constants.py 58 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637
  1. from __future__ import annotations
  2. from enum import Enum, IntEnum, auto
  3. from typing import Any
  4. #
  5. # constants
  6. #
  7. GGUF_MAGIC = 0x46554747 # "GGUF"
  8. GGUF_VERSION = 3
  9. GGUF_DEFAULT_ALIGNMENT = 32
  10. GGML_QUANT_VERSION = 2 # GGML_QNT_VERSION from ggml.h
  11. #
  12. # metadata keys
  13. #
  14. class Keys:
  15. class General:
  16. TYPE = "general.type"
  17. ARCHITECTURE = "general.architecture"
  18. QUANTIZATION_VERSION = "general.quantization_version"
  19. ALIGNMENT = "general.alignment"
  20. FILE_TYPE = "general.file_type"
  21. # Authorship Metadata
  22. NAME = "general.name"
  23. AUTHOR = "general.author"
  24. VERSION = "general.version"
  25. ORGANIZATION = "general.organization"
  26. FINETUNE = "general.finetune"
  27. BASENAME = "general.basename"
  28. DESCRIPTION = "general.description"
  29. QUANTIZED_BY = "general.quantized_by"
  30. SIZE_LABEL = "general.size_label"
  31. # Licensing details
  32. LICENSE = "general.license"
  33. LICENSE_NAME = "general.license.name"
  34. LICENSE_LINK = "general.license.link"
  35. # Typically represents the converted GGUF repo (Unless native)
  36. URL = "general.url" # Model Website/Paper
  37. DOI = "general.doi"
  38. UUID = "general.uuid"
  39. REPO_URL = "general.repo_url" # Model Source Repository (git/svn/etc...)
  40. # Model Source during conversion
  41. SOURCE_URL = "general.source.url" # Model Website/Paper
  42. SOURCE_DOI = "general.source.doi"
  43. SOURCE_UUID = "general.source.uuid"
  44. SOURCE_REPO_URL = "general.source.repo_url" # Model Source Repository (git/svn/etc...)
  45. # Base Model Source. There can be more than one source if it's a merged
  46. # model like with 'Mistral-7B-Merge-14-v0.1'. This will assist in
  47. # tracing linage of models as it is finetuned or merged over time.
  48. BASE_MODEL_COUNT = "general.base_model.count"
  49. BASE_MODEL_NAME = "general.base_model.{id}.name"
  50. BASE_MODEL_AUTHOR = "general.base_model.{id}.author"
  51. BASE_MODEL_VERSION = "general.base_model.{id}.version"
  52. BASE_MODEL_ORGANIZATION = "general.base_model.{id}.organization"
  53. BASE_MODEL_DESCRIPTION = "general.base_model.{id}.description"
  54. BASE_MODEL_URL = "general.base_model.{id}.url" # Model Website/Paper
  55. BASE_MODEL_DOI = "general.base_model.{id}.doi"
  56. BASE_MODEL_UUID = "general.base_model.{id}.uuid"
  57. BASE_MODEL_REPO_URL = "general.base_model.{id}.repo_url" # Model Source Repository (git/svn/etc...)
  58. # Dataset Source
  59. DATASET_COUNT = "general.dataset.count"
  60. DATASET_NAME = "general.dataset.{id}.name"
  61. DATASET_AUTHOR = "general.dataset.{id}.author"
  62. DATASET_VERSION = "general.dataset.{id}.version"
  63. DATASET_ORGANIZATION = "general.dataset.{id}.organization"
  64. DATASET_DESCRIPTION = "general.dataset.{id}.description"
  65. DATASET_URL = "general.dataset.{id}.url" # Model Website/Paper
  66. DATASET_DOI = "general.dataset.{id}.doi"
  67. DATASET_UUID = "general.dataset.{id}.uuid"
  68. DATASET_REPO_URL = "general.dataset.{id}.repo_url" # Model Source Repository (git/svn/etc...)
  69. # Array based KV stores
  70. TAGS = "general.tags"
  71. LANGUAGES = "general.languages"
  72. class LLM:
  73. VOCAB_SIZE = "{arch}.vocab_size"
  74. CONTEXT_LENGTH = "{arch}.context_length"
  75. EMBEDDING_LENGTH = "{arch}.embedding_length"
  76. BLOCK_COUNT = "{arch}.block_count"
  77. LEADING_DENSE_BLOCK_COUNT = "{arch}.leading_dense_block_count"
  78. FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
  79. EXPERT_FEED_FORWARD_LENGTH = "{arch}.expert_feed_forward_length"
  80. EXPERT_SHARED_FEED_FORWARD_LENGTH = "{arch}.expert_shared_feed_forward_length"
  81. USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
  82. TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
  83. EXPERT_COUNT = "{arch}.expert_count"
  84. EXPERT_USED_COUNT = "{arch}.expert_used_count"
  85. EXPERT_SHARED_COUNT = "{arch}.expert_shared_count"
  86. EXPERT_WEIGHTS_SCALE = "{arch}.expert_weights_scale"
  87. POOLING_TYPE = "{arch}.pooling_type"
  88. LOGIT_SCALE = "{arch}.logit_scale"
  89. DECODER_START_TOKEN_ID = "{arch}.decoder_start_token_id"
  90. ATTN_LOGIT_SOFTCAPPING = "{arch}.attn_logit_softcapping"
  91. FINAL_LOGIT_SOFTCAPPING = "{arch}.final_logit_softcapping"
  92. SWIN_NORM = "{arch}.swin_norm"
  93. RESCALE_EVERY_N_LAYERS = "{arch}.rescale_every_n_layers"
  94. TIME_MIX_EXTRA_DIM = "{arch}.time_mix_extra_dim"
  95. TIME_DECAY_EXTRA_DIM = "{arch}.time_decay_extra_dim"
  96. RESIDUAL_SCALE = "{arch}.residual_scale"
  97. EMBEDDING_SCALE = "{arch}.embedding_scale"
  98. class Attention:
  99. HEAD_COUNT = "{arch}.attention.head_count"
  100. HEAD_COUNT_KV = "{arch}.attention.head_count_kv"
  101. MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias"
  102. CLAMP_KQV = "{arch}.attention.clamp_kqv"
  103. KEY_LENGTH = "{arch}.attention.key_length"
  104. VALUE_LENGTH = "{arch}.attention.value_length"
  105. LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
  106. LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
  107. CAUSAL = "{arch}.attention.causal"
  108. Q_LORA_RANK = "{arch}.attention.q_lora_rank"
  109. KV_LORA_RANK = "{arch}.attention.kv_lora_rank"
  110. REL_BUCKETS_COUNT = "{arch}.attention.relative_buckets_count"
  111. SLIDING_WINDOW = "{arch}.attention.sliding_window"
  112. SCALE = "{arch}.attention.scale"
  113. class Rope:
  114. DIMENSION_COUNT = "{arch}.rope.dimension_count"
  115. FREQ_BASE = "{arch}.rope.freq_base"
  116. SCALING_TYPE = "{arch}.rope.scaling.type"
  117. SCALING_FACTOR = "{arch}.rope.scaling.factor"
  118. SCALING_ATTN_FACTOR = "{arch}.rope.scaling.attn_factor"
  119. SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length"
  120. SCALING_FINETUNED = "{arch}.rope.scaling.finetuned"
  121. SCALING_YARN_LOG_MUL = "{arch}.rope.scaling.yarn_log_multiplier"
  122. class Split:
  123. LLM_KV_SPLIT_NO = "split.no"
  124. LLM_KV_SPLIT_COUNT = "split.count"
  125. LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count"
  126. class SSM:
  127. CONV_KERNEL = "{arch}.ssm.conv_kernel"
  128. INNER_SIZE = "{arch}.ssm.inner_size"
  129. STATE_SIZE = "{arch}.ssm.state_size"
  130. TIME_STEP_RANK = "{arch}.ssm.time_step_rank"
  131. DT_B_C_RMS = "{arch}.ssm.dt_b_c_rms"
  132. class WKV:
  133. HEAD_SIZE = "{arch}.wkv.head_size"
  134. class Tokenizer:
  135. MODEL = "tokenizer.ggml.model"
  136. PRE = "tokenizer.ggml.pre"
  137. LIST = "tokenizer.ggml.tokens"
  138. TOKEN_TYPE = "tokenizer.ggml.token_type"
  139. TOKEN_TYPE_COUNT = "tokenizer.ggml.token_type_count" # for BERT-style token types
  140. SCORES = "tokenizer.ggml.scores"
  141. MERGES = "tokenizer.ggml.merges"
  142. BOS_ID = "tokenizer.ggml.bos_token_id"
  143. EOS_ID = "tokenizer.ggml.eos_token_id"
  144. EOT_ID = "tokenizer.ggml.eot_token_id"
  145. EOM_ID = "tokenizer.ggml.eom_token_id"
  146. UNK_ID = "tokenizer.ggml.unknown_token_id"
  147. SEP_ID = "tokenizer.ggml.seperator_token_id"
  148. PAD_ID = "tokenizer.ggml.padding_token_id"
  149. CLS_ID = "tokenizer.ggml.cls_token_id"
  150. MASK_ID = "tokenizer.ggml.mask_token_id"
  151. ADD_BOS = "tokenizer.ggml.add_bos_token"
  152. ADD_EOS = "tokenizer.ggml.add_eos_token"
  153. ADD_PREFIX = "tokenizer.ggml.add_space_prefix"
  154. REMOVE_EXTRA_WS = "tokenizer.ggml.remove_extra_whitespaces"
  155. PRECOMPILED_CHARSMAP = "tokenizer.ggml.precompiled_charsmap"
  156. HF_JSON = "tokenizer.huggingface.json"
  157. RWKV = "tokenizer.rwkv.world"
  158. CHAT_TEMPLATE = "tokenizer.chat_template"
  159. CHAT_TEMPLATE_N = "tokenizer.chat_template.{name}"
  160. CHAT_TEMPLATES = "tokenizer.chat_templates"
  161. # FIM/Infill special tokens constants
  162. FIM_PRE_ID = "tokenizer.ggml.fim_pre_token_id"
  163. FIM_SUF_ID = "tokenizer.ggml.fim_suf_token_id"
  164. FIM_MID_ID = "tokenizer.ggml.fim_mid_token_id"
  165. FIM_PAD_ID = "tokenizer.ggml.fim_pad_token_id"
  166. FIM_REP_ID = "tokenizer.ggml.fim_rep_token_id"
  167. FIM_SEP_ID = "tokenizer.ggml.fim_sep_token_id"
  168. # deprecated:
  169. PREFIX_ID = "tokenizer.ggml.prefix_token_id"
  170. SUFFIX_ID = "tokenizer.ggml.suffix_token_id"
  171. MIDDLE_ID = "tokenizer.ggml.middle_token_id"
  172. class Adapter:
  173. TYPE = "adapter.type"
  174. LORA_ALPHA = "adapter.lora.alpha"
  175. #
  176. # recommended mapping of model tensor names for storage in gguf
  177. #
  178. class GGUFType:
  179. MODEL = "model"
  180. ADAPTER = "adapter"
  181. class MODEL_ARCH(IntEnum):
  182. LLAMA = auto()
  183. FALCON = auto()
  184. BAICHUAN = auto()
  185. GROK = auto()
  186. GPT2 = auto()
  187. GPTJ = auto()
  188. GPTNEOX = auto()
  189. MPT = auto()
  190. STARCODER = auto()
  191. REFACT = auto()
  192. BERT = auto()
  193. NOMIC_BERT = auto()
  194. JINA_BERT_V2 = auto()
  195. BLOOM = auto()
  196. STABLELM = auto()
  197. QWEN = auto()
  198. QWEN2 = auto()
  199. QWEN2MOE = auto()
  200. PHI2 = auto()
  201. PHI3 = auto()
  202. PLAMO = auto()
  203. CODESHELL = auto()
  204. ORION = auto()
  205. INTERNLM2 = auto()
  206. MINICPM = auto()
  207. MINICPM3 = auto()
  208. GEMMA = auto()
  209. GEMMA2 = auto()
  210. STARCODER2 = auto()
  211. RWKV6 = auto()
  212. MAMBA = auto()
  213. XVERSE = auto()
  214. COMMAND_R = auto()
  215. DBRX = auto()
  216. OLMO = auto()
  217. OLMO2 = auto()
  218. OLMOE = auto()
  219. OPENELM = auto()
  220. ARCTIC = auto()
  221. DEEPSEEK2 = auto()
  222. CHATGLM = auto()
  223. BITNET = auto()
  224. T5 = auto()
  225. T5ENCODER = auto()
  226. JAIS = auto()
  227. NEMOTRON = auto()
  228. EXAONE = auto()
  229. GRANITE = auto()
  230. GRANITE_MOE = auto()
  231. CHAMELEON = auto()
  232. class MODEL_TENSOR(IntEnum):
  233. TOKEN_EMBD = auto()
  234. TOKEN_EMBD_NORM = auto()
  235. TOKEN_TYPES = auto()
  236. POS_EMBD = auto()
  237. OUTPUT = auto()
  238. OUTPUT_NORM = auto()
  239. ROPE_FREQS = auto()
  240. ROPE_FACTORS_LONG = auto()
  241. ROPE_FACTORS_SHORT = auto()
  242. ATTN_Q = auto()
  243. ATTN_K = auto()
  244. ATTN_V = auto()
  245. ATTN_QKV = auto()
  246. ATTN_OUT = auto()
  247. ATTN_NORM = auto()
  248. ATTN_NORM_2 = auto()
  249. ATTN_OUT_NORM = auto()
  250. ATTN_POST_NORM = auto()
  251. ATTN_ROT_EMBD = auto()
  252. FFN_GATE_INP = auto()
  253. FFN_GATE_INP_SHEXP = auto()
  254. FFN_NORM = auto()
  255. FFN_PRE_NORM = auto()
  256. FFN_POST_NORM = auto()
  257. FFN_GATE = auto()
  258. FFN_DOWN = auto()
  259. FFN_UP = auto()
  260. FFN_ACT = auto()
  261. FFN_NORM_EXP = auto()
  262. FFN_GATE_EXP = auto()
  263. FFN_DOWN_EXP = auto()
  264. FFN_UP_EXP = auto()
  265. FFN_GATE_SHEXP = auto()
  266. FFN_DOWN_SHEXP = auto()
  267. FFN_UP_SHEXP = auto()
  268. ATTN_Q_NORM = auto()
  269. ATTN_K_NORM = auto()
  270. LAYER_OUT_NORM = auto()
  271. SSM_IN = auto()
  272. SSM_CONV1D = auto()
  273. SSM_X = auto()
  274. SSM_DT = auto()
  275. SSM_A = auto()
  276. SSM_D = auto()
  277. SSM_OUT = auto()
  278. TIME_MIX_W1 = auto()
  279. TIME_MIX_W2 = auto()
  280. TIME_MIX_LERP_X = auto()
  281. TIME_MIX_LERP_K = auto()
  282. TIME_MIX_LERP_V = auto()
  283. TIME_MIX_LERP_R = auto()
  284. TIME_MIX_LERP_G = auto()
  285. TIME_MIX_LERP_W = auto()
  286. TIME_MIX_FIRST = auto()
  287. TIME_MIX_DECAY = auto()
  288. TIME_MIX_DECAY_W1 = auto()
  289. TIME_MIX_DECAY_W2 = auto()
  290. TIME_MIX_KEY = auto()
  291. TIME_MIX_VALUE = auto()
  292. TIME_MIX_RECEPTANCE = auto()
  293. TIME_MIX_GATE = auto()
  294. TIME_MIX_LN = auto()
  295. TIME_MIX_OUTPUT = auto()
  296. CHANNEL_MIX_LERP_K = auto()
  297. CHANNEL_MIX_LERP_R = auto()
  298. CHANNEL_MIX_KEY = auto()
  299. CHANNEL_MIX_RECEPTANCE = auto()
  300. CHANNEL_MIX_VALUE = auto()
  301. ATTN_Q_A = auto()
  302. ATTN_Q_B = auto()
  303. ATTN_KV_A_MQA = auto()
  304. ATTN_KV_B = auto()
  305. ATTN_Q_A_NORM = auto()
  306. ATTN_KV_A_NORM = auto()
  307. FFN_SUB_NORM = auto()
  308. ATTN_SUB_NORM = auto()
  309. DEC_ATTN_NORM = auto()
  310. DEC_ATTN_Q = auto()
  311. DEC_ATTN_K = auto()
  312. DEC_ATTN_V = auto()
  313. DEC_ATTN_OUT = auto()
  314. DEC_ATTN_REL_B = auto()
  315. DEC_CROSS_ATTN_NORM = auto()
  316. DEC_CROSS_ATTN_Q = auto()
  317. DEC_CROSS_ATTN_K = auto()
  318. DEC_CROSS_ATTN_V = auto()
  319. DEC_CROSS_ATTN_OUT = auto()
  320. DEC_CROSS_ATTN_REL_B = auto()
  321. DEC_FFN_NORM = auto()
  322. DEC_FFN_GATE = auto()
  323. DEC_FFN_DOWN = auto()
  324. DEC_FFN_UP = auto()
  325. DEC_OUTPUT_NORM = auto()
  326. ENC_ATTN_NORM = auto()
  327. ENC_ATTN_Q = auto()
  328. ENC_ATTN_K = auto()
  329. ENC_ATTN_V = auto()
  330. ENC_ATTN_OUT = auto()
  331. ENC_ATTN_REL_B = auto()
  332. ENC_FFN_NORM = auto()
  333. ENC_FFN_GATE = auto()
  334. ENC_FFN_DOWN = auto()
  335. ENC_FFN_UP = auto()
  336. ENC_OUTPUT_NORM = auto()
  337. CLS = auto() # classifier
  338. CLS_OUT = auto() # classifier output projection
  339. MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
  340. MODEL_ARCH.LLAMA: "llama",
  341. MODEL_ARCH.FALCON: "falcon",
  342. MODEL_ARCH.BAICHUAN: "baichuan",
  343. MODEL_ARCH.GROK: "grok",
  344. MODEL_ARCH.GPT2: "gpt2",
  345. MODEL_ARCH.GPTJ: "gptj",
  346. MODEL_ARCH.GPTNEOX: "gptneox",
  347. MODEL_ARCH.MPT: "mpt",
  348. MODEL_ARCH.STARCODER: "starcoder",
  349. MODEL_ARCH.REFACT: "refact",
  350. MODEL_ARCH.BERT: "bert",
  351. MODEL_ARCH.NOMIC_BERT: "nomic-bert",
  352. MODEL_ARCH.JINA_BERT_V2: "jina-bert-v2",
  353. MODEL_ARCH.BLOOM: "bloom",
  354. MODEL_ARCH.STABLELM: "stablelm",
  355. MODEL_ARCH.QWEN: "qwen",
  356. MODEL_ARCH.QWEN2: "qwen2",
  357. MODEL_ARCH.QWEN2MOE: "qwen2moe",
  358. MODEL_ARCH.PHI2: "phi2",
  359. MODEL_ARCH.PHI3: "phi3",
  360. MODEL_ARCH.PLAMO: "plamo",
  361. MODEL_ARCH.CODESHELL: "codeshell",
  362. MODEL_ARCH.ORION: "orion",
  363. MODEL_ARCH.INTERNLM2: "internlm2",
  364. MODEL_ARCH.MINICPM: "minicpm",
  365. MODEL_ARCH.MINICPM3: "minicpm3",
  366. MODEL_ARCH.GEMMA: "gemma",
  367. MODEL_ARCH.GEMMA2: "gemma2",
  368. MODEL_ARCH.STARCODER2: "starcoder2",
  369. MODEL_ARCH.RWKV6: "rwkv6",
  370. MODEL_ARCH.MAMBA: "mamba",
  371. MODEL_ARCH.XVERSE: "xverse",
  372. MODEL_ARCH.COMMAND_R: "command-r",
  373. MODEL_ARCH.DBRX: "dbrx",
  374. MODEL_ARCH.OLMO: "olmo",
  375. MODEL_ARCH.OLMO2: "olmo2",
  376. MODEL_ARCH.OLMOE: "olmoe",
  377. MODEL_ARCH.OPENELM: "openelm",
  378. MODEL_ARCH.ARCTIC: "arctic",
  379. MODEL_ARCH.DEEPSEEK2: "deepseek2",
  380. MODEL_ARCH.CHATGLM: "chatglm",
  381. MODEL_ARCH.BITNET: "bitnet",
  382. MODEL_ARCH.T5: "t5",
  383. MODEL_ARCH.T5ENCODER: "t5encoder",
  384. MODEL_ARCH.JAIS: "jais",
  385. MODEL_ARCH.NEMOTRON: "nemotron",
  386. MODEL_ARCH.EXAONE: "exaone",
  387. MODEL_ARCH.GRANITE: "granite",
  388. MODEL_ARCH.GRANITE_MOE: "granitemoe",
  389. MODEL_ARCH.CHAMELEON: "chameleon",
  390. }
  391. TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
  392. MODEL_TENSOR.TOKEN_EMBD: "token_embd",
  393. MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm",
  394. MODEL_TENSOR.TOKEN_TYPES: "token_types",
  395. MODEL_TENSOR.POS_EMBD: "position_embd",
  396. MODEL_TENSOR.OUTPUT_NORM: "output_norm",
  397. MODEL_TENSOR.OUTPUT: "output",
  398. MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
  399. MODEL_TENSOR.ROPE_FACTORS_LONG: "rope_factors_long",
  400. MODEL_TENSOR.ROPE_FACTORS_SHORT: "rope_factors_short",
  401. MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
  402. MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
  403. MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
  404. MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
  405. MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
  406. MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
  407. MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
  408. MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
  409. MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm",
  410. MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm",
  411. MODEL_TENSOR.ATTN_OUT_NORM: "blk.{bid}.attn_output_norm",
  412. MODEL_TENSOR.ATTN_POST_NORM: "blk.{bid}.post_attention_norm",
  413. MODEL_TENSOR.FFN_GATE_INP: "blk.{bid}.ffn_gate_inp",
  414. MODEL_TENSOR.FFN_GATE_INP_SHEXP: "blk.{bid}.ffn_gate_inp_shexp",
  415. MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
  416. MODEL_TENSOR.FFN_PRE_NORM: "blk.{bid}.ffn_norm",
  417. MODEL_TENSOR.FFN_POST_NORM: "blk.{bid}.post_ffw_norm",
  418. MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
  419. MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
  420. MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
  421. MODEL_TENSOR.FFN_GATE_SHEXP: "blk.{bid}.ffn_gate_shexp",
  422. MODEL_TENSOR.FFN_DOWN_SHEXP: "blk.{bid}.ffn_down_shexp",
  423. MODEL_TENSOR.FFN_UP_SHEXP: "blk.{bid}.ffn_up_shexp",
  424. MODEL_TENSOR.FFN_ACT: "blk.{bid}.ffn",
  425. MODEL_TENSOR.FFN_NORM_EXP: "blk.{bid}.ffn_norm_exps",
  426. MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate_exps",
  427. MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down_exps",
  428. MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up_exps",
  429. MODEL_TENSOR.LAYER_OUT_NORM: "blk.{bid}.layer_output_norm",
  430. MODEL_TENSOR.SSM_IN: "blk.{bid}.ssm_in",
  431. MODEL_TENSOR.SSM_CONV1D: "blk.{bid}.ssm_conv1d",
  432. MODEL_TENSOR.SSM_X: "blk.{bid}.ssm_x",
  433. MODEL_TENSOR.SSM_DT: "blk.{bid}.ssm_dt",
  434. MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a",
  435. MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d",
  436. MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out",
  437. MODEL_TENSOR.TIME_MIX_W1: "blk.{bid}.time_mix_w1",
  438. MODEL_TENSOR.TIME_MIX_W2: "blk.{bid}.time_mix_w2",
  439. MODEL_TENSOR.TIME_MIX_LERP_X: "blk.{bid}.time_mix_lerp_x",
  440. MODEL_TENSOR.TIME_MIX_LERP_K: "blk.{bid}.time_mix_lerp_k",
  441. MODEL_TENSOR.TIME_MIX_LERP_V: "blk.{bid}.time_mix_lerp_v",
  442. MODEL_TENSOR.TIME_MIX_LERP_R: "blk.{bid}.time_mix_lerp_r",
  443. MODEL_TENSOR.TIME_MIX_LERP_G: "blk.{bid}.time_mix_lerp_g",
  444. MODEL_TENSOR.TIME_MIX_LERP_W: "blk.{bid}.time_mix_lerp_w",
  445. MODEL_TENSOR.TIME_MIX_FIRST: "blk.{bid}.time_mix_first",
  446. MODEL_TENSOR.TIME_MIX_DECAY: "blk.{bid}.time_mix_decay",
  447. MODEL_TENSOR.TIME_MIX_DECAY_W1: "blk.{bid}.time_mix_decay_w1",
  448. MODEL_TENSOR.TIME_MIX_DECAY_W2: "blk.{bid}.time_mix_decay_w2",
  449. MODEL_TENSOR.TIME_MIX_KEY: "blk.{bid}.time_mix_key",
  450. MODEL_TENSOR.TIME_MIX_VALUE: "blk.{bid}.time_mix_value",
  451. MODEL_TENSOR.TIME_MIX_RECEPTANCE: "blk.{bid}.time_mix_receptance",
  452. MODEL_TENSOR.TIME_MIX_GATE: "blk.{bid}.time_mix_gate",
  453. MODEL_TENSOR.TIME_MIX_LN: "blk.{bid}.time_mix_ln",
  454. MODEL_TENSOR.TIME_MIX_OUTPUT: "blk.{bid}.time_mix_output",
  455. MODEL_TENSOR.CHANNEL_MIX_LERP_K: "blk.{bid}.channel_mix_lerp_k",
  456. MODEL_TENSOR.CHANNEL_MIX_LERP_R: "blk.{bid}.channel_mix_lerp_r",
  457. MODEL_TENSOR.CHANNEL_MIX_KEY: "blk.{bid}.channel_mix_key",
  458. MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: "blk.{bid}.channel_mix_receptance",
  459. MODEL_TENSOR.CHANNEL_MIX_VALUE: "blk.{bid}.channel_mix_value",
  460. MODEL_TENSOR.ATTN_Q_A: "blk.{bid}.attn_q_a",
  461. MODEL_TENSOR.ATTN_Q_B: "blk.{bid}.attn_q_b",
  462. MODEL_TENSOR.ATTN_KV_A_MQA: "blk.{bid}.attn_kv_a_mqa",
  463. MODEL_TENSOR.ATTN_KV_B: "blk.{bid}.attn_kv_b",
  464. MODEL_TENSOR.ATTN_Q_A_NORM: "blk.{bid}.attn_q_a_norm",
  465. MODEL_TENSOR.ATTN_KV_A_NORM: "blk.{bid}.attn_kv_a_norm",
  466. MODEL_TENSOR.ATTN_SUB_NORM: "blk.{bid}.attn_sub_norm",
  467. MODEL_TENSOR.FFN_SUB_NORM: "blk.{bid}.ffn_sub_norm",
  468. MODEL_TENSOR.DEC_ATTN_NORM: "dec.blk.{bid}.attn_norm",
  469. MODEL_TENSOR.DEC_ATTN_Q: "dec.blk.{bid}.attn_q",
  470. MODEL_TENSOR.DEC_ATTN_K: "dec.blk.{bid}.attn_k",
  471. MODEL_TENSOR.DEC_ATTN_V: "dec.blk.{bid}.attn_v",
  472. MODEL_TENSOR.DEC_ATTN_OUT: "dec.blk.{bid}.attn_o",
  473. MODEL_TENSOR.DEC_ATTN_REL_B: "dec.blk.{bid}.attn_rel_b",
  474. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: "dec.blk.{bid}.cross_attn_norm",
  475. MODEL_TENSOR.DEC_CROSS_ATTN_Q: "dec.blk.{bid}.cross_attn_q",
  476. MODEL_TENSOR.DEC_CROSS_ATTN_K: "dec.blk.{bid}.cross_attn_k",
  477. MODEL_TENSOR.DEC_CROSS_ATTN_V: "dec.blk.{bid}.cross_attn_v",
  478. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: "dec.blk.{bid}.cross_attn_o",
  479. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: "dec.blk.{bid}.cross_attn_rel_b",
  480. MODEL_TENSOR.DEC_FFN_NORM: "dec.blk.{bid}.ffn_norm",
  481. MODEL_TENSOR.DEC_FFN_GATE: "dec.blk.{bid}.ffn_gate",
  482. MODEL_TENSOR.DEC_FFN_DOWN: "dec.blk.{bid}.ffn_down",
  483. MODEL_TENSOR.DEC_FFN_UP: "dec.blk.{bid}.ffn_up",
  484. MODEL_TENSOR.DEC_OUTPUT_NORM: "dec.output_norm",
  485. MODEL_TENSOR.ENC_ATTN_NORM: "enc.blk.{bid}.attn_norm",
  486. MODEL_TENSOR.ENC_ATTN_Q: "enc.blk.{bid}.attn_q",
  487. MODEL_TENSOR.ENC_ATTN_K: "enc.blk.{bid}.attn_k",
  488. MODEL_TENSOR.ENC_ATTN_V: "enc.blk.{bid}.attn_v",
  489. MODEL_TENSOR.ENC_ATTN_OUT: "enc.blk.{bid}.attn_o",
  490. MODEL_TENSOR.ENC_ATTN_REL_B: "enc.blk.{bid}.attn_rel_b",
  491. MODEL_TENSOR.ENC_FFN_NORM: "enc.blk.{bid}.ffn_norm",
  492. MODEL_TENSOR.ENC_FFN_GATE: "enc.blk.{bid}.ffn_gate",
  493. MODEL_TENSOR.ENC_FFN_DOWN: "enc.blk.{bid}.ffn_down",
  494. MODEL_TENSOR.ENC_FFN_UP: "enc.blk.{bid}.ffn_up",
  495. MODEL_TENSOR.ENC_OUTPUT_NORM: "enc.output_norm",
  496. MODEL_TENSOR.CLS: "cls",
  497. MODEL_TENSOR.CLS_OUT: "cls.output",
  498. }
  499. MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
  500. MODEL_ARCH.LLAMA: [
  501. MODEL_TENSOR.TOKEN_EMBD,
  502. MODEL_TENSOR.OUTPUT_NORM,
  503. MODEL_TENSOR.OUTPUT,
  504. MODEL_TENSOR.ROPE_FREQS,
  505. MODEL_TENSOR.ATTN_NORM,
  506. MODEL_TENSOR.ATTN_Q,
  507. MODEL_TENSOR.ATTN_K,
  508. MODEL_TENSOR.ATTN_V,
  509. MODEL_TENSOR.ATTN_OUT,
  510. MODEL_TENSOR.ATTN_ROT_EMBD,
  511. MODEL_TENSOR.FFN_GATE_INP,
  512. MODEL_TENSOR.FFN_NORM,
  513. MODEL_TENSOR.FFN_GATE,
  514. MODEL_TENSOR.FFN_DOWN,
  515. MODEL_TENSOR.FFN_UP,
  516. MODEL_TENSOR.FFN_GATE_EXP,
  517. MODEL_TENSOR.FFN_DOWN_EXP,
  518. MODEL_TENSOR.FFN_UP_EXP,
  519. ],
  520. MODEL_ARCH.GROK: [
  521. MODEL_TENSOR.TOKEN_EMBD,
  522. MODEL_TENSOR.OUTPUT_NORM,
  523. MODEL_TENSOR.OUTPUT,
  524. MODEL_TENSOR.ROPE_FREQS,
  525. MODEL_TENSOR.ATTN_NORM,
  526. MODEL_TENSOR.ATTN_Q,
  527. MODEL_TENSOR.ATTN_K,
  528. MODEL_TENSOR.ATTN_V,
  529. MODEL_TENSOR.ATTN_OUT,
  530. MODEL_TENSOR.ATTN_ROT_EMBD,
  531. MODEL_TENSOR.ATTN_OUT_NORM,
  532. MODEL_TENSOR.FFN_GATE_INP,
  533. MODEL_TENSOR.FFN_NORM,
  534. MODEL_TENSOR.FFN_GATE,
  535. MODEL_TENSOR.FFN_DOWN,
  536. MODEL_TENSOR.FFN_UP,
  537. MODEL_TENSOR.FFN_GATE_EXP,
  538. MODEL_TENSOR.FFN_DOWN_EXP,
  539. MODEL_TENSOR.FFN_UP_EXP,
  540. MODEL_TENSOR.LAYER_OUT_NORM,
  541. ],
  542. MODEL_ARCH.GPTNEOX: [
  543. MODEL_TENSOR.TOKEN_EMBD,
  544. MODEL_TENSOR.OUTPUT_NORM,
  545. MODEL_TENSOR.OUTPUT,
  546. MODEL_TENSOR.ATTN_NORM,
  547. MODEL_TENSOR.ATTN_QKV,
  548. MODEL_TENSOR.ATTN_OUT,
  549. MODEL_TENSOR.FFN_NORM,
  550. MODEL_TENSOR.FFN_DOWN,
  551. MODEL_TENSOR.FFN_UP,
  552. ],
  553. MODEL_ARCH.FALCON: [
  554. MODEL_TENSOR.TOKEN_EMBD,
  555. MODEL_TENSOR.OUTPUT_NORM,
  556. MODEL_TENSOR.OUTPUT,
  557. MODEL_TENSOR.ATTN_NORM,
  558. MODEL_TENSOR.ATTN_NORM_2,
  559. MODEL_TENSOR.ATTN_QKV,
  560. MODEL_TENSOR.ATTN_OUT,
  561. MODEL_TENSOR.FFN_DOWN,
  562. MODEL_TENSOR.FFN_UP,
  563. ],
  564. MODEL_ARCH.BAICHUAN: [
  565. MODEL_TENSOR.TOKEN_EMBD,
  566. MODEL_TENSOR.OUTPUT_NORM,
  567. MODEL_TENSOR.OUTPUT,
  568. MODEL_TENSOR.ROPE_FREQS,
  569. MODEL_TENSOR.ATTN_NORM,
  570. MODEL_TENSOR.ATTN_Q,
  571. MODEL_TENSOR.ATTN_K,
  572. MODEL_TENSOR.ATTN_V,
  573. MODEL_TENSOR.ATTN_OUT,
  574. MODEL_TENSOR.ATTN_ROT_EMBD,
  575. MODEL_TENSOR.FFN_NORM,
  576. MODEL_TENSOR.FFN_GATE,
  577. MODEL_TENSOR.FFN_DOWN,
  578. MODEL_TENSOR.FFN_UP,
  579. ],
  580. MODEL_ARCH.STARCODER: [
  581. MODEL_TENSOR.TOKEN_EMBD,
  582. MODEL_TENSOR.POS_EMBD,
  583. MODEL_TENSOR.OUTPUT_NORM,
  584. MODEL_TENSOR.OUTPUT,
  585. MODEL_TENSOR.ATTN_NORM,
  586. MODEL_TENSOR.ATTN_QKV,
  587. MODEL_TENSOR.ATTN_OUT,
  588. MODEL_TENSOR.FFN_NORM,
  589. MODEL_TENSOR.FFN_DOWN,
  590. MODEL_TENSOR.FFN_UP,
  591. ],
  592. MODEL_ARCH.BERT: [
  593. MODEL_TENSOR.TOKEN_EMBD,
  594. MODEL_TENSOR.TOKEN_EMBD_NORM,
  595. MODEL_TENSOR.TOKEN_TYPES,
  596. MODEL_TENSOR.POS_EMBD,
  597. MODEL_TENSOR.OUTPUT_NORM,
  598. MODEL_TENSOR.ATTN_OUT_NORM,
  599. MODEL_TENSOR.ATTN_Q,
  600. MODEL_TENSOR.ATTN_K,
  601. MODEL_TENSOR.ATTN_V,
  602. MODEL_TENSOR.ATTN_OUT,
  603. MODEL_TENSOR.FFN_DOWN,
  604. MODEL_TENSOR.FFN_UP,
  605. MODEL_TENSOR.LAYER_OUT_NORM,
  606. MODEL_TENSOR.CLS,
  607. MODEL_TENSOR.CLS_OUT,
  608. ],
  609. MODEL_ARCH.NOMIC_BERT: [
  610. MODEL_TENSOR.TOKEN_EMBD,
  611. MODEL_TENSOR.TOKEN_EMBD_NORM,
  612. MODEL_TENSOR.TOKEN_TYPES,
  613. MODEL_TENSOR.POS_EMBD,
  614. MODEL_TENSOR.OUTPUT_NORM,
  615. MODEL_TENSOR.ATTN_OUT_NORM,
  616. MODEL_TENSOR.ATTN_QKV,
  617. MODEL_TENSOR.ATTN_OUT,
  618. MODEL_TENSOR.FFN_GATE,
  619. MODEL_TENSOR.FFN_DOWN,
  620. MODEL_TENSOR.FFN_UP,
  621. MODEL_TENSOR.LAYER_OUT_NORM,
  622. ],
  623. MODEL_ARCH.JINA_BERT_V2: [
  624. MODEL_TENSOR.TOKEN_EMBD,
  625. MODEL_TENSOR.TOKEN_EMBD_NORM,
  626. MODEL_TENSOR.TOKEN_TYPES,
  627. MODEL_TENSOR.ATTN_NORM_2,
  628. MODEL_TENSOR.ATTN_OUT_NORM,
  629. MODEL_TENSOR.ATTN_Q,
  630. MODEL_TENSOR.ATTN_Q_NORM,
  631. MODEL_TENSOR.ATTN_K,
  632. MODEL_TENSOR.ATTN_K_NORM,
  633. MODEL_TENSOR.ATTN_V,
  634. MODEL_TENSOR.ATTN_OUT,
  635. MODEL_TENSOR.FFN_UP,
  636. MODEL_TENSOR.FFN_GATE,
  637. MODEL_TENSOR.FFN_DOWN,
  638. MODEL_TENSOR.LAYER_OUT_NORM,
  639. MODEL_TENSOR.CLS,
  640. ],
  641. MODEL_ARCH.MPT: [
  642. MODEL_TENSOR.TOKEN_EMBD,
  643. MODEL_TENSOR.OUTPUT_NORM,
  644. MODEL_TENSOR.OUTPUT,
  645. MODEL_TENSOR.ATTN_NORM,
  646. MODEL_TENSOR.ATTN_QKV,
  647. MODEL_TENSOR.ATTN_OUT,
  648. MODEL_TENSOR.FFN_NORM,
  649. MODEL_TENSOR.FFN_DOWN,
  650. MODEL_TENSOR.FFN_UP,
  651. MODEL_TENSOR.FFN_ACT,
  652. MODEL_TENSOR.ATTN_Q_NORM,
  653. MODEL_TENSOR.ATTN_K_NORM,
  654. MODEL_TENSOR.POS_EMBD,
  655. ],
  656. MODEL_ARCH.GPTJ: [
  657. MODEL_TENSOR.TOKEN_EMBD,
  658. MODEL_TENSOR.OUTPUT_NORM,
  659. MODEL_TENSOR.OUTPUT,
  660. MODEL_TENSOR.ATTN_NORM,
  661. MODEL_TENSOR.ATTN_Q,
  662. MODEL_TENSOR.ATTN_K,
  663. MODEL_TENSOR.ATTN_V,
  664. MODEL_TENSOR.ATTN_OUT,
  665. MODEL_TENSOR.FFN_DOWN,
  666. MODEL_TENSOR.FFN_UP,
  667. ],
  668. MODEL_ARCH.REFACT: [
  669. MODEL_TENSOR.TOKEN_EMBD,
  670. MODEL_TENSOR.OUTPUT_NORM,
  671. MODEL_TENSOR.OUTPUT,
  672. MODEL_TENSOR.ATTN_NORM,
  673. MODEL_TENSOR.ATTN_Q,
  674. MODEL_TENSOR.ATTN_K,
  675. MODEL_TENSOR.ATTN_V,
  676. MODEL_TENSOR.ATTN_OUT,
  677. MODEL_TENSOR.FFN_NORM,
  678. MODEL_TENSOR.FFN_GATE,
  679. MODEL_TENSOR.FFN_DOWN,
  680. MODEL_TENSOR.FFN_UP,
  681. ],
  682. MODEL_ARCH.BLOOM: [
  683. MODEL_TENSOR.TOKEN_EMBD,
  684. MODEL_TENSOR.TOKEN_EMBD_NORM,
  685. MODEL_TENSOR.OUTPUT_NORM,
  686. MODEL_TENSOR.OUTPUT,
  687. MODEL_TENSOR.ATTN_NORM,
  688. MODEL_TENSOR.ATTN_QKV,
  689. MODEL_TENSOR.ATTN_OUT,
  690. MODEL_TENSOR.FFN_NORM,
  691. MODEL_TENSOR.FFN_DOWN,
  692. MODEL_TENSOR.FFN_UP,
  693. ],
  694. MODEL_ARCH.STABLELM: [
  695. MODEL_TENSOR.TOKEN_EMBD,
  696. MODEL_TENSOR.OUTPUT_NORM,
  697. MODEL_TENSOR.OUTPUT,
  698. MODEL_TENSOR.ROPE_FREQS,
  699. MODEL_TENSOR.ATTN_NORM,
  700. MODEL_TENSOR.ATTN_Q,
  701. MODEL_TENSOR.ATTN_K,
  702. MODEL_TENSOR.ATTN_V,
  703. MODEL_TENSOR.ATTN_OUT,
  704. MODEL_TENSOR.FFN_NORM,
  705. MODEL_TENSOR.FFN_GATE,
  706. MODEL_TENSOR.FFN_DOWN,
  707. MODEL_TENSOR.FFN_UP,
  708. MODEL_TENSOR.ATTN_Q_NORM,
  709. MODEL_TENSOR.ATTN_K_NORM,
  710. ],
  711. MODEL_ARCH.QWEN: [
  712. MODEL_TENSOR.TOKEN_EMBD,
  713. MODEL_TENSOR.OUTPUT_NORM,
  714. MODEL_TENSOR.OUTPUT,
  715. MODEL_TENSOR.ROPE_FREQS,
  716. MODEL_TENSOR.ATTN_NORM,
  717. MODEL_TENSOR.ATTN_QKV,
  718. MODEL_TENSOR.ATTN_OUT,
  719. MODEL_TENSOR.ATTN_ROT_EMBD,
  720. MODEL_TENSOR.FFN_NORM,
  721. MODEL_TENSOR.FFN_GATE,
  722. MODEL_TENSOR.FFN_DOWN,
  723. MODEL_TENSOR.FFN_UP,
  724. ],
  725. MODEL_ARCH.QWEN2: [
  726. MODEL_TENSOR.TOKEN_EMBD,
  727. MODEL_TENSOR.OUTPUT_NORM,
  728. MODEL_TENSOR.OUTPUT,
  729. MODEL_TENSOR.ROPE_FREQS,
  730. MODEL_TENSOR.ATTN_NORM,
  731. MODEL_TENSOR.ATTN_Q,
  732. MODEL_TENSOR.ATTN_K,
  733. MODEL_TENSOR.ATTN_V,
  734. MODEL_TENSOR.ATTN_OUT,
  735. MODEL_TENSOR.FFN_NORM,
  736. MODEL_TENSOR.FFN_GATE,
  737. MODEL_TENSOR.FFN_DOWN,
  738. MODEL_TENSOR.FFN_UP,
  739. ],
  740. MODEL_ARCH.QWEN2MOE: [
  741. MODEL_TENSOR.TOKEN_EMBD,
  742. MODEL_TENSOR.OUTPUT_NORM,
  743. MODEL_TENSOR.OUTPUT,
  744. MODEL_TENSOR.ATTN_NORM,
  745. MODEL_TENSOR.ATTN_Q,
  746. MODEL_TENSOR.ATTN_K,
  747. MODEL_TENSOR.ATTN_V,
  748. MODEL_TENSOR.ATTN_OUT,
  749. MODEL_TENSOR.FFN_NORM,
  750. MODEL_TENSOR.FFN_GATE_INP,
  751. MODEL_TENSOR.FFN_GATE_EXP,
  752. MODEL_TENSOR.FFN_DOWN_EXP,
  753. MODEL_TENSOR.FFN_UP_EXP,
  754. MODEL_TENSOR.FFN_GATE_INP_SHEXP,
  755. MODEL_TENSOR.FFN_GATE_SHEXP,
  756. MODEL_TENSOR.FFN_DOWN_SHEXP,
  757. MODEL_TENSOR.FFN_UP_SHEXP,
  758. ],
  759. MODEL_ARCH.PLAMO: [
  760. MODEL_TENSOR.TOKEN_EMBD,
  761. MODEL_TENSOR.OUTPUT_NORM,
  762. MODEL_TENSOR.OUTPUT,
  763. MODEL_TENSOR.ROPE_FREQS,
  764. MODEL_TENSOR.ATTN_NORM,
  765. MODEL_TENSOR.ATTN_Q,
  766. MODEL_TENSOR.ATTN_K,
  767. MODEL_TENSOR.ATTN_V,
  768. MODEL_TENSOR.ATTN_OUT,
  769. MODEL_TENSOR.ATTN_ROT_EMBD,
  770. MODEL_TENSOR.FFN_GATE,
  771. MODEL_TENSOR.FFN_DOWN,
  772. MODEL_TENSOR.FFN_UP,
  773. ],
  774. MODEL_ARCH.GPT2: [
  775. MODEL_TENSOR.TOKEN_EMBD,
  776. MODEL_TENSOR.POS_EMBD,
  777. MODEL_TENSOR.OUTPUT_NORM,
  778. MODEL_TENSOR.OUTPUT,
  779. MODEL_TENSOR.ATTN_NORM,
  780. MODEL_TENSOR.ATTN_QKV,
  781. MODEL_TENSOR.ATTN_OUT,
  782. MODEL_TENSOR.FFN_NORM,
  783. MODEL_TENSOR.FFN_DOWN,
  784. MODEL_TENSOR.FFN_UP,
  785. ],
  786. MODEL_ARCH.PHI2: [
  787. MODEL_TENSOR.TOKEN_EMBD,
  788. MODEL_TENSOR.OUTPUT_NORM,
  789. MODEL_TENSOR.OUTPUT,
  790. MODEL_TENSOR.ATTN_NORM,
  791. MODEL_TENSOR.ATTN_QKV,
  792. MODEL_TENSOR.ATTN_Q,
  793. MODEL_TENSOR.ATTN_K,
  794. MODEL_TENSOR.ATTN_V,
  795. MODEL_TENSOR.ATTN_OUT,
  796. MODEL_TENSOR.FFN_NORM,
  797. MODEL_TENSOR.FFN_DOWN,
  798. MODEL_TENSOR.FFN_UP,
  799. ],
  800. MODEL_ARCH.PHI3: [
  801. MODEL_TENSOR.TOKEN_EMBD,
  802. MODEL_TENSOR.OUTPUT_NORM,
  803. MODEL_TENSOR.OUTPUT,
  804. MODEL_TENSOR.ROPE_FACTORS_LONG,
  805. MODEL_TENSOR.ROPE_FACTORS_SHORT,
  806. MODEL_TENSOR.ATTN_NORM,
  807. MODEL_TENSOR.ATTN_QKV,
  808. MODEL_TENSOR.ATTN_Q,
  809. MODEL_TENSOR.ATTN_K,
  810. MODEL_TENSOR.ATTN_V,
  811. MODEL_TENSOR.ATTN_OUT,
  812. MODEL_TENSOR.FFN_NORM,
  813. MODEL_TENSOR.FFN_DOWN,
  814. MODEL_TENSOR.FFN_UP,
  815. ],
  816. MODEL_ARCH.CODESHELL: [
  817. MODEL_TENSOR.TOKEN_EMBD,
  818. MODEL_TENSOR.POS_EMBD,
  819. MODEL_TENSOR.OUTPUT_NORM,
  820. MODEL_TENSOR.OUTPUT,
  821. MODEL_TENSOR.ATTN_NORM,
  822. MODEL_TENSOR.ATTN_QKV,
  823. MODEL_TENSOR.ATTN_OUT,
  824. MODEL_TENSOR.ATTN_ROT_EMBD,
  825. MODEL_TENSOR.FFN_NORM,
  826. MODEL_TENSOR.FFN_DOWN,
  827. MODEL_TENSOR.FFN_UP,
  828. ],
  829. MODEL_ARCH.ORION: [
  830. MODEL_TENSOR.TOKEN_EMBD,
  831. MODEL_TENSOR.OUTPUT_NORM,
  832. MODEL_TENSOR.OUTPUT,
  833. MODEL_TENSOR.ROPE_FREQS,
  834. MODEL_TENSOR.ATTN_NORM,
  835. MODEL_TENSOR.ATTN_Q,
  836. MODEL_TENSOR.ATTN_K,
  837. MODEL_TENSOR.ATTN_V,
  838. MODEL_TENSOR.ATTN_OUT,
  839. MODEL_TENSOR.ATTN_ROT_EMBD,
  840. MODEL_TENSOR.FFN_NORM,
  841. MODEL_TENSOR.FFN_GATE,
  842. MODEL_TENSOR.FFN_DOWN,
  843. MODEL_TENSOR.FFN_UP,
  844. ],
  845. MODEL_ARCH.INTERNLM2: [
  846. MODEL_TENSOR.TOKEN_EMBD,
  847. MODEL_TENSOR.OUTPUT_NORM,
  848. MODEL_TENSOR.OUTPUT,
  849. MODEL_TENSOR.ATTN_NORM,
  850. MODEL_TENSOR.ATTN_Q,
  851. MODEL_TENSOR.ATTN_K,
  852. MODEL_TENSOR.ATTN_V,
  853. MODEL_TENSOR.ATTN_OUT,
  854. MODEL_TENSOR.ATTN_ROT_EMBD,
  855. MODEL_TENSOR.FFN_NORM,
  856. MODEL_TENSOR.FFN_GATE,
  857. MODEL_TENSOR.FFN_DOWN,
  858. MODEL_TENSOR.FFN_UP,
  859. ],
  860. MODEL_ARCH.MINICPM: [
  861. MODEL_TENSOR.TOKEN_EMBD,
  862. MODEL_TENSOR.OUTPUT,
  863. MODEL_TENSOR.OUTPUT_NORM,
  864. MODEL_TENSOR.ROPE_FREQS,
  865. MODEL_TENSOR.ROPE_FACTORS_LONG,
  866. MODEL_TENSOR.ROPE_FACTORS_SHORT,
  867. MODEL_TENSOR.ATTN_NORM,
  868. MODEL_TENSOR.ATTN_Q,
  869. MODEL_TENSOR.ATTN_K,
  870. MODEL_TENSOR.ATTN_V,
  871. MODEL_TENSOR.ATTN_OUT,
  872. MODEL_TENSOR.ATTN_ROT_EMBD,
  873. MODEL_TENSOR.FFN_GATE_INP,
  874. MODEL_TENSOR.FFN_NORM,
  875. MODEL_TENSOR.FFN_GATE,
  876. MODEL_TENSOR.FFN_DOWN,
  877. MODEL_TENSOR.FFN_UP,
  878. MODEL_TENSOR.FFN_GATE_EXP,
  879. MODEL_TENSOR.FFN_DOWN_EXP,
  880. MODEL_TENSOR.FFN_UP_EXP,
  881. ],
  882. MODEL_ARCH.MINICPM3: [
  883. MODEL_TENSOR.TOKEN_EMBD,
  884. MODEL_TENSOR.OUTPUT_NORM,
  885. MODEL_TENSOR.OUTPUT,
  886. MODEL_TENSOR.ROPE_FACTORS_LONG,
  887. MODEL_TENSOR.ROPE_FACTORS_SHORT,
  888. MODEL_TENSOR.ATTN_NORM,
  889. MODEL_TENSOR.ATTN_Q_A,
  890. MODEL_TENSOR.ATTN_Q_B,
  891. MODEL_TENSOR.ATTN_KV_A_MQA,
  892. MODEL_TENSOR.ATTN_KV_B,
  893. MODEL_TENSOR.ATTN_Q_A_NORM,
  894. MODEL_TENSOR.ATTN_KV_A_NORM,
  895. MODEL_TENSOR.ATTN_OUT,
  896. MODEL_TENSOR.FFN_NORM,
  897. MODEL_TENSOR.FFN_GATE,
  898. MODEL_TENSOR.FFN_DOWN,
  899. MODEL_TENSOR.FFN_UP,
  900. ],
  901. MODEL_ARCH.GEMMA: [
  902. MODEL_TENSOR.TOKEN_EMBD,
  903. MODEL_TENSOR.OUTPUT_NORM,
  904. MODEL_TENSOR.ATTN_NORM,
  905. MODEL_TENSOR.ATTN_Q,
  906. MODEL_TENSOR.ATTN_K,
  907. MODEL_TENSOR.ATTN_V,
  908. MODEL_TENSOR.ATTN_OUT,
  909. MODEL_TENSOR.FFN_GATE,
  910. MODEL_TENSOR.FFN_DOWN,
  911. MODEL_TENSOR.FFN_UP,
  912. MODEL_TENSOR.FFN_NORM,
  913. ],
  914. MODEL_ARCH.GEMMA2: [
  915. MODEL_TENSOR.TOKEN_EMBD,
  916. MODEL_TENSOR.OUTPUT_NORM,
  917. MODEL_TENSOR.ATTN_Q,
  918. MODEL_TENSOR.ATTN_K,
  919. MODEL_TENSOR.ATTN_V,
  920. MODEL_TENSOR.ATTN_OUT,
  921. MODEL_TENSOR.FFN_GATE,
  922. MODEL_TENSOR.FFN_DOWN,
  923. MODEL_TENSOR.FFN_UP,
  924. MODEL_TENSOR.ATTN_NORM,
  925. MODEL_TENSOR.ATTN_POST_NORM,
  926. MODEL_TENSOR.FFN_PRE_NORM,
  927. MODEL_TENSOR.FFN_POST_NORM,
  928. ],
  929. MODEL_ARCH.STARCODER2: [
  930. MODEL_TENSOR.TOKEN_EMBD,
  931. MODEL_TENSOR.OUTPUT_NORM,
  932. MODEL_TENSOR.OUTPUT,
  933. MODEL_TENSOR.ROPE_FREQS,
  934. MODEL_TENSOR.ATTN_NORM,
  935. MODEL_TENSOR.ATTN_Q,
  936. MODEL_TENSOR.ATTN_K,
  937. MODEL_TENSOR.ATTN_V,
  938. MODEL_TENSOR.ATTN_OUT,
  939. MODEL_TENSOR.ATTN_ROT_EMBD,
  940. MODEL_TENSOR.FFN_NORM,
  941. MODEL_TENSOR.FFN_DOWN,
  942. MODEL_TENSOR.FFN_UP,
  943. ],
  944. MODEL_ARCH.RWKV6: [
  945. MODEL_TENSOR.TOKEN_EMBD,
  946. MODEL_TENSOR.TOKEN_EMBD_NORM,
  947. MODEL_TENSOR.OUTPUT_NORM,
  948. MODEL_TENSOR.OUTPUT,
  949. MODEL_TENSOR.ATTN_NORM,
  950. MODEL_TENSOR.ATTN_NORM_2,
  951. MODEL_TENSOR.TIME_MIX_W1,
  952. MODEL_TENSOR.TIME_MIX_W2,
  953. MODEL_TENSOR.TIME_MIX_LERP_X,
  954. MODEL_TENSOR.TIME_MIX_LERP_K,
  955. MODEL_TENSOR.TIME_MIX_LERP_V,
  956. MODEL_TENSOR.TIME_MIX_LERP_R,
  957. MODEL_TENSOR.TIME_MIX_LERP_G,
  958. MODEL_TENSOR.TIME_MIX_LERP_W,
  959. MODEL_TENSOR.TIME_MIX_FIRST,
  960. MODEL_TENSOR.TIME_MIX_DECAY,
  961. MODEL_TENSOR.TIME_MIX_DECAY_W1,
  962. MODEL_TENSOR.TIME_MIX_DECAY_W2,
  963. MODEL_TENSOR.TIME_MIX_KEY,
  964. MODEL_TENSOR.TIME_MIX_VALUE,
  965. MODEL_TENSOR.TIME_MIX_RECEPTANCE,
  966. MODEL_TENSOR.TIME_MIX_GATE,
  967. MODEL_TENSOR.TIME_MIX_LN,
  968. MODEL_TENSOR.TIME_MIX_OUTPUT,
  969. MODEL_TENSOR.CHANNEL_MIX_LERP_K,
  970. MODEL_TENSOR.CHANNEL_MIX_LERP_R,
  971. MODEL_TENSOR.CHANNEL_MIX_KEY,
  972. MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE,
  973. MODEL_TENSOR.CHANNEL_MIX_VALUE,
  974. ],
  975. MODEL_ARCH.MAMBA: [
  976. MODEL_TENSOR.TOKEN_EMBD,
  977. MODEL_TENSOR.OUTPUT_NORM,
  978. MODEL_TENSOR.OUTPUT,
  979. MODEL_TENSOR.ATTN_NORM,
  980. MODEL_TENSOR.SSM_IN,
  981. MODEL_TENSOR.SSM_CONV1D,
  982. MODEL_TENSOR.SSM_X,
  983. MODEL_TENSOR.SSM_DT,
  984. MODEL_TENSOR.SSM_A,
  985. MODEL_TENSOR.SSM_D,
  986. MODEL_TENSOR.SSM_OUT,
  987. ],
  988. MODEL_ARCH.XVERSE: [
  989. MODEL_TENSOR.TOKEN_EMBD,
  990. MODEL_TENSOR.OUTPUT_NORM,
  991. MODEL_TENSOR.OUTPUT,
  992. MODEL_TENSOR.ROPE_FREQS,
  993. MODEL_TENSOR.ATTN_NORM,
  994. MODEL_TENSOR.ATTN_Q,
  995. MODEL_TENSOR.ATTN_K,
  996. MODEL_TENSOR.ATTN_V,
  997. MODEL_TENSOR.ATTN_OUT,
  998. MODEL_TENSOR.ATTN_ROT_EMBD,
  999. MODEL_TENSOR.FFN_NORM,
  1000. MODEL_TENSOR.FFN_GATE,
  1001. MODEL_TENSOR.FFN_DOWN,
  1002. MODEL_TENSOR.FFN_UP,
  1003. ],
  1004. MODEL_ARCH.COMMAND_R: [
  1005. MODEL_TENSOR.TOKEN_EMBD,
  1006. MODEL_TENSOR.OUTPUT_NORM,
  1007. MODEL_TENSOR.ATTN_NORM,
  1008. MODEL_TENSOR.ATTN_Q,
  1009. MODEL_TENSOR.ATTN_K,
  1010. MODEL_TENSOR.ATTN_V,
  1011. MODEL_TENSOR.ATTN_OUT,
  1012. MODEL_TENSOR.FFN_GATE,
  1013. MODEL_TENSOR.FFN_DOWN,
  1014. MODEL_TENSOR.FFN_UP,
  1015. MODEL_TENSOR.ATTN_K_NORM,
  1016. MODEL_TENSOR.ATTN_Q_NORM,
  1017. ],
  1018. MODEL_ARCH.DBRX: [
  1019. MODEL_TENSOR.TOKEN_EMBD,
  1020. MODEL_TENSOR.OUTPUT_NORM,
  1021. MODEL_TENSOR.OUTPUT,
  1022. MODEL_TENSOR.ATTN_NORM,
  1023. MODEL_TENSOR.ATTN_QKV,
  1024. MODEL_TENSOR.ATTN_OUT,
  1025. MODEL_TENSOR.ATTN_OUT_NORM,
  1026. MODEL_TENSOR.FFN_GATE_INP,
  1027. MODEL_TENSOR.FFN_GATE_EXP,
  1028. MODEL_TENSOR.FFN_DOWN_EXP,
  1029. MODEL_TENSOR.FFN_UP_EXP,
  1030. ],
  1031. MODEL_ARCH.OLMO: [
  1032. MODEL_TENSOR.TOKEN_EMBD,
  1033. MODEL_TENSOR.OUTPUT,
  1034. MODEL_TENSOR.ATTN_Q,
  1035. MODEL_TENSOR.ATTN_K,
  1036. MODEL_TENSOR.ATTN_V,
  1037. MODEL_TENSOR.ATTN_OUT,
  1038. MODEL_TENSOR.FFN_GATE,
  1039. MODEL_TENSOR.FFN_DOWN,
  1040. MODEL_TENSOR.FFN_UP,
  1041. ],
  1042. MODEL_ARCH.OLMO2: [
  1043. MODEL_TENSOR.TOKEN_EMBD,
  1044. MODEL_TENSOR.OUTPUT_NORM,
  1045. MODEL_TENSOR.OUTPUT,
  1046. MODEL_TENSOR.ATTN_Q,
  1047. MODEL_TENSOR.ATTN_K,
  1048. MODEL_TENSOR.ATTN_V,
  1049. MODEL_TENSOR.ATTN_OUT,
  1050. MODEL_TENSOR.ATTN_POST_NORM,
  1051. MODEL_TENSOR.ATTN_Q_NORM,
  1052. MODEL_TENSOR.ATTN_K_NORM,
  1053. MODEL_TENSOR.FFN_POST_NORM,
  1054. MODEL_TENSOR.FFN_GATE,
  1055. MODEL_TENSOR.FFN_DOWN,
  1056. MODEL_TENSOR.FFN_UP,
  1057. ],
  1058. MODEL_ARCH.OLMOE: [
  1059. MODEL_TENSOR.TOKEN_EMBD,
  1060. MODEL_TENSOR.OUTPUT_NORM,
  1061. MODEL_TENSOR.OUTPUT,
  1062. MODEL_TENSOR.ATTN_OUT,
  1063. MODEL_TENSOR.ATTN_Q,
  1064. MODEL_TENSOR.ATTN_K,
  1065. MODEL_TENSOR.ATTN_V,
  1066. MODEL_TENSOR.ATTN_NORM,
  1067. MODEL_TENSOR.ATTN_Q_NORM,
  1068. MODEL_TENSOR.ATTN_K_NORM,
  1069. MODEL_TENSOR.FFN_NORM,
  1070. MODEL_TENSOR.FFN_GATE_INP,
  1071. MODEL_TENSOR.FFN_GATE_EXP,
  1072. MODEL_TENSOR.FFN_UP_EXP,
  1073. MODEL_TENSOR.FFN_DOWN_EXP,
  1074. ],
  1075. MODEL_ARCH.OPENELM: [
  1076. MODEL_TENSOR.TOKEN_EMBD,
  1077. MODEL_TENSOR.OUTPUT_NORM,
  1078. MODEL_TENSOR.ATTN_NORM,
  1079. MODEL_TENSOR.ATTN_QKV,
  1080. MODEL_TENSOR.ATTN_Q_NORM,
  1081. MODEL_TENSOR.ATTN_K_NORM,
  1082. MODEL_TENSOR.ATTN_OUT,
  1083. MODEL_TENSOR.FFN_NORM,
  1084. MODEL_TENSOR.FFN_GATE,
  1085. MODEL_TENSOR.FFN_DOWN,
  1086. MODEL_TENSOR.FFN_UP,
  1087. ],
  1088. MODEL_ARCH.ARCTIC: [
  1089. MODEL_TENSOR.TOKEN_EMBD,
  1090. MODEL_TENSOR.OUTPUT_NORM,
  1091. MODEL_TENSOR.OUTPUT,
  1092. MODEL_TENSOR.ROPE_FREQS,
  1093. MODEL_TENSOR.ATTN_NORM,
  1094. MODEL_TENSOR.ATTN_Q,
  1095. MODEL_TENSOR.ATTN_K,
  1096. MODEL_TENSOR.ATTN_V,
  1097. MODEL_TENSOR.ATTN_OUT,
  1098. MODEL_TENSOR.ATTN_ROT_EMBD,
  1099. MODEL_TENSOR.FFN_GATE_INP,
  1100. MODEL_TENSOR.FFN_NORM,
  1101. MODEL_TENSOR.FFN_GATE,
  1102. MODEL_TENSOR.FFN_DOWN,
  1103. MODEL_TENSOR.FFN_UP,
  1104. MODEL_TENSOR.FFN_NORM_EXP,
  1105. MODEL_TENSOR.FFN_GATE_EXP,
  1106. MODEL_TENSOR.FFN_DOWN_EXP,
  1107. MODEL_TENSOR.FFN_UP_EXP,
  1108. ],
  1109. MODEL_ARCH.DEEPSEEK2: [
  1110. MODEL_TENSOR.TOKEN_EMBD,
  1111. MODEL_TENSOR.OUTPUT_NORM,
  1112. MODEL_TENSOR.OUTPUT,
  1113. MODEL_TENSOR.ROPE_FREQS,
  1114. MODEL_TENSOR.ATTN_NORM,
  1115. MODEL_TENSOR.ATTN_Q,
  1116. MODEL_TENSOR.ATTN_Q_A,
  1117. MODEL_TENSOR.ATTN_Q_B,
  1118. MODEL_TENSOR.ATTN_KV_A_MQA,
  1119. MODEL_TENSOR.ATTN_KV_B,
  1120. MODEL_TENSOR.ATTN_Q_A_NORM,
  1121. MODEL_TENSOR.ATTN_KV_A_NORM,
  1122. MODEL_TENSOR.ATTN_OUT,
  1123. MODEL_TENSOR.ATTN_ROT_EMBD,
  1124. MODEL_TENSOR.FFN_GATE_INP,
  1125. MODEL_TENSOR.FFN_NORM,
  1126. MODEL_TENSOR.FFN_GATE,
  1127. MODEL_TENSOR.FFN_DOWN,
  1128. MODEL_TENSOR.FFN_UP,
  1129. MODEL_TENSOR.FFN_GATE_EXP,
  1130. MODEL_TENSOR.FFN_DOWN_EXP,
  1131. MODEL_TENSOR.FFN_UP_EXP,
  1132. MODEL_TENSOR.FFN_GATE_SHEXP,
  1133. MODEL_TENSOR.FFN_DOWN_SHEXP,
  1134. MODEL_TENSOR.FFN_UP_SHEXP,
  1135. ],
  1136. MODEL_ARCH.CHATGLM : [
  1137. MODEL_TENSOR.TOKEN_EMBD,
  1138. MODEL_TENSOR.ROPE_FREQS,
  1139. MODEL_TENSOR.OUTPUT_NORM,
  1140. MODEL_TENSOR.OUTPUT,
  1141. MODEL_TENSOR.ATTN_NORM,
  1142. MODEL_TENSOR.ATTN_QKV,
  1143. MODEL_TENSOR.ATTN_OUT,
  1144. MODEL_TENSOR.FFN_NORM,
  1145. MODEL_TENSOR.FFN_DOWN,
  1146. MODEL_TENSOR.FFN_UP,
  1147. ],
  1148. MODEL_ARCH.BITNET: [
  1149. MODEL_TENSOR.ATTN_Q,
  1150. MODEL_TENSOR.ATTN_K,
  1151. MODEL_TENSOR.ATTN_V,
  1152. MODEL_TENSOR.TOKEN_EMBD,
  1153. MODEL_TENSOR.OUTPUT_NORM,
  1154. MODEL_TENSOR.ATTN_NORM,
  1155. MODEL_TENSOR.ATTN_OUT,
  1156. MODEL_TENSOR.FFN_NORM,
  1157. MODEL_TENSOR.FFN_GATE,
  1158. MODEL_TENSOR.FFN_DOWN,
  1159. MODEL_TENSOR.FFN_UP,
  1160. MODEL_TENSOR.ATTN_SUB_NORM,
  1161. MODEL_TENSOR.FFN_SUB_NORM,
  1162. ],
  1163. MODEL_ARCH.T5: [
  1164. MODEL_TENSOR.TOKEN_EMBD,
  1165. MODEL_TENSOR.OUTPUT,
  1166. MODEL_TENSOR.DEC_ATTN_NORM,
  1167. MODEL_TENSOR.DEC_ATTN_Q,
  1168. MODEL_TENSOR.DEC_ATTN_K,
  1169. MODEL_TENSOR.DEC_ATTN_V,
  1170. MODEL_TENSOR.DEC_ATTN_OUT,
  1171. MODEL_TENSOR.DEC_ATTN_REL_B,
  1172. MODEL_TENSOR.DEC_CROSS_ATTN_NORM,
  1173. MODEL_TENSOR.DEC_CROSS_ATTN_Q,
  1174. MODEL_TENSOR.DEC_CROSS_ATTN_K,
  1175. MODEL_TENSOR.DEC_CROSS_ATTN_V,
  1176. MODEL_TENSOR.DEC_CROSS_ATTN_OUT,
  1177. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B,
  1178. MODEL_TENSOR.DEC_FFN_NORM,
  1179. MODEL_TENSOR.DEC_FFN_GATE,
  1180. MODEL_TENSOR.DEC_FFN_DOWN,
  1181. MODEL_TENSOR.DEC_FFN_UP,
  1182. MODEL_TENSOR.DEC_OUTPUT_NORM,
  1183. MODEL_TENSOR.ENC_ATTN_NORM,
  1184. MODEL_TENSOR.ENC_ATTN_Q,
  1185. MODEL_TENSOR.ENC_ATTN_K,
  1186. MODEL_TENSOR.ENC_ATTN_V,
  1187. MODEL_TENSOR.ENC_ATTN_OUT,
  1188. MODEL_TENSOR.ENC_ATTN_REL_B,
  1189. MODEL_TENSOR.ENC_FFN_NORM,
  1190. MODEL_TENSOR.ENC_FFN_GATE,
  1191. MODEL_TENSOR.ENC_FFN_DOWN,
  1192. MODEL_TENSOR.ENC_FFN_UP,
  1193. MODEL_TENSOR.ENC_OUTPUT_NORM,
  1194. ],
  1195. MODEL_ARCH.T5ENCODER: [
  1196. MODEL_TENSOR.TOKEN_EMBD,
  1197. MODEL_TENSOR.OUTPUT,
  1198. MODEL_TENSOR.ENC_ATTN_NORM,
  1199. MODEL_TENSOR.ENC_ATTN_Q,
  1200. MODEL_TENSOR.ENC_ATTN_K,
  1201. MODEL_TENSOR.ENC_ATTN_V,
  1202. MODEL_TENSOR.ENC_ATTN_OUT,
  1203. MODEL_TENSOR.ENC_ATTN_REL_B,
  1204. MODEL_TENSOR.ENC_FFN_NORM,
  1205. MODEL_TENSOR.ENC_FFN_GATE,
  1206. MODEL_TENSOR.ENC_FFN_DOWN,
  1207. MODEL_TENSOR.ENC_FFN_UP,
  1208. MODEL_TENSOR.ENC_OUTPUT_NORM,
  1209. ],
  1210. MODEL_ARCH.JAIS: [
  1211. MODEL_TENSOR.TOKEN_EMBD,
  1212. MODEL_TENSOR.OUTPUT_NORM,
  1213. MODEL_TENSOR.OUTPUT,
  1214. MODEL_TENSOR.ATTN_NORM,
  1215. MODEL_TENSOR.ATTN_QKV,
  1216. MODEL_TENSOR.ATTN_OUT,
  1217. MODEL_TENSOR.FFN_NORM,
  1218. MODEL_TENSOR.FFN_DOWN,
  1219. MODEL_TENSOR.FFN_GATE,
  1220. MODEL_TENSOR.FFN_UP,
  1221. ],
  1222. MODEL_ARCH.NEMOTRON: [
  1223. MODEL_TENSOR.TOKEN_EMBD,
  1224. MODEL_TENSOR.OUTPUT_NORM,
  1225. MODEL_TENSOR.OUTPUT,
  1226. MODEL_TENSOR.ROPE_FREQS,
  1227. MODEL_TENSOR.ATTN_NORM,
  1228. MODEL_TENSOR.ATTN_Q,
  1229. MODEL_TENSOR.ATTN_K,
  1230. MODEL_TENSOR.ATTN_V,
  1231. MODEL_TENSOR.ATTN_OUT,
  1232. MODEL_TENSOR.ATTN_ROT_EMBD,
  1233. MODEL_TENSOR.FFN_NORM,
  1234. MODEL_TENSOR.FFN_DOWN,
  1235. MODEL_TENSOR.FFN_UP,
  1236. ],
  1237. MODEL_ARCH.EXAONE: [
  1238. MODEL_TENSOR.TOKEN_EMBD,
  1239. MODEL_TENSOR.OUTPUT_NORM,
  1240. MODEL_TENSOR.OUTPUT,
  1241. MODEL_TENSOR.ROPE_FREQS,
  1242. MODEL_TENSOR.ATTN_NORM,
  1243. MODEL_TENSOR.ATTN_Q,
  1244. MODEL_TENSOR.ATTN_K,
  1245. MODEL_TENSOR.ATTN_V,
  1246. MODEL_TENSOR.ATTN_OUT,
  1247. MODEL_TENSOR.ATTN_ROT_EMBD,
  1248. MODEL_TENSOR.FFN_NORM,
  1249. MODEL_TENSOR.FFN_GATE,
  1250. MODEL_TENSOR.FFN_DOWN,
  1251. MODEL_TENSOR.FFN_UP,
  1252. ],
  1253. MODEL_ARCH.GRANITE: [
  1254. MODEL_TENSOR.TOKEN_EMBD,
  1255. MODEL_TENSOR.OUTPUT_NORM,
  1256. MODEL_TENSOR.OUTPUT,
  1257. MODEL_TENSOR.ATTN_NORM,
  1258. MODEL_TENSOR.ATTN_Q,
  1259. MODEL_TENSOR.ATTN_K,
  1260. MODEL_TENSOR.ATTN_V,
  1261. MODEL_TENSOR.ATTN_OUT,
  1262. MODEL_TENSOR.FFN_NORM,
  1263. MODEL_TENSOR.FFN_GATE,
  1264. MODEL_TENSOR.FFN_DOWN,
  1265. MODEL_TENSOR.FFN_UP,
  1266. ],
  1267. MODEL_ARCH.GRANITE_MOE: [
  1268. MODEL_TENSOR.TOKEN_EMBD,
  1269. MODEL_TENSOR.OUTPUT_NORM,
  1270. MODEL_TENSOR.OUTPUT,
  1271. MODEL_TENSOR.ATTN_NORM,
  1272. MODEL_TENSOR.ATTN_Q,
  1273. MODEL_TENSOR.ATTN_K,
  1274. MODEL_TENSOR.ATTN_V,
  1275. MODEL_TENSOR.ATTN_OUT,
  1276. MODEL_TENSOR.FFN_NORM,
  1277. MODEL_TENSOR.FFN_GATE_INP,
  1278. MODEL_TENSOR.FFN_GATE_EXP,
  1279. MODEL_TENSOR.FFN_DOWN_EXP,
  1280. MODEL_TENSOR.FFN_UP_EXP,
  1281. ],
  1282. MODEL_ARCH.CHAMELEON: [
  1283. MODEL_TENSOR.TOKEN_EMBD,
  1284. MODEL_TENSOR.OUTPUT_NORM,
  1285. MODEL_TENSOR.OUTPUT,
  1286. MODEL_TENSOR.ATTN_NORM,
  1287. MODEL_TENSOR.ATTN_Q,
  1288. MODEL_TENSOR.ATTN_Q_NORM,
  1289. MODEL_TENSOR.ATTN_K,
  1290. MODEL_TENSOR.ATTN_K_NORM,
  1291. MODEL_TENSOR.ATTN_V,
  1292. MODEL_TENSOR.ATTN_OUT,
  1293. MODEL_TENSOR.FFN_NORM,
  1294. MODEL_TENSOR.FFN_GATE,
  1295. MODEL_TENSOR.FFN_DOWN,
  1296. MODEL_TENSOR.FFN_UP,
  1297. ],
  1298. # TODO
  1299. }
  1300. # tensors that will not be serialized
  1301. MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
  1302. MODEL_ARCH.LLAMA: [
  1303. MODEL_TENSOR.ROPE_FREQS,
  1304. MODEL_TENSOR.ATTN_ROT_EMBD,
  1305. ],
  1306. MODEL_ARCH.BAICHUAN: [
  1307. MODEL_TENSOR.ROPE_FREQS,
  1308. MODEL_TENSOR.ATTN_ROT_EMBD,
  1309. ],
  1310. MODEL_ARCH.QWEN: [
  1311. MODEL_TENSOR.ROPE_FREQS,
  1312. MODEL_TENSOR.ATTN_ROT_EMBD,
  1313. ],
  1314. MODEL_ARCH.CODESHELL: [
  1315. MODEL_TENSOR.ROPE_FREQS,
  1316. MODEL_TENSOR.ATTN_ROT_EMBD,
  1317. ],
  1318. MODEL_ARCH.ORION: [
  1319. MODEL_TENSOR.ROPE_FREQS,
  1320. MODEL_TENSOR.ATTN_ROT_EMBD,
  1321. ],
  1322. MODEL_ARCH.STARCODER2: [
  1323. MODEL_TENSOR.ROPE_FREQS,
  1324. MODEL_TENSOR.ATTN_ROT_EMBD,
  1325. ],
  1326. MODEL_ARCH.XVERSE: [
  1327. MODEL_TENSOR.ROPE_FREQS,
  1328. MODEL_TENSOR.ATTN_ROT_EMBD,
  1329. ],
  1330. MODEL_ARCH.DEEPSEEK2: [
  1331. MODEL_TENSOR.ROPE_FREQS,
  1332. MODEL_TENSOR.ATTN_ROT_EMBD,
  1333. ],
  1334. MODEL_ARCH.CHATGLM: [
  1335. MODEL_TENSOR.ROPE_FREQS,
  1336. ],
  1337. MODEL_ARCH.NEMOTRON: [
  1338. MODEL_TENSOR.ROPE_FREQS,
  1339. MODEL_TENSOR.ATTN_ROT_EMBD,
  1340. ],
  1341. }
  1342. #
  1343. # types
  1344. #
  1345. class TokenType(IntEnum):
  1346. NORMAL = 1
  1347. UNKNOWN = 2
  1348. CONTROL = 3
  1349. USER_DEFINED = 4
  1350. UNUSED = 5
  1351. BYTE = 6
  1352. class RopeScalingType(Enum):
  1353. NONE = 'none'
  1354. LINEAR = 'linear'
  1355. YARN = 'yarn'
  1356. LONGROPE = 'longrope'
  1357. class PoolingType(IntEnum):
  1358. NONE = 0
  1359. MEAN = 1
  1360. CLS = 2
  1361. class GGMLQuantizationType(IntEnum):
  1362. F32 = 0
  1363. F16 = 1
  1364. Q4_0 = 2
  1365. Q4_1 = 3
  1366. Q5_0 = 6
  1367. Q5_1 = 7
  1368. Q8_0 = 8
  1369. Q8_1 = 9
  1370. Q2_K = 10
  1371. Q3_K = 11
  1372. Q4_K = 12
  1373. Q5_K = 13
  1374. Q6_K = 14
  1375. Q8_K = 15
  1376. IQ2_XXS = 16
  1377. IQ2_XS = 17
  1378. IQ3_XXS = 18
  1379. IQ1_S = 19
  1380. IQ4_NL = 20
  1381. IQ3_S = 21
  1382. IQ2_S = 22
  1383. IQ4_XS = 23
  1384. I8 = 24
  1385. I16 = 25
  1386. I32 = 26
  1387. I64 = 27
  1388. F64 = 28
  1389. IQ1_M = 29
  1390. BF16 = 30
  1391. TQ1_0 = 34
  1392. TQ2_0 = 35
  1393. # TODO: add GGMLFileType from ggml_ftype in ggml.h
  1394. # from llama_ftype in llama.h
  1395. # ALL VALUES SHOULD BE THE SAME HERE AS THEY ARE OVER THERE.
  1396. class LlamaFileType(IntEnum):
  1397. ALL_F32 = 0
  1398. MOSTLY_F16 = 1 # except 1d tensors
  1399. MOSTLY_Q4_0 = 2 # except 1d tensors
  1400. MOSTLY_Q4_1 = 3 # except 1d tensors
  1401. # MOSTLY_Q4_1_SOME_F16 = 4 # tok_embeddings.weight and output.weight are F16
  1402. # MOSTLY_Q4_2 = 5 # support has been removed
  1403. # MOSTLY_Q4_3 = 6 # support has been removed
  1404. MOSTLY_Q8_0 = 7 # except 1d tensors
  1405. MOSTLY_Q5_0 = 8 # except 1d tensors
  1406. MOSTLY_Q5_1 = 9 # except 1d tensors
  1407. MOSTLY_Q2_K = 10 # except 1d tensors
  1408. MOSTLY_Q3_K_S = 11 # except 1d tensors
  1409. MOSTLY_Q3_K_M = 12 # except 1d tensors
  1410. MOSTLY_Q3_K_L = 13 # except 1d tensors
  1411. MOSTLY_Q4_K_S = 14 # except 1d tensors
  1412. MOSTLY_Q4_K_M = 15 # except 1d tensors
  1413. MOSTLY_Q5_K_S = 16 # except 1d tensors
  1414. MOSTLY_Q5_K_M = 17 # except 1d tensors
  1415. MOSTLY_Q6_K = 18 # except 1d tensors
  1416. MOSTLY_IQ2_XXS = 19 # except 1d tensors
  1417. MOSTLY_IQ2_XS = 20 # except 1d tensors
  1418. MOSTLY_Q2_K_S = 21 # except 1d tensors
  1419. MOSTLY_IQ3_XS = 22 # except 1d tensors
  1420. MOSTLY_IQ3_XXS = 23 # except 1d tensors
  1421. MOSTLY_IQ1_S = 24 # except 1d tensors
  1422. MOSTLY_IQ4_NL = 25 # except 1d tensors
  1423. MOSTLY_IQ3_S = 26 # except 1d tensors
  1424. MOSTLY_IQ3_M = 27 # except 1d tensors
  1425. MOSTLY_IQ2_S = 28 # except 1d tensors
  1426. MOSTLY_IQ2_M = 29 # except 1d tensors
  1427. MOSTLY_IQ4_XS = 30 # except 1d tensors
  1428. MOSTLY_IQ1_M = 31 # except 1d tensors
  1429. MOSTLY_BF16 = 32 # except 1d tensors
  1430. # MOSTLY_Q4_0_4_4 = 33 # removed from gguf files, use Q4_0 and runtime repack
  1431. # MOSTLY_Q4_0_4_8 = 34 # removed from gguf files, use Q4_0 and runtime repack
  1432. # MOSTLY_Q4_0_8_8 = 35 # removed from gguf files, use Q4_0 and runtime repack
  1433. MOSTLY_TQ1_0 = 36 # except 1d tensors
  1434. MOSTLY_TQ2_0 = 37 # except 1d tensors
  1435. GUESSED = 1024 # not specified in the model file
  1436. class GGUFEndian(IntEnum):
  1437. LITTLE = 0
  1438. BIG = 1
  1439. class GGUFValueType(IntEnum):
  1440. UINT8 = 0
  1441. INT8 = 1
  1442. UINT16 = 2
  1443. INT16 = 3
  1444. UINT32 = 4
  1445. INT32 = 5
  1446. FLOAT32 = 6
  1447. BOOL = 7
  1448. STRING = 8
  1449. ARRAY = 9
  1450. UINT64 = 10
  1451. INT64 = 11
  1452. FLOAT64 = 12
  1453. @staticmethod
  1454. def get_type(val: Any) -> GGUFValueType:
  1455. if isinstance(val, (str, bytes, bytearray)):
  1456. return GGUFValueType.STRING
  1457. elif isinstance(val, list):
  1458. return GGUFValueType.ARRAY
  1459. elif isinstance(val, float):
  1460. return GGUFValueType.FLOAT32
  1461. elif isinstance(val, bool):
  1462. return GGUFValueType.BOOL
  1463. elif isinstance(val, int):
  1464. return GGUFValueType.INT32
  1465. # TODO: need help with 64-bit types in Python
  1466. else:
  1467. raise ValueError(f"Unknown type: {type(val)}")
  1468. # Items here are (block size, type size)
  1469. QK_K = 256
  1470. GGML_QUANT_SIZES: dict[GGMLQuantizationType, tuple[int, int]] = {
  1471. GGMLQuantizationType.F32: (1, 4),
  1472. GGMLQuantizationType.F16: (1, 2),
  1473. GGMLQuantizationType.Q4_0: (32, 2 + 16),
  1474. GGMLQuantizationType.Q4_1: (32, 2 + 2 + 16),
  1475. GGMLQuantizationType.Q5_0: (32, 2 + 4 + 16),
  1476. GGMLQuantizationType.Q5_1: (32, 2 + 2 + 4 + 16),
  1477. GGMLQuantizationType.Q8_0: (32, 2 + 32),
  1478. GGMLQuantizationType.Q8_1: (32, 4 + 4 + 32),
  1479. GGMLQuantizationType.Q2_K: (256, 2 + 2 + QK_K // 16 + QK_K // 4),
  1480. GGMLQuantizationType.Q3_K: (256, 2 + QK_K // 4 + QK_K // 8 + 12),
  1481. GGMLQuantizationType.Q4_K: (256, 2 + 2 + QK_K // 2 + 12),
  1482. GGMLQuantizationType.Q5_K: (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
  1483. GGMLQuantizationType.Q6_K: (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
  1484. GGMLQuantizationType.Q8_K: (256, 4 + QK_K + QK_K // 8),
  1485. GGMLQuantizationType.IQ2_XXS: (256, 2 + QK_K // 4),
  1486. GGMLQuantizationType.IQ2_XS: (256, 2 + QK_K // 4 + QK_K // 32),
  1487. GGMLQuantizationType.IQ3_XXS: (256, 2 + QK_K // 4 + QK_K // 8),
  1488. GGMLQuantizationType.IQ1_S: (256, 2 + QK_K // 8 + QK_K // 16),
  1489. GGMLQuantizationType.IQ4_NL: (32, 2 + 16),
  1490. GGMLQuantizationType.IQ3_S: (256, 2 + QK_K // 4 + QK_K // 8 + QK_K // 32 + 4),
  1491. GGMLQuantizationType.IQ2_S: (256, 2 + QK_K // 4 + QK_K // 16),
  1492. GGMLQuantizationType.IQ4_XS: (256, 2 + 2 + QK_K // 2 + QK_K // 64),
  1493. GGMLQuantizationType.I8: (1, 1),
  1494. GGMLQuantizationType.I16: (1, 2),
  1495. GGMLQuantizationType.I32: (1, 4),
  1496. GGMLQuantizationType.I64: (1, 8),
  1497. GGMLQuantizationType.F64: (1, 8),
  1498. GGMLQuantizationType.IQ1_M: (256, QK_K // 8 + QK_K // 16 + QK_K // 32),
  1499. GGMLQuantizationType.BF16: (1, 2),
  1500. GGMLQuantizationType.TQ1_0: (256, 2 + 4 * 13),
  1501. GGMLQuantizationType.TQ2_0: (256, 2 + 64),
  1502. }
  1503. # Aliases for backward compatibility.
  1504. # general
  1505. KEY_GENERAL_ARCHITECTURE = Keys.General.ARCHITECTURE
  1506. KEY_GENERAL_QUANTIZATION_VERSION = Keys.General.QUANTIZATION_VERSION
  1507. KEY_GENERAL_ALIGNMENT = Keys.General.ALIGNMENT
  1508. KEY_GENERAL_NAME = Keys.General.NAME
  1509. KEY_GENERAL_AUTHOR = Keys.General.AUTHOR
  1510. KEY_GENERAL_URL = Keys.General.URL
  1511. KEY_GENERAL_DESCRIPTION = Keys.General.DESCRIPTION
  1512. KEY_GENERAL_LICENSE = Keys.General.LICENSE
  1513. KEY_GENERAL_SOURCE_URL = Keys.General.SOURCE_URL
  1514. KEY_GENERAL_FILE_TYPE = Keys.General.FILE_TYPE
  1515. # LLM
  1516. KEY_VOCAB_SIZE = Keys.LLM.VOCAB_SIZE
  1517. KEY_CONTEXT_LENGTH = Keys.LLM.CONTEXT_LENGTH
  1518. KEY_EMBEDDING_LENGTH = Keys.LLM.EMBEDDING_LENGTH
  1519. KEY_BLOCK_COUNT = Keys.LLM.BLOCK_COUNT
  1520. KEY_FEED_FORWARD_LENGTH = Keys.LLM.FEED_FORWARD_LENGTH
  1521. KEY_USE_PARALLEL_RESIDUAL = Keys.LLM.USE_PARALLEL_RESIDUAL
  1522. KEY_TENSOR_DATA_LAYOUT = Keys.LLM.TENSOR_DATA_LAYOUT
  1523. # attention
  1524. KEY_ATTENTION_HEAD_COUNT = Keys.Attention.HEAD_COUNT
  1525. KEY_ATTENTION_HEAD_COUNT_KV = Keys.Attention.HEAD_COUNT_KV
  1526. KEY_ATTENTION_MAX_ALIBI_BIAS = Keys.Attention.MAX_ALIBI_BIAS
  1527. KEY_ATTENTION_CLAMP_KQV = Keys.Attention.CLAMP_KQV
  1528. KEY_ATTENTION_LAYERNORM_EPS = Keys.Attention.LAYERNORM_EPS
  1529. KEY_ATTENTION_LAYERNORM_RMS_EPS = Keys.Attention.LAYERNORM_RMS_EPS
  1530. # RoPE
  1531. KEY_ROPE_DIMENSION_COUNT = Keys.Rope.DIMENSION_COUNT
  1532. KEY_ROPE_FREQ_BASE = Keys.Rope.FREQ_BASE
  1533. KEY_ROPE_SCALING_TYPE = Keys.Rope.SCALING_TYPE
  1534. KEY_ROPE_SCALING_FACTOR = Keys.Rope.SCALING_FACTOR
  1535. KEY_ROPE_SCALING_ORIG_CTX_LEN = Keys.Rope.SCALING_ORIG_CTX_LEN
  1536. KEY_ROPE_SCALING_FINETUNED = Keys.Rope.SCALING_FINETUNED
  1537. # SSM
  1538. KEY_SSM_CONV_KERNEL = Keys.SSM.CONV_KERNEL
  1539. KEY_SSM_INNER_SIZE = Keys.SSM.INNER_SIZE
  1540. KEY_SSM_STATE_SIZE = Keys.SSM.STATE_SIZE
  1541. KEY_SSM_TIME_STEP_RANK = Keys.SSM.TIME_STEP_RANK
  1542. KEY_SSM_DT_B_C_RMS = Keys.SSM.DT_B_C_RMS
  1543. # tokenization
  1544. KEY_TOKENIZER_MODEL = Keys.Tokenizer.MODEL
  1545. KEY_TOKENIZER_PRE = Keys.Tokenizer.PRE
  1546. KEY_TOKENIZER_LIST = Keys.Tokenizer.LIST
  1547. KEY_TOKENIZER_TOKEN_TYPE = Keys.Tokenizer.TOKEN_TYPE
  1548. KEY_TOKENIZER_SCORES = Keys.Tokenizer.SCORES
  1549. KEY_TOKENIZER_MERGES = Keys.Tokenizer.MERGES
  1550. KEY_TOKENIZER_BOS_ID = Keys.Tokenizer.BOS_ID
  1551. KEY_TOKENIZER_EOS_ID = Keys.Tokenizer.EOS_ID
  1552. KEY_TOKENIZER_EOT_ID = Keys.Tokenizer.EOT_ID
  1553. KEY_TOKENIZER_EOM_ID = Keys.Tokenizer.EOM_ID
  1554. KEY_TOKENIZER_UNK_ID = Keys.Tokenizer.UNK_ID
  1555. KEY_TOKENIZER_SEP_ID = Keys.Tokenizer.SEP_ID
  1556. KEY_TOKENIZER_PAD_ID = Keys.Tokenizer.PAD_ID
  1557. KEY_TOKENIZER_CLS_ID = Keys.Tokenizer.CLS_ID
  1558. KEY_TOKENIZER_MASK_ID = Keys.Tokenizer.MASK_ID
  1559. KEY_TOKENIZER_HF_JSON = Keys.Tokenizer.HF_JSON
  1560. KEY_TOKENIZER_RWKV = Keys.Tokenizer.RWKV
  1561. KEY_TOKENIZER_FIM_PRE_ID = Keys.Tokenizer.FIM_PRE_ID
  1562. KEY_TOKENIZER_FIM_SUF_ID = Keys.Tokenizer.FIM_SUF_ID
  1563. KEY_TOKENIZER_FIM_MID_ID = Keys.Tokenizer.FIM_MID_ID
  1564. KEY_TOKENIZER_FIM_PAD_ID = Keys.Tokenizer.FIM_PAD_ID
  1565. KEY_TOKENIZER_FIM_REP_ID = Keys.Tokenizer.FIM_REP_ID
  1566. KEY_TOKENIZER_FIM_SEP_ID = Keys.Tokenizer.FIM_SEP_ID
  1567. # deprecated
  1568. KEY_TOKENIZER_PREFIX_ID = Keys.Tokenizer.PREFIX_ID
  1569. KEY_TOKENIZER_SUFFIX_ID = Keys.Tokenizer.SUFFIX_ID
  1570. KEY_TOKENIZER_MIDDLE_ID = Keys.Tokenizer.MIDDLE_ID