9925. }
  9926. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  9927. for (int64_t i = 0; i < M; i++) {
  9928. S16[i] = GGML_FP32_TO_FP16(S[i]);
  9929. }
  9930. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  9931. for (int64_t ic = 0; ic < nev1; ++ic) {
  9932. // dst indices
  9933. const int i1 = iq1;
  9934. const int i2 = iq2;
  9935. const int i3 = iq3;
  9936. ggml_vec_dot_f16(nek1,
  9937. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  9938. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  9939. S16);
  9940. }
  9941. } else {
  9942. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  9943. // dst indices
  9944. const int i1 = iq1;
  9945. const int i2 = iq2;
  9946. const int i3 = iq3;
  9947. ggml_vec_dot_f16_unroll(nek1, nbv1,
  9948. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  9949. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  9950. S16);
  9951. }
  9952. }
  9953. }
  9954. }
  9955. static void ggml_compute_forward_flash_attn(
  9956. const struct ggml_compute_params * params,
  9957. const struct ggml_tensor * q,
  9958. const struct ggml_tensor * k,
  9959. const struct ggml_tensor * v,
  9960. const bool masked,
  9961. struct ggml_tensor * dst) {
  9962. switch (q->type) {
  9963. case GGML_TYPE_F16:
  9964. {
  9965. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  9966. } break;
  9967. case GGML_TYPE_F32:
  9968. {
  9969. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  9970. } break;
  9971. default:
  9972. {
  9973. GGML_ASSERT(false);
  9974. } break;
  9975. }
  9976. }
  9977. // ggml_compute_forward_flash_ff
  9978. static void ggml_compute_forward_flash_ff_f16(
  9979. const struct ggml_compute_params * params,
  9980. const struct ggml_tensor * a, // F16
  9981. const struct ggml_tensor * b0, // F16 fc_w
  9982. const struct ggml_tensor * b1, // F32 fc_b
  9983. const struct ggml_tensor * c0, // F16 proj_w
  9984. const struct ggml_tensor * c1, // F32 proj_b
  9985. struct ggml_tensor * dst) {
  9986. int64_t t0 = ggml_perf_time_us();
  9987. UNUSED(t0);
  9988. const int64_t nea0 = a->ne[0];
  9989. const int64_t nea1 = a->ne[1];
  9990. const int64_t nea2 = a->ne[2];
  9991. const int64_t nea3 = a->ne[3];
  9992. const int64_t neb00 = b0->ne[0];
  9993. const int64_t neb01 = b0->ne[1];
  9994. //const int64_t neb02 = b0->ne[2];
  9995. //const int64_t neb03 = b0->ne[3];
  9996. const int64_t neb10 = b1->ne[0];
  9997. const int64_t neb11 = b1->ne[1];
  9998. //const int64_t neb12 = b1->ne[2];
  9999. //const int64_t neb13 = b1->ne[3];
  10000. const int64_t nec00 = c0->ne[0];
  10001. const int64_t nec01 = c0->ne[1];
  10002. //const int64_t nec02 = c0->ne[2];
  10003. //const int64_t nec03 = c0->ne[3];
  10004. const int64_t nec10 = c1->ne[0];
  10005. const int64_t nec11 = c1->ne[1];
  10006. //const int64_t nec12 = c1->ne[2];
  10007. //const int64_t nec13 = c1->ne[3];
  10008. const int64_t ne0 = dst->ne[0];
  10009. const int64_t ne1 = dst->ne[1];
  10010. const int64_t ne2 = dst->ne[2];
  10011. //const int64_t ne3 = dst->ne[3];
  10012. const int nba0 = a->nb[0];
  10013. const int nba1 = a->nb[1];
  10014. const int nba2 = a->nb[2];
  10015. const int nba3 = a->nb[3];
  10016. const int nbb00 = b0->nb[0];
  10017. const int nbb01 = b0->nb[1];
  10018. const int nbb02 = b0->nb[2];
  10019. const int nbb03 = b0->nb[3];
  10020. const int nbb10 = b1->nb[0];
  10021. //const int nbb11 = b1->nb[1];
  10022. //const int nbb12 = b1->nb[2];
  10023. //const int nbb13 = b1->nb[3];
  10024. const int nbc00 = c0->nb[0];
  10025. const int nbc01 = c0->nb[1];
  10026. const int nbc02 = c0->nb[2];
  10027. const int nbc03 = c0->nb[3];
  10028. const int nbc10 = c1->nb[0];
  10029. //const int nbc11 = c1->nb[1];
  10030. //const int nbc12 = c1->nb[2];
  10031. //const int nbc13 = c1->nb[3];
  10032. const int nb0 = dst->nb[0];
  10033. const int nb1 = dst->nb[1];
  10034. const int nb2 = dst->nb[2];
  10035. const int nb3 = dst->nb[3];
  10036. const int ith = params->ith;
  10037. const int nth = params->nth;
  10038. const int64_t D = nea0;
  10039. //const int64_t N = nea1;
  10040. const int64_t M = neb01;
  10041. GGML_ASSERT(ne0 == nea0);
  10042. GGML_ASSERT(ne1 == nea1);
  10043. GGML_ASSERT(ne2 == nea2);
  10044. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10045. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10046. GGML_ASSERT(nbb10 == sizeof(float));
  10047. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10048. GGML_ASSERT(nbc10 == sizeof(float));
  10049. GGML_ASSERT(neb00 == D);
  10050. GGML_ASSERT(neb01 == M);
  10051. GGML_ASSERT(neb10 == M);
  10052. GGML_ASSERT(neb11 == 1);
  10053. GGML_ASSERT(nec00 == M);
  10054. GGML_ASSERT(nec01 == D);
  10055. GGML_ASSERT(nec10 == D);
  10056. GGML_ASSERT(nec11 == 1);
  10057. // dst cannot be transposed or permuted
  10058. GGML_ASSERT(nb0 == sizeof(float));
  10059. GGML_ASSERT(nb0 <= nb1);
  10060. GGML_ASSERT(nb1 <= nb2);
  10061. GGML_ASSERT(nb2 <= nb3);
  10062. if (params->type == GGML_TASK_INIT) {
  10063. return;
  10064. }
  10065. if (params->type == GGML_TASK_FINALIZE) {
  10066. return;
  10067. }
  10068. // parallelize by a rows using ggml_vec_dot_f32
  10069. // total rows in a
  10070. const int nr = nea1*nea2*nea3;
  10071. // rows per thread
  10072. const int dr = (nr + nth - 1)/nth;
  10073. // row range for this thread
  10074. const int ir0 = dr*ith;
  10075. const int ir1 = MIN(ir0 + dr, nr);
  10076. for (int ir = ir0; ir < ir1; ++ir) {
  10077. // a indices
  10078. const int ia3 = ir/(nea2*nea1);
  10079. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10080. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10081. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10082. for (int64_t ic = 0; ic < neb01; ++ic) {
  10083. // b0 indices
  10084. const int ib03 = ia3;
  10085. const int ib02 = ia2;
  10086. const int ib01 = ic;
  10087. // S indices
  10088. const int i1 = ib01;
  10089. ggml_vec_dot_f16(nea0,
  10090. S + i1,
  10091. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10092. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10093. }
  10094. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10095. //ggml_vec_gelu_f32(neb01, S, S);
  10096. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10097. for (int64_t i = 0; i < M; i++) {
  10098. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10099. }
  10100. ggml_vec_gelu_f16(neb01, S16, S16);
  10101. {
  10102. // dst indices
  10103. const int i1 = ia1;
  10104. const int i2 = ia2;
  10105. const int i3 = ia3;
  10106. for (int64_t ic = 0; ic < nec01; ++ic) {
  10107. ggml_vec_dot_f16(neb01,
  10108. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10109. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10110. S16);
  10111. }
  10112. ggml_vec_add_f32(nec01,
  10113. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10114. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10115. (float *) c1->data);
  10116. }
  10117. }
  10118. }
  10119. static void ggml_compute_forward_flash_ff(
  10120. const struct ggml_compute_params * params,
  10121. const struct ggml_tensor * a,
  10122. const struct ggml_tensor * b0,
  10123. const struct ggml_tensor * b1,
  10124. const struct ggml_tensor * c0,
  10125. const struct ggml_tensor * c1,
  10126. struct ggml_tensor * dst) {
  10127. switch (b0->type) {
  10128. case GGML_TYPE_F16:
  10129. {
  10130. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10131. } break;
  10132. case GGML_TYPE_F32:
  10133. {
  10134. GGML_ASSERT(false); // TODO
  10135. } break;
  10136. default:
  10137. {
  10138. GGML_ASSERT(false);
  10139. } break;
  10140. }
  10141. }
  10142. // ggml_compute_forward_map_unary
  10143. static void ggml_compute_forward_map_unary_f32(
  10144. const struct ggml_compute_params * params,
  10145. const struct ggml_tensor * src0,
  10146. struct ggml_tensor * dst,
  10147. const ggml_unary_op_f32_t fun) {
  10148. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10149. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10150. return;
  10151. }
  10152. const int n = ggml_nrows(src0);
  10153. const int nc = src0->ne[0];
  10154. assert( dst->nb[0] == sizeof(float));
  10155. assert(src0->nb[0] == sizeof(float));
  10156. for (int i = 0; i < n; i++) {
  10157. fun(nc,
  10158. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10159. (float *) ((char *) src0->data + i*(src0->nb[1])));
  10160. }
  10161. }
  10162. static void ggml_compute_forward_map_unary(
  10163. const struct ggml_compute_params * params,
  10164. const struct ggml_tensor * src0,
  10165. struct ggml_tensor * dst,
  10166. const ggml_unary_op_f32_t fun) {
  10167. switch (src0->type) {
  10168. case GGML_TYPE_F32:
  10169. {
  10170. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  10171. } break;
  10172. default:
  10173. {
  10174. GGML_ASSERT(false);
  10175. } break;
  10176. }
  10177. }
  10178. // ggml_compute_forward_map_binary
  10179. static void ggml_compute_forward_map_binary_f32(
  10180. const struct ggml_compute_params * params,
  10181. const struct ggml_tensor * src0,
  10182. const struct ggml_tensor * src1,
  10183. struct ggml_tensor * dst,
  10184. const ggml_binary_op_f32_t fun) {
  10185. assert(params->ith == 0);
  10186. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  10187. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10188. return;
  10189. }
  10190. const int n = ggml_nrows(src0);
  10191. const int nc = src0->ne[0];
  10192. assert( dst->nb[0] == sizeof(float));
  10193. assert(src0->nb[0] == sizeof(float));
  10194. assert(src1->nb[0] == sizeof(float));
  10195. for (int i = 0; i < n; i++) {
  10196. fun(nc,
  10197. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10198. (float *) ((char *) src0->data + i*(src0->nb[1])),
  10199. (float *) ((char *) src1->data + i*(src1->nb[1])));
  10200. }
  10201. }
  10202. static void ggml_compute_forward_map_binary(
  10203. const struct ggml_compute_params * params,
  10204. const struct ggml_tensor * src0,
  10205. const struct ggml_tensor * src1,
  10206. struct ggml_tensor * dst,
  10207. const ggml_binary_op_f32_t fun) {
  10208. switch (src0->type) {
  10209. case GGML_TYPE_F32:
  10210. {
  10211. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  10212. } break;
  10213. default:
  10214. {
  10215. GGML_ASSERT(false);
  10216. } break;
  10217. }
  10218. }
  10219. /////////////////////////////////
  10220. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  10221. GGML_ASSERT(params);
  10222. switch (tensor->op) {
  10223. case GGML_OP_DUP:
  10224. {
  10225. ggml_compute_forward_dup(params, tensor->src0, tensor);
  10226. } break;
  10227. case GGML_OP_ADD:
  10228. {
  10229. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  10230. } break;
  10231. case GGML_OP_ADD1:
  10232. {
  10233. ggml_compute_forward_add1(params, tensor->src0, tensor->src1, tensor);
  10234. } break;
  10235. case GGML_OP_ACC:
  10236. {
  10237. ggml_compute_forward_acc(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10238. } break;
  10239. case GGML_OP_SUB:
  10240. {
  10241. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  10242. } break;
  10243. case GGML_OP_MUL:
  10244. {
  10245. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  10246. } break;
  10247. case GGML_OP_DIV:
  10248. {
  10249. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  10250. } break;
  10251. case GGML_OP_SQR:
  10252. {
  10253. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  10254. } break;
  10255. case GGML_OP_SQRT:
  10256. {
  10257. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  10258. } break;
  10259. case GGML_OP_LOG:
  10260. {
  10261. ggml_compute_forward_log(params, tensor->src0, tensor);
  10262. } break;
  10263. case GGML_OP_SUM:
  10264. {
  10265. ggml_compute_forward_sum(params, tensor->src0, tensor);
  10266. } break;
  10267. case GGML_OP_SUM_ROWS:
  10268. {
  10269. ggml_compute_forward_sum_rows(params, tensor->src0, tensor);
  10270. } break;
  10271. case GGML_OP_MEAN:
  10272. {
  10273. ggml_compute_forward_mean(params, tensor->src0, tensor);
  10274. } break;
  10275. case GGML_OP_REPEAT:
  10276. {
  10277. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  10278. } break;
  10279. case GGML_OP_ABS:
  10280. {
  10281. ggml_compute_forward_abs(params, tensor->src0, tensor);
  10282. } break;
  10283. case GGML_OP_SGN:
  10284. {
  10285. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  10286. } break;
  10287. case GGML_OP_NEG:
  10288. {
  10289. ggml_compute_forward_neg(params, tensor->src0, tensor);
  10290. } break;
  10291. case GGML_OP_STEP:
  10292. {
  10293. ggml_compute_forward_step(params, tensor->src0, tensor);
  10294. } break;
  10295. case GGML_OP_RELU:
  10296. {
  10297. ggml_compute_forward_relu(params, tensor->src0, tensor);
  10298. } break;
  10299. case GGML_OP_GELU:
  10300. {
  10301. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  10302. } break;
  10303. case GGML_OP_SILU:
  10304. {
  10305. ggml_compute_forward_silu(params, tensor->src0, tensor);
  10306. } break;
  10307. case GGML_OP_SILU_BACK:
  10308. {
  10309. ggml_compute_forward_silu_back(params, tensor->src0, tensor->src1, tensor);
  10310. } break;
  10311. case GGML_OP_NORM:
  10312. {
  10313. ggml_compute_forward_norm(params, tensor->src0, tensor);
  10314. } break;
  10315. case GGML_OP_RMS_NORM:
  10316. {
  10317. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  10318. } break;
  10319. case GGML_OP_RMS_NORM_BACK:
  10320. {
  10321. ggml_compute_forward_rms_norm_back(params, tensor->src0, tensor->src1, tensor);
  10322. } break;
  10323. case GGML_OP_MUL_MAT:
  10324. {
  10325. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  10326. } break;
  10327. case GGML_OP_SCALE:
  10328. {
  10329. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  10330. } break;
  10331. case GGML_OP_SET:
  10332. {
  10333. ggml_compute_forward_set(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10334. } break;
  10335. case GGML_OP_CPY:
  10336. {
  10337. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  10338. } break;
  10339. case GGML_OP_CONT:
  10340. {
  10341. ggml_compute_forward_cont(params, tensor->src0, tensor);
  10342. } break;
  10343. case GGML_OP_RESHAPE:
  10344. {
  10345. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  10346. } break;
  10347. case GGML_OP_VIEW:
  10348. {
  10349. ggml_compute_forward_view(params, tensor->src0);
  10350. } break;
  10351. case GGML_OP_PERMUTE:
  10352. {
  10353. ggml_compute_forward_permute(params, tensor->src0);
  10354. } break;
  10355. case GGML_OP_TRANSPOSE:
  10356. {
  10357. ggml_compute_forward_transpose(params, tensor->src0);
  10358. } break;
  10359. case GGML_OP_GET_ROWS:
  10360. {
  10361. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  10362. } break;
  10363. case GGML_OP_GET_ROWS_BACK:
  10364. {
  10365. ggml_compute_forward_get_rows_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10366. } break;
  10367. case GGML_OP_DIAG:
  10368. {
  10369. ggml_compute_forward_diag(params, tensor->src0, tensor);
  10370. } break;
  10371. case GGML_OP_DIAG_MASK_INF:
  10372. {
  10373. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  10374. } break;
  10375. case GGML_OP_DIAG_MASK_ZERO:
  10376. {
  10377. ggml_compute_forward_diag_mask_zero(params, tensor->src0, tensor->src1, tensor);
  10378. } break;
  10379. case GGML_OP_SOFT_MAX:
  10380. {
  10381. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  10382. } break;
  10383. case GGML_OP_ROPE:
  10384. {
  10385. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  10386. } break;
  10387. case GGML_OP_ROPE_BACK:
  10388. {
  10389. ggml_compute_forward_rope_back(params, tensor->src0, tensor->src1, tensor);
  10390. } break;
  10391. case GGML_OP_ALIBI:
  10392. {
  10393. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  10394. } break;
  10395. case GGML_OP_CONV_1D_1S:
  10396. {
  10397. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  10398. } break;
  10399. case GGML_OP_CONV_1D_2S:
  10400. {
  10401. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  10402. } break;
  10403. case GGML_OP_FLASH_ATTN:
  10404. {
  10405. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  10406. GGML_ASSERT(t == 0 || t == 1);
  10407. bool masked = t != 0;
  10408. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  10409. } break;
  10410. case GGML_OP_FLASH_FF:
  10411. {
  10412. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  10413. } break;
  10414. case GGML_OP_MAP_UNARY:
  10415. {
  10416. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  10417. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  10418. }
  10419. break;
  10420. case GGML_OP_MAP_BINARY:
  10421. {
  10422. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  10423. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  10424. }
  10425. break;
  10426. case GGML_OP_NONE:
  10427. {
  10428. // nop
  10429. } break;
  10430. case GGML_OP_COUNT:
  10431. {
  10432. GGML_ASSERT(false);
  10433. } break;
  10434. }
  10435. }
  10436. ////////////////////////////////////////////////////////////////////////////////
  10437. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  10438. struct ggml_tensor * src0 = tensor->src0;
  10439. struct ggml_tensor * src1 = tensor->src1;
  10440. switch (tensor->op) {
  10441. case GGML_OP_DUP:
  10442. {
  10443. if (src0->grad) {
  10444. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10445. }
  10446. } break;
  10447. case GGML_OP_ADD:
  10448. {
  10449. if (src0->grad) {
  10450. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10451. }
  10452. if (src1->grad) {
  10453. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  10454. }
  10455. } break;
  10456. case GGML_OP_ADD1:
  10457. {
  10458. if (src0->grad) {
  10459. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10460. }
  10461. if (src1->grad) {
  10462. src1->grad = ggml_add_impl(ctx,
  10463. src1->grad,
  10464. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  10465. inplace);
  10466. }
  10467. } break;
  10468. case GGML_OP_ACC:
  10469. {
  10470. if (src0->grad) {
  10471. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10472. }
  10473. if (src1->grad) {
  10474. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  10475. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  10476. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  10477. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  10478. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  10479. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  10480. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  10481. tensor->grad,
  10482. src1->grad->ne[0],
  10483. src1->grad->ne[1],
  10484. src1->grad->ne[2],
  10485. src1->grad->ne[3],
  10486. nb1, nb2, nb3, offset);
  10487. src1->grad =
  10488. ggml_add_impl(ctx,
  10489. src1->grad,
  10490. ggml_reshape(ctx,
  10491. ggml_cont(ctx, tensor_grad_view),
  10492. src1->grad),
  10493. inplace);
  10494. }
  10495. } break;
  10496. case GGML_OP_SUB:
  10497. {
  10498. if (src0->grad) {
  10499. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10500. }
  10501. if (src1->grad) {
  10502. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  10503. }
  10504. } break;
  10505. case GGML_OP_MUL:
  10506. {
  10507. if (src0->grad) {
  10508. src0->grad =
  10509. ggml_add_impl(ctx,
  10510. src0->grad,
  10511. ggml_mul(ctx, src1, tensor->grad),
  10512. inplace);
  10513. }
  10514. if (src1->grad) {
  10515. src1->grad =
  10516. ggml_add_impl(ctx,
  10517. src1->grad,
  10518. ggml_mul(ctx, src0, tensor->grad),
  10519. inplace);
  10520. }
  10521. } break;
  10522. case GGML_OP_DIV:
  10523. {
  10524. if (src0->grad) {
  10525. src0->grad =
  10526. ggml_add_impl(ctx,
  10527. src0->grad,
  10528. ggml_div(ctx, tensor->grad, src1),
  10529. inplace);
  10530. }
  10531. if (src1->grad) {
  10532. src1->grad =
  10533. ggml_sub_impl(ctx,
  10534. src1->grad,
  10535. ggml_mul(ctx,
  10536. tensor->grad,
  10537. ggml_div(ctx, tensor, src1)),
  10538. inplace);
  10539. }
  10540. } break;
  10541. case GGML_OP_SQR:
  10542. {
  10543. if (src0->grad) {
  10544. src0->grad =
  10545. ggml_add_impl(ctx,
  10546. src0->grad,
  10547. ggml_scale(ctx,
  10548. ggml_mul(ctx, src0, tensor->grad),
  10549. ggml_new_f32(ctx, 2.0f)),
  10550. inplace);
  10551. }
  10552. } break;
  10553. case GGML_OP_SQRT:
  10554. {
  10555. if (src0->grad) {
  10556. src0->grad =
  10557. ggml_add_impl(ctx,
  10558. src0->grad,
  10559. ggml_mul(ctx,
  10560. tensor->grad, // this was not catched by test_grad because in test_grad tensor->grad is 1
  10561. ggml_div(ctx,
  10562. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  10563. tensor)),
  10564. inplace);
  10565. }
  10566. } break;
  10567. case GGML_OP_LOG:
  10568. {
  10569. if (src0->grad) {
  10570. src0->grad =
  10571. ggml_add_impl(ctx,
  10572. src0->grad,
  10573. ggml_div(ctx,
  10574. tensor->grad,
  10575. src0),
  10576. inplace);
  10577. }
  10578. } break;
  10579. case GGML_OP_SUM:
  10580. {
  10581. if (src0->grad) {
  10582. src0->grad =
  10583. ggml_add1_impl(ctx,
  10584. src0->grad,
  10585. tensor->grad,
  10586. inplace);
  10587. }
  10588. } break;
  10589. case GGML_OP_SUM_ROWS:
  10590. {
  10591. if (src0->grad) {
  10592. src0->grad =
  10593. ggml_add_impl(ctx,
  10594. src0->grad,
  10595. ggml_repeat(ctx,
  10596. tensor->grad,
  10597. src0->grad),
  10598. inplace);
  10599. }
  10600. } break;
  10601. case GGML_OP_MEAN:
  10602. {
  10603. GGML_ASSERT(false); // TODO: implement
  10604. } break;
  10605. case GGML_OP_REPEAT:
  10606. {
  10607. // necessary for llama
  10608. if (src0->grad) {
  10609. GGML_ASSERT(src0->n_dims == 1 || src0->n_dims == 2);
  10610. const int nc = tensor->ne[0];
  10611. const int nr = tensor->ne[1];
  10612. const int nc0 = src0->ne[0];
  10613. const int nr0 = src0->ne[1];
  10614. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  10615. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  10616. // tensor->grad [nc,nr,1,1]
  10617. // reshape [nc0,nc/nc0,nr0,nr/nr0]
  10618. // permute [nc0,nr0,nc/nc0,nr/nr0]
  10619. // substitute [nc0,nr0,ncr,nrr]
  10620. // reshape [nc0*nr0,ncr*nrr,1,1]
  10621. // transpose [ncr*nrr,nc0*nr0,1,1]
  10622. // sum rows [1,nc0*nr0,1,1]
  10623. // transpose [nc0*nr0,1,1]
  10624. // reshape [nc0,nr0,1,1] reshape_1d or reshape_2d
  10625. // add to src0->grad
  10626. int64_t ne[4] = {nc0,ncr,nr0,nrr};
  10627. struct ggml_tensor* F00 = tensor->grad;
  10628. struct ggml_tensor* F01 = ggml_reshape (ctx, F00, ggml_new_tensor(ctx,tensor->grad->type,4,ne));
  10629. struct ggml_tensor* F02 = ggml_permute (ctx, F01, 0,2,1,3);
  10630. struct ggml_tensor* F03 = ggml_cont (ctx, F02);
  10631. struct ggml_tensor* F04 = ggml_reshape_2d(ctx, F03, nc0*nr0, ncr*nrr);
  10632. struct ggml_tensor* F05 = ggml_transpose (ctx, F04);
  10633. struct ggml_tensor* F06 = ggml_cont (ctx, F05);
  10634. struct ggml_tensor* F07 = ggml_sum_rows (ctx, F06);
  10635. struct ggml_tensor* F08 = ggml_transpose (ctx, F07);
  10636. struct ggml_tensor* F09 = ggml_cont (ctx, F08);
  10637. struct ggml_tensor* F10 = ggml_reshape (ctx, F09, src0->grad);
  10638. src0->grad =
  10639. ggml_add_impl(ctx,
  10640. src0->grad,
  10641. F10,
  10642. inplace);
  10643. }
  10644. } break;
  10645. case GGML_OP_ABS:
  10646. {
  10647. if (src0->grad) {
  10648. src0->grad =
  10649. ggml_add_impl(ctx,
  10650. src0->grad,
  10651. ggml_mul(ctx,
  10652. ggml_sgn(ctx, src0),
  10653. tensor->grad),
  10654. inplace);
  10655. }
  10656. } break;
  10657. case GGML_OP_SGN:
  10658. {
  10659. if (src0->grad) {
  10660. // noop
  10661. }
  10662. } break;
  10663. case GGML_OP_NEG:
  10664. {
  10665. if (src0->grad) {
  10666. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  10667. }
  10668. } break;
  10669. case GGML_OP_STEP:
  10670. {
  10671. if (src0->grad) {
  10672. // noop
  10673. }
  10674. } break;
  10675. case GGML_OP_RELU:
  10676. {
  10677. if (src0->grad) {
  10678. src0->grad = ggml_sub_impl(ctx,
  10679. src0->grad,
  10680. ggml_mul(ctx,
  10681. ggml_step(ctx, src0),
  10682. tensor->grad),
  10683. inplace);
  10684. }
  10685. } break;
  10686. case GGML_OP_GELU:
  10687. {
  10688. GGML_ASSERT(false); // TODO: not implemented
  10689. } break;
  10690. case GGML_OP_ALIBI:
  10691. {
  10692. GGML_ASSERT(false); // TODO: not implemented
  10693. } break;
  10694. case GGML_OP_SILU:
  10695. {
  10696. // necessary for llama
  10697. if (src0->grad) {
  10698. src0->grad = ggml_add_impl(ctx,
  10699. src0->grad,
  10700. ggml_silu_back(ctx, src0, tensor->grad),
  10701. inplace);
  10702. }
  10703. } break;
  10704. case GGML_OP_SILU_BACK:
  10705. {
  10706. GGML_ASSERT(false); // TODO: not implemented
  10707. } break;
  10708. case GGML_OP_NORM:
  10709. {
  10710. GGML_ASSERT(false); // TODO: not implemented
  10711. } break;
  10712. case GGML_OP_RMS_NORM:
  10713. {
  10714. // necessary for llama
  10715. if (src0->grad) {
  10716. src0->grad = ggml_add_impl(ctx,
  10717. src0->grad,
  10718. ggml_rms_norm_back(ctx, src0, tensor->grad),
  10719. inplace);
  10720. }
  10721. } break;
  10722. case GGML_OP_RMS_NORM_BACK:
  10723. {
  10724. GGML_ASSERT(false); // TODO: not implemented
  10725. } break;
  10726. case GGML_OP_MUL_MAT:
  10727. {
  10728. // https://cs231n.github.io/optimization-2/#staged
  10729. // # forward pass
  10730. // s0 = np.random.randn(5, 10)
  10731. // s1 = np.random.randn(10, 3)
  10732. // t = s0.dot(s1)
  10733. // # now suppose we had the gradient on t from above in the circuit
  10734. // dt = np.random.randn(*t.shape) # same shape as t
  10735. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  10736. // ds1 = t.T.dot(dt)
  10737. // tensor.shape [m,p]
  10738. // src0.shape [n,m]
  10739. // src1.shape [n,p]
  10740. // necessary for llama
  10741. if (src0->grad) {
  10742. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  10743. src0->grad =
  10744. ggml_add_impl(ctx,
  10745. src0->grad,
  10746. // ds0 = dt.dot(s1.T)
  10747. // ggml_out_prod(ctx, // [n,m]
  10748. // src1, // [n,p]
  10749. // tensor->grad), // [m,p]
  10750. // for now just using A*B==(B.T*A.T).T
  10751. ggml_cont(ctx, // [n,m]
  10752. ggml_transpose(ctx, // [n,m]
  10753. ggml_mul_mat(ctx, // [m,n]
  10754. ggml_cont(ctx, // [p,m]
  10755. ggml_transpose(ctx, // [p,m]
  10756. tensor->grad)), // [m,p]
  10757. ggml_cont(ctx, // [p,n]
  10758. ggml_transpose(ctx, // [p,n]
  10759. src1))))), // [n,p]
  10760. inplace);
  10761. }
  10762. if (src1->grad) {
  10763. src1->grad =
  10764. ggml_add_impl(ctx,
  10765. src1->grad,
  10766. // ds1 = s0.T.dot(dt):
  10767. ggml_mul_mat(ctx, // [n,p]
  10768. ggml_cont(ctx, // [m,n]
  10769. ggml_transpose(ctx, src0)), // [m,n]
  10770. tensor->grad), // [m,p]
  10771. inplace);
  10772. }
  10773. } break;
  10774. case GGML_OP_SCALE:
  10775. {
  10776. // necessary for llama
  10777. if (src0->grad) {
  10778. src0->grad =
  10779. ggml_add_impl(ctx,
  10780. src0->grad,
  10781. ggml_scale_impl(ctx, tensor->grad, src1, false),
  10782. inplace);
  10783. }
  10784. if (src1->grad) {
  10785. src1->grad =
  10786. ggml_add_impl(ctx,
  10787. src1->grad,
  10788. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  10789. inplace);
  10790. }
  10791. } break;
  10792. case GGML_OP_SET:
  10793. {
  10794. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  10795. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  10796. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  10797. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  10798. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  10799. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  10800. struct ggml_tensor * tensor_grad_view = NULL;
  10801. if (src0->grad || src1->grad) {
  10802. GGML_ASSERT(src0->type == tensor->type);
  10803. GGML_ASSERT(tensor->grad->type == tensor->type);
  10804. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  10805. tensor_grad_view = ggml_view_4d(ctx,
  10806. tensor->grad,
  10807. src1->grad->ne[0],
  10808. src1->grad->ne[1],
  10809. src1->grad->ne[2],
  10810. src1->grad->ne[3],
  10811. nb1, nb2, nb3, offset);
  10812. }
  10813. if (src0->grad) {
  10814. src0->grad = ggml_add_impl(ctx,
  10815. src0->grad,
  10816. ggml_acc_impl(ctx,
  10817. tensor->grad,
  10818. ggml_neg(ctx, tensor_grad_view),
  10819. nb1, nb2, nb3, offset, false),
  10820. inplace);
  10821. }
  10822. if (src1->grad) {
  10823. src1->grad =
  10824. ggml_add_impl(ctx,
  10825. src1->grad,
  10826. ggml_reshape(ctx,
  10827. ggml_cont(ctx, tensor_grad_view),
  10828. src1->grad),
  10829. inplace);
  10830. }
  10831. } break;
  10832. case GGML_OP_CPY:
  10833. {
  10834. // necessary for llama
  10835. // cpy overwrites value of src1 by src0 and returns view(src1)
  10836. // the overwriting is mathematically equivalent to:
  10837. // tensor = src0 * 1 + src1 * 0
  10838. if (src0->grad) {
  10839. // dsrc0 = dtensor * 1
  10840. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10841. }
  10842. if (src1->grad) {
  10843. // dsrc1 = dtensor * 0 -> noop
  10844. }
  10845. } break;
  10846. case GGML_OP_CONT:
  10847. {
  10848. // same as cpy
  10849. if (src0->grad) {
  10850. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  10851. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  10852. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10853. }
  10854. } break;
  10855. case GGML_OP_RESHAPE:
  10856. {
  10857. // necessary for llama
  10858. if (src0->grad) {
  10859. src0->grad =
  10860. ggml_add_impl(ctx, src0->grad,
  10861. ggml_reshape(ctx, tensor->grad, src0->grad),
  10862. inplace);
  10863. }
  10864. } break;
  10865. case GGML_OP_VIEW:
  10866. {
  10867. // necessary for llama
  10868. if (src0->grad) {
  10869. size_t offset;
  10870. memcpy(&offset, tensor->padding, sizeof(offset));
  10871. size_t nb1 = tensor->nb[1];
  10872. size_t nb2 = tensor->nb[2];
  10873. size_t nb3 = tensor->nb[3];
  10874. if (src0->type != src0->grad->type) {
  10875. // gradient is typically F32, but src0 could be other type
  10876. size_t ng = ggml_element_size(src0->grad);
  10877. size_t n0 = ggml_element_size(src0);
  10878. GGML_ASSERT(offset % n0 == 0);
  10879. GGML_ASSERT(nb1 % n0 == 0);
  10880. GGML_ASSERT(nb2 % n0 == 0);
  10881. GGML_ASSERT(nb3 % n0 == 0);
  10882. offset = (offset / n0) * ng;
  10883. nb1 = (nb1 / n0) * ng;
  10884. nb2 = (nb2 / n0) * ng;
  10885. nb3 = (nb3 / n0) * ng;
  10886. }
  10887. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  10888. }
  10889. } break;
  10890. case GGML_OP_PERMUTE:
  10891. {
  10892. // necessary for llama
  10893. if (src0->grad) {
  10894. int axis0 = tensor->padding[0] & 0x3;
  10895. int axis1 = tensor->padding[1] & 0x3;
  10896. int axis2 = tensor->padding[2] & 0x3;
  10897. int axis3 = tensor->padding[3] & 0x3;
  10898. int axes_backward[4] = {0,0,0,0};
  10899. axes_backward[axis0] = 0;
  10900. axes_backward[axis1] = 1;
  10901. axes_backward[axis2] = 2;
  10902. axes_backward[axis3] = 3;
  10903. src0->grad =
  10904. ggml_add_impl(ctx, src0->grad,
  10905. ggml_permute(ctx,
  10906. tensor->grad,
  10907. axes_backward[0],
  10908. axes_backward[1],
  10909. axes_backward[2],
  10910. axes_backward[3]),
  10911. inplace);
  10912. }
  10913. } break;
  10914. case GGML_OP_TRANSPOSE:
  10915. {
  10916. // necessary for llama
  10917. if (src0->grad) {
  10918. src0->grad =
  10919. ggml_add_impl(ctx, src0->grad,
  10920. ggml_transpose(ctx, tensor->grad),
  10921. inplace);
  10922. }
  10923. } break;
  10924. case GGML_OP_GET_ROWS:
  10925. {
  10926. // necessary for llama (only for tokenizer)
  10927. if (src0->grad) {
  10928. src0->grad =
  10929. ggml_add_impl(ctx, src0->grad,
  10930. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  10931. inplace);
  10932. }
  10933. if (src1->grad) {
  10934. // noop
  10935. }
  10936. } break;
  10937. case GGML_OP_GET_ROWS_BACK:
  10938. {
  10939. GGML_ASSERT(false); // TODO: not implemented
  10940. } break;
  10941. case GGML_OP_DIAG:
  10942. {
  10943. GGML_ASSERT(false); // TODO: not implemented
  10944. } break;
  10945. case GGML_OP_DIAG_MASK_INF:
  10946. {
  10947. // necessary for llama
  10948. if (src0->grad) {
  10949. assert(src1->type == GGML_TYPE_I32);
  10950. assert(ggml_nelements(src1) == 2);
  10951. const int n_past = ((int32_t *) src1->data)[0];
  10952. src0->grad =
  10953. ggml_add_impl(ctx, src0->grad,
  10954. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  10955. inplace);
  10956. }
  10957. if (src1->grad) {
  10958. // noop
  10959. }
  10960. } break;
  10961. case GGML_OP_DIAG_MASK_ZERO:
  10962. {
  10963. // necessary for llama
  10964. if (src0->grad) {
  10965. assert(src1->type == GGML_TYPE_I32);
  10966. assert(ggml_nelements(src1) == 2);
  10967. const int n_past = ((int32_t *) src1->data)[0];
  10968. src0->grad =
  10969. ggml_add_impl(ctx, src0->grad,
  10970. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  10971. inplace);
  10972. }
  10973. if (src1->grad) {
  10974. // noop
  10975. }
  10976. } break;
  10977. case GGML_OP_SOFT_MAX:
  10978. {
  10979. // necessary for llama
  10980. if (src0->grad) {
  10981. // y = softmax(x)
  10982. //
  10983. // Jii = yi - yi*yi
  10984. // Jij = -yi*yj
  10985. // J = diag(y)-y.*y
  10986. // dx = J * dy
  10987. // dxk = sum(Jkj * dyk)
  10988. int64_t ne2[4] = {
  10989. tensor->ne[0],
  10990. 1,
  10991. tensor->ne[1]*tensor->ne[2],
  10992. tensor->ne[3]
  10993. };
  10994. struct ggml_tensor * tensor2 = ggml_cont(ctx,
  10995. ggml_reshape_4d(ctx,
  10996. ggml_cont(ctx, tensor),
  10997. ne2[0], ne2[1], ne2[2], ne2[3]));
  10998. struct ggml_tensor * grad2 = ggml_cont(ctx,
  10999. ggml_reshape_4d(ctx,
  11000. ggml_cont(ctx, tensor->grad),
  11001. ne2[0], ne2[1], ne2[2], ne2[3]));
  11002. struct ggml_tensor * tensor2_t = ggml_cont(ctx, // [1,ne0,ne1*ne2,ne3]
  11003. ggml_permute(ctx, // [1,ne0,ne1*ne2,ne3]
  11004. tensor2, // [ne0,1,ne1*ne2,ne3]
  11005. 1, 0, 2, 3));
  11006. src0->grad =
  11007. ggml_add_impl(ctx,
  11008. src0->grad, // [ne0,ne1,ne2,ne3]
  11009. ggml_reshape(ctx, // [ne0,ne1,ne2,ne3]
  11010. ggml_mul_mat(ctx, // [ne0,1,ne1*ne2,ne3]
  11011. ggml_sub(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11012. ggml_diag(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11013. tensor2), // [ne0,1,ne1*ne2,ne3]
  11014. ggml_mul_mat(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11015. tensor2_t, // [1,ne0,ne1*ne2,ne3]
  11016. tensor2_t)), // [1,ne0,ne1*ne2,ne3]
  11017. grad2), // [ne0,1,ne1*ne2,ne3]
  11018. src0->grad),
  11019. inplace);
  11020. }
  11021. } break;
  11022. case GGML_OP_ROPE:
  11023. {
  11024. // necessary for llama
  11025. if (src0->grad) {
  11026. assert(src1->type == GGML_TYPE_I32);
  11027. assert(ggml_nelements(src1) == 3);
  11028. const int n_past = ((int32_t *) src1->data)[0];
  11029. const int n_dims = ((int32_t *) src1->data)[1];
  11030. const int mode = ((int32_t *) src1->data)[2];
  11031. src0->grad = ggml_add_impl(ctx,
  11032. src0->grad,
  11033. ggml_rope_back(ctx,
  11034. tensor->grad,
  11035. n_past,
  11036. n_dims,
  11037. mode),
  11038. inplace);
  11039. }
  11040. if (src1->grad) {
  11041. // noop
  11042. }
  11043. } break;
  11044. case GGML_OP_ROPE_BACK:
  11045. {
  11046. if (src0->grad) {
  11047. assert(src1->type == GGML_TYPE_I32);
  11048. assert(ggml_nelements(src1) == 3);
  11049. const int n_past = ((int32_t *) src1->data)[0];
  11050. const int n_dims = ((int32_t *) src1->data)[1];
  11051. const int mode = ((int32_t *) src1->data)[2];
  11052. src0->grad = ggml_add_impl(ctx,
  11053. src0->grad,
  11054. ggml_rope(ctx,
  11055. tensor->grad,
  11056. n_past,
  11057. n_dims,
  11058. mode),
  11059. inplace);
  11060. }
  11061. if (src1->grad) {
  11062. // noop
  11063. }
  11064. } break;
  11065. case GGML_OP_CONV_1D_1S:
  11066. {
  11067. GGML_ASSERT(false); // TODO: not implemented
  11068. } break;
  11069. case GGML_OP_CONV_1D_2S:
  11070. {
  11071. GGML_ASSERT(false); // TODO: not implemented
  11072. } break;
  11073. case GGML_OP_FLASH_ATTN:
  11074. {
  11075. GGML_ASSERT(false); // not supported
  11076. } break;
  11077. case GGML_OP_FLASH_FF:
  11078. {
  11079. GGML_ASSERT(false); // not supported
  11080. } break;
  11081. case GGML_OP_MAP_UNARY:
  11082. case GGML_OP_MAP_BINARY:
  11083. {
  11084. GGML_ASSERT(false); // not supported
  11085. } break;
  11086. case GGML_OP_NONE:
  11087. {
  11088. // nop
  11089. } break;
  11090. case GGML_OP_COUNT:
  11091. {
  11092. GGML_ASSERT(false);
  11093. } break;
  11094. }
  11095. }
  11096. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  11097. if (node->grad == NULL) {
  11098. // this usually happens when we generate intermediate nodes from constants in the backward pass
  11099. // it can also happen during forward pass, if the user performs computations with constants
  11100. if (node->op != GGML_OP_NONE) {
  11101. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  11102. }
  11103. }
  11104. // check if already visited
  11105. for (int i = 0; i < cgraph->n_nodes; i++) {
  11106. if (cgraph->nodes[i] == node) {
  11107. return;
  11108. }
  11109. }
  11110. for (int i = 0; i < cgraph->n_leafs; i++) {
  11111. if (cgraph->leafs[i] == node) {
  11112. return;
  11113. }
  11114. }
  11115. if (node->src0) {
  11116. ggml_visit_parents(cgraph, node->src0);
  11117. }
  11118. if (node->src1) {
  11119. ggml_visit_parents(cgraph, node->src1);
  11120. }
  11121. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  11122. if (node->opt[i]) {
  11123. ggml_visit_parents(cgraph, node->opt[i]);
  11124. }
  11125. }
  11126. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  11127. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  11128. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  11129. cgraph->leafs[cgraph->n_leafs] = node;
  11130. cgraph->n_leafs++;
  11131. } else {
  11132. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  11133. cgraph->nodes[cgraph->n_nodes] = node;
  11134. cgraph->grads[cgraph->n_nodes] = node->grad;
  11135. cgraph->n_nodes++;
  11136. }
  11137. }
  11138. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  11139. if (!expand) {
  11140. cgraph->n_nodes = 0;
  11141. cgraph->n_leafs = 0;
  11142. }
  11143. const int n0 = cgraph->n_nodes;
  11144. UNUSED(n0);
  11145. ggml_visit_parents(cgraph, tensor);
  11146. const int n_new = cgraph->n_nodes - n0;
  11147. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  11148. if (n_new > 0) {
  11149. // the last added node should always be starting point
  11150. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  11151. }
  11152. }
  11153. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  11154. ggml_build_forward_impl(cgraph, tensor, true);
  11155. }
  11156. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  11157. struct ggml_cgraph result = {
  11158. /*.n_nodes =*/ 0,
  11159. /*.n_leafs =*/ 0,
  11160. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  11161. /*.work_size =*/ 0,
  11162. /*.work =*/ NULL,
  11163. /*.nodes =*/ { NULL },
  11164. /*.grads =*/ { NULL },
  11165. /*.leafs =*/ { NULL },
  11166. /*.perf_runs =*/ 0,
  11167. /*.perf_cycles =*/ 0,
  11168. /*.perf_time_us =*/ 0,
  11169. };
  11170. ggml_build_forward_impl(&result, tensor, false);
  11171. return result;
  11172. }
  11173. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  11174. struct ggml_cgraph result = *gf;
  11175. GGML_ASSERT(gf->n_nodes > 0);
  11176. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  11177. if (keep) {
  11178. for (int i = 0; i < gf->n_nodes; i++) {
  11179. struct ggml_tensor * node = gf->nodes[i];
  11180. if (node->grad) {
  11181. node->grad = ggml_dup_tensor(ctx, node);
  11182. gf->grads[i] = node->grad;
  11183. }
  11184. }
  11185. }
  11186. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  11187. struct ggml_tensor * node = gf->nodes[i];
  11188. // because we detached the grad nodes from the original graph, we can afford inplace operations
  11189. if (node->grad) {
  11190. ggml_compute_backward(ctx, node, keep);
  11191. }
  11192. }
  11193. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  11194. struct ggml_tensor * node = gf->nodes[i];
  11195. if (node->is_param) {
  11196. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  11197. ggml_build_forward_impl(&result, node->grad, true);
  11198. }
  11199. }
  11200. return result;
  11201. }
  11202. //
  11203. // thread data
  11204. //
  11205. // synchronization is done via busy loops
  11206. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  11207. //
  11208. #ifdef __APPLE__
  11209. //#include <os/lock.h>
  11210. //
  11211. //typedef os_unfair_lock ggml_lock_t;
  11212. //
  11213. //#define ggml_lock_init(x) UNUSED(x)
  11214. //#define ggml_lock_destroy(x) UNUSED(x)
  11215. //#define ggml_lock_lock os_unfair_lock_lock
  11216. //#define ggml_lock_unlock os_unfair_lock_unlock
  11217. //
  11218. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  11219. typedef int ggml_lock_t;
  11220. #define ggml_lock_init(x) UNUSED(x)
  11221. #define ggml_lock_destroy(x) UNUSED(x)
  11222. #define ggml_lock_lock(x) UNUSED(x)
  11223. #define ggml_lock_unlock(x) UNUSED(x)
  11224. #define GGML_LOCK_INITIALIZER 0
  11225. typedef pthread_t ggml_thread_t;
  11226. #define ggml_thread_create pthread_create
  11227. #define ggml_thread_join pthread_join
  11228. #else
  11229. //typedef pthread_spinlock_t ggml_lock_t;
  11230. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  11231. //#define ggml_lock_destroy pthread_spin_destroy
  11232. //#define ggml_lock_lock pthread_spin_lock
  11233. //#define ggml_lock_unlock pthread_spin_unlock
  11234. typedef int ggml_lock_t;
  11235. #define ggml_lock_init(x) UNUSED(x)
  11236. #define ggml_lock_destroy(x) UNUSED(x)
  11237. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  11238. #define ggml_lock_lock(x) _mm_pause()
  11239. #else
  11240. #define ggml_lock_lock(x) UNUSED(x)
  11241. #endif
  11242. #define ggml_lock_unlock(x) UNUSED(x)
  11243. #define GGML_LOCK_INITIALIZER 0
  11244. typedef pthread_t ggml_thread_t;
  11245. #define ggml_thread_create pthread_create
  11246. #define ggml_thread_join pthread_join
  11247. #endif
  11248. struct ggml_compute_state_shared {
  11249. ggml_lock_t spin;
  11250. int n_threads;
  11251. // synchronization primitives
  11252. atomic_int n_ready;
  11253. atomic_bool has_work;
  11254. atomic_bool stop; // stop all threads
  11255. };
  11256. struct ggml_compute_state {
  11257. ggml_thread_t thrd;
  11258. struct ggml_compute_params params;
  11259. struct ggml_tensor * node;
  11260. struct ggml_compute_state_shared * shared;
  11261. };
  11262. static thread_ret_t ggml_graph_compute_thread(void * data) {
  11263. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  11264. const int n_threads = state->shared->n_threads;
  11265. while (true) {
  11266. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  11267. atomic_store(&state->shared->has_work, false);
  11268. } else {
  11269. while (atomic_load(&state->shared->has_work)) {
  11270. if (atomic_load(&state->shared->stop)) {
  11271. return 0;
  11272. }
  11273. ggml_lock_lock (&state->shared->spin);
  11274. ggml_lock_unlock(&state->shared->spin);
  11275. }
  11276. }
  11277. atomic_fetch_sub(&state->shared->n_ready, 1);
  11278. // wait for work
  11279. while (!atomic_load(&state->shared->has_work)) {
  11280. if (atomic_load(&state->shared->stop)) {
  11281. return 0;
  11282. }
  11283. ggml_lock_lock (&state->shared->spin);
  11284. ggml_lock_unlock(&state->shared->spin);
  11285. }
  11286. // check if we should stop
  11287. if (atomic_load(&state->shared->stop)) {
  11288. break;
  11289. }
  11290. if (state->node) {
  11291. if (state->params.ith < state->params.nth) {
  11292. ggml_compute_forward(&state->params, state->node);
  11293. }
  11294. state->node = NULL;
  11295. } else {
  11296. break;
  11297. }
  11298. }
  11299. return 0;
  11300. }
  11301. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  11302. const int n_threads = cgraph->n_threads;
  11303. struct ggml_compute_state_shared state_shared = {
  11304. /*.spin =*/ GGML_LOCK_INITIALIZER,
  11305. /*.n_threads =*/ n_threads,
  11306. /*.n_ready =*/ 0,
  11307. /*.has_work =*/ false,
  11308. /*.stop =*/ false,
  11309. };
  11310. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  11311. // create thread pool
  11312. if (n_threads > 1) {
  11313. ggml_lock_init(&state_shared.spin);
  11314. atomic_store(&state_shared.has_work, true);
  11315. for (int j = 0; j < n_threads - 1; j++) {
  11316. workers[j] = (struct ggml_compute_state) {
  11317. .thrd = 0,
  11318. .params = {
  11319. .type = GGML_TASK_COMPUTE,
  11320. .ith = j + 1,
  11321. .nth = n_threads,
  11322. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11323. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11324. },
  11325. .node = NULL,
  11326. .shared = &state_shared,
  11327. };
  11328. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  11329. GGML_ASSERT(rc == 0);
  11330. UNUSED(rc);
  11331. }
  11332. }
  11333. // initialize tasks + work buffer
  11334. {
  11335. size_t work_size = 0;
  11336. // thread scheduling for the different operations
  11337. for (int i = 0; i < cgraph->n_nodes; i++) {
  11338. struct ggml_tensor * node = cgraph->nodes[i];
  11339. switch (node->op) {
  11340. case GGML_OP_CPY:
  11341. case GGML_OP_DUP:
  11342. {
  11343. node->n_tasks = n_threads;
  11344. size_t cur = 0;
  11345. if (ggml_is_quantized(node->type)) {
  11346. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  11347. }
  11348. work_size = MAX(work_size, cur);
  11349. } break;
  11350. case GGML_OP_ADD:
  11351. case GGML_OP_ADD1:
  11352. {
  11353. node->n_tasks = n_threads;
  11354. size_t cur = 0;
  11355. if (ggml_is_quantized(node->src0->type)) {
  11356. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  11357. }
  11358. work_size = MAX(work_size, cur);
  11359. } break;
  11360. case GGML_OP_ACC:
  11361. {
  11362. node->n_tasks = n_threads;
  11363. size_t cur = 0;
  11364. if (ggml_is_quantized(node->src0->type)) {
  11365. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_threads;
  11366. }
  11367. work_size = MAX(work_size, cur);
  11368. } break;
  11369. case GGML_OP_SUB:
  11370. case GGML_OP_DIV:
  11371. case GGML_OP_SQR:
  11372. case GGML_OP_SQRT:
  11373. case GGML_OP_LOG:
  11374. case GGML_OP_SUM:
  11375. case GGML_OP_SUM_ROWS:
  11376. case GGML_OP_MEAN:
  11377. case GGML_OP_REPEAT:
  11378. case GGML_OP_ABS:
  11379. case GGML_OP_SGN:
  11380. case GGML_OP_NEG:
  11381. case GGML_OP_STEP:
  11382. case GGML_OP_RELU:
  11383. {
  11384. node->n_tasks = 1;
  11385. } break;
  11386. case GGML_OP_MUL:
  11387. case GGML_OP_GELU:
  11388. case GGML_OP_SILU:
  11389. case GGML_OP_SILU_BACK:
  11390. case GGML_OP_NORM:
  11391. case GGML_OP_RMS_NORM:
  11392. case GGML_OP_RMS_NORM_BACK:
  11393. {
  11394. node->n_tasks = n_threads;
  11395. } break;
  11396. case GGML_OP_MUL_MAT:
  11397. {
  11398. node->n_tasks = n_threads;
  11399. // TODO: use different scheduling for different matrix sizes
  11400. //const int nr0 = ggml_nrows(node->src0);
  11401. //const int nr1 = ggml_nrows(node->src1);
  11402. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  11403. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  11404. size_t cur = 0;
  11405. #if defined(GGML_USE_CUBLAS)
  11406. if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
  11407. node->n_tasks = 1; // TODO: this actually is doing nothing
  11408. // the threads are still spinning
  11409. cur = ggml_cuda_mul_mat_get_wsize(node->src0, node->src1, node);
  11410. }
  11411. else
  11412. #endif
  11413. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  11414. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  11415. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11416. node->n_tasks = 1; // TODO: this actually is doing nothing
  11417. // the threads are still spinning
  11418. // here we need memory just for single 2D matrix from src0
  11419. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  11420. } else {
  11421. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  11422. }
  11423. #else
  11424. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  11425. #endif
  11426. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  11427. cur = 0;
  11428. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  11429. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11430. node->n_tasks = 1;
  11431. }
  11432. #endif
  11433. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  11434. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  11435. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11436. node->n_tasks = 1;
  11437. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  11438. } else
  11439. #endif
  11440. {
  11441. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  11442. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  11443. }
  11444. } else {
  11445. GGML_ASSERT(false);
  11446. }
  11447. work_size = MAX(work_size, cur);
  11448. } break;
  11449. case GGML_OP_SCALE:
  11450. {
  11451. node->n_tasks = n_threads;
  11452. } break;
  11453. case GGML_OP_SET:
  11454. case GGML_OP_CONT:
  11455. case GGML_OP_RESHAPE:
  11456. case GGML_OP_VIEW:
  11457. case GGML_OP_PERMUTE:
  11458. case GGML_OP_TRANSPOSE:
  11459. case GGML_OP_GET_ROWS:
  11460. case GGML_OP_GET_ROWS_BACK:
  11461. case GGML_OP_DIAG:
  11462. case GGML_OP_DIAG_MASK_ZERO:
  11463. {
  11464. node->n_tasks = 1;
  11465. } break;
  11466. case GGML_OP_DIAG_MASK_INF:
  11467. case GGML_OP_SOFT_MAX:
  11468. case GGML_OP_ROPE:
  11469. case GGML_OP_ROPE_BACK:
  11470. {
  11471. node->n_tasks = n_threads;
  11472. } break;
  11473. case GGML_OP_ALIBI:
  11474. {
  11475. node->n_tasks = 1; //TODO
  11476. } break;
  11477. case GGML_OP_CONV_1D_1S:
  11478. case GGML_OP_CONV_1D_2S:
  11479. {
  11480. node->n_tasks = n_threads;
  11481. GGML_ASSERT(node->src0->ne[3] == 1);
  11482. GGML_ASSERT(node->src1->ne[2] == 1);
  11483. GGML_ASSERT(node->src1->ne[3] == 1);
  11484. size_t cur = 0;
  11485. const int nk = node->src0->ne[0];
  11486. if (node->src0->type == GGML_TYPE_F16 &&
  11487. node->src1->type == GGML_TYPE_F32) {
  11488. cur = sizeof(ggml_fp16_t)*(
  11489. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  11490. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  11491. );
  11492. } else if (node->src0->type == GGML_TYPE_F32 &&
  11493. node->src1->type == GGML_TYPE_F32) {
  11494. cur = sizeof(float)*(
  11495. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  11496. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  11497. );
  11498. } else {
  11499. GGML_ASSERT(false);
  11500. }
  11501. work_size = MAX(work_size, cur);
  11502. } break;
  11503. case GGML_OP_FLASH_ATTN:
  11504. {
  11505. node->n_tasks = n_threads;
  11506. size_t cur = 0;
  11507. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  11508. if (node->src1->type == GGML_TYPE_F32) {
  11509. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  11510. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  11511. }
  11512. if (node->src1->type == GGML_TYPE_F16) {
  11513. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  11514. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  11515. }
  11516. work_size = MAX(work_size, cur);
  11517. } break;
  11518. case GGML_OP_FLASH_FF:
  11519. {
  11520. node->n_tasks = n_threads;
  11521. size_t cur = 0;
  11522. if (node->src1->type == GGML_TYPE_F32) {
  11523. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  11524. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  11525. }
  11526. if (node->src1->type == GGML_TYPE_F16) {
  11527. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  11528. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  11529. }
  11530. work_size = MAX(work_size, cur);
  11531. } break;
  11532. case GGML_OP_MAP_UNARY:
  11533. case GGML_OP_MAP_BINARY:
  11534. {
  11535. node->n_tasks = 1;
  11536. } break;
  11537. case GGML_OP_NONE:
  11538. {
  11539. node->n_tasks = 1;
  11540. } break;
  11541. case GGML_OP_COUNT:
  11542. {
  11543. GGML_ASSERT(false);
  11544. } break;
  11545. }
  11546. }
  11547. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  11548. GGML_ASSERT(false); // TODO: better handling
  11549. }
  11550. if (work_size > 0 && cgraph->work == NULL) {
  11551. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  11552. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  11553. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  11554. }
  11555. }
  11556. const int64_t perf_start_cycles = ggml_perf_cycles();
  11557. const int64_t perf_start_time_us = ggml_perf_time_us();
  11558. for (int i = 0; i < cgraph->n_nodes; i++) {
  11559. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  11560. struct ggml_tensor * node = cgraph->nodes[i];
  11561. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  11562. //if (node->grad == NULL && node->perf_runs > 0) {
  11563. // continue;
  11564. //}
  11565. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  11566. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  11567. // INIT
  11568. struct ggml_compute_params params = {
  11569. /*.type =*/ GGML_TASK_INIT,
  11570. /*.ith =*/ 0,
  11571. /*.nth =*/ node->n_tasks,
  11572. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11573. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  11574. };
  11575. ggml_compute_forward(&params, node);
  11576. // COMPUTE
  11577. if (node->n_tasks > 1) {
  11578. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11579. atomic_store(&state_shared.has_work, false);
  11580. }
  11581. while (atomic_load(&state_shared.has_work)) {
  11582. ggml_lock_lock (&state_shared.spin);
  11583. ggml_lock_unlock(&state_shared.spin);
  11584. }
  11585. // launch thread pool
  11586. for (int j = 0; j < n_threads - 1; j++) {
  11587. workers[j].params = (struct ggml_compute_params) {
  11588. .type = GGML_TASK_COMPUTE,
  11589. .ith = j + 1,
  11590. .nth = node->n_tasks,
  11591. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11592. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11593. };
  11594. workers[j].node = node;
  11595. }
  11596. atomic_fetch_sub(&state_shared.n_ready, 1);
  11597. while (atomic_load(&state_shared.n_ready) > 0) {
  11598. ggml_lock_lock (&state_shared.spin);
  11599. ggml_lock_unlock(&state_shared.spin);
  11600. }
  11601. atomic_store(&state_shared.has_work, true);
  11602. }
  11603. params.type = GGML_TASK_COMPUTE;
  11604. ggml_compute_forward(&params, node);
  11605. // wait for thread pool
  11606. if (node->n_tasks > 1) {
  11607. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11608. atomic_store(&state_shared.has_work, false);
  11609. }
  11610. while (atomic_load(&state_shared.has_work)) {
  11611. ggml_lock_lock (&state_shared.spin);
  11612. ggml_lock_unlock(&state_shared.spin);
  11613. }
  11614. atomic_fetch_sub(&state_shared.n_ready, 1);
  11615. while (atomic_load(&state_shared.n_ready) != 0) {
  11616. ggml_lock_lock (&state_shared.spin);
  11617. ggml_lock_unlock(&state_shared.spin);
  11618. }
  11619. }
  11620. // FINALIZE
  11621. if (node->n_tasks > 1) {
  11622. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11623. atomic_store(&state_shared.has_work, false);
  11624. }
  11625. while (atomic_load(&state_shared.has_work)) {
  11626. ggml_lock_lock (&state_shared.spin);
  11627. ggml_lock_unlock(&state_shared.spin);
  11628. }
  11629. // launch thread pool
  11630. for (int j = 0; j < n_threads - 1; j++) {
  11631. workers[j].params = (struct ggml_compute_params) {
  11632. .type = GGML_TASK_FINALIZE,
  11633. .ith = j + 1,
  11634. .nth = node->n_tasks,
  11635. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11636. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11637. };
  11638. workers[j].node = node;
  11639. }
  11640. atomic_fetch_sub(&state_shared.n_ready, 1);
  11641. while (atomic_load(&state_shared.n_ready) > 0) {
  11642. ggml_lock_lock (&state_shared.spin);
  11643. ggml_lock_unlock(&state_shared.spin);
  11644. }
  11645. atomic_store(&state_shared.has_work, true);
  11646. }
  11647. params.type = GGML_TASK_FINALIZE;
  11648. ggml_compute_forward(&params, node);
  11649. // wait for thread pool
  11650. if (node->n_tasks > 1) {
  11651. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11652. atomic_store(&state_shared.has_work, false);
  11653. }
  11654. while (atomic_load(&state_shared.has_work)) {
  11655. ggml_lock_lock (&state_shared.spin);
  11656. ggml_lock_unlock(&state_shared.spin);
  11657. }
  11658. atomic_fetch_sub(&state_shared.n_ready, 1);
  11659. while (atomic_load(&state_shared.n_ready) != 0) {
  11660. ggml_lock_lock (&state_shared.spin);
  11661. ggml_lock_unlock(&state_shared.spin);
  11662. }
  11663. }
  11664. // performance stats (node)
  11665. {
  11666. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  11667. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  11668. node->perf_runs++;
  11669. node->perf_cycles += perf_cycles_cur;
  11670. node->perf_time_us += perf_time_us_cur;
  11671. }
  11672. }
  11673. // join thread pool
  11674. if (n_threads > 1) {
  11675. atomic_store(&state_shared.stop, true);
  11676. atomic_store(&state_shared.has_work, true);
  11677. for (int j = 0; j < n_threads - 1; j++) {
  11678. int rc = ggml_thread_join(workers[j].thrd, NULL);
  11679. GGML_ASSERT(rc == 0);
  11680. UNUSED(rc);
  11681. }
  11682. ggml_lock_destroy(&state_shared.spin);
  11683. }
  11684. // performance stats (graph)
  11685. {
  11686. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  11687. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  11688. cgraph->perf_runs++;
  11689. cgraph->perf_cycles += perf_cycles_cur;
  11690. cgraph->perf_time_us += perf_time_us_cur;
  11691. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  11692. __func__, cgraph->perf_runs,
  11693. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  11694. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  11695. (double) perf_time_us_cur / 1000.0,
  11696. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  11697. }
  11698. }
  11699. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  11700. for (int i = 0; i < cgraph->n_nodes; i++) {
  11701. struct ggml_tensor * grad = cgraph->grads[i];
  11702. if (grad) {
  11703. ggml_set_zero(grad);
  11704. }
  11705. }
  11706. }
  11707. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  11708. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  11709. GGML_PRINT("=== GRAPH ===\n");
  11710. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  11711. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  11712. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  11713. for (int i = 0; i < cgraph->n_nodes; i++) {
  11714. struct ggml_tensor * node = cgraph->nodes[i];
  11715. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  11716. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  11717. i,
  11718. node->ne[0], node->ne[1], node->ne[2],
  11719. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  11720. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  11721. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  11722. (double) node->perf_time_us / 1000.0,
  11723. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  11724. }
  11725. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  11726. for (int i = 0; i < cgraph->n_leafs; i++) {
  11727. struct ggml_tensor * node = cgraph->leafs[i];
  11728. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  11729. i,
  11730. node->ne[0], node->ne[1],
  11731. GGML_OP_LABEL[node->op]);
  11732. }
  11733. for (int i = 0; i < GGML_OP_COUNT; i++) {
  11734. if (perf_total_per_op_us[i] == 0) {
  11735. continue;
  11736. }
  11737. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  11738. }
  11739. GGML_PRINT("========================================\n");
  11740. }
  11741. // check if node is part of the graph
  11742. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  11743. if (cgraph == NULL) {
  11744. return true;
  11745. }
  11746. for (int i = 0; i < cgraph->n_nodes; i++) {
  11747. if (cgraph->nodes[i] == node) {
  11748. return true;
  11749. }
  11750. }
  11751. return false;
  11752. }
  11753. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  11754. for (int i = 0; i < cgraph->n_nodes; i++) {
  11755. struct ggml_tensor * parent = cgraph->nodes[i];
  11756. if (parent->grad == node) {
  11757. return parent;
  11758. }
  11759. }
  11760. return NULL;
  11761. }
  11762. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  11763. char color[16];
  11764. FILE * fp = fopen(filename, "w");
  11765. GGML_ASSERT(fp);
  11766. fprintf(fp, "digraph G {\n");
  11767. fprintf(fp, " newrank = true;\n");
  11768. fprintf(fp, " rankdir = LR;\n");
  11769. for (int i = 0; i < gb->n_nodes; i++) {
  11770. struct ggml_tensor * node = gb->nodes[i];
  11771. if (ggml_graph_get_parent(gb, node) != NULL) {
  11772. continue;
  11773. }
  11774. if (node->is_param) {
  11775. snprintf(color, sizeof(color), "yellow");
  11776. } else if (node->grad) {
  11777. if (ggml_graph_find(gf, node)) {
  11778. snprintf(color, sizeof(color), "green");
  11779. } else {
  11780. snprintf(color, sizeof(color), "lightblue");
  11781. }
  11782. } else {
  11783. snprintf(color, sizeof(color), "white");
  11784. }
  11785. fprintf(fp, " \"%p\" [ "
  11786. "style = filled; fillcolor = %s; shape = record; "
  11787. "label=\"",
  11788. (void *) node, color);
  11789. if (strlen(node->name) > 0) {
  11790. fprintf(fp, "%s |", node->name);
  11791. }
  11792. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  11793. i, node->ne[0], node->ne[1],
  11794. GGML_OP_SYMBOL[node->op]);
  11795. if (node->grad) {
  11796. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  11797. } else {
  11798. fprintf(fp, "\"; ]\n");
  11799. }
  11800. }
  11801. for (int i = 0; i < gb->n_leafs; i++) {
  11802. struct ggml_tensor * node = gb->leafs[i];
  11803. snprintf(color, sizeof(color), "pink");
  11804. fprintf(fp, " \"%p\" [ "
  11805. "style = filled; fillcolor = %s; shape = record; "
  11806. "label=\"<x>",
  11807. (void *) node, color);
  11808. if (strlen(node->name) > 0) {
  11809. fprintf(fp, "%s | ", node->name);
  11810. }
  11811. if (ggml_nelements(node) == 1) {
  11812. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  11813. fprintf(fp, "%d", ggml_get_i32_1d(node, 0));
  11814. }
  11815. else {
  11816. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, 0));
  11817. }
  11818. }
  11819. else {
  11820. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  11821. }
  11822. fprintf(fp, "\"; ]\n");
  11823. }
  11824. for (int i = 0; i < gb->n_nodes; i++) {
  11825. struct ggml_tensor * node = gb->nodes[i];
  11826. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  11827. if (node->src0) {
  11828. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  11829. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  11830. parent0 ? (void *) parent0 : (void *) node->src0,
  11831. parent0 ? "g" : "x",
  11832. parent ? (void *) parent : (void *) node,
  11833. parent ? "g" : "x",
  11834. parent ? "empty" : "vee",
  11835. parent ? "dashed" : "solid");
  11836. }
  11837. if (node->src1) {
  11838. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  11839. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  11840. parent1 ? (void *) parent1 : (void *) node->src1,
  11841. parent1 ? "g" : "x",
  11842. parent ? (void *) parent : (void *) node,
  11843. parent ? "g" : "x",
  11844. parent ? "empty" : "vee",
  11845. parent ? "dashed" : "solid");
  11846. }
  11847. }
  11848. for (int i = 0; i < gb->n_leafs; i++) {
  11849. struct ggml_tensor * node = gb->leafs[i];
  11850. if (node->src0) {
  11851. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  11852. (void *) node->src0, "x",
  11853. (void *) node, "x");
  11854. }
  11855. if (node->src1) {
  11856. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  11857. (void *) node->src1, "x",
  11858. (void *) node, "x");
  11859. }
  11860. }
  11861. fprintf(fp, "}\n");
  11862. fclose(fp);
  11863. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  11864. }
  11865. ////////////////////////////////////////////////////////////////////////////////
  11866. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  11867. int i = 0;
  11868. for (int p = 0; p < np; ++p) {
  11869. const int64_t ne = ggml_nelements(ps[p]) ;
  11870. // TODO: add function to set tensor from array
  11871. for (int64_t j = 0; j < ne; ++j) {
  11872. ggml_set_f32_1d(ps[p], j, x[i++]);
  11873. }
  11874. }
  11875. }
  11876. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  11877. int i = 0;
  11878. for (int p = 0; p < np; ++p) {
  11879. const int64_t ne = ggml_nelements(ps[p]) ;
  11880. // TODO: add function to get all elements at once
  11881. for (int64_t j = 0; j < ne; ++j) {
  11882. x[i++] = ggml_get_f32_1d(ps[p], j);
  11883. }
  11884. }
  11885. }
  11886. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  11887. int i = 0;
  11888. for (int p = 0; p < np; ++p) {
  11889. const int64_t ne = ggml_nelements(ps[p]) ;
  11890. // TODO: add function to get all elements at once
  11891. for (int64_t j = 0; j < ne; ++j) {
  11892. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  11893. }
  11894. }
  11895. }
  11896. //
  11897. // ADAM
  11898. //
  11899. // ref: https://arxiv.org/pdf/1412.6980.pdf
  11900. //
  11901. static enum ggml_opt_result ggml_opt_adam(
  11902. struct ggml_context * ctx,
  11903. struct ggml_opt_params params,
  11904. struct ggml_tensor * f,
  11905. struct ggml_cgraph * gf,
  11906. struct ggml_cgraph * gb) {
  11907. GGML_ASSERT(ggml_is_scalar(f));
  11908. gf->n_threads = params.n_threads;
  11909. gb->n_threads = params.n_threads;
  11910. // these will store the parameters we want to optimize
  11911. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  11912. int np = 0;
  11913. int nx = 0;
  11914. for (int i = 0; i < gf->n_nodes; ++i) {
  11915. if (gf->nodes[i]->is_param) {
  11916. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  11917. GGML_ASSERT(np < GGML_MAX_PARAMS);
  11918. ps[np++] = gf->nodes[i];
  11919. nx += ggml_nelements(gf->nodes[i]);
  11920. }
  11921. }
  11922. // constants
  11923. const float alpha = params.adam.alpha;
  11924. const float beta1 = params.adam.beta1;
  11925. const float beta2 = params.adam.beta2;
  11926. const float eps = params.adam.eps;
  11927. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  11928. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  11929. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  11930. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  11931. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  11932. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  11933. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  11934. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  11935. // initialize
  11936. ggml_vec_set_f32(nx, m, 0.0f);
  11937. ggml_vec_set_f32(nx, v, 0.0f);
  11938. // update view
  11939. ggml_opt_get_params(np, ps, x);
  11940. // compute the function value
  11941. ggml_graph_reset (gf);
  11942. ggml_set_f32 (f->grad, 1.0f);
  11943. ggml_graph_compute(ctx, gb);
  11944. float fx_prev = ggml_get_f32_1d(f, 0);
  11945. if (pf) {
  11946. pf[0] = fx_prev;
  11947. }
  11948. int n_no_improvement = 0;
  11949. float fx_best = fx_prev;
  11950. // run the optimizer
  11951. for (int t = 0; t < params.adam.n_iter; ++t) {
  11952. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  11953. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  11954. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  11955. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  11956. for (int i = 0; i < np; ++i) {
  11957. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  11958. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  11959. }
  11960. const int64_t t_start_wall = ggml_time_us();
  11961. const int64_t t_start_cpu = ggml_cycles();
  11962. UNUSED(t_start_wall);
  11963. UNUSED(t_start_cpu);
  11964. {
  11965. // update the gradient
  11966. ggml_opt_get_grad(np, ps, g1);
  11967. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  11968. ggml_vec_scale_f32(nx, m, beta1);
  11969. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  11970. // g2 = g1^2
  11971. ggml_vec_sqr_f32 (nx, g2, g1);
  11972. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  11973. ggml_vec_scale_f32(nx, v, beta2);
  11974. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  11975. // m^hat = m_t / (1 - beta1^t)
  11976. // v^hat = v_t / (1 - beta2^t)
  11977. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  11978. ggml_vec_cpy_f32 (nx, mh, m);
  11979. ggml_vec_cpy_f32 (nx, vh, v);
  11980. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  11981. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  11982. ggml_vec_sqrt_f32 (nx, vh, vh);
  11983. ggml_vec_acc1_f32 (nx, vh, eps);
  11984. ggml_vec_div_f32 (nx, mh, mh, vh);
  11985. ggml_vec_sub_f32 (nx, x, x, mh);
  11986. // update the parameters
  11987. ggml_opt_set_params(np, ps, x);
  11988. }
  11989. ggml_graph_reset (gf);
  11990. ggml_set_f32 (f->grad, 1.0f);
  11991. ggml_graph_compute(ctx, gb);
  11992. const float fx = ggml_get_f32_1d(f, 0);
  11993. // check convergence
  11994. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  11995. GGML_PRINT_DEBUG("converged\n");
  11996. return GGML_OPT_OK;
  11997. }
  11998. // delta-based convergence test
  11999. if (pf != NULL) {
  12000. // need at least params.past iterations to start checking for convergence
  12001. if (params.past <= t) {
  12002. const float rate = (pf[t%params.past] - fx)/fx;
  12003. if (fabsf(rate) < params.delta) {
  12004. return GGML_OPT_OK;
  12005. }
  12006. }
  12007. pf[t%params.past] = fx;
  12008. }
  12009. // check for improvement
  12010. if (params.max_no_improvement > 0) {
  12011. if (fx_best > fx) {
  12012. fx_best = fx;
  12013. n_no_improvement = 0;
  12014. } else {
  12015. ++n_no_improvement;
  12016. if (n_no_improvement >= params.max_no_improvement) {
  12017. return GGML_OPT_OK;
  12018. }
  12019. }
  12020. }
  12021. fx_prev = fx;
  12022. {
  12023. const int64_t t_end_cpu = ggml_cycles();
  12024. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  12025. UNUSED(t_end_cpu);
  12026. const int64_t t_end_wall = ggml_time_us();
  12027. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  12028. UNUSED(t_end_wall);
  12029. }
  12030. }
  12031. return GGML_OPT_DID_NOT_CONVERGE;
  12032. }
  12033. //
  12034. // L-BFGS
  12035. //
  12036. // the L-BFGS implementation below is based on the following implementation:
  12037. //
  12038. // https://github.com/chokkan/liblbfgs
  12039. //
  12040. struct ggml_lbfgs_iteration_data {
  12041. float alpha;
  12042. float ys;
  12043. float * s;
  12044. float * y;
  12045. };
  12046. static enum ggml_opt_result linesearch_backtracking(
  12047. struct ggml_context * ctx,
  12048. const struct ggml_opt_params * params,
  12049. int nx,
  12050. float * x,
  12051. float * fx,
  12052. float * g,
  12053. float * d,
  12054. float * step,
  12055. const float * xp,
  12056. struct ggml_tensor * f,
  12057. struct ggml_cgraph * gf,
  12058. struct ggml_cgraph * gb,
  12059. const int np,
  12060. struct ggml_tensor * ps[]) {
  12061. int count = 0;
  12062. float width = 0.0f;
  12063. float dg = 0.0f;
  12064. float finit = 0.0f;
  12065. float dginit = 0.0f;
  12066. float dgtest = 0.0f;
  12067. const float dec = 0.5f;
  12068. const float inc = 2.1f;
  12069. if (*step <= 0.f) {
  12070. return GGML_LINESEARCH_INVALID_PARAMETERS;
  12071. }
  12072. // compute the initial gradient in the search direction
  12073. ggml_vec_dot_f32(nx, &dginit, g, d);
  12074. // make sure that d points to a descent direction
  12075. if (0 < dginit) {
  12076. return GGML_LINESEARCH_FAIL;
  12077. }
  12078. // initialize local variables
  12079. finit = *fx;
  12080. dgtest = params->lbfgs.ftol*dginit;
  12081. while (true) {
  12082. ggml_vec_cpy_f32(nx, x, xp);
  12083. ggml_vec_mad_f32(nx, x, d, *step);
  12084. // evaluate the function and gradient values
  12085. {
  12086. ggml_opt_set_params(np, ps, x);
  12087. ggml_graph_reset (gf);
  12088. ggml_set_f32 (f->grad, 1.0f);
  12089. ggml_graph_compute(ctx, gb);
  12090. ggml_opt_get_grad(np, ps, g);
  12091. *fx = ggml_get_f32_1d(f, 0);
  12092. }
  12093. ++count;
  12094. if (*fx > finit + (*step)*dgtest) {
  12095. width = dec;
  12096. } else {
  12097. // Armijo condition is satisfied
  12098. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  12099. return count;
  12100. }
  12101. ggml_vec_dot_f32(nx, &dg, g, d);
  12102. // check the Wolfe condition
  12103. if (dg < params->lbfgs.wolfe * dginit) {
  12104. width = inc;
  12105. } else {
  12106. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  12107. // regular Wolfe conditions
  12108. return count;
  12109. }
  12110. if(dg > -params->lbfgs.wolfe*dginit) {
  12111. width = dec;
  12112. } else {
  12113. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  12114. return count;
  12115. }
  12116. return count;
  12117. }
  12118. }
  12119. if (*step < params->lbfgs.min_step) {
  12120. return GGML_LINESEARCH_MINIMUM_STEP;
  12121. }
  12122. if (*step > params->lbfgs.max_step) {
  12123. return GGML_LINESEARCH_MAXIMUM_STEP;
  12124. }
  12125. if (params->lbfgs.max_linesearch <= count) {
  12126. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  12127. }
  12128. (*step) *= width;
  12129. }
  12130. return GGML_LINESEARCH_FAIL;
  12131. }
  12132. static enum ggml_opt_result ggml_opt_lbfgs(
  12133. struct ggml_context * ctx,
  12134. struct ggml_opt_params params,
  12135. struct ggml_tensor * f,
  12136. struct ggml_cgraph * gf,
  12137. struct ggml_cgraph * gb) {
  12138. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  12139. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  12140. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  12141. return GGML_OPT_INVALID_WOLFE;
  12142. }
  12143. }
  12144. gf->n_threads = params.n_threads;
  12145. gb->n_threads = params.n_threads;
  12146. const int m = params.lbfgs.m;
  12147. // these will store the parameters we want to optimize
  12148. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  12149. int np = 0;
  12150. int nx = 0;
  12151. for (int i = 0; i < gf->n_nodes; ++i) {
  12152. if (gf->nodes[i]->is_param) {
  12153. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  12154. GGML_ASSERT(np < GGML_MAX_PARAMS);
  12155. ps[np++] = gf->nodes[i];
  12156. nx += ggml_nelements(gf->nodes[i]);
  12157. }
  12158. }
  12159. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  12160. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  12161. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  12162. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  12163. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  12164. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  12165. float fx = 0.0f; // cost function value
  12166. float xnorm = 0.0f; // ||x||
  12167. float gnorm = 0.0f; // ||g||
  12168. float step = 0.0f;
  12169. // initialize x from the graph nodes
  12170. ggml_opt_get_params(np, ps, x);
  12171. // the L-BFGS memory
  12172. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  12173. for (int i = 0; i < m; ++i) {
  12174. lm[i].alpha = 0.0f;
  12175. lm[i].ys = 0.0f;
  12176. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  12177. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  12178. }
  12179. // evaluate the function value and its gradient
  12180. {
  12181. ggml_opt_set_params(np, ps, x);
  12182. ggml_graph_reset (gf);
  12183. ggml_set_f32 (f->grad, 1.0f);
  12184. ggml_graph_compute(ctx, gb);
  12185. ggml_opt_get_grad(np, ps, g);
  12186. fx = ggml_get_f32_1d(f, 0);
  12187. }
  12188. if (pf) {
  12189. pf[0] = fx;
  12190. }
  12191. float fx_best = fx;
  12192. // search direction = -gradient
  12193. ggml_vec_neg_f32(nx, d, g);
  12194. // ||x||, ||g||
  12195. ggml_vec_norm_f32(nx, &xnorm, x);
  12196. ggml_vec_norm_f32(nx, &gnorm, g);
  12197. if (xnorm < 1.0f) {
  12198. xnorm = 1.0f;
  12199. }
  12200. // already optimized
  12201. if (gnorm/xnorm <= params.lbfgs.eps) {
  12202. return GGML_OPT_OK;
  12203. }
  12204. // initial step
  12205. ggml_vec_norm_inv_f32(nx, &step, d);
  12206. int j = 0;
  12207. int k = 1;
  12208. int ls = 0;
  12209. int end = 0;
  12210. int bound = 0;
  12211. int n_no_improvement = 0;
  12212. float ys = 0.0f;
  12213. float yy = 0.0f;
  12214. float beta = 0.0f;
  12215. while (true) {
  12216. // store the current position and gradient vectors
  12217. ggml_vec_cpy_f32(nx, xp, x);
  12218. ggml_vec_cpy_f32(nx, gp, g);
  12219. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  12220. if (ls < 0) {
  12221. // linesearch failed - go back to the previous point and return
  12222. ggml_vec_cpy_f32(nx, x, xp);
  12223. ggml_vec_cpy_f32(nx, g, gp);
  12224. return ls;
  12225. }
  12226. ggml_vec_norm_f32(nx, &xnorm, x);
  12227. ggml_vec_norm_f32(nx, &gnorm, g);
  12228. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  12229. if (xnorm < 1.0f) {
  12230. xnorm = 1.0f;
  12231. }
  12232. if (gnorm/xnorm <= params.lbfgs.eps) {
  12233. // converged
  12234. return GGML_OPT_OK;
  12235. }
  12236. // delta-based convergence test
  12237. if (pf != NULL) {
  12238. // need at least params.past iterations to start checking for convergence
  12239. if (params.past <= k) {
  12240. const float rate = (pf[k%params.past] - fx)/fx;
  12241. if (fabsf(rate) < params.delta) {
  12242. return GGML_OPT_OK;
  12243. }
  12244. }
  12245. pf[k%params.past] = fx;
  12246. }
  12247. // check for improvement
  12248. if (params.max_no_improvement > 0) {
  12249. if (fx < fx_best) {
  12250. fx_best = fx;
  12251. n_no_improvement = 0;
  12252. } else {
  12253. n_no_improvement++;
  12254. if (n_no_improvement >= params.max_no_improvement) {
  12255. return GGML_OPT_OK;
  12256. }
  12257. }
  12258. }
  12259. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  12260. // reached the maximum number of iterations
  12261. return GGML_OPT_DID_NOT_CONVERGE;
  12262. }
  12263. // update vectors s and y:
  12264. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  12265. // y_{k+1} = g_{k+1} - g_{k}.
  12266. //
  12267. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  12268. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  12269. // compute scalars ys and yy:
  12270. // ys = y^t \cdot s -> 1 / \rho.
  12271. // yy = y^t \cdot y.
  12272. //
  12273. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  12274. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  12275. lm[end].ys = ys;
  12276. // find new search direction
  12277. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  12278. bound = (m <= k) ? m : k;
  12279. k++;
  12280. end = (end + 1)%m;
  12281. // initialize search direction with -g
  12282. ggml_vec_neg_f32(nx, d, g);
  12283. j = end;
  12284. for (int i = 0; i < bound; ++i) {
  12285. j = (j + m - 1) % m;
  12286. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  12287. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  12288. lm[j].alpha /= lm[j].ys;
  12289. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  12290. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  12291. }
  12292. ggml_vec_scale_f32(nx, d, ys/yy);
  12293. for (int i = 0; i < bound; ++i) {
  12294. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  12295. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  12296. beta /= lm[j].ys;
  12297. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  12298. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  12299. j = (j + 1)%m;
  12300. }
  12301. step = 1.0;
  12302. }
  12303. return GGML_OPT_DID_NOT_CONVERGE;
  12304. }
  12305. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  12306. struct ggml_opt_params result;
  12307. switch (type) {
  12308. case GGML_OPT_ADAM:
  12309. {
  12310. result = (struct ggml_opt_params) {
  12311. .type = GGML_OPT_ADAM,
  12312. .n_threads = 1,
  12313. .past = 0,
  12314. .delta = 1e-5f,
  12315. .max_no_improvement = 100,
  12316. .print_forward_graph = true,
  12317. .print_backward_graph = true,
  12318. .adam = {
  12319. .n_iter = 10000,
  12320. .alpha = 0.001f,
  12321. .beta1 = 0.9f,
  12322. .beta2 = 0.999f,
  12323. .eps = 1e-8f,
  12324. .eps_f = 1e-5f,
  12325. .eps_g = 1e-3f,
  12326. },
  12327. };
  12328. } break;
  12329. case GGML_OPT_LBFGS:
  12330. {
  12331. result = (struct ggml_opt_params) {
  12332. .type = GGML_OPT_LBFGS,
  12333. .n_threads = 1,
  12334. .past = 0,
  12335. .delta = 1e-5f,
  12336. .max_no_improvement = 0,
  12337. .print_forward_graph = true,
  12338. .print_backward_graph = true,
  12339. .lbfgs = {
  12340. .m = 6,
  12341. .n_iter = 100,
  12342. .max_linesearch = 20,
  12343. .eps = 1e-5f,
  12344. .ftol = 1e-4f,
  12345. .wolfe = 0.9f,
  12346. .min_step = 1e-20f,
  12347. .max_step = 1e+20f,
  12348. .linesearch = GGML_LINESEARCH_DEFAULT,
  12349. },
  12350. };
  12351. } break;
  12352. }
  12353. return result;
  12354. }
  12355. enum ggml_opt_result ggml_opt(
  12356. struct ggml_context * ctx,
  12357. struct ggml_opt_params params,
  12358. struct ggml_tensor * f) {
  12359. bool free_ctx = false;
  12360. if (ctx == NULL) {
  12361. struct ggml_init_params params_ctx = {
  12362. .mem_size = 16*1024*1024,
  12363. .mem_buffer = NULL,
  12364. .no_alloc = false,
  12365. };
  12366. ctx = ggml_init(params_ctx);
  12367. if (ctx == NULL) {
  12368. return GGML_OPT_NO_CONTEXT;
  12369. }
  12370. free_ctx = true;
  12371. }
  12372. enum ggml_opt_result result = GGML_OPT_OK;
  12373. // build forward + backward compute graphs
  12374. struct ggml_cgraph gf = ggml_build_forward (f);
  12375. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, true);
  12376. switch (params.type) {
  12377. case GGML_OPT_ADAM:
  12378. {
  12379. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  12380. } break;
  12381. case GGML_OPT_LBFGS:
  12382. {
  12383. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  12384. } break;
  12385. }
  12386. if (params.print_forward_graph) {
  12387. ggml_graph_print (&gf);
  12388. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  12389. }
  12390. if (params.print_backward_graph) {
  12391. ggml_graph_print (&gb);
  12392. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  12393. }
  12394. if (free_ctx) {
  12395. ggml_free(ctx);
  12396. }
  12397. return result;
  12398. }
  12399. ////////////////////////////////////////////////////////////////////////////////
  12400. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  12401. assert(k % QK4_0 == 0);
  12402. const int nb = k / QK4_0;
  12403. for (int b = 0; b < n; b += k) {
  12404. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  12405. quantize_row_q4_0_reference(src + b, y, k);
  12406. for (int i = 0; i < nb; i++) {
  12407. for (int j = 0; j < QK4_0; j += 2) {
  12408. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  12409. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  12410. hist[vi0]++;
  12411. hist[vi1]++;
  12412. }
  12413. }
  12414. }
  12415. return (n/QK4_0*sizeof(block_q4_0));
  12416. }
  12417. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  12418. assert(k % QK4_1 == 0);
  12419. const int nb = k / QK4_1;
  12420. for (int b = 0; b < n; b += k) {
  12421. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  12422. quantize_row_q4_1_reference(src + b, y, k);
  12423. for (int i = 0; i < nb; i++) {
  12424. for (int j = 0; j < QK4_1; j += 2) {
  12425. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  12426. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  12427. hist[vi0]++;
  12428. hist[vi1]++;
  12429. }
  12430. }
  12431. }
  12432. return (n/QK4_1*sizeof(block_q4_1));
  12433. }
  12434. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  12435. assert(k % QK5_0 == 0);
  12436. const int nb = k / QK5_0;
  12437. for (int b = 0; b < n; b += k) {
  12438. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  12439. quantize_row_q5_0_reference(src + b, y, k);
  12440. for (int i = 0; i < nb; i++) {
  12441. uint32_t qh;
  12442. memcpy(&qh, &y[i].qh, sizeof(qh));
  12443. for (int j = 0; j < QK5_0; j += 2) {
  12444. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  12445. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  12446. // cast to 16 bins
  12447. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  12448. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  12449. hist[vi0]++;
  12450. hist[vi1]++;
  12451. }
  12452. }
  12453. }
  12454. return (n/QK5_0*sizeof(block_q5_0));
  12455. }
  12456. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  12457. assert(k % QK5_1 == 0);
  12458. const int nb = k / QK5_1;
  12459. for (int b = 0; b < n; b += k) {
  12460. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  12461. quantize_row_q5_1_reference(src + b, y, k);
  12462. for (int i = 0; i < nb; i++) {
  12463. uint32_t qh;
  12464. memcpy(&qh, &y[i].qh, sizeof(qh));
  12465. for (int j = 0; j < QK5_1; j += 2) {
  12466. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  12467. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  12468. // cast to 16 bins
  12469. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  12470. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  12471. hist[vi0]++;
  12472. hist[vi1]++;
  12473. }
  12474. }
  12475. }
  12476. return (n/QK5_1*sizeof(block_q5_1));
  12477. }
  12478. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  12479. assert(k % QK8_0 == 0);
  12480. const int nb = k / QK8_0;
  12481. for (int b = 0; b < n; b += k) {
  12482. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  12483. quantize_row_q8_0_reference(src + b, y, k);
  12484. for (int i = 0; i < nb; i++) {
  12485. for (int j = 0; j < QK8_0; ++j) {
  12486. const int8_t vi = y[i].qs[j];
  12487. hist[vi/16 + 8]++;
  12488. }
  12489. }
  12490. }
  12491. return (n/QK8_0*sizeof(block_q8_0));
  12492. }
  12493. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  12494. size_t result = 0;
  12495. switch (type) {
  12496. case GGML_TYPE_Q4_0:
  12497. {
  12498. GGML_ASSERT(start % QK4_0 == 0);
  12499. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  12500. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  12501. } break;
  12502. case GGML_TYPE_Q4_1:
  12503. {
  12504. GGML_ASSERT(start % QK4_1 == 0);
  12505. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  12506. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  12507. } break;
  12508. case GGML_TYPE_Q5_0:
  12509. {
  12510. GGML_ASSERT(start % QK5_0 == 0);
  12511. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  12512. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  12513. } break;
  12514. case GGML_TYPE_Q5_1:
  12515. {
  12516. GGML_ASSERT(start % QK5_1 == 0);
  12517. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  12518. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  12519. } break;
  12520. case GGML_TYPE_Q8_0:
  12521. {
  12522. GGML_ASSERT(start % QK8_0 == 0);
  12523. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  12524. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  12525. } break;
  12526. default:
  12527. assert(false);
  12528. }
  12529. return result;
  12530. }
  12531. ////////////////////////////////////////////////////////////////////////////////
  12532. int ggml_cpu_has_avx(void) {
  12533. #if defined(__AVX__)
  12534. return 1;
  12535. #else
  12536. return 0;
  12537. #endif
  12538. }
  12539. int ggml_cpu_has_avx2(void) {
  12540. #if defined(__AVX2__)
  12541. return 1;
  12542. #else
  12543. return 0;
  12544. #endif
  12545. }
  12546. int ggml_cpu_has_avx512(void) {
  12547. #if defined(__AVX512F__)
  12548. return 1;
  12549. #else
  12550. return 0;
  12551. #endif
  12552. }
  12553. int ggml_cpu_has_avx512_vbmi(void) {
  12554. #if defined(__AVX512VBMI__)
  12555. return 1;
  12556. #else
  12557. return 0;
  12558. #endif
  12559. }
  12560. int ggml_cpu_has_avx512_vnni(void) {
  12561. #if defined(__AVX512VNNI__)
  12562. return 1;
  12563. #else
  12564. return 0;
  12565. #endif
  12566. }
  12567. int ggml_cpu_has_fma(void) {
  12568. #if defined(__FMA__)
  12569. return 1;
  12570. #else
  12571. return 0;
  12572. #endif
  12573. }
  12574. int ggml_cpu_has_neon(void) {
  12575. #if defined(__ARM_NEON)
  12576. return 1;
  12577. #else
  12578. return 0;
  12579. #endif
  12580. }
  12581. int ggml_cpu_has_arm_fma(void) {
  12582. #if defined(__ARM_FEATURE_FMA)
  12583. return 1;
  12584. #else
  12585. return 0;
  12586. #endif
  12587. }
  12588. int ggml_cpu_has_f16c(void) {
  12589. #if defined(__F16C__)
  12590. return 1;
  12591. #else
  12592. return 0;
  12593. #endif
  12594. }
  12595. int ggml_cpu_has_fp16_va(void) {
  12596. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  12597. return 1;
  12598. #else
  12599. return 0;
  12600. #endif
  12601. }
  12602. int ggml_cpu_has_wasm_simd(void) {
  12603. #if defined(__wasm_simd128__)
  12604. return 1;
  12605. #else
  12606. return 0;
  12607. #endif
  12608. }
  12609. int ggml_cpu_has_blas(void) {
  12610. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  12611. return 1;
  12612. #else
  12613. return 0;
  12614. #endif
  12615. }
  12616. int ggml_cpu_has_cublas(void) {
  12617. #if defined(GGML_USE_CUBLAS)
  12618. return 1;
  12619. #else
  12620. return 0;
  12621. #endif
  12622. }
  12623. int ggml_cpu_has_clblast(void) {
  12624. #if defined(GGML_USE_CLBLAST)
  12625. return 1;
  12626. #else
  12627. return 0;
  12628. #endif
  12629. }
  12630. int ggml_cpu_has_gpublas(void) {
  12631. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  12632. }
  12633. int ggml_cpu_has_sse3(void) {
  12634. #if defined(__SSE3__)
  12635. return 1;
  12636. #else
  12637. return 0;
  12638. #endif
  12639. }
  12640. int ggml_cpu_has_vsx(void) {
  12641. #if defined(__POWER9_VECTOR__)
  12642. return 1;
  12643. #else
  12644. return 0;
  12645. #endif
  12646. }
  12647. ////////////////////////////////////////////////////////////////////////////////