| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314 |
- #include "build-info.h"
- #include "common.h"
- #include "llama.h"
- #include "grammar-parser.h"
- #include <cmath>
- #include <cstdio>
- #include <string>
- #include <vector>
- int main(int argc, char ** argv) {
- gpt_params params;
- if (gpt_params_parse(argc, argv, params) == false) {
- return 1;
- }
- if (params.model_draft.empty()) {
- fprintf(stderr, "%s: error: --model-draft is required\n", __func__);
- return 1;
- }
- #ifndef LOG_DISABLE_LOGS
- log_set_target(log_filename_generator("speculative", "log"));
- LOG_TEE("Log start\n");
- log_dump_cmdline(argc, argv);
- #endif // LOG_DISABLE_LOGS
- // init llama.cpp
- llama_backend_init(params.numa);
- llama_model * model_tgt = NULL;
- llama_model * model_dft = NULL;
- llama_context * ctx_tgt = NULL;
- llama_context * ctx_dft = NULL;
- // load the target model
- params.logits_all = true;
- std::tie(model_tgt, ctx_tgt) = llama_init_from_gpt_params(params);
- // load the draft model
- params.model = params.model_draft;
- params.n_gpu_layers = params.n_gpu_layers_draft;
- std::tie(model_dft, ctx_dft) = llama_init_from_gpt_params(params);
- // tokenize the prompt
- std::vector<llama_token> inp;
- inp = ::llama_tokenize(ctx_tgt, params.prompt, true);
- const int max_context_size = llama_n_ctx(ctx_tgt);
- const int max_tokens_list_size = max_context_size - 4;
- if ((int) inp.size() > max_tokens_list_size) {
- fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
- return 1;
- }
- fprintf(stderr, "\n\n");
- for (auto id : inp) {
- fprintf(stderr, "%s", llama_token_to_piece(ctx_tgt, id).c_str());
- }
- fflush(stderr);
- const int n_input = inp.size();
- const auto t_enc_start = ggml_time_us();
- // eval the prompt with both models
- llama_decode(ctx_tgt, llama_batch_get_one( inp.data(), n_input - 1, 0, 0), params.n_threads);
- llama_decode(ctx_tgt, llama_batch_get_one(&inp.back(), 1, n_input - 1, 0), params.n_threads);
- llama_decode(ctx_dft, llama_batch_get_one( inp.data(), n_input, 0, 0), params.n_threads);
- const auto t_enc_end = ggml_time_us();
- // the 2 models should have the same vocab
- const int n_ctx = llama_n_ctx(ctx_tgt);
- const int n_vocab = llama_n_vocab(ctx_tgt);
- //GGML_ASSERT(n_vocab == llama_n_vocab(ctx_dft));
- // how many tokens to draft each time
- int n_draft = params.n_draft;
- int n_predict = 0;
- int n_drafted = 0;
- int n_accept = 0;
- int n_past_tgt = inp.size();
- int n_past_dft = inp.size();
- std::vector<llama_token> drafted;
- std::vector<llama_token> last_tokens(n_ctx);
- std::fill(last_tokens.begin(), last_tokens.end(), 0);
- for (auto & id : inp) {
- last_tokens.erase(last_tokens.begin());
- last_tokens.push_back(id);
- }
- std::vector<llama_token_data> candidates;
- candidates.reserve(n_vocab);
- // used to determine end of generation
- bool has_eos = false;
- // grammar stuff
- struct llama_grammar * grammar_dft = NULL;
- struct llama_grammar * grammar_tgt = NULL;
- grammar_parser::parse_state parsed_grammar;
- // if requested - load the grammar, error checking is omitted for brevity
- if (!params.grammar.empty()) {
- parsed_grammar = grammar_parser::parse(params.grammar.c_str());
- // will be empty (default) if there are parse errors
- if (parsed_grammar.rules.empty()) {
- return 1;
- }
- std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
- grammar_tgt = llama_grammar_init(grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
- }
- const auto t_dec_start = ggml_time_us();
- while (true) {
- LOG("drafted: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_dft, drafted));
- int i_dft = 0;
- while (true) {
- // sample from the target model
- llama_token id = llama_sample_token(ctx_tgt, NULL, grammar_tgt, params, last_tokens, candidates, i_dft);
- // remember which tokens were sampled - used for repetition penalties during sampling
- last_tokens.erase(last_tokens.begin());
- last_tokens.push_back(id);
- //LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_tgt, last_tokens));
- const std::string token_str = llama_token_to_piece(ctx_tgt, id);
- printf("%s", token_str.c_str());
- fflush(stdout);
- if (id == llama_token_eos(ctx_tgt)) {
- has_eos = true;
- }
- ++n_predict;
- // check if the draft matches the target
- if (i_dft < (int) drafted.size() && id == drafted[i_dft]) {
- LOG("the sampled target token matches the %dth drafted token (%d, '%s') - accepted\n", i_dft, id, token_str.c_str());
- ++n_accept;
- ++n_past_tgt;
- ++n_past_dft;
- ++i_dft;
- continue;
- }
- // the drafted token was rejected or we are out of drafted tokens
- if (i_dft < (int) drafted.size()) {
- LOG("the %dth drafted token (%d, '%s') does not match the sampled target token (%d, '%s') - rejected\n",
- i_dft, drafted[i_dft], llama_token_to_piece(ctx_dft, drafted[i_dft]).c_str(), id, token_str.c_str());
- } else {
- LOG("out of drafted tokens\n");
- }
- llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, n_ctx);
- llama_decode(ctx_dft, llama_batch_get_one(&id, 1, n_past_dft, 0), params.n_threads);
- ++n_past_dft;
- // heuristic for n_draft
- {
- const int n_draft_cur = (int) drafted.size();
- const bool all_accepted = i_dft == n_draft_cur;
- LOG("n_draft = %d\n", n_draft);
- LOG("n_draft_cur = %d\n", n_draft_cur);
- LOG("i_dft = %d\n", i_dft);
- LOG("all_accepted = %d\n", all_accepted);
- if (all_accepted && n_draft == n_draft_cur) {
- LOG(" - max drafted tokens accepted - n_draft += 8\n");
- n_draft = std::min(30, n_draft + 8);
- } else if (all_accepted) {
- LOG(" - partially drafted tokens accepted - no change\n");
- } else {
- LOG(" - drafted token rejected - n_draft -= 1\n");
- n_draft = std::max(2, n_draft - 1);
- }
- }
- drafted.clear();
- drafted.push_back(id);
- break;
- }
- if (n_predict > params.n_predict || has_eos) {
- break;
- }
- if (grammar_tgt) {
- if (grammar_dft) {
- llama_grammar_free(grammar_dft);
- }
- grammar_dft = llama_grammar_copy(grammar_tgt);
- LOG("copied target grammar to draft grammar\n");
- }
- // sample n_draft tokens from the draft model using greedy decoding
- int n_past_cur = n_past_dft;
- for (int i = 0; i < n_draft; ++i) {
- float * logits = llama_get_logits(ctx_dft);
- candidates.clear();
- for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
- candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
- }
- llama_token_data_array cur_p = { candidates.data(), candidates.size(), false };
- if (grammar_dft != NULL) {
- llama_sample_grammar(ctx_dft, &cur_p, grammar_dft);
- }
- // computes softmax and sorts the candidates
- llama_sample_softmax(ctx_dft, &cur_p);
- for (int i = 0; i < 3; ++i) {
- LOG(" - draft candidate %3d: %6d (%8.3f) '%s'\n", i, cur_p.data[i].id, cur_p.data[i].p, llama_token_to_piece(ctx_dft, cur_p.data[i].id).c_str());
- }
- // TODO: better logic?
- if (cur_p.data[0].p < 2*cur_p.data[1].p) {
- LOG("stopping drafting, probability too low: %.3f < 2*%.3f\n", cur_p.data[0].p, cur_p.data[1].p);
- break;
- }
- // drafted token
- const llama_token id = cur_p.data[0].id;
- drafted.push_back(id);
- ++n_drafted;
- // no need to evaluate the last drafted token, since we won't use the result
- if (i == n_draft - 1) {
- break;
- }
- // evaluate the drafted token on the draft model
- llama_kv_cache_seq_rm(ctx_dft, 0, n_past_cur, n_ctx);
- llama_decode(ctx_dft, llama_batch_get_one(&drafted.back(), 1, n_past_cur, 0), params.n_threads);
- ++n_past_cur;
- if (grammar_dft != NULL) {
- llama_grammar_accept_token(ctx_dft, grammar_dft, id);
- }
- }
- // evaluate the target model on the drafted tokens
- llama_kv_cache_seq_rm(ctx_tgt, 0, n_past_tgt, n_ctx);
- llama_decode(ctx_tgt, llama_batch_get_one(drafted.data(), drafted.size(), n_past_tgt, 0), params.n_threads);
- ++n_past_tgt;
- // the first token is always proposed by the traget model before the speculation loop
- drafted.erase(drafted.begin());
- }
- auto t_dec_end = ggml_time_us();
- LOG_TEE("\n\n");
- LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
- LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
- // TODO: make sure these numbers are computed correctly
- LOG_TEE("\n");
- LOG_TEE("n_draft = %d\n", n_draft);
- LOG_TEE("n_predict = %d\n", n_predict);
- LOG_TEE("n_drafted = %d\n", n_drafted);
- LOG_TEE("n_accept = %d\n", n_accept);
- LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
- LOG_TEE("\ndraft:\n");
- llama_print_timings(ctx_dft);
- LOG_TEE("\ntarget:\n");
- llama_print_timings(ctx_tgt);
- llama_free(ctx_tgt);
- llama_free_model(model_tgt);
- llama_free(ctx_dft);
- llama_free_model(model_dft);
- if (grammar_dft != NULL) {
- llama_grammar_free(grammar_dft);
- llama_grammar_free(grammar_tgt);
- }
- llama_backend_free();
- fprintf(stderr, "\n\n");
- return 0;
- }
|