ggml.c 514 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #if defined(GGML_USE_ACCELERATE)
  116. #include <Accelerate/Accelerate.h>
  117. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  118. #include "ggml-opencl.h"
  119. #endif
  120. #elif defined(GGML_USE_OPENBLAS)
  121. #include <cblas.h>
  122. #elif defined(GGML_USE_CUBLAS)
  123. #include "ggml-cuda.h"
  124. #elif defined(GGML_USE_CLBLAST)
  125. #include "ggml-opencl.h"
  126. #endif
  127. #undef MIN
  128. #undef MAX
  129. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  130. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  131. // floating point type used to accumulate sums
  132. typedef double ggml_float;
  133. // 16-bit float
  134. // on Arm, we use __fp16
  135. // on x86, we use uint16_t
  136. #ifdef __ARM_NEON
  137. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  138. //
  139. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  140. //
  141. #include <arm_neon.h>
  142. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  143. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  144. #define GGML_FP16_TO_FP32(x) ((float) (x))
  145. #define GGML_FP32_TO_FP16(x) (x)
  146. #else
  147. #ifdef __wasm_simd128__
  148. #include <wasm_simd128.h>
  149. #else
  150. #ifdef __POWER9_VECTOR__
  151. #include <altivec.h>
  152. #undef bool
  153. #define bool _Bool
  154. #else
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #include <intrin.h>
  157. #else
  158. #if !defined(__riscv)
  159. #include <immintrin.h>
  160. #endif
  161. #endif
  162. #endif
  163. #endif
  164. #ifdef __F16C__
  165. #ifdef _MSC_VER
  166. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  167. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  168. #else
  169. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  170. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  171. #endif
  172. #elif defined(__POWER9_VECTOR__)
  173. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  174. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  175. /* the inline asm below is about 12% faster than the lookup method */
  176. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  177. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  178. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  179. register float f;
  180. register double d;
  181. __asm__(
  182. "mtfprd %0,%2\n"
  183. "xscvhpdp %0,%0\n"
  184. "frsp %1,%0\n" :
  185. /* temp */ "=d"(d),
  186. /* out */ "=f"(f):
  187. /* in */ "r"(h));
  188. return f;
  189. }
  190. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  191. register double d;
  192. register ggml_fp16_t r;
  193. __asm__( /* xscvdphp can work on double or single precision */
  194. "xscvdphp %0,%2\n"
  195. "mffprd %1,%0\n" :
  196. /* temp */ "=d"(d),
  197. /* out */ "=r"(r):
  198. /* in */ "f"(f));
  199. return r;
  200. }
  201. #else
  202. // FP16 <-> FP32
  203. // ref: https://github.com/Maratyszcza/FP16
  204. static inline float fp32_from_bits(uint32_t w) {
  205. union {
  206. uint32_t as_bits;
  207. float as_value;
  208. } fp32;
  209. fp32.as_bits = w;
  210. return fp32.as_value;
  211. }
  212. static inline uint32_t fp32_to_bits(float f) {
  213. union {
  214. float as_value;
  215. uint32_t as_bits;
  216. } fp32;
  217. fp32.as_value = f;
  218. return fp32.as_bits;
  219. }
  220. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  221. const uint32_t w = (uint32_t) h << 16;
  222. const uint32_t sign = w & UINT32_C(0x80000000);
  223. const uint32_t two_w = w + w;
  224. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  225. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  226. const float exp_scale = 0x1.0p-112f;
  227. #else
  228. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  229. #endif
  230. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  231. const uint32_t magic_mask = UINT32_C(126) << 23;
  232. const float magic_bias = 0.5f;
  233. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  234. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  235. const uint32_t result = sign |
  236. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  237. return fp32_from_bits(result);
  238. }
  239. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  240. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  241. const float scale_to_inf = 0x1.0p+112f;
  242. const float scale_to_zero = 0x1.0p-110f;
  243. #else
  244. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  245. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  246. #endif
  247. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  248. const uint32_t w = fp32_to_bits(f);
  249. const uint32_t shl1_w = w + w;
  250. const uint32_t sign = w & UINT32_C(0x80000000);
  251. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  252. if (bias < UINT32_C(0x71000000)) {
  253. bias = UINT32_C(0x71000000);
  254. }
  255. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  256. const uint32_t bits = fp32_to_bits(base);
  257. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  258. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  259. const uint32_t nonsign = exp_bits + mantissa_bits;
  260. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  261. }
  262. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  263. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  264. #endif // __F16C__
  265. #endif // __ARM_NEON
  266. //
  267. // global data
  268. //
  269. // precomputed gelu table for f16 (128 KB)
  270. static ggml_fp16_t table_gelu_f16[1 << 16];
  271. // precomputed silu table for f16 (128 KB)
  272. static ggml_fp16_t table_silu_f16[1 << 16];
  273. // precomputed exp table for f16 (128 KB)
  274. static ggml_fp16_t table_exp_f16[1 << 16];
  275. // precomputed f32 table for f16 (256 KB)
  276. static float table_f32_f16[1 << 16];
  277. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  278. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  279. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  280. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  281. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  282. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  283. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  284. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  285. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  286. // precomputed tables for expanding 8bits to 8 bytes:
  287. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  288. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  289. #endif
  290. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  291. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  292. // This is also true for POWER9.
  293. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  294. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  295. uint16_t s;
  296. memcpy(&s, &f, sizeof(uint16_t));
  297. return table_f32_f16[s];
  298. }
  299. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  300. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  301. #endif
  302. // note: do not use these inside ggml.c
  303. // these are meant to be used via the ggml.h API
  304. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  305. return (float) GGML_FP16_TO_FP32(x);
  306. }
  307. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  308. return GGML_FP32_TO_FP16(x);
  309. }
  310. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
  311. for (size_t i = 0; i < n; i++) {
  312. y[i] = GGML_FP16_TO_FP32(x[i]);
  313. }
  314. }
  315. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
  316. size_t i = 0;
  317. #if defined(__F16C__)
  318. for (; i + 7 < n; i += 8) {
  319. __m256 x_vec = _mm256_loadu_ps(x + i);
  320. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  321. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  322. }
  323. for(; i + 3 < n; i += 4) {
  324. __m128 x_vec = _mm_loadu_ps(x + i);
  325. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  326. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  327. }
  328. #endif
  329. for (; i < n; i++) {
  330. y[i] = GGML_FP32_TO_FP16(x[i]);
  331. }
  332. }
  333. //
  334. // timing
  335. //
  336. #if defined(_MSC_VER) || defined(__MINGW32__)
  337. static int64_t timer_freq;
  338. void ggml_time_init(void) {
  339. LARGE_INTEGER frequency;
  340. QueryPerformanceFrequency(&frequency);
  341. timer_freq = frequency.QuadPart;
  342. }
  343. int64_t ggml_time_ms(void) {
  344. LARGE_INTEGER t;
  345. QueryPerformanceCounter(&t);
  346. return (t.QuadPart * 1000) / timer_freq;
  347. }
  348. int64_t ggml_time_us(void) {
  349. LARGE_INTEGER t;
  350. QueryPerformanceCounter(&t);
  351. return (t.QuadPart * 1000000) / timer_freq;
  352. }
  353. #else
  354. void ggml_time_init(void) {}
  355. int64_t ggml_time_ms(void) {
  356. struct timespec ts;
  357. clock_gettime(CLOCK_MONOTONIC, &ts);
  358. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  359. }
  360. int64_t ggml_time_us(void) {
  361. struct timespec ts;
  362. clock_gettime(CLOCK_MONOTONIC, &ts);
  363. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  364. }
  365. #endif
  366. int64_t ggml_cycles(void) {
  367. return clock();
  368. }
  369. int64_t ggml_cycles_per_ms(void) {
  370. return CLOCKS_PER_SEC/1000;
  371. }
  372. #ifdef GGML_PERF
  373. #define ggml_perf_time_ms() ggml_time_ms()
  374. #define ggml_perf_time_us() ggml_time_us()
  375. #define ggml_perf_cycles() ggml_cycles()
  376. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  377. #else
  378. #define ggml_perf_time_ms() 0
  379. #define ggml_perf_time_us() 0
  380. #define ggml_perf_cycles() 0
  381. #define ggml_perf_cycles_per_ms() 0
  382. #endif
  383. //
  384. // cache line
  385. //
  386. #if defined(__cpp_lib_hardware_interference_size)
  387. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  388. #else
  389. #if defined(__POWER9_VECTOR__)
  390. #define CACHE_LINE_SIZE 128
  391. #else
  392. #define CACHE_LINE_SIZE 64
  393. #endif
  394. #endif
  395. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  396. //
  397. // quantization
  398. //
  399. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  400. // multiply int8_t, add results pairwise twice
  401. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  402. // Get absolute values of x vectors
  403. const __m128i ax = _mm_sign_epi8(x, x);
  404. // Sign the values of the y vectors
  405. const __m128i sy = _mm_sign_epi8(y, x);
  406. // Perform multiplication and create 16-bit values
  407. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  408. const __m128i ones = _mm_set1_epi16(1);
  409. return _mm_madd_epi16(ones, dot);
  410. }
  411. #if __AVX__ || __AVX2__ || __AVX512F__
  412. // horizontally add 8 floats
  413. static inline float hsum_float_8(const __m256 x) {
  414. __m128 res = _mm256_extractf128_ps(x, 1);
  415. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  416. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  417. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  418. return _mm_cvtss_f32(res);
  419. }
  420. // horizontally add 8 int32_t
  421. static inline int hsum_i32_8(const __m256i a) {
  422. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  423. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  424. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  425. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  426. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  427. }
  428. // horizontally add 4 int32_t
  429. static inline int hsum_i32_4(const __m128i a) {
  430. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  431. const __m128i sum64 = _mm_add_epi32(hi64, a);
  432. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  433. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  434. }
  435. #if defined(__AVX2__) || defined(__AVX512F__)
  436. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  437. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  438. uint32_t x32;
  439. memcpy(&x32, x, sizeof(uint32_t));
  440. const __m256i shuf_mask = _mm256_set_epi64x(
  441. 0x0303030303030303, 0x0202020202020202,
  442. 0x0101010101010101, 0x0000000000000000);
  443. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  444. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  445. bytes = _mm256_or_si256(bytes, bit_mask);
  446. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  447. }
  448. // Unpack 32 4-bit fields into 32 bytes
  449. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  450. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  451. {
  452. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  453. const __m256i bytes = _mm256_set_m128i(_mm_srli_epi16(tmp, 4), tmp);
  454. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  455. return _mm256_and_si256(lowMask, bytes);
  456. }
  457. // add int16_t pairwise and return as float vector
  458. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  459. const __m256i ones = _mm256_set1_epi16(1);
  460. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  461. return _mm256_cvtepi32_ps(summed_pairs);
  462. }
  463. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  464. #if __AVXVNNI__
  465. const __m256i zero = _mm256_setzero_si256();
  466. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  467. return _mm256_cvtepi32_ps(summed_pairs);
  468. #else
  469. // Perform multiplication and create 16-bit values
  470. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  471. return sum_i16_pairs_float(dot);
  472. #endif
  473. }
  474. // multiply int8_t, add results pairwise twice and return as float vector
  475. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  476. #if __AVXVNNIINT8__
  477. const __m256i zero = _mm256_setzero_si256();
  478. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  479. return _mm256_cvtepi32_ps(summed_pairs);
  480. #else
  481. // Get absolute values of x vectors
  482. const __m256i ax = _mm256_sign_epi8(x, x);
  483. // Sign the values of the y vectors
  484. const __m256i sy = _mm256_sign_epi8(y, x);
  485. return mul_sum_us8_pairs_float(ax, sy);
  486. #endif
  487. }
  488. static inline __m128i packNibbles( __m256i bytes )
  489. {
  490. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  491. #if __AVX512F__
  492. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  493. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  494. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  495. #else
  496. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  497. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  498. __m256i low = _mm256_and_si256( lowByte, bytes );
  499. high = _mm256_srli_epi16( high, 4 );
  500. bytes = _mm256_or_si256( low, high );
  501. // Compress uint16_t lanes into bytes
  502. __m128i r0 = _mm256_castsi256_si128( bytes );
  503. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  504. return _mm_packus_epi16( r0, r1 );
  505. #endif
  506. }
  507. #elif defined(__AVX__)
  508. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  509. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  510. uint32_t x32;
  511. memcpy(&x32, x, sizeof(uint32_t));
  512. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  513. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  514. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  515. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  516. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  517. bytesl = _mm_or_si128(bytesl, bit_mask);
  518. bytesh = _mm_or_si128(bytesh, bit_mask);
  519. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  520. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  521. return _mm256_set_m128i(bytesh, bytesl);
  522. }
  523. // Unpack 32 4-bit fields into 32 bytes
  524. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  525. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  526. {
  527. // Load 16 bytes from memory
  528. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  529. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  530. const __m128i lowMask = _mm_set1_epi8(0xF);
  531. tmpl = _mm_and_si128(lowMask, tmpl);
  532. tmph = _mm_and_si128(lowMask, tmph);
  533. return _mm256_set_m128i(tmph, tmpl);
  534. }
  535. // add int16_t pairwise and return as float vector
  536. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  537. const __m128i ones = _mm_set1_epi16(1);
  538. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  539. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  540. const __m256i summed_pairs = _mm256_set_m128i(summed_pairsh, summed_pairsl);
  541. return _mm256_cvtepi32_ps(summed_pairs);
  542. }
  543. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  544. const __m128i axl = _mm256_castsi256_si128(ax);
  545. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  546. const __m128i syl = _mm256_castsi256_si128(sy);
  547. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  548. // Perform multiplication and create 16-bit values
  549. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  550. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  551. return sum_i16_pairs_float(doth, dotl);
  552. }
  553. // multiply int8_t, add results pairwise twice and return as float vector
  554. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  555. const __m128i xl = _mm256_castsi256_si128(x);
  556. const __m128i xh = _mm256_extractf128_si256(x, 1);
  557. const __m128i yl = _mm256_castsi256_si128(y);
  558. const __m128i yh = _mm256_extractf128_si256(y, 1);
  559. // Get absolute values of x vectors
  560. const __m128i axl = _mm_sign_epi8(xl, xl);
  561. const __m128i axh = _mm_sign_epi8(xh, xh);
  562. // Sign the values of the y vectors
  563. const __m128i syl = _mm_sign_epi8(yl, xl);
  564. const __m128i syh = _mm_sign_epi8(yh, xh);
  565. // Perform multiplication and create 16-bit values
  566. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  567. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  568. return sum_i16_pairs_float(doth, dotl);
  569. }
  570. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  571. {
  572. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  573. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  574. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  575. __m128i low = _mm_and_si128( lowByte, bytes1 );
  576. high = _mm_srli_epi16( high, 4 );
  577. bytes1 = _mm_or_si128( low, high );
  578. high = _mm_andnot_si128( lowByte, bytes2 );
  579. low = _mm_and_si128( lowByte, bytes2 );
  580. high = _mm_srli_epi16( high, 4 );
  581. bytes2 = _mm_or_si128( low, high );
  582. return _mm_packus_epi16( bytes1, bytes2);
  583. }
  584. #endif
  585. #elif defined(__SSSE3__)
  586. // horizontally add 4x4 floats
  587. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  588. __m128 res_0 =_mm_hadd_ps(a, b);
  589. __m128 res_1 =_mm_hadd_ps(c, d);
  590. __m128 res =_mm_hadd_ps(res_0, res_1);
  591. res =_mm_hadd_ps(res, res);
  592. res =_mm_hadd_ps(res, res);
  593. return _mm_cvtss_f32(res);
  594. }
  595. #endif // __AVX__ || __AVX2__ || __AVX512F__
  596. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  597. #if defined(__ARM_NEON)
  598. #if !defined(__aarch64__)
  599. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  600. return
  601. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  602. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  603. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  604. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  605. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  606. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  607. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  608. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  609. }
  610. inline static int16_t vaddvq_s8(int8x16_t v) {
  611. return
  612. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  613. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  614. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  615. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  616. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  617. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  618. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  619. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  620. }
  621. inline static int32_t vaddvq_s16(int16x8_t v) {
  622. return
  623. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  624. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  625. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  626. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  627. }
  628. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  629. return
  630. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  631. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  632. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  633. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  634. }
  635. inline static int32_t vaddvq_s32(int32x4_t v) {
  636. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  637. }
  638. inline static float vaddvq_f32(float32x4_t v) {
  639. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  640. }
  641. inline static float vminvq_f32(float32x4_t v) {
  642. return
  643. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  644. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  645. }
  646. inline static float vmaxvq_f32(float32x4_t v) {
  647. return
  648. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  649. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  650. }
  651. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  652. int32x4_t res;
  653. res[0] = roundf(vgetq_lane_f32(v, 0));
  654. res[1] = roundf(vgetq_lane_f32(v, 1));
  655. res[2] = roundf(vgetq_lane_f32(v, 2));
  656. res[3] = roundf(vgetq_lane_f32(v, 3));
  657. return res;
  658. }
  659. #endif
  660. #endif
  661. #define QK4_0 32
  662. typedef struct {
  663. ggml_fp16_t d; // delta
  664. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  665. } block_q4_0;
  666. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  667. #define QK4_1 32
  668. typedef struct {
  669. ggml_fp16_t d; // delta
  670. ggml_fp16_t m; // min
  671. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  672. } block_q4_1;
  673. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  674. #define QK5_0 32
  675. typedef struct {
  676. ggml_fp16_t d; // delta
  677. uint8_t qh[4]; // 5-th bit of quants
  678. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  679. } block_q5_0;
  680. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  681. #define QK5_1 32
  682. typedef struct {
  683. ggml_fp16_t d; // delta
  684. ggml_fp16_t m; // min
  685. uint8_t qh[4]; // 5-th bit of quants
  686. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  687. } block_q5_1;
  688. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  689. #define QK8_0 32
  690. typedef struct {
  691. ggml_fp16_t d; // delta
  692. int8_t qs[QK8_0]; // quants
  693. } block_q8_0;
  694. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  695. #define QK8_1 32
  696. typedef struct {
  697. float d; // delta
  698. float s; // d * sum(qs[i])
  699. int8_t qs[QK8_1]; // quants
  700. } block_q8_1;
  701. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  702. // reference implementation for deterministic creation of model files
  703. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  704. static const int qk = QK4_0;
  705. assert(k % qk == 0);
  706. const int nb = k / qk;
  707. for (int i = 0; i < nb; i++) {
  708. float amax = 0.0f; // absolute max
  709. float max = 0.0f;
  710. for (int j = 0; j < qk; j++) {
  711. const float v = x[i*qk + j];
  712. if (amax < fabsf(v)) {
  713. amax = fabsf(v);
  714. max = v;
  715. }
  716. }
  717. const float d = max / -8;
  718. const float id = d ? 1.0f/d : 0.0f;
  719. y[i].d = GGML_FP32_TO_FP16(d);
  720. for (int j = 0; j < qk/2; ++j) {
  721. const float x0 = x[i*qk + 0 + j]*id;
  722. const float x1 = x[i*qk + qk/2 + j]*id;
  723. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  724. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  725. y[i].qs[j] = xi0;
  726. y[i].qs[j] |= xi1 << 4;
  727. }
  728. }
  729. }
  730. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  731. quantize_row_q4_0_reference(x, y, k);
  732. }
  733. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  734. const int qk = QK4_1;
  735. assert(k % qk == 0);
  736. const int nb = k / qk;
  737. for (int i = 0; i < nb; i++) {
  738. float min = FLT_MAX;
  739. float max = -FLT_MAX;
  740. for (int j = 0; j < qk; j++) {
  741. const float v = x[i*qk + j];
  742. if (v < min) min = v;
  743. if (v > max) max = v;
  744. }
  745. const float d = (max - min) / ((1 << 4) - 1);
  746. const float id = d ? 1.0f/d : 0.0f;
  747. y[i].d = GGML_FP32_TO_FP16(d);
  748. y[i].m = GGML_FP32_TO_FP16(min);
  749. for (int j = 0; j < qk/2; ++j) {
  750. const float x0 = (x[i*qk + 0 + j] - min)*id;
  751. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  752. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  753. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  754. y[i].qs[j] = xi0;
  755. y[i].qs[j] |= xi1 << 4;
  756. }
  757. }
  758. }
  759. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  760. quantize_row_q4_1_reference(x, y, k);
  761. }
  762. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  763. static const int qk = QK5_0;
  764. assert(k % qk == 0);
  765. const int nb = k / qk;
  766. for (int i = 0; i < nb; i++) {
  767. float amax = 0.0f; // absolute max
  768. float max = 0.0f;
  769. for (int j = 0; j < qk; j++) {
  770. const float v = x[i*qk + j];
  771. if (amax < fabsf(v)) {
  772. amax = fabsf(v);
  773. max = v;
  774. }
  775. }
  776. const float d = max / -16;
  777. const float id = d ? 1.0f/d : 0.0f;
  778. y[i].d = GGML_FP32_TO_FP16(d);
  779. uint32_t qh = 0;
  780. for (int j = 0; j < qk/2; ++j) {
  781. const float x0 = x[i*qk + 0 + j]*id;
  782. const float x1 = x[i*qk + qk/2 + j]*id;
  783. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  784. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  785. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  786. // get the 5-th bit and store it in qh at the right position
  787. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  788. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  789. }
  790. memcpy(&y[i].qh, &qh, sizeof(qh));
  791. }
  792. }
  793. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  794. quantize_row_q5_0_reference(x, y, k);
  795. }
  796. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  797. const int qk = QK5_1;
  798. assert(k % qk == 0);
  799. const int nb = k / qk;
  800. for (int i = 0; i < nb; i++) {
  801. float min = FLT_MAX;
  802. float max = -FLT_MAX;
  803. for (int j = 0; j < qk; j++) {
  804. const float v = x[i*qk + j];
  805. if (v < min) min = v;
  806. if (v > max) max = v;
  807. }
  808. const float d = (max - min) / ((1 << 5) - 1);
  809. const float id = d ? 1.0f/d : 0.0f;
  810. y[i].d = GGML_FP32_TO_FP16(d);
  811. y[i].m = GGML_FP32_TO_FP16(min);
  812. uint32_t qh = 0;
  813. for (int j = 0; j < qk/2; ++j) {
  814. const float x0 = (x[i*qk + 0 + j] - min)*id;
  815. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  816. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  817. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  818. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  819. // get the 5-th bit and store it in qh at the right position
  820. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  821. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  822. }
  823. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  824. }
  825. }
  826. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  827. quantize_row_q5_1_reference(x, y, k);
  828. }
  829. // reference implementation for deterministic creation of model files
  830. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  831. assert(k % QK8_0 == 0);
  832. const int nb = k / QK8_0;
  833. for (int i = 0; i < nb; i++) {
  834. float amax = 0.0f; // absolute max
  835. for (int j = 0; j < QK8_0; j++) {
  836. const float v = x[i*QK8_0 + j];
  837. amax = MAX(amax, fabsf(v));
  838. }
  839. const float d = amax / ((1 << 7) - 1);
  840. const float id = d ? 1.0f/d : 0.0f;
  841. y[i].d = GGML_FP32_TO_FP16(d);
  842. for (int j = 0; j < QK8_0; ++j) {
  843. const float x0 = x[i*QK8_0 + j]*id;
  844. y[i].qs[j] = roundf(x0);
  845. }
  846. }
  847. }
  848. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  849. assert(QK8_0 == 32);
  850. assert(k % QK8_0 == 0);
  851. const int nb = k / QK8_0;
  852. block_q8_0 * restrict y = vy;
  853. #if defined(__ARM_NEON)
  854. for (int i = 0; i < nb; i++) {
  855. float32x4_t srcv [8];
  856. float32x4_t asrcv[8];
  857. float32x4_t amaxv[8];
  858. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  859. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  860. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  861. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  862. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  863. const float amax = vmaxvq_f32(amaxv[0]);
  864. const float d = amax / ((1 << 7) - 1);
  865. const float id = d ? 1.0f/d : 0.0f;
  866. y[i].d = GGML_FP32_TO_FP16(d);
  867. for (int j = 0; j < 8; j++) {
  868. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  869. const int32x4_t vi = vcvtnq_s32_f32(v);
  870. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  871. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  872. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  873. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  874. }
  875. }
  876. #elif defined(__wasm_simd128__)
  877. for (int i = 0; i < nb; i++) {
  878. v128_t srcv [8];
  879. v128_t asrcv[8];
  880. v128_t amaxv[8];
  881. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  882. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  883. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  884. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  885. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  886. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  887. wasm_f32x4_extract_lane(amaxv[0], 1)),
  888. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  889. wasm_f32x4_extract_lane(amaxv[0], 3)));
  890. const float d = amax / ((1 << 7) - 1);
  891. const float id = d ? 1.0f/d : 0.0f;
  892. y[i].d = GGML_FP32_TO_FP16(d);
  893. for (int j = 0; j < 8; j++) {
  894. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  895. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  896. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  897. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  898. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  899. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  900. }
  901. }
  902. #elif defined(__AVX2__) || defined(__AVX__)
  903. for (int i = 0; i < nb; i++) {
  904. // Load elements into 4 AVX vectors
  905. __m256 v0 = _mm256_loadu_ps( x );
  906. __m256 v1 = _mm256_loadu_ps( x + 8 );
  907. __m256 v2 = _mm256_loadu_ps( x + 16 );
  908. __m256 v3 = _mm256_loadu_ps( x + 24 );
  909. x += 32;
  910. // Compute max(abs(e)) for the block
  911. const __m256 signBit = _mm256_set1_ps( -0.0f );
  912. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  913. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  914. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  915. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  916. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  917. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  918. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  919. const float maxScalar = _mm_cvtss_f32( max4 );
  920. // Quantize these floats
  921. const float d = maxScalar / 127.f;
  922. y[i].d = GGML_FP32_TO_FP16(d);
  923. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  924. const __m256 mul = _mm256_set1_ps( id );
  925. // Apply the multiplier
  926. v0 = _mm256_mul_ps( v0, mul );
  927. v1 = _mm256_mul_ps( v1, mul );
  928. v2 = _mm256_mul_ps( v2, mul );
  929. v3 = _mm256_mul_ps( v3, mul );
  930. // Round to nearest integer
  931. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  932. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  933. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  934. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  935. // Convert floats to integers
  936. __m256i i0 = _mm256_cvtps_epi32( v0 );
  937. __m256i i1 = _mm256_cvtps_epi32( v1 );
  938. __m256i i2 = _mm256_cvtps_epi32( v2 );
  939. __m256i i3 = _mm256_cvtps_epi32( v3 );
  940. #if defined(__AVX2__)
  941. // Convert int32 to int16
  942. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  943. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  944. // Convert int16 to int8
  945. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  946. // We got our precious signed bytes, but the order is now wrong
  947. // These AVX2 pack instructions process 16-byte pieces independently
  948. // The following instruction is fixing the order
  949. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  950. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  951. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  952. #else
  953. // Since we don't have in AVX some necessary functions,
  954. // we split the registers in half and call AVX2 analogs from SSE
  955. __m128i ni0 = _mm256_castsi256_si128( i0 );
  956. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  957. __m128i ni2 = _mm256_castsi256_si128( i1 );
  958. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  959. __m128i ni4 = _mm256_castsi256_si128( i2 );
  960. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  961. __m128i ni6 = _mm256_castsi256_si128( i3 );
  962. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  963. // Convert int32 to int16
  964. ni0 = _mm_packs_epi32( ni0, ni1 );
  965. ni2 = _mm_packs_epi32( ni2, ni3 );
  966. ni4 = _mm_packs_epi32( ni4, ni5 );
  967. ni6 = _mm_packs_epi32( ni6, ni7 );
  968. // Convert int16 to int8
  969. ni0 = _mm_packs_epi16( ni0, ni2 );
  970. ni4 = _mm_packs_epi16( ni4, ni6 );
  971. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  972. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  973. #endif
  974. }
  975. #else
  976. // scalar
  977. quantize_row_q8_0_reference(x, y, k);
  978. #endif
  979. }
  980. // reference implementation for deterministic creation of model files
  981. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  982. assert(QK8_1 == 32);
  983. assert(k % QK8_1 == 0);
  984. const int nb = k / QK8_1;
  985. for (int i = 0; i < nb; i++) {
  986. float amax = 0.0f; // absolute max
  987. for (int j = 0; j < QK8_1; j++) {
  988. const float v = x[i*QK8_1 + j];
  989. amax = MAX(amax, fabsf(v));
  990. }
  991. const float d = amax / ((1 << 7) - 1);
  992. const float id = d ? 1.0f/d : 0.0f;
  993. y[i].d = d;
  994. int sum = 0;
  995. for (int j = 0; j < QK8_1/2; ++j) {
  996. const float v0 = x[i*QK8_1 + j]*id;
  997. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  998. y[i].qs[ j] = roundf(v0);
  999. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1000. sum += y[i].qs[ j];
  1001. sum += y[i].qs[QK8_1/2 + j];
  1002. }
  1003. y[i].s = sum*d;
  1004. }
  1005. }
  1006. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1007. assert(k % QK8_1 == 0);
  1008. const int nb = k / QK8_1;
  1009. block_q8_1 * restrict y = vy;
  1010. #if defined(__ARM_NEON)
  1011. for (int i = 0; i < nb; i++) {
  1012. float32x4_t srcv [8];
  1013. float32x4_t asrcv[8];
  1014. float32x4_t amaxv[8];
  1015. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1016. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1017. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1018. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1019. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1020. const float amax = vmaxvq_f32(amaxv[0]);
  1021. const float d = amax / ((1 << 7) - 1);
  1022. const float id = d ? 1.0f/d : 0.0f;
  1023. y[i].d = d;
  1024. int32x4_t accv = vdupq_n_s32(0);
  1025. for (int j = 0; j < 8; j++) {
  1026. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1027. const int32x4_t vi = vcvtnq_s32_f32(v);
  1028. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1029. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1030. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1031. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1032. accv = vaddq_s32(accv, vi);
  1033. }
  1034. y[i].s = d * vaddvq_s32(accv);
  1035. }
  1036. #elif defined(__wasm_simd128__)
  1037. for (int i = 0; i < nb; i++) {
  1038. v128_t srcv [8];
  1039. v128_t asrcv[8];
  1040. v128_t amaxv[8];
  1041. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1042. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1043. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1044. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1045. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1046. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1047. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1048. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1049. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1050. const float d = amax / ((1 << 7) - 1);
  1051. const float id = d ? 1.0f/d : 0.0f;
  1052. y[i].d = d;
  1053. v128_t accv = wasm_i32x4_splat(0);
  1054. for (int j = 0; j < 8; j++) {
  1055. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1056. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1057. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1058. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1059. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1060. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1061. accv = wasm_i32x4_add(accv, vi);
  1062. }
  1063. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1064. wasm_i32x4_extract_lane(accv, 1) +
  1065. wasm_i32x4_extract_lane(accv, 2) +
  1066. wasm_i32x4_extract_lane(accv, 3));
  1067. }
  1068. #elif defined(__AVX2__) || defined(__AVX__)
  1069. for (int i = 0; i < nb; i++) {
  1070. // Load elements into 4 AVX vectors
  1071. __m256 v0 = _mm256_loadu_ps( x );
  1072. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1073. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1074. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1075. x += 32;
  1076. // Compute max(abs(e)) for the block
  1077. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1078. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1079. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1080. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1081. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1082. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1083. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1084. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1085. const float maxScalar = _mm_cvtss_f32( max4 );
  1086. // Quantize these floats
  1087. const float d = maxScalar / 127.f;
  1088. y[i].d = d;
  1089. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1090. const __m256 mul = _mm256_set1_ps( id );
  1091. // Apply the multiplier
  1092. v0 = _mm256_mul_ps( v0, mul );
  1093. v1 = _mm256_mul_ps( v1, mul );
  1094. v2 = _mm256_mul_ps( v2, mul );
  1095. v3 = _mm256_mul_ps( v3, mul );
  1096. // Round to nearest integer
  1097. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1098. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1099. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1100. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1101. // Convert floats to integers
  1102. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1103. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1104. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1105. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1106. #if defined(__AVX2__)
  1107. // Compute the sum of the quants and set y[i].s
  1108. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1109. // Convert int32 to int16
  1110. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1111. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1112. // Convert int16 to int8
  1113. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1114. // We got our precious signed bytes, but the order is now wrong
  1115. // These AVX2 pack instructions process 16-byte pieces independently
  1116. // The following instruction is fixing the order
  1117. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1118. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1119. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1120. #else
  1121. // Since we don't have in AVX some necessary functions,
  1122. // we split the registers in half and call AVX2 analogs from SSE
  1123. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1124. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1125. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1126. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1127. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1128. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1129. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1130. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1131. // Compute the sum of the quants and set y[i].s
  1132. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1133. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1134. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1135. // Convert int32 to int16
  1136. ni0 = _mm_packs_epi32( ni0, ni1 );
  1137. ni2 = _mm_packs_epi32( ni2, ni3 );
  1138. ni4 = _mm_packs_epi32( ni4, ni5 );
  1139. ni6 = _mm_packs_epi32( ni6, ni7 );
  1140. // Convert int16 to int8
  1141. ni0 = _mm_packs_epi16( ni0, ni2 );
  1142. ni4 = _mm_packs_epi16( ni4, ni6 );
  1143. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1144. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1145. #endif
  1146. }
  1147. #else
  1148. // scalar
  1149. quantize_row_q8_1_reference(x, y, k);
  1150. #endif
  1151. }
  1152. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1153. static const int qk = QK4_0;
  1154. assert(k % qk == 0);
  1155. const int nb = k / qk;
  1156. for (int i = 0; i < nb; i++) {
  1157. const float d = GGML_FP16_TO_FP32(x[i].d);
  1158. for (int j = 0; j < qk/2; ++j) {
  1159. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1160. const int x1 = (x[i].qs[j] >> 4) - 8;
  1161. y[i*qk + j + 0 ] = x0*d;
  1162. y[i*qk + j + qk/2] = x1*d;
  1163. }
  1164. }
  1165. }
  1166. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1167. static const int qk = QK4_1;
  1168. assert(k % qk == 0);
  1169. const int nb = k / qk;
  1170. for (int i = 0; i < nb; i++) {
  1171. const float d = GGML_FP16_TO_FP32(x[i].d);
  1172. const float m = GGML_FP16_TO_FP32(x[i].m);
  1173. for (int j = 0; j < qk/2; ++j) {
  1174. const int x0 = (x[i].qs[j] & 0x0F);
  1175. const int x1 = (x[i].qs[j] >> 4);
  1176. y[i*qk + j + 0 ] = x0*d + m;
  1177. y[i*qk + j + qk/2] = x1*d + m;
  1178. }
  1179. }
  1180. }
  1181. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1182. static const int qk = QK5_0;
  1183. assert(k % qk == 0);
  1184. const int nb = k / qk;
  1185. for (int i = 0; i < nb; i++) {
  1186. const float d = GGML_FP16_TO_FP32(x[i].d);
  1187. uint32_t qh;
  1188. memcpy(&qh, x[i].qh, sizeof(qh));
  1189. for (int j = 0; j < qk/2; ++j) {
  1190. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1191. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1192. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1193. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1194. y[i*qk + j + 0 ] = x0*d;
  1195. y[i*qk + j + qk/2] = x1*d;
  1196. }
  1197. }
  1198. }
  1199. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1200. static const int qk = QK5_1;
  1201. assert(k % qk == 0);
  1202. const int nb = k / qk;
  1203. for (int i = 0; i < nb; i++) {
  1204. const float d = GGML_FP16_TO_FP32(x[i].d);
  1205. const float m = GGML_FP16_TO_FP32(x[i].m);
  1206. uint32_t qh;
  1207. memcpy(&qh, x[i].qh, sizeof(qh));
  1208. for (int j = 0; j < qk/2; ++j) {
  1209. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1210. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1211. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1212. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1213. y[i*qk + j + 0 ] = x0*d + m;
  1214. y[i*qk + j + qk/2] = x1*d + m;
  1215. }
  1216. }
  1217. }
  1218. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1219. static const int qk = QK8_0;
  1220. assert(k % qk == 0);
  1221. const int nb = k / qk;
  1222. const block_q8_0 * restrict x = vx;
  1223. for (int i = 0; i < nb; i++) {
  1224. const float d = GGML_FP16_TO_FP32(x[i].d);
  1225. for (int j = 0; j < qk; ++j) {
  1226. y[i*qk + j] = x[i].qs[j]*d;
  1227. }
  1228. }
  1229. }
  1230. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1231. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1232. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1233. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1234. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1235. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1236. [GGML_TYPE_Q4_0] = {
  1237. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_0,
  1238. .quantize_row_q = quantize_row_q4_0,
  1239. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1240. .quantize_row_q_dot = quantize_row_q8_0,
  1241. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1242. .vec_dot_type = GGML_TYPE_Q8_0,
  1243. },
  1244. [GGML_TYPE_Q4_1] = {
  1245. .dequantize_row_q = (dequantize_row_q_t)dequantize_row_q4_1,
  1246. .quantize_row_q = quantize_row_q4_1,
  1247. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1248. .quantize_row_q_dot = quantize_row_q8_1,
  1249. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1250. .vec_dot_type = GGML_TYPE_Q8_1,
  1251. },
  1252. [GGML_TYPE_Q5_0] = {
  1253. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_0,
  1254. .quantize_row_q = quantize_row_q5_0,
  1255. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1256. .quantize_row_q_dot = quantize_row_q8_0,
  1257. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1258. .vec_dot_type = GGML_TYPE_Q8_0,
  1259. },
  1260. [GGML_TYPE_Q5_1] = {
  1261. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_1,
  1262. .quantize_row_q = quantize_row_q5_1,
  1263. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1264. .quantize_row_q_dot = quantize_row_q8_1,
  1265. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1266. .vec_dot_type = GGML_TYPE_Q8_1,
  1267. },
  1268. [GGML_TYPE_Q8_0] = {
  1269. .dequantize_row_q = dequantize_row_q8_0,
  1270. .quantize_row_q = quantize_row_q8_0,
  1271. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1272. .quantize_row_q_dot = quantize_row_q8_0,
  1273. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1274. .vec_dot_type = GGML_TYPE_Q8_0,
  1275. },
  1276. [GGML_TYPE_Q8_1] = {
  1277. .dequantize_row_q = NULL, // TODO
  1278. .quantize_row_q = quantize_row_q8_1,
  1279. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1280. .quantize_row_q_dot = quantize_row_q8_1,
  1281. .vec_dot_q = NULL, // TODO
  1282. .vec_dot_type = GGML_TYPE_Q8_1,
  1283. },
  1284. };
  1285. // For internal test use
  1286. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1287. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1288. return quantize_fns[i];
  1289. }
  1290. //
  1291. // simd mappings
  1292. //
  1293. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1294. // we then implement the fundamental computation operations below using only these macros
  1295. // adding support for new architectures requires to define the corresponding SIMD macros
  1296. //
  1297. // GGML_F32_STEP / GGML_F16_STEP
  1298. // number of elements to process in a single step
  1299. //
  1300. // GGML_F32_EPR / GGML_F16_EPR
  1301. // number of elements to fit in a single register
  1302. //
  1303. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1304. #define GGML_SIMD
  1305. // F32 NEON
  1306. #define GGML_F32_STEP 16
  1307. #define GGML_F32_EPR 4
  1308. #define GGML_F32x4 float32x4_t
  1309. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1310. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1311. #define GGML_F32x4_LOAD vld1q_f32
  1312. #define GGML_F32x4_STORE vst1q_f32
  1313. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1314. #define GGML_F32x4_ADD vaddq_f32
  1315. #define GGML_F32x4_MUL vmulq_f32
  1316. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1317. #define GGML_F32x4_REDUCE(res, x) \
  1318. { \
  1319. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1320. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1321. } \
  1322. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1323. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1324. } \
  1325. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1326. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1327. } \
  1328. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1329. }
  1330. #define GGML_F32_VEC GGML_F32x4
  1331. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1332. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1333. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1334. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1335. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1336. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1337. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1338. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1339. // F16 NEON
  1340. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1341. #define GGML_F16_STEP 32
  1342. #define GGML_F16_EPR 8
  1343. #define GGML_F16x8 float16x8_t
  1344. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1345. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1346. #define GGML_F16x8_LOAD vld1q_f16
  1347. #define GGML_F16x8_STORE vst1q_f16
  1348. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1349. #define GGML_F16x8_ADD vaddq_f16
  1350. #define GGML_F16x8_MUL vmulq_f16
  1351. #define GGML_F16x8_REDUCE(res, x) \
  1352. { \
  1353. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1354. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1355. } \
  1356. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1357. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1358. } \
  1359. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1360. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1361. } \
  1362. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1363. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1364. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1365. }
  1366. #define GGML_F16_VEC GGML_F16x8
  1367. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1368. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1369. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1370. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1371. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1372. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1373. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1374. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1375. #else
  1376. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1377. // and take advantage of the vcvt_ functions to convert to/from FP16
  1378. #define GGML_F16_STEP 16
  1379. #define GGML_F16_EPR 4
  1380. #define GGML_F32Cx4 float32x4_t
  1381. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1382. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1383. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1384. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1385. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1386. #define GGML_F32Cx4_ADD vaddq_f32
  1387. #define GGML_F32Cx4_MUL vmulq_f32
  1388. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1389. #define GGML_F16_VEC GGML_F32Cx4
  1390. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1391. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1392. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1393. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1394. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1395. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1396. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1397. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1398. #endif
  1399. #elif defined(__AVX__)
  1400. #define GGML_SIMD
  1401. // F32 AVX
  1402. #define GGML_F32_STEP 32
  1403. #define GGML_F32_EPR 8
  1404. #define GGML_F32x8 __m256
  1405. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1406. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1407. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1408. #define GGML_F32x8_STORE _mm256_storeu_ps
  1409. #if defined(__FMA__)
  1410. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1411. #else
  1412. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1413. #endif
  1414. #define GGML_F32x8_ADD _mm256_add_ps
  1415. #define GGML_F32x8_MUL _mm256_mul_ps
  1416. #define GGML_F32x8_REDUCE(res, x) \
  1417. { \
  1418. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1419. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1420. } \
  1421. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1422. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1423. } \
  1424. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1425. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1426. } \
  1427. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1428. _mm256_extractf128_ps(x[0], 1)); \
  1429. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1430. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1431. }
  1432. // TODO: is this optimal ?
  1433. #define GGML_F32_VEC GGML_F32x8
  1434. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1435. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1436. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1437. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1438. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1439. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1440. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1441. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1442. // F16 AVX
  1443. #define GGML_F16_STEP 32
  1444. #define GGML_F16_EPR 8
  1445. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1446. #define GGML_F32Cx8 __m256
  1447. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1448. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1449. #if defined(__F16C__)
  1450. // the _mm256_cvt intrinsics require F16C
  1451. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1452. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1453. #else
  1454. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1455. float tmp[8];
  1456. for (int i = 0; i < 8; i++) {
  1457. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1458. }
  1459. return _mm256_loadu_ps(tmp);
  1460. }
  1461. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1462. float arr[8];
  1463. _mm256_storeu_ps(arr, y);
  1464. for (int i = 0; i < 8; i++)
  1465. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1466. }
  1467. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1468. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1469. #endif
  1470. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1471. #define GGML_F32Cx8_ADD _mm256_add_ps
  1472. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1473. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1474. #define GGML_F16_VEC GGML_F32Cx8
  1475. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1476. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1477. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1478. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1479. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1480. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1481. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1482. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1483. #elif defined(__POWER9_VECTOR__)
  1484. #define GGML_SIMD
  1485. // F32 POWER9
  1486. #define GGML_F32_STEP 32
  1487. #define GGML_F32_EPR 4
  1488. #define GGML_F32x4 vector float
  1489. #define GGML_F32x4_ZERO 0.0f
  1490. #define GGML_F32x4_SET1 vec_splats
  1491. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1492. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1493. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1494. #define GGML_F32x4_ADD vec_add
  1495. #define GGML_F32x4_MUL vec_mul
  1496. #define GGML_F32x4_REDUCE(res, x) \
  1497. { \
  1498. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1499. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1500. } \
  1501. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1502. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1503. } \
  1504. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1505. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1506. } \
  1507. res = vec_extract(x[0], 0) + \
  1508. vec_extract(x[0], 1) + \
  1509. vec_extract(x[0], 2) + \
  1510. vec_extract(x[0], 3); \
  1511. }
  1512. #define GGML_F32_VEC GGML_F32x4
  1513. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1514. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1515. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1516. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1517. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1518. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1519. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1520. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1521. // F16 POWER9
  1522. #define GGML_F16_STEP GGML_F32_STEP
  1523. #define GGML_F16_EPR GGML_F32_EPR
  1524. #define GGML_F16_VEC GGML_F32x4
  1525. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1526. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1527. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1528. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1529. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1530. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1531. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1532. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1533. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1534. #define GGML_F16_VEC_STORE(p, r, i) \
  1535. if (i & 0x1) \
  1536. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1537. r[i - GGML_ENDIAN_BYTE(0)]), \
  1538. 0, p - GGML_F16_EPR)
  1539. #elif defined(__wasm_simd128__)
  1540. #define GGML_SIMD
  1541. // F32 WASM
  1542. #define GGML_F32_STEP 16
  1543. #define GGML_F32_EPR 4
  1544. #define GGML_F32x4 v128_t
  1545. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1546. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1547. #define GGML_F32x4_LOAD wasm_v128_load
  1548. #define GGML_F32x4_STORE wasm_v128_store
  1549. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1550. #define GGML_F32x4_ADD wasm_f32x4_add
  1551. #define GGML_F32x4_MUL wasm_f32x4_mul
  1552. #define GGML_F32x4_REDUCE(res, x) \
  1553. { \
  1554. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1555. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1556. } \
  1557. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1558. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1559. } \
  1560. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1561. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1562. } \
  1563. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1564. wasm_f32x4_extract_lane(x[0], 1) + \
  1565. wasm_f32x4_extract_lane(x[0], 2) + \
  1566. wasm_f32x4_extract_lane(x[0], 3); \
  1567. }
  1568. #define GGML_F32_VEC GGML_F32x4
  1569. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1570. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1571. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1572. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1573. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1574. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1575. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1576. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1577. // F16 WASM
  1578. #define GGML_F16_STEP 16
  1579. #define GGML_F16_EPR 4
  1580. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1581. float tmp[4];
  1582. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1583. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1584. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1585. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1586. return wasm_v128_load(tmp);
  1587. }
  1588. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1589. float tmp[4];
  1590. wasm_v128_store(tmp, x);
  1591. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1592. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1593. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1594. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1595. }
  1596. #define GGML_F16x4 v128_t
  1597. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1598. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1599. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1600. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1601. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1602. #define GGML_F16x4_ADD wasm_f32x4_add
  1603. #define GGML_F16x4_MUL wasm_f32x4_mul
  1604. #define GGML_F16x4_REDUCE(res, x) \
  1605. { \
  1606. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1607. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1608. } \
  1609. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1610. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1611. } \
  1612. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1613. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1614. } \
  1615. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1616. wasm_f32x4_extract_lane(x[0], 1) + \
  1617. wasm_f32x4_extract_lane(x[0], 2) + \
  1618. wasm_f32x4_extract_lane(x[0], 3); \
  1619. }
  1620. #define GGML_F16_VEC GGML_F16x4
  1621. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1622. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1623. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1624. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1625. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1626. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1627. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1628. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1629. #elif defined(__SSE3__)
  1630. #define GGML_SIMD
  1631. // F32 SSE
  1632. #define GGML_F32_STEP 32
  1633. #define GGML_F32_EPR 4
  1634. #define GGML_F32x4 __m128
  1635. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1636. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1637. #define GGML_F32x4_LOAD _mm_loadu_ps
  1638. #define GGML_F32x4_STORE _mm_storeu_ps
  1639. #if defined(__FMA__)
  1640. // TODO: Does this work?
  1641. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1642. #else
  1643. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1644. #endif
  1645. #define GGML_F32x4_ADD _mm_add_ps
  1646. #define GGML_F32x4_MUL _mm_mul_ps
  1647. #define GGML_F32x4_REDUCE(res, x) \
  1648. { \
  1649. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1650. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1651. } \
  1652. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1653. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1654. } \
  1655. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1656. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1657. } \
  1658. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1659. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1660. }
  1661. // TODO: is this optimal ?
  1662. #define GGML_F32_VEC GGML_F32x4
  1663. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1664. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1665. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1666. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1667. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1668. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1669. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1670. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1671. // F16 SSE
  1672. #define GGML_F16_STEP 32
  1673. #define GGML_F16_EPR 4
  1674. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1675. float tmp[4];
  1676. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1677. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1678. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1679. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1680. return _mm_loadu_ps(tmp);
  1681. }
  1682. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1683. float arr[4];
  1684. _mm_storeu_ps(arr, y);
  1685. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1686. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1687. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1688. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1689. }
  1690. #define GGML_F32Cx4 __m128
  1691. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1692. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1693. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1694. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1695. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1696. #define GGML_F32Cx4_ADD _mm_add_ps
  1697. #define GGML_F32Cx4_MUL _mm_mul_ps
  1698. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1699. #define GGML_F16_VEC GGML_F32Cx4
  1700. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1701. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1702. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1703. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1704. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1705. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1706. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1707. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1708. #endif
  1709. // GGML_F32_ARR / GGML_F16_ARR
  1710. // number of registers to use per step
  1711. #ifdef GGML_SIMD
  1712. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1713. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1714. #endif
  1715. //
  1716. // fundamental operations
  1717. //
  1718. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1719. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1720. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1721. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1722. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1723. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1724. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1725. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1726. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1727. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1728. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1729. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1730. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1731. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1732. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1733. #ifdef GGML_SIMD
  1734. float sumf = 0.0f;
  1735. const int np = (n & ~(GGML_F32_STEP - 1));
  1736. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1737. GGML_F32_VEC ax[GGML_F32_ARR];
  1738. GGML_F32_VEC ay[GGML_F32_ARR];
  1739. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1740. for (int j = 0; j < GGML_F32_ARR; j++) {
  1741. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1742. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1743. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1744. }
  1745. }
  1746. // reduce sum0..sum3 to sum0
  1747. GGML_F32_VEC_REDUCE(sumf, sum);
  1748. // leftovers
  1749. for (int i = np; i < n; ++i) {
  1750. sumf += x[i]*y[i];
  1751. }
  1752. #else
  1753. // scalar
  1754. ggml_float sumf = 0.0;
  1755. for (int i = 0; i < n; ++i) {
  1756. sumf += (ggml_float)(x[i]*y[i]);
  1757. }
  1758. #endif
  1759. *s = sumf;
  1760. }
  1761. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1762. ggml_float sumf = 0.0;
  1763. #if defined(GGML_SIMD)
  1764. const int np = (n & ~(GGML_F16_STEP - 1));
  1765. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1766. GGML_F16_VEC ax[GGML_F16_ARR];
  1767. GGML_F16_VEC ay[GGML_F16_ARR];
  1768. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1769. for (int j = 0; j < GGML_F16_ARR; j++) {
  1770. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1771. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1772. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1773. }
  1774. }
  1775. // reduce sum0..sum3 to sum0
  1776. GGML_F16_VEC_REDUCE(sumf, sum);
  1777. // leftovers
  1778. for (int i = np; i < n; ++i) {
  1779. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1780. }
  1781. #else
  1782. for (int i = 0; i < n; ++i) {
  1783. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1784. }
  1785. #endif
  1786. *s = sumf;
  1787. }
  1788. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1789. const int qk = QK8_0;
  1790. const int nb = n / qk;
  1791. assert(n % qk == 0);
  1792. assert(nb % 2 == 0);
  1793. const block_q4_0 * restrict x = vx;
  1794. const block_q8_0 * restrict y = vy;
  1795. #if defined(__ARM_NEON)
  1796. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1797. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1798. for (int i = 0; i < nb; i += 2) {
  1799. const block_q4_0 * restrict x0 = &x[i + 0];
  1800. const block_q4_0 * restrict x1 = &x[i + 1];
  1801. const block_q8_0 * restrict y0 = &y[i + 0];
  1802. const block_q8_0 * restrict y1 = &y[i + 1];
  1803. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1804. const int8x16_t s8b = vdupq_n_s8(0x8);
  1805. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1806. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1807. // 4-bit -> 8-bit
  1808. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1809. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1810. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1811. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1812. // sub 8
  1813. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1814. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1815. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1816. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1817. // load y
  1818. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1819. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1820. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1821. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1822. #if defined(__ARM_FEATURE_DOTPROD)
  1823. // dot product into int32x4_t
  1824. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1825. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1826. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1827. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1828. #else
  1829. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  1830. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  1831. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  1832. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  1833. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  1834. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  1835. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  1836. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  1837. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1838. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1839. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1840. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1841. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1842. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1843. #endif
  1844. }
  1845. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  1846. #elif defined(__AVX2__)
  1847. // Initialize accumulator with zeros
  1848. __m256 acc = _mm256_setzero_ps();
  1849. // Main loop
  1850. for (int i = 0; i < nb; ++i) {
  1851. /* Compute combined scale for the block */
  1852. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1853. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  1854. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1855. const __m256i off = _mm256_set1_epi8( 8 );
  1856. bx = _mm256_sub_epi8( bx, off );
  1857. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  1858. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  1859. /* Multiply q with scale and accumulate */
  1860. acc = _mm256_fmadd_ps( d, q, acc );
  1861. }
  1862. *s = hsum_float_8(acc);
  1863. #elif defined(__AVX__)
  1864. // Initialize accumulator with zeros
  1865. __m256 acc = _mm256_setzero_ps();
  1866. // Main loop
  1867. for (int i = 0; i < nb; ++i) {
  1868. // Compute combined scale for the block
  1869. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1870. const __m128i lowMask = _mm_set1_epi8(0xF);
  1871. const __m128i off = _mm_set1_epi8(8);
  1872. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  1873. __m128i bx = _mm_and_si128(lowMask, tmp);
  1874. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  1875. bx = _mm_sub_epi8(bx, off);
  1876. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  1877. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  1878. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1879. bx = _mm_sub_epi8(bx, off);
  1880. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  1881. // Convert int32_t to float
  1882. __m256 p = _mm256_cvtepi32_ps(_mm256_set_m128i(i32_0, i32_1));
  1883. // Apply the scale, and accumulate
  1884. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1885. }
  1886. *s = hsum_float_8(acc);
  1887. #elif defined(__SSSE3__)
  1888. // set constants
  1889. const __m128i lowMask = _mm_set1_epi8(0xF);
  1890. const __m128i off = _mm_set1_epi8(8);
  1891. // Initialize accumulator with zeros
  1892. __m128 acc_0 = _mm_setzero_ps();
  1893. __m128 acc_1 = _mm_setzero_ps();
  1894. __m128 acc_2 = _mm_setzero_ps();
  1895. __m128 acc_3 = _mm_setzero_ps();
  1896. // First round without accumulation
  1897. {
  1898. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  1899. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  1900. // Compute combined scale for the block 0 and 1
  1901. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  1902. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  1903. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1904. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  1905. bx_0 = _mm_sub_epi8(bx_0, off);
  1906. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1907. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1908. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  1909. bx_1 = _mm_sub_epi8(bx_1, off);
  1910. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1911. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  1912. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  1913. // Compute combined scale for the block 2 and 3
  1914. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  1915. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  1916. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  1917. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  1918. bx_2 = _mm_sub_epi8(bx_2, off);
  1919. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1920. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  1921. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  1922. bx_3 = _mm_sub_epi8(bx_3, off);
  1923. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1924. // Convert int32_t to float
  1925. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  1926. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  1927. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  1928. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  1929. // Apply the scale
  1930. acc_0 = _mm_mul_ps( d_0_1, p0 );
  1931. acc_1 = _mm_mul_ps( d_0_1, p1 );
  1932. acc_2 = _mm_mul_ps( d_2_3, p2 );
  1933. acc_3 = _mm_mul_ps( d_2_3, p3 );
  1934. }
  1935. // Main loop
  1936. for (int i = 2; i < nb; i+=2) {
  1937. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  1938. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  1939. // Compute combined scale for the block 0 and 1
  1940. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1941. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  1942. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1943. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  1944. bx_0 = _mm_sub_epi8(bx_0, off);
  1945. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1946. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1947. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1948. bx_1 = _mm_sub_epi8(bx_1, off);
  1949. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1950. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  1951. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  1952. // Compute combined scale for the block 2 and 3
  1953. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  1954. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  1955. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  1956. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  1957. bx_2 = _mm_sub_epi8(bx_2, off);
  1958. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1959. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  1960. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  1961. bx_3 = _mm_sub_epi8(bx_3, off);
  1962. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1963. // Convert int32_t to float
  1964. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  1965. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  1966. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  1967. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  1968. // Apply the scale
  1969. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  1970. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  1971. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  1972. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  1973. // Acummulate
  1974. acc_0 = _mm_add_ps(p0_d, acc_0);
  1975. acc_1 = _mm_add_ps(p1_d, acc_1);
  1976. acc_2 = _mm_add_ps(p2_d, acc_2);
  1977. acc_3 = _mm_add_ps(p3_d, acc_3);
  1978. }
  1979. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  1980. #else
  1981. // scalar
  1982. float sumf = 0.0;
  1983. for (int i = 0; i < nb; i++) {
  1984. int sumi = 0;
  1985. for (int j = 0; j < qk/2; ++j) {
  1986. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  1987. const int v1 = (x[i].qs[j] >> 4) - 8;
  1988. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  1989. }
  1990. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  1991. }
  1992. *s = sumf;
  1993. #endif
  1994. }
  1995. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1996. const int qk = QK8_1;
  1997. const int nb = n / qk;
  1998. assert(n % qk == 0);
  1999. assert(nb % 2 == 0);
  2000. const block_q4_1 * restrict x = vx;
  2001. const block_q8_1 * restrict y = vy;
  2002. // TODO: add WASM SIMD
  2003. #if defined(__ARM_NEON)
  2004. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2005. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2006. float summs = 0;
  2007. for (int i = 0; i < nb; i += 2) {
  2008. const block_q4_1 * restrict x0 = &x[i + 0];
  2009. const block_q4_1 * restrict x1 = &x[i + 1];
  2010. const block_q8_1 * restrict y0 = &y[i + 0];
  2011. const block_q8_1 * restrict y1 = &y[i + 1];
  2012. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2013. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2014. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2015. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2016. // 4-bit -> 8-bit
  2017. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2018. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2019. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2020. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2021. // load y
  2022. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2023. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2024. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2025. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2026. #if defined(__ARM_FEATURE_DOTPROD)
  2027. // dot product into int32x4_t
  2028. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2029. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2030. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2031. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2032. #else
  2033. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2034. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2035. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2036. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2037. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2038. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2039. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2040. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2041. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2042. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2043. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2044. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2045. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2046. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2047. #endif
  2048. }
  2049. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2050. #elif defined(__AVX2__) || defined(__AVX__)
  2051. // Initialize accumulator with zeros
  2052. __m256 acc = _mm256_setzero_ps();
  2053. float summs = 0;
  2054. // Main loop
  2055. for (int i = 0; i < nb; ++i) {
  2056. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2057. const float d1 = y[i].d;
  2058. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2059. const __m256 d0v = _mm256_set1_ps( d0 );
  2060. const __m256 d1v = _mm256_set1_ps( d1 );
  2061. // Compute combined scales
  2062. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2063. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2064. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2065. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2066. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2067. // Accumulate d0*d1*x*y
  2068. #if defined(__AVX2__)
  2069. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2070. #else
  2071. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2072. #endif
  2073. }
  2074. *s = hsum_float_8(acc) + summs;
  2075. #else
  2076. // scalar
  2077. float sumf = 0.0;
  2078. for (int i = 0; i < nb; i++) {
  2079. int sumi = 0;
  2080. for (int j = 0; j < qk/2; ++j) {
  2081. const int v0 = (x[i].qs[j] & 0x0F);
  2082. const int v1 = (x[i].qs[j] >> 4);
  2083. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2084. }
  2085. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2086. }
  2087. *s = sumf;
  2088. #endif
  2089. }
  2090. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2091. const int qk = QK8_0;
  2092. const int nb = n / qk;
  2093. assert(n % qk == 0);
  2094. assert(nb % 2 == 0);
  2095. assert(qk == QK5_0);
  2096. const block_q5_0 * restrict x = vx;
  2097. const block_q8_0 * restrict y = vy;
  2098. #if defined(__ARM_NEON)
  2099. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2100. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2101. uint32_t qh0;
  2102. uint32_t qh1;
  2103. uint64_t tmp0[4];
  2104. uint64_t tmp1[4];
  2105. for (int i = 0; i < nb; i += 2) {
  2106. const block_q5_0 * restrict x0 = &x[i];
  2107. const block_q5_0 * restrict x1 = &x[i + 1];
  2108. const block_q8_0 * restrict y0 = &y[i];
  2109. const block_q8_0 * restrict y1 = &y[i + 1];
  2110. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2111. // extract the 5th bit via lookup table ((!b) << 4)
  2112. memcpy(&qh0, x0->qh, sizeof(qh0));
  2113. memcpy(&qh1, x1->qh, sizeof(qh1));
  2114. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2115. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2116. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2117. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2118. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2119. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2120. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2121. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2122. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2123. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2124. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2125. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2126. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2127. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2128. // 4-bit -> 8-bit
  2129. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2130. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2131. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2132. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2133. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2134. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2135. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2136. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2137. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2138. // load y
  2139. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2140. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2141. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2142. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2143. #if defined(__ARM_FEATURE_DOTPROD)
  2144. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2145. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2146. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2147. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2148. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2149. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2150. #else
  2151. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2152. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2153. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2154. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2155. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2156. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2157. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2158. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2159. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2160. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2161. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2162. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2163. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2164. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2165. #endif
  2166. }
  2167. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2168. #elif defined(__wasm_simd128__)
  2169. v128_t sumv = wasm_f32x4_splat(0.0f);
  2170. uint32_t qh;
  2171. uint64_t tmp[4];
  2172. // TODO: check if unrolling this is better
  2173. for (int i = 0; i < nb; ++i) {
  2174. const block_q5_0 * restrict x0 = &x[i];
  2175. const block_q8_0 * restrict y0 = &y[i];
  2176. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2177. // extract the 5th bit
  2178. memcpy(&qh, x0->qh, sizeof(qh));
  2179. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2180. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2181. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2182. tmp[3] = table_b2b_1[(qh >> 24) ];
  2183. const v128_t qhl = wasm_v128_load(tmp + 0);
  2184. const v128_t qhh = wasm_v128_load(tmp + 2);
  2185. const v128_t v0 = wasm_v128_load(x0->qs);
  2186. // 4-bit -> 8-bit
  2187. const v128_t v0l = wasm_v128_and (v0, m4b);
  2188. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2189. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2190. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2191. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2192. // load y
  2193. const v128_t v1l = wasm_v128_load(y0->qs);
  2194. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2195. // int8x16 -> int16x8
  2196. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2197. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2198. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2199. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2200. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2201. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2202. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2203. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2204. // dot product
  2205. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2206. wasm_i32x4_add(
  2207. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2208. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2209. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2210. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2211. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2212. }
  2213. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2214. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2215. #elif defined(__AVX2__)
  2216. // Initialize accumulator with zeros
  2217. __m256 acc = _mm256_setzero_ps();
  2218. // Main loop
  2219. for (int i = 0; i < nb; i++) {
  2220. /* Compute combined scale for the block */
  2221. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2222. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2223. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2224. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2225. bx = _mm256_or_si256(bx, bxhi);
  2226. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2227. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2228. /* Multiply q with scale and accumulate */
  2229. acc = _mm256_fmadd_ps(d, q, acc);
  2230. }
  2231. *s = hsum_float_8(acc);
  2232. #elif defined(__AVX__)
  2233. // Initialize accumulator with zeros
  2234. __m256 acc = _mm256_setzero_ps();
  2235. __m128i mask = _mm_set1_epi8((char)0xF0);
  2236. // Main loop
  2237. for (int i = 0; i < nb; i++) {
  2238. /* Compute combined scale for the block */
  2239. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2240. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2241. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2242. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2243. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2244. bxhil = _mm_andnot_si128(bxhil, mask);
  2245. bxhih = _mm_andnot_si128(bxhih, mask);
  2246. __m128i bxl = _mm256_castsi256_si128(bx);
  2247. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2248. bxl = _mm_or_si128(bxl, bxhil);
  2249. bxh = _mm_or_si128(bxh, bxhih);
  2250. bx = _mm256_set_m128i(bxh, bxl);
  2251. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2252. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2253. /* Multiply q with scale and accumulate */
  2254. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2255. }
  2256. *s = hsum_float_8(acc);
  2257. #else
  2258. // scalar
  2259. float sumf = 0.0;
  2260. for (int i = 0; i < nb; i++) {
  2261. uint32_t qh;
  2262. memcpy(&qh, x[i].qh, sizeof(qh));
  2263. int sumi = 0;
  2264. for (int j = 0; j < qk/2; ++j) {
  2265. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2266. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2267. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2268. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2269. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2270. }
  2271. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2272. }
  2273. *s = sumf;
  2274. #endif
  2275. }
  2276. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2277. const int qk = QK8_1;
  2278. const int nb = n / qk;
  2279. assert(n % qk == 0);
  2280. assert(nb % 2 == 0);
  2281. assert(qk == QK5_1);
  2282. const block_q5_1 * restrict x = vx;
  2283. const block_q8_1 * restrict y = vy;
  2284. #if defined(__ARM_NEON)
  2285. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2286. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2287. float summs0 = 0.0f;
  2288. float summs1 = 0.0f;
  2289. uint32_t qh0;
  2290. uint32_t qh1;
  2291. uint64_t tmp0[4];
  2292. uint64_t tmp1[4];
  2293. for (int i = 0; i < nb; i += 2) {
  2294. const block_q5_1 * restrict x0 = &x[i];
  2295. const block_q5_1 * restrict x1 = &x[i + 1];
  2296. const block_q8_1 * restrict y0 = &y[i];
  2297. const block_q8_1 * restrict y1 = &y[i + 1];
  2298. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2299. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2300. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2301. // extract the 5th bit via lookup table ((b) << 4)
  2302. memcpy(&qh0, x0->qh, sizeof(qh0));
  2303. memcpy(&qh1, x1->qh, sizeof(qh1));
  2304. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2305. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2306. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2307. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2308. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2309. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2310. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2311. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2312. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2313. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2314. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2315. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2316. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2317. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2318. // 4-bit -> 8-bit
  2319. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2320. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2321. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2322. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2323. // add high bit
  2324. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2325. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2326. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2327. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2328. // load y
  2329. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2330. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2331. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2332. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2333. #if defined(__ARM_FEATURE_DOTPROD)
  2334. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2335. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2336. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2337. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2338. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2339. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2340. #else
  2341. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2342. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2343. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2344. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2345. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2346. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2347. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2348. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2349. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2350. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2351. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2352. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2353. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2354. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2355. #endif
  2356. }
  2357. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2358. #elif defined(__wasm_simd128__)
  2359. v128_t sumv = wasm_f32x4_splat(0.0f);
  2360. float summs = 0.0f;
  2361. uint32_t qh;
  2362. uint64_t tmp[4];
  2363. // TODO: check if unrolling this is better
  2364. for (int i = 0; i < nb; ++i) {
  2365. const block_q5_1 * restrict x0 = &x[i];
  2366. const block_q8_1 * restrict y0 = &y[i];
  2367. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2368. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2369. // extract the 5th bit
  2370. memcpy(&qh, x0->qh, sizeof(qh));
  2371. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2372. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2373. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2374. tmp[3] = table_b2b_0[(qh >> 24) ];
  2375. const v128_t qhl = wasm_v128_load(tmp + 0);
  2376. const v128_t qhh = wasm_v128_load(tmp + 2);
  2377. const v128_t v0 = wasm_v128_load(x0->qs);
  2378. // 4-bit -> 8-bit
  2379. const v128_t v0l = wasm_v128_and (v0, m4b);
  2380. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2381. // add high bit
  2382. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2383. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2384. // load y
  2385. const v128_t v1l = wasm_v128_load(y0->qs);
  2386. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2387. // int8x16 -> int16x8
  2388. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2389. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2390. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2391. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2392. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2393. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2394. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2395. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2396. // dot product
  2397. sumv = wasm_f32x4_add(sumv,
  2398. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2399. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2400. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2401. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2402. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2403. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2404. }
  2405. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2406. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2407. #elif defined(__AVX2__)
  2408. // Initialize accumulator with zeros
  2409. __m256 acc = _mm256_setzero_ps();
  2410. float summs = 0.0f;
  2411. // Main loop
  2412. for (int i = 0; i < nb; i++) {
  2413. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2414. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2415. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2416. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2417. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2418. bx = _mm256_or_si256(bx, bxhi);
  2419. const __m256 dy = _mm256_set1_ps(y[i].d);
  2420. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2421. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2422. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2423. }
  2424. *s = hsum_float_8(acc) + summs;
  2425. #elif defined(__AVX__)
  2426. // Initialize accumulator with zeros
  2427. __m256 acc = _mm256_setzero_ps();
  2428. __m128i mask = _mm_set1_epi8(0x10);
  2429. float summs = 0.0f;
  2430. // Main loop
  2431. for (int i = 0; i < nb; i++) {
  2432. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2433. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2434. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2435. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2436. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2437. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2438. bxhil = _mm_and_si128(bxhil, mask);
  2439. bxhih = _mm_and_si128(bxhih, mask);
  2440. __m128i bxl = _mm256_castsi256_si128(bx);
  2441. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2442. bxl = _mm_or_si128(bxl, bxhil);
  2443. bxh = _mm_or_si128(bxh, bxhih);
  2444. bx = _mm256_set_m128i(bxh, bxl);
  2445. const __m256 dy = _mm256_set1_ps(y[i].d);
  2446. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2447. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2448. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2449. }
  2450. *s = hsum_float_8(acc) + summs;
  2451. #else
  2452. // scalar
  2453. float sumf = 0.0;
  2454. for (int i = 0; i < nb; i++) {
  2455. uint32_t qh;
  2456. memcpy(&qh, x[i].qh, sizeof(qh));
  2457. int sumi = 0;
  2458. for (int j = 0; j < qk/2; ++j) {
  2459. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2460. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2461. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2462. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2463. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2464. }
  2465. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2466. }
  2467. *s = sumf;
  2468. #endif
  2469. }
  2470. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2471. const int qk = QK8_0;
  2472. const int nb = n / qk;
  2473. assert(n % qk == 0);
  2474. assert(nb % 2 == 0);
  2475. const block_q8_0 * restrict x = vx;
  2476. const block_q8_0 * restrict y = vy;
  2477. #if defined(__ARM_NEON)
  2478. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2479. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2480. for (int i = 0; i < nb; i += 2) {
  2481. const block_q8_0 * restrict x0 = &x[i + 0];
  2482. const block_q8_0 * restrict x1 = &x[i + 1];
  2483. const block_q8_0 * restrict y0 = &y[i + 0];
  2484. const block_q8_0 * restrict y1 = &y[i + 1];
  2485. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2486. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2487. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2488. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2489. // load y
  2490. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2491. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2492. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2493. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2494. #if defined(__ARM_FEATURE_DOTPROD)
  2495. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2496. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2497. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2498. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2499. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2500. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2501. #else
  2502. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2503. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2504. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2505. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2506. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2507. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2508. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2509. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2510. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2511. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2512. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2513. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2514. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2515. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2516. #endif
  2517. }
  2518. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2519. #elif defined(__AVX2__) || defined(__AVX__)
  2520. // Initialize accumulator with zeros
  2521. __m256 acc = _mm256_setzero_ps();
  2522. // Main loop
  2523. for (int i = 0; i < nb; ++i) {
  2524. // Compute combined scale for the block
  2525. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2526. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2527. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2528. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2529. // Multiply q with scale and accumulate
  2530. #if defined(__AVX2__)
  2531. acc = _mm256_fmadd_ps( d, q, acc );
  2532. #else
  2533. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2534. #endif
  2535. }
  2536. *s = hsum_float_8(acc);
  2537. #else
  2538. // scalar
  2539. float sumf = 0.0;
  2540. for (int i = 0; i < nb; i++) {
  2541. int sumi = 0;
  2542. for (int j = 0; j < qk; j++) {
  2543. sumi += x[i].qs[j]*y[i].qs[j];
  2544. }
  2545. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2546. }
  2547. *s = sumf;
  2548. #endif
  2549. }
  2550. // compute GGML_VEC_DOT_UNROLL dot products at once
  2551. // xs - x row stride in bytes
  2552. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2553. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2554. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2555. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2556. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2557. }
  2558. #if defined(GGML_SIMD)
  2559. const int np = (n & ~(GGML_F16_STEP - 1));
  2560. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2561. GGML_F16_VEC ax[GGML_F16_ARR];
  2562. GGML_F16_VEC ay[GGML_F16_ARR];
  2563. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2564. for (int j = 0; j < GGML_F16_ARR; j++) {
  2565. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2566. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2567. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2568. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2569. }
  2570. }
  2571. }
  2572. // reduce sum0..sum3 to sum0
  2573. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2574. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2575. }
  2576. // leftovers
  2577. for (int i = np; i < n; ++i) {
  2578. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2579. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2580. }
  2581. }
  2582. #else
  2583. for (int i = 0; i < n; ++i) {
  2584. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2585. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2586. }
  2587. }
  2588. #endif
  2589. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2590. s[i] = sumf[i];
  2591. }
  2592. }
  2593. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2594. #if defined(GGML_SIMD)
  2595. const int np = (n & ~(GGML_F32_STEP - 1));
  2596. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2597. GGML_F32_VEC ax[GGML_F32_ARR];
  2598. GGML_F32_VEC ay[GGML_F32_ARR];
  2599. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2600. for (int j = 0; j < GGML_F32_ARR; j++) {
  2601. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2602. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2603. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2604. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2605. }
  2606. }
  2607. // leftovers
  2608. for (int i = np; i < n; ++i) {
  2609. y[i] += x[i]*v;
  2610. }
  2611. #else
  2612. // scalar
  2613. for (int i = 0; i < n; ++i) {
  2614. y[i] += x[i]*v;
  2615. }
  2616. #endif
  2617. }
  2618. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2619. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2620. #if defined(GGML_SIMD)
  2621. const int np = (n & ~(GGML_F32_STEP - 1));
  2622. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2623. GGML_F32_VEC ay[GGML_F32_ARR];
  2624. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2625. for (int j = 0; j < GGML_F32_ARR; j++) {
  2626. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2627. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2628. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2629. }
  2630. }
  2631. // leftovers
  2632. for (int i = np; i < n; ++i) {
  2633. y[i] *= v;
  2634. }
  2635. #else
  2636. // scalar
  2637. for (int i = 0; i < n; ++i) {
  2638. y[i] *= v;
  2639. }
  2640. #endif
  2641. }
  2642. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2643. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2644. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2645. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2646. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2647. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2648. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2649. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2650. static const float GELU_COEF_A = 0.044715f;
  2651. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2652. inline static float ggml_gelu_f32(float x) {
  2653. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2654. }
  2655. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2656. const uint16_t * i16 = (const uint16_t *) x;
  2657. for (int i = 0; i < n; ++i) {
  2658. y[i] = table_gelu_f16[i16[i]];
  2659. }
  2660. }
  2661. #ifdef GGML_GELU_FP16
  2662. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2663. uint16_t t;
  2664. for (int i = 0; i < n; ++i) {
  2665. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2666. memcpy(&t, &fp16, sizeof(uint16_t));
  2667. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2668. }
  2669. }
  2670. #else
  2671. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2672. for (int i = 0; i < n; ++i) {
  2673. y[i] = ggml_gelu_f32(x[i]);
  2674. }
  2675. }
  2676. #endif
  2677. // Sigmoid Linear Unit (SiLU) function
  2678. inline static float ggml_silu_f32(float x) {
  2679. return x/(1.0f + expf(-x));
  2680. }
  2681. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2682. // const uint16_t * i16 = (const uint16_t *) x;
  2683. // for (int i = 0; i < n; ++i) {
  2684. // y[i] = table_silu_f16[i16[i]];
  2685. // }
  2686. //}
  2687. #ifdef GGML_SILU_FP16
  2688. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2689. uint16_t t;
  2690. for (int i = 0; i < n; ++i) {
  2691. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2692. memcpy(&t, &fp16, sizeof(uint16_t));
  2693. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2694. }
  2695. }
  2696. #else
  2697. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2698. for (int i = 0; i < n; ++i) {
  2699. y[i] = ggml_silu_f32(x[i]);
  2700. }
  2701. }
  2702. #endif
  2703. inline static float ggml_silu_backward_f32(float x, float dy) {
  2704. const float s = 1.0f/(1.0f + expf(-x));
  2705. return dy*s*(1.0f + x*(1.0f - s));
  2706. }
  2707. #ifdef GGML_SILU_FP16
  2708. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2709. for (int i = 0; i < n; ++i) {
  2710. // we did not use x[i] to compute forward silu but its f16 equivalent
  2711. // take derivative at f16 of x[i]:
  2712. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2713. float usedx = GGML_FP16_TO_FP32(fp16);
  2714. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2715. }
  2716. }
  2717. #else
  2718. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2719. for (int i = 0; i < n; ++i) {
  2720. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2721. }
  2722. }
  2723. #endif
  2724. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2725. #ifndef GGML_USE_ACCELERATE
  2726. ggml_float sum = 0.0;
  2727. for (int i = 0; i < n; ++i) {
  2728. sum += (ggml_float)x[i];
  2729. }
  2730. *s = sum;
  2731. #else
  2732. vDSP_sve(x, 1, s, n);
  2733. #endif
  2734. }
  2735. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2736. ggml_float sum = 0.0;
  2737. for (int i = 0; i < n; ++i) {
  2738. sum += (ggml_float)x[i];
  2739. }
  2740. *s = sum;
  2741. }
  2742. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2743. #ifndef GGML_USE_ACCELERATE
  2744. float max = -INFINITY;
  2745. for (int i = 0; i < n; ++i) {
  2746. max = MAX(max, x[i]);
  2747. }
  2748. *s = max;
  2749. #else
  2750. vDSP_maxv(x, 1, s, n);
  2751. #endif
  2752. }
  2753. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2754. ggml_vec_norm_f32(n, s, x);
  2755. *s = 1.f/(*s);
  2756. }
  2757. //
  2758. // logging
  2759. //
  2760. #if (GGML_DEBUG >= 1)
  2761. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2762. #else
  2763. #define GGML_PRINT_DEBUG(...)
  2764. #endif
  2765. #if (GGML_DEBUG >= 5)
  2766. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2767. #else
  2768. #define GGML_PRINT_DEBUG_5(...)
  2769. #endif
  2770. #if (GGML_DEBUG >= 10)
  2771. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2772. #else
  2773. #define GGML_PRINT_DEBUG_10(...)
  2774. #endif
  2775. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2776. //
  2777. // data types
  2778. //
  2779. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2780. [GGML_TYPE_F32] = 1,
  2781. [GGML_TYPE_F16] = 1,
  2782. [GGML_TYPE_Q4_0] = QK4_0,
  2783. [GGML_TYPE_Q4_1] = QK4_1,
  2784. [GGML_TYPE_Q5_0] = QK5_0,
  2785. [GGML_TYPE_Q5_1] = QK5_1,
  2786. [GGML_TYPE_Q8_0] = QK8_0,
  2787. [GGML_TYPE_Q8_1] = QK8_1,
  2788. [GGML_TYPE_I8] = 1,
  2789. [GGML_TYPE_I16] = 1,
  2790. [GGML_TYPE_I32] = 1,
  2791. };
  2792. static_assert(GGML_TYPE_COUNT == 13, "GGML_BLCK_SIZE is outdated");
  2793. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2794. [GGML_TYPE_F32] = sizeof(float),
  2795. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2796. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2797. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2798. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  2799. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  2800. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2801. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2802. [GGML_TYPE_I8] = sizeof(int8_t),
  2803. [GGML_TYPE_I16] = sizeof(int16_t),
  2804. [GGML_TYPE_I32] = sizeof(int32_t),
  2805. };
  2806. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_SIZE is outdated");
  2807. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2808. [GGML_TYPE_F32] = "f32",
  2809. [GGML_TYPE_F16] = "f16",
  2810. [GGML_TYPE_Q4_0] = "q4_0",
  2811. [GGML_TYPE_Q4_1] = "q4_1",
  2812. [GGML_TYPE_Q5_0] = "q5_0",
  2813. [GGML_TYPE_Q5_1] = "q5_1",
  2814. [GGML_TYPE_Q8_0] = "q8_0",
  2815. [GGML_TYPE_Q8_1] = "q8_1",
  2816. [GGML_TYPE_I8] = "i8",
  2817. [GGML_TYPE_I16] = "i16",
  2818. [GGML_TYPE_I32] = "i32",
  2819. };
  2820. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_NAME is outdated");
  2821. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2822. [GGML_TYPE_F32] = false,
  2823. [GGML_TYPE_F16] = false,
  2824. [GGML_TYPE_Q4_0] = true,
  2825. [GGML_TYPE_Q4_1] = true,
  2826. [GGML_TYPE_Q5_0] = true,
  2827. [GGML_TYPE_Q5_1] = true,
  2828. [GGML_TYPE_Q8_0] = true,
  2829. [GGML_TYPE_Q8_1] = true,
  2830. [GGML_TYPE_I8] = false,
  2831. [GGML_TYPE_I16] = false,
  2832. [GGML_TYPE_I32] = false,
  2833. };
  2834. static_assert(GGML_TYPE_COUNT == 13, "GGML_IS_QUANTIZED is outdated");
  2835. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2836. "NONE",
  2837. "DUP",
  2838. "ADD",
  2839. "ADD1",
  2840. "ACC",
  2841. "SUB",
  2842. "MUL",
  2843. "DIV",
  2844. "SQR",
  2845. "SQRT",
  2846. "LOG",
  2847. "SUM",
  2848. "SUM_ROWS",
  2849. "MEAN",
  2850. "REPEAT",
  2851. "ABS",
  2852. "SGN",
  2853. "NEG",
  2854. "STEP",
  2855. "RELU",
  2856. "GELU",
  2857. "SILU",
  2858. "SILU_BACK",
  2859. "NORM",
  2860. "RMS_NORM",
  2861. "RMS_NORM_BACK",
  2862. "MUL_MAT",
  2863. "SCALE",
  2864. "SET",
  2865. "CPY",
  2866. "CONT",
  2867. "RESHAPE",
  2868. "VIEW",
  2869. "PERMUTE",
  2870. "TRANSPOSE",
  2871. "GET_ROWS",
  2872. "GET_ROWS_BACK",
  2873. "DIAG",
  2874. "DIAG_MASK_INF",
  2875. "DIAG_MASK_ZERO",
  2876. "SOFT_MAX",
  2877. "ROPE",
  2878. "ROPE_BACK",
  2879. "ALIBI",
  2880. "CLAMP",
  2881. "CONV_1D_1S",
  2882. "CONV_1D_2S",
  2883. "FLASH_ATTN",
  2884. "FLASH_FF",
  2885. "MAP_UNARY",
  2886. "MAP_BINARY",
  2887. };
  2888. static_assert(GGML_OP_COUNT == 51, "GGML_OP_COUNT != 51");
  2889. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2890. "none",
  2891. "x",
  2892. "x+y",
  2893. "x+y",
  2894. "view(x,nb,offset)+=y->x",
  2895. "x-y",
  2896. "x*y",
  2897. "x/y",
  2898. "x^2",
  2899. "√x",
  2900. "log(x)",
  2901. "Σx",
  2902. "Σx_k",
  2903. "Σx/n",
  2904. "repeat(x)",
  2905. "abs(x)",
  2906. "sgn(x)",
  2907. "-x",
  2908. "step(x)",
  2909. "relu(x)",
  2910. "gelu(x)",
  2911. "silu(x)",
  2912. "silu_back(x)",
  2913. "norm(x)",
  2914. "rms_norm(x)",
  2915. "rms_norm_back(x)",
  2916. "X*Y",
  2917. "x*v",
  2918. "y-\\>view(x)",
  2919. "x-\\>y",
  2920. "cont(x)",
  2921. "reshape(x)",
  2922. "view(x)",
  2923. "permute(x)",
  2924. "transpose(x)",
  2925. "get_rows(x)",
  2926. "get_rows_back(x)",
  2927. "diag(x)",
  2928. "diag_mask_inf(x)",
  2929. "diag_mask_zero(x)",
  2930. "soft_max(x)",
  2931. "rope(x)",
  2932. "rope_back(x)",
  2933. "alibi(x)",
  2934. "clamp(x)",
  2935. "conv_1d_1s(x)",
  2936. "conv_1d_2s(x)",
  2937. "flash_attn(x)",
  2938. "flash_ff(x)",
  2939. "f(x)",
  2940. "f(x,y)",
  2941. };
  2942. static_assert(GGML_OP_COUNT == 51, "GGML_OP_COUNT != 51");
  2943. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2944. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2945. //
  2946. // ggml context
  2947. //
  2948. struct ggml_context {
  2949. size_t mem_size;
  2950. void * mem_buffer;
  2951. bool mem_buffer_owned;
  2952. bool no_alloc;
  2953. int n_objects;
  2954. struct ggml_object * objects_begin;
  2955. struct ggml_object * objects_end;
  2956. struct ggml_scratch scratch;
  2957. struct ggml_scratch scratch_save;
  2958. };
  2959. struct ggml_context_container {
  2960. bool used;
  2961. struct ggml_context context;
  2962. };
  2963. //
  2964. // compute types
  2965. //
  2966. enum ggml_task_type {
  2967. GGML_TASK_INIT = 0,
  2968. GGML_TASK_COMPUTE,
  2969. GGML_TASK_FINALIZE,
  2970. };
  2971. struct ggml_compute_params {
  2972. enum ggml_task_type type;
  2973. int ith, nth;
  2974. // work buffer for all threads
  2975. size_t wsize;
  2976. void * wdata;
  2977. };
  2978. //
  2979. // ggml state
  2980. //
  2981. struct ggml_state {
  2982. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2983. };
  2984. // global state
  2985. static struct ggml_state g_state;
  2986. static atomic_int g_state_barrier = 0;
  2987. // barrier via spin lock
  2988. inline static void ggml_critical_section_start(void) {
  2989. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2990. while (processing > 0) {
  2991. // wait for other threads to finish
  2992. atomic_fetch_sub(&g_state_barrier, 1);
  2993. sched_yield(); // TODO: reconsider this
  2994. processing = atomic_fetch_add(&g_state_barrier, 1);
  2995. }
  2996. }
  2997. // TODO: make this somehow automatically executed
  2998. // some sort of "sentry" mechanism
  2999. inline static void ggml_critical_section_end(void) {
  3000. atomic_fetch_sub(&g_state_barrier, 1);
  3001. }
  3002. ////////////////////////////////////////////////////////////////////////////////
  3003. void ggml_print_object(const struct ggml_object * obj) {
  3004. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3005. obj->offs, obj->size, (const void *) obj->next);
  3006. }
  3007. void ggml_print_objects(const struct ggml_context * ctx) {
  3008. struct ggml_object * obj = ctx->objects_begin;
  3009. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3010. while (obj != NULL) {
  3011. ggml_print_object(obj);
  3012. obj = obj->next;
  3013. }
  3014. GGML_PRINT("%s: --- end ---\n", __func__);
  3015. }
  3016. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3017. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3018. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3019. }
  3020. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3021. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3022. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3023. }
  3024. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3025. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3026. // this should handle cases where the tensor is not contiguous in memory
  3027. // probaby just:
  3028. //
  3029. // return tensor->ne[3]*tensor->nb[3]
  3030. //
  3031. // is enough, but just in case, adding the second part
  3032. return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]);
  3033. }
  3034. int ggml_blck_size(enum ggml_type type) {
  3035. return GGML_BLCK_SIZE[type];
  3036. }
  3037. size_t ggml_type_size(enum ggml_type type) {
  3038. return GGML_TYPE_SIZE[type];
  3039. }
  3040. float ggml_type_sizef(enum ggml_type type) {
  3041. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3042. }
  3043. const char * ggml_type_name(enum ggml_type type) {
  3044. return GGML_TYPE_NAME[type];
  3045. }
  3046. const char * ggml_op_name(enum ggml_op op) {
  3047. return GGML_OP_NAME[op];
  3048. }
  3049. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3050. return GGML_TYPE_SIZE[tensor->type];
  3051. }
  3052. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3053. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3054. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3055. }
  3056. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3057. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3058. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3059. }
  3060. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3061. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3062. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3063. }
  3064. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3065. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3066. return
  3067. (t0->ne[0] == t1->ne[0]) &&
  3068. (t0->ne[2] == t1->ne[2]) &&
  3069. (t0->ne[3] == t1->ne[3]);
  3070. }
  3071. bool ggml_is_quantized(enum ggml_type type) {
  3072. return GGML_IS_QUANTIZED[type];
  3073. }
  3074. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3075. enum ggml_type wtype = GGML_TYPE_COUNT;
  3076. switch (ftype) {
  3077. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3078. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3079. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3080. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3081. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3082. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3083. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3084. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3085. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3086. }
  3087. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3088. return wtype;
  3089. }
  3090. size_t ggml_tensor_overhead(void) {
  3091. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE + 16;
  3092. }
  3093. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3094. return tensor->nb[0] > tensor->nb[1];
  3095. }
  3096. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3097. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3098. return
  3099. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3100. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3101. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3102. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3103. }
  3104. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3105. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3106. return
  3107. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3108. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3109. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3110. }
  3111. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3112. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3113. return
  3114. (t0->ne[0] == t1->ne[0] ) &&
  3115. (t0->ne[1] == t1->ne[1] ) &&
  3116. (t0->ne[2] == t1->ne[2] ) &&
  3117. (t0->ne[3] == t1->ne[3] );
  3118. }
  3119. // check if t1 can be represented as a repeatition of t0
  3120. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3121. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3122. return
  3123. (t1->ne[0]%t0->ne[0] == 0) &&
  3124. (t1->ne[1]%t0->ne[1] == 0) &&
  3125. (t1->ne[2]%t0->ne[2] == 0) &&
  3126. (t1->ne[3]%t0->ne[3] == 0);
  3127. }
  3128. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3129. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3130. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3131. }
  3132. static inline int ggml_up32(int n) {
  3133. return (n + 31) & ~31;
  3134. }
  3135. //static inline int ggml_up64(int n) {
  3136. // return (n + 63) & ~63;
  3137. //}
  3138. static inline int ggml_up(int n, int m) {
  3139. // assert m is a power of 2
  3140. GGML_ASSERT((m & (m - 1)) == 0);
  3141. return (n + m - 1) & ~(m - 1);
  3142. }
  3143. // assert that pointer is aligned to GGML_MEM_ALIGN
  3144. #define ggml_assert_aligned(ptr) \
  3145. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3146. ////////////////////////////////////////////////////////////////////////////////
  3147. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3148. // make this function thread safe
  3149. ggml_critical_section_start();
  3150. static bool is_first_call = true;
  3151. if (is_first_call) {
  3152. // initialize time system (required on Windows)
  3153. ggml_time_init();
  3154. // initialize GELU, SILU and EXP F32 tables
  3155. {
  3156. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3157. ggml_fp16_t ii;
  3158. for (int i = 0; i < (1 << 16); ++i) {
  3159. uint16_t ui = i;
  3160. memcpy(&ii, &ui, sizeof(ii));
  3161. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3162. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3163. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3164. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3165. }
  3166. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3167. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3168. }
  3169. // initialize g_state
  3170. {
  3171. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3172. g_state = (struct ggml_state) {
  3173. /*.contexts =*/ { { 0 } },
  3174. };
  3175. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3176. g_state.contexts[i].used = false;
  3177. }
  3178. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3179. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3180. }
  3181. #if defined(GGML_USE_CUBLAS)
  3182. ggml_init_cublas();
  3183. #elif defined(GGML_USE_CLBLAST)
  3184. ggml_cl_init();
  3185. #endif
  3186. is_first_call = false;
  3187. }
  3188. // find non-used context in g_state
  3189. struct ggml_context * ctx = NULL;
  3190. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3191. if (!g_state.contexts[i].used) {
  3192. g_state.contexts[i].used = true;
  3193. ctx = &g_state.contexts[i].context;
  3194. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3195. break;
  3196. }
  3197. }
  3198. if (ctx == NULL) {
  3199. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3200. ggml_critical_section_end();
  3201. return NULL;
  3202. }
  3203. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3204. *ctx = (struct ggml_context) {
  3205. /*.mem_size =*/ mem_size,
  3206. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3207. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3208. /*.no_alloc =*/ params.no_alloc,
  3209. /*.n_objects =*/ 0,
  3210. /*.objects_begin =*/ NULL,
  3211. /*.objects_end =*/ NULL,
  3212. /*.scratch =*/ { 0, 0, NULL, },
  3213. /*.scratch_save =*/ { 0, 0, NULL, },
  3214. };
  3215. GGML_ASSERT(ctx->mem_buffer != NULL);
  3216. ggml_assert_aligned(ctx->mem_buffer);
  3217. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3218. ggml_critical_section_end();
  3219. return ctx;
  3220. }
  3221. void ggml_free(struct ggml_context * ctx) {
  3222. // make this function thread safe
  3223. ggml_critical_section_start();
  3224. bool found = false;
  3225. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3226. if (&g_state.contexts[i].context == ctx) {
  3227. g_state.contexts[i].used = false;
  3228. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3229. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3230. if (ctx->mem_buffer_owned) {
  3231. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3232. }
  3233. found = true;
  3234. break;
  3235. }
  3236. }
  3237. if (!found) {
  3238. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3239. }
  3240. ggml_critical_section_end();
  3241. }
  3242. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3243. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3244. }
  3245. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3246. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3247. ctx->scratch = scratch;
  3248. return result;
  3249. }
  3250. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3251. ctx->no_alloc = no_alloc;
  3252. }
  3253. void * ggml_get_mem_buffer(struct ggml_context * ctx) {
  3254. return ctx->mem_buffer;
  3255. }
  3256. size_t ggml_get_mem_size(struct ggml_context * ctx) {
  3257. return ctx->mem_size;
  3258. }
  3259. // IMPORTANT:
  3260. // when creating "opt" tensors, always save and load the scratch buffer
  3261. // this is an error prone process, but it is necessary to support inplace
  3262. // operators when using scratch buffers
  3263. // TODO: implement a better way
  3264. void ggml_scratch_save(struct ggml_context * ctx) {
  3265. ctx->scratch_save = ctx->scratch;
  3266. ctx->scratch.data = NULL;
  3267. }
  3268. void ggml_scratch_load(struct ggml_context * ctx) {
  3269. ctx->scratch = ctx->scratch_save;
  3270. }
  3271. ////////////////////////////////////////////////////////////////////////////////
  3272. struct ggml_tensor * ggml_new_tensor_impl(
  3273. struct ggml_context * ctx,
  3274. enum ggml_type type,
  3275. int n_dims,
  3276. const int64_t* ne,
  3277. void* data) {
  3278. // always insert objects at the end of the context's memory pool
  3279. struct ggml_object * obj_cur = ctx->objects_end;
  3280. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3281. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3282. const size_t cur_end = cur_offs + cur_size;
  3283. size_t size_needed = 0;
  3284. if (data == NULL && !ctx->no_alloc) {
  3285. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3286. for (int i = 1; i < n_dims; i++) {
  3287. size_needed *= ne[i];
  3288. }
  3289. // align to GGML_MEM_ALIGN
  3290. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3291. }
  3292. char * const mem_buffer = ctx->mem_buffer;
  3293. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3294. if (ctx->scratch.data == NULL || data != NULL) {
  3295. size_needed += GGML_TENSOR_SIZE;
  3296. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3297. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3298. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3299. assert(false);
  3300. return NULL;
  3301. }
  3302. *obj_new = (struct ggml_object) {
  3303. .offs = cur_end + GGML_OBJECT_SIZE,
  3304. .size = size_needed,
  3305. .next = NULL,
  3306. };
  3307. } else {
  3308. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3309. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3310. __func__, ctx->scratch.offs + size_needed, ctx->scratch.size);
  3311. assert(false);
  3312. return NULL;
  3313. }
  3314. if (cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE > ctx->mem_size) {
  3315. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3316. __func__, cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE, ctx->mem_size);
  3317. assert(false);
  3318. return NULL;
  3319. }
  3320. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3321. *obj_new = (struct ggml_object) {
  3322. .offs = cur_end + GGML_OBJECT_SIZE,
  3323. .size = GGML_TENSOR_SIZE,
  3324. .next = NULL,
  3325. };
  3326. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3327. ctx->scratch.offs += size_needed;
  3328. }
  3329. if (obj_cur != NULL) {
  3330. obj_cur->next = obj_new;
  3331. } else {
  3332. // this is the first object in this context
  3333. ctx->objects_begin = obj_new;
  3334. }
  3335. ctx->objects_end = obj_new;
  3336. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3337. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3338. ggml_assert_aligned(result);
  3339. *result = (struct ggml_tensor) {
  3340. /*.type =*/ type,
  3341. /*.backend =*/ GGML_BACKEND_CPU,
  3342. /*.n_dims =*/ n_dims,
  3343. /*.ne =*/ { 1, 1, 1, 1 },
  3344. /*.nb =*/ { 0, 0, 0, 0 },
  3345. /*.op =*/ GGML_OP_NONE,
  3346. /*.is_param =*/ false,
  3347. /*.grad =*/ NULL,
  3348. /*.src0 =*/ NULL,
  3349. /*.src1 =*/ NULL,
  3350. /*.opt =*/ { NULL },
  3351. /*.n_tasks =*/ 0,
  3352. /*.perf_runs =*/ 0,
  3353. /*.perf_cycles =*/ 0,
  3354. /*.perf_time_us =*/ 0,
  3355. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3356. /*.name =*/ { 0 },
  3357. /*.pad =*/ { 0 },
  3358. };
  3359. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3360. //ggml_assert_aligned(result->data);
  3361. for (int i = 0; i < n_dims; i++) {
  3362. result->ne[i] = ne[i];
  3363. }
  3364. result->nb[0] = GGML_TYPE_SIZE[type];
  3365. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3366. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3367. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3368. }
  3369. ctx->n_objects++;
  3370. return result;
  3371. }
  3372. struct ggml_tensor * ggml_new_tensor(
  3373. struct ggml_context * ctx,
  3374. enum ggml_type type,
  3375. int n_dims,
  3376. const int64_t * ne) {
  3377. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3378. }
  3379. struct ggml_tensor * ggml_new_tensor_1d(
  3380. struct ggml_context * ctx,
  3381. enum ggml_type type,
  3382. int64_t ne0) {
  3383. return ggml_new_tensor(ctx, type, 1, &ne0);
  3384. }
  3385. struct ggml_tensor * ggml_new_tensor_2d(
  3386. struct ggml_context * ctx,
  3387. enum ggml_type type,
  3388. int64_t ne0,
  3389. int64_t ne1) {
  3390. const int64_t ne[2] = { ne0, ne1 };
  3391. return ggml_new_tensor(ctx, type, 2, ne);
  3392. }
  3393. struct ggml_tensor * ggml_new_tensor_3d(
  3394. struct ggml_context * ctx,
  3395. enum ggml_type type,
  3396. int64_t ne0,
  3397. int64_t ne1,
  3398. int64_t ne2) {
  3399. const int64_t ne[3] = { ne0, ne1, ne2 };
  3400. return ggml_new_tensor(ctx, type, 3, ne);
  3401. }
  3402. struct ggml_tensor * ggml_new_tensor_4d(
  3403. struct ggml_context * ctx,
  3404. enum ggml_type type,
  3405. int64_t ne0,
  3406. int64_t ne1,
  3407. int64_t ne2,
  3408. int64_t ne3) {
  3409. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3410. return ggml_new_tensor(ctx, type, 4, ne);
  3411. }
  3412. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3413. ggml_scratch_save(ctx);
  3414. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3415. ggml_scratch_load(ctx);
  3416. ggml_set_i32(result, value);
  3417. return result;
  3418. }
  3419. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3420. ggml_scratch_save(ctx);
  3421. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3422. ggml_scratch_load(ctx);
  3423. ggml_set_f32(result, value);
  3424. return result;
  3425. }
  3426. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3427. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3428. }
  3429. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3430. memset(tensor->data, 0, ggml_nbytes(tensor));
  3431. return tensor;
  3432. }
  3433. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3434. const int n = ggml_nrows(tensor);
  3435. const int nc = tensor->ne[0];
  3436. const size_t n1 = tensor->nb[1];
  3437. char * const data = tensor->data;
  3438. switch (tensor->type) {
  3439. case GGML_TYPE_I8:
  3440. {
  3441. assert(tensor->nb[0] == sizeof(int8_t));
  3442. for (int i = 0; i < n; i++) {
  3443. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3444. }
  3445. } break;
  3446. case GGML_TYPE_I16:
  3447. {
  3448. assert(tensor->nb[0] == sizeof(int16_t));
  3449. for (int i = 0; i < n; i++) {
  3450. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3451. }
  3452. } break;
  3453. case GGML_TYPE_I32:
  3454. {
  3455. assert(tensor->nb[0] == sizeof(int32_t));
  3456. for (int i = 0; i < n; i++) {
  3457. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3458. }
  3459. } break;
  3460. case GGML_TYPE_F16:
  3461. {
  3462. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3463. for (int i = 0; i < n; i++) {
  3464. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3465. }
  3466. } break;
  3467. case GGML_TYPE_F32:
  3468. {
  3469. assert(tensor->nb[0] == sizeof(float));
  3470. for (int i = 0; i < n; i++) {
  3471. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3472. }
  3473. } break;
  3474. default:
  3475. {
  3476. GGML_ASSERT(false);
  3477. } break;
  3478. }
  3479. return tensor;
  3480. }
  3481. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3482. const int n = ggml_nrows(tensor);
  3483. const int nc = tensor->ne[0];
  3484. const size_t n1 = tensor->nb[1];
  3485. char * const data = tensor->data;
  3486. switch (tensor->type) {
  3487. case GGML_TYPE_I8:
  3488. {
  3489. assert(tensor->nb[0] == sizeof(int8_t));
  3490. for (int i = 0; i < n; i++) {
  3491. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3492. }
  3493. } break;
  3494. case GGML_TYPE_I16:
  3495. {
  3496. assert(tensor->nb[0] == sizeof(int16_t));
  3497. for (int i = 0; i < n; i++) {
  3498. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3499. }
  3500. } break;
  3501. case GGML_TYPE_I32:
  3502. {
  3503. assert(tensor->nb[0] == sizeof(int32_t));
  3504. for (int i = 0; i < n; i++) {
  3505. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3506. }
  3507. } break;
  3508. case GGML_TYPE_F16:
  3509. {
  3510. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3511. for (int i = 0; i < n; i++) {
  3512. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3513. }
  3514. } break;
  3515. case GGML_TYPE_F32:
  3516. {
  3517. assert(tensor->nb[0] == sizeof(float));
  3518. for (int i = 0; i < n; i++) {
  3519. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3520. }
  3521. } break;
  3522. default:
  3523. {
  3524. GGML_ASSERT(false);
  3525. } break;
  3526. }
  3527. return tensor;
  3528. }
  3529. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3530. switch (tensor->type) {
  3531. case GGML_TYPE_I8:
  3532. {
  3533. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3534. return ((int8_t *)(tensor->data))[i];
  3535. } break;
  3536. case GGML_TYPE_I16:
  3537. {
  3538. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3539. return ((int16_t *)(tensor->data))[i];
  3540. } break;
  3541. case GGML_TYPE_I32:
  3542. {
  3543. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3544. return ((int32_t *)(tensor->data))[i];
  3545. } break;
  3546. case GGML_TYPE_F16:
  3547. {
  3548. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3549. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3550. } break;
  3551. case GGML_TYPE_F32:
  3552. {
  3553. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3554. return ((float *)(tensor->data))[i];
  3555. } break;
  3556. default:
  3557. {
  3558. GGML_ASSERT(false);
  3559. } break;
  3560. }
  3561. return 0.0f;
  3562. }
  3563. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3564. switch (tensor->type) {
  3565. case GGML_TYPE_I8:
  3566. {
  3567. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3568. ((int8_t *)(tensor->data))[i] = value;
  3569. } break;
  3570. case GGML_TYPE_I16:
  3571. {
  3572. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3573. ((int16_t *)(tensor->data))[i] = value;
  3574. } break;
  3575. case GGML_TYPE_I32:
  3576. {
  3577. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3578. ((int32_t *)(tensor->data))[i] = value;
  3579. } break;
  3580. case GGML_TYPE_F16:
  3581. {
  3582. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3583. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3584. } break;
  3585. case GGML_TYPE_F32:
  3586. {
  3587. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3588. ((float *)(tensor->data))[i] = value;
  3589. } break;
  3590. default:
  3591. {
  3592. GGML_ASSERT(false);
  3593. } break;
  3594. }
  3595. }
  3596. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3597. switch (tensor->type) {
  3598. case GGML_TYPE_I8:
  3599. {
  3600. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3601. return ((int8_t *)(tensor->data))[i];
  3602. } break;
  3603. case GGML_TYPE_I16:
  3604. {
  3605. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3606. return ((int16_t *)(tensor->data))[i];
  3607. } break;
  3608. case GGML_TYPE_I32:
  3609. {
  3610. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3611. return ((int32_t *)(tensor->data))[i];
  3612. } break;
  3613. case GGML_TYPE_F16:
  3614. {
  3615. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3616. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3617. } break;
  3618. case GGML_TYPE_F32:
  3619. {
  3620. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3621. return ((float *)(tensor->data))[i];
  3622. } break;
  3623. default:
  3624. {
  3625. GGML_ASSERT(false);
  3626. } break;
  3627. }
  3628. return 0.0f;
  3629. }
  3630. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3631. switch (tensor->type) {
  3632. case GGML_TYPE_I8:
  3633. {
  3634. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3635. ((int8_t *)(tensor->data))[i] = value;
  3636. } break;
  3637. case GGML_TYPE_I16:
  3638. {
  3639. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3640. ((int16_t *)(tensor->data))[i] = value;
  3641. } break;
  3642. case GGML_TYPE_I32:
  3643. {
  3644. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3645. ((int32_t *)(tensor->data))[i] = value;
  3646. } break;
  3647. case GGML_TYPE_F16:
  3648. {
  3649. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3650. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3651. } break;
  3652. case GGML_TYPE_F32:
  3653. {
  3654. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3655. ((float *)(tensor->data))[i] = value;
  3656. } break;
  3657. default:
  3658. {
  3659. GGML_ASSERT(false);
  3660. } break;
  3661. }
  3662. }
  3663. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3664. return tensor->data;
  3665. }
  3666. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3667. assert(tensor->type == GGML_TYPE_F32);
  3668. return (float *)(tensor->data);
  3669. }
  3670. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3671. return tensor->name;
  3672. }
  3673. void ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3674. strncpy(tensor->name, name, sizeof(tensor->name));
  3675. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3676. }
  3677. struct ggml_tensor * ggml_view_tensor(
  3678. struct ggml_context * ctx,
  3679. const struct ggml_tensor * src) {
  3680. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3681. result->nb[0] = src->nb[0];
  3682. result->nb[1] = src->nb[1];
  3683. result->nb[2] = src->nb[2];
  3684. result->nb[3] = src->nb[3];
  3685. return result;
  3686. }
  3687. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3688. struct ggml_object * obj = ctx->objects_begin;
  3689. char * const mem_buffer = ctx->mem_buffer;
  3690. while (obj != NULL) {
  3691. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3692. if (strcmp(cur->name, name) == 0) {
  3693. return cur;
  3694. }
  3695. obj = obj->next;
  3696. }
  3697. return NULL;
  3698. }
  3699. ////////////////////////////////////////////////////////////////////////////////
  3700. // ggml_dup
  3701. struct ggml_tensor * ggml_dup_impl(
  3702. struct ggml_context * ctx,
  3703. struct ggml_tensor * a,
  3704. bool inplace) {
  3705. bool is_node = false;
  3706. if (!inplace && (a->grad)) {
  3707. is_node = true;
  3708. }
  3709. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3710. result->op = GGML_OP_DUP;
  3711. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3712. result->src0 = a;
  3713. result->src1 = NULL;
  3714. return result;
  3715. }
  3716. struct ggml_tensor * ggml_dup(
  3717. struct ggml_context * ctx,
  3718. struct ggml_tensor * a) {
  3719. return ggml_dup_impl(ctx, a, false);
  3720. }
  3721. struct ggml_tensor * ggml_dup_inplace(
  3722. struct ggml_context * ctx,
  3723. struct ggml_tensor * a) {
  3724. return ggml_dup_impl(ctx, a, true);
  3725. }
  3726. // ggml_add
  3727. struct ggml_tensor * ggml_add_impl(
  3728. struct ggml_context * ctx,
  3729. struct ggml_tensor * a,
  3730. struct ggml_tensor * b,
  3731. bool inplace) {
  3732. GGML_ASSERT(ggml_are_same_shape(a, b));
  3733. bool is_node = false;
  3734. if (!inplace && (a->grad || b->grad)) {
  3735. is_node = true;
  3736. }
  3737. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3738. result->op = GGML_OP_ADD;
  3739. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3740. result->src0 = a;
  3741. result->src1 = b;
  3742. return result;
  3743. }
  3744. struct ggml_tensor * ggml_add(
  3745. struct ggml_context * ctx,
  3746. struct ggml_tensor * a,
  3747. struct ggml_tensor * b) {
  3748. return ggml_add_impl(ctx, a, b, false);
  3749. }
  3750. struct ggml_tensor * ggml_add_inplace(
  3751. struct ggml_context * ctx,
  3752. struct ggml_tensor * a,
  3753. struct ggml_tensor * b) {
  3754. return ggml_add_impl(ctx, a, b, true);
  3755. }
  3756. // ggml_add1
  3757. struct ggml_tensor * ggml_add1_impl(
  3758. struct ggml_context * ctx,
  3759. struct ggml_tensor * a,
  3760. struct ggml_tensor * b,
  3761. bool inplace) {
  3762. GGML_ASSERT(ggml_is_scalar(b));
  3763. GGML_ASSERT(ggml_is_padded_1d(a));
  3764. bool is_node = false;
  3765. if (!inplace && (a->grad || b->grad)) {
  3766. is_node = true;
  3767. }
  3768. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3769. result->op = GGML_OP_ADD1;
  3770. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3771. result->src0 = a;
  3772. result->src1 = b;
  3773. return result;
  3774. }
  3775. struct ggml_tensor * ggml_add1(
  3776. struct ggml_context * ctx,
  3777. struct ggml_tensor * a,
  3778. struct ggml_tensor * b) {
  3779. return ggml_add1_impl(ctx, a, b, false);
  3780. }
  3781. struct ggml_tensor * ggml_add1_inplace(
  3782. struct ggml_context * ctx,
  3783. struct ggml_tensor * a,
  3784. struct ggml_tensor * b) {
  3785. return ggml_add1_impl(ctx, a, b, true);
  3786. }
  3787. // ggml_acc
  3788. struct ggml_tensor * ggml_acc_impl(
  3789. struct ggml_context * ctx,
  3790. struct ggml_tensor * a,
  3791. struct ggml_tensor * b,
  3792. size_t nb1,
  3793. size_t nb2,
  3794. size_t nb3,
  3795. size_t offset,
  3796. bool inplace) {
  3797. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3798. GGML_ASSERT(ggml_is_contiguous(a));
  3799. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3800. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3801. bool is_node = false;
  3802. if (!inplace && (a->grad || b->grad)) {
  3803. is_node = true;
  3804. }
  3805. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3806. ggml_scratch_save(ctx);
  3807. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  3808. ((int32_t *) c->data)[0] = nb1;
  3809. ((int32_t *) c->data)[1] = nb2;
  3810. ((int32_t *) c->data)[2] = nb3;
  3811. ((int32_t *) c->data)[3] = offset;
  3812. ((int32_t *) c->data)[4] = inplace ? 1 : 0;
  3813. ggml_scratch_load(ctx);
  3814. result->op = GGML_OP_ACC;
  3815. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3816. result->src0 = a;
  3817. result->src1 = b;
  3818. result->opt[0] = c;
  3819. return result;
  3820. }
  3821. struct ggml_tensor * ggml_acc(
  3822. struct ggml_context * ctx,
  3823. struct ggml_tensor * a,
  3824. struct ggml_tensor * b,
  3825. size_t nb1,
  3826. size_t nb2,
  3827. size_t nb3,
  3828. size_t offset) {
  3829. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3830. }
  3831. struct ggml_tensor * ggml_acc_inplace(
  3832. struct ggml_context * ctx,
  3833. struct ggml_tensor * a,
  3834. struct ggml_tensor * b,
  3835. size_t nb1,
  3836. size_t nb2,
  3837. size_t nb3,
  3838. size_t offset) {
  3839. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3840. }
  3841. // ggml_sub
  3842. struct ggml_tensor * ggml_sub_impl(
  3843. struct ggml_context * ctx,
  3844. struct ggml_tensor * a,
  3845. struct ggml_tensor * b,
  3846. bool inplace) {
  3847. GGML_ASSERT(ggml_are_same_shape(a, b));
  3848. bool is_node = false;
  3849. if (!inplace && (a->grad || b->grad)) {
  3850. is_node = true;
  3851. }
  3852. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3853. result->op = GGML_OP_SUB;
  3854. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3855. result->src0 = a;
  3856. result->src1 = b;
  3857. return result;
  3858. }
  3859. struct ggml_tensor * ggml_sub(
  3860. struct ggml_context * ctx,
  3861. struct ggml_tensor * a,
  3862. struct ggml_tensor * b) {
  3863. return ggml_sub_impl(ctx, a, b, false);
  3864. }
  3865. struct ggml_tensor * ggml_sub_inplace(
  3866. struct ggml_context * ctx,
  3867. struct ggml_tensor * a,
  3868. struct ggml_tensor * b) {
  3869. return ggml_sub_impl(ctx, a, b, true);
  3870. }
  3871. // ggml_mul
  3872. struct ggml_tensor * ggml_mul_impl(
  3873. struct ggml_context * ctx,
  3874. struct ggml_tensor * a,
  3875. struct ggml_tensor * b,
  3876. bool inplace) {
  3877. // TODO: support less-strict constraint
  3878. // GGML_ASSERT(ggml_can_repeat(b, a));
  3879. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3880. bool is_node = false;
  3881. if (!inplace && (a->grad || b->grad)) {
  3882. // TODO: support backward pass for broadcasting
  3883. GGML_ASSERT(ggml_are_same_shape(a, b));
  3884. is_node = true;
  3885. }
  3886. if (inplace) {
  3887. GGML_ASSERT(is_node == false);
  3888. }
  3889. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3890. result->op = GGML_OP_MUL;
  3891. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3892. result->src0 = a;
  3893. result->src1 = b;
  3894. return result;
  3895. }
  3896. struct ggml_tensor * ggml_mul(
  3897. struct ggml_context * ctx,
  3898. struct ggml_tensor * a,
  3899. struct ggml_tensor * b) {
  3900. return ggml_mul_impl(ctx, a, b, false);
  3901. }
  3902. struct ggml_tensor * ggml_mul_inplace(
  3903. struct ggml_context * ctx,
  3904. struct ggml_tensor * a,
  3905. struct ggml_tensor * b) {
  3906. return ggml_mul_impl(ctx, a, b, true);
  3907. }
  3908. // ggml_div
  3909. struct ggml_tensor * ggml_div_impl(
  3910. struct ggml_context * ctx,
  3911. struct ggml_tensor * a,
  3912. struct ggml_tensor * b,
  3913. bool inplace) {
  3914. GGML_ASSERT(ggml_are_same_shape(a, b));
  3915. bool is_node = false;
  3916. if (!inplace && (a->grad || b->grad)) {
  3917. is_node = true;
  3918. }
  3919. if (inplace) {
  3920. GGML_ASSERT(is_node == false);
  3921. }
  3922. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3923. result->op = GGML_OP_DIV;
  3924. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3925. result->src0 = a;
  3926. result->src1 = b;
  3927. return result;
  3928. }
  3929. struct ggml_tensor * ggml_div(
  3930. struct ggml_context * ctx,
  3931. struct ggml_tensor * a,
  3932. struct ggml_tensor * b) {
  3933. return ggml_div_impl(ctx, a, b, false);
  3934. }
  3935. struct ggml_tensor * ggml_div_inplace(
  3936. struct ggml_context * ctx,
  3937. struct ggml_tensor * a,
  3938. struct ggml_tensor * b) {
  3939. return ggml_div_impl(ctx, a, b, true);
  3940. }
  3941. // ggml_sqr
  3942. struct ggml_tensor * ggml_sqr_impl(
  3943. struct ggml_context * ctx,
  3944. struct ggml_tensor * a,
  3945. bool inplace) {
  3946. bool is_node = false;
  3947. if (!inplace && (a->grad)) {
  3948. is_node = true;
  3949. }
  3950. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3951. result->op = GGML_OP_SQR;
  3952. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3953. result->src0 = a;
  3954. result->src1 = NULL;
  3955. return result;
  3956. }
  3957. struct ggml_tensor * ggml_sqr(
  3958. struct ggml_context * ctx,
  3959. struct ggml_tensor * a) {
  3960. return ggml_sqr_impl(ctx, a, false);
  3961. }
  3962. struct ggml_tensor * ggml_sqr_inplace(
  3963. struct ggml_context * ctx,
  3964. struct ggml_tensor * a) {
  3965. return ggml_sqr_impl(ctx, a, true);
  3966. }
  3967. // ggml_sqrt
  3968. struct ggml_tensor * ggml_sqrt_impl(
  3969. struct ggml_context * ctx,
  3970. struct ggml_tensor * a,
  3971. bool inplace) {
  3972. bool is_node = false;
  3973. if (!inplace && (a->grad)) {
  3974. is_node = true;
  3975. }
  3976. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3977. result->op = GGML_OP_SQRT;
  3978. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3979. result->src0 = a;
  3980. result->src1 = NULL;
  3981. return result;
  3982. }
  3983. struct ggml_tensor * ggml_sqrt(
  3984. struct ggml_context * ctx,
  3985. struct ggml_tensor * a) {
  3986. return ggml_sqrt_impl(ctx, a, false);
  3987. }
  3988. struct ggml_tensor * ggml_sqrt_inplace(
  3989. struct ggml_context * ctx,
  3990. struct ggml_tensor * a) {
  3991. return ggml_sqrt_impl(ctx, a, true);
  3992. }
  3993. // ggml_log
  3994. struct ggml_tensor * ggml_log_impl(
  3995. struct ggml_context * ctx,
  3996. struct ggml_tensor * a,
  3997. bool inplace) {
  3998. bool is_node = false;
  3999. if (!inplace && (a->grad)) {
  4000. is_node = true;
  4001. }
  4002. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4003. result->op = GGML_OP_LOG;
  4004. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4005. result->src0 = a;
  4006. result->src1 = NULL;
  4007. return result;
  4008. }
  4009. struct ggml_tensor * ggml_log(
  4010. struct ggml_context * ctx,
  4011. struct ggml_tensor * a) {
  4012. return ggml_log_impl(ctx, a, false);
  4013. }
  4014. struct ggml_tensor * ggml_log_inplace(
  4015. struct ggml_context * ctx,
  4016. struct ggml_tensor * a) {
  4017. return ggml_log_impl(ctx, a, true);
  4018. }
  4019. // ggml_sum
  4020. struct ggml_tensor * ggml_sum(
  4021. struct ggml_context * ctx,
  4022. struct ggml_tensor * a) {
  4023. bool is_node = false;
  4024. if (a->grad) {
  4025. is_node = true;
  4026. }
  4027. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4028. result->op = GGML_OP_SUM;
  4029. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4030. result->src0 = a;
  4031. result->src1 = NULL;
  4032. return result;
  4033. }
  4034. // ggml_sum_rows
  4035. struct ggml_tensor * ggml_sum_rows(
  4036. struct ggml_context * ctx,
  4037. struct ggml_tensor * a) {
  4038. bool is_node = false;
  4039. if (a->grad) {
  4040. is_node = true;
  4041. }
  4042. int64_t ne[4] = {1,1,1,1};
  4043. for (int i=1; i<a->n_dims; ++i) {
  4044. ne[i] = a->ne[i];
  4045. }
  4046. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4047. result->op = GGML_OP_SUM_ROWS;
  4048. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4049. result->src0 = a;
  4050. result->src1 = NULL;
  4051. return result;
  4052. }
  4053. // ggml_mean
  4054. struct ggml_tensor * ggml_mean(
  4055. struct ggml_context * ctx,
  4056. struct ggml_tensor * a) {
  4057. bool is_node = false;
  4058. if (a->grad) {
  4059. GGML_ASSERT(false); // TODO: implement
  4060. is_node = true;
  4061. }
  4062. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4063. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4064. result->op = GGML_OP_MEAN;
  4065. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4066. result->src0 = a;
  4067. result->src1 = NULL;
  4068. return result;
  4069. }
  4070. // ggml_repeat
  4071. struct ggml_tensor * ggml_repeat(
  4072. struct ggml_context * ctx,
  4073. struct ggml_tensor * a,
  4074. struct ggml_tensor * b) {
  4075. GGML_ASSERT(ggml_can_repeat(a, b));
  4076. bool is_node = false;
  4077. if (a->grad) {
  4078. is_node = true;
  4079. }
  4080. if (ggml_are_same_shape(a, b) && !is_node) {
  4081. return a;
  4082. }
  4083. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4084. result->op = GGML_OP_REPEAT;
  4085. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4086. result->src0 = a;
  4087. result->src1 = b;
  4088. return result;
  4089. }
  4090. // ggml_abs
  4091. struct ggml_tensor * ggml_abs_impl(
  4092. struct ggml_context * ctx,
  4093. struct ggml_tensor * a,
  4094. bool inplace) {
  4095. bool is_node = false;
  4096. if (!inplace && (a->grad)) {
  4097. is_node = true;
  4098. }
  4099. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4100. result->op = GGML_OP_ABS;
  4101. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4102. result->src0 = a;
  4103. result->src1 = NULL;
  4104. return result;
  4105. }
  4106. struct ggml_tensor * ggml_abs(
  4107. struct ggml_context * ctx,
  4108. struct ggml_tensor * a) {
  4109. return ggml_abs_impl(ctx, a, false);
  4110. }
  4111. struct ggml_tensor * ggml_abs_inplace(
  4112. struct ggml_context * ctx,
  4113. struct ggml_tensor * a) {
  4114. return ggml_abs_impl(ctx, a, true);
  4115. }
  4116. // ggml_sgn
  4117. struct ggml_tensor * ggml_sgn_impl(
  4118. struct ggml_context * ctx,
  4119. struct ggml_tensor * a,
  4120. bool inplace) {
  4121. bool is_node = false;
  4122. if (!inplace && (a->grad)) {
  4123. is_node = true;
  4124. }
  4125. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4126. result->op = GGML_OP_SGN;
  4127. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4128. result->src0 = a;
  4129. result->src1 = NULL;
  4130. return result;
  4131. }
  4132. struct ggml_tensor * ggml_sgn(
  4133. struct ggml_context * ctx,
  4134. struct ggml_tensor * a) {
  4135. return ggml_sgn_impl(ctx, a, false);
  4136. }
  4137. struct ggml_tensor * ggml_sgn_inplace(
  4138. struct ggml_context * ctx,
  4139. struct ggml_tensor * a) {
  4140. return ggml_sgn_impl(ctx, a, true);
  4141. }
  4142. // ggml_neg
  4143. struct ggml_tensor * ggml_neg_impl(
  4144. struct ggml_context * ctx,
  4145. struct ggml_tensor * a,
  4146. bool inplace) {
  4147. bool is_node = false;
  4148. if (!inplace && (a->grad)) {
  4149. is_node = true;
  4150. }
  4151. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4152. result->op = GGML_OP_NEG;
  4153. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4154. result->src0 = a;
  4155. result->src1 = NULL;
  4156. return result;
  4157. }
  4158. struct ggml_tensor * ggml_neg(
  4159. struct ggml_context * ctx,
  4160. struct ggml_tensor * a) {
  4161. return ggml_neg_impl(ctx, a, false);
  4162. }
  4163. struct ggml_tensor * ggml_neg_inplace(
  4164. struct ggml_context * ctx,
  4165. struct ggml_tensor * a) {
  4166. return ggml_neg_impl(ctx, a, true);
  4167. }
  4168. // ggml_step
  4169. struct ggml_tensor * ggml_step_impl(
  4170. struct ggml_context * ctx,
  4171. struct ggml_tensor * a,
  4172. bool inplace) {
  4173. bool is_node = false;
  4174. if (!inplace && (a->grad)) {
  4175. is_node = true;
  4176. }
  4177. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4178. result->op = GGML_OP_STEP;
  4179. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4180. result->src0 = a;
  4181. result->src1 = NULL;
  4182. return result;
  4183. }
  4184. struct ggml_tensor * ggml_step(
  4185. struct ggml_context * ctx,
  4186. struct ggml_tensor * a) {
  4187. return ggml_step_impl(ctx, a, false);
  4188. }
  4189. struct ggml_tensor * ggml_step_inplace(
  4190. struct ggml_context * ctx,
  4191. struct ggml_tensor * a) {
  4192. return ggml_step_impl(ctx, a, true);
  4193. }
  4194. // ggml_relu
  4195. struct ggml_tensor * ggml_relu_impl(
  4196. struct ggml_context * ctx,
  4197. struct ggml_tensor * a,
  4198. bool inplace) {
  4199. bool is_node = false;
  4200. if (!inplace && (a->grad)) {
  4201. is_node = true;
  4202. }
  4203. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4204. result->op = GGML_OP_RELU;
  4205. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4206. result->src0 = a;
  4207. result->src1 = NULL;
  4208. return result;
  4209. }
  4210. struct ggml_tensor * ggml_relu(
  4211. struct ggml_context * ctx,
  4212. struct ggml_tensor * a) {
  4213. return ggml_relu_impl(ctx, a, false);
  4214. }
  4215. struct ggml_tensor * ggml_relu_inplace(
  4216. struct ggml_context * ctx,
  4217. struct ggml_tensor * a) {
  4218. return ggml_relu_impl(ctx, a, true);
  4219. }
  4220. // ggml_gelu
  4221. struct ggml_tensor * ggml_gelu_impl(
  4222. struct ggml_context * ctx,
  4223. struct ggml_tensor * a,
  4224. bool inplace) {
  4225. bool is_node = false;
  4226. if (!inplace && (a->grad)) {
  4227. is_node = true;
  4228. }
  4229. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4230. result->op = GGML_OP_GELU;
  4231. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4232. result->src0 = a;
  4233. result->src1 = NULL;
  4234. return result;
  4235. }
  4236. struct ggml_tensor * ggml_gelu(
  4237. struct ggml_context * ctx,
  4238. struct ggml_tensor * a) {
  4239. return ggml_gelu_impl(ctx, a, false);
  4240. }
  4241. struct ggml_tensor * ggml_gelu_inplace(
  4242. struct ggml_context * ctx,
  4243. struct ggml_tensor * a) {
  4244. return ggml_gelu_impl(ctx, a, true);
  4245. }
  4246. // ggml_silu
  4247. struct ggml_tensor * ggml_silu_impl(
  4248. struct ggml_context * ctx,
  4249. struct ggml_tensor * a,
  4250. bool inplace) {
  4251. bool is_node = false;
  4252. if (!inplace && (a->grad)) {
  4253. is_node = true;
  4254. }
  4255. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4256. result->op = GGML_OP_SILU;
  4257. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4258. result->src0 = a;
  4259. result->src1 = NULL;
  4260. return result;
  4261. }
  4262. struct ggml_tensor * ggml_silu(
  4263. struct ggml_context * ctx,
  4264. struct ggml_tensor * a) {
  4265. return ggml_silu_impl(ctx, a, false);
  4266. }
  4267. struct ggml_tensor * ggml_silu_inplace(
  4268. struct ggml_context * ctx,
  4269. struct ggml_tensor * a) {
  4270. return ggml_silu_impl(ctx, a, true);
  4271. }
  4272. // ggml_silu_back
  4273. struct ggml_tensor * ggml_silu_back(
  4274. struct ggml_context * ctx,
  4275. struct ggml_tensor * a,
  4276. struct ggml_tensor * b) {
  4277. bool is_node = false;
  4278. if (a->grad || b->grad) {
  4279. // TODO: implement backward
  4280. is_node = true;
  4281. }
  4282. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4283. result->op = GGML_OP_SILU_BACK;
  4284. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4285. result->src0 = a;
  4286. result->src1 = b;
  4287. return result;
  4288. }
  4289. // ggml_norm
  4290. struct ggml_tensor * ggml_norm_impl(
  4291. struct ggml_context * ctx,
  4292. struct ggml_tensor * a,
  4293. bool inplace) {
  4294. bool is_node = false;
  4295. if (!inplace && (a->grad)) {
  4296. GGML_ASSERT(false); // TODO: implement backward
  4297. is_node = true;
  4298. }
  4299. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4300. result->op = GGML_OP_NORM;
  4301. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4302. result->src0 = a;
  4303. result->src1 = NULL; // TODO: maybe store epsilon here?
  4304. return result;
  4305. }
  4306. struct ggml_tensor * ggml_norm(
  4307. struct ggml_context * ctx,
  4308. struct ggml_tensor * a) {
  4309. return ggml_norm_impl(ctx, a, false);
  4310. }
  4311. struct ggml_tensor * ggml_norm_inplace(
  4312. struct ggml_context * ctx,
  4313. struct ggml_tensor * a) {
  4314. return ggml_norm_impl(ctx, a, true);
  4315. }
  4316. struct ggml_tensor * ggml_rms_norm_impl(
  4317. struct ggml_context * ctx,
  4318. struct ggml_tensor * a,
  4319. bool inplace) {
  4320. bool is_node = false;
  4321. if (!inplace && (a->grad)) {
  4322. is_node = true;
  4323. }
  4324. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4325. result->op = GGML_OP_RMS_NORM;
  4326. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4327. result->src0 = a;
  4328. result->src1 = NULL; // TODO: maybe store epsilon here?
  4329. return result;
  4330. }
  4331. struct ggml_tensor * ggml_rms_norm(
  4332. struct ggml_context * ctx,
  4333. struct ggml_tensor * a) {
  4334. return ggml_rms_norm_impl(ctx, a, false);
  4335. }
  4336. struct ggml_tensor * ggml_rms_norm_inplace(
  4337. struct ggml_context * ctx,
  4338. struct ggml_tensor * a) {
  4339. return ggml_rms_norm_impl(ctx, a, true);
  4340. }
  4341. struct ggml_tensor * ggml_rms_norm_back(
  4342. struct ggml_context * ctx,
  4343. struct ggml_tensor * a,
  4344. struct ggml_tensor * b) {
  4345. bool is_node = false;
  4346. if (a->grad) {
  4347. // TODO: implement backward
  4348. is_node = true;
  4349. }
  4350. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4351. result->op = GGML_OP_RMS_NORM_BACK;
  4352. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4353. result->src0 = a;
  4354. result->src1 = b;
  4355. return result;
  4356. }
  4357. // ggml_mul_mat
  4358. struct ggml_tensor * ggml_mul_mat(
  4359. struct ggml_context * ctx,
  4360. struct ggml_tensor * a,
  4361. struct ggml_tensor * b) {
  4362. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4363. GGML_ASSERT(!ggml_is_transposed(a));
  4364. bool is_node = false;
  4365. if (a->grad || b->grad) {
  4366. is_node = true;
  4367. }
  4368. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4369. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4370. result->op = GGML_OP_MUL_MAT;
  4371. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4372. result->src0 = a;
  4373. result->src1 = b;
  4374. return result;
  4375. }
  4376. // ggml_scale
  4377. struct ggml_tensor * ggml_scale_impl(
  4378. struct ggml_context * ctx,
  4379. struct ggml_tensor * a,
  4380. struct ggml_tensor * b,
  4381. bool inplace) {
  4382. GGML_ASSERT(ggml_is_scalar(b));
  4383. GGML_ASSERT(ggml_is_padded_1d(a));
  4384. bool is_node = false;
  4385. if (!inplace && (a->grad || b->grad)) {
  4386. is_node = true;
  4387. }
  4388. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4389. result->op = GGML_OP_SCALE;
  4390. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4391. result->src0 = a;
  4392. result->src1 = b;
  4393. return result;
  4394. }
  4395. struct ggml_tensor * ggml_scale(
  4396. struct ggml_context * ctx,
  4397. struct ggml_tensor * a,
  4398. struct ggml_tensor * b) {
  4399. return ggml_scale_impl(ctx, a, b, false);
  4400. }
  4401. struct ggml_tensor * ggml_scale_inplace(
  4402. struct ggml_context * ctx,
  4403. struct ggml_tensor * a,
  4404. struct ggml_tensor * b) {
  4405. return ggml_scale_impl(ctx, a, b, true);
  4406. }
  4407. // ggml_set
  4408. struct ggml_tensor * ggml_set_impl(
  4409. struct ggml_context * ctx,
  4410. struct ggml_tensor * a,
  4411. struct ggml_tensor * b,
  4412. size_t nb1,
  4413. size_t nb2,
  4414. size_t nb3,
  4415. size_t offset,
  4416. bool inplace) {
  4417. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4418. bool is_node = false;
  4419. if (!inplace && (a->grad || b->grad)) {
  4420. is_node = true;
  4421. }
  4422. // make a view of the destination
  4423. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4424. ggml_scratch_save(ctx);
  4425. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4426. (( int32_t * ) c->data)[0] = nb1;
  4427. (( int32_t * ) c->data)[1] = nb2;
  4428. (( int32_t * ) c->data)[2] = nb3;
  4429. (( int32_t * ) c->data)[3] = offset;
  4430. (( int32_t * ) c->data)[4] = inplace ? 1 : 0;
  4431. ggml_scratch_load(ctx);
  4432. result->op = GGML_OP_SET;
  4433. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4434. result->src0 = a;
  4435. result->src1 = b;
  4436. result->opt[0] = c;
  4437. return result;
  4438. }
  4439. struct ggml_tensor * ggml_set(
  4440. struct ggml_context * ctx,
  4441. struct ggml_tensor * a,
  4442. struct ggml_tensor * b,
  4443. size_t nb1,
  4444. size_t nb2,
  4445. size_t nb3,
  4446. size_t offset) {
  4447. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4448. }
  4449. struct ggml_tensor * ggml_set_inplace(
  4450. struct ggml_context * ctx,
  4451. struct ggml_tensor * a,
  4452. struct ggml_tensor * b,
  4453. size_t nb1,
  4454. size_t nb2,
  4455. size_t nb3,
  4456. size_t offset) {
  4457. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4458. }
  4459. struct ggml_tensor * ggml_set_1d(
  4460. struct ggml_context * ctx,
  4461. struct ggml_tensor * a,
  4462. struct ggml_tensor * b,
  4463. size_t offset) {
  4464. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4465. }
  4466. struct ggml_tensor * ggml_set_1d_inplace(
  4467. struct ggml_context * ctx,
  4468. struct ggml_tensor * a,
  4469. struct ggml_tensor * b,
  4470. size_t offset) {
  4471. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4472. }
  4473. struct ggml_tensor * ggml_set_2d(
  4474. struct ggml_context * ctx,
  4475. struct ggml_tensor * a,
  4476. struct ggml_tensor * b,
  4477. size_t nb1,
  4478. size_t offset) {
  4479. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4480. }
  4481. struct ggml_tensor * ggml_set_2d_inplace(
  4482. struct ggml_context * ctx,
  4483. struct ggml_tensor * a,
  4484. struct ggml_tensor * b,
  4485. size_t nb1,
  4486. size_t offset) {
  4487. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4488. }
  4489. // ggml_cpy
  4490. struct ggml_tensor * ggml_cpy_impl(
  4491. struct ggml_context * ctx,
  4492. struct ggml_tensor * a,
  4493. struct ggml_tensor * b,
  4494. bool inplace) {
  4495. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4496. bool is_node = false;
  4497. if (!inplace && (a->grad || b->grad)) {
  4498. is_node = true;
  4499. }
  4500. // make a view of the destination
  4501. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4502. result->op = GGML_OP_CPY;
  4503. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4504. result->src0 = a;
  4505. result->src1 = b;
  4506. return result;
  4507. }
  4508. struct ggml_tensor * ggml_cpy(
  4509. struct ggml_context * ctx,
  4510. struct ggml_tensor * a,
  4511. struct ggml_tensor * b) {
  4512. return ggml_cpy_impl(ctx, a, b, false);
  4513. }
  4514. struct ggml_tensor * ggml_cpy_inplace(
  4515. struct ggml_context * ctx,
  4516. struct ggml_tensor * a,
  4517. struct ggml_tensor * b) {
  4518. return ggml_cpy_impl(ctx, a, b, true);
  4519. }
  4520. // ggml_cont
  4521. struct ggml_tensor * ggml_cont_impl(
  4522. struct ggml_context * ctx,
  4523. struct ggml_tensor * a,
  4524. bool inplace) {
  4525. bool is_node = false;
  4526. if (!inplace && a->grad) {
  4527. is_node = true;
  4528. }
  4529. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4530. result->op = GGML_OP_CONT;
  4531. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4532. result->src0 = a;
  4533. result->src1 = NULL;
  4534. return result;
  4535. }
  4536. struct ggml_tensor * ggml_cont(
  4537. struct ggml_context * ctx,
  4538. struct ggml_tensor * a) {
  4539. return ggml_cont_impl(ctx, a, false);
  4540. }
  4541. struct ggml_tensor * ggml_cont_inplace(
  4542. struct ggml_context * ctx,
  4543. struct ggml_tensor * a) {
  4544. return ggml_cont_impl(ctx, a, true);
  4545. }
  4546. // ggml_reshape
  4547. struct ggml_tensor * ggml_reshape(
  4548. struct ggml_context * ctx,
  4549. struct ggml_tensor * a,
  4550. struct ggml_tensor * b) {
  4551. GGML_ASSERT(ggml_is_contiguous(a));
  4552. GGML_ASSERT(ggml_is_contiguous(b));
  4553. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4554. bool is_node = false;
  4555. if (a->grad) {
  4556. is_node = true;
  4557. }
  4558. if (b->grad) {
  4559. // gradient propagation is not supported
  4560. //GGML_ASSERT(false);
  4561. }
  4562. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4563. result->op = GGML_OP_RESHAPE;
  4564. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4565. result->src0 = a;
  4566. result->src1 = NULL;
  4567. return result;
  4568. }
  4569. struct ggml_tensor * ggml_reshape_1d(
  4570. struct ggml_context * ctx,
  4571. struct ggml_tensor * a,
  4572. int64_t ne0) {
  4573. GGML_ASSERT(ggml_is_contiguous(a));
  4574. GGML_ASSERT(ggml_nelements(a) == ne0);
  4575. bool is_node = false;
  4576. if (a->grad) {
  4577. is_node = true;
  4578. }
  4579. const int64_t ne[1] = { ne0 };
  4580. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  4581. result->op = GGML_OP_RESHAPE;
  4582. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4583. result->src0 = a;
  4584. result->src1 = NULL;
  4585. return result;
  4586. }
  4587. struct ggml_tensor * ggml_reshape_2d(
  4588. struct ggml_context * ctx,
  4589. struct ggml_tensor * a,
  4590. int64_t ne0,
  4591. int64_t ne1) {
  4592. GGML_ASSERT(ggml_is_contiguous(a));
  4593. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4594. bool is_node = false;
  4595. if (a->grad) {
  4596. is_node = true;
  4597. }
  4598. const int64_t ne[2] = { ne0, ne1 };
  4599. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4600. result->op = GGML_OP_RESHAPE;
  4601. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4602. result->src0 = a;
  4603. result->src1 = NULL;
  4604. return result;
  4605. }
  4606. struct ggml_tensor * ggml_reshape_3d(
  4607. struct ggml_context * ctx,
  4608. struct ggml_tensor * a,
  4609. int64_t ne0,
  4610. int64_t ne1,
  4611. int64_t ne2) {
  4612. GGML_ASSERT(ggml_is_contiguous(a));
  4613. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4614. bool is_node = false;
  4615. if (a->grad) {
  4616. is_node = true;
  4617. }
  4618. const int64_t ne[3] = { ne0, ne1, ne2 };
  4619. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4620. result->op = GGML_OP_RESHAPE;
  4621. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4622. result->src0 = a;
  4623. result->src1 = NULL;
  4624. return result;
  4625. }
  4626. struct ggml_tensor * ggml_reshape_4d(
  4627. struct ggml_context * ctx,
  4628. struct ggml_tensor * a,
  4629. int64_t ne0,
  4630. int64_t ne1,
  4631. int64_t ne2,
  4632. int64_t ne3) {
  4633. GGML_ASSERT(ggml_is_contiguous(a));
  4634. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4635. bool is_node = false;
  4636. if (a->grad) {
  4637. is_node = true;
  4638. }
  4639. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4640. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  4641. result->op = GGML_OP_RESHAPE;
  4642. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4643. result->src0 = a;
  4644. result->src1 = NULL;
  4645. return result;
  4646. }
  4647. // ggml_view_1d
  4648. struct ggml_tensor * ggml_view_1d(
  4649. struct ggml_context * ctx,
  4650. struct ggml_tensor * a,
  4651. int64_t ne0,
  4652. size_t offset) {
  4653. bool is_node = false;
  4654. if (a->grad) {
  4655. is_node = true;
  4656. }
  4657. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4658. ggml_scratch_save(ctx);
  4659. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4660. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4661. ggml_scratch_load(ctx);
  4662. result->op = GGML_OP_VIEW;
  4663. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4664. result->src0 = a;
  4665. result->src1 = NULL;
  4666. result->opt[0] = offs;
  4667. if (is_node) {
  4668. memcpy(result->padding, &offset, sizeof(offset));
  4669. }
  4670. return result;
  4671. }
  4672. // ggml_view_2d
  4673. struct ggml_tensor * ggml_view_2d(
  4674. struct ggml_context * ctx,
  4675. struct ggml_tensor * a,
  4676. int64_t ne0,
  4677. int64_t ne1,
  4678. size_t nb1,
  4679. size_t offset) {
  4680. bool is_node = false;
  4681. if (a->grad) {
  4682. is_node = true;
  4683. }
  4684. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4685. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4686. ggml_scratch_save(ctx);
  4687. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4688. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4689. ggml_scratch_load(ctx);
  4690. result->nb[1] = nb1;
  4691. result->nb[2] = result->nb[1]*ne1;
  4692. result->nb[3] = result->nb[2];
  4693. result->op = GGML_OP_VIEW;
  4694. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4695. result->src0 = a;
  4696. result->src1 = NULL;
  4697. result->opt[0] = offs;
  4698. if (is_node) {
  4699. memcpy(result->padding, &offset, sizeof(offset));
  4700. }
  4701. return result;
  4702. }
  4703. // ggml_view_3d
  4704. struct ggml_tensor * ggml_view_3d(
  4705. struct ggml_context * ctx,
  4706. struct ggml_tensor * a,
  4707. int64_t ne0,
  4708. int64_t ne1,
  4709. int64_t ne2,
  4710. size_t nb1,
  4711. size_t nb2,
  4712. size_t offset) {
  4713. bool is_node = false;
  4714. if (a->grad) {
  4715. is_node = true;
  4716. }
  4717. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4718. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4719. ggml_scratch_save(ctx);
  4720. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4721. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4722. ggml_scratch_load(ctx);
  4723. result->nb[1] = nb1;
  4724. result->nb[2] = nb2;
  4725. result->nb[3] = result->nb[2]*ne2;
  4726. result->op = GGML_OP_VIEW;
  4727. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4728. result->src0 = a;
  4729. result->src1 = NULL;
  4730. result->opt[0] = offs;
  4731. if (is_node) {
  4732. memcpy(result->padding, &offset, sizeof(offset));
  4733. }
  4734. return result;
  4735. }
  4736. // ggml_view_4d
  4737. struct ggml_tensor * ggml_view_4d(
  4738. struct ggml_context * ctx,
  4739. struct ggml_tensor * a,
  4740. int64_t ne0,
  4741. int64_t ne1,
  4742. int64_t ne2,
  4743. int64_t ne3,
  4744. size_t nb1,
  4745. size_t nb2,
  4746. size_t nb3,
  4747. size_t offset) {
  4748. bool is_node = false;
  4749. if (a->grad) {
  4750. is_node = true;
  4751. }
  4752. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  4753. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
  4754. ggml_scratch_save(ctx);
  4755. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4756. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4757. ggml_scratch_load(ctx);
  4758. result->nb[1] = nb1;
  4759. result->nb[2] = nb2;
  4760. result->nb[3] = nb3;
  4761. result->op = GGML_OP_VIEW;
  4762. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4763. result->src0 = a;
  4764. result->src1 = NULL;
  4765. result->opt[0] = offs;
  4766. if (is_node) {
  4767. memcpy(result->padding, &offset, sizeof(offset));
  4768. }
  4769. return result;
  4770. }
  4771. // ggml_permute
  4772. struct ggml_tensor * ggml_permute(
  4773. struct ggml_context * ctx,
  4774. struct ggml_tensor * a,
  4775. int axis0,
  4776. int axis1,
  4777. int axis2,
  4778. int axis3) {
  4779. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4780. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4781. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4782. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4783. GGML_ASSERT(axis0 != axis1);
  4784. GGML_ASSERT(axis0 != axis2);
  4785. GGML_ASSERT(axis0 != axis3);
  4786. GGML_ASSERT(axis1 != axis2);
  4787. GGML_ASSERT(axis1 != axis3);
  4788. GGML_ASSERT(axis2 != axis3);
  4789. bool is_node = false;
  4790. if (a->grad) {
  4791. is_node = true;
  4792. }
  4793. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4794. int ne[GGML_MAX_DIMS];
  4795. int nb[GGML_MAX_DIMS];
  4796. ne[axis0] = a->ne[0];
  4797. ne[axis1] = a->ne[1];
  4798. ne[axis2] = a->ne[2];
  4799. ne[axis3] = a->ne[3];
  4800. nb[axis0] = a->nb[0];
  4801. nb[axis1] = a->nb[1];
  4802. nb[axis2] = a->nb[2];
  4803. nb[axis3] = a->nb[3];
  4804. result->ne[0] = ne[0];
  4805. result->ne[1] = ne[1];
  4806. result->ne[2] = ne[2];
  4807. result->ne[3] = ne[3];
  4808. result->nb[0] = nb[0];
  4809. result->nb[1] = nb[1];
  4810. result->nb[2] = nb[2];
  4811. result->nb[3] = nb[3];
  4812. result->op = GGML_OP_PERMUTE;
  4813. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4814. result->src0 = a;
  4815. result->src1 = NULL;
  4816. if (is_node) {
  4817. result->padding[0] = axis0;
  4818. result->padding[1] = axis1;
  4819. result->padding[2] = axis2;
  4820. result->padding[3] = axis3;
  4821. }
  4822. return result;
  4823. }
  4824. // ggml_transpose
  4825. struct ggml_tensor * ggml_transpose(
  4826. struct ggml_context * ctx,
  4827. struct ggml_tensor * a) {
  4828. bool is_node = false;
  4829. if (a->grad) {
  4830. is_node = true;
  4831. }
  4832. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4833. result->ne[0] = a->ne[1];
  4834. result->ne[1] = a->ne[0];
  4835. result->nb[0] = a->nb[1];
  4836. result->nb[1] = a->nb[0];
  4837. result->op = GGML_OP_TRANSPOSE;
  4838. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4839. result->src0 = a;
  4840. result->src1 = NULL;
  4841. return result;
  4842. }
  4843. // ggml_get_rows
  4844. struct ggml_tensor * ggml_get_rows(
  4845. struct ggml_context * ctx,
  4846. struct ggml_tensor * a,
  4847. struct ggml_tensor * b) {
  4848. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4849. bool is_node = false;
  4850. if (a->grad || b->grad) {
  4851. is_node = true;
  4852. }
  4853. // TODO: implement non F32 return
  4854. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4855. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4856. result->op = GGML_OP_GET_ROWS;
  4857. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4858. result->src0 = a;
  4859. result->src1 = b;
  4860. return result;
  4861. }
  4862. // ggml_get_rows_back
  4863. struct ggml_tensor * ggml_get_rows_back(
  4864. struct ggml_context * ctx,
  4865. struct ggml_tensor * a,
  4866. struct ggml_tensor * b,
  4867. struct ggml_tensor * c) {
  4868. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4869. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4870. bool is_node = false;
  4871. if (a->grad || b->grad) {
  4872. is_node = true;
  4873. }
  4874. // TODO: implement non F32 return
  4875. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4876. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4877. result->op = GGML_OP_GET_ROWS_BACK;
  4878. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4879. result->src0 = a;
  4880. result->src1 = b;
  4881. result->opt[0] = c;
  4882. return result;
  4883. }
  4884. // ggml_diag
  4885. struct ggml_tensor * ggml_diag(
  4886. struct ggml_context * ctx,
  4887. struct ggml_tensor * a) {
  4888. GGML_ASSERT(a->ne[1] == 1);
  4889. bool is_node = false;
  4890. if (a->grad) {
  4891. is_node = true;
  4892. }
  4893. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4894. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  4895. result->op = GGML_OP_DIAG;
  4896. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4897. result->src0 = a;
  4898. result->src1 = NULL;
  4899. return result;
  4900. }
  4901. // ggml_diag_mask_inf
  4902. struct ggml_tensor * ggml_diag_mask_inf_impl(
  4903. struct ggml_context * ctx,
  4904. struct ggml_tensor * a,
  4905. int n_past,
  4906. bool inplace) {
  4907. bool is_node = false;
  4908. if (a->grad) {
  4909. is_node = true;
  4910. }
  4911. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4912. ggml_scratch_save(ctx);
  4913. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4914. ((int32_t *) b->data)[0] = n_past;
  4915. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  4916. ggml_scratch_load(ctx);
  4917. result->op = GGML_OP_DIAG_MASK_INF;
  4918. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4919. result->src0 = a;
  4920. result->src1 = b;
  4921. return result;
  4922. }
  4923. struct ggml_tensor * ggml_diag_mask_inf(
  4924. struct ggml_context * ctx,
  4925. struct ggml_tensor * a,
  4926. int n_past) {
  4927. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4928. }
  4929. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4930. struct ggml_context * ctx,
  4931. struct ggml_tensor * a,
  4932. int n_past) {
  4933. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4934. }
  4935. // ggml_diag_mask_zero
  4936. struct ggml_tensor * ggml_diag_mask_zero_impl(
  4937. struct ggml_context * ctx,
  4938. struct ggml_tensor * a,
  4939. int n_past,
  4940. bool inplace) {
  4941. bool is_node = false;
  4942. if (a->grad) {
  4943. is_node = true;
  4944. }
  4945. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4946. ggml_scratch_save(ctx);
  4947. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4948. ggml_set_name(b, "n_past, inplace");
  4949. ((int32_t *) b->data)[0] = n_past;
  4950. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  4951. ggml_scratch_load(ctx);
  4952. result->op = GGML_OP_DIAG_MASK_ZERO;
  4953. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4954. result->src0 = a;
  4955. result->src1 = b;
  4956. return result;
  4957. }
  4958. struct ggml_tensor * ggml_diag_mask_zero(
  4959. struct ggml_context * ctx,
  4960. struct ggml_tensor * a,
  4961. int n_past) {
  4962. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4963. }
  4964. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4965. struct ggml_context * ctx,
  4966. struct ggml_tensor * a,
  4967. int n_past) {
  4968. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4969. }
  4970. // ggml_soft_max
  4971. struct ggml_tensor * ggml_soft_max_impl(
  4972. struct ggml_context * ctx,
  4973. struct ggml_tensor * a,
  4974. bool inplace) {
  4975. bool is_node = false;
  4976. if (a->grad) {
  4977. is_node = true;
  4978. }
  4979. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4980. result->op = GGML_OP_SOFT_MAX;
  4981. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4982. result->src0 = a;
  4983. result->src1 = NULL;
  4984. return result;
  4985. }
  4986. struct ggml_tensor * ggml_soft_max(
  4987. struct ggml_context * ctx,
  4988. struct ggml_tensor * a) {
  4989. return ggml_soft_max_impl(ctx, a, false);
  4990. }
  4991. struct ggml_tensor * ggml_soft_max_inplace(
  4992. struct ggml_context * ctx,
  4993. struct ggml_tensor * a) {
  4994. return ggml_soft_max_impl(ctx, a, true);
  4995. }
  4996. // ggml_rope
  4997. struct ggml_tensor * ggml_rope_impl(
  4998. struct ggml_context * ctx,
  4999. struct ggml_tensor * a,
  5000. int n_past,
  5001. int n_dims,
  5002. int mode,
  5003. bool inplace) {
  5004. GGML_ASSERT(n_past >= 0);
  5005. bool is_node = false;
  5006. if (!inplace && a->grad) {
  5007. is_node = true;
  5008. }
  5009. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5010. ggml_scratch_save(ctx);
  5011. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5012. ((int32_t *) b->data)[0] = n_past;
  5013. ((int32_t *) b->data)[1] = n_dims;
  5014. ((int32_t *) b->data)[2] = mode;
  5015. ggml_scratch_load(ctx);
  5016. result->op = GGML_OP_ROPE;
  5017. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5018. result->src0 = a;
  5019. result->src1 = b;
  5020. return result;
  5021. }
  5022. struct ggml_tensor * ggml_rope(
  5023. struct ggml_context * ctx,
  5024. struct ggml_tensor * a,
  5025. int n_past,
  5026. int n_dims,
  5027. int mode) {
  5028. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, false);
  5029. }
  5030. struct ggml_tensor * ggml_rope_inplace(
  5031. struct ggml_context * ctx,
  5032. struct ggml_tensor * a,
  5033. int n_past,
  5034. int n_dims,
  5035. int mode) {
  5036. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, true);
  5037. }
  5038. // ggml_rope_back
  5039. struct ggml_tensor * ggml_rope_back(
  5040. struct ggml_context * ctx,
  5041. struct ggml_tensor * a,
  5042. int n_past,
  5043. int n_dims,
  5044. int mode) {
  5045. GGML_ASSERT(n_past >= 0);
  5046. bool is_node = false;
  5047. if (a->grad) {
  5048. GGML_ASSERT(false); // TODO: implement backward
  5049. is_node = true;
  5050. }
  5051. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5052. ggml_scratch_save(ctx);
  5053. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5054. ggml_set_name(b, "n_past, n_dims, mode");
  5055. ((int32_t *) b->data)[0] = n_past;
  5056. ((int32_t *) b->data)[1] = n_dims;
  5057. ((int32_t *) b->data)[2] = mode;
  5058. ggml_scratch_load(ctx);
  5059. result->op = GGML_OP_ROPE_BACK;
  5060. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5061. result->src0 = a;
  5062. result->src1 = b;
  5063. return result;
  5064. }
  5065. // ggml_alibi
  5066. struct ggml_tensor * ggml_alibi(
  5067. struct ggml_context * ctx,
  5068. struct ggml_tensor * a,
  5069. int n_past,
  5070. int n_head,
  5071. float bias_max) {
  5072. GGML_ASSERT(n_past >= 0);
  5073. bool is_node = false;
  5074. if (a->grad) {
  5075. GGML_ASSERT(false); // TODO: implement backward
  5076. is_node = true;
  5077. }
  5078. // TODO: when implement backward, fix this:
  5079. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5080. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5081. ggml_scratch_save(ctx);
  5082. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5083. ((int32_t *) b->data)[0] = n_past;
  5084. ((int32_t *) b->data)[1] = n_head;
  5085. GGML_ASSERT(sizeof(float) == sizeof(int32_t));
  5086. (((float *) b->data)[2]) = bias_max;
  5087. ggml_scratch_load(ctx);
  5088. result->op = GGML_OP_ALIBI;
  5089. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5090. result->src0 = a;
  5091. result->src1 = b;
  5092. return result;
  5093. }
  5094. // ggml_clamp
  5095. struct ggml_tensor * ggml_clamp(
  5096. struct ggml_context * ctx,
  5097. struct ggml_tensor * a,
  5098. float min,
  5099. float max) {
  5100. bool is_node = false;
  5101. if (a->grad) {
  5102. GGML_ASSERT(false); // TODO: implement backward
  5103. is_node = true;
  5104. }
  5105. // TODO: when implement backward, fix this:
  5106. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5107. ggml_scratch_save(ctx);
  5108. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5109. ((float *) b->data)[0] = min;
  5110. ((float *) b->data)[1] = max;
  5111. ggml_scratch_load(ctx);
  5112. result->op = GGML_OP_CLAMP;
  5113. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5114. result->src0 = a;
  5115. result->src1 = b;
  5116. return result;
  5117. }
  5118. // ggml_conv_1d_1s
  5119. struct ggml_tensor * ggml_conv_1d_1s(
  5120. struct ggml_context * ctx,
  5121. struct ggml_tensor * a,
  5122. struct ggml_tensor * b) {
  5123. GGML_ASSERT(ggml_is_matrix(b));
  5124. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5125. GGML_ASSERT(a->ne[3] == 1);
  5126. bool is_node = false;
  5127. if (a->grad || b->grad) {
  5128. GGML_ASSERT(false); // TODO: implement backward
  5129. is_node = true;
  5130. }
  5131. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  5132. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5133. result->op = GGML_OP_CONV_1D_1S;
  5134. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5135. result->src0 = a;
  5136. result->src1 = b;
  5137. return result;
  5138. }
  5139. // ggml_conv_1d_2s
  5140. struct ggml_tensor * ggml_conv_1d_2s(
  5141. struct ggml_context * ctx,
  5142. struct ggml_tensor * a,
  5143. struct ggml_tensor * b) {
  5144. GGML_ASSERT(ggml_is_matrix(b));
  5145. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5146. GGML_ASSERT(a->ne[3] == 1);
  5147. bool is_node = false;
  5148. if (a->grad || b->grad) {
  5149. GGML_ASSERT(false); // TODO: implement backward
  5150. is_node = true;
  5151. }
  5152. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  5153. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5154. result->op = GGML_OP_CONV_1D_2S;
  5155. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5156. result->src0 = a;
  5157. result->src1 = b;
  5158. return result;
  5159. }
  5160. // ggml_flash_attn
  5161. struct ggml_tensor * ggml_flash_attn(
  5162. struct ggml_context * ctx,
  5163. struct ggml_tensor * q,
  5164. struct ggml_tensor * k,
  5165. struct ggml_tensor * v,
  5166. bool masked) {
  5167. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5168. // TODO: check if vT can be multiplied by (k*qT)
  5169. bool is_node = false;
  5170. if (q->grad || k->grad || v->grad) {
  5171. GGML_ASSERT(false); // TODO: implement backward
  5172. is_node = true;
  5173. }
  5174. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5175. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  5176. result->op = GGML_OP_FLASH_ATTN;
  5177. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5178. result->src0 = q;
  5179. result->src1 = k;
  5180. result->opt[0] = v;
  5181. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  5182. return result;
  5183. }
  5184. // ggml_flash_ff
  5185. struct ggml_tensor * ggml_flash_ff(
  5186. struct ggml_context * ctx,
  5187. struct ggml_tensor * a,
  5188. struct ggml_tensor * b0,
  5189. struct ggml_tensor * b1,
  5190. struct ggml_tensor * c0,
  5191. struct ggml_tensor * c1) {
  5192. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5193. // TODO: more checks
  5194. bool is_node = false;
  5195. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5196. GGML_ASSERT(false); // TODO: implement backward
  5197. is_node = true;
  5198. }
  5199. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5200. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  5201. result->op = GGML_OP_FLASH_FF;
  5202. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5203. result->src0 = a;
  5204. result->src1 = b0;
  5205. result->opt[0] = b1;
  5206. result->opt[1] = c0;
  5207. result->opt[2] = c1;
  5208. return result;
  5209. }
  5210. // ggml_map_unary
  5211. struct ggml_tensor * ggml_map_unary_impl_f32(
  5212. struct ggml_context * ctx,
  5213. struct ggml_tensor * a,
  5214. const ggml_unary_op_f32_t fun,
  5215. bool inplace) {
  5216. bool is_node = false;
  5217. if (!inplace && a->grad) {
  5218. is_node = true;
  5219. }
  5220. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5221. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5222. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5223. result->op = GGML_OP_MAP_UNARY;
  5224. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5225. result->src0 = a;
  5226. result->opt[0] = addr_tensor;
  5227. return result;
  5228. }
  5229. struct ggml_tensor * ggml_map_unary_f32(
  5230. struct ggml_context * ctx,
  5231. struct ggml_tensor * a,
  5232. const ggml_unary_op_f32_t fun) {
  5233. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5234. }
  5235. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5236. struct ggml_context * ctx,
  5237. struct ggml_tensor * a,
  5238. const ggml_unary_op_f32_t fun) {
  5239. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5240. }
  5241. // ggml_map_binary
  5242. struct ggml_tensor * ggml_map_binary_impl_f32(
  5243. struct ggml_context * ctx,
  5244. struct ggml_tensor * a,
  5245. struct ggml_tensor * b,
  5246. const ggml_binary_op_f32_t fun,
  5247. bool inplace) {
  5248. GGML_ASSERT(ggml_are_same_shape(a, b));
  5249. bool is_node = false;
  5250. if (!inplace && (a->grad || b->grad)) {
  5251. is_node = true;
  5252. }
  5253. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5254. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5255. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5256. result->op = GGML_OP_MAP_BINARY;
  5257. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5258. result->src0 = a;
  5259. result->src1 = b;
  5260. result->opt[0] = addr_tensor;
  5261. return result;
  5262. }
  5263. struct ggml_tensor * ggml_map_binary_f32(
  5264. struct ggml_context * ctx,
  5265. struct ggml_tensor * a,
  5266. struct ggml_tensor * b,
  5267. const ggml_binary_op_f32_t fun) {
  5268. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5269. }
  5270. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5271. struct ggml_context * ctx,
  5272. struct ggml_tensor * a,
  5273. struct ggml_tensor * b,
  5274. const ggml_binary_op_f32_t fun) {
  5275. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5276. }
  5277. ////////////////////////////////////////////////////////////////////////////////
  5278. void ggml_set_param(
  5279. struct ggml_context * ctx,
  5280. struct ggml_tensor * tensor) {
  5281. tensor->is_param = true;
  5282. GGML_ASSERT(tensor->grad == NULL);
  5283. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5284. }
  5285. // ggml_compute_forward_dup
  5286. static void ggml_compute_forward_dup_same_cont(
  5287. const struct ggml_compute_params * params,
  5288. const struct ggml_tensor * src0,
  5289. struct ggml_tensor * dst) {
  5290. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5291. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5292. GGML_ASSERT(src0->type == dst->type);
  5293. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5294. return;
  5295. }
  5296. const size_t nb00 = src0->nb[0];
  5297. const size_t nb0 = dst->nb[0];
  5298. const int ith = params->ith; // thread index
  5299. const int nth = params->nth; // number of threads
  5300. // parallelize by elements
  5301. const int ne = ggml_nelements(dst);
  5302. const int dr = (ne + nth - 1) / nth;
  5303. const int ie0 = dr * ith;
  5304. const int ie1 = MIN(ie0 + dr, ne);
  5305. if (ie0 < ie1) {
  5306. memcpy(
  5307. ((char *) dst->data + ie0*nb0),
  5308. ((char *) src0->data + ie0*nb00),
  5309. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5310. }
  5311. }
  5312. static void ggml_compute_forward_dup_f16(
  5313. const struct ggml_compute_params * params,
  5314. const struct ggml_tensor * src0,
  5315. struct ggml_tensor * dst) {
  5316. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5317. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5318. return;
  5319. }
  5320. const int64_t ne00 = src0->ne[0];
  5321. const int64_t ne01 = src0->ne[1];
  5322. const int64_t ne02 = src0->ne[2];
  5323. const int64_t ne03 = src0->ne[3];
  5324. const int64_t ne0 = dst->ne[0];
  5325. const int64_t ne1 = dst->ne[1];
  5326. const int64_t ne2 = dst->ne[2];
  5327. const int64_t ne3 = dst->ne[3];
  5328. const size_t nb00 = src0->nb[0];
  5329. const size_t nb01 = src0->nb[1];
  5330. const size_t nb02 = src0->nb[2];
  5331. const size_t nb03 = src0->nb[3];
  5332. const size_t nb0 = dst->nb[0];
  5333. const size_t nb1 = dst->nb[1];
  5334. const size_t nb2 = dst->nb[2];
  5335. const size_t nb3 = dst->nb[3];
  5336. const int ith = params->ith; // thread index
  5337. const int nth = params->nth; // number of threads
  5338. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5339. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5340. return;
  5341. }
  5342. // parallelize by rows
  5343. const int nr = ne01;
  5344. // number of rows per thread
  5345. const int dr = (nr + nth - 1) / nth;
  5346. // row range for this thread
  5347. const int ir0 = dr * ith;
  5348. const int ir1 = MIN(ir0 + dr, nr);
  5349. if (src0->type == dst->type &&
  5350. ne00 == ne0 &&
  5351. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5352. // copy by rows
  5353. const size_t rs = ne00*nb00;
  5354. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5355. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5356. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5357. memcpy(
  5358. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5359. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5360. rs);
  5361. }
  5362. }
  5363. }
  5364. return;
  5365. }
  5366. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5367. if (ggml_is_contiguous(dst)) {
  5368. if (nb00 == sizeof(ggml_fp16_t)) {
  5369. if (dst->type == GGML_TYPE_F16) {
  5370. size_t id = 0;
  5371. const size_t rs = ne00 * nb00;
  5372. char * dst_ptr = (char *) dst->data;
  5373. for (int i03 = 0; i03 < ne03; i03++) {
  5374. for (int i02 = 0; i02 < ne02; i02++) {
  5375. id += rs * ir0;
  5376. for (int i01 = ir0; i01 < ir1; i01++) {
  5377. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5378. memcpy(dst_ptr + id, src0_ptr, rs);
  5379. id += rs;
  5380. }
  5381. id += rs * (ne01 - ir1);
  5382. }
  5383. }
  5384. } else if (dst->type == GGML_TYPE_F32) {
  5385. size_t id = 0;
  5386. float * dst_ptr = (float *) dst->data;
  5387. for (int i03 = 0; i03 < ne03; i03++) {
  5388. for (int i02 = 0; i02 < ne02; i02++) {
  5389. id += ne00 * ir0;
  5390. for (int i01 = ir0; i01 < ir1; i01++) {
  5391. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5392. for (int i00 = 0; i00 < ne00; i00++) {
  5393. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5394. id++;
  5395. }
  5396. }
  5397. id += ne00 * (ne01 - ir1);
  5398. }
  5399. }
  5400. } else if (ggml_is_quantized(dst->type)) {
  5401. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5402. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5403. size_t id = 0;
  5404. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5405. char * dst_ptr = (char *) dst->data;
  5406. for (int i03 = 0; i03 < ne03; i03++) {
  5407. for (int i02 = 0; i02 < ne02; i02++) {
  5408. id += rs * ir0;
  5409. for (int i01 = ir0; i01 < ir1; i01++) {
  5410. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5411. for (int i00 = 0; i00 < ne00; i00++) {
  5412. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5413. }
  5414. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5415. id += rs;
  5416. }
  5417. id += rs * (ne01 - ir1);
  5418. }
  5419. }
  5420. } else {
  5421. GGML_ASSERT(false); // TODO: implement
  5422. }
  5423. } else {
  5424. //printf("%s: this is not optimal - fix me\n", __func__);
  5425. if (dst->type == GGML_TYPE_F32) {
  5426. size_t id = 0;
  5427. float * dst_ptr = (float *) dst->data;
  5428. for (int i03 = 0; i03 < ne03; i03++) {
  5429. for (int i02 = 0; i02 < ne02; i02++) {
  5430. id += ne00 * ir0;
  5431. for (int i01 = ir0; i01 < ir1; i01++) {
  5432. for (int i00 = 0; i00 < ne00; i00++) {
  5433. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5434. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5435. id++;
  5436. }
  5437. }
  5438. id += ne00 * (ne01 - ir1);
  5439. }
  5440. }
  5441. } else if (dst->type == GGML_TYPE_F16) {
  5442. size_t id = 0;
  5443. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5444. for (int i03 = 0; i03 < ne03; i03++) {
  5445. for (int i02 = 0; i02 < ne02; i02++) {
  5446. id += ne00 * ir0;
  5447. for (int i01 = ir0; i01 < ir1; i01++) {
  5448. for (int i00 = 0; i00 < ne00; i00++) {
  5449. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5450. dst_ptr[id] = *src0_ptr;
  5451. id++;
  5452. }
  5453. }
  5454. id += ne00 * (ne01 - ir1);
  5455. }
  5456. }
  5457. } else {
  5458. GGML_ASSERT(false); // TODO: implement
  5459. }
  5460. }
  5461. return;
  5462. }
  5463. // dst counters
  5464. int64_t i10 = 0;
  5465. int64_t i11 = 0;
  5466. int64_t i12 = 0;
  5467. int64_t i13 = 0;
  5468. if (dst->type == GGML_TYPE_F16) {
  5469. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5470. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5471. i10 += ne00 * ir0;
  5472. while (i10 >= ne0) {
  5473. i10 -= ne0;
  5474. if (++i11 == ne1) {
  5475. i11 = 0;
  5476. if (++i12 == ne2) {
  5477. i12 = 0;
  5478. if (++i13 == ne3) {
  5479. i13 = 0;
  5480. }
  5481. }
  5482. }
  5483. }
  5484. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5485. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5486. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5487. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5488. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5489. if (++i10 == ne00) {
  5490. i10 = 0;
  5491. if (++i11 == ne01) {
  5492. i11 = 0;
  5493. if (++i12 == ne02) {
  5494. i12 = 0;
  5495. if (++i13 == ne03) {
  5496. i13 = 0;
  5497. }
  5498. }
  5499. }
  5500. }
  5501. }
  5502. }
  5503. i10 += ne00 * (ne01 - ir1);
  5504. while (i10 >= ne0) {
  5505. i10 -= ne0;
  5506. if (++i11 == ne1) {
  5507. i11 = 0;
  5508. if (++i12 == ne2) {
  5509. i12 = 0;
  5510. if (++i13 == ne3) {
  5511. i13 = 0;
  5512. }
  5513. }
  5514. }
  5515. }
  5516. }
  5517. }
  5518. } else if (dst->type == GGML_TYPE_F32) {
  5519. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5520. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5521. i10 += ne00 * ir0;
  5522. while (i10 >= ne0) {
  5523. i10 -= ne0;
  5524. if (++i11 == ne1) {
  5525. i11 = 0;
  5526. if (++i12 == ne2) {
  5527. i12 = 0;
  5528. if (++i13 == ne3) {
  5529. i13 = 0;
  5530. }
  5531. }
  5532. }
  5533. }
  5534. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5535. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5536. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5537. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5538. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5539. if (++i10 == ne0) {
  5540. i10 = 0;
  5541. if (++i11 == ne1) {
  5542. i11 = 0;
  5543. if (++i12 == ne2) {
  5544. i12 = 0;
  5545. if (++i13 == ne3) {
  5546. i13 = 0;
  5547. }
  5548. }
  5549. }
  5550. }
  5551. }
  5552. }
  5553. i10 += ne00 * (ne01 - ir1);
  5554. while (i10 >= ne0) {
  5555. i10 -= ne0;
  5556. if (++i11 == ne1) {
  5557. i11 = 0;
  5558. if (++i12 == ne2) {
  5559. i12 = 0;
  5560. if (++i13 == ne3) {
  5561. i13 = 0;
  5562. }
  5563. }
  5564. }
  5565. }
  5566. }
  5567. }
  5568. } else {
  5569. GGML_ASSERT(false); // TODO: implement
  5570. }
  5571. }
  5572. static void ggml_compute_forward_dup_f32(
  5573. const struct ggml_compute_params * params,
  5574. const struct ggml_tensor * src0,
  5575. struct ggml_tensor * dst) {
  5576. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5577. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5578. return;
  5579. }
  5580. const int64_t ne00 = src0->ne[0];
  5581. const int64_t ne01 = src0->ne[1];
  5582. const int64_t ne02 = src0->ne[2];
  5583. const int64_t ne03 = src0->ne[3];
  5584. const int64_t ne0 = dst->ne[0];
  5585. const int64_t ne1 = dst->ne[1];
  5586. const int64_t ne2 = dst->ne[2];
  5587. const int64_t ne3 = dst->ne[3];
  5588. const size_t nb00 = src0->nb[0];
  5589. const size_t nb01 = src0->nb[1];
  5590. const size_t nb02 = src0->nb[2];
  5591. const size_t nb03 = src0->nb[3];
  5592. const size_t nb0 = dst->nb[0];
  5593. const size_t nb1 = dst->nb[1];
  5594. const size_t nb2 = dst->nb[2];
  5595. const size_t nb3 = dst->nb[3];
  5596. const int ith = params->ith; // thread index
  5597. const int nth = params->nth; // number of threads
  5598. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5599. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5600. return;
  5601. }
  5602. // parallelize by rows
  5603. const int nr = ne01;
  5604. // number of rows per thread
  5605. const int dr = (nr + nth - 1) / nth;
  5606. // row range for this thread
  5607. const int ir0 = dr * ith;
  5608. const int ir1 = MIN(ir0 + dr, nr);
  5609. if (src0->type == dst->type &&
  5610. ne00 == ne0 &&
  5611. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5612. // copy by rows
  5613. const size_t rs = ne00*nb00;
  5614. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5615. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5616. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5617. memcpy(
  5618. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5619. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5620. rs);
  5621. }
  5622. }
  5623. }
  5624. return;
  5625. }
  5626. if (ggml_is_contiguous(dst)) {
  5627. // TODO: simplify
  5628. if (nb00 == sizeof(float)) {
  5629. if (dst->type == GGML_TYPE_F32) {
  5630. size_t id = 0;
  5631. const size_t rs = ne00 * nb00;
  5632. char * dst_ptr = (char *) dst->data;
  5633. for (int i03 = 0; i03 < ne03; i03++) {
  5634. for (int i02 = 0; i02 < ne02; i02++) {
  5635. id += rs * ir0;
  5636. for (int i01 = ir0; i01 < ir1; i01++) {
  5637. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5638. memcpy(dst_ptr + id, src0_ptr, rs);
  5639. id += rs;
  5640. }
  5641. id += rs * (ne01 - ir1);
  5642. }
  5643. }
  5644. } else if (dst->type == GGML_TYPE_F16) {
  5645. size_t id = 0;
  5646. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5647. for (int i03 = 0; i03 < ne03; i03++) {
  5648. for (int i02 = 0; i02 < ne02; i02++) {
  5649. id += ne00 * ir0;
  5650. for (int i01 = ir0; i01 < ir1; i01++) {
  5651. for (int i00 = 0; i00 < ne00; i00++) {
  5652. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5653. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5654. id++;
  5655. }
  5656. }
  5657. id += ne00 * (ne01 - ir1);
  5658. }
  5659. }
  5660. } else if (ggml_is_quantized(dst->type)) {
  5661. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5662. size_t id = 0;
  5663. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5664. char * dst_ptr = (char *) dst->data;
  5665. for (int i03 = 0; i03 < ne03; i03++) {
  5666. for (int i02 = 0; i02 < ne02; i02++) {
  5667. id += rs * ir0;
  5668. for (int i01 = ir0; i01 < ir1; i01++) {
  5669. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5670. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5671. id += rs;
  5672. }
  5673. id += rs * (ne01 - ir1);
  5674. }
  5675. }
  5676. } else {
  5677. GGML_ASSERT(false); // TODO: implement
  5678. }
  5679. } else {
  5680. //printf("%s: this is not optimal - fix me\n", __func__);
  5681. if (dst->type == GGML_TYPE_F32) {
  5682. size_t id = 0;
  5683. float * dst_ptr = (float *) dst->data;
  5684. for (int i03 = 0; i03 < ne03; i03++) {
  5685. for (int i02 = 0; i02 < ne02; i02++) {
  5686. id += ne00 * ir0;
  5687. for (int i01 = ir0; i01 < ir1; i01++) {
  5688. for (int i00 = 0; i00 < ne00; i00++) {
  5689. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5690. dst_ptr[id] = *src0_ptr;
  5691. id++;
  5692. }
  5693. }
  5694. id += ne00 * (ne01 - ir1);
  5695. }
  5696. }
  5697. } else if (dst->type == GGML_TYPE_F16) {
  5698. size_t id = 0;
  5699. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5700. for (int i03 = 0; i03 < ne03; i03++) {
  5701. for (int i02 = 0; i02 < ne02; i02++) {
  5702. id += ne00 * ir0;
  5703. for (int i01 = ir0; i01 < ir1; i01++) {
  5704. for (int i00 = 0; i00 < ne00; i00++) {
  5705. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5706. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5707. id++;
  5708. }
  5709. }
  5710. id += ne00 * (ne01 - ir1);
  5711. }
  5712. }
  5713. } else {
  5714. GGML_ASSERT(false); // TODO: implement
  5715. }
  5716. }
  5717. return;
  5718. }
  5719. // dst counters
  5720. int64_t i10 = 0;
  5721. int64_t i11 = 0;
  5722. int64_t i12 = 0;
  5723. int64_t i13 = 0;
  5724. if (dst->type == GGML_TYPE_F32) {
  5725. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5726. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5727. i10 += ne00 * ir0;
  5728. while (i10 >= ne0) {
  5729. i10 -= ne0;
  5730. if (++i11 == ne1) {
  5731. i11 = 0;
  5732. if (++i12 == ne2) {
  5733. i12 = 0;
  5734. if (++i13 == ne3) {
  5735. i13 = 0;
  5736. }
  5737. }
  5738. }
  5739. }
  5740. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5741. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5742. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5743. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5744. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5745. if (++i10 == ne0) {
  5746. i10 = 0;
  5747. if (++i11 == ne1) {
  5748. i11 = 0;
  5749. if (++i12 == ne2) {
  5750. i12 = 0;
  5751. if (++i13 == ne3) {
  5752. i13 = 0;
  5753. }
  5754. }
  5755. }
  5756. }
  5757. }
  5758. }
  5759. i10 += ne00 * (ne01 - ir1);
  5760. while (i10 >= ne0) {
  5761. i10 -= ne0;
  5762. if (++i11 == ne1) {
  5763. i11 = 0;
  5764. if (++i12 == ne2) {
  5765. i12 = 0;
  5766. if (++i13 == ne3) {
  5767. i13 = 0;
  5768. }
  5769. }
  5770. }
  5771. }
  5772. }
  5773. }
  5774. } else if (dst->type == GGML_TYPE_F16) {
  5775. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5776. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5777. i10 += ne00 * ir0;
  5778. while (i10 >= ne0) {
  5779. i10 -= ne0;
  5780. if (++i11 == ne1) {
  5781. i11 = 0;
  5782. if (++i12 == ne2) {
  5783. i12 = 0;
  5784. if (++i13 == ne3) {
  5785. i13 = 0;
  5786. }
  5787. }
  5788. }
  5789. }
  5790. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5791. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5792. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5793. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5794. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5795. if (++i10 == ne0) {
  5796. i10 = 0;
  5797. if (++i11 == ne1) {
  5798. i11 = 0;
  5799. if (++i12 == ne2) {
  5800. i12 = 0;
  5801. if (++i13 == ne3) {
  5802. i13 = 0;
  5803. }
  5804. }
  5805. }
  5806. }
  5807. }
  5808. }
  5809. i10 += ne00 * (ne01 - ir1);
  5810. while (i10 >= ne0) {
  5811. i10 -= ne0;
  5812. if (++i11 == ne1) {
  5813. i11 = 0;
  5814. if (++i12 == ne2) {
  5815. i12 = 0;
  5816. if (++i13 == ne3) {
  5817. i13 = 0;
  5818. }
  5819. }
  5820. }
  5821. }
  5822. }
  5823. }
  5824. } else {
  5825. GGML_ASSERT(false); // TODO: implement
  5826. }
  5827. }
  5828. static void ggml_compute_forward_dup(
  5829. const struct ggml_compute_params * params,
  5830. const struct ggml_tensor * src0,
  5831. struct ggml_tensor * dst) {
  5832. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5833. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5834. return;
  5835. }
  5836. switch (src0->type) {
  5837. case GGML_TYPE_F16:
  5838. {
  5839. ggml_compute_forward_dup_f16(params, src0, dst);
  5840. } break;
  5841. case GGML_TYPE_F32:
  5842. {
  5843. ggml_compute_forward_dup_f32(params, src0, dst);
  5844. } break;
  5845. default:
  5846. {
  5847. GGML_ASSERT(false);
  5848. } break;
  5849. }
  5850. }
  5851. // ggml_compute_forward_add
  5852. static void ggml_compute_forward_add_f32(
  5853. const struct ggml_compute_params * params,
  5854. const struct ggml_tensor * src0,
  5855. const struct ggml_tensor * src1,
  5856. struct ggml_tensor * dst) {
  5857. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5858. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5859. return;
  5860. }
  5861. const int ith = params->ith;
  5862. const int nth = params->nth;
  5863. const int nr = ggml_nrows(src0);
  5864. const int64_t ne0 = src0->ne[0];
  5865. const int64_t ne1 = src0->ne[1];
  5866. const int64_t ne2 = src0->ne[2];
  5867. const size_t nb00 = src0->nb[0];
  5868. const size_t nb01 = src0->nb[1];
  5869. const size_t nb02 = src0->nb[2];
  5870. const size_t nb03 = src0->nb[3];
  5871. const size_t nb10 = src1->nb[0];
  5872. const size_t nb11 = src1->nb[1];
  5873. const size_t nb12 = src1->nb[2];
  5874. const size_t nb13 = src1->nb[3];
  5875. const size_t nb0 = dst->nb[0];
  5876. const size_t nb1 = dst->nb[1];
  5877. const size_t nb2 = dst->nb[2];
  5878. const size_t nb3 = dst->nb[3];
  5879. GGML_ASSERT( nb0 == sizeof(float));
  5880. GGML_ASSERT(nb00 == sizeof(float));
  5881. // rows per thread
  5882. const int dr = (nr + nth - 1)/nth;
  5883. // row range for this thread
  5884. const int ir0 = dr*ith;
  5885. const int ir1 = MIN(ir0 + dr, nr);
  5886. if (nb10 == sizeof(float)) {
  5887. for (int ir = ir0; ir < ir1; ++ir) {
  5888. // src0, src1 and dst are same shape => same indices
  5889. const int i3 = ir/(ne2*ne1);
  5890. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5891. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5892. #ifdef GGML_USE_ACCELERATE
  5893. vDSP_vadd(
  5894. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  5895. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  5896. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  5897. ne0);
  5898. #else
  5899. ggml_vec_add_f32(ne0,
  5900. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  5901. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  5902. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  5903. #endif
  5904. // }
  5905. // }
  5906. }
  5907. } else {
  5908. // src1 is not contiguous
  5909. for (int ir = ir0; ir < ir1; ++ir) {
  5910. // src0, src1 and dst are same shape => same indices
  5911. const int i3 = ir/(ne2*ne1);
  5912. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5913. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5914. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  5915. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5916. for (int i0 = 0; i0 < ne0; i0++) {
  5917. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  5918. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5919. }
  5920. }
  5921. }
  5922. }
  5923. static void ggml_compute_forward_add_f16_f32(
  5924. const struct ggml_compute_params * params,
  5925. const struct ggml_tensor * src0,
  5926. const struct ggml_tensor * src1,
  5927. struct ggml_tensor * dst) {
  5928. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5929. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5930. return;
  5931. }
  5932. const int ith = params->ith;
  5933. const int nth = params->nth;
  5934. const int nr = ggml_nrows(src0);
  5935. const int64_t ne0 = src0->ne[0];
  5936. const int64_t ne1 = src0->ne[1];
  5937. const int64_t ne2 = src0->ne[2];
  5938. const size_t nb00 = src0->nb[0];
  5939. const size_t nb01 = src0->nb[1];
  5940. const size_t nb02 = src0->nb[2];
  5941. const size_t nb03 = src0->nb[3];
  5942. const size_t nb10 = src1->nb[0];
  5943. const size_t nb11 = src1->nb[1];
  5944. const size_t nb12 = src1->nb[2];
  5945. const size_t nb13 = src1->nb[3];
  5946. const size_t nb0 = dst->nb[0];
  5947. const size_t nb1 = dst->nb[1];
  5948. const size_t nb2 = dst->nb[2];
  5949. const size_t nb3 = dst->nb[3];
  5950. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5951. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5952. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5953. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5954. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5955. // rows per thread
  5956. const int dr = (nr + nth - 1)/nth;
  5957. // row range for this thread
  5958. const int ir0 = dr*ith;
  5959. const int ir1 = MIN(ir0 + dr, nr);
  5960. if (nb10 == sizeof(float)) {
  5961. for (int ir = ir0; ir < ir1; ++ir) {
  5962. // src0, src1 and dst are same shape => same indices
  5963. const int i3 = ir/(ne2*ne1);
  5964. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5965. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5966. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5967. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5968. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5969. for (int i = 0; i < ne0; i++) {
  5970. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  5971. }
  5972. }
  5973. }
  5974. else {
  5975. // src1 is not contiguous
  5976. GGML_ASSERT(false);
  5977. }
  5978. }
  5979. static void ggml_compute_forward_add_f16_f16(
  5980. const struct ggml_compute_params * params,
  5981. const struct ggml_tensor * src0,
  5982. const struct ggml_tensor * src1,
  5983. struct ggml_tensor * dst) {
  5984. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5985. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5986. return;
  5987. }
  5988. const int ith = params->ith;
  5989. const int nth = params->nth;
  5990. const int nr = ggml_nrows(src0);
  5991. const int64_t ne0 = src0->ne[0];
  5992. const int64_t ne1 = src0->ne[1];
  5993. const int64_t ne2 = src0->ne[2];
  5994. const size_t nb00 = src0->nb[0];
  5995. const size_t nb01 = src0->nb[1];
  5996. const size_t nb02 = src0->nb[2];
  5997. const size_t nb03 = src0->nb[3];
  5998. const size_t nb10 = src1->nb[0];
  5999. const size_t nb11 = src1->nb[1];
  6000. const size_t nb12 = src1->nb[2];
  6001. const size_t nb13 = src1->nb[3];
  6002. const size_t nb0 = dst->nb[0];
  6003. const size_t nb1 = dst->nb[1];
  6004. const size_t nb2 = dst->nb[2];
  6005. const size_t nb3 = dst->nb[3];
  6006. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6007. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6008. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6009. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6010. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6011. // rows per thread
  6012. const int dr = (nr + nth - 1)/nth;
  6013. // row range for this thread
  6014. const int ir0 = dr*ith;
  6015. const int ir1 = MIN(ir0 + dr, nr);
  6016. if (nb10 == sizeof(ggml_fp16_t)) {
  6017. for (int ir = ir0; ir < ir1; ++ir) {
  6018. // src0, src1 and dst are same shape => same indices
  6019. const int i3 = ir/(ne2*ne1);
  6020. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6021. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6022. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6023. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6024. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6025. for (int i = 0; i < ne0; i++) {
  6026. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6027. }
  6028. }
  6029. }
  6030. else {
  6031. // src1 is not contiguous
  6032. GGML_ASSERT(false);
  6033. }
  6034. }
  6035. static void ggml_compute_forward_add_q_f32(
  6036. const struct ggml_compute_params * params,
  6037. const struct ggml_tensor * src0,
  6038. const struct ggml_tensor * src1,
  6039. struct ggml_tensor * dst) {
  6040. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6041. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6042. return;
  6043. }
  6044. const int nr = ggml_nrows(src0);
  6045. const int64_t ne00 = src0->ne[0];
  6046. const int64_t ne01 = src0->ne[1];
  6047. const int64_t ne02 = src0->ne[2];
  6048. //const int64_t ne03 = src0->ne[3];
  6049. const size_t nb00 = src0->nb[0];
  6050. const size_t nb01 = src0->nb[1];
  6051. const size_t nb02 = src0->nb[2];
  6052. const size_t nb03 = src0->nb[3];
  6053. const size_t nb10 = src1->nb[0];
  6054. const size_t nb11 = src1->nb[1];
  6055. const size_t nb12 = src1->nb[2];
  6056. const size_t nb13 = src1->nb[3];
  6057. const size_t nb0 = dst->nb[0];
  6058. const size_t nb1 = dst->nb[1];
  6059. const size_t nb2 = dst->nb[2];
  6060. const size_t nb3 = dst->nb[3];
  6061. const int ith = params->ith;
  6062. const int nth = params->nth;
  6063. const enum ggml_type type = src0->type;
  6064. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6065. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6066. // we don't support permuted src0 or src1
  6067. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6068. GGML_ASSERT(nb10 == sizeof(float));
  6069. // dst cannot be transposed or permuted
  6070. GGML_ASSERT(nb0 <= nb1);
  6071. GGML_ASSERT(nb1 <= nb2);
  6072. GGML_ASSERT(nb2 <= nb3);
  6073. GGML_ASSERT(ggml_is_quantized(src0->type));
  6074. GGML_ASSERT(dst->type == src0->type);
  6075. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6076. // rows per thread
  6077. const int dr = (nr + nth - 1)/nth;
  6078. // row range for this thread
  6079. const int ir0 = dr*ith;
  6080. const int ir1 = MIN(ir0 + dr, nr);
  6081. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6082. for (int ir = ir0; ir < ir1; ++ir) {
  6083. // src0 indices
  6084. const int i03 = ir/(ne02*ne01);
  6085. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6086. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6087. // src1 and dst are same shape as src0 => same indices
  6088. const int i13 = i03;
  6089. const int i12 = i02;
  6090. const int i11 = i01;
  6091. const int i3 = i03;
  6092. const int i2 = i02;
  6093. const int i1 = i01;
  6094. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6095. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6096. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  6097. assert(ne00 % 32 == 0);
  6098. // unquantize row from src0 to temp buffer
  6099. dequantize_row_q(src0_row, wdata, ne00);
  6100. // add src1
  6101. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6102. // quantize row to dst
  6103. quantize_row_q(wdata, dst_row, ne00);
  6104. }
  6105. }
  6106. static void ggml_compute_forward_add(
  6107. const struct ggml_compute_params * params,
  6108. const struct ggml_tensor * src0,
  6109. const struct ggml_tensor * src1,
  6110. struct ggml_tensor * dst) {
  6111. switch (src0->type) {
  6112. case GGML_TYPE_F32:
  6113. {
  6114. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6115. } break;
  6116. case GGML_TYPE_F16:
  6117. {
  6118. if (src1->type == GGML_TYPE_F16) {
  6119. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6120. }
  6121. else if (src1->type == GGML_TYPE_F32) {
  6122. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6123. }
  6124. else {
  6125. GGML_ASSERT(false);
  6126. }
  6127. } break;
  6128. case GGML_TYPE_Q4_0:
  6129. case GGML_TYPE_Q4_1:
  6130. case GGML_TYPE_Q5_0:
  6131. case GGML_TYPE_Q5_1:
  6132. case GGML_TYPE_Q8_0:
  6133. {
  6134. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6135. } break;
  6136. default:
  6137. {
  6138. GGML_ASSERT(false);
  6139. } break;
  6140. }
  6141. }
  6142. // ggml_compute_forward_add1
  6143. static void ggml_compute_forward_add1_f32(
  6144. const struct ggml_compute_params * params,
  6145. const struct ggml_tensor * src0,
  6146. const struct ggml_tensor * src1,
  6147. struct ggml_tensor * dst) {
  6148. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6149. GGML_ASSERT(ggml_is_scalar(src1));
  6150. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6151. return;
  6152. }
  6153. const int ith = params->ith;
  6154. const int nth = params->nth;
  6155. const int nr = ggml_nrows(src0);
  6156. const int64_t ne0 = src0->ne[0];
  6157. const int64_t ne1 = src0->ne[1];
  6158. const int64_t ne2 = src0->ne[2];
  6159. const size_t nb00 = src0->nb[0];
  6160. const size_t nb01 = src0->nb[1];
  6161. const size_t nb02 = src0->nb[2];
  6162. const size_t nb03 = src0->nb[3];
  6163. const size_t nb0 = dst->nb[0];
  6164. const size_t nb1 = dst->nb[1];
  6165. const size_t nb2 = dst->nb[2];
  6166. const size_t nb3 = dst->nb[3];
  6167. GGML_ASSERT( nb0 == sizeof(float));
  6168. GGML_ASSERT(nb00 == sizeof(float));
  6169. // rows per thread
  6170. const int dr = (nr + nth - 1)/nth;
  6171. // row range for this thread
  6172. const int ir0 = dr*ith;
  6173. const int ir1 = MIN(ir0 + dr, nr);
  6174. for (int ir = ir0; ir < ir1; ++ir) {
  6175. // src0 and dst are same shape => same indices
  6176. const int i3 = ir/(ne2*ne1);
  6177. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6178. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6179. #ifdef GGML_USE_ACCELERATE
  6180. UNUSED(ggml_vec_add1_f32);
  6181. vDSP_vadd(
  6182. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6183. (float *) ((char *) src1->data), 0,
  6184. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6185. ne0);
  6186. #else
  6187. ggml_vec_add1_f32(ne0,
  6188. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6189. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6190. *(float *) src1->data);
  6191. #endif
  6192. }
  6193. }
  6194. static void ggml_compute_forward_add1_f16_f32(
  6195. const struct ggml_compute_params * params,
  6196. const struct ggml_tensor * src0,
  6197. const struct ggml_tensor * src1,
  6198. struct ggml_tensor * dst) {
  6199. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6200. GGML_ASSERT(ggml_is_scalar(src1));
  6201. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6202. return;
  6203. }
  6204. // scalar to add
  6205. const float v = *(float *) src1->data;
  6206. const int ith = params->ith;
  6207. const int nth = params->nth;
  6208. const int nr = ggml_nrows(src0);
  6209. const int64_t ne0 = src0->ne[0];
  6210. const int64_t ne1 = src0->ne[1];
  6211. const int64_t ne2 = src0->ne[2];
  6212. const size_t nb00 = src0->nb[0];
  6213. const size_t nb01 = src0->nb[1];
  6214. const size_t nb02 = src0->nb[2];
  6215. const size_t nb03 = src0->nb[3];
  6216. const size_t nb0 = dst->nb[0];
  6217. const size_t nb1 = dst->nb[1];
  6218. const size_t nb2 = dst->nb[2];
  6219. const size_t nb3 = dst->nb[3];
  6220. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6221. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6222. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6223. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6224. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6225. // rows per thread
  6226. const int dr = (nr + nth - 1)/nth;
  6227. // row range for this thread
  6228. const int ir0 = dr*ith;
  6229. const int ir1 = MIN(ir0 + dr, nr);
  6230. for (int ir = ir0; ir < ir1; ++ir) {
  6231. // src0 and dst are same shape => same indices
  6232. const int i3 = ir/(ne2*ne1);
  6233. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6234. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6235. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6236. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6237. for (int i = 0; i < ne0; i++) {
  6238. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6239. }
  6240. }
  6241. }
  6242. static void ggml_compute_forward_add1_f16_f16(
  6243. const struct ggml_compute_params * params,
  6244. const struct ggml_tensor * src0,
  6245. const struct ggml_tensor * src1,
  6246. struct ggml_tensor * dst) {
  6247. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6248. GGML_ASSERT(ggml_is_scalar(src1));
  6249. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6250. return;
  6251. }
  6252. // scalar to add
  6253. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6254. const int ith = params->ith;
  6255. const int nth = params->nth;
  6256. const int nr = ggml_nrows(src0);
  6257. const int64_t ne0 = src0->ne[0];
  6258. const int64_t ne1 = src0->ne[1];
  6259. const int64_t ne2 = src0->ne[2];
  6260. const size_t nb00 = src0->nb[0];
  6261. const size_t nb01 = src0->nb[1];
  6262. const size_t nb02 = src0->nb[2];
  6263. const size_t nb03 = src0->nb[3];
  6264. const size_t nb0 = dst->nb[0];
  6265. const size_t nb1 = dst->nb[1];
  6266. const size_t nb2 = dst->nb[2];
  6267. const size_t nb3 = dst->nb[3];
  6268. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6269. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6270. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6271. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6272. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6273. // rows per thread
  6274. const int dr = (nr + nth - 1)/nth;
  6275. // row range for this thread
  6276. const int ir0 = dr*ith;
  6277. const int ir1 = MIN(ir0 + dr, nr);
  6278. for (int ir = ir0; ir < ir1; ++ir) {
  6279. // src0 and dst are same shape => same indices
  6280. const int i3 = ir/(ne2*ne1);
  6281. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6282. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6283. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6284. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6285. for (int i = 0; i < ne0; i++) {
  6286. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6287. }
  6288. }
  6289. }
  6290. static void ggml_compute_forward_add1_q_f32(
  6291. const struct ggml_compute_params * params,
  6292. const struct ggml_tensor * src0,
  6293. const struct ggml_tensor * src1,
  6294. struct ggml_tensor * dst) {
  6295. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6296. GGML_ASSERT(ggml_is_scalar(src1));
  6297. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6298. return;
  6299. }
  6300. // scalar to add
  6301. const float v = *(float *) src1->data;
  6302. const int ith = params->ith;
  6303. const int nth = params->nth;
  6304. const int nr = ggml_nrows(src0);
  6305. const int64_t ne0 = src0->ne[0];
  6306. const int64_t ne1 = src0->ne[1];
  6307. const int64_t ne2 = src0->ne[2];
  6308. const size_t nb00 = src0->nb[0];
  6309. const size_t nb01 = src0->nb[1];
  6310. const size_t nb02 = src0->nb[2];
  6311. const size_t nb03 = src0->nb[3];
  6312. const size_t nb0 = dst->nb[0];
  6313. const size_t nb1 = dst->nb[1];
  6314. const size_t nb2 = dst->nb[2];
  6315. const size_t nb3 = dst->nb[3];
  6316. const enum ggml_type type = src0->type;
  6317. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6318. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6319. // we don't support permuted src0
  6320. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6321. // dst cannot be transposed or permuted
  6322. GGML_ASSERT(nb0 <= nb1);
  6323. GGML_ASSERT(nb1 <= nb2);
  6324. GGML_ASSERT(nb2 <= nb3);
  6325. GGML_ASSERT(ggml_is_quantized(src0->type));
  6326. GGML_ASSERT(dst->type == src0->type);
  6327. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6328. // rows per thread
  6329. const int dr = (nr + nth - 1)/nth;
  6330. // row range for this thread
  6331. const int ir0 = dr*ith;
  6332. const int ir1 = MIN(ir0 + dr, nr);
  6333. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6334. for (int ir = ir0; ir < ir1; ++ir) {
  6335. // src0 and dst are same shape => same indices
  6336. const int i3 = ir/(ne2*ne1);
  6337. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6338. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6339. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6340. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6341. assert(ne0 % 32 == 0);
  6342. // unquantize row from src0 to temp buffer
  6343. dequantize_row_q(src0_row, wdata, ne0);
  6344. // add src1
  6345. ggml_vec_acc1_f32(ne0, wdata, v);
  6346. // quantize row to dst
  6347. quantize_row_q(wdata, dst_row, ne0);
  6348. }
  6349. }
  6350. static void ggml_compute_forward_add1(
  6351. const struct ggml_compute_params * params,
  6352. const struct ggml_tensor * src0,
  6353. const struct ggml_tensor * src1,
  6354. struct ggml_tensor * dst) {
  6355. switch (src0->type) {
  6356. case GGML_TYPE_F32:
  6357. {
  6358. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6359. } break;
  6360. case GGML_TYPE_F16:
  6361. {
  6362. if (src1->type == GGML_TYPE_F16) {
  6363. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6364. }
  6365. else if (src1->type == GGML_TYPE_F32) {
  6366. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6367. }
  6368. else {
  6369. GGML_ASSERT(false);
  6370. }
  6371. } break;
  6372. case GGML_TYPE_Q4_0:
  6373. case GGML_TYPE_Q4_1:
  6374. case GGML_TYPE_Q5_0:
  6375. case GGML_TYPE_Q5_1:
  6376. case GGML_TYPE_Q8_0:
  6377. case GGML_TYPE_Q8_1:
  6378. {
  6379. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6380. } break;
  6381. default:
  6382. {
  6383. GGML_ASSERT(false);
  6384. } break;
  6385. }
  6386. }
  6387. // ggml_compute_forward_acc
  6388. static void ggml_compute_forward_acc_f32(
  6389. const struct ggml_compute_params * params,
  6390. const struct ggml_tensor * src0,
  6391. const struct ggml_tensor * src1,
  6392. const struct ggml_tensor * opt0,
  6393. struct ggml_tensor * dst) {
  6394. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6395. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6396. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  6397. GGML_ASSERT(ggml_nelements(opt0) == 5);
  6398. // view src0 and dst with these strides and data offset inbytes during acc
  6399. // nb0 is implicitely element_size because src0 and dst are contiguous
  6400. size_t nb1 = ((int32_t *) opt0->data)[0];
  6401. size_t nb2 = ((int32_t *) opt0->data)[1];
  6402. size_t nb3 = ((int32_t *) opt0->data)[2];
  6403. size_t offset = ((int32_t *) opt0->data)[3];
  6404. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  6405. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6406. // memcpy needs to be synchronized across threads to avoid race conditions.
  6407. // => do it in INIT phase
  6408. memcpy(
  6409. ((char *) dst->data),
  6410. ((char *) src0->data),
  6411. ggml_nbytes(dst));
  6412. }
  6413. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6414. return;
  6415. }
  6416. const int ith = params->ith;
  6417. const int nth = params->nth;
  6418. const int nr = ggml_nrows(src1);
  6419. const int nc = src1->ne[0];
  6420. const int64_t ne10 = src1->ne[0];
  6421. const int64_t ne11 = src1->ne[1];
  6422. const int64_t ne12 = src1->ne[2];
  6423. const int64_t ne13 = src1->ne[3];
  6424. const size_t nb10 = src1->nb[0];
  6425. const size_t nb11 = src1->nb[1];
  6426. const size_t nb12 = src1->nb[2];
  6427. const size_t nb13 = src1->nb[3];
  6428. // src0 and dst as viewed during acc
  6429. const size_t nb0 = ggml_element_size(src0);
  6430. const size_t nb00 = nb0;
  6431. const size_t nb01 = nb1;
  6432. const size_t nb02 = nb2;
  6433. const size_t nb03 = nb3;
  6434. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6435. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6436. GGML_ASSERT(nb10 == sizeof(float));
  6437. // rows per thread
  6438. const int dr = (nr + nth - 1)/nth;
  6439. // row range for this thread
  6440. const int ir0 = dr*ith;
  6441. const int ir1 = MIN(ir0 + dr, nr);
  6442. for (int ir = ir0; ir < ir1; ++ir) {
  6443. // src0 and dst are viewed with shape of src1 and offset
  6444. // => same indices
  6445. const int i3 = ir/(ne12*ne11);
  6446. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6447. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6448. #ifdef GGML_USE_ACCELERATE
  6449. vDSP_vadd(
  6450. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6451. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6452. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6453. #else
  6454. ggml_vec_add_f32(nc,
  6455. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6456. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6457. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6458. #endif
  6459. }
  6460. }
  6461. static void ggml_compute_forward_acc(
  6462. const struct ggml_compute_params * params,
  6463. const struct ggml_tensor * src0,
  6464. const struct ggml_tensor * src1,
  6465. const struct ggml_tensor * opt0,
  6466. struct ggml_tensor * dst) {
  6467. switch (src0->type) {
  6468. case GGML_TYPE_F32:
  6469. {
  6470. ggml_compute_forward_acc_f32(params, src0, src1, opt0, dst);
  6471. } break;
  6472. case GGML_TYPE_F16:
  6473. case GGML_TYPE_Q4_0:
  6474. case GGML_TYPE_Q4_1:
  6475. case GGML_TYPE_Q5_0:
  6476. case GGML_TYPE_Q5_1:
  6477. case GGML_TYPE_Q8_0:
  6478. case GGML_TYPE_Q8_1:
  6479. default:
  6480. {
  6481. GGML_ASSERT(false);
  6482. } break;
  6483. }
  6484. }
  6485. // ggml_compute_forward_sub
  6486. static void ggml_compute_forward_sub_f32(
  6487. const struct ggml_compute_params * params,
  6488. const struct ggml_tensor * src0,
  6489. const struct ggml_tensor * src1,
  6490. struct ggml_tensor * dst) {
  6491. assert(params->ith == 0);
  6492. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6493. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6494. return;
  6495. }
  6496. const int nr = ggml_nrows(src0);
  6497. const int64_t ne0 = src0->ne[0];
  6498. const int64_t ne1 = src0->ne[1];
  6499. const int64_t ne2 = src0->ne[2];
  6500. const size_t nb00 = src0->nb[0];
  6501. const size_t nb01 = src0->nb[1];
  6502. const size_t nb02 = src0->nb[2];
  6503. const size_t nb03 = src0->nb[3];
  6504. const size_t nb10 = src1->nb[0];
  6505. const size_t nb11 = src1->nb[1];
  6506. const size_t nb12 = src1->nb[2];
  6507. const size_t nb13 = src1->nb[3];
  6508. const size_t nb0 = dst->nb[0];
  6509. const size_t nb1 = dst->nb[1];
  6510. const size_t nb2 = dst->nb[2];
  6511. const size_t nb3 = dst->nb[3];
  6512. GGML_ASSERT( nb0 == sizeof(float));
  6513. GGML_ASSERT(nb00 == sizeof(float));
  6514. if (nb10 == sizeof(float)) {
  6515. for (int ir = 0; ir < nr; ++ir) {
  6516. // src0, src1 and dst are same shape => same indices
  6517. const int i3 = ir/(ne2*ne1);
  6518. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6519. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6520. #ifdef GGML_USE_ACCELERATE
  6521. vDSP_vsub(
  6522. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6523. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6524. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6525. ne0);
  6526. #else
  6527. ggml_vec_sub_f32(ne0,
  6528. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6529. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6530. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6531. #endif
  6532. // }
  6533. // }
  6534. }
  6535. } else {
  6536. // src1 is not contiguous
  6537. for (int ir = 0; ir < nr; ++ir) {
  6538. // src0, src1 and dst are same shape => same indices
  6539. const int i3 = ir/(ne2*ne1);
  6540. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6541. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6542. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6543. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6544. for (int i0 = 0; i0 < ne0; i0++) {
  6545. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6546. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6547. }
  6548. }
  6549. }
  6550. }
  6551. static void ggml_compute_forward_sub(
  6552. const struct ggml_compute_params * params,
  6553. const struct ggml_tensor * src0,
  6554. const struct ggml_tensor * src1,
  6555. struct ggml_tensor * dst) {
  6556. switch (src0->type) {
  6557. case GGML_TYPE_F32:
  6558. {
  6559. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6560. } break;
  6561. default:
  6562. {
  6563. GGML_ASSERT(false);
  6564. } break;
  6565. }
  6566. }
  6567. // ggml_compute_forward_mul
  6568. static void ggml_compute_forward_mul_f32(
  6569. const struct ggml_compute_params * params,
  6570. const struct ggml_tensor * src0,
  6571. const struct ggml_tensor * src1,
  6572. struct ggml_tensor * dst) {
  6573. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  6574. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6575. return;
  6576. }
  6577. const int ith = params->ith;
  6578. const int nth = params->nth;
  6579. #ifdef GGML_USE_CUBLAS
  6580. if (src1->backend == GGML_BACKEND_CUDA) {
  6581. if (ith == 0) {
  6582. ggml_cuda_mul(src0, src1, dst);
  6583. }
  6584. return;
  6585. }
  6586. #elif defined(GGML_USE_CLBLAST)
  6587. if (src1->backend == GGML_BACKEND_CL) {
  6588. if (ith == 0) {
  6589. ggml_cl_mul(src0, src1, dst);
  6590. }
  6591. return;
  6592. }
  6593. #endif
  6594. const int64_t nr = ggml_nrows(src0);
  6595. const int64_t ne00 = src0->ne[0];
  6596. const int64_t ne01 = src0->ne[1];
  6597. const int64_t ne02 = src0->ne[2];
  6598. const int64_t ne10 = src1->ne[0];
  6599. const int64_t ne11 = src1->ne[1];
  6600. const int64_t ne12 = src1->ne[2];
  6601. const int64_t ne13 = src1->ne[3];
  6602. const size_t nb00 = src0->nb[0];
  6603. const size_t nb01 = src0->nb[1];
  6604. const size_t nb02 = src0->nb[2];
  6605. const size_t nb03 = src0->nb[3];
  6606. const size_t nb10 = src1->nb[0];
  6607. const size_t nb11 = src1->nb[1];
  6608. const size_t nb12 = src1->nb[2];
  6609. const size_t nb13 = src1->nb[3];
  6610. const size_t nb0 = dst->nb[0];
  6611. const size_t nb1 = dst->nb[1];
  6612. const size_t nb2 = dst->nb[2];
  6613. const size_t nb3 = dst->nb[3];
  6614. GGML_ASSERT( nb0 == sizeof(float));
  6615. GGML_ASSERT(nb00 == sizeof(float));
  6616. GGML_ASSERT(ne00 == ne10);
  6617. if (nb10 == sizeof(float)) {
  6618. for (int64_t ir = ith; ir < nr; ir += nth) {
  6619. // src0 and dst are same shape => same indices
  6620. const int64_t i03 = ir/(ne02*ne01);
  6621. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6622. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6623. const int64_t i13 = i03 % ne13;
  6624. const int64_t i12 = i02 % ne12;
  6625. const int64_t i11 = i01 % ne11;
  6626. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6627. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6628. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6629. #ifdef GGML_USE_ACCELERATE
  6630. UNUSED(ggml_vec_mul_f32);
  6631. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  6632. #else
  6633. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  6634. #endif
  6635. // }
  6636. // }
  6637. }
  6638. } else {
  6639. // src1 is not contiguous
  6640. for (int64_t ir = ith; ir < nr; ir += nth) {
  6641. // src0 and dst are same shape => same indices
  6642. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6643. const int64_t i03 = ir/(ne02*ne01);
  6644. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6645. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6646. const int64_t i13 = i03 % ne13;
  6647. const int64_t i12 = i02 % ne12;
  6648. const int64_t i11 = i01 % ne11;
  6649. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6650. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6651. for (int64_t i0 = 0; i0 < ne00; i0++) {
  6652. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  6653. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6654. }
  6655. }
  6656. }
  6657. }
  6658. static void ggml_compute_forward_mul(
  6659. const struct ggml_compute_params * params,
  6660. const struct ggml_tensor * src0,
  6661. const struct ggml_tensor * src1,
  6662. struct ggml_tensor * dst) {
  6663. switch (src0->type) {
  6664. case GGML_TYPE_F32:
  6665. {
  6666. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6667. } break;
  6668. default:
  6669. {
  6670. GGML_ASSERT(false);
  6671. } break;
  6672. }
  6673. }
  6674. // ggml_compute_forward_div
  6675. static void ggml_compute_forward_div_f32(
  6676. const struct ggml_compute_params * params,
  6677. const struct ggml_tensor * src0,
  6678. const struct ggml_tensor * src1,
  6679. struct ggml_tensor * dst) {
  6680. assert(params->ith == 0);
  6681. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6682. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6683. return;
  6684. }
  6685. const int nr = ggml_nrows(src0);
  6686. const int64_t ne0 = src0->ne[0];
  6687. const int64_t ne1 = src0->ne[1];
  6688. const int64_t ne2 = src0->ne[2];
  6689. const size_t nb00 = src0->nb[0];
  6690. const size_t nb01 = src0->nb[1];
  6691. const size_t nb02 = src0->nb[2];
  6692. const size_t nb03 = src0->nb[3];
  6693. const size_t nb10 = src1->nb[0];
  6694. const size_t nb11 = src1->nb[1];
  6695. const size_t nb12 = src1->nb[2];
  6696. const size_t nb13 = src1->nb[3];
  6697. const size_t nb0 = dst->nb[0];
  6698. const size_t nb1 = dst->nb[1];
  6699. const size_t nb2 = dst->nb[2];
  6700. const size_t nb3 = dst->nb[3];
  6701. GGML_ASSERT( nb0 == sizeof(float));
  6702. GGML_ASSERT(nb00 == sizeof(float));
  6703. if (nb10 == sizeof(float)) {
  6704. for (int ir = 0; ir < nr; ++ir) {
  6705. // src0, src1 and dst are same shape => same indices
  6706. const int i3 = ir/(ne2*ne1);
  6707. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6708. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6709. #ifdef GGML_USE_ACCELERATE
  6710. vDSP_vdiv(
  6711. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6712. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6713. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6714. ne0);
  6715. #else
  6716. ggml_vec_div_f32(ne0,
  6717. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6718. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6719. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6720. #endif
  6721. // }
  6722. // }
  6723. }
  6724. } else {
  6725. // src1 is not contiguous
  6726. for (int ir = 0; ir < nr; ++ir) {
  6727. // src0, src1 and dst are same shape => same indices
  6728. const int i3 = ir/(ne2*ne1);
  6729. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6730. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6731. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6732. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6733. for (int i0 = 0; i0 < ne0; i0++) {
  6734. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6735. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6736. }
  6737. }
  6738. }
  6739. }
  6740. static void ggml_compute_forward_div(
  6741. const struct ggml_compute_params * params,
  6742. const struct ggml_tensor * src0,
  6743. const struct ggml_tensor * src1,
  6744. struct ggml_tensor * dst) {
  6745. switch (src0->type) {
  6746. case GGML_TYPE_F32:
  6747. {
  6748. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6749. } break;
  6750. default:
  6751. {
  6752. GGML_ASSERT(false);
  6753. } break;
  6754. }
  6755. }
  6756. // ggml_compute_forward_sqr
  6757. static void ggml_compute_forward_sqr_f32(
  6758. const struct ggml_compute_params * params,
  6759. const struct ggml_tensor * src0,
  6760. struct ggml_tensor * dst) {
  6761. assert(params->ith == 0);
  6762. assert(ggml_are_same_shape(src0, dst));
  6763. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6764. return;
  6765. }
  6766. const int n = ggml_nrows(src0);
  6767. const int nc = src0->ne[0];
  6768. assert( dst->nb[0] == sizeof(float));
  6769. assert(src0->nb[0] == sizeof(float));
  6770. for (int i = 0; i < n; i++) {
  6771. ggml_vec_sqr_f32(nc,
  6772. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6773. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6774. }
  6775. }
  6776. static void ggml_compute_forward_sqr(
  6777. const struct ggml_compute_params * params,
  6778. const struct ggml_tensor * src0,
  6779. struct ggml_tensor * dst) {
  6780. switch (src0->type) {
  6781. case GGML_TYPE_F32:
  6782. {
  6783. ggml_compute_forward_sqr_f32(params, src0, dst);
  6784. } break;
  6785. default:
  6786. {
  6787. GGML_ASSERT(false);
  6788. } break;
  6789. }
  6790. }
  6791. // ggml_compute_forward_sqrt
  6792. static void ggml_compute_forward_sqrt_f32(
  6793. const struct ggml_compute_params * params,
  6794. const struct ggml_tensor * src0,
  6795. struct ggml_tensor * dst) {
  6796. assert(params->ith == 0);
  6797. assert(ggml_are_same_shape(src0, dst));
  6798. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6799. return;
  6800. }
  6801. const int n = ggml_nrows(src0);
  6802. const int nc = src0->ne[0];
  6803. assert( dst->nb[0] == sizeof(float));
  6804. assert(src0->nb[0] == sizeof(float));
  6805. for (int i = 0; i < n; i++) {
  6806. ggml_vec_sqrt_f32(nc,
  6807. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6808. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6809. }
  6810. }
  6811. static void ggml_compute_forward_sqrt(
  6812. const struct ggml_compute_params * params,
  6813. const struct ggml_tensor * src0,
  6814. struct ggml_tensor * dst) {
  6815. switch (src0->type) {
  6816. case GGML_TYPE_F32:
  6817. {
  6818. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6819. } break;
  6820. default:
  6821. {
  6822. GGML_ASSERT(false);
  6823. } break;
  6824. }
  6825. }
  6826. // ggml_compute_forward_log
  6827. static void ggml_compute_forward_log_f32(
  6828. const struct ggml_compute_params * params,
  6829. const struct ggml_tensor * src0,
  6830. struct ggml_tensor * dst) {
  6831. GGML_ASSERT(params->ith == 0);
  6832. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6833. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6834. return;
  6835. }
  6836. const int n = ggml_nrows(src0);
  6837. const int nc = src0->ne[0];
  6838. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6839. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6840. for (int i = 0; i < n; i++) {
  6841. ggml_vec_log_f32(nc,
  6842. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6843. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6844. }
  6845. }
  6846. static void ggml_compute_forward_log(
  6847. const struct ggml_compute_params * params,
  6848. const struct ggml_tensor * src0,
  6849. struct ggml_tensor * dst) {
  6850. switch (src0->type) {
  6851. case GGML_TYPE_F32:
  6852. {
  6853. ggml_compute_forward_log_f32(params, src0, dst);
  6854. } break;
  6855. default:
  6856. {
  6857. GGML_ASSERT(false);
  6858. } break;
  6859. }
  6860. }
  6861. // ggml_compute_forward_sum
  6862. static void ggml_compute_forward_sum_f32(
  6863. const struct ggml_compute_params * params,
  6864. const struct ggml_tensor * src0,
  6865. struct ggml_tensor * dst) {
  6866. assert(params->ith == 0);
  6867. assert(ggml_is_scalar(dst));
  6868. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6869. return;
  6870. }
  6871. assert(ggml_is_scalar(dst));
  6872. assert(src0->nb[0] == sizeof(float));
  6873. const int64_t ne00 = src0->ne[0];
  6874. const int64_t ne01 = src0->ne[1];
  6875. const int64_t ne02 = src0->ne[2];
  6876. const int64_t ne03 = src0->ne[3];
  6877. const size_t nb01 = src0->nb[1];
  6878. const size_t nb02 = src0->nb[2];
  6879. const size_t nb03 = src0->nb[3];
  6880. ggml_float sum = 0;
  6881. ggml_float row_sum = 0;
  6882. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6883. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6884. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6885. ggml_vec_sum_ggf(ne00,
  6886. &row_sum,
  6887. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6888. sum += row_sum;
  6889. }
  6890. }
  6891. }
  6892. ((float *) dst->data)[0] = sum;
  6893. }
  6894. static void ggml_compute_forward_sum(
  6895. const struct ggml_compute_params * params,
  6896. const struct ggml_tensor * src0,
  6897. struct ggml_tensor * dst) {
  6898. switch (src0->type) {
  6899. case GGML_TYPE_F32:
  6900. {
  6901. ggml_compute_forward_sum_f32(params, src0, dst);
  6902. } break;
  6903. default:
  6904. {
  6905. GGML_ASSERT(false);
  6906. } break;
  6907. }
  6908. }
  6909. // ggml_compute_forward_sum_rows
  6910. static void ggml_compute_forward_sum_rows_f32(
  6911. const struct ggml_compute_params * params,
  6912. const struct ggml_tensor * src0,
  6913. struct ggml_tensor * dst) {
  6914. GGML_ASSERT(params->ith == 0);
  6915. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6916. return;
  6917. }
  6918. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6919. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6920. const int64_t ne00 = src0->ne[0];
  6921. const int64_t ne01 = src0->ne[1];
  6922. const int64_t ne02 = src0->ne[2];
  6923. const int64_t ne03 = src0->ne[3];
  6924. const int64_t ne0 = dst->ne[0];
  6925. const int64_t ne1 = dst->ne[1];
  6926. const int64_t ne2 = dst->ne[2];
  6927. const int64_t ne3 = dst->ne[3];
  6928. GGML_ASSERT(ne0 == 1);
  6929. GGML_ASSERT(ne1 == ne01);
  6930. GGML_ASSERT(ne2 == ne02);
  6931. GGML_ASSERT(ne3 == ne03);
  6932. const size_t nb01 = src0->nb[1];
  6933. const size_t nb02 = src0->nb[2];
  6934. const size_t nb03 = src0->nb[3];
  6935. const size_t nb1 = dst->nb[1];
  6936. const size_t nb2 = dst->nb[2];
  6937. const size_t nb3 = dst->nb[3];
  6938. for (int64_t i3 = 0; i3 < ne03; i3++) {
  6939. for (int64_t i2 = 0; i2 < ne02; i2++) {
  6940. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6941. float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  6942. float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  6943. float row_sum = 0;
  6944. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  6945. dst_row[0] = row_sum;
  6946. }
  6947. }
  6948. }
  6949. }
  6950. static void ggml_compute_forward_sum_rows(
  6951. const struct ggml_compute_params * params,
  6952. const struct ggml_tensor * src0,
  6953. struct ggml_tensor * dst) {
  6954. switch (src0->type) {
  6955. case GGML_TYPE_F32:
  6956. {
  6957. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  6958. } break;
  6959. default:
  6960. {
  6961. GGML_ASSERT(false);
  6962. } break;
  6963. }
  6964. }
  6965. // ggml_compute_forward_mean
  6966. static void ggml_compute_forward_mean_f32(
  6967. const struct ggml_compute_params * params,
  6968. const struct ggml_tensor * src0,
  6969. struct ggml_tensor * dst) {
  6970. assert(params->ith == 0);
  6971. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6972. return;
  6973. }
  6974. assert(src0->nb[0] == sizeof(float));
  6975. const int64_t ne00 = src0->ne[0];
  6976. const int64_t ne01 = src0->ne[1];
  6977. const int64_t ne02 = src0->ne[2];
  6978. const int64_t ne03 = src0->ne[3];
  6979. const size_t nb01 = src0->nb[1];
  6980. const size_t nb02 = src0->nb[2];
  6981. const size_t nb03 = src0->nb[3];
  6982. const int64_t ne0 = dst->ne[0];
  6983. const int64_t ne1 = dst->ne[1];
  6984. const int64_t ne2 = dst->ne[2];
  6985. const int64_t ne3 = dst->ne[3];
  6986. assert(ne0 == 1);
  6987. assert(ne1 == ne01);
  6988. assert(ne2 == ne02);
  6989. assert(ne3 == ne03);
  6990. UNUSED(ne0);
  6991. UNUSED(ne1);
  6992. UNUSED(ne2);
  6993. UNUSED(ne3);
  6994. const size_t nb1 = dst->nb[1];
  6995. const size_t nb2 = dst->nb[2];
  6996. const size_t nb3 = dst->nb[3];
  6997. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6998. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6999. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7000. ggml_vec_sum_f32(ne00,
  7001. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7002. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7003. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7004. }
  7005. }
  7006. }
  7007. }
  7008. static void ggml_compute_forward_mean(
  7009. const struct ggml_compute_params * params,
  7010. const struct ggml_tensor * src0,
  7011. struct ggml_tensor * dst) {
  7012. switch (src0->type) {
  7013. case GGML_TYPE_F32:
  7014. {
  7015. ggml_compute_forward_mean_f32(params, src0, dst);
  7016. } break;
  7017. default:
  7018. {
  7019. GGML_ASSERT(false);
  7020. } break;
  7021. }
  7022. }
  7023. // ggml_compute_forward_repeat
  7024. static void ggml_compute_forward_repeat_f32(
  7025. const struct ggml_compute_params * params,
  7026. const struct ggml_tensor * src0,
  7027. struct ggml_tensor * dst) {
  7028. GGML_ASSERT(params->ith == 0);
  7029. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7030. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7031. return;
  7032. }
  7033. const int64_t ne0 = dst->ne[0];
  7034. const int64_t ne1 = dst->ne[1];
  7035. const int64_t ne2 = dst->ne[2];
  7036. const int64_t ne3 = dst->ne[3];
  7037. const int64_t ne00 = src0->ne[0];
  7038. const int64_t ne01 = src0->ne[1];
  7039. const int64_t ne02 = src0->ne[2];
  7040. const int64_t ne03 = src0->ne[3];
  7041. const size_t nb0 = dst->nb[0];
  7042. const size_t nb1 = dst->nb[1];
  7043. const size_t nb2 = dst->nb[2];
  7044. const size_t nb3 = dst->nb[3];
  7045. const size_t nb00 = src0->nb[0];
  7046. const size_t nb01 = src0->nb[1];
  7047. const size_t nb02 = src0->nb[2];
  7048. const size_t nb03 = src0->nb[3];
  7049. // guaranteed to be an integer due to the check in ggml_can_repeat
  7050. const int nr0 = (int)(ne0/ne00);
  7051. const int nr1 = (int)(ne1/ne01);
  7052. const int nr2 = (int)(ne2/ne02);
  7053. const int nr3 = (int)(ne3/ne03);
  7054. // TODO: support for transposed / permuted tensors
  7055. GGML_ASSERT(nb0 == sizeof(float));
  7056. GGML_ASSERT(nb00 == sizeof(float));
  7057. // TODO: maybe this is not optimal?
  7058. for (int i3 = 0; i3 < nr3; i3++) {
  7059. for (int k3 = 0; k3 < ne03; k3++) {
  7060. for (int i2 = 0; i2 < nr2; i2++) {
  7061. for (int k2 = 0; k2 < ne02; k2++) {
  7062. for (int i1 = 0; i1 < nr1; i1++) {
  7063. for (int k1 = 0; k1 < ne01; k1++) {
  7064. for (int i0 = 0; i0 < nr0; i0++) {
  7065. ggml_vec_cpy_f32(ne00,
  7066. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7067. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7068. }
  7069. }
  7070. }
  7071. }
  7072. }
  7073. }
  7074. }
  7075. }
  7076. static void ggml_compute_forward_repeat(
  7077. const struct ggml_compute_params * params,
  7078. const struct ggml_tensor * src0,
  7079. struct ggml_tensor * dst) {
  7080. switch (src0->type) {
  7081. case GGML_TYPE_F32:
  7082. {
  7083. ggml_compute_forward_repeat_f32(params, src0, dst);
  7084. } break;
  7085. default:
  7086. {
  7087. GGML_ASSERT(false);
  7088. } break;
  7089. }
  7090. }
  7091. // ggml_compute_forward_abs
  7092. static void ggml_compute_forward_abs_f32(
  7093. const struct ggml_compute_params * params,
  7094. const struct ggml_tensor * src0,
  7095. struct ggml_tensor * dst) {
  7096. assert(params->ith == 0);
  7097. assert(ggml_are_same_shape(src0, dst));
  7098. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7099. return;
  7100. }
  7101. const int n = ggml_nrows(src0);
  7102. const int nc = src0->ne[0];
  7103. assert(dst->nb[0] == sizeof(float));
  7104. assert(src0->nb[0] == sizeof(float));
  7105. for (int i = 0; i < n; i++) {
  7106. ggml_vec_abs_f32(nc,
  7107. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7108. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7109. }
  7110. }
  7111. static void ggml_compute_forward_abs(
  7112. const struct ggml_compute_params * params,
  7113. const struct ggml_tensor * src0,
  7114. struct ggml_tensor * dst) {
  7115. switch (src0->type) {
  7116. case GGML_TYPE_F32:
  7117. {
  7118. ggml_compute_forward_abs_f32(params, src0, dst);
  7119. } break;
  7120. default:
  7121. {
  7122. GGML_ASSERT(false);
  7123. } break;
  7124. }
  7125. }
  7126. // ggml_compute_forward_sgn
  7127. static void ggml_compute_forward_sgn_f32(
  7128. const struct ggml_compute_params * params,
  7129. const struct ggml_tensor * src0,
  7130. struct ggml_tensor * dst) {
  7131. assert(params->ith == 0);
  7132. assert(ggml_are_same_shape(src0, dst));
  7133. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7134. return;
  7135. }
  7136. const int n = ggml_nrows(src0);
  7137. const int nc = src0->ne[0];
  7138. assert(dst->nb[0] == sizeof(float));
  7139. assert(src0->nb[0] == sizeof(float));
  7140. for (int i = 0; i < n; i++) {
  7141. ggml_vec_sgn_f32(nc,
  7142. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7143. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7144. }
  7145. }
  7146. static void ggml_compute_forward_sgn(
  7147. const struct ggml_compute_params * params,
  7148. const struct ggml_tensor * src0,
  7149. struct ggml_tensor * dst) {
  7150. switch (src0->type) {
  7151. case GGML_TYPE_F32:
  7152. {
  7153. ggml_compute_forward_sgn_f32(params, src0, dst);
  7154. } break;
  7155. default:
  7156. {
  7157. GGML_ASSERT(false);
  7158. } break;
  7159. }
  7160. }
  7161. // ggml_compute_forward_neg
  7162. static void ggml_compute_forward_neg_f32(
  7163. const struct ggml_compute_params * params,
  7164. const struct ggml_tensor * src0,
  7165. struct ggml_tensor * dst) {
  7166. assert(params->ith == 0);
  7167. assert(ggml_are_same_shape(src0, dst));
  7168. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7169. return;
  7170. }
  7171. const int n = ggml_nrows(src0);
  7172. const int nc = src0->ne[0];
  7173. assert(dst->nb[0] == sizeof(float));
  7174. assert(src0->nb[0] == sizeof(float));
  7175. for (int i = 0; i < n; i++) {
  7176. ggml_vec_neg_f32(nc,
  7177. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7178. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7179. }
  7180. }
  7181. static void ggml_compute_forward_neg(
  7182. const struct ggml_compute_params * params,
  7183. const struct ggml_tensor * src0,
  7184. struct ggml_tensor * dst) {
  7185. switch (src0->type) {
  7186. case GGML_TYPE_F32:
  7187. {
  7188. ggml_compute_forward_neg_f32(params, src0, dst);
  7189. } break;
  7190. default:
  7191. {
  7192. GGML_ASSERT(false);
  7193. } break;
  7194. }
  7195. }
  7196. // ggml_compute_forward_step
  7197. static void ggml_compute_forward_step_f32(
  7198. const struct ggml_compute_params * params,
  7199. const struct ggml_tensor * src0,
  7200. struct ggml_tensor * dst) {
  7201. assert(params->ith == 0);
  7202. assert(ggml_are_same_shape(src0, dst));
  7203. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7204. return;
  7205. }
  7206. const int n = ggml_nrows(src0);
  7207. const int nc = src0->ne[0];
  7208. assert(dst->nb[0] == sizeof(float));
  7209. assert(src0->nb[0] == sizeof(float));
  7210. for (int i = 0; i < n; i++) {
  7211. ggml_vec_step_f32(nc,
  7212. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7213. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7214. }
  7215. }
  7216. static void ggml_compute_forward_step(
  7217. const struct ggml_compute_params * params,
  7218. const struct ggml_tensor * src0,
  7219. struct ggml_tensor * dst) {
  7220. switch (src0->type) {
  7221. case GGML_TYPE_F32:
  7222. {
  7223. ggml_compute_forward_step_f32(params, src0, dst);
  7224. } break;
  7225. default:
  7226. {
  7227. GGML_ASSERT(false);
  7228. } break;
  7229. }
  7230. }
  7231. // ggml_compute_forward_relu
  7232. static void ggml_compute_forward_relu_f32(
  7233. const struct ggml_compute_params * params,
  7234. const struct ggml_tensor * src0,
  7235. struct ggml_tensor * dst) {
  7236. assert(params->ith == 0);
  7237. assert(ggml_are_same_shape(src0, dst));
  7238. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7239. return;
  7240. }
  7241. const int n = ggml_nrows(src0);
  7242. const int nc = src0->ne[0];
  7243. assert(dst->nb[0] == sizeof(float));
  7244. assert(src0->nb[0] == sizeof(float));
  7245. for (int i = 0; i < n; i++) {
  7246. ggml_vec_relu_f32(nc,
  7247. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7248. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7249. }
  7250. }
  7251. static void ggml_compute_forward_relu(
  7252. const struct ggml_compute_params * params,
  7253. const struct ggml_tensor * src0,
  7254. struct ggml_tensor * dst) {
  7255. switch (src0->type) {
  7256. case GGML_TYPE_F32:
  7257. {
  7258. ggml_compute_forward_relu_f32(params, src0, dst);
  7259. } break;
  7260. default:
  7261. {
  7262. GGML_ASSERT(false);
  7263. } break;
  7264. }
  7265. }
  7266. // ggml_compute_forward_gelu
  7267. static void ggml_compute_forward_gelu_f32(
  7268. const struct ggml_compute_params * params,
  7269. const struct ggml_tensor * src0,
  7270. struct ggml_tensor * dst) {
  7271. GGML_ASSERT(ggml_is_contiguous(src0));
  7272. GGML_ASSERT(ggml_is_contiguous(dst));
  7273. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7274. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7275. return;
  7276. }
  7277. const int ith = params->ith;
  7278. const int nth = params->nth;
  7279. const int nc = src0->ne[0];
  7280. const int nr = ggml_nrows(src0);
  7281. // rows per thread
  7282. const int dr = (nr + nth - 1)/nth;
  7283. // row range for this thread
  7284. const int ir0 = dr*ith;
  7285. const int ir1 = MIN(ir0 + dr, nr);
  7286. for (int i1 = ir0; i1 < ir1; i1++) {
  7287. ggml_vec_gelu_f32(nc,
  7288. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7289. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7290. #ifndef NDEBUG
  7291. for (int k = 0; k < nc; k++) {
  7292. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7293. UNUSED(x);
  7294. assert(!isnan(x));
  7295. assert(!isinf(x));
  7296. }
  7297. #endif
  7298. }
  7299. }
  7300. static void ggml_compute_forward_gelu(
  7301. const struct ggml_compute_params * params,
  7302. const struct ggml_tensor * src0,
  7303. struct ggml_tensor * dst) {
  7304. switch (src0->type) {
  7305. case GGML_TYPE_F32:
  7306. {
  7307. ggml_compute_forward_gelu_f32(params, src0, dst);
  7308. } break;
  7309. default:
  7310. {
  7311. GGML_ASSERT(false);
  7312. } break;
  7313. }
  7314. //printf("XXXXXXXX gelu\n");
  7315. }
  7316. // ggml_compute_forward_silu
  7317. static void ggml_compute_forward_silu_f32(
  7318. const struct ggml_compute_params * params,
  7319. const struct ggml_tensor * src0,
  7320. struct ggml_tensor * dst) {
  7321. GGML_ASSERT(ggml_is_contiguous(src0));
  7322. GGML_ASSERT(ggml_is_contiguous(dst));
  7323. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7324. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7325. return;
  7326. }
  7327. const int ith = params->ith;
  7328. const int nth = params->nth;
  7329. const int nc = src0->ne[0];
  7330. const int nr = ggml_nrows(src0);
  7331. // rows per thread
  7332. const int dr = (nr + nth - 1)/nth;
  7333. // row range for this thread
  7334. const int ir0 = dr*ith;
  7335. const int ir1 = MIN(ir0 + dr, nr);
  7336. for (int i1 = ir0; i1 < ir1; i1++) {
  7337. ggml_vec_silu_f32(nc,
  7338. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7339. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7340. #ifndef NDEBUG
  7341. for (int k = 0; k < nc; k++) {
  7342. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7343. UNUSED(x);
  7344. assert(!isnan(x));
  7345. assert(!isinf(x));
  7346. }
  7347. #endif
  7348. }
  7349. }
  7350. static void ggml_compute_forward_silu(
  7351. const struct ggml_compute_params * params,
  7352. const struct ggml_tensor * src0,
  7353. struct ggml_tensor * dst) {
  7354. switch (src0->type) {
  7355. case GGML_TYPE_F32:
  7356. {
  7357. ggml_compute_forward_silu_f32(params, src0, dst);
  7358. } break;
  7359. default:
  7360. {
  7361. GGML_ASSERT(false);
  7362. } break;
  7363. }
  7364. }
  7365. // ggml_compute_forward_silu_back
  7366. static void ggml_compute_forward_silu_back_f32(
  7367. const struct ggml_compute_params * params,
  7368. const struct ggml_tensor * src0,
  7369. const struct ggml_tensor * grad,
  7370. struct ggml_tensor * dst) {
  7371. GGML_ASSERT(ggml_is_contiguous(grad));
  7372. GGML_ASSERT(ggml_is_contiguous(src0));
  7373. GGML_ASSERT(ggml_is_contiguous(dst));
  7374. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7375. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7376. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7377. return;
  7378. }
  7379. const int ith = params->ith;
  7380. const int nth = params->nth;
  7381. const int nc = src0->ne[0];
  7382. const int nr = ggml_nrows(src0);
  7383. // rows per thread
  7384. const int dr = (nr + nth - 1)/nth;
  7385. // row range for this thread
  7386. const int ir0 = dr*ith;
  7387. const int ir1 = MIN(ir0 + dr, nr);
  7388. for (int i1 = ir0; i1 < ir1; i1++) {
  7389. ggml_vec_silu_backward_f32(nc,
  7390. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7391. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7392. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7393. #ifndef NDEBUG
  7394. for (int k = 0; k < nc; k++) {
  7395. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7396. UNUSED(x);
  7397. assert(!isnan(x));
  7398. assert(!isinf(x));
  7399. }
  7400. #endif
  7401. }
  7402. }
  7403. static void ggml_compute_forward_silu_back(
  7404. const struct ggml_compute_params * params,
  7405. const struct ggml_tensor * src0,
  7406. const struct ggml_tensor * grad,
  7407. struct ggml_tensor * dst) {
  7408. switch (src0->type) {
  7409. case GGML_TYPE_F32:
  7410. {
  7411. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7412. } break;
  7413. default:
  7414. {
  7415. GGML_ASSERT(false);
  7416. } break;
  7417. }
  7418. }
  7419. // ggml_compute_forward_norm
  7420. static void ggml_compute_forward_norm_f32(
  7421. const struct ggml_compute_params * params,
  7422. const struct ggml_tensor * src0,
  7423. struct ggml_tensor * dst) {
  7424. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7425. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7426. return;
  7427. }
  7428. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7429. const int ith = params->ith;
  7430. const int nth = params->nth;
  7431. const int64_t ne00 = src0->ne[0];
  7432. const int64_t ne01 = src0->ne[1];
  7433. const int64_t ne02 = src0->ne[2];
  7434. const int64_t ne03 = src0->ne[3];
  7435. const size_t nb01 = src0->nb[1];
  7436. const size_t nb02 = src0->nb[2];
  7437. const size_t nb03 = src0->nb[3];
  7438. const size_t nb1 = dst->nb[1];
  7439. const size_t nb2 = dst->nb[2];
  7440. const size_t nb3 = dst->nb[3];
  7441. const float eps = 1e-5f; // TODO: make this a parameter
  7442. // TODO: optimize
  7443. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7444. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7445. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7446. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7447. ggml_float sum = 0.0;
  7448. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7449. sum += (ggml_float)x[i00];
  7450. }
  7451. float mean = sum/ne00;
  7452. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7453. ggml_float sum2 = 0.0;
  7454. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7455. float v = x[i00] - mean;
  7456. y[i00] = v;
  7457. sum2 += (ggml_float)(v*v);
  7458. }
  7459. float variance = sum2/ne00;
  7460. const float scale = 1.0f/sqrtf(variance + eps);
  7461. ggml_vec_scale_f32(ne00, y, scale);
  7462. }
  7463. }
  7464. }
  7465. }
  7466. static void ggml_compute_forward_norm(
  7467. const struct ggml_compute_params * params,
  7468. const struct ggml_tensor * src0,
  7469. struct ggml_tensor * dst) {
  7470. switch (src0->type) {
  7471. case GGML_TYPE_F32:
  7472. {
  7473. ggml_compute_forward_norm_f32(params, src0, dst);
  7474. } break;
  7475. default:
  7476. {
  7477. GGML_ASSERT(false);
  7478. } break;
  7479. }
  7480. }
  7481. static void ggml_compute_forward_rms_norm_f32(
  7482. const struct ggml_compute_params * params,
  7483. const struct ggml_tensor * src0,
  7484. struct ggml_tensor * dst) {
  7485. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7486. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7487. return;
  7488. }
  7489. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7490. const int ith = params->ith;
  7491. const int nth = params->nth;
  7492. const int64_t ne00 = src0->ne[0];
  7493. const int64_t ne01 = src0->ne[1];
  7494. const int64_t ne02 = src0->ne[2];
  7495. const int64_t ne03 = src0->ne[3];
  7496. const size_t nb01 = src0->nb[1];
  7497. const size_t nb02 = src0->nb[2];
  7498. const size_t nb03 = src0->nb[3];
  7499. const size_t nb1 = dst->nb[1];
  7500. const size_t nb2 = dst->nb[2];
  7501. const size_t nb3 = dst->nb[3];
  7502. const float eps = 1e-6f; // TODO: make this a parameter
  7503. // TODO: optimize
  7504. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7505. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7506. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7507. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7508. ggml_float sum = 0.0;
  7509. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7510. sum += (ggml_float)(x[i00] * x[i00]);
  7511. }
  7512. const float mean = sum/ne00;
  7513. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7514. memcpy(y, x, ne00 * sizeof(float));
  7515. // for (int i00 = 0; i00 < ne00; i00++) {
  7516. // y[i00] = x[i00];
  7517. // }
  7518. const float scale = 1.0f/sqrtf(mean + eps);
  7519. ggml_vec_scale_f32(ne00, y, scale);
  7520. }
  7521. }
  7522. }
  7523. }
  7524. static void ggml_compute_forward_rms_norm(
  7525. const struct ggml_compute_params * params,
  7526. const struct ggml_tensor * src0,
  7527. struct ggml_tensor * dst) {
  7528. switch (src0->type) {
  7529. case GGML_TYPE_F32:
  7530. {
  7531. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7532. } break;
  7533. default:
  7534. {
  7535. GGML_ASSERT(false);
  7536. } break;
  7537. }
  7538. }
  7539. static void ggml_compute_forward_rms_norm_back_f32(
  7540. const struct ggml_compute_params * params,
  7541. const struct ggml_tensor * src0,
  7542. const struct ggml_tensor * src1,
  7543. struct ggml_tensor * dst) {
  7544. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7545. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7546. return;
  7547. }
  7548. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7549. const int ith = params->ith;
  7550. const int nth = params->nth;
  7551. const int64_t ne00 = src0->ne[0];
  7552. const int64_t ne01 = src0->ne[1];
  7553. const int64_t ne02 = src0->ne[2];
  7554. const int64_t ne03 = src0->ne[3];
  7555. const size_t nb01 = src0->nb[1];
  7556. const size_t nb02 = src0->nb[2];
  7557. const size_t nb03 = src0->nb[3];
  7558. const size_t nb11 = src1->nb[1];
  7559. const size_t nb12 = src1->nb[2];
  7560. const size_t nb13 = src1->nb[3];
  7561. const size_t nb1 = dst->nb[1];
  7562. const size_t nb2 = dst->nb[2];
  7563. const size_t nb3 = dst->nb[3];
  7564. const float eps = 1e-6f; // TODO: make this a parameter
  7565. // TODO: optimize
  7566. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7567. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7568. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7569. // src1 is same shape as src0 => same indices
  7570. const int64_t i11 = i01;
  7571. const int64_t i12 = i02;
  7572. const int64_t i13 = i03;
  7573. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7574. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7575. ggml_float sum_xx = 0.0;
  7576. ggml_float sum_xdz = 0.0;
  7577. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7578. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7579. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7580. }
  7581. //const float mean = (float)(sum_xx)/ne00;
  7582. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7583. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7584. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7585. // we could cache rms from forward pass to improve performance.
  7586. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7587. //const float rms = sqrtf(mean_eps);
  7588. const float rrms = 1.0f / sqrtf(mean_eps);
  7589. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7590. {
  7591. // z = rms_norm(x)
  7592. //
  7593. // rms_norm(src0) =
  7594. // scale(
  7595. // src0,
  7596. // div(
  7597. // 1,
  7598. // sqrt(
  7599. // add(
  7600. // scale(
  7601. // sum(
  7602. // sqr(
  7603. // src0)),
  7604. // (1.0/N)),
  7605. // eps))));
  7606. // postorder:
  7607. // ## op args grad
  7608. // 00 param src0 grad[#00]
  7609. // 01 const 1
  7610. // 02 sqr (#00) grad[#02]
  7611. // 03 sum (#02) grad[#03]
  7612. // 04 const 1/N
  7613. // 05 scale (#03, #04) grad[#05]
  7614. // 06 const eps
  7615. // 07 add (#05, #06) grad[#07]
  7616. // 08 sqrt (#07) grad[#08]
  7617. // 09 div (#01,#08) grad[#09]
  7618. // 10 scale (#00,#09) grad[#10]
  7619. //
  7620. // backward pass, given grad[#10]
  7621. // #10: scale
  7622. // grad[#00] += scale(grad[#10],#09)
  7623. // grad[#09] += sum(mul(grad[#10],#00))
  7624. // #09: div
  7625. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7626. // #08: sqrt
  7627. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7628. // #07: add
  7629. // grad[#05] += grad[#07]
  7630. // #05: scale
  7631. // grad[#03] += scale(grad[#05],#04)
  7632. // #03: sum
  7633. // grad[#02] += repeat(grad[#03], #02)
  7634. // #02:
  7635. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7636. //
  7637. // substitute and simplify:
  7638. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7639. // grad[#02] = repeat(grad[#03], #02)
  7640. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7641. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7642. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7643. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7644. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7645. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7646. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7647. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7648. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7649. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7650. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7651. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7652. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7653. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7654. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7655. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7656. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7657. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7658. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7659. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7660. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7661. // a = b*c + d*e
  7662. // a = b*c*f/f + d*e*f/f
  7663. // a = (b*c*f + d*e*f)*(1/f)
  7664. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  7665. // a = (b + d*e/c)*c
  7666. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  7667. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  7668. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  7669. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  7670. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  7671. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  7672. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  7673. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  7674. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7675. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7676. }
  7677. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7678. // post-order:
  7679. // dx := x
  7680. // dx := scale(dx,-mean_xdz/mean_eps)
  7681. // dx := add(dx, dz)
  7682. // dx := scale(dx, rrms)
  7683. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7684. ggml_vec_cpy_f32 (ne00, dx, x);
  7685. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  7686. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  7687. ggml_vec_acc_f32 (ne00, dx, dz);
  7688. ggml_vec_scale_f32(ne00, dx, rrms);
  7689. }
  7690. }
  7691. }
  7692. }
  7693. static void ggml_compute_forward_rms_norm_back(
  7694. const struct ggml_compute_params * params,
  7695. const struct ggml_tensor * src0,
  7696. const struct ggml_tensor * src1,
  7697. struct ggml_tensor * dst) {
  7698. switch (src0->type) {
  7699. case GGML_TYPE_F32:
  7700. {
  7701. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  7702. } break;
  7703. default:
  7704. {
  7705. GGML_ASSERT(false);
  7706. } break;
  7707. }
  7708. }
  7709. // ggml_compute_forward_mul_mat
  7710. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7711. // helper function to determine if it is better to use BLAS or not
  7712. // for large matrices, BLAS is faster
  7713. static bool ggml_compute_forward_mul_mat_use_blas(
  7714. const struct ggml_tensor * src0,
  7715. const struct ggml_tensor * src1,
  7716. struct ggml_tensor * dst) {
  7717. //const int64_t ne00 = src0->ne[0];
  7718. //const int64_t ne01 = src0->ne[1];
  7719. const int64_t ne10 = src1->ne[0];
  7720. const int64_t ne0 = dst->ne[0];
  7721. const int64_t ne1 = dst->ne[1];
  7722. // TODO: find the optimal values for these
  7723. if (ggml_is_contiguous(src0) &&
  7724. ggml_is_contiguous(src1) &&
  7725. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  7726. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  7727. return true;
  7728. }
  7729. return false;
  7730. }
  7731. #endif
  7732. static void ggml_compute_forward_mul_mat_f32(
  7733. const struct ggml_compute_params * params,
  7734. const struct ggml_tensor * src0,
  7735. const struct ggml_tensor * src1,
  7736. struct ggml_tensor * dst) {
  7737. int64_t t0 = ggml_perf_time_us();
  7738. UNUSED(t0);
  7739. const int64_t ne00 = src0->ne[0];
  7740. const int64_t ne01 = src0->ne[1];
  7741. const int64_t ne02 = src0->ne[2];
  7742. const int64_t ne03 = src0->ne[3];
  7743. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7744. const int64_t ne10 = src1->ne[0];
  7745. #endif
  7746. const int64_t ne11 = src1->ne[1];
  7747. #ifndef NDEBUG
  7748. const int64_t ne12 = src1->ne[2];
  7749. const int64_t ne13 = src1->ne[3];
  7750. const int64_t ne0 = dst->ne[0];
  7751. const int64_t ne1 = dst->ne[1];
  7752. const int64_t ne2 = dst->ne[2];
  7753. const int64_t ne3 = dst->ne[3];
  7754. const int nb00 = src0->nb[0];
  7755. #endif
  7756. const int nb01 = src0->nb[1];
  7757. const int nb02 = src0->nb[2];
  7758. const int nb03 = src0->nb[3];
  7759. #ifndef NDEBUG
  7760. const int nb10 = src1->nb[0];
  7761. #endif
  7762. const int nb11 = src1->nb[1];
  7763. const int nb12 = src1->nb[2];
  7764. const int nb13 = src1->nb[3];
  7765. const int nb0 = dst->nb[0];
  7766. const int nb1 = dst->nb[1];
  7767. const int nb2 = dst->nb[2];
  7768. const int nb3 = dst->nb[3];
  7769. const int ith = params->ith;
  7770. const int nth = params->nth;
  7771. assert(ne02 == ne12);
  7772. assert(ne03 == ne13);
  7773. assert(ne2 == ne12);
  7774. assert(ne3 == ne13);
  7775. // we don't support permuted src0 or src1
  7776. assert(nb00 == sizeof(float));
  7777. assert(nb10 == sizeof(float));
  7778. // dst cannot be transposed or permuted
  7779. assert(nb0 == sizeof(float));
  7780. assert(nb0 <= nb1);
  7781. assert(nb1 <= nb2);
  7782. assert(nb2 <= nb3);
  7783. assert(ne0 == ne01);
  7784. assert(ne1 == ne11);
  7785. assert(ne2 == ne02);
  7786. assert(ne3 == ne03);
  7787. // nb01 >= nb00 - src0 is not transposed
  7788. // compute by src0 rows
  7789. #if defined(GGML_USE_CUBLAS)
  7790. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  7791. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7792. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7793. }
  7794. return;
  7795. }
  7796. #elif defined(GGML_USE_CLBLAST)
  7797. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  7798. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7799. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7800. }
  7801. return;
  7802. }
  7803. #endif
  7804. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7805. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7806. if (params->ith != 0) {
  7807. return;
  7808. }
  7809. if (params->type == GGML_TASK_INIT) {
  7810. return;
  7811. }
  7812. if (params->type == GGML_TASK_FINALIZE) {
  7813. return;
  7814. }
  7815. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7816. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7817. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  7818. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7819. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7820. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7821. ne11, ne01, ne10,
  7822. 1.0f, y, ne10,
  7823. x, ne00,
  7824. 0.0f, d, ne01);
  7825. }
  7826. }
  7827. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7828. return;
  7829. }
  7830. #endif
  7831. if (params->type == GGML_TASK_INIT) {
  7832. return;
  7833. }
  7834. if (params->type == GGML_TASK_FINALIZE) {
  7835. return;
  7836. }
  7837. // parallelize by src0 rows using ggml_vec_dot_f32
  7838. // total rows in src0
  7839. const int nr = ne01*ne02*ne03;
  7840. // rows per thread
  7841. const int dr = (nr + nth - 1)/nth;
  7842. // row range for this thread
  7843. const int ir0 = dr*ith;
  7844. const int ir1 = MIN(ir0 + dr, nr);
  7845. for (int ir = ir0; ir < ir1; ++ir) {
  7846. // src0 indices
  7847. const int i03 = ir/(ne02*ne01);
  7848. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7849. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7850. for (int64_t ic = 0; ic < ne11; ++ic) {
  7851. // src1 indices
  7852. const int i13 = i03;
  7853. const int i12 = i02;
  7854. const int i11 = ic;
  7855. // dst indices
  7856. const int i0 = i01;
  7857. const int i1 = i11;
  7858. const int i2 = i02;
  7859. const int i3 = i03;
  7860. ggml_vec_dot_f32(ne00,
  7861. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7862. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  7863. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  7864. }
  7865. }
  7866. //int64_t t1 = ggml_perf_time_us();
  7867. //static int64_t acc = 0;
  7868. //acc += t1 - t0;
  7869. //if (t1 - t0 > 10) {
  7870. // printf("\n");
  7871. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7872. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7873. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7874. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  7875. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7876. //}
  7877. }
  7878. static void ggml_compute_forward_mul_mat_f16_f32(
  7879. const struct ggml_compute_params * params,
  7880. const struct ggml_tensor * src0,
  7881. const struct ggml_tensor * src1,
  7882. struct ggml_tensor * dst) {
  7883. int64_t t0 = ggml_perf_time_us();
  7884. UNUSED(t0);
  7885. const int64_t ne00 = src0->ne[0];
  7886. const int64_t ne01 = src0->ne[1];
  7887. const int64_t ne02 = src0->ne[2];
  7888. const int64_t ne03 = src0->ne[3];
  7889. const int64_t ne10 = src1->ne[0];
  7890. const int64_t ne11 = src1->ne[1];
  7891. const int64_t ne12 = src1->ne[2];
  7892. const int64_t ne13 = src1->ne[3];
  7893. const int64_t ne0 = dst->ne[0];
  7894. const int64_t ne1 = dst->ne[1];
  7895. const int64_t ne2 = dst->ne[2];
  7896. const int64_t ne3 = dst->ne[3];
  7897. //const int64_t ne = ne0*ne1*ne2*ne3;
  7898. const int nb00 = src0->nb[0];
  7899. const int nb01 = src0->nb[1];
  7900. const int nb02 = src0->nb[2];
  7901. const int nb03 = src0->nb[3];
  7902. const int nb10 = src1->nb[0];
  7903. const int nb11 = src1->nb[1];
  7904. const int nb12 = src1->nb[2];
  7905. const int nb13 = src1->nb[3];
  7906. const int nb0 = dst->nb[0];
  7907. const int nb1 = dst->nb[1];
  7908. const int nb2 = dst->nb[2];
  7909. const int nb3 = dst->nb[3];
  7910. const int ith = params->ith;
  7911. const int nth = params->nth;
  7912. GGML_ASSERT(ne02 == ne12);
  7913. GGML_ASSERT(ne03 == ne13);
  7914. GGML_ASSERT(ne2 == ne12);
  7915. GGML_ASSERT(ne3 == ne13);
  7916. // TODO: we don't support permuted src0
  7917. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7918. // dst cannot be transposed or permuted
  7919. GGML_ASSERT(nb0 == sizeof(float));
  7920. GGML_ASSERT(nb0 <= nb1);
  7921. GGML_ASSERT(nb1 <= nb2);
  7922. GGML_ASSERT(nb2 <= nb3);
  7923. GGML_ASSERT(ne0 == ne01);
  7924. GGML_ASSERT(ne1 == ne11);
  7925. GGML_ASSERT(ne2 == ne02);
  7926. GGML_ASSERT(ne3 == ne03);
  7927. // nb01 >= nb00 - src0 is not transposed
  7928. // compute by src0 rows
  7929. #if defined(GGML_USE_CUBLAS)
  7930. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  7931. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7932. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7933. }
  7934. return;
  7935. }
  7936. #elif defined(GGML_USE_CLBLAST)
  7937. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  7938. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7939. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7940. }
  7941. return;
  7942. }
  7943. #endif
  7944. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7945. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7946. GGML_ASSERT(nb10 == sizeof(float));
  7947. if (params->ith != 0) {
  7948. return;
  7949. }
  7950. if (params->type == GGML_TASK_INIT) {
  7951. return;
  7952. }
  7953. if (params->type == GGML_TASK_FINALIZE) {
  7954. return;
  7955. }
  7956. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7957. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7958. float * const wdata = params->wdata;
  7959. {
  7960. size_t id = 0;
  7961. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  7962. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  7963. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  7964. }
  7965. }
  7966. assert(id*sizeof(float) <= params->wsize);
  7967. }
  7968. const float * x = wdata;
  7969. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7970. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7971. // zT = y * xT
  7972. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7973. ne11, ne01, ne10,
  7974. 1.0f, y, ne10,
  7975. x, ne00,
  7976. 0.0f, d, ne01);
  7977. }
  7978. }
  7979. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  7980. return;
  7981. }
  7982. #endif
  7983. if (params->type == GGML_TASK_INIT) {
  7984. ggml_fp16_t * const wdata = params->wdata;
  7985. size_t id = 0;
  7986. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7987. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7988. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7989. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  7990. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  7991. }
  7992. }
  7993. }
  7994. }
  7995. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  7996. return;
  7997. }
  7998. if (params->type == GGML_TASK_FINALIZE) {
  7999. return;
  8000. }
  8001. // fp16 -> half the size, so divide by 2
  8002. // TODO: do not support transposed src1
  8003. assert(nb10/2 == sizeof(ggml_fp16_t));
  8004. // parallelize by src0 rows using ggml_vec_dot_f16
  8005. // total rows in src0
  8006. const int nr = ne01*ne02*ne03;
  8007. // rows per thread
  8008. const int dr = (nr + nth - 1)/nth;
  8009. // row range for this thread
  8010. const int ir0 = dr*ith;
  8011. const int ir1 = MIN(ir0 + dr, nr);
  8012. ggml_fp16_t * wdata = params->wdata;
  8013. for (int ir = ir0; ir < ir1; ++ir) {
  8014. // src0 indices
  8015. const int i03 = ir/(ne02*ne01);
  8016. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8017. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8018. const int i13 = i03;
  8019. const int i12 = i02;
  8020. const int i0 = i01;
  8021. const int i2 = i02;
  8022. const int i3 = i03;
  8023. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8024. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  8025. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8026. for (int64_t ic = 0; ic < ne11; ++ic) {
  8027. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  8028. }
  8029. }
  8030. //int64_t t1 = ggml_time_us();
  8031. //static int64_t acc = 0;
  8032. //acc += t1 - t0;
  8033. //if (t1 - t0 > 10) {
  8034. // printf("\n");
  8035. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8036. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8037. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8038. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8039. //}
  8040. }
  8041. static void ggml_compute_forward_mul_mat_q_f32(
  8042. const struct ggml_compute_params * params,
  8043. const struct ggml_tensor * src0,
  8044. const struct ggml_tensor * src1,
  8045. struct ggml_tensor * dst) {
  8046. int64_t t0 = ggml_perf_time_us();
  8047. UNUSED(t0);
  8048. const int64_t ne00 = src0->ne[0];
  8049. const int64_t ne01 = src0->ne[1];
  8050. const int64_t ne02 = src0->ne[2];
  8051. const int64_t ne03 = src0->ne[3];
  8052. const int64_t ne10 = src1->ne[0];
  8053. const int64_t ne11 = src1->ne[1];
  8054. const int64_t ne12 = src1->ne[2];
  8055. const int64_t ne13 = src1->ne[3];
  8056. const int64_t ne0 = dst->ne[0];
  8057. const int64_t ne1 = dst->ne[1];
  8058. const int64_t ne2 = dst->ne[2];
  8059. const int64_t ne3 = dst->ne[3];
  8060. const int nb00 = src0->nb[0];
  8061. const int nb01 = src0->nb[1];
  8062. const int nb02 = src0->nb[2];
  8063. const int nb03 = src0->nb[3];
  8064. const int nb10 = src1->nb[0];
  8065. const int nb11 = src1->nb[1];
  8066. const int nb12 = src1->nb[2];
  8067. const int nb13 = src1->nb[3];
  8068. const int nb0 = dst->nb[0];
  8069. const int nb1 = dst->nb[1];
  8070. const int nb2 = dst->nb[2];
  8071. const int nb3 = dst->nb[3];
  8072. const int ith = params->ith;
  8073. const int nth = params->nth;
  8074. GGML_ASSERT(ne02 == ne12);
  8075. GGML_ASSERT(ne03 == ne13);
  8076. GGML_ASSERT(ne2 == ne12);
  8077. GGML_ASSERT(ne3 == ne13);
  8078. const enum ggml_type type = src0->type;
  8079. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  8080. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  8081. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  8082. // we don't support permuted src0 or src1
  8083. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  8084. GGML_ASSERT(nb10 == sizeof(float));
  8085. // dst cannot be transposed or permuted
  8086. GGML_ASSERT(nb0 == sizeof(float));
  8087. GGML_ASSERT(nb0 <= nb1);
  8088. GGML_ASSERT(nb1 <= nb2);
  8089. GGML_ASSERT(nb2 <= nb3);
  8090. GGML_ASSERT(ne0 == ne01);
  8091. GGML_ASSERT(ne1 == ne11);
  8092. GGML_ASSERT(ne2 == ne02);
  8093. GGML_ASSERT(ne3 == ne03);
  8094. // nb01 >= nb00 - src0 is not transposed
  8095. // compute by src0 rows
  8096. #if defined(GGML_USE_CUBLAS)
  8097. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  8098. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8099. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8100. }
  8101. return;
  8102. }
  8103. #elif defined(GGML_USE_CLBLAST)
  8104. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8105. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8106. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8107. }
  8108. return;
  8109. }
  8110. #endif
  8111. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8112. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8113. if (params->ith != 0) {
  8114. return;
  8115. }
  8116. if (params->type == GGML_TASK_INIT) {
  8117. return;
  8118. }
  8119. if (params->type == GGML_TASK_FINALIZE) {
  8120. return;
  8121. }
  8122. float * const wdata = params->wdata;
  8123. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8124. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8125. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8126. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8127. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8128. {
  8129. size_t id = 0;
  8130. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8131. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  8132. id += ne00;
  8133. }
  8134. assert(id*sizeof(float) <= params->wsize);
  8135. }
  8136. const float * x = wdata;
  8137. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8138. ne11, ne01, ne10,
  8139. 1.0f, y, ne10,
  8140. x, ne00,
  8141. 0.0f, d, ne01);
  8142. }
  8143. }
  8144. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8145. return;
  8146. }
  8147. #endif
  8148. if (params->type == GGML_TASK_INIT) {
  8149. char * wdata = params->wdata;
  8150. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8151. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8152. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8153. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8154. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8155. wdata += row_size;
  8156. }
  8157. }
  8158. }
  8159. return;
  8160. }
  8161. if (params->type == GGML_TASK_FINALIZE) {
  8162. return;
  8163. }
  8164. // parallelize by src0 rows using ggml_vec_dot_q
  8165. // total rows in src0
  8166. const int nr = ne01*ne02*ne03;
  8167. // rows per thread
  8168. const int dr = (nr + nth - 1)/nth;
  8169. // row range for this thread
  8170. const int ir0 = dr*ith;
  8171. const int ir1 = MIN(ir0 + dr, nr);
  8172. void * wdata = params->wdata;
  8173. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8174. for (int ir = ir0; ir < ir1; ++ir) {
  8175. // src0 indices
  8176. const int i03 = ir/(ne02*ne01);
  8177. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8178. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8179. const int i13 = i03;
  8180. const int i12 = i02;
  8181. const int i0 = i01;
  8182. const int i2 = i02;
  8183. const int i3 = i03;
  8184. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8185. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  8186. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8187. assert(ne00 % 32 == 0);
  8188. for (int64_t ic = 0; ic < ne11; ++ic) {
  8189. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  8190. }
  8191. }
  8192. //int64_t t1 = ggml_time_us();
  8193. //static int64_t acc = 0;
  8194. //acc += t1 - t0;
  8195. //if (t1 - t0 > 10) {
  8196. // printf("\n");
  8197. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8198. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8199. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8200. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8201. //}
  8202. }
  8203. static void ggml_compute_forward_mul_mat(
  8204. const struct ggml_compute_params * params,
  8205. const struct ggml_tensor * src0,
  8206. const struct ggml_tensor * src1,
  8207. struct ggml_tensor * dst) {
  8208. switch (src0->type) {
  8209. case GGML_TYPE_Q4_0:
  8210. case GGML_TYPE_Q4_1:
  8211. case GGML_TYPE_Q5_0:
  8212. case GGML_TYPE_Q5_1:
  8213. case GGML_TYPE_Q8_0:
  8214. case GGML_TYPE_Q8_1:
  8215. {
  8216. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  8217. } break;
  8218. case GGML_TYPE_F16:
  8219. {
  8220. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  8221. } break;
  8222. case GGML_TYPE_F32:
  8223. {
  8224. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  8225. } break;
  8226. default:
  8227. {
  8228. GGML_ASSERT(false);
  8229. } break;
  8230. }
  8231. }
  8232. // ggml_compute_forward_scale
  8233. static void ggml_compute_forward_scale_f32(
  8234. const struct ggml_compute_params * params,
  8235. const struct ggml_tensor * src0,
  8236. const struct ggml_tensor * src1,
  8237. struct ggml_tensor * dst) {
  8238. GGML_ASSERT(ggml_is_contiguous(src0));
  8239. GGML_ASSERT(ggml_is_contiguous(dst));
  8240. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8241. GGML_ASSERT(ggml_is_scalar(src1));
  8242. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8243. return;
  8244. }
  8245. // scale factor
  8246. const float v = *(float *) src1->data;
  8247. const int ith = params->ith;
  8248. const int nth = params->nth;
  8249. const int nc = src0->ne[0];
  8250. const int nr = ggml_nrows(src0);
  8251. // rows per thread
  8252. const int dr = (nr + nth - 1)/nth;
  8253. // row range for this thread
  8254. const int ir0 = dr*ith;
  8255. const int ir1 = MIN(ir0 + dr, nr);
  8256. const size_t nb01 = src0->nb[1];
  8257. const size_t nb1 = dst->nb[1];
  8258. for (int i1 = ir0; i1 < ir1; i1++) {
  8259. if (dst->data != src0->data) {
  8260. // src0 is same shape as dst => same indices
  8261. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8262. }
  8263. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8264. }
  8265. }
  8266. static void ggml_compute_forward_scale(
  8267. const struct ggml_compute_params * params,
  8268. const struct ggml_tensor * src0,
  8269. const struct ggml_tensor * src1,
  8270. struct ggml_tensor * dst) {
  8271. switch (src0->type) {
  8272. case GGML_TYPE_F32:
  8273. {
  8274. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8275. } break;
  8276. default:
  8277. {
  8278. GGML_ASSERT(false);
  8279. } break;
  8280. }
  8281. }
  8282. // ggml_compute_forward_set
  8283. static void ggml_compute_forward_set_f32(
  8284. const struct ggml_compute_params * params,
  8285. const struct ggml_tensor * src0,
  8286. const struct ggml_tensor * src1,
  8287. const struct ggml_tensor * opt0,
  8288. struct ggml_tensor * dst) {
  8289. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8290. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8291. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  8292. GGML_ASSERT(ggml_nelements(opt0) == 5);
  8293. // view src0 and dst with these strides and data offset inbytes during set
  8294. // nb0 is implicitely element_size because src0 and dst are contiguous
  8295. size_t nb1 = ((int32_t *) opt0->data)[0];
  8296. size_t nb2 = ((int32_t *) opt0->data)[1];
  8297. size_t nb3 = ((int32_t *) opt0->data)[2];
  8298. size_t offset = ((int32_t *) opt0->data)[3];
  8299. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  8300. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8301. // memcpy needs to be synchronized across threads to avoid race conditions.
  8302. // => do it in INIT phase
  8303. memcpy(
  8304. ((char *) dst->data),
  8305. ((char *) src0->data),
  8306. ggml_nbytes(dst));
  8307. }
  8308. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8309. return;
  8310. }
  8311. const int ith = params->ith;
  8312. const int nth = params->nth;
  8313. const int nr = ggml_nrows(src1);
  8314. const int nc = src1->ne[0];
  8315. const int64_t ne10 = src1->ne[0];
  8316. const int64_t ne11 = src1->ne[1];
  8317. const int64_t ne12 = src1->ne[2];
  8318. const int64_t ne13 = src1->ne[3];
  8319. const size_t nb10 = src1->nb[0];
  8320. const size_t nb11 = src1->nb[1];
  8321. const size_t nb12 = src1->nb[2];
  8322. const size_t nb13 = src1->nb[3];
  8323. // src0 and dst as viewed during set
  8324. const size_t nb0 = ggml_element_size(src0);
  8325. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8326. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8327. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8328. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8329. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 < ggml_nbytes(dst));
  8330. GGML_ASSERT(nb10 == sizeof(float));
  8331. // rows per thread
  8332. const int dr = (nr + nth - 1)/nth;
  8333. // row range for this thread
  8334. const int ir0 = dr*ith;
  8335. const int ir1 = MIN(ir0 + dr, nr);
  8336. for (int ir = ir0; ir < ir1; ++ir) {
  8337. // src0 and dst are viewed with shape of src1 and offset
  8338. // => same indices
  8339. const int i3 = ir/(ne12*ne11);
  8340. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8341. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8342. ggml_vec_cpy_f32(nc,
  8343. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8344. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8345. }
  8346. }
  8347. static void ggml_compute_forward_set(
  8348. const struct ggml_compute_params * params,
  8349. const struct ggml_tensor * src0,
  8350. const struct ggml_tensor * src1,
  8351. const struct ggml_tensor * opt0,
  8352. struct ggml_tensor * dst) {
  8353. switch (src0->type) {
  8354. case GGML_TYPE_F32:
  8355. {
  8356. ggml_compute_forward_set_f32(params, src0, src1, opt0, dst);
  8357. } break;
  8358. case GGML_TYPE_F16:
  8359. case GGML_TYPE_Q4_0:
  8360. case GGML_TYPE_Q4_1:
  8361. case GGML_TYPE_Q5_0:
  8362. case GGML_TYPE_Q5_1:
  8363. case GGML_TYPE_Q8_0:
  8364. case GGML_TYPE_Q8_1:
  8365. default:
  8366. {
  8367. GGML_ASSERT(false);
  8368. } break;
  8369. }
  8370. }
  8371. // ggml_compute_forward_cpy
  8372. static void ggml_compute_forward_cpy(
  8373. const struct ggml_compute_params * params,
  8374. const struct ggml_tensor * src0,
  8375. struct ggml_tensor * dst) {
  8376. ggml_compute_forward_dup(params, src0, dst);
  8377. }
  8378. // ggml_compute_forward_cont
  8379. static void ggml_compute_forward_cont(
  8380. const struct ggml_compute_params * params,
  8381. const struct ggml_tensor * src0,
  8382. struct ggml_tensor * dst) {
  8383. ggml_compute_forward_dup(params, src0, dst);
  8384. }
  8385. // ggml_compute_forward_reshape
  8386. static void ggml_compute_forward_reshape(
  8387. const struct ggml_compute_params * params,
  8388. const struct ggml_tensor * src0,
  8389. struct ggml_tensor * dst) {
  8390. // NOP
  8391. UNUSED(params);
  8392. UNUSED(src0);
  8393. UNUSED(dst);
  8394. }
  8395. // ggml_compute_forward_view
  8396. static void ggml_compute_forward_view(
  8397. const struct ggml_compute_params * params,
  8398. const struct ggml_tensor * src0) {
  8399. // NOP
  8400. UNUSED(params);
  8401. UNUSED(src0);
  8402. }
  8403. // ggml_compute_forward_permute
  8404. static void ggml_compute_forward_permute(
  8405. const struct ggml_compute_params * params,
  8406. const struct ggml_tensor * src0) {
  8407. // NOP
  8408. UNUSED(params);
  8409. UNUSED(src0);
  8410. }
  8411. // ggml_compute_forward_transpose
  8412. static void ggml_compute_forward_transpose(
  8413. const struct ggml_compute_params * params,
  8414. const struct ggml_tensor * src0) {
  8415. // NOP
  8416. UNUSED(params);
  8417. UNUSED(src0);
  8418. }
  8419. // ggml_compute_forward_get_rows
  8420. static void ggml_compute_forward_get_rows_q(
  8421. const struct ggml_compute_params * params,
  8422. const struct ggml_tensor * src0,
  8423. const struct ggml_tensor * src1,
  8424. struct ggml_tensor * dst) {
  8425. assert(params->ith == 0);
  8426. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8427. return;
  8428. }
  8429. const int nc = src0->ne[0];
  8430. const int nr = ggml_nelements(src1);
  8431. const enum ggml_type type = src0->type;
  8432. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8433. assert( dst->ne[0] == nc);
  8434. assert( dst->ne[1] == nr);
  8435. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  8436. for (int i = 0; i < nr; ++i) {
  8437. const int r = ((int32_t *) src1->data)[i];
  8438. dequantize_row_q(
  8439. (const void *) ((char *) src0->data + r*src0->nb[1]),
  8440. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  8441. }
  8442. }
  8443. static void ggml_compute_forward_get_rows_f16(
  8444. const struct ggml_compute_params * params,
  8445. const struct ggml_tensor * src0,
  8446. const struct ggml_tensor * src1,
  8447. struct ggml_tensor * dst) {
  8448. assert(params->ith == 0);
  8449. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8450. return;
  8451. }
  8452. const int nc = src0->ne[0];
  8453. const int nr = ggml_nelements(src1);
  8454. assert( dst->ne[0] == nc);
  8455. assert( dst->ne[1] == nr);
  8456. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8457. for (int i = 0; i < nr; ++i) {
  8458. const int r = ((int32_t *) src1->data)[i];
  8459. for (int j = 0; j < nc; ++j) {
  8460. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  8461. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  8462. }
  8463. }
  8464. }
  8465. static void ggml_compute_forward_get_rows_f32(
  8466. const struct ggml_compute_params * params,
  8467. const struct ggml_tensor * src0,
  8468. const struct ggml_tensor * src1,
  8469. struct ggml_tensor * dst) {
  8470. assert(params->ith == 0);
  8471. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8472. return;
  8473. }
  8474. const int nc = src0->ne[0];
  8475. const int nr = ggml_nelements(src1);
  8476. assert( dst->ne[0] == nc);
  8477. assert( dst->ne[1] == nr);
  8478. assert(src0->nb[0] == sizeof(float));
  8479. for (int i = 0; i < nr; ++i) {
  8480. const int r = ((int32_t *) src1->data)[i];
  8481. ggml_vec_cpy_f32(nc,
  8482. (float *) ((char *) dst->data + i*dst->nb[1]),
  8483. (float *) ((char *) src0->data + r*src0->nb[1]));
  8484. }
  8485. }
  8486. static void ggml_compute_forward_get_rows(
  8487. const struct ggml_compute_params * params,
  8488. const struct ggml_tensor * src0,
  8489. const struct ggml_tensor * src1,
  8490. struct ggml_tensor * dst) {
  8491. switch (src0->type) {
  8492. case GGML_TYPE_Q4_0:
  8493. case GGML_TYPE_Q4_1:
  8494. case GGML_TYPE_Q5_0:
  8495. case GGML_TYPE_Q5_1:
  8496. case GGML_TYPE_Q8_0:
  8497. case GGML_TYPE_Q8_1:
  8498. {
  8499. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8500. } break;
  8501. case GGML_TYPE_F16:
  8502. {
  8503. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8504. } break;
  8505. case GGML_TYPE_F32:
  8506. {
  8507. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8508. } break;
  8509. default:
  8510. {
  8511. GGML_ASSERT(false);
  8512. } break;
  8513. }
  8514. //static bool first = true;
  8515. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8516. //if (first) {
  8517. // first = false;
  8518. //} else {
  8519. // for (int k = 0; k < dst->ne[1]; ++k) {
  8520. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8521. // for (int i = 0; i < 16; ++i) {
  8522. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8523. // }
  8524. // printf("\n");
  8525. // }
  8526. // printf("\n");
  8527. // }
  8528. // printf("\n");
  8529. // exit(0);
  8530. //}
  8531. }
  8532. // ggml_compute_forward_get_rows_back
  8533. static void ggml_compute_forward_get_rows_back_f32_f16(
  8534. const struct ggml_compute_params * params,
  8535. const struct ggml_tensor * src0,
  8536. const struct ggml_tensor * src1,
  8537. const struct ggml_tensor * opt0,
  8538. struct ggml_tensor * dst) {
  8539. GGML_ASSERT(params->ith == 0);
  8540. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  8541. GGML_ASSERT(ggml_is_contiguous(opt0));
  8542. GGML_ASSERT(ggml_is_contiguous(dst));
  8543. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8544. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8545. return;
  8546. }
  8547. const int nc = src0->ne[0];
  8548. const int nr = ggml_nelements(src1);
  8549. GGML_ASSERT( dst->ne[0] == nc);
  8550. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  8551. for (int i = 0; i < nr; ++i) {
  8552. const int r = ((int32_t *) src1->data)[i];
  8553. for (int j = 0; j < nc; ++j) {
  8554. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  8555. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  8556. }
  8557. }
  8558. }
  8559. static void ggml_compute_forward_get_rows_back_f32(
  8560. const struct ggml_compute_params * params,
  8561. const struct ggml_tensor * src0,
  8562. const struct ggml_tensor * src1,
  8563. const struct ggml_tensor * opt0,
  8564. struct ggml_tensor * dst) {
  8565. GGML_ASSERT(params->ith == 0);
  8566. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  8567. GGML_ASSERT(ggml_is_contiguous(opt0));
  8568. GGML_ASSERT(ggml_is_contiguous(dst));
  8569. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8570. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8571. return;
  8572. }
  8573. const int nc = src0->ne[0];
  8574. const int nr = ggml_nelements(src1);
  8575. GGML_ASSERT( dst->ne[0] == nc);
  8576. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8577. for (int i = 0; i < nr; ++i) {
  8578. const int r = ((int32_t *) src1->data)[i];
  8579. ggml_vec_add_f32(nc,
  8580. (float *) ((char *) dst->data + r*dst->nb[1]),
  8581. (float *) ((char *) dst->data + r*dst->nb[1]),
  8582. (float *) ((char *) src0->data + i*src0->nb[1]));
  8583. }
  8584. }
  8585. static void ggml_compute_forward_get_rows_back(
  8586. const struct ggml_compute_params * params,
  8587. const struct ggml_tensor * src0,
  8588. const struct ggml_tensor * src1,
  8589. const struct ggml_tensor * opt0,
  8590. struct ggml_tensor * dst) {
  8591. switch (src0->type) {
  8592. case GGML_TYPE_F16:
  8593. {
  8594. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  8595. } break;
  8596. case GGML_TYPE_F32:
  8597. {
  8598. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  8599. } break;
  8600. default:
  8601. {
  8602. GGML_ASSERT(false);
  8603. } break;
  8604. }
  8605. //static bool first = true;
  8606. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8607. //if (first) {
  8608. // first = false;
  8609. //} else {
  8610. // for (int k = 0; k < dst->ne[1]; ++k) {
  8611. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8612. // for (int i = 0; i < 16; ++i) {
  8613. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8614. // }
  8615. // printf("\n");
  8616. // }
  8617. // printf("\n");
  8618. // }
  8619. // printf("\n");
  8620. // exit(0);
  8621. //}
  8622. }
  8623. // ggml_compute_forward_diag
  8624. static void ggml_compute_forward_diag_f32(
  8625. const struct ggml_compute_params * params,
  8626. const struct ggml_tensor * src0,
  8627. struct ggml_tensor * dst) {
  8628. GGML_ASSERT(params->ith == 0);
  8629. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8630. return;
  8631. }
  8632. // TODO: handle transposed/permuted matrices
  8633. const int ne00 = src0->ne[0];
  8634. const int ne01 = src0->ne[1];
  8635. const int ne02 = src0->ne[2];
  8636. const int ne03 = src0->ne[3];
  8637. const int ne0 = dst->ne[0];
  8638. const int ne1 = dst->ne[1];
  8639. const int ne2 = dst->ne[2];
  8640. const int ne3 = dst->ne[3];
  8641. GGML_ASSERT(ne00 == ne0);
  8642. GGML_ASSERT(ne00 == ne1);
  8643. GGML_ASSERT(ne01 == 1);
  8644. GGML_ASSERT(ne02 == ne2);
  8645. GGML_ASSERT(ne03 == ne3);
  8646. const int nb00 = src0->nb[0];
  8647. //const int nb01 = src0->nb[1];
  8648. const int nb02 = src0->nb[2];
  8649. const int nb03 = src0->nb[3];
  8650. const int nb0 = dst->nb[0];
  8651. const int nb1 = dst->nb[1];
  8652. const int nb2 = dst->nb[2];
  8653. const int nb3 = dst->nb[3];
  8654. GGML_ASSERT(nb00 == sizeof(float));
  8655. GGML_ASSERT(nb0 == sizeof(float));
  8656. for (int i3 = 0; i3 < ne3; i3++) {
  8657. for (int i2 = 0; i2 < ne2; i2++) {
  8658. for (int i1 = 0; i1 < ne1; i1++) {
  8659. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8660. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  8661. for (int i0 = 0; i0 < i1; i0++) {
  8662. d[i0] = 0;
  8663. }
  8664. d[i1] = s[i1];
  8665. for (int i0 = i1+1; i0 < ne0; i0++) {
  8666. d[i0] = 0;
  8667. }
  8668. }
  8669. }
  8670. }
  8671. }
  8672. static void ggml_compute_forward_diag(
  8673. const struct ggml_compute_params * params,
  8674. const struct ggml_tensor * src0,
  8675. struct ggml_tensor * dst) {
  8676. switch (src0->type) {
  8677. case GGML_TYPE_F32:
  8678. {
  8679. ggml_compute_forward_diag_f32(params, src0, dst);
  8680. } break;
  8681. default:
  8682. {
  8683. GGML_ASSERT(false);
  8684. } break;
  8685. }
  8686. }
  8687. // ggml_compute_forward_diag_mask_inf
  8688. static void ggml_compute_forward_diag_mask_f32(
  8689. const struct ggml_compute_params * params,
  8690. const struct ggml_tensor * src0,
  8691. const struct ggml_tensor * src1,
  8692. struct ggml_tensor * dst,
  8693. const float value) {
  8694. assert(src1->type == GGML_TYPE_I32);
  8695. assert(ggml_nelements(src1) == 2);
  8696. const int ith = params->ith;
  8697. const int nth = params->nth;
  8698. const int n_past = ((int32_t *) src1->data)[0];
  8699. const bool inplace = (bool)((int32_t *) src1->data)[1];
  8700. assert(n_past >= 0);
  8701. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8702. // memcpy needs to be synchronized across threads to avoid race conditions.
  8703. // => do it in INIT phase
  8704. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  8705. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8706. memcpy(
  8707. ((char *) dst->data),
  8708. ((char *) src0->data),
  8709. ggml_nbytes(dst));
  8710. }
  8711. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8712. return;
  8713. }
  8714. // TODO: handle transposed/permuted matrices
  8715. const int n = ggml_nrows(src0);
  8716. const int nc = src0->ne[0];
  8717. const int nr = src0->ne[1];
  8718. const int nz = n/nr;
  8719. assert( dst->nb[0] == sizeof(float));
  8720. assert(src0->nb[0] == sizeof(float));
  8721. for (int k = 0; k < nz; k++) {
  8722. for (int j = ith; j < nr; j += nth) {
  8723. for (int i = n_past; i < nc; i++) {
  8724. if (i > n_past + j) {
  8725. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  8726. }
  8727. }
  8728. }
  8729. }
  8730. }
  8731. static void ggml_compute_forward_diag_mask_inf(
  8732. const struct ggml_compute_params * params,
  8733. const struct ggml_tensor * src0,
  8734. const struct ggml_tensor * src1,
  8735. struct ggml_tensor * dst) {
  8736. switch (src0->type) {
  8737. case GGML_TYPE_F32:
  8738. {
  8739. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, -INFINITY);
  8740. } break;
  8741. default:
  8742. {
  8743. GGML_ASSERT(false);
  8744. } break;
  8745. }
  8746. }
  8747. static void ggml_compute_forward_diag_mask_zero(
  8748. const struct ggml_compute_params * params,
  8749. const struct ggml_tensor * src0,
  8750. const struct ggml_tensor * src1,
  8751. struct ggml_tensor * dst) {
  8752. switch (src0->type) {
  8753. case GGML_TYPE_F32:
  8754. {
  8755. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, 0);
  8756. } break;
  8757. default:
  8758. {
  8759. GGML_ASSERT(false);
  8760. } break;
  8761. }
  8762. }
  8763. // ggml_compute_forward_soft_max
  8764. static void ggml_compute_forward_soft_max_f32(
  8765. const struct ggml_compute_params * params,
  8766. const struct ggml_tensor * src0,
  8767. struct ggml_tensor * dst) {
  8768. GGML_ASSERT(ggml_is_contiguous(src0));
  8769. GGML_ASSERT(ggml_is_contiguous(dst));
  8770. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8771. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8772. return;
  8773. }
  8774. // TODO: handle transposed/permuted matrices
  8775. const int ith = params->ith;
  8776. const int nth = params->nth;
  8777. const int nc = src0->ne[0];
  8778. const int nr = ggml_nrows(src0);
  8779. // rows per thread
  8780. const int dr = (nr + nth - 1)/nth;
  8781. // row range for this thread
  8782. const int ir0 = dr*ith;
  8783. const int ir1 = MIN(ir0 + dr, nr);
  8784. for (int i1 = ir0; i1 < ir1; i1++) {
  8785. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  8786. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  8787. #ifndef NDEBUG
  8788. for (int i = 0; i < nc; ++i) {
  8789. //printf("p[%d] = %f\n", i, p[i]);
  8790. assert(!isnan(sp[i]));
  8791. }
  8792. #endif
  8793. float max = -INFINITY;
  8794. ggml_vec_max_f32(nc, &max, sp);
  8795. ggml_float sum = 0.0;
  8796. uint16_t scvt;
  8797. for (int i = 0; i < nc; i++) {
  8798. if (sp[i] == -INFINITY) {
  8799. dp[i] = 0.0f;
  8800. } else {
  8801. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  8802. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  8803. memcpy(&scvt, &s, sizeof(scvt));
  8804. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  8805. sum += (ggml_float)val;
  8806. dp[i] = val;
  8807. }
  8808. }
  8809. assert(sum > 0.0);
  8810. sum = 1.0/sum;
  8811. ggml_vec_scale_f32(nc, dp, sum);
  8812. #ifndef NDEBUG
  8813. for (int i = 0; i < nc; ++i) {
  8814. assert(!isnan(dp[i]));
  8815. assert(!isinf(dp[i]));
  8816. }
  8817. #endif
  8818. }
  8819. }
  8820. static void ggml_compute_forward_soft_max(
  8821. const struct ggml_compute_params * params,
  8822. const struct ggml_tensor * src0,
  8823. struct ggml_tensor * dst) {
  8824. switch (src0->type) {
  8825. case GGML_TYPE_F32:
  8826. {
  8827. ggml_compute_forward_soft_max_f32(params, src0, dst);
  8828. } break;
  8829. default:
  8830. {
  8831. GGML_ASSERT(false);
  8832. } break;
  8833. }
  8834. }
  8835. // ggml_compute_forward_alibi
  8836. static void ggml_compute_forward_alibi_f32(
  8837. const struct ggml_compute_params * params,
  8838. const struct ggml_tensor * src0,
  8839. const struct ggml_tensor * src1,
  8840. struct ggml_tensor * dst) {
  8841. assert(params->ith == 0);
  8842. assert(src1->type == GGML_TYPE_I32);
  8843. assert(ggml_nelements(src1) == 3);
  8844. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8845. return;
  8846. }
  8847. const int n_past = ((int32_t *) src1->data)[0];
  8848. const int n_head = ((int32_t *) src1->data)[1];
  8849. const float max_bias = ((float *) src1->data)[2];
  8850. assert(n_past >= 0);
  8851. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8852. const int ne1 = src0->ne[1]; // seq_len_without_past
  8853. //const int ne2 = src0->ne[2]; // n_head -> this is k
  8854. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8855. const int n = ggml_nrows(src0);
  8856. const int ne2_ne3 = n/ne1; // ne2*ne3
  8857. const int nb0 = src0->nb[0];
  8858. const int nb1 = src0->nb[1];
  8859. const int nb2 = src0->nb[2];
  8860. //const int nb3 = src0->nb[3];
  8861. assert(nb0 == sizeof(float));
  8862. assert(ne1 + n_past == ne0); (void) n_past;
  8863. // add alibi to src0 (KQ_scaled)
  8864. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8865. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8866. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8867. for (int i = 0; i < ne0; i++) {
  8868. for (int j = 0; j < ne1; j++) {
  8869. for (int k = 0; k < ne2_ne3; k++) {
  8870. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8871. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8872. // TODO: k*nb2 or k*nb3
  8873. float m_k;
  8874. if (k < n_heads_log2_floor) {
  8875. m_k = powf(m0, k + 1);
  8876. } else {
  8877. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8878. }
  8879. pdst[0] = (i-ne0+1) * m_k + src[0];
  8880. }
  8881. }
  8882. }
  8883. }
  8884. static void ggml_compute_forward_alibi_f16(
  8885. const struct ggml_compute_params * params,
  8886. const struct ggml_tensor * src0,
  8887. const struct ggml_tensor * src1,
  8888. struct ggml_tensor * dst) {
  8889. assert(params->ith == 0);
  8890. assert(src1->type == GGML_TYPE_I32);
  8891. assert(ggml_nelements(src1) == 3);
  8892. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8893. return;
  8894. }
  8895. const int n_past = ((int32_t *) src1->data)[0];
  8896. const int n_head = ((int32_t *) src1->data)[1];
  8897. const float max_bias = ((float *) src1->data)[2];
  8898. assert(n_past >= 0);
  8899. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8900. const int ne1 = src0->ne[1]; // seq_len_without_past
  8901. //const int ne2 = src0->ne[2]; // n_head -> this is k
  8902. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8903. const int n = ggml_nrows(src0);
  8904. const int ne2_ne3 = n/ne1; // ne2*ne3
  8905. const int nb0 = src0->nb[0];
  8906. const int nb1 = src0->nb[1];
  8907. const int nb2 = src0->nb[2];
  8908. //const int nb3 = src0->nb[3];
  8909. assert(nb0 == sizeof(ggml_fp16_t));
  8910. assert(ne1 + n_past == ne0); (void) n_past;
  8911. // add alibi to src0 (KQ_scaled)
  8912. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8913. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8914. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8915. for (int i = 0; i < ne0; i++) {
  8916. for (int j = 0; j < ne1; j++) {
  8917. for (int k = 0; k < ne2_ne3; k++) {
  8918. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8919. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8920. // TODO: k*nb2 or k*nb3
  8921. float m_k;
  8922. if (k < n_heads_log2_floor) {
  8923. m_k = powf(m0, k + 1);
  8924. } else {
  8925. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8926. }
  8927. // we return F32
  8928. pdst[0] = (i-ne0+1) * m_k + GGML_FP16_TO_FP32(src[0]);
  8929. }
  8930. }
  8931. }
  8932. }
  8933. static void ggml_compute_forward_alibi(
  8934. const struct ggml_compute_params * params,
  8935. const struct ggml_tensor * src0,
  8936. const struct ggml_tensor * src1,
  8937. struct ggml_tensor * dst) {
  8938. switch (src0->type) {
  8939. case GGML_TYPE_F16:
  8940. {
  8941. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  8942. } break;
  8943. case GGML_TYPE_F32:
  8944. {
  8945. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  8946. } break;
  8947. case GGML_TYPE_Q4_0:
  8948. case GGML_TYPE_Q4_1:
  8949. case GGML_TYPE_Q5_0:
  8950. case GGML_TYPE_Q5_1:
  8951. case GGML_TYPE_Q8_0:
  8952. case GGML_TYPE_Q8_1:
  8953. case GGML_TYPE_I8:
  8954. case GGML_TYPE_I16:
  8955. case GGML_TYPE_I32:
  8956. case GGML_TYPE_COUNT:
  8957. {
  8958. GGML_ASSERT(false);
  8959. } break;
  8960. }
  8961. }
  8962. // ggml_compute_forward_clamp
  8963. static void ggml_compute_forward_clamp_f32(
  8964. const struct ggml_compute_params * params,
  8965. const struct ggml_tensor * src0,
  8966. const struct ggml_tensor * src1,
  8967. struct ggml_tensor * dst) {
  8968. assert(params->ith == 0);
  8969. assert(src1->type == GGML_TYPE_I32);
  8970. assert(ggml_nelements(src1) == 2);
  8971. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8972. return;
  8973. }
  8974. const int min = ((float *) src1->data)[0];
  8975. const int max = ((float *) src1->data)[1];
  8976. const int ith = params->ith;
  8977. const int nth = params->nth;
  8978. const int n = ggml_nrows(src0);
  8979. const int nc = src0->ne[0];
  8980. const size_t nb00 = src0->nb[0];
  8981. const size_t nb01 = src0->nb[1];
  8982. const size_t nb0 = dst->nb[0];
  8983. const size_t nb1 = dst->nb[1];
  8984. GGML_ASSERT( nb0 == sizeof(float));
  8985. GGML_ASSERT(nb00 == sizeof(float));
  8986. for (int j = ith; j < n; j += nth) {
  8987. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  8988. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  8989. for (int i = 0; i < nc; i++) {
  8990. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  8991. }
  8992. }
  8993. }
  8994. static void ggml_compute_forward_clamp(
  8995. const struct ggml_compute_params * params,
  8996. const struct ggml_tensor * src0,
  8997. const struct ggml_tensor * src1,
  8998. struct ggml_tensor * dst) {
  8999. switch (src0->type) {
  9000. case GGML_TYPE_F32:
  9001. {
  9002. ggml_compute_forward_clamp_f32(params, src0, src1, dst);
  9003. } break;
  9004. case GGML_TYPE_F16:
  9005. case GGML_TYPE_Q4_0:
  9006. case GGML_TYPE_Q4_1:
  9007. case GGML_TYPE_Q5_0:
  9008. case GGML_TYPE_Q5_1:
  9009. case GGML_TYPE_Q8_0:
  9010. case GGML_TYPE_Q8_1:
  9011. case GGML_TYPE_I8:
  9012. case GGML_TYPE_I16:
  9013. case GGML_TYPE_I32:
  9014. case GGML_TYPE_COUNT:
  9015. {
  9016. GGML_ASSERT(false);
  9017. } break;
  9018. }
  9019. }
  9020. // ggml_compute_forward_rope
  9021. static void ggml_compute_forward_rope_f32(
  9022. const struct ggml_compute_params * params,
  9023. const struct ggml_tensor * src0,
  9024. const struct ggml_tensor * src1,
  9025. struct ggml_tensor * dst) {
  9026. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9027. GGML_ASSERT(ggml_nelements(src1) == 3);
  9028. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9029. return;
  9030. }
  9031. const int n_past = ((int32_t *) src1->data)[0];
  9032. const int n_dims = ((int32_t *) src1->data)[1];
  9033. const int mode = ((int32_t *) src1->data)[2];
  9034. assert(n_past >= 0);
  9035. const size_t nb00 = src0->nb[0];
  9036. const size_t nb01 = src0->nb[1];
  9037. const size_t nb02 = src0->nb[2];
  9038. const size_t nb03 = src0->nb[3];
  9039. const int64_t ne0 = dst->ne[0];
  9040. const int64_t ne1 = dst->ne[1];
  9041. const int64_t ne2 = dst->ne[2];
  9042. const int64_t ne3 = dst->ne[3];
  9043. const size_t nb0 = dst->nb[0];
  9044. const size_t nb1 = dst->nb[1];
  9045. const size_t nb2 = dst->nb[2];
  9046. const size_t nb3 = dst->nb[3];
  9047. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9048. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9049. GGML_ASSERT(nb00 == sizeof(float));
  9050. const int ith = params->ith;
  9051. const int nth = params->nth;
  9052. const int nr = ggml_nrows(dst);
  9053. GGML_ASSERT(n_dims <= ne0);
  9054. GGML_ASSERT(n_dims % 2 == 0);
  9055. // rows per thread
  9056. const int dr = (nr + nth - 1)/nth;
  9057. // row range for this thread
  9058. const int ir0 = dr*ith;
  9059. const int ir1 = MIN(ir0 + dr, nr);
  9060. // row index used to determine which thread to use
  9061. int ir = 0;
  9062. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9063. const bool is_neox = mode & 2;
  9064. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9065. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9066. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9067. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9068. if (ir++ < ir0) continue;
  9069. if (ir > ir1) break;
  9070. float theta = (float)p;
  9071. if (!is_neox) {
  9072. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9073. const float cos_theta = cosf(theta);
  9074. const float sin_theta = sinf(theta);
  9075. theta *= theta_scale;
  9076. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9077. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9078. const float x0 = src[0];
  9079. const float x1 = src[1];
  9080. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9081. dst_data[1] = x0*sin_theta + x1*cos_theta;
  9082. }
  9083. } else {
  9084. // TODO: this is probably wrong, but I can't figure it out ..
  9085. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9086. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9087. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9088. const float cos_theta = cosf(theta);
  9089. const float sin_theta = sinf(theta);
  9090. theta *= theta_scale;
  9091. const int64_t i0 = ib*n_dims + ic/2;
  9092. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9093. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9094. const float x0 = src[0];
  9095. const float x1 = src[n_dims/2];
  9096. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9097. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9098. }
  9099. }
  9100. }
  9101. }
  9102. }
  9103. }
  9104. }
  9105. static void ggml_compute_forward_rope_f16(
  9106. const struct ggml_compute_params * params,
  9107. const struct ggml_tensor * src0,
  9108. const struct ggml_tensor * src1,
  9109. struct ggml_tensor * dst) {
  9110. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9111. GGML_ASSERT(ggml_nelements(src1) == 3);
  9112. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9113. return;
  9114. }
  9115. const int n_past = ((int32_t *) src1->data)[0];
  9116. const int n_dims = ((int32_t *) src1->data)[1];
  9117. const int mode = ((int32_t *) src1->data)[2];
  9118. assert(n_past >= 0);
  9119. const size_t nb00 = src0->nb[0];
  9120. const size_t nb01 = src0->nb[1];
  9121. const size_t nb02 = src0->nb[2];
  9122. const size_t nb03 = src0->nb[3];
  9123. const int64_t ne0 = dst->ne[0];
  9124. const int64_t ne1 = dst->ne[1];
  9125. const int64_t ne2 = dst->ne[2];
  9126. const int64_t ne3 = dst->ne[3];
  9127. const size_t nb0 = dst->nb[0];
  9128. const size_t nb1 = dst->nb[1];
  9129. const size_t nb2 = dst->nb[2];
  9130. const size_t nb3 = dst->nb[3];
  9131. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9132. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9133. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9134. const int ith = params->ith;
  9135. const int nth = params->nth;
  9136. const int nr = ggml_nrows(dst);
  9137. GGML_ASSERT(n_dims <= ne0);
  9138. GGML_ASSERT(n_dims % 2 == 0);
  9139. // rows per thread
  9140. const int dr = (nr + nth - 1)/nth;
  9141. // row range for this thread
  9142. const int ir0 = dr*ith;
  9143. const int ir1 = MIN(ir0 + dr, nr);
  9144. // row index used to determine which thread to use
  9145. int ir = 0;
  9146. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9147. const bool is_neox = mode & 2;
  9148. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9149. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9150. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9151. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9152. if (ir++ < ir0) continue;
  9153. if (ir > ir1) break;
  9154. float theta = (float)p;
  9155. if (!is_neox) {
  9156. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9157. const float cos_theta = cosf(theta);
  9158. const float sin_theta = sinf(theta);
  9159. theta *= theta_scale;
  9160. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9161. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9162. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9163. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9164. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9165. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9166. }
  9167. } else {
  9168. // TODO: this is probably wrong, but I can't figure it out ..
  9169. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9170. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9171. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9172. const float cos_theta = cosf(theta);
  9173. const float sin_theta = sinf(theta);
  9174. theta *= theta_scale;
  9175. const int64_t i0 = ib*n_dims + ic/2;
  9176. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9177. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9178. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9179. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9180. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9181. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9182. }
  9183. }
  9184. }
  9185. }
  9186. }
  9187. }
  9188. }
  9189. static void ggml_compute_forward_rope(
  9190. const struct ggml_compute_params * params,
  9191. const struct ggml_tensor * src0,
  9192. const struct ggml_tensor * src1,
  9193. struct ggml_tensor * dst) {
  9194. switch (src0->type) {
  9195. case GGML_TYPE_F16:
  9196. {
  9197. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  9198. } break;
  9199. case GGML_TYPE_F32:
  9200. {
  9201. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  9202. } break;
  9203. default:
  9204. {
  9205. GGML_ASSERT(false);
  9206. } break;
  9207. }
  9208. }
  9209. // ggml_compute_forward_rope_back
  9210. static void ggml_compute_forward_rope_back_f32(
  9211. const struct ggml_compute_params * params,
  9212. const struct ggml_tensor * src0,
  9213. const struct ggml_tensor * src1,
  9214. struct ggml_tensor * dst) {
  9215. assert(src1->type == GGML_TYPE_I32);
  9216. assert(ggml_nelements(src1) == 3);
  9217. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9218. return;
  9219. }
  9220. // y = rope(x, src1)
  9221. // dx = rope_back(dy, src1)
  9222. // src0 is dy, src1 contains options
  9223. const int n_past = ((int32_t *) src1->data)[0];
  9224. const int n_dims = ((int32_t *) src1->data)[1];
  9225. const int mode = ((int32_t *) src1->data)[2];
  9226. assert(n_past >= 0);
  9227. const size_t nb00 = src0->nb[0];
  9228. const size_t nb01 = src0->nb[1];
  9229. const size_t nb02 = src0->nb[2];
  9230. const size_t nb03 = src0->nb[3];
  9231. const int64_t ne0 = dst->ne[0];
  9232. const int64_t ne1 = dst->ne[1];
  9233. const int64_t ne2 = dst->ne[2];
  9234. const int64_t ne3 = dst->ne[3];
  9235. const size_t nb0 = dst->nb[0];
  9236. const size_t nb1 = dst->nb[1];
  9237. const size_t nb2 = dst->nb[2];
  9238. const size_t nb3 = dst->nb[3];
  9239. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9240. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9241. assert(nb0 == sizeof(float));
  9242. const int ith = params->ith;
  9243. const int nth = params->nth;
  9244. const int nr = ggml_nrows(dst);
  9245. // rows per thread
  9246. const int dr = (nr + nth - 1)/nth;
  9247. // row range for this thread
  9248. const int ir0 = dr*ith;
  9249. const int ir1 = MIN(ir0 + dr, nr);
  9250. // row index used to determine which thread to use
  9251. int ir = 0;
  9252. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9253. const bool is_neox = mode & 2;
  9254. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9255. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9256. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9257. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9258. if (ir++ < ir0) continue;
  9259. if (ir > ir1) break;
  9260. float theta = (float)p;
  9261. if (!is_neox) {
  9262. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9263. const float cos_theta = cosf(theta);
  9264. const float sin_theta = sinf(theta);
  9265. theta *= theta_scale;
  9266. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9267. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9268. const float dy0 = dy[0];
  9269. const float dy1 = dy[1];
  9270. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9271. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  9272. }
  9273. } else {
  9274. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9275. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9276. const float cos_theta = cosf(theta);
  9277. const float sin_theta = sinf(theta);
  9278. theta *= theta_scale;
  9279. const int64_t i0 = ib*n_dims + ic/2;
  9280. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9281. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9282. const float dy0 = dy[0];
  9283. const float dy1 = dy[n_dims/2];
  9284. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9285. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  9286. }
  9287. }
  9288. }
  9289. }
  9290. }
  9291. }
  9292. }
  9293. static void ggml_compute_forward_rope_back_f16(
  9294. const struct ggml_compute_params * params,
  9295. const struct ggml_tensor * src0,
  9296. const struct ggml_tensor * src1,
  9297. struct ggml_tensor * dst) {
  9298. assert(src1->type == GGML_TYPE_I32);
  9299. assert(ggml_nelements(src1) == 3);
  9300. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9301. return;
  9302. }
  9303. // y = rope(x, src1)
  9304. // dx = rope_back(dy, src1)
  9305. // src0 is dy, src1 contains options
  9306. const int n_past = ((int32_t *) src1->data)[0];
  9307. const int n_dims = ((int32_t *) src1->data)[1];
  9308. const int mode = ((int32_t *) src1->data)[2];
  9309. assert(n_past >= 0);
  9310. const size_t nb00 = src0->nb[0];
  9311. const size_t nb01 = src0->nb[1];
  9312. const size_t nb02 = src0->nb[2];
  9313. const size_t nb03 = src0->nb[3];
  9314. const int64_t ne0 = dst->ne[0];
  9315. const int64_t ne1 = dst->ne[1];
  9316. const int64_t ne2 = dst->ne[2];
  9317. const int64_t ne3 = dst->ne[3];
  9318. const size_t nb0 = dst->nb[0];
  9319. const size_t nb1 = dst->nb[1];
  9320. const size_t nb2 = dst->nb[2];
  9321. const size_t nb3 = dst->nb[3];
  9322. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9323. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9324. assert(nb0 == sizeof(ggml_fp16_t));
  9325. const int ith = params->ith;
  9326. const int nth = params->nth;
  9327. const int nr = ggml_nrows(dst);
  9328. // rows per thread
  9329. const int dr = (nr + nth - 1)/nth;
  9330. // row range for this thread
  9331. const int ir0 = dr*ith;
  9332. const int ir1 = MIN(ir0 + dr, nr);
  9333. // row index used to determine which thread to use
  9334. int ir = 0;
  9335. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9336. const bool is_neox = mode & 2;
  9337. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9338. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9339. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9340. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9341. if (ir++ < ir0) continue;
  9342. if (ir > ir1) break;
  9343. float theta = (float)p;
  9344. if (!is_neox) {
  9345. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9346. const float cos_theta = cosf(theta);
  9347. const float sin_theta = sinf(theta);
  9348. theta *= theta_scale;
  9349. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9350. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9351. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9352. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  9353. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9354. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9355. }
  9356. } else {
  9357. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9358. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9359. const float cos_theta = cosf(theta);
  9360. const float sin_theta = sinf(theta);
  9361. theta *= theta_scale;
  9362. const int64_t i0 = ib*n_dims + ic/2;
  9363. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9364. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9365. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9366. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  9367. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9368. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9369. }
  9370. }
  9371. }
  9372. }
  9373. }
  9374. }
  9375. }
  9376. static void ggml_compute_forward_rope_back(
  9377. const struct ggml_compute_params * params,
  9378. const struct ggml_tensor * src0,
  9379. const struct ggml_tensor * src1,
  9380. struct ggml_tensor * dst) {
  9381. switch (src0->type) {
  9382. case GGML_TYPE_F16:
  9383. {
  9384. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  9385. } break;
  9386. case GGML_TYPE_F32:
  9387. {
  9388. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  9389. } break;
  9390. default:
  9391. {
  9392. GGML_ASSERT(false);
  9393. } break;
  9394. }
  9395. }
  9396. // ggml_compute_forward_conv_1d_1s
  9397. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  9398. const struct ggml_compute_params * params,
  9399. const struct ggml_tensor * src0,
  9400. const struct ggml_tensor * src1,
  9401. struct ggml_tensor * dst) {
  9402. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9403. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9404. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9405. int64_t t0 = ggml_perf_time_us();
  9406. UNUSED(t0);
  9407. const int64_t ne00 = src0->ne[0];
  9408. const int64_t ne01 = src0->ne[1];
  9409. const int64_t ne02 = src0->ne[2];
  9410. //const int64_t ne03 = src0->ne[3];
  9411. const int64_t ne10 = src1->ne[0];
  9412. const int64_t ne11 = src1->ne[1];
  9413. //const int64_t ne12 = src1->ne[2];
  9414. //const int64_t ne13 = src1->ne[3];
  9415. //const int64_t ne0 = dst->ne[0];
  9416. //const int64_t ne1 = dst->ne[1];
  9417. //const int64_t ne2 = dst->ne[2];
  9418. //const int64_t ne3 = dst->ne[3];
  9419. //const int64_t ne = ne0*ne1*ne2*ne3;
  9420. const int nb00 = src0->nb[0];
  9421. const int nb01 = src0->nb[1];
  9422. const int nb02 = src0->nb[2];
  9423. //const int nb03 = src0->nb[3];
  9424. const int nb10 = src1->nb[0];
  9425. const int nb11 = src1->nb[1];
  9426. //const int nb12 = src1->nb[2];
  9427. //const int nb13 = src1->nb[3];
  9428. //const int nb0 = dst->nb[0];
  9429. const int nb1 = dst->nb[1];
  9430. //const int nb2 = dst->nb[2];
  9431. //const int nb3 = dst->nb[3];
  9432. const int ith = params->ith;
  9433. const int nth = params->nth;
  9434. const int nk = ne00;
  9435. const int nh = nk/2;
  9436. const int ew0 = ggml_up32(ne01);
  9437. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9438. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9439. GGML_ASSERT(nb10 == sizeof(float));
  9440. if (params->type == GGML_TASK_INIT) {
  9441. // TODO: fix this memset (wsize is overestimated)
  9442. memset(params->wdata, 0, params->wsize);
  9443. // prepare kernel data (src0)
  9444. {
  9445. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9446. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9447. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9448. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9449. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  9450. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9451. dst_data[i00*ew0 + i01] = src[i00];
  9452. }
  9453. }
  9454. }
  9455. }
  9456. // prepare source data (src1)
  9457. {
  9458. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  9459. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9460. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9461. ggml_fp16_t * dst_data = wdata;
  9462. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9463. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9464. }
  9465. }
  9466. }
  9467. return;
  9468. }
  9469. if (params->type == GGML_TASK_FINALIZE) {
  9470. return;
  9471. }
  9472. // total rows in dst
  9473. const int nr = ne02;
  9474. // rows per thread
  9475. const int dr = (nr + nth - 1)/nth;
  9476. // row range for this thread
  9477. const int ir0 = dr*ith;
  9478. const int ir1 = MIN(ir0 + dr, nr);
  9479. for (int i1 = ir0; i1 < ir1; i1++) {
  9480. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9481. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  9482. dst_data[i0] = 0;
  9483. for (int k = -nh; k <= nh; k++) {
  9484. float v = 0.0f;
  9485. ggml_vec_dot_f16(ew0, &v,
  9486. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9487. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9488. dst_data[i0] += v;
  9489. }
  9490. }
  9491. }
  9492. }
  9493. static void ggml_compute_forward_conv_1d_1s_f32(
  9494. const struct ggml_compute_params * params,
  9495. const struct ggml_tensor * src0,
  9496. const struct ggml_tensor * src1,
  9497. struct ggml_tensor * dst) {
  9498. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9499. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9500. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9501. int64_t t0 = ggml_perf_time_us();
  9502. UNUSED(t0);
  9503. const int64_t ne00 = src0->ne[0];
  9504. const int64_t ne01 = src0->ne[1];
  9505. const int64_t ne02 = src0->ne[2];
  9506. //const int64_t ne03 = src0->ne[3];
  9507. const int64_t ne10 = src1->ne[0];
  9508. const int64_t ne11 = src1->ne[1];
  9509. //const int64_t ne12 = src1->ne[2];
  9510. //const int64_t ne13 = src1->ne[3];
  9511. //const int64_t ne0 = dst->ne[0];
  9512. //const int64_t ne1 = dst->ne[1];
  9513. //const int64_t ne2 = dst->ne[2];
  9514. //const int64_t ne3 = dst->ne[3];
  9515. //const int64_t ne = ne0*ne1*ne2*ne3;
  9516. const int nb00 = src0->nb[0];
  9517. const int nb01 = src0->nb[1];
  9518. const int nb02 = src0->nb[2];
  9519. //const int nb03 = src0->nb[3];
  9520. const int nb10 = src1->nb[0];
  9521. const int nb11 = src1->nb[1];
  9522. //const int nb12 = src1->nb[2];
  9523. //const int nb13 = src1->nb[3];
  9524. //const int nb0 = dst->nb[0];
  9525. const int nb1 = dst->nb[1];
  9526. //const int nb2 = dst->nb[2];
  9527. //const int nb3 = dst->nb[3];
  9528. const int ith = params->ith;
  9529. const int nth = params->nth;
  9530. const int nk = ne00;
  9531. const int nh = nk/2;
  9532. const int ew0 = ggml_up32(ne01);
  9533. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9534. GGML_ASSERT(nb00 == sizeof(float));
  9535. GGML_ASSERT(nb10 == sizeof(float));
  9536. if (params->type == GGML_TASK_INIT) {
  9537. // TODO: fix this memset (wsize is overestimated)
  9538. memset(params->wdata, 0, params->wsize);
  9539. // prepare kernel data (src0)
  9540. {
  9541. float * const wdata = (float *) params->wdata + 0;
  9542. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9543. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9544. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9545. float * dst_data = wdata + i02*ew0*ne00;
  9546. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9547. dst_data[i00*ew0 + i01] = src[i00];
  9548. }
  9549. }
  9550. }
  9551. }
  9552. // prepare source data (src1)
  9553. {
  9554. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  9555. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9556. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9557. float * dst_data = wdata;
  9558. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9559. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  9560. }
  9561. }
  9562. }
  9563. return;
  9564. }
  9565. if (params->type == GGML_TASK_FINALIZE) {
  9566. return;
  9567. }
  9568. // total rows in dst
  9569. const int nr = ne02;
  9570. // rows per thread
  9571. const int dr = (nr + nth - 1)/nth;
  9572. // row range for this thread
  9573. const int ir0 = dr*ith;
  9574. const int ir1 = MIN(ir0 + dr, nr);
  9575. for (int i1 = ir0; i1 < ir1; i1++) {
  9576. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9577. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  9578. dst_data[i0] = 0;
  9579. for (int k = -nh; k <= nh; k++) {
  9580. float v = 0.0f;
  9581. ggml_vec_dot_f32(ew0, &v,
  9582. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9583. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9584. dst_data[i0] += v;
  9585. }
  9586. }
  9587. }
  9588. }
  9589. static void ggml_compute_forward_conv_1d_1s(
  9590. const struct ggml_compute_params * params,
  9591. const struct ggml_tensor * src0,
  9592. const struct ggml_tensor * src1,
  9593. struct ggml_tensor * dst) {
  9594. switch (src0->type) {
  9595. case GGML_TYPE_F16:
  9596. {
  9597. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  9598. } break;
  9599. case GGML_TYPE_F32:
  9600. {
  9601. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  9602. } break;
  9603. default:
  9604. {
  9605. GGML_ASSERT(false);
  9606. } break;
  9607. }
  9608. }
  9609. // ggml_compute_forward_conv_1d_2s
  9610. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  9611. const struct ggml_compute_params * params,
  9612. const struct ggml_tensor * src0,
  9613. const struct ggml_tensor * src1,
  9614. struct ggml_tensor * dst) {
  9615. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9616. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9617. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9618. int64_t t0 = ggml_perf_time_us();
  9619. UNUSED(t0);
  9620. const int64_t ne00 = src0->ne[0];
  9621. const int64_t ne01 = src0->ne[1];
  9622. const int64_t ne02 = src0->ne[2];
  9623. //const int64_t ne03 = src0->ne[3];
  9624. const int64_t ne10 = src1->ne[0];
  9625. const int64_t ne11 = src1->ne[1];
  9626. //const int64_t ne12 = src1->ne[2];
  9627. //const int64_t ne13 = src1->ne[3];
  9628. //const int64_t ne0 = dst->ne[0];
  9629. //const int64_t ne1 = dst->ne[1];
  9630. //const int64_t ne2 = dst->ne[2];
  9631. //const int64_t ne3 = dst->ne[3];
  9632. //const int64_t ne = ne0*ne1*ne2*ne3;
  9633. const int nb00 = src0->nb[0];
  9634. const int nb01 = src0->nb[1];
  9635. const int nb02 = src0->nb[2];
  9636. //const int nb03 = src0->nb[3];
  9637. const int nb10 = src1->nb[0];
  9638. const int nb11 = src1->nb[1];
  9639. //const int nb12 = src1->nb[2];
  9640. //const int nb13 = src1->nb[3];
  9641. //const int nb0 = dst->nb[0];
  9642. const int nb1 = dst->nb[1];
  9643. //const int nb2 = dst->nb[2];
  9644. //const int nb3 = dst->nb[3];
  9645. const int ith = params->ith;
  9646. const int nth = params->nth;
  9647. const int nk = ne00;
  9648. const int nh = nk/2;
  9649. const int ew0 = ggml_up32(ne01);
  9650. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9651. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9652. GGML_ASSERT(nb10 == sizeof(float));
  9653. if (params->type == GGML_TASK_INIT) {
  9654. // TODO: fix this memset (wsize is overestimated)
  9655. memset(params->wdata, 0, params->wsize);
  9656. // prepare kernel data (src0)
  9657. {
  9658. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9659. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9660. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9661. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9662. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  9663. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9664. dst_data[i00*ew0 + i01] = src[i00];
  9665. }
  9666. }
  9667. }
  9668. }
  9669. // prepare source data (src1)
  9670. {
  9671. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  9672. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9673. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9674. ggml_fp16_t * dst_data = wdata;
  9675. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9676. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9677. }
  9678. }
  9679. }
  9680. return;
  9681. }
  9682. if (params->type == GGML_TASK_FINALIZE) {
  9683. return;
  9684. }
  9685. // total rows in dst
  9686. const int nr = ne02;
  9687. // rows per thread
  9688. const int dr = (nr + nth - 1)/nth;
  9689. // row range for this thread
  9690. const int ir0 = dr*ith;
  9691. const int ir1 = MIN(ir0 + dr, nr);
  9692. for (int i1 = ir0; i1 < ir1; i1++) {
  9693. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9694. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  9695. dst_data[i0/2] = 0;
  9696. for (int k = -nh; k <= nh; k++) {
  9697. float v = 0.0f;
  9698. ggml_vec_dot_f16(ew0, &v,
  9699. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9700. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9701. dst_data[i0/2] += v;
  9702. }
  9703. }
  9704. }
  9705. }
  9706. static void ggml_compute_forward_conv_1d_2s_f32(
  9707. const struct ggml_compute_params * params,
  9708. const struct ggml_tensor * src0,
  9709. const struct ggml_tensor * src1,
  9710. struct ggml_tensor * dst) {
  9711. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9712. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9713. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9714. int64_t t0 = ggml_perf_time_us();
  9715. UNUSED(t0);
  9716. const int64_t ne00 = src0->ne[0];
  9717. const int64_t ne01 = src0->ne[1];
  9718. const int64_t ne02 = src0->ne[2];
  9719. //const int64_t ne03 = src0->ne[3];
  9720. const int64_t ne10 = src1->ne[0];
  9721. const int64_t ne11 = src1->ne[1];
  9722. //const int64_t ne12 = src1->ne[2];
  9723. //const int64_t ne13 = src1->ne[3];
  9724. //const int64_t ne0 = dst->ne[0];
  9725. //const int64_t ne1 = dst->ne[1];
  9726. //const int64_t ne2 = dst->ne[2];
  9727. //const int64_t ne3 = dst->ne[3];
  9728. //const int64_t ne = ne0*ne1*ne2*ne3;
  9729. const int nb00 = src0->nb[0];
  9730. const int nb01 = src0->nb[1];
  9731. const int nb02 = src0->nb[2];
  9732. //const int nb03 = src0->nb[3];
  9733. const int nb10 = src1->nb[0];
  9734. const int nb11 = src1->nb[1];
  9735. //const int nb12 = src1->nb[2];
  9736. //const int nb13 = src1->nb[3];
  9737. //const int nb0 = dst->nb[0];
  9738. const int nb1 = dst->nb[1];
  9739. //const int nb2 = dst->nb[2];
  9740. //const int nb3 = dst->nb[3];
  9741. const int ith = params->ith;
  9742. const int nth = params->nth;
  9743. const int nk = ne00;
  9744. const int nh = nk/2;
  9745. const int ew0 = ggml_up32(ne01);
  9746. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9747. GGML_ASSERT(nb00 == sizeof(float));
  9748. GGML_ASSERT(nb10 == sizeof(float));
  9749. if (params->type == GGML_TASK_INIT) {
  9750. // TODO: fix this memset (wsize is overestimated)
  9751. memset(params->wdata, 0, params->wsize);
  9752. // prepare kernel data (src0)
  9753. {
  9754. float * const wdata = (float *) params->wdata + 0;
  9755. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9756. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9757. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9758. float * dst_data = wdata + i02*ew0*ne00;
  9759. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9760. dst_data[i00*ew0 + i01] = src[i00];
  9761. }
  9762. }
  9763. }
  9764. }
  9765. // prepare source data (src1)
  9766. {
  9767. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  9768. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9769. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9770. float * dst_data = wdata;
  9771. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9772. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  9773. }
  9774. }
  9775. }
  9776. return;
  9777. }
  9778. if (params->type == GGML_TASK_FINALIZE) {
  9779. return;
  9780. }
  9781. // total rows in dst
  9782. const int nr = ne02;
  9783. // rows per thread
  9784. const int dr = (nr + nth - 1)/nth;
  9785. // row range for this thread
  9786. const int ir0 = dr*ith;
  9787. const int ir1 = MIN(ir0 + dr, nr);
  9788. for (int i1 = ir0; i1 < ir1; i1++) {
  9789. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9790. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  9791. dst_data[i0/2] = 0;
  9792. for (int k = -nh; k <= nh; k++) {
  9793. float v = 0.0f;
  9794. ggml_vec_dot_f32(ew0, &v,
  9795. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9796. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9797. dst_data[i0/2] += v;
  9798. }
  9799. }
  9800. }
  9801. }
  9802. static void ggml_compute_forward_conv_1d_2s(
  9803. const struct ggml_compute_params * params,
  9804. const struct ggml_tensor * src0,
  9805. const struct ggml_tensor * src1,
  9806. struct ggml_tensor * dst) {
  9807. switch (src0->type) {
  9808. case GGML_TYPE_F16:
  9809. {
  9810. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  9811. } break;
  9812. case GGML_TYPE_F32:
  9813. {
  9814. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  9815. } break;
  9816. default:
  9817. {
  9818. GGML_ASSERT(false);
  9819. } break;
  9820. }
  9821. }
  9822. // ggml_compute_forward_flash_attn
  9823. static void ggml_compute_forward_flash_attn_f32(
  9824. const struct ggml_compute_params * params,
  9825. const struct ggml_tensor * q,
  9826. const struct ggml_tensor * k,
  9827. const struct ggml_tensor * v,
  9828. const bool masked,
  9829. struct ggml_tensor * dst) {
  9830. int64_t t0 = ggml_perf_time_us();
  9831. UNUSED(t0);
  9832. const int64_t neq0 = q->ne[0];
  9833. const int64_t neq1 = q->ne[1];
  9834. const int64_t neq2 = q->ne[2];
  9835. const int64_t neq3 = q->ne[3];
  9836. const int64_t nek0 = k->ne[0];
  9837. const int64_t nek1 = k->ne[1];
  9838. //const int64_t nek2 = k->ne[2];
  9839. //const int64_t nek3 = k->ne[3];
  9840. //const int64_t nev0 = v->ne[0];
  9841. const int64_t nev1 = v->ne[1];
  9842. //const int64_t nev2 = v->ne[2];
  9843. //const int64_t nev3 = v->ne[3];
  9844. const int64_t ne0 = dst->ne[0];
  9845. const int64_t ne1 = dst->ne[1];
  9846. //const int64_t ne2 = dst->ne[2];
  9847. //const int64_t ne3 = dst->ne[3];
  9848. const int nbk0 = k->nb[0];
  9849. const int nbk1 = k->nb[1];
  9850. const int nbk2 = k->nb[2];
  9851. const int nbk3 = k->nb[3];
  9852. const int nbq0 = q->nb[0];
  9853. const int nbq1 = q->nb[1];
  9854. const int nbq2 = q->nb[2];
  9855. const int nbq3 = q->nb[3];
  9856. const int nbv0 = v->nb[0];
  9857. const int nbv1 = v->nb[1];
  9858. const int nbv2 = v->nb[2];
  9859. const int nbv3 = v->nb[3];
  9860. const int nb0 = dst->nb[0];
  9861. const int nb1 = dst->nb[1];
  9862. const int nb2 = dst->nb[2];
  9863. const int nb3 = dst->nb[3];
  9864. const int ith = params->ith;
  9865. const int nth = params->nth;
  9866. const int64_t D = neq0;
  9867. const int64_t N = neq1;
  9868. const int64_t P = nek1 - N;
  9869. const int64_t M = P + N;
  9870. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  9871. GGML_ASSERT(ne0 == D);
  9872. GGML_ASSERT(ne1 == N);
  9873. GGML_ASSERT(P >= 0);
  9874. GGML_ASSERT(nbq0 == sizeof(float));
  9875. GGML_ASSERT(nbk0 == sizeof(float));
  9876. GGML_ASSERT(nbv0 == sizeof(float));
  9877. GGML_ASSERT(neq0 == D);
  9878. GGML_ASSERT(nek0 == D);
  9879. GGML_ASSERT(nev1 == D);
  9880. GGML_ASSERT(neq1 == N);
  9881. GGML_ASSERT(nek1 == N + P);
  9882. GGML_ASSERT(nev1 == D);
  9883. // dst cannot be transposed or permuted
  9884. GGML_ASSERT(nb0 == sizeof(float));
  9885. GGML_ASSERT(nb0 <= nb1);
  9886. GGML_ASSERT(nb1 <= nb2);
  9887. GGML_ASSERT(nb2 <= nb3);
  9888. if (params->type == GGML_TASK_INIT) {
  9889. return;
  9890. }
  9891. if (params->type == GGML_TASK_FINALIZE) {
  9892. return;
  9893. }
  9894. // parallelize by q rows using ggml_vec_dot_f32
  9895. // total rows in q
  9896. const int nr = neq1*neq2*neq3;
  9897. // rows per thread
  9898. const int dr = (nr + nth - 1)/nth;
  9899. // row range for this thread
  9900. const int ir0 = dr*ith;
  9901. const int ir1 = MIN(ir0 + dr, nr);
  9902. const float scale = 1.0f/sqrtf(D);
  9903. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  9904. for (int ir = ir0; ir < ir1; ++ir) {
  9905. // q indices
  9906. const int iq3 = ir/(neq2*neq1);
  9907. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  9908. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  9909. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  9910. for (int i = M; i < Mup; ++i) {
  9911. S[i] = -INFINITY;
  9912. }
  9913. for (int64_t ic = 0; ic < nek1; ++ic) {
  9914. // k indices
  9915. const int ik3 = iq3;
  9916. const int ik2 = iq2;
  9917. const int ik1 = ic;
  9918. // S indices
  9919. const int i1 = ik1;
  9920. ggml_vec_dot_f32(neq0,
  9921. S + i1,
  9922. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  9923. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  9924. }
  9925. // scale
  9926. ggml_vec_scale_f32(nek1, S, scale);
  9927. if (masked) {
  9928. for (int64_t i = P; i < M; i++) {
  9929. if (i > P + iq1) {
  9930. S[i] = -INFINITY;
  9931. }
  9932. }
  9933. }
  9934. // softmax
  9935. {
  9936. float max = -INFINITY;
  9937. ggml_vec_max_f32(M, &max, S);
  9938. ggml_float sum = 0.0;
  9939. {
  9940. #ifdef GGML_SOFT_MAX_ACCELERATE
  9941. max = -max;
  9942. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  9943. vvexpf(S, S, &Mup);
  9944. ggml_vec_sum_f32(Mup, &sum, S);
  9945. #else
  9946. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  9947. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  9948. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  9949. float * SS = S + i;
  9950. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  9951. if (SS[j] == -INFINITY) {
  9952. SS[j] = 0.0f;
  9953. } else {
  9954. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  9955. memcpy(&scvt[j], &s, sizeof(uint16_t));
  9956. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  9957. sump[j] += (ggml_float)val;
  9958. SS[j] = val;
  9959. }
  9960. }
  9961. }
  9962. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  9963. sum += sump[i];
  9964. }
  9965. #endif
  9966. }
  9967. assert(sum > 0.0);
  9968. sum = 1.0/sum;
  9969. ggml_vec_scale_f32(M, S, sum);
  9970. #ifndef NDEBUG
  9971. for (int i = 0; i < M; ++i) {
  9972. assert(!isnan(S[i]));
  9973. assert(!isinf(S[i]));
  9974. }
  9975. #endif
  9976. }
  9977. for (int64_t ic = 0; ic < nev1; ++ic) {
  9978. // dst indices
  9979. const int i1 = iq1;
  9980. const int i2 = iq2;
  9981. const int i3 = iq3;
  9982. ggml_vec_dot_f32(nek1,
  9983. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  9984. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  9985. S);
  9986. }
  9987. }
  9988. }
  9989. static void ggml_compute_forward_flash_attn_f16(
  9990. const struct ggml_compute_params * params,
  9991. const struct ggml_tensor * q,
  9992. const struct ggml_tensor * k,
  9993. const struct ggml_tensor * v,
  9994. const bool masked,
  9995. struct ggml_tensor * dst) {
  9996. int64_t t0 = ggml_perf_time_us();
  9997. UNUSED(t0);
  9998. const int64_t neq0 = q->ne[0];
  9999. const int64_t neq1 = q->ne[1];
  10000. const int64_t neq2 = q->ne[2];
  10001. const int64_t neq3 = q->ne[3];
  10002. const int64_t nek0 = k->ne[0];
  10003. const int64_t nek1 = k->ne[1];
  10004. //const int64_t nek2 = k->ne[2];
  10005. //const int64_t nek3 = k->ne[3];
  10006. //const int64_t nev0 = v->ne[0];
  10007. const int64_t nev1 = v->ne[1];
  10008. //const int64_t nev2 = v->ne[2];
  10009. //const int64_t nev3 = v->ne[3];
  10010. const int64_t ne0 = dst->ne[0];
  10011. const int64_t ne1 = dst->ne[1];
  10012. //const int64_t ne2 = dst->ne[2];
  10013. //const int64_t ne3 = dst->ne[3];
  10014. const int nbk0 = k->nb[0];
  10015. const int nbk1 = k->nb[1];
  10016. const int nbk2 = k->nb[2];
  10017. const int nbk3 = k->nb[3];
  10018. const int nbq0 = q->nb[0];
  10019. const int nbq1 = q->nb[1];
  10020. const int nbq2 = q->nb[2];
  10021. const int nbq3 = q->nb[3];
  10022. const int nbv0 = v->nb[0];
  10023. const int nbv1 = v->nb[1];
  10024. const int nbv2 = v->nb[2];
  10025. const int nbv3 = v->nb[3];
  10026. const int nb0 = dst->nb[0];
  10027. const int nb1 = dst->nb[1];
  10028. const int nb2 = dst->nb[2];
  10029. const int nb3 = dst->nb[3];
  10030. const int ith = params->ith;
  10031. const int nth = params->nth;
  10032. const int64_t D = neq0;
  10033. const int64_t N = neq1;
  10034. const int64_t P = nek1 - N;
  10035. const int64_t M = P + N;
  10036. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10037. GGML_ASSERT(ne0 == D);
  10038. GGML_ASSERT(ne1 == N);
  10039. GGML_ASSERT(P >= 0);
  10040. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10041. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10042. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10043. GGML_ASSERT(neq0 == D);
  10044. GGML_ASSERT(nek0 == D);
  10045. GGML_ASSERT(nev1 == D);
  10046. GGML_ASSERT(neq1 == N);
  10047. GGML_ASSERT(nek1 == N + P);
  10048. GGML_ASSERT(nev1 == D);
  10049. // dst cannot be transposed or permuted
  10050. GGML_ASSERT(nb0 == sizeof(float));
  10051. GGML_ASSERT(nb0 <= nb1);
  10052. GGML_ASSERT(nb1 <= nb2);
  10053. GGML_ASSERT(nb2 <= nb3);
  10054. if (params->type == GGML_TASK_INIT) {
  10055. return;
  10056. }
  10057. if (params->type == GGML_TASK_FINALIZE) {
  10058. return;
  10059. }
  10060. // parallelize by q rows using ggml_vec_dot_f32
  10061. // total rows in q
  10062. const int nr = neq1*neq2*neq3;
  10063. // rows per thread
  10064. const int dr = (nr + nth - 1)/nth;
  10065. // row range for this thread
  10066. const int ir0 = dr*ith;
  10067. const int ir1 = MIN(ir0 + dr, nr);
  10068. const float scale = 1.0f/sqrtf(D);
  10069. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10070. for (int ir = ir0; ir < ir1; ++ir) {
  10071. // q indices
  10072. const int iq3 = ir/(neq2*neq1);
  10073. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10074. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10075. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10076. for (int i = M; i < Mup; ++i) {
  10077. S[i] = -INFINITY;
  10078. }
  10079. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10080. for (int64_t ic = 0; ic < nek1; ++ic) {
  10081. // k indices
  10082. const int ik3 = iq3;
  10083. const int ik2 = iq2;
  10084. const int ik1 = ic;
  10085. // S indices
  10086. const int i1 = ik1;
  10087. ggml_vec_dot_f16(neq0,
  10088. S + i1,
  10089. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10090. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10091. }
  10092. } else {
  10093. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10094. // k indices
  10095. const int ik3 = iq3;
  10096. const int ik2 = iq2;
  10097. const int ik1 = ic;
  10098. // S indices
  10099. const int i1 = ik1;
  10100. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10101. S + i1,
  10102. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10103. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10104. }
  10105. }
  10106. // scale
  10107. ggml_vec_scale_f32(nek1, S, scale);
  10108. if (masked) {
  10109. for (int64_t i = P; i < M; i++) {
  10110. if (i > P + iq1) {
  10111. S[i] = -INFINITY;
  10112. }
  10113. }
  10114. }
  10115. // softmax
  10116. {
  10117. float max = -INFINITY;
  10118. ggml_vec_max_f32(M, &max, S);
  10119. ggml_float sum = 0.0;
  10120. {
  10121. #ifdef GGML_SOFT_MAX_ACCELERATE
  10122. max = -max;
  10123. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10124. vvexpf(S, S, &Mup);
  10125. ggml_vec_sum_f32(Mup, &sum, S);
  10126. #else
  10127. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10128. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10129. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10130. float * SS = S + i;
  10131. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10132. if (SS[j] == -INFINITY) {
  10133. SS[j] = 0.0f;
  10134. } else {
  10135. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10136. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10137. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10138. sump[j] += (ggml_float)val;
  10139. SS[j] = val;
  10140. }
  10141. }
  10142. }
  10143. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10144. sum += sump[i];
  10145. }
  10146. #endif
  10147. }
  10148. assert(sum > 0.0);
  10149. sum = 1.0/sum;
  10150. ggml_vec_scale_f32(M, S, sum);
  10151. #ifndef NDEBUG
  10152. for (int i = 0; i < M; ++i) {
  10153. assert(!isnan(S[i]));
  10154. assert(!isinf(S[i]));
  10155. }
  10156. #endif
  10157. }
  10158. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10159. for (int64_t i = 0; i < M; i++) {
  10160. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10161. }
  10162. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10163. for (int64_t ic = 0; ic < nev1; ++ic) {
  10164. // dst indices
  10165. const int i1 = iq1;
  10166. const int i2 = iq2;
  10167. const int i3 = iq3;
  10168. ggml_vec_dot_f16(nek1,
  10169. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10170. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10171. S16);
  10172. }
  10173. } else {
  10174. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10175. // dst indices
  10176. const int i1 = iq1;
  10177. const int i2 = iq2;
  10178. const int i3 = iq3;
  10179. ggml_vec_dot_f16_unroll(nek1, nbv1,
  10180. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10181. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10182. S16);
  10183. }
  10184. }
  10185. }
  10186. }
  10187. static void ggml_compute_forward_flash_attn(
  10188. const struct ggml_compute_params * params,
  10189. const struct ggml_tensor * q,
  10190. const struct ggml_tensor * k,
  10191. const struct ggml_tensor * v,
  10192. const bool masked,
  10193. struct ggml_tensor * dst) {
  10194. switch (q->type) {
  10195. case GGML_TYPE_F16:
  10196. {
  10197. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10198. } break;
  10199. case GGML_TYPE_F32:
  10200. {
  10201. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10202. } break;
  10203. default:
  10204. {
  10205. GGML_ASSERT(false);
  10206. } break;
  10207. }
  10208. }
  10209. // ggml_compute_forward_flash_ff
  10210. static void ggml_compute_forward_flash_ff_f16(
  10211. const struct ggml_compute_params * params,
  10212. const struct ggml_tensor * a, // F16
  10213. const struct ggml_tensor * b0, // F16 fc_w
  10214. const struct ggml_tensor * b1, // F32 fc_b
  10215. const struct ggml_tensor * c0, // F16 proj_w
  10216. const struct ggml_tensor * c1, // F32 proj_b
  10217. struct ggml_tensor * dst) {
  10218. int64_t t0 = ggml_perf_time_us();
  10219. UNUSED(t0);
  10220. const int64_t nea0 = a->ne[0];
  10221. const int64_t nea1 = a->ne[1];
  10222. const int64_t nea2 = a->ne[2];
  10223. const int64_t nea3 = a->ne[3];
  10224. const int64_t neb00 = b0->ne[0];
  10225. const int64_t neb01 = b0->ne[1];
  10226. //const int64_t neb02 = b0->ne[2];
  10227. //const int64_t neb03 = b0->ne[3];
  10228. const int64_t neb10 = b1->ne[0];
  10229. const int64_t neb11 = b1->ne[1];
  10230. //const int64_t neb12 = b1->ne[2];
  10231. //const int64_t neb13 = b1->ne[3];
  10232. const int64_t nec00 = c0->ne[0];
  10233. const int64_t nec01 = c0->ne[1];
  10234. //const int64_t nec02 = c0->ne[2];
  10235. //const int64_t nec03 = c0->ne[3];
  10236. const int64_t nec10 = c1->ne[0];
  10237. const int64_t nec11 = c1->ne[1];
  10238. //const int64_t nec12 = c1->ne[2];
  10239. //const int64_t nec13 = c1->ne[3];
  10240. const int64_t ne0 = dst->ne[0];
  10241. const int64_t ne1 = dst->ne[1];
  10242. const int64_t ne2 = dst->ne[2];
  10243. //const int64_t ne3 = dst->ne[3];
  10244. const int nba0 = a->nb[0];
  10245. const int nba1 = a->nb[1];
  10246. const int nba2 = a->nb[2];
  10247. const int nba3 = a->nb[3];
  10248. const int nbb00 = b0->nb[0];
  10249. const int nbb01 = b0->nb[1];
  10250. const int nbb02 = b0->nb[2];
  10251. const int nbb03 = b0->nb[3];
  10252. const int nbb10 = b1->nb[0];
  10253. //const int nbb11 = b1->nb[1];
  10254. //const int nbb12 = b1->nb[2];
  10255. //const int nbb13 = b1->nb[3];
  10256. const int nbc00 = c0->nb[0];
  10257. const int nbc01 = c0->nb[1];
  10258. const int nbc02 = c0->nb[2];
  10259. const int nbc03 = c0->nb[3];
  10260. const int nbc10 = c1->nb[0];
  10261. //const int nbc11 = c1->nb[1];
  10262. //const int nbc12 = c1->nb[2];
  10263. //const int nbc13 = c1->nb[3];
  10264. const int nb0 = dst->nb[0];
  10265. const int nb1 = dst->nb[1];
  10266. const int nb2 = dst->nb[2];
  10267. const int nb3 = dst->nb[3];
  10268. const int ith = params->ith;
  10269. const int nth = params->nth;
  10270. const int64_t D = nea0;
  10271. //const int64_t N = nea1;
  10272. const int64_t M = neb01;
  10273. GGML_ASSERT(ne0 == nea0);
  10274. GGML_ASSERT(ne1 == nea1);
  10275. GGML_ASSERT(ne2 == nea2);
  10276. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10277. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10278. GGML_ASSERT(nbb10 == sizeof(float));
  10279. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10280. GGML_ASSERT(nbc10 == sizeof(float));
  10281. GGML_ASSERT(neb00 == D);
  10282. GGML_ASSERT(neb01 == M);
  10283. GGML_ASSERT(neb10 == M);
  10284. GGML_ASSERT(neb11 == 1);
  10285. GGML_ASSERT(nec00 == M);
  10286. GGML_ASSERT(nec01 == D);
  10287. GGML_ASSERT(nec10 == D);
  10288. GGML_ASSERT(nec11 == 1);
  10289. // dst cannot be transposed or permuted
  10290. GGML_ASSERT(nb0 == sizeof(float));
  10291. GGML_ASSERT(nb0 <= nb1);
  10292. GGML_ASSERT(nb1 <= nb2);
  10293. GGML_ASSERT(nb2 <= nb3);
  10294. if (params->type == GGML_TASK_INIT) {
  10295. return;
  10296. }
  10297. if (params->type == GGML_TASK_FINALIZE) {
  10298. return;
  10299. }
  10300. // parallelize by a rows using ggml_vec_dot_f32
  10301. // total rows in a
  10302. const int nr = nea1*nea2*nea3;
  10303. // rows per thread
  10304. const int dr = (nr + nth - 1)/nth;
  10305. // row range for this thread
  10306. const int ir0 = dr*ith;
  10307. const int ir1 = MIN(ir0 + dr, nr);
  10308. for (int ir = ir0; ir < ir1; ++ir) {
  10309. // a indices
  10310. const int ia3 = ir/(nea2*nea1);
  10311. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10312. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10313. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10314. for (int64_t ic = 0; ic < neb01; ++ic) {
  10315. // b0 indices
  10316. const int ib03 = ia3;
  10317. const int ib02 = ia2;
  10318. const int ib01 = ic;
  10319. // S indices
  10320. const int i1 = ib01;
  10321. ggml_vec_dot_f16(nea0,
  10322. S + i1,
  10323. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10324. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10325. }
  10326. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10327. //ggml_vec_gelu_f32(neb01, S, S);
  10328. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10329. for (int64_t i = 0; i < M; i++) {
  10330. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10331. }
  10332. ggml_vec_gelu_f16(neb01, S16, S16);
  10333. {
  10334. // dst indices
  10335. const int i1 = ia1;
  10336. const int i2 = ia2;
  10337. const int i3 = ia3;
  10338. for (int64_t ic = 0; ic < nec01; ++ic) {
  10339. ggml_vec_dot_f16(neb01,
  10340. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10341. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10342. S16);
  10343. }
  10344. ggml_vec_add_f32(nec01,
  10345. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10346. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10347. (float *) c1->data);
  10348. }
  10349. }
  10350. }
  10351. static void ggml_compute_forward_flash_ff(
  10352. const struct ggml_compute_params * params,
  10353. const struct ggml_tensor * a,
  10354. const struct ggml_tensor * b0,
  10355. const struct ggml_tensor * b1,
  10356. const struct ggml_tensor * c0,
  10357. const struct ggml_tensor * c1,
  10358. struct ggml_tensor * dst) {
  10359. switch (b0->type) {
  10360. case GGML_TYPE_F16:
  10361. {
  10362. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10363. } break;
  10364. case GGML_TYPE_F32:
  10365. {
  10366. GGML_ASSERT(false); // TODO
  10367. } break;
  10368. default:
  10369. {
  10370. GGML_ASSERT(false);
  10371. } break;
  10372. }
  10373. }
  10374. // ggml_compute_forward_map_unary
  10375. static void ggml_compute_forward_map_unary_f32(
  10376. const struct ggml_compute_params * params,
  10377. const struct ggml_tensor * src0,
  10378. struct ggml_tensor * dst,
  10379. const ggml_unary_op_f32_t fun) {
  10380. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10381. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10382. return;
  10383. }
  10384. const int n = ggml_nrows(src0);
  10385. const int nc = src0->ne[0];
  10386. assert( dst->nb[0] == sizeof(float));
  10387. assert(src0->nb[0] == sizeof(float));
  10388. for (int i = 0; i < n; i++) {
  10389. fun(nc,
  10390. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10391. (float *) ((char *) src0->data + i*(src0->nb[1])));
  10392. }
  10393. }
  10394. static void ggml_compute_forward_map_unary(
  10395. const struct ggml_compute_params * params,
  10396. const struct ggml_tensor * src0,
  10397. struct ggml_tensor * dst,
  10398. const ggml_unary_op_f32_t fun) {
  10399. switch (src0->type) {
  10400. case GGML_TYPE_F32:
  10401. {
  10402. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  10403. } break;
  10404. default:
  10405. {
  10406. GGML_ASSERT(false);
  10407. } break;
  10408. }
  10409. }
  10410. // ggml_compute_forward_map_binary
  10411. static void ggml_compute_forward_map_binary_f32(
  10412. const struct ggml_compute_params * params,
  10413. const struct ggml_tensor * src0,
  10414. const struct ggml_tensor * src1,
  10415. struct ggml_tensor * dst,
  10416. const ggml_binary_op_f32_t fun) {
  10417. assert(params->ith == 0);
  10418. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  10419. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10420. return;
  10421. }
  10422. const int n = ggml_nrows(src0);
  10423. const int nc = src0->ne[0];
  10424. assert( dst->nb[0] == sizeof(float));
  10425. assert(src0->nb[0] == sizeof(float));
  10426. assert(src1->nb[0] == sizeof(float));
  10427. for (int i = 0; i < n; i++) {
  10428. fun(nc,
  10429. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10430. (float *) ((char *) src0->data + i*(src0->nb[1])),
  10431. (float *) ((char *) src1->data + i*(src1->nb[1])));
  10432. }
  10433. }
  10434. static void ggml_compute_forward_map_binary(
  10435. const struct ggml_compute_params * params,
  10436. const struct ggml_tensor * src0,
  10437. const struct ggml_tensor * src1,
  10438. struct ggml_tensor * dst,
  10439. const ggml_binary_op_f32_t fun) {
  10440. switch (src0->type) {
  10441. case GGML_TYPE_F32:
  10442. {
  10443. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  10444. } break;
  10445. default:
  10446. {
  10447. GGML_ASSERT(false);
  10448. } break;
  10449. }
  10450. }
  10451. /////////////////////////////////
  10452. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  10453. GGML_ASSERT(params);
  10454. switch (tensor->op) {
  10455. case GGML_OP_DUP:
  10456. {
  10457. ggml_compute_forward_dup(params, tensor->src0, tensor);
  10458. } break;
  10459. case GGML_OP_ADD:
  10460. {
  10461. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  10462. } break;
  10463. case GGML_OP_ADD1:
  10464. {
  10465. ggml_compute_forward_add1(params, tensor->src0, tensor->src1, tensor);
  10466. } break;
  10467. case GGML_OP_ACC:
  10468. {
  10469. ggml_compute_forward_acc(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10470. } break;
  10471. case GGML_OP_SUB:
  10472. {
  10473. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  10474. } break;
  10475. case GGML_OP_MUL:
  10476. {
  10477. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  10478. } break;
  10479. case GGML_OP_DIV:
  10480. {
  10481. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  10482. } break;
  10483. case GGML_OP_SQR:
  10484. {
  10485. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  10486. } break;
  10487. case GGML_OP_SQRT:
  10488. {
  10489. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  10490. } break;
  10491. case GGML_OP_LOG:
  10492. {
  10493. ggml_compute_forward_log(params, tensor->src0, tensor);
  10494. } break;
  10495. case GGML_OP_SUM:
  10496. {
  10497. ggml_compute_forward_sum(params, tensor->src0, tensor);
  10498. } break;
  10499. case GGML_OP_SUM_ROWS:
  10500. {
  10501. ggml_compute_forward_sum_rows(params, tensor->src0, tensor);
  10502. } break;
  10503. case GGML_OP_MEAN:
  10504. {
  10505. ggml_compute_forward_mean(params, tensor->src0, tensor);
  10506. } break;
  10507. case GGML_OP_REPEAT:
  10508. {
  10509. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  10510. } break;
  10511. case GGML_OP_ABS:
  10512. {
  10513. ggml_compute_forward_abs(params, tensor->src0, tensor);
  10514. } break;
  10515. case GGML_OP_SGN:
  10516. {
  10517. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  10518. } break;
  10519. case GGML_OP_NEG:
  10520. {
  10521. ggml_compute_forward_neg(params, tensor->src0, tensor);
  10522. } break;
  10523. case GGML_OP_STEP:
  10524. {
  10525. ggml_compute_forward_step(params, tensor->src0, tensor);
  10526. } break;
  10527. case GGML_OP_RELU:
  10528. {
  10529. ggml_compute_forward_relu(params, tensor->src0, tensor);
  10530. } break;
  10531. case GGML_OP_GELU:
  10532. {
  10533. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  10534. } break;
  10535. case GGML_OP_SILU:
  10536. {
  10537. ggml_compute_forward_silu(params, tensor->src0, tensor);
  10538. } break;
  10539. case GGML_OP_SILU_BACK:
  10540. {
  10541. ggml_compute_forward_silu_back(params, tensor->src0, tensor->src1, tensor);
  10542. } break;
  10543. case GGML_OP_NORM:
  10544. {
  10545. ggml_compute_forward_norm(params, tensor->src0, tensor);
  10546. } break;
  10547. case GGML_OP_RMS_NORM:
  10548. {
  10549. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  10550. } break;
  10551. case GGML_OP_RMS_NORM_BACK:
  10552. {
  10553. ggml_compute_forward_rms_norm_back(params, tensor->src0, tensor->src1, tensor);
  10554. } break;
  10555. case GGML_OP_MUL_MAT:
  10556. {
  10557. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  10558. } break;
  10559. case GGML_OP_SCALE:
  10560. {
  10561. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  10562. } break;
  10563. case GGML_OP_SET:
  10564. {
  10565. ggml_compute_forward_set(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10566. } break;
  10567. case GGML_OP_CPY:
  10568. {
  10569. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  10570. } break;
  10571. case GGML_OP_CONT:
  10572. {
  10573. ggml_compute_forward_cont(params, tensor->src0, tensor);
  10574. } break;
  10575. case GGML_OP_RESHAPE:
  10576. {
  10577. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  10578. } break;
  10579. case GGML_OP_VIEW:
  10580. {
  10581. ggml_compute_forward_view(params, tensor->src0);
  10582. } break;
  10583. case GGML_OP_PERMUTE:
  10584. {
  10585. ggml_compute_forward_permute(params, tensor->src0);
  10586. } break;
  10587. case GGML_OP_TRANSPOSE:
  10588. {
  10589. ggml_compute_forward_transpose(params, tensor->src0);
  10590. } break;
  10591. case GGML_OP_GET_ROWS:
  10592. {
  10593. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  10594. } break;
  10595. case GGML_OP_GET_ROWS_BACK:
  10596. {
  10597. ggml_compute_forward_get_rows_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10598. } break;
  10599. case GGML_OP_DIAG:
  10600. {
  10601. ggml_compute_forward_diag(params, tensor->src0, tensor);
  10602. } break;
  10603. case GGML_OP_DIAG_MASK_INF:
  10604. {
  10605. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  10606. } break;
  10607. case GGML_OP_DIAG_MASK_ZERO:
  10608. {
  10609. ggml_compute_forward_diag_mask_zero(params, tensor->src0, tensor->src1, tensor);
  10610. } break;
  10611. case GGML_OP_SOFT_MAX:
  10612. {
  10613. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  10614. } break;
  10615. case GGML_OP_ROPE:
  10616. {
  10617. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  10618. } break;
  10619. case GGML_OP_ROPE_BACK:
  10620. {
  10621. ggml_compute_forward_rope_back(params, tensor->src0, tensor->src1, tensor);
  10622. } break;
  10623. case GGML_OP_ALIBI:
  10624. {
  10625. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  10626. } break;
  10627. case GGML_OP_CLAMP:
  10628. {
  10629. ggml_compute_forward_clamp(params, tensor->src0, tensor->src1, tensor);
  10630. } break;
  10631. case GGML_OP_CONV_1D_1S:
  10632. {
  10633. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  10634. } break;
  10635. case GGML_OP_CONV_1D_2S:
  10636. {
  10637. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  10638. } break;
  10639. case GGML_OP_FLASH_ATTN:
  10640. {
  10641. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  10642. GGML_ASSERT(t == 0 || t == 1);
  10643. bool masked = t != 0;
  10644. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  10645. } break;
  10646. case GGML_OP_FLASH_FF:
  10647. {
  10648. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  10649. } break;
  10650. case GGML_OP_MAP_UNARY:
  10651. {
  10652. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  10653. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  10654. }
  10655. break;
  10656. case GGML_OP_MAP_BINARY:
  10657. {
  10658. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  10659. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  10660. }
  10661. break;
  10662. case GGML_OP_NONE:
  10663. {
  10664. // nop
  10665. } break;
  10666. case GGML_OP_COUNT:
  10667. {
  10668. GGML_ASSERT(false);
  10669. } break;
  10670. }
  10671. }
  10672. ////////////////////////////////////////////////////////////////////////////////
  10673. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  10674. struct ggml_tensor * src0 = tensor->src0;
  10675. struct ggml_tensor * src1 = tensor->src1;
  10676. switch (tensor->op) {
  10677. case GGML_OP_DUP:
  10678. {
  10679. if (src0->grad) {
  10680. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10681. }
  10682. } break;
  10683. case GGML_OP_ADD:
  10684. {
  10685. if (src0->grad) {
  10686. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10687. }
  10688. if (src1->grad) {
  10689. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  10690. }
  10691. } break;
  10692. case GGML_OP_ADD1:
  10693. {
  10694. if (src0->grad) {
  10695. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10696. }
  10697. if (src1->grad) {
  10698. src1->grad = ggml_add_impl(ctx,
  10699. src1->grad,
  10700. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  10701. inplace);
  10702. }
  10703. } break;
  10704. case GGML_OP_ACC:
  10705. {
  10706. if (src0->grad) {
  10707. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10708. }
  10709. if (src1->grad) {
  10710. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  10711. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  10712. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  10713. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  10714. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  10715. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  10716. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  10717. tensor->grad,
  10718. src1->grad->ne[0],
  10719. src1->grad->ne[1],
  10720. src1->grad->ne[2],
  10721. src1->grad->ne[3],
  10722. nb1, nb2, nb3, offset);
  10723. src1->grad =
  10724. ggml_add_impl(ctx,
  10725. src1->grad,
  10726. ggml_reshape(ctx,
  10727. ggml_cont(ctx, tensor_grad_view),
  10728. src1->grad),
  10729. inplace);
  10730. }
  10731. } break;
  10732. case GGML_OP_SUB:
  10733. {
  10734. if (src0->grad) {
  10735. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10736. }
  10737. if (src1->grad) {
  10738. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  10739. }
  10740. } break;
  10741. case GGML_OP_MUL:
  10742. {
  10743. if (src0->grad) {
  10744. src0->grad =
  10745. ggml_add_impl(ctx,
  10746. src0->grad,
  10747. ggml_mul(ctx, src1, tensor->grad),
  10748. inplace);
  10749. }
  10750. if (src1->grad) {
  10751. src1->grad =
  10752. ggml_add_impl(ctx,
  10753. src1->grad,
  10754. ggml_mul(ctx, src0, tensor->grad),
  10755. inplace);
  10756. }
  10757. } break;
  10758. case GGML_OP_DIV:
  10759. {
  10760. if (src0->grad) {
  10761. src0->grad =
  10762. ggml_add_impl(ctx,
  10763. src0->grad,
  10764. ggml_div(ctx, tensor->grad, src1),
  10765. inplace);
  10766. }
  10767. if (src1->grad) {
  10768. src1->grad =
  10769. ggml_sub_impl(ctx,
  10770. src1->grad,
  10771. ggml_mul(ctx,
  10772. tensor->grad,
  10773. ggml_div(ctx, tensor, src1)),
  10774. inplace);
  10775. }
  10776. } break;
  10777. case GGML_OP_SQR:
  10778. {
  10779. if (src0->grad) {
  10780. src0->grad =
  10781. ggml_add_impl(ctx,
  10782. src0->grad,
  10783. ggml_scale(ctx,
  10784. ggml_mul(ctx, src0, tensor->grad),
  10785. ggml_new_f32(ctx, 2.0f)),
  10786. inplace);
  10787. }
  10788. } break;
  10789. case GGML_OP_SQRT:
  10790. {
  10791. if (src0->grad) {
  10792. src0->grad =
  10793. ggml_add_impl(ctx,
  10794. src0->grad,
  10795. ggml_mul(ctx,
  10796. tensor->grad, // this was not catched by test_grad because in test_grad tensor->grad is 1
  10797. ggml_div(ctx,
  10798. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  10799. tensor)),
  10800. inplace);
  10801. }
  10802. } break;
  10803. case GGML_OP_LOG:
  10804. {
  10805. if (src0->grad) {
  10806. src0->grad =
  10807. ggml_add_impl(ctx,
  10808. src0->grad,
  10809. ggml_div(ctx,
  10810. tensor->grad,
  10811. src0),
  10812. inplace);
  10813. }
  10814. } break;
  10815. case GGML_OP_SUM:
  10816. {
  10817. if (src0->grad) {
  10818. src0->grad =
  10819. ggml_add1_impl(ctx,
  10820. src0->grad,
  10821. tensor->grad,
  10822. inplace);
  10823. }
  10824. } break;
  10825. case GGML_OP_SUM_ROWS:
  10826. {
  10827. if (src0->grad) {
  10828. src0->grad =
  10829. ggml_add_impl(ctx,
  10830. src0->grad,
  10831. ggml_repeat(ctx,
  10832. tensor->grad,
  10833. src0->grad),
  10834. inplace);
  10835. }
  10836. } break;
  10837. case GGML_OP_MEAN:
  10838. {
  10839. GGML_ASSERT(false); // TODO: implement
  10840. } break;
  10841. case GGML_OP_REPEAT:
  10842. {
  10843. // necessary for llama
  10844. if (src0->grad) {
  10845. GGML_ASSERT(src0->n_dims == 1 || src0->n_dims == 2);
  10846. const int nc = tensor->ne[0];
  10847. const int nr = tensor->ne[1];
  10848. const int nc0 = src0->ne[0];
  10849. const int nr0 = src0->ne[1];
  10850. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  10851. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  10852. // tensor->grad [nc,nr,1,1]
  10853. // reshape [nc0,nc/nc0,nr0,nr/nr0]
  10854. // permute [nc0,nr0,nc/nc0,nr/nr0]
  10855. // substitute [nc0,nr0,ncr,nrr]
  10856. // reshape [nc0*nr0,ncr*nrr,1,1]
  10857. // transpose [ncr*nrr,nc0*nr0,1,1]
  10858. // sum rows [1,nc0*nr0,1,1]
  10859. // transpose [nc0*nr0,1,1]
  10860. // reshape [nc0,nr0,1,1] reshape_1d or reshape_2d
  10861. // add to src0->grad
  10862. int64_t ne[4] = {nc0,ncr,nr0,nrr};
  10863. struct ggml_tensor* F00 = tensor->grad;
  10864. struct ggml_tensor* F01 = ggml_reshape (ctx, F00, ggml_new_tensor(ctx,tensor->grad->type,4,ne));
  10865. struct ggml_tensor* F02 = ggml_permute (ctx, F01, 0,2,1,3);
  10866. struct ggml_tensor* F03 = ggml_cont (ctx, F02);
  10867. struct ggml_tensor* F04 = ggml_reshape_2d(ctx, F03, nc0*nr0, ncr*nrr);
  10868. struct ggml_tensor* F05 = ggml_transpose (ctx, F04);
  10869. struct ggml_tensor* F06 = ggml_cont (ctx, F05);
  10870. struct ggml_tensor* F07 = ggml_sum_rows (ctx, F06);
  10871. struct ggml_tensor* F08 = ggml_transpose (ctx, F07);
  10872. struct ggml_tensor* F09 = ggml_cont (ctx, F08);
  10873. struct ggml_tensor* F10 = ggml_reshape (ctx, F09, src0->grad);
  10874. src0->grad =
  10875. ggml_add_impl(ctx,
  10876. src0->grad,
  10877. F10,
  10878. inplace);
  10879. }
  10880. } break;
  10881. case GGML_OP_ABS:
  10882. {
  10883. if (src0->grad) {
  10884. src0->grad =
  10885. ggml_add_impl(ctx,
  10886. src0->grad,
  10887. ggml_mul(ctx,
  10888. ggml_sgn(ctx, src0),
  10889. tensor->grad),
  10890. inplace);
  10891. }
  10892. } break;
  10893. case GGML_OP_SGN:
  10894. {
  10895. if (src0->grad) {
  10896. // noop
  10897. }
  10898. } break;
  10899. case GGML_OP_NEG:
  10900. {
  10901. if (src0->grad) {
  10902. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  10903. }
  10904. } break;
  10905. case GGML_OP_STEP:
  10906. {
  10907. if (src0->grad) {
  10908. // noop
  10909. }
  10910. } break;
  10911. case GGML_OP_RELU:
  10912. {
  10913. if (src0->grad) {
  10914. src0->grad = ggml_sub_impl(ctx,
  10915. src0->grad,
  10916. ggml_mul(ctx,
  10917. ggml_step(ctx, src0),
  10918. tensor->grad),
  10919. inplace);
  10920. }
  10921. } break;
  10922. case GGML_OP_GELU:
  10923. {
  10924. GGML_ASSERT(false); // TODO: not implemented
  10925. } break;
  10926. case GGML_OP_ALIBI:
  10927. {
  10928. GGML_ASSERT(false); // TODO: not implemented
  10929. } break;
  10930. case GGML_OP_CLAMP:
  10931. {
  10932. GGML_ASSERT(false); // TODO: not implemented
  10933. } break;
  10934. case GGML_OP_SILU:
  10935. {
  10936. // necessary for llama
  10937. if (src0->grad) {
  10938. src0->grad = ggml_add_impl(ctx,
  10939. src0->grad,
  10940. ggml_silu_back(ctx, src0, tensor->grad),
  10941. inplace);
  10942. }
  10943. } break;
  10944. case GGML_OP_SILU_BACK:
  10945. {
  10946. GGML_ASSERT(false); // TODO: not implemented
  10947. } break;
  10948. case GGML_OP_NORM:
  10949. {
  10950. GGML_ASSERT(false); // TODO: not implemented
  10951. } break;
  10952. case GGML_OP_RMS_NORM:
  10953. {
  10954. // necessary for llama
  10955. if (src0->grad) {
  10956. src0->grad = ggml_add_impl(ctx,
  10957. src0->grad,
  10958. ggml_rms_norm_back(ctx, src0, tensor->grad),
  10959. inplace);
  10960. }
  10961. } break;
  10962. case GGML_OP_RMS_NORM_BACK:
  10963. {
  10964. GGML_ASSERT(false); // TODO: not implemented
  10965. } break;
  10966. case GGML_OP_MUL_MAT:
  10967. {
  10968. // https://cs231n.github.io/optimization-2/#staged
  10969. // # forward pass
  10970. // s0 = np.random.randn(5, 10)
  10971. // s1 = np.random.randn(10, 3)
  10972. // t = s0.dot(s1)
  10973. // # now suppose we had the gradient on t from above in the circuit
  10974. // dt = np.random.randn(*t.shape) # same shape as t
  10975. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  10976. // ds1 = t.T.dot(dt)
  10977. // tensor.shape [m,p]
  10978. // src0.shape [n,m]
  10979. // src1.shape [n,p]
  10980. // necessary for llama
  10981. if (src0->grad) {
  10982. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  10983. src0->grad =
  10984. ggml_add_impl(ctx,
  10985. src0->grad,
  10986. // ds0 = dt.dot(s1.T)
  10987. // ggml_out_prod(ctx, // [n,m]
  10988. // src1, // [n,p]
  10989. // tensor->grad), // [m,p]
  10990. // for now just using A*B==(B.T*A.T).T
  10991. ggml_cont(ctx, // [n,m]
  10992. ggml_transpose(ctx, // [n,m]
  10993. ggml_mul_mat(ctx, // [m,n]
  10994. ggml_cont(ctx, // [p,m]
  10995. ggml_transpose(ctx, // [p,m]
  10996. tensor->grad)), // [m,p]
  10997. ggml_cont(ctx, // [p,n]
  10998. ggml_transpose(ctx, // [p,n]
  10999. src1))))), // [n,p]
  11000. inplace);
  11001. }
  11002. if (src1->grad) {
  11003. src1->grad =
  11004. ggml_add_impl(ctx,
  11005. src1->grad,
  11006. // ds1 = s0.T.dot(dt):
  11007. ggml_mul_mat(ctx, // [n,p]
  11008. ggml_cont(ctx, // [m,n]
  11009. ggml_transpose(ctx, src0)), // [m,n]
  11010. tensor->grad), // [m,p]
  11011. inplace);
  11012. }
  11013. } break;
  11014. case GGML_OP_SCALE:
  11015. {
  11016. // necessary for llama
  11017. if (src0->grad) {
  11018. src0->grad =
  11019. ggml_add_impl(ctx,
  11020. src0->grad,
  11021. ggml_scale_impl(ctx, tensor->grad, src1, false),
  11022. inplace);
  11023. }
  11024. if (src1->grad) {
  11025. src1->grad =
  11026. ggml_add_impl(ctx,
  11027. src1->grad,
  11028. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  11029. inplace);
  11030. }
  11031. } break;
  11032. case GGML_OP_SET:
  11033. {
  11034. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  11035. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  11036. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  11037. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  11038. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  11039. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  11040. struct ggml_tensor * tensor_grad_view = NULL;
  11041. if (src0->grad || src1->grad) {
  11042. GGML_ASSERT(src0->type == tensor->type);
  11043. GGML_ASSERT(tensor->grad->type == tensor->type);
  11044. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  11045. tensor_grad_view = ggml_view_4d(ctx,
  11046. tensor->grad,
  11047. src1->grad->ne[0],
  11048. src1->grad->ne[1],
  11049. src1->grad->ne[2],
  11050. src1->grad->ne[3],
  11051. nb1, nb2, nb3, offset);
  11052. }
  11053. if (src0->grad) {
  11054. src0->grad = ggml_add_impl(ctx,
  11055. src0->grad,
  11056. ggml_acc_impl(ctx,
  11057. tensor->grad,
  11058. ggml_neg(ctx, tensor_grad_view),
  11059. nb1, nb2, nb3, offset, false),
  11060. inplace);
  11061. }
  11062. if (src1->grad) {
  11063. src1->grad =
  11064. ggml_add_impl(ctx,
  11065. src1->grad,
  11066. ggml_reshape(ctx,
  11067. ggml_cont(ctx, tensor_grad_view),
  11068. src1->grad),
  11069. inplace);
  11070. }
  11071. } break;
  11072. case GGML_OP_CPY:
  11073. {
  11074. // necessary for llama
  11075. // cpy overwrites value of src1 by src0 and returns view(src1)
  11076. // the overwriting is mathematically equivalent to:
  11077. // tensor = src0 * 1 + src1 * 0
  11078. if (src0->grad) {
  11079. // dsrc0 = dtensor * 1
  11080. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  11081. }
  11082. if (src1->grad) {
  11083. // dsrc1 = dtensor * 0 -> noop
  11084. }
  11085. } break;
  11086. case GGML_OP_CONT:
  11087. {
  11088. // same as cpy
  11089. if (src0->grad) {
  11090. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  11091. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  11092. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  11093. }
  11094. } break;
  11095. case GGML_OP_RESHAPE:
  11096. {
  11097. // necessary for llama
  11098. if (src0->grad) {
  11099. src0->grad =
  11100. ggml_add_impl(ctx, src0->grad,
  11101. ggml_reshape(ctx, tensor->grad, src0->grad),
  11102. inplace);
  11103. }
  11104. } break;
  11105. case GGML_OP_VIEW:
  11106. {
  11107. // necessary for llama
  11108. if (src0->grad) {
  11109. size_t offset;
  11110. memcpy(&offset, tensor->padding, sizeof(offset));
  11111. size_t nb1 = tensor->nb[1];
  11112. size_t nb2 = tensor->nb[2];
  11113. size_t nb3 = tensor->nb[3];
  11114. if (src0->type != src0->grad->type) {
  11115. // gradient is typically F32, but src0 could be other type
  11116. size_t ng = ggml_element_size(src0->grad);
  11117. size_t n0 = ggml_element_size(src0);
  11118. GGML_ASSERT(offset % n0 == 0);
  11119. GGML_ASSERT(nb1 % n0 == 0);
  11120. GGML_ASSERT(nb2 % n0 == 0);
  11121. GGML_ASSERT(nb3 % n0 == 0);
  11122. offset = (offset / n0) * ng;
  11123. nb1 = (nb1 / n0) * ng;
  11124. nb2 = (nb2 / n0) * ng;
  11125. nb3 = (nb3 / n0) * ng;
  11126. }
  11127. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  11128. }
  11129. } break;
  11130. case GGML_OP_PERMUTE:
  11131. {
  11132. // necessary for llama
  11133. if (src0->grad) {
  11134. int axis0 = tensor->padding[0] & 0x3;
  11135. int axis1 = tensor->padding[1] & 0x3;
  11136. int axis2 = tensor->padding[2] & 0x3;
  11137. int axis3 = tensor->padding[3] & 0x3;
  11138. int axes_backward[4] = {0,0,0,0};
  11139. axes_backward[axis0] = 0;
  11140. axes_backward[axis1] = 1;
  11141. axes_backward[axis2] = 2;
  11142. axes_backward[axis3] = 3;
  11143. src0->grad =
  11144. ggml_add_impl(ctx, src0->grad,
  11145. ggml_permute(ctx,
  11146. tensor->grad,
  11147. axes_backward[0],
  11148. axes_backward[1],
  11149. axes_backward[2],
  11150. axes_backward[3]),
  11151. inplace);
  11152. }
  11153. } break;
  11154. case GGML_OP_TRANSPOSE:
  11155. {
  11156. // necessary for llama
  11157. if (src0->grad) {
  11158. src0->grad =
  11159. ggml_add_impl(ctx, src0->grad,
  11160. ggml_transpose(ctx, tensor->grad),
  11161. inplace);
  11162. }
  11163. } break;
  11164. case GGML_OP_GET_ROWS:
  11165. {
  11166. // necessary for llama (only for tokenizer)
  11167. if (src0->grad) {
  11168. src0->grad =
  11169. ggml_add_impl(ctx, src0->grad,
  11170. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  11171. inplace);
  11172. }
  11173. if (src1->grad) {
  11174. // noop
  11175. }
  11176. } break;
  11177. case GGML_OP_GET_ROWS_BACK:
  11178. {
  11179. GGML_ASSERT(false); // TODO: not implemented
  11180. } break;
  11181. case GGML_OP_DIAG:
  11182. {
  11183. GGML_ASSERT(false); // TODO: not implemented
  11184. } break;
  11185. case GGML_OP_DIAG_MASK_INF:
  11186. {
  11187. // necessary for llama
  11188. if (src0->grad) {
  11189. assert(src1->type == GGML_TYPE_I32);
  11190. assert(ggml_nelements(src1) == 2);
  11191. const int n_past = ((int32_t *) src1->data)[0];
  11192. src0->grad =
  11193. ggml_add_impl(ctx, src0->grad,
  11194. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  11195. inplace);
  11196. }
  11197. if (src1->grad) {
  11198. // noop
  11199. }
  11200. } break;
  11201. case GGML_OP_DIAG_MASK_ZERO:
  11202. {
  11203. // necessary for llama
  11204. if (src0->grad) {
  11205. assert(src1->type == GGML_TYPE_I32);
  11206. assert(ggml_nelements(src1) == 2);
  11207. const int n_past = ((int32_t *) src1->data)[0];
  11208. src0->grad =
  11209. ggml_add_impl(ctx, src0->grad,
  11210. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  11211. inplace);
  11212. }
  11213. if (src1->grad) {
  11214. // noop
  11215. }
  11216. } break;
  11217. case GGML_OP_SOFT_MAX:
  11218. {
  11219. // necessary for llama
  11220. if (src0->grad) {
  11221. // y = softmax(x)
  11222. //
  11223. // Jii = yi - yi*yi
  11224. // Jij = -yi*yj
  11225. // J = diag(y)-y.*y
  11226. // dx = J * dy
  11227. // dxk = sum(Jkj * dyk)
  11228. int64_t ne2[4] = {
  11229. tensor->ne[0],
  11230. 1,
  11231. tensor->ne[1]*tensor->ne[2],
  11232. tensor->ne[3]
  11233. };
  11234. struct ggml_tensor * tensor2 = ggml_cont(ctx,
  11235. ggml_reshape_4d(ctx,
  11236. ggml_cont(ctx, tensor),
  11237. ne2[0], ne2[1], ne2[2], ne2[3]));
  11238. struct ggml_tensor * grad2 = ggml_cont(ctx,
  11239. ggml_reshape_4d(ctx,
  11240. ggml_cont(ctx, tensor->grad),
  11241. ne2[0], ne2[1], ne2[2], ne2[3]));
  11242. struct ggml_tensor * tensor2_t = ggml_cont(ctx, // [1,ne0,ne1*ne2,ne3]
  11243. ggml_permute(ctx, // [1,ne0,ne1*ne2,ne3]
  11244. tensor2, // [ne0,1,ne1*ne2,ne3]
  11245. 1, 0, 2, 3));
  11246. src0->grad =
  11247. ggml_add_impl(ctx,
  11248. src0->grad, // [ne0,ne1,ne2,ne3]
  11249. ggml_reshape(ctx, // [ne0,ne1,ne2,ne3]
  11250. ggml_mul_mat(ctx, // [ne0,1,ne1*ne2,ne3]
  11251. ggml_sub(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11252. ggml_diag(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11253. tensor2), // [ne0,1,ne1*ne2,ne3]
  11254. ggml_mul_mat(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11255. tensor2_t, // [1,ne0,ne1*ne2,ne3]
  11256. tensor2_t)), // [1,ne0,ne1*ne2,ne3]
  11257. grad2), // [ne0,1,ne1*ne2,ne3]
  11258. src0->grad),
  11259. inplace);
  11260. }
  11261. } break;
  11262. case GGML_OP_ROPE:
  11263. {
  11264. // necessary for llama
  11265. if (src0->grad) {
  11266. assert(src1->type == GGML_TYPE_I32);
  11267. assert(ggml_nelements(src1) == 3);
  11268. const int n_past = ((int32_t *) src1->data)[0];
  11269. const int n_dims = ((int32_t *) src1->data)[1];
  11270. const int mode = ((int32_t *) src1->data)[2];
  11271. src0->grad = ggml_add_impl(ctx,
  11272. src0->grad,
  11273. ggml_rope_back(ctx,
  11274. tensor->grad,
  11275. n_past,
  11276. n_dims,
  11277. mode),
  11278. inplace);
  11279. }
  11280. if (src1->grad) {
  11281. // noop
  11282. }
  11283. } break;
  11284. case GGML_OP_ROPE_BACK:
  11285. {
  11286. if (src0->grad) {
  11287. assert(src1->type == GGML_TYPE_I32);
  11288. assert(ggml_nelements(src1) == 3);
  11289. const int n_past = ((int32_t *) src1->data)[0];
  11290. const int n_dims = ((int32_t *) src1->data)[1];
  11291. const int mode = ((int32_t *) src1->data)[2];
  11292. src0->grad = ggml_add_impl(ctx,
  11293. src0->grad,
  11294. ggml_rope(ctx,
  11295. tensor->grad,
  11296. n_past,
  11297. n_dims,
  11298. mode),
  11299. inplace);
  11300. }
  11301. if (src1->grad) {
  11302. // noop
  11303. }
  11304. } break;
  11305. case GGML_OP_CONV_1D_1S:
  11306. {
  11307. GGML_ASSERT(false); // TODO: not implemented
  11308. } break;
  11309. case GGML_OP_CONV_1D_2S:
  11310. {
  11311. GGML_ASSERT(false); // TODO: not implemented
  11312. } break;
  11313. case GGML_OP_FLASH_ATTN:
  11314. {
  11315. GGML_ASSERT(false); // not supported
  11316. } break;
  11317. case GGML_OP_FLASH_FF:
  11318. {
  11319. GGML_ASSERT(false); // not supported
  11320. } break;
  11321. case GGML_OP_MAP_UNARY:
  11322. case GGML_OP_MAP_BINARY:
  11323. {
  11324. GGML_ASSERT(false); // not supported
  11325. } break;
  11326. case GGML_OP_NONE:
  11327. {
  11328. // nop
  11329. } break;
  11330. case GGML_OP_COUNT:
  11331. {
  11332. GGML_ASSERT(false);
  11333. } break;
  11334. }
  11335. }
  11336. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  11337. if (node->grad == NULL) {
  11338. // this usually happens when we generate intermediate nodes from constants in the backward pass
  11339. // it can also happen during forward pass, if the user performs computations with constants
  11340. if (node->op != GGML_OP_NONE) {
  11341. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  11342. }
  11343. }
  11344. // check if already visited
  11345. for (int i = 0; i < cgraph->n_nodes; i++) {
  11346. if (cgraph->nodes[i] == node) {
  11347. return;
  11348. }
  11349. }
  11350. for (int i = 0; i < cgraph->n_leafs; i++) {
  11351. if (cgraph->leafs[i] == node) {
  11352. return;
  11353. }
  11354. }
  11355. if (node->src0) {
  11356. ggml_visit_parents(cgraph, node->src0);
  11357. }
  11358. if (node->src1) {
  11359. ggml_visit_parents(cgraph, node->src1);
  11360. }
  11361. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  11362. if (node->opt[i]) {
  11363. ggml_visit_parents(cgraph, node->opt[i]);
  11364. }
  11365. }
  11366. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  11367. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  11368. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  11369. if (strlen(node->name) == 0) {
  11370. snprintf(node->name, sizeof(node->name), "leaf_%d", cgraph->n_leafs);
  11371. }
  11372. cgraph->leafs[cgraph->n_leafs] = node;
  11373. cgraph->n_leafs++;
  11374. } else {
  11375. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  11376. if (strlen(node->name) == 0) {
  11377. snprintf(node->name, sizeof(node->name), "node_%d", cgraph->n_nodes);
  11378. }
  11379. cgraph->nodes[cgraph->n_nodes] = node;
  11380. cgraph->grads[cgraph->n_nodes] = node->grad;
  11381. cgraph->n_nodes++;
  11382. }
  11383. }
  11384. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  11385. if (!expand) {
  11386. cgraph->n_nodes = 0;
  11387. cgraph->n_leafs = 0;
  11388. }
  11389. const int n0 = cgraph->n_nodes;
  11390. UNUSED(n0);
  11391. ggml_visit_parents(cgraph, tensor);
  11392. const int n_new = cgraph->n_nodes - n0;
  11393. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  11394. if (n_new > 0) {
  11395. // the last added node should always be starting point
  11396. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  11397. }
  11398. }
  11399. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  11400. ggml_build_forward_impl(cgraph, tensor, true);
  11401. }
  11402. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  11403. struct ggml_cgraph result = {
  11404. /*.n_nodes =*/ 0,
  11405. /*.n_leafs =*/ 0,
  11406. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  11407. /*.work_size =*/ 0,
  11408. /*.work =*/ NULL,
  11409. /*.nodes =*/ { NULL },
  11410. /*.grads =*/ { NULL },
  11411. /*.leafs =*/ { NULL },
  11412. /*.perf_runs =*/ 0,
  11413. /*.perf_cycles =*/ 0,
  11414. /*.perf_time_us =*/ 0,
  11415. };
  11416. ggml_build_forward_impl(&result, tensor, false);
  11417. return result;
  11418. }
  11419. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  11420. struct ggml_cgraph result = *gf;
  11421. GGML_ASSERT(gf->n_nodes > 0);
  11422. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  11423. if (keep) {
  11424. for (int i = 0; i < gf->n_nodes; i++) {
  11425. struct ggml_tensor * node = gf->nodes[i];
  11426. if (node->grad) {
  11427. node->grad = ggml_dup_tensor(ctx, node);
  11428. gf->grads[i] = node->grad;
  11429. }
  11430. }
  11431. }
  11432. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  11433. struct ggml_tensor * node = gf->nodes[i];
  11434. // because we detached the grad nodes from the original graph, we can afford inplace operations
  11435. if (node->grad) {
  11436. ggml_compute_backward(ctx, node, keep);
  11437. }
  11438. }
  11439. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  11440. struct ggml_tensor * node = gf->nodes[i];
  11441. if (node->is_param) {
  11442. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  11443. ggml_build_forward_impl(&result, node->grad, true);
  11444. }
  11445. }
  11446. return result;
  11447. }
  11448. //
  11449. // thread data
  11450. //
  11451. // synchronization is done via busy loops
  11452. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  11453. //
  11454. #ifdef __APPLE__
  11455. //#include <os/lock.h>
  11456. //
  11457. //typedef os_unfair_lock ggml_lock_t;
  11458. //
  11459. //#define ggml_lock_init(x) UNUSED(x)
  11460. //#define ggml_lock_destroy(x) UNUSED(x)
  11461. //#define ggml_lock_lock os_unfair_lock_lock
  11462. //#define ggml_lock_unlock os_unfair_lock_unlock
  11463. //
  11464. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  11465. typedef int ggml_lock_t;
  11466. #define ggml_lock_init(x) UNUSED(x)
  11467. #define ggml_lock_destroy(x) UNUSED(x)
  11468. #define ggml_lock_lock(x) UNUSED(x)
  11469. #define ggml_lock_unlock(x) UNUSED(x)
  11470. #define GGML_LOCK_INITIALIZER 0
  11471. typedef pthread_t ggml_thread_t;
  11472. #define ggml_thread_create pthread_create
  11473. #define ggml_thread_join pthread_join
  11474. #else
  11475. //typedef pthread_spinlock_t ggml_lock_t;
  11476. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  11477. //#define ggml_lock_destroy pthread_spin_destroy
  11478. //#define ggml_lock_lock pthread_spin_lock
  11479. //#define ggml_lock_unlock pthread_spin_unlock
  11480. typedef int ggml_lock_t;
  11481. #define ggml_lock_init(x) UNUSED(x)
  11482. #define ggml_lock_destroy(x) UNUSED(x)
  11483. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  11484. #define ggml_lock_lock(x) _mm_pause()
  11485. #else
  11486. #define ggml_lock_lock(x) UNUSED(x)
  11487. #endif
  11488. #define ggml_lock_unlock(x) UNUSED(x)
  11489. #define GGML_LOCK_INITIALIZER 0
  11490. typedef pthread_t ggml_thread_t;
  11491. #define ggml_thread_create pthread_create
  11492. #define ggml_thread_join pthread_join
  11493. #endif
  11494. struct ggml_compute_state_shared {
  11495. ggml_lock_t spin;
  11496. int n_threads;
  11497. // synchronization primitives
  11498. atomic_int n_ready;
  11499. atomic_bool has_work;
  11500. atomic_bool stop; // stop all threads
  11501. };
  11502. struct ggml_compute_state {
  11503. ggml_thread_t thrd;
  11504. struct ggml_compute_params params;
  11505. struct ggml_tensor * node;
  11506. struct ggml_compute_state_shared * shared;
  11507. };
  11508. static thread_ret_t ggml_graph_compute_thread(void * data) {
  11509. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  11510. const int n_threads = state->shared->n_threads;
  11511. while (true) {
  11512. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  11513. atomic_store(&state->shared->has_work, false);
  11514. } else {
  11515. while (atomic_load(&state->shared->has_work)) {
  11516. if (atomic_load(&state->shared->stop)) {
  11517. return 0;
  11518. }
  11519. ggml_lock_lock (&state->shared->spin);
  11520. ggml_lock_unlock(&state->shared->spin);
  11521. }
  11522. }
  11523. atomic_fetch_sub(&state->shared->n_ready, 1);
  11524. // wait for work
  11525. while (!atomic_load(&state->shared->has_work)) {
  11526. if (atomic_load(&state->shared->stop)) {
  11527. return 0;
  11528. }
  11529. ggml_lock_lock (&state->shared->spin);
  11530. ggml_lock_unlock(&state->shared->spin);
  11531. }
  11532. // check if we should stop
  11533. if (atomic_load(&state->shared->stop)) {
  11534. break;
  11535. }
  11536. if (state->node) {
  11537. if (state->params.ith < state->params.nth) {
  11538. ggml_compute_forward(&state->params, state->node);
  11539. }
  11540. state->node = NULL;
  11541. } else {
  11542. break;
  11543. }
  11544. }
  11545. return 0;
  11546. }
  11547. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  11548. const int n_threads = cgraph->n_threads;
  11549. struct ggml_compute_state_shared state_shared = {
  11550. /*.spin =*/ GGML_LOCK_INITIALIZER,
  11551. /*.n_threads =*/ n_threads,
  11552. /*.n_ready =*/ 0,
  11553. /*.has_work =*/ false,
  11554. /*.stop =*/ false,
  11555. };
  11556. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  11557. // create thread pool
  11558. if (n_threads > 1) {
  11559. ggml_lock_init(&state_shared.spin);
  11560. atomic_store(&state_shared.has_work, true);
  11561. for (int j = 0; j < n_threads - 1; j++) {
  11562. workers[j] = (struct ggml_compute_state) {
  11563. .thrd = 0,
  11564. .params = {
  11565. .type = GGML_TASK_COMPUTE,
  11566. .ith = j + 1,
  11567. .nth = n_threads,
  11568. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11569. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11570. },
  11571. .node = NULL,
  11572. .shared = &state_shared,
  11573. };
  11574. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  11575. GGML_ASSERT(rc == 0);
  11576. UNUSED(rc);
  11577. }
  11578. }
  11579. // initialize tasks + work buffer
  11580. {
  11581. size_t work_size = 0;
  11582. // thread scheduling for the different operations
  11583. for (int i = 0; i < cgraph->n_nodes; i++) {
  11584. struct ggml_tensor * node = cgraph->nodes[i];
  11585. switch (node->op) {
  11586. case GGML_OP_CPY:
  11587. case GGML_OP_DUP:
  11588. {
  11589. node->n_tasks = n_threads;
  11590. size_t cur = 0;
  11591. if (ggml_is_quantized(node->type)) {
  11592. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  11593. }
  11594. work_size = MAX(work_size, cur);
  11595. } break;
  11596. case GGML_OP_ADD:
  11597. case GGML_OP_ADD1:
  11598. {
  11599. node->n_tasks = n_threads;
  11600. size_t cur = 0;
  11601. if (ggml_is_quantized(node->src0->type)) {
  11602. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  11603. }
  11604. work_size = MAX(work_size, cur);
  11605. } break;
  11606. case GGML_OP_ACC:
  11607. {
  11608. node->n_tasks = n_threads;
  11609. size_t cur = 0;
  11610. if (ggml_is_quantized(node->src0->type)) {
  11611. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_threads;
  11612. }
  11613. work_size = MAX(work_size, cur);
  11614. } break;
  11615. case GGML_OP_SUB:
  11616. case GGML_OP_DIV:
  11617. case GGML_OP_SQR:
  11618. case GGML_OP_SQRT:
  11619. case GGML_OP_LOG:
  11620. case GGML_OP_SUM:
  11621. case GGML_OP_SUM_ROWS:
  11622. case GGML_OP_MEAN:
  11623. case GGML_OP_REPEAT:
  11624. case GGML_OP_ABS:
  11625. case GGML_OP_SGN:
  11626. case GGML_OP_NEG:
  11627. case GGML_OP_STEP:
  11628. case GGML_OP_RELU:
  11629. {
  11630. node->n_tasks = 1;
  11631. } break;
  11632. case GGML_OP_MUL:
  11633. case GGML_OP_GELU:
  11634. case GGML_OP_SILU:
  11635. case GGML_OP_SILU_BACK:
  11636. case GGML_OP_NORM:
  11637. case GGML_OP_RMS_NORM:
  11638. case GGML_OP_RMS_NORM_BACK:
  11639. {
  11640. node->n_tasks = n_threads;
  11641. } break;
  11642. case GGML_OP_MUL_MAT:
  11643. {
  11644. node->n_tasks = n_threads;
  11645. // TODO: use different scheduling for different matrix sizes
  11646. //const int nr0 = ggml_nrows(node->src0);
  11647. //const int nr1 = ggml_nrows(node->src1);
  11648. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  11649. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  11650. size_t cur = 0;
  11651. #if defined(GGML_USE_CUBLAS)
  11652. if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
  11653. node->n_tasks = 1; // TODO: this actually is doing nothing
  11654. // the threads are still spinning
  11655. cur = ggml_cuda_mul_mat_get_wsize(node->src0, node->src1, node);
  11656. }
  11657. else
  11658. #elif defined(GGML_USE_CLBLAST)
  11659. if (ggml_cl_can_mul_mat(node->src0, node->src1, node)) {
  11660. node->n_tasks = 1; // TODO: this actually is doing nothing
  11661. // the threads are still spinning
  11662. cur = ggml_cl_mul_mat_get_wsize(node->src0, node->src1, node);
  11663. }
  11664. else
  11665. #endif
  11666. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  11667. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  11668. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11669. node->n_tasks = 1; // TODO: this actually is doing nothing
  11670. // the threads are still spinning
  11671. // here we need memory just for single 2D matrix from src0
  11672. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  11673. } else {
  11674. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  11675. }
  11676. #else
  11677. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  11678. #endif
  11679. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  11680. cur = 0;
  11681. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  11682. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11683. node->n_tasks = 1;
  11684. }
  11685. #endif
  11686. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  11687. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  11688. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11689. node->n_tasks = 1;
  11690. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  11691. } else
  11692. #endif
  11693. {
  11694. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  11695. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  11696. }
  11697. } else {
  11698. GGML_ASSERT(false);
  11699. }
  11700. work_size = MAX(work_size, cur);
  11701. } break;
  11702. case GGML_OP_SCALE:
  11703. {
  11704. node->n_tasks = n_threads;
  11705. } break;
  11706. case GGML_OP_SET:
  11707. case GGML_OP_CONT:
  11708. case GGML_OP_RESHAPE:
  11709. case GGML_OP_VIEW:
  11710. case GGML_OP_PERMUTE:
  11711. case GGML_OP_TRANSPOSE:
  11712. case GGML_OP_GET_ROWS:
  11713. case GGML_OP_GET_ROWS_BACK:
  11714. case GGML_OP_DIAG:
  11715. case GGML_OP_DIAG_MASK_ZERO:
  11716. {
  11717. node->n_tasks = 1;
  11718. } break;
  11719. case GGML_OP_DIAG_MASK_INF:
  11720. case GGML_OP_SOFT_MAX:
  11721. case GGML_OP_ROPE:
  11722. case GGML_OP_ROPE_BACK:
  11723. {
  11724. node->n_tasks = n_threads;
  11725. } break;
  11726. case GGML_OP_ALIBI:
  11727. {
  11728. node->n_tasks = 1; //TODO
  11729. } break;
  11730. case GGML_OP_CLAMP:
  11731. {
  11732. node->n_tasks = 1; //TODO
  11733. } break;
  11734. case GGML_OP_CONV_1D_1S:
  11735. case GGML_OP_CONV_1D_2S:
  11736. {
  11737. node->n_tasks = n_threads;
  11738. GGML_ASSERT(node->src0->ne[3] == 1);
  11739. GGML_ASSERT(node->src1->ne[2] == 1);
  11740. GGML_ASSERT(node->src1->ne[3] == 1);
  11741. size_t cur = 0;
  11742. const int nk = node->src0->ne[0];
  11743. if (node->src0->type == GGML_TYPE_F16 &&
  11744. node->src1->type == GGML_TYPE_F32) {
  11745. cur = sizeof(ggml_fp16_t)*(
  11746. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  11747. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  11748. );
  11749. } else if (node->src0->type == GGML_TYPE_F32 &&
  11750. node->src1->type == GGML_TYPE_F32) {
  11751. cur = sizeof(float)*(
  11752. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  11753. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  11754. );
  11755. } else {
  11756. GGML_ASSERT(false);
  11757. }
  11758. work_size = MAX(work_size, cur);
  11759. } break;
  11760. case GGML_OP_FLASH_ATTN:
  11761. {
  11762. node->n_tasks = n_threads;
  11763. size_t cur = 0;
  11764. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  11765. if (node->src1->type == GGML_TYPE_F32) {
  11766. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  11767. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  11768. }
  11769. if (node->src1->type == GGML_TYPE_F16) {
  11770. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  11771. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  11772. }
  11773. work_size = MAX(work_size, cur);
  11774. } break;
  11775. case GGML_OP_FLASH_FF:
  11776. {
  11777. node->n_tasks = n_threads;
  11778. size_t cur = 0;
  11779. if (node->src1->type == GGML_TYPE_F32) {
  11780. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  11781. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  11782. }
  11783. if (node->src1->type == GGML_TYPE_F16) {
  11784. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  11785. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  11786. }
  11787. work_size = MAX(work_size, cur);
  11788. } break;
  11789. case GGML_OP_MAP_UNARY:
  11790. case GGML_OP_MAP_BINARY:
  11791. {
  11792. node->n_tasks = 1;
  11793. } break;
  11794. case GGML_OP_NONE:
  11795. {
  11796. node->n_tasks = 1;
  11797. } break;
  11798. case GGML_OP_COUNT:
  11799. {
  11800. GGML_ASSERT(false);
  11801. } break;
  11802. }
  11803. }
  11804. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  11805. GGML_ASSERT(false); // TODO: better handling
  11806. }
  11807. if (work_size > 0 && cgraph->work == NULL) {
  11808. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  11809. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  11810. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  11811. }
  11812. }
  11813. const int64_t perf_start_cycles = ggml_perf_cycles();
  11814. const int64_t perf_start_time_us = ggml_perf_time_us();
  11815. for (int i = 0; i < cgraph->n_nodes; i++) {
  11816. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  11817. struct ggml_tensor * node = cgraph->nodes[i];
  11818. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  11819. //if (node->grad == NULL && node->perf_runs > 0) {
  11820. // continue;
  11821. //}
  11822. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  11823. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  11824. // INIT
  11825. struct ggml_compute_params params = {
  11826. /*.type =*/ GGML_TASK_INIT,
  11827. /*.ith =*/ 0,
  11828. /*.nth =*/ node->n_tasks,
  11829. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11830. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  11831. };
  11832. ggml_compute_forward(&params, node);
  11833. // COMPUTE
  11834. if (node->n_tasks > 1) {
  11835. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11836. atomic_store(&state_shared.has_work, false);
  11837. }
  11838. while (atomic_load(&state_shared.has_work)) {
  11839. ggml_lock_lock (&state_shared.spin);
  11840. ggml_lock_unlock(&state_shared.spin);
  11841. }
  11842. // launch thread pool
  11843. for (int j = 0; j < n_threads - 1; j++) {
  11844. workers[j].params = (struct ggml_compute_params) {
  11845. .type = GGML_TASK_COMPUTE,
  11846. .ith = j + 1,
  11847. .nth = node->n_tasks,
  11848. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11849. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11850. };
  11851. workers[j].node = node;
  11852. }
  11853. atomic_fetch_sub(&state_shared.n_ready, 1);
  11854. while (atomic_load(&state_shared.n_ready) > 0) {
  11855. ggml_lock_lock (&state_shared.spin);
  11856. ggml_lock_unlock(&state_shared.spin);
  11857. }
  11858. atomic_store(&state_shared.has_work, true);
  11859. }
  11860. params.type = GGML_TASK_COMPUTE;
  11861. ggml_compute_forward(&params, node);
  11862. // wait for thread pool
  11863. if (node->n_tasks > 1) {
  11864. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11865. atomic_store(&state_shared.has_work, false);
  11866. }
  11867. while (atomic_load(&state_shared.has_work)) {
  11868. ggml_lock_lock (&state_shared.spin);
  11869. ggml_lock_unlock(&state_shared.spin);
  11870. }
  11871. atomic_fetch_sub(&state_shared.n_ready, 1);
  11872. while (atomic_load(&state_shared.n_ready) != 0) {
  11873. ggml_lock_lock (&state_shared.spin);
  11874. ggml_lock_unlock(&state_shared.spin);
  11875. }
  11876. }
  11877. // FINALIZE
  11878. if (node->n_tasks > 1) {
  11879. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11880. atomic_store(&state_shared.has_work, false);
  11881. }
  11882. while (atomic_load(&state_shared.has_work)) {
  11883. ggml_lock_lock (&state_shared.spin);
  11884. ggml_lock_unlock(&state_shared.spin);
  11885. }
  11886. // launch thread pool
  11887. for (int j = 0; j < n_threads - 1; j++) {
  11888. workers[j].params = (struct ggml_compute_params) {
  11889. .type = GGML_TASK_FINALIZE,
  11890. .ith = j + 1,
  11891. .nth = node->n_tasks,
  11892. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11893. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11894. };
  11895. workers[j].node = node;
  11896. }
  11897. atomic_fetch_sub(&state_shared.n_ready, 1);
  11898. while (atomic_load(&state_shared.n_ready) > 0) {
  11899. ggml_lock_lock (&state_shared.spin);
  11900. ggml_lock_unlock(&state_shared.spin);
  11901. }
  11902. atomic_store(&state_shared.has_work, true);
  11903. }
  11904. params.type = GGML_TASK_FINALIZE;
  11905. ggml_compute_forward(&params, node);
  11906. // wait for thread pool
  11907. if (node->n_tasks > 1) {
  11908. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11909. atomic_store(&state_shared.has_work, false);
  11910. }
  11911. while (atomic_load(&state_shared.has_work)) {
  11912. ggml_lock_lock (&state_shared.spin);
  11913. ggml_lock_unlock(&state_shared.spin);
  11914. }
  11915. atomic_fetch_sub(&state_shared.n_ready, 1);
  11916. while (atomic_load(&state_shared.n_ready) != 0) {
  11917. ggml_lock_lock (&state_shared.spin);
  11918. ggml_lock_unlock(&state_shared.spin);
  11919. }
  11920. }
  11921. // performance stats (node)
  11922. {
  11923. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  11924. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  11925. node->perf_runs++;
  11926. node->perf_cycles += perf_cycles_cur;
  11927. node->perf_time_us += perf_time_us_cur;
  11928. }
  11929. }
  11930. // join thread pool
  11931. if (n_threads > 1) {
  11932. atomic_store(&state_shared.stop, true);
  11933. atomic_store(&state_shared.has_work, true);
  11934. for (int j = 0; j < n_threads - 1; j++) {
  11935. int rc = ggml_thread_join(workers[j].thrd, NULL);
  11936. GGML_ASSERT(rc == 0);
  11937. UNUSED(rc);
  11938. }
  11939. ggml_lock_destroy(&state_shared.spin);
  11940. }
  11941. // performance stats (graph)
  11942. {
  11943. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  11944. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  11945. cgraph->perf_runs++;
  11946. cgraph->perf_cycles += perf_cycles_cur;
  11947. cgraph->perf_time_us += perf_time_us_cur;
  11948. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  11949. __func__, cgraph->perf_runs,
  11950. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  11951. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  11952. (double) perf_time_us_cur / 1000.0,
  11953. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  11954. }
  11955. }
  11956. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  11957. for (int i = 0; i < cgraph->n_nodes; i++) {
  11958. struct ggml_tensor * grad = cgraph->grads[i];
  11959. if (grad) {
  11960. ggml_set_zero(grad);
  11961. }
  11962. }
  11963. }
  11964. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  11965. for (int i = 0; i < cgraph->n_leafs; i++) {
  11966. struct ggml_tensor * leaf = cgraph->leafs[i];
  11967. if (strcmp(leaf->name, name) == 0) {
  11968. return leaf;
  11969. }
  11970. }
  11971. for (int i = 0; i < cgraph->n_nodes; i++) {
  11972. struct ggml_tensor * node = cgraph->nodes[i];
  11973. if (strcmp(node->name, name) == 0) {
  11974. return node;
  11975. }
  11976. }
  11977. return NULL;
  11978. }
  11979. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  11980. const int64_t * ne = tensor->ne;
  11981. const size_t * nb = tensor->nb;
  11982. fprintf(fout, "%-6s %-12s %8d %8lld %8lld %8lld %8lld %16zu %16zu %16zu %16zu %16p %32s\n",
  11983. ggml_type_name(tensor->type),
  11984. ggml_op_name (tensor->op),
  11985. tensor->n_dims,
  11986. ne[0], ne[1], ne[2], ne[3],
  11987. nb[0], nb[1], nb[2], nb[3],
  11988. tensor->data,
  11989. tensor->name);
  11990. }
  11991. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  11992. const int64_t * ne = tensor->ne;
  11993. const size_t * nb = tensor->nb;
  11994. fprintf(fout, "%-6s %-6s %-12s %8d %8lld %8lld %8lld %8lld %16zu %16zu %16zu %16zu %8d %16p %32s\n",
  11995. arg,
  11996. ggml_type_name(tensor->type),
  11997. ggml_op_name (tensor->op),
  11998. tensor->n_dims,
  11999. ne[0], ne[1], ne[2], ne[3],
  12000. nb[0], nb[1], nb[2], nb[3],
  12001. tensor->n_tasks,
  12002. tensor->data,
  12003. tensor->name);
  12004. }
  12005. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  12006. //assert(cgraph->work == NULL);
  12007. //assert(cgraph->work_size == 0);
  12008. uint64_t size_eval = 0;
  12009. // compute size of intermediate results
  12010. // TODO: does not take into account scratch buffers !!!!
  12011. for (int i = 0; i < cgraph->n_nodes; ++i) {
  12012. size_eval += ggml_nbytes(cgraph->nodes[i]);
  12013. }
  12014. // print
  12015. {
  12016. FILE * fout = stdout;
  12017. fprintf(fout, "\n");
  12018. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  12019. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  12020. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  12021. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  12022. fprintf(fout, "%-16s %8llu\n", "eval", size_eval);
  12023. // header
  12024. fprintf(fout, "\n");
  12025. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  12026. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  12027. for (int i = 0; i < cgraph->n_leafs; ++i) {
  12028. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  12029. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  12030. GGML_ASSERT(cgraph->leafs[i]->src0 == NULL);
  12031. GGML_ASSERT(cgraph->leafs[i]->src1 == NULL);
  12032. }
  12033. // header
  12034. fprintf(fout, "\n");
  12035. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  12036. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  12037. for (int i = 0; i < cgraph->n_nodes; ++i) {
  12038. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  12039. if (cgraph->nodes[i]->src0) {
  12040. ggml_graph_export_node(cgraph->nodes[i]->src0, "SRC0", fout);
  12041. }
  12042. if (cgraph->nodes[i]->src1) {
  12043. ggml_graph_export_node(cgraph->nodes[i]->src1, "SRC1", fout);
  12044. }
  12045. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  12046. if (cgraph->nodes[i]->opt[j]) {
  12047. ggml_graph_export_node(cgraph->nodes[i]->opt[j], "OPT", fout);
  12048. }
  12049. }
  12050. fprintf(fout, "\n");
  12051. }
  12052. fprintf(fout, "\n");
  12053. }
  12054. // write binary data
  12055. {
  12056. FILE * fout = fopen(fname, "wb");
  12057. if (!fout) {
  12058. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  12059. return;
  12060. }
  12061. // header
  12062. {
  12063. const uint32_t magic = GGML_FILE_MAGIC;
  12064. const uint32_t version = GGML_FILE_VERSION;
  12065. const uint32_t n_leafs = cgraph->n_leafs;
  12066. const uint32_t nodes = cgraph->n_nodes;
  12067. fwrite(&magic, sizeof(uint32_t), 1, fout);
  12068. fwrite(&version, sizeof(uint32_t), 1, fout);
  12069. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  12070. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  12071. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  12072. }
  12073. // leafs
  12074. {
  12075. for (int i = 0; i < cgraph->n_leafs; ++i) {
  12076. const struct ggml_tensor * tensor = cgraph->leafs[i];
  12077. const uint32_t type = tensor->type;
  12078. const uint32_t op = tensor->op;
  12079. const uint32_t n_dims = tensor->n_dims;
  12080. fwrite(&type, sizeof(uint32_t), 1, fout);
  12081. fwrite(&op, sizeof(uint32_t), 1, fout);
  12082. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  12083. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12084. const uint64_t ne = tensor->ne[j];
  12085. const uint64_t nb = tensor->nb[j];
  12086. fwrite(&ne, sizeof(uint64_t), 1, fout);
  12087. fwrite(&nb, sizeof(uint64_t), 1, fout);
  12088. }
  12089. // store the pointer address
  12090. {
  12091. const uint64_t ptr = (uint64_t) tensor->data;
  12092. fwrite(&ptr, sizeof(uint64_t), 1, fout);
  12093. }
  12094. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  12095. // dump the data
  12096. // TODO: pad this to 32 byte boundary
  12097. {
  12098. const size_t size = ggml_nbytes(tensor);
  12099. fwrite(tensor->data, sizeof(char), size, fout);
  12100. }
  12101. }
  12102. }
  12103. // nodes
  12104. {
  12105. for (int i = 0; i < cgraph->n_nodes; ++i) {
  12106. const struct ggml_tensor * tensor = cgraph->nodes[i];
  12107. const uint32_t type = tensor->type;
  12108. const uint32_t op = tensor->op;
  12109. const uint32_t n_dims = tensor->n_dims;
  12110. fwrite(&type, sizeof(uint32_t), 1, fout);
  12111. fwrite(&op, sizeof(uint32_t), 1, fout);
  12112. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  12113. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12114. const uint64_t ne = tensor->ne[j];
  12115. const uint64_t nb = tensor->nb[j];
  12116. fwrite(&ne, sizeof(uint64_t), 1, fout);
  12117. fwrite(&nb, sizeof(uint64_t), 1, fout);
  12118. }
  12119. // store the pointer address
  12120. {
  12121. const uint64_t ptr = (uint64_t) tensor->data;
  12122. fwrite(&ptr, sizeof(uint64_t), 1, fout);
  12123. }
  12124. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  12125. // output the op arguments
  12126. {
  12127. struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
  12128. args[0] = tensor->src0;
  12129. args[1] = tensor->src1;
  12130. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  12131. args[2 + j] = tensor->opt[j];
  12132. }
  12133. for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
  12134. if (args[j]) {
  12135. int32_t idx = -1;
  12136. // check if leaf
  12137. {
  12138. for (int k = 0; k < cgraph->n_leafs; ++k) {
  12139. if (args[j] == cgraph->leafs[k]) {
  12140. idx = k;
  12141. break;
  12142. }
  12143. }
  12144. }
  12145. // check if node
  12146. if (idx == -1) {
  12147. for (int k = 0; k < cgraph->n_nodes; ++k) {
  12148. if (args[j] == cgraph->nodes[k]) {
  12149. idx = GGML_MAX_NODES + k;
  12150. break;
  12151. }
  12152. }
  12153. }
  12154. if (idx == -1) {
  12155. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  12156. return;
  12157. }
  12158. fwrite(&idx, sizeof(int32_t), 1, fout);
  12159. } else {
  12160. const int32_t nul = -1;
  12161. fwrite(&nul, sizeof(int32_t), 1, fout);
  12162. }
  12163. }
  12164. }
  12165. }
  12166. }
  12167. fclose(fout);
  12168. }
  12169. }
  12170. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  12171. assert(*ctx_data == NULL);
  12172. assert(*ctx_eval == NULL);
  12173. struct ggml_cgraph result = { 0 };
  12174. struct ggml_tensor * data = NULL;
  12175. // read file into data
  12176. {
  12177. FILE * fin = fopen(fname, "rb");
  12178. if (!fin) {
  12179. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  12180. return result;
  12181. }
  12182. size_t fsize = 0;
  12183. fseek(fin, 0, SEEK_END);
  12184. fsize = ftell(fin);
  12185. fseek(fin, 0, SEEK_SET);
  12186. // create the data context
  12187. {
  12188. const size_t overhead = 1*ggml_tensor_overhead();
  12189. struct ggml_init_params params = {
  12190. .mem_size = fsize + overhead,
  12191. .mem_buffer = NULL,
  12192. .no_alloc = false,
  12193. };
  12194. *ctx_data = ggml_init(params);
  12195. if (!*ctx_data) {
  12196. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  12197. return result;
  12198. }
  12199. }
  12200. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  12201. fread(data->data, sizeof(char), fsize, fin);
  12202. fclose(fin);
  12203. }
  12204. // populate result
  12205. {
  12206. char * ptr = (char *) data->data;
  12207. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  12208. if (magic != GGML_FILE_MAGIC) {
  12209. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  12210. return result;
  12211. }
  12212. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  12213. if (version != GGML_FILE_VERSION) {
  12214. fprintf(stderr, "%s: invalid version number\n", __func__);
  12215. return result;
  12216. }
  12217. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  12218. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  12219. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  12220. result.n_leafs = n_leafs;
  12221. result.n_nodes = n_nodes;
  12222. // create the data context
  12223. {
  12224. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  12225. struct ggml_init_params params = {
  12226. .mem_size = size_eval + overhead,
  12227. .mem_buffer = NULL,
  12228. .no_alloc = true,
  12229. };
  12230. *ctx_eval = ggml_init(params);
  12231. if (!*ctx_eval) {
  12232. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  12233. return result;
  12234. }
  12235. }
  12236. // leafs
  12237. {
  12238. uint32_t type;
  12239. uint32_t op;
  12240. uint32_t n_dims;
  12241. for (uint32_t i = 0; i < n_leafs; ++i) {
  12242. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  12243. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  12244. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  12245. int64_t ne[GGML_MAX_DIMS];
  12246. size_t nb[GGML_MAX_DIMS];
  12247. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12248. uint64_t ne_cur;
  12249. uint64_t nb_cur;
  12250. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  12251. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  12252. ne[j] = ne_cur;
  12253. nb[j] = nb_cur;
  12254. }
  12255. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  12256. tensor->op = (enum ggml_op) op;
  12257. uint64_t ptr_cur = *(const uint64_t *) ptr; ptr += sizeof(ptr_cur);
  12258. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  12259. tensor->data = (void *) ptr;
  12260. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12261. tensor->nb[j] = nb[j];
  12262. }
  12263. result.leafs[i] = tensor;
  12264. ptr += ggml_nbytes(tensor);
  12265. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  12266. }
  12267. }
  12268. ggml_set_no_alloc(*ctx_eval, false);
  12269. // nodes
  12270. {
  12271. uint32_t type;
  12272. uint32_t op;
  12273. uint32_t n_dims;
  12274. for (uint32_t i = 0; i < n_nodes; ++i) {
  12275. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  12276. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  12277. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  12278. enum ggml_op eop = (enum ggml_op) op;
  12279. int64_t ne[GGML_MAX_DIMS];
  12280. size_t nb[GGML_MAX_DIMS];
  12281. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12282. uint64_t ne_cur;
  12283. uint64_t nb_cur;
  12284. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  12285. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  12286. ne[j] = ne_cur;
  12287. nb[j] = nb_cur;
  12288. }
  12289. uint64_t ptr_cur = *(const uint64_t *) ptr; ptr += sizeof(ptr_cur); // TODO: not yet used
  12290. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  12291. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += (2 + GGML_MAX_OPT)*sizeof(int32_t);
  12292. struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
  12293. // parse args
  12294. for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
  12295. const int32_t arg_idx = ptr_arg_idx[j];
  12296. if (arg_idx == -1) {
  12297. continue;
  12298. }
  12299. if (arg_idx < GGML_MAX_NODES) {
  12300. args[j] = result.leafs[arg_idx];
  12301. } else {
  12302. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  12303. }
  12304. }
  12305. // create the tensor
  12306. // "view" operations are handled differently
  12307. // TODO: handle inplace ops - currently a copy is always made
  12308. struct ggml_tensor * tensor = NULL;
  12309. switch (eop) {
  12310. // TODO: implement other view ops
  12311. case GGML_OP_RESHAPE:
  12312. {
  12313. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  12314. } break;
  12315. case GGML_OP_VIEW:
  12316. {
  12317. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  12318. uint64_t offs;
  12319. memcpy(&offs, args[2]->data, sizeof(offs));
  12320. tensor->data = ((char *) tensor->data) + offs;
  12321. } break;
  12322. case GGML_OP_TRANSPOSE:
  12323. {
  12324. tensor = ggml_transpose(*ctx_eval, args[0]);
  12325. } break;
  12326. case GGML_OP_PERMUTE:
  12327. {
  12328. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  12329. } break;
  12330. default:
  12331. {
  12332. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  12333. tensor->op = eop;
  12334. } break;
  12335. }
  12336. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  12337. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12338. tensor->nb[j] = nb[j];
  12339. }
  12340. tensor->src0 = args[0];
  12341. tensor->src1 = args[1];
  12342. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  12343. tensor->opt[j] = args[2 + j];
  12344. }
  12345. result.nodes[i] = tensor;
  12346. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  12347. }
  12348. }
  12349. }
  12350. return result;
  12351. }
  12352. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  12353. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  12354. GGML_PRINT("=== GRAPH ===\n");
  12355. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  12356. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  12357. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  12358. for (int i = 0; i < cgraph->n_nodes; i++) {
  12359. struct ggml_tensor * node = cgraph->nodes[i];
  12360. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  12361. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  12362. i,
  12363. node->ne[0], node->ne[1], node->ne[2],
  12364. GGML_OP_NAME[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  12365. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  12366. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  12367. (double) node->perf_time_us / 1000.0,
  12368. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  12369. }
  12370. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  12371. for (int i = 0; i < cgraph->n_leafs; i++) {
  12372. struct ggml_tensor * node = cgraph->leafs[i];
  12373. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  12374. i,
  12375. node->ne[0], node->ne[1],
  12376. GGML_OP_NAME[node->op]);
  12377. }
  12378. for (int i = 0; i < GGML_OP_COUNT; i++) {
  12379. if (perf_total_per_op_us[i] == 0) {
  12380. continue;
  12381. }
  12382. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_NAME[i], (double) perf_total_per_op_us[i] / 1000.0);
  12383. }
  12384. GGML_PRINT("========================================\n");
  12385. }
  12386. // check if node is part of the graph
  12387. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  12388. if (cgraph == NULL) {
  12389. return true;
  12390. }
  12391. for (int i = 0; i < cgraph->n_nodes; i++) {
  12392. if (cgraph->nodes[i] == node) {
  12393. return true;
  12394. }
  12395. }
  12396. return false;
  12397. }
  12398. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  12399. for (int i = 0; i < cgraph->n_nodes; i++) {
  12400. struct ggml_tensor * parent = cgraph->nodes[i];
  12401. if (parent->grad == node) {
  12402. return parent;
  12403. }
  12404. }
  12405. return NULL;
  12406. }
  12407. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  12408. char color[16];
  12409. FILE * fp = fopen(filename, "w");
  12410. GGML_ASSERT(fp);
  12411. fprintf(fp, "digraph G {\n");
  12412. fprintf(fp, " newrank = true;\n");
  12413. fprintf(fp, " rankdir = LR;\n");
  12414. for (int i = 0; i < gb->n_nodes; i++) {
  12415. struct ggml_tensor * node = gb->nodes[i];
  12416. if (ggml_graph_get_parent(gb, node) != NULL) {
  12417. continue;
  12418. }
  12419. if (node->is_param) {
  12420. snprintf(color, sizeof(color), "yellow");
  12421. } else if (node->grad) {
  12422. if (ggml_graph_find(gf, node)) {
  12423. snprintf(color, sizeof(color), "green");
  12424. } else {
  12425. snprintf(color, sizeof(color), "lightblue");
  12426. }
  12427. } else {
  12428. snprintf(color, sizeof(color), "white");
  12429. }
  12430. fprintf(fp, " \"%p\" [ "
  12431. "style = filled; fillcolor = %s; shape = record; "
  12432. "label=\"",
  12433. (void *) node, color);
  12434. if (strlen(node->name) > 0) {
  12435. fprintf(fp, "%s |", node->name);
  12436. }
  12437. if (node->n_dims == 2) {
  12438. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], GGML_OP_SYMBOL[node->op]);
  12439. } else {
  12440. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], GGML_OP_SYMBOL[node->op]);
  12441. }
  12442. if (node->grad) {
  12443. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  12444. } else {
  12445. fprintf(fp, "\"; ]\n");
  12446. }
  12447. }
  12448. for (int i = 0; i < gb->n_leafs; i++) {
  12449. struct ggml_tensor * node = gb->leafs[i];
  12450. snprintf(color, sizeof(color), "pink");
  12451. fprintf(fp, " \"%p\" [ "
  12452. "style = filled; fillcolor = %s; shape = record; "
  12453. "label=\"<x>",
  12454. (void *) node, color);
  12455. if (strlen(node->name) > 0) {
  12456. fprintf(fp, "%s | ", node->name);
  12457. }
  12458. if (ggml_nelements(node) == 1) {
  12459. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  12460. fprintf(fp, "%d", ggml_get_i32_1d(node, 0));
  12461. }
  12462. else {
  12463. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, 0));
  12464. }
  12465. }
  12466. else {
  12467. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  12468. }
  12469. fprintf(fp, "\"; ]\n");
  12470. }
  12471. for (int i = 0; i < gb->n_nodes; i++) {
  12472. struct ggml_tensor * node = gb->nodes[i];
  12473. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  12474. if (node->src0) {
  12475. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  12476. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  12477. parent0 ? (void *) parent0 : (void *) node->src0,
  12478. parent0 ? "g" : "x",
  12479. parent ? (void *) parent : (void *) node,
  12480. parent ? "g" : "x",
  12481. parent ? "empty" : "vee",
  12482. parent ? "dashed" : "solid");
  12483. }
  12484. if (node->src1) {
  12485. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  12486. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  12487. parent1 ? (void *) parent1 : (void *) node->src1,
  12488. parent1 ? "g" : "x",
  12489. parent ? (void *) parent : (void *) node,
  12490. parent ? "g" : "x",
  12491. parent ? "empty" : "vee",
  12492. parent ? "dashed" : "solid");
  12493. }
  12494. }
  12495. for (int i = 0; i < gb->n_leafs; i++) {
  12496. struct ggml_tensor * node = gb->leafs[i];
  12497. if (node->src0) {
  12498. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  12499. (void *) node->src0, "x",
  12500. (void *) node, "x");
  12501. }
  12502. if (node->src1) {
  12503. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  12504. (void *) node->src1, "x",
  12505. (void *) node, "x");
  12506. }
  12507. }
  12508. fprintf(fp, "}\n");
  12509. fclose(fp);
  12510. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  12511. }
  12512. ////////////////////////////////////////////////////////////////////////////////
  12513. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  12514. int i = 0;
  12515. for (int p = 0; p < np; ++p) {
  12516. const int64_t ne = ggml_nelements(ps[p]) ;
  12517. // TODO: add function to set tensor from array
  12518. for (int64_t j = 0; j < ne; ++j) {
  12519. ggml_set_f32_1d(ps[p], j, x[i++]);
  12520. }
  12521. }
  12522. }
  12523. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  12524. int i = 0;
  12525. for (int p = 0; p < np; ++p) {
  12526. const int64_t ne = ggml_nelements(ps[p]) ;
  12527. // TODO: add function to get all elements at once
  12528. for (int64_t j = 0; j < ne; ++j) {
  12529. x[i++] = ggml_get_f32_1d(ps[p], j);
  12530. }
  12531. }
  12532. }
  12533. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  12534. int i = 0;
  12535. for (int p = 0; p < np; ++p) {
  12536. const int64_t ne = ggml_nelements(ps[p]) ;
  12537. // TODO: add function to get all elements at once
  12538. for (int64_t j = 0; j < ne; ++j) {
  12539. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  12540. }
  12541. }
  12542. }
  12543. //
  12544. // ADAM
  12545. //
  12546. // ref: https://arxiv.org/pdf/1412.6980.pdf
  12547. //
  12548. static enum ggml_opt_result ggml_opt_adam(
  12549. struct ggml_context * ctx,
  12550. struct ggml_opt_params params,
  12551. struct ggml_tensor * f,
  12552. struct ggml_cgraph * gf,
  12553. struct ggml_cgraph * gb) {
  12554. GGML_ASSERT(ggml_is_scalar(f));
  12555. gf->n_threads = params.n_threads;
  12556. gb->n_threads = params.n_threads;
  12557. // these will store the parameters we want to optimize
  12558. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  12559. int np = 0;
  12560. int nx = 0;
  12561. for (int i = 0; i < gf->n_nodes; ++i) {
  12562. if (gf->nodes[i]->is_param) {
  12563. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  12564. GGML_ASSERT(np < GGML_MAX_PARAMS);
  12565. ps[np++] = gf->nodes[i];
  12566. nx += ggml_nelements(gf->nodes[i]);
  12567. }
  12568. }
  12569. // constants
  12570. const float alpha = params.adam.alpha;
  12571. const float beta1 = params.adam.beta1;
  12572. const float beta2 = params.adam.beta2;
  12573. const float eps = params.adam.eps;
  12574. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  12575. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  12576. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  12577. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  12578. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  12579. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  12580. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  12581. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  12582. // initialize
  12583. ggml_vec_set_f32(nx, m, 0.0f);
  12584. ggml_vec_set_f32(nx, v, 0.0f);
  12585. // update view
  12586. ggml_opt_get_params(np, ps, x);
  12587. // compute the function value
  12588. ggml_graph_reset (gf);
  12589. ggml_set_f32 (f->grad, 1.0f);
  12590. ggml_graph_compute(ctx, gb);
  12591. float fx_prev = ggml_get_f32_1d(f, 0);
  12592. if (pf) {
  12593. pf[0] = fx_prev;
  12594. }
  12595. int n_no_improvement = 0;
  12596. float fx_best = fx_prev;
  12597. // run the optimizer
  12598. for (int t = 0; t < params.adam.n_iter; ++t) {
  12599. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  12600. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  12601. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  12602. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  12603. for (int i = 0; i < np; ++i) {
  12604. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  12605. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  12606. }
  12607. const int64_t t_start_wall = ggml_time_us();
  12608. const int64_t t_start_cpu = ggml_cycles();
  12609. UNUSED(t_start_wall);
  12610. UNUSED(t_start_cpu);
  12611. {
  12612. // update the gradient
  12613. ggml_opt_get_grad(np, ps, g1);
  12614. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  12615. ggml_vec_scale_f32(nx, m, beta1);
  12616. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  12617. // g2 = g1^2
  12618. ggml_vec_sqr_f32 (nx, g2, g1);
  12619. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  12620. ggml_vec_scale_f32(nx, v, beta2);
  12621. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  12622. // m^hat = m_t / (1 - beta1^t)
  12623. // v^hat = v_t / (1 - beta2^t)
  12624. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  12625. ggml_vec_cpy_f32 (nx, mh, m);
  12626. ggml_vec_cpy_f32 (nx, vh, v);
  12627. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  12628. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  12629. ggml_vec_sqrt_f32 (nx, vh, vh);
  12630. ggml_vec_acc1_f32 (nx, vh, eps);
  12631. ggml_vec_div_f32 (nx, mh, mh, vh);
  12632. ggml_vec_sub_f32 (nx, x, x, mh);
  12633. // update the parameters
  12634. ggml_opt_set_params(np, ps, x);
  12635. }
  12636. ggml_graph_reset (gf);
  12637. ggml_set_f32 (f->grad, 1.0f);
  12638. ggml_graph_compute(ctx, gb);
  12639. const float fx = ggml_get_f32_1d(f, 0);
  12640. // check convergence
  12641. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  12642. GGML_PRINT_DEBUG("converged\n");
  12643. return GGML_OPT_OK;
  12644. }
  12645. // delta-based convergence test
  12646. if (pf != NULL) {
  12647. // need at least params.past iterations to start checking for convergence
  12648. if (params.past <= t) {
  12649. const float rate = (pf[t%params.past] - fx)/fx;
  12650. if (fabsf(rate) < params.delta) {
  12651. return GGML_OPT_OK;
  12652. }
  12653. }
  12654. pf[t%params.past] = fx;
  12655. }
  12656. // check for improvement
  12657. if (params.max_no_improvement > 0) {
  12658. if (fx_best > fx) {
  12659. fx_best = fx;
  12660. n_no_improvement = 0;
  12661. } else {
  12662. ++n_no_improvement;
  12663. if (n_no_improvement >= params.max_no_improvement) {
  12664. return GGML_OPT_OK;
  12665. }
  12666. }
  12667. }
  12668. fx_prev = fx;
  12669. {
  12670. const int64_t t_end_cpu = ggml_cycles();
  12671. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  12672. UNUSED(t_end_cpu);
  12673. const int64_t t_end_wall = ggml_time_us();
  12674. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  12675. UNUSED(t_end_wall);
  12676. }
  12677. }
  12678. return GGML_OPT_DID_NOT_CONVERGE;
  12679. }
  12680. //
  12681. // L-BFGS
  12682. //
  12683. // the L-BFGS implementation below is based on the following implementation:
  12684. //
  12685. // https://github.com/chokkan/liblbfgs
  12686. //
  12687. struct ggml_lbfgs_iteration_data {
  12688. float alpha;
  12689. float ys;
  12690. float * s;
  12691. float * y;
  12692. };
  12693. static enum ggml_opt_result linesearch_backtracking(
  12694. struct ggml_context * ctx,
  12695. const struct ggml_opt_params * params,
  12696. int nx,
  12697. float * x,
  12698. float * fx,
  12699. float * g,
  12700. float * d,
  12701. float * step,
  12702. const float * xp,
  12703. struct ggml_tensor * f,
  12704. struct ggml_cgraph * gf,
  12705. struct ggml_cgraph * gb,
  12706. const int np,
  12707. struct ggml_tensor * ps[]) {
  12708. int count = 0;
  12709. float width = 0.0f;
  12710. float dg = 0.0f;
  12711. float finit = 0.0f;
  12712. float dginit = 0.0f;
  12713. float dgtest = 0.0f;
  12714. const float dec = 0.5f;
  12715. const float inc = 2.1f;
  12716. if (*step <= 0.f) {
  12717. return GGML_LINESEARCH_INVALID_PARAMETERS;
  12718. }
  12719. // compute the initial gradient in the search direction
  12720. ggml_vec_dot_f32(nx, &dginit, g, d);
  12721. // make sure that d points to a descent direction
  12722. if (0 < dginit) {
  12723. return GGML_LINESEARCH_FAIL;
  12724. }
  12725. // initialize local variables
  12726. finit = *fx;
  12727. dgtest = params->lbfgs.ftol*dginit;
  12728. while (true) {
  12729. ggml_vec_cpy_f32(nx, x, xp);
  12730. ggml_vec_mad_f32(nx, x, d, *step);
  12731. // evaluate the function and gradient values
  12732. {
  12733. ggml_opt_set_params(np, ps, x);
  12734. ggml_graph_reset (gf);
  12735. ggml_set_f32 (f->grad, 1.0f);
  12736. ggml_graph_compute(ctx, gb);
  12737. ggml_opt_get_grad(np, ps, g);
  12738. *fx = ggml_get_f32_1d(f, 0);
  12739. }
  12740. ++count;
  12741. if (*fx > finit + (*step)*dgtest) {
  12742. width = dec;
  12743. } else {
  12744. // Armijo condition is satisfied
  12745. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  12746. return count;
  12747. }
  12748. ggml_vec_dot_f32(nx, &dg, g, d);
  12749. // check the Wolfe condition
  12750. if (dg < params->lbfgs.wolfe * dginit) {
  12751. width = inc;
  12752. } else {
  12753. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  12754. // regular Wolfe conditions
  12755. return count;
  12756. }
  12757. if(dg > -params->lbfgs.wolfe*dginit) {
  12758. width = dec;
  12759. } else {
  12760. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  12761. return count;
  12762. }
  12763. return count;
  12764. }
  12765. }
  12766. if (*step < params->lbfgs.min_step) {
  12767. return GGML_LINESEARCH_MINIMUM_STEP;
  12768. }
  12769. if (*step > params->lbfgs.max_step) {
  12770. return GGML_LINESEARCH_MAXIMUM_STEP;
  12771. }
  12772. if (params->lbfgs.max_linesearch <= count) {
  12773. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  12774. }
  12775. (*step) *= width;
  12776. }
  12777. return GGML_LINESEARCH_FAIL;
  12778. }
  12779. static enum ggml_opt_result ggml_opt_lbfgs(
  12780. struct ggml_context * ctx,
  12781. struct ggml_opt_params params,
  12782. struct ggml_tensor * f,
  12783. struct ggml_cgraph * gf,
  12784. struct ggml_cgraph * gb) {
  12785. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  12786. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  12787. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  12788. return GGML_OPT_INVALID_WOLFE;
  12789. }
  12790. }
  12791. gf->n_threads = params.n_threads;
  12792. gb->n_threads = params.n_threads;
  12793. const int m = params.lbfgs.m;
  12794. // these will store the parameters we want to optimize
  12795. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  12796. int np = 0;
  12797. int nx = 0;
  12798. for (int i = 0; i < gf->n_nodes; ++i) {
  12799. if (gf->nodes[i]->is_param) {
  12800. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  12801. GGML_ASSERT(np < GGML_MAX_PARAMS);
  12802. ps[np++] = gf->nodes[i];
  12803. nx += ggml_nelements(gf->nodes[i]);
  12804. }
  12805. }
  12806. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  12807. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  12808. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  12809. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  12810. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  12811. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  12812. float fx = 0.0f; // cost function value
  12813. float xnorm = 0.0f; // ||x||
  12814. float gnorm = 0.0f; // ||g||
  12815. float step = 0.0f;
  12816. // initialize x from the graph nodes
  12817. ggml_opt_get_params(np, ps, x);
  12818. // the L-BFGS memory
  12819. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  12820. for (int i = 0; i < m; ++i) {
  12821. lm[i].alpha = 0.0f;
  12822. lm[i].ys = 0.0f;
  12823. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  12824. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  12825. }
  12826. // evaluate the function value and its gradient
  12827. {
  12828. ggml_opt_set_params(np, ps, x);
  12829. ggml_graph_reset (gf);
  12830. ggml_set_f32 (f->grad, 1.0f);
  12831. ggml_graph_compute(ctx, gb);
  12832. ggml_opt_get_grad(np, ps, g);
  12833. fx = ggml_get_f32_1d(f, 0);
  12834. }
  12835. if (pf) {
  12836. pf[0] = fx;
  12837. }
  12838. float fx_best = fx;
  12839. // search direction = -gradient
  12840. ggml_vec_neg_f32(nx, d, g);
  12841. // ||x||, ||g||
  12842. ggml_vec_norm_f32(nx, &xnorm, x);
  12843. ggml_vec_norm_f32(nx, &gnorm, g);
  12844. if (xnorm < 1.0f) {
  12845. xnorm = 1.0f;
  12846. }
  12847. // already optimized
  12848. if (gnorm/xnorm <= params.lbfgs.eps) {
  12849. return GGML_OPT_OK;
  12850. }
  12851. // initial step
  12852. ggml_vec_norm_inv_f32(nx, &step, d);
  12853. int j = 0;
  12854. int k = 1;
  12855. int ls = 0;
  12856. int end = 0;
  12857. int bound = 0;
  12858. int n_no_improvement = 0;
  12859. float ys = 0.0f;
  12860. float yy = 0.0f;
  12861. float beta = 0.0f;
  12862. while (true) {
  12863. // store the current position and gradient vectors
  12864. ggml_vec_cpy_f32(nx, xp, x);
  12865. ggml_vec_cpy_f32(nx, gp, g);
  12866. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  12867. if (ls < 0) {
  12868. // linesearch failed - go back to the previous point and return
  12869. ggml_vec_cpy_f32(nx, x, xp);
  12870. ggml_vec_cpy_f32(nx, g, gp);
  12871. return ls;
  12872. }
  12873. ggml_vec_norm_f32(nx, &xnorm, x);
  12874. ggml_vec_norm_f32(nx, &gnorm, g);
  12875. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  12876. if (xnorm < 1.0f) {
  12877. xnorm = 1.0f;
  12878. }
  12879. if (gnorm/xnorm <= params.lbfgs.eps) {
  12880. // converged
  12881. return GGML_OPT_OK;
  12882. }
  12883. // delta-based convergence test
  12884. if (pf != NULL) {
  12885. // need at least params.past iterations to start checking for convergence
  12886. if (params.past <= k) {
  12887. const float rate = (pf[k%params.past] - fx)/fx;
  12888. if (fabsf(rate) < params.delta) {
  12889. return GGML_OPT_OK;
  12890. }
  12891. }
  12892. pf[k%params.past] = fx;
  12893. }
  12894. // check for improvement
  12895. if (params.max_no_improvement > 0) {
  12896. if (fx < fx_best) {
  12897. fx_best = fx;
  12898. n_no_improvement = 0;
  12899. } else {
  12900. n_no_improvement++;
  12901. if (n_no_improvement >= params.max_no_improvement) {
  12902. return GGML_OPT_OK;
  12903. }
  12904. }
  12905. }
  12906. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  12907. // reached the maximum number of iterations
  12908. return GGML_OPT_DID_NOT_CONVERGE;
  12909. }
  12910. // update vectors s and y:
  12911. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  12912. // y_{k+1} = g_{k+1} - g_{k}.
  12913. //
  12914. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  12915. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  12916. // compute scalars ys and yy:
  12917. // ys = y^t \cdot s -> 1 / \rho.
  12918. // yy = y^t \cdot y.
  12919. //
  12920. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  12921. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  12922. lm[end].ys = ys;
  12923. // find new search direction
  12924. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  12925. bound = (m <= k) ? m : k;
  12926. k++;
  12927. end = (end + 1)%m;
  12928. // initialize search direction with -g
  12929. ggml_vec_neg_f32(nx, d, g);
  12930. j = end;
  12931. for (int i = 0; i < bound; ++i) {
  12932. j = (j + m - 1) % m;
  12933. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  12934. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  12935. lm[j].alpha /= lm[j].ys;
  12936. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  12937. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  12938. }
  12939. ggml_vec_scale_f32(nx, d, ys/yy);
  12940. for (int i = 0; i < bound; ++i) {
  12941. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  12942. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  12943. beta /= lm[j].ys;
  12944. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  12945. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  12946. j = (j + 1)%m;
  12947. }
  12948. step = 1.0;
  12949. }
  12950. return GGML_OPT_DID_NOT_CONVERGE;
  12951. }
  12952. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  12953. struct ggml_opt_params result;
  12954. switch (type) {
  12955. case GGML_OPT_ADAM:
  12956. {
  12957. result = (struct ggml_opt_params) {
  12958. .type = GGML_OPT_ADAM,
  12959. .n_threads = 1,
  12960. .past = 0,
  12961. .delta = 1e-5f,
  12962. .max_no_improvement = 100,
  12963. .print_forward_graph = true,
  12964. .print_backward_graph = true,
  12965. .adam = {
  12966. .n_iter = 10000,
  12967. .alpha = 0.001f,
  12968. .beta1 = 0.9f,
  12969. .beta2 = 0.999f,
  12970. .eps = 1e-8f,
  12971. .eps_f = 1e-5f,
  12972. .eps_g = 1e-3f,
  12973. },
  12974. };
  12975. } break;
  12976. case GGML_OPT_LBFGS:
  12977. {
  12978. result = (struct ggml_opt_params) {
  12979. .type = GGML_OPT_LBFGS,
  12980. .n_threads = 1,
  12981. .past = 0,
  12982. .delta = 1e-5f,
  12983. .max_no_improvement = 0,
  12984. .print_forward_graph = true,
  12985. .print_backward_graph = true,
  12986. .lbfgs = {
  12987. .m = 6,
  12988. .n_iter = 100,
  12989. .max_linesearch = 20,
  12990. .eps = 1e-5f,
  12991. .ftol = 1e-4f,
  12992. .wolfe = 0.9f,
  12993. .min_step = 1e-20f,
  12994. .max_step = 1e+20f,
  12995. .linesearch = GGML_LINESEARCH_DEFAULT,
  12996. },
  12997. };
  12998. } break;
  12999. }
  13000. return result;
  13001. }
  13002. enum ggml_opt_result ggml_opt(
  13003. struct ggml_context * ctx,
  13004. struct ggml_opt_params params,
  13005. struct ggml_tensor * f) {
  13006. bool free_ctx = false;
  13007. if (ctx == NULL) {
  13008. struct ggml_init_params params_ctx = {
  13009. .mem_size = 16*1024*1024,
  13010. .mem_buffer = NULL,
  13011. .no_alloc = false,
  13012. };
  13013. ctx = ggml_init(params_ctx);
  13014. if (ctx == NULL) {
  13015. return GGML_OPT_NO_CONTEXT;
  13016. }
  13017. free_ctx = true;
  13018. }
  13019. enum ggml_opt_result result = GGML_OPT_OK;
  13020. // build forward + backward compute graphs
  13021. struct ggml_cgraph gf = ggml_build_forward (f);
  13022. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, true);
  13023. switch (params.type) {
  13024. case GGML_OPT_ADAM:
  13025. {
  13026. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  13027. } break;
  13028. case GGML_OPT_LBFGS:
  13029. {
  13030. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  13031. } break;
  13032. }
  13033. if (params.print_forward_graph) {
  13034. ggml_graph_print (&gf);
  13035. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  13036. }
  13037. if (params.print_backward_graph) {
  13038. ggml_graph_print (&gb);
  13039. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  13040. }
  13041. if (free_ctx) {
  13042. ggml_free(ctx);
  13043. }
  13044. return result;
  13045. }
  13046. ////////////////////////////////////////////////////////////////////////////////
  13047. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  13048. assert(k % QK4_0 == 0);
  13049. const int nb = k / QK4_0;
  13050. for (int b = 0; b < n; b += k) {
  13051. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  13052. quantize_row_q4_0_reference(src + b, y, k);
  13053. for (int i = 0; i < nb; i++) {
  13054. for (int j = 0; j < QK4_0; j += 2) {
  13055. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  13056. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  13057. hist[vi0]++;
  13058. hist[vi1]++;
  13059. }
  13060. }
  13061. }
  13062. return (n/QK4_0*sizeof(block_q4_0));
  13063. }
  13064. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  13065. assert(k % QK4_1 == 0);
  13066. const int nb = k / QK4_1;
  13067. for (int b = 0; b < n; b += k) {
  13068. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  13069. quantize_row_q4_1_reference(src + b, y, k);
  13070. for (int i = 0; i < nb; i++) {
  13071. for (int j = 0; j < QK4_1; j += 2) {
  13072. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  13073. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  13074. hist[vi0]++;
  13075. hist[vi1]++;
  13076. }
  13077. }
  13078. }
  13079. return (n/QK4_1*sizeof(block_q4_1));
  13080. }
  13081. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  13082. assert(k % QK5_0 == 0);
  13083. const int nb = k / QK5_0;
  13084. for (int b = 0; b < n; b += k) {
  13085. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  13086. quantize_row_q5_0_reference(src + b, y, k);
  13087. for (int i = 0; i < nb; i++) {
  13088. uint32_t qh;
  13089. memcpy(&qh, &y[i].qh, sizeof(qh));
  13090. for (int j = 0; j < QK5_0; j += 2) {
  13091. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  13092. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  13093. // cast to 16 bins
  13094. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  13095. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  13096. hist[vi0]++;
  13097. hist[vi1]++;
  13098. }
  13099. }
  13100. }
  13101. return (n/QK5_0*sizeof(block_q5_0));
  13102. }
  13103. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  13104. assert(k % QK5_1 == 0);
  13105. const int nb = k / QK5_1;
  13106. for (int b = 0; b < n; b += k) {
  13107. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  13108. quantize_row_q5_1_reference(src + b, y, k);
  13109. for (int i = 0; i < nb; i++) {
  13110. uint32_t qh;
  13111. memcpy(&qh, &y[i].qh, sizeof(qh));
  13112. for (int j = 0; j < QK5_1; j += 2) {
  13113. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  13114. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  13115. // cast to 16 bins
  13116. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  13117. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  13118. hist[vi0]++;
  13119. hist[vi1]++;
  13120. }
  13121. }
  13122. }
  13123. return (n/QK5_1*sizeof(block_q5_1));
  13124. }
  13125. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  13126. assert(k % QK8_0 == 0);
  13127. const int nb = k / QK8_0;
  13128. for (int b = 0; b < n; b += k) {
  13129. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  13130. quantize_row_q8_0_reference(src + b, y, k);
  13131. for (int i = 0; i < nb; i++) {
  13132. for (int j = 0; j < QK8_0; ++j) {
  13133. const int8_t vi = y[i].qs[j];
  13134. hist[vi/16 + 8]++;
  13135. }
  13136. }
  13137. }
  13138. return (n/QK8_0*sizeof(block_q8_0));
  13139. }
  13140. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  13141. size_t result = 0;
  13142. switch (type) {
  13143. case GGML_TYPE_Q4_0:
  13144. {
  13145. GGML_ASSERT(start % QK4_0 == 0);
  13146. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  13147. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  13148. } break;
  13149. case GGML_TYPE_Q4_1:
  13150. {
  13151. GGML_ASSERT(start % QK4_1 == 0);
  13152. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  13153. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  13154. } break;
  13155. case GGML_TYPE_Q5_0:
  13156. {
  13157. GGML_ASSERT(start % QK5_0 == 0);
  13158. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  13159. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  13160. } break;
  13161. case GGML_TYPE_Q5_1:
  13162. {
  13163. GGML_ASSERT(start % QK5_1 == 0);
  13164. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  13165. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  13166. } break;
  13167. case GGML_TYPE_Q8_0:
  13168. {
  13169. GGML_ASSERT(start % QK8_0 == 0);
  13170. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  13171. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  13172. } break;
  13173. default:
  13174. assert(false);
  13175. }
  13176. return result;
  13177. }
  13178. ////////////////////////////////////////////////////////////////////////////////
  13179. int ggml_cpu_has_avx(void) {
  13180. #if defined(__AVX__)
  13181. return 1;
  13182. #else
  13183. return 0;
  13184. #endif
  13185. }
  13186. int ggml_cpu_has_avx2(void) {
  13187. #if defined(__AVX2__)
  13188. return 1;
  13189. #else
  13190. return 0;
  13191. #endif
  13192. }
  13193. int ggml_cpu_has_avx512(void) {
  13194. #if defined(__AVX512F__)
  13195. return 1;
  13196. #else
  13197. return 0;
  13198. #endif
  13199. }
  13200. int ggml_cpu_has_avx512_vbmi(void) {
  13201. #if defined(__AVX512VBMI__)
  13202. return 1;
  13203. #else
  13204. return 0;
  13205. #endif
  13206. }
  13207. int ggml_cpu_has_avx512_vnni(void) {
  13208. #if defined(__AVX512VNNI__)
  13209. return 1;
  13210. #else
  13211. return 0;
  13212. #endif
  13213. }
  13214. int ggml_cpu_has_fma(void) {
  13215. #if defined(__FMA__)
  13216. return 1;
  13217. #else
  13218. return 0;
  13219. #endif
  13220. }
  13221. int ggml_cpu_has_neon(void) {
  13222. #if defined(__ARM_NEON)
  13223. return 1;
  13224. #else
  13225. return 0;
  13226. #endif
  13227. }
  13228. int ggml_cpu_has_arm_fma(void) {
  13229. #if defined(__ARM_FEATURE_FMA)
  13230. return 1;
  13231. #else
  13232. return 0;
  13233. #endif
  13234. }
  13235. int ggml_cpu_has_f16c(void) {
  13236. #if defined(__F16C__)
  13237. return 1;
  13238. #else
  13239. return 0;
  13240. #endif
  13241. }
  13242. int ggml_cpu_has_fp16_va(void) {
  13243. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  13244. return 1;
  13245. #else
  13246. return 0;
  13247. #endif
  13248. }
  13249. int ggml_cpu_has_wasm_simd(void) {
  13250. #if defined(__wasm_simd128__)
  13251. return 1;
  13252. #else
  13253. return 0;
  13254. #endif
  13255. }
  13256. int ggml_cpu_has_blas(void) {
  13257. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  13258. return 1;
  13259. #else
  13260. return 0;
  13261. #endif
  13262. }
  13263. int ggml_cpu_has_cublas(void) {
  13264. #if defined(GGML_USE_CUBLAS)
  13265. return 1;
  13266. #else
  13267. return 0;
  13268. #endif
  13269. }
  13270. int ggml_cpu_has_clblast(void) {
  13271. #if defined(GGML_USE_CLBLAST)
  13272. return 1;
  13273. #else
  13274. return 0;
  13275. #endif
  13276. }
  13277. int ggml_cpu_has_gpublas(void) {
  13278. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  13279. }
  13280. int ggml_cpu_has_sse3(void) {
  13281. #if defined(__SSE3__)
  13282. return 1;
  13283. #else
  13284. return 0;
  13285. #endif
  13286. }
  13287. int ggml_cpu_has_vsx(void) {
  13288. #if defined(__POWER9_VECTOR__)
  13289. return 1;
  13290. #else
  13291. return 0;
  13292. #endif
  13293. }
  13294. ////////////////////////////////////////////////////////////////////////////////