ggml.c 669 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788197891979019791197921979319794197951979619797197981979919800198011980219803198041980519806198071980819809198101981119812198131981419815198161981719818198191982019821198221982319824198251982619827198281982919830198311983219833198341983519836198371983819839198401984119842198431984419845198461984719848198491985019851198521985319854198551985619857198581985919860198611986219863198641986519866198671986819869198701987119872198731987419875198761987719878198791988019881198821988319884198851988619887198881988919890198911989219893198941989519896198971989819899199001990119902199031990419905199061990719908199091991019911199121991319914199151991619917199181991919920199211992219923199241992519926199271992819929199301993119932199331993419935199361993719938199391994019941199421994319944199451994619947199481994919950199511995219953199541995519956199571995819959199601996119962199631996419965199661996719968199691997019971199721997319974199751997619977199781997919980199811998219983199841998519986199871998819989199901999119992199931999419995199961999719998199992000020001200022000320004200052000620007200082000920010200112001220013200142001520016200172001820019200202002120022200232002420025200262002720028200292003020031200322003320034200352003620037200382003920040200412004220043200442004520046200472004820049200502005120052200532005420055200562005720058200592006020061200622006320064200652006620067200682006920070200712007220073200742007520076200772007820079200802008120082200832008420085200862008720088200892009020091200922009320094200952009620097200982009920100201012010220103201042010520106201072010820109201102011120112201132011420115201162011720118201192012020121201222012320124201252012620127201282012920130201312013220133201342013520136201372013820139201402014120142201432014420145201462014720148201492015020151201522015320154201552015620157201582015920160201612016220163201642016520166201672016820169201702017120172201732017420175201762017720178201792018020181201822018320184201852018620187201882018920190201912019220193201942019520196201972019820199202002020120202202032020420205202062020720208202092021020211202122021320214202152021620217202182021920220202212022220223202242022520226202272022820229202302023120232202332023420235202362023720238202392024020241202422024320244202452024620247202482024920250202512025220253202542025520256202572025820259202602026120262202632026420265202662026720268202692027020271202722027320274202752027620277202782027920280202812028220283202842028520286202872028820289202902029120292202932029420295202962029720298202992030020301203022030320304203052030620307203082030920310203112031220313203142031520316203172031820319203202032120322203232032420325203262032720328203292033020331203322033320334203352033620337203382033920340203412034220343203442034520346203472034820349203502035120352203532035420355203562035720358203592036020361203622036320364203652036620367203682036920370203712037220373203742037520376203772037820379203802038120382203832038420385203862038720388203892039020391203922039320394203952039620397203982039920400204012040220403204042040520406204072040820409204102041120412204132041420415204162041720418204192042020421204222042320424204252042620427204282042920430204312043220433204342043520436204372043820439204402044120442204432044420445204462044720448204492045020451204522045320454204552045620457204582045920460204612046220463204642046520466204672046820469204702047120472204732047420475204762047720478204792048020481204822048320484204852048620487204882048920490204912049220493204942049520496204972049820499205002050120502205032050420505205062050720508205092051020511205122051320514205152051620517205182051920520205212052220523205242052520526205272052820529205302053120532205332053420535205362053720538205392054020541205422054320544205452054620547205482054920550205512055220553205542055520556205572055820559205602056120562205632056420565205662056720568205692057020571205722057320574205752057620577205782057920580205812058220583205842058520586205872058820589205902059120592205932059420595205962059720598205992060020601206022060320604206052060620607206082060920610206112061220613206142061520616206172061820619206202062120622206232062420625206262062720628206292063020631206322063320634206352063620637206382063920640206412064220643206442064520646206472064820649206502065120652206532065420655206562065720658206592066020661206622066320664206652066620667206682066920670206712067220673206742067520676206772067820679206802068120682206832068420685206862068720688206892069020691206922069320694206952069620697206982069920700207012070220703207042070520706207072070820709207102071120712207132071420715207162071720718207192072020721207222072320724207252072620727207282072920730207312073220733207342073520736207372073820739207402074120742207432074420745207462074720748207492075020751207522075320754207552075620757207582075920760207612076220763207642076520766207672076820769207702077120772207732077420775207762077720778207792078020781207822078320784207852078620787207882078920790207912079220793207942079520796207972079820799208002080120802208032080420805208062080720808
  1. #define _GNU_SOURCE // Defines CLOCK_MONOTONIC on Linux
  2. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  3. #include "ggml.h"
  4. #ifdef GGML_USE_K_QUANTS
  5. #include "k_quants.h"
  6. #endif
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #include <stdarg.h>
  24. #include <signal.h>
  25. #ifdef GGML_USE_METAL
  26. #include <unistd.h>
  27. #endif
  28. // static_assert should be a #define, but if it's not,
  29. // fall back to the _Static_assert C11 keyword.
  30. // if C99 - static_assert is noop
  31. // ref: https://stackoverflow.com/a/53923785/4039976
  32. #ifndef static_assert
  33. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
  34. #define static_assert(cond, msg) _Static_assert(cond, msg)
  35. #else
  36. #define static_assert(cond, msg) struct global_scope_noop_trick
  37. #endif
  38. #endif
  39. #if defined(_MSC_VER)
  40. // disable "possible loss of data" to avoid hundreds of casts
  41. // we should just be careful :)
  42. #pragma warning(disable: 4244 4267)
  43. #endif
  44. #if defined(_WIN32)
  45. #include <windows.h>
  46. typedef volatile LONG atomic_int;
  47. typedef atomic_int atomic_bool;
  48. static void atomic_store(atomic_int * ptr, LONG val) {
  49. InterlockedExchange(ptr, val);
  50. }
  51. static LONG atomic_load(atomic_int * ptr) {
  52. return InterlockedCompareExchange(ptr, 0, 0);
  53. }
  54. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  55. return InterlockedExchangeAdd(ptr, inc);
  56. }
  57. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  58. return atomic_fetch_add(ptr, -(dec));
  59. }
  60. typedef HANDLE pthread_t;
  61. typedef DWORD thread_ret_t;
  62. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  63. (void) unused;
  64. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  65. if (handle == NULL)
  66. {
  67. return EAGAIN;
  68. }
  69. *out = handle;
  70. return 0;
  71. }
  72. static int pthread_join(pthread_t thread, void * unused) {
  73. (void) unused;
  74. return (int) WaitForSingleObject(thread, INFINITE);
  75. }
  76. static int sched_yield (void) {
  77. Sleep (0);
  78. return 0;
  79. }
  80. #else
  81. #include <pthread.h>
  82. #include <stdatomic.h>
  83. typedef void * thread_ret_t;
  84. #include <sys/types.h>
  85. #include <sys/stat.h>
  86. #include <unistd.h>
  87. #endif
  88. #ifdef GGML_USE_CPU_HBM
  89. #include <hbwmalloc.h>
  90. #endif
  91. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  92. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  93. #ifndef __FMA__
  94. #define __FMA__
  95. #endif
  96. #ifndef __F16C__
  97. #define __F16C__
  98. #endif
  99. #ifndef __SSE3__
  100. #define __SSE3__
  101. #endif
  102. #endif
  103. /*#define GGML_PERF*/
  104. #define GGML_DEBUG 0
  105. #define GGML_GELU_FP16
  106. #define GGML_GELU_QUICK_FP16
  107. #define GGML_SILU_FP16
  108. // #define GGML_CROSS_ENTROPY_EXP_FP16
  109. // #define GGML_FLASH_ATTN_EXP_FP16
  110. #define GGML_SOFT_MAX_UNROLL 4
  111. #define GGML_VEC_DOT_UNROLL 2
  112. //
  113. // logging
  114. //
  115. #if (GGML_DEBUG >= 1)
  116. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  117. #else
  118. #define GGML_PRINT_DEBUG(...)
  119. #endif
  120. #if (GGML_DEBUG >= 5)
  121. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  122. #else
  123. #define GGML_PRINT_DEBUG_5(...)
  124. #endif
  125. #if (GGML_DEBUG >= 10)
  126. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  127. #else
  128. #define GGML_PRINT_DEBUG_10(...)
  129. #endif
  130. #define GGML_PRINT(...) printf(__VA_ARGS__)
  131. #ifdef GGML_USE_ACCELERATE
  132. // uncomment to use vDSP for soft max computation
  133. // note: not sure if it is actually faster
  134. //#define GGML_SOFT_MAX_ACCELERATE
  135. #endif
  136. //
  137. // logging
  138. //
  139. #if (GGML_DEBUG >= 1)
  140. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  141. #else
  142. #define GGML_PRINT_DEBUG(...)
  143. #endif
  144. #if (GGML_DEBUG >= 5)
  145. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  146. #else
  147. #define GGML_PRINT_DEBUG_5(...)
  148. #endif
  149. #if (GGML_DEBUG >= 10)
  150. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  151. #else
  152. #define GGML_PRINT_DEBUG_10(...)
  153. #endif
  154. #define GGML_PRINT(...) printf(__VA_ARGS__)
  155. //
  156. // end of logging block
  157. //
  158. #if defined(_MSC_VER) || defined(__MINGW32__)
  159. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  160. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  161. #else
  162. inline static void * ggml_aligned_malloc(size_t size) {
  163. if (size == 0) {
  164. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  165. return NULL;
  166. }
  167. void * aligned_memory = NULL;
  168. #ifdef GGML_USE_CPU_HBM
  169. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  170. #elif GGML_USE_METAL
  171. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  172. #else
  173. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  174. #endif
  175. if (result != 0) {
  176. // Handle allocation failure
  177. const char *error_desc = "unknown allocation error";
  178. switch (result) {
  179. case EINVAL:
  180. error_desc = "invalid alignment value";
  181. break;
  182. case ENOMEM:
  183. error_desc = "insufficient memory";
  184. break;
  185. }
  186. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  187. return NULL;
  188. }
  189. return aligned_memory;
  190. }
  191. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  192. #ifdef GGML_USE_CPU_HBM
  193. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  194. #else
  195. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  196. #endif
  197. #endif
  198. #define UNUSED GGML_UNUSED
  199. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  200. //
  201. // tensor access macros
  202. //
  203. #define GGML_TENSOR_UNARY_OP_LOCALS \
  204. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  205. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  206. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  207. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  208. #define GGML_TENSOR_BINARY_OP_LOCALS \
  209. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  210. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  211. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); \
  212. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); \
  213. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  214. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  215. #if defined(GGML_USE_ACCELERATE)
  216. #include <Accelerate/Accelerate.h>
  217. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  218. #include "ggml-opencl.h"
  219. #endif
  220. #elif defined(GGML_USE_OPENBLAS)
  221. #if defined(GGML_BLAS_USE_MKL)
  222. #include <mkl.h>
  223. #else
  224. #include <cblas.h>
  225. #endif
  226. #elif defined(GGML_USE_CUBLAS)
  227. #include "ggml-cuda.h"
  228. #elif defined(GGML_USE_CLBLAST)
  229. #include "ggml-opencl.h"
  230. #endif
  231. #undef MIN
  232. #undef MAX
  233. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  234. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  235. // floating point type used to accumulate sums
  236. typedef double ggml_float;
  237. // 16-bit float
  238. // on Arm, we use __fp16
  239. // on x86, we use uint16_t
  240. #ifdef __ARM_NEON
  241. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  242. //
  243. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  244. //
  245. #include <arm_neon.h>
  246. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  247. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  248. #define GGML_FP16_TO_FP32(x) ((float) (x))
  249. #define GGML_FP32_TO_FP16(x) (x)
  250. #else
  251. #ifdef __wasm_simd128__
  252. #include <wasm_simd128.h>
  253. #else
  254. #ifdef __POWER9_VECTOR__
  255. #include <altivec.h>
  256. #undef bool
  257. #define bool _Bool
  258. #else
  259. #if defined(_MSC_VER) || defined(__MINGW32__)
  260. #include <intrin.h>
  261. #else
  262. #if !defined(__riscv)
  263. #include <immintrin.h>
  264. #endif
  265. #endif
  266. #endif
  267. #endif
  268. #ifdef __riscv_v_intrinsic
  269. #include <riscv_vector.h>
  270. #endif
  271. #ifdef __F16C__
  272. #ifdef _MSC_VER
  273. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  274. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  275. #else
  276. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  277. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  278. #endif
  279. #elif defined(__POWER9_VECTOR__)
  280. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  281. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  282. /* the inline asm below is about 12% faster than the lookup method */
  283. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  284. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  285. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  286. register float f;
  287. register double d;
  288. __asm__(
  289. "mtfprd %0,%2\n"
  290. "xscvhpdp %0,%0\n"
  291. "frsp %1,%0\n" :
  292. /* temp */ "=d"(d),
  293. /* out */ "=f"(f):
  294. /* in */ "r"(h));
  295. return f;
  296. }
  297. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  298. register double d;
  299. register ggml_fp16_t r;
  300. __asm__( /* xscvdphp can work on double or single precision */
  301. "xscvdphp %0,%2\n"
  302. "mffprd %1,%0\n" :
  303. /* temp */ "=d"(d),
  304. /* out */ "=r"(r):
  305. /* in */ "f"(f));
  306. return r;
  307. }
  308. #else
  309. // FP16 <-> FP32
  310. // ref: https://github.com/Maratyszcza/FP16
  311. static inline float fp32_from_bits(uint32_t w) {
  312. union {
  313. uint32_t as_bits;
  314. float as_value;
  315. } fp32;
  316. fp32.as_bits = w;
  317. return fp32.as_value;
  318. }
  319. static inline uint32_t fp32_to_bits(float f) {
  320. union {
  321. float as_value;
  322. uint32_t as_bits;
  323. } fp32;
  324. fp32.as_value = f;
  325. return fp32.as_bits;
  326. }
  327. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  328. const uint32_t w = (uint32_t) h << 16;
  329. const uint32_t sign = w & UINT32_C(0x80000000);
  330. const uint32_t two_w = w + w;
  331. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  332. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  333. const float exp_scale = 0x1.0p-112f;
  334. #else
  335. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  336. #endif
  337. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  338. const uint32_t magic_mask = UINT32_C(126) << 23;
  339. const float magic_bias = 0.5f;
  340. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  341. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  342. const uint32_t result = sign |
  343. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  344. return fp32_from_bits(result);
  345. }
  346. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  347. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  348. const float scale_to_inf = 0x1.0p+112f;
  349. const float scale_to_zero = 0x1.0p-110f;
  350. #else
  351. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  352. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  353. #endif
  354. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  355. const uint32_t w = fp32_to_bits(f);
  356. const uint32_t shl1_w = w + w;
  357. const uint32_t sign = w & UINT32_C(0x80000000);
  358. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  359. if (bias < UINT32_C(0x71000000)) {
  360. bias = UINT32_C(0x71000000);
  361. }
  362. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  363. const uint32_t bits = fp32_to_bits(base);
  364. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  365. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  366. const uint32_t nonsign = exp_bits + mantissa_bits;
  367. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  368. }
  369. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  370. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  371. #endif // __F16C__
  372. #endif // __ARM_NEON
  373. //
  374. // global data
  375. //
  376. // precomputed gelu table for f16 (128 KB)
  377. static ggml_fp16_t table_gelu_f16[1 << 16];
  378. // precomputed quick gelu table for f16 (128 KB)
  379. static ggml_fp16_t table_gelu_quick_f16[1 << 16];
  380. // precomputed silu table for f16 (128 KB)
  381. static ggml_fp16_t table_silu_f16[1 << 16];
  382. // precomputed exp table for f16 (128 KB)
  383. static ggml_fp16_t table_exp_f16[1 << 16];
  384. // precomputed f32 table for f16 (256 KB)
  385. static float table_f32_f16[1 << 16];
  386. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  387. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  388. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  389. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  390. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  391. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  392. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  393. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  394. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  395. // precomputed tables for expanding 8bits to 8 bytes:
  396. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  397. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  398. #endif
  399. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  400. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  401. // This is also true for POWER9.
  402. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  403. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  404. uint16_t s;
  405. memcpy(&s, &f, sizeof(uint16_t));
  406. return table_f32_f16[s];
  407. }
  408. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  409. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  410. #endif
  411. // note: do not use these inside ggml.c
  412. // these are meant to be used via the ggml.h API
  413. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  414. return (float) GGML_FP16_TO_FP32(x);
  415. }
  416. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  417. return GGML_FP32_TO_FP16(x);
  418. }
  419. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  420. for (int i = 0; i < n; i++) {
  421. y[i] = GGML_FP16_TO_FP32(x[i]);
  422. }
  423. }
  424. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  425. int i = 0;
  426. #if defined(__F16C__)
  427. for (; i + 7 < n; i += 8) {
  428. __m256 x_vec = _mm256_loadu_ps(x + i);
  429. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  430. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  431. }
  432. for(; i + 3 < n; i += 4) {
  433. __m128 x_vec = _mm_loadu_ps(x + i);
  434. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  435. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  436. }
  437. #endif
  438. for (; i < n; i++) {
  439. y[i] = GGML_FP32_TO_FP16(x[i]);
  440. }
  441. }
  442. //
  443. // timing
  444. //
  445. #if defined(_MSC_VER) || defined(__MINGW32__)
  446. static int64_t timer_freq, timer_start;
  447. void ggml_time_init(void) {
  448. LARGE_INTEGER t;
  449. QueryPerformanceFrequency(&t);
  450. timer_freq = t.QuadPart;
  451. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  452. // and the uptime is high enough.
  453. // We subtract the program start time to reduce the likelihood of that happening.
  454. QueryPerformanceCounter(&t);
  455. timer_start = t.QuadPart;
  456. }
  457. int64_t ggml_time_ms(void) {
  458. LARGE_INTEGER t;
  459. QueryPerformanceCounter(&t);
  460. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  461. }
  462. int64_t ggml_time_us(void) {
  463. LARGE_INTEGER t;
  464. QueryPerformanceCounter(&t);
  465. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  466. }
  467. #else
  468. void ggml_time_init(void) {}
  469. int64_t ggml_time_ms(void) {
  470. struct timespec ts;
  471. clock_gettime(CLOCK_MONOTONIC, &ts);
  472. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  473. }
  474. int64_t ggml_time_us(void) {
  475. struct timespec ts;
  476. clock_gettime(CLOCK_MONOTONIC, &ts);
  477. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  478. }
  479. #endif
  480. int64_t ggml_cycles(void) {
  481. return clock();
  482. }
  483. int64_t ggml_cycles_per_ms(void) {
  484. return CLOCKS_PER_SEC/1000;
  485. }
  486. #ifdef GGML_PERF
  487. #define ggml_perf_time_ms() ggml_time_ms()
  488. #define ggml_perf_time_us() ggml_time_us()
  489. #define ggml_perf_cycles() ggml_cycles()
  490. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  491. #else
  492. #define ggml_perf_time_ms() 0
  493. #define ggml_perf_time_us() 0
  494. #define ggml_perf_cycles() 0
  495. #define ggml_perf_cycles_per_ms() 0
  496. #endif
  497. //
  498. // cache line
  499. //
  500. #if defined(__cpp_lib_hardware_interference_size)
  501. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  502. #else
  503. #if defined(__POWER9_VECTOR__)
  504. #define CACHE_LINE_SIZE 128
  505. #else
  506. #define CACHE_LINE_SIZE 64
  507. #endif
  508. #endif
  509. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  510. //
  511. // quantization
  512. //
  513. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  514. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  515. // multiply int8_t, add results pairwise twice
  516. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  517. // Get absolute values of x vectors
  518. const __m128i ax = _mm_sign_epi8(x, x);
  519. // Sign the values of the y vectors
  520. const __m128i sy = _mm_sign_epi8(y, x);
  521. // Perform multiplication and create 16-bit values
  522. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  523. const __m128i ones = _mm_set1_epi16(1);
  524. return _mm_madd_epi16(ones, dot);
  525. }
  526. #if __AVX__ || __AVX2__ || __AVX512F__
  527. // horizontally add 8 floats
  528. static inline float hsum_float_8(const __m256 x) {
  529. __m128 res = _mm256_extractf128_ps(x, 1);
  530. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  531. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  532. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  533. return _mm_cvtss_f32(res);
  534. }
  535. // horizontally add 8 int32_t
  536. static inline int hsum_i32_8(const __m256i a) {
  537. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  538. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  539. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  540. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  541. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  542. }
  543. // horizontally add 4 int32_t
  544. static inline int hsum_i32_4(const __m128i a) {
  545. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  546. const __m128i sum64 = _mm_add_epi32(hi64, a);
  547. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  548. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  549. }
  550. #if defined(__AVX2__) || defined(__AVX512F__)
  551. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  552. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  553. uint32_t x32;
  554. memcpy(&x32, x, sizeof(uint32_t));
  555. const __m256i shuf_mask = _mm256_set_epi64x(
  556. 0x0303030303030303, 0x0202020202020202,
  557. 0x0101010101010101, 0x0000000000000000);
  558. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  559. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  560. bytes = _mm256_or_si256(bytes, bit_mask);
  561. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  562. }
  563. // Unpack 32 4-bit fields into 32 bytes
  564. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  565. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  566. {
  567. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  568. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  569. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  570. return _mm256_and_si256(lowMask, bytes);
  571. }
  572. // add int16_t pairwise and return as float vector
  573. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  574. const __m256i ones = _mm256_set1_epi16(1);
  575. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  576. return _mm256_cvtepi32_ps(summed_pairs);
  577. }
  578. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  579. #if __AVXVNNI__
  580. const __m256i zero = _mm256_setzero_si256();
  581. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  582. return _mm256_cvtepi32_ps(summed_pairs);
  583. #else
  584. // Perform multiplication and create 16-bit values
  585. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  586. return sum_i16_pairs_float(dot);
  587. #endif
  588. }
  589. // multiply int8_t, add results pairwise twice and return as float vector
  590. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  591. #if __AVXVNNIINT8__
  592. const __m256i zero = _mm256_setzero_si256();
  593. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  594. return _mm256_cvtepi32_ps(summed_pairs);
  595. #else
  596. // Get absolute values of x vectors
  597. const __m256i ax = _mm256_sign_epi8(x, x);
  598. // Sign the values of the y vectors
  599. const __m256i sy = _mm256_sign_epi8(y, x);
  600. return mul_sum_us8_pairs_float(ax, sy);
  601. #endif
  602. }
  603. static inline __m128i packNibbles( __m256i bytes )
  604. {
  605. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  606. #if __AVX512F__
  607. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  608. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  609. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  610. #else
  611. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  612. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  613. __m256i low = _mm256_and_si256( lowByte, bytes );
  614. high = _mm256_srli_epi16( high, 4 );
  615. bytes = _mm256_or_si256( low, high );
  616. // Compress uint16_t lanes into bytes
  617. __m128i r0 = _mm256_castsi256_si128( bytes );
  618. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  619. return _mm_packus_epi16( r0, r1 );
  620. #endif
  621. }
  622. #elif defined(__AVX__)
  623. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  624. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  625. uint32_t x32;
  626. memcpy(&x32, x, sizeof(uint32_t));
  627. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  628. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  629. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  630. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  631. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  632. bytesl = _mm_or_si128(bytesl, bit_mask);
  633. bytesh = _mm_or_si128(bytesh, bit_mask);
  634. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  635. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  636. return MM256_SET_M128I(bytesh, bytesl);
  637. }
  638. // Unpack 32 4-bit fields into 32 bytes
  639. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  640. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  641. {
  642. // Load 16 bytes from memory
  643. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  644. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  645. const __m128i lowMask = _mm_set1_epi8(0xF);
  646. tmpl = _mm_and_si128(lowMask, tmpl);
  647. tmph = _mm_and_si128(lowMask, tmph);
  648. return MM256_SET_M128I(tmph, tmpl);
  649. }
  650. // add int16_t pairwise and return as float vector
  651. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  652. const __m128i ones = _mm_set1_epi16(1);
  653. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  654. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  655. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  656. return _mm256_cvtepi32_ps(summed_pairs);
  657. }
  658. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  659. const __m128i axl = _mm256_castsi256_si128(ax);
  660. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  661. const __m128i syl = _mm256_castsi256_si128(sy);
  662. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  663. // Perform multiplication and create 16-bit values
  664. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  665. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  666. return sum_i16_pairs_float(doth, dotl);
  667. }
  668. // multiply int8_t, add results pairwise twice and return as float vector
  669. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  670. const __m128i xl = _mm256_castsi256_si128(x);
  671. const __m128i xh = _mm256_extractf128_si256(x, 1);
  672. const __m128i yl = _mm256_castsi256_si128(y);
  673. const __m128i yh = _mm256_extractf128_si256(y, 1);
  674. // Get absolute values of x vectors
  675. const __m128i axl = _mm_sign_epi8(xl, xl);
  676. const __m128i axh = _mm_sign_epi8(xh, xh);
  677. // Sign the values of the y vectors
  678. const __m128i syl = _mm_sign_epi8(yl, xl);
  679. const __m128i syh = _mm_sign_epi8(yh, xh);
  680. // Perform multiplication and create 16-bit values
  681. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  682. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  683. return sum_i16_pairs_float(doth, dotl);
  684. }
  685. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  686. {
  687. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  688. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  689. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  690. __m128i low = _mm_and_si128( lowByte, bytes1 );
  691. high = _mm_srli_epi16( high, 4 );
  692. bytes1 = _mm_or_si128( low, high );
  693. high = _mm_andnot_si128( lowByte, bytes2 );
  694. low = _mm_and_si128( lowByte, bytes2 );
  695. high = _mm_srli_epi16( high, 4 );
  696. bytes2 = _mm_or_si128( low, high );
  697. return _mm_packus_epi16( bytes1, bytes2);
  698. }
  699. #endif
  700. #elif defined(__SSSE3__)
  701. // horizontally add 4x4 floats
  702. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  703. __m128 res_0 =_mm_hadd_ps(a, b);
  704. __m128 res_1 =_mm_hadd_ps(c, d);
  705. __m128 res =_mm_hadd_ps(res_0, res_1);
  706. res =_mm_hadd_ps(res, res);
  707. res =_mm_hadd_ps(res, res);
  708. return _mm_cvtss_f32(res);
  709. }
  710. #endif // __AVX__ || __AVX2__ || __AVX512F__
  711. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  712. #if defined(__ARM_NEON)
  713. #if !defined(__aarch64__)
  714. inline static int32_t vaddvq_s32(int32x4_t v) {
  715. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  716. }
  717. inline static float vaddvq_f32(float32x4_t v) {
  718. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  719. }
  720. inline static float vmaxvq_f32(float32x4_t v) {
  721. return
  722. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  723. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  724. }
  725. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  726. int32x4_t res;
  727. res[0] = roundf(vgetq_lane_f32(v, 0));
  728. res[1] = roundf(vgetq_lane_f32(v, 1));
  729. res[2] = roundf(vgetq_lane_f32(v, 2));
  730. res[3] = roundf(vgetq_lane_f32(v, 3));
  731. return res;
  732. }
  733. #endif
  734. #endif
  735. #define QK4_0 32
  736. typedef struct {
  737. ggml_fp16_t d; // delta
  738. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  739. } block_q4_0;
  740. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  741. #define QK4_1 32
  742. typedef struct {
  743. ggml_fp16_t d; // delta
  744. ggml_fp16_t m; // min
  745. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  746. } block_q4_1;
  747. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  748. #define QK5_0 32
  749. typedef struct {
  750. ggml_fp16_t d; // delta
  751. uint8_t qh[4]; // 5-th bit of quants
  752. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  753. } block_q5_0;
  754. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  755. #define QK5_1 32
  756. typedef struct {
  757. ggml_fp16_t d; // delta
  758. ggml_fp16_t m; // min
  759. uint8_t qh[4]; // 5-th bit of quants
  760. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  761. } block_q5_1;
  762. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  763. #define QK8_0 32
  764. typedef struct {
  765. ggml_fp16_t d; // delta
  766. int8_t qs[QK8_0]; // quants
  767. } block_q8_0;
  768. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  769. #define QK8_1 32
  770. typedef struct {
  771. float d; // delta
  772. float s; // d * sum(qs[i])
  773. int8_t qs[QK8_1]; // quants
  774. } block_q8_1;
  775. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  776. // reference implementation for deterministic creation of model files
  777. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  778. static const int qk = QK4_0;
  779. assert(k % qk == 0);
  780. const int nb = k / qk;
  781. for (int i = 0; i < nb; i++) {
  782. float amax = 0.0f; // absolute max
  783. float max = 0.0f;
  784. for (int j = 0; j < qk; j++) {
  785. const float v = x[i*qk + j];
  786. if (amax < fabsf(v)) {
  787. amax = fabsf(v);
  788. max = v;
  789. }
  790. }
  791. const float d = max / -8;
  792. const float id = d ? 1.0f/d : 0.0f;
  793. y[i].d = GGML_FP32_TO_FP16(d);
  794. for (int j = 0; j < qk/2; ++j) {
  795. const float x0 = x[i*qk + 0 + j]*id;
  796. const float x1 = x[i*qk + qk/2 + j]*id;
  797. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  798. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  799. y[i].qs[j] = xi0;
  800. y[i].qs[j] |= xi1 << 4;
  801. }
  802. }
  803. }
  804. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  805. quantize_row_q4_0_reference(x, y, k);
  806. }
  807. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  808. const int qk = QK4_1;
  809. assert(k % qk == 0);
  810. const int nb = k / qk;
  811. for (int i = 0; i < nb; i++) {
  812. float min = FLT_MAX;
  813. float max = -FLT_MAX;
  814. for (int j = 0; j < qk; j++) {
  815. const float v = x[i*qk + j];
  816. if (v < min) min = v;
  817. if (v > max) max = v;
  818. }
  819. const float d = (max - min) / ((1 << 4) - 1);
  820. const float id = d ? 1.0f/d : 0.0f;
  821. y[i].d = GGML_FP32_TO_FP16(d);
  822. y[i].m = GGML_FP32_TO_FP16(min);
  823. for (int j = 0; j < qk/2; ++j) {
  824. const float x0 = (x[i*qk + 0 + j] - min)*id;
  825. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  826. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  827. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  828. y[i].qs[j] = xi0;
  829. y[i].qs[j] |= xi1 << 4;
  830. }
  831. }
  832. }
  833. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  834. quantize_row_q4_1_reference(x, y, k);
  835. }
  836. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  837. static const int qk = QK5_0;
  838. assert(k % qk == 0);
  839. const int nb = k / qk;
  840. for (int i = 0; i < nb; i++) {
  841. float amax = 0.0f; // absolute max
  842. float max = 0.0f;
  843. for (int j = 0; j < qk; j++) {
  844. const float v = x[i*qk + j];
  845. if (amax < fabsf(v)) {
  846. amax = fabsf(v);
  847. max = v;
  848. }
  849. }
  850. const float d = max / -16;
  851. const float id = d ? 1.0f/d : 0.0f;
  852. y[i].d = GGML_FP32_TO_FP16(d);
  853. uint32_t qh = 0;
  854. for (int j = 0; j < qk/2; ++j) {
  855. const float x0 = x[i*qk + 0 + j]*id;
  856. const float x1 = x[i*qk + qk/2 + j]*id;
  857. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  858. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  859. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  860. // get the 5-th bit and store it in qh at the right position
  861. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  862. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  863. }
  864. memcpy(&y[i].qh, &qh, sizeof(qh));
  865. }
  866. }
  867. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  868. quantize_row_q5_0_reference(x, y, k);
  869. }
  870. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  871. const int qk = QK5_1;
  872. assert(k % qk == 0);
  873. const int nb = k / qk;
  874. for (int i = 0; i < nb; i++) {
  875. float min = FLT_MAX;
  876. float max = -FLT_MAX;
  877. for (int j = 0; j < qk; j++) {
  878. const float v = x[i*qk + j];
  879. if (v < min) min = v;
  880. if (v > max) max = v;
  881. }
  882. const float d = (max - min) / ((1 << 5) - 1);
  883. const float id = d ? 1.0f/d : 0.0f;
  884. y[i].d = GGML_FP32_TO_FP16(d);
  885. y[i].m = GGML_FP32_TO_FP16(min);
  886. uint32_t qh = 0;
  887. for (int j = 0; j < qk/2; ++j) {
  888. const float x0 = (x[i*qk + 0 + j] - min)*id;
  889. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  890. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  891. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  892. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  893. // get the 5-th bit and store it in qh at the right position
  894. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  895. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  896. }
  897. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  898. }
  899. }
  900. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  901. quantize_row_q5_1_reference(x, y, k);
  902. }
  903. // reference implementation for deterministic creation of model files
  904. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  905. assert(k % QK8_0 == 0);
  906. const int nb = k / QK8_0;
  907. for (int i = 0; i < nb; i++) {
  908. float amax = 0.0f; // absolute max
  909. for (int j = 0; j < QK8_0; j++) {
  910. const float v = x[i*QK8_0 + j];
  911. amax = MAX(amax, fabsf(v));
  912. }
  913. const float d = amax / ((1 << 7) - 1);
  914. const float id = d ? 1.0f/d : 0.0f;
  915. y[i].d = GGML_FP32_TO_FP16(d);
  916. for (int j = 0; j < QK8_0; ++j) {
  917. const float x0 = x[i*QK8_0 + j]*id;
  918. y[i].qs[j] = roundf(x0);
  919. }
  920. }
  921. }
  922. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  923. assert(QK8_0 == 32);
  924. assert(k % QK8_0 == 0);
  925. const int nb = k / QK8_0;
  926. block_q8_0 * restrict y = vy;
  927. #if defined(__ARM_NEON)
  928. for (int i = 0; i < nb; i++) {
  929. float32x4_t srcv [8];
  930. float32x4_t asrcv[8];
  931. float32x4_t amaxv[8];
  932. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  933. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  934. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  935. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  936. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  937. const float amax = vmaxvq_f32(amaxv[0]);
  938. const float d = amax / ((1 << 7) - 1);
  939. const float id = d ? 1.0f/d : 0.0f;
  940. y[i].d = GGML_FP32_TO_FP16(d);
  941. for (int j = 0; j < 8; j++) {
  942. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  943. const int32x4_t vi = vcvtnq_s32_f32(v);
  944. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  945. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  946. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  947. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  948. }
  949. }
  950. #elif defined(__wasm_simd128__)
  951. for (int i = 0; i < nb; i++) {
  952. v128_t srcv [8];
  953. v128_t asrcv[8];
  954. v128_t amaxv[8];
  955. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  956. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  957. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  958. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  959. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  960. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  961. wasm_f32x4_extract_lane(amaxv[0], 1)),
  962. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  963. wasm_f32x4_extract_lane(amaxv[0], 3)));
  964. const float d = amax / ((1 << 7) - 1);
  965. const float id = d ? 1.0f/d : 0.0f;
  966. y[i].d = GGML_FP32_TO_FP16(d);
  967. for (int j = 0; j < 8; j++) {
  968. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  969. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  970. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  971. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  972. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  973. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  974. }
  975. }
  976. #elif defined(__AVX2__) || defined(__AVX__)
  977. for (int i = 0; i < nb; i++) {
  978. // Load elements into 4 AVX vectors
  979. __m256 v0 = _mm256_loadu_ps( x );
  980. __m256 v1 = _mm256_loadu_ps( x + 8 );
  981. __m256 v2 = _mm256_loadu_ps( x + 16 );
  982. __m256 v3 = _mm256_loadu_ps( x + 24 );
  983. x += 32;
  984. // Compute max(abs(e)) for the block
  985. const __m256 signBit = _mm256_set1_ps( -0.0f );
  986. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  987. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  988. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  989. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  990. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  991. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  992. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  993. const float maxScalar = _mm_cvtss_f32( max4 );
  994. // Quantize these floats
  995. const float d = maxScalar / 127.f;
  996. y[i].d = GGML_FP32_TO_FP16(d);
  997. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  998. const __m256 mul = _mm256_set1_ps( id );
  999. // Apply the multiplier
  1000. v0 = _mm256_mul_ps( v0, mul );
  1001. v1 = _mm256_mul_ps( v1, mul );
  1002. v2 = _mm256_mul_ps( v2, mul );
  1003. v3 = _mm256_mul_ps( v3, mul );
  1004. // Round to nearest integer
  1005. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1006. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1007. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1008. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1009. // Convert floats to integers
  1010. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1011. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1012. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1013. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1014. #if defined(__AVX2__)
  1015. // Convert int32 to int16
  1016. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1017. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1018. // Convert int16 to int8
  1019. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1020. // We got our precious signed bytes, but the order is now wrong
  1021. // These AVX2 pack instructions process 16-byte pieces independently
  1022. // The following instruction is fixing the order
  1023. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1024. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1025. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1026. #else
  1027. // Since we don't have in AVX some necessary functions,
  1028. // we split the registers in half and call AVX2 analogs from SSE
  1029. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1030. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1031. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1032. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1033. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1034. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1035. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1036. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1037. // Convert int32 to int16
  1038. ni0 = _mm_packs_epi32( ni0, ni1 );
  1039. ni2 = _mm_packs_epi32( ni2, ni3 );
  1040. ni4 = _mm_packs_epi32( ni4, ni5 );
  1041. ni6 = _mm_packs_epi32( ni6, ni7 );
  1042. // Convert int16 to int8
  1043. ni0 = _mm_packs_epi16( ni0, ni2 );
  1044. ni4 = _mm_packs_epi16( ni4, ni6 );
  1045. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1046. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1047. #endif
  1048. }
  1049. #else
  1050. // scalar
  1051. quantize_row_q8_0_reference(x, y, k);
  1052. #endif
  1053. }
  1054. // reference implementation for deterministic creation of model files
  1055. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1056. assert(QK8_1 == 32);
  1057. assert(k % QK8_1 == 0);
  1058. const int nb = k / QK8_1;
  1059. for (int i = 0; i < nb; i++) {
  1060. float amax = 0.0f; // absolute max
  1061. for (int j = 0; j < QK8_1; j++) {
  1062. const float v = x[i*QK8_1 + j];
  1063. amax = MAX(amax, fabsf(v));
  1064. }
  1065. const float d = amax / ((1 << 7) - 1);
  1066. const float id = d ? 1.0f/d : 0.0f;
  1067. y[i].d = d;
  1068. int sum = 0;
  1069. for (int j = 0; j < QK8_1/2; ++j) {
  1070. const float v0 = x[i*QK8_1 + j]*id;
  1071. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1072. y[i].qs[ j] = roundf(v0);
  1073. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1074. sum += y[i].qs[ j];
  1075. sum += y[i].qs[QK8_1/2 + j];
  1076. }
  1077. y[i].s = sum*d;
  1078. }
  1079. }
  1080. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1081. assert(k % QK8_1 == 0);
  1082. const int nb = k / QK8_1;
  1083. block_q8_1 * restrict y = vy;
  1084. #if defined(__ARM_NEON)
  1085. for (int i = 0; i < nb; i++) {
  1086. float32x4_t srcv [8];
  1087. float32x4_t asrcv[8];
  1088. float32x4_t amaxv[8];
  1089. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1090. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1091. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1092. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1093. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1094. const float amax = vmaxvq_f32(amaxv[0]);
  1095. const float d = amax / ((1 << 7) - 1);
  1096. const float id = d ? 1.0f/d : 0.0f;
  1097. y[i].d = d;
  1098. int32x4_t accv = vdupq_n_s32(0);
  1099. for (int j = 0; j < 8; j++) {
  1100. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1101. const int32x4_t vi = vcvtnq_s32_f32(v);
  1102. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1103. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1104. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1105. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1106. accv = vaddq_s32(accv, vi);
  1107. }
  1108. y[i].s = d * vaddvq_s32(accv);
  1109. }
  1110. #elif defined(__wasm_simd128__)
  1111. for (int i = 0; i < nb; i++) {
  1112. v128_t srcv [8];
  1113. v128_t asrcv[8];
  1114. v128_t amaxv[8];
  1115. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1116. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1117. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1118. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1119. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1120. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1121. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1122. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1123. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1124. const float d = amax / ((1 << 7) - 1);
  1125. const float id = d ? 1.0f/d : 0.0f;
  1126. y[i].d = d;
  1127. v128_t accv = wasm_i32x4_splat(0);
  1128. for (int j = 0; j < 8; j++) {
  1129. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1130. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1131. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1132. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1133. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1134. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1135. accv = wasm_i32x4_add(accv, vi);
  1136. }
  1137. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1138. wasm_i32x4_extract_lane(accv, 1) +
  1139. wasm_i32x4_extract_lane(accv, 2) +
  1140. wasm_i32x4_extract_lane(accv, 3));
  1141. }
  1142. #elif defined(__AVX2__) || defined(__AVX__)
  1143. for (int i = 0; i < nb; i++) {
  1144. // Load elements into 4 AVX vectors
  1145. __m256 v0 = _mm256_loadu_ps( x );
  1146. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1147. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1148. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1149. x += 32;
  1150. // Compute max(abs(e)) for the block
  1151. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1152. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1153. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1154. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1155. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1156. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1157. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1158. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1159. const float maxScalar = _mm_cvtss_f32( max4 );
  1160. // Quantize these floats
  1161. const float d = maxScalar / 127.f;
  1162. y[i].d = d;
  1163. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1164. const __m256 mul = _mm256_set1_ps( id );
  1165. // Apply the multiplier
  1166. v0 = _mm256_mul_ps( v0, mul );
  1167. v1 = _mm256_mul_ps( v1, mul );
  1168. v2 = _mm256_mul_ps( v2, mul );
  1169. v3 = _mm256_mul_ps( v3, mul );
  1170. // Round to nearest integer
  1171. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1172. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1173. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1174. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1175. // Convert floats to integers
  1176. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1177. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1178. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1179. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1180. #if defined(__AVX2__)
  1181. // Compute the sum of the quants and set y[i].s
  1182. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1183. // Convert int32 to int16
  1184. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1185. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1186. // Convert int16 to int8
  1187. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1188. // We got our precious signed bytes, but the order is now wrong
  1189. // These AVX2 pack instructions process 16-byte pieces independently
  1190. // The following instruction is fixing the order
  1191. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1192. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1193. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1194. #else
  1195. // Since we don't have in AVX some necessary functions,
  1196. // we split the registers in half and call AVX2 analogs from SSE
  1197. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1198. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1199. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1200. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1201. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1202. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1203. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1204. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1205. // Compute the sum of the quants and set y[i].s
  1206. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1207. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1208. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1209. // Convert int32 to int16
  1210. ni0 = _mm_packs_epi32( ni0, ni1 );
  1211. ni2 = _mm_packs_epi32( ni2, ni3 );
  1212. ni4 = _mm_packs_epi32( ni4, ni5 );
  1213. ni6 = _mm_packs_epi32( ni6, ni7 );
  1214. // Convert int16 to int8
  1215. ni0 = _mm_packs_epi16( ni0, ni2 );
  1216. ni4 = _mm_packs_epi16( ni4, ni6 );
  1217. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1218. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1219. #endif
  1220. }
  1221. #else
  1222. // scalar
  1223. quantize_row_q8_1_reference(x, y, k);
  1224. #endif
  1225. }
  1226. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1227. static const int qk = QK4_0;
  1228. assert(k % qk == 0);
  1229. const int nb = k / qk;
  1230. for (int i = 0; i < nb; i++) {
  1231. const float d = GGML_FP16_TO_FP32(x[i].d);
  1232. for (int j = 0; j < qk/2; ++j) {
  1233. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1234. const int x1 = (x[i].qs[j] >> 4) - 8;
  1235. y[i*qk + j + 0 ] = x0*d;
  1236. y[i*qk + j + qk/2] = x1*d;
  1237. }
  1238. }
  1239. }
  1240. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1241. static const int qk = QK4_1;
  1242. assert(k % qk == 0);
  1243. const int nb = k / qk;
  1244. for (int i = 0; i < nb; i++) {
  1245. const float d = GGML_FP16_TO_FP32(x[i].d);
  1246. const float m = GGML_FP16_TO_FP32(x[i].m);
  1247. for (int j = 0; j < qk/2; ++j) {
  1248. const int x0 = (x[i].qs[j] & 0x0F);
  1249. const int x1 = (x[i].qs[j] >> 4);
  1250. y[i*qk + j + 0 ] = x0*d + m;
  1251. y[i*qk + j + qk/2] = x1*d + m;
  1252. }
  1253. }
  1254. }
  1255. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1256. static const int qk = QK5_0;
  1257. assert(k % qk == 0);
  1258. const int nb = k / qk;
  1259. for (int i = 0; i < nb; i++) {
  1260. const float d = GGML_FP16_TO_FP32(x[i].d);
  1261. uint32_t qh;
  1262. memcpy(&qh, x[i].qh, sizeof(qh));
  1263. for (int j = 0; j < qk/2; ++j) {
  1264. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1265. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1266. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1267. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1268. y[i*qk + j + 0 ] = x0*d;
  1269. y[i*qk + j + qk/2] = x1*d;
  1270. }
  1271. }
  1272. }
  1273. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1274. static const int qk = QK5_1;
  1275. assert(k % qk == 0);
  1276. const int nb = k / qk;
  1277. for (int i = 0; i < nb; i++) {
  1278. const float d = GGML_FP16_TO_FP32(x[i].d);
  1279. const float m = GGML_FP16_TO_FP32(x[i].m);
  1280. uint32_t qh;
  1281. memcpy(&qh, x[i].qh, sizeof(qh));
  1282. for (int j = 0; j < qk/2; ++j) {
  1283. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1284. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1285. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1286. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1287. y[i*qk + j + 0 ] = x0*d + m;
  1288. y[i*qk + j + qk/2] = x1*d + m;
  1289. }
  1290. }
  1291. }
  1292. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1293. static const int qk = QK8_0;
  1294. assert(k % qk == 0);
  1295. const int nb = k / qk;
  1296. const block_q8_0 * restrict x = vx;
  1297. for (int i = 0; i < nb; i++) {
  1298. const float d = GGML_FP16_TO_FP32(x[i].d);
  1299. for (int j = 0; j < qk; ++j) {
  1300. y[i*qk + j] = x[i].qs[j]*d;
  1301. }
  1302. }
  1303. }
  1304. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  1305. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  1306. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1307. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1308. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1309. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1310. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1311. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  1312. [GGML_TYPE_I8] = {
  1313. .type_name = "i8",
  1314. .blck_size = 1,
  1315. .type_size = sizeof(int8_t),
  1316. .is_quantized = false,
  1317. },
  1318. [GGML_TYPE_I16] = {
  1319. .type_name = "i16",
  1320. .blck_size = 1,
  1321. .type_size = sizeof(int16_t),
  1322. .is_quantized = false,
  1323. },
  1324. [GGML_TYPE_I32] = {
  1325. .type_name = "i32",
  1326. .blck_size = 1,
  1327. .type_size = sizeof(int32_t),
  1328. .is_quantized = false,
  1329. },
  1330. [GGML_TYPE_F32] = {
  1331. .type_name = "f32",
  1332. .blck_size = 1,
  1333. .type_size = sizeof(float),
  1334. .is_quantized = false,
  1335. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  1336. .vec_dot_type = GGML_TYPE_F32,
  1337. },
  1338. [GGML_TYPE_F16] = {
  1339. .type_name = "f16",
  1340. .blck_size = 1,
  1341. .type_size = sizeof(ggml_fp16_t),
  1342. .is_quantized = false,
  1343. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  1344. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1345. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1346. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  1347. .vec_dot_type = GGML_TYPE_F16,
  1348. },
  1349. [GGML_TYPE_Q4_0] = {
  1350. .type_name = "q4_0",
  1351. .blck_size = QK4_0,
  1352. .type_size = sizeof(block_q4_0),
  1353. .is_quantized = true,
  1354. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  1355. .from_float = quantize_row_q4_0,
  1356. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  1357. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  1358. .vec_dot_type = GGML_TYPE_Q8_0,
  1359. },
  1360. [GGML_TYPE_Q4_1] = {
  1361. .type_name = "q4_1",
  1362. .blck_size = QK4_1,
  1363. .type_size = sizeof(block_q4_1),
  1364. .is_quantized = true,
  1365. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  1366. .from_float = quantize_row_q4_1,
  1367. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  1368. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  1369. .vec_dot_type = GGML_TYPE_Q8_1,
  1370. },
  1371. [GGML_TYPE_Q5_0] = {
  1372. .type_name = "q5_0",
  1373. .blck_size = QK5_0,
  1374. .type_size = sizeof(block_q5_0),
  1375. .is_quantized = true,
  1376. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  1377. .from_float = quantize_row_q5_0,
  1378. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  1379. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  1380. .vec_dot_type = GGML_TYPE_Q8_0,
  1381. },
  1382. [GGML_TYPE_Q5_1] = {
  1383. .type_name = "q5_1",
  1384. .blck_size = QK5_1,
  1385. .type_size = sizeof(block_q5_1),
  1386. .is_quantized = true,
  1387. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  1388. .from_float = quantize_row_q5_1,
  1389. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  1390. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  1391. .vec_dot_type = GGML_TYPE_Q8_1,
  1392. },
  1393. [GGML_TYPE_Q8_0] = {
  1394. .type_name = "q8_0",
  1395. .blck_size = QK8_0,
  1396. .type_size = sizeof(block_q8_0),
  1397. .is_quantized = true,
  1398. .to_float = dequantize_row_q8_0,
  1399. .from_float = quantize_row_q8_0,
  1400. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  1401. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  1402. .vec_dot_type = GGML_TYPE_Q8_0,
  1403. },
  1404. [GGML_TYPE_Q8_1] = {
  1405. .type_name = "q8_1",
  1406. .blck_size = QK8_1,
  1407. .type_size = sizeof(block_q8_1),
  1408. .is_quantized = true,
  1409. .from_float = quantize_row_q8_1,
  1410. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  1411. .vec_dot_type = GGML_TYPE_Q8_1,
  1412. },
  1413. #ifdef GGML_USE_K_QUANTS
  1414. [GGML_TYPE_Q2_K] = {
  1415. .type_name = "q2_K",
  1416. .blck_size = QK_K,
  1417. .type_size = sizeof(block_q2_K),
  1418. .is_quantized = true,
  1419. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  1420. .from_float = quantize_row_q2_K,
  1421. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  1422. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  1423. .vec_dot_type = GGML_TYPE_Q8_K,
  1424. },
  1425. [GGML_TYPE_Q3_K] = {
  1426. .type_name = "q3_K",
  1427. .blck_size = QK_K,
  1428. .type_size = sizeof(block_q3_K),
  1429. .is_quantized = true,
  1430. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  1431. .from_float = quantize_row_q3_K,
  1432. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  1433. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  1434. .vec_dot_type = GGML_TYPE_Q8_K,
  1435. },
  1436. [GGML_TYPE_Q4_K] = {
  1437. .type_name = "q4_K",
  1438. .blck_size = QK_K,
  1439. .type_size = sizeof(block_q4_K),
  1440. .is_quantized = true,
  1441. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  1442. .from_float = quantize_row_q4_K,
  1443. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  1444. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  1445. .vec_dot_type = GGML_TYPE_Q8_K,
  1446. },
  1447. [GGML_TYPE_Q5_K] = {
  1448. .type_name = "q5_K",
  1449. .blck_size = QK_K,
  1450. .type_size = sizeof(block_q5_K),
  1451. .is_quantized = true,
  1452. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  1453. .from_float = quantize_row_q5_K,
  1454. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  1455. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  1456. .vec_dot_type = GGML_TYPE_Q8_K,
  1457. },
  1458. [GGML_TYPE_Q6_K] = {
  1459. .type_name = "q6_K",
  1460. .blck_size = QK_K,
  1461. .type_size = sizeof(block_q6_K),
  1462. .is_quantized = true,
  1463. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  1464. .from_float = quantize_row_q6_K,
  1465. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  1466. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  1467. .vec_dot_type = GGML_TYPE_Q8_K,
  1468. },
  1469. [GGML_TYPE_Q8_K] = {
  1470. .type_name = "q8_K",
  1471. .blck_size = QK_K,
  1472. .type_size = sizeof(block_q8_K),
  1473. .is_quantized = true,
  1474. .from_float = quantize_row_q8_K,
  1475. }
  1476. #endif
  1477. };
  1478. // For internal test use
  1479. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  1480. GGML_ASSERT(type < GGML_TYPE_COUNT);
  1481. return type_traits[type];
  1482. }
  1483. //
  1484. // simd mappings
  1485. //
  1486. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1487. // we then implement the fundamental computation operations below using only these macros
  1488. // adding support for new architectures requires to define the corresponding SIMD macros
  1489. //
  1490. // GGML_F32_STEP / GGML_F16_STEP
  1491. // number of elements to process in a single step
  1492. //
  1493. // GGML_F32_EPR / GGML_F16_EPR
  1494. // number of elements to fit in a single register
  1495. //
  1496. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1497. #define GGML_SIMD
  1498. // F32 NEON
  1499. #define GGML_F32_STEP 16
  1500. #define GGML_F32_EPR 4
  1501. #define GGML_F32x4 float32x4_t
  1502. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1503. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1504. #define GGML_F32x4_LOAD vld1q_f32
  1505. #define GGML_F32x4_STORE vst1q_f32
  1506. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1507. #define GGML_F32x4_ADD vaddq_f32
  1508. #define GGML_F32x4_MUL vmulq_f32
  1509. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1510. #define GGML_F32x4_REDUCE(res, x) \
  1511. { \
  1512. int offset = GGML_F32_ARR >> 1; \
  1513. for (int i = 0; i < offset; ++i) { \
  1514. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1515. } \
  1516. offset >>= 1; \
  1517. for (int i = 0; i < offset; ++i) { \
  1518. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1519. } \
  1520. offset >>= 1; \
  1521. for (int i = 0; i < offset; ++i) { \
  1522. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1523. } \
  1524. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1525. }
  1526. #define GGML_F32_VEC GGML_F32x4
  1527. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1528. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1529. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1530. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1531. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1532. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1533. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1534. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1535. // F16 NEON
  1536. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1537. #define GGML_F16_STEP 32
  1538. #define GGML_F16_EPR 8
  1539. #define GGML_F16x8 float16x8_t
  1540. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1541. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1542. #define GGML_F16x8_LOAD vld1q_f16
  1543. #define GGML_F16x8_STORE vst1q_f16
  1544. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1545. #define GGML_F16x8_ADD vaddq_f16
  1546. #define GGML_F16x8_MUL vmulq_f16
  1547. #define GGML_F16x8_REDUCE(res, x) \
  1548. { \
  1549. int offset = GGML_F16_ARR >> 1; \
  1550. for (int i = 0; i < offset; ++i) { \
  1551. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1552. } \
  1553. offset >>= 1; \
  1554. for (int i = 0; i < offset; ++i) { \
  1555. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1556. } \
  1557. offset >>= 1; \
  1558. for (int i = 0; i < offset; ++i) { \
  1559. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1560. } \
  1561. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1562. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1563. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1564. }
  1565. #define GGML_F16_VEC GGML_F16x8
  1566. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1567. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1568. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1569. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1570. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1571. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1572. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1573. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1574. #else
  1575. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1576. // and take advantage of the vcvt_ functions to convert to/from FP16
  1577. #define GGML_F16_STEP 16
  1578. #define GGML_F16_EPR 4
  1579. #define GGML_F32Cx4 float32x4_t
  1580. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1581. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1582. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1583. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1584. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1585. #define GGML_F32Cx4_ADD vaddq_f32
  1586. #define GGML_F32Cx4_MUL vmulq_f32
  1587. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1588. #define GGML_F16_VEC GGML_F32Cx4
  1589. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1590. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1591. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1592. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1593. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1594. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1595. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1596. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1597. #endif
  1598. #elif defined(__AVX__)
  1599. #define GGML_SIMD
  1600. // F32 AVX
  1601. #define GGML_F32_STEP 32
  1602. #define GGML_F32_EPR 8
  1603. #define GGML_F32x8 __m256
  1604. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1605. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1606. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1607. #define GGML_F32x8_STORE _mm256_storeu_ps
  1608. #if defined(__FMA__)
  1609. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1610. #else
  1611. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1612. #endif
  1613. #define GGML_F32x8_ADD _mm256_add_ps
  1614. #define GGML_F32x8_MUL _mm256_mul_ps
  1615. #define GGML_F32x8_REDUCE(res, x) \
  1616. { \
  1617. int offset = GGML_F32_ARR >> 1; \
  1618. for (int i = 0; i < offset; ++i) { \
  1619. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1620. } \
  1621. offset >>= 1; \
  1622. for (int i = 0; i < offset; ++i) { \
  1623. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1624. } \
  1625. offset >>= 1; \
  1626. for (int i = 0; i < offset; ++i) { \
  1627. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1628. } \
  1629. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1630. _mm256_extractf128_ps(x[0], 1)); \
  1631. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1632. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1633. }
  1634. // TODO: is this optimal ?
  1635. #define GGML_F32_VEC GGML_F32x8
  1636. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1637. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1638. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1639. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1640. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1641. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1642. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1643. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1644. // F16 AVX
  1645. #define GGML_F16_STEP 32
  1646. #define GGML_F16_EPR 8
  1647. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1648. #define GGML_F32Cx8 __m256
  1649. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1650. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1651. #if defined(__F16C__)
  1652. // the _mm256_cvt intrinsics require F16C
  1653. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1654. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1655. #else
  1656. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1657. float tmp[8];
  1658. for (int i = 0; i < 8; i++) {
  1659. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1660. }
  1661. return _mm256_loadu_ps(tmp);
  1662. }
  1663. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1664. float arr[8];
  1665. _mm256_storeu_ps(arr, y);
  1666. for (int i = 0; i < 8; i++)
  1667. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1668. }
  1669. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1670. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1671. #endif
  1672. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1673. #define GGML_F32Cx8_ADD _mm256_add_ps
  1674. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1675. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1676. #define GGML_F16_VEC GGML_F32Cx8
  1677. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1678. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1679. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1680. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1681. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1682. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1683. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1684. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1685. #elif defined(__POWER9_VECTOR__)
  1686. #define GGML_SIMD
  1687. // F32 POWER9
  1688. #define GGML_F32_STEP 32
  1689. #define GGML_F32_EPR 4
  1690. #define GGML_F32x4 vector float
  1691. #define GGML_F32x4_ZERO 0.0f
  1692. #define GGML_F32x4_SET1 vec_splats
  1693. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1694. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1695. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1696. #define GGML_F32x4_ADD vec_add
  1697. #define GGML_F32x4_MUL vec_mul
  1698. #define GGML_F32x4_REDUCE(res, x) \
  1699. { \
  1700. int offset = GGML_F32_ARR >> 1; \
  1701. for (int i = 0; i < offset; ++i) { \
  1702. x[i] = vec_add(x[i], x[offset+i]); \
  1703. } \
  1704. offset >>= 1; \
  1705. for (int i = 0; i < offset; ++i) { \
  1706. x[i] = vec_add(x[i], x[offset+i]); \
  1707. } \
  1708. offset >>= 1; \
  1709. for (int i = 0; i < offset; ++i) { \
  1710. x[i] = vec_add(x[i], x[offset+i]); \
  1711. } \
  1712. res = vec_extract(x[0], 0) + \
  1713. vec_extract(x[0], 1) + \
  1714. vec_extract(x[0], 2) + \
  1715. vec_extract(x[0], 3); \
  1716. }
  1717. #define GGML_F32_VEC GGML_F32x4
  1718. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1719. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1720. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1721. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1722. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1723. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1724. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1725. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1726. // F16 POWER9
  1727. #define GGML_F16_STEP GGML_F32_STEP
  1728. #define GGML_F16_EPR GGML_F32_EPR
  1729. #define GGML_F16_VEC GGML_F32x4
  1730. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1731. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1732. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1733. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1734. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1735. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1736. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1737. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1738. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1739. #define GGML_F16_VEC_STORE(p, r, i) \
  1740. if (i & 0x1) \
  1741. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1742. r[i - GGML_ENDIAN_BYTE(0)]), \
  1743. 0, p - GGML_F16_EPR)
  1744. #elif defined(__wasm_simd128__)
  1745. #define GGML_SIMD
  1746. // F32 WASM
  1747. #define GGML_F32_STEP 16
  1748. #define GGML_F32_EPR 4
  1749. #define GGML_F32x4 v128_t
  1750. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1751. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1752. #define GGML_F32x4_LOAD wasm_v128_load
  1753. #define GGML_F32x4_STORE wasm_v128_store
  1754. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1755. #define GGML_F32x4_ADD wasm_f32x4_add
  1756. #define GGML_F32x4_MUL wasm_f32x4_mul
  1757. #define GGML_F32x4_REDUCE(res, x) \
  1758. { \
  1759. int offset = GGML_F32_ARR >> 1; \
  1760. for (int i = 0; i < offset; ++i) { \
  1761. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1762. } \
  1763. offset >>= 1; \
  1764. for (int i = 0; i < offset; ++i) { \
  1765. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1766. } \
  1767. offset >>= 1; \
  1768. for (int i = 0; i < offset; ++i) { \
  1769. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1770. } \
  1771. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1772. wasm_f32x4_extract_lane(x[0], 1) + \
  1773. wasm_f32x4_extract_lane(x[0], 2) + \
  1774. wasm_f32x4_extract_lane(x[0], 3); \
  1775. }
  1776. #define GGML_F32_VEC GGML_F32x4
  1777. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1778. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1779. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1780. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1781. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1782. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1783. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1784. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1785. // F16 WASM
  1786. #define GGML_F16_STEP 16
  1787. #define GGML_F16_EPR 4
  1788. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1789. float tmp[4];
  1790. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1791. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1792. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1793. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1794. return wasm_v128_load(tmp);
  1795. }
  1796. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1797. float tmp[4];
  1798. wasm_v128_store(tmp, x);
  1799. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1800. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1801. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1802. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1803. }
  1804. #define GGML_F16x4 v128_t
  1805. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1806. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1807. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1808. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1809. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1810. #define GGML_F16x4_ADD wasm_f32x4_add
  1811. #define GGML_F16x4_MUL wasm_f32x4_mul
  1812. #define GGML_F16x4_REDUCE(res, x) \
  1813. { \
  1814. int offset = GGML_F16_ARR >> 1; \
  1815. for (int i = 0; i < offset; ++i) { \
  1816. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1817. } \
  1818. offset >>= 1; \
  1819. for (int i = 0; i < offset; ++i) { \
  1820. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1821. } \
  1822. offset >>= 1; \
  1823. for (int i = 0; i < offset; ++i) { \
  1824. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1825. } \
  1826. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1827. wasm_f32x4_extract_lane(x[0], 1) + \
  1828. wasm_f32x4_extract_lane(x[0], 2) + \
  1829. wasm_f32x4_extract_lane(x[0], 3); \
  1830. }
  1831. #define GGML_F16_VEC GGML_F16x4
  1832. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1833. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1834. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1835. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1836. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1837. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1838. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1839. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1840. #elif defined(__SSE3__)
  1841. #define GGML_SIMD
  1842. // F32 SSE
  1843. #define GGML_F32_STEP 32
  1844. #define GGML_F32_EPR 4
  1845. #define GGML_F32x4 __m128
  1846. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1847. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1848. #define GGML_F32x4_LOAD _mm_loadu_ps
  1849. #define GGML_F32x4_STORE _mm_storeu_ps
  1850. #if defined(__FMA__)
  1851. // TODO: Does this work?
  1852. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1853. #else
  1854. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1855. #endif
  1856. #define GGML_F32x4_ADD _mm_add_ps
  1857. #define GGML_F32x4_MUL _mm_mul_ps
  1858. #define GGML_F32x4_REDUCE(res, x) \
  1859. { \
  1860. int offset = GGML_F32_ARR >> 1; \
  1861. for (int i = 0; i < offset; ++i) { \
  1862. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1863. } \
  1864. offset >>= 1; \
  1865. for (int i = 0; i < offset; ++i) { \
  1866. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1867. } \
  1868. offset >>= 1; \
  1869. for (int i = 0; i < offset; ++i) { \
  1870. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1871. } \
  1872. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1873. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1874. }
  1875. // TODO: is this optimal ?
  1876. #define GGML_F32_VEC GGML_F32x4
  1877. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1878. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1879. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1880. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1881. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1882. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1883. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1884. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1885. // F16 SSE
  1886. #define GGML_F16_STEP 32
  1887. #define GGML_F16_EPR 4
  1888. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1889. float tmp[4];
  1890. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1891. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1892. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1893. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1894. return _mm_loadu_ps(tmp);
  1895. }
  1896. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1897. float arr[4];
  1898. _mm_storeu_ps(arr, y);
  1899. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1900. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1901. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1902. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1903. }
  1904. #define GGML_F32Cx4 __m128
  1905. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1906. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1907. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1908. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1909. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1910. #define GGML_F32Cx4_ADD _mm_add_ps
  1911. #define GGML_F32Cx4_MUL _mm_mul_ps
  1912. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1913. #define GGML_F16_VEC GGML_F32Cx4
  1914. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1915. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1916. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1917. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1918. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1919. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1920. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1921. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1922. #endif
  1923. // GGML_F32_ARR / GGML_F16_ARR
  1924. // number of registers to use per step
  1925. #ifdef GGML_SIMD
  1926. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1927. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1928. #endif
  1929. //
  1930. // fundamental operations
  1931. //
  1932. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1933. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1934. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1935. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1936. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1937. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1938. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1939. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1940. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1941. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1942. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1943. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1944. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1945. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1946. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1947. #ifdef GGML_SIMD
  1948. float sumf = 0.0f;
  1949. const int np = (n & ~(GGML_F32_STEP - 1));
  1950. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1951. GGML_F32_VEC ax[GGML_F32_ARR];
  1952. GGML_F32_VEC ay[GGML_F32_ARR];
  1953. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1954. for (int j = 0; j < GGML_F32_ARR; j++) {
  1955. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1956. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1957. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1958. }
  1959. }
  1960. // reduce sum0..sum3 to sum0
  1961. GGML_F32_VEC_REDUCE(sumf, sum);
  1962. // leftovers
  1963. for (int i = np; i < n; ++i) {
  1964. sumf += x[i]*y[i];
  1965. }
  1966. #else
  1967. // scalar
  1968. ggml_float sumf = 0.0;
  1969. for (int i = 0; i < n; ++i) {
  1970. sumf += (ggml_float)(x[i]*y[i]);
  1971. }
  1972. #endif
  1973. *s = sumf;
  1974. }
  1975. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1976. ggml_float sumf = 0.0;
  1977. #if defined(GGML_SIMD)
  1978. const int np = (n & ~(GGML_F16_STEP - 1));
  1979. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1980. GGML_F16_VEC ax[GGML_F16_ARR];
  1981. GGML_F16_VEC ay[GGML_F16_ARR];
  1982. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1983. for (int j = 0; j < GGML_F16_ARR; j++) {
  1984. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1985. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1986. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1987. }
  1988. }
  1989. // reduce sum0..sum3 to sum0
  1990. GGML_F16_VEC_REDUCE(sumf, sum);
  1991. // leftovers
  1992. for (int i = np; i < n; ++i) {
  1993. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1994. }
  1995. #else
  1996. for (int i = 0; i < n; ++i) {
  1997. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1998. }
  1999. #endif
  2000. *s = sumf;
  2001. }
  2002. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2003. const int qk = QK8_0;
  2004. const int nb = n / qk;
  2005. assert(n % qk == 0);
  2006. const block_q4_0 * restrict x = vx;
  2007. const block_q8_0 * restrict y = vy;
  2008. #if defined(__ARM_NEON)
  2009. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2010. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2011. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2012. for (int i = 0; i < nb; i += 2) {
  2013. const block_q4_0 * restrict x0 = &x[i + 0];
  2014. const block_q4_0 * restrict x1 = &x[i + 1];
  2015. const block_q8_0 * restrict y0 = &y[i + 0];
  2016. const block_q8_0 * restrict y1 = &y[i + 1];
  2017. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2018. const int8x16_t s8b = vdupq_n_s8(0x8);
  2019. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2020. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2021. // 4-bit -> 8-bit
  2022. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2023. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2024. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2025. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2026. // sub 8
  2027. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2028. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2029. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2030. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2031. // load y
  2032. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2033. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2034. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2035. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2036. #if defined(__ARM_FEATURE_DOTPROD)
  2037. // dot product into int32x4_t
  2038. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  2039. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  2040. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2041. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2042. #else
  2043. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  2044. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  2045. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  2046. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  2047. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  2048. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  2049. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  2050. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  2051. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2052. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2053. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2054. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2055. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2056. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2057. #endif
  2058. }
  2059. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2060. #elif defined(__AVX2__)
  2061. // Initialize accumulator with zeros
  2062. __m256 acc = _mm256_setzero_ps();
  2063. // Main loop
  2064. for (int i = 0; i < nb; ++i) {
  2065. /* Compute combined scale for the block */
  2066. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2067. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2068. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2069. const __m256i off = _mm256_set1_epi8( 8 );
  2070. bx = _mm256_sub_epi8( bx, off );
  2071. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2072. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2073. /* Multiply q with scale and accumulate */
  2074. acc = _mm256_fmadd_ps( d, q, acc );
  2075. }
  2076. *s = hsum_float_8(acc);
  2077. #elif defined(__AVX__)
  2078. // Initialize accumulator with zeros
  2079. __m256 acc = _mm256_setzero_ps();
  2080. // Main loop
  2081. for (int i = 0; i < nb; ++i) {
  2082. // Compute combined scale for the block
  2083. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2084. const __m128i lowMask = _mm_set1_epi8(0xF);
  2085. const __m128i off = _mm_set1_epi8(8);
  2086. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  2087. __m128i bx = _mm_and_si128(lowMask, tmp);
  2088. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  2089. bx = _mm_sub_epi8(bx, off);
  2090. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  2091. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  2092. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2093. bx = _mm_sub_epi8(bx, off);
  2094. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  2095. // Convert int32_t to float
  2096. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  2097. // Apply the scale, and accumulate
  2098. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2099. }
  2100. *s = hsum_float_8(acc);
  2101. #elif defined(__SSSE3__)
  2102. // set constants
  2103. const __m128i lowMask = _mm_set1_epi8(0xF);
  2104. const __m128i off = _mm_set1_epi8(8);
  2105. // Initialize accumulator with zeros
  2106. __m128 acc_0 = _mm_setzero_ps();
  2107. __m128 acc_1 = _mm_setzero_ps();
  2108. __m128 acc_2 = _mm_setzero_ps();
  2109. __m128 acc_3 = _mm_setzero_ps();
  2110. // First round without accumulation
  2111. {
  2112. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  2113. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  2114. // Compute combined scale for the block 0 and 1
  2115. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  2116. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  2117. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2118. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  2119. bx_0 = _mm_sub_epi8(bx_0, off);
  2120. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2121. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2122. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  2123. bx_1 = _mm_sub_epi8(bx_1, off);
  2124. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2125. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  2126. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  2127. // Compute combined scale for the block 2 and 3
  2128. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  2129. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  2130. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2131. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  2132. bx_2 = _mm_sub_epi8(bx_2, off);
  2133. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2134. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2135. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  2136. bx_3 = _mm_sub_epi8(bx_3, off);
  2137. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2138. // Convert int32_t to float
  2139. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2140. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2141. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2142. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2143. // Apply the scale
  2144. acc_0 = _mm_mul_ps( d_0_1, p0 );
  2145. acc_1 = _mm_mul_ps( d_0_1, p1 );
  2146. acc_2 = _mm_mul_ps( d_2_3, p2 );
  2147. acc_3 = _mm_mul_ps( d_2_3, p3 );
  2148. }
  2149. // Main loop
  2150. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2151. for (int i = 2; i < nb; i+=2) {
  2152. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  2153. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  2154. // Compute combined scale for the block 0 and 1
  2155. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2156. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  2157. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2158. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2159. bx_0 = _mm_sub_epi8(bx_0, off);
  2160. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2161. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2162. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2163. bx_1 = _mm_sub_epi8(bx_1, off);
  2164. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2165. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2166. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2167. // Compute combined scale for the block 2 and 3
  2168. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2169. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2170. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2171. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2172. bx_2 = _mm_sub_epi8(bx_2, off);
  2173. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2174. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2175. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2176. bx_3 = _mm_sub_epi8(bx_3, off);
  2177. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2178. // Convert int32_t to float
  2179. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2180. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2181. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2182. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2183. // Apply the scale
  2184. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2185. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2186. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2187. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2188. // Acummulate
  2189. acc_0 = _mm_add_ps(p0_d, acc_0);
  2190. acc_1 = _mm_add_ps(p1_d, acc_1);
  2191. acc_2 = _mm_add_ps(p2_d, acc_2);
  2192. acc_3 = _mm_add_ps(p3_d, acc_3);
  2193. }
  2194. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2195. #elif defined(__riscv_v_intrinsic)
  2196. float sumf = 0.0;
  2197. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2198. for (int i = 0; i < nb; i++) {
  2199. vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
  2200. vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
  2201. vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
  2202. vuint8m1_t x_a = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
  2203. vuint8m1_t x_l = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
  2204. vint8m1_t x_ai = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
  2205. vint8m1_t x_li = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
  2206. vint8m1_t v0 = __riscv_vsub_vx_i8m1(x_ai, 8, vl);
  2207. vint8m1_t v1 = __riscv_vsub_vx_i8m1(x_li, 8, vl);
  2208. vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
  2209. vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
  2210. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2211. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
  2212. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
  2213. int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
  2214. sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
  2215. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2216. }
  2217. *s = sumf;
  2218. #else
  2219. // scalar
  2220. float sumf = 0.0;
  2221. for (int i = 0; i < nb; i++) {
  2222. int sumi = 0;
  2223. for (int j = 0; j < qk/2; ++j) {
  2224. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2225. const int v1 = (x[i].qs[j] >> 4) - 8;
  2226. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2227. }
  2228. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2229. }
  2230. *s = sumf;
  2231. #endif
  2232. }
  2233. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2234. const int qk = QK8_1;
  2235. const int nb = n / qk;
  2236. assert(n % qk == 0);
  2237. const block_q4_1 * restrict x = vx;
  2238. const block_q8_1 * restrict y = vy;
  2239. // TODO: add WASM SIMD
  2240. #if defined(__ARM_NEON)
  2241. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2242. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2243. float summs = 0;
  2244. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2245. for (int i = 0; i < nb; i += 2) {
  2246. const block_q4_1 * restrict x0 = &x[i + 0];
  2247. const block_q4_1 * restrict x1 = &x[i + 1];
  2248. const block_q8_1 * restrict y0 = &y[i + 0];
  2249. const block_q8_1 * restrict y1 = &y[i + 1];
  2250. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2251. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2252. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2253. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2254. // 4-bit -> 8-bit
  2255. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2256. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2257. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2258. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2259. // load y
  2260. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2261. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2262. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2263. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2264. #if defined(__ARM_FEATURE_DOTPROD)
  2265. // dot product into int32x4_t
  2266. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2267. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2268. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2269. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2270. #else
  2271. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2272. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2273. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2274. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2275. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2276. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2277. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2278. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2279. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2280. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2281. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2282. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2283. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2284. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2285. #endif
  2286. }
  2287. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2288. #elif defined(__AVX2__) || defined(__AVX__)
  2289. // Initialize accumulator with zeros
  2290. __m256 acc = _mm256_setzero_ps();
  2291. float summs = 0;
  2292. // Main loop
  2293. for (int i = 0; i < nb; ++i) {
  2294. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2295. const float d1 = y[i].d;
  2296. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2297. const __m256 d0v = _mm256_set1_ps( d0 );
  2298. const __m256 d1v = _mm256_set1_ps( d1 );
  2299. // Compute combined scales
  2300. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2301. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2302. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2303. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2304. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2305. // Accumulate d0*d1*x*y
  2306. #if defined(__AVX2__)
  2307. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2308. #else
  2309. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2310. #endif
  2311. }
  2312. *s = hsum_float_8(acc) + summs;
  2313. #elif defined(__riscv_v_intrinsic)
  2314. float sumf = 0.0;
  2315. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2316. for (int i = 0; i < nb; i++) {
  2317. vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
  2318. vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
  2319. vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
  2320. vuint8m1_t x_a = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
  2321. vuint8m1_t x_l = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
  2322. vint8m1_t v0 = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
  2323. vint8m1_t v1 = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
  2324. vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
  2325. vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
  2326. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2327. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
  2328. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
  2329. int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
  2330. sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
  2331. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2332. }
  2333. *s = sumf;
  2334. #else
  2335. // scalar
  2336. float sumf = 0.0;
  2337. for (int i = 0; i < nb; i++) {
  2338. int sumi = 0;
  2339. for (int j = 0; j < qk/2; ++j) {
  2340. const int v0 = (x[i].qs[j] & 0x0F);
  2341. const int v1 = (x[i].qs[j] >> 4);
  2342. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2343. }
  2344. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2345. }
  2346. *s = sumf;
  2347. #endif
  2348. }
  2349. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2350. const int qk = QK8_0;
  2351. const int nb = n / qk;
  2352. assert(n % qk == 0);
  2353. assert(qk == QK5_0);
  2354. const block_q5_0 * restrict x = vx;
  2355. const block_q8_0 * restrict y = vy;
  2356. #if defined(__ARM_NEON)
  2357. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2358. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2359. uint32_t qh0;
  2360. uint32_t qh1;
  2361. uint64_t tmp0[4];
  2362. uint64_t tmp1[4];
  2363. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2364. for (int i = 0; i < nb; i += 2) {
  2365. const block_q5_0 * restrict x0 = &x[i];
  2366. const block_q5_0 * restrict x1 = &x[i + 1];
  2367. const block_q8_0 * restrict y0 = &y[i];
  2368. const block_q8_0 * restrict y1 = &y[i + 1];
  2369. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2370. // extract the 5th bit via lookup table ((!b) << 4)
  2371. memcpy(&qh0, x0->qh, sizeof(qh0));
  2372. memcpy(&qh1, x1->qh, sizeof(qh1));
  2373. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2374. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2375. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2376. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2377. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2378. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2379. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2380. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2381. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2382. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2383. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2384. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2385. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2386. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2387. // 4-bit -> 8-bit
  2388. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2389. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2390. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2391. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2392. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2393. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2394. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2395. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2396. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2397. // load y
  2398. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2399. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2400. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2401. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2402. #if defined(__ARM_FEATURE_DOTPROD)
  2403. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2404. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2405. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2406. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2407. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2408. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2409. #else
  2410. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2411. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2412. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2413. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2414. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2415. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2416. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2417. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2418. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2419. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2420. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2421. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2422. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2423. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2424. #endif
  2425. }
  2426. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2427. #elif defined(__wasm_simd128__)
  2428. v128_t sumv = wasm_f32x4_splat(0.0f);
  2429. uint32_t qh;
  2430. uint64_t tmp[4];
  2431. // TODO: check if unrolling this is better
  2432. for (int i = 0; i < nb; ++i) {
  2433. const block_q5_0 * restrict x0 = &x[i];
  2434. const block_q8_0 * restrict y0 = &y[i];
  2435. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2436. // extract the 5th bit
  2437. memcpy(&qh, x0->qh, sizeof(qh));
  2438. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2439. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2440. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2441. tmp[3] = table_b2b_1[(qh >> 24) ];
  2442. const v128_t qhl = wasm_v128_load(tmp + 0);
  2443. const v128_t qhh = wasm_v128_load(tmp + 2);
  2444. const v128_t v0 = wasm_v128_load(x0->qs);
  2445. // 4-bit -> 8-bit
  2446. const v128_t v0l = wasm_v128_and (v0, m4b);
  2447. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2448. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2449. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2450. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2451. // load y
  2452. const v128_t v1l = wasm_v128_load(y0->qs);
  2453. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2454. // int8x16 -> int16x8
  2455. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2456. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2457. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2458. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2459. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2460. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2461. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2462. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2463. // dot product
  2464. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2465. wasm_i32x4_add(
  2466. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2467. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2468. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2469. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2470. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2471. }
  2472. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2473. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2474. #elif defined(__AVX2__)
  2475. // Initialize accumulator with zeros
  2476. __m256 acc = _mm256_setzero_ps();
  2477. // Main loop
  2478. for (int i = 0; i < nb; i++) {
  2479. /* Compute combined scale for the block */
  2480. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2481. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2482. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2483. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2484. bx = _mm256_or_si256(bx, bxhi);
  2485. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2486. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2487. /* Multiply q with scale and accumulate */
  2488. acc = _mm256_fmadd_ps(d, q, acc);
  2489. }
  2490. *s = hsum_float_8(acc);
  2491. #elif defined(__AVX__)
  2492. // Initialize accumulator with zeros
  2493. __m256 acc = _mm256_setzero_ps();
  2494. __m128i mask = _mm_set1_epi8((char)0xF0);
  2495. // Main loop
  2496. for (int i = 0; i < nb; i++) {
  2497. /* Compute combined scale for the block */
  2498. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2499. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2500. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2501. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2502. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2503. bxhil = _mm_andnot_si128(bxhil, mask);
  2504. bxhih = _mm_andnot_si128(bxhih, mask);
  2505. __m128i bxl = _mm256_castsi256_si128(bx);
  2506. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2507. bxl = _mm_or_si128(bxl, bxhil);
  2508. bxh = _mm_or_si128(bxh, bxhih);
  2509. bx = MM256_SET_M128I(bxh, bxl);
  2510. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2511. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2512. /* Multiply q with scale and accumulate */
  2513. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2514. }
  2515. *s = hsum_float_8(acc);
  2516. #elif defined(__riscv_v_intrinsic)
  2517. float sumf = 0.0;
  2518. uint32_t qh;
  2519. // These temp values are for masking and shift operations
  2520. uint32_t temp_1[16] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
  2521. uint32_t temp_2[16] = {0x1, 0x2, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80,
  2522. 0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000, 0x8000};
  2523. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2524. for (int i = 0; i < nb; i++) {
  2525. memcpy(&qh, x[i].qh, sizeof(uint32_t));
  2526. // temporary registers
  2527. vuint32m4_t vt_1 = __riscv_vle32_v_u32m4(temp_2, vl);
  2528. vuint32m4_t vt_2 = __riscv_vle32_v_u32m4(temp_1, vl);
  2529. vuint32m4_t vt_3 = __riscv_vsll_vx_u32m4(vt_1, 16, vl);
  2530. vuint32m4_t vt_4 = __riscv_vadd_vx_u32m4(vt_2, 12, vl);
  2531. // ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2532. vuint32m4_t xha_0 = __riscv_vand_vx_u32m4(vt_1, qh, vl);
  2533. vuint32m4_t xhr_0 = __riscv_vsrl_vv_u32m4(xha_0, vt_2, vl);
  2534. vuint32m4_t xhl_0 = __riscv_vsll_vx_u32m4(xhr_0, 4, vl);
  2535. // ((qh & (1u << (j + 16))) >> (j + 12));
  2536. vuint32m4_t xha_1 = __riscv_vand_vx_u32m4(vt_3, qh, vl);
  2537. vuint32m4_t xhl_1 = __riscv_vsrl_vv_u32m4(xha_1, vt_4, vl);
  2538. // narrowing
  2539. vuint16m2_t xhc_0 = __riscv_vncvt_x_x_w_u16m2(xhl_0, vl);
  2540. vuint8m1_t xh_0 = __riscv_vncvt_x_x_w_u8m1(xhc_0, vl);
  2541. vuint16m2_t xhc_1 = __riscv_vncvt_x_x_w_u16m2(xhl_1, vl);
  2542. vuint8m1_t xh_1 = __riscv_vncvt_x_x_w_u8m1(xhc_1, vl);
  2543. // load
  2544. vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
  2545. vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
  2546. vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
  2547. vuint8m1_t x_at = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
  2548. vuint8m1_t x_lt = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
  2549. vuint8m1_t x_a = __riscv_vor_vv_u8m1(x_at, xh_0, vl);
  2550. vuint8m1_t x_l = __riscv_vor_vv_u8m1(x_lt, xh_1, vl);
  2551. vint8m1_t x_ai = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
  2552. vint8m1_t x_li = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
  2553. vint8m1_t v0 = __riscv_vsub_vx_i8m1(x_ai, 16, vl);
  2554. vint8m1_t v1 = __riscv_vsub_vx_i8m1(x_li, 16, vl);
  2555. vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
  2556. vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
  2557. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2558. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
  2559. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
  2560. int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
  2561. sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
  2562. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2563. }
  2564. *s = sumf;
  2565. #else
  2566. // scalar
  2567. float sumf = 0.0;
  2568. for (int i = 0; i < nb; i++) {
  2569. uint32_t qh;
  2570. memcpy(&qh, x[i].qh, sizeof(qh));
  2571. int sumi = 0;
  2572. for (int j = 0; j < qk/2; ++j) {
  2573. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2574. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2575. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2576. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2577. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2578. }
  2579. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2580. }
  2581. *s = sumf;
  2582. #endif
  2583. }
  2584. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2585. const int qk = QK8_1;
  2586. const int nb = n / qk;
  2587. assert(n % qk == 0);
  2588. assert(qk == QK5_1);
  2589. const block_q5_1 * restrict x = vx;
  2590. const block_q8_1 * restrict y = vy;
  2591. #if defined(__ARM_NEON)
  2592. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2593. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2594. float summs0 = 0.0f;
  2595. float summs1 = 0.0f;
  2596. uint32_t qh0;
  2597. uint32_t qh1;
  2598. uint64_t tmp0[4];
  2599. uint64_t tmp1[4];
  2600. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2601. for (int i = 0; i < nb; i += 2) {
  2602. const block_q5_1 * restrict x0 = &x[i];
  2603. const block_q5_1 * restrict x1 = &x[i + 1];
  2604. const block_q8_1 * restrict y0 = &y[i];
  2605. const block_q8_1 * restrict y1 = &y[i + 1];
  2606. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2607. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2608. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2609. // extract the 5th bit via lookup table ((b) << 4)
  2610. memcpy(&qh0, x0->qh, sizeof(qh0));
  2611. memcpy(&qh1, x1->qh, sizeof(qh1));
  2612. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2613. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2614. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2615. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2616. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2617. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2618. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2619. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2620. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2621. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2622. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2623. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2624. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2625. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2626. // 4-bit -> 8-bit
  2627. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2628. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2629. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2630. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2631. // add high bit
  2632. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2633. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2634. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2635. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2636. // load y
  2637. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2638. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2639. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2640. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2641. #if defined(__ARM_FEATURE_DOTPROD)
  2642. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2643. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2644. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2645. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2646. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2647. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2648. #else
  2649. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2650. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2651. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2652. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2653. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2654. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2655. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2656. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2657. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2658. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2659. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2660. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2661. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2662. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2663. #endif
  2664. }
  2665. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2666. #elif defined(__wasm_simd128__)
  2667. v128_t sumv = wasm_f32x4_splat(0.0f);
  2668. float summs = 0.0f;
  2669. uint32_t qh;
  2670. uint64_t tmp[4];
  2671. // TODO: check if unrolling this is better
  2672. for (int i = 0; i < nb; ++i) {
  2673. const block_q5_1 * restrict x0 = &x[i];
  2674. const block_q8_1 * restrict y0 = &y[i];
  2675. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2676. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2677. // extract the 5th bit
  2678. memcpy(&qh, x0->qh, sizeof(qh));
  2679. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2680. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2681. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2682. tmp[3] = table_b2b_0[(qh >> 24) ];
  2683. const v128_t qhl = wasm_v128_load(tmp + 0);
  2684. const v128_t qhh = wasm_v128_load(tmp + 2);
  2685. const v128_t v0 = wasm_v128_load(x0->qs);
  2686. // 4-bit -> 8-bit
  2687. const v128_t v0l = wasm_v128_and (v0, m4b);
  2688. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2689. // add high bit
  2690. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2691. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2692. // load y
  2693. const v128_t v1l = wasm_v128_load(y0->qs);
  2694. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2695. // int8x16 -> int16x8
  2696. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2697. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2698. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2699. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2700. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2701. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2702. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2703. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2704. // dot product
  2705. sumv = wasm_f32x4_add(sumv,
  2706. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2707. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2708. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2709. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2710. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2711. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2712. }
  2713. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2714. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2715. #elif defined(__AVX2__)
  2716. // Initialize accumulator with zeros
  2717. __m256 acc = _mm256_setzero_ps();
  2718. float summs = 0.0f;
  2719. // Main loop
  2720. for (int i = 0; i < nb; i++) {
  2721. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2722. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2723. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2724. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2725. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2726. bx = _mm256_or_si256(bx, bxhi);
  2727. const __m256 dy = _mm256_set1_ps(y[i].d);
  2728. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2729. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2730. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2731. }
  2732. *s = hsum_float_8(acc) + summs;
  2733. #elif defined(__AVX__)
  2734. // Initialize accumulator with zeros
  2735. __m256 acc = _mm256_setzero_ps();
  2736. __m128i mask = _mm_set1_epi8(0x10);
  2737. float summs = 0.0f;
  2738. // Main loop
  2739. for (int i = 0; i < nb; i++) {
  2740. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2741. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2742. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2743. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2744. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2745. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2746. bxhil = _mm_and_si128(bxhil, mask);
  2747. bxhih = _mm_and_si128(bxhih, mask);
  2748. __m128i bxl = _mm256_castsi256_si128(bx);
  2749. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2750. bxl = _mm_or_si128(bxl, bxhil);
  2751. bxh = _mm_or_si128(bxh, bxhih);
  2752. bx = MM256_SET_M128I(bxh, bxl);
  2753. const __m256 dy = _mm256_set1_ps(y[i].d);
  2754. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2755. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2756. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2757. }
  2758. *s = hsum_float_8(acc) + summs;
  2759. #elif defined(__riscv_v_intrinsic)
  2760. float sumf = 0.0;
  2761. uint32_t qh;
  2762. // These temp values are for shift operations
  2763. uint32_t temp_1[16] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
  2764. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2765. for (int i = 0; i < nb; i++) {
  2766. memcpy(&qh, x[i].qh, sizeof(uint32_t));
  2767. // temporary registers
  2768. vuint32m4_t vt_1 = __riscv_vle32_v_u32m4(temp_1, vl);
  2769. vuint32m4_t vt_2 = __riscv_vadd_vx_u32m4(vt_1, 12, vl);
  2770. // load qh
  2771. vuint32m4_t vqh = __riscv_vmv_v_x_u32m4(qh, vl);
  2772. // ((qh >> (j + 0)) << 4) & 0x10;
  2773. vuint32m4_t xhr_0 = __riscv_vsrl_vv_u32m4(vqh, vt_1, vl);
  2774. vuint32m4_t xhl_0 = __riscv_vsll_vx_u32m4(xhr_0, 4, vl);
  2775. vuint32m4_t xha_0 = __riscv_vand_vx_u32m4(xhl_0, 0x10, vl);
  2776. // ((qh >> (j + 12)) ) & 0x10;
  2777. vuint32m4_t xhr_1 = __riscv_vsrl_vv_u32m4(vqh, vt_2, vl);
  2778. vuint32m4_t xha_1 = __riscv_vand_vx_u32m4(xhr_1, 0x10, vl);
  2779. // narrowing
  2780. vuint16m2_t xhc_0 = __riscv_vncvt_x_x_w_u16m2(xha_0, vl);
  2781. vuint8m1_t xh_0 = __riscv_vncvt_x_x_w_u8m1(xhc_0, vl);
  2782. vuint16m2_t xhc_1 = __riscv_vncvt_x_x_w_u16m2(xha_1, vl);
  2783. vuint8m1_t xh_1 = __riscv_vncvt_x_x_w_u8m1(xhc_1, vl);
  2784. // load
  2785. vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
  2786. vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
  2787. vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
  2788. vuint8m1_t x_at = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
  2789. vuint8m1_t x_lt = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
  2790. vuint8m1_t x_a = __riscv_vor_vv_u8m1(x_at, xh_0, vl);
  2791. vuint8m1_t x_l = __riscv_vor_vv_u8m1(x_lt, xh_1, vl);
  2792. vint8m1_t v0 = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
  2793. vint8m1_t v1 = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
  2794. vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
  2795. vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
  2796. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2797. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
  2798. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
  2799. int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
  2800. sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
  2801. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2802. }
  2803. *s = sumf;
  2804. #else
  2805. // scalar
  2806. float sumf = 0.0;
  2807. for (int i = 0; i < nb; i++) {
  2808. uint32_t qh;
  2809. memcpy(&qh, x[i].qh, sizeof(qh));
  2810. int sumi = 0;
  2811. for (int j = 0; j < qk/2; ++j) {
  2812. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2813. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2814. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2815. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2816. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2817. }
  2818. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2819. }
  2820. *s = sumf;
  2821. #endif
  2822. }
  2823. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2824. const int qk = QK8_0;
  2825. const int nb = n / qk;
  2826. assert(n % qk == 0);
  2827. const block_q8_0 * restrict x = vx;
  2828. const block_q8_0 * restrict y = vy;
  2829. #if defined(__ARM_NEON)
  2830. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2831. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2832. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2833. for (int i = 0; i < nb; i += 2) {
  2834. const block_q8_0 * restrict x0 = &x[i + 0];
  2835. const block_q8_0 * restrict x1 = &x[i + 1];
  2836. const block_q8_0 * restrict y0 = &y[i + 0];
  2837. const block_q8_0 * restrict y1 = &y[i + 1];
  2838. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2839. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2840. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2841. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2842. // load y
  2843. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2844. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2845. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2846. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2847. #if defined(__ARM_FEATURE_DOTPROD)
  2848. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2849. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2850. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2851. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2852. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2853. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2854. #else
  2855. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2856. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2857. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2858. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2859. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2860. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2861. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2862. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2863. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2864. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2865. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2866. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2867. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2868. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2869. #endif
  2870. }
  2871. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2872. #elif defined(__AVX2__) || defined(__AVX__)
  2873. // Initialize accumulator with zeros
  2874. __m256 acc = _mm256_setzero_ps();
  2875. // Main loop
  2876. for (int i = 0; i < nb; ++i) {
  2877. // Compute combined scale for the block
  2878. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2879. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2880. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2881. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2882. // Multiply q with scale and accumulate
  2883. #if defined(__AVX2__)
  2884. acc = _mm256_fmadd_ps( d, q, acc );
  2885. #else
  2886. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2887. #endif
  2888. }
  2889. *s = hsum_float_8(acc);
  2890. #elif defined(__riscv_v_intrinsic)
  2891. float sumf = 0.0;
  2892. size_t vl = __riscv_vsetvl_e8m1(qk);
  2893. for (int i = 0; i < nb; i++) {
  2894. // load elements
  2895. vint8m1_t bx = __riscv_vle8_v_i8m1(x[i].qs, vl);
  2896. vint8m1_t by = __riscv_vle8_v_i8m1(y[i].qs, vl);
  2897. vint16m2_t vw_mul = __riscv_vwmul_vv_i16m2(bx, by, vl);
  2898. vint32m1_t v_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2899. vint32m1_t v_sum = __riscv_vwredsum_vs_i16m2_i32m1(vw_mul, v_zero, vl);
  2900. int sumi = __riscv_vmv_x_s_i32m1_i32(v_sum);
  2901. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2902. }
  2903. *s = sumf;
  2904. #else
  2905. // scalar
  2906. float sumf = 0.0;
  2907. for (int i = 0; i < nb; i++) {
  2908. int sumi = 0;
  2909. for (int j = 0; j < qk; j++) {
  2910. sumi += x[i].qs[j]*y[i].qs[j];
  2911. }
  2912. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2913. }
  2914. *s = sumf;
  2915. #endif
  2916. }
  2917. // compute GGML_VEC_DOT_UNROLL dot products at once
  2918. // xs - x row stride in bytes
  2919. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2920. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2921. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2922. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2923. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2924. }
  2925. #if defined(GGML_SIMD)
  2926. const int np = (n & ~(GGML_F16_STEP - 1));
  2927. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2928. GGML_F16_VEC ax[GGML_F16_ARR];
  2929. GGML_F16_VEC ay[GGML_F16_ARR];
  2930. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2931. for (int j = 0; j < GGML_F16_ARR; j++) {
  2932. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2933. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2934. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2935. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2936. }
  2937. }
  2938. }
  2939. // reduce sum0..sum3 to sum0
  2940. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2941. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2942. }
  2943. // leftovers
  2944. for (int i = np; i < n; ++i) {
  2945. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2946. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2947. }
  2948. }
  2949. #else
  2950. for (int i = 0; i < n; ++i) {
  2951. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2952. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2953. }
  2954. }
  2955. #endif
  2956. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2957. s[i] = sumf[i];
  2958. }
  2959. }
  2960. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2961. #if defined(GGML_SIMD)
  2962. const int np = (n & ~(GGML_F32_STEP - 1));
  2963. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2964. GGML_F32_VEC ax[GGML_F32_ARR];
  2965. GGML_F32_VEC ay[GGML_F32_ARR];
  2966. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2967. for (int j = 0; j < GGML_F32_ARR; j++) {
  2968. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2969. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2970. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2971. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2972. }
  2973. }
  2974. // leftovers
  2975. for (int i = np; i < n; ++i) {
  2976. y[i] += x[i]*v;
  2977. }
  2978. #else
  2979. // scalar
  2980. for (int i = 0; i < n; ++i) {
  2981. y[i] += x[i]*v;
  2982. }
  2983. #endif
  2984. }
  2985. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2986. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2987. #if defined(GGML_USE_ACCELERATE)
  2988. vDSP_vsmul(y, 1, &v, y, 1, n);
  2989. #elif defined(GGML_SIMD)
  2990. const int np = (n & ~(GGML_F32_STEP - 1));
  2991. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2992. GGML_F32_VEC ay[GGML_F32_ARR];
  2993. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2994. for (int j = 0; j < GGML_F32_ARR; j++) {
  2995. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2996. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2997. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2998. }
  2999. }
  3000. // leftovers
  3001. for (int i = np; i < n; ++i) {
  3002. y[i] *= v;
  3003. }
  3004. #else
  3005. // scalar
  3006. for (int i = 0; i < n; ++i) {
  3007. y[i] *= v;
  3008. }
  3009. #endif
  3010. }
  3011. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  3012. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  3013. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  3014. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  3015. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  3016. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  3017. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  3018. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  3019. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  3020. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  3021. static const float GELU_COEF_A = 0.044715f;
  3022. static const float GELU_QUICK_COEF = -1.702f;
  3023. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  3024. inline static float ggml_gelu_f32(float x) {
  3025. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  3026. }
  3027. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3028. const uint16_t * i16 = (const uint16_t *) x;
  3029. for (int i = 0; i < n; ++i) {
  3030. y[i] = table_gelu_f16[i16[i]];
  3031. }
  3032. }
  3033. #ifdef GGML_GELU_FP16
  3034. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  3035. uint16_t t;
  3036. for (int i = 0; i < n; ++i) {
  3037. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3038. memcpy(&t, &fp16, sizeof(uint16_t));
  3039. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  3040. }
  3041. }
  3042. #else
  3043. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  3044. for (int i = 0; i < n; ++i) {
  3045. y[i] = ggml_gelu_f32(x[i]);
  3046. }
  3047. }
  3048. #endif
  3049. inline static float ggml_gelu_quick_f32(float x) {
  3050. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  3051. }
  3052. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3053. // const uint16_t * i16 = (const uint16_t *) x;
  3054. // for (int i = 0; i < n; ++i) {
  3055. // y[i] = table_gelu_quick_f16[i16[i]];
  3056. // }
  3057. //}
  3058. #ifdef GGML_GELU_QUICK_FP16
  3059. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  3060. uint16_t t;
  3061. for (int i = 0; i < n; ++i) {
  3062. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3063. memcpy(&t, &fp16, sizeof(uint16_t));
  3064. y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]);
  3065. }
  3066. }
  3067. #else
  3068. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  3069. for (int i = 0; i < n; ++i) {
  3070. y[i] = ggml_gelu_quick_f32(x[i]);
  3071. }
  3072. }
  3073. #endif
  3074. // Sigmoid Linear Unit (SiLU) function
  3075. inline static float ggml_silu_f32(float x) {
  3076. return x/(1.0f + expf(-x));
  3077. }
  3078. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3079. // const uint16_t * i16 = (const uint16_t *) x;
  3080. // for (int i = 0; i < n; ++i) {
  3081. // y[i] = table_silu_f16[i16[i]];
  3082. // }
  3083. //}
  3084. #ifdef GGML_SILU_FP16
  3085. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3086. uint16_t t;
  3087. for (int i = 0; i < n; ++i) {
  3088. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3089. memcpy(&t, &fp16, sizeof(uint16_t));
  3090. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  3091. }
  3092. }
  3093. #else
  3094. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3095. for (int i = 0; i < n; ++i) {
  3096. y[i] = ggml_silu_f32(x[i]);
  3097. }
  3098. }
  3099. #endif
  3100. inline static float ggml_silu_backward_f32(float x, float dy) {
  3101. const float s = 1.0f/(1.0f + expf(-x));
  3102. return dy*s*(1.0f + x*(1.0f - s));
  3103. }
  3104. #ifdef GGML_SILU_FP16
  3105. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  3106. for (int i = 0; i < n; ++i) {
  3107. // we did not use x[i] to compute forward silu but its f16 equivalent
  3108. // take derivative at f16 of x[i]:
  3109. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3110. float usedx = GGML_FP16_TO_FP32(fp16);
  3111. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  3112. }
  3113. }
  3114. #else
  3115. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  3116. for (int i = 0; i < n; ++i) {
  3117. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  3118. }
  3119. }
  3120. #endif
  3121. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  3122. #ifndef GGML_USE_ACCELERATE
  3123. ggml_float sum = 0.0;
  3124. for (int i = 0; i < n; ++i) {
  3125. sum += (ggml_float)x[i];
  3126. }
  3127. *s = sum;
  3128. #else
  3129. vDSP_sve(x, 1, s, n);
  3130. #endif
  3131. }
  3132. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  3133. ggml_float sum = 0.0;
  3134. for (int i = 0; i < n; ++i) {
  3135. sum += (ggml_float)x[i];
  3136. }
  3137. *s = sum;
  3138. }
  3139. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  3140. float sum = 0.0f;
  3141. for (int i = 0; i < n; ++i) {
  3142. sum += GGML_FP16_TO_FP32(x[i]);
  3143. }
  3144. *s = sum;
  3145. }
  3146. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  3147. #ifndef GGML_USE_ACCELERATE
  3148. float max = -INFINITY;
  3149. for (int i = 0; i < n; ++i) {
  3150. max = MAX(max, x[i]);
  3151. }
  3152. *s = max;
  3153. #else
  3154. vDSP_maxv(x, 1, s, n);
  3155. #endif
  3156. }
  3157. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  3158. ggml_vec_norm_f32(n, s, x);
  3159. *s = 1.f/(*s);
  3160. }
  3161. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  3162. float max = -INFINITY;
  3163. int idx = 0;
  3164. for (int i = 0; i < n; ++i) {
  3165. max = MAX(max, x[i]);
  3166. if (max == x[i]) { idx = i; }
  3167. }
  3168. *s = idx;
  3169. }
  3170. //
  3171. // data types
  3172. //
  3173. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  3174. "NONE",
  3175. "DUP",
  3176. "ADD",
  3177. "ADD1",
  3178. "ACC",
  3179. "SUB",
  3180. "MUL",
  3181. "DIV",
  3182. "SQR",
  3183. "SQRT",
  3184. "LOG",
  3185. "SUM",
  3186. "SUM_ROWS",
  3187. "MEAN",
  3188. "ARGMAX",
  3189. "REPEAT",
  3190. "REPEAT_BACK",
  3191. "CONCAT",
  3192. "SILU_BACK",
  3193. "NORM",
  3194. "RMS_NORM",
  3195. "RMS_NORM_BACK",
  3196. "GROUP_NORM",
  3197. "MUL_MAT",
  3198. "OUT_PROD",
  3199. "SCALE",
  3200. "SET",
  3201. "CPY",
  3202. "CONT",
  3203. "RESHAPE",
  3204. "VIEW",
  3205. "PERMUTE",
  3206. "TRANSPOSE",
  3207. "GET_ROWS",
  3208. "GET_ROWS_BACK",
  3209. "DIAG",
  3210. "DIAG_MASK_INF",
  3211. "DIAG_MASK_ZERO",
  3212. "SOFT_MAX",
  3213. "SOFT_MAX_BACK",
  3214. "ROPE",
  3215. "ROPE_BACK",
  3216. "ALIBI",
  3217. "CLAMP",
  3218. "CONV_1D",
  3219. "CONV_2D",
  3220. "CONV_TRANSPOSE_2D",
  3221. "POOL_1D",
  3222. "POOL_2D",
  3223. "UPSCALE",
  3224. "FLASH_ATTN",
  3225. "FLASH_FF",
  3226. "FLASH_ATTN_BACK",
  3227. "WIN_PART",
  3228. "WIN_UNPART",
  3229. "GET_REL_POS",
  3230. "ADD_REL_POS",
  3231. "UNARY",
  3232. "MAP_UNARY",
  3233. "MAP_BINARY",
  3234. "MAP_CUSTOM1_F32",
  3235. "MAP_CUSTOM2_F32",
  3236. "MAP_CUSTOM3_F32",
  3237. "MAP_CUSTOM1",
  3238. "MAP_CUSTOM2",
  3239. "MAP_CUSTOM3",
  3240. "CROSS_ENTROPY_LOSS",
  3241. "CROSS_ENTROPY_LOSS_BACK",
  3242. };
  3243. static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
  3244. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3245. "none",
  3246. "x",
  3247. "x+y",
  3248. "x+y",
  3249. "view(x,nb,offset)+=y->x",
  3250. "x-y",
  3251. "x*y",
  3252. "x/y",
  3253. "x^2",
  3254. "√x",
  3255. "log(x)",
  3256. "Σx",
  3257. "Σx_k",
  3258. "Σx/n",
  3259. "argmax(x)",
  3260. "repeat(x)",
  3261. "repeat_back(x)",
  3262. "concat(x, y)",
  3263. "silu_back(x)",
  3264. "norm(x)",
  3265. "rms_norm(x)",
  3266. "rms_norm_back(x)",
  3267. "group_norm(x)",
  3268. "X*Y",
  3269. "X*Y",
  3270. "x*v",
  3271. "y-\\>view(x)",
  3272. "x-\\>y",
  3273. "cont(x)",
  3274. "reshape(x)",
  3275. "view(x)",
  3276. "permute(x)",
  3277. "transpose(x)",
  3278. "get_rows(x)",
  3279. "get_rows_back(x)",
  3280. "diag(x)",
  3281. "diag_mask_inf(x)",
  3282. "diag_mask_zero(x)",
  3283. "soft_max(x)",
  3284. "soft_max_back(x)",
  3285. "rope(x)",
  3286. "rope_back(x)",
  3287. "alibi(x)",
  3288. "clamp(x)",
  3289. "conv_1d(x)",
  3290. "conv_2d(x)",
  3291. "conv_transpose_2d(x)",
  3292. "pool_1d(x)",
  3293. "pool_2d(x)",
  3294. "upscale(x)",
  3295. "flash_attn(x)",
  3296. "flash_ff(x)",
  3297. "flash_attn_back(x)",
  3298. "win_part(x)",
  3299. "win_unpart(x)",
  3300. "get_rel_pos(x)",
  3301. "add_rel_pos(x)",
  3302. "unary(x)",
  3303. "f(x)",
  3304. "f(x,y)",
  3305. "custom_f32(x)",
  3306. "custom_f32(x,y)",
  3307. "custom_f32(x,y,z)",
  3308. "custom(x)",
  3309. "custom(x,y)",
  3310. "custom(x,y,z)",
  3311. "cross_entropy_loss(x,y)",
  3312. "cross_entropy_loss_back(x,y)",
  3313. };
  3314. static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
  3315. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  3316. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3317. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3318. // WARN:
  3319. // Mis-confguration can lead to problem that's hard to reason about:
  3320. // * At best it crash or talks nosense.
  3321. // * At worst it talks slightly difference but hard to perceive.
  3322. //
  3323. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  3324. // Take care about compile options (e.g., GGML_USE_xxx).
  3325. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  3326. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  3327. static void ggml_setup_op_has_task_pass(void) {
  3328. { // INIT
  3329. bool * p = GGML_OP_HAS_INIT;
  3330. p[GGML_OP_ACC ] = true;
  3331. p[GGML_OP_MUL_MAT ] = true;
  3332. p[GGML_OP_OUT_PROD ] = true;
  3333. p[GGML_OP_SET ] = true;
  3334. p[GGML_OP_GET_ROWS_BACK ] = true;
  3335. p[GGML_OP_DIAG_MASK_INF ] = true;
  3336. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  3337. p[GGML_OP_CONV_1D ] = true;
  3338. p[GGML_OP_CONV_2D ] = true;
  3339. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  3340. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  3341. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3342. p[GGML_OP_ADD_REL_POS ] = true;
  3343. }
  3344. { // FINALIZE
  3345. bool * p = GGML_OP_HAS_FINALIZE;
  3346. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3347. }
  3348. }
  3349. //
  3350. // ggml context
  3351. //
  3352. struct ggml_context {
  3353. size_t mem_size;
  3354. void * mem_buffer;
  3355. bool mem_buffer_owned;
  3356. bool no_alloc;
  3357. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  3358. int n_objects;
  3359. struct ggml_object * objects_begin;
  3360. struct ggml_object * objects_end;
  3361. struct ggml_scratch scratch;
  3362. struct ggml_scratch scratch_save;
  3363. };
  3364. struct ggml_context_container {
  3365. bool used;
  3366. struct ggml_context context;
  3367. };
  3368. //
  3369. // NUMA support
  3370. //
  3371. #define GGML_NUMA_MAX_NODES 8
  3372. #define GGML_NUMA_MAX_CPUS 512
  3373. struct ggml_numa_node {
  3374. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  3375. uint32_t n_cpus;
  3376. };
  3377. struct ggml_numa_nodes {
  3378. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  3379. uint32_t n_nodes;
  3380. uint32_t total_cpus; // hardware threads on system
  3381. };
  3382. //
  3383. // ggml state
  3384. //
  3385. struct ggml_state {
  3386. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3387. struct ggml_numa_nodes numa;
  3388. };
  3389. // global state
  3390. static struct ggml_state g_state;
  3391. static atomic_int g_state_barrier = 0;
  3392. // barrier via spin lock
  3393. inline static void ggml_critical_section_start(void) {
  3394. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3395. while (processing > 0) {
  3396. // wait for other threads to finish
  3397. atomic_fetch_sub(&g_state_barrier, 1);
  3398. sched_yield(); // TODO: reconsider this
  3399. processing = atomic_fetch_add(&g_state_barrier, 1);
  3400. }
  3401. }
  3402. // TODO: make this somehow automatically executed
  3403. // some sort of "sentry" mechanism
  3404. inline static void ggml_critical_section_end(void) {
  3405. atomic_fetch_sub(&g_state_barrier, 1);
  3406. }
  3407. void ggml_numa_init(void) {
  3408. if (g_state.numa.n_nodes > 0) {
  3409. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  3410. return;
  3411. }
  3412. #ifdef __linux__
  3413. struct stat st;
  3414. char path[256];
  3415. int rv;
  3416. // enumerate nodes
  3417. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  3418. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  3419. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3420. if (stat(path, &st) != 0) { break; }
  3421. ++g_state.numa.n_nodes;
  3422. }
  3423. // enumerate CPUs
  3424. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  3425. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  3426. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3427. if (stat(path, &st) != 0) { break; }
  3428. ++g_state.numa.total_cpus;
  3429. }
  3430. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  3431. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  3432. g_state.numa.n_nodes = 0;
  3433. return;
  3434. }
  3435. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  3436. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  3437. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  3438. node->n_cpus = 0;
  3439. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  3440. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  3441. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3442. if (stat(path, &st) == 0) {
  3443. node->cpus[node->n_cpus++] = c;
  3444. GGML_PRINT_DEBUG(" %u", c);
  3445. }
  3446. }
  3447. GGML_PRINT_DEBUG("\n");
  3448. }
  3449. if (ggml_is_numa()) {
  3450. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  3451. if (fptr != NULL) {
  3452. char buf[42];
  3453. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  3454. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  3455. }
  3456. fclose(fptr);
  3457. }
  3458. }
  3459. #else
  3460. // TODO
  3461. #endif
  3462. }
  3463. bool ggml_is_numa(void) {
  3464. return g_state.numa.n_nodes > 1;
  3465. }
  3466. ////////////////////////////////////////////////////////////////////////////////
  3467. void ggml_print_object(const struct ggml_object * obj) {
  3468. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  3469. obj->type, obj->offs, obj->size, (const void *) obj->next);
  3470. }
  3471. void ggml_print_objects(const struct ggml_context * ctx) {
  3472. struct ggml_object * obj = ctx->objects_begin;
  3473. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3474. while (obj != NULL) {
  3475. ggml_print_object(obj);
  3476. obj = obj->next;
  3477. }
  3478. GGML_PRINT("%s: --- end ---\n", __func__);
  3479. }
  3480. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3481. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3482. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3483. }
  3484. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3485. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3486. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3487. }
  3488. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3489. size_t nbytes = tensor->ne[0]*tensor->nb[0]/ggml_blck_size(tensor->type);
  3490. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3491. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  3492. }
  3493. return nbytes;
  3494. }
  3495. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  3496. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  3497. }
  3498. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3499. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3500. return (nrows_split*tensor->ne[0]*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type);
  3501. }
  3502. int ggml_blck_size(enum ggml_type type) {
  3503. return type_traits[type].blck_size;
  3504. }
  3505. size_t ggml_type_size(enum ggml_type type) {
  3506. return type_traits[type].type_size;
  3507. }
  3508. float ggml_type_sizef(enum ggml_type type) {
  3509. return ((float)(type_traits[type].type_size))/type_traits[type].blck_size;
  3510. }
  3511. const char * ggml_type_name(enum ggml_type type) {
  3512. return type_traits[type].type_name;
  3513. }
  3514. bool ggml_is_quantized(enum ggml_type type) {
  3515. return type_traits[type].is_quantized;
  3516. }
  3517. const char * ggml_op_name(enum ggml_op op) {
  3518. return GGML_OP_NAME[op];
  3519. }
  3520. const char * ggml_op_symbol(enum ggml_op op) {
  3521. return GGML_OP_SYMBOL[op];
  3522. }
  3523. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3524. return ggml_type_size(tensor->type);
  3525. }
  3526. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3527. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3528. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3529. }
  3530. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3531. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3532. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3533. }
  3534. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3535. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3536. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3537. }
  3538. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3539. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3540. return (t0->ne[0] == t1->ne[0]) &&
  3541. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  3542. (t1->ne[3]%t0->ne[3] == 0);
  3543. }
  3544. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3545. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3546. return
  3547. (t0->ne[1] == t1->ne[1]) &&
  3548. (t0->ne[2] == t1->ne[2]) &&
  3549. (t0->ne[3] == t1->ne[3]);
  3550. }
  3551. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3552. enum ggml_type wtype = GGML_TYPE_COUNT;
  3553. switch (ftype) {
  3554. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3555. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3556. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3557. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3558. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3559. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3560. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3561. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3562. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3563. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3564. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3565. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3566. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3567. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3568. }
  3569. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3570. return wtype;
  3571. }
  3572. size_t ggml_tensor_overhead(void) {
  3573. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  3574. }
  3575. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3576. return tensor->nb[0] > tensor->nb[1];
  3577. }
  3578. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3579. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3580. return
  3581. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3582. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  3583. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3584. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3585. }
  3586. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  3587. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3588. return
  3589. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3590. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3591. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3592. }
  3593. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3594. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3595. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3596. }
  3597. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3598. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3599. return
  3600. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3601. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3602. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3603. }
  3604. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3605. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3606. return
  3607. (t0->ne[0] == t1->ne[0] ) &&
  3608. (t0->ne[1] == t1->ne[1] ) &&
  3609. (t0->ne[2] == t1->ne[2] ) &&
  3610. (t0->ne[3] == t1->ne[3] );
  3611. }
  3612. // check if t1 can be represented as a repeatition of t0
  3613. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3614. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3615. return
  3616. (t1->ne[0]%t0->ne[0] == 0) &&
  3617. (t1->ne[1]%t0->ne[1] == 0) &&
  3618. (t1->ne[2]%t0->ne[2] == 0) &&
  3619. (t1->ne[3]%t0->ne[3] == 0);
  3620. }
  3621. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3622. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3623. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3624. }
  3625. static inline int ggml_up32(int n) {
  3626. return (n + 31) & ~31;
  3627. }
  3628. //static inline int ggml_up64(int n) {
  3629. // return (n + 63) & ~63;
  3630. //}
  3631. static inline int ggml_up(int n, int m) {
  3632. // assert m is a power of 2
  3633. GGML_ASSERT((m & (m - 1)) == 0);
  3634. return (n + m - 1) & ~(m - 1);
  3635. }
  3636. // assert that pointer is aligned to GGML_MEM_ALIGN
  3637. #define ggml_assert_aligned(ptr) \
  3638. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3639. ////////////////////////////////////////////////////////////////////////////////
  3640. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3641. // make this function thread safe
  3642. ggml_critical_section_start();
  3643. static bool is_first_call = true;
  3644. if (is_first_call) {
  3645. // initialize time system (required on Windows)
  3646. ggml_time_init();
  3647. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3648. {
  3649. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3650. ggml_fp16_t ii;
  3651. for (int i = 0; i < (1 << 16); ++i) {
  3652. uint16_t ui = i;
  3653. memcpy(&ii, &ui, sizeof(ii));
  3654. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3655. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3656. table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3657. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3658. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3659. }
  3660. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3661. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3662. }
  3663. // initialize g_state
  3664. {
  3665. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3666. g_state = (struct ggml_state) {
  3667. /*.contexts =*/ { { 0 } },
  3668. /*.numa =*/ {
  3669. .n_nodes = 0,
  3670. .total_cpus = 0,
  3671. },
  3672. };
  3673. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3674. g_state.contexts[i].used = false;
  3675. }
  3676. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3677. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3678. }
  3679. #if defined(GGML_USE_CUBLAS)
  3680. ggml_init_cublas();
  3681. #elif defined(GGML_USE_CLBLAST)
  3682. ggml_cl_init();
  3683. #endif
  3684. ggml_setup_op_has_task_pass();
  3685. is_first_call = false;
  3686. }
  3687. // find non-used context in g_state
  3688. struct ggml_context * ctx = NULL;
  3689. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3690. if (!g_state.contexts[i].used) {
  3691. g_state.contexts[i].used = true;
  3692. ctx = &g_state.contexts[i].context;
  3693. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3694. break;
  3695. }
  3696. }
  3697. if (ctx == NULL) {
  3698. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3699. ggml_critical_section_end();
  3700. return NULL;
  3701. }
  3702. // allow to call ggml_init with 0 size
  3703. if (params.mem_size == 0) {
  3704. params.mem_size = GGML_MEM_ALIGN;
  3705. }
  3706. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  3707. *ctx = (struct ggml_context) {
  3708. /*.mem_size =*/ mem_size,
  3709. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3710. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3711. /*.no_alloc =*/ params.no_alloc,
  3712. /*.no_alloc_save =*/ params.no_alloc,
  3713. /*.n_objects =*/ 0,
  3714. /*.objects_begin =*/ NULL,
  3715. /*.objects_end =*/ NULL,
  3716. /*.scratch =*/ { 0, 0, NULL, },
  3717. /*.scratch_save =*/ { 0, 0, NULL, },
  3718. };
  3719. GGML_ASSERT(ctx->mem_buffer != NULL);
  3720. ggml_assert_aligned(ctx->mem_buffer);
  3721. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3722. ggml_critical_section_end();
  3723. return ctx;
  3724. }
  3725. void ggml_free(struct ggml_context * ctx) {
  3726. // make this function thread safe
  3727. ggml_critical_section_start();
  3728. bool found = false;
  3729. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3730. if (&g_state.contexts[i].context == ctx) {
  3731. g_state.contexts[i].used = false;
  3732. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  3733. __func__, i, ggml_used_mem(ctx));
  3734. if (ctx->mem_buffer_owned) {
  3735. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3736. }
  3737. found = true;
  3738. break;
  3739. }
  3740. }
  3741. if (!found) {
  3742. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3743. }
  3744. ggml_critical_section_end();
  3745. }
  3746. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3747. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3748. }
  3749. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3750. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3751. ctx->scratch = scratch;
  3752. return result;
  3753. }
  3754. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  3755. return ctx->no_alloc;
  3756. }
  3757. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3758. ctx->no_alloc = no_alloc;
  3759. }
  3760. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3761. return ctx->mem_buffer;
  3762. }
  3763. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3764. return ctx->mem_size;
  3765. }
  3766. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3767. size_t max_size = 0;
  3768. struct ggml_object * obj = ctx->objects_begin;
  3769. while (obj != NULL) {
  3770. if (obj->type == GGML_OBJECT_TENSOR) {
  3771. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  3772. const size_t size = ggml_nbytes(tensor);
  3773. if (max_size < size) {
  3774. max_size = size;
  3775. }
  3776. }
  3777. obj = obj->next;
  3778. }
  3779. return max_size;
  3780. }
  3781. // IMPORTANT:
  3782. // when creating "opt" tensors, always save and load the scratch buffer
  3783. // this is an error prone process, but it is necessary to support inplace
  3784. // operators when using scratch buffers
  3785. // TODO: implement a better way
  3786. static void ggml_scratch_save(struct ggml_context * ctx) {
  3787. // this is needed to allow opt tensors to store their data
  3788. // TODO: again, need to find a better way
  3789. ctx->no_alloc_save = ctx->no_alloc;
  3790. ctx->no_alloc = false;
  3791. ctx->scratch_save = ctx->scratch;
  3792. ctx->scratch.data = NULL;
  3793. }
  3794. static void ggml_scratch_load(struct ggml_context * ctx) {
  3795. ctx->no_alloc = ctx->no_alloc_save;
  3796. ctx->scratch = ctx->scratch_save;
  3797. }
  3798. ////////////////////////////////////////////////////////////////////////////////
  3799. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3800. // always insert objects at the end of the context's memory pool
  3801. struct ggml_object * obj_cur = ctx->objects_end;
  3802. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3803. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3804. const size_t cur_end = cur_offs + cur_size;
  3805. // align to GGML_MEM_ALIGN
  3806. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3807. char * const mem_buffer = ctx->mem_buffer;
  3808. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3809. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3810. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3811. __func__, cur_end + size_needed, ctx->mem_size);
  3812. assert(false);
  3813. return NULL;
  3814. }
  3815. *obj_new = (struct ggml_object) {
  3816. .offs = cur_end + GGML_OBJECT_SIZE,
  3817. .size = size_needed,
  3818. .next = NULL,
  3819. .type = type,
  3820. };
  3821. ggml_assert_aligned(mem_buffer + obj_new->offs);
  3822. if (obj_cur != NULL) {
  3823. obj_cur->next = obj_new;
  3824. } else {
  3825. // this is the first object in this context
  3826. ctx->objects_begin = obj_new;
  3827. }
  3828. ctx->objects_end = obj_new;
  3829. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3830. return obj_new;
  3831. }
  3832. static struct ggml_tensor * ggml_new_tensor_impl(
  3833. struct ggml_context * ctx,
  3834. enum ggml_type type,
  3835. int n_dims,
  3836. const int64_t * ne,
  3837. struct ggml_tensor * view_src,
  3838. size_t view_offs) {
  3839. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3840. // find the base tensor and absolute offset
  3841. if (view_src != NULL && view_src->view_src != NULL) {
  3842. view_offs += view_src->view_offs;
  3843. view_src = view_src->view_src;
  3844. }
  3845. size_t data_size = ggml_type_size(type)*(ne[0]/ggml_blck_size(type));
  3846. for (int i = 1; i < n_dims; i++) {
  3847. data_size *= ne[i];
  3848. }
  3849. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  3850. void * data = view_src != NULL ? view_src->data : NULL;
  3851. if (data != NULL) {
  3852. data = (char *) data + view_offs;
  3853. }
  3854. size_t obj_alloc_size = 0;
  3855. if (view_src == NULL && !ctx->no_alloc) {
  3856. if (ctx->scratch.data != NULL) {
  3857. // allocate tensor data in the scratch buffer
  3858. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3859. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3860. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3861. assert(false);
  3862. return NULL;
  3863. }
  3864. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3865. ctx->scratch.offs += data_size;
  3866. } else {
  3867. // allocate tensor data in the context's memory pool
  3868. obj_alloc_size = data_size;
  3869. }
  3870. }
  3871. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  3872. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3873. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3874. *result = (struct ggml_tensor) {
  3875. /*.type =*/ type,
  3876. /*.backend =*/ GGML_BACKEND_CPU,
  3877. /*.n_dims =*/ n_dims,
  3878. /*.ne =*/ { 1, 1, 1, 1 },
  3879. /*.nb =*/ { 0, 0, 0, 0 },
  3880. /*.op =*/ GGML_OP_NONE,
  3881. /*.op_params =*/ { 0 },
  3882. /*.is_param =*/ false,
  3883. /*.grad =*/ NULL,
  3884. /*.src =*/ { NULL },
  3885. /*.perf_runs =*/ 0,
  3886. /*.perf_cycles =*/ 0,
  3887. /*.perf_time_us =*/ 0,
  3888. /*.view_src =*/ view_src,
  3889. /*.view_offs =*/ view_offs,
  3890. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  3891. /*.name =*/ { 0 },
  3892. /*.extra =*/ NULL,
  3893. /*.padding =*/ { 0 },
  3894. };
  3895. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3896. //ggml_assert_aligned(result->data);
  3897. for (int i = 0; i < n_dims; i++) {
  3898. result->ne[i] = ne[i];
  3899. }
  3900. result->nb[0] = ggml_type_size(type);
  3901. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  3902. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3903. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3904. }
  3905. ctx->n_objects++;
  3906. return result;
  3907. }
  3908. struct ggml_tensor * ggml_new_tensor(
  3909. struct ggml_context * ctx,
  3910. enum ggml_type type,
  3911. int n_dims,
  3912. const int64_t * ne) {
  3913. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  3914. }
  3915. struct ggml_tensor * ggml_new_tensor_1d(
  3916. struct ggml_context * ctx,
  3917. enum ggml_type type,
  3918. int64_t ne0) {
  3919. return ggml_new_tensor(ctx, type, 1, &ne0);
  3920. }
  3921. struct ggml_tensor * ggml_new_tensor_2d(
  3922. struct ggml_context * ctx,
  3923. enum ggml_type type,
  3924. int64_t ne0,
  3925. int64_t ne1) {
  3926. const int64_t ne[2] = { ne0, ne1 };
  3927. return ggml_new_tensor(ctx, type, 2, ne);
  3928. }
  3929. struct ggml_tensor * ggml_new_tensor_3d(
  3930. struct ggml_context * ctx,
  3931. enum ggml_type type,
  3932. int64_t ne0,
  3933. int64_t ne1,
  3934. int64_t ne2) {
  3935. const int64_t ne[3] = { ne0, ne1, ne2 };
  3936. return ggml_new_tensor(ctx, type, 3, ne);
  3937. }
  3938. struct ggml_tensor * ggml_new_tensor_4d(
  3939. struct ggml_context * ctx,
  3940. enum ggml_type type,
  3941. int64_t ne0,
  3942. int64_t ne1,
  3943. int64_t ne2,
  3944. int64_t ne3) {
  3945. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3946. return ggml_new_tensor(ctx, type, 4, ne);
  3947. }
  3948. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3949. ggml_scratch_save(ctx);
  3950. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3951. ggml_scratch_load(ctx);
  3952. ggml_set_i32(result, value);
  3953. return result;
  3954. }
  3955. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3956. ggml_scratch_save(ctx);
  3957. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3958. ggml_scratch_load(ctx);
  3959. ggml_set_f32(result, value);
  3960. return result;
  3961. }
  3962. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3963. return ggml_new_tensor(ctx, src->type, src->n_dims, src->ne);
  3964. }
  3965. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3966. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  3967. assert(params_size <= GGML_MAX_OP_PARAMS);
  3968. memcpy(tensor->op_params, params, params_size);
  3969. }
  3970. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3971. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3972. return ((const int32_t *)(tensor->op_params))[i];
  3973. }
  3974. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3975. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3976. ((int32_t *)(tensor->op_params))[i] = value;
  3977. }
  3978. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3979. memset(tensor->data, 0, ggml_nbytes(tensor));
  3980. return tensor;
  3981. }
  3982. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3983. const int n = ggml_nrows(tensor);
  3984. const int nc = tensor->ne[0];
  3985. const size_t n1 = tensor->nb[1];
  3986. char * const data = tensor->data;
  3987. switch (tensor->type) {
  3988. case GGML_TYPE_I8:
  3989. {
  3990. assert(tensor->nb[0] == sizeof(int8_t));
  3991. for (int i = 0; i < n; i++) {
  3992. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3993. }
  3994. } break;
  3995. case GGML_TYPE_I16:
  3996. {
  3997. assert(tensor->nb[0] == sizeof(int16_t));
  3998. for (int i = 0; i < n; i++) {
  3999. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  4000. }
  4001. } break;
  4002. case GGML_TYPE_I32:
  4003. {
  4004. assert(tensor->nb[0] == sizeof(int32_t));
  4005. for (int i = 0; i < n; i++) {
  4006. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  4007. }
  4008. } break;
  4009. case GGML_TYPE_F16:
  4010. {
  4011. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  4012. for (int i = 0; i < n; i++) {
  4013. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  4014. }
  4015. } break;
  4016. case GGML_TYPE_F32:
  4017. {
  4018. assert(tensor->nb[0] == sizeof(float));
  4019. for (int i = 0; i < n; i++) {
  4020. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  4021. }
  4022. } break;
  4023. default:
  4024. {
  4025. GGML_ASSERT(false);
  4026. } break;
  4027. }
  4028. return tensor;
  4029. }
  4030. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  4031. const int n = ggml_nrows(tensor);
  4032. const int nc = tensor->ne[0];
  4033. const size_t n1 = tensor->nb[1];
  4034. char * const data = tensor->data;
  4035. switch (tensor->type) {
  4036. case GGML_TYPE_I8:
  4037. {
  4038. assert(tensor->nb[0] == sizeof(int8_t));
  4039. for (int i = 0; i < n; i++) {
  4040. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  4041. }
  4042. } break;
  4043. case GGML_TYPE_I16:
  4044. {
  4045. assert(tensor->nb[0] == sizeof(int16_t));
  4046. for (int i = 0; i < n; i++) {
  4047. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  4048. }
  4049. } break;
  4050. case GGML_TYPE_I32:
  4051. {
  4052. assert(tensor->nb[0] == sizeof(int32_t));
  4053. for (int i = 0; i < n; i++) {
  4054. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  4055. }
  4056. } break;
  4057. case GGML_TYPE_F16:
  4058. {
  4059. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  4060. for (int i = 0; i < n; i++) {
  4061. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  4062. }
  4063. } break;
  4064. case GGML_TYPE_F32:
  4065. {
  4066. assert(tensor->nb[0] == sizeof(float));
  4067. for (int i = 0; i < n; i++) {
  4068. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  4069. }
  4070. } break;
  4071. default:
  4072. {
  4073. GGML_ASSERT(false);
  4074. } break;
  4075. }
  4076. return tensor;
  4077. }
  4078. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  4079. switch (tensor->type) {
  4080. case GGML_TYPE_I8:
  4081. {
  4082. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4083. return ((int8_t *)(tensor->data))[i];
  4084. } break;
  4085. case GGML_TYPE_I16:
  4086. {
  4087. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4088. return ((int16_t *)(tensor->data))[i];
  4089. } break;
  4090. case GGML_TYPE_I32:
  4091. {
  4092. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4093. return ((int32_t *)(tensor->data))[i];
  4094. } break;
  4095. case GGML_TYPE_F16:
  4096. {
  4097. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4098. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  4099. } break;
  4100. case GGML_TYPE_F32:
  4101. {
  4102. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4103. return ((float *)(tensor->data))[i];
  4104. } break;
  4105. default:
  4106. {
  4107. GGML_ASSERT(false);
  4108. } break;
  4109. }
  4110. return 0.0f;
  4111. }
  4112. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  4113. switch (tensor->type) {
  4114. case GGML_TYPE_I8:
  4115. {
  4116. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4117. ((int8_t *)(tensor->data))[i] = value;
  4118. } break;
  4119. case GGML_TYPE_I16:
  4120. {
  4121. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4122. ((int16_t *)(tensor->data))[i] = value;
  4123. } break;
  4124. case GGML_TYPE_I32:
  4125. {
  4126. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4127. ((int32_t *)(tensor->data))[i] = value;
  4128. } break;
  4129. case GGML_TYPE_F16:
  4130. {
  4131. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4132. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4133. } break;
  4134. case GGML_TYPE_F32:
  4135. {
  4136. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4137. ((float *)(tensor->data))[i] = value;
  4138. } break;
  4139. default:
  4140. {
  4141. GGML_ASSERT(false);
  4142. } break;
  4143. }
  4144. }
  4145. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  4146. switch (tensor->type) {
  4147. case GGML_TYPE_I8:
  4148. {
  4149. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4150. return ((int8_t *)(tensor->data))[i];
  4151. } break;
  4152. case GGML_TYPE_I16:
  4153. {
  4154. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4155. return ((int16_t *)(tensor->data))[i];
  4156. } break;
  4157. case GGML_TYPE_I32:
  4158. {
  4159. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4160. return ((int32_t *)(tensor->data))[i];
  4161. } break;
  4162. case GGML_TYPE_F16:
  4163. {
  4164. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4165. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  4166. } break;
  4167. case GGML_TYPE_F32:
  4168. {
  4169. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4170. return ((float *)(tensor->data))[i];
  4171. } break;
  4172. default:
  4173. {
  4174. GGML_ASSERT(false);
  4175. } break;
  4176. }
  4177. return 0.0f;
  4178. }
  4179. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  4180. switch (tensor->type) {
  4181. case GGML_TYPE_I8:
  4182. {
  4183. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4184. ((int8_t *)(tensor->data))[i] = value;
  4185. } break;
  4186. case GGML_TYPE_I16:
  4187. {
  4188. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4189. ((int16_t *)(tensor->data))[i] = value;
  4190. } break;
  4191. case GGML_TYPE_I32:
  4192. {
  4193. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4194. ((int32_t *)(tensor->data))[i] = value;
  4195. } break;
  4196. case GGML_TYPE_F16:
  4197. {
  4198. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4199. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4200. } break;
  4201. case GGML_TYPE_F32:
  4202. {
  4203. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4204. ((float *)(tensor->data))[i] = value;
  4205. } break;
  4206. default:
  4207. {
  4208. GGML_ASSERT(false);
  4209. } break;
  4210. }
  4211. }
  4212. void * ggml_get_data(const struct ggml_tensor * tensor) {
  4213. return tensor->data;
  4214. }
  4215. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  4216. assert(tensor->type == GGML_TYPE_F32);
  4217. return (float *)(tensor->data);
  4218. }
  4219. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  4220. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  4221. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  4222. }
  4223. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  4224. return tensor->name;
  4225. }
  4226. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  4227. strncpy(tensor->name, name, sizeof(tensor->name));
  4228. tensor->name[sizeof(tensor->name) - 1] = '\0';
  4229. return tensor;
  4230. }
  4231. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  4232. va_list args;
  4233. va_start(args, fmt);
  4234. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  4235. va_end(args);
  4236. return tensor;
  4237. }
  4238. struct ggml_tensor * ggml_view_tensor(
  4239. struct ggml_context * ctx,
  4240. struct ggml_tensor * src) {
  4241. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src, 0);
  4242. ggml_format_name(result, "%s (view)", src->name);
  4243. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  4244. result->nb[i] = src->nb[i];
  4245. }
  4246. return result;
  4247. }
  4248. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  4249. struct ggml_object * obj = ctx->objects_begin;
  4250. char * const mem_buffer = ctx->mem_buffer;
  4251. while (obj != NULL) {
  4252. if (obj->type == GGML_OBJECT_TENSOR) {
  4253. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  4254. if (strcmp(cur->name, name) == 0) {
  4255. return cur;
  4256. }
  4257. }
  4258. obj = obj->next;
  4259. }
  4260. return NULL;
  4261. }
  4262. ////////////////////////////////////////////////////////////////////////////////
  4263. // ggml_dup
  4264. static struct ggml_tensor * ggml_dup_impl(
  4265. struct ggml_context * ctx,
  4266. struct ggml_tensor * a,
  4267. bool inplace) {
  4268. bool is_node = false;
  4269. if (!inplace && (a->grad)) {
  4270. is_node = true;
  4271. }
  4272. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4273. result->op = GGML_OP_DUP;
  4274. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4275. result->src[0] = a;
  4276. return result;
  4277. }
  4278. struct ggml_tensor * ggml_dup(
  4279. struct ggml_context * ctx,
  4280. struct ggml_tensor * a) {
  4281. return ggml_dup_impl(ctx, a, false);
  4282. }
  4283. struct ggml_tensor * ggml_dup_inplace(
  4284. struct ggml_context * ctx,
  4285. struct ggml_tensor * a) {
  4286. return ggml_dup_impl(ctx, a, true);
  4287. }
  4288. // ggml_add
  4289. static struct ggml_tensor * ggml_add_impl(
  4290. struct ggml_context * ctx,
  4291. struct ggml_tensor * a,
  4292. struct ggml_tensor * b,
  4293. bool inplace) {
  4294. // TODO: support less-strict constraint
  4295. // GGML_ASSERT(ggml_can_repeat(b, a));
  4296. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4297. bool is_node = false;
  4298. if (!inplace && (a->grad || b->grad)) {
  4299. // TODO: support backward pass for broadcasting
  4300. GGML_ASSERT(ggml_are_same_shape(a, b));
  4301. is_node = true;
  4302. }
  4303. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4304. result->op = GGML_OP_ADD;
  4305. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4306. result->src[0] = a;
  4307. result->src[1] = b;
  4308. return result;
  4309. }
  4310. struct ggml_tensor * ggml_add(
  4311. struct ggml_context * ctx,
  4312. struct ggml_tensor * a,
  4313. struct ggml_tensor * b) {
  4314. return ggml_add_impl(ctx, a, b, false);
  4315. }
  4316. struct ggml_tensor * ggml_add_inplace(
  4317. struct ggml_context * ctx,
  4318. struct ggml_tensor * a,
  4319. struct ggml_tensor * b) {
  4320. return ggml_add_impl(ctx, a, b, true);
  4321. }
  4322. // ggml_add1
  4323. static struct ggml_tensor * ggml_add1_impl(
  4324. struct ggml_context * ctx,
  4325. struct ggml_tensor * a,
  4326. struct ggml_tensor * b,
  4327. bool inplace) {
  4328. GGML_ASSERT(ggml_is_scalar(b));
  4329. GGML_ASSERT(ggml_is_padded_1d(a));
  4330. bool is_node = false;
  4331. if (a->grad || b->grad) {
  4332. is_node = true;
  4333. }
  4334. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4335. result->op = GGML_OP_ADD1;
  4336. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4337. result->src[0] = a;
  4338. result->src[1] = b;
  4339. return result;
  4340. }
  4341. struct ggml_tensor * ggml_add1(
  4342. struct ggml_context * ctx,
  4343. struct ggml_tensor * a,
  4344. struct ggml_tensor * b) {
  4345. return ggml_add1_impl(ctx, a, b, false);
  4346. }
  4347. struct ggml_tensor * ggml_add1_inplace(
  4348. struct ggml_context * ctx,
  4349. struct ggml_tensor * a,
  4350. struct ggml_tensor * b) {
  4351. return ggml_add1_impl(ctx, a, b, true);
  4352. }
  4353. // ggml_acc
  4354. static struct ggml_tensor * ggml_acc_impl(
  4355. struct ggml_context * ctx,
  4356. struct ggml_tensor * a,
  4357. struct ggml_tensor * b,
  4358. size_t nb1,
  4359. size_t nb2,
  4360. size_t nb3,
  4361. size_t offset,
  4362. bool inplace) {
  4363. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  4364. GGML_ASSERT(ggml_is_contiguous(a));
  4365. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4366. GGML_ASSERT(b->type == GGML_TYPE_F32);
  4367. bool is_node = false;
  4368. if (!inplace && (a->grad || b->grad)) {
  4369. is_node = true;
  4370. }
  4371. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4372. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4373. ggml_set_op_params(result, params, sizeof(params));
  4374. result->op = GGML_OP_ACC;
  4375. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4376. result->src[0] = a;
  4377. result->src[1] = b;
  4378. return result;
  4379. }
  4380. struct ggml_tensor * ggml_acc(
  4381. struct ggml_context * ctx,
  4382. struct ggml_tensor * a,
  4383. struct ggml_tensor * b,
  4384. size_t nb1,
  4385. size_t nb2,
  4386. size_t nb3,
  4387. size_t offset) {
  4388. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4389. }
  4390. struct ggml_tensor * ggml_acc_inplace(
  4391. struct ggml_context * ctx,
  4392. struct ggml_tensor * a,
  4393. struct ggml_tensor * b,
  4394. size_t nb1,
  4395. size_t nb2,
  4396. size_t nb3,
  4397. size_t offset) {
  4398. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4399. }
  4400. // ggml_sub
  4401. static struct ggml_tensor * ggml_sub_impl(
  4402. struct ggml_context * ctx,
  4403. struct ggml_tensor * a,
  4404. struct ggml_tensor * b,
  4405. bool inplace) {
  4406. GGML_ASSERT(ggml_are_same_shape(a, b));
  4407. bool is_node = false;
  4408. if (!inplace && (a->grad || b->grad)) {
  4409. is_node = true;
  4410. }
  4411. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4412. result->op = GGML_OP_SUB;
  4413. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4414. result->src[0] = a;
  4415. result->src[1] = b;
  4416. return result;
  4417. }
  4418. struct ggml_tensor * ggml_sub(
  4419. struct ggml_context * ctx,
  4420. struct ggml_tensor * a,
  4421. struct ggml_tensor * b) {
  4422. return ggml_sub_impl(ctx, a, b, false);
  4423. }
  4424. struct ggml_tensor * ggml_sub_inplace(
  4425. struct ggml_context * ctx,
  4426. struct ggml_tensor * a,
  4427. struct ggml_tensor * b) {
  4428. return ggml_sub_impl(ctx, a, b, true);
  4429. }
  4430. // ggml_mul
  4431. static struct ggml_tensor * ggml_mul_impl(
  4432. struct ggml_context * ctx,
  4433. struct ggml_tensor * a,
  4434. struct ggml_tensor * b,
  4435. bool inplace) {
  4436. // TODO: support less-strict constraint
  4437. // GGML_ASSERT(ggml_can_repeat(b, a));
  4438. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4439. bool is_node = false;
  4440. if (!inplace && (a->grad || b->grad)) {
  4441. // TODO: support backward pass for broadcasting
  4442. GGML_ASSERT(ggml_are_same_shape(a, b));
  4443. is_node = true;
  4444. }
  4445. if (inplace) {
  4446. GGML_ASSERT(!is_node);
  4447. }
  4448. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4449. result->op = GGML_OP_MUL;
  4450. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4451. result->src[0] = a;
  4452. result->src[1] = b;
  4453. return result;
  4454. }
  4455. struct ggml_tensor * ggml_mul(
  4456. struct ggml_context * ctx,
  4457. struct ggml_tensor * a,
  4458. struct ggml_tensor * b) {
  4459. return ggml_mul_impl(ctx, a, b, false);
  4460. }
  4461. struct ggml_tensor * ggml_mul_inplace(
  4462. struct ggml_context * ctx,
  4463. struct ggml_tensor * a,
  4464. struct ggml_tensor * b) {
  4465. return ggml_mul_impl(ctx, a, b, true);
  4466. }
  4467. // ggml_div
  4468. static struct ggml_tensor * ggml_div_impl(
  4469. struct ggml_context * ctx,
  4470. struct ggml_tensor * a,
  4471. struct ggml_tensor * b,
  4472. bool inplace) {
  4473. GGML_ASSERT(ggml_are_same_shape(a, b));
  4474. bool is_node = false;
  4475. if (!inplace && (a->grad || b->grad)) {
  4476. is_node = true;
  4477. }
  4478. if (inplace) {
  4479. GGML_ASSERT(!is_node);
  4480. }
  4481. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4482. result->op = GGML_OP_DIV;
  4483. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4484. result->src[0] = a;
  4485. result->src[1] = b;
  4486. return result;
  4487. }
  4488. struct ggml_tensor * ggml_div(
  4489. struct ggml_context * ctx,
  4490. struct ggml_tensor * a,
  4491. struct ggml_tensor * b) {
  4492. return ggml_div_impl(ctx, a, b, false);
  4493. }
  4494. struct ggml_tensor * ggml_div_inplace(
  4495. struct ggml_context * ctx,
  4496. struct ggml_tensor * a,
  4497. struct ggml_tensor * b) {
  4498. return ggml_div_impl(ctx, a, b, true);
  4499. }
  4500. // ggml_sqr
  4501. static struct ggml_tensor * ggml_sqr_impl(
  4502. struct ggml_context * ctx,
  4503. struct ggml_tensor * a,
  4504. bool inplace) {
  4505. bool is_node = false;
  4506. if (!inplace && (a->grad)) {
  4507. is_node = true;
  4508. }
  4509. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4510. result->op = GGML_OP_SQR;
  4511. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4512. result->src[0] = a;
  4513. return result;
  4514. }
  4515. struct ggml_tensor * ggml_sqr(
  4516. struct ggml_context * ctx,
  4517. struct ggml_tensor * a) {
  4518. return ggml_sqr_impl(ctx, a, false);
  4519. }
  4520. struct ggml_tensor * ggml_sqr_inplace(
  4521. struct ggml_context * ctx,
  4522. struct ggml_tensor * a) {
  4523. return ggml_sqr_impl(ctx, a, true);
  4524. }
  4525. // ggml_sqrt
  4526. static struct ggml_tensor * ggml_sqrt_impl(
  4527. struct ggml_context * ctx,
  4528. struct ggml_tensor * a,
  4529. bool inplace) {
  4530. bool is_node = false;
  4531. if (!inplace && (a->grad)) {
  4532. is_node = true;
  4533. }
  4534. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4535. result->op = GGML_OP_SQRT;
  4536. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4537. result->src[0] = a;
  4538. return result;
  4539. }
  4540. struct ggml_tensor * ggml_sqrt(
  4541. struct ggml_context * ctx,
  4542. struct ggml_tensor * a) {
  4543. return ggml_sqrt_impl(ctx, a, false);
  4544. }
  4545. struct ggml_tensor * ggml_sqrt_inplace(
  4546. struct ggml_context * ctx,
  4547. struct ggml_tensor * a) {
  4548. return ggml_sqrt_impl(ctx, a, true);
  4549. }
  4550. // ggml_log
  4551. static struct ggml_tensor * ggml_log_impl(
  4552. struct ggml_context * ctx,
  4553. struct ggml_tensor * a,
  4554. bool inplace) {
  4555. bool is_node = false;
  4556. if (!inplace && (a->grad)) {
  4557. is_node = true;
  4558. }
  4559. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4560. result->op = GGML_OP_LOG;
  4561. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4562. result->src[0] = a;
  4563. return result;
  4564. }
  4565. struct ggml_tensor * ggml_log(
  4566. struct ggml_context * ctx,
  4567. struct ggml_tensor * a) {
  4568. return ggml_log_impl(ctx, a, false);
  4569. }
  4570. struct ggml_tensor * ggml_log_inplace(
  4571. struct ggml_context * ctx,
  4572. struct ggml_tensor * a) {
  4573. return ggml_log_impl(ctx, a, true);
  4574. }
  4575. // ggml_sum
  4576. struct ggml_tensor * ggml_sum(
  4577. struct ggml_context * ctx,
  4578. struct ggml_tensor * a) {
  4579. bool is_node = false;
  4580. if (a->grad) {
  4581. is_node = true;
  4582. }
  4583. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4584. result->op = GGML_OP_SUM;
  4585. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4586. result->src[0] = a;
  4587. return result;
  4588. }
  4589. // ggml_sum_rows
  4590. struct ggml_tensor * ggml_sum_rows(
  4591. struct ggml_context * ctx,
  4592. struct ggml_tensor * a) {
  4593. bool is_node = false;
  4594. if (a->grad) {
  4595. is_node = true;
  4596. }
  4597. int64_t ne[4] = {1,1,1,1};
  4598. for (int i=1; i<a->n_dims; ++i) {
  4599. ne[i] = a->ne[i];
  4600. }
  4601. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4602. result->op = GGML_OP_SUM_ROWS;
  4603. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4604. result->src[0] = a;
  4605. return result;
  4606. }
  4607. // ggml_mean
  4608. struct ggml_tensor * ggml_mean(
  4609. struct ggml_context * ctx,
  4610. struct ggml_tensor * a) {
  4611. bool is_node = false;
  4612. if (a->grad) {
  4613. GGML_ASSERT(false); // TODO: implement
  4614. is_node = true;
  4615. }
  4616. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4617. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4618. result->op = GGML_OP_MEAN;
  4619. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4620. result->src[0] = a;
  4621. return result;
  4622. }
  4623. // ggml_argmax
  4624. struct ggml_tensor * ggml_argmax(
  4625. struct ggml_context * ctx,
  4626. struct ggml_tensor * a) {
  4627. GGML_ASSERT(ggml_is_matrix(a));
  4628. bool is_node = false;
  4629. if (a->grad) {
  4630. GGML_ASSERT(false);
  4631. is_node = true;
  4632. }
  4633. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  4634. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  4635. result->op = GGML_OP_ARGMAX;
  4636. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4637. result->src[0] = a;
  4638. return result;
  4639. }
  4640. // ggml_repeat
  4641. struct ggml_tensor * ggml_repeat(
  4642. struct ggml_context * ctx,
  4643. struct ggml_tensor * a,
  4644. struct ggml_tensor * b) {
  4645. GGML_ASSERT(ggml_can_repeat(a, b));
  4646. bool is_node = false;
  4647. if (a->grad) {
  4648. is_node = true;
  4649. }
  4650. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4651. result->op = GGML_OP_REPEAT;
  4652. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4653. result->src[0] = a;
  4654. result->src[1] = b;
  4655. return result;
  4656. }
  4657. // ggml_repeat_back
  4658. struct ggml_tensor * ggml_repeat_back(
  4659. struct ggml_context * ctx,
  4660. struct ggml_tensor * a,
  4661. struct ggml_tensor * b) {
  4662. GGML_ASSERT(ggml_can_repeat(b, a));
  4663. bool is_node = false;
  4664. if (a->grad) {
  4665. is_node = true;
  4666. }
  4667. if (ggml_are_same_shape(a, b) && !is_node) {
  4668. return a;
  4669. }
  4670. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4671. result->op = GGML_OP_REPEAT_BACK;
  4672. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4673. result->src[0] = a;
  4674. result->src[1] = b;
  4675. return result;
  4676. }
  4677. // ggml_concat
  4678. struct ggml_tensor * ggml_concat(
  4679. struct ggml_context* ctx,
  4680. struct ggml_tensor* a,
  4681. struct ggml_tensor* b) {
  4682. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  4683. bool is_node = false;
  4684. if (a->grad || b->grad) {
  4685. is_node = true;
  4686. }
  4687. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  4688. result->op = GGML_OP_CONCAT;
  4689. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4690. result->src[0] = a;
  4691. result->src[1] = b;
  4692. return result;
  4693. }
  4694. // ggml_abs
  4695. struct ggml_tensor * ggml_abs(
  4696. struct ggml_context * ctx,
  4697. struct ggml_tensor * a) {
  4698. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4699. }
  4700. struct ggml_tensor * ggml_abs_inplace(
  4701. struct ggml_context * ctx,
  4702. struct ggml_tensor * a) {
  4703. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4704. }
  4705. // ggml_sgn
  4706. struct ggml_tensor * ggml_sgn(
  4707. struct ggml_context * ctx,
  4708. struct ggml_tensor * a) {
  4709. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4710. }
  4711. struct ggml_tensor * ggml_sgn_inplace(
  4712. struct ggml_context * ctx,
  4713. struct ggml_tensor * a) {
  4714. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4715. }
  4716. // ggml_neg
  4717. struct ggml_tensor * ggml_neg(
  4718. struct ggml_context * ctx,
  4719. struct ggml_tensor * a) {
  4720. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4721. }
  4722. struct ggml_tensor * ggml_neg_inplace(
  4723. struct ggml_context * ctx,
  4724. struct ggml_tensor * a) {
  4725. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4726. }
  4727. // ggml_step
  4728. struct ggml_tensor * ggml_step(
  4729. struct ggml_context * ctx,
  4730. struct ggml_tensor * a) {
  4731. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4732. }
  4733. struct ggml_tensor * ggml_step_inplace(
  4734. struct ggml_context * ctx,
  4735. struct ggml_tensor * a) {
  4736. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4737. }
  4738. // ggml_tanh
  4739. struct ggml_tensor * ggml_tanh(
  4740. struct ggml_context * ctx,
  4741. struct ggml_tensor * a) {
  4742. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4743. }
  4744. struct ggml_tensor * ggml_tanh_inplace(
  4745. struct ggml_context * ctx,
  4746. struct ggml_tensor * a) {
  4747. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4748. }
  4749. // ggml_elu
  4750. struct ggml_tensor * ggml_elu(
  4751. struct ggml_context * ctx,
  4752. struct ggml_tensor * a) {
  4753. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4754. }
  4755. struct ggml_tensor * ggml_elu_inplace(
  4756. struct ggml_context * ctx,
  4757. struct ggml_tensor * a) {
  4758. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4759. }
  4760. // ggml_relu
  4761. struct ggml_tensor * ggml_relu(
  4762. struct ggml_context * ctx,
  4763. struct ggml_tensor * a) {
  4764. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4765. }
  4766. struct ggml_tensor * ggml_relu_inplace(
  4767. struct ggml_context * ctx,
  4768. struct ggml_tensor * a) {
  4769. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4770. }
  4771. // ggml_gelu
  4772. struct ggml_tensor * ggml_gelu(
  4773. struct ggml_context * ctx,
  4774. struct ggml_tensor * a) {
  4775. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4776. }
  4777. struct ggml_tensor * ggml_gelu_inplace(
  4778. struct ggml_context * ctx,
  4779. struct ggml_tensor * a) {
  4780. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4781. }
  4782. // ggml_gelu_quick
  4783. struct ggml_tensor * ggml_gelu_quick(
  4784. struct ggml_context * ctx,
  4785. struct ggml_tensor * a) {
  4786. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4787. }
  4788. struct ggml_tensor * ggml_gelu_quick_inplace(
  4789. struct ggml_context * ctx,
  4790. struct ggml_tensor * a) {
  4791. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4792. }
  4793. // ggml_silu
  4794. struct ggml_tensor * ggml_silu(
  4795. struct ggml_context * ctx,
  4796. struct ggml_tensor * a) {
  4797. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4798. }
  4799. struct ggml_tensor * ggml_silu_inplace(
  4800. struct ggml_context * ctx,
  4801. struct ggml_tensor * a) {
  4802. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4803. }
  4804. // ggml_silu_back
  4805. struct ggml_tensor * ggml_silu_back(
  4806. struct ggml_context * ctx,
  4807. struct ggml_tensor * a,
  4808. struct ggml_tensor * b) {
  4809. bool is_node = false;
  4810. if (a->grad || b->grad) {
  4811. // TODO: implement backward
  4812. is_node = true;
  4813. }
  4814. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4815. result->op = GGML_OP_SILU_BACK;
  4816. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4817. result->src[0] = a;
  4818. result->src[1] = b;
  4819. return result;
  4820. }
  4821. // ggml_norm
  4822. static struct ggml_tensor * ggml_norm_impl(
  4823. struct ggml_context * ctx,
  4824. struct ggml_tensor * a,
  4825. float eps,
  4826. bool inplace) {
  4827. bool is_node = false;
  4828. if (!inplace && (a->grad)) {
  4829. GGML_ASSERT(false); // TODO: implement backward
  4830. is_node = true;
  4831. }
  4832. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4833. ggml_set_op_params(result, &eps, sizeof(eps));
  4834. result->op = GGML_OP_NORM;
  4835. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4836. result->src[0] = a;
  4837. return result;
  4838. }
  4839. struct ggml_tensor * ggml_norm(
  4840. struct ggml_context * ctx,
  4841. struct ggml_tensor * a,
  4842. float eps) {
  4843. return ggml_norm_impl(ctx, a, eps, false);
  4844. }
  4845. struct ggml_tensor * ggml_norm_inplace(
  4846. struct ggml_context * ctx,
  4847. struct ggml_tensor * a,
  4848. float eps) {
  4849. return ggml_norm_impl(ctx, a, eps, true);
  4850. }
  4851. // ggml_rms_norm
  4852. static struct ggml_tensor * ggml_rms_norm_impl(
  4853. struct ggml_context * ctx,
  4854. struct ggml_tensor * a,
  4855. float eps,
  4856. bool inplace) {
  4857. bool is_node = false;
  4858. if (!inplace && (a->grad)) {
  4859. is_node = true;
  4860. }
  4861. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4862. ggml_set_op_params(result, &eps, sizeof(eps));
  4863. result->op = GGML_OP_RMS_NORM;
  4864. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4865. result->src[0] = a;
  4866. return result;
  4867. }
  4868. struct ggml_tensor * ggml_rms_norm(
  4869. struct ggml_context * ctx,
  4870. struct ggml_tensor * a,
  4871. float eps) {
  4872. return ggml_rms_norm_impl(ctx, a, eps, false);
  4873. }
  4874. struct ggml_tensor * ggml_rms_norm_inplace(
  4875. struct ggml_context * ctx,
  4876. struct ggml_tensor * a,
  4877. float eps) {
  4878. return ggml_rms_norm_impl(ctx, a, eps, true);
  4879. }
  4880. // ggml_rms_norm_back
  4881. struct ggml_tensor * ggml_rms_norm_back(
  4882. struct ggml_context * ctx,
  4883. struct ggml_tensor * a,
  4884. struct ggml_tensor * b,
  4885. float eps) {
  4886. bool is_node = false;
  4887. if (a->grad) {
  4888. // TODO: implement backward
  4889. is_node = true;
  4890. }
  4891. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4892. ggml_set_op_params(result, &eps, sizeof(eps));
  4893. result->op = GGML_OP_RMS_NORM_BACK;
  4894. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4895. result->src[0] = a;
  4896. result->src[1] = b;
  4897. return result;
  4898. }
  4899. // ggml_group_norm
  4900. static struct ggml_tensor * ggml_group_norm_impl(
  4901. struct ggml_context * ctx,
  4902. struct ggml_tensor * a,
  4903. int n_groups,
  4904. bool inplace) {
  4905. bool is_node = false;
  4906. if (!inplace && (a->grad)) {
  4907. GGML_ASSERT(false); // TODO: implement backward
  4908. is_node = true;
  4909. }
  4910. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4911. result->op = GGML_OP_GROUP_NORM;
  4912. result->op_params[0] = n_groups;
  4913. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4914. result->src[0] = a;
  4915. result->src[1] = NULL; // TODO: maybe store epsilon here?
  4916. return result;
  4917. }
  4918. struct ggml_tensor * ggml_group_norm(
  4919. struct ggml_context * ctx,
  4920. struct ggml_tensor * a,
  4921. int n_groups) {
  4922. return ggml_group_norm_impl(ctx, a, n_groups, false);
  4923. }
  4924. struct ggml_tensor * ggml_group_norm_inplace(
  4925. struct ggml_context * ctx,
  4926. struct ggml_tensor * a,
  4927. int n_groups) {
  4928. return ggml_group_norm_impl(ctx, a, n_groups, true);
  4929. }
  4930. // ggml_mul_mat
  4931. struct ggml_tensor * ggml_mul_mat(
  4932. struct ggml_context * ctx,
  4933. struct ggml_tensor * a,
  4934. struct ggml_tensor * b) {
  4935. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4936. GGML_ASSERT(!ggml_is_transposed(a));
  4937. bool is_node = false;
  4938. if (a->grad || b->grad) {
  4939. is_node = true;
  4940. }
  4941. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4942. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  4943. result->op = GGML_OP_MUL_MAT;
  4944. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4945. result->src[0] = a;
  4946. result->src[1] = b;
  4947. return result;
  4948. }
  4949. // ggml_out_prod
  4950. struct ggml_tensor * ggml_out_prod(
  4951. struct ggml_context * ctx,
  4952. struct ggml_tensor * a,
  4953. struct ggml_tensor * b) {
  4954. GGML_ASSERT(ggml_can_out_prod(a, b));
  4955. GGML_ASSERT(!ggml_is_transposed(a));
  4956. bool is_node = false;
  4957. if (a->grad || b->grad) {
  4958. is_node = true;
  4959. }
  4960. const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] };
  4961. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4962. result->op = GGML_OP_OUT_PROD;
  4963. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4964. result->src[0] = a;
  4965. result->src[1] = b;
  4966. return result;
  4967. }
  4968. // ggml_scale
  4969. static struct ggml_tensor * ggml_scale_impl(
  4970. struct ggml_context * ctx,
  4971. struct ggml_tensor * a,
  4972. struct ggml_tensor * b,
  4973. bool inplace) {
  4974. GGML_ASSERT(ggml_is_scalar(b));
  4975. GGML_ASSERT(ggml_is_padded_1d(a));
  4976. bool is_node = false;
  4977. if (a->grad || b->grad) {
  4978. is_node = true;
  4979. }
  4980. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4981. result->op = GGML_OP_SCALE;
  4982. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4983. result->src[0] = a;
  4984. result->src[1] = b;
  4985. return result;
  4986. }
  4987. struct ggml_tensor * ggml_scale(
  4988. struct ggml_context * ctx,
  4989. struct ggml_tensor * a,
  4990. struct ggml_tensor * b) {
  4991. return ggml_scale_impl(ctx, a, b, false);
  4992. }
  4993. struct ggml_tensor * ggml_scale_inplace(
  4994. struct ggml_context * ctx,
  4995. struct ggml_tensor * a,
  4996. struct ggml_tensor * b) {
  4997. return ggml_scale_impl(ctx, a, b, true);
  4998. }
  4999. // ggml_set
  5000. static struct ggml_tensor * ggml_set_impl(
  5001. struct ggml_context * ctx,
  5002. struct ggml_tensor * a,
  5003. struct ggml_tensor * b,
  5004. size_t nb1,
  5005. size_t nb2,
  5006. size_t nb3,
  5007. size_t offset,
  5008. bool inplace) {
  5009. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  5010. bool is_node = false;
  5011. if (a->grad || b->grad) {
  5012. is_node = true;
  5013. }
  5014. // make a view of the destination
  5015. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5016. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  5017. ggml_set_op_params(result, params, sizeof(params));
  5018. result->op = GGML_OP_SET;
  5019. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5020. result->src[0] = a;
  5021. result->src[1] = b;
  5022. return result;
  5023. }
  5024. struct ggml_tensor * ggml_set(
  5025. struct ggml_context * ctx,
  5026. struct ggml_tensor * a,
  5027. struct ggml_tensor * b,
  5028. size_t nb1,
  5029. size_t nb2,
  5030. size_t nb3,
  5031. size_t offset) {
  5032. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  5033. }
  5034. struct ggml_tensor * ggml_set_inplace(
  5035. struct ggml_context * ctx,
  5036. struct ggml_tensor * a,
  5037. struct ggml_tensor * b,
  5038. size_t nb1,
  5039. size_t nb2,
  5040. size_t nb3,
  5041. size_t offset) {
  5042. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  5043. }
  5044. struct ggml_tensor * ggml_set_1d(
  5045. struct ggml_context * ctx,
  5046. struct ggml_tensor * a,
  5047. struct ggml_tensor * b,
  5048. size_t offset) {
  5049. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  5050. }
  5051. struct ggml_tensor * ggml_set_1d_inplace(
  5052. struct ggml_context * ctx,
  5053. struct ggml_tensor * a,
  5054. struct ggml_tensor * b,
  5055. size_t offset) {
  5056. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  5057. }
  5058. struct ggml_tensor * ggml_set_2d(
  5059. struct ggml_context * ctx,
  5060. struct ggml_tensor * a,
  5061. struct ggml_tensor * b,
  5062. size_t nb1,
  5063. size_t offset) {
  5064. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  5065. }
  5066. struct ggml_tensor * ggml_set_2d_inplace(
  5067. struct ggml_context * ctx,
  5068. struct ggml_tensor * a,
  5069. struct ggml_tensor * b,
  5070. size_t nb1,
  5071. size_t offset) {
  5072. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  5073. }
  5074. // ggml_cpy
  5075. static struct ggml_tensor * ggml_cpy_impl(
  5076. struct ggml_context * ctx,
  5077. struct ggml_tensor * a,
  5078. struct ggml_tensor * b,
  5079. bool inplace) {
  5080. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5081. bool is_node = false;
  5082. if (!inplace && (a->grad || b->grad)) {
  5083. is_node = true;
  5084. }
  5085. // make a view of the destination
  5086. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  5087. if (strlen(b->name) > 0) {
  5088. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  5089. } else {
  5090. ggml_format_name(result, "%s (copy)", a->name);
  5091. }
  5092. result->op = GGML_OP_CPY;
  5093. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5094. result->src[0] = a;
  5095. result->src[1] = b;
  5096. return result;
  5097. }
  5098. struct ggml_tensor * ggml_cpy(
  5099. struct ggml_context * ctx,
  5100. struct ggml_tensor * a,
  5101. struct ggml_tensor * b) {
  5102. return ggml_cpy_impl(ctx, a, b, false);
  5103. }
  5104. struct ggml_tensor * ggml_cpy_inplace(
  5105. struct ggml_context * ctx,
  5106. struct ggml_tensor * a,
  5107. struct ggml_tensor * b) {
  5108. return ggml_cpy_impl(ctx, a, b, true);
  5109. }
  5110. // ggml_cont
  5111. static struct ggml_tensor * ggml_cont_impl(
  5112. struct ggml_context * ctx,
  5113. struct ggml_tensor * a,
  5114. bool inplace) {
  5115. bool is_node = false;
  5116. if (!inplace && a->grad) {
  5117. is_node = true;
  5118. }
  5119. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5120. ggml_format_name(result, "%s (cont)", a->name);
  5121. result->op = GGML_OP_CONT;
  5122. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5123. result->src[0] = a;
  5124. return result;
  5125. }
  5126. struct ggml_tensor * ggml_cont(
  5127. struct ggml_context * ctx,
  5128. struct ggml_tensor * a) {
  5129. return ggml_cont_impl(ctx, a, false);
  5130. }
  5131. struct ggml_tensor * ggml_cont_inplace(
  5132. struct ggml_context * ctx,
  5133. struct ggml_tensor * a) {
  5134. return ggml_cont_impl(ctx, a, true);
  5135. }
  5136. // ggml_reshape
  5137. struct ggml_tensor * ggml_reshape(
  5138. struct ggml_context * ctx,
  5139. struct ggml_tensor * a,
  5140. struct ggml_tensor * b) {
  5141. GGML_ASSERT(ggml_is_contiguous(a));
  5142. GGML_ASSERT(ggml_is_contiguous(b));
  5143. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5144. bool is_node = false;
  5145. if (a->grad) {
  5146. is_node = true;
  5147. }
  5148. if (b->grad) {
  5149. // gradient propagation is not supported
  5150. //GGML_ASSERT(false);
  5151. }
  5152. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a, 0);
  5153. ggml_format_name(result, "%s (reshaped)", a->name);
  5154. result->op = GGML_OP_RESHAPE;
  5155. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5156. result->src[0] = a;
  5157. return result;
  5158. }
  5159. struct ggml_tensor * ggml_reshape_1d(
  5160. struct ggml_context * ctx,
  5161. struct ggml_tensor * a,
  5162. int64_t ne0) {
  5163. GGML_ASSERT(ggml_is_contiguous(a));
  5164. GGML_ASSERT(ggml_nelements(a) == ne0);
  5165. bool is_node = false;
  5166. if (a->grad) {
  5167. is_node = true;
  5168. }
  5169. const int64_t ne[1] = { ne0 };
  5170. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  5171. ggml_format_name(result, "%s (reshaped)", a->name);
  5172. result->op = GGML_OP_RESHAPE;
  5173. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5174. result->src[0] = a;
  5175. return result;
  5176. }
  5177. struct ggml_tensor * ggml_reshape_2d(
  5178. struct ggml_context * ctx,
  5179. struct ggml_tensor * a,
  5180. int64_t ne0,
  5181. int64_t ne1) {
  5182. GGML_ASSERT(ggml_is_contiguous(a));
  5183. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  5184. bool is_node = false;
  5185. if (a->grad) {
  5186. is_node = true;
  5187. }
  5188. const int64_t ne[2] = { ne0, ne1 };
  5189. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  5190. ggml_format_name(result, "%s (reshaped)", a->name);
  5191. result->op = GGML_OP_RESHAPE;
  5192. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5193. result->src[0] = a;
  5194. return result;
  5195. }
  5196. struct ggml_tensor * ggml_reshape_3d(
  5197. struct ggml_context * ctx,
  5198. struct ggml_tensor * a,
  5199. int64_t ne0,
  5200. int64_t ne1,
  5201. int64_t ne2) {
  5202. GGML_ASSERT(ggml_is_contiguous(a));
  5203. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  5204. bool is_node = false;
  5205. if (a->grad) {
  5206. is_node = true;
  5207. }
  5208. const int64_t ne[3] = { ne0, ne1, ne2 };
  5209. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  5210. ggml_format_name(result, "%s (reshaped)", a->name);
  5211. result->op = GGML_OP_RESHAPE;
  5212. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5213. result->src[0] = a;
  5214. return result;
  5215. }
  5216. struct ggml_tensor * ggml_reshape_4d(
  5217. struct ggml_context * ctx,
  5218. struct ggml_tensor * a,
  5219. int64_t ne0,
  5220. int64_t ne1,
  5221. int64_t ne2,
  5222. int64_t ne3) {
  5223. GGML_ASSERT(ggml_is_contiguous(a));
  5224. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  5225. bool is_node = false;
  5226. if (a->grad) {
  5227. is_node = true;
  5228. }
  5229. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5230. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  5231. ggml_format_name(result, "%s (reshaped)", a->name);
  5232. result->op = GGML_OP_RESHAPE;
  5233. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5234. result->src[0] = a;
  5235. return result;
  5236. }
  5237. static struct ggml_tensor * ggml_view_impl(
  5238. struct ggml_context * ctx,
  5239. struct ggml_tensor * a,
  5240. int n_dims,
  5241. const int64_t * ne,
  5242. size_t offset) {
  5243. bool is_node = false;
  5244. if (a->grad) {
  5245. is_node = true;
  5246. }
  5247. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  5248. ggml_format_name(result, "%s (view)", a->name);
  5249. ggml_set_op_params(result, &offset, sizeof(offset));
  5250. result->op = GGML_OP_VIEW;
  5251. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5252. result->src[0] = a;
  5253. return result;
  5254. }
  5255. // ggml_view_1d
  5256. struct ggml_tensor * ggml_view_1d(
  5257. struct ggml_context * ctx,
  5258. struct ggml_tensor * a,
  5259. int64_t ne0,
  5260. size_t offset) {
  5261. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  5262. return result;
  5263. }
  5264. // ggml_view_2d
  5265. struct ggml_tensor * ggml_view_2d(
  5266. struct ggml_context * ctx,
  5267. struct ggml_tensor * a,
  5268. int64_t ne0,
  5269. int64_t ne1,
  5270. size_t nb1,
  5271. size_t offset) {
  5272. const int64_t ne[2] = { ne0, ne1 };
  5273. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  5274. result->nb[1] = nb1;
  5275. result->nb[2] = result->nb[1]*ne1;
  5276. result->nb[3] = result->nb[2];
  5277. return result;
  5278. }
  5279. // ggml_view_3d
  5280. struct ggml_tensor * ggml_view_3d(
  5281. struct ggml_context * ctx,
  5282. struct ggml_tensor * a,
  5283. int64_t ne0,
  5284. int64_t ne1,
  5285. int64_t ne2,
  5286. size_t nb1,
  5287. size_t nb2,
  5288. size_t offset) {
  5289. const int64_t ne[3] = { ne0, ne1, ne2 };
  5290. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  5291. result->nb[1] = nb1;
  5292. result->nb[2] = nb2;
  5293. result->nb[3] = result->nb[2]*ne2;
  5294. return result;
  5295. }
  5296. // ggml_view_4d
  5297. struct ggml_tensor * ggml_view_4d(
  5298. struct ggml_context * ctx,
  5299. struct ggml_tensor * a,
  5300. int64_t ne0,
  5301. int64_t ne1,
  5302. int64_t ne2,
  5303. int64_t ne3,
  5304. size_t nb1,
  5305. size_t nb2,
  5306. size_t nb3,
  5307. size_t offset) {
  5308. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5309. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  5310. result->nb[1] = nb1;
  5311. result->nb[2] = nb2;
  5312. result->nb[3] = nb3;
  5313. return result;
  5314. }
  5315. // ggml_permute
  5316. struct ggml_tensor * ggml_permute(
  5317. struct ggml_context * ctx,
  5318. struct ggml_tensor * a,
  5319. int axis0,
  5320. int axis1,
  5321. int axis2,
  5322. int axis3) {
  5323. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5324. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5325. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5326. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5327. GGML_ASSERT(axis0 != axis1);
  5328. GGML_ASSERT(axis0 != axis2);
  5329. GGML_ASSERT(axis0 != axis3);
  5330. GGML_ASSERT(axis1 != axis2);
  5331. GGML_ASSERT(axis1 != axis3);
  5332. GGML_ASSERT(axis2 != axis3);
  5333. bool is_node = false;
  5334. if (a->grad) {
  5335. is_node = true;
  5336. }
  5337. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5338. ggml_format_name(result, "%s (permuted)", a->name);
  5339. int ne[GGML_MAX_DIMS];
  5340. int nb[GGML_MAX_DIMS];
  5341. ne[axis0] = a->ne[0];
  5342. ne[axis1] = a->ne[1];
  5343. ne[axis2] = a->ne[2];
  5344. ne[axis3] = a->ne[3];
  5345. nb[axis0] = a->nb[0];
  5346. nb[axis1] = a->nb[1];
  5347. nb[axis2] = a->nb[2];
  5348. nb[axis3] = a->nb[3];
  5349. result->ne[0] = ne[0];
  5350. result->ne[1] = ne[1];
  5351. result->ne[2] = ne[2];
  5352. result->ne[3] = ne[3];
  5353. result->nb[0] = nb[0];
  5354. result->nb[1] = nb[1];
  5355. result->nb[2] = nb[2];
  5356. result->nb[3] = nb[3];
  5357. result->op = GGML_OP_PERMUTE;
  5358. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5359. result->src[0] = a;
  5360. int32_t params[] = { axis0, axis1, axis2, axis3 };
  5361. ggml_set_op_params(result, params, sizeof(params));
  5362. return result;
  5363. }
  5364. // ggml_transpose
  5365. struct ggml_tensor * ggml_transpose(
  5366. struct ggml_context * ctx,
  5367. struct ggml_tensor * a) {
  5368. bool is_node = false;
  5369. if (a->grad) {
  5370. is_node = true;
  5371. }
  5372. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5373. ggml_format_name(result, "%s (transposed)", a->name);
  5374. result->ne[0] = a->ne[1];
  5375. result->ne[1] = a->ne[0];
  5376. result->nb[0] = a->nb[1];
  5377. result->nb[1] = a->nb[0];
  5378. result->op = GGML_OP_TRANSPOSE;
  5379. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5380. result->src[0] = a;
  5381. return result;
  5382. }
  5383. // ggml_get_rows
  5384. struct ggml_tensor * ggml_get_rows(
  5385. struct ggml_context * ctx,
  5386. struct ggml_tensor * a,
  5387. struct ggml_tensor * b) {
  5388. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5389. bool is_node = false;
  5390. if (a->grad || b->grad) {
  5391. is_node = true;
  5392. }
  5393. // TODO: implement non F32 return
  5394. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5395. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  5396. result->op = GGML_OP_GET_ROWS;
  5397. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5398. result->src[0] = a;
  5399. result->src[1] = b;
  5400. return result;
  5401. }
  5402. // ggml_get_rows_back
  5403. struct ggml_tensor * ggml_get_rows_back(
  5404. struct ggml_context * ctx,
  5405. struct ggml_tensor * a,
  5406. struct ggml_tensor * b,
  5407. struct ggml_tensor * c) {
  5408. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5409. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5410. bool is_node = false;
  5411. if (a->grad || b->grad) {
  5412. is_node = true;
  5413. }
  5414. // TODO: implement non F32 return
  5415. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5416. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5417. result->op = GGML_OP_GET_ROWS_BACK;
  5418. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5419. result->src[0] = a;
  5420. result->src[1] = b;
  5421. result->src[2] = c;
  5422. return result;
  5423. }
  5424. // ggml_diag
  5425. struct ggml_tensor * ggml_diag(
  5426. struct ggml_context * ctx,
  5427. struct ggml_tensor * a) {
  5428. GGML_ASSERT(a->ne[1] == 1);
  5429. bool is_node = false;
  5430. if (a->grad) {
  5431. is_node = true;
  5432. }
  5433. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5434. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  5435. result->op = GGML_OP_DIAG;
  5436. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5437. result->src[0] = a;
  5438. return result;
  5439. }
  5440. // ggml_diag_mask_inf
  5441. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5442. struct ggml_context * ctx,
  5443. struct ggml_tensor * a,
  5444. int n_past,
  5445. bool inplace) {
  5446. bool is_node = false;
  5447. if (a->grad) {
  5448. is_node = true;
  5449. }
  5450. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5451. int32_t params[] = { n_past };
  5452. ggml_set_op_params(result, params, sizeof(params));
  5453. result->op = GGML_OP_DIAG_MASK_INF;
  5454. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5455. result->src[0] = a;
  5456. return result;
  5457. }
  5458. struct ggml_tensor * ggml_diag_mask_inf(
  5459. struct ggml_context * ctx,
  5460. struct ggml_tensor * a,
  5461. int n_past) {
  5462. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5463. }
  5464. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5465. struct ggml_context * ctx,
  5466. struct ggml_tensor * a,
  5467. int n_past) {
  5468. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5469. }
  5470. // ggml_diag_mask_zero
  5471. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5472. struct ggml_context * ctx,
  5473. struct ggml_tensor * a,
  5474. int n_past,
  5475. bool inplace) {
  5476. bool is_node = false;
  5477. if (a->grad) {
  5478. is_node = true;
  5479. }
  5480. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5481. int32_t params[] = { n_past };
  5482. ggml_set_op_params(result, params, sizeof(params));
  5483. result->op = GGML_OP_DIAG_MASK_ZERO;
  5484. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5485. result->src[0] = a;
  5486. return result;
  5487. }
  5488. struct ggml_tensor * ggml_diag_mask_zero(
  5489. struct ggml_context * ctx,
  5490. struct ggml_tensor * a,
  5491. int n_past) {
  5492. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5493. }
  5494. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5495. struct ggml_context * ctx,
  5496. struct ggml_tensor * a,
  5497. int n_past) {
  5498. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5499. }
  5500. // ggml_soft_max
  5501. static struct ggml_tensor * ggml_soft_max_impl(
  5502. struct ggml_context * ctx,
  5503. struct ggml_tensor * a,
  5504. bool inplace) {
  5505. bool is_node = false;
  5506. if (a->grad) {
  5507. is_node = true;
  5508. }
  5509. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5510. result->op = GGML_OP_SOFT_MAX;
  5511. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5512. result->src[0] = a;
  5513. return result;
  5514. }
  5515. struct ggml_tensor * ggml_soft_max(
  5516. struct ggml_context * ctx,
  5517. struct ggml_tensor * a) {
  5518. return ggml_soft_max_impl(ctx, a, false);
  5519. }
  5520. struct ggml_tensor * ggml_soft_max_inplace(
  5521. struct ggml_context * ctx,
  5522. struct ggml_tensor * a) {
  5523. return ggml_soft_max_impl(ctx, a, true);
  5524. }
  5525. // ggml_soft_max_back
  5526. static struct ggml_tensor * ggml_soft_max_back_impl(
  5527. struct ggml_context * ctx,
  5528. struct ggml_tensor * a,
  5529. struct ggml_tensor * b,
  5530. bool inplace) {
  5531. bool is_node = false;
  5532. if (a->grad || b->grad) {
  5533. is_node = true; // TODO : implement backward pass
  5534. }
  5535. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5536. result->op = GGML_OP_SOFT_MAX_BACK;
  5537. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5538. result->src[0] = a;
  5539. result->src[1] = b;
  5540. return result;
  5541. }
  5542. struct ggml_tensor * ggml_soft_max_back(
  5543. struct ggml_context * ctx,
  5544. struct ggml_tensor * a,
  5545. struct ggml_tensor * b) {
  5546. return ggml_soft_max_back_impl(ctx, a, b, false);
  5547. }
  5548. struct ggml_tensor * ggml_soft_max_back_inplace(
  5549. struct ggml_context * ctx,
  5550. struct ggml_tensor * a,
  5551. struct ggml_tensor * b) {
  5552. return ggml_soft_max_back_impl(ctx, a, b, true);
  5553. }
  5554. // ggml_rope
  5555. static struct ggml_tensor * ggml_rope_impl(
  5556. struct ggml_context * ctx,
  5557. struct ggml_tensor * a,
  5558. int n_past,
  5559. int n_dims,
  5560. int mode,
  5561. int n_ctx,
  5562. float freq_base,
  5563. float freq_scale,
  5564. float xpos_base,
  5565. bool xpos_down,
  5566. bool inplace) {
  5567. GGML_ASSERT(n_past >= 0);
  5568. bool is_node = false;
  5569. if (a->grad) {
  5570. is_node = true;
  5571. }
  5572. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5573. int32_t params[8] = { n_past, n_dims, mode, n_ctx };
  5574. memcpy(params + 4, &freq_base, sizeof(float));
  5575. memcpy(params + 5, &freq_scale, sizeof(float));
  5576. memcpy(params + 6, &xpos_base, sizeof(float));
  5577. memcpy(params + 7, &xpos_down, sizeof(bool));
  5578. ggml_set_op_params(result, params, sizeof(params));
  5579. result->op = GGML_OP_ROPE;
  5580. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5581. result->src[0] = a;
  5582. return result;
  5583. }
  5584. struct ggml_tensor * ggml_rope(
  5585. struct ggml_context * ctx,
  5586. struct ggml_tensor * a,
  5587. int n_past,
  5588. int n_dims,
  5589. int mode,
  5590. int n_ctx) {
  5591. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, 0.0f, false, false);
  5592. }
  5593. struct ggml_tensor * ggml_rope_inplace(
  5594. struct ggml_context * ctx,
  5595. struct ggml_tensor * a,
  5596. int n_past,
  5597. int n_dims,
  5598. int mode,
  5599. int n_ctx) {
  5600. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, 0.0f, false, true);
  5601. }
  5602. struct ggml_tensor * ggml_rope_custom(
  5603. struct ggml_context * ctx,
  5604. struct ggml_tensor * a,
  5605. int n_past,
  5606. int n_dims,
  5607. int mode,
  5608. int n_ctx,
  5609. float freq_base,
  5610. float freq_scale) {
  5611. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, 0.0f, false, false);
  5612. }
  5613. struct ggml_tensor * ggml_rope_custom_inplace(
  5614. struct ggml_context * ctx,
  5615. struct ggml_tensor * a,
  5616. int n_past,
  5617. int n_dims,
  5618. int mode,
  5619. int n_ctx,
  5620. float freq_base,
  5621. float freq_scale) {
  5622. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, 0.0f, false, true);
  5623. }
  5624. struct ggml_tensor * ggml_rope_xpos_inplace(
  5625. struct ggml_context * ctx,
  5626. struct ggml_tensor * a,
  5627. int n_past,
  5628. int n_dims,
  5629. float base,
  5630. bool down) {
  5631. return ggml_rope_impl(ctx, a, n_past, n_dims, 0, 0, 10000.0f, 1.0f, base, down, true);
  5632. }
  5633. // ggml_rope_back
  5634. struct ggml_tensor * ggml_rope_back(
  5635. struct ggml_context * ctx,
  5636. struct ggml_tensor * a,
  5637. int n_past,
  5638. int n_dims,
  5639. int mode,
  5640. int n_ctx,
  5641. float freq_base,
  5642. float freq_scale,
  5643. float xpos_base,
  5644. bool xpos_down) {
  5645. GGML_ASSERT(n_past >= 0);
  5646. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5647. bool is_node = false;
  5648. if (a->grad) {
  5649. is_node = false; // TODO: implement backward
  5650. }
  5651. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5652. int32_t params[8] = { n_past, n_dims, mode, n_ctx };
  5653. memcpy(params + 4, &freq_base, sizeof(float));
  5654. memcpy(params + 5, &freq_scale, sizeof(float));
  5655. memcpy(params + 6, &xpos_base, sizeof(float));
  5656. memcpy(params + 7, &xpos_down, sizeof(bool));
  5657. ggml_set_op_params(result, params, sizeof(params));
  5658. result->op = GGML_OP_ROPE_BACK;
  5659. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5660. result->src[0] = a;
  5661. return result;
  5662. }
  5663. // ggml_alibi
  5664. struct ggml_tensor * ggml_alibi(
  5665. struct ggml_context * ctx,
  5666. struct ggml_tensor * a,
  5667. int n_past,
  5668. int n_head,
  5669. float bias_max) {
  5670. GGML_ASSERT(n_past >= 0);
  5671. bool is_node = false;
  5672. if (a->grad) {
  5673. GGML_ASSERT(false); // TODO: implement backward
  5674. is_node = true;
  5675. }
  5676. // TODO: when implement backward, fix this:
  5677. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5678. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5679. int32_t op_params[3] = { n_past, n_head };
  5680. memcpy(op_params + 2, &bias_max, sizeof(float));
  5681. ggml_set_op_params(result, op_params, sizeof(op_params));
  5682. result->op = GGML_OP_ALIBI;
  5683. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5684. result->src[0] = a;
  5685. return result;
  5686. }
  5687. // ggml_clamp
  5688. struct ggml_tensor * ggml_clamp(
  5689. struct ggml_context * ctx,
  5690. struct ggml_tensor * a,
  5691. float min,
  5692. float max) {
  5693. bool is_node = false;
  5694. if (a->grad) {
  5695. GGML_ASSERT(false); // TODO: implement backward
  5696. is_node = true;
  5697. }
  5698. // TODO: when implement backward, fix this:
  5699. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5700. float params[] = { min, max };
  5701. ggml_set_op_params(result, params, sizeof(params));
  5702. result->op = GGML_OP_CLAMP;
  5703. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5704. result->src[0] = a;
  5705. return result;
  5706. }
  5707. // ggml_conv_1d
  5708. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5709. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5710. }
  5711. GGML_API struct ggml_tensor * ggml_conv_1d(
  5712. struct ggml_context * ctx,
  5713. struct ggml_tensor * a,
  5714. struct ggml_tensor * b,
  5715. int s0,
  5716. int p0,
  5717. int d0) {
  5718. GGML_ASSERT(ggml_is_matrix(b));
  5719. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5720. bool is_node = false;
  5721. if (a->grad || b->grad) {
  5722. GGML_ASSERT(false); // TODO: implement backward
  5723. is_node = true;
  5724. }
  5725. const int64_t ne[4] = {
  5726. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5727. a->ne[2], 1, 1,
  5728. };
  5729. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5730. int32_t params[] = { s0, p0, d0 };
  5731. ggml_set_op_params(result, params, sizeof(params));
  5732. result->op = GGML_OP_CONV_1D;
  5733. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5734. result->src[0] = a;
  5735. result->src[1] = b;
  5736. return result;
  5737. }
  5738. // ggml_conv_1d_ph
  5739. struct ggml_tensor* ggml_conv_1d_ph(
  5740. struct ggml_context * ctx,
  5741. struct ggml_tensor * a,
  5742. struct ggml_tensor * b,
  5743. int s,
  5744. int d) {
  5745. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5746. }
  5747. // ggml_conv_2d
  5748. struct ggml_tensor * ggml_conv_2d(
  5749. struct ggml_context * ctx,
  5750. struct ggml_tensor * a,
  5751. struct ggml_tensor * b,
  5752. int s0,
  5753. int s1,
  5754. int p0,
  5755. int p1,
  5756. int d0,
  5757. int d1) {
  5758. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5759. bool is_node = false;
  5760. if (a->grad || b->grad) {
  5761. GGML_ASSERT(false); // TODO: implement backward
  5762. is_node = true;
  5763. }
  5764. const int64_t ne[4] = {
  5765. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5766. ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1),
  5767. a->ne[3], b->ne[3],
  5768. };
  5769. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5770. int32_t params[] = { s0, s1, p0, p1, d0, d1 };
  5771. ggml_set_op_params(result, params, sizeof(params));
  5772. result->op = GGML_OP_CONV_2D;
  5773. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5774. result->src[0] = a;
  5775. result->src[1] = b;
  5776. return result;
  5777. }
  5778. // ggml_conv_2d_sk_p0
  5779. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5780. struct ggml_context * ctx,
  5781. struct ggml_tensor * a,
  5782. struct ggml_tensor * b) {
  5783. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5784. }
  5785. // ggml_conv_2d_s1_ph
  5786. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5787. struct ggml_context * ctx,
  5788. struct ggml_tensor * a,
  5789. struct ggml_tensor * b) {
  5790. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5791. }
  5792. // ggml_conv_transpose_2d_p0
  5793. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5794. return (ins - 1) * s - 2 * p + ks;
  5795. }
  5796. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5797. struct ggml_context * ctx,
  5798. struct ggml_tensor * a,
  5799. struct ggml_tensor * b,
  5800. int stride) {
  5801. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5802. bool is_node = false;
  5803. if (a->grad || b->grad) {
  5804. GGML_ASSERT(false); // TODO: implement backward
  5805. is_node = true;
  5806. }
  5807. const int64_t ne[4] = {
  5808. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5809. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5810. a->ne[2], b->ne[3],
  5811. };
  5812. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5813. ggml_set_op_params_i32(result, 0, stride);
  5814. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5815. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5816. result->src[0] = a;
  5817. result->src[1] = b;
  5818. return result;
  5819. }
  5820. // ggml_pool_*
  5821. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, int p) {
  5822. return (ins + 2 * p - ks) / s + 1;
  5823. }
  5824. // ggml_pool_1d
  5825. struct ggml_tensor * ggml_pool_1d(
  5826. struct ggml_context * ctx,
  5827. struct ggml_tensor * a,
  5828. enum ggml_op_pool op,
  5829. int k0,
  5830. int s0,
  5831. int p0) {
  5832. bool is_node = false;
  5833. if (a->grad) {
  5834. GGML_ASSERT(false); // TODO: implement backward
  5835. is_node = true;
  5836. }
  5837. const int64_t ne[3] = {
  5838. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5839. a->ne[1],
  5840. };
  5841. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5842. int32_t params[] = { op, k0, s0, p0 };
  5843. ggml_set_op_params(result, params, sizeof(params));
  5844. result->op = GGML_OP_POOL_1D;
  5845. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5846. result->src[0] = a;
  5847. return result;
  5848. }
  5849. // ggml_pool_2d
  5850. struct ggml_tensor * ggml_pool_2d(
  5851. struct ggml_context * ctx,
  5852. struct ggml_tensor * a,
  5853. enum ggml_op_pool op,
  5854. int k0,
  5855. int k1,
  5856. int s0,
  5857. int s1,
  5858. int p0,
  5859. int p1) {
  5860. bool is_node = false;
  5861. if (a->grad) {
  5862. GGML_ASSERT(false); // TODO: implement backward
  5863. is_node = true;
  5864. }
  5865. const int64_t ne[3] = {
  5866. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5867. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5868. a->ne[2],
  5869. };
  5870. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5871. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5872. ggml_set_op_params(result, params, sizeof(params));
  5873. result->op = GGML_OP_POOL_2D;
  5874. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5875. result->src[0] = a;
  5876. return result;
  5877. }
  5878. // ggml_upscale
  5879. static struct ggml_tensor * ggml_upscale_impl(
  5880. struct ggml_context * ctx,
  5881. struct ggml_tensor * a,
  5882. int scale_factor) {
  5883. bool is_node = false;
  5884. if (a->grad) {
  5885. GGML_ASSERT(false); // TODO: implement backward
  5886. is_node = true;
  5887. }
  5888. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5889. a->ne[0] * scale_factor,
  5890. a->ne[1] * scale_factor,
  5891. a->ne[2], a->ne[3]);
  5892. result->op = GGML_OP_UPSCALE;
  5893. result->op_params[0] = scale_factor;
  5894. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5895. result->src[0] = a;
  5896. result->src[1] = NULL;
  5897. return result;
  5898. }
  5899. struct ggml_tensor * ggml_upscale(
  5900. struct ggml_context * ctx,
  5901. struct ggml_tensor * a,
  5902. int scale_factor) {
  5903. return ggml_upscale_impl(ctx, a, scale_factor);
  5904. }
  5905. // ggml_flash_attn
  5906. struct ggml_tensor * ggml_flash_attn(
  5907. struct ggml_context * ctx,
  5908. struct ggml_tensor * q,
  5909. struct ggml_tensor * k,
  5910. struct ggml_tensor * v,
  5911. bool masked) {
  5912. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5913. // TODO: check if vT can be multiplied by (k*qT)
  5914. bool is_node = false;
  5915. if (q->grad || k->grad || v->grad) {
  5916. is_node = true;
  5917. }
  5918. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5919. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, q->n_dims, q->ne);
  5920. int32_t t = masked ? 1 : 0;
  5921. ggml_set_op_params(result, &t, sizeof(t));
  5922. result->op = GGML_OP_FLASH_ATTN;
  5923. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5924. result->src[0] = q;
  5925. result->src[1] = k;
  5926. result->src[2] = v;
  5927. return result;
  5928. }
  5929. // ggml_flash_ff
  5930. struct ggml_tensor * ggml_flash_ff(
  5931. struct ggml_context * ctx,
  5932. struct ggml_tensor * a,
  5933. struct ggml_tensor * b0,
  5934. struct ggml_tensor * b1,
  5935. struct ggml_tensor * c0,
  5936. struct ggml_tensor * c1) {
  5937. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5938. // TODO: more checks
  5939. bool is_node = false;
  5940. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5941. is_node = true;
  5942. }
  5943. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5944. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne);
  5945. result->op = GGML_OP_FLASH_FF;
  5946. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5947. result->src[0] = a;
  5948. result->src[1] = b0;
  5949. result->src[2] = b1;
  5950. result->src[3] = c0;
  5951. result->src[4] = c1;
  5952. return result;
  5953. }
  5954. // ggml_flash_attn_back
  5955. struct ggml_tensor * ggml_flash_attn_back(
  5956. struct ggml_context * ctx,
  5957. struct ggml_tensor * q,
  5958. struct ggml_tensor * k,
  5959. struct ggml_tensor * v,
  5960. struct ggml_tensor * d,
  5961. bool masked) {
  5962. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5963. // TODO: check if vT can be multiplied by (k*qT)
  5964. // d shape [D,N,ne2,ne3]
  5965. // q shape [D,N,ne2,ne3]
  5966. // k shape [D,M,ne2,ne3]
  5967. // v shape [M,D,ne2,ne3]
  5968. const int64_t D = q->ne[0];
  5969. const int64_t N = q->ne[1];
  5970. const int64_t M = k->ne[1];
  5971. const int64_t ne2 = q->ne[2];
  5972. const int64_t ne3 = q->ne[3];
  5973. GGML_ASSERT(k->ne[0] == D);
  5974. GGML_ASSERT(v->ne[0] == M);
  5975. GGML_ASSERT(v->ne[1] == D);
  5976. GGML_ASSERT(d->ne[0] == D);
  5977. GGML_ASSERT(d->ne[1] == N);
  5978. GGML_ASSERT(k->ne[2] == ne2);
  5979. GGML_ASSERT(k->ne[3] == ne3);
  5980. GGML_ASSERT(v->ne[2] == ne2);
  5981. GGML_ASSERT(v->ne[3] == ne3);
  5982. GGML_ASSERT(d->ne[2] == ne2);
  5983. GGML_ASSERT(d->ne[3] == ne3);
  5984. bool is_node = false;
  5985. if (q->grad || k->grad || v->grad) {
  5986. // when using this operation (in backwards pass) these grads are set.
  5987. // we don't want to create (big) grad of our result, so is_node is false.
  5988. is_node = false;
  5989. }
  5990. // store gradients of q, k and v as continuous tensors concatenated in result.
  5991. // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3]
  5992. // gradq->data = result->data
  5993. // gradk->data = result->data + nb0*D*N*ne2*ne3
  5994. // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3
  5995. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5996. int64_t ne[4] = {D,M+N+M,ne2,ne3};
  5997. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5998. int32_t masked_i = masked ? 1 : 0;
  5999. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  6000. result->op = GGML_OP_FLASH_ATTN_BACK;
  6001. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6002. result->src[0] = q;
  6003. result->src[1] = k;
  6004. result->src[2] = v;
  6005. result->src[3] = d;
  6006. return result;
  6007. }
  6008. // ggml_win_part
  6009. struct ggml_tensor * ggml_win_part(
  6010. struct ggml_context * ctx,
  6011. struct ggml_tensor * a,
  6012. int w) {
  6013. GGML_ASSERT(a->ne[3] == 1);
  6014. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6015. bool is_node = false;
  6016. if (a->grad) {
  6017. GGML_ASSERT(false); // TODO: implement backward
  6018. is_node = true;
  6019. }
  6020. // padding
  6021. const int px = (w - a->ne[1]%w)%w;
  6022. const int py = (w - a->ne[2]%w)%w;
  6023. const int npx = (px + a->ne[1])/w;
  6024. const int npy = (py + a->ne[2])/w;
  6025. const int np = npx*npy;
  6026. const int64_t ne[4] = { a->ne[0], w, w, np, };
  6027. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  6028. int32_t params[] = { npx, npy, w };
  6029. ggml_set_op_params(result, params, sizeof(params));
  6030. result->op = GGML_OP_WIN_PART;
  6031. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6032. result->src[0] = a;
  6033. return result;
  6034. }
  6035. // ggml_win_unpart
  6036. struct ggml_tensor * ggml_win_unpart(
  6037. struct ggml_context * ctx,
  6038. struct ggml_tensor * a,
  6039. int w0,
  6040. int h0,
  6041. int w) {
  6042. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6043. bool is_node = false;
  6044. if (a->grad) {
  6045. GGML_ASSERT(false); // TODO: implement backward
  6046. is_node = true;
  6047. }
  6048. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  6049. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  6050. int32_t params[] = { w };
  6051. ggml_set_op_params(result, params, sizeof(params));
  6052. result->op = GGML_OP_WIN_UNPART;
  6053. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6054. result->src[0] = a;
  6055. return result;
  6056. }
  6057. // ggml_get_rel_pos
  6058. struct ggml_tensor * ggml_get_rel_pos(
  6059. struct ggml_context * ctx,
  6060. struct ggml_tensor * a,
  6061. int qh,
  6062. int kh) {
  6063. GGML_ASSERT(qh == kh);
  6064. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  6065. bool is_node = false;
  6066. if (a->grad) {
  6067. GGML_ASSERT(false); // TODO: implement backward
  6068. is_node = true;
  6069. }
  6070. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  6071. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  6072. result->op = GGML_OP_GET_REL_POS;
  6073. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6074. result->src[0] = a;
  6075. result->src[1] = NULL;
  6076. return result;
  6077. }
  6078. // ggml_add_rel_pos
  6079. static struct ggml_tensor * ggml_add_rel_pos_impl(
  6080. struct ggml_context * ctx,
  6081. struct ggml_tensor * a,
  6082. struct ggml_tensor * pw,
  6083. struct ggml_tensor * ph,
  6084. bool inplace) {
  6085. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  6086. GGML_ASSERT(ggml_is_contiguous(a));
  6087. GGML_ASSERT(ggml_is_contiguous(pw));
  6088. GGML_ASSERT(ggml_is_contiguous(ph));
  6089. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  6090. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  6091. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  6092. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  6093. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  6094. bool is_node = false;
  6095. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  6096. is_node = true;
  6097. }
  6098. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6099. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  6100. result->op = GGML_OP_ADD_REL_POS;
  6101. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6102. result->src[0] = a;
  6103. result->src[1] = pw;
  6104. result->src[2] = ph;
  6105. return result;
  6106. }
  6107. struct ggml_tensor * ggml_add_rel_pos(
  6108. struct ggml_context * ctx,
  6109. struct ggml_tensor * a,
  6110. struct ggml_tensor * pw,
  6111. struct ggml_tensor * ph) {
  6112. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  6113. }
  6114. struct ggml_tensor * ggml_add_rel_pos_inplace(
  6115. struct ggml_context * ctx,
  6116. struct ggml_tensor * a,
  6117. struct ggml_tensor * pw,
  6118. struct ggml_tensor * ph) {
  6119. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  6120. }
  6121. // gmml_unary
  6122. static struct ggml_tensor * ggml_unary_impl(
  6123. struct ggml_context * ctx,
  6124. struct ggml_tensor * a,
  6125. enum ggml_unary_op op,
  6126. bool inplace) {
  6127. bool is_node = false;
  6128. if (!inplace && (a->grad)) {
  6129. is_node = true;
  6130. }
  6131. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6132. ggml_set_op_params_i32(result, 0, (int32_t) op);
  6133. result->op = GGML_OP_UNARY;
  6134. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6135. result->src[0] = a;
  6136. return result;
  6137. }
  6138. struct ggml_tensor * ggml_unary(
  6139. struct ggml_context * ctx,
  6140. struct ggml_tensor * a,
  6141. enum ggml_unary_op op) {
  6142. return ggml_unary_impl(ctx, a, op, false);
  6143. }
  6144. struct ggml_tensor * ggml_unary_inplace(
  6145. struct ggml_context * ctx,
  6146. struct ggml_tensor * a,
  6147. enum ggml_unary_op op) {
  6148. return ggml_unary_impl(ctx, a, op, true);
  6149. }
  6150. // ggml_map_unary
  6151. static struct ggml_tensor * ggml_map_unary_impl_f32(
  6152. struct ggml_context * ctx,
  6153. struct ggml_tensor * a,
  6154. const ggml_unary_op_f32_t fun,
  6155. bool inplace) {
  6156. bool is_node = false;
  6157. if (!inplace && a->grad) {
  6158. is_node = true;
  6159. }
  6160. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6161. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6162. result->op = GGML_OP_MAP_UNARY;
  6163. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6164. result->src[0] = a;
  6165. return result;
  6166. }
  6167. struct ggml_tensor * ggml_map_unary_f32(
  6168. struct ggml_context * ctx,
  6169. struct ggml_tensor * a,
  6170. const ggml_unary_op_f32_t fun) {
  6171. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  6172. }
  6173. struct ggml_tensor * ggml_map_unary_inplace_f32(
  6174. struct ggml_context * ctx,
  6175. struct ggml_tensor * a,
  6176. const ggml_unary_op_f32_t fun) {
  6177. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  6178. }
  6179. // ggml_map_binary
  6180. static struct ggml_tensor * ggml_map_binary_impl_f32(
  6181. struct ggml_context * ctx,
  6182. struct ggml_tensor * a,
  6183. struct ggml_tensor * b,
  6184. const ggml_binary_op_f32_t fun,
  6185. bool inplace) {
  6186. GGML_ASSERT(ggml_are_same_shape(a, b));
  6187. bool is_node = false;
  6188. if (!inplace && (a->grad || b->grad)) {
  6189. is_node = true;
  6190. }
  6191. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6192. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6193. result->op = GGML_OP_MAP_BINARY;
  6194. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6195. result->src[0] = a;
  6196. result->src[1] = b;
  6197. return result;
  6198. }
  6199. struct ggml_tensor * ggml_map_binary_f32(
  6200. struct ggml_context * ctx,
  6201. struct ggml_tensor * a,
  6202. struct ggml_tensor * b,
  6203. const ggml_binary_op_f32_t fun) {
  6204. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6205. }
  6206. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6207. struct ggml_context * ctx,
  6208. struct ggml_tensor * a,
  6209. struct ggml_tensor * b,
  6210. const ggml_binary_op_f32_t fun) {
  6211. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6212. }
  6213. // ggml_map_custom1_f32
  6214. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  6215. struct ggml_context * ctx,
  6216. struct ggml_tensor * a,
  6217. const ggml_custom1_op_f32_t fun,
  6218. bool inplace) {
  6219. bool is_node = false;
  6220. if (!inplace && a->grad) {
  6221. is_node = true;
  6222. }
  6223. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6224. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6225. result->op = GGML_OP_MAP_CUSTOM1_F32;
  6226. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6227. result->src[0] = a;
  6228. return result;
  6229. }
  6230. struct ggml_tensor * ggml_map_custom1_f32(
  6231. struct ggml_context * ctx,
  6232. struct ggml_tensor * a,
  6233. const ggml_custom1_op_f32_t fun) {
  6234. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6235. }
  6236. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6237. struct ggml_context * ctx,
  6238. struct ggml_tensor * a,
  6239. const ggml_custom1_op_f32_t fun) {
  6240. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6241. }
  6242. // ggml_map_custom2_f32
  6243. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  6244. struct ggml_context * ctx,
  6245. struct ggml_tensor * a,
  6246. struct ggml_tensor * b,
  6247. const ggml_custom2_op_f32_t fun,
  6248. bool inplace) {
  6249. bool is_node = false;
  6250. if (!inplace && (a->grad || b->grad)) {
  6251. is_node = true;
  6252. }
  6253. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6254. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6255. result->op = GGML_OP_MAP_CUSTOM2_F32;
  6256. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6257. result->src[0] = a;
  6258. result->src[1] = b;
  6259. return result;
  6260. }
  6261. struct ggml_tensor * ggml_map_custom2_f32(
  6262. struct ggml_context * ctx,
  6263. struct ggml_tensor * a,
  6264. struct ggml_tensor * b,
  6265. const ggml_custom2_op_f32_t fun) {
  6266. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6267. }
  6268. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6269. struct ggml_context * ctx,
  6270. struct ggml_tensor * a,
  6271. struct ggml_tensor * b,
  6272. const ggml_custom2_op_f32_t fun) {
  6273. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6274. }
  6275. // ggml_map_custom3_f32
  6276. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  6277. struct ggml_context * ctx,
  6278. struct ggml_tensor * a,
  6279. struct ggml_tensor * b,
  6280. struct ggml_tensor * c,
  6281. const ggml_custom3_op_f32_t fun,
  6282. bool inplace) {
  6283. bool is_node = false;
  6284. if (!inplace && (a->grad || b->grad || c->grad)) {
  6285. is_node = true;
  6286. }
  6287. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6288. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6289. result->op = GGML_OP_MAP_CUSTOM3_F32;
  6290. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6291. result->src[0] = a;
  6292. result->src[1] = b;
  6293. result->src[2] = c;
  6294. return result;
  6295. }
  6296. struct ggml_tensor * ggml_map_custom3_f32(
  6297. struct ggml_context * ctx,
  6298. struct ggml_tensor * a,
  6299. struct ggml_tensor * b,
  6300. struct ggml_tensor * c,
  6301. const ggml_custom3_op_f32_t fun) {
  6302. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6303. }
  6304. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6305. struct ggml_context * ctx,
  6306. struct ggml_tensor * a,
  6307. struct ggml_tensor * b,
  6308. struct ggml_tensor * c,
  6309. const ggml_custom3_op_f32_t fun) {
  6310. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6311. }
  6312. // ggml_map_custom1
  6313. struct ggml_map_custom1_op_params {
  6314. ggml_custom1_op_t fun;
  6315. int n_tasks;
  6316. void * userdata;
  6317. };
  6318. static struct ggml_tensor * ggml_map_custom1_impl(
  6319. struct ggml_context * ctx,
  6320. struct ggml_tensor * a,
  6321. const ggml_custom1_op_t fun,
  6322. int n_tasks,
  6323. void * userdata,
  6324. bool inplace) {
  6325. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6326. bool is_node = false;
  6327. if (!inplace && a->grad) {
  6328. is_node = true;
  6329. }
  6330. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6331. struct ggml_map_custom1_op_params params = {
  6332. /*.fun =*/ fun,
  6333. /*.n_tasks =*/ n_tasks,
  6334. /*.userdata =*/ userdata
  6335. };
  6336. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6337. result->op = GGML_OP_MAP_CUSTOM1;
  6338. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6339. result->src[0] = a;
  6340. return result;
  6341. }
  6342. struct ggml_tensor * ggml_map_custom1(
  6343. struct ggml_context * ctx,
  6344. struct ggml_tensor * a,
  6345. const ggml_custom1_op_t fun,
  6346. int n_tasks,
  6347. void * userdata) {
  6348. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6349. }
  6350. struct ggml_tensor * ggml_map_custom1_inplace(
  6351. struct ggml_context * ctx,
  6352. struct ggml_tensor * a,
  6353. const ggml_custom1_op_t fun,
  6354. int n_tasks,
  6355. void * userdata) {
  6356. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6357. }
  6358. // ggml_map_custom2
  6359. struct ggml_map_custom2_op_params {
  6360. ggml_custom2_op_t fun;
  6361. int n_tasks;
  6362. void * userdata;
  6363. };
  6364. static struct ggml_tensor * ggml_map_custom2_impl(
  6365. struct ggml_context * ctx,
  6366. struct ggml_tensor * a,
  6367. struct ggml_tensor * b,
  6368. const ggml_custom2_op_t fun,
  6369. int n_tasks,
  6370. void * userdata,
  6371. bool inplace) {
  6372. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6373. bool is_node = false;
  6374. if (!inplace && (a->grad || b->grad)) {
  6375. is_node = true;
  6376. }
  6377. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6378. struct ggml_map_custom2_op_params params = {
  6379. /*.fun =*/ fun,
  6380. /*.n_tasks =*/ n_tasks,
  6381. /*.userdata =*/ userdata
  6382. };
  6383. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6384. result->op = GGML_OP_MAP_CUSTOM2;
  6385. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6386. result->src[0] = a;
  6387. result->src[1] = b;
  6388. return result;
  6389. }
  6390. struct ggml_tensor * ggml_map_custom2(
  6391. struct ggml_context * ctx,
  6392. struct ggml_tensor * a,
  6393. struct ggml_tensor * b,
  6394. const ggml_custom2_op_t fun,
  6395. int n_tasks,
  6396. void * userdata) {
  6397. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6398. }
  6399. struct ggml_tensor * ggml_map_custom2_inplace(
  6400. struct ggml_context * ctx,
  6401. struct ggml_tensor * a,
  6402. struct ggml_tensor * b,
  6403. const ggml_custom2_op_t fun,
  6404. int n_tasks,
  6405. void * userdata) {
  6406. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6407. }
  6408. // ggml_map_custom3
  6409. struct ggml_map_custom3_op_params {
  6410. ggml_custom3_op_t fun;
  6411. int n_tasks;
  6412. void * userdata;
  6413. };
  6414. static struct ggml_tensor * ggml_map_custom3_impl(
  6415. struct ggml_context * ctx,
  6416. struct ggml_tensor * a,
  6417. struct ggml_tensor * b,
  6418. struct ggml_tensor * c,
  6419. const ggml_custom3_op_t fun,
  6420. int n_tasks,
  6421. void * userdata,
  6422. bool inplace) {
  6423. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6424. bool is_node = false;
  6425. if (!inplace && (a->grad || b->grad || c->grad)) {
  6426. is_node = true;
  6427. }
  6428. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6429. struct ggml_map_custom3_op_params params = {
  6430. /*.fun =*/ fun,
  6431. /*.n_tasks =*/ n_tasks,
  6432. /*.userdata =*/ userdata
  6433. };
  6434. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6435. result->op = GGML_OP_MAP_CUSTOM3;
  6436. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6437. result->src[0] = a;
  6438. result->src[1] = b;
  6439. result->src[2] = c;
  6440. return result;
  6441. }
  6442. struct ggml_tensor * ggml_map_custom3(
  6443. struct ggml_context * ctx,
  6444. struct ggml_tensor * a,
  6445. struct ggml_tensor * b,
  6446. struct ggml_tensor * c,
  6447. const ggml_custom3_op_t fun,
  6448. int n_tasks,
  6449. void * userdata) {
  6450. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6451. }
  6452. struct ggml_tensor * ggml_map_custom3_inplace(
  6453. struct ggml_context * ctx,
  6454. struct ggml_tensor * a,
  6455. struct ggml_tensor * b,
  6456. struct ggml_tensor * c,
  6457. const ggml_custom3_op_t fun,
  6458. int n_tasks,
  6459. void * userdata) {
  6460. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6461. }
  6462. // ggml_cross_entropy_loss
  6463. struct ggml_tensor * ggml_cross_entropy_loss(
  6464. struct ggml_context * ctx,
  6465. struct ggml_tensor * a,
  6466. struct ggml_tensor * b) {
  6467. GGML_ASSERT(ggml_are_same_shape(a, b));
  6468. bool is_node = false;
  6469. if (a->grad || b->grad) {
  6470. is_node = true;
  6471. }
  6472. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6473. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6474. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6475. result->src[0] = a;
  6476. result->src[1] = b;
  6477. return result;
  6478. }
  6479. // ggml_cross_entropy_loss_back
  6480. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6481. struct ggml_context * ctx,
  6482. struct ggml_tensor * a,
  6483. struct ggml_tensor * b,
  6484. struct ggml_tensor * c) {
  6485. GGML_ASSERT(ggml_are_same_shape(a, b));
  6486. GGML_ASSERT(ggml_is_scalar(c));
  6487. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6488. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6489. result->grad = NULL;
  6490. result->src[0] = a;
  6491. result->src[1] = b;
  6492. result->src[2] = c;
  6493. return result;
  6494. }
  6495. ////////////////////////////////////////////////////////////////////////////////
  6496. void ggml_set_param(
  6497. struct ggml_context * ctx,
  6498. struct ggml_tensor * tensor) {
  6499. tensor->is_param = true;
  6500. GGML_ASSERT(tensor->grad == NULL);
  6501. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6502. }
  6503. // ggml_compute_forward_dup
  6504. static void ggml_compute_forward_dup_same_cont(
  6505. const struct ggml_compute_params * params,
  6506. const struct ggml_tensor * src0,
  6507. struct ggml_tensor * dst) {
  6508. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6509. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6510. GGML_ASSERT(src0->type == dst->type);
  6511. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6512. return;
  6513. }
  6514. const size_t nb00 = src0->nb[0];
  6515. const size_t nb0 = dst->nb[0];
  6516. const int ith = params->ith; // thread index
  6517. const int nth = params->nth; // number of threads
  6518. // parallelize by elements
  6519. const int ne = ggml_nelements(dst);
  6520. const int dr = (ne + nth - 1) / nth;
  6521. const int ie0 = dr * ith;
  6522. const int ie1 = MIN(ie0 + dr, ne);
  6523. if (ie0 < ie1) {
  6524. memcpy(
  6525. ((char *) dst->data + ie0*nb0),
  6526. ((char *) src0->data + ie0*nb00),
  6527. (ie1 - ie0) * ggml_type_size(src0->type));
  6528. }
  6529. }
  6530. static void ggml_compute_forward_dup_f16(
  6531. const struct ggml_compute_params * params,
  6532. const struct ggml_tensor * src0,
  6533. struct ggml_tensor * dst) {
  6534. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6535. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6536. return;
  6537. }
  6538. GGML_TENSOR_UNARY_OP_LOCALS;
  6539. const int ith = params->ith; // thread index
  6540. const int nth = params->nth; // number of threads
  6541. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6542. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6543. return;
  6544. }
  6545. // parallelize by rows
  6546. const int nr = ne01;
  6547. // number of rows per thread
  6548. const int dr = (nr + nth - 1) / nth;
  6549. // row range for this thread
  6550. const int ir0 = dr * ith;
  6551. const int ir1 = MIN(ir0 + dr, nr);
  6552. if (src0->type == dst->type &&
  6553. ne00 == ne0 &&
  6554. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6555. // copy by rows
  6556. const size_t rs = ne00*nb00;
  6557. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6558. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6559. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6560. memcpy(
  6561. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6562. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6563. rs);
  6564. }
  6565. }
  6566. }
  6567. return;
  6568. }
  6569. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6570. if (ggml_is_contiguous(dst)) {
  6571. if (nb00 == sizeof(ggml_fp16_t)) {
  6572. if (dst->type == GGML_TYPE_F16) {
  6573. size_t id = 0;
  6574. const size_t rs = ne00 * nb00;
  6575. char * dst_ptr = (char *) dst->data;
  6576. for (int i03 = 0; i03 < ne03; i03++) {
  6577. for (int i02 = 0; i02 < ne02; i02++) {
  6578. id += rs * ir0;
  6579. for (int i01 = ir0; i01 < ir1; i01++) {
  6580. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6581. memcpy(dst_ptr + id, src0_ptr, rs);
  6582. id += rs;
  6583. }
  6584. id += rs * (ne01 - ir1);
  6585. }
  6586. }
  6587. } else if (dst->type == GGML_TYPE_F32) {
  6588. size_t id = 0;
  6589. float * dst_ptr = (float *) dst->data;
  6590. for (int i03 = 0; i03 < ne03; i03++) {
  6591. for (int i02 = 0; i02 < ne02; i02++) {
  6592. id += ne00 * ir0;
  6593. for (int i01 = ir0; i01 < ir1; i01++) {
  6594. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6595. for (int i00 = 0; i00 < ne00; i00++) {
  6596. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6597. id++;
  6598. }
  6599. }
  6600. id += ne00 * (ne01 - ir1);
  6601. }
  6602. }
  6603. } else if (type_traits[dst->type].from_float) {
  6604. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6605. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6606. size_t id = 0;
  6607. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6608. char * dst_ptr = (char *) dst->data;
  6609. for (int i03 = 0; i03 < ne03; i03++) {
  6610. for (int i02 = 0; i02 < ne02; i02++) {
  6611. id += rs * ir0;
  6612. for (int i01 = ir0; i01 < ir1; i01++) {
  6613. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6614. for (int i00 = 0; i00 < ne00; i00++) {
  6615. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6616. }
  6617. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6618. id += rs;
  6619. }
  6620. id += rs * (ne01 - ir1);
  6621. }
  6622. }
  6623. } else {
  6624. GGML_ASSERT(false); // TODO: implement
  6625. }
  6626. } else {
  6627. //printf("%s: this is not optimal - fix me\n", __func__);
  6628. if (dst->type == GGML_TYPE_F32) {
  6629. size_t id = 0;
  6630. float * dst_ptr = (float *) dst->data;
  6631. for (int i03 = 0; i03 < ne03; i03++) {
  6632. for (int i02 = 0; i02 < ne02; i02++) {
  6633. id += ne00 * ir0;
  6634. for (int i01 = ir0; i01 < ir1; i01++) {
  6635. for (int i00 = 0; i00 < ne00; i00++) {
  6636. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6637. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6638. id++;
  6639. }
  6640. }
  6641. id += ne00 * (ne01 - ir1);
  6642. }
  6643. }
  6644. } else if (dst->type == GGML_TYPE_F16) {
  6645. size_t id = 0;
  6646. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6647. for (int i03 = 0; i03 < ne03; i03++) {
  6648. for (int i02 = 0; i02 < ne02; i02++) {
  6649. id += ne00 * ir0;
  6650. for (int i01 = ir0; i01 < ir1; i01++) {
  6651. for (int i00 = 0; i00 < ne00; i00++) {
  6652. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6653. dst_ptr[id] = *src0_ptr;
  6654. id++;
  6655. }
  6656. }
  6657. id += ne00 * (ne01 - ir1);
  6658. }
  6659. }
  6660. } else {
  6661. GGML_ASSERT(false); // TODO: implement
  6662. }
  6663. }
  6664. return;
  6665. }
  6666. // dst counters
  6667. int64_t i10 = 0;
  6668. int64_t i11 = 0;
  6669. int64_t i12 = 0;
  6670. int64_t i13 = 0;
  6671. if (dst->type == GGML_TYPE_F16) {
  6672. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6673. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6674. i10 += ne00 * ir0;
  6675. while (i10 >= ne0) {
  6676. i10 -= ne0;
  6677. if (++i11 == ne1) {
  6678. i11 = 0;
  6679. if (++i12 == ne2) {
  6680. i12 = 0;
  6681. if (++i13 == ne3) {
  6682. i13 = 0;
  6683. }
  6684. }
  6685. }
  6686. }
  6687. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6688. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6689. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6690. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6691. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6692. if (++i10 == ne00) {
  6693. i10 = 0;
  6694. if (++i11 == ne01) {
  6695. i11 = 0;
  6696. if (++i12 == ne02) {
  6697. i12 = 0;
  6698. if (++i13 == ne03) {
  6699. i13 = 0;
  6700. }
  6701. }
  6702. }
  6703. }
  6704. }
  6705. }
  6706. i10 += ne00 * (ne01 - ir1);
  6707. while (i10 >= ne0) {
  6708. i10 -= ne0;
  6709. if (++i11 == ne1) {
  6710. i11 = 0;
  6711. if (++i12 == ne2) {
  6712. i12 = 0;
  6713. if (++i13 == ne3) {
  6714. i13 = 0;
  6715. }
  6716. }
  6717. }
  6718. }
  6719. }
  6720. }
  6721. } else if (dst->type == GGML_TYPE_F32) {
  6722. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6723. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6724. i10 += ne00 * ir0;
  6725. while (i10 >= ne0) {
  6726. i10 -= ne0;
  6727. if (++i11 == ne1) {
  6728. i11 = 0;
  6729. if (++i12 == ne2) {
  6730. i12 = 0;
  6731. if (++i13 == ne3) {
  6732. i13 = 0;
  6733. }
  6734. }
  6735. }
  6736. }
  6737. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6738. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6739. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6740. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6741. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6742. if (++i10 == ne0) {
  6743. i10 = 0;
  6744. if (++i11 == ne1) {
  6745. i11 = 0;
  6746. if (++i12 == ne2) {
  6747. i12 = 0;
  6748. if (++i13 == ne3) {
  6749. i13 = 0;
  6750. }
  6751. }
  6752. }
  6753. }
  6754. }
  6755. }
  6756. i10 += ne00 * (ne01 - ir1);
  6757. while (i10 >= ne0) {
  6758. i10 -= ne0;
  6759. if (++i11 == ne1) {
  6760. i11 = 0;
  6761. if (++i12 == ne2) {
  6762. i12 = 0;
  6763. if (++i13 == ne3) {
  6764. i13 = 0;
  6765. }
  6766. }
  6767. }
  6768. }
  6769. }
  6770. }
  6771. } else {
  6772. GGML_ASSERT(false); // TODO: implement
  6773. }
  6774. }
  6775. static void ggml_compute_forward_dup_f32(
  6776. const struct ggml_compute_params * params,
  6777. const struct ggml_tensor * src0,
  6778. struct ggml_tensor * dst) {
  6779. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6780. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6781. return;
  6782. }
  6783. GGML_TENSOR_UNARY_OP_LOCALS;
  6784. const int ith = params->ith; // thread index
  6785. const int nth = params->nth; // number of threads
  6786. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6787. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6788. return;
  6789. }
  6790. // parallelize by rows
  6791. const int nr = ne01;
  6792. // number of rows per thread
  6793. const int dr = (nr + nth - 1) / nth;
  6794. // row range for this thread
  6795. const int ir0 = dr * ith;
  6796. const int ir1 = MIN(ir0 + dr, nr);
  6797. if (src0->type == dst->type &&
  6798. ne00 == ne0 &&
  6799. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6800. // copy by rows
  6801. const size_t rs = ne00*nb00;
  6802. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6803. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6804. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6805. memcpy(
  6806. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6807. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6808. rs);
  6809. }
  6810. }
  6811. }
  6812. return;
  6813. }
  6814. if (ggml_is_contiguous(dst)) {
  6815. // TODO: simplify
  6816. if (nb00 == sizeof(float)) {
  6817. if (dst->type == GGML_TYPE_F32) {
  6818. size_t id = 0;
  6819. const size_t rs = ne00 * nb00;
  6820. char * dst_ptr = (char *) dst->data;
  6821. for (int i03 = 0; i03 < ne03; i03++) {
  6822. for (int i02 = 0; i02 < ne02; i02++) {
  6823. id += rs * ir0;
  6824. for (int i01 = ir0; i01 < ir1; i01++) {
  6825. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6826. memcpy(dst_ptr + id, src0_ptr, rs);
  6827. id += rs;
  6828. }
  6829. id += rs * (ne01 - ir1);
  6830. }
  6831. }
  6832. } else if (type_traits[dst->type].from_float) {
  6833. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6834. size_t id = 0;
  6835. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6836. char * dst_ptr = (char *) dst->data;
  6837. for (int i03 = 0; i03 < ne03; i03++) {
  6838. for (int i02 = 0; i02 < ne02; i02++) {
  6839. id += rs * ir0;
  6840. for (int i01 = ir0; i01 < ir1; i01++) {
  6841. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6842. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6843. id += rs;
  6844. }
  6845. id += rs * (ne01 - ir1);
  6846. }
  6847. }
  6848. } else {
  6849. GGML_ASSERT(false); // TODO: implement
  6850. }
  6851. } else {
  6852. //printf("%s: this is not optimal - fix me\n", __func__);
  6853. if (dst->type == GGML_TYPE_F32) {
  6854. size_t id = 0;
  6855. float * dst_ptr = (float *) dst->data;
  6856. for (int i03 = 0; i03 < ne03; i03++) {
  6857. for (int i02 = 0; i02 < ne02; i02++) {
  6858. id += ne00 * ir0;
  6859. for (int i01 = ir0; i01 < ir1; i01++) {
  6860. for (int i00 = 0; i00 < ne00; i00++) {
  6861. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6862. dst_ptr[id] = *src0_ptr;
  6863. id++;
  6864. }
  6865. }
  6866. id += ne00 * (ne01 - ir1);
  6867. }
  6868. }
  6869. } else if (dst->type == GGML_TYPE_F16) {
  6870. size_t id = 0;
  6871. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6872. for (int i03 = 0; i03 < ne03; i03++) {
  6873. for (int i02 = 0; i02 < ne02; i02++) {
  6874. id += ne00 * ir0;
  6875. for (int i01 = ir0; i01 < ir1; i01++) {
  6876. for (int i00 = 0; i00 < ne00; i00++) {
  6877. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6878. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6879. id++;
  6880. }
  6881. }
  6882. id += ne00 * (ne01 - ir1);
  6883. }
  6884. }
  6885. } else {
  6886. GGML_ASSERT(false); // TODO: implement
  6887. }
  6888. }
  6889. return;
  6890. }
  6891. // dst counters
  6892. int64_t i10 = 0;
  6893. int64_t i11 = 0;
  6894. int64_t i12 = 0;
  6895. int64_t i13 = 0;
  6896. if (dst->type == GGML_TYPE_F32) {
  6897. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6898. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6899. i10 += ne00 * ir0;
  6900. while (i10 >= ne0) {
  6901. i10 -= ne0;
  6902. if (++i11 == ne1) {
  6903. i11 = 0;
  6904. if (++i12 == ne2) {
  6905. i12 = 0;
  6906. if (++i13 == ne3) {
  6907. i13 = 0;
  6908. }
  6909. }
  6910. }
  6911. }
  6912. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6913. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6914. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6915. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6916. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6917. if (++i10 == ne0) {
  6918. i10 = 0;
  6919. if (++i11 == ne1) {
  6920. i11 = 0;
  6921. if (++i12 == ne2) {
  6922. i12 = 0;
  6923. if (++i13 == ne3) {
  6924. i13 = 0;
  6925. }
  6926. }
  6927. }
  6928. }
  6929. }
  6930. }
  6931. i10 += ne00 * (ne01 - ir1);
  6932. while (i10 >= ne0) {
  6933. i10 -= ne0;
  6934. if (++i11 == ne1) {
  6935. i11 = 0;
  6936. if (++i12 == ne2) {
  6937. i12 = 0;
  6938. if (++i13 == ne3) {
  6939. i13 = 0;
  6940. }
  6941. }
  6942. }
  6943. }
  6944. }
  6945. }
  6946. } else if (dst->type == GGML_TYPE_F16) {
  6947. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6948. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6949. i10 += ne00 * ir0;
  6950. while (i10 >= ne0) {
  6951. i10 -= ne0;
  6952. if (++i11 == ne1) {
  6953. i11 = 0;
  6954. if (++i12 == ne2) {
  6955. i12 = 0;
  6956. if (++i13 == ne3) {
  6957. i13 = 0;
  6958. }
  6959. }
  6960. }
  6961. }
  6962. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6963. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6964. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6965. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6966. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6967. if (++i10 == ne0) {
  6968. i10 = 0;
  6969. if (++i11 == ne1) {
  6970. i11 = 0;
  6971. if (++i12 == ne2) {
  6972. i12 = 0;
  6973. if (++i13 == ne3) {
  6974. i13 = 0;
  6975. }
  6976. }
  6977. }
  6978. }
  6979. }
  6980. }
  6981. i10 += ne00 * (ne01 - ir1);
  6982. while (i10 >= ne0) {
  6983. i10 -= ne0;
  6984. if (++i11 == ne1) {
  6985. i11 = 0;
  6986. if (++i12 == ne2) {
  6987. i12 = 0;
  6988. if (++i13 == ne3) {
  6989. i13 = 0;
  6990. }
  6991. }
  6992. }
  6993. }
  6994. }
  6995. }
  6996. } else {
  6997. GGML_ASSERT(false); // TODO: implement
  6998. }
  6999. }
  7000. static void ggml_compute_forward_dup(
  7001. const struct ggml_compute_params * params,
  7002. const struct ggml_tensor * src0,
  7003. struct ggml_tensor * dst) {
  7004. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  7005. ggml_compute_forward_dup_same_cont(params, src0, dst);
  7006. return;
  7007. }
  7008. switch (src0->type) {
  7009. case GGML_TYPE_F16:
  7010. {
  7011. ggml_compute_forward_dup_f16(params, src0, dst);
  7012. } break;
  7013. case GGML_TYPE_F32:
  7014. {
  7015. ggml_compute_forward_dup_f32(params, src0, dst);
  7016. } break;
  7017. default:
  7018. {
  7019. GGML_ASSERT(false);
  7020. } break;
  7021. }
  7022. }
  7023. // ggml_compute_forward_add
  7024. static void ggml_compute_forward_add_f32(
  7025. const struct ggml_compute_params * params,
  7026. const struct ggml_tensor * src0,
  7027. const struct ggml_tensor * src1,
  7028. struct ggml_tensor * dst) {
  7029. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7030. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7031. return;
  7032. }
  7033. const int ith = params->ith;
  7034. const int nth = params->nth;
  7035. const int nr = ggml_nrows(src0);
  7036. GGML_TENSOR_BINARY_OP_LOCALS;
  7037. GGML_ASSERT( nb0 == sizeof(float));
  7038. GGML_ASSERT(nb00 == sizeof(float));
  7039. // rows per thread
  7040. const int dr = (nr + nth - 1)/nth;
  7041. // row range for this thread
  7042. const int ir0 = dr*ith;
  7043. const int ir1 = MIN(ir0 + dr, nr);
  7044. if (nb10 == sizeof(float)) {
  7045. for (int ir = ir0; ir < ir1; ++ir) {
  7046. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7047. const int64_t i03 = ir/(ne02*ne01);
  7048. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7049. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7050. const int64_t i13 = i03 % ne13;
  7051. const int64_t i12 = i02 % ne12;
  7052. const int64_t i11 = i01 % ne11;
  7053. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7054. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7055. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7056. #ifdef GGML_USE_ACCELERATE
  7057. vDSP_vadd(src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7058. #else
  7059. ggml_vec_add_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7060. #endif
  7061. // }
  7062. // }
  7063. }
  7064. } else {
  7065. // src1 is not contiguous
  7066. for (int ir = ir0; ir < ir1; ++ir) {
  7067. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7068. const int64_t i03 = ir/(ne02*ne01);
  7069. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7070. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7071. const int64_t i13 = i03 % ne13;
  7072. const int64_t i12 = i02 % ne12;
  7073. const int64_t i11 = i01 % ne11;
  7074. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7075. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7076. for (int i0 = 0; i0 < ne0; i0++) {
  7077. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7078. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  7079. }
  7080. }
  7081. }
  7082. }
  7083. static void ggml_compute_forward_add_f16_f32(
  7084. const struct ggml_compute_params * params,
  7085. const struct ggml_tensor * src0,
  7086. const struct ggml_tensor * src1,
  7087. struct ggml_tensor * dst) {
  7088. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7089. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7090. return;
  7091. }
  7092. const int ith = params->ith;
  7093. const int nth = params->nth;
  7094. const int nr = ggml_nrows(src0);
  7095. GGML_TENSOR_BINARY_OP_LOCALS;
  7096. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7097. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7098. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7099. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7100. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7101. // rows per thread
  7102. const int dr = (nr + nth - 1)/nth;
  7103. // row range for this thread
  7104. const int ir0 = dr*ith;
  7105. const int ir1 = MIN(ir0 + dr, nr);
  7106. if (nb10 == sizeof(float)) {
  7107. for (int ir = ir0; ir < ir1; ++ir) {
  7108. // src0, src1 and dst are same shape => same indices
  7109. const int i3 = ir/(ne2*ne1);
  7110. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7111. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7112. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7113. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7114. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7115. for (int i = 0; i < ne0; i++) {
  7116. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7117. }
  7118. }
  7119. }
  7120. else {
  7121. // src1 is not contiguous
  7122. GGML_ASSERT(false);
  7123. }
  7124. }
  7125. static void ggml_compute_forward_add_f16_f16(
  7126. const struct ggml_compute_params * params,
  7127. const struct ggml_tensor * src0,
  7128. const struct ggml_tensor * src1,
  7129. struct ggml_tensor * dst) {
  7130. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7131. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7132. return;
  7133. }
  7134. const int ith = params->ith;
  7135. const int nth = params->nth;
  7136. const int nr = ggml_nrows(src0);
  7137. GGML_TENSOR_BINARY_OP_LOCALS;
  7138. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7139. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7140. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7141. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7142. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7143. // rows per thread
  7144. const int dr = (nr + nth - 1)/nth;
  7145. // row range for this thread
  7146. const int ir0 = dr*ith;
  7147. const int ir1 = MIN(ir0 + dr, nr);
  7148. if (nb10 == sizeof(ggml_fp16_t)) {
  7149. for (int ir = ir0; ir < ir1; ++ir) {
  7150. // src0, src1 and dst are same shape => same indices
  7151. const int i3 = ir/(ne2*ne1);
  7152. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7153. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7154. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7155. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7156. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7157. for (int i = 0; i < ne0; i++) {
  7158. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7159. }
  7160. }
  7161. }
  7162. else {
  7163. // src1 is not contiguous
  7164. GGML_ASSERT(false);
  7165. }
  7166. }
  7167. static void ggml_compute_forward_add_q_f32(
  7168. const struct ggml_compute_params * params,
  7169. const struct ggml_tensor * src0,
  7170. const struct ggml_tensor * src1,
  7171. struct ggml_tensor * dst) {
  7172. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7173. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7174. return;
  7175. }
  7176. const int nr = ggml_nrows(src0);
  7177. GGML_TENSOR_BINARY_OP_LOCALS;
  7178. const int ith = params->ith;
  7179. const int nth = params->nth;
  7180. const enum ggml_type type = src0->type;
  7181. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7182. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7183. // we don't support permuted src0 or src1
  7184. GGML_ASSERT(nb00 == ggml_type_size(type));
  7185. GGML_ASSERT(nb10 == sizeof(float));
  7186. // dst cannot be transposed or permuted
  7187. GGML_ASSERT(nb0 <= nb1);
  7188. GGML_ASSERT(nb1 <= nb2);
  7189. GGML_ASSERT(nb2 <= nb3);
  7190. GGML_ASSERT(ggml_is_quantized(src0->type));
  7191. GGML_ASSERT(dst->type == src0->type);
  7192. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7193. // rows per thread
  7194. const int dr = (nr + nth - 1)/nth;
  7195. // row range for this thread
  7196. const int ir0 = dr*ith;
  7197. const int ir1 = MIN(ir0 + dr, nr);
  7198. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7199. for (int ir = ir0; ir < ir1; ++ir) {
  7200. // src0 indices
  7201. const int i03 = ir/(ne02*ne01);
  7202. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7203. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7204. // src1 and dst are same shape as src0 => same indices
  7205. const int i13 = i03;
  7206. const int i12 = i02;
  7207. const int i11 = i01;
  7208. const int i3 = i03;
  7209. const int i2 = i02;
  7210. const int i1 = i01;
  7211. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7212. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7213. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7214. assert(ne00 % 32 == 0);
  7215. // unquantize row from src0 to temp buffer
  7216. dequantize_row_q(src0_row, wdata, ne00);
  7217. // add src1
  7218. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7219. // quantize row to dst
  7220. quantize_row_q(wdata, dst_row, ne00);
  7221. }
  7222. }
  7223. static void ggml_compute_forward_add(
  7224. const struct ggml_compute_params * params,
  7225. const struct ggml_tensor * src0,
  7226. const struct ggml_tensor * src1,
  7227. struct ggml_tensor * dst) {
  7228. switch (src0->type) {
  7229. case GGML_TYPE_F32:
  7230. {
  7231. ggml_compute_forward_add_f32(params, src0, src1, dst);
  7232. } break;
  7233. case GGML_TYPE_F16:
  7234. {
  7235. if (src1->type == GGML_TYPE_F16) {
  7236. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  7237. }
  7238. else if (src1->type == GGML_TYPE_F32) {
  7239. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  7240. }
  7241. else {
  7242. GGML_ASSERT(false);
  7243. }
  7244. } break;
  7245. case GGML_TYPE_Q4_0:
  7246. case GGML_TYPE_Q4_1:
  7247. case GGML_TYPE_Q5_0:
  7248. case GGML_TYPE_Q5_1:
  7249. case GGML_TYPE_Q8_0:
  7250. case GGML_TYPE_Q2_K:
  7251. case GGML_TYPE_Q3_K:
  7252. case GGML_TYPE_Q4_K:
  7253. case GGML_TYPE_Q5_K:
  7254. case GGML_TYPE_Q6_K:
  7255. {
  7256. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  7257. } break;
  7258. default:
  7259. {
  7260. GGML_ASSERT(false);
  7261. } break;
  7262. }
  7263. }
  7264. // ggml_compute_forward_add1
  7265. static void ggml_compute_forward_add1_f32(
  7266. const struct ggml_compute_params * params,
  7267. const struct ggml_tensor * src0,
  7268. const struct ggml_tensor * src1,
  7269. struct ggml_tensor * dst) {
  7270. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7271. GGML_ASSERT(ggml_is_scalar(src1));
  7272. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7273. return;
  7274. }
  7275. const int ith = params->ith;
  7276. const int nth = params->nth;
  7277. const int nr = ggml_nrows(src0);
  7278. GGML_TENSOR_UNARY_OP_LOCALS;
  7279. GGML_ASSERT( nb0 == sizeof(float));
  7280. GGML_ASSERT(nb00 == sizeof(float));
  7281. // rows per thread
  7282. const int dr = (nr + nth - 1)/nth;
  7283. // row range for this thread
  7284. const int ir0 = dr*ith;
  7285. const int ir1 = MIN(ir0 + dr, nr);
  7286. for (int ir = ir0; ir < ir1; ++ir) {
  7287. // src0 and dst are same shape => same indices
  7288. const int i3 = ir/(ne2*ne1);
  7289. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7290. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7291. #ifdef GGML_USE_ACCELERATE
  7292. UNUSED(ggml_vec_add1_f32);
  7293. vDSP_vadd(
  7294. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7295. (float *) ((char *) src1->data), 0,
  7296. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7297. ne0);
  7298. #else
  7299. ggml_vec_add1_f32(ne0,
  7300. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7301. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7302. *(float *) src1->data);
  7303. #endif
  7304. }
  7305. }
  7306. static void ggml_compute_forward_add1_f16_f32(
  7307. const struct ggml_compute_params * params,
  7308. const struct ggml_tensor * src0,
  7309. const struct ggml_tensor * src1,
  7310. struct ggml_tensor * dst) {
  7311. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7312. GGML_ASSERT(ggml_is_scalar(src1));
  7313. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7314. return;
  7315. }
  7316. // scalar to add
  7317. const float v = *(float *) src1->data;
  7318. const int ith = params->ith;
  7319. const int nth = params->nth;
  7320. const int nr = ggml_nrows(src0);
  7321. GGML_TENSOR_UNARY_OP_LOCALS;
  7322. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7323. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7324. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7325. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7326. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7327. // rows per thread
  7328. const int dr = (nr + nth - 1)/nth;
  7329. // row range for this thread
  7330. const int ir0 = dr*ith;
  7331. const int ir1 = MIN(ir0 + dr, nr);
  7332. for (int ir = ir0; ir < ir1; ++ir) {
  7333. // src0 and dst are same shape => same indices
  7334. const int i3 = ir/(ne2*ne1);
  7335. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7336. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7337. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7338. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7339. for (int i = 0; i < ne0; i++) {
  7340. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7341. }
  7342. }
  7343. }
  7344. static void ggml_compute_forward_add1_f16_f16(
  7345. const struct ggml_compute_params * params,
  7346. const struct ggml_tensor * src0,
  7347. const struct ggml_tensor * src1,
  7348. struct ggml_tensor * dst) {
  7349. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7350. GGML_ASSERT(ggml_is_scalar(src1));
  7351. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7352. return;
  7353. }
  7354. // scalar to add
  7355. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  7356. const int ith = params->ith;
  7357. const int nth = params->nth;
  7358. const int nr = ggml_nrows(src0);
  7359. GGML_TENSOR_UNARY_OP_LOCALS;
  7360. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7361. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7362. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7363. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7364. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7365. // rows per thread
  7366. const int dr = (nr + nth - 1)/nth;
  7367. // row range for this thread
  7368. const int ir0 = dr*ith;
  7369. const int ir1 = MIN(ir0 + dr, nr);
  7370. for (int ir = ir0; ir < ir1; ++ir) {
  7371. // src0 and dst are same shape => same indices
  7372. const int i3 = ir/(ne2*ne1);
  7373. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7374. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7375. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7376. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7377. for (int i = 0; i < ne0; i++) {
  7378. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7379. }
  7380. }
  7381. }
  7382. static void ggml_compute_forward_add1_q_f32(
  7383. const struct ggml_compute_params * params,
  7384. const struct ggml_tensor * src0,
  7385. const struct ggml_tensor * src1,
  7386. struct ggml_tensor * dst) {
  7387. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7388. GGML_ASSERT(ggml_is_scalar(src1));
  7389. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7390. return;
  7391. }
  7392. // scalar to add
  7393. const float v = *(float *) src1->data;
  7394. const int ith = params->ith;
  7395. const int nth = params->nth;
  7396. const int nr = ggml_nrows(src0);
  7397. GGML_TENSOR_UNARY_OP_LOCALS;
  7398. const enum ggml_type type = src0->type;
  7399. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7400. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7401. // we don't support permuted src0
  7402. GGML_ASSERT(nb00 == ggml_type_size(type));
  7403. // dst cannot be transposed or permuted
  7404. GGML_ASSERT(nb0 <= nb1);
  7405. GGML_ASSERT(nb1 <= nb2);
  7406. GGML_ASSERT(nb2 <= nb3);
  7407. GGML_ASSERT(ggml_is_quantized(src0->type));
  7408. GGML_ASSERT(dst->type == src0->type);
  7409. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7410. // rows per thread
  7411. const int dr = (nr + nth - 1)/nth;
  7412. // row range for this thread
  7413. const int ir0 = dr*ith;
  7414. const int ir1 = MIN(ir0 + dr, nr);
  7415. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  7416. for (int ir = ir0; ir < ir1; ++ir) {
  7417. // src0 and dst are same shape => same indices
  7418. const int i3 = ir/(ne2*ne1);
  7419. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7420. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7421. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  7422. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  7423. assert(ne0 % 32 == 0);
  7424. // unquantize row from src0 to temp buffer
  7425. dequantize_row_q(src0_row, wdata, ne0);
  7426. // add src1
  7427. ggml_vec_acc1_f32(ne0, wdata, v);
  7428. // quantize row to dst
  7429. quantize_row_q(wdata, dst_row, ne0);
  7430. }
  7431. }
  7432. static void ggml_compute_forward_add1(
  7433. const struct ggml_compute_params * params,
  7434. const struct ggml_tensor * src0,
  7435. const struct ggml_tensor * src1,
  7436. struct ggml_tensor * dst) {
  7437. switch (src0->type) {
  7438. case GGML_TYPE_F32:
  7439. {
  7440. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  7441. } break;
  7442. case GGML_TYPE_F16:
  7443. {
  7444. if (src1->type == GGML_TYPE_F16) {
  7445. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  7446. }
  7447. else if (src1->type == GGML_TYPE_F32) {
  7448. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  7449. }
  7450. else {
  7451. GGML_ASSERT(false);
  7452. }
  7453. } break;
  7454. case GGML_TYPE_Q4_0:
  7455. case GGML_TYPE_Q4_1:
  7456. case GGML_TYPE_Q5_0:
  7457. case GGML_TYPE_Q5_1:
  7458. case GGML_TYPE_Q8_0:
  7459. case GGML_TYPE_Q8_1:
  7460. case GGML_TYPE_Q2_K:
  7461. case GGML_TYPE_Q3_K:
  7462. case GGML_TYPE_Q4_K:
  7463. case GGML_TYPE_Q5_K:
  7464. case GGML_TYPE_Q6_K:
  7465. {
  7466. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  7467. } break;
  7468. default:
  7469. {
  7470. GGML_ASSERT(false);
  7471. } break;
  7472. }
  7473. }
  7474. // ggml_compute_forward_acc
  7475. static void ggml_compute_forward_acc_f32(
  7476. const struct ggml_compute_params * params,
  7477. const struct ggml_tensor * src0,
  7478. const struct ggml_tensor * src1,
  7479. struct ggml_tensor * dst) {
  7480. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7481. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7482. // view src0 and dst with these strides and data offset inbytes during acc
  7483. // nb0 is implicitely element_size because src0 and dst are contiguous
  7484. size_t nb1 = ((int32_t *) dst->op_params)[0];
  7485. size_t nb2 = ((int32_t *) dst->op_params)[1];
  7486. size_t nb3 = ((int32_t *) dst->op_params)[2];
  7487. size_t offset = ((int32_t *) dst->op_params)[3];
  7488. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  7489. if (!inplace && (params->type == GGML_TASK_INIT)) {
  7490. // memcpy needs to be synchronized across threads to avoid race conditions.
  7491. // => do it in INIT phase
  7492. memcpy(
  7493. ((char *) dst->data),
  7494. ((char *) src0->data),
  7495. ggml_nbytes(dst));
  7496. }
  7497. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7498. return;
  7499. }
  7500. const int ith = params->ith;
  7501. const int nth = params->nth;
  7502. const int nr = ggml_nrows(src1);
  7503. const int nc = src1->ne[0];
  7504. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  7505. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  7506. // src0 and dst as viewed during acc
  7507. const size_t nb0 = ggml_element_size(src0);
  7508. const size_t nb00 = nb0;
  7509. const size_t nb01 = nb1;
  7510. const size_t nb02 = nb2;
  7511. const size_t nb03 = nb3;
  7512. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  7513. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  7514. GGML_ASSERT(nb10 == sizeof(float));
  7515. // rows per thread
  7516. const int dr = (nr + nth - 1)/nth;
  7517. // row range for this thread
  7518. const int ir0 = dr*ith;
  7519. const int ir1 = MIN(ir0 + dr, nr);
  7520. for (int ir = ir0; ir < ir1; ++ir) {
  7521. // src0 and dst are viewed with shape of src1 and offset
  7522. // => same indices
  7523. const int i3 = ir/(ne12*ne11);
  7524. const int i2 = (ir - i3*ne12*ne11)/ne11;
  7525. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  7526. #ifdef GGML_USE_ACCELERATE
  7527. vDSP_vadd(
  7528. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  7529. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7530. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  7531. #else
  7532. ggml_vec_add_f32(nc,
  7533. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  7534. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  7535. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7536. #endif
  7537. }
  7538. }
  7539. static void ggml_compute_forward_acc(
  7540. const struct ggml_compute_params * params,
  7541. const struct ggml_tensor * src0,
  7542. const struct ggml_tensor * src1,
  7543. struct ggml_tensor * dst) {
  7544. switch (src0->type) {
  7545. case GGML_TYPE_F32:
  7546. {
  7547. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  7548. } break;
  7549. case GGML_TYPE_F16:
  7550. case GGML_TYPE_Q4_0:
  7551. case GGML_TYPE_Q4_1:
  7552. case GGML_TYPE_Q5_0:
  7553. case GGML_TYPE_Q5_1:
  7554. case GGML_TYPE_Q8_0:
  7555. case GGML_TYPE_Q8_1:
  7556. case GGML_TYPE_Q2_K:
  7557. case GGML_TYPE_Q3_K:
  7558. case GGML_TYPE_Q4_K:
  7559. case GGML_TYPE_Q5_K:
  7560. case GGML_TYPE_Q6_K:
  7561. default:
  7562. {
  7563. GGML_ASSERT(false);
  7564. } break;
  7565. }
  7566. }
  7567. // ggml_compute_forward_sub
  7568. static void ggml_compute_forward_sub_f32(
  7569. const struct ggml_compute_params * params,
  7570. const struct ggml_tensor * src0,
  7571. const struct ggml_tensor * src1,
  7572. struct ggml_tensor * dst) {
  7573. assert(params->ith == 0);
  7574. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7575. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7576. return;
  7577. }
  7578. const int nr = ggml_nrows(src0);
  7579. GGML_TENSOR_BINARY_OP_LOCALS;
  7580. GGML_ASSERT( nb0 == sizeof(float));
  7581. GGML_ASSERT(nb00 == sizeof(float));
  7582. if (nb10 == sizeof(float)) {
  7583. for (int ir = 0; ir < nr; ++ir) {
  7584. // src0, src1 and dst are same shape => same indices
  7585. const int i3 = ir/(ne2*ne1);
  7586. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7587. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7588. #ifdef GGML_USE_ACCELERATE
  7589. vDSP_vsub(
  7590. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7591. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7592. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7593. ne0);
  7594. #else
  7595. ggml_vec_sub_f32(ne0,
  7596. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7597. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7598. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7599. #endif
  7600. // }
  7601. // }
  7602. }
  7603. } else {
  7604. // src1 is not contiguous
  7605. for (int ir = 0; ir < nr; ++ir) {
  7606. // src0, src1 and dst are same shape => same indices
  7607. const int i3 = ir/(ne2*ne1);
  7608. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7609. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7610. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7611. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7612. for (int i0 = 0; i0 < ne0; i0++) {
  7613. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7614. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7615. }
  7616. }
  7617. }
  7618. }
  7619. static void ggml_compute_forward_sub(
  7620. const struct ggml_compute_params * params,
  7621. const struct ggml_tensor * src0,
  7622. const struct ggml_tensor * src1,
  7623. struct ggml_tensor * dst) {
  7624. switch (src0->type) {
  7625. case GGML_TYPE_F32:
  7626. {
  7627. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  7628. } break;
  7629. default:
  7630. {
  7631. GGML_ASSERT(false);
  7632. } break;
  7633. }
  7634. }
  7635. // ggml_compute_forward_mul
  7636. static void ggml_compute_forward_mul_f32(
  7637. const struct ggml_compute_params * params,
  7638. const struct ggml_tensor * src0,
  7639. const struct ggml_tensor * src1,
  7640. struct ggml_tensor * dst) {
  7641. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7642. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7643. return;
  7644. }
  7645. const int ith = params->ith;
  7646. const int nth = params->nth;
  7647. #ifdef GGML_USE_CLBLAST
  7648. if (src1->backend == GGML_BACKEND_GPU) {
  7649. if (ith == 0) {
  7650. ggml_cl_mul(src0, src1, dst);
  7651. }
  7652. return;
  7653. }
  7654. #endif
  7655. const int64_t nr = ggml_nrows(src0);
  7656. GGML_TENSOR_BINARY_OP_LOCALS;
  7657. GGML_ASSERT( nb0 == sizeof(float));
  7658. GGML_ASSERT(nb00 == sizeof(float));
  7659. GGML_ASSERT(ne00 == ne10);
  7660. if (nb10 == sizeof(float)) {
  7661. for (int64_t ir = ith; ir < nr; ir += nth) {
  7662. // src0 and dst are same shape => same indices
  7663. const int64_t i03 = ir/(ne02*ne01);
  7664. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7665. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7666. const int64_t i13 = i03 % ne13;
  7667. const int64_t i12 = i02 % ne12;
  7668. const int64_t i11 = i01 % ne11;
  7669. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7670. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7671. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7672. #ifdef GGML_USE_ACCELERATE
  7673. UNUSED(ggml_vec_mul_f32);
  7674. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7675. #else
  7676. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7677. #endif
  7678. // }
  7679. // }
  7680. }
  7681. } else {
  7682. // src1 is not contiguous
  7683. for (int64_t ir = ith; ir < nr; ir += nth) {
  7684. // src0 and dst are same shape => same indices
  7685. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7686. const int64_t i03 = ir/(ne02*ne01);
  7687. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7688. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7689. const int64_t i13 = i03 % ne13;
  7690. const int64_t i12 = i02 % ne12;
  7691. const int64_t i11 = i01 % ne11;
  7692. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7693. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7694. for (int64_t i0 = 0; i0 < ne00; i0++) {
  7695. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7696. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7697. }
  7698. }
  7699. }
  7700. }
  7701. static void ggml_compute_forward_mul(
  7702. const struct ggml_compute_params * params,
  7703. const struct ggml_tensor * src0,
  7704. const struct ggml_tensor * src1,
  7705. struct ggml_tensor * dst) {
  7706. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  7707. switch (src0->type) {
  7708. case GGML_TYPE_F32:
  7709. {
  7710. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  7711. } break;
  7712. default:
  7713. {
  7714. GGML_ASSERT(false);
  7715. } break;
  7716. }
  7717. }
  7718. // ggml_compute_forward_div
  7719. static void ggml_compute_forward_div_f32(
  7720. const struct ggml_compute_params * params,
  7721. const struct ggml_tensor * src0,
  7722. const struct ggml_tensor * src1,
  7723. struct ggml_tensor * dst) {
  7724. assert(params->ith == 0);
  7725. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7726. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7727. return;
  7728. }
  7729. const int nr = ggml_nrows(src0);
  7730. GGML_TENSOR_BINARY_OP_LOCALS;
  7731. GGML_ASSERT( nb0 == sizeof(float));
  7732. GGML_ASSERT(nb00 == sizeof(float));
  7733. if (nb10 == sizeof(float)) {
  7734. for (int ir = 0; ir < nr; ++ir) {
  7735. // src0, src1 and dst are same shape => same indices
  7736. const int i3 = ir/(ne2*ne1);
  7737. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7738. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7739. #ifdef GGML_USE_ACCELERATE
  7740. UNUSED(ggml_vec_div_f32);
  7741. vDSP_vdiv(
  7742. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7743. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7744. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7745. ne0);
  7746. #else
  7747. ggml_vec_div_f32(ne0,
  7748. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7749. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7750. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7751. #endif
  7752. // }
  7753. // }
  7754. }
  7755. } else {
  7756. // src1 is not contiguous
  7757. for (int ir = 0; ir < nr; ++ir) {
  7758. // src0, src1 and dst are same shape => same indices
  7759. const int i3 = ir/(ne2*ne1);
  7760. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7761. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7762. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7763. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7764. for (int i0 = 0; i0 < ne0; i0++) {
  7765. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7766. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7767. }
  7768. }
  7769. }
  7770. }
  7771. static void ggml_compute_forward_div(
  7772. const struct ggml_compute_params * params,
  7773. const struct ggml_tensor * src0,
  7774. const struct ggml_tensor * src1,
  7775. struct ggml_tensor * dst) {
  7776. switch (src0->type) {
  7777. case GGML_TYPE_F32:
  7778. {
  7779. ggml_compute_forward_div_f32(params, src0, src1, dst);
  7780. } break;
  7781. default:
  7782. {
  7783. GGML_ASSERT(false);
  7784. } break;
  7785. }
  7786. }
  7787. // ggml_compute_forward_sqr
  7788. static void ggml_compute_forward_sqr_f32(
  7789. const struct ggml_compute_params * params,
  7790. const struct ggml_tensor * src0,
  7791. struct ggml_tensor * dst) {
  7792. assert(params->ith == 0);
  7793. assert(ggml_are_same_shape(src0, dst));
  7794. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7795. return;
  7796. }
  7797. const int n = ggml_nrows(src0);
  7798. const int nc = src0->ne[0];
  7799. assert( dst->nb[0] == sizeof(float));
  7800. assert(src0->nb[0] == sizeof(float));
  7801. for (int i = 0; i < n; i++) {
  7802. ggml_vec_sqr_f32(nc,
  7803. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7804. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7805. }
  7806. }
  7807. static void ggml_compute_forward_sqr(
  7808. const struct ggml_compute_params * params,
  7809. const struct ggml_tensor * src0,
  7810. struct ggml_tensor * dst) {
  7811. switch (src0->type) {
  7812. case GGML_TYPE_F32:
  7813. {
  7814. ggml_compute_forward_sqr_f32(params, src0, dst);
  7815. } break;
  7816. default:
  7817. {
  7818. GGML_ASSERT(false);
  7819. } break;
  7820. }
  7821. }
  7822. // ggml_compute_forward_sqrt
  7823. static void ggml_compute_forward_sqrt_f32(
  7824. const struct ggml_compute_params * params,
  7825. const struct ggml_tensor * src0,
  7826. struct ggml_tensor * dst) {
  7827. assert(params->ith == 0);
  7828. assert(ggml_are_same_shape(src0, dst));
  7829. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7830. return;
  7831. }
  7832. const int n = ggml_nrows(src0);
  7833. const int nc = src0->ne[0];
  7834. assert( dst->nb[0] == sizeof(float));
  7835. assert(src0->nb[0] == sizeof(float));
  7836. for (int i = 0; i < n; i++) {
  7837. ggml_vec_sqrt_f32(nc,
  7838. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7839. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7840. }
  7841. }
  7842. static void ggml_compute_forward_sqrt(
  7843. const struct ggml_compute_params * params,
  7844. const struct ggml_tensor * src0,
  7845. struct ggml_tensor * dst) {
  7846. switch (src0->type) {
  7847. case GGML_TYPE_F32:
  7848. {
  7849. ggml_compute_forward_sqrt_f32(params, src0, dst);
  7850. } break;
  7851. default:
  7852. {
  7853. GGML_ASSERT(false);
  7854. } break;
  7855. }
  7856. }
  7857. // ggml_compute_forward_log
  7858. static void ggml_compute_forward_log_f32(
  7859. const struct ggml_compute_params * params,
  7860. const struct ggml_tensor * src0,
  7861. struct ggml_tensor * dst) {
  7862. GGML_ASSERT(params->ith == 0);
  7863. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7864. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7865. return;
  7866. }
  7867. const int n = ggml_nrows(src0);
  7868. const int nc = src0->ne[0];
  7869. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7870. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7871. for (int i = 0; i < n; i++) {
  7872. ggml_vec_log_f32(nc,
  7873. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7874. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7875. }
  7876. }
  7877. static void ggml_compute_forward_log(
  7878. const struct ggml_compute_params * params,
  7879. const struct ggml_tensor * src0,
  7880. struct ggml_tensor * dst) {
  7881. switch (src0->type) {
  7882. case GGML_TYPE_F32:
  7883. {
  7884. ggml_compute_forward_log_f32(params, src0, dst);
  7885. } break;
  7886. default:
  7887. {
  7888. GGML_ASSERT(false);
  7889. } break;
  7890. }
  7891. }
  7892. // ggml_compute_forward_sum
  7893. static void ggml_compute_forward_sum_f32(
  7894. const struct ggml_compute_params * params,
  7895. const struct ggml_tensor * src0,
  7896. struct ggml_tensor * dst) {
  7897. assert(params->ith == 0);
  7898. assert(ggml_is_scalar(dst));
  7899. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7900. return;
  7901. }
  7902. assert(ggml_is_scalar(dst));
  7903. assert(src0->nb[0] == sizeof(float));
  7904. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7905. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7906. ggml_float sum = 0;
  7907. ggml_float row_sum = 0;
  7908. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7909. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7910. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7911. ggml_vec_sum_f32_ggf(ne00,
  7912. &row_sum,
  7913. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7914. sum += row_sum;
  7915. }
  7916. }
  7917. }
  7918. ((float *) dst->data)[0] = sum;
  7919. }
  7920. static void ggml_compute_forward_sum_f16(
  7921. const struct ggml_compute_params * params,
  7922. const struct ggml_tensor * src0,
  7923. struct ggml_tensor * dst) {
  7924. assert(params->ith == 0);
  7925. assert(ggml_is_scalar(dst));
  7926. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7927. return;
  7928. }
  7929. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7930. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7931. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7932. float sum = 0;
  7933. float row_sum = 0;
  7934. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7935. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7936. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7937. ggml_vec_sum_f16_ggf(ne00,
  7938. &row_sum,
  7939. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7940. sum += row_sum;
  7941. }
  7942. }
  7943. }
  7944. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7945. }
  7946. static void ggml_compute_forward_sum(
  7947. const struct ggml_compute_params * params,
  7948. const struct ggml_tensor * src0,
  7949. struct ggml_tensor * dst) {
  7950. switch (src0->type) {
  7951. case GGML_TYPE_F32:
  7952. {
  7953. ggml_compute_forward_sum_f32(params, src0, dst);
  7954. } break;
  7955. case GGML_TYPE_F16:
  7956. {
  7957. ggml_compute_forward_sum_f16(params, src0, dst);
  7958. } break;
  7959. default:
  7960. {
  7961. GGML_ASSERT(false);
  7962. } break;
  7963. }
  7964. }
  7965. // ggml_compute_forward_sum_rows
  7966. static void ggml_compute_forward_sum_rows_f32(
  7967. const struct ggml_compute_params * params,
  7968. const struct ggml_tensor * src0,
  7969. struct ggml_tensor * dst) {
  7970. GGML_ASSERT(params->ith == 0);
  7971. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7972. return;
  7973. }
  7974. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7975. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7976. GGML_TENSOR_UNARY_OP_LOCALS;
  7977. GGML_ASSERT(ne0 == 1);
  7978. GGML_ASSERT(ne1 == ne01);
  7979. GGML_ASSERT(ne2 == ne02);
  7980. GGML_ASSERT(ne3 == ne03);
  7981. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7982. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7983. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7984. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7985. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7986. float row_sum = 0;
  7987. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7988. dst_row[0] = row_sum;
  7989. }
  7990. }
  7991. }
  7992. }
  7993. static void ggml_compute_forward_sum_rows(
  7994. const struct ggml_compute_params * params,
  7995. const struct ggml_tensor * src0,
  7996. struct ggml_tensor * dst) {
  7997. switch (src0->type) {
  7998. case GGML_TYPE_F32:
  7999. {
  8000. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  8001. } break;
  8002. default:
  8003. {
  8004. GGML_ASSERT(false);
  8005. } break;
  8006. }
  8007. }
  8008. // ggml_compute_forward_mean
  8009. static void ggml_compute_forward_mean_f32(
  8010. const struct ggml_compute_params * params,
  8011. const struct ggml_tensor * src0,
  8012. struct ggml_tensor * dst) {
  8013. assert(params->ith == 0);
  8014. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8015. return;
  8016. }
  8017. assert(src0->nb[0] == sizeof(float));
  8018. GGML_TENSOR_UNARY_OP_LOCALS;
  8019. assert(ne0 == 1);
  8020. assert(ne1 == ne01);
  8021. assert(ne2 == ne02);
  8022. assert(ne3 == ne03);
  8023. UNUSED(ne0);
  8024. UNUSED(ne1);
  8025. UNUSED(ne2);
  8026. UNUSED(ne3);
  8027. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8028. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8029. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8030. ggml_vec_sum_f32(ne00,
  8031. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  8032. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8033. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  8034. }
  8035. }
  8036. }
  8037. }
  8038. static void ggml_compute_forward_mean(
  8039. const struct ggml_compute_params * params,
  8040. const struct ggml_tensor * src0,
  8041. struct ggml_tensor * dst) {
  8042. switch (src0->type) {
  8043. case GGML_TYPE_F32:
  8044. {
  8045. ggml_compute_forward_mean_f32(params, src0, dst);
  8046. } break;
  8047. default:
  8048. {
  8049. GGML_ASSERT(false);
  8050. } break;
  8051. }
  8052. }
  8053. // ggml_compute_forward_argmax
  8054. static void ggml_compute_forward_argmax_f32(
  8055. const struct ggml_compute_params * params,
  8056. const struct ggml_tensor * src0,
  8057. struct ggml_tensor * dst) {
  8058. assert(params->ith == 0);
  8059. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8060. return;
  8061. }
  8062. assert(src0->nb[0] == sizeof(float));
  8063. assert(dst->nb[0] == sizeof(float));
  8064. const int64_t ne00 = src0->ne[0];
  8065. const int64_t ne01 = src0->ne[1];
  8066. const size_t nb01 = src0->nb[1];
  8067. const size_t nb0 = dst->nb[0];
  8068. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8069. float * src = (float *) ((char *) src0->data + i1*nb01);
  8070. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  8071. int v = 0;
  8072. ggml_vec_argmax_f32(ne00, &v, src);
  8073. dst_[0] = v;
  8074. }
  8075. }
  8076. static void ggml_compute_forward_argmax(
  8077. const struct ggml_compute_params * params,
  8078. const struct ggml_tensor * src0,
  8079. struct ggml_tensor * dst) {
  8080. switch (src0->type) {
  8081. case GGML_TYPE_F32:
  8082. {
  8083. ggml_compute_forward_argmax_f32(params, src0, dst);
  8084. } break;
  8085. default:
  8086. {
  8087. GGML_ASSERT(false);
  8088. } break;
  8089. }
  8090. }
  8091. // ggml_compute_forward_repeat
  8092. static void ggml_compute_forward_repeat_f32(
  8093. const struct ggml_compute_params * params,
  8094. const struct ggml_tensor * src0,
  8095. struct ggml_tensor * dst) {
  8096. GGML_ASSERT(params->ith == 0);
  8097. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8098. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8099. return;
  8100. }
  8101. GGML_TENSOR_UNARY_OP_LOCALS;
  8102. // guaranteed to be an integer due to the check in ggml_can_repeat
  8103. const int nr0 = (int)(ne0/ne00);
  8104. const int nr1 = (int)(ne1/ne01);
  8105. const int nr2 = (int)(ne2/ne02);
  8106. const int nr3 = (int)(ne3/ne03);
  8107. // TODO: support for transposed / permuted tensors
  8108. GGML_ASSERT(nb0 == sizeof(float));
  8109. GGML_ASSERT(nb00 == sizeof(float));
  8110. // TODO: maybe this is not optimal?
  8111. for (int i3 = 0; i3 < nr3; i3++) {
  8112. for (int k3 = 0; k3 < ne03; k3++) {
  8113. for (int i2 = 0; i2 < nr2; i2++) {
  8114. for (int k2 = 0; k2 < ne02; k2++) {
  8115. for (int i1 = 0; i1 < nr1; i1++) {
  8116. for (int k1 = 0; k1 < ne01; k1++) {
  8117. for (int i0 = 0; i0 < nr0; i0++) {
  8118. ggml_vec_cpy_f32(ne00,
  8119. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  8120. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  8121. }
  8122. }
  8123. }
  8124. }
  8125. }
  8126. }
  8127. }
  8128. }
  8129. static void ggml_compute_forward_repeat(
  8130. const struct ggml_compute_params * params,
  8131. const struct ggml_tensor * src0,
  8132. struct ggml_tensor * dst) {
  8133. switch (src0->type) {
  8134. case GGML_TYPE_F32:
  8135. {
  8136. ggml_compute_forward_repeat_f32(params, src0, dst);
  8137. } break;
  8138. default:
  8139. {
  8140. GGML_ASSERT(false);
  8141. } break;
  8142. }
  8143. }
  8144. // ggml_compute_forward_repeat_back
  8145. static void ggml_compute_forward_repeat_back_f32(
  8146. const struct ggml_compute_params * params,
  8147. const struct ggml_tensor * src0,
  8148. struct ggml_tensor * dst) {
  8149. GGML_ASSERT(params->ith == 0);
  8150. GGML_ASSERT(ggml_can_repeat(dst, src0));
  8151. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8152. return;
  8153. }
  8154. GGML_TENSOR_UNARY_OP_LOCALS;
  8155. // guaranteed to be an integer due to the check in ggml_can_repeat
  8156. const int nr0 = (int)(ne00/ne0);
  8157. const int nr1 = (int)(ne01/ne1);
  8158. const int nr2 = (int)(ne02/ne2);
  8159. const int nr3 = (int)(ne03/ne3);
  8160. // TODO: support for transposed / permuted tensors
  8161. GGML_ASSERT(nb0 == sizeof(float));
  8162. GGML_ASSERT(nb00 == sizeof(float));
  8163. if (ggml_is_contiguous(dst)) {
  8164. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8165. } else {
  8166. for (int k3 = 0; k3 < ne3; k3++) {
  8167. for (int k2 = 0; k2 < ne2; k2++) {
  8168. for (int k1 = 0; k1 < ne1; k1++) {
  8169. ggml_vec_set_f32(ne0,
  8170. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  8171. 0);
  8172. }
  8173. }
  8174. }
  8175. }
  8176. // TODO: maybe this is not optimal?
  8177. for (int i3 = 0; i3 < nr3; i3++) {
  8178. for (int k3 = 0; k3 < ne3; k3++) {
  8179. for (int i2 = 0; i2 < nr2; i2++) {
  8180. for (int k2 = 0; k2 < ne2; k2++) {
  8181. for (int i1 = 0; i1 < nr1; i1++) {
  8182. for (int k1 = 0; k1 < ne1; k1++) {
  8183. for (int i0 = 0; i0 < nr0; i0++) {
  8184. ggml_vec_acc_f32(ne0,
  8185. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  8186. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  8187. }
  8188. }
  8189. }
  8190. }
  8191. }
  8192. }
  8193. }
  8194. }
  8195. static void ggml_compute_forward_repeat_back(
  8196. const struct ggml_compute_params * params,
  8197. const struct ggml_tensor * src0,
  8198. struct ggml_tensor * dst) {
  8199. switch (src0->type) {
  8200. case GGML_TYPE_F32:
  8201. {
  8202. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  8203. } break;
  8204. default:
  8205. {
  8206. GGML_ASSERT(false);
  8207. } break;
  8208. }
  8209. }
  8210. // ggml_compute_forward_concat
  8211. static void ggml_compute_forward_concat_f32(
  8212. const struct ggml_compute_params * params,
  8213. const struct ggml_tensor * src0,
  8214. const struct ggml_tensor * src1,
  8215. struct ggml_tensor * dst) {
  8216. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8217. return;
  8218. }
  8219. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8220. const int ith = params->ith;
  8221. GGML_TENSOR_BINARY_OP_LOCALS;
  8222. // TODO: support for transposed / permuted tensors
  8223. GGML_ASSERT(nb0 == sizeof(float));
  8224. GGML_ASSERT(nb00 == sizeof(float));
  8225. GGML_ASSERT(nb10 == sizeof(float));
  8226. for (int i3 = 0; i3 < ne3; i3++) {
  8227. for (int i2 = ith; i2 < ne2; i2++) {
  8228. if (i2 < ne02) { // src0
  8229. for (int i1 = 0; i1 < ne1; i1++) {
  8230. for (int i0 = 0; i0 < ne0; i0++) {
  8231. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  8232. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8233. *y = *x;
  8234. }
  8235. }
  8236. } // src1
  8237. else {
  8238. for (int i1 = 0; i1 < ne1; i1++) {
  8239. for (int i0 = 0; i0 < ne0; i0++) {
  8240. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  8241. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8242. *y = *x;
  8243. }
  8244. }
  8245. }
  8246. }
  8247. }
  8248. }
  8249. static void ggml_compute_forward_concat(
  8250. const struct ggml_compute_params* params,
  8251. const struct ggml_tensor* src0,
  8252. const struct ggml_tensor* src1,
  8253. struct ggml_tensor* dst) {
  8254. switch (src0->type) {
  8255. case GGML_TYPE_F32:
  8256. {
  8257. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  8258. } break;
  8259. default:
  8260. {
  8261. GGML_ASSERT(false);
  8262. } break;
  8263. }
  8264. }
  8265. // ggml_compute_forward_abs
  8266. static void ggml_compute_forward_abs_f32(
  8267. const struct ggml_compute_params * params,
  8268. const struct ggml_tensor * src0,
  8269. struct ggml_tensor * dst) {
  8270. assert(params->ith == 0);
  8271. assert(ggml_are_same_shape(src0, dst));
  8272. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8273. return;
  8274. }
  8275. const int n = ggml_nrows(src0);
  8276. const int nc = src0->ne[0];
  8277. assert(dst->nb[0] == sizeof(float));
  8278. assert(src0->nb[0] == sizeof(float));
  8279. for (int i = 0; i < n; i++) {
  8280. ggml_vec_abs_f32(nc,
  8281. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8282. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8283. }
  8284. }
  8285. static void ggml_compute_forward_abs(
  8286. const struct ggml_compute_params * params,
  8287. const struct ggml_tensor * src0,
  8288. struct ggml_tensor * dst) {
  8289. switch (src0->type) {
  8290. case GGML_TYPE_F32:
  8291. {
  8292. ggml_compute_forward_abs_f32(params, src0, dst);
  8293. } break;
  8294. default:
  8295. {
  8296. GGML_ASSERT(false);
  8297. } break;
  8298. }
  8299. }
  8300. // ggml_compute_forward_sgn
  8301. static void ggml_compute_forward_sgn_f32(
  8302. const struct ggml_compute_params * params,
  8303. const struct ggml_tensor * src0,
  8304. struct ggml_tensor * dst) {
  8305. assert(params->ith == 0);
  8306. assert(ggml_are_same_shape(src0, dst));
  8307. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8308. return;
  8309. }
  8310. const int n = ggml_nrows(src0);
  8311. const int nc = src0->ne[0];
  8312. assert(dst->nb[0] == sizeof(float));
  8313. assert(src0->nb[0] == sizeof(float));
  8314. for (int i = 0; i < n; i++) {
  8315. ggml_vec_sgn_f32(nc,
  8316. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8317. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8318. }
  8319. }
  8320. static void ggml_compute_forward_sgn(
  8321. const struct ggml_compute_params * params,
  8322. const struct ggml_tensor * src0,
  8323. struct ggml_tensor * dst) {
  8324. switch (src0->type) {
  8325. case GGML_TYPE_F32:
  8326. {
  8327. ggml_compute_forward_sgn_f32(params, src0, dst);
  8328. } break;
  8329. default:
  8330. {
  8331. GGML_ASSERT(false);
  8332. } break;
  8333. }
  8334. }
  8335. // ggml_compute_forward_neg
  8336. static void ggml_compute_forward_neg_f32(
  8337. const struct ggml_compute_params * params,
  8338. const struct ggml_tensor * src0,
  8339. struct ggml_tensor * dst) {
  8340. assert(params->ith == 0);
  8341. assert(ggml_are_same_shape(src0, dst));
  8342. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8343. return;
  8344. }
  8345. const int n = ggml_nrows(src0);
  8346. const int nc = src0->ne[0];
  8347. assert(dst->nb[0] == sizeof(float));
  8348. assert(src0->nb[0] == sizeof(float));
  8349. for (int i = 0; i < n; i++) {
  8350. ggml_vec_neg_f32(nc,
  8351. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8352. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8353. }
  8354. }
  8355. static void ggml_compute_forward_neg(
  8356. const struct ggml_compute_params * params,
  8357. const struct ggml_tensor * src0,
  8358. struct ggml_tensor * dst) {
  8359. switch (src0->type) {
  8360. case GGML_TYPE_F32:
  8361. {
  8362. ggml_compute_forward_neg_f32(params, src0, dst);
  8363. } break;
  8364. default:
  8365. {
  8366. GGML_ASSERT(false);
  8367. } break;
  8368. }
  8369. }
  8370. // ggml_compute_forward_step
  8371. static void ggml_compute_forward_step_f32(
  8372. const struct ggml_compute_params * params,
  8373. const struct ggml_tensor * src0,
  8374. struct ggml_tensor * dst) {
  8375. assert(params->ith == 0);
  8376. assert(ggml_are_same_shape(src0, dst));
  8377. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8378. return;
  8379. }
  8380. const int n = ggml_nrows(src0);
  8381. const int nc = src0->ne[0];
  8382. assert(dst->nb[0] == sizeof(float));
  8383. assert(src0->nb[0] == sizeof(float));
  8384. for (int i = 0; i < n; i++) {
  8385. ggml_vec_step_f32(nc,
  8386. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8387. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8388. }
  8389. }
  8390. static void ggml_compute_forward_step(
  8391. const struct ggml_compute_params * params,
  8392. const struct ggml_tensor * src0,
  8393. struct ggml_tensor * dst) {
  8394. switch (src0->type) {
  8395. case GGML_TYPE_F32:
  8396. {
  8397. ggml_compute_forward_step_f32(params, src0, dst);
  8398. } break;
  8399. default:
  8400. {
  8401. GGML_ASSERT(false);
  8402. } break;
  8403. }
  8404. }
  8405. // ggml_compute_forward_tanh
  8406. static void ggml_compute_forward_tanh_f32(
  8407. const struct ggml_compute_params * params,
  8408. const struct ggml_tensor * src0,
  8409. struct ggml_tensor * dst) {
  8410. assert(params->ith == 0);
  8411. assert(ggml_are_same_shape(src0, dst));
  8412. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8413. return;
  8414. }
  8415. const int n = ggml_nrows(src0);
  8416. const int nc = src0->ne[0];
  8417. assert(dst->nb[0] == sizeof(float));
  8418. assert(src0->nb[0] == sizeof(float));
  8419. for (int i = 0; i < n; i++) {
  8420. ggml_vec_tanh_f32(nc,
  8421. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8422. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8423. }
  8424. }
  8425. static void ggml_compute_forward_tanh(
  8426. const struct ggml_compute_params * params,
  8427. const struct ggml_tensor * src0,
  8428. struct ggml_tensor * dst) {
  8429. switch (src0->type) {
  8430. case GGML_TYPE_F32:
  8431. {
  8432. ggml_compute_forward_tanh_f32(params, src0, dst);
  8433. } break;
  8434. default:
  8435. {
  8436. GGML_ASSERT(false);
  8437. } break;
  8438. }
  8439. }
  8440. // ggml_compute_forward_elu
  8441. static void ggml_compute_forward_elu_f32(
  8442. const struct ggml_compute_params * params,
  8443. const struct ggml_tensor * src0,
  8444. struct ggml_tensor * dst) {
  8445. assert(params->ith == 0);
  8446. assert(ggml_are_same_shape(src0, dst));
  8447. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8448. return;
  8449. }
  8450. const int n = ggml_nrows(src0);
  8451. const int nc = src0->ne[0];
  8452. assert(dst->nb[0] == sizeof(float));
  8453. assert(src0->nb[0] == sizeof(float));
  8454. for (int i = 0; i < n; i++) {
  8455. ggml_vec_elu_f32(nc,
  8456. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8457. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8458. }
  8459. }
  8460. static void ggml_compute_forward_elu(
  8461. const struct ggml_compute_params * params,
  8462. const struct ggml_tensor * src0,
  8463. struct ggml_tensor * dst) {
  8464. switch (src0->type) {
  8465. case GGML_TYPE_F32:
  8466. {
  8467. ggml_compute_forward_elu_f32(params, src0, dst);
  8468. } break;
  8469. default:
  8470. {
  8471. GGML_ASSERT(false);
  8472. } break;
  8473. }
  8474. }
  8475. // ggml_compute_forward_relu
  8476. static void ggml_compute_forward_relu_f32(
  8477. const struct ggml_compute_params * params,
  8478. const struct ggml_tensor * src0,
  8479. struct ggml_tensor * dst) {
  8480. assert(params->ith == 0);
  8481. assert(ggml_are_same_shape(src0, dst));
  8482. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8483. return;
  8484. }
  8485. const int n = ggml_nrows(src0);
  8486. const int nc = src0->ne[0];
  8487. assert(dst->nb[0] == sizeof(float));
  8488. assert(src0->nb[0] == sizeof(float));
  8489. for (int i = 0; i < n; i++) {
  8490. ggml_vec_relu_f32(nc,
  8491. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8492. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8493. }
  8494. }
  8495. static void ggml_compute_forward_relu(
  8496. const struct ggml_compute_params * params,
  8497. const struct ggml_tensor * src0,
  8498. struct ggml_tensor * dst) {
  8499. switch (src0->type) {
  8500. case GGML_TYPE_F32:
  8501. {
  8502. ggml_compute_forward_relu_f32(params, src0, dst);
  8503. } break;
  8504. default:
  8505. {
  8506. GGML_ASSERT(false);
  8507. } break;
  8508. }
  8509. }
  8510. // ggml_compute_forward_gelu
  8511. static void ggml_compute_forward_gelu_f32(
  8512. const struct ggml_compute_params * params,
  8513. const struct ggml_tensor * src0,
  8514. struct ggml_tensor * dst) {
  8515. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8516. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8517. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8518. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8519. return;
  8520. }
  8521. const int ith = params->ith;
  8522. const int nth = params->nth;
  8523. const int nc = src0->ne[0];
  8524. const int nr = ggml_nrows(src0);
  8525. // rows per thread
  8526. const int dr = (nr + nth - 1)/nth;
  8527. // row range for this thread
  8528. const int ir0 = dr*ith;
  8529. const int ir1 = MIN(ir0 + dr, nr);
  8530. for (int i1 = ir0; i1 < ir1; i1++) {
  8531. ggml_vec_gelu_f32(nc,
  8532. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8533. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8534. #ifndef NDEBUG
  8535. for (int k = 0; k < nc; k++) {
  8536. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8537. UNUSED(x);
  8538. assert(!isnan(x));
  8539. assert(!isinf(x));
  8540. }
  8541. #endif
  8542. }
  8543. }
  8544. static void ggml_compute_forward_gelu(
  8545. const struct ggml_compute_params * params,
  8546. const struct ggml_tensor * src0,
  8547. struct ggml_tensor * dst) {
  8548. switch (src0->type) {
  8549. case GGML_TYPE_F32:
  8550. {
  8551. ggml_compute_forward_gelu_f32(params, src0, dst);
  8552. } break;
  8553. default:
  8554. {
  8555. GGML_ASSERT(false);
  8556. } break;
  8557. }
  8558. }
  8559. // ggml_compute_forward_gelu_quick
  8560. static void ggml_compute_forward_gelu_quick_f32(
  8561. const struct ggml_compute_params * params,
  8562. const struct ggml_tensor * src0,
  8563. struct ggml_tensor * dst) {
  8564. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8565. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8566. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8567. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8568. return;
  8569. }
  8570. const int ith = params->ith;
  8571. const int nth = params->nth;
  8572. const int nc = src0->ne[0];
  8573. const int nr = ggml_nrows(src0);
  8574. // rows per thread
  8575. const int dr = (nr + nth - 1)/nth;
  8576. // row range for this thread
  8577. const int ir0 = dr*ith;
  8578. const int ir1 = MIN(ir0 + dr, nr);
  8579. for (int i1 = ir0; i1 < ir1; i1++) {
  8580. ggml_vec_gelu_quick_f32(nc,
  8581. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8582. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8583. #ifndef NDEBUG
  8584. for (int k = 0; k < nc; k++) {
  8585. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8586. UNUSED(x);
  8587. assert(!isnan(x));
  8588. assert(!isinf(x));
  8589. }
  8590. #endif
  8591. }
  8592. }
  8593. static void ggml_compute_forward_gelu_quick(
  8594. const struct ggml_compute_params * params,
  8595. const struct ggml_tensor * src0,
  8596. struct ggml_tensor * dst) {
  8597. switch (src0->type) {
  8598. case GGML_TYPE_F32:
  8599. {
  8600. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  8601. } break;
  8602. default:
  8603. {
  8604. GGML_ASSERT(false);
  8605. } break;
  8606. }
  8607. }
  8608. // ggml_compute_forward_silu
  8609. static void ggml_compute_forward_silu_f32(
  8610. const struct ggml_compute_params * params,
  8611. const struct ggml_tensor * src0,
  8612. struct ggml_tensor * dst) {
  8613. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8614. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8615. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8616. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8617. return;
  8618. }
  8619. const int ith = params->ith;
  8620. const int nth = params->nth;
  8621. const int nc = src0->ne[0];
  8622. const int nr = ggml_nrows(src0);
  8623. // rows per thread
  8624. const int dr = (nr + nth - 1)/nth;
  8625. // row range for this thread
  8626. const int ir0 = dr*ith;
  8627. const int ir1 = MIN(ir0 + dr, nr);
  8628. for (int i1 = ir0; i1 < ir1; i1++) {
  8629. ggml_vec_silu_f32(nc,
  8630. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8631. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8632. #ifndef NDEBUG
  8633. for (int k = 0; k < nc; k++) {
  8634. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8635. UNUSED(x);
  8636. assert(!isnan(x));
  8637. assert(!isinf(x));
  8638. }
  8639. #endif
  8640. }
  8641. }
  8642. static void ggml_compute_forward_silu(
  8643. const struct ggml_compute_params * params,
  8644. const struct ggml_tensor * src0,
  8645. struct ggml_tensor * dst) {
  8646. switch (src0->type) {
  8647. case GGML_TYPE_F32:
  8648. {
  8649. ggml_compute_forward_silu_f32(params, src0, dst);
  8650. } break;
  8651. default:
  8652. {
  8653. GGML_ASSERT(false);
  8654. } break;
  8655. }
  8656. }
  8657. // ggml_compute_forward_silu_back
  8658. static void ggml_compute_forward_silu_back_f32(
  8659. const struct ggml_compute_params * params,
  8660. const struct ggml_tensor * src0,
  8661. const struct ggml_tensor * grad,
  8662. struct ggml_tensor * dst) {
  8663. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  8664. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8665. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8666. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8667. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8668. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8669. return;
  8670. }
  8671. const int ith = params->ith;
  8672. const int nth = params->nth;
  8673. const int nc = src0->ne[0];
  8674. const int nr = ggml_nrows(src0);
  8675. // rows per thread
  8676. const int dr = (nr + nth - 1)/nth;
  8677. // row range for this thread
  8678. const int ir0 = dr*ith;
  8679. const int ir1 = MIN(ir0 + dr, nr);
  8680. for (int i1 = ir0; i1 < ir1; i1++) {
  8681. ggml_vec_silu_backward_f32(nc,
  8682. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8683. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8684. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8685. #ifndef NDEBUG
  8686. for (int k = 0; k < nc; k++) {
  8687. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8688. UNUSED(x);
  8689. assert(!isnan(x));
  8690. assert(!isinf(x));
  8691. }
  8692. #endif
  8693. }
  8694. }
  8695. static void ggml_compute_forward_silu_back(
  8696. const struct ggml_compute_params * params,
  8697. const struct ggml_tensor * src0,
  8698. const struct ggml_tensor * grad,
  8699. struct ggml_tensor * dst) {
  8700. switch (src0->type) {
  8701. case GGML_TYPE_F32:
  8702. {
  8703. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  8704. } break;
  8705. default:
  8706. {
  8707. GGML_ASSERT(false);
  8708. } break;
  8709. }
  8710. }
  8711. // ggml_compute_forward_norm
  8712. static void ggml_compute_forward_norm_f32(
  8713. const struct ggml_compute_params * params,
  8714. const struct ggml_tensor * src0,
  8715. struct ggml_tensor * dst) {
  8716. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8717. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8718. return;
  8719. }
  8720. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8721. const int ith = params->ith;
  8722. const int nth = params->nth;
  8723. GGML_TENSOR_UNARY_OP_LOCALS;
  8724. float eps;
  8725. memcpy(&eps, dst->op_params, sizeof(float));
  8726. // TODO: optimize
  8727. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8728. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8729. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8730. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8731. ggml_float sum = 0.0;
  8732. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8733. sum += (ggml_float)x[i00];
  8734. }
  8735. float mean = sum/ne00;
  8736. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8737. ggml_float sum2 = 0.0;
  8738. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8739. float v = x[i00] - mean;
  8740. y[i00] = v;
  8741. sum2 += (ggml_float)(v*v);
  8742. }
  8743. float variance = sum2/ne00;
  8744. const float scale = 1.0f/sqrtf(variance + eps);
  8745. ggml_vec_scale_f32(ne00, y, scale);
  8746. }
  8747. }
  8748. }
  8749. }
  8750. static void ggml_compute_forward_norm(
  8751. const struct ggml_compute_params * params,
  8752. const struct ggml_tensor * src0,
  8753. struct ggml_tensor * dst) {
  8754. switch (src0->type) {
  8755. case GGML_TYPE_F32:
  8756. {
  8757. ggml_compute_forward_norm_f32(params, src0, dst);
  8758. } break;
  8759. default:
  8760. {
  8761. GGML_ASSERT(false);
  8762. } break;
  8763. }
  8764. }
  8765. // ggml_compute_forward_group_rms_norm
  8766. static void ggml_compute_forward_rms_norm_f32(
  8767. const struct ggml_compute_params * params,
  8768. const struct ggml_tensor * src0,
  8769. struct ggml_tensor * dst) {
  8770. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8771. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8772. return;
  8773. }
  8774. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8775. const int ith = params->ith;
  8776. const int nth = params->nth;
  8777. GGML_TENSOR_UNARY_OP_LOCALS;
  8778. float eps;
  8779. memcpy(&eps, dst->op_params, sizeof(float));
  8780. // TODO: optimize
  8781. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8782. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8783. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8784. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8785. ggml_float sum = 0.0;
  8786. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8787. sum += (ggml_float)(x[i00] * x[i00]);
  8788. }
  8789. const float mean = sum/ne00;
  8790. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8791. memcpy(y, x, ne00 * sizeof(float));
  8792. // for (int i00 = 0; i00 < ne00; i00++) {
  8793. // y[i00] = x[i00];
  8794. // }
  8795. const float scale = 1.0f/sqrtf(mean + eps);
  8796. ggml_vec_scale_f32(ne00, y, scale);
  8797. }
  8798. }
  8799. }
  8800. }
  8801. static void ggml_compute_forward_rms_norm(
  8802. const struct ggml_compute_params * params,
  8803. const struct ggml_tensor * src0,
  8804. struct ggml_tensor * dst) {
  8805. switch (src0->type) {
  8806. case GGML_TYPE_F32:
  8807. {
  8808. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  8809. } break;
  8810. default:
  8811. {
  8812. GGML_ASSERT(false);
  8813. } break;
  8814. }
  8815. }
  8816. static void ggml_compute_forward_rms_norm_back_f32(
  8817. const struct ggml_compute_params * params,
  8818. const struct ggml_tensor * src0,
  8819. const struct ggml_tensor * src1,
  8820. struct ggml_tensor * dst) {
  8821. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8822. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8823. return;
  8824. }
  8825. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8826. const int ith = params->ith;
  8827. const int nth = params->nth;
  8828. GGML_TENSOR_BINARY_OP_LOCALS;
  8829. float eps;
  8830. memcpy(&eps, dst->op_params, sizeof(float));
  8831. // TODO: optimize
  8832. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8833. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8834. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8835. // src1 is same shape as src0 => same indices
  8836. const int64_t i11 = i01;
  8837. const int64_t i12 = i02;
  8838. const int64_t i13 = i03;
  8839. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8840. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8841. ggml_float sum_xx = 0.0;
  8842. ggml_float sum_xdz = 0.0;
  8843. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8844. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8845. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8846. }
  8847. //const float mean = (float)(sum_xx)/ne00;
  8848. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8849. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8850. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8851. // we could cache rms from forward pass to improve performance.
  8852. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8853. //const float rms = sqrtf(mean_eps);
  8854. const float rrms = 1.0f / sqrtf(mean_eps);
  8855. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8856. {
  8857. // z = rms_norm(x)
  8858. //
  8859. // rms_norm(src0) =
  8860. // scale(
  8861. // src0,
  8862. // div(
  8863. // 1,
  8864. // sqrt(
  8865. // add(
  8866. // scale(
  8867. // sum(
  8868. // sqr(
  8869. // src0)),
  8870. // (1.0/N)),
  8871. // eps))));
  8872. // postorder:
  8873. // ## op args grad
  8874. // 00 param src0 grad[#00]
  8875. // 01 const 1
  8876. // 02 sqr (#00) grad[#02]
  8877. // 03 sum (#02) grad[#03]
  8878. // 04 const 1/N
  8879. // 05 scale (#03, #04) grad[#05]
  8880. // 06 const eps
  8881. // 07 add (#05, #06) grad[#07]
  8882. // 08 sqrt (#07) grad[#08]
  8883. // 09 div (#01,#08) grad[#09]
  8884. // 10 scale (#00,#09) grad[#10]
  8885. //
  8886. // backward pass, given grad[#10]
  8887. // #10: scale
  8888. // grad[#00] += scale(grad[#10],#09)
  8889. // grad[#09] += sum(mul(grad[#10],#00))
  8890. // #09: div
  8891. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8892. // #08: sqrt
  8893. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8894. // #07: add
  8895. // grad[#05] += grad[#07]
  8896. // #05: scale
  8897. // grad[#03] += scale(grad[#05],#04)
  8898. // #03: sum
  8899. // grad[#02] += repeat(grad[#03], #02)
  8900. // #02:
  8901. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8902. //
  8903. // substitute and simplify:
  8904. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8905. // grad[#02] = repeat(grad[#03], #02)
  8906. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8907. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8908. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8909. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8910. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8911. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8912. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8913. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8914. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8915. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8916. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8917. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8918. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8919. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8920. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8921. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8922. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8923. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8924. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8925. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8926. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8927. // a = b*c + d*e
  8928. // a = b*c*f/f + d*e*f/f
  8929. // a = (b*c*f + d*e*f)*(1/f)
  8930. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8931. // a = (b + d*e/c)*c
  8932. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8933. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8934. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8935. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8936. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8937. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8938. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8939. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8940. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8941. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8942. }
  8943. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8944. // post-order:
  8945. // dx := x
  8946. // dx := scale(dx,-mean_xdz/mean_eps)
  8947. // dx := add(dx, dz)
  8948. // dx := scale(dx, rrms)
  8949. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8950. ggml_vec_cpy_f32 (ne00, dx, x);
  8951. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8952. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8953. ggml_vec_acc_f32 (ne00, dx, dz);
  8954. ggml_vec_scale_f32(ne00, dx, rrms);
  8955. }
  8956. }
  8957. }
  8958. }
  8959. static void ggml_compute_forward_rms_norm_back(
  8960. const struct ggml_compute_params * params,
  8961. const struct ggml_tensor * src0,
  8962. const struct ggml_tensor * src1,
  8963. struct ggml_tensor * dst) {
  8964. switch (src0->type) {
  8965. case GGML_TYPE_F32:
  8966. {
  8967. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8968. } break;
  8969. default:
  8970. {
  8971. GGML_ASSERT(false);
  8972. } break;
  8973. }
  8974. }
  8975. // ggml_compute_forward_group_norm
  8976. static void ggml_compute_forward_group_norm_f32(
  8977. const struct ggml_compute_params * params,
  8978. const struct ggml_tensor * src0,
  8979. struct ggml_tensor * dst) {
  8980. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8981. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8982. return;
  8983. }
  8984. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8985. const int ith = params->ith;
  8986. const int nth = params->nth;
  8987. GGML_TENSOR_UNARY_OP_LOCALS;
  8988. const float eps = 1e-6f; // TODO: make this a parameter
  8989. // TODO: optimize
  8990. int n_channels = src0->ne[2];
  8991. int n_groups = dst->op_params[0];
  8992. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8993. for (int i = ith; i < n_groups; i+=nth) {
  8994. int start = i * n_channels_per_group;
  8995. int end = start + n_channels_per_group;
  8996. if (end > n_channels) {
  8997. end = n_channels;
  8998. }
  8999. int step = end - start;
  9000. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9001. ggml_float sum = 0.0;
  9002. for (int64_t i02 = start; i02 < end; i02++) {
  9003. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9004. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9005. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9006. sum += (ggml_float)x[i00];
  9007. }
  9008. }
  9009. }
  9010. float mean = sum / (ne00 * ne01 * step);
  9011. ggml_float sum2 = 0.0;
  9012. for (int64_t i02 = start; i02 < end; i02++) {
  9013. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9014. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9015. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9016. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9017. float v = x[i00] - mean;
  9018. y[i00] = v;
  9019. sum2 += (ggml_float)(v * v);
  9020. }
  9021. }
  9022. }
  9023. float variance = sum2 / (ne00 * ne01 * step);
  9024. const float scale = 1.0f / sqrtf(variance + eps);
  9025. for (int64_t i02 = start; i02 < end; i02++) {
  9026. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9027. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9028. ggml_vec_scale_f32(ne00, y, scale);
  9029. }
  9030. }
  9031. }
  9032. }
  9033. }
  9034. static void ggml_compute_forward_group_norm(
  9035. const struct ggml_compute_params * params,
  9036. const struct ggml_tensor * src0,
  9037. struct ggml_tensor * dst) {
  9038. switch (src0->type) {
  9039. case GGML_TYPE_F32:
  9040. {
  9041. ggml_compute_forward_group_norm_f32(params, src0, dst);
  9042. } break;
  9043. default:
  9044. {
  9045. GGML_ASSERT(false);
  9046. } break;
  9047. }
  9048. }
  9049. // ggml_compute_forward_mul_mat
  9050. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9051. // helper function to determine if it is better to use BLAS or not
  9052. // for large matrices, BLAS is faster
  9053. static bool ggml_compute_forward_mul_mat_use_blas(
  9054. const struct ggml_tensor * src0,
  9055. const struct ggml_tensor * src1,
  9056. struct ggml_tensor * dst) {
  9057. //const int64_t ne00 = src0->ne[0];
  9058. //const int64_t ne01 = src0->ne[1];
  9059. const int64_t ne10 = src1->ne[0];
  9060. const int64_t ne0 = dst->ne[0];
  9061. const int64_t ne1 = dst->ne[1];
  9062. // TODO: find the optimal values for these
  9063. if (ggml_is_contiguous(src0) &&
  9064. ggml_is_contiguous(src1) &&
  9065. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  9066. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  9067. return true;
  9068. }
  9069. return false;
  9070. }
  9071. #endif
  9072. static void ggml_compute_forward_mul_mat(
  9073. const struct ggml_compute_params * params,
  9074. const struct ggml_tensor * src0,
  9075. const struct ggml_tensor * src1,
  9076. struct ggml_tensor * dst) {
  9077. int64_t t0 = ggml_perf_time_us();
  9078. UNUSED(t0);
  9079. GGML_TENSOR_BINARY_OP_LOCALS;
  9080. const int ith = params->ith;
  9081. const int nth = params->nth;
  9082. const enum ggml_type type = src0->type;
  9083. const bool src1_cont = ggml_is_contiguous(src1);
  9084. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  9085. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  9086. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  9087. GGML_ASSERT(ne0 == ne01);
  9088. GGML_ASSERT(ne1 == ne11);
  9089. GGML_ASSERT(ne2 == ne12);
  9090. GGML_ASSERT(ne3 == ne13);
  9091. // we don't support permuted src0 or src1
  9092. GGML_ASSERT(nb00 == ggml_type_size(type));
  9093. GGML_ASSERT(nb10 == sizeof(float));
  9094. // dst cannot be transposed or permuted
  9095. GGML_ASSERT(nb0 == sizeof(float));
  9096. GGML_ASSERT(nb0 <= nb1);
  9097. GGML_ASSERT(nb1 <= nb2);
  9098. GGML_ASSERT(nb2 <= nb3);
  9099. // broadcast factors
  9100. const int64_t r2 = ne12/ne02;
  9101. const int64_t r3 = ne13/ne03;
  9102. // nb01 >= nb00 - src0 is not transposed
  9103. // compute by src0 rows
  9104. #if defined(GGML_USE_CLBLAST)
  9105. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  9106. // TODO: handle case when src0 is broadcast-able into src1 across 2nd,3rd dimension
  9107. // ref: https://github.com/ggerganov/ggml/pull/224
  9108. GGML_ASSERT(ne02 == ne12);
  9109. GGML_ASSERT(ne03 == ne13);
  9110. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  9111. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  9112. }
  9113. return;
  9114. }
  9115. #endif
  9116. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9117. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  9118. if (params->ith != 0) {
  9119. return;
  9120. }
  9121. if (params->type == GGML_TASK_INIT) {
  9122. return;
  9123. }
  9124. if (params->type == GGML_TASK_FINALIZE) {
  9125. return;
  9126. }
  9127. for (int64_t i13 = 0; i13 < ne13; i13++) {
  9128. for (int64_t i12 = 0; i12 < ne12; i12++) {
  9129. // broadcast src0 into src1 across 2nd,3rd dimension
  9130. const int64_t i03 = i13/r3;
  9131. const int64_t i02 = i12/r2;
  9132. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  9133. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  9134. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  9135. if (type != GGML_TYPE_F32) {
  9136. float * const wdata = params->wdata;
  9137. ggml_to_float_t const to_float = type_traits[type].to_float;
  9138. size_t id = 0;
  9139. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9140. to_float((const char *) x + i01*nb01, wdata + id, ne00);
  9141. id += ne00;
  9142. }
  9143. assert(id*sizeof(float) <= params->wsize);
  9144. x = wdata;
  9145. }
  9146. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  9147. ne11, ne01, ne10,
  9148. 1.0f, y, ne10,
  9149. x, ne00,
  9150. 0.0f, d, ne01);
  9151. }
  9152. }
  9153. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  9154. return;
  9155. }
  9156. #endif
  9157. if (params->type == GGML_TASK_INIT) {
  9158. if (src1->type != vec_dot_type) {
  9159. char * wdata = params->wdata;
  9160. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  9161. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  9162. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9163. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9164. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  9165. wdata += row_size;
  9166. }
  9167. }
  9168. }
  9169. }
  9170. return;
  9171. }
  9172. if (params->type == GGML_TASK_FINALIZE) {
  9173. return;
  9174. }
  9175. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  9176. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  9177. const int64_t nr0 = ne01; // src0 rows
  9178. const int64_t nr1 = ne11*ne12*ne13; // src1 rows
  9179. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  9180. // distribute the thread work across the inner or outer loop based on which one is larger
  9181. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  9182. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  9183. const int64_t ith0 = ith % nth0;
  9184. const int64_t ith1 = ith / nth0;
  9185. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  9186. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  9187. const int64_t ir010 = dr0*ith0;
  9188. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  9189. const int64_t ir110 = dr1*ith1;
  9190. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  9191. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  9192. // threads with no work simply yield (not sure if it helps)
  9193. if (ir010 >= ir011 || ir110 >= ir111) {
  9194. sched_yield();
  9195. return;
  9196. }
  9197. assert(ne12 % ne02 == 0);
  9198. assert(ne13 % ne03 == 0);
  9199. // block-tiling attempt
  9200. const int64_t blck_0 = 16;
  9201. const int64_t blck_1 = 16;
  9202. // attempt to reduce false-sharing (does not seem to make a difference)
  9203. float tmp[16];
  9204. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  9205. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  9206. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  9207. const int64_t i13 = (ir1/(ne12*ne11));
  9208. const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
  9209. const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
  9210. // broadcast src0 into src1
  9211. const int64_t i03 = i13/r3;
  9212. const int64_t i02 = i12/r2;
  9213. const int64_t i1 = i11;
  9214. const int64_t i2 = i12;
  9215. const int64_t i3 = i13;
  9216. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  9217. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  9218. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  9219. // the original src1 data pointer, so we should index using the indices directly
  9220. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  9221. const char * src1_col = (const char *) wdata +
  9222. (src1_cont || src1->type != vec_dot_type
  9223. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  9224. : (i11*nb11 + i12*nb12 + i13*nb13));
  9225. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  9226. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9227. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  9228. //}
  9229. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9230. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  9231. }
  9232. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  9233. }
  9234. }
  9235. }
  9236. }
  9237. // ggml_compute_forward_out_prod
  9238. static void ggml_compute_forward_out_prod_f32(
  9239. const struct ggml_compute_params * params,
  9240. const struct ggml_tensor * src0,
  9241. const struct ggml_tensor * src1,
  9242. struct ggml_tensor * dst) {
  9243. int64_t t0 = ggml_perf_time_us();
  9244. UNUSED(t0);
  9245. GGML_TENSOR_BINARY_OP_LOCALS;
  9246. const int ith = params->ith;
  9247. const int nth = params->nth;
  9248. GGML_ASSERT(ne02 == ne12);
  9249. GGML_ASSERT(ne03 == ne13);
  9250. GGML_ASSERT(ne2 == ne12);
  9251. GGML_ASSERT(ne3 == ne13);
  9252. // we don't support permuted src0 or src1
  9253. GGML_ASSERT(nb00 == sizeof(float));
  9254. // dst cannot be transposed or permuted
  9255. GGML_ASSERT(nb0 == sizeof(float));
  9256. // GGML_ASSERT(nb0 <= nb1);
  9257. // GGML_ASSERT(nb1 <= nb2);
  9258. // GGML_ASSERT(nb2 <= nb3);
  9259. GGML_ASSERT(ne0 == ne00);
  9260. GGML_ASSERT(ne1 == ne10);
  9261. GGML_ASSERT(ne2 == ne02);
  9262. GGML_ASSERT(ne3 == ne03);
  9263. // nb01 >= nb00 - src0 is not transposed
  9264. // compute by src0 rows
  9265. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  9266. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9267. if (params->type == GGML_TASK_INIT) {
  9268. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9269. return;
  9270. }
  9271. if (params->type == GGML_TASK_FINALIZE) {
  9272. return;
  9273. }
  9274. // parallelize by last three dimensions
  9275. // total rows in dst
  9276. const int64_t nr = ne1*ne2*ne3;
  9277. // rows per thread
  9278. const int64_t dr = (nr + nth - 1)/nth;
  9279. // row range for this thread
  9280. const int64_t ir0 = dr*ith;
  9281. const int64_t ir1 = MIN(ir0 + dr, nr);
  9282. // dst[:,:,:,:] = 0
  9283. // for i2,i3:
  9284. // for i1:
  9285. // for i01:
  9286. // for i0:
  9287. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9288. for (int64_t ir = ir0; ir < ir1; ++ir) {
  9289. // dst indices
  9290. const int64_t i3 = ir/(ne2*ne1);
  9291. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9292. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9293. const int64_t i02 = i2;
  9294. const int64_t i03 = i3;
  9295. //const int64_t i10 = i1;
  9296. const int64_t i12 = i2;
  9297. const int64_t i13 = i3;
  9298. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9299. const int64_t i11 = i01;
  9300. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9301. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9302. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9303. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9304. // for (int64_t i0 = 0; i0 < ne0; ++i0) {
  9305. // d[i0] += s0[i0] * s1[i1];
  9306. // }
  9307. }
  9308. }
  9309. //int64_t t1 = ggml_perf_time_us();
  9310. //static int64_t acc = 0;
  9311. //acc += t1 - t0;
  9312. //if (t1 - t0 > 10) {
  9313. // printf("\n");
  9314. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9315. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9316. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9317. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9318. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9319. //}
  9320. }
  9321. static void ggml_compute_forward_out_prod(
  9322. const struct ggml_compute_params * params,
  9323. const struct ggml_tensor * src0,
  9324. const struct ggml_tensor * src1,
  9325. struct ggml_tensor * dst) {
  9326. switch (src0->type) {
  9327. case GGML_TYPE_Q4_0:
  9328. case GGML_TYPE_Q4_1:
  9329. case GGML_TYPE_Q5_0:
  9330. case GGML_TYPE_Q5_1:
  9331. case GGML_TYPE_Q8_0:
  9332. case GGML_TYPE_Q8_1:
  9333. {
  9334. GGML_ASSERT(false); // todo
  9335. // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  9336. } break;
  9337. case GGML_TYPE_F16:
  9338. {
  9339. GGML_ASSERT(false); // todo
  9340. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  9341. } break;
  9342. case GGML_TYPE_F32:
  9343. {
  9344. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  9345. } break;
  9346. default:
  9347. {
  9348. GGML_ASSERT(false);
  9349. } break;
  9350. }
  9351. }
  9352. // ggml_compute_forward_scale
  9353. static void ggml_compute_forward_scale_f32(
  9354. const struct ggml_compute_params * params,
  9355. const struct ggml_tensor * src0,
  9356. const struct ggml_tensor * src1,
  9357. struct ggml_tensor * dst) {
  9358. GGML_ASSERT(ggml_is_contiguous(src0));
  9359. GGML_ASSERT(ggml_is_contiguous(dst));
  9360. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9361. GGML_ASSERT(ggml_is_scalar(src1));
  9362. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9363. return;
  9364. }
  9365. // scale factor
  9366. const float v = *(float *) src1->data;
  9367. const int ith = params->ith;
  9368. const int nth = params->nth;
  9369. const int nc = src0->ne[0];
  9370. const int nr = ggml_nrows(src0);
  9371. // rows per thread
  9372. const int dr = (nr + nth - 1)/nth;
  9373. // row range for this thread
  9374. const int ir0 = dr*ith;
  9375. const int ir1 = MIN(ir0 + dr, nr);
  9376. const size_t nb01 = src0->nb[1];
  9377. const size_t nb1 = dst->nb[1];
  9378. for (int i1 = ir0; i1 < ir1; i1++) {
  9379. if (dst->data != src0->data) {
  9380. // src0 is same shape as dst => same indices
  9381. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  9382. }
  9383. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9384. }
  9385. }
  9386. static void ggml_compute_forward_scale(
  9387. const struct ggml_compute_params * params,
  9388. const struct ggml_tensor * src0,
  9389. const struct ggml_tensor * src1,
  9390. struct ggml_tensor * dst) {
  9391. switch (src0->type) {
  9392. case GGML_TYPE_F32:
  9393. {
  9394. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  9395. } break;
  9396. default:
  9397. {
  9398. GGML_ASSERT(false);
  9399. } break;
  9400. }
  9401. }
  9402. // ggml_compute_forward_set
  9403. static void ggml_compute_forward_set_f32(
  9404. const struct ggml_compute_params * params,
  9405. const struct ggml_tensor * src0,
  9406. const struct ggml_tensor * src1,
  9407. struct ggml_tensor * dst) {
  9408. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9409. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9410. // view src0 and dst with these strides and data offset inbytes during set
  9411. // nb0 is implicitely element_size because src0 and dst are contiguous
  9412. size_t nb1 = ((int32_t *) dst->op_params)[0];
  9413. size_t nb2 = ((int32_t *) dst->op_params)[1];
  9414. size_t nb3 = ((int32_t *) dst->op_params)[2];
  9415. size_t offset = ((int32_t *) dst->op_params)[3];
  9416. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  9417. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9418. // memcpy needs to be synchronized across threads to avoid race conditions.
  9419. // => do it in INIT phase
  9420. memcpy(
  9421. ((char *) dst->data),
  9422. ((char *) src0->data),
  9423. ggml_nbytes(dst));
  9424. }
  9425. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9426. return;
  9427. }
  9428. const int ith = params->ith;
  9429. const int nth = params->nth;
  9430. const int nr = ggml_nrows(src1);
  9431. const int nc = src1->ne[0];
  9432. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  9433. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  9434. // src0 and dst as viewed during set
  9435. const size_t nb0 = ggml_element_size(src0);
  9436. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9437. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9438. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9439. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9440. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9441. GGML_ASSERT(nb10 == sizeof(float));
  9442. // rows per thread
  9443. const int dr = (nr + nth - 1)/nth;
  9444. // row range for this thread
  9445. const int ir0 = dr*ith;
  9446. const int ir1 = MIN(ir0 + dr, nr);
  9447. for (int ir = ir0; ir < ir1; ++ir) {
  9448. // src0 and dst are viewed with shape of src1 and offset
  9449. // => same indices
  9450. const int i3 = ir/(ne12*ne11);
  9451. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9452. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9453. ggml_vec_cpy_f32(nc,
  9454. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9455. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9456. }
  9457. }
  9458. static void ggml_compute_forward_set(
  9459. const struct ggml_compute_params * params,
  9460. const struct ggml_tensor * src0,
  9461. const struct ggml_tensor * src1,
  9462. struct ggml_tensor * dst) {
  9463. switch (src0->type) {
  9464. case GGML_TYPE_F32:
  9465. {
  9466. ggml_compute_forward_set_f32(params, src0, src1, dst);
  9467. } break;
  9468. case GGML_TYPE_F16:
  9469. case GGML_TYPE_Q4_0:
  9470. case GGML_TYPE_Q4_1:
  9471. case GGML_TYPE_Q5_0:
  9472. case GGML_TYPE_Q5_1:
  9473. case GGML_TYPE_Q8_0:
  9474. case GGML_TYPE_Q8_1:
  9475. case GGML_TYPE_Q2_K:
  9476. case GGML_TYPE_Q3_K:
  9477. case GGML_TYPE_Q4_K:
  9478. case GGML_TYPE_Q5_K:
  9479. case GGML_TYPE_Q6_K:
  9480. default:
  9481. {
  9482. GGML_ASSERT(false);
  9483. } break;
  9484. }
  9485. }
  9486. // ggml_compute_forward_cpy
  9487. static void ggml_compute_forward_cpy(
  9488. const struct ggml_compute_params * params,
  9489. const struct ggml_tensor * src0,
  9490. struct ggml_tensor * dst) {
  9491. ggml_compute_forward_dup(params, src0, dst);
  9492. }
  9493. // ggml_compute_forward_cont
  9494. static void ggml_compute_forward_cont(
  9495. const struct ggml_compute_params * params,
  9496. const struct ggml_tensor * src0,
  9497. struct ggml_tensor * dst) {
  9498. ggml_compute_forward_dup(params, src0, dst);
  9499. }
  9500. // ggml_compute_forward_reshape
  9501. static void ggml_compute_forward_reshape(
  9502. const struct ggml_compute_params * params,
  9503. const struct ggml_tensor * src0,
  9504. struct ggml_tensor * dst) {
  9505. // NOP
  9506. UNUSED(params);
  9507. UNUSED(src0);
  9508. UNUSED(dst);
  9509. }
  9510. // ggml_compute_forward_view
  9511. static void ggml_compute_forward_view(
  9512. const struct ggml_compute_params * params,
  9513. const struct ggml_tensor * src0) {
  9514. // NOP
  9515. UNUSED(params);
  9516. UNUSED(src0);
  9517. }
  9518. // ggml_compute_forward_permute
  9519. static void ggml_compute_forward_permute(
  9520. const struct ggml_compute_params * params,
  9521. const struct ggml_tensor * src0) {
  9522. // NOP
  9523. UNUSED(params);
  9524. UNUSED(src0);
  9525. }
  9526. // ggml_compute_forward_transpose
  9527. static void ggml_compute_forward_transpose(
  9528. const struct ggml_compute_params * params,
  9529. const struct ggml_tensor * src0) {
  9530. // NOP
  9531. UNUSED(params);
  9532. UNUSED(src0);
  9533. }
  9534. // ggml_compute_forward_get_rows
  9535. static void ggml_compute_forward_get_rows_q(
  9536. const struct ggml_compute_params * params,
  9537. const struct ggml_tensor * src0,
  9538. const struct ggml_tensor * src1,
  9539. struct ggml_tensor * dst) {
  9540. assert(params->ith == 0);
  9541. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9542. return;
  9543. }
  9544. const int nc = src0->ne[0];
  9545. const int nr = ggml_nelements(src1);
  9546. const enum ggml_type type = src0->type;
  9547. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9548. assert( dst->ne[0] == nc);
  9549. assert( dst->ne[1] == nr);
  9550. assert(src0->nb[0] == ggml_type_size(type));
  9551. for (int i = 0; i < nr; ++i) {
  9552. const int r = ((int32_t *) src1->data)[i];
  9553. dequantize_row_q(
  9554. (const void *) ((char *) src0->data + r*src0->nb[1]),
  9555. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  9556. }
  9557. }
  9558. static void ggml_compute_forward_get_rows_f16(
  9559. const struct ggml_compute_params * params,
  9560. const struct ggml_tensor * src0,
  9561. const struct ggml_tensor * src1,
  9562. struct ggml_tensor * dst) {
  9563. assert(params->ith == 0);
  9564. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9565. return;
  9566. }
  9567. const int nc = src0->ne[0];
  9568. const int nr = ggml_nelements(src1);
  9569. assert( dst->ne[0] == nc);
  9570. assert( dst->ne[1] == nr);
  9571. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  9572. for (int i = 0; i < nr; ++i) {
  9573. const int r = ((int32_t *) src1->data)[i];
  9574. for (int j = 0; j < nc; ++j) {
  9575. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  9576. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  9577. }
  9578. }
  9579. }
  9580. static void ggml_compute_forward_get_rows_f32(
  9581. const struct ggml_compute_params * params,
  9582. const struct ggml_tensor * src0,
  9583. const struct ggml_tensor * src1,
  9584. struct ggml_tensor * dst) {
  9585. assert(params->ith == 0);
  9586. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9587. return;
  9588. }
  9589. const int nc = src0->ne[0];
  9590. const int nr = ggml_nelements(src1);
  9591. assert( dst->ne[0] == nc);
  9592. assert( dst->ne[1] == nr);
  9593. assert(src0->nb[0] == sizeof(float));
  9594. for (int i = 0; i < nr; ++i) {
  9595. const int r = ((int32_t *) src1->data)[i];
  9596. ggml_vec_cpy_f32(nc,
  9597. (float *) ((char *) dst->data + i*dst->nb[1]),
  9598. (float *) ((char *) src0->data + r*src0->nb[1]));
  9599. }
  9600. }
  9601. static void ggml_compute_forward_get_rows(
  9602. const struct ggml_compute_params * params,
  9603. const struct ggml_tensor * src0,
  9604. const struct ggml_tensor * src1,
  9605. struct ggml_tensor * dst) {
  9606. switch (src0->type) {
  9607. case GGML_TYPE_Q4_0:
  9608. case GGML_TYPE_Q4_1:
  9609. case GGML_TYPE_Q5_0:
  9610. case GGML_TYPE_Q5_1:
  9611. case GGML_TYPE_Q8_0:
  9612. case GGML_TYPE_Q8_1:
  9613. case GGML_TYPE_Q2_K:
  9614. case GGML_TYPE_Q3_K:
  9615. case GGML_TYPE_Q4_K:
  9616. case GGML_TYPE_Q5_K:
  9617. case GGML_TYPE_Q6_K:
  9618. {
  9619. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9620. } break;
  9621. case GGML_TYPE_F16:
  9622. {
  9623. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9624. } break;
  9625. case GGML_TYPE_F32:
  9626. {
  9627. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9628. } break;
  9629. default:
  9630. {
  9631. GGML_ASSERT(false);
  9632. } break;
  9633. }
  9634. //static bool first = true;
  9635. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9636. //if (first) {
  9637. // first = false;
  9638. //} else {
  9639. // for (int k = 0; k < dst->ne[1]; ++k) {
  9640. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9641. // for (int i = 0; i < 16; ++i) {
  9642. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9643. // }
  9644. // printf("\n");
  9645. // }
  9646. // printf("\n");
  9647. // }
  9648. // printf("\n");
  9649. // exit(0);
  9650. //}
  9651. }
  9652. // ggml_compute_forward_get_rows_back
  9653. static void ggml_compute_forward_get_rows_back_f32_f16(
  9654. const struct ggml_compute_params * params,
  9655. const struct ggml_tensor * src0,
  9656. const struct ggml_tensor * src1,
  9657. const struct ggml_tensor * opt0,
  9658. struct ggml_tensor * dst) {
  9659. GGML_ASSERT(params->ith == 0);
  9660. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9661. GGML_ASSERT(ggml_is_contiguous(opt0));
  9662. GGML_ASSERT(ggml_is_contiguous(dst));
  9663. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9664. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9665. return;
  9666. }
  9667. const int nc = src0->ne[0];
  9668. const int nr = ggml_nelements(src1);
  9669. GGML_ASSERT( dst->ne[0] == nc);
  9670. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9671. for (int i = 0; i < nr; ++i) {
  9672. const int r = ((int32_t *) src1->data)[i];
  9673. for (int j = 0; j < nc; ++j) {
  9674. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9675. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9676. }
  9677. }
  9678. }
  9679. static void ggml_compute_forward_get_rows_back_f32(
  9680. const struct ggml_compute_params * params,
  9681. const struct ggml_tensor * src0,
  9682. const struct ggml_tensor * src1,
  9683. const struct ggml_tensor * opt0,
  9684. struct ggml_tensor * dst) {
  9685. GGML_ASSERT(params->ith == 0);
  9686. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9687. GGML_ASSERT(ggml_is_contiguous(opt0));
  9688. GGML_ASSERT(ggml_is_contiguous(dst));
  9689. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9690. if (params->type == GGML_TASK_INIT) {
  9691. memset(dst->data, 0, ggml_nbytes(dst));
  9692. }
  9693. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9694. return;
  9695. }
  9696. const int nc = src0->ne[0];
  9697. const int nr = ggml_nelements(src1);
  9698. GGML_ASSERT( dst->ne[0] == nc);
  9699. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9700. for (int i = 0; i < nr; ++i) {
  9701. const int r = ((int32_t *) src1->data)[i];
  9702. ggml_vec_add_f32(nc,
  9703. (float *) ((char *) dst->data + r*dst->nb[1]),
  9704. (float *) ((char *) dst->data + r*dst->nb[1]),
  9705. (float *) ((char *) src0->data + i*src0->nb[1]));
  9706. }
  9707. }
  9708. static void ggml_compute_forward_get_rows_back(
  9709. const struct ggml_compute_params * params,
  9710. const struct ggml_tensor * src0,
  9711. const struct ggml_tensor * src1,
  9712. const struct ggml_tensor * opt0,
  9713. struct ggml_tensor * dst) {
  9714. switch (src0->type) {
  9715. case GGML_TYPE_F16:
  9716. {
  9717. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  9718. } break;
  9719. case GGML_TYPE_F32:
  9720. {
  9721. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  9722. } break;
  9723. default:
  9724. {
  9725. GGML_ASSERT(false);
  9726. } break;
  9727. }
  9728. //static bool first = true;
  9729. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9730. //if (first) {
  9731. // first = false;
  9732. //} else {
  9733. // for (int k = 0; k < dst->ne[1]; ++k) {
  9734. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9735. // for (int i = 0; i < 16; ++i) {
  9736. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9737. // }
  9738. // printf("\n");
  9739. // }
  9740. // printf("\n");
  9741. // }
  9742. // printf("\n");
  9743. // exit(0);
  9744. //}
  9745. }
  9746. // ggml_compute_forward_diag
  9747. static void ggml_compute_forward_diag_f32(
  9748. const struct ggml_compute_params * params,
  9749. const struct ggml_tensor * src0,
  9750. struct ggml_tensor * dst) {
  9751. GGML_ASSERT(params->ith == 0);
  9752. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9753. return;
  9754. }
  9755. // TODO: handle transposed/permuted matrices
  9756. GGML_TENSOR_UNARY_OP_LOCALS;
  9757. GGML_ASSERT(ne00 == ne0);
  9758. GGML_ASSERT(ne00 == ne1);
  9759. GGML_ASSERT(ne01 == 1);
  9760. GGML_ASSERT(ne02 == ne2);
  9761. GGML_ASSERT(ne03 == ne3);
  9762. GGML_ASSERT(nb00 == sizeof(float));
  9763. GGML_ASSERT(nb0 == sizeof(float));
  9764. for (int i3 = 0; i3 < ne3; i3++) {
  9765. for (int i2 = 0; i2 < ne2; i2++) {
  9766. for (int i1 = 0; i1 < ne1; i1++) {
  9767. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9768. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9769. for (int i0 = 0; i0 < i1; i0++) {
  9770. d[i0] = 0;
  9771. }
  9772. d[i1] = s[i1];
  9773. for (int i0 = i1+1; i0 < ne0; i0++) {
  9774. d[i0] = 0;
  9775. }
  9776. }
  9777. }
  9778. }
  9779. }
  9780. static void ggml_compute_forward_diag(
  9781. const struct ggml_compute_params * params,
  9782. const struct ggml_tensor * src0,
  9783. struct ggml_tensor * dst) {
  9784. switch (src0->type) {
  9785. case GGML_TYPE_F32:
  9786. {
  9787. ggml_compute_forward_diag_f32(params, src0, dst);
  9788. } break;
  9789. default:
  9790. {
  9791. GGML_ASSERT(false);
  9792. } break;
  9793. }
  9794. }
  9795. // ggml_compute_forward_diag_mask_inf
  9796. static void ggml_compute_forward_diag_mask_f32(
  9797. const struct ggml_compute_params * params,
  9798. const struct ggml_tensor * src0,
  9799. struct ggml_tensor * dst,
  9800. const float value) {
  9801. const int ith = params->ith;
  9802. const int nth = params->nth;
  9803. const int n_past = ((int32_t *) dst->op_params)[0];
  9804. const bool inplace = src0->data == dst->data;
  9805. GGML_ASSERT(n_past >= 0);
  9806. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9807. // memcpy needs to be synchronized across threads to avoid race conditions.
  9808. // => do it in INIT phase
  9809. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9810. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9811. memcpy(
  9812. ((char *) dst->data),
  9813. ((char *) src0->data),
  9814. ggml_nbytes(dst));
  9815. }
  9816. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9817. return;
  9818. }
  9819. // TODO: handle transposed/permuted matrices
  9820. const int n = ggml_nrows(src0);
  9821. const int nc = src0->ne[0];
  9822. const int nr = src0->ne[1];
  9823. const int nz = n/nr;
  9824. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9825. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9826. for (int k = 0; k < nz; k++) {
  9827. for (int j = ith; j < nr; j += nth) {
  9828. for (int i = n_past; i < nc; i++) {
  9829. if (i > n_past + j) {
  9830. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9831. }
  9832. }
  9833. }
  9834. }
  9835. }
  9836. static void ggml_compute_forward_diag_mask_inf(
  9837. const struct ggml_compute_params * params,
  9838. const struct ggml_tensor * src0,
  9839. struct ggml_tensor * dst) {
  9840. switch (src0->type) {
  9841. case GGML_TYPE_F32:
  9842. {
  9843. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  9844. } break;
  9845. default:
  9846. {
  9847. GGML_ASSERT(false);
  9848. } break;
  9849. }
  9850. }
  9851. static void ggml_compute_forward_diag_mask_zero(
  9852. const struct ggml_compute_params * params,
  9853. const struct ggml_tensor * src0,
  9854. struct ggml_tensor * dst) {
  9855. switch (src0->type) {
  9856. case GGML_TYPE_F32:
  9857. {
  9858. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  9859. } break;
  9860. default:
  9861. {
  9862. GGML_ASSERT(false);
  9863. } break;
  9864. }
  9865. }
  9866. // ggml_compute_forward_soft_max
  9867. static void ggml_compute_forward_soft_max_f32(
  9868. const struct ggml_compute_params * params,
  9869. const struct ggml_tensor * src0,
  9870. struct ggml_tensor * dst) {
  9871. GGML_ASSERT(ggml_is_contiguous(src0));
  9872. GGML_ASSERT(ggml_is_contiguous(dst));
  9873. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9874. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9875. return;
  9876. }
  9877. // TODO: handle transposed/permuted matrices
  9878. const int ith = params->ith;
  9879. const int nth = params->nth;
  9880. const int nc = src0->ne[0];
  9881. const int nr = ggml_nrows(src0);
  9882. // rows per thread
  9883. const int dr = (nr + nth - 1)/nth;
  9884. // row range for this thread
  9885. const int ir0 = dr*ith;
  9886. const int ir1 = MIN(ir0 + dr, nr);
  9887. for (int i1 = ir0; i1 < ir1; i1++) {
  9888. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9889. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9890. #ifndef NDEBUG
  9891. for (int i = 0; i < nc; ++i) {
  9892. //printf("p[%d] = %f\n", i, p[i]);
  9893. assert(!isnan(sp[i]));
  9894. }
  9895. #endif
  9896. float max = -INFINITY;
  9897. ggml_vec_max_f32(nc, &max, sp);
  9898. ggml_float sum = 0.0;
  9899. uint16_t scvt;
  9900. for (int i = 0; i < nc; i++) {
  9901. if (sp[i] == -INFINITY) {
  9902. dp[i] = 0.0f;
  9903. } else {
  9904. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  9905. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  9906. memcpy(&scvt, &s, sizeof(scvt));
  9907. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  9908. sum += (ggml_float)val;
  9909. dp[i] = val;
  9910. }
  9911. }
  9912. assert(sum > 0.0);
  9913. sum = 1.0/sum;
  9914. ggml_vec_scale_f32(nc, dp, sum);
  9915. #ifndef NDEBUG
  9916. for (int i = 0; i < nc; ++i) {
  9917. assert(!isnan(dp[i]));
  9918. assert(!isinf(dp[i]));
  9919. }
  9920. #endif
  9921. }
  9922. }
  9923. static void ggml_compute_forward_soft_max(
  9924. const struct ggml_compute_params * params,
  9925. const struct ggml_tensor * src0,
  9926. struct ggml_tensor * dst) {
  9927. switch (src0->type) {
  9928. case GGML_TYPE_F32:
  9929. {
  9930. ggml_compute_forward_soft_max_f32(params, src0, dst);
  9931. } break;
  9932. default:
  9933. {
  9934. GGML_ASSERT(false);
  9935. } break;
  9936. }
  9937. }
  9938. // ggml_compute_forward_soft_max_back
  9939. static void ggml_compute_forward_soft_max_back_f32(
  9940. const struct ggml_compute_params * params,
  9941. const struct ggml_tensor * src0,
  9942. const struct ggml_tensor * src1,
  9943. struct ggml_tensor * dst) {
  9944. GGML_ASSERT(ggml_is_contiguous(src0));
  9945. GGML_ASSERT(ggml_is_contiguous(src1));
  9946. GGML_ASSERT(ggml_is_contiguous(dst));
  9947. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9948. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9949. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9950. return;
  9951. }
  9952. // TODO: handle transposed/permuted matrices
  9953. const int ith = params->ith;
  9954. const int nth = params->nth;
  9955. const int nc = src0->ne[0];
  9956. const int nr = ggml_nrows(src0);
  9957. // rows per thread
  9958. const int dr = (nr + nth - 1)/nth;
  9959. // row range for this thread
  9960. const int ir0 = dr*ith;
  9961. const int ir1 = MIN(ir0 + dr, nr);
  9962. for (int i1 = ir0; i1 < ir1; i1++) {
  9963. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9964. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9965. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9966. #ifndef NDEBUG
  9967. for (int i = 0; i < nc; ++i) {
  9968. //printf("p[%d] = %f\n", i, p[i]);
  9969. assert(!isnan(dy[i]));
  9970. assert(!isnan(y[i]));
  9971. }
  9972. #endif
  9973. // Jii = yi - yi*yi
  9974. // Jij = -yi*yj
  9975. // J = diag(y)-y.T*y
  9976. // dx = J * dy
  9977. // dxk = sum_i(Jki * dyi)
  9978. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9979. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  9980. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9981. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9982. // dxk = -yk * dot(y, dy) + yk*dyk
  9983. // dxk = yk * (- dot(y, dy) + dyk)
  9984. // dxk = yk * (dyk - dot(y, dy))
  9985. //
  9986. // post-order:
  9987. // dot_y_dy := dot(y, dy)
  9988. // dx := dy
  9989. // dx := dx - dot_y_dy
  9990. // dx := dx * y
  9991. // linear runtime, no additional memory
  9992. float dot_y_dy = 0;
  9993. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9994. ggml_vec_cpy_f32 (nc, dx, dy);
  9995. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9996. ggml_vec_mul_f32 (nc, dx, dx, y);
  9997. #ifndef NDEBUG
  9998. for (int i = 0; i < nc; ++i) {
  9999. assert(!isnan(dx[i]));
  10000. assert(!isinf(dx[i]));
  10001. }
  10002. #endif
  10003. }
  10004. }
  10005. static void ggml_compute_forward_soft_max_back(
  10006. const struct ggml_compute_params * params,
  10007. const struct ggml_tensor * src0,
  10008. const struct ggml_tensor * src1,
  10009. struct ggml_tensor * dst) {
  10010. switch (src0->type) {
  10011. case GGML_TYPE_F32:
  10012. {
  10013. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  10014. } break;
  10015. default:
  10016. {
  10017. GGML_ASSERT(false);
  10018. } break;
  10019. }
  10020. }
  10021. // ggml_compute_forward_alibi
  10022. static void ggml_compute_forward_alibi_f32(
  10023. const struct ggml_compute_params * params,
  10024. const struct ggml_tensor * src0,
  10025. struct ggml_tensor * dst) {
  10026. assert(params->ith == 0);
  10027. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10028. return;
  10029. }
  10030. const int n_past = ((int32_t *) dst->op_params)[0];
  10031. const int n_head = ((int32_t *) dst->op_params)[1];
  10032. float max_bias;
  10033. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10034. assert(n_past >= 0);
  10035. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10036. const int ne1 = src0->ne[1]; // seq_len_without_past
  10037. const int ne2 = src0->ne[2]; // n_head -> this is k
  10038. //const int ne3 = src0->ne[3]; // 1 -> bsz
  10039. const int n = ggml_nrows(src0);
  10040. const int ne2_ne3 = n/ne1; // ne2*ne3
  10041. const int nb0 = src0->nb[0];
  10042. const int nb1 = src0->nb[1];
  10043. const int nb2 = src0->nb[2];
  10044. //const int nb3 = src0->nb[3];
  10045. GGML_ASSERT(nb0 == sizeof(float));
  10046. GGML_ASSERT(ne1 + n_past == ne0);
  10047. GGML_ASSERT(n_head == ne2);
  10048. // add alibi to src0 (KQ_scaled)
  10049. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10050. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10051. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10052. for (int i = 0; i < ne0; i++) {
  10053. for (int j = 0; j < ne1; j++) {
  10054. for (int k = 0; k < ne2_ne3; k++) {
  10055. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10056. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10057. // TODO: k*nb2 or k*nb3
  10058. float m_k;
  10059. if (k < n_heads_log2_floor) {
  10060. m_k = powf(m0, k + 1);
  10061. } else {
  10062. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10063. }
  10064. pdst[0] = i * m_k + src[0];
  10065. }
  10066. }
  10067. }
  10068. }
  10069. static void ggml_compute_forward_alibi_f16(
  10070. const struct ggml_compute_params * params,
  10071. const struct ggml_tensor * src0,
  10072. struct ggml_tensor * dst) {
  10073. assert(params->ith == 0);
  10074. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10075. return;
  10076. }
  10077. const int n_past = ((int32_t *) dst->op_params)[0];
  10078. const int n_head = ((int32_t *) dst->op_params)[1];
  10079. float max_bias;
  10080. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10081. assert(n_past >= 0);
  10082. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10083. const int ne1 = src0->ne[1]; // seq_len_without_past
  10084. const int ne2 = src0->ne[2]; // n_head -> this is k
  10085. //const int ne3 = src0->ne[3]; // 1 -> bsz
  10086. const int n = ggml_nrows(src0);
  10087. const int ne2_ne3 = n/ne1; // ne2*ne3
  10088. const int nb0 = src0->nb[0];
  10089. const int nb1 = src0->nb[1];
  10090. const int nb2 = src0->nb[2];
  10091. //const int nb3 = src0->nb[3];
  10092. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10093. GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  10094. GGML_ASSERT(n_head == ne2);
  10095. // add alibi to src0 (KQ_scaled)
  10096. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10097. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10098. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10099. for (int i = 0; i < ne0; i++) {
  10100. for (int j = 0; j < ne1; j++) {
  10101. for (int k = 0; k < ne2_ne3; k++) {
  10102. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10103. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10104. // TODO: k*nb2 or k*nb3
  10105. float m_k;
  10106. if (k < n_heads_log2_floor) {
  10107. m_k = powf(m0, k + 1);
  10108. } else {
  10109. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10110. }
  10111. // we return F32
  10112. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  10113. }
  10114. }
  10115. }
  10116. }
  10117. static void ggml_compute_forward_alibi(
  10118. const struct ggml_compute_params * params,
  10119. const struct ggml_tensor * src0,
  10120. struct ggml_tensor * dst) {
  10121. switch (src0->type) {
  10122. case GGML_TYPE_F16:
  10123. {
  10124. ggml_compute_forward_alibi_f16(params, src0, dst);
  10125. } break;
  10126. case GGML_TYPE_F32:
  10127. {
  10128. ggml_compute_forward_alibi_f32(params, src0, dst);
  10129. } break;
  10130. case GGML_TYPE_Q4_0:
  10131. case GGML_TYPE_Q4_1:
  10132. case GGML_TYPE_Q5_0:
  10133. case GGML_TYPE_Q5_1:
  10134. case GGML_TYPE_Q8_0:
  10135. case GGML_TYPE_Q8_1:
  10136. case GGML_TYPE_Q2_K:
  10137. case GGML_TYPE_Q3_K:
  10138. case GGML_TYPE_Q4_K:
  10139. case GGML_TYPE_Q5_K:
  10140. case GGML_TYPE_Q6_K:
  10141. case GGML_TYPE_Q8_K:
  10142. case GGML_TYPE_I8:
  10143. case GGML_TYPE_I16:
  10144. case GGML_TYPE_I32:
  10145. case GGML_TYPE_COUNT:
  10146. {
  10147. GGML_ASSERT(false);
  10148. } break;
  10149. }
  10150. }
  10151. // ggml_compute_forward_clamp
  10152. static void ggml_compute_forward_clamp_f32(
  10153. const struct ggml_compute_params * params,
  10154. const struct ggml_tensor * src0,
  10155. struct ggml_tensor * dst) {
  10156. assert(params->ith == 0);
  10157. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10158. return;
  10159. }
  10160. float min;
  10161. float max;
  10162. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  10163. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  10164. const int ith = params->ith;
  10165. const int nth = params->nth;
  10166. const int n = ggml_nrows(src0);
  10167. const int nc = src0->ne[0];
  10168. const size_t nb00 = src0->nb[0];
  10169. const size_t nb01 = src0->nb[1];
  10170. const size_t nb0 = dst->nb[0];
  10171. const size_t nb1 = dst->nb[1];
  10172. GGML_ASSERT( nb0 == sizeof(float));
  10173. GGML_ASSERT(nb00 == sizeof(float));
  10174. for (int j = ith; j < n; j += nth) {
  10175. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  10176. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  10177. for (int i = 0; i < nc; i++) {
  10178. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  10179. }
  10180. }
  10181. }
  10182. static void ggml_compute_forward_clamp(
  10183. const struct ggml_compute_params * params,
  10184. const struct ggml_tensor * src0,
  10185. struct ggml_tensor * dst) {
  10186. switch (src0->type) {
  10187. case GGML_TYPE_F32:
  10188. {
  10189. ggml_compute_forward_clamp_f32(params, src0, dst);
  10190. } break;
  10191. case GGML_TYPE_F16:
  10192. case GGML_TYPE_Q4_0:
  10193. case GGML_TYPE_Q4_1:
  10194. case GGML_TYPE_Q5_0:
  10195. case GGML_TYPE_Q5_1:
  10196. case GGML_TYPE_Q8_0:
  10197. case GGML_TYPE_Q8_1:
  10198. case GGML_TYPE_Q2_K:
  10199. case GGML_TYPE_Q3_K:
  10200. case GGML_TYPE_Q4_K:
  10201. case GGML_TYPE_Q5_K:
  10202. case GGML_TYPE_Q6_K:
  10203. case GGML_TYPE_Q8_K:
  10204. case GGML_TYPE_I8:
  10205. case GGML_TYPE_I16:
  10206. case GGML_TYPE_I32:
  10207. case GGML_TYPE_COUNT:
  10208. {
  10209. GGML_ASSERT(false);
  10210. } break;
  10211. }
  10212. }
  10213. // ggml_compute_forward_rope
  10214. static void ggml_compute_forward_rope_f32(
  10215. const struct ggml_compute_params * params,
  10216. const struct ggml_tensor * src0,
  10217. struct ggml_tensor * dst) {
  10218. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10219. return;
  10220. }
  10221. float freq_base;
  10222. float freq_scale;
  10223. // these two only relevant for xPos RoPE:
  10224. float xpos_base;
  10225. bool xpos_down;
  10226. const int n_past = ((int32_t *) dst->op_params)[0];
  10227. const int n_dims = ((int32_t *) dst->op_params)[1];
  10228. const int mode = ((int32_t *) dst->op_params)[2];
  10229. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10230. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  10231. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  10232. memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float));
  10233. memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool));
  10234. assert(n_past >= 0);
  10235. GGML_TENSOR_UNARY_OP_LOCALS;
  10236. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10237. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10238. GGML_ASSERT(nb00 == sizeof(float));
  10239. const int ith = params->ith;
  10240. const int nth = params->nth;
  10241. const int nr = ggml_nrows(dst);
  10242. GGML_ASSERT(n_dims <= ne0);
  10243. GGML_ASSERT(n_dims % 2 == 0);
  10244. // rows per thread
  10245. const int dr = (nr + nth - 1)/nth;
  10246. // row range for this thread
  10247. const int ir0 = dr*ith;
  10248. const int ir1 = MIN(ir0 + dr, nr);
  10249. // row index used to determine which thread to use
  10250. int ir = 0;
  10251. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10252. const bool is_neox = mode & 2;
  10253. const bool is_glm = mode & 4;
  10254. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10255. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10256. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10257. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10258. if (ir++ < ir0) continue;
  10259. if (ir > ir1) break;
  10260. float theta = freq_scale * (float)p;
  10261. if (is_glm) {
  10262. theta = MIN(p, n_ctx - 2);
  10263. float block_theta = MAX(p - (n_ctx - 2), 0);
  10264. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10265. const float cos_theta = cosf(theta);
  10266. const float sin_theta = sinf(theta);
  10267. const float cos_block_theta = cosf(block_theta);
  10268. const float sin_block_theta = sinf(block_theta);
  10269. theta *= theta_scale;
  10270. block_theta *= theta_scale;
  10271. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10272. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10273. const float x0 = src[0];
  10274. const float x1 = src[n_dims/2];
  10275. const float x2 = src[n_dims];
  10276. const float x3 = src[n_dims/2*3];
  10277. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10278. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10279. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10280. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10281. }
  10282. } else if (!is_neox) {
  10283. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10284. const float cos_theta = cosf(theta);
  10285. const float sin_theta = sinf(theta);
  10286. // zeta scaling for xPos only:
  10287. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), (n_past + i2) / xpos_base) : 1.0f;
  10288. if (xpos_down) zeta = 1.0f / zeta;
  10289. theta *= theta_scale;
  10290. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10291. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10292. const float x0 = src[0];
  10293. const float x1 = src[1];
  10294. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  10295. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  10296. }
  10297. } else {
  10298. // TODO: this might be wrong for ne0 != n_dims - need double check
  10299. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  10300. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10301. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10302. const float cos_theta = cosf(theta);
  10303. const float sin_theta = sinf(theta);
  10304. theta *= theta_scale;
  10305. const int64_t i0 = ib*n_dims + ic/2;
  10306. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10307. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10308. const float x0 = src[0];
  10309. const float x1 = src[n_dims/2];
  10310. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10311. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10312. }
  10313. }
  10314. }
  10315. }
  10316. }
  10317. }
  10318. }
  10319. static void ggml_compute_forward_rope_f16(
  10320. const struct ggml_compute_params * params,
  10321. const struct ggml_tensor * src0,
  10322. struct ggml_tensor * dst) {
  10323. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10324. return;
  10325. }
  10326. float freq_base;
  10327. float freq_scale;
  10328. const int n_past = ((int32_t *) dst->op_params)[0];
  10329. const int n_dims = ((int32_t *) dst->op_params)[1];
  10330. const int mode = ((int32_t *) dst->op_params)[2];
  10331. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10332. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  10333. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  10334. assert(n_past >= 0);
  10335. GGML_TENSOR_UNARY_OP_LOCALS;
  10336. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10337. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10338. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10339. const int ith = params->ith;
  10340. const int nth = params->nth;
  10341. const int nr = ggml_nrows(dst);
  10342. GGML_ASSERT(n_dims <= ne0);
  10343. GGML_ASSERT(n_dims % 2 == 0);
  10344. // rows per thread
  10345. const int dr = (nr + nth - 1)/nth;
  10346. // row range for this thread
  10347. const int ir0 = dr*ith;
  10348. const int ir1 = MIN(ir0 + dr, nr);
  10349. // row index used to determine which thread to use
  10350. int ir = 0;
  10351. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10352. const bool is_neox = mode & 2;
  10353. const bool is_glm = mode & 4;
  10354. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10355. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10356. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10357. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10358. if (ir++ < ir0) continue;
  10359. if (ir > ir1) break;
  10360. float theta = freq_scale * (float)p;
  10361. if (is_glm) {
  10362. theta = MIN(p, n_ctx - 2);
  10363. float block_theta = MAX(p - (n_ctx - 2), 0);
  10364. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10365. const float cos_theta = cosf(theta);
  10366. const float sin_theta = sinf(theta);
  10367. const float cos_block_theta = cosf(block_theta);
  10368. const float sin_block_theta = sinf(block_theta);
  10369. theta *= theta_scale;
  10370. block_theta *= theta_scale;
  10371. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10372. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10373. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10374. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10375. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10376. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10377. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10378. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10379. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10380. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10381. }
  10382. } if (!is_neox) {
  10383. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10384. const float cos_theta = cosf(theta);
  10385. const float sin_theta = sinf(theta);
  10386. theta *= theta_scale;
  10387. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10388. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10389. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10390. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10391. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10392. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10393. }
  10394. } else {
  10395. // TODO: this might be wrong for ne0 != n_dims - need double check
  10396. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  10397. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10398. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10399. const float cos_theta = cosf(theta);
  10400. const float sin_theta = sinf(theta);
  10401. theta *= theta_scale;
  10402. const int64_t i0 = ib*n_dims + ic/2;
  10403. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10404. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10405. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10406. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10407. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10408. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10409. }
  10410. }
  10411. }
  10412. }
  10413. }
  10414. }
  10415. }
  10416. static void ggml_compute_forward_rope(
  10417. const struct ggml_compute_params * params,
  10418. const struct ggml_tensor * src0,
  10419. struct ggml_tensor * dst) {
  10420. switch (src0->type) {
  10421. case GGML_TYPE_F16:
  10422. {
  10423. ggml_compute_forward_rope_f16(params, src0, dst);
  10424. } break;
  10425. case GGML_TYPE_F32:
  10426. {
  10427. ggml_compute_forward_rope_f32(params, src0, dst);
  10428. } break;
  10429. default:
  10430. {
  10431. GGML_ASSERT(false);
  10432. } break;
  10433. }
  10434. }
  10435. // ggml_compute_forward_rope_back
  10436. static void ggml_compute_forward_rope_back_f32(
  10437. const struct ggml_compute_params * params,
  10438. const struct ggml_tensor * src0,
  10439. struct ggml_tensor * dst) {
  10440. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10441. return;
  10442. }
  10443. // y = rope(x, src1)
  10444. // dx = rope_back(dy, src1)
  10445. // src0 is dy, src1 contains options
  10446. float freq_base;
  10447. float freq_scale;
  10448. // these two only relevant for xPos RoPE:
  10449. float xpos_base;
  10450. bool xpos_down;
  10451. const int n_past = ((int32_t *) dst->op_params)[0];
  10452. const int n_dims = ((int32_t *) dst->op_params)[1];
  10453. const int mode = ((int32_t *) dst->op_params)[2];
  10454. const int n_ctx = ((int32_t *) dst->op_params)[3]; UNUSED(n_ctx);
  10455. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  10456. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  10457. memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float));
  10458. memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool));
  10459. assert(n_past >= 0);
  10460. GGML_TENSOR_UNARY_OP_LOCALS;
  10461. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10462. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10463. assert(nb0 == sizeof(float));
  10464. const int ith = params->ith;
  10465. const int nth = params->nth;
  10466. const int nr = ggml_nrows(dst);
  10467. // rows per thread
  10468. const int dr = (nr + nth - 1)/nth;
  10469. // row range for this thread
  10470. const int ir0 = dr*ith;
  10471. const int ir1 = MIN(ir0 + dr, nr);
  10472. // row index used to determine which thread to use
  10473. int ir = 0;
  10474. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10475. const bool is_neox = mode & 2;
  10476. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10477. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10478. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10479. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10480. if (ir++ < ir0) continue;
  10481. if (ir > ir1) break;
  10482. float theta = freq_scale * (float)p;
  10483. if (!is_neox) {
  10484. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10485. const float cos_theta = cosf(theta);
  10486. const float sin_theta = sinf(theta);
  10487. // zeta scaling for xPos only:
  10488. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), (n_past + i2) / xpos_base) : 1.0f;
  10489. if (xpos_down) zeta = 1.0f / zeta;
  10490. theta *= theta_scale;
  10491. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10492. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10493. const float dy0 = dy[0];
  10494. const float dy1 = dy[1];
  10495. dx[0] = dy0*cos_theta*zeta + dy1*sin_theta*zeta;
  10496. dx[1] = - dy0*sin_theta*zeta + dy1*cos_theta*zeta;
  10497. }
  10498. } else {
  10499. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10500. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10501. const float cos_theta = cosf(theta);
  10502. const float sin_theta = sinf(theta);
  10503. theta *= theta_scale;
  10504. const int64_t i0 = ib*n_dims + ic/2;
  10505. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10506. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10507. const float dy0 = dy[0];
  10508. const float dy1 = dy[n_dims/2];
  10509. dx[0] = dy0*cos_theta + dy1*sin_theta;
  10510. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  10511. }
  10512. }
  10513. }
  10514. }
  10515. }
  10516. }
  10517. }
  10518. static void ggml_compute_forward_rope_back_f16(
  10519. const struct ggml_compute_params * params,
  10520. const struct ggml_tensor * src0,
  10521. struct ggml_tensor * dst) {
  10522. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10523. return;
  10524. }
  10525. // y = rope(x, src1)
  10526. // dx = rope_back(dy, src1)
  10527. // src0 is dy, src1 contains options
  10528. const int n_past = ((int32_t *) dst->op_params)[0];
  10529. const int n_dims = ((int32_t *) dst->op_params)[1];
  10530. const int mode = ((int32_t *) dst->op_params)[2];
  10531. assert(n_past >= 0);
  10532. GGML_TENSOR_UNARY_OP_LOCALS;
  10533. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10534. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10535. assert(nb0 == sizeof(ggml_fp16_t));
  10536. const int ith = params->ith;
  10537. const int nth = params->nth;
  10538. const int nr = ggml_nrows(dst);
  10539. // rows per thread
  10540. const int dr = (nr + nth - 1)/nth;
  10541. // row range for this thread
  10542. const int ir0 = dr*ith;
  10543. const int ir1 = MIN(ir0 + dr, nr);
  10544. // row index used to determine which thread to use
  10545. int ir = 0;
  10546. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10547. const bool is_neox = mode & 2;
  10548. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10549. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10550. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10551. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10552. if (ir++ < ir0) continue;
  10553. if (ir > ir1) break;
  10554. float theta = (float)p;
  10555. if (!is_neox) {
  10556. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10557. const float cos_theta = cosf(theta);
  10558. const float sin_theta = sinf(theta);
  10559. theta *= theta_scale;
  10560. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10561. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10562. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10563. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  10564. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10565. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10566. }
  10567. } else {
  10568. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10569. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10570. const float cos_theta = cosf(theta);
  10571. const float sin_theta = sinf(theta);
  10572. theta *= theta_scale;
  10573. const int64_t i0 = ib*n_dims + ic/2;
  10574. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10575. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10576. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10577. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  10578. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10579. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10580. }
  10581. }
  10582. }
  10583. }
  10584. }
  10585. }
  10586. }
  10587. static void ggml_compute_forward_rope_back(
  10588. const struct ggml_compute_params * params,
  10589. const struct ggml_tensor * src0,
  10590. struct ggml_tensor * dst) {
  10591. switch (src0->type) {
  10592. case GGML_TYPE_F16:
  10593. {
  10594. ggml_compute_forward_rope_back_f16(params, src0, dst);
  10595. } break;
  10596. case GGML_TYPE_F32:
  10597. {
  10598. ggml_compute_forward_rope_back_f32(params, src0, dst);
  10599. } break;
  10600. default:
  10601. {
  10602. GGML_ASSERT(false);
  10603. } break;
  10604. }
  10605. }
  10606. // ggml_compute_forward_conv_1d
  10607. static void ggml_compute_forward_conv_1d_s1_ph_f16_f32(
  10608. const struct ggml_compute_params * params,
  10609. const struct ggml_tensor * src0,
  10610. const struct ggml_tensor * src1,
  10611. struct ggml_tensor * dst) {
  10612. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10613. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10614. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10615. int64_t t0 = ggml_perf_time_us();
  10616. UNUSED(t0);
  10617. GGML_TENSOR_BINARY_OP_LOCALS;
  10618. const int ith = params->ith;
  10619. const int nth = params->nth;
  10620. const int nk = ne00;
  10621. const int nh = nk/2;
  10622. const int ew0 = ggml_up32(ne01);
  10623. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10624. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10625. GGML_ASSERT(nb10 == sizeof(float));
  10626. if (params->type == GGML_TASK_INIT) {
  10627. // TODO: fix this memset (wsize is overestimated)
  10628. memset(params->wdata, 0, params->wsize);
  10629. // prepare kernel data (src0)
  10630. {
  10631. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10632. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10633. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10634. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10635. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10636. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10637. dst_data[i00*ew0 + i01] = src[i00];
  10638. }
  10639. }
  10640. }
  10641. }
  10642. // prepare source data (src1)
  10643. {
  10644. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10645. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10646. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10647. ggml_fp16_t * dst_data = wdata;
  10648. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10649. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10650. }
  10651. }
  10652. }
  10653. return;
  10654. }
  10655. if (params->type == GGML_TASK_FINALIZE) {
  10656. return;
  10657. }
  10658. // total rows in dst
  10659. const int nr = ne02;
  10660. // rows per thread
  10661. const int dr = (nr + nth - 1)/nth;
  10662. // row range for this thread
  10663. const int ir0 = dr*ith;
  10664. const int ir1 = MIN(ir0 + dr, nr);
  10665. for (int i1 = ir0; i1 < ir1; i1++) {
  10666. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10667. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10668. dst_data[i0] = 0;
  10669. for (int k = -nh; k <= nh; k++) {
  10670. float v = 0.0f;
  10671. ggml_vec_dot_f16(ew0, &v,
  10672. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10673. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10674. dst_data[i0] += v;
  10675. }
  10676. }
  10677. }
  10678. }
  10679. static void ggml_compute_forward_conv_1d_s1_ph_f32(
  10680. const struct ggml_compute_params * params,
  10681. const struct ggml_tensor * src0,
  10682. const struct ggml_tensor * src1,
  10683. struct ggml_tensor * dst) {
  10684. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10685. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10686. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10687. int64_t t0 = ggml_perf_time_us();
  10688. UNUSED(t0);
  10689. GGML_TENSOR_BINARY_OP_LOCALS;
  10690. const int ith = params->ith;
  10691. const int nth = params->nth;
  10692. const int nk = ne00;
  10693. const int nh = nk/2;
  10694. const int ew0 = ggml_up32(ne01);
  10695. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10696. GGML_ASSERT(nb00 == sizeof(float));
  10697. GGML_ASSERT(nb10 == sizeof(float));
  10698. if (params->type == GGML_TASK_INIT) {
  10699. // TODO: fix this memset (wsize is overestimated)
  10700. memset(params->wdata, 0, params->wsize);
  10701. // prepare kernel data (src0)
  10702. {
  10703. float * const wdata = (float *) params->wdata + 0;
  10704. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10705. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10706. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10707. float * dst_data = wdata + i02*ew0*ne00;
  10708. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10709. dst_data[i00*ew0 + i01] = src[i00];
  10710. }
  10711. }
  10712. }
  10713. }
  10714. // prepare source data (src1)
  10715. {
  10716. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10717. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10718. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10719. float * dst_data = wdata;
  10720. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10721. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10722. }
  10723. }
  10724. }
  10725. return;
  10726. }
  10727. if (params->type == GGML_TASK_FINALIZE) {
  10728. return;
  10729. }
  10730. // total rows in dst
  10731. const int nr = ne02;
  10732. // rows per thread
  10733. const int dr = (nr + nth - 1)/nth;
  10734. // row range for this thread
  10735. const int ir0 = dr*ith;
  10736. const int ir1 = MIN(ir0 + dr, nr);
  10737. for (int i1 = ir0; i1 < ir1; i1++) {
  10738. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10739. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10740. dst_data[i0] = 0;
  10741. for (int k = -nh; k <= nh; k++) {
  10742. float v = 0.0f;
  10743. ggml_vec_dot_f32(ew0, &v,
  10744. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10745. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10746. dst_data[i0] += v;
  10747. }
  10748. }
  10749. }
  10750. }
  10751. static void ggml_compute_forward_conv_1d_s1_ph(
  10752. const struct ggml_compute_params * params,
  10753. const struct ggml_tensor * src0,
  10754. const struct ggml_tensor * src1,
  10755. struct ggml_tensor * dst) {
  10756. switch (src0->type) {
  10757. case GGML_TYPE_F16:
  10758. {
  10759. ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst);
  10760. } break;
  10761. case GGML_TYPE_F32:
  10762. {
  10763. ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst);
  10764. } break;
  10765. default:
  10766. {
  10767. GGML_ASSERT(false);
  10768. } break;
  10769. }
  10770. }
  10771. static void ggml_compute_forward_conv_1d_s2_ph_f16_f32(
  10772. const struct ggml_compute_params * params,
  10773. const struct ggml_tensor * src0,
  10774. const struct ggml_tensor * src1,
  10775. struct ggml_tensor * dst) {
  10776. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10777. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10778. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10779. int64_t t0 = ggml_perf_time_us();
  10780. UNUSED(t0);
  10781. GGML_TENSOR_BINARY_OP_LOCALS;
  10782. const int ith = params->ith;
  10783. const int nth = params->nth;
  10784. const int nk = ne00;
  10785. const int nh = nk/2;
  10786. const int ew0 = ggml_up32(ne01);
  10787. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10788. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10789. GGML_ASSERT(nb10 == sizeof(float));
  10790. if (params->type == GGML_TASK_INIT) {
  10791. // TODO: fix this memset (wsize is overestimated)
  10792. memset(params->wdata, 0, params->wsize);
  10793. // prepare kernel data (src0)
  10794. {
  10795. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10796. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10797. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10798. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10799. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10800. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10801. dst_data[i00*ew0 + i01] = src[i00];
  10802. }
  10803. }
  10804. }
  10805. }
  10806. // prepare source data (src1)
  10807. {
  10808. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10809. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10810. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10811. ggml_fp16_t * dst_data = wdata;
  10812. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10813. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10814. }
  10815. }
  10816. }
  10817. return;
  10818. }
  10819. if (params->type == GGML_TASK_FINALIZE) {
  10820. return;
  10821. }
  10822. // total rows in dst
  10823. const int nr = ne02;
  10824. // rows per thread
  10825. const int dr = (nr + nth - 1)/nth;
  10826. // row range for this thread
  10827. const int ir0 = dr*ith;
  10828. const int ir1 = MIN(ir0 + dr, nr);
  10829. for (int i1 = ir0; i1 < ir1; i1++) {
  10830. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10831. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10832. dst_data[i0/2] = 0;
  10833. for (int k = -nh; k <= nh; k++) {
  10834. float v = 0.0f;
  10835. ggml_vec_dot_f16(ew0, &v,
  10836. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10837. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10838. dst_data[i0/2] += v;
  10839. }
  10840. }
  10841. }
  10842. }
  10843. static void ggml_compute_forward_conv_1d_s2_ph_f32(
  10844. const struct ggml_compute_params * params,
  10845. const struct ggml_tensor * src0,
  10846. const struct ggml_tensor * src1,
  10847. struct ggml_tensor * dst) {
  10848. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10849. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10850. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10851. int64_t t0 = ggml_perf_time_us();
  10852. UNUSED(t0);
  10853. GGML_TENSOR_BINARY_OP_LOCALS;
  10854. const int ith = params->ith;
  10855. const int nth = params->nth;
  10856. const int nk = ne00;
  10857. const int nh = nk/2;
  10858. const int ew0 = ggml_up32(ne01);
  10859. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10860. GGML_ASSERT(nb00 == sizeof(float));
  10861. GGML_ASSERT(nb10 == sizeof(float));
  10862. if (params->type == GGML_TASK_INIT) {
  10863. // TODO: fix this memset (wsize is overestimated)
  10864. memset(params->wdata, 0, params->wsize);
  10865. // prepare kernel data (src0)
  10866. {
  10867. float * const wdata = (float *) params->wdata + 0;
  10868. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10869. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10870. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10871. float * dst_data = wdata + i02*ew0*ne00;
  10872. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10873. dst_data[i00*ew0 + i01] = src[i00];
  10874. }
  10875. }
  10876. }
  10877. }
  10878. // prepare source data (src1)
  10879. {
  10880. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10881. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10882. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10883. float * dst_data = wdata;
  10884. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10885. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10886. }
  10887. }
  10888. }
  10889. return;
  10890. }
  10891. if (params->type == GGML_TASK_FINALIZE) {
  10892. return;
  10893. }
  10894. // total rows in dst
  10895. const int nr = ne02;
  10896. // rows per thread
  10897. const int dr = (nr + nth - 1)/nth;
  10898. // row range for this thread
  10899. const int ir0 = dr*ith;
  10900. const int ir1 = MIN(ir0 + dr, nr);
  10901. for (int i1 = ir0; i1 < ir1; i1++) {
  10902. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10903. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10904. dst_data[i0/2] = 0;
  10905. for (int k = -nh; k <= nh; k++) {
  10906. float v = 0.0f;
  10907. ggml_vec_dot_f32(ew0, &v,
  10908. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10909. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10910. dst_data[i0/2] += v;
  10911. }
  10912. }
  10913. }
  10914. }
  10915. static void ggml_compute_forward_conv_1d_s2_ph(
  10916. const struct ggml_compute_params * params,
  10917. const struct ggml_tensor * src0,
  10918. const struct ggml_tensor * src1,
  10919. struct ggml_tensor * dst) {
  10920. switch (src0->type) {
  10921. case GGML_TYPE_F16:
  10922. {
  10923. ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst);
  10924. } break;
  10925. case GGML_TYPE_F32:
  10926. {
  10927. ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst);
  10928. } break;
  10929. default:
  10930. {
  10931. GGML_ASSERT(false);
  10932. } break;
  10933. }
  10934. }
  10935. // ggml_compute_forward_conv_1d
  10936. static void ggml_compute_forward_conv_1d(
  10937. const struct ggml_compute_params * params,
  10938. const struct ggml_tensor * src0,
  10939. const struct ggml_tensor * src1,
  10940. struct ggml_tensor * dst) {
  10941. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10942. const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
  10943. const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
  10944. GGML_ASSERT(d0 == 1); // dilation not supported
  10945. GGML_ASSERT(p0 == src0->ne[0]/2); // only half padding supported
  10946. if (s0 == 1) {
  10947. ggml_compute_forward_conv_1d_s1_ph(params, src0, src1, dst);
  10948. } else if (s0 == 2) {
  10949. ggml_compute_forward_conv_1d_s2_ph(params, src0, src1, dst);
  10950. } else {
  10951. GGML_ASSERT(false); // only stride 1 and 2 supported
  10952. };
  10953. }
  10954. // ggml_compute_forward_conv_2d
  10955. static void ggml_compute_forward_conv_2d_f16_f32(
  10956. const struct ggml_compute_params * params,
  10957. const struct ggml_tensor * src0,
  10958. const struct ggml_tensor * src1,
  10959. struct ggml_tensor * dst) {
  10960. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10961. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10962. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10963. int64_t t0 = ggml_perf_time_us();
  10964. UNUSED(t0);
  10965. GGML_TENSOR_BINARY_OP_LOCALS;
  10966. const int ith = params->ith;
  10967. const int nth = params->nth;
  10968. const int nk0 = ne00;
  10969. const int nk1 = ne01;
  10970. // size of the convolution row - the kernel size unrolled across all channels
  10971. const int ew0 = nk0*nk1*ne02;
  10972. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10973. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  10974. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  10975. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  10976. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  10977. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  10978. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10979. GGML_ASSERT(nb10 == sizeof(float));
  10980. if (params->type == GGML_TASK_INIT) {
  10981. memset(params->wdata, 0, params->wsize);
  10982. // prepare source data (src1)
  10983. {
  10984. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10985. for (int i12 = 0; i12 < ne12; i12++) {
  10986. const float * const src = (float *)((char *) src1->data + i12*nb12);
  10987. ggml_fp16_t * dst_data = wdata;
  10988. for (int i1 = 0; i1 < ne1; i1++) {
  10989. for (int i0 = 0; i0 < ne0; i0++) {
  10990. for (int ik1 = 0; ik1 < nk1; ik1++) {
  10991. for (int ik0 = 0; ik0 < nk0; ik0++) {
  10992. const int idx0 = i0*s0 + ik0*d0 - p0;
  10993. const int idx1 = i1*s1 + ik1*d1 - p1;
  10994. if (!(idx1 < 0 || idx1 >= ne11 || idx0 < 0 || idx0 >= ne10)) {
  10995. dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] =
  10996. GGML_FP32_TO_FP16(src[idx1*ne10 + idx0]);
  10997. }
  10998. }
  10999. }
  11000. }
  11001. }
  11002. }
  11003. }
  11004. return;
  11005. }
  11006. if (params->type == GGML_TASK_FINALIZE) {
  11007. return;
  11008. }
  11009. // total patches in dst
  11010. const int np = ne2;
  11011. // patches per thread
  11012. const int dp = (np + nth - 1)/nth;
  11013. // patch range for this thread
  11014. const int ip0 = dp*ith;
  11015. const int ip1 = MIN(ip0 + dp, np);
  11016. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11017. for (int i3 = 0; i3 < ne3; i3++) {
  11018. for (int i2 = ip0; i2 < ip1; i2++) {
  11019. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2);
  11020. for (int i1 = 0; i1 < ne1; ++i1) {
  11021. for (int i0 = 0; i0 < ne0; ++i0) {
  11022. ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0,
  11023. (ggml_fp16_t *) ((char *) src0->data + i2*nb03),
  11024. (ggml_fp16_t *) wdata + i3*nb3 + (i1*ne0 + i0)*ew0);
  11025. }
  11026. }
  11027. }
  11028. }
  11029. }
  11030. static void ggml_compute_forward_conv_2d(
  11031. const struct ggml_compute_params * params,
  11032. const struct ggml_tensor * src0,
  11033. const struct ggml_tensor * src1,
  11034. struct ggml_tensor * dst) {
  11035. switch (src0->type) {
  11036. case GGML_TYPE_F16:
  11037. {
  11038. ggml_compute_forward_conv_2d_f16_f32(params, src0, src1, dst);
  11039. } break;
  11040. case GGML_TYPE_F32:
  11041. {
  11042. //ggml_compute_forward_conv_2d_f32(params, src0, src1, dst);
  11043. GGML_ASSERT(false);
  11044. } break;
  11045. default:
  11046. {
  11047. GGML_ASSERT(false);
  11048. } break;
  11049. }
  11050. }
  11051. // ggml_compute_forward_conv_transpose_2d
  11052. static void ggml_compute_forward_conv_transpose_2d(
  11053. const struct ggml_compute_params * params,
  11054. const struct ggml_tensor * src0,
  11055. const struct ggml_tensor * src1,
  11056. struct ggml_tensor * dst) {
  11057. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11058. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11059. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11060. int64_t t0 = ggml_perf_time_us();
  11061. UNUSED(t0);
  11062. GGML_TENSOR_BINARY_OP_LOCALS;
  11063. const int ith = params->ith;
  11064. const int nth = params->nth;
  11065. const int nk = ne00*ne01*ne02*ne03;
  11066. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11067. GGML_ASSERT(nb10 == sizeof(float));
  11068. if (params->type == GGML_TASK_INIT) {
  11069. memset(params->wdata, 0, params->wsize);
  11070. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  11071. {
  11072. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11073. for (int64_t i03 = 0; i03 < ne03; i03++) {
  11074. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11075. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  11076. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  11077. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11078. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11079. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  11080. }
  11081. }
  11082. }
  11083. }
  11084. }
  11085. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  11086. {
  11087. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11088. for (int i12 = 0; i12 < ne12; i12++) {
  11089. for (int i11 = 0; i11 < ne11; i11++) {
  11090. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  11091. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  11092. for (int i10 = 0; i10 < ne10; i10++) {
  11093. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  11094. }
  11095. }
  11096. }
  11097. }
  11098. return;
  11099. }
  11100. if (params->type == GGML_TASK_FINALIZE) {
  11101. return;
  11102. }
  11103. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  11104. // total patches in dst
  11105. const int np = ne2;
  11106. // patches per thread
  11107. const int dp = (np + nth - 1)/nth;
  11108. // patch range for this thread
  11109. const int ip0 = dp*ith;
  11110. const int ip1 = MIN(ip0 + dp, np);
  11111. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11112. ggml_fp16_t * const wdata_src = wdata + nk;
  11113. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  11114. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  11115. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  11116. for (int i11 = 0; i11 < ne11; i11++) {
  11117. for (int i10 = 0; i10 < ne10; i10++) {
  11118. const int i1n = i11*ne10*ne12 + i10*ne12;
  11119. for (int i01 = 0; i01 < ne01; i01++) {
  11120. for (int i00 = 0; i00 < ne00; i00++) {
  11121. float v = 0;
  11122. ggml_vec_dot_f16(ne03, &v,
  11123. wdata_src + i1n,
  11124. wdata_kernel + i01*ne00*ne03 + i00*ne03);
  11125. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  11126. }
  11127. }
  11128. }
  11129. }
  11130. }
  11131. }
  11132. // ggml_compute_forward_pool_1d_sk_p0
  11133. static void ggml_compute_forward_pool_1d_sk_p0(
  11134. const struct ggml_compute_params * params,
  11135. const enum ggml_op_pool op,
  11136. const struct ggml_tensor * src,
  11137. const int k,
  11138. struct ggml_tensor * dst) {
  11139. assert(src->type == GGML_TYPE_F32);
  11140. assert(params->ith == 0);
  11141. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11142. return;
  11143. }
  11144. const char * cdata = (const char *)src->data;
  11145. const char * const data_end = cdata + ggml_nbytes(src);
  11146. float * drow = (float *)dst->data;
  11147. const int64_t rs = dst->ne[0];
  11148. while (cdata < data_end) {
  11149. const float * const srow = (const float *)cdata;
  11150. int j = 0;
  11151. for (int64_t i = 0; i < rs; ++i) {
  11152. switch (op) {
  11153. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  11154. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  11155. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11156. }
  11157. for (int ki = 0; ki < k; ++ki) {
  11158. switch (op) {
  11159. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  11160. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  11161. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11162. }
  11163. ++j;
  11164. }
  11165. switch (op) {
  11166. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  11167. case GGML_OP_POOL_MAX: break;
  11168. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11169. }
  11170. }
  11171. cdata += src->nb[1];
  11172. drow += rs;
  11173. }
  11174. }
  11175. // ggml_compute_forward_pool_1d
  11176. static void ggml_compute_forward_pool_1d(
  11177. const struct ggml_compute_params * params,
  11178. const struct ggml_tensor * src0,
  11179. struct ggml_tensor * dst) {
  11180. const int32_t * opts = (const int32_t *)dst->op_params;
  11181. enum ggml_op_pool op = opts[0];
  11182. const int k0 = opts[1];
  11183. const int s0 = opts[2];
  11184. const int p0 = opts[3];
  11185. GGML_ASSERT(p0 == 0); // padding not supported
  11186. GGML_ASSERT(k0 == s0); // only s = k supported
  11187. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  11188. }
  11189. // ggml_compute_forward_pool_2d_sk_p0
  11190. static void ggml_compute_forward_pool_2d_sk_p0(
  11191. const struct ggml_compute_params * params,
  11192. const enum ggml_op_pool op,
  11193. const struct ggml_tensor * src,
  11194. const int k0,
  11195. const int k1,
  11196. struct ggml_tensor * dst) {
  11197. assert(src->type == GGML_TYPE_F32);
  11198. assert(params->ith == 0);
  11199. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11200. return;
  11201. }
  11202. const char * cdata = (const char*)src->data;
  11203. const char * const data_end = cdata + ggml_nbytes(src);
  11204. const int64_t px = dst->ne[0];
  11205. const int64_t py = dst->ne[1];
  11206. const int64_t pa = px * py;
  11207. float * dplane = (float *)dst->data;
  11208. const int ka = k0 * k1;
  11209. while (cdata < data_end) {
  11210. for (int oy = 0; oy < py; ++oy) {
  11211. float * const drow = dplane + oy * px;
  11212. for (int ox = 0; ox < px; ++ox) {
  11213. float * const out = drow + ox;
  11214. switch (op) {
  11215. case GGML_OP_POOL_AVG: *out = 0; break;
  11216. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  11217. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11218. }
  11219. const int ix = ox * k0;
  11220. const int iy = oy * k1;
  11221. for (int ky = 0; ky < k1; ++ky) {
  11222. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  11223. for (int kx = 0; kx < k0; ++kx) {
  11224. int j = ix + kx;
  11225. switch (op) {
  11226. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  11227. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  11228. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11229. }
  11230. }
  11231. }
  11232. switch (op) {
  11233. case GGML_OP_POOL_AVG: *out /= ka; break;
  11234. case GGML_OP_POOL_MAX: break;
  11235. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11236. }
  11237. }
  11238. }
  11239. cdata += src->nb[2];
  11240. dplane += pa;
  11241. }
  11242. }
  11243. // ggml_compute_forward_pool_2d
  11244. static void ggml_compute_forward_pool_2d(
  11245. const struct ggml_compute_params * params,
  11246. const struct ggml_tensor * src0,
  11247. struct ggml_tensor * dst) {
  11248. const int32_t * opts = (const int32_t *)dst->op_params;
  11249. enum ggml_op_pool op = opts[0];
  11250. const int k0 = opts[1];
  11251. const int k1 = opts[2];
  11252. const int s0 = opts[3];
  11253. const int s1 = opts[4];
  11254. const int p0 = opts[5];
  11255. const int p1 = opts[6];
  11256. GGML_ASSERT(p0 == 0);
  11257. GGML_ASSERT(p1 == 0); // padding not supported
  11258. GGML_ASSERT(k0 == s0);
  11259. GGML_ASSERT(k1 == s1); // only s = k supported
  11260. ggml_compute_forward_pool_2d_sk_p0(params, op, src0, k0, k1, dst);
  11261. }
  11262. // ggml_compute_forward_upscale
  11263. static void ggml_compute_forward_upscale_f32(
  11264. const struct ggml_compute_params * params,
  11265. const struct ggml_tensor * src0,
  11266. struct ggml_tensor * dst) {
  11267. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11268. return;
  11269. }
  11270. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11271. const int ith = params->ith;
  11272. GGML_TENSOR_UNARY_OP_LOCALS;
  11273. const int scale_factor = dst->op_params[0];
  11274. // TODO: optimize
  11275. for (int i03 = 0; i03 < ne03; i03++) {
  11276. for (int i02 = ith; i02 < ne02; i02++) {
  11277. for (int m = 0; m < dst->ne[1]; m++) {
  11278. int i01 = m / scale_factor;
  11279. for (int n = 0; n < dst->ne[0]; n++) {
  11280. int i00 = n / scale_factor;
  11281. const float * x = (float *)((char *) src0->data + i00 * nb00 +i01 * nb01 + i02 * nb02 + i03 * nb03);
  11282. float * y = (float *)((char *) dst->data + n * dst->nb[0] + m * dst->nb[1] + i02 * dst->nb[2] + i03 * dst->nb[3]);
  11283. *y = *x;
  11284. }
  11285. }
  11286. }
  11287. }
  11288. }
  11289. static void ggml_compute_forward_upscale(
  11290. const struct ggml_compute_params * params,
  11291. const struct ggml_tensor * src0,
  11292. struct ggml_tensor * dst) {
  11293. switch (src0->type) {
  11294. case GGML_TYPE_F32:
  11295. {
  11296. ggml_compute_forward_upscale_f32(params, src0, dst);
  11297. } break;
  11298. default:
  11299. {
  11300. GGML_ASSERT(false);
  11301. } break;
  11302. }
  11303. }
  11304. // ggml_compute_forward_flash_attn
  11305. static void ggml_compute_forward_flash_attn_f32(
  11306. const struct ggml_compute_params * params,
  11307. const struct ggml_tensor * q,
  11308. const struct ggml_tensor * k,
  11309. const struct ggml_tensor * v,
  11310. const bool masked,
  11311. struct ggml_tensor * dst) {
  11312. int64_t t0 = ggml_perf_time_us();
  11313. UNUSED(t0);
  11314. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11315. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11316. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11317. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11318. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11319. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11320. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11321. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11322. const int ith = params->ith;
  11323. const int nth = params->nth;
  11324. const int64_t D = neq0;
  11325. const int64_t N = neq1;
  11326. const int64_t P = nek1 - N;
  11327. const int64_t M = P + N;
  11328. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11329. GGML_ASSERT(ne0 == D);
  11330. GGML_ASSERT(ne1 == N);
  11331. GGML_ASSERT(P >= 0);
  11332. GGML_ASSERT(nbq0 == sizeof(float));
  11333. GGML_ASSERT(nbk0 == sizeof(float));
  11334. GGML_ASSERT(nbv0 == sizeof(float));
  11335. GGML_ASSERT(neq0 == D);
  11336. GGML_ASSERT(nek0 == D);
  11337. GGML_ASSERT(nev1 == D);
  11338. GGML_ASSERT(neq1 == N);
  11339. GGML_ASSERT(nek1 == N + P);
  11340. GGML_ASSERT(nev1 == D);
  11341. // dst cannot be transposed or permuted
  11342. GGML_ASSERT(nb0 == sizeof(float));
  11343. GGML_ASSERT(nb0 <= nb1);
  11344. GGML_ASSERT(nb1 <= nb2);
  11345. GGML_ASSERT(nb2 <= nb3);
  11346. if (params->type == GGML_TASK_INIT) {
  11347. return;
  11348. }
  11349. if (params->type == GGML_TASK_FINALIZE) {
  11350. return;
  11351. }
  11352. // parallelize by q rows using ggml_vec_dot_f32
  11353. // total rows in q
  11354. const int nr = neq1*neq2*neq3;
  11355. // rows per thread
  11356. const int dr = (nr + nth - 1)/nth;
  11357. // row range for this thread
  11358. const int ir0 = dr*ith;
  11359. const int ir1 = MIN(ir0 + dr, nr);
  11360. const float scale = 1.0f/sqrtf(D);
  11361. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11362. for (int ir = ir0; ir < ir1; ++ir) {
  11363. // q indices
  11364. const int iq3 = ir/(neq2*neq1);
  11365. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11366. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11367. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  11368. for (int i = M; i < Mup; ++i) {
  11369. S[i] = -INFINITY;
  11370. }
  11371. for (int64_t ic = 0; ic < nek1; ++ic) {
  11372. // k indices
  11373. const int ik3 = iq3;
  11374. const int ik2 = iq2;
  11375. const int ik1 = ic;
  11376. // S indices
  11377. const int i1 = ik1;
  11378. ggml_vec_dot_f32(neq0,
  11379. S + i1,
  11380. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11381. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11382. }
  11383. // scale
  11384. ggml_vec_scale_f32(nek1, S, scale);
  11385. if (masked) {
  11386. for (int64_t i = P; i < M; i++) {
  11387. if (i > P + iq1) {
  11388. S[i] = -INFINITY;
  11389. }
  11390. }
  11391. }
  11392. // softmax
  11393. {
  11394. float max = -INFINITY;
  11395. ggml_vec_max_f32(M, &max, S);
  11396. ggml_float sum = 0.0;
  11397. {
  11398. #ifdef GGML_SOFT_MAX_ACCELERATE
  11399. max = -max;
  11400. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11401. vvexpf(S, S, &Mup);
  11402. ggml_vec_sum_f32(Mup, &sum, S);
  11403. #else
  11404. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11405. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11406. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11407. float * SS = S + i;
  11408. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11409. if (SS[j] == -INFINITY) {
  11410. SS[j] = 0.0f;
  11411. } else {
  11412. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11413. const float val = expf(SS[j] - max);
  11414. #else
  11415. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11416. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11417. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11418. #endif
  11419. sump[j] += (ggml_float)val;
  11420. SS[j] = val;
  11421. }
  11422. }
  11423. }
  11424. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11425. sum += sump[i];
  11426. }
  11427. #endif
  11428. }
  11429. assert(sum > 0.0);
  11430. sum = 1.0/sum;
  11431. ggml_vec_scale_f32(M, S, sum);
  11432. #ifndef NDEBUG
  11433. for (int i = 0; i < M; ++i) {
  11434. assert(!isnan(S[i]));
  11435. assert(!isinf(S[i]));
  11436. }
  11437. #endif
  11438. }
  11439. for (int64_t ic = 0; ic < nev1; ++ic) {
  11440. // dst indices
  11441. const int i1 = iq1;
  11442. const int i2 = iq2;
  11443. const int i3 = iq3;
  11444. ggml_vec_dot_f32(nek1,
  11445. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11446. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11447. S);
  11448. }
  11449. }
  11450. }
  11451. static void ggml_compute_forward_flash_attn_f16(
  11452. const struct ggml_compute_params * params,
  11453. const struct ggml_tensor * q,
  11454. const struct ggml_tensor * k,
  11455. const struct ggml_tensor * v,
  11456. const bool masked,
  11457. struct ggml_tensor * dst) {
  11458. int64_t t0 = ggml_perf_time_us();
  11459. UNUSED(t0);
  11460. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11461. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11462. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11463. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11464. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11465. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11466. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11467. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11468. const int ith = params->ith;
  11469. const int nth = params->nth;
  11470. const int64_t D = neq0;
  11471. const int64_t N = neq1;
  11472. const int64_t P = nek1 - N;
  11473. const int64_t M = P + N;
  11474. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11475. GGML_ASSERT(ne0 == D);
  11476. GGML_ASSERT(ne1 == N);
  11477. GGML_ASSERT(P >= 0);
  11478. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11479. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11480. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11481. GGML_ASSERT(neq0 == D);
  11482. GGML_ASSERT(nek0 == D);
  11483. GGML_ASSERT(nev1 == D);
  11484. GGML_ASSERT(neq1 == N);
  11485. GGML_ASSERT(nek1 == N + P);
  11486. GGML_ASSERT(nev1 == D);
  11487. // dst cannot be transposed or permuted
  11488. GGML_ASSERT(nb0 == sizeof(float));
  11489. GGML_ASSERT(nb0 <= nb1);
  11490. GGML_ASSERT(nb1 <= nb2);
  11491. GGML_ASSERT(nb2 <= nb3);
  11492. if (params->type == GGML_TASK_INIT) {
  11493. return;
  11494. }
  11495. if (params->type == GGML_TASK_FINALIZE) {
  11496. return;
  11497. }
  11498. // parallelize by q rows using ggml_vec_dot_f32
  11499. // total rows in q
  11500. const int nr = neq1*neq2*neq3;
  11501. // rows per thread
  11502. const int dr = (nr + nth - 1)/nth;
  11503. // row range for this thread
  11504. const int ir0 = dr*ith;
  11505. const int ir1 = MIN(ir0 + dr, nr);
  11506. const float scale = 1.0f/sqrtf(D);
  11507. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11508. for (int ir = ir0; ir < ir1; ++ir) {
  11509. // q indices
  11510. const int iq3 = ir/(neq2*neq1);
  11511. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11512. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11513. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11514. for (int i = M; i < Mup; ++i) {
  11515. S[i] = -INFINITY;
  11516. }
  11517. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11518. for (int64_t ic = 0; ic < nek1; ++ic) {
  11519. // k indices
  11520. const int ik3 = iq3;
  11521. const int ik2 = iq2;
  11522. const int ik1 = ic;
  11523. // S indices
  11524. const int i1 = ik1;
  11525. ggml_vec_dot_f16(neq0,
  11526. S + i1,
  11527. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11528. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11529. }
  11530. } else {
  11531. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11532. // k indices
  11533. const int ik3 = iq3;
  11534. const int ik2 = iq2;
  11535. const int ik1 = ic;
  11536. // S indices
  11537. const int i1 = ik1;
  11538. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11539. S + i1,
  11540. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11541. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11542. }
  11543. }
  11544. // scale
  11545. ggml_vec_scale_f32(nek1, S, scale);
  11546. if (masked) {
  11547. for (int64_t i = P; i < M; i++) {
  11548. if (i > P + iq1) {
  11549. S[i] = -INFINITY;
  11550. }
  11551. }
  11552. }
  11553. // softmax
  11554. {
  11555. float max = -INFINITY;
  11556. ggml_vec_max_f32(M, &max, S);
  11557. ggml_float sum = 0.0;
  11558. {
  11559. #ifdef GGML_SOFT_MAX_ACCELERATE
  11560. max = -max;
  11561. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11562. vvexpf(S, S, &Mup);
  11563. ggml_vec_sum_f32(Mup, &sum, S);
  11564. #else
  11565. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11566. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11567. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11568. float * SS = S + i;
  11569. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11570. if (SS[j] == -INFINITY) {
  11571. SS[j] = 0.0f;
  11572. } else {
  11573. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11574. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11575. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11576. sump[j] += (ggml_float)val;
  11577. SS[j] = val;
  11578. }
  11579. }
  11580. }
  11581. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11582. sum += sump[i];
  11583. }
  11584. #endif
  11585. }
  11586. assert(sum > 0.0);
  11587. sum = 1.0/sum;
  11588. ggml_vec_scale_f32(M, S, sum);
  11589. #ifndef NDEBUG
  11590. for (int i = 0; i < M; ++i) {
  11591. assert(!isnan(S[i]));
  11592. assert(!isinf(S[i]));
  11593. }
  11594. #endif
  11595. }
  11596. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11597. for (int64_t i = 0; i < M; i++) {
  11598. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11599. }
  11600. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11601. for (int64_t ic = 0; ic < nev1; ++ic) {
  11602. // dst indices
  11603. const int i1 = iq1;
  11604. const int i2 = iq2;
  11605. const int i3 = iq3;
  11606. ggml_vec_dot_f16(nek1,
  11607. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11608. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11609. S16);
  11610. }
  11611. } else {
  11612. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11613. // dst indices
  11614. const int i1 = iq1;
  11615. const int i2 = iq2;
  11616. const int i3 = iq3;
  11617. ggml_vec_dot_f16_unroll(nek1, nbv1,
  11618. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11619. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11620. S16);
  11621. }
  11622. }
  11623. }
  11624. }
  11625. static void ggml_compute_forward_flash_attn(
  11626. const struct ggml_compute_params * params,
  11627. const struct ggml_tensor * q,
  11628. const struct ggml_tensor * k,
  11629. const struct ggml_tensor * v,
  11630. const bool masked,
  11631. struct ggml_tensor * dst) {
  11632. switch (q->type) {
  11633. case GGML_TYPE_F16:
  11634. {
  11635. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  11636. } break;
  11637. case GGML_TYPE_F32:
  11638. {
  11639. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  11640. } break;
  11641. default:
  11642. {
  11643. GGML_ASSERT(false);
  11644. } break;
  11645. }
  11646. }
  11647. // ggml_compute_forward_flash_ff
  11648. static void ggml_compute_forward_flash_ff_f16(
  11649. const struct ggml_compute_params * params,
  11650. const struct ggml_tensor * a, // F16
  11651. const struct ggml_tensor * b0, // F16 fc_w
  11652. const struct ggml_tensor * b1, // F32 fc_b
  11653. const struct ggml_tensor * c0, // F16 proj_w
  11654. const struct ggml_tensor * c1, // F32 proj_b
  11655. struct ggml_tensor * dst) {
  11656. int64_t t0 = ggml_perf_time_us();
  11657. UNUSED(t0);
  11658. GGML_TENSOR_LOCALS(int64_t, nea, a, ne);
  11659. GGML_TENSOR_LOCALS(size_t, nba, a, nb);
  11660. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne);
  11661. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb);
  11662. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne);
  11663. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb);
  11664. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne);
  11665. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb);
  11666. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne);
  11667. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb);
  11668. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11669. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11670. const int ith = params->ith;
  11671. const int nth = params->nth;
  11672. const int64_t D = nea0;
  11673. //const int64_t N = nea1;
  11674. const int64_t M = neb01;
  11675. GGML_ASSERT(ne0 == nea0);
  11676. GGML_ASSERT(ne1 == nea1);
  11677. GGML_ASSERT(ne2 == nea2);
  11678. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11679. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11680. GGML_ASSERT(nbb10 == sizeof(float));
  11681. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11682. GGML_ASSERT(nbc10 == sizeof(float));
  11683. GGML_ASSERT(neb00 == D);
  11684. GGML_ASSERT(neb01 == M);
  11685. GGML_ASSERT(neb10 == M);
  11686. GGML_ASSERT(neb11 == 1);
  11687. GGML_ASSERT(nec00 == M);
  11688. GGML_ASSERT(nec01 == D);
  11689. GGML_ASSERT(nec10 == D);
  11690. GGML_ASSERT(nec11 == 1);
  11691. // dst cannot be transposed or permuted
  11692. GGML_ASSERT(nb0 == sizeof(float));
  11693. GGML_ASSERT(nb0 <= nb1);
  11694. GGML_ASSERT(nb1 <= nb2);
  11695. GGML_ASSERT(nb2 <= nb3);
  11696. if (params->type == GGML_TASK_INIT) {
  11697. return;
  11698. }
  11699. if (params->type == GGML_TASK_FINALIZE) {
  11700. return;
  11701. }
  11702. // parallelize by a rows using ggml_vec_dot_f32
  11703. // total rows in a
  11704. const int nr = nea1*nea2*nea3;
  11705. // rows per thread
  11706. const int dr = (nr + nth - 1)/nth;
  11707. // row range for this thread
  11708. const int ir0 = dr*ith;
  11709. const int ir1 = MIN(ir0 + dr, nr);
  11710. for (int ir = ir0; ir < ir1; ++ir) {
  11711. // a indices
  11712. const int ia3 = ir/(nea2*nea1);
  11713. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11714. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11715. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11716. for (int64_t ic = 0; ic < neb01; ++ic) {
  11717. // b0 indices
  11718. const int ib03 = ia3;
  11719. const int ib02 = ia2;
  11720. const int ib01 = ic;
  11721. // S indices
  11722. const int i1 = ib01;
  11723. ggml_vec_dot_f16(nea0,
  11724. S + i1,
  11725. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  11726. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  11727. }
  11728. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11729. //ggml_vec_gelu_f32(neb01, S, S);
  11730. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11731. for (int64_t i = 0; i < M; i++) {
  11732. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11733. }
  11734. ggml_vec_gelu_f16(neb01, S16, S16);
  11735. {
  11736. // dst indices
  11737. const int i1 = ia1;
  11738. const int i2 = ia2;
  11739. const int i3 = ia3;
  11740. for (int64_t ic = 0; ic < nec01; ++ic) {
  11741. ggml_vec_dot_f16(neb01,
  11742. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11743. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  11744. S16);
  11745. }
  11746. ggml_vec_add_f32(nec01,
  11747. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11748. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11749. (float *) c1->data);
  11750. }
  11751. }
  11752. }
  11753. static void ggml_compute_forward_flash_ff(
  11754. const struct ggml_compute_params * params,
  11755. const struct ggml_tensor * a,
  11756. const struct ggml_tensor * b0,
  11757. const struct ggml_tensor * b1,
  11758. const struct ggml_tensor * c0,
  11759. const struct ggml_tensor * c1,
  11760. struct ggml_tensor * dst) {
  11761. switch (b0->type) {
  11762. case GGML_TYPE_F16:
  11763. {
  11764. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  11765. } break;
  11766. case GGML_TYPE_F32:
  11767. {
  11768. GGML_ASSERT(false); // TODO
  11769. } break;
  11770. default:
  11771. {
  11772. GGML_ASSERT(false);
  11773. } break;
  11774. }
  11775. }
  11776. // ggml_compute_forward_flash_attn_back
  11777. static void ggml_compute_forward_flash_attn_back_f32(
  11778. const struct ggml_compute_params * params,
  11779. const struct ggml_tensor * q,
  11780. const struct ggml_tensor * k,
  11781. const struct ggml_tensor * v,
  11782. const struct ggml_tensor * d,
  11783. const bool masked,
  11784. struct ggml_tensor * dst) {
  11785. int64_t t0 = ggml_perf_time_us();
  11786. UNUSED(t0);
  11787. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11788. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11789. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11790. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11791. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11792. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11793. GGML_TENSOR_LOCALS(int64_t, ned, d, ne);
  11794. GGML_TENSOR_LOCALS(size_t, nbd, d, nb);
  11795. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11796. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11797. const int ith = params->ith;
  11798. const int nth = params->nth;
  11799. const int64_t D = neq0;
  11800. const int64_t N = neq1;
  11801. const int64_t P = nek1 - N;
  11802. const int64_t M = P + N;
  11803. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11804. const int mxDM = MAX(D, Mup);
  11805. // GGML_ASSERT(ne0 == D);
  11806. // GGML_ASSERT(ne1 == N);
  11807. GGML_ASSERT(P >= 0);
  11808. GGML_ASSERT(nbq0 == sizeof(float));
  11809. GGML_ASSERT(nbk0 == sizeof(float));
  11810. GGML_ASSERT(nbv0 == sizeof(float));
  11811. GGML_ASSERT(neq0 == D);
  11812. GGML_ASSERT(nek0 == D);
  11813. GGML_ASSERT(nev1 == D);
  11814. GGML_ASSERT(ned0 == D);
  11815. GGML_ASSERT(neq1 == N);
  11816. GGML_ASSERT(nek1 == N + P);
  11817. GGML_ASSERT(nev1 == D);
  11818. GGML_ASSERT(ned1 == N);
  11819. // dst cannot be transposed or permuted
  11820. GGML_ASSERT(nb0 == sizeof(float));
  11821. GGML_ASSERT(nb0 <= nb1);
  11822. GGML_ASSERT(nb1 <= nb2);
  11823. GGML_ASSERT(nb2 <= nb3);
  11824. if (params->type == GGML_TASK_INIT) {
  11825. if (ith == 0) {
  11826. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11827. }
  11828. return;
  11829. }
  11830. if (params->type == GGML_TASK_FINALIZE) {
  11831. return;
  11832. }
  11833. // parallelize by q rows using ggml_vec_dot_f32
  11834. // total rows in q
  11835. const int nr = neq2*neq3;
  11836. // rows per thread
  11837. const int dr = (nr + nth - 1)/nth;
  11838. // row range for this thread
  11839. const int ir0 = dr*ith;
  11840. const int ir1 = MIN(ir0 + dr, nr);
  11841. const float scale = 1.0f/sqrtf(D);
  11842. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11843. for (int ir = ir0; ir < ir1; ++ir) {
  11844. // q indices
  11845. const int iq3 = ir/(neq2);
  11846. const int iq2 = ir - iq3*neq2;
  11847. for ( int iq1 = 0; iq1 < neq1; ++iq1) {
  11848. // not sure about CACHE_LINE_SIZE_F32..
  11849. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11850. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11851. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11852. for (int i = M; i < Mup; ++i) {
  11853. S[i] = -INFINITY;
  11854. }
  11855. for (int64_t ic = 0; ic < nek1; ++ic) {
  11856. // k indices
  11857. const int ik3 = iq3;
  11858. const int ik2 = iq2;
  11859. const int ik1 = ic;
  11860. // S indices
  11861. const int i1 = ik1;
  11862. ggml_vec_dot_f32(neq0,
  11863. S + i1,
  11864. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11865. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11866. }
  11867. // scale
  11868. ggml_vec_scale_f32(nek1, S, scale);
  11869. if (masked) {
  11870. for (int64_t i = P; i < M; i++) {
  11871. if (i > P + iq1) {
  11872. S[i] = -INFINITY;
  11873. }
  11874. }
  11875. }
  11876. // softmax
  11877. {
  11878. float max = -INFINITY;
  11879. ggml_vec_max_f32(M, &max, S);
  11880. ggml_float sum = 0.0;
  11881. {
  11882. #ifdef GGML_SOFT_MAX_ACCELERATE
  11883. max = -max;
  11884. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11885. vvexpf(SM, SM, &Mup);
  11886. ggml_vec_sum_f32(Mup, &sum, SM);
  11887. #else
  11888. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11889. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11890. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11891. float * SR = S + i;
  11892. float * SW = SM + i;
  11893. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11894. if (SR[j] == -INFINITY) {
  11895. SW[j] = 0.0f;
  11896. } else {
  11897. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11898. const float val = expf(SR[j] - max);
  11899. #else
  11900. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11901. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11902. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11903. #endif
  11904. sump[j] += (ggml_float)val;
  11905. SW[j] = val;
  11906. }
  11907. }
  11908. }
  11909. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11910. sum += sump[i];
  11911. }
  11912. #endif
  11913. }
  11914. assert(sum > 0.0);
  11915. sum = 1.0/sum;
  11916. ggml_vec_scale_f32(M, SM, sum);
  11917. }
  11918. // step-by-step explanation
  11919. {
  11920. // forward-process shape grads from backward process
  11921. // parallel_for iq2,iq3:
  11922. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur]
  11923. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11924. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur]
  11925. // for iq1:
  11926. // kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11927. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11928. // vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11929. // S0 = -Inf [D,1,1,1]
  11930. // ~S1[i] = dot(kcur[:D,i], qcur)
  11931. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11932. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11933. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11934. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11935. // ~S5[i] = dot(vcur[:,i], S4)
  11936. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3]
  11937. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11938. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3]
  11939. // dst backward-/ grad[dst] = d
  11940. //
  11941. // output gradients with their dependencies:
  11942. //
  11943. // grad[kcur] = grad[S1].T @ qcur
  11944. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11945. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11946. // grad[S4] = grad[S5] @ vcur
  11947. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11948. // grad[qcur] = grad[S1] @ kcur
  11949. // grad[vcur] = grad[S5].T @ S4
  11950. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11951. //
  11952. // in post-order:
  11953. //
  11954. // S1 = qcur @ kcur.T
  11955. // S2 = S1 * scale
  11956. // S3 = diag_mask_inf(S2, P)
  11957. // S4 = softmax(S3)
  11958. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11959. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11960. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11961. // grad[qcur] = grad[S1] @ kcur
  11962. // grad[kcur] = grad[S1].T @ qcur
  11963. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11964. //
  11965. // using less variables (SM=S4):
  11966. //
  11967. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11968. // SM = softmax(S)
  11969. // S = d[:D,iq1,iq2,iq3] @ vcur
  11970. // dot_SM_gradSM = dot(SM, S)
  11971. // S = SM * (S - dot(SM, S))
  11972. // S = diag_mask_zero(S, P) * scale
  11973. //
  11974. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11975. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11976. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11977. }
  11978. // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur
  11979. // S = d[:D,iq1,iq2,iq3] @ vcur
  11980. // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3]
  11981. ggml_vec_set_f32(M, S, 0);
  11982. for (int64_t ic = 0; ic < D; ++ic) {
  11983. // dst indices
  11984. const int i1 = iq1;
  11985. const int i2 = iq2;
  11986. const int i3 = iq3;
  11987. ggml_vec_mad_f32(M,
  11988. S,
  11989. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11990. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11991. }
  11992. // S = SM * (S - dot(SM, S))
  11993. float dot_SM_gradSM = 0;
  11994. ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S);
  11995. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11996. ggml_vec_mul_f32 (M, S, S, SM);
  11997. // S = diag_mask_zero(S, P) * scale
  11998. if (masked) {
  11999. // for (int64_t i = P + iq1 + 1; i < M; i++) {
  12000. // S[i] = 0;
  12001. // }
  12002. for (int64_t i = P; i < M; i++) {
  12003. if (i > P + iq1) {
  12004. S[i] = 0;
  12005. }
  12006. }
  12007. }
  12008. ggml_vec_scale_f32(M, S, scale);
  12009. void * grad_q = (char *) dst->data;
  12010. void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3;
  12011. void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3;
  12012. const size_t nbgq1 = nb0*neq0;
  12013. const size_t nbgq2 = nb0*neq0*neq1;
  12014. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  12015. const size_t nbgk1 = nb0*nek0;
  12016. const size_t nbgk2 = nb0*nek0*nek1;
  12017. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  12018. const size_t nbgv1 = nb0*nev0;
  12019. const size_t nbgv2 = nb0*nev0*nev1;
  12020. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  12021. // S shape [M,1]
  12022. // SM shape [M,1]
  12023. // kcur shape [D,M]
  12024. // qcur shape [D,1]
  12025. // vcur shape [M,D]
  12026. //
  12027. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12028. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  12029. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic]
  12030. //
  12031. //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T)
  12032. //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T)
  12033. for (int64_t ic = 0; ic < M; ++ic) {
  12034. // dst indices
  12035. const int i1 = iq1;
  12036. const int i2 = iq2;
  12037. const int i3 = iq3;
  12038. ggml_vec_mad_f32(D,
  12039. (float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)),
  12040. (float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)),
  12041. S[ic]);
  12042. }
  12043. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  12044. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  12045. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  12046. for (int64_t ic = 0; ic < M; ++ic) {
  12047. // dst indices
  12048. const int i1 = iq1;
  12049. const int i2 = iq2;
  12050. const int i3 = iq3;
  12051. // ggml_vec_set_f32(D,
  12052. // (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  12053. // 0);
  12054. ggml_vec_mad_f32(D,
  12055. (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  12056. (float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)),
  12057. S[ic]);
  12058. }
  12059. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  12060. // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M]
  12061. // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M]
  12062. for (int64_t ic = 0; ic < D; ++ic) {
  12063. // dst indices
  12064. const int i1 = iq1;
  12065. const int i2 = iq2;
  12066. const int i3 = iq3;
  12067. // ggml_vec_set_f32(M,
  12068. // (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  12069. // 0);
  12070. ggml_vec_mad_f32(M,
  12071. (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  12072. SM,
  12073. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  12074. }
  12075. }
  12076. }
  12077. }
  12078. static void ggml_compute_forward_flash_attn_back(
  12079. const struct ggml_compute_params * params,
  12080. const struct ggml_tensor * q,
  12081. const struct ggml_tensor * k,
  12082. const struct ggml_tensor * v,
  12083. const struct ggml_tensor * d,
  12084. const bool masked,
  12085. struct ggml_tensor * dst) {
  12086. switch (q->type) {
  12087. case GGML_TYPE_F32:
  12088. {
  12089. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  12090. } break;
  12091. default:
  12092. {
  12093. GGML_ASSERT(false);
  12094. } break;
  12095. }
  12096. }
  12097. // ggml_compute_forward_win_part
  12098. static void ggml_compute_forward_win_part_f32(
  12099. const struct ggml_compute_params * params,
  12100. const struct ggml_tensor * src0,
  12101. struct ggml_tensor * dst) {
  12102. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12103. return;
  12104. }
  12105. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  12106. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  12107. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  12108. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  12109. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  12110. assert(ne00 == ne0);
  12111. assert(ne3 == nep0*nep1);
  12112. // TODO: optimize / multi-thread
  12113. for (int py = 0; py < nep1; ++py) {
  12114. for (int px = 0; px < nep0; ++px) {
  12115. const int64_t i3 = py*nep0 + px;
  12116. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12117. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12118. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12119. const int64_t i02 = py*w + i2;
  12120. const int64_t i01 = px*w + i1;
  12121. const int64_t i00 = i0;
  12122. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  12123. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  12124. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  12125. ((float *) dst->data)[i] = 0.0f;
  12126. } else {
  12127. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  12128. }
  12129. }
  12130. }
  12131. }
  12132. }
  12133. }
  12134. }
  12135. static void ggml_compute_forward_win_part(
  12136. const struct ggml_compute_params * params,
  12137. const struct ggml_tensor * src0,
  12138. struct ggml_tensor * dst) {
  12139. switch (src0->type) {
  12140. case GGML_TYPE_F32:
  12141. {
  12142. ggml_compute_forward_win_part_f32(params, src0, dst);
  12143. } break;
  12144. default:
  12145. {
  12146. GGML_ASSERT(false);
  12147. } break;
  12148. }
  12149. }
  12150. // ggml_compute_forward_win_unpart
  12151. static void ggml_compute_forward_win_unpart_f32(
  12152. const struct ggml_compute_params * params,
  12153. const struct ggml_tensor * src0,
  12154. struct ggml_tensor * dst) {
  12155. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12156. return;
  12157. }
  12158. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  12159. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  12160. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  12161. // padding
  12162. const int px = (w - ne1%w)%w;
  12163. //const int py = (w - ne2%w)%w;
  12164. const int npx = (px + ne1)/w;
  12165. //const int npy = (py + ne2)/w;
  12166. assert(ne0 == ne00);
  12167. // TODO: optimize / multi-thread
  12168. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12169. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12170. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12171. const int ip2 = i2/w;
  12172. const int ip1 = i1/w;
  12173. const int64_t i02 = i2%w;
  12174. const int64_t i01 = i1%w;
  12175. const int64_t i00 = i0;
  12176. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  12177. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  12178. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  12179. }
  12180. }
  12181. }
  12182. }
  12183. static void ggml_compute_forward_win_unpart(
  12184. const struct ggml_compute_params * params,
  12185. const struct ggml_tensor * src0,
  12186. struct ggml_tensor * dst) {
  12187. switch (src0->type) {
  12188. case GGML_TYPE_F32:
  12189. {
  12190. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  12191. } break;
  12192. default:
  12193. {
  12194. GGML_ASSERT(false);
  12195. } break;
  12196. }
  12197. }
  12198. //gmml_compute_forward_unary
  12199. static void ggml_compute_forward_unary(
  12200. const struct ggml_compute_params * params,
  12201. const struct ggml_tensor * src0,
  12202. struct ggml_tensor * dst) {
  12203. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  12204. switch (op) {
  12205. case GGML_UNARY_OP_ABS:
  12206. {
  12207. ggml_compute_forward_abs(params, src0, dst);
  12208. } break;
  12209. case GGML_UNARY_OP_SGN:
  12210. {
  12211. ggml_compute_forward_sgn(params, src0, dst);
  12212. } break;
  12213. case GGML_UNARY_OP_NEG:
  12214. {
  12215. ggml_compute_forward_neg(params, src0, dst);
  12216. } break;
  12217. case GGML_UNARY_OP_STEP:
  12218. {
  12219. ggml_compute_forward_step(params, src0, dst);
  12220. } break;
  12221. case GGML_UNARY_OP_TANH:
  12222. {
  12223. ggml_compute_forward_tanh(params, src0, dst);
  12224. } break;
  12225. case GGML_UNARY_OP_ELU:
  12226. {
  12227. ggml_compute_forward_elu(params, src0, dst);
  12228. } break;
  12229. case GGML_UNARY_OP_RELU:
  12230. {
  12231. ggml_compute_forward_relu(params, src0, dst);
  12232. } break;
  12233. case GGML_UNARY_OP_GELU:
  12234. {
  12235. ggml_compute_forward_gelu(params, src0, dst);
  12236. } break;
  12237. case GGML_UNARY_OP_GELU_QUICK:
  12238. {
  12239. ggml_compute_forward_gelu_quick(params, src0, dst);
  12240. } break;
  12241. case GGML_UNARY_OP_SILU:
  12242. {
  12243. ggml_compute_forward_silu(params, src0, dst);
  12244. } break;
  12245. default:
  12246. {
  12247. GGML_ASSERT(false);
  12248. } break;
  12249. }
  12250. }
  12251. // ggml_compute_forward_get_rel_pos
  12252. static void ggml_compute_forward_get_rel_pos_f16(
  12253. const struct ggml_compute_params * params,
  12254. const struct ggml_tensor * src0,
  12255. struct ggml_tensor * dst) {
  12256. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12257. return;
  12258. }
  12259. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  12260. GGML_TENSOR_UNARY_OP_LOCALS;
  12261. const int64_t w = ne1;
  12262. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  12263. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  12264. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12265. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12266. const int64_t pos = (w - i1 - 1) + i2;
  12267. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12268. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  12269. }
  12270. }
  12271. }
  12272. }
  12273. static void ggml_compute_forward_get_rel_pos(
  12274. const struct ggml_compute_params * params,
  12275. const struct ggml_tensor * src0,
  12276. struct ggml_tensor * dst) {
  12277. switch (src0->type) {
  12278. case GGML_TYPE_F16:
  12279. {
  12280. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  12281. } break;
  12282. default:
  12283. {
  12284. GGML_ASSERT(false);
  12285. } break;
  12286. }
  12287. }
  12288. // ggml_compute_forward_add_rel_pos
  12289. static void ggml_compute_forward_add_rel_pos_f32(
  12290. const struct ggml_compute_params * params,
  12291. const struct ggml_tensor * src0,
  12292. const struct ggml_tensor * src1,
  12293. const struct ggml_tensor * src2,
  12294. struct ggml_tensor * dst) {
  12295. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  12296. if (!inplace && params->type == GGML_TASK_INIT) {
  12297. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  12298. return;
  12299. }
  12300. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12301. return;
  12302. }
  12303. int64_t t0 = ggml_perf_time_us();
  12304. UNUSED(t0);
  12305. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  12306. float * src1_data = (float *) src1->data;
  12307. float * src2_data = (float *) src2->data;
  12308. float * dst_data = (float *) dst->data;
  12309. const int64_t ne10 = src1->ne[0];
  12310. const int64_t ne11 = src1->ne[1];
  12311. const int64_t ne12 = src1->ne[2];
  12312. const int64_t ne13 = src1->ne[3];
  12313. const int ith = params->ith;
  12314. const int nth = params->nth;
  12315. // total patches in dst
  12316. const int np = ne13;
  12317. // patches per thread
  12318. const int dp = (np + nth - 1)/nth;
  12319. // patch range for this thread
  12320. const int ip0 = dp*ith;
  12321. const int ip1 = MIN(ip0 + dp, np);
  12322. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  12323. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  12324. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  12325. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  12326. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  12327. const int64_t jp0 = jp1 + i10;
  12328. const float src1_e = src1_data[jp0];
  12329. const float src2_e = src2_data[jp0];
  12330. const int64_t jdh = jp0 * ne10;
  12331. const int64_t jdw = jdh - (ne10 - 1) * i10;
  12332. for (int64_t j = 0; j < ne10; ++j) {
  12333. dst_data[jdh + j ] += src2_e;
  12334. dst_data[jdw + j*ne10] += src1_e;
  12335. }
  12336. }
  12337. }
  12338. }
  12339. }
  12340. }
  12341. static void ggml_compute_forward_add_rel_pos(
  12342. const struct ggml_compute_params * params,
  12343. const struct ggml_tensor * src0,
  12344. const struct ggml_tensor * src1,
  12345. const struct ggml_tensor * src2,
  12346. struct ggml_tensor * dst) {
  12347. switch (src0->type) {
  12348. case GGML_TYPE_F32:
  12349. {
  12350. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  12351. } break;
  12352. default:
  12353. {
  12354. GGML_ASSERT(false);
  12355. } break;
  12356. }
  12357. }
  12358. // ggml_compute_forward_map_unary
  12359. static void ggml_compute_forward_map_unary_f32(
  12360. const struct ggml_compute_params * params,
  12361. const struct ggml_tensor * src0,
  12362. struct ggml_tensor * dst,
  12363. const ggml_unary_op_f32_t fun) {
  12364. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  12365. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12366. return;
  12367. }
  12368. const int n = ggml_nrows(src0);
  12369. const int nc = src0->ne[0];
  12370. assert( dst->nb[0] == sizeof(float));
  12371. assert(src0->nb[0] == sizeof(float));
  12372. for (int i = 0; i < n; i++) {
  12373. fun(nc,
  12374. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12375. (float *) ((char *) src0->data + i*(src0->nb[1])));
  12376. }
  12377. }
  12378. static void ggml_compute_forward_map_unary(
  12379. const struct ggml_compute_params * params,
  12380. const struct ggml_tensor * src0,
  12381. struct ggml_tensor * dst,
  12382. const ggml_unary_op_f32_t fun) {
  12383. switch (src0->type) {
  12384. case GGML_TYPE_F32:
  12385. {
  12386. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  12387. } break;
  12388. default:
  12389. {
  12390. GGML_ASSERT(false);
  12391. } break;
  12392. }
  12393. }
  12394. // ggml_compute_forward_map_binary
  12395. static void ggml_compute_forward_map_binary_f32(
  12396. const struct ggml_compute_params * params,
  12397. const struct ggml_tensor * src0,
  12398. const struct ggml_tensor * src1,
  12399. struct ggml_tensor * dst,
  12400. const ggml_binary_op_f32_t fun) {
  12401. assert(params->ith == 0);
  12402. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12403. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12404. return;
  12405. }
  12406. const int n = ggml_nrows(src0);
  12407. const int nc = src0->ne[0];
  12408. assert( dst->nb[0] == sizeof(float));
  12409. assert(src0->nb[0] == sizeof(float));
  12410. assert(src1->nb[0] == sizeof(float));
  12411. for (int i = 0; i < n; i++) {
  12412. fun(nc,
  12413. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12414. (float *) ((char *) src0->data + i*(src0->nb[1])),
  12415. (float *) ((char *) src1->data + i*(src1->nb[1])));
  12416. }
  12417. }
  12418. static void ggml_compute_forward_map_binary(
  12419. const struct ggml_compute_params * params,
  12420. const struct ggml_tensor * src0,
  12421. const struct ggml_tensor * src1,
  12422. struct ggml_tensor * dst,
  12423. const ggml_binary_op_f32_t fun) {
  12424. switch (src0->type) {
  12425. case GGML_TYPE_F32:
  12426. {
  12427. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  12428. } break;
  12429. default:
  12430. {
  12431. GGML_ASSERT(false);
  12432. } break;
  12433. }
  12434. }
  12435. // ggml_compute_forward_map_custom1
  12436. static void ggml_compute_forward_map_custom1_f32(
  12437. const struct ggml_compute_params * params,
  12438. const struct ggml_tensor * a,
  12439. struct ggml_tensor * dst,
  12440. const ggml_custom1_op_f32_t fun) {
  12441. assert(params->ith == 0);
  12442. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12443. return;
  12444. }
  12445. fun(dst, a);
  12446. }
  12447. // ggml_compute_forward_map_custom2
  12448. static void ggml_compute_forward_map_custom2_f32(
  12449. const struct ggml_compute_params * params,
  12450. const struct ggml_tensor * a,
  12451. const struct ggml_tensor * b,
  12452. struct ggml_tensor * dst,
  12453. const ggml_custom2_op_f32_t fun) {
  12454. assert(params->ith == 0);
  12455. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12456. return;
  12457. }
  12458. fun(dst, a, b);
  12459. }
  12460. // ggml_compute_forward_map_custom3
  12461. static void ggml_compute_forward_map_custom3_f32(
  12462. const struct ggml_compute_params * params,
  12463. const struct ggml_tensor * a,
  12464. const struct ggml_tensor * b,
  12465. const struct ggml_tensor * c,
  12466. struct ggml_tensor * dst,
  12467. const ggml_custom3_op_f32_t fun) {
  12468. assert(params->ith == 0);
  12469. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12470. return;
  12471. }
  12472. fun(dst, a, b, c);
  12473. }
  12474. // ggml_compute_forward_map_custom1
  12475. static void ggml_compute_forward_map_custom1(
  12476. const struct ggml_compute_params * params,
  12477. const struct ggml_tensor * a,
  12478. struct ggml_tensor * dst) {
  12479. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12480. return;
  12481. }
  12482. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  12483. p->fun(dst, a, params->ith, params->nth, p->userdata);
  12484. }
  12485. // ggml_compute_forward_map_custom2
  12486. static void ggml_compute_forward_map_custom2(
  12487. const struct ggml_compute_params * params,
  12488. const struct ggml_tensor * a,
  12489. const struct ggml_tensor * b,
  12490. struct ggml_tensor * dst) {
  12491. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12492. return;
  12493. }
  12494. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  12495. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  12496. }
  12497. // ggml_compute_forward_map_custom3
  12498. static void ggml_compute_forward_map_custom3(
  12499. const struct ggml_compute_params * params,
  12500. const struct ggml_tensor * a,
  12501. const struct ggml_tensor * b,
  12502. const struct ggml_tensor * c,
  12503. struct ggml_tensor * dst) {
  12504. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12505. return;
  12506. }
  12507. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  12508. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  12509. }
  12510. // ggml_compute_forward_cross_entropy_loss
  12511. static void ggml_compute_forward_cross_entropy_loss_f32(
  12512. const struct ggml_compute_params * params,
  12513. const struct ggml_tensor * src0,
  12514. const struct ggml_tensor * src1,
  12515. struct ggml_tensor * dst) {
  12516. GGML_ASSERT(ggml_is_contiguous(src0));
  12517. GGML_ASSERT(ggml_is_contiguous(src1));
  12518. GGML_ASSERT(ggml_is_scalar(dst));
  12519. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12520. const int ith = params->ith;
  12521. const int nth = params->nth;
  12522. float * sums = (float *) params->wdata;
  12523. // TODO: handle transposed/permuted matrices
  12524. const int nc = src0->ne[0];
  12525. const int nr = ggml_nrows(src0);
  12526. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  12527. if (params->type == GGML_TASK_INIT) {
  12528. if (ith == 0) {
  12529. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12530. }
  12531. return;
  12532. }
  12533. if (params->type == GGML_TASK_FINALIZE) {
  12534. if (ith == 0) {
  12535. float * dp = (float *) dst->data;
  12536. ggml_vec_sum_f32(nth, dp, sums);
  12537. dp[0] *= -1.0f / (float) nr;
  12538. }
  12539. return;
  12540. }
  12541. const double eps = 1e-9;
  12542. // rows per thread
  12543. const int dr = (nr + nth - 1)/nth;
  12544. // row range for this thread
  12545. const int ir0 = dr*ith;
  12546. const int ir1 = MIN(ir0 + dr, nr);
  12547. for (int i1 = ir0; i1 < ir1; i1++) {
  12548. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12549. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12550. float * st = ((float *) params->wdata) + nth + ith*nc;
  12551. #ifndef NDEBUG
  12552. for (int i = 0; i < nc; ++i) {
  12553. //printf("p[%d] = %f\n", i, p[i]);
  12554. assert(!isnan(s0[i]));
  12555. assert(!isnan(s1[i]));
  12556. }
  12557. #endif
  12558. // soft_max
  12559. ggml_float sum = 0.0;
  12560. {
  12561. float max = -INFINITY;
  12562. ggml_vec_max_f32(nc, &max, s0);
  12563. uint16_t scvt; UNUSED(scvt);
  12564. for (int i = 0; i < nc; i++) {
  12565. if (s0[i] == -INFINITY) {
  12566. st[i] = 0.0f;
  12567. } else {
  12568. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12569. const float s = s0[i] - max;
  12570. const float val = expf(s);
  12571. #else
  12572. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12573. memcpy(&scvt, &s, sizeof(scvt));
  12574. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  12575. #endif
  12576. sum += (ggml_float)val;
  12577. st[i] = val;
  12578. }
  12579. }
  12580. assert(sum > 0.0);
  12581. // sum = 1.0/sum;
  12582. }
  12583. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12584. sum = (1.0 - eps) / sum;
  12585. ggml_vec_scale_f32(nc, st, sum);
  12586. ggml_vec_add1_f32(nc, st, st, eps);
  12587. ggml_vec_log_f32(nc, st, st);
  12588. ggml_vec_mul_f32(nc, st, st, s1);
  12589. float st_sum = 0;
  12590. ggml_vec_sum_f32(nc, &st_sum, st);
  12591. sums[ith] += st_sum;
  12592. #ifndef NDEBUG
  12593. for (int i = 0; i < nc; ++i) {
  12594. assert(!isnan(st[i]));
  12595. assert(!isinf(st[i]));
  12596. }
  12597. #endif
  12598. }
  12599. }
  12600. static void ggml_compute_forward_cross_entropy_loss(
  12601. const struct ggml_compute_params * params,
  12602. const struct ggml_tensor * src0,
  12603. const struct ggml_tensor * src1,
  12604. struct ggml_tensor * dst) {
  12605. switch (src0->type) {
  12606. case GGML_TYPE_F32:
  12607. {
  12608. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  12609. } break;
  12610. default:
  12611. {
  12612. GGML_ASSERT(false);
  12613. } break;
  12614. }
  12615. }
  12616. // ggml_compute_forward_cross_entropy_loss_back
  12617. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12618. const struct ggml_compute_params * params,
  12619. const struct ggml_tensor * src0,
  12620. const struct ggml_tensor * src1,
  12621. const struct ggml_tensor * opt0,
  12622. struct ggml_tensor * dst) {
  12623. GGML_ASSERT(ggml_is_contiguous(dst));
  12624. GGML_ASSERT(ggml_is_contiguous(src0));
  12625. GGML_ASSERT(ggml_is_contiguous(src1));
  12626. GGML_ASSERT(ggml_is_contiguous(opt0));
  12627. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12628. const int64_t ith = params->ith;
  12629. const int64_t nth = params->nth;
  12630. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12631. return;
  12632. }
  12633. const double eps = 1e-9;
  12634. // TODO: handle transposed/permuted matrices
  12635. const int64_t nc = src0->ne[0];
  12636. const int64_t nr = ggml_nrows(src0);
  12637. // rows per thread
  12638. const int64_t dr = (nr + nth - 1)/nth;
  12639. // row range for this thread
  12640. const int64_t ir0 = dr*ith;
  12641. const int64_t ir1 = MIN(ir0 + dr, nr);
  12642. float * d = (float *) opt0->data;
  12643. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12644. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12645. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12646. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12647. #ifndef NDEBUG
  12648. for (int i = 0; i < nc; ++i) {
  12649. //printf("p[%d] = %f\n", i, p[i]);
  12650. assert(!isnan(s0[i]));
  12651. assert(!isnan(s1[i]));
  12652. }
  12653. #endif
  12654. // soft_max
  12655. ggml_float sum = 0.0;
  12656. {
  12657. float max = -INFINITY;
  12658. ggml_vec_max_f32(nc, &max, s0);
  12659. uint16_t scvt; UNUSED(scvt);
  12660. for (int i = 0; i < nc; i++) {
  12661. if (s0[i] == -INFINITY) {
  12662. ds0[i] = 0.0f;
  12663. } else {
  12664. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12665. const float s = s0[i] - max;
  12666. const float val = expf(s);
  12667. #else
  12668. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12669. memcpy(&scvt, &s, sizeof(scvt));
  12670. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  12671. #endif
  12672. sum += (ggml_float)val;
  12673. ds0[i] = val;
  12674. }
  12675. }
  12676. assert(sum > 0.0);
  12677. sum = (1.0 - eps)/sum;
  12678. }
  12679. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  12680. ggml_vec_scale_f32(nc, ds0, sum);
  12681. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  12682. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  12683. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  12684. #ifndef NDEBUG
  12685. for (int i = 0; i < nc; ++i) {
  12686. assert(!isnan(ds0[i]));
  12687. assert(!isinf(ds0[i]));
  12688. }
  12689. #endif
  12690. }
  12691. }
  12692. static void ggml_compute_forward_cross_entropy_loss_back(
  12693. const struct ggml_compute_params * params,
  12694. const struct ggml_tensor * src0,
  12695. const struct ggml_tensor * src1,
  12696. const struct ggml_tensor * opt0,
  12697. struct ggml_tensor * dst) {
  12698. switch (src0->type) {
  12699. case GGML_TYPE_F32:
  12700. {
  12701. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  12702. } break;
  12703. default:
  12704. {
  12705. GGML_ASSERT(false);
  12706. } break;
  12707. }
  12708. }
  12709. /////////////////////////////////
  12710. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12711. GGML_ASSERT(params);
  12712. #ifdef GGML_USE_CUBLAS
  12713. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12714. if (skip_cpu) {
  12715. return;
  12716. }
  12717. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  12718. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  12719. #endif // GGML_USE_CUBLAS
  12720. switch (tensor->op) {
  12721. case GGML_OP_DUP:
  12722. {
  12723. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  12724. } break;
  12725. case GGML_OP_ADD:
  12726. {
  12727. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  12728. } break;
  12729. case GGML_OP_ADD1:
  12730. {
  12731. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  12732. } break;
  12733. case GGML_OP_ACC:
  12734. {
  12735. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  12736. } break;
  12737. case GGML_OP_SUB:
  12738. {
  12739. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  12740. } break;
  12741. case GGML_OP_MUL:
  12742. {
  12743. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  12744. } break;
  12745. case GGML_OP_DIV:
  12746. {
  12747. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  12748. } break;
  12749. case GGML_OP_SQR:
  12750. {
  12751. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  12752. } break;
  12753. case GGML_OP_SQRT:
  12754. {
  12755. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  12756. } break;
  12757. case GGML_OP_LOG:
  12758. {
  12759. ggml_compute_forward_log(params, tensor->src[0], tensor);
  12760. } break;
  12761. case GGML_OP_SUM:
  12762. {
  12763. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  12764. } break;
  12765. case GGML_OP_SUM_ROWS:
  12766. {
  12767. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  12768. } break;
  12769. case GGML_OP_MEAN:
  12770. {
  12771. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  12772. } break;
  12773. case GGML_OP_ARGMAX:
  12774. {
  12775. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  12776. } break;
  12777. case GGML_OP_REPEAT:
  12778. {
  12779. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  12780. } break;
  12781. case GGML_OP_REPEAT_BACK:
  12782. {
  12783. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  12784. } break;
  12785. case GGML_OP_CONCAT:
  12786. {
  12787. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  12788. } break;
  12789. case GGML_OP_SILU_BACK:
  12790. {
  12791. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  12792. } break;
  12793. case GGML_OP_NORM:
  12794. {
  12795. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  12796. } break;
  12797. case GGML_OP_RMS_NORM:
  12798. {
  12799. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  12800. } break;
  12801. case GGML_OP_RMS_NORM_BACK:
  12802. {
  12803. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  12804. } break;
  12805. case GGML_OP_GROUP_NORM:
  12806. {
  12807. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  12808. } break;
  12809. case GGML_OP_MUL_MAT:
  12810. {
  12811. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  12812. } break;
  12813. case GGML_OP_OUT_PROD:
  12814. {
  12815. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  12816. } break;
  12817. case GGML_OP_SCALE:
  12818. {
  12819. ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
  12820. } break;
  12821. case GGML_OP_SET:
  12822. {
  12823. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  12824. } break;
  12825. case GGML_OP_CPY:
  12826. {
  12827. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  12828. } break;
  12829. case GGML_OP_CONT:
  12830. {
  12831. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  12832. } break;
  12833. case GGML_OP_RESHAPE:
  12834. {
  12835. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  12836. } break;
  12837. case GGML_OP_VIEW:
  12838. {
  12839. ggml_compute_forward_view(params, tensor->src[0]);
  12840. } break;
  12841. case GGML_OP_PERMUTE:
  12842. {
  12843. ggml_compute_forward_permute(params, tensor->src[0]);
  12844. } break;
  12845. case GGML_OP_TRANSPOSE:
  12846. {
  12847. ggml_compute_forward_transpose(params, tensor->src[0]);
  12848. } break;
  12849. case GGML_OP_GET_ROWS:
  12850. {
  12851. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  12852. } break;
  12853. case GGML_OP_GET_ROWS_BACK:
  12854. {
  12855. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12856. } break;
  12857. case GGML_OP_DIAG:
  12858. {
  12859. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  12860. } break;
  12861. case GGML_OP_DIAG_MASK_INF:
  12862. {
  12863. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  12864. } break;
  12865. case GGML_OP_DIAG_MASK_ZERO:
  12866. {
  12867. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  12868. } break;
  12869. case GGML_OP_SOFT_MAX:
  12870. {
  12871. ggml_compute_forward_soft_max(params, tensor->src[0], tensor);
  12872. } break;
  12873. case GGML_OP_SOFT_MAX_BACK:
  12874. {
  12875. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12876. } break;
  12877. case GGML_OP_ROPE:
  12878. {
  12879. ggml_compute_forward_rope(params, tensor->src[0], tensor);
  12880. } break;
  12881. case GGML_OP_ROPE_BACK:
  12882. {
  12883. ggml_compute_forward_rope_back(params, tensor->src[0], tensor);
  12884. } break;
  12885. case GGML_OP_ALIBI:
  12886. {
  12887. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  12888. } break;
  12889. case GGML_OP_CLAMP:
  12890. {
  12891. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  12892. } break;
  12893. case GGML_OP_CONV_1D:
  12894. {
  12895. ggml_compute_forward_conv_1d(params, tensor->src[0], tensor->src[1], tensor);
  12896. } break;
  12897. case GGML_OP_CONV_2D:
  12898. {
  12899. ggml_compute_forward_conv_2d(params, tensor->src[0], tensor->src[1], tensor);
  12900. } break;
  12901. case GGML_OP_CONV_TRANSPOSE_2D:
  12902. {
  12903. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  12904. } break;
  12905. case GGML_OP_POOL_1D:
  12906. {
  12907. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  12908. } break;
  12909. case GGML_OP_POOL_2D:
  12910. {
  12911. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  12912. } break;
  12913. case GGML_OP_UPSCALE:
  12914. {
  12915. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  12916. } break;
  12917. case GGML_OP_FLASH_ATTN:
  12918. {
  12919. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12920. GGML_ASSERT(t == 0 || t == 1);
  12921. const bool masked = t != 0;
  12922. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12923. } break;
  12924. case GGML_OP_FLASH_FF:
  12925. {
  12926. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12927. } break;
  12928. case GGML_OP_FLASH_ATTN_BACK:
  12929. {
  12930. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12931. GGML_ASSERT(t == 0 || t == 1);
  12932. bool masked = t != 0;
  12933. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12934. } break;
  12935. case GGML_OP_WIN_PART:
  12936. {
  12937. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12938. } break;
  12939. case GGML_OP_WIN_UNPART:
  12940. {
  12941. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  12942. } break;
  12943. case GGML_OP_UNARY:
  12944. {
  12945. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  12946. } break;
  12947. case GGML_OP_GET_REL_POS:
  12948. {
  12949. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  12950. } break;
  12951. case GGML_OP_ADD_REL_POS:
  12952. {
  12953. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12954. } break;
  12955. case GGML_OP_MAP_UNARY:
  12956. {
  12957. ggml_unary_op_f32_t fun;
  12958. memcpy(&fun, tensor->op_params, sizeof(fun));
  12959. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12960. }
  12961. break;
  12962. case GGML_OP_MAP_BINARY:
  12963. {
  12964. ggml_binary_op_f32_t fun;
  12965. memcpy(&fun, tensor->op_params, sizeof(fun));
  12966. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12967. }
  12968. break;
  12969. case GGML_OP_MAP_CUSTOM1_F32:
  12970. {
  12971. ggml_custom1_op_f32_t fun;
  12972. memcpy(&fun, tensor->op_params, sizeof(fun));
  12973. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  12974. }
  12975. break;
  12976. case GGML_OP_MAP_CUSTOM2_F32:
  12977. {
  12978. ggml_custom2_op_f32_t fun;
  12979. memcpy(&fun, tensor->op_params, sizeof(fun));
  12980. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  12981. }
  12982. break;
  12983. case GGML_OP_MAP_CUSTOM3_F32:
  12984. {
  12985. ggml_custom3_op_f32_t fun;
  12986. memcpy(&fun, tensor->op_params, sizeof(fun));
  12987. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  12988. }
  12989. break;
  12990. case GGML_OP_MAP_CUSTOM1:
  12991. {
  12992. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  12993. }
  12994. break;
  12995. case GGML_OP_MAP_CUSTOM2:
  12996. {
  12997. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  12998. }
  12999. break;
  13000. case GGML_OP_MAP_CUSTOM3:
  13001. {
  13002. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  13003. }
  13004. break;
  13005. case GGML_OP_CROSS_ENTROPY_LOSS:
  13006. {
  13007. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  13008. }
  13009. break;
  13010. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13011. {
  13012. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  13013. }
  13014. break;
  13015. case GGML_OP_NONE:
  13016. {
  13017. // nop
  13018. } break;
  13019. case GGML_OP_COUNT:
  13020. {
  13021. GGML_ASSERT(false);
  13022. } break;
  13023. }
  13024. }
  13025. ////////////////////////////////////////////////////////////////////////////////
  13026. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  13027. struct ggml_tensor * src0 = tensor->src[0];
  13028. struct ggml_tensor * src1 = tensor->src[1];
  13029. switch (tensor->op) {
  13030. case GGML_OP_DUP:
  13031. {
  13032. if (src0->grad) {
  13033. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13034. }
  13035. } break;
  13036. case GGML_OP_ADD:
  13037. {
  13038. if (src0->grad) {
  13039. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13040. }
  13041. if (src1->grad) {
  13042. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  13043. }
  13044. } break;
  13045. case GGML_OP_ADD1:
  13046. {
  13047. if (src0->grad) {
  13048. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13049. }
  13050. if (src1->grad) {
  13051. src1->grad = ggml_add_impl(ctx,
  13052. src1->grad,
  13053. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  13054. inplace);
  13055. }
  13056. } break;
  13057. case GGML_OP_ACC:
  13058. {
  13059. if (src0->grad) {
  13060. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13061. }
  13062. if (src1->grad) {
  13063. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13064. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13065. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13066. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13067. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  13068. tensor->grad,
  13069. src1->grad->ne[0],
  13070. src1->grad->ne[1],
  13071. src1->grad->ne[2],
  13072. src1->grad->ne[3],
  13073. nb1, nb2, nb3, offset);
  13074. src1->grad =
  13075. ggml_add_impl(ctx,
  13076. src1->grad,
  13077. ggml_reshape(ctx,
  13078. ggml_cont(ctx, tensor_grad_view),
  13079. src1->grad),
  13080. inplace);
  13081. }
  13082. } break;
  13083. case GGML_OP_SUB:
  13084. {
  13085. if (src0->grad) {
  13086. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13087. }
  13088. if (src1->grad) {
  13089. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  13090. }
  13091. } break;
  13092. case GGML_OP_MUL:
  13093. {
  13094. if (src0->grad) {
  13095. src0->grad =
  13096. ggml_add_impl(ctx,
  13097. src0->grad,
  13098. ggml_mul(ctx, src1, tensor->grad),
  13099. inplace);
  13100. }
  13101. if (src1->grad) {
  13102. src1->grad =
  13103. ggml_add_impl(ctx,
  13104. src1->grad,
  13105. ggml_mul(ctx, src0, tensor->grad),
  13106. inplace);
  13107. }
  13108. } break;
  13109. case GGML_OP_DIV:
  13110. {
  13111. if (src0->grad) {
  13112. src0->grad =
  13113. ggml_add_impl(ctx,
  13114. src0->grad,
  13115. ggml_div(ctx, tensor->grad, src1),
  13116. inplace);
  13117. }
  13118. if (src1->grad) {
  13119. src1->grad =
  13120. ggml_sub_impl(ctx,
  13121. src1->grad,
  13122. ggml_mul(ctx,
  13123. tensor->grad,
  13124. ggml_div(ctx, tensor, src1)),
  13125. inplace);
  13126. }
  13127. } break;
  13128. case GGML_OP_SQR:
  13129. {
  13130. if (src0->grad) {
  13131. src0->grad =
  13132. ggml_add_impl(ctx,
  13133. src0->grad,
  13134. ggml_scale(ctx,
  13135. ggml_mul(ctx, src0, tensor->grad),
  13136. ggml_new_f32(ctx, 2.0f)),
  13137. inplace);
  13138. }
  13139. } break;
  13140. case GGML_OP_SQRT:
  13141. {
  13142. if (src0->grad) {
  13143. src0->grad =
  13144. ggml_add_impl(ctx,
  13145. src0->grad,
  13146. ggml_scale(ctx,
  13147. ggml_div(ctx,
  13148. tensor->grad,
  13149. tensor),
  13150. ggml_new_f32(ctx, 0.5f)),
  13151. inplace);
  13152. }
  13153. } break;
  13154. case GGML_OP_LOG:
  13155. {
  13156. if (src0->grad) {
  13157. src0->grad =
  13158. ggml_add_impl(ctx,
  13159. src0->grad,
  13160. ggml_div(ctx,
  13161. tensor->grad,
  13162. src0),
  13163. inplace);
  13164. }
  13165. } break;
  13166. case GGML_OP_SUM:
  13167. {
  13168. if (src0->grad) {
  13169. src0->grad =
  13170. ggml_add1_impl(ctx,
  13171. src0->grad,
  13172. tensor->grad,
  13173. inplace);
  13174. }
  13175. } break;
  13176. case GGML_OP_SUM_ROWS:
  13177. {
  13178. if (src0->grad) {
  13179. src0->grad =
  13180. ggml_add_impl(ctx,
  13181. src0->grad,
  13182. ggml_repeat(ctx,
  13183. tensor->grad,
  13184. src0->grad),
  13185. inplace);
  13186. }
  13187. } break;
  13188. case GGML_OP_MEAN:
  13189. case GGML_OP_ARGMAX:
  13190. {
  13191. GGML_ASSERT(false); // TODO: implement
  13192. } break;
  13193. case GGML_OP_REPEAT:
  13194. {
  13195. // necessary for llama
  13196. if (src0->grad) {
  13197. src0->grad = ggml_add_impl(ctx,
  13198. src0->grad,
  13199. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  13200. inplace);
  13201. }
  13202. } break;
  13203. case GGML_OP_REPEAT_BACK:
  13204. {
  13205. if (src0->grad) {
  13206. // TODO: test this
  13207. src0->grad = ggml_add_impl(ctx,
  13208. src0->grad,
  13209. ggml_repeat(ctx, tensor->grad, src0->grad),
  13210. inplace);
  13211. }
  13212. } break;
  13213. case GGML_OP_CONCAT:
  13214. {
  13215. GGML_ASSERT(false); // TODO: implement
  13216. } break;
  13217. case GGML_OP_SILU_BACK:
  13218. {
  13219. GGML_ASSERT(false); // TODO: not implemented
  13220. } break;
  13221. case GGML_OP_NORM:
  13222. {
  13223. GGML_ASSERT(false); // TODO: not implemented
  13224. } break;
  13225. case GGML_OP_RMS_NORM:
  13226. {
  13227. // necessary for llama
  13228. if (src0->grad) {
  13229. float eps;
  13230. memcpy(&eps, tensor->op_params, sizeof(float));
  13231. src0->grad = ggml_add_impl(ctx,
  13232. src0->grad,
  13233. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  13234. inplace);
  13235. }
  13236. } break;
  13237. case GGML_OP_RMS_NORM_BACK:
  13238. {
  13239. GGML_ASSERT(false); // TODO: not implemented
  13240. } break;
  13241. case GGML_OP_GROUP_NORM:
  13242. {
  13243. GGML_ASSERT(false); // TODO: not implemented
  13244. } break;
  13245. case GGML_OP_MUL_MAT:
  13246. {
  13247. // https://cs231n.github.io/optimization-2/#staged
  13248. // # forward pass
  13249. // s0 = np.random.randn(5, 10)
  13250. // s1 = np.random.randn(10, 3)
  13251. // t = s0.dot(s1)
  13252. // # now suppose we had the gradient on t from above in the circuit
  13253. // dt = np.random.randn(*t.shape) # same shape as t
  13254. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13255. // ds1 = t.T.dot(dt)
  13256. // tensor.shape [m,p]
  13257. // src0.shape [n,m]
  13258. // src1.shape [n,p]
  13259. // necessary for llama
  13260. if (src0->grad) {
  13261. src0->grad =
  13262. ggml_add_impl(ctx,
  13263. src0->grad,
  13264. ggml_out_prod(ctx, // [n,m]
  13265. src1, // [n,p]
  13266. tensor->grad), // [m,p]
  13267. inplace);
  13268. }
  13269. if (src1->grad) {
  13270. src1->grad =
  13271. ggml_add_impl(ctx,
  13272. src1->grad,
  13273. // ggml_mul_mat(ctx, // [n,p]
  13274. // ggml_cont(ctx, // [m,n]
  13275. // ggml_transpose(ctx, src0)), // [m,n]
  13276. // tensor->grad), // [m,p]
  13277. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13278. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13279. // // and then use ggml_out_prod
  13280. ggml_out_prod(ctx, // [n,p]
  13281. src0, // [n,m]
  13282. ggml_transpose(ctx, // [p,m]
  13283. tensor->grad)), // [m,p]
  13284. inplace);
  13285. }
  13286. } break;
  13287. case GGML_OP_OUT_PROD:
  13288. {
  13289. GGML_ASSERT(false); // TODO: not implemented
  13290. } break;
  13291. case GGML_OP_SCALE:
  13292. {
  13293. // necessary for llama
  13294. if (src0->grad) {
  13295. src0->grad =
  13296. ggml_add_impl(ctx,
  13297. src0->grad,
  13298. ggml_scale_impl(ctx, tensor->grad, src1, false),
  13299. inplace);
  13300. }
  13301. if (src1->grad) {
  13302. src1->grad =
  13303. ggml_add_impl(ctx,
  13304. src1->grad,
  13305. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  13306. inplace);
  13307. }
  13308. } break;
  13309. case GGML_OP_SET:
  13310. {
  13311. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13312. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13313. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13314. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13315. struct ggml_tensor * tensor_grad_view = NULL;
  13316. if (src0->grad || src1->grad) {
  13317. GGML_ASSERT(src0->type == tensor->type);
  13318. GGML_ASSERT(tensor->grad->type == tensor->type);
  13319. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13320. tensor_grad_view = ggml_view_4d(ctx,
  13321. tensor->grad,
  13322. src1->grad->ne[0],
  13323. src1->grad->ne[1],
  13324. src1->grad->ne[2],
  13325. src1->grad->ne[3],
  13326. nb1, nb2, nb3, offset);
  13327. }
  13328. if (src0->grad) {
  13329. src0->grad = ggml_add_impl(ctx,
  13330. src0->grad,
  13331. ggml_acc_impl(ctx,
  13332. tensor->grad,
  13333. ggml_neg(ctx, tensor_grad_view),
  13334. nb1, nb2, nb3, offset, false),
  13335. inplace);
  13336. }
  13337. if (src1->grad) {
  13338. src1->grad =
  13339. ggml_add_impl(ctx,
  13340. src1->grad,
  13341. ggml_reshape(ctx,
  13342. ggml_cont(ctx, tensor_grad_view),
  13343. src1->grad),
  13344. inplace);
  13345. }
  13346. } break;
  13347. case GGML_OP_CPY:
  13348. {
  13349. // necessary for llama
  13350. // cpy overwrites value of src1 by src0 and returns view(src1)
  13351. // the overwriting is mathematically equivalent to:
  13352. // tensor = src0 * 1 + src1 * 0
  13353. if (src0->grad) {
  13354. // dsrc0 = dtensor * 1
  13355. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13356. }
  13357. if (src1->grad) {
  13358. // dsrc1 = dtensor * 0 -> noop
  13359. }
  13360. } break;
  13361. case GGML_OP_CONT:
  13362. {
  13363. // same as cpy
  13364. if (src0->grad) {
  13365. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13366. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13367. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13368. }
  13369. } break;
  13370. case GGML_OP_RESHAPE:
  13371. {
  13372. // necessary for llama
  13373. if (src0->grad) {
  13374. src0->grad =
  13375. ggml_add_impl(ctx, src0->grad,
  13376. ggml_reshape(ctx, tensor->grad, src0->grad),
  13377. inplace);
  13378. }
  13379. } break;
  13380. case GGML_OP_VIEW:
  13381. {
  13382. // necessary for llama
  13383. if (src0->grad) {
  13384. size_t offset;
  13385. memcpy(&offset, tensor->op_params, sizeof(offset));
  13386. size_t nb1 = tensor->nb[1];
  13387. size_t nb2 = tensor->nb[2];
  13388. size_t nb3 = tensor->nb[3];
  13389. if (src0->type != src0->grad->type) {
  13390. // gradient is typically F32, but src0 could be other type
  13391. size_t ng = ggml_element_size(src0->grad);
  13392. size_t n0 = ggml_element_size(src0);
  13393. GGML_ASSERT(offset % n0 == 0);
  13394. GGML_ASSERT(nb1 % n0 == 0);
  13395. GGML_ASSERT(nb2 % n0 == 0);
  13396. GGML_ASSERT(nb3 % n0 == 0);
  13397. offset = (offset / n0) * ng;
  13398. nb1 = (nb1 / n0) * ng;
  13399. nb2 = (nb2 / n0) * ng;
  13400. nb3 = (nb3 / n0) * ng;
  13401. }
  13402. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  13403. }
  13404. } break;
  13405. case GGML_OP_PERMUTE:
  13406. {
  13407. // necessary for llama
  13408. if (src0->grad) {
  13409. int32_t * axes = (int32_t *) tensor->op_params;
  13410. int axis0 = axes[0] & 0x3;
  13411. int axis1 = axes[1] & 0x3;
  13412. int axis2 = axes[2] & 0x3;
  13413. int axis3 = axes[3] & 0x3;
  13414. int axes_backward[4] = {0,0,0,0};
  13415. axes_backward[axis0] = 0;
  13416. axes_backward[axis1] = 1;
  13417. axes_backward[axis2] = 2;
  13418. axes_backward[axis3] = 3;
  13419. src0->grad =
  13420. ggml_add_impl(ctx, src0->grad,
  13421. ggml_permute(ctx,
  13422. tensor->grad,
  13423. axes_backward[0],
  13424. axes_backward[1],
  13425. axes_backward[2],
  13426. axes_backward[3]),
  13427. inplace);
  13428. }
  13429. } break;
  13430. case GGML_OP_TRANSPOSE:
  13431. {
  13432. // necessary for llama
  13433. if (src0->grad) {
  13434. src0->grad =
  13435. ggml_add_impl(ctx, src0->grad,
  13436. ggml_transpose(ctx, tensor->grad),
  13437. inplace);
  13438. }
  13439. } break;
  13440. case GGML_OP_GET_ROWS:
  13441. {
  13442. // necessary for llama (only for tokenizer)
  13443. if (src0->grad) {
  13444. src0->grad =
  13445. ggml_add_impl(ctx, src0->grad,
  13446. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  13447. inplace);
  13448. }
  13449. if (src1->grad) {
  13450. // noop
  13451. }
  13452. } break;
  13453. case GGML_OP_GET_ROWS_BACK:
  13454. {
  13455. GGML_ASSERT(false); // TODO: not implemented
  13456. } break;
  13457. case GGML_OP_DIAG:
  13458. {
  13459. GGML_ASSERT(false); // TODO: not implemented
  13460. } break;
  13461. case GGML_OP_DIAG_MASK_INF:
  13462. {
  13463. // necessary for llama
  13464. if (src0->grad) {
  13465. const int n_past = ((int32_t *) tensor->op_params)[0];
  13466. src0->grad =
  13467. ggml_add_impl(ctx, src0->grad,
  13468. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13469. inplace);
  13470. }
  13471. } break;
  13472. case GGML_OP_DIAG_MASK_ZERO:
  13473. {
  13474. // necessary for llama
  13475. if (src0->grad) {
  13476. const int n_past = ((int32_t *) tensor->op_params)[0];
  13477. src0->grad =
  13478. ggml_add_impl(ctx, src0->grad,
  13479. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13480. inplace);
  13481. }
  13482. } break;
  13483. case GGML_OP_SOFT_MAX:
  13484. {
  13485. // necessary for llama
  13486. if (src0->grad) {
  13487. src0->grad =
  13488. ggml_add_impl(ctx, src0->grad,
  13489. ggml_soft_max_back(ctx, tensor->grad, tensor),
  13490. inplace);
  13491. }
  13492. } break;
  13493. case GGML_OP_SOFT_MAX_BACK:
  13494. {
  13495. GGML_ASSERT(false); // TODO: not implemented
  13496. } break;
  13497. case GGML_OP_ROPE:
  13498. {
  13499. // necessary for llama
  13500. if (src0->grad) {
  13501. const int n_past = ((int32_t *) tensor->op_params)[0];
  13502. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13503. const int mode = ((int32_t *) tensor->op_params)[2];
  13504. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13505. float freq_base;
  13506. float freq_scale;
  13507. float xpos_base;
  13508. bool xpos_down;
  13509. memcpy(&freq_base, (int32_t *) tensor->op_params + 4, sizeof(float));
  13510. memcpy(&freq_scale, (int32_t *) tensor->op_params + 5, sizeof(float));
  13511. memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float));
  13512. memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool));
  13513. src0->grad = ggml_add_impl(ctx,
  13514. src0->grad,
  13515. ggml_rope_back(ctx,
  13516. tensor->grad,
  13517. n_past,
  13518. n_dims,
  13519. mode,
  13520. n_ctx,
  13521. freq_base,
  13522. freq_scale,
  13523. xpos_base,
  13524. xpos_down),
  13525. inplace);
  13526. }
  13527. } break;
  13528. case GGML_OP_ROPE_BACK:
  13529. {
  13530. if (src0->grad) {
  13531. const int n_past = ((int32_t *) tensor->op_params)[0];
  13532. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13533. const int mode = ((int32_t *) tensor->op_params)[2];
  13534. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13535. float freq_base;
  13536. float freq_scale;
  13537. float xpos_base;
  13538. bool xpos_down;
  13539. memcpy(&freq_base, (int32_t *) tensor->op_params + 4, sizeof(float));
  13540. memcpy(&freq_scale, (int32_t *) tensor->op_params + 5, sizeof(float));
  13541. memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float));
  13542. memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool));
  13543. src0->grad = ggml_add_impl(ctx,
  13544. src0->grad,
  13545. ggml_rope_impl(ctx,
  13546. tensor->grad,
  13547. n_past,
  13548. n_dims,
  13549. mode,
  13550. n_ctx,
  13551. freq_base,
  13552. freq_scale,
  13553. xpos_base,
  13554. xpos_down,
  13555. false),
  13556. inplace);
  13557. }
  13558. } break;
  13559. case GGML_OP_ALIBI:
  13560. {
  13561. GGML_ASSERT(false); // TODO: not implemented
  13562. } break;
  13563. case GGML_OP_CLAMP:
  13564. {
  13565. GGML_ASSERT(false); // TODO: not implemented
  13566. } break;
  13567. case GGML_OP_CONV_1D:
  13568. {
  13569. GGML_ASSERT(false); // TODO: not implemented
  13570. } break;
  13571. case GGML_OP_CONV_2D:
  13572. {
  13573. GGML_ASSERT(false); // TODO: not implemented
  13574. } break;
  13575. case GGML_OP_CONV_TRANSPOSE_2D:
  13576. {
  13577. GGML_ASSERT(false); // TODO: not implemented
  13578. } break;
  13579. case GGML_OP_POOL_1D:
  13580. {
  13581. GGML_ASSERT(false); // TODO: not implemented
  13582. } break;
  13583. case GGML_OP_POOL_2D:
  13584. {
  13585. GGML_ASSERT(false); // TODO: not implemented
  13586. } break;
  13587. case GGML_OP_UPSCALE:
  13588. {
  13589. GGML_ASSERT(false); // TODO: not implemented
  13590. } break;
  13591. case GGML_OP_FLASH_ATTN:
  13592. {
  13593. struct ggml_tensor * flash_grad = NULL;
  13594. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  13595. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13596. GGML_ASSERT(t == 0 || t == 1);
  13597. bool masked = t != 0;
  13598. flash_grad =
  13599. ggml_flash_attn_back(ctx,
  13600. src0,
  13601. src1,
  13602. tensor->src[2],
  13603. tensor->grad,
  13604. masked);
  13605. }
  13606. if (src0->grad) {
  13607. struct ggml_tensor * grad_q = NULL;
  13608. const size_t nb0 = flash_grad->nb[0];
  13609. const size_t offset = 0;
  13610. switch(src0->n_dims) {
  13611. case 2:
  13612. {
  13613. grad_q = ggml_view_2d(ctx,
  13614. flash_grad,
  13615. src0->ne[0],
  13616. src0->ne[1],
  13617. nb0*src0->ne[0],
  13618. offset);
  13619. } break;
  13620. case 3:
  13621. {
  13622. grad_q = ggml_view_3d(ctx,
  13623. flash_grad,
  13624. src0->ne[0],
  13625. src0->ne[1],
  13626. src0->ne[2],
  13627. nb0*src0->ne[0],
  13628. nb0*src0->ne[0]*src0->ne[1],
  13629. offset);
  13630. } break;
  13631. case 4:
  13632. {
  13633. grad_q = ggml_view_4d(ctx,
  13634. flash_grad,
  13635. src0->ne[0],
  13636. src0->ne[1],
  13637. src0->ne[2],
  13638. src0->ne[3],
  13639. nb0*src0->ne[0],
  13640. nb0*src0->ne[0]*src0->ne[1],
  13641. nb0*src0->ne[0]*src0->ne[1]*src0->ne[2],
  13642. offset);
  13643. } break;
  13644. }
  13645. src0->grad = ggml_add_impl(ctx,
  13646. src0->grad,
  13647. grad_q,
  13648. inplace);
  13649. }
  13650. if (src1->grad) {
  13651. struct ggml_tensor * grad_k = NULL;
  13652. const size_t nb0 = flash_grad->nb[0];
  13653. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3];
  13654. switch(src1->n_dims) {
  13655. case 2:
  13656. {
  13657. grad_k = ggml_view_2d(ctx,
  13658. flash_grad,
  13659. src1->ne[0],
  13660. src1->ne[1],
  13661. nb0*src1->ne[0],
  13662. offset);
  13663. } break;
  13664. case 3:
  13665. {
  13666. grad_k = ggml_view_3d(ctx,
  13667. flash_grad,
  13668. src1->ne[0],
  13669. src1->ne[1],
  13670. src1->ne[2],
  13671. nb0*src1->ne[0],
  13672. nb0*src1->ne[0]*src1->ne[1],
  13673. offset);
  13674. } break;
  13675. case 4:
  13676. {
  13677. grad_k = ggml_view_4d(ctx,
  13678. flash_grad,
  13679. src1->ne[0],
  13680. src1->ne[1],
  13681. src1->ne[2],
  13682. src1->ne[3],
  13683. nb0*src1->ne[0],
  13684. nb0*src1->ne[0]*src1->ne[1],
  13685. nb0*src1->ne[0]*src1->ne[1]*src1->ne[2],
  13686. offset);
  13687. } break;
  13688. }
  13689. src1->grad = ggml_add_impl(ctx,
  13690. src1->grad,
  13691. grad_k,
  13692. inplace);
  13693. }
  13694. struct ggml_tensor * opt0 = tensor->src[2];
  13695. if (opt0->grad) {
  13696. struct ggml_tensor * grad_v = NULL;
  13697. const size_t nb0 = flash_grad->nb[0];
  13698. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]
  13699. + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3];
  13700. switch(opt0->n_dims) {
  13701. case 2:
  13702. {
  13703. grad_v = ggml_view_2d(ctx,
  13704. flash_grad,
  13705. opt0->ne[0],
  13706. opt0->ne[1],
  13707. nb0*opt0->ne[0],
  13708. offset);
  13709. } break;
  13710. case 3:
  13711. {
  13712. grad_v = ggml_view_3d(ctx,
  13713. flash_grad,
  13714. opt0->ne[0],
  13715. opt0->ne[1],
  13716. opt0->ne[2],
  13717. nb0*opt0->ne[0],
  13718. nb0*opt0->ne[0]*opt0->ne[1],
  13719. offset);
  13720. } break;
  13721. case 4:
  13722. {
  13723. grad_v = ggml_view_4d(ctx,
  13724. flash_grad,
  13725. opt0->ne[0],
  13726. opt0->ne[1],
  13727. opt0->ne[2],
  13728. opt0->ne[3],
  13729. nb0*opt0->ne[0],
  13730. nb0*opt0->ne[0]*opt0->ne[1],
  13731. nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2],
  13732. offset);
  13733. } break;
  13734. }
  13735. opt0->grad = ggml_add_impl(ctx,
  13736. opt0->grad,
  13737. grad_v,
  13738. inplace);
  13739. }
  13740. } break;
  13741. case GGML_OP_FLASH_FF:
  13742. {
  13743. GGML_ASSERT(false); // not supported
  13744. } break;
  13745. case GGML_OP_FLASH_ATTN_BACK:
  13746. {
  13747. GGML_ASSERT(false); // not supported
  13748. } break;
  13749. case GGML_OP_WIN_PART:
  13750. case GGML_OP_WIN_UNPART:
  13751. case GGML_OP_UNARY:
  13752. {
  13753. switch (ggml_get_unary_op(tensor)) {
  13754. case GGML_UNARY_OP_ABS:
  13755. {
  13756. if (src0->grad) {
  13757. src0->grad =
  13758. ggml_add_impl(ctx,
  13759. src0->grad,
  13760. ggml_mul(ctx,
  13761. ggml_sgn(ctx, src0),
  13762. tensor->grad),
  13763. inplace);
  13764. }
  13765. } break;
  13766. case GGML_UNARY_OP_SGN:
  13767. {
  13768. if (src0->grad) {
  13769. // noop
  13770. }
  13771. } break;
  13772. case GGML_UNARY_OP_NEG:
  13773. {
  13774. if (src0->grad) {
  13775. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  13776. }
  13777. } break;
  13778. case GGML_UNARY_OP_STEP:
  13779. {
  13780. if (src0->grad) {
  13781. // noop
  13782. }
  13783. } break;
  13784. case GGML_UNARY_OP_TANH:
  13785. {
  13786. GGML_ASSERT(false); // TODO: not implemented
  13787. } break;
  13788. case GGML_UNARY_OP_ELU:
  13789. {
  13790. GGML_ASSERT(false); // TODO: not implemented
  13791. } break;
  13792. case GGML_UNARY_OP_RELU:
  13793. {
  13794. if (src0->grad) {
  13795. src0->grad = ggml_add_impl(ctx,
  13796. src0->grad,
  13797. ggml_mul(ctx,
  13798. ggml_step(ctx, src0),
  13799. tensor->grad),
  13800. inplace);
  13801. }
  13802. } break;
  13803. case GGML_UNARY_OP_GELU:
  13804. {
  13805. GGML_ASSERT(false); // TODO: not implemented
  13806. } break;
  13807. case GGML_UNARY_OP_GELU_QUICK:
  13808. {
  13809. GGML_ASSERT(false); // TODO: not implemented
  13810. } break;
  13811. case GGML_UNARY_OP_SILU:
  13812. {
  13813. // necessary for llama
  13814. if (src0->grad) {
  13815. src0->grad = ggml_add_impl(ctx,
  13816. src0->grad,
  13817. ggml_silu_back(ctx, src0, tensor->grad),
  13818. inplace);
  13819. }
  13820. } break;
  13821. default:
  13822. GGML_ASSERT(false);
  13823. }
  13824. } break;
  13825. case GGML_OP_GET_REL_POS:
  13826. case GGML_OP_ADD_REL_POS:
  13827. case GGML_OP_MAP_UNARY:
  13828. case GGML_OP_MAP_BINARY:
  13829. case GGML_OP_MAP_CUSTOM1_F32:
  13830. case GGML_OP_MAP_CUSTOM2_F32:
  13831. case GGML_OP_MAP_CUSTOM3_F32:
  13832. case GGML_OP_MAP_CUSTOM1:
  13833. case GGML_OP_MAP_CUSTOM2:
  13834. case GGML_OP_MAP_CUSTOM3:
  13835. {
  13836. GGML_ASSERT(false); // not supported
  13837. } break;
  13838. case GGML_OP_CROSS_ENTROPY_LOSS:
  13839. {
  13840. if (src0->grad) {
  13841. src0->grad = ggml_add_impl(ctx,
  13842. src0->grad,
  13843. ggml_cross_entropy_loss_back(ctx,
  13844. src0,
  13845. src1,
  13846. tensor->grad),
  13847. inplace);
  13848. }
  13849. } break;
  13850. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13851. {
  13852. GGML_ASSERT(false); // not supported
  13853. } break;
  13854. case GGML_OP_NONE:
  13855. {
  13856. // nop
  13857. } break;
  13858. case GGML_OP_COUNT:
  13859. {
  13860. GGML_ASSERT(false);
  13861. } break;
  13862. }
  13863. }
  13864. static_assert(GGML_GRAPH_HASHTABLE_SIZE > GGML_MAX_NODES * 2, "GGML_GRAPH_HT_SIZE is too small");
  13865. static size_t hash(void * p) {
  13866. return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
  13867. }
  13868. static bool hash_insert(void * hash_table[], void * p) {
  13869. size_t h = hash(p);
  13870. // linear probing
  13871. size_t i = h;
  13872. while (hash_table[i] != NULL && hash_table[i] != p) {
  13873. i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
  13874. if (i == h) {
  13875. // hash table is full
  13876. GGML_ASSERT(false);
  13877. }
  13878. }
  13879. if (hash_table[i] == p) {
  13880. return true;
  13881. }
  13882. // insert
  13883. hash_table[i] = p;
  13884. return false;
  13885. }
  13886. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13887. if (node->grad == NULL) {
  13888. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13889. // it can also happen during forward pass, if the user performs computations with constants
  13890. if (node->op != GGML_OP_NONE) {
  13891. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13892. }
  13893. }
  13894. // check if already visited
  13895. if (hash_insert(cgraph->visited_hash_table, node)) {
  13896. return;
  13897. }
  13898. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13899. if (node->src[i]) {
  13900. ggml_visit_parents(cgraph, node->src[i]);
  13901. }
  13902. }
  13903. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13904. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13905. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  13906. if (strlen(node->name) == 0) {
  13907. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13908. }
  13909. cgraph->leafs[cgraph->n_leafs] = node;
  13910. cgraph->n_leafs++;
  13911. } else {
  13912. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  13913. if (strlen(node->name) == 0) {
  13914. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13915. }
  13916. cgraph->nodes[cgraph->n_nodes] = node;
  13917. cgraph->grads[cgraph->n_nodes] = node->grad;
  13918. cgraph->n_nodes++;
  13919. }
  13920. }
  13921. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13922. if (!expand) {
  13923. cgraph->n_nodes = 0;
  13924. cgraph->n_leafs = 0;
  13925. }
  13926. const int n0 = cgraph->n_nodes;
  13927. UNUSED(n0);
  13928. ggml_visit_parents(cgraph, tensor);
  13929. const int n_new = cgraph->n_nodes - n0;
  13930. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13931. if (n_new > 0) {
  13932. // the last added node should always be starting point
  13933. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13934. }
  13935. }
  13936. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13937. ggml_build_forward_impl(cgraph, tensor, true);
  13938. }
  13939. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  13940. struct ggml_cgraph result = {
  13941. /*.n_nodes =*/ 0,
  13942. /*.n_leafs =*/ 0,
  13943. /*.nodes =*/ { NULL },
  13944. /*.grads =*/ { NULL },
  13945. /*.leafs =*/ { NULL },
  13946. /*.hash_table =*/ { NULL },
  13947. /*.perf_runs =*/ 0,
  13948. /*.perf_cycles =*/ 0,
  13949. /*.perf_time_us =*/ 0,
  13950. };
  13951. ggml_build_forward_impl(&result, tensor, false);
  13952. return result;
  13953. }
  13954. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  13955. GGML_ASSERT(gf->n_nodes > 0);
  13956. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13957. if (keep) {
  13958. for (int i = 0; i < gf->n_nodes; i++) {
  13959. struct ggml_tensor * node = gf->nodes[i];
  13960. if (node->grad) {
  13961. node->grad = ggml_dup_tensor(ctx, node);
  13962. gf->grads[i] = node->grad;
  13963. }
  13964. }
  13965. }
  13966. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13967. struct ggml_tensor * node = gf->nodes[i];
  13968. // because we detached the grad nodes from the original graph, we can afford inplace operations
  13969. if (node->grad) {
  13970. ggml_compute_backward(ctx, node, keep);
  13971. }
  13972. }
  13973. for (int i = 0; i < gf->n_nodes; i++) {
  13974. struct ggml_tensor * node = gf->nodes[i];
  13975. if (node->is_param) {
  13976. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13977. ggml_build_forward_expand(gb, node->grad);
  13978. }
  13979. }
  13980. }
  13981. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  13982. struct ggml_cgraph result = *gf;
  13983. ggml_build_backward_expand(ctx, gf, &result, keep);
  13984. return result;
  13985. }
  13986. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13987. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, GGML_GRAPH_SIZE);
  13988. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13989. *cgraph = (struct ggml_cgraph) {
  13990. /*.n_nodes =*/ 0,
  13991. /*.n_leafs =*/ 0,
  13992. /*.nodes =*/ { NULL },
  13993. /*.grads =*/ { NULL },
  13994. /*.leafs =*/ { NULL },
  13995. /*.hash_table =*/ { NULL },
  13996. /*.perf_runs =*/ 0,
  13997. /*.perf_cycles =*/ 0,
  13998. /*.perf_time_us =*/ 0,
  13999. };
  14000. return cgraph;
  14001. }
  14002. struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  14003. struct ggml_cgraph * cgraph = ggml_new_graph(ctx);
  14004. ggml_build_forward_impl(cgraph, tensor, false);
  14005. return cgraph;
  14006. }
  14007. size_t ggml_graph_overhead(void) {
  14008. return GGML_OBJECT_SIZE + GGML_PAD(GGML_GRAPH_SIZE, GGML_MEM_ALIGN);
  14009. }
  14010. //
  14011. // thread data
  14012. //
  14013. // synchronization is done via busy loops
  14014. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  14015. //
  14016. #ifdef __APPLE__
  14017. //#include <os/lock.h>
  14018. //
  14019. //typedef os_unfair_lock ggml_lock_t;
  14020. //
  14021. //#define ggml_lock_init(x) UNUSED(x)
  14022. //#define ggml_lock_destroy(x) UNUSED(x)
  14023. //#define ggml_lock_lock os_unfair_lock_lock
  14024. //#define ggml_lock_unlock os_unfair_lock_unlock
  14025. //
  14026. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  14027. typedef int ggml_lock_t;
  14028. #define ggml_lock_init(x) UNUSED(x)
  14029. #define ggml_lock_destroy(x) UNUSED(x)
  14030. #define ggml_lock_lock(x) UNUSED(x)
  14031. #define ggml_lock_unlock(x) UNUSED(x)
  14032. #define GGML_LOCK_INITIALIZER 0
  14033. typedef pthread_t ggml_thread_t;
  14034. #define ggml_thread_create pthread_create
  14035. #define ggml_thread_join pthread_join
  14036. #else
  14037. //typedef pthread_spinlock_t ggml_lock_t;
  14038. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  14039. //#define ggml_lock_destroy pthread_spin_destroy
  14040. //#define ggml_lock_lock pthread_spin_lock
  14041. //#define ggml_lock_unlock pthread_spin_unlock
  14042. typedef int ggml_lock_t;
  14043. #define ggml_lock_init(x) UNUSED(x)
  14044. #define ggml_lock_destroy(x) UNUSED(x)
  14045. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  14046. #define ggml_lock_lock(x) _mm_pause()
  14047. #else
  14048. #define ggml_lock_lock(x) UNUSED(x)
  14049. #endif
  14050. #define ggml_lock_unlock(x) UNUSED(x)
  14051. #define GGML_LOCK_INITIALIZER 0
  14052. typedef pthread_t ggml_thread_t;
  14053. #define ggml_thread_create pthread_create
  14054. #define ggml_thread_join pthread_join
  14055. #endif
  14056. // Android's libc implementation "bionic" does not support setting affinity
  14057. #if defined(__linux__) && !defined(__BIONIC__)
  14058. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  14059. if (!ggml_is_numa()) {
  14060. return;
  14061. }
  14062. // run thread on node_num thread_n / (threads per node)
  14063. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  14064. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  14065. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14066. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14067. CPU_ZERO_S(setsize, cpus);
  14068. for (size_t i = 0; i < node->n_cpus; ++i) {
  14069. CPU_SET_S(node->cpus[i], setsize, cpus);
  14070. }
  14071. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14072. if (rv) {
  14073. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  14074. strerror(rv));
  14075. }
  14076. CPU_FREE(cpus);
  14077. }
  14078. static void clear_numa_thread_affinity(void) {
  14079. if (!ggml_is_numa()) {
  14080. return;
  14081. }
  14082. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14083. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14084. CPU_ZERO_S(setsize, cpus);
  14085. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  14086. CPU_SET_S(i, setsize, cpus);
  14087. }
  14088. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14089. if (rv) {
  14090. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  14091. strerror(rv));
  14092. }
  14093. CPU_FREE(cpus);
  14094. }
  14095. #else
  14096. // TODO: Windows etc.
  14097. // (the linux implementation may also work on BSD, someone should test)
  14098. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  14099. static void clear_numa_thread_affinity(void) {}
  14100. #endif
  14101. struct ggml_compute_state_shared {
  14102. const struct ggml_cgraph * cgraph;
  14103. const struct ggml_cplan * cplan;
  14104. int64_t perf_node_start_cycles;
  14105. int64_t perf_node_start_time_us;
  14106. const int n_threads;
  14107. // synchronization primitives
  14108. atomic_int n_active; // num active threads
  14109. atomic_int node_n; // active graph node
  14110. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  14111. void * abort_callback_data;
  14112. };
  14113. struct ggml_compute_state {
  14114. ggml_thread_t thrd;
  14115. int ith;
  14116. struct ggml_compute_state_shared * shared;
  14117. };
  14118. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  14119. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  14120. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  14121. node->perf_runs++;
  14122. node->perf_cycles += cycles_cur;
  14123. node->perf_time_us += time_us_cur;
  14124. }
  14125. static thread_ret_t ggml_graph_compute_thread(void * data) {
  14126. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  14127. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  14128. const struct ggml_cplan * cplan = state->shared->cplan;
  14129. const int * n_tasks_arr = cplan->n_tasks;
  14130. const int n_threads = state->shared->n_threads;
  14131. set_numa_thread_affinity(state->ith, n_threads);
  14132. int node_n = -1;
  14133. while (true) {
  14134. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14135. state->shared->node_n += 1;
  14136. return (thread_ret_t) GGML_EXIT_ABORTED;
  14137. }
  14138. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14139. // all other threads are finished and spinning
  14140. // do finalize and init here so we don't have synchronize again
  14141. struct ggml_compute_params params = {
  14142. /*.type =*/ GGML_TASK_FINALIZE,
  14143. /*.ith =*/ 0,
  14144. /*.nth =*/ 0,
  14145. /*.wsize =*/ cplan->work_size,
  14146. /*.wdata =*/ cplan->work_data,
  14147. };
  14148. if (node_n != -1) {
  14149. /* FINALIZE */
  14150. struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
  14151. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14152. params.nth = n_tasks_arr[node_n];
  14153. ggml_compute_forward(&params, node);
  14154. }
  14155. ggml_graph_compute_perf_stats_node(node, state->shared);
  14156. }
  14157. // distribute new work or execute it direct if 1T
  14158. while (++node_n < cgraph->n_nodes) {
  14159. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  14160. struct ggml_tensor * node = cgraph->nodes[node_n];
  14161. const int n_tasks = n_tasks_arr[node_n];
  14162. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  14163. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  14164. params.nth = n_tasks;
  14165. /* INIT */
  14166. if (GGML_OP_HAS_INIT[node->op]) {
  14167. params.type = GGML_TASK_INIT;
  14168. ggml_compute_forward(&params, node);
  14169. }
  14170. if (n_tasks == 1) {
  14171. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  14172. // they do something more efficient than spinning (?)
  14173. params.type = GGML_TASK_COMPUTE;
  14174. ggml_compute_forward(&params, node);
  14175. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14176. params.type = GGML_TASK_FINALIZE;
  14177. ggml_compute_forward(&params, node);
  14178. }
  14179. ggml_graph_compute_perf_stats_node(node, state->shared);
  14180. } else {
  14181. break;
  14182. }
  14183. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14184. break;
  14185. }
  14186. }
  14187. atomic_store(&state->shared->n_active, n_threads);
  14188. atomic_store(&state->shared->node_n, node_n);
  14189. } else {
  14190. // wait for other threads to finish
  14191. const int last = node_n;
  14192. do {
  14193. //sched_yield();
  14194. node_n = atomic_load(&state->shared->node_n);
  14195. } while (node_n == last);
  14196. }
  14197. // check if we should stop
  14198. if (node_n >= cgraph->n_nodes) break;
  14199. /* COMPUTE */
  14200. struct ggml_tensor * node = cgraph->nodes[node_n];
  14201. const int n_tasks = n_tasks_arr[node_n];
  14202. struct ggml_compute_params params = {
  14203. /*.type =*/ GGML_TASK_COMPUTE,
  14204. /*.ith =*/ state->ith,
  14205. /*.nth =*/ n_tasks,
  14206. /*.wsize =*/ cplan->work_size,
  14207. /*.wdata =*/ cplan->work_data,
  14208. };
  14209. if (state->ith < n_tasks) {
  14210. ggml_compute_forward(&params, node);
  14211. }
  14212. }
  14213. return GGML_EXIT_SUCCESS;
  14214. }
  14215. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  14216. if (n_threads <= 0) {
  14217. n_threads = GGML_DEFAULT_N_THREADS;
  14218. }
  14219. size_t work_size = 0;
  14220. struct ggml_cplan cplan;
  14221. memset(&cplan, 0, sizeof(struct ggml_cplan));
  14222. // thread scheduling for the different operations + work buffer size estimation
  14223. for (int i = 0; i < cgraph->n_nodes; i++) {
  14224. int n_tasks = 1;
  14225. struct ggml_tensor * node = cgraph->nodes[i];
  14226. switch (node->op) {
  14227. case GGML_OP_CPY:
  14228. case GGML_OP_DUP:
  14229. {
  14230. n_tasks = n_threads;
  14231. size_t cur = 0;
  14232. if (ggml_is_quantized(node->type)) {
  14233. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14234. }
  14235. work_size = MAX(work_size, cur);
  14236. } break;
  14237. case GGML_OP_ADD:
  14238. case GGML_OP_ADD1:
  14239. {
  14240. n_tasks = n_threads;
  14241. size_t cur = 0;
  14242. if (ggml_is_quantized(node->src[0]->type)) {
  14243. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14244. }
  14245. work_size = MAX(work_size, cur);
  14246. } break;
  14247. case GGML_OP_ACC:
  14248. {
  14249. n_tasks = n_threads;
  14250. size_t cur = 0;
  14251. if (ggml_is_quantized(node->src[0]->type)) {
  14252. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  14253. }
  14254. work_size = MAX(work_size, cur);
  14255. } break;
  14256. case GGML_OP_SUB:
  14257. case GGML_OP_DIV:
  14258. case GGML_OP_SQR:
  14259. case GGML_OP_SQRT:
  14260. case GGML_OP_LOG:
  14261. case GGML_OP_SUM:
  14262. case GGML_OP_SUM_ROWS:
  14263. case GGML_OP_MEAN:
  14264. case GGML_OP_ARGMAX:
  14265. case GGML_OP_REPEAT:
  14266. case GGML_OP_REPEAT_BACK:
  14267. {
  14268. n_tasks = 1;
  14269. } break;
  14270. case GGML_OP_UNARY:
  14271. {
  14272. switch (ggml_get_unary_op(node)) {
  14273. case GGML_UNARY_OP_ABS:
  14274. case GGML_UNARY_OP_SGN:
  14275. case GGML_UNARY_OP_NEG:
  14276. case GGML_UNARY_OP_STEP:
  14277. case GGML_UNARY_OP_TANH:
  14278. case GGML_UNARY_OP_ELU:
  14279. case GGML_UNARY_OP_RELU:
  14280. {
  14281. n_tasks = 1;
  14282. } break;
  14283. case GGML_UNARY_OP_GELU:
  14284. case GGML_UNARY_OP_GELU_QUICK:
  14285. case GGML_UNARY_OP_SILU:
  14286. {
  14287. n_tasks = n_threads;
  14288. } break;
  14289. }
  14290. } break;
  14291. case GGML_OP_SILU_BACK:
  14292. case GGML_OP_MUL:
  14293. case GGML_OP_NORM:
  14294. case GGML_OP_RMS_NORM:
  14295. case GGML_OP_RMS_NORM_BACK:
  14296. case GGML_OP_GROUP_NORM:
  14297. {
  14298. n_tasks = n_threads;
  14299. } break;
  14300. case GGML_OP_CONCAT:
  14301. case GGML_OP_MUL_MAT:
  14302. case GGML_OP_OUT_PROD:
  14303. {
  14304. n_tasks = n_threads;
  14305. // TODO: use different scheduling for different matrix sizes
  14306. //const int nr0 = ggml_nrows(node->src[0]);
  14307. //const int nr1 = ggml_nrows(node->src[1]);
  14308. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  14309. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  14310. size_t cur = 0;
  14311. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  14312. #if defined(GGML_USE_CUBLAS)
  14313. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  14314. n_tasks = 1; // TODO: this actually is doing nothing
  14315. // the threads are still spinning
  14316. } else
  14317. #elif defined(GGML_USE_CLBLAST)
  14318. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  14319. n_tasks = 1; // TODO: this actually is doing nothing
  14320. // the threads are still spinning
  14321. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  14322. } else
  14323. #endif
  14324. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  14325. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  14326. n_tasks = 1; // TODO: this actually is doing nothing
  14327. // the threads are still spinning
  14328. if (node->src[0]->type != GGML_TYPE_F32) {
  14329. // here we need memory just for single 2D matrix from src0
  14330. cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  14331. }
  14332. } else
  14333. #endif
  14334. if (node->src[1]->type != vec_dot_type) {
  14335. cur = ggml_type_size(vec_dot_type)*ggml_nelements(node->src[1])/ggml_blck_size(vec_dot_type);
  14336. } else {
  14337. cur = 0;
  14338. }
  14339. work_size = MAX(work_size, cur);
  14340. } break;
  14341. case GGML_OP_SCALE:
  14342. {
  14343. n_tasks = 1;
  14344. } break;
  14345. case GGML_OP_SET:
  14346. case GGML_OP_CONT:
  14347. case GGML_OP_RESHAPE:
  14348. case GGML_OP_VIEW:
  14349. case GGML_OP_PERMUTE:
  14350. case GGML_OP_TRANSPOSE:
  14351. case GGML_OP_GET_ROWS:
  14352. case GGML_OP_GET_ROWS_BACK:
  14353. case GGML_OP_DIAG:
  14354. {
  14355. n_tasks = 1;
  14356. } break;
  14357. case GGML_OP_DIAG_MASK_ZERO:
  14358. case GGML_OP_DIAG_MASK_INF:
  14359. case GGML_OP_SOFT_MAX:
  14360. case GGML_OP_SOFT_MAX_BACK:
  14361. case GGML_OP_ROPE:
  14362. case GGML_OP_ROPE_BACK:
  14363. case GGML_OP_ADD_REL_POS:
  14364. {
  14365. n_tasks = n_threads;
  14366. } break;
  14367. case GGML_OP_ALIBI:
  14368. {
  14369. n_tasks = 1; //TODO
  14370. } break;
  14371. case GGML_OP_CLAMP:
  14372. {
  14373. n_tasks = 1; //TODO
  14374. } break;
  14375. case GGML_OP_CONV_1D:
  14376. {
  14377. n_tasks = n_threads;
  14378. GGML_ASSERT(node->src[0]->ne[3] == 1);
  14379. GGML_ASSERT(node->src[1]->ne[2] == 1);
  14380. GGML_ASSERT(node->src[1]->ne[3] == 1);
  14381. size_t cur = 0;
  14382. const int nk = node->src[0]->ne[0];
  14383. if (node->src[0]->type == GGML_TYPE_F16 &&
  14384. node->src[1]->type == GGML_TYPE_F32) {
  14385. cur = sizeof(ggml_fp16_t)*(
  14386. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  14387. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  14388. );
  14389. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14390. node->src[1]->type == GGML_TYPE_F32) {
  14391. cur = sizeof(float)*(
  14392. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  14393. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  14394. );
  14395. } else {
  14396. GGML_ASSERT(false);
  14397. }
  14398. work_size = MAX(work_size, cur);
  14399. } break;
  14400. case GGML_OP_CONV_2D:
  14401. {
  14402. n_tasks = n_threads;
  14403. const int64_t ne00 = node->src[0]->ne[0]; // W
  14404. const int64_t ne01 = node->src[0]->ne[1]; // H
  14405. const int64_t ne02 = node->src[0]->ne[2]; // C
  14406. const int64_t ne03 = node->src[0]->ne[3]; // N
  14407. const int64_t ne10 = node->src[1]->ne[0]; // W
  14408. const int64_t ne11 = node->src[1]->ne[1]; // H
  14409. const int64_t ne12 = node->src[1]->ne[2]; // C
  14410. const int64_t ne0 = node->ne[0];
  14411. const int64_t ne1 = node->ne[1];
  14412. const int64_t ne2 = node->ne[2];
  14413. const int64_t nk = ne00*ne01;
  14414. const int64_t ew0 = nk * ne02;
  14415. UNUSED(ne03);
  14416. UNUSED(ne2);
  14417. size_t cur = 0;
  14418. if (node->src[0]->type == GGML_TYPE_F16 &&
  14419. node->src[1]->type == GGML_TYPE_F32) {
  14420. cur = sizeof(ggml_fp16_t)*(ne0*ne1*ew0);
  14421. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14422. node->src[1]->type == GGML_TYPE_F32) {
  14423. cur = sizeof(float)* (ne10*ne11*ne12);
  14424. } else {
  14425. GGML_ASSERT(false);
  14426. }
  14427. work_size = MAX(work_size, cur);
  14428. } break;
  14429. case GGML_OP_CONV_TRANSPOSE_2D:
  14430. {
  14431. n_tasks = n_threads;
  14432. const int64_t ne00 = node->src[0]->ne[0]; // W
  14433. const int64_t ne01 = node->src[0]->ne[1]; // H
  14434. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  14435. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  14436. const int64_t ne10 = node->src[1]->ne[0]; // W
  14437. const int64_t ne11 = node->src[1]->ne[1]; // H
  14438. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  14439. size_t cur = 0;
  14440. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  14441. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  14442. work_size = MAX(work_size, cur);
  14443. } break;
  14444. case GGML_OP_POOL_1D:
  14445. case GGML_OP_POOL_2D:
  14446. {
  14447. n_tasks = 1;
  14448. } break;
  14449. case GGML_OP_UPSCALE:
  14450. {
  14451. n_tasks = n_threads;
  14452. } break;
  14453. case GGML_OP_FLASH_ATTN:
  14454. {
  14455. n_tasks = n_threads;
  14456. size_t cur = 0;
  14457. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14458. if (node->src[1]->type == GGML_TYPE_F32) {
  14459. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14460. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14461. }
  14462. if (node->src[1]->type == GGML_TYPE_F16) {
  14463. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14464. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14465. }
  14466. work_size = MAX(work_size, cur);
  14467. } break;
  14468. case GGML_OP_FLASH_FF:
  14469. {
  14470. n_tasks = n_threads;
  14471. size_t cur = 0;
  14472. if (node->src[1]->type == GGML_TYPE_F32) {
  14473. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14474. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14475. }
  14476. if (node->src[1]->type == GGML_TYPE_F16) {
  14477. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14478. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14479. }
  14480. work_size = MAX(work_size, cur);
  14481. } break;
  14482. case GGML_OP_FLASH_ATTN_BACK:
  14483. {
  14484. n_tasks = n_threads;
  14485. size_t cur = 0;
  14486. const int64_t D = node->src[0]->ne[0];
  14487. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14488. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  14489. if (node->src[1]->type == GGML_TYPE_F32) {
  14490. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14491. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14492. }
  14493. if (node->src[1]->type == GGML_TYPE_F16) {
  14494. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14495. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14496. }
  14497. work_size = MAX(work_size, cur);
  14498. } break;
  14499. case GGML_OP_WIN_PART:
  14500. case GGML_OP_WIN_UNPART:
  14501. case GGML_OP_GET_REL_POS:
  14502. case GGML_OP_MAP_UNARY:
  14503. case GGML_OP_MAP_BINARY:
  14504. case GGML_OP_MAP_CUSTOM1_F32:
  14505. case GGML_OP_MAP_CUSTOM2_F32:
  14506. case GGML_OP_MAP_CUSTOM3_F32:
  14507. {
  14508. n_tasks = 1;
  14509. } break;
  14510. case GGML_OP_MAP_CUSTOM1:
  14511. {
  14512. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  14513. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14514. n_tasks = n_threads;
  14515. } else {
  14516. n_tasks = MIN(p->n_tasks, n_threads);
  14517. }
  14518. } break;
  14519. case GGML_OP_MAP_CUSTOM2:
  14520. {
  14521. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  14522. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14523. n_tasks = n_threads;
  14524. } else {
  14525. n_tasks = MIN(p->n_tasks, n_threads);
  14526. }
  14527. } break;
  14528. case GGML_OP_MAP_CUSTOM3:
  14529. {
  14530. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  14531. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14532. n_tasks = n_threads;
  14533. } else {
  14534. n_tasks = MIN(p->n_tasks, n_threads);
  14535. }
  14536. } break;
  14537. case GGML_OP_CROSS_ENTROPY_LOSS:
  14538. {
  14539. n_tasks = n_threads;
  14540. size_t cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  14541. work_size = MAX(work_size, cur);
  14542. } break;
  14543. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14544. {
  14545. n_tasks = n_threads;
  14546. } break;
  14547. case GGML_OP_NONE:
  14548. {
  14549. n_tasks = 1;
  14550. } break;
  14551. case GGML_OP_COUNT:
  14552. {
  14553. GGML_ASSERT(false);
  14554. } break;
  14555. }
  14556. cplan.n_tasks[i] = n_tasks;
  14557. }
  14558. if (work_size > 0) {
  14559. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  14560. }
  14561. cplan.n_threads = n_threads;
  14562. cplan.work_size = work_size;
  14563. cplan.work_data = NULL;
  14564. return cplan;
  14565. }
  14566. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  14567. {
  14568. GGML_ASSERT(cplan);
  14569. GGML_ASSERT(cplan->n_threads > 0);
  14570. if (cplan->work_size > 0) {
  14571. GGML_ASSERT(cplan->work_data);
  14572. }
  14573. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14574. if (cgraph->nodes[i]->op != GGML_OP_NONE) {
  14575. GGML_ASSERT(cplan->n_tasks[i] > 0);
  14576. }
  14577. }
  14578. }
  14579. const int n_threads = cplan->n_threads;
  14580. struct ggml_compute_state_shared state_shared = {
  14581. /*.cgraph =*/ cgraph,
  14582. /*.cgraph_plan =*/ cplan,
  14583. /*.perf_node_start_cycles =*/ 0,
  14584. /*.perf_node_start_time_us =*/ 0,
  14585. /*.n_threads =*/ n_threads,
  14586. /*.n_active =*/ n_threads,
  14587. /*.node_n =*/ -1,
  14588. /*.abort_callback =*/ NULL,
  14589. /*.abort_callback_data =*/ NULL,
  14590. };
  14591. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  14592. // create thread pool
  14593. if (n_threads > 1) {
  14594. for (int j = 1; j < n_threads; ++j) {
  14595. workers[j] = (struct ggml_compute_state) {
  14596. .thrd = 0,
  14597. .ith = j,
  14598. .shared = &state_shared,
  14599. };
  14600. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  14601. GGML_ASSERT(rc == 0);
  14602. UNUSED(rc);
  14603. }
  14604. }
  14605. workers[0].ith = 0;
  14606. workers[0].shared = &state_shared;
  14607. const int64_t perf_start_cycles = ggml_perf_cycles();
  14608. const int64_t perf_start_time_us = ggml_perf_time_us();
  14609. // this is a work thread too
  14610. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  14611. // don't leave affinity set on the main thread
  14612. clear_numa_thread_affinity();
  14613. // join or kill thread pool
  14614. if (n_threads > 1) {
  14615. for (int j = 1; j < n_threads; j++) {
  14616. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  14617. GGML_ASSERT(rc == 0);
  14618. }
  14619. }
  14620. // performance stats (graph)
  14621. {
  14622. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14623. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14624. cgraph->perf_runs++;
  14625. cgraph->perf_cycles += perf_cycles_cur;
  14626. cgraph->perf_time_us += perf_time_us_cur;
  14627. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14628. __func__, cgraph->perf_runs,
  14629. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14630. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14631. (double) perf_time_us_cur / 1000.0,
  14632. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14633. }
  14634. return compute_status;
  14635. }
  14636. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  14637. for (int i = 0; i < cgraph->n_nodes; i++) {
  14638. struct ggml_tensor * grad = cgraph->grads[i];
  14639. if (grad) {
  14640. ggml_set_zero(grad);
  14641. }
  14642. }
  14643. }
  14644. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  14645. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  14646. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14647. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14648. ggml_graph_compute(cgraph, &cplan);
  14649. }
  14650. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14651. for (int i = 0; i < cgraph->n_leafs; i++) {
  14652. struct ggml_tensor * leaf = cgraph->leafs[i];
  14653. if (strcmp(leaf->name, name) == 0) {
  14654. return leaf;
  14655. }
  14656. }
  14657. for (int i = 0; i < cgraph->n_nodes; i++) {
  14658. struct ggml_tensor * node = cgraph->nodes[i];
  14659. if (strcmp(node->name, name) == 0) {
  14660. return node;
  14661. }
  14662. }
  14663. return NULL;
  14664. }
  14665. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14666. const int64_t * ne = tensor->ne;
  14667. const size_t * nb = tensor->nb;
  14668. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14669. ggml_type_name(tensor->type),
  14670. ggml_op_name (tensor->op),
  14671. tensor->n_dims,
  14672. ne[0], ne[1], ne[2], ne[3],
  14673. nb[0], nb[1], nb[2], nb[3],
  14674. tensor->data,
  14675. tensor->name);
  14676. }
  14677. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14678. const int64_t * ne = tensor->ne;
  14679. const size_t * nb = tensor->nb;
  14680. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14681. arg,
  14682. ggml_type_name(tensor->type),
  14683. ggml_op_name (tensor->op),
  14684. tensor->n_dims,
  14685. ne[0], ne[1], ne[2], ne[3],
  14686. nb[0], nb[1], nb[2], nb[3],
  14687. tensor->data,
  14688. tensor->name);
  14689. }
  14690. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14691. uint64_t size_eval = 0;
  14692. // compute size of intermediate results
  14693. // TODO: does not take into account scratch buffers !!!!
  14694. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14695. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  14696. }
  14697. // print
  14698. {
  14699. FILE * fout = stdout;
  14700. fprintf(fout, "\n");
  14701. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14702. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14703. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14704. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14705. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14706. // header
  14707. fprintf(fout, "\n");
  14708. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14709. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14710. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14711. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14712. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14713. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  14714. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  14715. }
  14716. // header
  14717. fprintf(fout, "\n");
  14718. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14719. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14720. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14721. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14722. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14723. if (cgraph->nodes[i]->src[j]) {
  14724. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  14725. }
  14726. }
  14727. fprintf(fout, "\n");
  14728. }
  14729. fprintf(fout, "\n");
  14730. }
  14731. // write binary data
  14732. {
  14733. FILE * fout = fopen(fname, "wb");
  14734. if (!fout) {
  14735. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14736. return;
  14737. }
  14738. // header
  14739. {
  14740. const uint32_t magic = GGML_FILE_MAGIC;
  14741. const uint32_t version = GGML_FILE_VERSION;
  14742. const uint32_t n_leafs = cgraph->n_leafs;
  14743. const uint32_t nodes = cgraph->n_nodes;
  14744. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14745. fwrite(&version, sizeof(uint32_t), 1, fout);
  14746. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14747. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  14748. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14749. }
  14750. // leafs
  14751. {
  14752. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14753. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14754. const uint32_t type = tensor->type;
  14755. const uint32_t op = tensor->op;
  14756. const uint32_t n_dims = tensor->n_dims;
  14757. fwrite(&type, sizeof(uint32_t), 1, fout);
  14758. fwrite(&op, sizeof(uint32_t), 1, fout);
  14759. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14760. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14761. const uint64_t ne = tensor->ne[j];
  14762. const uint64_t nb = tensor->nb[j];
  14763. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14764. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14765. }
  14766. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14767. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14768. // dump the data
  14769. // TODO: pad this to 32 byte boundary
  14770. {
  14771. const size_t size = ggml_nbytes(tensor);
  14772. fwrite(tensor->data, sizeof(char), size, fout);
  14773. }
  14774. }
  14775. }
  14776. // nodes
  14777. {
  14778. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14779. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14780. const uint32_t type = tensor->type;
  14781. const uint32_t op = tensor->op;
  14782. const uint32_t n_dims = tensor->n_dims;
  14783. fwrite(&type, sizeof(uint32_t), 1, fout);
  14784. fwrite(&op, sizeof(uint32_t), 1, fout);
  14785. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14786. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14787. const uint64_t ne = tensor->ne[j];
  14788. const uint64_t nb = tensor->nb[j];
  14789. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14790. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14791. }
  14792. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14793. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14794. // output the op arguments
  14795. {
  14796. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14797. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14798. args[j] = tensor->src[j];
  14799. }
  14800. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14801. if (args[j]) {
  14802. int32_t idx = -1;
  14803. // check if leaf
  14804. {
  14805. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14806. if (args[j] == cgraph->leafs[k]) {
  14807. idx = k;
  14808. break;
  14809. }
  14810. }
  14811. }
  14812. // check if node
  14813. if (idx == -1) {
  14814. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14815. if (args[j] == cgraph->nodes[k]) {
  14816. idx = GGML_MAX_NODES + k;
  14817. break;
  14818. }
  14819. }
  14820. }
  14821. if (idx == -1) {
  14822. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14823. return;
  14824. }
  14825. fwrite(&idx, sizeof(int32_t), 1, fout);
  14826. } else {
  14827. const int32_t nul = -1;
  14828. fwrite(&nul, sizeof(int32_t), 1, fout);
  14829. }
  14830. }
  14831. }
  14832. }
  14833. }
  14834. fclose(fout);
  14835. }
  14836. }
  14837. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14838. assert(*ctx_data == NULL);
  14839. assert(*ctx_eval == NULL);
  14840. struct ggml_cgraph result = { 0 };
  14841. struct ggml_tensor * data = NULL;
  14842. // read file into data
  14843. {
  14844. FILE * fin = fopen(fname, "rb");
  14845. if (!fin) {
  14846. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14847. return result;
  14848. }
  14849. size_t fsize = 0;
  14850. fseek(fin, 0, SEEK_END);
  14851. fsize = ftell(fin);
  14852. fseek(fin, 0, SEEK_SET);
  14853. // create the data context
  14854. {
  14855. const size_t overhead = 1*ggml_tensor_overhead();
  14856. struct ggml_init_params params = {
  14857. .mem_size = fsize + overhead,
  14858. .mem_buffer = NULL,
  14859. .no_alloc = false,
  14860. };
  14861. *ctx_data = ggml_init(params);
  14862. if (!*ctx_data) {
  14863. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14864. fclose(fin);
  14865. return result;
  14866. }
  14867. }
  14868. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14869. {
  14870. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14871. if (ret != fsize) {
  14872. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14873. fclose(fin);
  14874. return result;
  14875. }
  14876. }
  14877. fclose(fin);
  14878. }
  14879. // populate result
  14880. {
  14881. char * ptr = (char *) data->data;
  14882. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14883. if (magic != GGML_FILE_MAGIC) {
  14884. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14885. return result;
  14886. }
  14887. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14888. if (version != GGML_FILE_VERSION) {
  14889. fprintf(stderr, "%s: invalid version number\n", __func__);
  14890. return result;
  14891. }
  14892. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14893. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14894. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14895. result.n_leafs = n_leafs;
  14896. result.n_nodes = n_nodes;
  14897. // create the data context
  14898. {
  14899. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  14900. struct ggml_init_params params = {
  14901. .mem_size = size_eval + overhead,
  14902. .mem_buffer = NULL,
  14903. .no_alloc = true,
  14904. };
  14905. *ctx_eval = ggml_init(params);
  14906. if (!*ctx_eval) {
  14907. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14908. return result;
  14909. }
  14910. }
  14911. // leafs
  14912. {
  14913. uint32_t type;
  14914. uint32_t op;
  14915. uint32_t n_dims;
  14916. for (uint32_t i = 0; i < n_leafs; ++i) {
  14917. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14918. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14919. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14920. int64_t ne[GGML_MAX_DIMS];
  14921. size_t nb[GGML_MAX_DIMS];
  14922. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14923. uint64_t ne_cur;
  14924. uint64_t nb_cur;
  14925. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14926. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14927. ne[j] = ne_cur;
  14928. nb[j] = nb_cur;
  14929. }
  14930. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14931. tensor->op = (enum ggml_op) op;
  14932. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14933. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14934. tensor->data = (void *) ptr;
  14935. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14936. tensor->nb[j] = nb[j];
  14937. }
  14938. result.leafs[i] = tensor;
  14939. ptr += ggml_nbytes(tensor);
  14940. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14941. }
  14942. }
  14943. ggml_set_no_alloc(*ctx_eval, false);
  14944. // nodes
  14945. {
  14946. uint32_t type;
  14947. uint32_t op;
  14948. uint32_t n_dims;
  14949. for (uint32_t i = 0; i < n_nodes; ++i) {
  14950. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14951. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14952. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14953. enum ggml_op eop = (enum ggml_op) op;
  14954. int64_t ne[GGML_MAX_DIMS];
  14955. size_t nb[GGML_MAX_DIMS];
  14956. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14957. uint64_t ne_cur;
  14958. uint64_t nb_cur;
  14959. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14960. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14961. ne[j] = ne_cur;
  14962. nb[j] = nb_cur;
  14963. }
  14964. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14965. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14966. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14967. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14968. // parse args
  14969. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14970. const int32_t arg_idx = ptr_arg_idx[j];
  14971. if (arg_idx == -1) {
  14972. continue;
  14973. }
  14974. if (arg_idx < GGML_MAX_NODES) {
  14975. args[j] = result.leafs[arg_idx];
  14976. } else {
  14977. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  14978. }
  14979. }
  14980. // create the tensor
  14981. // "view" operations are handled differently
  14982. // TODO: handle inplace ops - currently a copy is always made
  14983. struct ggml_tensor * tensor = NULL;
  14984. switch (eop) {
  14985. // TODO: implement other view ops
  14986. case GGML_OP_RESHAPE:
  14987. {
  14988. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14989. } break;
  14990. case GGML_OP_VIEW:
  14991. {
  14992. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14993. size_t offs;
  14994. memcpy(&offs, ptr_op_params, sizeof(offs));
  14995. tensor->data = ((char *) tensor->data) + offs;
  14996. } break;
  14997. case GGML_OP_TRANSPOSE:
  14998. {
  14999. tensor = ggml_transpose(*ctx_eval, args[0]);
  15000. } break;
  15001. case GGML_OP_PERMUTE:
  15002. {
  15003. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15004. } break;
  15005. default:
  15006. {
  15007. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  15008. tensor->op = eop;
  15009. } break;
  15010. }
  15011. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  15012. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  15013. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15014. tensor->nb[j] = nb[j];
  15015. }
  15016. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15017. tensor->src[j] = args[j];
  15018. }
  15019. result.nodes[i] = tensor;
  15020. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  15021. }
  15022. }
  15023. }
  15024. return result;
  15025. }
  15026. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  15027. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  15028. GGML_PRINT("=== GRAPH ===\n");
  15029. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  15030. for (int i = 0; i < cgraph->n_nodes; i++) {
  15031. struct ggml_tensor * node = cgraph->nodes[i];
  15032. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  15033. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  15034. i,
  15035. node->ne[0], node->ne[1], node->ne[2],
  15036. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  15037. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  15038. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  15039. (double) node->perf_time_us / 1000.0,
  15040. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  15041. }
  15042. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  15043. for (int i = 0; i < cgraph->n_leafs; i++) {
  15044. struct ggml_tensor * node = cgraph->leafs[i];
  15045. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  15046. i,
  15047. node->ne[0], node->ne[1],
  15048. ggml_op_name(node->op));
  15049. }
  15050. for (int i = 0; i < GGML_OP_COUNT; i++) {
  15051. if (perf_total_per_op_us[i] == 0) {
  15052. continue;
  15053. }
  15054. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  15055. }
  15056. GGML_PRINT("========================================\n");
  15057. }
  15058. // check if node is part of the graph
  15059. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15060. if (cgraph == NULL) {
  15061. return true;
  15062. }
  15063. for (int i = 0; i < cgraph->n_nodes; i++) {
  15064. if (cgraph->nodes[i] == node) {
  15065. return true;
  15066. }
  15067. }
  15068. return false;
  15069. }
  15070. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15071. for (int i = 0; i < cgraph->n_nodes; i++) {
  15072. struct ggml_tensor * parent = cgraph->nodes[i];
  15073. if (parent->grad == node) {
  15074. return parent;
  15075. }
  15076. }
  15077. return NULL;
  15078. }
  15079. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15080. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  15081. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  15082. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  15083. gparent0 ? (void *) gparent0 : (void *) parent,
  15084. gparent0 ? "g" : "x",
  15085. gparent ? (void *) gparent : (void *) node,
  15086. gparent ? "g" : "x",
  15087. gparent ? "empty" : "vee",
  15088. gparent ? "dashed" : "solid",
  15089. label);
  15090. }
  15091. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15092. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  15093. (void *) parent, "x",
  15094. (void *) node, "x",
  15095. label);
  15096. }
  15097. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  15098. char color[16];
  15099. FILE * fp = fopen(filename, "w");
  15100. GGML_ASSERT(fp);
  15101. fprintf(fp, "digraph G {\n");
  15102. fprintf(fp, " newrank = true;\n");
  15103. fprintf(fp, " rankdir = LR;\n");
  15104. for (int i = 0; i < gb->n_nodes; i++) {
  15105. struct ggml_tensor * node = gb->nodes[i];
  15106. if (ggml_graph_get_parent(gb, node) != NULL) {
  15107. continue;
  15108. }
  15109. if (node->is_param) {
  15110. snprintf(color, sizeof(color), "yellow");
  15111. } else if (node->grad) {
  15112. if (ggml_graph_find(gf, node)) {
  15113. snprintf(color, sizeof(color), "green");
  15114. } else {
  15115. snprintf(color, sizeof(color), "lightblue");
  15116. }
  15117. } else {
  15118. snprintf(color, sizeof(color), "white");
  15119. }
  15120. fprintf(fp, " \"%p\" [ "
  15121. "style = filled; fillcolor = %s; shape = record; "
  15122. "label=\"",
  15123. (void *) node, color);
  15124. if (strlen(node->name) > 0) {
  15125. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15126. } else {
  15127. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15128. }
  15129. if (node->n_dims == 2) {
  15130. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15131. } else {
  15132. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15133. }
  15134. if (node->grad) {
  15135. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15136. } else {
  15137. fprintf(fp, "\"; ]\n");
  15138. }
  15139. }
  15140. for (int i = 0; i < gb->n_leafs; i++) {
  15141. struct ggml_tensor * node = gb->leafs[i];
  15142. snprintf(color, sizeof(color), "pink");
  15143. fprintf(fp, " \"%p\" [ "
  15144. "style = filled; fillcolor = %s; shape = record; "
  15145. "label=\"<x>",
  15146. (void *) node, color);
  15147. if (strlen(node->name) > 0) {
  15148. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15149. } else {
  15150. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15151. }
  15152. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15153. if (ggml_nelements(node) < 5) {
  15154. fprintf(fp, " | (");
  15155. for (int j = 0; j < ggml_nelements(node); j++) {
  15156. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15157. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15158. }
  15159. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  15160. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15161. }
  15162. else {
  15163. fprintf(fp, "#");
  15164. }
  15165. if (j < ggml_nelements(node) - 1) {
  15166. fprintf(fp, ", ");
  15167. }
  15168. }
  15169. fprintf(fp, ")");
  15170. }
  15171. fprintf(fp, "\"; ]\n");
  15172. }
  15173. for (int i = 0; i < gb->n_nodes; i++) {
  15174. struct ggml_tensor * node = gb->nodes[i];
  15175. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15176. if (node->src[j]) {
  15177. char label[16];
  15178. snprintf(label, sizeof(label), "src %d", j);
  15179. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15180. }
  15181. }
  15182. }
  15183. for (int i = 0; i < gb->n_leafs; i++) {
  15184. struct ggml_tensor * node = gb->leafs[i];
  15185. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15186. if (node->src[j]) {
  15187. char label[16];
  15188. snprintf(label, sizeof(label), "src %d", j);
  15189. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15190. }
  15191. }
  15192. }
  15193. fprintf(fp, "}\n");
  15194. fclose(fp);
  15195. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15196. }
  15197. ////////////////////////////////////////////////////////////////////////////////
  15198. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15199. int i = 0;
  15200. for (int p = 0; p < np; ++p) {
  15201. const int64_t ne = ggml_nelements(ps[p]) ;
  15202. // TODO: add function to set tensor from array
  15203. for (int64_t j = 0; j < ne; ++j) {
  15204. ggml_set_f32_1d(ps[p], j, x[i++]);
  15205. }
  15206. }
  15207. }
  15208. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15209. int i = 0;
  15210. for (int p = 0; p < np; ++p) {
  15211. const int64_t ne = ggml_nelements(ps[p]) ;
  15212. // TODO: add function to get all elements at once
  15213. for (int64_t j = 0; j < ne; ++j) {
  15214. x[i++] = ggml_get_f32_1d(ps[p], j);
  15215. }
  15216. }
  15217. }
  15218. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15219. int i = 0;
  15220. for (int p = 0; p < np; ++p) {
  15221. const int64_t ne = ggml_nelements(ps[p]) ;
  15222. // TODO: add function to get all elements at once
  15223. for (int64_t j = 0; j < ne; ++j) {
  15224. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15225. }
  15226. }
  15227. }
  15228. //
  15229. // ADAM
  15230. //
  15231. // ref: https://arxiv.org/pdf/1412.6980.pdf
  15232. //
  15233. static enum ggml_opt_result ggml_opt_adam(
  15234. struct ggml_context * ctx,
  15235. struct ggml_opt_context * opt,
  15236. struct ggml_opt_params params,
  15237. struct ggml_tensor * f,
  15238. struct ggml_cgraph * gf,
  15239. struct ggml_cgraph * gb,
  15240. ggml_opt_callback callback,
  15241. void * callback_data) {
  15242. GGML_ASSERT(ggml_is_scalar(f));
  15243. // these will store the parameters we want to optimize
  15244. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15245. int np = 0;
  15246. int64_t nx = 0;
  15247. for (int i = 0; i < gf->n_nodes; ++i) {
  15248. if (gf->nodes[i]->is_param) {
  15249. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15250. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15251. ps[np++] = gf->nodes[i];
  15252. nx += ggml_nelements(gf->nodes[i]);
  15253. }
  15254. }
  15255. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  15256. int iter = opt->iter;
  15257. ggml_opt_init(opt->ctx, opt, params, nx);
  15258. opt->iter = iter;
  15259. }
  15260. // constants
  15261. float sched = params.adam.sched;
  15262. const float alpha = params.adam.alpha;
  15263. const float decay = params.adam.decay * alpha;
  15264. const float beta1 = params.adam.beta1;
  15265. const float beta2 = params.adam.beta2;
  15266. const float eps = params.adam.eps;
  15267. const float gclip = params.adam.gclip;
  15268. const int decay_min_ndim = params.adam.decay_min_ndim;
  15269. float * m = opt->adam.m->data; // first moment
  15270. float * v = opt->adam.v->data; // second moment
  15271. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  15272. if (callback) {
  15273. callback(callback_data, &sched);
  15274. }
  15275. // compute the function value
  15276. ggml_graph_reset (gf);
  15277. ggml_set_f32 (f->grad, 1.0f);
  15278. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15279. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15280. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15281. ggml_graph_compute(gb, &cplan);
  15282. opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
  15283. opt->adam.fx_best = opt->adam.fx_prev;
  15284. if (pf) {
  15285. pf[opt->iter % params.past] = opt->adam.fx_prev;
  15286. }
  15287. opt->loss_before = opt->adam.fx_prev;
  15288. opt->loss_after = opt->adam.fx_prev;
  15289. // initialize
  15290. if (opt->just_initialized) {
  15291. opt->adam.n_no_improvement = 0;
  15292. opt->just_initialized = false;
  15293. }
  15294. float * fx_best = &opt->adam.fx_best;
  15295. float * fx_prev = &opt->adam.fx_prev;
  15296. int * n_no_improvement = &opt->adam.n_no_improvement;
  15297. int iter0 = opt->iter;
  15298. // run the optimizer
  15299. for (int t = 0; t < params.adam.n_iter; ++t) {
  15300. opt->iter = iter0 + t + 1;
  15301. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  15302. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15303. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  15304. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  15305. for (int i = 0; i < np; ++i) {
  15306. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  15307. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  15308. }
  15309. const int64_t t_start_wall = ggml_time_us();
  15310. const int64_t t_start_cpu = ggml_cycles();
  15311. UNUSED(t_start_wall);
  15312. UNUSED(t_start_cpu);
  15313. {
  15314. float gnorm = 1.0f;
  15315. if (gclip > 0.0f) {
  15316. // gradient clipping
  15317. ggml_float sum = 0.0;
  15318. for (int p = 0; p < np; ++p) {
  15319. const int64_t ne = ggml_nelements(ps[p]);
  15320. for (int64_t j = 0; j < ne; ++j) {
  15321. float g = ggml_get_f32_1d(ps[p]->grad, j);
  15322. sum += (ggml_float)(g*g);
  15323. }
  15324. }
  15325. ggml_float norm = sqrt(sum);
  15326. if (norm > (ggml_float) gclip) {
  15327. gnorm = (float) ((ggml_float) gclip / norm);
  15328. }
  15329. }
  15330. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  15331. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  15332. int64_t i = 0;
  15333. for (int p = 0; p < np; ++p) {
  15334. const int64_t ne = ggml_nelements(ps[p]);
  15335. const float p_decay = ((ps[p]->n_dims >= decay_min_ndim) ? decay : 0.0f) * sched;
  15336. for (int64_t j = 0; j < ne; ++j) {
  15337. float x = ggml_get_f32_1d(ps[p], j);
  15338. float g = ggml_get_f32_1d(ps[p]->grad, j)*gnorm;
  15339. m[i] = m[i]*beta1 + g*(1.0f - beta1);
  15340. v[i] = v[i]*beta2 + g*g*(1.0f - beta2);
  15341. float mh = m[i]*beta1h;
  15342. float vh = v[i]*beta2h;
  15343. vh = sqrtf(vh) + eps;
  15344. x = x*(1.0f - p_decay) - mh/vh;
  15345. ggml_set_f32_1d(ps[p], j, x);
  15346. ++i;
  15347. }
  15348. }
  15349. }
  15350. if (callback) {
  15351. callback(callback_data, &sched);
  15352. }
  15353. ggml_graph_reset (gf);
  15354. ggml_set_f32 (f->grad, 1.0f);
  15355. ggml_graph_compute(gb, &cplan);
  15356. const float fx = ggml_get_f32_1d(f, 0);
  15357. opt->loss_after = fx;
  15358. // check convergence
  15359. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  15360. GGML_PRINT_DEBUG("converged\n");
  15361. return GGML_OPT_OK;
  15362. }
  15363. // delta-based convergence test
  15364. if (pf != NULL) {
  15365. // need at least params.past iterations to start checking for convergence
  15366. if (params.past <= iter0 + t) {
  15367. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  15368. if (fabsf(rate) < params.delta) {
  15369. return GGML_OPT_OK;
  15370. }
  15371. }
  15372. pf[(iter0 + t)%params.past] = fx;
  15373. }
  15374. // check for improvement
  15375. if (params.max_no_improvement > 0) {
  15376. if (fx_best[0] > fx) {
  15377. fx_best[0] = fx;
  15378. n_no_improvement[0] = 0;
  15379. } else {
  15380. ++n_no_improvement[0];
  15381. if (n_no_improvement[0] >= params.max_no_improvement) {
  15382. return GGML_OPT_OK;
  15383. }
  15384. }
  15385. }
  15386. fx_prev[0] = fx;
  15387. {
  15388. const int64_t t_end_cpu = ggml_cycles();
  15389. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  15390. UNUSED(t_end_cpu);
  15391. const int64_t t_end_wall = ggml_time_us();
  15392. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  15393. UNUSED(t_end_wall);
  15394. }
  15395. }
  15396. return GGML_OPT_DID_NOT_CONVERGE;
  15397. }
  15398. //
  15399. // L-BFGS
  15400. //
  15401. // the L-BFGS implementation below is based on the following implementation:
  15402. //
  15403. // https://github.com/chokkan/liblbfgs
  15404. //
  15405. struct ggml_lbfgs_iteration_data {
  15406. float alpha;
  15407. float ys;
  15408. float * s;
  15409. float * y;
  15410. };
  15411. static enum ggml_opt_result linesearch_backtracking(
  15412. const struct ggml_opt_params * params,
  15413. int nx,
  15414. float * x,
  15415. float * fx,
  15416. float * g,
  15417. float * d,
  15418. float * step,
  15419. const float * xp,
  15420. struct ggml_tensor * f,
  15421. struct ggml_cgraph * gf,
  15422. struct ggml_cgraph * gb,
  15423. struct ggml_cplan * cplan,
  15424. const int np,
  15425. struct ggml_tensor * ps[],
  15426. ggml_opt_callback callback,
  15427. void * callback_data) {
  15428. int count = 0;
  15429. float width = 0.0f;
  15430. float dg = 0.0f;
  15431. float finit = 0.0f;
  15432. float dginit = 0.0f;
  15433. float dgtest = 0.0f;
  15434. const float dec = 0.5f;
  15435. const float inc = 2.1f;
  15436. if (*step <= 0.f) {
  15437. return GGML_LINESEARCH_INVALID_PARAMETERS;
  15438. }
  15439. // compute the initial gradient in the search direction
  15440. ggml_vec_dot_f32(nx, &dginit, g, d);
  15441. // make sure that d points to a descent direction
  15442. if (0 < dginit) {
  15443. return GGML_LINESEARCH_FAIL;
  15444. }
  15445. // initialize local variables
  15446. finit = *fx;
  15447. dgtest = params->lbfgs.ftol*dginit;
  15448. while (true) {
  15449. if (callback) {
  15450. // LBFG-S does not support learning rate -> ignore learning schedule
  15451. float sched = 0;
  15452. callback(callback_data, &sched);
  15453. }
  15454. ggml_vec_cpy_f32(nx, x, xp);
  15455. ggml_vec_mad_f32(nx, x, d, *step);
  15456. // evaluate the function and gradient values
  15457. {
  15458. ggml_opt_set_params(np, ps, x);
  15459. ggml_graph_reset (gf);
  15460. ggml_set_f32 (f->grad, 1.0f);
  15461. ggml_graph_compute(gb, cplan);
  15462. ggml_opt_get_grad(np, ps, g);
  15463. *fx = ggml_get_f32_1d(f, 0);
  15464. }
  15465. ++count;
  15466. if (*fx > finit + (*step)*dgtest) {
  15467. width = dec;
  15468. } else {
  15469. // Armijo condition is satisfied
  15470. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  15471. return count;
  15472. }
  15473. ggml_vec_dot_f32(nx, &dg, g, d);
  15474. // check the Wolfe condition
  15475. if (dg < params->lbfgs.wolfe * dginit) {
  15476. width = inc;
  15477. } else {
  15478. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  15479. // regular Wolfe conditions
  15480. return count;
  15481. }
  15482. if(dg > -params->lbfgs.wolfe*dginit) {
  15483. width = dec;
  15484. } else {
  15485. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  15486. return count;
  15487. }
  15488. return count;
  15489. }
  15490. }
  15491. if (*step < params->lbfgs.min_step) {
  15492. return GGML_LINESEARCH_MINIMUM_STEP;
  15493. }
  15494. if (*step > params->lbfgs.max_step) {
  15495. return GGML_LINESEARCH_MAXIMUM_STEP;
  15496. }
  15497. if (params->lbfgs.max_linesearch <= count) {
  15498. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  15499. }
  15500. (*step) *= width;
  15501. }
  15502. return GGML_LINESEARCH_FAIL;
  15503. }
  15504. static enum ggml_opt_result ggml_opt_lbfgs(
  15505. struct ggml_context * ctx,
  15506. struct ggml_opt_context * opt,
  15507. struct ggml_opt_params params,
  15508. struct ggml_tensor * f,
  15509. struct ggml_cgraph * gf,
  15510. struct ggml_cgraph * gb,
  15511. ggml_opt_callback callback,
  15512. void * callback_data) {
  15513. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  15514. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  15515. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  15516. return GGML_OPT_INVALID_WOLFE;
  15517. }
  15518. }
  15519. const int m = params.lbfgs.m;
  15520. // these will store the parameters we want to optimize
  15521. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15522. int np = 0;
  15523. int nx = 0;
  15524. for (int i = 0; i < gf->n_nodes; ++i) {
  15525. if (gf->nodes[i]->is_param) {
  15526. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15527. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15528. ps[np++] = gf->nodes[i];
  15529. nx += ggml_nelements(gf->nodes[i]);
  15530. }
  15531. }
  15532. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  15533. int iter = opt->iter;
  15534. ggml_opt_init(ctx, opt, params, nx);
  15535. opt->iter = iter;
  15536. }
  15537. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15538. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15539. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15540. float * x = opt->lbfgs.x->data; // current parameters
  15541. float * xp = opt->lbfgs.xp->data; // previous parameters
  15542. float * g = opt->lbfgs.g->data; // current gradient
  15543. float * gp = opt->lbfgs.gp->data; // previous gradient
  15544. float * d = opt->lbfgs.d->data; // search direction
  15545. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  15546. float fx = 0.0f; // cost function value
  15547. float xnorm = 0.0f; // ||x||
  15548. float gnorm = 0.0f; // ||g||
  15549. // initialize x from the graph nodes
  15550. ggml_opt_get_params(np, ps, x);
  15551. // the L-BFGS memory
  15552. float * lm_alpha = opt->lbfgs.lmal->data;
  15553. float * lm_ys = opt->lbfgs.lmys->data;
  15554. float * lm_s = opt->lbfgs.lms->data;
  15555. float * lm_y = opt->lbfgs.lmy->data;
  15556. if (callback) {
  15557. // LBFG-S does not support learning rate -> ignore learning schedule
  15558. float sched = 0;
  15559. callback(callback_data, &sched);
  15560. }
  15561. // evaluate the function value and its gradient
  15562. {
  15563. ggml_opt_set_params(np, ps, x);
  15564. ggml_graph_reset (gf);
  15565. ggml_set_f32 (f->grad, 1.0f);
  15566. ggml_graph_compute(gb, &cplan);
  15567. ggml_opt_get_grad(np, ps, g);
  15568. fx = ggml_get_f32_1d(f, 0);
  15569. opt->loss_before = fx;
  15570. opt->loss_after = fx;
  15571. }
  15572. // search direction = -gradient
  15573. ggml_vec_neg_f32(nx, d, g);
  15574. // ||x||, ||g||
  15575. ggml_vec_norm_f32(nx, &xnorm, x);
  15576. ggml_vec_norm_f32(nx, &gnorm, g);
  15577. if (xnorm < 1.0f) {
  15578. xnorm = 1.0f;
  15579. }
  15580. // already optimized
  15581. if (gnorm/xnorm <= params.lbfgs.eps) {
  15582. return GGML_OPT_OK;
  15583. }
  15584. if (opt->just_initialized) {
  15585. if (pf) {
  15586. pf[0] = fx;
  15587. }
  15588. opt->lbfgs.fx_best = fx;
  15589. // initial step
  15590. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15591. opt->lbfgs.j = 0;
  15592. opt->lbfgs.k = 1;
  15593. opt->lbfgs.end = 0;
  15594. opt->lbfgs.n_no_improvement = 0;
  15595. opt->just_initialized = false;
  15596. }
  15597. float * fx_best = &opt->lbfgs.fx_best;
  15598. float * step = &opt->lbfgs.step;
  15599. int * j = &opt->lbfgs.j;
  15600. int * k = &opt->lbfgs.k;
  15601. int * end = &opt->lbfgs.end;
  15602. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15603. int ls = 0;
  15604. int bound = 0;
  15605. float ys = 0.0f;
  15606. float yy = 0.0f;
  15607. float beta = 0.0f;
  15608. int it = 0;
  15609. while (true) {
  15610. // store the current position and gradient vectors
  15611. ggml_vec_cpy_f32(nx, xp, x);
  15612. ggml_vec_cpy_f32(nx, gp, g);
  15613. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gf, gb, &cplan, np, ps, callback, callback_data);
  15614. if (ls < 0) {
  15615. // linesearch failed - go back to the previous point and return
  15616. ggml_vec_cpy_f32(nx, x, xp);
  15617. ggml_vec_cpy_f32(nx, g, gp);
  15618. return ls;
  15619. }
  15620. opt->loss_after = fx;
  15621. ggml_vec_norm_f32(nx, &xnorm, x);
  15622. ggml_vec_norm_f32(nx, &gnorm, g);
  15623. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15624. if (xnorm < 1.0f) {
  15625. xnorm = 1.0f;
  15626. }
  15627. if (gnorm/xnorm <= params.lbfgs.eps) {
  15628. // converged
  15629. return GGML_OPT_OK;
  15630. }
  15631. // delta-based convergence test
  15632. if (pf != NULL) {
  15633. // need at least params.past iterations to start checking for convergence
  15634. if (params.past <= k[0]) {
  15635. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15636. if (fabsf(rate) < params.delta) {
  15637. return GGML_OPT_OK;
  15638. }
  15639. }
  15640. pf[k[0]%params.past] = fx;
  15641. }
  15642. // check for improvement
  15643. if (params.max_no_improvement > 0) {
  15644. if (fx < fx_best[0]) {
  15645. fx_best[0] = fx;
  15646. n_no_improvement[0] = 0;
  15647. } else {
  15648. n_no_improvement[0]++;
  15649. if (n_no_improvement[0] >= params.max_no_improvement) {
  15650. return GGML_OPT_OK;
  15651. }
  15652. }
  15653. }
  15654. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15655. // reached the maximum number of iterations
  15656. return GGML_OPT_DID_NOT_CONVERGE;
  15657. }
  15658. // update vectors s and y:
  15659. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15660. // y_{k+1} = g_{k+1} - g_{k}.
  15661. //
  15662. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15663. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15664. // compute scalars ys and yy:
  15665. // ys = y^t \cdot s -> 1 / \rho.
  15666. // yy = y^t \cdot y.
  15667. //
  15668. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]);
  15669. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  15670. lm_ys[end[0]] = ys;
  15671. // find new search direction
  15672. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15673. bound = (m <= k[0]) ? m : k[0];
  15674. k[0]++;
  15675. it++;
  15676. end[0] = (end[0] + 1)%m;
  15677. // initialize search direction with -g
  15678. ggml_vec_neg_f32(nx, d, g);
  15679. j[0] = end[0];
  15680. for (int i = 0; i < bound; ++i) {
  15681. j[0] = (j[0] + m - 1) % m;
  15682. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15683. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  15684. lm_alpha[j[0]] /= lm_ys[j[0]];
  15685. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15686. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15687. }
  15688. ggml_vec_scale_f32(nx, d, ys/yy);
  15689. for (int i = 0; i < bound; ++i) {
  15690. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15691. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  15692. beta /= lm_ys[j[0]];
  15693. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15694. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15695. j[0] = (j[0] + 1)%m;
  15696. }
  15697. step[0] = 1.0;
  15698. }
  15699. return GGML_OPT_DID_NOT_CONVERGE;
  15700. }
  15701. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15702. struct ggml_opt_params result;
  15703. switch (type) {
  15704. case GGML_OPT_ADAM:
  15705. {
  15706. result = (struct ggml_opt_params) {
  15707. .type = GGML_OPT_ADAM,
  15708. .n_threads = 1,
  15709. .past = 0,
  15710. .delta = 1e-5f,
  15711. .max_no_improvement = 100,
  15712. .print_forward_graph = true,
  15713. .print_backward_graph = true,
  15714. .adam = {
  15715. .n_iter = 10000,
  15716. .sched = 1.000f,
  15717. .decay = 0.0f,
  15718. .decay_min_ndim = 2,
  15719. .alpha = 0.001f,
  15720. .beta1 = 0.9f,
  15721. .beta2 = 0.999f,
  15722. .eps = 1e-8f,
  15723. .eps_f = 1e-5f,
  15724. .eps_g = 1e-3f,
  15725. .gclip = 0.0f,
  15726. },
  15727. };
  15728. } break;
  15729. case GGML_OPT_LBFGS:
  15730. {
  15731. result = (struct ggml_opt_params) {
  15732. .type = GGML_OPT_LBFGS,
  15733. .n_threads = 1,
  15734. .past = 0,
  15735. .delta = 1e-5f,
  15736. .max_no_improvement = 0,
  15737. .print_forward_graph = true,
  15738. .print_backward_graph = true,
  15739. .lbfgs = {
  15740. .m = 6,
  15741. .n_iter = 100,
  15742. .max_linesearch = 20,
  15743. .eps = 1e-5f,
  15744. .ftol = 1e-4f,
  15745. .wolfe = 0.9f,
  15746. .min_step = 1e-20f,
  15747. .max_step = 1e+20f,
  15748. .linesearch = GGML_LINESEARCH_DEFAULT,
  15749. },
  15750. };
  15751. } break;
  15752. }
  15753. return result;
  15754. }
  15755. GGML_API void ggml_opt_init(
  15756. struct ggml_context * ctx,
  15757. struct ggml_opt_context * opt,
  15758. struct ggml_opt_params params,
  15759. int64_t nx) {
  15760. opt->ctx = ctx;
  15761. opt->params = params;
  15762. opt->iter = 0;
  15763. opt->nx = nx;
  15764. opt->just_initialized = true;
  15765. switch (opt->params.type) {
  15766. case GGML_OPT_ADAM:
  15767. {
  15768. opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15769. opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15770. opt->adam.pf = params.past > 0
  15771. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  15772. : NULL;
  15773. ggml_set_zero(opt->adam.m);
  15774. ggml_set_zero(opt->adam.v);
  15775. if (opt->adam.pf) {
  15776. ggml_set_zero(opt->adam.pf);
  15777. }
  15778. } break;
  15779. case GGML_OPT_LBFGS:
  15780. {
  15781. opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15782. opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15783. opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15784. opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15785. opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15786. opt->lbfgs.pf = params.past > 0
  15787. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  15788. : NULL;
  15789. opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  15790. opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  15791. opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15792. opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15793. ggml_set_zero(opt->lbfgs.x);
  15794. ggml_set_zero(opt->lbfgs.xp);
  15795. ggml_set_zero(opt->lbfgs.g);
  15796. ggml_set_zero(opt->lbfgs.gp);
  15797. ggml_set_zero(opt->lbfgs.d);
  15798. if (opt->lbfgs.pf) {
  15799. ggml_set_zero(opt->lbfgs.pf);
  15800. }
  15801. ggml_set_zero(opt->lbfgs.lmal);
  15802. ggml_set_zero(opt->lbfgs.lmys);
  15803. ggml_set_zero(opt->lbfgs.lms);
  15804. ggml_set_zero(opt->lbfgs.lmy);
  15805. } break;
  15806. }
  15807. }
  15808. enum ggml_opt_result ggml_opt(
  15809. struct ggml_context * ctx,
  15810. struct ggml_opt_params params,
  15811. struct ggml_tensor * f) {
  15812. bool free_ctx = false;
  15813. if (ctx == NULL) {
  15814. struct ggml_init_params params_ctx = {
  15815. .mem_size = 16*1024*1024,
  15816. .mem_buffer = NULL,
  15817. .no_alloc = false,
  15818. };
  15819. ctx = ggml_init(params_ctx);
  15820. if (ctx == NULL) {
  15821. return GGML_OPT_NO_CONTEXT;
  15822. }
  15823. free_ctx = true;
  15824. }
  15825. enum ggml_opt_result result = GGML_OPT_OK;
  15826. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15827. ggml_opt_init(ctx, opt, params, 0);
  15828. result = ggml_opt_resume(ctx, opt, f);
  15829. if (free_ctx) {
  15830. ggml_free(ctx);
  15831. }
  15832. return result;
  15833. }
  15834. enum ggml_opt_result ggml_opt_resume(
  15835. struct ggml_context * ctx,
  15836. struct ggml_opt_context * opt,
  15837. struct ggml_tensor * f) {
  15838. // build forward + backward compute graphs
  15839. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
  15840. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
  15841. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  15842. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  15843. *gf = ggml_build_forward (f);
  15844. *gb = ggml_build_backward(ctx, gf, true);
  15845. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  15846. }
  15847. enum ggml_opt_result ggml_opt_resume_g(
  15848. struct ggml_context * ctx,
  15849. struct ggml_opt_context * opt,
  15850. struct ggml_tensor * f,
  15851. struct ggml_cgraph * gf,
  15852. struct ggml_cgraph * gb,
  15853. ggml_opt_callback callback,
  15854. void * callback_data) {
  15855. // build forward + backward compute graphs
  15856. enum ggml_opt_result result = GGML_OPT_OK;
  15857. switch (opt->params.type) {
  15858. case GGML_OPT_ADAM:
  15859. {
  15860. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15861. } break;
  15862. case GGML_OPT_LBFGS:
  15863. {
  15864. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15865. } break;
  15866. }
  15867. if (opt->params.print_forward_graph) {
  15868. ggml_graph_print (gf);
  15869. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15870. }
  15871. if (opt->params.print_backward_graph) {
  15872. ggml_graph_print (gb);
  15873. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15874. }
  15875. return result;
  15876. }
  15877. ////////////////////////////////////////////////////////////////////////////////
  15878. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15879. assert(k % QK4_0 == 0);
  15880. const int nb = k / QK4_0;
  15881. for (int b = 0; b < n; b += k) {
  15882. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15883. quantize_row_q4_0_reference(src + b, y, k);
  15884. for (int i = 0; i < nb; i++) {
  15885. for (int j = 0; j < QK4_0; j += 2) {
  15886. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15887. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15888. hist[vi0]++;
  15889. hist[vi1]++;
  15890. }
  15891. }
  15892. }
  15893. return (n/QK4_0*sizeof(block_q4_0));
  15894. }
  15895. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15896. assert(k % QK4_1 == 0);
  15897. const int nb = k / QK4_1;
  15898. for (int b = 0; b < n; b += k) {
  15899. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15900. quantize_row_q4_1_reference(src + b, y, k);
  15901. for (int i = 0; i < nb; i++) {
  15902. for (int j = 0; j < QK4_1; j += 2) {
  15903. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15904. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15905. hist[vi0]++;
  15906. hist[vi1]++;
  15907. }
  15908. }
  15909. }
  15910. return (n/QK4_1*sizeof(block_q4_1));
  15911. }
  15912. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15913. assert(k % QK5_0 == 0);
  15914. const int nb = k / QK5_0;
  15915. for (int b = 0; b < n; b += k) {
  15916. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15917. quantize_row_q5_0_reference(src + b, y, k);
  15918. for (int i = 0; i < nb; i++) {
  15919. uint32_t qh;
  15920. memcpy(&qh, &y[i].qh, sizeof(qh));
  15921. for (int j = 0; j < QK5_0; j += 2) {
  15922. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15923. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15924. // cast to 16 bins
  15925. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15926. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15927. hist[vi0]++;
  15928. hist[vi1]++;
  15929. }
  15930. }
  15931. }
  15932. return (n/QK5_0*sizeof(block_q5_0));
  15933. }
  15934. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15935. assert(k % QK5_1 == 0);
  15936. const int nb = k / QK5_1;
  15937. for (int b = 0; b < n; b += k) {
  15938. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15939. quantize_row_q5_1_reference(src + b, y, k);
  15940. for (int i = 0; i < nb; i++) {
  15941. uint32_t qh;
  15942. memcpy(&qh, &y[i].qh, sizeof(qh));
  15943. for (int j = 0; j < QK5_1; j += 2) {
  15944. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15945. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15946. // cast to 16 bins
  15947. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15948. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15949. hist[vi0]++;
  15950. hist[vi1]++;
  15951. }
  15952. }
  15953. }
  15954. return (n/QK5_1*sizeof(block_q5_1));
  15955. }
  15956. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15957. assert(k % QK8_0 == 0);
  15958. const int nb = k / QK8_0;
  15959. for (int b = 0; b < n; b += k) {
  15960. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15961. quantize_row_q8_0_reference(src + b, y, k);
  15962. for (int i = 0; i < nb; i++) {
  15963. for (int j = 0; j < QK8_0; ++j) {
  15964. const int8_t vi = y[i].qs[j];
  15965. hist[vi/16 + 8]++;
  15966. }
  15967. }
  15968. }
  15969. return (n/QK8_0*sizeof(block_q8_0));
  15970. }
  15971. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  15972. size_t result = 0;
  15973. switch (type) {
  15974. case GGML_TYPE_Q4_0:
  15975. {
  15976. GGML_ASSERT(start % QK4_0 == 0);
  15977. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  15978. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  15979. } break;
  15980. case GGML_TYPE_Q4_1:
  15981. {
  15982. GGML_ASSERT(start % QK4_1 == 0);
  15983. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  15984. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  15985. } break;
  15986. case GGML_TYPE_Q5_0:
  15987. {
  15988. GGML_ASSERT(start % QK5_0 == 0);
  15989. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  15990. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  15991. } break;
  15992. case GGML_TYPE_Q5_1:
  15993. {
  15994. GGML_ASSERT(start % QK5_1 == 0);
  15995. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  15996. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  15997. } break;
  15998. case GGML_TYPE_Q8_0:
  15999. {
  16000. GGML_ASSERT(start % QK8_0 == 0);
  16001. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  16002. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  16003. } break;
  16004. #ifdef GGML_USE_K_QUANTS
  16005. case GGML_TYPE_Q2_K:
  16006. {
  16007. GGML_ASSERT(start % QK_K == 0);
  16008. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  16009. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  16010. } break;
  16011. case GGML_TYPE_Q3_K:
  16012. {
  16013. GGML_ASSERT(start % QK_K == 0);
  16014. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  16015. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  16016. } break;
  16017. case GGML_TYPE_Q4_K:
  16018. {
  16019. GGML_ASSERT(start % QK_K == 0);
  16020. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  16021. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  16022. } break;
  16023. case GGML_TYPE_Q5_K:
  16024. {
  16025. GGML_ASSERT(start % QK_K == 0);
  16026. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  16027. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  16028. } break;
  16029. case GGML_TYPE_Q6_K:
  16030. {
  16031. GGML_ASSERT(start % QK_K == 0);
  16032. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  16033. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  16034. } break;
  16035. #endif
  16036. case GGML_TYPE_F16:
  16037. {
  16038. int elemsize = sizeof(ggml_fp16_t);
  16039. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  16040. result = n * elemsize;
  16041. } break;
  16042. case GGML_TYPE_F32:
  16043. {
  16044. int elemsize = sizeof(float);
  16045. result = n * elemsize;
  16046. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  16047. } break;
  16048. default:
  16049. assert(false);
  16050. }
  16051. return result;
  16052. }
  16053. ////////////////////////////////////////////////////////////////////////////////
  16054. struct gguf_str {
  16055. uint64_t n; // GGUFv2
  16056. char * data;
  16057. };
  16058. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  16059. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  16060. [GGUF_TYPE_INT8] = sizeof(int8_t),
  16061. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  16062. [GGUF_TYPE_INT16] = sizeof(int16_t),
  16063. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  16064. [GGUF_TYPE_INT32] = sizeof(int32_t),
  16065. [GGUF_TYPE_FLOAT32] = sizeof(float),
  16066. [GGUF_TYPE_BOOL] = sizeof(bool),
  16067. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  16068. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  16069. [GGUF_TYPE_INT64] = sizeof(int64_t),
  16070. [GGUF_TYPE_FLOAT64] = sizeof(double),
  16071. [GGUF_TYPE_ARRAY] = 0, // undefined
  16072. };
  16073. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16074. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  16075. [GGUF_TYPE_UINT8] = "u8",
  16076. [GGUF_TYPE_INT8] = "i8",
  16077. [GGUF_TYPE_UINT16] = "u16",
  16078. [GGUF_TYPE_INT16] = "i16",
  16079. [GGUF_TYPE_UINT32] = "u32",
  16080. [GGUF_TYPE_INT32] = "i32",
  16081. [GGUF_TYPE_FLOAT32] = "f32",
  16082. [GGUF_TYPE_BOOL] = "bool",
  16083. [GGUF_TYPE_STRING] = "str",
  16084. [GGUF_TYPE_ARRAY] = "arr",
  16085. [GGUF_TYPE_UINT64] = "u64",
  16086. [GGUF_TYPE_INT64] = "i64",
  16087. [GGUF_TYPE_FLOAT64] = "f64",
  16088. };
  16089. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16090. union gguf_value {
  16091. uint8_t uint8;
  16092. int8_t int8;
  16093. uint16_t uint16;
  16094. int16_t int16;
  16095. uint32_t uint32;
  16096. int32_t int32;
  16097. float float32;
  16098. uint64_t uint64;
  16099. int64_t int64;
  16100. double float64;
  16101. bool bool_;
  16102. struct gguf_str str;
  16103. struct {
  16104. enum gguf_type type;
  16105. uint64_t n; // GGUFv2
  16106. void * data;
  16107. } arr;
  16108. };
  16109. struct gguf_kv {
  16110. struct gguf_str key;
  16111. enum gguf_type type;
  16112. union gguf_value value;
  16113. };
  16114. struct gguf_header {
  16115. uint32_t magic;
  16116. uint32_t version;
  16117. uint64_t n_tensors; // GGUFv2
  16118. uint64_t n_kv; // GGUFv2
  16119. };
  16120. struct gguf_tensor_info {
  16121. struct gguf_str name;
  16122. uint32_t n_dims;
  16123. uint64_t ne[GGML_MAX_DIMS];
  16124. enum ggml_type type;
  16125. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16126. // for writing API
  16127. const void * data;
  16128. size_t size;
  16129. };
  16130. struct gguf_context {
  16131. struct gguf_header header;
  16132. struct gguf_kv * kv;
  16133. struct gguf_tensor_info * infos;
  16134. size_t alignment;
  16135. size_t offset; // offset of `data` from beginning of file
  16136. size_t size; // size of `data` in bytes
  16137. //uint8_t * padding;
  16138. void * data;
  16139. };
  16140. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16141. const size_t n = fread(dst, 1, size, file);
  16142. *offset += n;
  16143. return n == size;
  16144. }
  16145. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16146. static bool gguf_fread_str_cur(FILE * file, struct gguf_str * p, size_t * offset) {
  16147. p->n = 0;
  16148. p->data = NULL;
  16149. bool ok = true;
  16150. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
  16151. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16152. return ok;
  16153. }
  16154. static bool gguf_fread_str_v1(FILE * file, struct gguf_str * p, size_t * offset) {
  16155. p->n = 0;
  16156. p->data = NULL;
  16157. bool ok = true;
  16158. uint32_t n = 0;
  16159. ok = ok && gguf_fread_el(file, &n, sizeof(n), offset); p->data = calloc(n + 1, 1); p->n = n;
  16160. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16161. return ok;
  16162. }
  16163. struct gguf_context * gguf_init_empty(void) {
  16164. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16165. ctx->header.magic = GGUF_MAGIC;
  16166. ctx->header.version = GGUF_VERSION;
  16167. ctx->header.n_tensors = 0;
  16168. ctx->header.n_kv = 0;
  16169. ctx->kv = NULL;
  16170. ctx->infos = NULL;
  16171. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16172. ctx->offset = 0;
  16173. ctx->size = 0;
  16174. ctx->data = NULL;
  16175. return ctx;
  16176. }
  16177. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16178. FILE * file = fopen(fname, "rb");
  16179. if (!file) {
  16180. return NULL;
  16181. }
  16182. // offset from start of file
  16183. size_t offset = 0;
  16184. uint32_t magic = 0;
  16185. // check the magic before making allocations
  16186. {
  16187. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16188. if (magic != GGUF_MAGIC) {
  16189. fprintf(stderr, "%s: invalid magic number %08x\n", __func__, magic);
  16190. fclose(file);
  16191. return NULL;
  16192. }
  16193. }
  16194. bool ok = true;
  16195. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16196. // read the header
  16197. {
  16198. ctx->header.magic = magic;
  16199. ctx->kv = NULL;
  16200. ctx->infos = NULL;
  16201. ctx->data = NULL;
  16202. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16203. if (ctx->header.version == 1) {
  16204. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16205. uint32_t n_tensors = 0;
  16206. uint32_t n_kv = 0;
  16207. ok = ok && gguf_fread_el(file, &n_tensors, sizeof(n_tensors), &offset);
  16208. ok = ok && gguf_fread_el(file, &n_kv, sizeof(n_kv), &offset);
  16209. ctx->header.n_tensors = n_tensors;
  16210. ctx->header.n_kv = n_kv;
  16211. } else {
  16212. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16213. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16214. }
  16215. if (!ok) {
  16216. fprintf(stderr, "%s: failed to read header\n", __func__);
  16217. fclose(file);
  16218. gguf_free(ctx);
  16219. return NULL;
  16220. }
  16221. }
  16222. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16223. bool (* gguf_fread_str)(FILE *, struct gguf_str *, size_t *) = gguf_fread_str_cur;
  16224. if (ctx->header.version == 1) {
  16225. gguf_fread_str = gguf_fread_str_v1;
  16226. }
  16227. // read the kv pairs
  16228. {
  16229. ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv));
  16230. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16231. struct gguf_kv * kv = &ctx->kv[i];
  16232. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16233. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16234. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16235. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16236. switch (kv->type) {
  16237. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16238. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16239. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16240. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16241. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16242. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16243. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16244. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16245. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16246. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16247. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16248. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16249. case GGUF_TYPE_ARRAY:
  16250. {
  16251. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16252. if (ctx->header.version == 1) {
  16253. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16254. uint32_t n = 0;
  16255. ok = ok && gguf_fread_el(file, &n, sizeof(n), &offset);
  16256. kv->value.arr.n = n;
  16257. } else {
  16258. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16259. }
  16260. switch (kv->value.arr.type) {
  16261. case GGUF_TYPE_UINT8:
  16262. case GGUF_TYPE_INT8:
  16263. case GGUF_TYPE_UINT16:
  16264. case GGUF_TYPE_INT16:
  16265. case GGUF_TYPE_UINT32:
  16266. case GGUF_TYPE_INT32:
  16267. case GGUF_TYPE_FLOAT32:
  16268. case GGUF_TYPE_UINT64:
  16269. case GGUF_TYPE_INT64:
  16270. case GGUF_TYPE_FLOAT64:
  16271. case GGUF_TYPE_BOOL:
  16272. {
  16273. kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16274. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
  16275. } break;
  16276. case GGUF_TYPE_STRING:
  16277. {
  16278. kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
  16279. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16280. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  16281. }
  16282. } break;
  16283. case GGUF_TYPE_ARRAY:
  16284. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16285. };
  16286. } break;
  16287. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16288. };
  16289. if (!ok) {
  16290. break;
  16291. }
  16292. }
  16293. if (!ok) {
  16294. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  16295. fclose(file);
  16296. gguf_free(ctx);
  16297. return NULL;
  16298. }
  16299. }
  16300. // read the tensor infos
  16301. {
  16302. ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  16303. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16304. struct gguf_tensor_info * info = &ctx->infos[i];
  16305. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16306. info->ne[j] = 1;
  16307. }
  16308. ok = ok && gguf_fread_str(file, &info->name, &offset);
  16309. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  16310. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16311. if (ctx->header.version == 1) {
  16312. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16313. uint32_t t = 0;
  16314. ok = ok && gguf_fread_el(file, &t, sizeof(t), &offset);
  16315. info->ne[j] = t;
  16316. } else {
  16317. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  16318. }
  16319. }
  16320. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  16321. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  16322. if (!ok) {
  16323. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  16324. fclose(file);
  16325. gguf_free(ctx);
  16326. return NULL;
  16327. }
  16328. }
  16329. }
  16330. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16331. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  16332. if (alignment_idx != -1) {
  16333. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  16334. }
  16335. // we require the data section to be aligned, so take into account any padding
  16336. {
  16337. const size_t offset_pad = offset % ctx->alignment;
  16338. if (offset_pad != 0) {
  16339. offset += ctx->alignment - offset_pad;
  16340. fseek(file, offset, SEEK_SET);
  16341. }
  16342. }
  16343. // store the current file offset - this is where the data section starts
  16344. ctx->offset = offset;
  16345. // compute the total size of the data section, taking into account the alignment
  16346. {
  16347. ctx->size = 0;
  16348. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16349. struct gguf_tensor_info * info = &ctx->infos[i];
  16350. const int64_t ne =
  16351. (int64_t) info->ne[0] *
  16352. (int64_t) info->ne[1] *
  16353. (int64_t) info->ne[2] *
  16354. (int64_t) info->ne[3];
  16355. if (ne % ggml_blck_size(info->type) != 0) {
  16356. fprintf(stderr, "%s: tensor '%s' number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  16357. __func__, info->name.data, ne, ggml_blck_size(info->type));
  16358. fclose(file);
  16359. gguf_free(ctx);
  16360. return NULL;
  16361. }
  16362. const size_t size_cur = (ne*ggml_type_size(info->type))/ggml_blck_size(info->type);
  16363. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  16364. }
  16365. }
  16366. // load the tensor data only if requested
  16367. if (params.ctx != NULL) {
  16368. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  16369. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  16370. // the ggml_tensor structs to the appropriate locations in the binary blob
  16371. // compute the exact size needed for the new ggml_context
  16372. const size_t mem_size =
  16373. params.no_alloc ?
  16374. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  16375. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  16376. struct ggml_init_params pdata = {
  16377. .mem_size = mem_size,
  16378. .mem_buffer = NULL,
  16379. .no_alloc = params.no_alloc,
  16380. };
  16381. *params.ctx = ggml_init(pdata);
  16382. struct ggml_context * ctx_data = *params.ctx;
  16383. struct ggml_tensor * data = NULL;
  16384. if (!params.no_alloc) {
  16385. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  16386. ok = ok && data != NULL;
  16387. // read the binary blob with the tensor data
  16388. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  16389. if (!ok) {
  16390. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  16391. fclose(file);
  16392. ggml_free(ctx_data);
  16393. gguf_free(ctx);
  16394. return NULL;
  16395. }
  16396. ctx->data = data->data;
  16397. }
  16398. ggml_set_no_alloc(ctx_data, true);
  16399. // create the tensors
  16400. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16401. const int64_t ne[GGML_MAX_DIMS] = {
  16402. ctx->infos[i].ne[0],
  16403. ctx->infos[i].ne[1],
  16404. ctx->infos[i].ne[2],
  16405. ctx->infos[i].ne[3],
  16406. };
  16407. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  16408. ok = ok && cur != NULL;
  16409. ggml_set_name(cur, ctx->infos[i].name.data);
  16410. if (!ok) {
  16411. break;
  16412. }
  16413. // point the data member to the appropriate location in the binary blob using the tensor infos
  16414. if (!params.no_alloc) {
  16415. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  16416. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  16417. }
  16418. }
  16419. if (!ok) {
  16420. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  16421. fclose(file);
  16422. ggml_free(ctx_data);
  16423. gguf_free(ctx);
  16424. return NULL;
  16425. }
  16426. ggml_set_no_alloc(ctx_data, params.no_alloc);
  16427. }
  16428. fclose(file);
  16429. return ctx;
  16430. }
  16431. void gguf_free(struct gguf_context * ctx) {
  16432. if (ctx == NULL) {
  16433. return;
  16434. }
  16435. if (ctx->kv) {
  16436. // free string memory - not great..
  16437. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16438. struct gguf_kv * kv = &ctx->kv[i];
  16439. if (kv->key.data) {
  16440. free(kv->key.data);
  16441. }
  16442. if (kv->type == GGUF_TYPE_STRING) {
  16443. if (kv->value.str.data) {
  16444. free(kv->value.str.data);
  16445. }
  16446. }
  16447. if (kv->type == GGUF_TYPE_ARRAY) {
  16448. if (kv->value.arr.data) {
  16449. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  16450. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16451. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  16452. if (str->data) {
  16453. free(str->data);
  16454. }
  16455. }
  16456. }
  16457. free(kv->value.arr.data);
  16458. }
  16459. }
  16460. }
  16461. free(ctx->kv);
  16462. }
  16463. if (ctx->infos) {
  16464. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16465. struct gguf_tensor_info * info = &ctx->infos[i];
  16466. if (info->name.data) {
  16467. free(info->name.data);
  16468. }
  16469. }
  16470. free(ctx->infos);
  16471. }
  16472. GGML_ALIGNED_FREE(ctx);
  16473. }
  16474. const char * gguf_type_name(enum gguf_type type) {
  16475. return GGUF_TYPE_NAME[type];
  16476. }
  16477. int gguf_get_version(struct gguf_context * ctx) {
  16478. return ctx->header.version;
  16479. }
  16480. size_t gguf_get_alignment(struct gguf_context * ctx) {
  16481. return ctx->alignment;
  16482. }
  16483. size_t gguf_get_data_offset(struct gguf_context * ctx) {
  16484. return ctx->offset;
  16485. }
  16486. void * gguf_get_data(struct gguf_context * ctx) {
  16487. return ctx->data;
  16488. }
  16489. int gguf_get_n_kv(struct gguf_context * ctx) {
  16490. return ctx->header.n_kv;
  16491. }
  16492. int gguf_find_key(struct gguf_context * ctx, const char * key) {
  16493. // return -1 if key not found
  16494. int keyfound = -1;
  16495. const int n_kv = gguf_get_n_kv(ctx);
  16496. for (int i = 0; i < n_kv; ++i) {
  16497. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  16498. keyfound = i;
  16499. break;
  16500. }
  16501. }
  16502. return keyfound;
  16503. }
  16504. const char * gguf_get_key(struct gguf_context * ctx, int i) {
  16505. return ctx->kv[i].key.data;
  16506. }
  16507. enum gguf_type gguf_get_kv_type(struct gguf_context * ctx, int i) {
  16508. return ctx->kv[i].type;
  16509. }
  16510. enum gguf_type gguf_get_arr_type(struct gguf_context * ctx, int i) {
  16511. return ctx->kv[i].value.arr.type;
  16512. }
  16513. const void * gguf_get_arr_data(struct gguf_context * ctx, int i) {
  16514. return ctx->kv[i].value.arr.data;
  16515. }
  16516. const char * gguf_get_arr_str(struct gguf_context * ctx, int key_id, int i) {
  16517. struct gguf_kv * kv = &ctx->kv[key_id];
  16518. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  16519. return str->data;
  16520. }
  16521. int gguf_get_arr_n(struct gguf_context * ctx, int i) {
  16522. return ctx->kv[i].value.arr.n;
  16523. }
  16524. uint8_t gguf_get_val_u8(struct gguf_context * ctx, int i) {
  16525. return ctx->kv[i].value.uint8;
  16526. }
  16527. int8_t gguf_get_val_i8(struct gguf_context * ctx, int i) {
  16528. return ctx->kv[i].value.int8;
  16529. }
  16530. uint16_t gguf_get_val_u16(struct gguf_context * ctx, int i) {
  16531. return ctx->kv[i].value.uint16;
  16532. }
  16533. int16_t gguf_get_val_i16(struct gguf_context * ctx, int i) {
  16534. return ctx->kv[i].value.int16;
  16535. }
  16536. uint32_t gguf_get_val_u32(struct gguf_context * ctx, int i) {
  16537. return ctx->kv[i].value.uint32;
  16538. }
  16539. int32_t gguf_get_val_i32(struct gguf_context * ctx, int i) {
  16540. return ctx->kv[i].value.int32;
  16541. }
  16542. float gguf_get_val_f32(struct gguf_context * ctx, int i) {
  16543. return ctx->kv[i].value.float32;
  16544. }
  16545. uint64_t gguf_get_val_u64(struct gguf_context * ctx, int i) {
  16546. return ctx->kv[i].value.uint64;
  16547. }
  16548. int64_t gguf_get_val_i64(struct gguf_context * ctx, int i) {
  16549. return ctx->kv[i].value.int64;
  16550. }
  16551. double gguf_get_val_f64(struct gguf_context * ctx, int i) {
  16552. return ctx->kv[i].value.float64;
  16553. }
  16554. bool gguf_get_val_bool(struct gguf_context * ctx, int i) {
  16555. return ctx->kv[i].value.bool_;
  16556. }
  16557. const char * gguf_get_val_str (struct gguf_context * ctx, int i) {
  16558. return ctx->kv[i].value.str.data;
  16559. }
  16560. int gguf_get_n_tensors(struct gguf_context * ctx) {
  16561. return ctx->header.n_tensors;
  16562. }
  16563. int gguf_find_tensor(struct gguf_context * ctx, const char * name) {
  16564. // return -1 if tensor not found
  16565. int tensorfound = -1;
  16566. const int n_tensors = gguf_get_n_tensors(ctx);
  16567. for (int i = 0; i < n_tensors; ++i) {
  16568. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  16569. tensorfound = i;
  16570. break;
  16571. }
  16572. }
  16573. return tensorfound;
  16574. }
  16575. size_t gguf_get_tensor_offset(struct gguf_context * ctx, int i) {
  16576. return ctx->infos[i].offset;
  16577. }
  16578. char * gguf_get_tensor_name(struct gguf_context * ctx, int i) {
  16579. return ctx->infos[i].name.data;
  16580. }
  16581. // returns the index
  16582. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  16583. const int idx = gguf_find_key(ctx, key);
  16584. if (idx >= 0) {
  16585. return idx;
  16586. }
  16587. const int n_kv = gguf_get_n_kv(ctx);
  16588. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  16589. ctx->kv[n_kv].key.n = strlen(key);
  16590. ctx->kv[n_kv].key.data = strdup(key);
  16591. ctx->header.n_kv++;
  16592. return n_kv;
  16593. }
  16594. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  16595. const int idx = gguf_get_or_add_key(ctx, key);
  16596. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  16597. ctx->kv[idx].value.uint8 = val;
  16598. }
  16599. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  16600. const int idx = gguf_get_or_add_key(ctx, key);
  16601. ctx->kv[idx].type = GGUF_TYPE_INT8;
  16602. ctx->kv[idx].value.int8 = val;
  16603. }
  16604. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  16605. const int idx = gguf_get_or_add_key(ctx, key);
  16606. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  16607. ctx->kv[idx].value.uint16 = val;
  16608. }
  16609. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  16610. const int idx = gguf_get_or_add_key(ctx, key);
  16611. ctx->kv[idx].type = GGUF_TYPE_INT16;
  16612. ctx->kv[idx].value.int16 = val;
  16613. }
  16614. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  16615. const int idx = gguf_get_or_add_key(ctx, key);
  16616. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  16617. ctx->kv[idx].value.uint32 = val;
  16618. }
  16619. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  16620. const int idx = gguf_get_or_add_key(ctx, key);
  16621. ctx->kv[idx].type = GGUF_TYPE_INT32;
  16622. ctx->kv[idx].value.int32 = val;
  16623. }
  16624. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  16625. const int idx = gguf_get_or_add_key(ctx, key);
  16626. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  16627. ctx->kv[idx].value.float32 = val;
  16628. }
  16629. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  16630. const int idx = gguf_get_or_add_key(ctx, key);
  16631. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  16632. ctx->kv[idx].value.uint64 = val;
  16633. }
  16634. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  16635. const int idx = gguf_get_or_add_key(ctx, key);
  16636. ctx->kv[idx].type = GGUF_TYPE_INT64;
  16637. ctx->kv[idx].value.int64 = val;
  16638. }
  16639. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  16640. const int idx = gguf_get_or_add_key(ctx, key);
  16641. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  16642. ctx->kv[idx].value.float64 = val;
  16643. }
  16644. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  16645. const int idx = gguf_get_or_add_key(ctx, key);
  16646. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  16647. ctx->kv[idx].value.bool_ = val;
  16648. }
  16649. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  16650. const int idx = gguf_get_or_add_key(ctx, key);
  16651. ctx->kv[idx].type = GGUF_TYPE_STRING;
  16652. ctx->kv[idx].value.str.n = strlen(val);
  16653. ctx->kv[idx].value.str.data = strdup(val);
  16654. }
  16655. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  16656. const int idx = gguf_get_or_add_key(ctx, key);
  16657. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16658. ctx->kv[idx].value.arr.type = type;
  16659. ctx->kv[idx].value.arr.n = n;
  16660. ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
  16661. memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
  16662. }
  16663. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16664. const int idx = gguf_get_or_add_key(ctx, key);
  16665. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16666. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  16667. ctx->kv[idx].value.arr.n = n;
  16668. ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
  16669. for (int i = 0; i < n; i++) {
  16670. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  16671. str->n = strlen(data[i]);
  16672. str->data = strdup(data[i]);
  16673. }
  16674. }
  16675. // set or add KV pairs from another context
  16676. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  16677. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  16678. switch (src->kv[i].type) {
  16679. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  16680. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  16681. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  16682. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  16683. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  16684. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  16685. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  16686. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  16687. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  16688. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  16689. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  16690. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  16691. case GGUF_TYPE_ARRAY:
  16692. {
  16693. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  16694. const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
  16695. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  16696. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  16697. }
  16698. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  16699. free(data);
  16700. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  16701. GGML_ASSERT(false && "nested arrays not supported");
  16702. } else {
  16703. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  16704. }
  16705. } break;
  16706. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16707. }
  16708. }
  16709. }
  16710. void gguf_add_tensor(
  16711. struct gguf_context * ctx,
  16712. const struct ggml_tensor * tensor) {
  16713. const int idx = ctx->header.n_tensors;
  16714. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  16715. ctx->infos[idx].name.n = strlen(tensor->name);
  16716. ctx->infos[idx].name.data = strdup(tensor->name);
  16717. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  16718. ctx->infos[idx].ne[i] = 1;
  16719. }
  16720. ctx->infos[idx].n_dims = tensor->n_dims;
  16721. for (int i = 0; i < tensor->n_dims; i++) {
  16722. ctx->infos[idx].ne[i] = tensor->ne[i];
  16723. }
  16724. ctx->infos[idx].type = tensor->type;
  16725. ctx->infos[idx].offset = 0;
  16726. ctx->infos[idx].data = tensor->data;
  16727. ctx->infos[idx].size = ggml_nbytes(tensor);
  16728. if (ctx->header.n_tensors > 0) {
  16729. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  16730. }
  16731. ctx->header.n_tensors++;
  16732. }
  16733. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  16734. const int idx = gguf_find_tensor(ctx, name);
  16735. if (idx < 0) {
  16736. GGML_ASSERT(false && "tensor not found");
  16737. }
  16738. ctx->infos[idx].type = type;
  16739. }
  16740. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  16741. const int idx = gguf_find_tensor(ctx, name);
  16742. if (idx < 0) {
  16743. GGML_ASSERT(false && "tensor not found");
  16744. }
  16745. ctx->infos[idx].data = data;
  16746. ctx->infos[idx].size = size;
  16747. // update offsets
  16748. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  16749. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  16750. }
  16751. }
  16752. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  16753. // fwrite(&val->n, sizeof(val->n), 1, file);
  16754. // fwrite(val->data, sizeof(char), val->n, file);
  16755. //}
  16756. //
  16757. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  16758. // fwrite(val, sizeof(char), size, file);
  16759. //}
  16760. struct gguf_buf {
  16761. void * data;
  16762. size_t size;
  16763. size_t offset;
  16764. };
  16765. static struct gguf_buf gguf_buf_init(size_t size) {
  16766. struct gguf_buf buf = {
  16767. /*buf.data =*/ size == 0 ? NULL : malloc(size),
  16768. /*buf.size =*/ size,
  16769. /*buf.offset =*/ 0,
  16770. };
  16771. return buf;
  16772. }
  16773. static void gguf_buf_free(struct gguf_buf buf) {
  16774. if (buf.data) {
  16775. free(buf.data);
  16776. }
  16777. }
  16778. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  16779. if (buf->offset + size > buf->size) {
  16780. buf->size = 1.5*(buf->offset + size);
  16781. if (buf->data) {
  16782. buf->data = realloc(buf->data, buf->size);
  16783. }
  16784. }
  16785. }
  16786. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  16787. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  16788. if (buf->data) {
  16789. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  16790. }
  16791. buf->offset += sizeof(val->n);
  16792. if (buf->data) {
  16793. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  16794. }
  16795. buf->offset += val->n;
  16796. }
  16797. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  16798. gguf_buf_grow(buf, el_size);
  16799. if (buf->data) {
  16800. memcpy((char *) buf->data + buf->offset, val, el_size);
  16801. }
  16802. buf->offset += el_size;
  16803. }
  16804. static void gguf_write_to_buf(struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  16805. // write header
  16806. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  16807. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  16808. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  16809. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  16810. // write key-value pairs
  16811. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16812. struct gguf_kv * kv = &ctx->kv[i];
  16813. gguf_bwrite_str(buf, &kv->key);
  16814. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  16815. switch (kv->type) {
  16816. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  16817. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  16818. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  16819. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  16820. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  16821. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  16822. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  16823. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  16824. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  16825. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  16826. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  16827. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  16828. case GGUF_TYPE_ARRAY:
  16829. {
  16830. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  16831. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  16832. switch (kv->value.arr.type) {
  16833. case GGUF_TYPE_UINT8:
  16834. case GGUF_TYPE_INT8:
  16835. case GGUF_TYPE_UINT16:
  16836. case GGUF_TYPE_INT16:
  16837. case GGUF_TYPE_UINT32:
  16838. case GGUF_TYPE_INT32:
  16839. case GGUF_TYPE_FLOAT32:
  16840. case GGUF_TYPE_UINT64:
  16841. case GGUF_TYPE_INT64:
  16842. case GGUF_TYPE_FLOAT64:
  16843. case GGUF_TYPE_BOOL:
  16844. {
  16845. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16846. } break;
  16847. case GGUF_TYPE_STRING:
  16848. {
  16849. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16850. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  16851. }
  16852. } break;
  16853. case GGUF_TYPE_ARRAY:
  16854. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16855. };
  16856. } break;
  16857. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16858. };
  16859. }
  16860. // write tensor infos
  16861. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16862. struct gguf_tensor_info * info = &ctx->infos[i];
  16863. gguf_bwrite_str(buf, &info->name);
  16864. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  16865. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16866. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  16867. }
  16868. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  16869. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  16870. }
  16871. // we require the data section to be aligned, so take into account any padding
  16872. {
  16873. const size_t offset = buf->offset;
  16874. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  16875. if (offset_pad != offset) {
  16876. uint8_t pad = 0;
  16877. for (size_t i = 0; i < offset_pad - offset; ++i) {
  16878. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16879. }
  16880. }
  16881. }
  16882. if (only_meta) {
  16883. return;
  16884. }
  16885. size_t offset = 0;
  16886. // write tensor data
  16887. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16888. struct gguf_tensor_info * info = &ctx->infos[i];
  16889. const size_t size = info->size;
  16890. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  16891. gguf_bwrite_el(buf, info->data, size);
  16892. if (size_pad != size) {
  16893. uint8_t pad = 0;
  16894. for (size_t j = 0; j < size_pad - size; ++j) {
  16895. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16896. }
  16897. }
  16898. GGML_ASSERT(offset == info->offset);
  16899. offset += size_pad;
  16900. }
  16901. }
  16902. void gguf_write_to_file(struct gguf_context * ctx, const char * fname, bool only_meta) {
  16903. FILE * file = fopen(fname, "wb");
  16904. if (!file) {
  16905. GGML_ASSERT(false && "failed to open file for writing");
  16906. }
  16907. struct gguf_buf buf = gguf_buf_init(16*1024);
  16908. gguf_write_to_buf(ctx, &buf, only_meta);
  16909. fwrite(buf.data, 1, buf.offset, file);
  16910. gguf_buf_free(buf);
  16911. fclose(file);
  16912. }
  16913. size_t gguf_get_meta_size(struct gguf_context * ctx) {
  16914. // no allocs - only compute size
  16915. struct gguf_buf buf = gguf_buf_init(0);
  16916. gguf_write_to_buf(ctx, &buf, true);
  16917. return buf.offset;
  16918. }
  16919. void gguf_get_meta_data(struct gguf_context * ctx, void * data) {
  16920. struct gguf_buf buf = gguf_buf_init(16*1024);
  16921. gguf_write_to_buf(ctx, &buf, true);
  16922. memcpy(data, buf.data, buf.offset);
  16923. gguf_buf_free(buf);
  16924. }
  16925. ////////////////////////////////////////////////////////////////////////////////
  16926. int ggml_cpu_has_avx(void) {
  16927. #if defined(__AVX__)
  16928. return 1;
  16929. #else
  16930. return 0;
  16931. #endif
  16932. }
  16933. int ggml_cpu_has_avx2(void) {
  16934. #if defined(__AVX2__)
  16935. return 1;
  16936. #else
  16937. return 0;
  16938. #endif
  16939. }
  16940. int ggml_cpu_has_avx512(void) {
  16941. #if defined(__AVX512F__)
  16942. return 1;
  16943. #else
  16944. return 0;
  16945. #endif
  16946. }
  16947. int ggml_cpu_has_avx512_vbmi(void) {
  16948. #if defined(__AVX512VBMI__)
  16949. return 1;
  16950. #else
  16951. return 0;
  16952. #endif
  16953. }
  16954. int ggml_cpu_has_avx512_vnni(void) {
  16955. #if defined(__AVX512VNNI__)
  16956. return 1;
  16957. #else
  16958. return 0;
  16959. #endif
  16960. }
  16961. int ggml_cpu_has_fma(void) {
  16962. #if defined(__FMA__)
  16963. return 1;
  16964. #else
  16965. return 0;
  16966. #endif
  16967. }
  16968. int ggml_cpu_has_neon(void) {
  16969. #if defined(__ARM_NEON)
  16970. return 1;
  16971. #else
  16972. return 0;
  16973. #endif
  16974. }
  16975. int ggml_cpu_has_arm_fma(void) {
  16976. #if defined(__ARM_FEATURE_FMA)
  16977. return 1;
  16978. #else
  16979. return 0;
  16980. #endif
  16981. }
  16982. int ggml_cpu_has_f16c(void) {
  16983. #if defined(__F16C__)
  16984. return 1;
  16985. #else
  16986. return 0;
  16987. #endif
  16988. }
  16989. int ggml_cpu_has_fp16_va(void) {
  16990. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  16991. return 1;
  16992. #else
  16993. return 0;
  16994. #endif
  16995. }
  16996. int ggml_cpu_has_wasm_simd(void) {
  16997. #if defined(__wasm_simd128__)
  16998. return 1;
  16999. #else
  17000. return 0;
  17001. #endif
  17002. }
  17003. int ggml_cpu_has_blas(void) {
  17004. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  17005. return 1;
  17006. #else
  17007. return 0;
  17008. #endif
  17009. }
  17010. int ggml_cpu_has_cublas(void) {
  17011. #if defined(GGML_USE_CUBLAS)
  17012. return 1;
  17013. #else
  17014. return 0;
  17015. #endif
  17016. }
  17017. int ggml_cpu_has_clblast(void) {
  17018. #if defined(GGML_USE_CLBLAST)
  17019. return 1;
  17020. #else
  17021. return 0;
  17022. #endif
  17023. }
  17024. int ggml_cpu_has_gpublas(void) {
  17025. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  17026. }
  17027. int ggml_cpu_has_sse3(void) {
  17028. #if defined(__SSE3__)
  17029. return 1;
  17030. #else
  17031. return 0;
  17032. #endif
  17033. }
  17034. int ggml_cpu_has_ssse3(void) {
  17035. #if defined(__SSSE3__)
  17036. return 1;
  17037. #else
  17038. return 0;
  17039. #endif
  17040. }
  17041. int ggml_cpu_has_vsx(void) {
  17042. #if defined(__POWER9_VECTOR__)
  17043. return 1;
  17044. #else
  17045. return 0;
  17046. #endif
  17047. }
  17048. ////////////////////////////////////////////////////////////////////////////////