test-opt.cpp 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209
  1. #include "ggml.h"
  2. #include <cmath>
  3. #include <cstdio>
  4. #include <cstdlib>
  5. #include <cassert>
  6. #define MAX_NARGS 2
  7. #if defined(__GNUC__)
  8. #pragma GCC diagnostic ignored "-Wdouble-promotion"
  9. #endif
  10. //
  11. // logging
  12. //
  13. #define GGML_DEBUG 0
  14. #if (GGML_DEBUG >= 1)
  15. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  16. #else
  17. #define GGML_PRINT_DEBUG(...)
  18. #endif
  19. #if (GGML_DEBUG >= 5)
  20. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  21. #else
  22. #define GGML_PRINT_DEBUG_5(...)
  23. #endif
  24. #if (GGML_DEBUG >= 10)
  25. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  26. #else
  27. #define GGML_PRINT_DEBUG_10(...)
  28. #endif
  29. #define GGML_PRINT(...) printf(__VA_ARGS__)
  30. static float frand(void) {
  31. return (float)rand()/(float)RAND_MAX;
  32. }
  33. static int irand(int n) {
  34. return rand()%n;
  35. }
  36. static void get_random_dims(int64_t * dims, int ndims) {
  37. dims[0] = dims[1] = dims[2] = dims[3] = 1;
  38. for (int i = 0; i < ndims; i++) {
  39. dims[i] = 1 + irand(4);
  40. }
  41. }
  42. static void get_random_dims_minmax(int64_t * dims, int ndims, int min, int max) {
  43. dims[0] = dims[1] = dims[2] = dims[3] = 1;
  44. for (int i = 0; i < ndims; i++) {
  45. dims[i] = min + irand(max-min);
  46. }
  47. }
  48. static struct ggml_tensor * get_random_tensor(
  49. struct ggml_context * ctx0, int ndims, int64_t ne[], float fmin, float fmax
  50. ) {
  51. struct ggml_tensor * result = ggml_new_tensor(ctx0, GGML_TYPE_F32, ndims, ne);
  52. switch (ndims) {
  53. case 1:
  54. for (int i0 = 0; i0 < ne[0]; i0++) {
  55. ((float *)result->data)[i0] = frand()*(fmax - fmin) + fmin;
  56. }
  57. break;
  58. case 2:
  59. for (int i1 = 0; i1 < ne[1]; i1++) {
  60. for (int i0 = 0; i0 < ne[0]; i0++) {
  61. ((float *)result->data)[i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
  62. }
  63. }
  64. break;
  65. case 3:
  66. for (int i2 = 0; i2 < ne[2]; i2++) {
  67. for (int i1 = 0; i1 < ne[1]; i1++) {
  68. for (int i0 = 0; i0 < ne[0]; i0++) {
  69. ((float *)result->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
  70. }
  71. }
  72. }
  73. break;
  74. case 4:
  75. for (int i3 = 0; i3 < ne[3]; i3++) {
  76. for (int i2 = 0; i2 < ne[2]; i2++) {
  77. for (int i1 = 0; i1 < ne[1]; i1++) {
  78. for (int i0 = 0; i0 < ne[0]; i0++) {
  79. ((float *)result->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
  80. }
  81. }
  82. }
  83. }
  84. break;
  85. default:
  86. assert(false);
  87. };
  88. return result;
  89. }
  90. static float get_element(const struct ggml_tensor * t, int idx) {
  91. return ((float *)t->data)[idx];
  92. }
  93. static void set_element(struct ggml_tensor * t, int idx, float value) {
  94. ((float *)t->data)[idx] = value;
  95. }
  96. int main(void) {
  97. struct ggml_init_params params = {
  98. /* .mem_size = */ 1024*1024*1024,
  99. /* .mem_buffer = */ NULL,
  100. /* .no_alloc = */ false,
  101. };
  102. struct ggml_context * ctx = ggml_init(params);
  103. int64_t ne1[4] = {4, 128, 1, 1};
  104. int64_t ne2[4] = {4, 256, 1, 1};;
  105. int64_t ne3[4] = {128, 256, 1, 1};
  106. struct ggml_tensor * a = get_random_tensor(ctx, 2, ne1, -1, +1);
  107. struct ggml_tensor * b = get_random_tensor(ctx, 2, ne2, -1, +1);
  108. ggml_set_param(ctx, a);
  109. ggml_set_param(ctx, b);
  110. struct ggml_tensor * c = get_random_tensor(ctx, 2, ne3, -1, +1);
  111. struct ggml_tensor * ab = ggml_mul_mat(ctx, a, b);
  112. struct ggml_tensor * d = ggml_sub(ctx, c, ab);
  113. struct ggml_tensor * e = ggml_sum(ctx, ggml_sqr(ctx, d));
  114. struct ggml_cgraph ge = ggml_build_forward(e);
  115. ggml_graph_reset(&ge);
  116. ggml_graph_compute_with_ctx(ctx, &ge, /*n_threads*/ 1);
  117. const float fe = ggml_get_f32_1d(e, 0);
  118. printf("%s: e = %.4f\n", __func__, fe);
  119. struct ggml_opt_params opt_params = ggml_opt_default_params(GGML_OPT_ADAM);
  120. ggml_opt(ctx, opt_params, e);
  121. ggml_graph_reset(&ge);
  122. ggml_graph_compute_with_ctx(ctx, &ge, /*n_threads*/ 1);
  123. const float fe_opt = ggml_get_f32_1d(e, 0);
  124. printf("%s: original e = %.4f\n", __func__, fe);
  125. printf("%s: optimized e = %.4f\n", __func__, fe_opt);
  126. const bool success = (fe_opt <= fe);
  127. assert(success);
  128. ggml_free(ctx);
  129. return success ? 0 : -1;
  130. }
  131. // int64_t ne1[4] = {4, 128, 1, 1};
  132. // int64_t ne2[4] = {4, 256, 1, 1};;
  133. // int64_t ne3[4] = {128, 256, 1, 1};
  134. // main: original e = 25890.9375
  135. // main: optimized e = 10094.7031
  136. // int64_t ne1[4] = {8, 128, 1, 1};
  137. // int64_t ne2[4] = {8, 256, 1, 1};;
  138. // int64_t ne3[4] = {128, 256, 1, 1};
  139. // main: original e = 39429.5078
  140. // main: optimized e = 9275.8936
  141. // int64_t ne1[4] = {16, 128, 1, 1};
  142. // int64_t ne2[4] = {16, 256, 1, 1};;
  143. // int64_t ne3[4] = {128, 256, 1, 1};
  144. // main: original e = 68371.1328
  145. // main: optimized e = 7854.4502
  146. // int64_t ne1[4] = {32, 128, 1, 1};
  147. // int64_t ne2[4] = {32, 256, 1, 1};;
  148. // int64_t ne3[4] = {128, 256, 1, 1};
  149. // main: original e = 126061.1953
  150. // main: optimized e = 5451.0166
  151. // int64_t ne1[4] = {4, 1024, 1, 1};
  152. // int64_t ne2[4] = {4, 2048, 1, 1};;
  153. // int64_t ne3[4] = {1024, 2048, 1, 1};
  154. // main: original e = 1620817.8750
  155. // main: optimized e = 698387.6875
  156. // another run on M1
  157. // int64_t ne1[4] = {4, 1024, 1, 1};
  158. // int64_t ne2[4] = {4, 2048, 1, 1};;
  159. // int64_t ne3[4] = {1024, 2048, 1, 1};
  160. // main: original e = 1629595.6250
  161. // main: optimized e = 698169.1250
  162. // int64_t ne1[4] = {32, 1024, 1, 1};
  163. // int64_t ne2[4] = {32, 2048, 1, 1};;
  164. // int64_t ne3[4] = {1024, 2048, 1, 1};
  165. // main: original e = 8146770.5000
  166. // main: optimized e = 651119.1250