| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195 |
- #include "ggml.h"
- #include "llama.h"
- #ifdef NDEBUG
- #undef NDEBUG
- #endif
- #include <cmath>
- #include <numeric>
- #include <cassert>
- #include <iostream>
- #include <vector>
- #include <algorithm>
- static void dump(const llama_token_data_array * candidates) {
- for (size_t i = 0; i < candidates->size; i++) {
- printf("%d: %f (%f)\n", candidates->data[i].id, candidates->data[i].p, candidates->data[i].logit);
- }
- }
- #define DUMP(__candidates) do { printf("%s:%d (%s)\n", __FILE__, __LINE__, __func__); dump((__candidates)); printf("-\n"); } while(0)
- static void test_top_k(const std::vector<float> & probs, const std::vector<float> & expected_probs, int k) {
- size_t n_vocab = probs.size();
- std::vector<llama_token_data> candidates;
- candidates.reserve(n_vocab);
- for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
- float logit = log(probs[token_id]);
- candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
- }
- llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
- llama_sample_softmax(nullptr, &candidates_p);
- DUMP(&candidates_p);
- llama_sample_top_k(nullptr, &candidates_p, k, 1);
- DUMP(&candidates_p);
- assert(candidates_p.size == expected_probs.size());
- for (size_t i = 0; i < candidates_p.size; i++) {
- assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-5);
- }
- }
- static void test_top_p(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
- size_t n_vocab = probs.size();
- std::vector<llama_token_data> candidates;
- candidates.reserve(n_vocab);
- for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
- float logit = log(probs[token_id]);
- candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
- }
- llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
- llama_sample_softmax(nullptr, &candidates_p);
- DUMP(&candidates_p);
- llama_sample_top_p(nullptr, &candidates_p, p, 1);
- DUMP(&candidates_p);
- assert(candidates_p.size == expected_probs.size());
- for (size_t i = 0; i < candidates_p.size; i++) {
- assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
- }
- }
- static void test_tfs(const std::vector<float> & probs, const std::vector<float> & expected_probs, float z) {
- size_t n_vocab = probs.size();
- std::vector<llama_token_data> candidates;
- candidates.reserve(n_vocab);
- for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
- float logit = log(probs[token_id]);
- candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
- }
- llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
- DUMP(&candidates_p);
- llama_sample_tail_free(nullptr, &candidates_p, z, 1);
- DUMP(&candidates_p);
- assert(candidates_p.size == expected_probs.size());
- for (size_t i = 0; i < candidates_p.size; i++) {
- assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
- }
- }
- static void test_typical(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
- size_t n_vocab = probs.size();
- std::vector<llama_token_data> candidates;
- candidates.reserve(n_vocab);
- for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
- float logit = log(probs[token_id]);
- candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
- }
- llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
- DUMP(&candidates_p);
- llama_sample_typical(nullptr, &candidates_p, p, 1);
- DUMP(&candidates_p);
- assert(candidates_p.size == expected_probs.size());
- for (size_t i = 0; i < candidates_p.size; i++) {
- assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
- }
- }
- static void test_repetition_penalty(
- const std::vector<float> & probs, const std::vector<llama_token> & last_tokens,
- const std::vector<float> & expected_probs, float penalty
- ) {
- assert(probs.size() == expected_probs.size());
- size_t n_vocab = probs.size();
- std::vector<llama_token_data> candidates;
- candidates.reserve(n_vocab);
- for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
- float logit = log(probs[token_id]);
- candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
- }
- llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
- llama_sample_softmax(nullptr, &candidates_p);
- DUMP(&candidates_p);
- llama_sample_repetition_penalty(nullptr, &candidates_p, (const llama_token *) last_tokens.data(), last_tokens.size(), penalty);
- llama_sample_softmax(nullptr, &candidates_p);
- DUMP(&candidates_p);
- assert(candidates_p.size == expected_probs.size());
- for (size_t i = 0; i < candidates_p.size; i++) {
- assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-6);
- }
- }
- static void test_frequency_presence_penalty(
- const std::vector<float> & probs, const std::vector<llama_token> & last_tokens,
- const std::vector<float> & expected_probs, float alpha_frequency, float alpha_presence
- ) {
- assert(probs.size() == expected_probs.size());
- size_t n_vocab = probs.size();
- std::vector<llama_token_data> candidates;
- candidates.reserve(n_vocab);
- for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
- float logit = log(probs[token_id]);
- candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
- }
- llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
- llama_sample_softmax(nullptr, &candidates_p);
- // DUMP(&candidates_p);
- llama_sample_frequency_and_presence_penalties(nullptr, &candidates_p, (const llama_token *) last_tokens.data(), last_tokens.size(), alpha_frequency, alpha_presence);
- llama_sample_softmax(nullptr, &candidates_p);
- // DUMP(&candidates_p);
- assert(candidates_p.size == expected_probs.size());
- for (size_t i = 0; i < candidates_p.size; i++) {
- assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
- }
- }
- int main(void) {
- ggml_time_init();
- test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 1);
- test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f}, 3);
- test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 0);
- test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f}, 0.7f);
- test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f}, 0.8f);
- test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 1);
- test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f}, 0.25f);
- test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f, 0.25f}, 0.75f);
- test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f, 0.25f}, 0.99f);
- test_typical({0.97f, 0.01f, 0.01f, 0.01f}, {0.97f}, 0.5f);
- test_typical({0.4f, 0.2f, 0.2f, 0.2f}, {0.2f, 0.2f, 0.2f}, 0.5f);
- test_repetition_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.25f, 0.25f, 0.25f, 0.25f, 0}, 50.0f);
- test_repetition_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.5f, 0.5f, 0, 0, 0}, 50.0f);
- test_repetition_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.5f, 0.5f, 0, 0, 0}, 50.0f);
- test_frequency_presence_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.249997f, 0.249997f, 0.249997f, 0.249997f, 0.000011f}, 5.0f, 5.0f);
- test_frequency_presence_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.499966f, 0.499966f, 0.000023f, 0.000023f, 0.000023f}, 5.0f, 5.0f);
- test_frequency_presence_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.499977f, 0.499977f, 0.000023f, 0.000023f, 0.000000f}, 5.0f, 5.0f);
- printf("OK\n");
- return 0;
- }
|