ggml.c 671 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966199671996819969199701997119972199731997419975199761997719978199791998019981199821998319984199851998619987199881998919990199911999219993199941999519996199971999819999200002000120002200032000420005200062000720008200092001020011200122001320014200152001620017200182001920020200212002220023200242002520026200272002820029200302003120032200332003420035200362003720038200392004020041200422004320044200452004620047200482004920050200512005220053200542005520056200572005820059200602006120062200632006420065200662006720068200692007020071200722007320074200752007620077200782007920080200812008220083200842008520086200872008820089200902009120092200932009420095200962009720098200992010020101201022010320104201052010620107201082010920110201112011220113201142011520116201172011820119201202012120122201232012420125201262012720128201292013020131201322013320134201352013620137201382013920140201412014220143201442014520146201472014820149201502015120152201532015420155201562015720158201592016020161201622016320164201652016620167201682016920170201712017220173201742017520176201772017820179201802018120182201832018420185201862018720188201892019020191201922019320194201952019620197201982019920200202012020220203202042020520206202072020820209202102021120212202132021420215202162021720218202192022020221202222022320224202252022620227202282022920230202312023220233202342023520236202372023820239202402024120242202432024420245202462024720248202492025020251202522025320254202552025620257202582025920260202612026220263202642026520266202672026820269202702027120272202732027420275202762027720278202792028020281202822028320284202852028620287202882028920290202912029220293202942029520296202972029820299203002030120302203032030420305203062030720308203092031020311203122031320314203152031620317203182031920320203212032220323203242032520326203272032820329203302033120332203332033420335203362033720338203392034020341203422034320344203452034620347203482034920350203512035220353203542035520356203572035820359203602036120362203632036420365203662036720368203692037020371203722037320374203752037620377203782037920380203812038220383203842038520386203872038820389203902039120392203932039420395203962039720398203992040020401204022040320404204052040620407204082040920410204112041220413204142041520416204172041820419204202042120422204232042420425204262042720428204292043020431204322043320434204352043620437204382043920440204412044220443204442044520446204472044820449204502045120452204532045420455204562045720458204592046020461204622046320464204652046620467204682046920470204712047220473204742047520476204772047820479204802048120482204832048420485204862048720488204892049020491204922049320494204952049620497204982049920500205012050220503205042050520506205072050820509205102051120512205132051420515205162051720518205192052020521205222052320524205252052620527205282052920530205312053220533205342053520536205372053820539205402054120542205432054420545205462054720548205492055020551205522055320554205552055620557205582055920560205612056220563205642056520566205672056820569205702057120572205732057420575205762057720578205792058020581205822058320584205852058620587205882058920590205912059220593205942059520596205972059820599206002060120602206032060420605206062060720608206092061020611206122061320614206152061620617206182061920620206212062220623206242062520626206272062820629206302063120632206332063420635206362063720638206392064020641206422064320644206452064620647206482064920650206512065220653206542065520656206572065820659206602066120662206632066420665206662066720668206692067020671206722067320674206752067620677206782067920680206812068220683206842068520686206872068820689206902069120692206932069420695206962069720698206992070020701207022070320704207052070620707207082070920710207112071220713207142071520716207172071820719207202072120722207232072420725207262072720728207292073020731207322073320734207352073620737207382073920740207412074220743207442074520746207472074820749207502075120752207532075420755207562075720758207592076020761207622076320764207652076620767207682076920770207712077220773207742077520776207772077820779207802078120782207832078420785207862078720788207892079020791207922079320794207952079620797207982079920800208012080220803208042080520806208072080820809208102081120812208132081420815208162081720818208192082020821208222082320824208252082620827208282082920830208312083220833208342083520836208372083820839208402084120842208432084420845208462084720848208492085020851208522085320854208552085620857208582085920860208612086220863208642086520866208672086820869208702087120872208732087420875208762087720878208792088020881208822088320884208852088620887208882088920890208912089220893208942089520896
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  2. #include "ggml.h"
  3. #ifdef GGML_USE_K_QUANTS
  4. #include "k_quants.h"
  5. #endif
  6. #if defined(_MSC_VER) || defined(__MINGW32__)
  7. #include <malloc.h> // using malloc.h with MSC/MINGW
  8. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  9. #include <alloca.h>
  10. #endif
  11. #include <assert.h>
  12. #include <errno.h>
  13. #include <time.h>
  14. #include <math.h>
  15. #include <stdlib.h>
  16. #include <string.h>
  17. #include <stdint.h>
  18. #include <inttypes.h>
  19. #include <stdio.h>
  20. #include <float.h>
  21. #include <limits.h>
  22. #include <stdarg.h>
  23. #include <signal.h>
  24. #ifdef GGML_USE_METAL
  25. #include <unistd.h>
  26. #endif
  27. // static_assert should be a #define, but if it's not,
  28. // fall back to the _Static_assert C11 keyword.
  29. // if C99 - static_assert is noop
  30. // ref: https://stackoverflow.com/a/53923785/4039976
  31. #ifndef static_assert
  32. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
  33. #define static_assert(cond, msg) _Static_assert(cond, msg)
  34. #else
  35. #define static_assert(cond, msg) struct global_scope_noop_trick
  36. #endif
  37. #endif
  38. #if defined(_MSC_VER)
  39. // disable "possible loss of data" to avoid hundreds of casts
  40. // we should just be careful :)
  41. #pragma warning(disable: 4244 4267)
  42. // disable POSIX deprecation warnigns
  43. // these functions are never going away, anyway
  44. #pragma warning(disable: 4996)
  45. #endif
  46. #if defined(_WIN32)
  47. #include <windows.h>
  48. typedef volatile LONG atomic_int;
  49. typedef atomic_int atomic_bool;
  50. static void atomic_store(atomic_int * ptr, LONG val) {
  51. InterlockedExchange(ptr, val);
  52. }
  53. static LONG atomic_load(atomic_int * ptr) {
  54. return InterlockedCompareExchange(ptr, 0, 0);
  55. }
  56. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  57. return InterlockedExchangeAdd(ptr, inc);
  58. }
  59. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  60. return atomic_fetch_add(ptr, -(dec));
  61. }
  62. typedef HANDLE pthread_t;
  63. typedef DWORD thread_ret_t;
  64. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  65. (void) unused;
  66. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  67. if (handle == NULL)
  68. {
  69. return EAGAIN;
  70. }
  71. *out = handle;
  72. return 0;
  73. }
  74. static int pthread_join(pthread_t thread, void * unused) {
  75. (void) unused;
  76. return (int) WaitForSingleObject(thread, INFINITE);
  77. }
  78. static int sched_yield (void) {
  79. Sleep (0);
  80. return 0;
  81. }
  82. #else
  83. #include <pthread.h>
  84. #include <stdatomic.h>
  85. typedef void * thread_ret_t;
  86. #include <sys/types.h>
  87. #include <sys/stat.h>
  88. #include <unistd.h>
  89. #endif
  90. #ifdef GGML_USE_CPU_HBM
  91. #include <hbwmalloc.h>
  92. #endif
  93. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  94. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  95. #ifndef __FMA__
  96. #define __FMA__
  97. #endif
  98. #ifndef __F16C__
  99. #define __F16C__
  100. #endif
  101. #ifndef __SSE3__
  102. #define __SSE3__
  103. #endif
  104. #endif
  105. /*#define GGML_PERF*/
  106. #define GGML_DEBUG 0
  107. #define GGML_GELU_FP16
  108. #define GGML_GELU_QUICK_FP16
  109. #define GGML_SILU_FP16
  110. // #define GGML_CROSS_ENTROPY_EXP_FP16
  111. // #define GGML_FLASH_ATTN_EXP_FP16
  112. #define GGML_SOFT_MAX_UNROLL 4
  113. #define GGML_VEC_DOT_UNROLL 2
  114. //
  115. // logging
  116. //
  117. #if (GGML_DEBUG >= 1)
  118. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  119. #else
  120. #define GGML_PRINT_DEBUG(...)
  121. #endif
  122. #if (GGML_DEBUG >= 5)
  123. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  124. #else
  125. #define GGML_PRINT_DEBUG_5(...)
  126. #endif
  127. #if (GGML_DEBUG >= 10)
  128. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  129. #else
  130. #define GGML_PRINT_DEBUG_10(...)
  131. #endif
  132. #define GGML_PRINT(...) printf(__VA_ARGS__)
  133. #ifdef GGML_USE_ACCELERATE
  134. // uncomment to use vDSP for soft max computation
  135. // note: not sure if it is actually faster
  136. //#define GGML_SOFT_MAX_ACCELERATE
  137. #endif
  138. //
  139. // logging
  140. //
  141. #if (GGML_DEBUG >= 1)
  142. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  143. #else
  144. #define GGML_PRINT_DEBUG(...)
  145. #endif
  146. #if (GGML_DEBUG >= 5)
  147. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  148. #else
  149. #define GGML_PRINT_DEBUG_5(...)
  150. #endif
  151. #if (GGML_DEBUG >= 10)
  152. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  153. #else
  154. #define GGML_PRINT_DEBUG_10(...)
  155. #endif
  156. #define GGML_PRINT(...) printf(__VA_ARGS__)
  157. //
  158. // end of logging block
  159. //
  160. #if defined(_MSC_VER) || defined(__MINGW32__)
  161. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  162. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  163. #else
  164. inline static void * ggml_aligned_malloc(size_t size) {
  165. if (size == 0) {
  166. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  167. return NULL;
  168. }
  169. void * aligned_memory = NULL;
  170. #ifdef GGML_USE_CPU_HBM
  171. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  172. #elif GGML_USE_METAL
  173. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  174. #else
  175. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  176. #endif
  177. if (result != 0) {
  178. // Handle allocation failure
  179. const char *error_desc = "unknown allocation error";
  180. switch (result) {
  181. case EINVAL:
  182. error_desc = "invalid alignment value";
  183. break;
  184. case ENOMEM:
  185. error_desc = "insufficient memory";
  186. break;
  187. }
  188. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  189. return NULL;
  190. }
  191. return aligned_memory;
  192. }
  193. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  194. #ifdef GGML_USE_CPU_HBM
  195. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  196. #else
  197. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  198. #endif
  199. #endif
  200. #define UNUSED GGML_UNUSED
  201. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  202. //
  203. // tensor access macros
  204. //
  205. #define GGML_TENSOR_UNARY_OP_LOCALS \
  206. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  207. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  208. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  209. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  210. #define GGML_TENSOR_BINARY_OP_LOCALS \
  211. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  212. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  213. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); \
  214. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); \
  215. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  216. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  217. #if defined(GGML_USE_ACCELERATE)
  218. #include <Accelerate/Accelerate.h>
  219. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  220. #include "ggml-opencl.h"
  221. #endif
  222. #elif defined(GGML_USE_OPENBLAS)
  223. #if defined(GGML_BLAS_USE_MKL)
  224. #include <mkl.h>
  225. #else
  226. #include <cblas.h>
  227. #endif
  228. #elif defined(GGML_USE_CUBLAS)
  229. #include "ggml-cuda.h"
  230. #elif defined(GGML_USE_CLBLAST)
  231. #include "ggml-opencl.h"
  232. #endif
  233. #undef MIN
  234. #undef MAX
  235. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  236. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  237. // floating point type used to accumulate sums
  238. typedef double ggml_float;
  239. // 16-bit float
  240. // on Arm, we use __fp16
  241. // on x86, we use uint16_t
  242. #if defined(__ARM_NEON) && !defined(_MSC_VER)
  243. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  244. //
  245. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  246. //
  247. #include <arm_neon.h>
  248. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  249. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  250. #define GGML_FP16_TO_FP32(x) ((float) (x))
  251. #define GGML_FP32_TO_FP16(x) (x)
  252. #else
  253. #ifdef __wasm_simd128__
  254. #include <wasm_simd128.h>
  255. #else
  256. #ifdef __POWER9_VECTOR__
  257. #include <altivec.h>
  258. #undef bool
  259. #define bool _Bool
  260. #else
  261. #if defined(_MSC_VER) || defined(__MINGW32__)
  262. #include <intrin.h>
  263. #else
  264. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__)
  265. #if !defined(__riscv)
  266. #include <immintrin.h>
  267. #endif
  268. #endif
  269. #endif
  270. #endif
  271. #endif
  272. #ifdef __riscv_v_intrinsic
  273. #include <riscv_vector.h>
  274. #endif
  275. #ifdef __F16C__
  276. #ifdef _MSC_VER
  277. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  278. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  279. #else
  280. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  281. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  282. #endif
  283. #elif defined(__POWER9_VECTOR__)
  284. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  285. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  286. /* the inline asm below is about 12% faster than the lookup method */
  287. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  288. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  289. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  290. register float f;
  291. register double d;
  292. __asm__(
  293. "mtfprd %0,%2\n"
  294. "xscvhpdp %0,%0\n"
  295. "frsp %1,%0\n" :
  296. /* temp */ "=d"(d),
  297. /* out */ "=f"(f):
  298. /* in */ "r"(h));
  299. return f;
  300. }
  301. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  302. register double d;
  303. register ggml_fp16_t r;
  304. __asm__( /* xscvdphp can work on double or single precision */
  305. "xscvdphp %0,%2\n"
  306. "mffprd %1,%0\n" :
  307. /* temp */ "=d"(d),
  308. /* out */ "=r"(r):
  309. /* in */ "f"(f));
  310. return r;
  311. }
  312. #else
  313. // FP16 <-> FP32
  314. // ref: https://github.com/Maratyszcza/FP16
  315. static inline float fp32_from_bits(uint32_t w) {
  316. union {
  317. uint32_t as_bits;
  318. float as_value;
  319. } fp32;
  320. fp32.as_bits = w;
  321. return fp32.as_value;
  322. }
  323. static inline uint32_t fp32_to_bits(float f) {
  324. union {
  325. float as_value;
  326. uint32_t as_bits;
  327. } fp32;
  328. fp32.as_value = f;
  329. return fp32.as_bits;
  330. }
  331. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  332. const uint32_t w = (uint32_t) h << 16;
  333. const uint32_t sign = w & UINT32_C(0x80000000);
  334. const uint32_t two_w = w + w;
  335. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  336. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  337. const float exp_scale = 0x1.0p-112f;
  338. #else
  339. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  340. #endif
  341. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  342. const uint32_t magic_mask = UINT32_C(126) << 23;
  343. const float magic_bias = 0.5f;
  344. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  345. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  346. const uint32_t result = sign |
  347. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  348. return fp32_from_bits(result);
  349. }
  350. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  351. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  352. const float scale_to_inf = 0x1.0p+112f;
  353. const float scale_to_zero = 0x1.0p-110f;
  354. #else
  355. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  356. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  357. #endif
  358. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  359. const uint32_t w = fp32_to_bits(f);
  360. const uint32_t shl1_w = w + w;
  361. const uint32_t sign = w & UINT32_C(0x80000000);
  362. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  363. if (bias < UINT32_C(0x71000000)) {
  364. bias = UINT32_C(0x71000000);
  365. }
  366. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  367. const uint32_t bits = fp32_to_bits(base);
  368. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  369. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  370. const uint32_t nonsign = exp_bits + mantissa_bits;
  371. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  372. }
  373. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  374. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  375. #endif // __F16C__
  376. #endif // __ARM_NEON
  377. //
  378. // global data
  379. //
  380. // precomputed gelu table for f16 (128 KB)
  381. static ggml_fp16_t table_gelu_f16[1 << 16];
  382. // precomputed quick gelu table for f16 (128 KB)
  383. static ggml_fp16_t table_gelu_quick_f16[1 << 16];
  384. // precomputed silu table for f16 (128 KB)
  385. static ggml_fp16_t table_silu_f16[1 << 16];
  386. // precomputed exp table for f16 (128 KB)
  387. static ggml_fp16_t table_exp_f16[1 << 16];
  388. // precomputed f32 table for f16 (256 KB)
  389. static float table_f32_f16[1 << 16];
  390. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  391. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  392. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  393. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  394. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  395. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  396. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  397. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  398. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  399. // precomputed tables for expanding 8bits to 8 bytes:
  400. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  401. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  402. #endif
  403. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  404. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  405. // This is also true for POWER9.
  406. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  407. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  408. uint16_t s;
  409. memcpy(&s, &f, sizeof(uint16_t));
  410. return table_f32_f16[s];
  411. }
  412. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  413. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  414. #endif
  415. // note: do not use these inside ggml.c
  416. // these are meant to be used via the ggml.h API
  417. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  418. return (float) GGML_FP16_TO_FP32(x);
  419. }
  420. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  421. return GGML_FP32_TO_FP16(x);
  422. }
  423. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  424. for (int i = 0; i < n; i++) {
  425. y[i] = GGML_FP16_TO_FP32(x[i]);
  426. }
  427. }
  428. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  429. int i = 0;
  430. #if defined(__F16C__)
  431. for (; i + 7 < n; i += 8) {
  432. __m256 x_vec = _mm256_loadu_ps(x + i);
  433. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  434. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  435. }
  436. for(; i + 3 < n; i += 4) {
  437. __m128 x_vec = _mm_loadu_ps(x + i);
  438. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  439. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  440. }
  441. #endif
  442. for (; i < n; i++) {
  443. y[i] = GGML_FP32_TO_FP16(x[i]);
  444. }
  445. }
  446. //
  447. // timing
  448. //
  449. #if defined(_MSC_VER) || defined(__MINGW32__)
  450. static int64_t timer_freq, timer_start;
  451. void ggml_time_init(void) {
  452. LARGE_INTEGER t;
  453. QueryPerformanceFrequency(&t);
  454. timer_freq = t.QuadPart;
  455. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  456. // and the uptime is high enough.
  457. // We subtract the program start time to reduce the likelihood of that happening.
  458. QueryPerformanceCounter(&t);
  459. timer_start = t.QuadPart;
  460. }
  461. int64_t ggml_time_ms(void) {
  462. LARGE_INTEGER t;
  463. QueryPerformanceCounter(&t);
  464. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  465. }
  466. int64_t ggml_time_us(void) {
  467. LARGE_INTEGER t;
  468. QueryPerformanceCounter(&t);
  469. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  470. }
  471. #else
  472. void ggml_time_init(void) {}
  473. int64_t ggml_time_ms(void) {
  474. struct timespec ts;
  475. clock_gettime(CLOCK_MONOTONIC, &ts);
  476. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  477. }
  478. int64_t ggml_time_us(void) {
  479. struct timespec ts;
  480. clock_gettime(CLOCK_MONOTONIC, &ts);
  481. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  482. }
  483. #endif
  484. int64_t ggml_cycles(void) {
  485. return clock();
  486. }
  487. int64_t ggml_cycles_per_ms(void) {
  488. return CLOCKS_PER_SEC/1000;
  489. }
  490. #ifdef GGML_PERF
  491. #define ggml_perf_time_ms() ggml_time_ms()
  492. #define ggml_perf_time_us() ggml_time_us()
  493. #define ggml_perf_cycles() ggml_cycles()
  494. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  495. #else
  496. #define ggml_perf_time_ms() 0
  497. #define ggml_perf_time_us() 0
  498. #define ggml_perf_cycles() 0
  499. #define ggml_perf_cycles_per_ms() 0
  500. #endif
  501. //
  502. // cache line
  503. //
  504. #if defined(__cpp_lib_hardware_interference_size)
  505. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  506. #else
  507. #if defined(__POWER9_VECTOR__)
  508. #define CACHE_LINE_SIZE 128
  509. #else
  510. #define CACHE_LINE_SIZE 64
  511. #endif
  512. #endif
  513. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  514. //
  515. // quantization
  516. //
  517. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  518. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  519. // multiply int8_t, add results pairwise twice
  520. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  521. // Get absolute values of x vectors
  522. const __m128i ax = _mm_sign_epi8(x, x);
  523. // Sign the values of the y vectors
  524. const __m128i sy = _mm_sign_epi8(y, x);
  525. // Perform multiplication and create 16-bit values
  526. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  527. const __m128i ones = _mm_set1_epi16(1);
  528. return _mm_madd_epi16(ones, dot);
  529. }
  530. #if __AVX__ || __AVX2__ || __AVX512F__
  531. // horizontally add 8 floats
  532. static inline float hsum_float_8(const __m256 x) {
  533. __m128 res = _mm256_extractf128_ps(x, 1);
  534. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  535. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  536. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  537. return _mm_cvtss_f32(res);
  538. }
  539. // horizontally add 8 int32_t
  540. static inline int hsum_i32_8(const __m256i a) {
  541. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  542. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  543. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  544. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  545. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  546. }
  547. // horizontally add 4 int32_t
  548. static inline int hsum_i32_4(const __m128i a) {
  549. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  550. const __m128i sum64 = _mm_add_epi32(hi64, a);
  551. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  552. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  553. }
  554. #if defined(__AVX2__) || defined(__AVX512F__)
  555. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  556. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  557. uint32_t x32;
  558. memcpy(&x32, x, sizeof(uint32_t));
  559. const __m256i shuf_mask = _mm256_set_epi64x(
  560. 0x0303030303030303, 0x0202020202020202,
  561. 0x0101010101010101, 0x0000000000000000);
  562. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  563. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  564. bytes = _mm256_or_si256(bytes, bit_mask);
  565. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  566. }
  567. // Unpack 32 4-bit fields into 32 bytes
  568. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  569. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  570. {
  571. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  572. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  573. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  574. return _mm256_and_si256(lowMask, bytes);
  575. }
  576. // add int16_t pairwise and return as float vector
  577. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  578. const __m256i ones = _mm256_set1_epi16(1);
  579. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  580. return _mm256_cvtepi32_ps(summed_pairs);
  581. }
  582. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  583. #if __AVXVNNI__
  584. const __m256i zero = _mm256_setzero_si256();
  585. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  586. return _mm256_cvtepi32_ps(summed_pairs);
  587. #else
  588. // Perform multiplication and create 16-bit values
  589. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  590. return sum_i16_pairs_float(dot);
  591. #endif
  592. }
  593. // multiply int8_t, add results pairwise twice and return as float vector
  594. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  595. #if __AVXVNNIINT8__
  596. const __m256i zero = _mm256_setzero_si256();
  597. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  598. return _mm256_cvtepi32_ps(summed_pairs);
  599. #else
  600. // Get absolute values of x vectors
  601. const __m256i ax = _mm256_sign_epi8(x, x);
  602. // Sign the values of the y vectors
  603. const __m256i sy = _mm256_sign_epi8(y, x);
  604. return mul_sum_us8_pairs_float(ax, sy);
  605. #endif
  606. }
  607. static inline __m128i packNibbles( __m256i bytes )
  608. {
  609. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  610. #if __AVX512F__
  611. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  612. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  613. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  614. #else
  615. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  616. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  617. __m256i low = _mm256_and_si256( lowByte, bytes );
  618. high = _mm256_srli_epi16( high, 4 );
  619. bytes = _mm256_or_si256( low, high );
  620. // Compress uint16_t lanes into bytes
  621. __m128i r0 = _mm256_castsi256_si128( bytes );
  622. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  623. return _mm_packus_epi16( r0, r1 );
  624. #endif
  625. }
  626. #elif defined(__AVX__)
  627. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  628. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  629. uint32_t x32;
  630. memcpy(&x32, x, sizeof(uint32_t));
  631. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  632. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  633. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  634. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  635. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  636. bytesl = _mm_or_si128(bytesl, bit_mask);
  637. bytesh = _mm_or_si128(bytesh, bit_mask);
  638. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  639. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  640. return MM256_SET_M128I(bytesh, bytesl);
  641. }
  642. // Unpack 32 4-bit fields into 32 bytes
  643. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  644. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  645. {
  646. // Load 16 bytes from memory
  647. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  648. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  649. const __m128i lowMask = _mm_set1_epi8(0xF);
  650. tmpl = _mm_and_si128(lowMask, tmpl);
  651. tmph = _mm_and_si128(lowMask, tmph);
  652. return MM256_SET_M128I(tmph, tmpl);
  653. }
  654. // add int16_t pairwise and return as float vector
  655. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  656. const __m128i ones = _mm_set1_epi16(1);
  657. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  658. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  659. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  660. return _mm256_cvtepi32_ps(summed_pairs);
  661. }
  662. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  663. const __m128i axl = _mm256_castsi256_si128(ax);
  664. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  665. const __m128i syl = _mm256_castsi256_si128(sy);
  666. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  667. // Perform multiplication and create 16-bit values
  668. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  669. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  670. return sum_i16_pairs_float(doth, dotl);
  671. }
  672. // multiply int8_t, add results pairwise twice and return as float vector
  673. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  674. const __m128i xl = _mm256_castsi256_si128(x);
  675. const __m128i xh = _mm256_extractf128_si256(x, 1);
  676. const __m128i yl = _mm256_castsi256_si128(y);
  677. const __m128i yh = _mm256_extractf128_si256(y, 1);
  678. // Get absolute values of x vectors
  679. const __m128i axl = _mm_sign_epi8(xl, xl);
  680. const __m128i axh = _mm_sign_epi8(xh, xh);
  681. // Sign the values of the y vectors
  682. const __m128i syl = _mm_sign_epi8(yl, xl);
  683. const __m128i syh = _mm_sign_epi8(yh, xh);
  684. // Perform multiplication and create 16-bit values
  685. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  686. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  687. return sum_i16_pairs_float(doth, dotl);
  688. }
  689. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  690. {
  691. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  692. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  693. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  694. __m128i low = _mm_and_si128( lowByte, bytes1 );
  695. high = _mm_srli_epi16( high, 4 );
  696. bytes1 = _mm_or_si128( low, high );
  697. high = _mm_andnot_si128( lowByte, bytes2 );
  698. low = _mm_and_si128( lowByte, bytes2 );
  699. high = _mm_srli_epi16( high, 4 );
  700. bytes2 = _mm_or_si128( low, high );
  701. return _mm_packus_epi16( bytes1, bytes2);
  702. }
  703. #endif
  704. #elif defined(__SSSE3__)
  705. // horizontally add 4x4 floats
  706. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  707. __m128 res_0 =_mm_hadd_ps(a, b);
  708. __m128 res_1 =_mm_hadd_ps(c, d);
  709. __m128 res =_mm_hadd_ps(res_0, res_1);
  710. res =_mm_hadd_ps(res, res);
  711. res =_mm_hadd_ps(res, res);
  712. return _mm_cvtss_f32(res);
  713. }
  714. #endif // __AVX__ || __AVX2__ || __AVX512F__
  715. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  716. #if defined(__ARM_NEON)
  717. #if !defined(__aarch64__)
  718. inline static int32_t vaddvq_s32(int32x4_t v) {
  719. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  720. }
  721. inline static float vaddvq_f32(float32x4_t v) {
  722. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  723. }
  724. inline static float vmaxvq_f32(float32x4_t v) {
  725. return
  726. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  727. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  728. }
  729. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  730. int32x4_t res;
  731. res[0] = roundf(vgetq_lane_f32(v, 0));
  732. res[1] = roundf(vgetq_lane_f32(v, 1));
  733. res[2] = roundf(vgetq_lane_f32(v, 2));
  734. res[3] = roundf(vgetq_lane_f32(v, 3));
  735. return res;
  736. }
  737. #endif
  738. #endif
  739. #define QK4_0 32
  740. typedef struct {
  741. ggml_fp16_t d; // delta
  742. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  743. } block_q4_0;
  744. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  745. #define QK4_1 32
  746. typedef struct {
  747. ggml_fp16_t d; // delta
  748. ggml_fp16_t m; // min
  749. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  750. } block_q4_1;
  751. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  752. #define QK5_0 32
  753. typedef struct {
  754. ggml_fp16_t d; // delta
  755. uint8_t qh[4]; // 5-th bit of quants
  756. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  757. } block_q5_0;
  758. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  759. #define QK5_1 32
  760. typedef struct {
  761. ggml_fp16_t d; // delta
  762. ggml_fp16_t m; // min
  763. uint8_t qh[4]; // 5-th bit of quants
  764. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  765. } block_q5_1;
  766. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  767. #define QK8_0 32
  768. typedef struct {
  769. ggml_fp16_t d; // delta
  770. int8_t qs[QK8_0]; // quants
  771. } block_q8_0;
  772. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  773. #define QK8_1 32
  774. typedef struct {
  775. float d; // delta
  776. float s; // d * sum(qs[i])
  777. int8_t qs[QK8_1]; // quants
  778. } block_q8_1;
  779. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  780. // reference implementation for deterministic creation of model files
  781. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  782. static const int qk = QK4_0;
  783. assert(k % qk == 0);
  784. const int nb = k / qk;
  785. for (int i = 0; i < nb; i++) {
  786. float amax = 0.0f; // absolute max
  787. float max = 0.0f;
  788. for (int j = 0; j < qk; j++) {
  789. const float v = x[i*qk + j];
  790. if (amax < fabsf(v)) {
  791. amax = fabsf(v);
  792. max = v;
  793. }
  794. }
  795. const float d = max / -8;
  796. const float id = d ? 1.0f/d : 0.0f;
  797. y[i].d = GGML_FP32_TO_FP16(d);
  798. for (int j = 0; j < qk/2; ++j) {
  799. const float x0 = x[i*qk + 0 + j]*id;
  800. const float x1 = x[i*qk + qk/2 + j]*id;
  801. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  802. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  803. y[i].qs[j] = xi0;
  804. y[i].qs[j] |= xi1 << 4;
  805. }
  806. }
  807. }
  808. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  809. quantize_row_q4_0_reference(x, y, k);
  810. }
  811. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  812. const int qk = QK4_1;
  813. assert(k % qk == 0);
  814. const int nb = k / qk;
  815. for (int i = 0; i < nb; i++) {
  816. float min = FLT_MAX;
  817. float max = -FLT_MAX;
  818. for (int j = 0; j < qk; j++) {
  819. const float v = x[i*qk + j];
  820. if (v < min) min = v;
  821. if (v > max) max = v;
  822. }
  823. const float d = (max - min) / ((1 << 4) - 1);
  824. const float id = d ? 1.0f/d : 0.0f;
  825. y[i].d = GGML_FP32_TO_FP16(d);
  826. y[i].m = GGML_FP32_TO_FP16(min);
  827. for (int j = 0; j < qk/2; ++j) {
  828. const float x0 = (x[i*qk + 0 + j] - min)*id;
  829. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  830. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  831. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  832. y[i].qs[j] = xi0;
  833. y[i].qs[j] |= xi1 << 4;
  834. }
  835. }
  836. }
  837. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  838. quantize_row_q4_1_reference(x, y, k);
  839. }
  840. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  841. static const int qk = QK5_0;
  842. assert(k % qk == 0);
  843. const int nb = k / qk;
  844. for (int i = 0; i < nb; i++) {
  845. float amax = 0.0f; // absolute max
  846. float max = 0.0f;
  847. for (int j = 0; j < qk; j++) {
  848. const float v = x[i*qk + j];
  849. if (amax < fabsf(v)) {
  850. amax = fabsf(v);
  851. max = v;
  852. }
  853. }
  854. const float d = max / -16;
  855. const float id = d ? 1.0f/d : 0.0f;
  856. y[i].d = GGML_FP32_TO_FP16(d);
  857. uint32_t qh = 0;
  858. for (int j = 0; j < qk/2; ++j) {
  859. const float x0 = x[i*qk + 0 + j]*id;
  860. const float x1 = x[i*qk + qk/2 + j]*id;
  861. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  862. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  863. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  864. // get the 5-th bit and store it in qh at the right position
  865. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  866. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  867. }
  868. memcpy(&y[i].qh, &qh, sizeof(qh));
  869. }
  870. }
  871. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  872. quantize_row_q5_0_reference(x, y, k);
  873. }
  874. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  875. const int qk = QK5_1;
  876. assert(k % qk == 0);
  877. const int nb = k / qk;
  878. for (int i = 0; i < nb; i++) {
  879. float min = FLT_MAX;
  880. float max = -FLT_MAX;
  881. for (int j = 0; j < qk; j++) {
  882. const float v = x[i*qk + j];
  883. if (v < min) min = v;
  884. if (v > max) max = v;
  885. }
  886. const float d = (max - min) / ((1 << 5) - 1);
  887. const float id = d ? 1.0f/d : 0.0f;
  888. y[i].d = GGML_FP32_TO_FP16(d);
  889. y[i].m = GGML_FP32_TO_FP16(min);
  890. uint32_t qh = 0;
  891. for (int j = 0; j < qk/2; ++j) {
  892. const float x0 = (x[i*qk + 0 + j] - min)*id;
  893. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  894. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  895. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  896. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  897. // get the 5-th bit and store it in qh at the right position
  898. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  899. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  900. }
  901. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  902. }
  903. }
  904. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  905. quantize_row_q5_1_reference(x, y, k);
  906. }
  907. // reference implementation for deterministic creation of model files
  908. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  909. assert(k % QK8_0 == 0);
  910. const int nb = k / QK8_0;
  911. for (int i = 0; i < nb; i++) {
  912. float amax = 0.0f; // absolute max
  913. for (int j = 0; j < QK8_0; j++) {
  914. const float v = x[i*QK8_0 + j];
  915. amax = MAX(amax, fabsf(v));
  916. }
  917. const float d = amax / ((1 << 7) - 1);
  918. const float id = d ? 1.0f/d : 0.0f;
  919. y[i].d = GGML_FP32_TO_FP16(d);
  920. for (int j = 0; j < QK8_0; ++j) {
  921. const float x0 = x[i*QK8_0 + j]*id;
  922. y[i].qs[j] = roundf(x0);
  923. }
  924. }
  925. }
  926. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  927. assert(QK8_0 == 32);
  928. assert(k % QK8_0 == 0);
  929. const int nb = k / QK8_0;
  930. block_q8_0 * restrict y = vy;
  931. #if defined(__ARM_NEON)
  932. for (int i = 0; i < nb; i++) {
  933. float32x4_t srcv [8];
  934. float32x4_t asrcv[8];
  935. float32x4_t amaxv[8];
  936. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  937. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  938. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  939. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  940. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  941. const float amax = vmaxvq_f32(amaxv[0]);
  942. const float d = amax / ((1 << 7) - 1);
  943. const float id = d ? 1.0f/d : 0.0f;
  944. y[i].d = GGML_FP32_TO_FP16(d);
  945. for (int j = 0; j < 8; j++) {
  946. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  947. const int32x4_t vi = vcvtnq_s32_f32(v);
  948. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  949. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  950. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  951. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  952. }
  953. }
  954. #elif defined(__wasm_simd128__)
  955. for (int i = 0; i < nb; i++) {
  956. v128_t srcv [8];
  957. v128_t asrcv[8];
  958. v128_t amaxv[8];
  959. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  960. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  961. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  962. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  963. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  964. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  965. wasm_f32x4_extract_lane(amaxv[0], 1)),
  966. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  967. wasm_f32x4_extract_lane(amaxv[0], 3)));
  968. const float d = amax / ((1 << 7) - 1);
  969. const float id = d ? 1.0f/d : 0.0f;
  970. y[i].d = GGML_FP32_TO_FP16(d);
  971. for (int j = 0; j < 8; j++) {
  972. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  973. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  974. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  975. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  976. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  977. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  978. }
  979. }
  980. #elif defined(__AVX2__) || defined(__AVX__)
  981. for (int i = 0; i < nb; i++) {
  982. // Load elements into 4 AVX vectors
  983. __m256 v0 = _mm256_loadu_ps( x );
  984. __m256 v1 = _mm256_loadu_ps( x + 8 );
  985. __m256 v2 = _mm256_loadu_ps( x + 16 );
  986. __m256 v3 = _mm256_loadu_ps( x + 24 );
  987. x += 32;
  988. // Compute max(abs(e)) for the block
  989. const __m256 signBit = _mm256_set1_ps( -0.0f );
  990. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  991. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  992. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  993. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  994. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  995. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  996. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  997. const float maxScalar = _mm_cvtss_f32( max4 );
  998. // Quantize these floats
  999. const float d = maxScalar / 127.f;
  1000. y[i].d = GGML_FP32_TO_FP16(d);
  1001. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1002. const __m256 mul = _mm256_set1_ps( id );
  1003. // Apply the multiplier
  1004. v0 = _mm256_mul_ps( v0, mul );
  1005. v1 = _mm256_mul_ps( v1, mul );
  1006. v2 = _mm256_mul_ps( v2, mul );
  1007. v3 = _mm256_mul_ps( v3, mul );
  1008. // Round to nearest integer
  1009. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1010. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1011. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1012. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1013. // Convert floats to integers
  1014. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1015. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1016. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1017. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1018. #if defined(__AVX2__)
  1019. // Convert int32 to int16
  1020. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1021. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1022. // Convert int16 to int8
  1023. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1024. // We got our precious signed bytes, but the order is now wrong
  1025. // These AVX2 pack instructions process 16-byte pieces independently
  1026. // The following instruction is fixing the order
  1027. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1028. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1029. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1030. #else
  1031. // Since we don't have in AVX some necessary functions,
  1032. // we split the registers in half and call AVX2 analogs from SSE
  1033. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1034. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1035. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1036. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1037. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1038. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1039. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1040. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1041. // Convert int32 to int16
  1042. ni0 = _mm_packs_epi32( ni0, ni1 );
  1043. ni2 = _mm_packs_epi32( ni2, ni3 );
  1044. ni4 = _mm_packs_epi32( ni4, ni5 );
  1045. ni6 = _mm_packs_epi32( ni6, ni7 );
  1046. // Convert int16 to int8
  1047. ni0 = _mm_packs_epi16( ni0, ni2 );
  1048. ni4 = _mm_packs_epi16( ni4, ni6 );
  1049. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1050. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1051. #endif
  1052. }
  1053. #else
  1054. // scalar
  1055. quantize_row_q8_0_reference(x, y, k);
  1056. #endif
  1057. }
  1058. // reference implementation for deterministic creation of model files
  1059. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1060. assert(QK8_1 == 32);
  1061. assert(k % QK8_1 == 0);
  1062. const int nb = k / QK8_1;
  1063. for (int i = 0; i < nb; i++) {
  1064. float amax = 0.0f; // absolute max
  1065. for (int j = 0; j < QK8_1; j++) {
  1066. const float v = x[i*QK8_1 + j];
  1067. amax = MAX(amax, fabsf(v));
  1068. }
  1069. const float d = amax / ((1 << 7) - 1);
  1070. const float id = d ? 1.0f/d : 0.0f;
  1071. y[i].d = d;
  1072. int sum = 0;
  1073. for (int j = 0; j < QK8_1/2; ++j) {
  1074. const float v0 = x[i*QK8_1 + j]*id;
  1075. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1076. y[i].qs[ j] = roundf(v0);
  1077. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1078. sum += y[i].qs[ j];
  1079. sum += y[i].qs[QK8_1/2 + j];
  1080. }
  1081. y[i].s = sum*d;
  1082. }
  1083. }
  1084. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1085. assert(k % QK8_1 == 0);
  1086. const int nb = k / QK8_1;
  1087. block_q8_1 * restrict y = vy;
  1088. #if defined(__ARM_NEON)
  1089. for (int i = 0; i < nb; i++) {
  1090. float32x4_t srcv [8];
  1091. float32x4_t asrcv[8];
  1092. float32x4_t amaxv[8];
  1093. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1094. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1095. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1096. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1097. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1098. const float amax = vmaxvq_f32(amaxv[0]);
  1099. const float d = amax / ((1 << 7) - 1);
  1100. const float id = d ? 1.0f/d : 0.0f;
  1101. y[i].d = d;
  1102. int32x4_t accv = vdupq_n_s32(0);
  1103. for (int j = 0; j < 8; j++) {
  1104. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1105. const int32x4_t vi = vcvtnq_s32_f32(v);
  1106. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1107. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1108. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1109. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1110. accv = vaddq_s32(accv, vi);
  1111. }
  1112. y[i].s = d * vaddvq_s32(accv);
  1113. }
  1114. #elif defined(__wasm_simd128__)
  1115. for (int i = 0; i < nb; i++) {
  1116. v128_t srcv [8];
  1117. v128_t asrcv[8];
  1118. v128_t amaxv[8];
  1119. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1120. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1121. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1122. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1123. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1124. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1125. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1126. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1127. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1128. const float d = amax / ((1 << 7) - 1);
  1129. const float id = d ? 1.0f/d : 0.0f;
  1130. y[i].d = d;
  1131. v128_t accv = wasm_i32x4_splat(0);
  1132. for (int j = 0; j < 8; j++) {
  1133. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1134. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1135. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1136. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1137. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1138. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1139. accv = wasm_i32x4_add(accv, vi);
  1140. }
  1141. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1142. wasm_i32x4_extract_lane(accv, 1) +
  1143. wasm_i32x4_extract_lane(accv, 2) +
  1144. wasm_i32x4_extract_lane(accv, 3));
  1145. }
  1146. #elif defined(__AVX2__) || defined(__AVX__)
  1147. for (int i = 0; i < nb; i++) {
  1148. // Load elements into 4 AVX vectors
  1149. __m256 v0 = _mm256_loadu_ps( x );
  1150. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1151. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1152. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1153. x += 32;
  1154. // Compute max(abs(e)) for the block
  1155. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1156. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1157. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1158. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1159. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1160. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1161. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1162. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1163. const float maxScalar = _mm_cvtss_f32( max4 );
  1164. // Quantize these floats
  1165. const float d = maxScalar / 127.f;
  1166. y[i].d = d;
  1167. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1168. const __m256 mul = _mm256_set1_ps( id );
  1169. // Apply the multiplier
  1170. v0 = _mm256_mul_ps( v0, mul );
  1171. v1 = _mm256_mul_ps( v1, mul );
  1172. v2 = _mm256_mul_ps( v2, mul );
  1173. v3 = _mm256_mul_ps( v3, mul );
  1174. // Round to nearest integer
  1175. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1176. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1177. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1178. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1179. // Convert floats to integers
  1180. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1181. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1182. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1183. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1184. #if defined(__AVX2__)
  1185. // Compute the sum of the quants and set y[i].s
  1186. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1187. // Convert int32 to int16
  1188. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1189. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1190. // Convert int16 to int8
  1191. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1192. // We got our precious signed bytes, but the order is now wrong
  1193. // These AVX2 pack instructions process 16-byte pieces independently
  1194. // The following instruction is fixing the order
  1195. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1196. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1197. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1198. #else
  1199. // Since we don't have in AVX some necessary functions,
  1200. // we split the registers in half and call AVX2 analogs from SSE
  1201. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1202. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1203. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1204. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1205. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1206. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1207. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1208. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1209. // Compute the sum of the quants and set y[i].s
  1210. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1211. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1212. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1213. // Convert int32 to int16
  1214. ni0 = _mm_packs_epi32( ni0, ni1 );
  1215. ni2 = _mm_packs_epi32( ni2, ni3 );
  1216. ni4 = _mm_packs_epi32( ni4, ni5 );
  1217. ni6 = _mm_packs_epi32( ni6, ni7 );
  1218. // Convert int16 to int8
  1219. ni0 = _mm_packs_epi16( ni0, ni2 );
  1220. ni4 = _mm_packs_epi16( ni4, ni6 );
  1221. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1222. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1223. #endif
  1224. }
  1225. #else
  1226. // scalar
  1227. quantize_row_q8_1_reference(x, y, k);
  1228. #endif
  1229. }
  1230. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1231. static const int qk = QK4_0;
  1232. assert(k % qk == 0);
  1233. const int nb = k / qk;
  1234. for (int i = 0; i < nb; i++) {
  1235. const float d = GGML_FP16_TO_FP32(x[i].d);
  1236. for (int j = 0; j < qk/2; ++j) {
  1237. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1238. const int x1 = (x[i].qs[j] >> 4) - 8;
  1239. y[i*qk + j + 0 ] = x0*d;
  1240. y[i*qk + j + qk/2] = x1*d;
  1241. }
  1242. }
  1243. }
  1244. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1245. static const int qk = QK4_1;
  1246. assert(k % qk == 0);
  1247. const int nb = k / qk;
  1248. for (int i = 0; i < nb; i++) {
  1249. const float d = GGML_FP16_TO_FP32(x[i].d);
  1250. const float m = GGML_FP16_TO_FP32(x[i].m);
  1251. for (int j = 0; j < qk/2; ++j) {
  1252. const int x0 = (x[i].qs[j] & 0x0F);
  1253. const int x1 = (x[i].qs[j] >> 4);
  1254. y[i*qk + j + 0 ] = x0*d + m;
  1255. y[i*qk + j + qk/2] = x1*d + m;
  1256. }
  1257. }
  1258. }
  1259. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1260. static const int qk = QK5_0;
  1261. assert(k % qk == 0);
  1262. const int nb = k / qk;
  1263. for (int i = 0; i < nb; i++) {
  1264. const float d = GGML_FP16_TO_FP32(x[i].d);
  1265. uint32_t qh;
  1266. memcpy(&qh, x[i].qh, sizeof(qh));
  1267. for (int j = 0; j < qk/2; ++j) {
  1268. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1269. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1270. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1271. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1272. y[i*qk + j + 0 ] = x0*d;
  1273. y[i*qk + j + qk/2] = x1*d;
  1274. }
  1275. }
  1276. }
  1277. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1278. static const int qk = QK5_1;
  1279. assert(k % qk == 0);
  1280. const int nb = k / qk;
  1281. for (int i = 0; i < nb; i++) {
  1282. const float d = GGML_FP16_TO_FP32(x[i].d);
  1283. const float m = GGML_FP16_TO_FP32(x[i].m);
  1284. uint32_t qh;
  1285. memcpy(&qh, x[i].qh, sizeof(qh));
  1286. for (int j = 0; j < qk/2; ++j) {
  1287. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1288. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1289. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1290. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1291. y[i*qk + j + 0 ] = x0*d + m;
  1292. y[i*qk + j + qk/2] = x1*d + m;
  1293. }
  1294. }
  1295. }
  1296. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1297. static const int qk = QK8_0;
  1298. assert(k % qk == 0);
  1299. const int nb = k / qk;
  1300. const block_q8_0 * restrict x = vx;
  1301. for (int i = 0; i < nb; i++) {
  1302. const float d = GGML_FP16_TO_FP32(x[i].d);
  1303. for (int j = 0; j < qk; ++j) {
  1304. y[i*qk + j] = x[i].qs[j]*d;
  1305. }
  1306. }
  1307. }
  1308. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  1309. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  1310. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1311. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1312. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1313. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1314. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1315. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  1316. [GGML_TYPE_I8] = {
  1317. .type_name = "i8",
  1318. .blck_size = 1,
  1319. .type_size = sizeof(int8_t),
  1320. .is_quantized = false,
  1321. },
  1322. [GGML_TYPE_I16] = {
  1323. .type_name = "i16",
  1324. .blck_size = 1,
  1325. .type_size = sizeof(int16_t),
  1326. .is_quantized = false,
  1327. },
  1328. [GGML_TYPE_I32] = {
  1329. .type_name = "i32",
  1330. .blck_size = 1,
  1331. .type_size = sizeof(int32_t),
  1332. .is_quantized = false,
  1333. },
  1334. [GGML_TYPE_F32] = {
  1335. .type_name = "f32",
  1336. .blck_size = 1,
  1337. .type_size = sizeof(float),
  1338. .is_quantized = false,
  1339. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  1340. .vec_dot_type = GGML_TYPE_F32,
  1341. },
  1342. [GGML_TYPE_F16] = {
  1343. .type_name = "f16",
  1344. .blck_size = 1,
  1345. .type_size = sizeof(ggml_fp16_t),
  1346. .is_quantized = false,
  1347. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  1348. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1349. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1350. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  1351. .vec_dot_type = GGML_TYPE_F16,
  1352. },
  1353. [GGML_TYPE_Q4_0] = {
  1354. .type_name = "q4_0",
  1355. .blck_size = QK4_0,
  1356. .type_size = sizeof(block_q4_0),
  1357. .is_quantized = true,
  1358. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  1359. .from_float = quantize_row_q4_0,
  1360. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  1361. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  1362. .vec_dot_type = GGML_TYPE_Q8_0,
  1363. },
  1364. [GGML_TYPE_Q4_1] = {
  1365. .type_name = "q4_1",
  1366. .blck_size = QK4_1,
  1367. .type_size = sizeof(block_q4_1),
  1368. .is_quantized = true,
  1369. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  1370. .from_float = quantize_row_q4_1,
  1371. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  1372. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  1373. .vec_dot_type = GGML_TYPE_Q8_1,
  1374. },
  1375. [GGML_TYPE_Q5_0] = {
  1376. .type_name = "q5_0",
  1377. .blck_size = QK5_0,
  1378. .type_size = sizeof(block_q5_0),
  1379. .is_quantized = true,
  1380. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  1381. .from_float = quantize_row_q5_0,
  1382. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  1383. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  1384. .vec_dot_type = GGML_TYPE_Q8_0,
  1385. },
  1386. [GGML_TYPE_Q5_1] = {
  1387. .type_name = "q5_1",
  1388. .blck_size = QK5_1,
  1389. .type_size = sizeof(block_q5_1),
  1390. .is_quantized = true,
  1391. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  1392. .from_float = quantize_row_q5_1,
  1393. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  1394. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  1395. .vec_dot_type = GGML_TYPE_Q8_1,
  1396. },
  1397. [GGML_TYPE_Q8_0] = {
  1398. .type_name = "q8_0",
  1399. .blck_size = QK8_0,
  1400. .type_size = sizeof(block_q8_0),
  1401. .is_quantized = true,
  1402. .to_float = dequantize_row_q8_0,
  1403. .from_float = quantize_row_q8_0,
  1404. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  1405. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  1406. .vec_dot_type = GGML_TYPE_Q8_0,
  1407. },
  1408. [GGML_TYPE_Q8_1] = {
  1409. .type_name = "q8_1",
  1410. .blck_size = QK8_1,
  1411. .type_size = sizeof(block_q8_1),
  1412. .is_quantized = true,
  1413. .from_float = quantize_row_q8_1,
  1414. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  1415. .vec_dot_type = GGML_TYPE_Q8_1,
  1416. },
  1417. #ifdef GGML_USE_K_QUANTS
  1418. [GGML_TYPE_Q2_K] = {
  1419. .type_name = "q2_K",
  1420. .blck_size = QK_K,
  1421. .type_size = sizeof(block_q2_K),
  1422. .is_quantized = true,
  1423. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  1424. .from_float = quantize_row_q2_K,
  1425. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  1426. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  1427. .vec_dot_type = GGML_TYPE_Q8_K,
  1428. },
  1429. [GGML_TYPE_Q3_K] = {
  1430. .type_name = "q3_K",
  1431. .blck_size = QK_K,
  1432. .type_size = sizeof(block_q3_K),
  1433. .is_quantized = true,
  1434. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  1435. .from_float = quantize_row_q3_K,
  1436. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  1437. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  1438. .vec_dot_type = GGML_TYPE_Q8_K,
  1439. },
  1440. [GGML_TYPE_Q4_K] = {
  1441. .type_name = "q4_K",
  1442. .blck_size = QK_K,
  1443. .type_size = sizeof(block_q4_K),
  1444. .is_quantized = true,
  1445. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  1446. .from_float = quantize_row_q4_K,
  1447. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  1448. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  1449. .vec_dot_type = GGML_TYPE_Q8_K,
  1450. },
  1451. [GGML_TYPE_Q5_K] = {
  1452. .type_name = "q5_K",
  1453. .blck_size = QK_K,
  1454. .type_size = sizeof(block_q5_K),
  1455. .is_quantized = true,
  1456. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  1457. .from_float = quantize_row_q5_K,
  1458. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  1459. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  1460. .vec_dot_type = GGML_TYPE_Q8_K,
  1461. },
  1462. [GGML_TYPE_Q6_K] = {
  1463. .type_name = "q6_K",
  1464. .blck_size = QK_K,
  1465. .type_size = sizeof(block_q6_K),
  1466. .is_quantized = true,
  1467. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  1468. .from_float = quantize_row_q6_K,
  1469. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  1470. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  1471. .vec_dot_type = GGML_TYPE_Q8_K,
  1472. },
  1473. [GGML_TYPE_Q8_K] = {
  1474. .type_name = "q8_K",
  1475. .blck_size = QK_K,
  1476. .type_size = sizeof(block_q8_K),
  1477. .is_quantized = true,
  1478. .from_float = quantize_row_q8_K,
  1479. }
  1480. #endif
  1481. };
  1482. // For internal test use
  1483. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  1484. GGML_ASSERT(type < GGML_TYPE_COUNT);
  1485. return type_traits[type];
  1486. }
  1487. //
  1488. // simd mappings
  1489. //
  1490. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1491. // we then implement the fundamental computation operations below using only these macros
  1492. // adding support for new architectures requires to define the corresponding SIMD macros
  1493. //
  1494. // GGML_F32_STEP / GGML_F16_STEP
  1495. // number of elements to process in a single step
  1496. //
  1497. // GGML_F32_EPR / GGML_F16_EPR
  1498. // number of elements to fit in a single register
  1499. //
  1500. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1501. #define GGML_SIMD
  1502. // F32 NEON
  1503. #define GGML_F32_STEP 16
  1504. #define GGML_F32_EPR 4
  1505. #define GGML_F32x4 float32x4_t
  1506. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1507. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1508. #define GGML_F32x4_LOAD vld1q_f32
  1509. #define GGML_F32x4_STORE vst1q_f32
  1510. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1511. #define GGML_F32x4_ADD vaddq_f32
  1512. #define GGML_F32x4_MUL vmulq_f32
  1513. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1514. #define GGML_F32x4_REDUCE(res, x) \
  1515. { \
  1516. int offset = GGML_F32_ARR >> 1; \
  1517. for (int i = 0; i < offset; ++i) { \
  1518. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1519. } \
  1520. offset >>= 1; \
  1521. for (int i = 0; i < offset; ++i) { \
  1522. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1523. } \
  1524. offset >>= 1; \
  1525. for (int i = 0; i < offset; ++i) { \
  1526. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1527. } \
  1528. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1529. }
  1530. #define GGML_F32_VEC GGML_F32x4
  1531. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1532. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1533. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1534. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1535. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1536. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1537. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1538. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1539. // F16 NEON
  1540. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1541. #define GGML_F16_STEP 32
  1542. #define GGML_F16_EPR 8
  1543. #define GGML_F16x8 float16x8_t
  1544. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1545. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1546. #define GGML_F16x8_LOAD vld1q_f16
  1547. #define GGML_F16x8_STORE vst1q_f16
  1548. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1549. #define GGML_F16x8_ADD vaddq_f16
  1550. #define GGML_F16x8_MUL vmulq_f16
  1551. #define GGML_F16x8_REDUCE(res, x) \
  1552. { \
  1553. int offset = GGML_F16_ARR >> 1; \
  1554. for (int i = 0; i < offset; ++i) { \
  1555. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1556. } \
  1557. offset >>= 1; \
  1558. for (int i = 0; i < offset; ++i) { \
  1559. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1560. } \
  1561. offset >>= 1; \
  1562. for (int i = 0; i < offset; ++i) { \
  1563. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1564. } \
  1565. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1566. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1567. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1568. }
  1569. #define GGML_F16_VEC GGML_F16x8
  1570. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1571. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1572. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1573. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1574. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1575. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1576. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1577. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1578. #else
  1579. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1580. // and take advantage of the vcvt_ functions to convert to/from FP16
  1581. #define GGML_F16_STEP 16
  1582. #define GGML_F16_EPR 4
  1583. #define GGML_F32Cx4 float32x4_t
  1584. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1585. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1586. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1587. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1588. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1589. #define GGML_F32Cx4_ADD vaddq_f32
  1590. #define GGML_F32Cx4_MUL vmulq_f32
  1591. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1592. #define GGML_F16_VEC GGML_F32Cx4
  1593. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1594. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1595. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1596. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1597. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1598. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1599. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1600. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1601. #endif
  1602. #elif defined(__AVX__)
  1603. #define GGML_SIMD
  1604. // F32 AVX
  1605. #define GGML_F32_STEP 32
  1606. #define GGML_F32_EPR 8
  1607. #define GGML_F32x8 __m256
  1608. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1609. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1610. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1611. #define GGML_F32x8_STORE _mm256_storeu_ps
  1612. #if defined(__FMA__)
  1613. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1614. #else
  1615. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1616. #endif
  1617. #define GGML_F32x8_ADD _mm256_add_ps
  1618. #define GGML_F32x8_MUL _mm256_mul_ps
  1619. #define GGML_F32x8_REDUCE(res, x) \
  1620. { \
  1621. int offset = GGML_F32_ARR >> 1; \
  1622. for (int i = 0; i < offset; ++i) { \
  1623. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1624. } \
  1625. offset >>= 1; \
  1626. for (int i = 0; i < offset; ++i) { \
  1627. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1628. } \
  1629. offset >>= 1; \
  1630. for (int i = 0; i < offset; ++i) { \
  1631. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1632. } \
  1633. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1634. _mm256_extractf128_ps(x[0], 1)); \
  1635. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1636. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1637. }
  1638. // TODO: is this optimal ?
  1639. #define GGML_F32_VEC GGML_F32x8
  1640. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1641. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1642. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1643. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1644. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1645. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1646. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1647. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1648. // F16 AVX
  1649. #define GGML_F16_STEP 32
  1650. #define GGML_F16_EPR 8
  1651. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1652. #define GGML_F32Cx8 __m256
  1653. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1654. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1655. #if defined(__F16C__)
  1656. // the _mm256_cvt intrinsics require F16C
  1657. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1658. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1659. #else
  1660. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1661. float tmp[8];
  1662. for (int i = 0; i < 8; i++) {
  1663. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1664. }
  1665. return _mm256_loadu_ps(tmp);
  1666. }
  1667. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1668. float arr[8];
  1669. _mm256_storeu_ps(arr, y);
  1670. for (int i = 0; i < 8; i++)
  1671. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1672. }
  1673. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1674. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1675. #endif
  1676. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1677. #define GGML_F32Cx8_ADD _mm256_add_ps
  1678. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1679. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1680. #define GGML_F16_VEC GGML_F32Cx8
  1681. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1682. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1683. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1684. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1685. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1686. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1687. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1688. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1689. #elif defined(__POWER9_VECTOR__)
  1690. #define GGML_SIMD
  1691. // F32 POWER9
  1692. #define GGML_F32_STEP 32
  1693. #define GGML_F32_EPR 4
  1694. #define GGML_F32x4 vector float
  1695. #define GGML_F32x4_ZERO 0.0f
  1696. #define GGML_F32x4_SET1 vec_splats
  1697. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1698. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1699. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1700. #define GGML_F32x4_ADD vec_add
  1701. #define GGML_F32x4_MUL vec_mul
  1702. #define GGML_F32x4_REDUCE(res, x) \
  1703. { \
  1704. int offset = GGML_F32_ARR >> 1; \
  1705. for (int i = 0; i < offset; ++i) { \
  1706. x[i] = vec_add(x[i], x[offset+i]); \
  1707. } \
  1708. offset >>= 1; \
  1709. for (int i = 0; i < offset; ++i) { \
  1710. x[i] = vec_add(x[i], x[offset+i]); \
  1711. } \
  1712. offset >>= 1; \
  1713. for (int i = 0; i < offset; ++i) { \
  1714. x[i] = vec_add(x[i], x[offset+i]); \
  1715. } \
  1716. res = vec_extract(x[0], 0) + \
  1717. vec_extract(x[0], 1) + \
  1718. vec_extract(x[0], 2) + \
  1719. vec_extract(x[0], 3); \
  1720. }
  1721. #define GGML_F32_VEC GGML_F32x4
  1722. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1723. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1724. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1725. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1726. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1727. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1728. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1729. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1730. // F16 POWER9
  1731. #define GGML_F16_STEP GGML_F32_STEP
  1732. #define GGML_F16_EPR GGML_F32_EPR
  1733. #define GGML_F16_VEC GGML_F32x4
  1734. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1735. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1736. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1737. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1738. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1739. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1740. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1741. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1742. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1743. #define GGML_F16_VEC_STORE(p, r, i) \
  1744. if (i & 0x1) \
  1745. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1746. r[i - GGML_ENDIAN_BYTE(0)]), \
  1747. 0, p - GGML_F16_EPR)
  1748. #elif defined(__wasm_simd128__)
  1749. #define GGML_SIMD
  1750. // F32 WASM
  1751. #define GGML_F32_STEP 16
  1752. #define GGML_F32_EPR 4
  1753. #define GGML_F32x4 v128_t
  1754. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1755. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1756. #define GGML_F32x4_LOAD wasm_v128_load
  1757. #define GGML_F32x4_STORE wasm_v128_store
  1758. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1759. #define GGML_F32x4_ADD wasm_f32x4_add
  1760. #define GGML_F32x4_MUL wasm_f32x4_mul
  1761. #define GGML_F32x4_REDUCE(res, x) \
  1762. { \
  1763. int offset = GGML_F32_ARR >> 1; \
  1764. for (int i = 0; i < offset; ++i) { \
  1765. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1766. } \
  1767. offset >>= 1; \
  1768. for (int i = 0; i < offset; ++i) { \
  1769. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1770. } \
  1771. offset >>= 1; \
  1772. for (int i = 0; i < offset; ++i) { \
  1773. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1774. } \
  1775. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1776. wasm_f32x4_extract_lane(x[0], 1) + \
  1777. wasm_f32x4_extract_lane(x[0], 2) + \
  1778. wasm_f32x4_extract_lane(x[0], 3); \
  1779. }
  1780. #define GGML_F32_VEC GGML_F32x4
  1781. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1782. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1783. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1784. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1785. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1786. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1787. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1788. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1789. // F16 WASM
  1790. #define GGML_F16_STEP 16
  1791. #define GGML_F16_EPR 4
  1792. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1793. float tmp[4];
  1794. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1795. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1796. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1797. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1798. return wasm_v128_load(tmp);
  1799. }
  1800. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1801. float tmp[4];
  1802. wasm_v128_store(tmp, x);
  1803. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1804. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1805. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1806. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1807. }
  1808. #define GGML_F16x4 v128_t
  1809. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1810. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1811. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1812. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1813. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1814. #define GGML_F16x4_ADD wasm_f32x4_add
  1815. #define GGML_F16x4_MUL wasm_f32x4_mul
  1816. #define GGML_F16x4_REDUCE(res, x) \
  1817. { \
  1818. int offset = GGML_F16_ARR >> 1; \
  1819. for (int i = 0; i < offset; ++i) { \
  1820. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1821. } \
  1822. offset >>= 1; \
  1823. for (int i = 0; i < offset; ++i) { \
  1824. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1825. } \
  1826. offset >>= 1; \
  1827. for (int i = 0; i < offset; ++i) { \
  1828. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1829. } \
  1830. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1831. wasm_f32x4_extract_lane(x[0], 1) + \
  1832. wasm_f32x4_extract_lane(x[0], 2) + \
  1833. wasm_f32x4_extract_lane(x[0], 3); \
  1834. }
  1835. #define GGML_F16_VEC GGML_F16x4
  1836. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1837. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1838. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1839. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1840. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1841. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1842. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1843. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1844. #elif defined(__SSE3__)
  1845. #define GGML_SIMD
  1846. // F32 SSE
  1847. #define GGML_F32_STEP 32
  1848. #define GGML_F32_EPR 4
  1849. #define GGML_F32x4 __m128
  1850. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1851. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1852. #define GGML_F32x4_LOAD _mm_loadu_ps
  1853. #define GGML_F32x4_STORE _mm_storeu_ps
  1854. #if defined(__FMA__)
  1855. // TODO: Does this work?
  1856. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1857. #else
  1858. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1859. #endif
  1860. #define GGML_F32x4_ADD _mm_add_ps
  1861. #define GGML_F32x4_MUL _mm_mul_ps
  1862. #define GGML_F32x4_REDUCE(res, x) \
  1863. { \
  1864. int offset = GGML_F32_ARR >> 1; \
  1865. for (int i = 0; i < offset; ++i) { \
  1866. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1867. } \
  1868. offset >>= 1; \
  1869. for (int i = 0; i < offset; ++i) { \
  1870. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1871. } \
  1872. offset >>= 1; \
  1873. for (int i = 0; i < offset; ++i) { \
  1874. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1875. } \
  1876. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1877. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1878. }
  1879. // TODO: is this optimal ?
  1880. #define GGML_F32_VEC GGML_F32x4
  1881. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1882. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1883. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1884. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1885. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1886. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1887. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1888. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1889. // F16 SSE
  1890. #define GGML_F16_STEP 32
  1891. #define GGML_F16_EPR 4
  1892. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1893. float tmp[4];
  1894. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1895. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1896. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1897. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1898. return _mm_loadu_ps(tmp);
  1899. }
  1900. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1901. float arr[4];
  1902. _mm_storeu_ps(arr, y);
  1903. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1904. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1905. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1906. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1907. }
  1908. #define GGML_F32Cx4 __m128
  1909. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1910. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1911. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1912. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1913. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1914. #define GGML_F32Cx4_ADD _mm_add_ps
  1915. #define GGML_F32Cx4_MUL _mm_mul_ps
  1916. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1917. #define GGML_F16_VEC GGML_F32Cx4
  1918. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1919. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1920. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1921. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1922. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1923. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1924. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1925. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1926. #endif
  1927. // GGML_F32_ARR / GGML_F16_ARR
  1928. // number of registers to use per step
  1929. #ifdef GGML_SIMD
  1930. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1931. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1932. #endif
  1933. //
  1934. // fundamental operations
  1935. //
  1936. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1937. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1938. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1939. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1940. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1941. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1942. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1943. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1944. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1945. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1946. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1947. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1948. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1949. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1950. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1951. #ifdef GGML_SIMD
  1952. float sumf = 0.0f;
  1953. const int np = (n & ~(GGML_F32_STEP - 1));
  1954. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1955. GGML_F32_VEC ax[GGML_F32_ARR];
  1956. GGML_F32_VEC ay[GGML_F32_ARR];
  1957. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1958. for (int j = 0; j < GGML_F32_ARR; j++) {
  1959. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1960. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1961. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1962. }
  1963. }
  1964. // reduce sum0..sum3 to sum0
  1965. GGML_F32_VEC_REDUCE(sumf, sum);
  1966. // leftovers
  1967. for (int i = np; i < n; ++i) {
  1968. sumf += x[i]*y[i];
  1969. }
  1970. #else
  1971. // scalar
  1972. ggml_float sumf = 0.0;
  1973. for (int i = 0; i < n; ++i) {
  1974. sumf += (ggml_float)(x[i]*y[i]);
  1975. }
  1976. #endif
  1977. *s = sumf;
  1978. }
  1979. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1980. ggml_float sumf = 0.0;
  1981. #if defined(GGML_SIMD)
  1982. const int np = (n & ~(GGML_F16_STEP - 1));
  1983. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1984. GGML_F16_VEC ax[GGML_F16_ARR];
  1985. GGML_F16_VEC ay[GGML_F16_ARR];
  1986. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1987. for (int j = 0; j < GGML_F16_ARR; j++) {
  1988. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1989. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1990. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1991. }
  1992. }
  1993. // reduce sum0..sum3 to sum0
  1994. GGML_F16_VEC_REDUCE(sumf, sum);
  1995. // leftovers
  1996. for (int i = np; i < n; ++i) {
  1997. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1998. }
  1999. #else
  2000. for (int i = 0; i < n; ++i) {
  2001. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2002. }
  2003. #endif
  2004. *s = sumf;
  2005. }
  2006. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2007. const int qk = QK8_0;
  2008. const int nb = n / qk;
  2009. assert(n % qk == 0);
  2010. const block_q4_0 * restrict x = vx;
  2011. const block_q8_0 * restrict y = vy;
  2012. #if defined(__ARM_NEON)
  2013. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2014. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2015. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2016. for (int i = 0; i < nb; i += 2) {
  2017. const block_q4_0 * restrict x0 = &x[i + 0];
  2018. const block_q4_0 * restrict x1 = &x[i + 1];
  2019. const block_q8_0 * restrict y0 = &y[i + 0];
  2020. const block_q8_0 * restrict y1 = &y[i + 1];
  2021. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2022. const int8x16_t s8b = vdupq_n_s8(0x8);
  2023. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2024. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2025. // 4-bit -> 8-bit
  2026. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2027. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2028. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2029. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2030. // sub 8
  2031. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2032. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2033. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2034. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2035. // load y
  2036. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2037. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2038. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2039. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2040. #if defined(__ARM_FEATURE_DOTPROD)
  2041. // dot product into int32x4_t
  2042. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  2043. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  2044. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2045. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2046. #else
  2047. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  2048. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  2049. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  2050. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  2051. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  2052. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  2053. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  2054. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  2055. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2056. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2057. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2058. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2059. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2060. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2061. #endif
  2062. }
  2063. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2064. #elif defined(__AVX2__)
  2065. // Initialize accumulator with zeros
  2066. __m256 acc = _mm256_setzero_ps();
  2067. // Main loop
  2068. for (int i = 0; i < nb; ++i) {
  2069. /* Compute combined scale for the block */
  2070. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2071. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2072. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2073. const __m256i off = _mm256_set1_epi8( 8 );
  2074. bx = _mm256_sub_epi8( bx, off );
  2075. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2076. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2077. /* Multiply q with scale and accumulate */
  2078. acc = _mm256_fmadd_ps( d, q, acc );
  2079. }
  2080. *s = hsum_float_8(acc);
  2081. #elif defined(__AVX__)
  2082. // Initialize accumulator with zeros
  2083. __m256 acc = _mm256_setzero_ps();
  2084. // Main loop
  2085. for (int i = 0; i < nb; ++i) {
  2086. // Compute combined scale for the block
  2087. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2088. const __m128i lowMask = _mm_set1_epi8(0xF);
  2089. const __m128i off = _mm_set1_epi8(8);
  2090. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  2091. __m128i bx = _mm_and_si128(lowMask, tmp);
  2092. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  2093. bx = _mm_sub_epi8(bx, off);
  2094. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  2095. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  2096. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2097. bx = _mm_sub_epi8(bx, off);
  2098. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  2099. // Convert int32_t to float
  2100. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  2101. // Apply the scale, and accumulate
  2102. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2103. }
  2104. *s = hsum_float_8(acc);
  2105. #elif defined(__SSSE3__)
  2106. // set constants
  2107. const __m128i lowMask = _mm_set1_epi8(0xF);
  2108. const __m128i off = _mm_set1_epi8(8);
  2109. // Initialize accumulator with zeros
  2110. __m128 acc_0 = _mm_setzero_ps();
  2111. __m128 acc_1 = _mm_setzero_ps();
  2112. __m128 acc_2 = _mm_setzero_ps();
  2113. __m128 acc_3 = _mm_setzero_ps();
  2114. // First round without accumulation
  2115. {
  2116. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  2117. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  2118. // Compute combined scale for the block 0 and 1
  2119. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  2120. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  2121. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2122. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  2123. bx_0 = _mm_sub_epi8(bx_0, off);
  2124. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2125. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2126. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  2127. bx_1 = _mm_sub_epi8(bx_1, off);
  2128. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2129. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  2130. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  2131. // Compute combined scale for the block 2 and 3
  2132. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  2133. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  2134. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2135. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  2136. bx_2 = _mm_sub_epi8(bx_2, off);
  2137. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2138. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2139. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  2140. bx_3 = _mm_sub_epi8(bx_3, off);
  2141. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2142. // Convert int32_t to float
  2143. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2144. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2145. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2146. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2147. // Apply the scale
  2148. acc_0 = _mm_mul_ps( d_0_1, p0 );
  2149. acc_1 = _mm_mul_ps( d_0_1, p1 );
  2150. acc_2 = _mm_mul_ps( d_2_3, p2 );
  2151. acc_3 = _mm_mul_ps( d_2_3, p3 );
  2152. }
  2153. // Main loop
  2154. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2155. for (int i = 2; i < nb; i+=2) {
  2156. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  2157. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  2158. // Compute combined scale for the block 0 and 1
  2159. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2160. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  2161. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2162. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2163. bx_0 = _mm_sub_epi8(bx_0, off);
  2164. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2165. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2166. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2167. bx_1 = _mm_sub_epi8(bx_1, off);
  2168. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2169. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2170. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2171. // Compute combined scale for the block 2 and 3
  2172. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2173. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2174. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2175. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2176. bx_2 = _mm_sub_epi8(bx_2, off);
  2177. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2178. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2179. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2180. bx_3 = _mm_sub_epi8(bx_3, off);
  2181. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2182. // Convert int32_t to float
  2183. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2184. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2185. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2186. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2187. // Apply the scale
  2188. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2189. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2190. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2191. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2192. // Acummulate
  2193. acc_0 = _mm_add_ps(p0_d, acc_0);
  2194. acc_1 = _mm_add_ps(p1_d, acc_1);
  2195. acc_2 = _mm_add_ps(p2_d, acc_2);
  2196. acc_3 = _mm_add_ps(p3_d, acc_3);
  2197. }
  2198. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2199. #elif defined(__riscv_v_intrinsic)
  2200. float sumf = 0.0;
  2201. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2202. for (int i = 0; i < nb; i++) {
  2203. vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
  2204. vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
  2205. vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
  2206. vuint8m1_t x_a = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
  2207. vuint8m1_t x_l = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
  2208. vint8m1_t x_ai = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
  2209. vint8m1_t x_li = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
  2210. vint8m1_t v0 = __riscv_vsub_vx_i8m1(x_ai, 8, vl);
  2211. vint8m1_t v1 = __riscv_vsub_vx_i8m1(x_li, 8, vl);
  2212. vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
  2213. vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
  2214. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2215. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
  2216. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
  2217. int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
  2218. sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
  2219. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2220. }
  2221. *s = sumf;
  2222. #else
  2223. // scalar
  2224. float sumf = 0.0;
  2225. for (int i = 0; i < nb; i++) {
  2226. int sumi = 0;
  2227. for (int j = 0; j < qk/2; ++j) {
  2228. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2229. const int v1 = (x[i].qs[j] >> 4) - 8;
  2230. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2231. }
  2232. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2233. }
  2234. *s = sumf;
  2235. #endif
  2236. }
  2237. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2238. const int qk = QK8_1;
  2239. const int nb = n / qk;
  2240. assert(n % qk == 0);
  2241. const block_q4_1 * restrict x = vx;
  2242. const block_q8_1 * restrict y = vy;
  2243. // TODO: add WASM SIMD
  2244. #if defined(__ARM_NEON)
  2245. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2246. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2247. float summs = 0;
  2248. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2249. for (int i = 0; i < nb; i += 2) {
  2250. const block_q4_1 * restrict x0 = &x[i + 0];
  2251. const block_q4_1 * restrict x1 = &x[i + 1];
  2252. const block_q8_1 * restrict y0 = &y[i + 0];
  2253. const block_q8_1 * restrict y1 = &y[i + 1];
  2254. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2255. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2256. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2257. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2258. // 4-bit -> 8-bit
  2259. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2260. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2261. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2262. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2263. // load y
  2264. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2265. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2266. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2267. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2268. #if defined(__ARM_FEATURE_DOTPROD)
  2269. // dot product into int32x4_t
  2270. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2271. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2272. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2273. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2274. #else
  2275. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2276. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2277. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2278. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2279. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2280. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2281. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2282. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2283. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2284. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2285. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2286. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2287. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2288. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2289. #endif
  2290. }
  2291. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2292. #elif defined(__AVX2__) || defined(__AVX__)
  2293. // Initialize accumulator with zeros
  2294. __m256 acc = _mm256_setzero_ps();
  2295. float summs = 0;
  2296. // Main loop
  2297. for (int i = 0; i < nb; ++i) {
  2298. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2299. const float d1 = y[i].d;
  2300. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2301. const __m256 d0v = _mm256_set1_ps( d0 );
  2302. const __m256 d1v = _mm256_set1_ps( d1 );
  2303. // Compute combined scales
  2304. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2305. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2306. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2307. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2308. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2309. // Accumulate d0*d1*x*y
  2310. #if defined(__AVX2__)
  2311. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2312. #else
  2313. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2314. #endif
  2315. }
  2316. *s = hsum_float_8(acc) + summs;
  2317. #elif defined(__riscv_v_intrinsic)
  2318. float sumf = 0.0;
  2319. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2320. for (int i = 0; i < nb; i++) {
  2321. vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
  2322. vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
  2323. vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
  2324. vuint8m1_t x_a = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
  2325. vuint8m1_t x_l = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
  2326. vint8m1_t v0 = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
  2327. vint8m1_t v1 = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
  2328. vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
  2329. vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
  2330. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2331. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
  2332. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
  2333. int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
  2334. sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
  2335. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2336. }
  2337. *s = sumf;
  2338. #else
  2339. // scalar
  2340. float sumf = 0.0;
  2341. for (int i = 0; i < nb; i++) {
  2342. int sumi = 0;
  2343. for (int j = 0; j < qk/2; ++j) {
  2344. const int v0 = (x[i].qs[j] & 0x0F);
  2345. const int v1 = (x[i].qs[j] >> 4);
  2346. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2347. }
  2348. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2349. }
  2350. *s = sumf;
  2351. #endif
  2352. }
  2353. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2354. const int qk = QK8_0;
  2355. const int nb = n / qk;
  2356. assert(n % qk == 0);
  2357. assert(qk == QK5_0);
  2358. const block_q5_0 * restrict x = vx;
  2359. const block_q8_0 * restrict y = vy;
  2360. #if defined(__ARM_NEON)
  2361. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2362. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2363. uint32_t qh0;
  2364. uint32_t qh1;
  2365. uint64_t tmp0[4];
  2366. uint64_t tmp1[4];
  2367. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2368. for (int i = 0; i < nb; i += 2) {
  2369. const block_q5_0 * restrict x0 = &x[i];
  2370. const block_q5_0 * restrict x1 = &x[i + 1];
  2371. const block_q8_0 * restrict y0 = &y[i];
  2372. const block_q8_0 * restrict y1 = &y[i + 1];
  2373. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2374. // extract the 5th bit via lookup table ((!b) << 4)
  2375. memcpy(&qh0, x0->qh, sizeof(qh0));
  2376. memcpy(&qh1, x1->qh, sizeof(qh1));
  2377. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2378. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2379. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2380. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2381. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2382. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2383. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2384. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2385. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2386. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2387. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2388. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2389. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2390. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2391. // 4-bit -> 8-bit
  2392. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2393. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2394. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2395. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2396. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2397. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2398. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2399. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2400. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2401. // load y
  2402. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2403. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2404. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2405. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2406. #if defined(__ARM_FEATURE_DOTPROD)
  2407. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2408. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2409. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2410. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2411. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2412. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2413. #else
  2414. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2415. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2416. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2417. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2418. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2419. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2420. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2421. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2422. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2423. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2424. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2425. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2426. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2427. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2428. #endif
  2429. }
  2430. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2431. #elif defined(__wasm_simd128__)
  2432. v128_t sumv = wasm_f32x4_splat(0.0f);
  2433. uint32_t qh;
  2434. uint64_t tmp[4];
  2435. // TODO: check if unrolling this is better
  2436. for (int i = 0; i < nb; ++i) {
  2437. const block_q5_0 * restrict x0 = &x[i];
  2438. const block_q8_0 * restrict y0 = &y[i];
  2439. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2440. // extract the 5th bit
  2441. memcpy(&qh, x0->qh, sizeof(qh));
  2442. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2443. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2444. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2445. tmp[3] = table_b2b_1[(qh >> 24) ];
  2446. const v128_t qhl = wasm_v128_load(tmp + 0);
  2447. const v128_t qhh = wasm_v128_load(tmp + 2);
  2448. const v128_t v0 = wasm_v128_load(x0->qs);
  2449. // 4-bit -> 8-bit
  2450. const v128_t v0l = wasm_v128_and (v0, m4b);
  2451. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2452. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2453. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2454. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2455. // load y
  2456. const v128_t v1l = wasm_v128_load(y0->qs);
  2457. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2458. // int8x16 -> int16x8
  2459. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2460. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2461. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2462. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2463. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2464. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2465. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2466. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2467. // dot product
  2468. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2469. wasm_i32x4_add(
  2470. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2471. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2472. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2473. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2474. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2475. }
  2476. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2477. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2478. #elif defined(__AVX2__)
  2479. // Initialize accumulator with zeros
  2480. __m256 acc = _mm256_setzero_ps();
  2481. // Main loop
  2482. for (int i = 0; i < nb; i++) {
  2483. /* Compute combined scale for the block */
  2484. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2485. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2486. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2487. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2488. bx = _mm256_or_si256(bx, bxhi);
  2489. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2490. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2491. /* Multiply q with scale and accumulate */
  2492. acc = _mm256_fmadd_ps(d, q, acc);
  2493. }
  2494. *s = hsum_float_8(acc);
  2495. #elif defined(__AVX__)
  2496. // Initialize accumulator with zeros
  2497. __m256 acc = _mm256_setzero_ps();
  2498. __m128i mask = _mm_set1_epi8((char)0xF0);
  2499. // Main loop
  2500. for (int i = 0; i < nb; i++) {
  2501. /* Compute combined scale for the block */
  2502. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2503. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2504. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2505. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2506. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2507. bxhil = _mm_andnot_si128(bxhil, mask);
  2508. bxhih = _mm_andnot_si128(bxhih, mask);
  2509. __m128i bxl = _mm256_castsi256_si128(bx);
  2510. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2511. bxl = _mm_or_si128(bxl, bxhil);
  2512. bxh = _mm_or_si128(bxh, bxhih);
  2513. bx = MM256_SET_M128I(bxh, bxl);
  2514. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2515. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2516. /* Multiply q with scale and accumulate */
  2517. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2518. }
  2519. *s = hsum_float_8(acc);
  2520. #elif defined(__riscv_v_intrinsic)
  2521. float sumf = 0.0;
  2522. uint32_t qh;
  2523. // These temp values are for masking and shift operations
  2524. uint32_t temp_1[16] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
  2525. uint32_t temp_2[16] = {0x1, 0x2, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80,
  2526. 0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000, 0x8000};
  2527. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2528. for (int i = 0; i < nb; i++) {
  2529. memcpy(&qh, x[i].qh, sizeof(uint32_t));
  2530. // temporary registers
  2531. vuint32m4_t vt_1 = __riscv_vle32_v_u32m4(temp_2, vl);
  2532. vuint32m4_t vt_2 = __riscv_vle32_v_u32m4(temp_1, vl);
  2533. vuint32m4_t vt_3 = __riscv_vsll_vx_u32m4(vt_1, 16, vl);
  2534. vuint32m4_t vt_4 = __riscv_vadd_vx_u32m4(vt_2, 12, vl);
  2535. // ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2536. vuint32m4_t xha_0 = __riscv_vand_vx_u32m4(vt_1, qh, vl);
  2537. vuint32m4_t xhr_0 = __riscv_vsrl_vv_u32m4(xha_0, vt_2, vl);
  2538. vuint32m4_t xhl_0 = __riscv_vsll_vx_u32m4(xhr_0, 4, vl);
  2539. // ((qh & (1u << (j + 16))) >> (j + 12));
  2540. vuint32m4_t xha_1 = __riscv_vand_vx_u32m4(vt_3, qh, vl);
  2541. vuint32m4_t xhl_1 = __riscv_vsrl_vv_u32m4(xha_1, vt_4, vl);
  2542. // narrowing
  2543. vuint16m2_t xhc_0 = __riscv_vncvt_x_x_w_u16m2(xhl_0, vl);
  2544. vuint8m1_t xh_0 = __riscv_vncvt_x_x_w_u8m1(xhc_0, vl);
  2545. vuint16m2_t xhc_1 = __riscv_vncvt_x_x_w_u16m2(xhl_1, vl);
  2546. vuint8m1_t xh_1 = __riscv_vncvt_x_x_w_u8m1(xhc_1, vl);
  2547. // load
  2548. vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
  2549. vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
  2550. vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
  2551. vuint8m1_t x_at = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
  2552. vuint8m1_t x_lt = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
  2553. vuint8m1_t x_a = __riscv_vor_vv_u8m1(x_at, xh_0, vl);
  2554. vuint8m1_t x_l = __riscv_vor_vv_u8m1(x_lt, xh_1, vl);
  2555. vint8m1_t x_ai = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
  2556. vint8m1_t x_li = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
  2557. vint8m1_t v0 = __riscv_vsub_vx_i8m1(x_ai, 16, vl);
  2558. vint8m1_t v1 = __riscv_vsub_vx_i8m1(x_li, 16, vl);
  2559. vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
  2560. vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
  2561. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2562. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
  2563. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
  2564. int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
  2565. sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
  2566. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2567. }
  2568. *s = sumf;
  2569. #else
  2570. // scalar
  2571. float sumf = 0.0;
  2572. for (int i = 0; i < nb; i++) {
  2573. uint32_t qh;
  2574. memcpy(&qh, x[i].qh, sizeof(qh));
  2575. int sumi = 0;
  2576. for (int j = 0; j < qk/2; ++j) {
  2577. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2578. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2579. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2580. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2581. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2582. }
  2583. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2584. }
  2585. *s = sumf;
  2586. #endif
  2587. }
  2588. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2589. const int qk = QK8_1;
  2590. const int nb = n / qk;
  2591. assert(n % qk == 0);
  2592. assert(qk == QK5_1);
  2593. const block_q5_1 * restrict x = vx;
  2594. const block_q8_1 * restrict y = vy;
  2595. #if defined(__ARM_NEON)
  2596. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2597. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2598. float summs0 = 0.0f;
  2599. float summs1 = 0.0f;
  2600. uint32_t qh0;
  2601. uint32_t qh1;
  2602. uint64_t tmp0[4];
  2603. uint64_t tmp1[4];
  2604. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2605. for (int i = 0; i < nb; i += 2) {
  2606. const block_q5_1 * restrict x0 = &x[i];
  2607. const block_q5_1 * restrict x1 = &x[i + 1];
  2608. const block_q8_1 * restrict y0 = &y[i];
  2609. const block_q8_1 * restrict y1 = &y[i + 1];
  2610. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2611. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2612. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2613. // extract the 5th bit via lookup table ((b) << 4)
  2614. memcpy(&qh0, x0->qh, sizeof(qh0));
  2615. memcpy(&qh1, x1->qh, sizeof(qh1));
  2616. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2617. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2618. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2619. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2620. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2621. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2622. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2623. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2624. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2625. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2626. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2627. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2628. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2629. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2630. // 4-bit -> 8-bit
  2631. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2632. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2633. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2634. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2635. // add high bit
  2636. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2637. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2638. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2639. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2640. // load y
  2641. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2642. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2643. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2644. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2645. #if defined(__ARM_FEATURE_DOTPROD)
  2646. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2647. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2648. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2649. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2650. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2651. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2652. #else
  2653. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2654. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2655. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2656. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2657. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2658. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2659. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2660. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2661. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2662. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2663. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2664. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2665. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2666. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2667. #endif
  2668. }
  2669. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2670. #elif defined(__wasm_simd128__)
  2671. v128_t sumv = wasm_f32x4_splat(0.0f);
  2672. float summs = 0.0f;
  2673. uint32_t qh;
  2674. uint64_t tmp[4];
  2675. // TODO: check if unrolling this is better
  2676. for (int i = 0; i < nb; ++i) {
  2677. const block_q5_1 * restrict x0 = &x[i];
  2678. const block_q8_1 * restrict y0 = &y[i];
  2679. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2680. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2681. // extract the 5th bit
  2682. memcpy(&qh, x0->qh, sizeof(qh));
  2683. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2684. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2685. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2686. tmp[3] = table_b2b_0[(qh >> 24) ];
  2687. const v128_t qhl = wasm_v128_load(tmp + 0);
  2688. const v128_t qhh = wasm_v128_load(tmp + 2);
  2689. const v128_t v0 = wasm_v128_load(x0->qs);
  2690. // 4-bit -> 8-bit
  2691. const v128_t v0l = wasm_v128_and (v0, m4b);
  2692. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2693. // add high bit
  2694. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2695. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2696. // load y
  2697. const v128_t v1l = wasm_v128_load(y0->qs);
  2698. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2699. // int8x16 -> int16x8
  2700. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2701. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2702. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2703. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2704. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2705. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2706. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2707. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2708. // dot product
  2709. sumv = wasm_f32x4_add(sumv,
  2710. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2711. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2712. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2713. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2714. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2715. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2716. }
  2717. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2718. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2719. #elif defined(__AVX2__)
  2720. // Initialize accumulator with zeros
  2721. __m256 acc = _mm256_setzero_ps();
  2722. float summs = 0.0f;
  2723. // Main loop
  2724. for (int i = 0; i < nb; i++) {
  2725. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2726. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2727. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2728. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2729. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2730. bx = _mm256_or_si256(bx, bxhi);
  2731. const __m256 dy = _mm256_set1_ps(y[i].d);
  2732. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2733. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2734. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2735. }
  2736. *s = hsum_float_8(acc) + summs;
  2737. #elif defined(__AVX__)
  2738. // Initialize accumulator with zeros
  2739. __m256 acc = _mm256_setzero_ps();
  2740. __m128i mask = _mm_set1_epi8(0x10);
  2741. float summs = 0.0f;
  2742. // Main loop
  2743. for (int i = 0; i < nb; i++) {
  2744. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2745. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2746. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2747. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2748. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2749. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2750. bxhil = _mm_and_si128(bxhil, mask);
  2751. bxhih = _mm_and_si128(bxhih, mask);
  2752. __m128i bxl = _mm256_castsi256_si128(bx);
  2753. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2754. bxl = _mm_or_si128(bxl, bxhil);
  2755. bxh = _mm_or_si128(bxh, bxhih);
  2756. bx = MM256_SET_M128I(bxh, bxl);
  2757. const __m256 dy = _mm256_set1_ps(y[i].d);
  2758. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2759. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2760. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2761. }
  2762. *s = hsum_float_8(acc) + summs;
  2763. #elif defined(__riscv_v_intrinsic)
  2764. float sumf = 0.0;
  2765. uint32_t qh;
  2766. // These temp values are for shift operations
  2767. uint32_t temp_1[16] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
  2768. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2769. for (int i = 0; i < nb; i++) {
  2770. memcpy(&qh, x[i].qh, sizeof(uint32_t));
  2771. // temporary registers
  2772. vuint32m4_t vt_1 = __riscv_vle32_v_u32m4(temp_1, vl);
  2773. vuint32m4_t vt_2 = __riscv_vadd_vx_u32m4(vt_1, 12, vl);
  2774. // load qh
  2775. vuint32m4_t vqh = __riscv_vmv_v_x_u32m4(qh, vl);
  2776. // ((qh >> (j + 0)) << 4) & 0x10;
  2777. vuint32m4_t xhr_0 = __riscv_vsrl_vv_u32m4(vqh, vt_1, vl);
  2778. vuint32m4_t xhl_0 = __riscv_vsll_vx_u32m4(xhr_0, 4, vl);
  2779. vuint32m4_t xha_0 = __riscv_vand_vx_u32m4(xhl_0, 0x10, vl);
  2780. // ((qh >> (j + 12)) ) & 0x10;
  2781. vuint32m4_t xhr_1 = __riscv_vsrl_vv_u32m4(vqh, vt_2, vl);
  2782. vuint32m4_t xha_1 = __riscv_vand_vx_u32m4(xhr_1, 0x10, vl);
  2783. // narrowing
  2784. vuint16m2_t xhc_0 = __riscv_vncvt_x_x_w_u16m2(xha_0, vl);
  2785. vuint8m1_t xh_0 = __riscv_vncvt_x_x_w_u8m1(xhc_0, vl);
  2786. vuint16m2_t xhc_1 = __riscv_vncvt_x_x_w_u16m2(xha_1, vl);
  2787. vuint8m1_t xh_1 = __riscv_vncvt_x_x_w_u8m1(xhc_1, vl);
  2788. // load
  2789. vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
  2790. vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
  2791. vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
  2792. vuint8m1_t x_at = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
  2793. vuint8m1_t x_lt = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
  2794. vuint8m1_t x_a = __riscv_vor_vv_u8m1(x_at, xh_0, vl);
  2795. vuint8m1_t x_l = __riscv_vor_vv_u8m1(x_lt, xh_1, vl);
  2796. vint8m1_t v0 = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
  2797. vint8m1_t v1 = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
  2798. vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
  2799. vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
  2800. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2801. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
  2802. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
  2803. int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
  2804. sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
  2805. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2806. }
  2807. *s = sumf;
  2808. #else
  2809. // scalar
  2810. float sumf = 0.0;
  2811. for (int i = 0; i < nb; i++) {
  2812. uint32_t qh;
  2813. memcpy(&qh, x[i].qh, sizeof(qh));
  2814. int sumi = 0;
  2815. for (int j = 0; j < qk/2; ++j) {
  2816. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2817. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2818. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2819. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2820. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2821. }
  2822. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2823. }
  2824. *s = sumf;
  2825. #endif
  2826. }
  2827. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2828. const int qk = QK8_0;
  2829. const int nb = n / qk;
  2830. assert(n % qk == 0);
  2831. const block_q8_0 * restrict x = vx;
  2832. const block_q8_0 * restrict y = vy;
  2833. #if defined(__ARM_NEON)
  2834. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2835. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2836. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2837. for (int i = 0; i < nb; i += 2) {
  2838. const block_q8_0 * restrict x0 = &x[i + 0];
  2839. const block_q8_0 * restrict x1 = &x[i + 1];
  2840. const block_q8_0 * restrict y0 = &y[i + 0];
  2841. const block_q8_0 * restrict y1 = &y[i + 1];
  2842. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2843. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2844. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2845. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2846. // load y
  2847. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2848. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2849. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2850. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2851. #if defined(__ARM_FEATURE_DOTPROD)
  2852. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2853. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2854. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2855. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2856. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2857. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2858. #else
  2859. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2860. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2861. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2862. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2863. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2864. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2865. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2866. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2867. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2868. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2869. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2870. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2871. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2872. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2873. #endif
  2874. }
  2875. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2876. #elif defined(__AVX2__) || defined(__AVX__)
  2877. // Initialize accumulator with zeros
  2878. __m256 acc = _mm256_setzero_ps();
  2879. // Main loop
  2880. for (int i = 0; i < nb; ++i) {
  2881. // Compute combined scale for the block
  2882. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2883. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2884. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2885. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2886. // Multiply q with scale and accumulate
  2887. #if defined(__AVX2__)
  2888. acc = _mm256_fmadd_ps( d, q, acc );
  2889. #else
  2890. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2891. #endif
  2892. }
  2893. *s = hsum_float_8(acc);
  2894. #elif defined(__riscv_v_intrinsic)
  2895. float sumf = 0.0;
  2896. size_t vl = __riscv_vsetvl_e8m1(qk);
  2897. for (int i = 0; i < nb; i++) {
  2898. // load elements
  2899. vint8m1_t bx = __riscv_vle8_v_i8m1(x[i].qs, vl);
  2900. vint8m1_t by = __riscv_vle8_v_i8m1(y[i].qs, vl);
  2901. vint16m2_t vw_mul = __riscv_vwmul_vv_i16m2(bx, by, vl);
  2902. vint32m1_t v_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2903. vint32m1_t v_sum = __riscv_vwredsum_vs_i16m2_i32m1(vw_mul, v_zero, vl);
  2904. int sumi = __riscv_vmv_x_s_i32m1_i32(v_sum);
  2905. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2906. }
  2907. *s = sumf;
  2908. #else
  2909. // scalar
  2910. float sumf = 0.0;
  2911. for (int i = 0; i < nb; i++) {
  2912. int sumi = 0;
  2913. for (int j = 0; j < qk; j++) {
  2914. sumi += x[i].qs[j]*y[i].qs[j];
  2915. }
  2916. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2917. }
  2918. *s = sumf;
  2919. #endif
  2920. }
  2921. // compute GGML_VEC_DOT_UNROLL dot products at once
  2922. // xs - x row stride in bytes
  2923. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2924. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2925. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2926. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2927. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2928. }
  2929. #if defined(GGML_SIMD)
  2930. const int np = (n & ~(GGML_F16_STEP - 1));
  2931. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2932. GGML_F16_VEC ax[GGML_F16_ARR];
  2933. GGML_F16_VEC ay[GGML_F16_ARR];
  2934. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2935. for (int j = 0; j < GGML_F16_ARR; j++) {
  2936. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2937. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2938. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2939. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2940. }
  2941. }
  2942. }
  2943. // reduce sum0..sum3 to sum0
  2944. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2945. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2946. }
  2947. // leftovers
  2948. for (int i = np; i < n; ++i) {
  2949. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2950. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2951. }
  2952. }
  2953. #else
  2954. for (int i = 0; i < n; ++i) {
  2955. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2956. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2957. }
  2958. }
  2959. #endif
  2960. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2961. s[i] = sumf[i];
  2962. }
  2963. }
  2964. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2965. #if defined(GGML_SIMD)
  2966. const int np = (n & ~(GGML_F32_STEP - 1));
  2967. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2968. GGML_F32_VEC ax[GGML_F32_ARR];
  2969. GGML_F32_VEC ay[GGML_F32_ARR];
  2970. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2971. for (int j = 0; j < GGML_F32_ARR; j++) {
  2972. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2973. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2974. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2975. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2976. }
  2977. }
  2978. // leftovers
  2979. for (int i = np; i < n; ++i) {
  2980. y[i] += x[i]*v;
  2981. }
  2982. #else
  2983. // scalar
  2984. for (int i = 0; i < n; ++i) {
  2985. y[i] += x[i]*v;
  2986. }
  2987. #endif
  2988. }
  2989. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2990. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2991. #if defined(GGML_USE_ACCELERATE)
  2992. vDSP_vsmul(y, 1, &v, y, 1, n);
  2993. #elif defined(GGML_SIMD)
  2994. const int np = (n & ~(GGML_F32_STEP - 1));
  2995. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2996. GGML_F32_VEC ay[GGML_F32_ARR];
  2997. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2998. for (int j = 0; j < GGML_F32_ARR; j++) {
  2999. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  3000. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  3001. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  3002. }
  3003. }
  3004. // leftovers
  3005. for (int i = np; i < n; ++i) {
  3006. y[i] *= v;
  3007. }
  3008. #else
  3009. // scalar
  3010. for (int i = 0; i < n; ++i) {
  3011. y[i] *= v;
  3012. }
  3013. #endif
  3014. }
  3015. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  3016. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  3017. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  3018. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  3019. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  3020. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  3021. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  3022. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  3023. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  3024. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  3025. static const float GELU_COEF_A = 0.044715f;
  3026. static const float GELU_QUICK_COEF = -1.702f;
  3027. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  3028. inline static float ggml_gelu_f32(float x) {
  3029. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  3030. }
  3031. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3032. const uint16_t * i16 = (const uint16_t *) x;
  3033. for (int i = 0; i < n; ++i) {
  3034. y[i] = table_gelu_f16[i16[i]];
  3035. }
  3036. }
  3037. #ifdef GGML_GELU_FP16
  3038. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  3039. uint16_t t;
  3040. for (int i = 0; i < n; ++i) {
  3041. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3042. memcpy(&t, &fp16, sizeof(uint16_t));
  3043. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  3044. }
  3045. }
  3046. #else
  3047. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  3048. for (int i = 0; i < n; ++i) {
  3049. y[i] = ggml_gelu_f32(x[i]);
  3050. }
  3051. }
  3052. #endif
  3053. inline static float ggml_gelu_quick_f32(float x) {
  3054. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  3055. }
  3056. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3057. // const uint16_t * i16 = (const uint16_t *) x;
  3058. // for (int i = 0; i < n; ++i) {
  3059. // y[i] = table_gelu_quick_f16[i16[i]];
  3060. // }
  3061. //}
  3062. #ifdef GGML_GELU_QUICK_FP16
  3063. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  3064. uint16_t t;
  3065. for (int i = 0; i < n; ++i) {
  3066. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3067. memcpy(&t, &fp16, sizeof(uint16_t));
  3068. y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]);
  3069. }
  3070. }
  3071. #else
  3072. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  3073. for (int i = 0; i < n; ++i) {
  3074. y[i] = ggml_gelu_quick_f32(x[i]);
  3075. }
  3076. }
  3077. #endif
  3078. // Sigmoid Linear Unit (SiLU) function
  3079. inline static float ggml_silu_f32(float x) {
  3080. return x/(1.0f + expf(-x));
  3081. }
  3082. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3083. // const uint16_t * i16 = (const uint16_t *) x;
  3084. // for (int i = 0; i < n; ++i) {
  3085. // y[i] = table_silu_f16[i16[i]];
  3086. // }
  3087. //}
  3088. #ifdef GGML_SILU_FP16
  3089. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3090. uint16_t t;
  3091. for (int i = 0; i < n; ++i) {
  3092. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3093. memcpy(&t, &fp16, sizeof(uint16_t));
  3094. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  3095. }
  3096. }
  3097. #else
  3098. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3099. for (int i = 0; i < n; ++i) {
  3100. y[i] = ggml_silu_f32(x[i]);
  3101. }
  3102. }
  3103. #endif
  3104. inline static float ggml_silu_backward_f32(float x, float dy) {
  3105. const float s = 1.0f/(1.0f + expf(-x));
  3106. return dy*s*(1.0f + x*(1.0f - s));
  3107. }
  3108. #ifdef GGML_SILU_FP16
  3109. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  3110. for (int i = 0; i < n; ++i) {
  3111. // we did not use x[i] to compute forward silu but its f16 equivalent
  3112. // take derivative at f16 of x[i]:
  3113. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3114. float usedx = GGML_FP16_TO_FP32(fp16);
  3115. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  3116. }
  3117. }
  3118. #else
  3119. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  3120. for (int i = 0; i < n; ++i) {
  3121. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  3122. }
  3123. }
  3124. #endif
  3125. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  3126. #ifndef GGML_USE_ACCELERATE
  3127. ggml_float sum = 0.0;
  3128. for (int i = 0; i < n; ++i) {
  3129. sum += (ggml_float)x[i];
  3130. }
  3131. *s = sum;
  3132. #else
  3133. vDSP_sve(x, 1, s, n);
  3134. #endif
  3135. }
  3136. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  3137. ggml_float sum = 0.0;
  3138. for (int i = 0; i < n; ++i) {
  3139. sum += (ggml_float)x[i];
  3140. }
  3141. *s = sum;
  3142. }
  3143. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  3144. float sum = 0.0f;
  3145. for (int i = 0; i < n; ++i) {
  3146. sum += GGML_FP16_TO_FP32(x[i]);
  3147. }
  3148. *s = sum;
  3149. }
  3150. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  3151. #ifndef GGML_USE_ACCELERATE
  3152. float max = -INFINITY;
  3153. for (int i = 0; i < n; ++i) {
  3154. max = MAX(max, x[i]);
  3155. }
  3156. *s = max;
  3157. #else
  3158. vDSP_maxv(x, 1, s, n);
  3159. #endif
  3160. }
  3161. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  3162. ggml_vec_norm_f32(n, s, x);
  3163. *s = 1.f/(*s);
  3164. }
  3165. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  3166. float max = -INFINITY;
  3167. int idx = 0;
  3168. for (int i = 0; i < n; ++i) {
  3169. max = MAX(max, x[i]);
  3170. if (max == x[i]) { idx = i; }
  3171. }
  3172. *s = idx;
  3173. }
  3174. //
  3175. // data types
  3176. //
  3177. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  3178. "NONE",
  3179. "DUP",
  3180. "ADD",
  3181. "ADD1",
  3182. "ACC",
  3183. "SUB",
  3184. "MUL",
  3185. "DIV",
  3186. "SQR",
  3187. "SQRT",
  3188. "LOG",
  3189. "SUM",
  3190. "SUM_ROWS",
  3191. "MEAN",
  3192. "ARGMAX",
  3193. "REPEAT",
  3194. "REPEAT_BACK",
  3195. "CONCAT",
  3196. "SILU_BACK",
  3197. "NORM",
  3198. "RMS_NORM",
  3199. "RMS_NORM_BACK",
  3200. "GROUP_NORM",
  3201. "MUL_MAT",
  3202. "OUT_PROD",
  3203. "SCALE",
  3204. "SET",
  3205. "CPY",
  3206. "CONT",
  3207. "RESHAPE",
  3208. "VIEW",
  3209. "PERMUTE",
  3210. "TRANSPOSE",
  3211. "GET_ROWS",
  3212. "GET_ROWS_BACK",
  3213. "DIAG",
  3214. "DIAG_MASK_INF",
  3215. "DIAG_MASK_ZERO",
  3216. "SOFT_MAX",
  3217. "SOFT_MAX_BACK",
  3218. "ROPE",
  3219. "ROPE_BACK",
  3220. "ALIBI",
  3221. "CLAMP",
  3222. "CONV_1D",
  3223. "CONV_2D",
  3224. "CONV_TRANSPOSE_2D",
  3225. "POOL_1D",
  3226. "POOL_2D",
  3227. "UPSCALE",
  3228. "FLASH_ATTN",
  3229. "FLASH_FF",
  3230. "FLASH_ATTN_BACK",
  3231. "WIN_PART",
  3232. "WIN_UNPART",
  3233. "GET_REL_POS",
  3234. "ADD_REL_POS",
  3235. "UNARY",
  3236. "MAP_UNARY",
  3237. "MAP_BINARY",
  3238. "MAP_CUSTOM1_F32",
  3239. "MAP_CUSTOM2_F32",
  3240. "MAP_CUSTOM3_F32",
  3241. "MAP_CUSTOM1",
  3242. "MAP_CUSTOM2",
  3243. "MAP_CUSTOM3",
  3244. "CROSS_ENTROPY_LOSS",
  3245. "CROSS_ENTROPY_LOSS_BACK",
  3246. };
  3247. static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
  3248. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3249. "none",
  3250. "x",
  3251. "x+y",
  3252. "x+y",
  3253. "view(x,nb,offset)+=y->x",
  3254. "x-y",
  3255. "x*y",
  3256. "x/y",
  3257. "x^2",
  3258. "√x",
  3259. "log(x)",
  3260. "Σx",
  3261. "Σx_k",
  3262. "Σx/n",
  3263. "argmax(x)",
  3264. "repeat(x)",
  3265. "repeat_back(x)",
  3266. "concat(x, y)",
  3267. "silu_back(x)",
  3268. "norm(x)",
  3269. "rms_norm(x)",
  3270. "rms_norm_back(x)",
  3271. "group_norm(x)",
  3272. "X*Y",
  3273. "X*Y",
  3274. "x*v",
  3275. "y-\\>view(x)",
  3276. "x-\\>y",
  3277. "cont(x)",
  3278. "reshape(x)",
  3279. "view(x)",
  3280. "permute(x)",
  3281. "transpose(x)",
  3282. "get_rows(x)",
  3283. "get_rows_back(x)",
  3284. "diag(x)",
  3285. "diag_mask_inf(x)",
  3286. "diag_mask_zero(x)",
  3287. "soft_max(x)",
  3288. "soft_max_back(x)",
  3289. "rope(x)",
  3290. "rope_back(x)",
  3291. "alibi(x)",
  3292. "clamp(x)",
  3293. "conv_1d(x)",
  3294. "conv_2d(x)",
  3295. "conv_transpose_2d(x)",
  3296. "pool_1d(x)",
  3297. "pool_2d(x)",
  3298. "upscale(x)",
  3299. "flash_attn(x)",
  3300. "flash_ff(x)",
  3301. "flash_attn_back(x)",
  3302. "win_part(x)",
  3303. "win_unpart(x)",
  3304. "get_rel_pos(x)",
  3305. "add_rel_pos(x)",
  3306. "unary(x)",
  3307. "f(x)",
  3308. "f(x,y)",
  3309. "custom_f32(x)",
  3310. "custom_f32(x,y)",
  3311. "custom_f32(x,y,z)",
  3312. "custom(x)",
  3313. "custom(x,y)",
  3314. "custom(x,y,z)",
  3315. "cross_entropy_loss(x,y)",
  3316. "cross_entropy_loss_back(x,y)",
  3317. };
  3318. static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
  3319. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  3320. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3321. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3322. // WARN:
  3323. // Mis-confguration can lead to problem that's hard to reason about:
  3324. // * At best it crash or talks nosense.
  3325. // * At worst it talks slightly difference but hard to perceive.
  3326. //
  3327. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  3328. // Take care about compile options (e.g., GGML_USE_xxx).
  3329. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  3330. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  3331. static void ggml_setup_op_has_task_pass(void) {
  3332. { // INIT
  3333. bool * p = GGML_OP_HAS_INIT;
  3334. p[GGML_OP_ACC ] = true;
  3335. p[GGML_OP_MUL_MAT ] = true;
  3336. p[GGML_OP_OUT_PROD ] = true;
  3337. p[GGML_OP_SET ] = true;
  3338. p[GGML_OP_GET_ROWS_BACK ] = true;
  3339. p[GGML_OP_DIAG_MASK_INF ] = true;
  3340. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  3341. p[GGML_OP_CONV_1D ] = true;
  3342. p[GGML_OP_CONV_2D ] = true;
  3343. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  3344. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  3345. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3346. p[GGML_OP_ADD_REL_POS ] = true;
  3347. }
  3348. { // FINALIZE
  3349. bool * p = GGML_OP_HAS_FINALIZE;
  3350. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3351. }
  3352. }
  3353. //
  3354. // ggml context
  3355. //
  3356. struct ggml_context {
  3357. size_t mem_size;
  3358. void * mem_buffer;
  3359. bool mem_buffer_owned;
  3360. bool no_alloc;
  3361. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  3362. int n_objects;
  3363. struct ggml_object * objects_begin;
  3364. struct ggml_object * objects_end;
  3365. struct ggml_scratch scratch;
  3366. struct ggml_scratch scratch_save;
  3367. };
  3368. struct ggml_context_container {
  3369. bool used;
  3370. struct ggml_context context;
  3371. };
  3372. //
  3373. // NUMA support
  3374. //
  3375. #define GGML_NUMA_MAX_NODES 8
  3376. #define GGML_NUMA_MAX_CPUS 512
  3377. struct ggml_numa_node {
  3378. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  3379. uint32_t n_cpus;
  3380. };
  3381. struct ggml_numa_nodes {
  3382. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  3383. uint32_t n_nodes;
  3384. uint32_t total_cpus; // hardware threads on system
  3385. };
  3386. //
  3387. // ggml state
  3388. //
  3389. struct ggml_state {
  3390. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3391. struct ggml_numa_nodes numa;
  3392. };
  3393. // global state
  3394. static struct ggml_state g_state;
  3395. static atomic_int g_state_barrier = 0;
  3396. // barrier via spin lock
  3397. inline static void ggml_critical_section_start(void) {
  3398. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3399. while (processing > 0) {
  3400. // wait for other threads to finish
  3401. atomic_fetch_sub(&g_state_barrier, 1);
  3402. sched_yield(); // TODO: reconsider this
  3403. processing = atomic_fetch_add(&g_state_barrier, 1);
  3404. }
  3405. }
  3406. // TODO: make this somehow automatically executed
  3407. // some sort of "sentry" mechanism
  3408. inline static void ggml_critical_section_end(void) {
  3409. atomic_fetch_sub(&g_state_barrier, 1);
  3410. }
  3411. void ggml_numa_init(void) {
  3412. if (g_state.numa.n_nodes > 0) {
  3413. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  3414. return;
  3415. }
  3416. #ifdef __linux__
  3417. struct stat st;
  3418. char path[256];
  3419. int rv;
  3420. // enumerate nodes
  3421. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  3422. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  3423. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3424. if (stat(path, &st) != 0) { break; }
  3425. ++g_state.numa.n_nodes;
  3426. }
  3427. // enumerate CPUs
  3428. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  3429. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  3430. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3431. if (stat(path, &st) != 0) { break; }
  3432. ++g_state.numa.total_cpus;
  3433. }
  3434. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  3435. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  3436. g_state.numa.n_nodes = 0;
  3437. return;
  3438. }
  3439. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  3440. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  3441. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  3442. node->n_cpus = 0;
  3443. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  3444. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  3445. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3446. if (stat(path, &st) == 0) {
  3447. node->cpus[node->n_cpus++] = c;
  3448. GGML_PRINT_DEBUG(" %u", c);
  3449. }
  3450. }
  3451. GGML_PRINT_DEBUG("\n");
  3452. }
  3453. if (ggml_is_numa()) {
  3454. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  3455. if (fptr != NULL) {
  3456. char buf[42];
  3457. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  3458. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  3459. }
  3460. fclose(fptr);
  3461. }
  3462. }
  3463. #else
  3464. // TODO
  3465. #endif
  3466. }
  3467. bool ggml_is_numa(void) {
  3468. return g_state.numa.n_nodes > 1;
  3469. }
  3470. ////////////////////////////////////////////////////////////////////////////////
  3471. void ggml_print_object(const struct ggml_object * obj) {
  3472. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  3473. obj->type, obj->offs, obj->size, (const void *) obj->next);
  3474. }
  3475. void ggml_print_objects(const struct ggml_context * ctx) {
  3476. struct ggml_object * obj = ctx->objects_begin;
  3477. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3478. while (obj != NULL) {
  3479. ggml_print_object(obj);
  3480. obj = obj->next;
  3481. }
  3482. GGML_PRINT("%s: --- end ---\n", __func__);
  3483. }
  3484. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3485. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3486. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3487. }
  3488. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3489. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3490. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3491. }
  3492. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3493. size_t nbytes;
  3494. size_t blck_size = ggml_blck_size(tensor->type);
  3495. if (blck_size == 1) {
  3496. nbytes = ggml_type_size(tensor->type);
  3497. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  3498. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  3499. }
  3500. }
  3501. else {
  3502. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  3503. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3504. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  3505. }
  3506. }
  3507. return nbytes;
  3508. }
  3509. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  3510. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  3511. }
  3512. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3513. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3514. return (nrows_split*tensor->ne[0]*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type);
  3515. }
  3516. int ggml_blck_size(enum ggml_type type) {
  3517. return type_traits[type].blck_size;
  3518. }
  3519. size_t ggml_type_size(enum ggml_type type) {
  3520. return type_traits[type].type_size;
  3521. }
  3522. float ggml_type_sizef(enum ggml_type type) {
  3523. return ((float)(type_traits[type].type_size))/type_traits[type].blck_size;
  3524. }
  3525. const char * ggml_type_name(enum ggml_type type) {
  3526. return type_traits[type].type_name;
  3527. }
  3528. bool ggml_is_quantized(enum ggml_type type) {
  3529. return type_traits[type].is_quantized;
  3530. }
  3531. const char * ggml_op_name(enum ggml_op op) {
  3532. return GGML_OP_NAME[op];
  3533. }
  3534. const char * ggml_op_symbol(enum ggml_op op) {
  3535. return GGML_OP_SYMBOL[op];
  3536. }
  3537. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3538. return ggml_type_size(tensor->type);
  3539. }
  3540. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3541. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3542. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3543. }
  3544. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3545. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3546. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3547. }
  3548. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3549. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3550. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3551. }
  3552. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3553. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3554. return (t0->ne[0] == t1->ne[0]) &&
  3555. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  3556. (t1->ne[3]%t0->ne[3] == 0);
  3557. }
  3558. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3559. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3560. return
  3561. (t0->ne[1] == t1->ne[1]) &&
  3562. (t0->ne[2] == t1->ne[2]) &&
  3563. (t0->ne[3] == t1->ne[3]);
  3564. }
  3565. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3566. enum ggml_type wtype = GGML_TYPE_COUNT;
  3567. switch (ftype) {
  3568. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3569. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3570. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3571. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3572. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3573. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3574. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3575. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3576. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3577. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3578. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3579. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3580. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3581. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3582. }
  3583. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3584. return wtype;
  3585. }
  3586. size_t ggml_tensor_overhead(void) {
  3587. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  3588. }
  3589. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3590. return tensor->nb[0] > tensor->nb[1];
  3591. }
  3592. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3593. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3594. return
  3595. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3596. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  3597. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3598. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3599. }
  3600. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  3601. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3602. return
  3603. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3604. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3605. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3606. }
  3607. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3608. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3609. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3610. }
  3611. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3612. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3613. return
  3614. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3615. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3616. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3617. }
  3618. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3619. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3620. return
  3621. (t0->ne[0] == t1->ne[0] ) &&
  3622. (t0->ne[1] == t1->ne[1] ) &&
  3623. (t0->ne[2] == t1->ne[2] ) &&
  3624. (t0->ne[3] == t1->ne[3] );
  3625. }
  3626. // check if t1 can be represented as a repeatition of t0
  3627. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3628. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3629. return
  3630. (t1->ne[0]%t0->ne[0] == 0) &&
  3631. (t1->ne[1]%t0->ne[1] == 0) &&
  3632. (t1->ne[2]%t0->ne[2] == 0) &&
  3633. (t1->ne[3]%t0->ne[3] == 0);
  3634. }
  3635. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3636. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3637. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3638. }
  3639. static inline int ggml_up32(int n) {
  3640. return (n + 31) & ~31;
  3641. }
  3642. //static inline int ggml_up64(int n) {
  3643. // return (n + 63) & ~63;
  3644. //}
  3645. static inline int ggml_up(int n, int m) {
  3646. // assert m is a power of 2
  3647. GGML_ASSERT((m & (m - 1)) == 0);
  3648. return (n + m - 1) & ~(m - 1);
  3649. }
  3650. // assert that pointer is aligned to GGML_MEM_ALIGN
  3651. #define ggml_assert_aligned(ptr) \
  3652. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3653. ////////////////////////////////////////////////////////////////////////////////
  3654. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3655. // make this function thread safe
  3656. ggml_critical_section_start();
  3657. static bool is_first_call = true;
  3658. if (is_first_call) {
  3659. // initialize time system (required on Windows)
  3660. ggml_time_init();
  3661. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3662. {
  3663. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3664. ggml_fp16_t ii;
  3665. for (int i = 0; i < (1 << 16); ++i) {
  3666. uint16_t ui = i;
  3667. memcpy(&ii, &ui, sizeof(ii));
  3668. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3669. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3670. table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3671. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3672. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3673. }
  3674. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3675. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3676. }
  3677. // initialize g_state
  3678. {
  3679. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3680. g_state = (struct ggml_state) {
  3681. /*.contexts =*/ { { 0 } },
  3682. /*.numa =*/ {
  3683. .n_nodes = 0,
  3684. .total_cpus = 0,
  3685. },
  3686. };
  3687. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3688. g_state.contexts[i].used = false;
  3689. }
  3690. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3691. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3692. }
  3693. #if defined(GGML_USE_CUBLAS)
  3694. ggml_init_cublas();
  3695. #elif defined(GGML_USE_CLBLAST)
  3696. ggml_cl_init();
  3697. #endif
  3698. ggml_setup_op_has_task_pass();
  3699. is_first_call = false;
  3700. }
  3701. // find non-used context in g_state
  3702. struct ggml_context * ctx = NULL;
  3703. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3704. if (!g_state.contexts[i].used) {
  3705. g_state.contexts[i].used = true;
  3706. ctx = &g_state.contexts[i].context;
  3707. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3708. break;
  3709. }
  3710. }
  3711. if (ctx == NULL) {
  3712. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3713. ggml_critical_section_end();
  3714. return NULL;
  3715. }
  3716. // allow to call ggml_init with 0 size
  3717. if (params.mem_size == 0) {
  3718. params.mem_size = GGML_MEM_ALIGN;
  3719. }
  3720. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  3721. *ctx = (struct ggml_context) {
  3722. /*.mem_size =*/ mem_size,
  3723. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3724. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3725. /*.no_alloc =*/ params.no_alloc,
  3726. /*.no_alloc_save =*/ params.no_alloc,
  3727. /*.n_objects =*/ 0,
  3728. /*.objects_begin =*/ NULL,
  3729. /*.objects_end =*/ NULL,
  3730. /*.scratch =*/ { 0, 0, NULL, },
  3731. /*.scratch_save =*/ { 0, 0, NULL, },
  3732. };
  3733. GGML_ASSERT(ctx->mem_buffer != NULL);
  3734. ggml_assert_aligned(ctx->mem_buffer);
  3735. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3736. ggml_critical_section_end();
  3737. return ctx;
  3738. }
  3739. void ggml_free(struct ggml_context * ctx) {
  3740. // make this function thread safe
  3741. ggml_critical_section_start();
  3742. bool found = false;
  3743. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3744. if (&g_state.contexts[i].context == ctx) {
  3745. g_state.contexts[i].used = false;
  3746. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  3747. __func__, i, ggml_used_mem(ctx));
  3748. if (ctx->mem_buffer_owned) {
  3749. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3750. }
  3751. found = true;
  3752. break;
  3753. }
  3754. }
  3755. if (!found) {
  3756. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3757. }
  3758. ggml_critical_section_end();
  3759. }
  3760. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3761. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3762. }
  3763. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3764. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3765. ctx->scratch = scratch;
  3766. return result;
  3767. }
  3768. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  3769. return ctx->no_alloc;
  3770. }
  3771. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3772. ctx->no_alloc = no_alloc;
  3773. }
  3774. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3775. return ctx->mem_buffer;
  3776. }
  3777. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3778. return ctx->mem_size;
  3779. }
  3780. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3781. size_t max_size = 0;
  3782. struct ggml_object * obj = ctx->objects_begin;
  3783. while (obj != NULL) {
  3784. if (obj->type == GGML_OBJECT_TENSOR) {
  3785. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  3786. const size_t size = ggml_nbytes(tensor);
  3787. if (max_size < size) {
  3788. max_size = size;
  3789. }
  3790. }
  3791. obj = obj->next;
  3792. }
  3793. return max_size;
  3794. }
  3795. // IMPORTANT:
  3796. // when creating "opt" tensors, always save and load the scratch buffer
  3797. // this is an error prone process, but it is necessary to support inplace
  3798. // operators when using scratch buffers
  3799. // TODO: implement a better way
  3800. static void ggml_scratch_save(struct ggml_context * ctx) {
  3801. // this is needed to allow opt tensors to store their data
  3802. // TODO: again, need to find a better way
  3803. ctx->no_alloc_save = ctx->no_alloc;
  3804. ctx->no_alloc = false;
  3805. ctx->scratch_save = ctx->scratch;
  3806. ctx->scratch.data = NULL;
  3807. }
  3808. static void ggml_scratch_load(struct ggml_context * ctx) {
  3809. ctx->no_alloc = ctx->no_alloc_save;
  3810. ctx->scratch = ctx->scratch_save;
  3811. }
  3812. ////////////////////////////////////////////////////////////////////////////////
  3813. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3814. // always insert objects at the end of the context's memory pool
  3815. struct ggml_object * obj_cur = ctx->objects_end;
  3816. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3817. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3818. const size_t cur_end = cur_offs + cur_size;
  3819. // align to GGML_MEM_ALIGN
  3820. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3821. char * const mem_buffer = ctx->mem_buffer;
  3822. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3823. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3824. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3825. __func__, cur_end + size_needed, ctx->mem_size);
  3826. assert(false);
  3827. return NULL;
  3828. }
  3829. *obj_new = (struct ggml_object) {
  3830. .offs = cur_end + GGML_OBJECT_SIZE,
  3831. .size = size_needed,
  3832. .next = NULL,
  3833. .type = type,
  3834. };
  3835. ggml_assert_aligned(mem_buffer + obj_new->offs);
  3836. if (obj_cur != NULL) {
  3837. obj_cur->next = obj_new;
  3838. } else {
  3839. // this is the first object in this context
  3840. ctx->objects_begin = obj_new;
  3841. }
  3842. ctx->objects_end = obj_new;
  3843. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3844. return obj_new;
  3845. }
  3846. static struct ggml_tensor * ggml_new_tensor_impl(
  3847. struct ggml_context * ctx,
  3848. enum ggml_type type,
  3849. int n_dims,
  3850. const int64_t * ne,
  3851. struct ggml_tensor * view_src,
  3852. size_t view_offs) {
  3853. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3854. // find the base tensor and absolute offset
  3855. if (view_src != NULL && view_src->view_src != NULL) {
  3856. view_offs += view_src->view_offs;
  3857. view_src = view_src->view_src;
  3858. }
  3859. size_t data_size = ggml_type_size(type)*(ne[0]/ggml_blck_size(type));
  3860. for (int i = 1; i < n_dims; i++) {
  3861. data_size *= ne[i];
  3862. }
  3863. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  3864. void * data = view_src != NULL ? view_src->data : NULL;
  3865. if (data != NULL) {
  3866. data = (char *) data + view_offs;
  3867. }
  3868. size_t obj_alloc_size = 0;
  3869. if (view_src == NULL && !ctx->no_alloc) {
  3870. if (ctx->scratch.data != NULL) {
  3871. // allocate tensor data in the scratch buffer
  3872. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3873. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3874. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3875. assert(false);
  3876. return NULL;
  3877. }
  3878. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3879. ctx->scratch.offs += data_size;
  3880. } else {
  3881. // allocate tensor data in the context's memory pool
  3882. obj_alloc_size = data_size;
  3883. }
  3884. }
  3885. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  3886. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3887. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3888. *result = (struct ggml_tensor) {
  3889. /*.type =*/ type,
  3890. /*.backend =*/ GGML_BACKEND_CPU,
  3891. /*.n_dims =*/ n_dims,
  3892. /*.ne =*/ { 1, 1, 1, 1 },
  3893. /*.nb =*/ { 0, 0, 0, 0 },
  3894. /*.op =*/ GGML_OP_NONE,
  3895. /*.op_params =*/ { 0 },
  3896. /*.is_param =*/ false,
  3897. /*.grad =*/ NULL,
  3898. /*.src =*/ { NULL },
  3899. /*.perf_runs =*/ 0,
  3900. /*.perf_cycles =*/ 0,
  3901. /*.perf_time_us =*/ 0,
  3902. /*.view_src =*/ view_src,
  3903. /*.view_offs =*/ view_offs,
  3904. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  3905. /*.name =*/ { 0 },
  3906. /*.extra =*/ NULL,
  3907. /*.padding =*/ { 0 },
  3908. };
  3909. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3910. //ggml_assert_aligned(result->data);
  3911. for (int i = 0; i < n_dims; i++) {
  3912. result->ne[i] = ne[i];
  3913. }
  3914. result->nb[0] = ggml_type_size(type);
  3915. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  3916. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3917. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3918. }
  3919. ctx->n_objects++;
  3920. return result;
  3921. }
  3922. struct ggml_tensor * ggml_new_tensor(
  3923. struct ggml_context * ctx,
  3924. enum ggml_type type,
  3925. int n_dims,
  3926. const int64_t * ne) {
  3927. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  3928. }
  3929. struct ggml_tensor * ggml_new_tensor_1d(
  3930. struct ggml_context * ctx,
  3931. enum ggml_type type,
  3932. int64_t ne0) {
  3933. return ggml_new_tensor(ctx, type, 1, &ne0);
  3934. }
  3935. struct ggml_tensor * ggml_new_tensor_2d(
  3936. struct ggml_context * ctx,
  3937. enum ggml_type type,
  3938. int64_t ne0,
  3939. int64_t ne1) {
  3940. const int64_t ne[2] = { ne0, ne1 };
  3941. return ggml_new_tensor(ctx, type, 2, ne);
  3942. }
  3943. struct ggml_tensor * ggml_new_tensor_3d(
  3944. struct ggml_context * ctx,
  3945. enum ggml_type type,
  3946. int64_t ne0,
  3947. int64_t ne1,
  3948. int64_t ne2) {
  3949. const int64_t ne[3] = { ne0, ne1, ne2 };
  3950. return ggml_new_tensor(ctx, type, 3, ne);
  3951. }
  3952. struct ggml_tensor * ggml_new_tensor_4d(
  3953. struct ggml_context * ctx,
  3954. enum ggml_type type,
  3955. int64_t ne0,
  3956. int64_t ne1,
  3957. int64_t ne2,
  3958. int64_t ne3) {
  3959. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3960. return ggml_new_tensor(ctx, type, 4, ne);
  3961. }
  3962. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3963. ggml_scratch_save(ctx);
  3964. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3965. ggml_scratch_load(ctx);
  3966. ggml_set_i32(result, value);
  3967. return result;
  3968. }
  3969. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3970. ggml_scratch_save(ctx);
  3971. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3972. ggml_scratch_load(ctx);
  3973. ggml_set_f32(result, value);
  3974. return result;
  3975. }
  3976. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3977. return ggml_new_tensor(ctx, src->type, src->n_dims, src->ne);
  3978. }
  3979. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3980. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  3981. assert(params_size <= GGML_MAX_OP_PARAMS);
  3982. memcpy(tensor->op_params, params, params_size);
  3983. }
  3984. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3985. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3986. return ((const int32_t *)(tensor->op_params))[i];
  3987. }
  3988. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3989. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3990. ((int32_t *)(tensor->op_params))[i] = value;
  3991. }
  3992. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3993. memset(tensor->data, 0, ggml_nbytes(tensor));
  3994. return tensor;
  3995. }
  3996. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3997. const int n = ggml_nrows(tensor);
  3998. const int nc = tensor->ne[0];
  3999. const size_t n1 = tensor->nb[1];
  4000. char * const data = tensor->data;
  4001. switch (tensor->type) {
  4002. case GGML_TYPE_I8:
  4003. {
  4004. assert(tensor->nb[0] == sizeof(int8_t));
  4005. for (int i = 0; i < n; i++) {
  4006. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  4007. }
  4008. } break;
  4009. case GGML_TYPE_I16:
  4010. {
  4011. assert(tensor->nb[0] == sizeof(int16_t));
  4012. for (int i = 0; i < n; i++) {
  4013. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  4014. }
  4015. } break;
  4016. case GGML_TYPE_I32:
  4017. {
  4018. assert(tensor->nb[0] == sizeof(int32_t));
  4019. for (int i = 0; i < n; i++) {
  4020. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  4021. }
  4022. } break;
  4023. case GGML_TYPE_F16:
  4024. {
  4025. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  4026. for (int i = 0; i < n; i++) {
  4027. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  4028. }
  4029. } break;
  4030. case GGML_TYPE_F32:
  4031. {
  4032. assert(tensor->nb[0] == sizeof(float));
  4033. for (int i = 0; i < n; i++) {
  4034. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  4035. }
  4036. } break;
  4037. default:
  4038. {
  4039. GGML_ASSERT(false);
  4040. } break;
  4041. }
  4042. return tensor;
  4043. }
  4044. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  4045. const int n = ggml_nrows(tensor);
  4046. const int nc = tensor->ne[0];
  4047. const size_t n1 = tensor->nb[1];
  4048. char * const data = tensor->data;
  4049. switch (tensor->type) {
  4050. case GGML_TYPE_I8:
  4051. {
  4052. assert(tensor->nb[0] == sizeof(int8_t));
  4053. for (int i = 0; i < n; i++) {
  4054. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  4055. }
  4056. } break;
  4057. case GGML_TYPE_I16:
  4058. {
  4059. assert(tensor->nb[0] == sizeof(int16_t));
  4060. for (int i = 0; i < n; i++) {
  4061. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  4062. }
  4063. } break;
  4064. case GGML_TYPE_I32:
  4065. {
  4066. assert(tensor->nb[0] == sizeof(int32_t));
  4067. for (int i = 0; i < n; i++) {
  4068. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  4069. }
  4070. } break;
  4071. case GGML_TYPE_F16:
  4072. {
  4073. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  4074. for (int i = 0; i < n; i++) {
  4075. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  4076. }
  4077. } break;
  4078. case GGML_TYPE_F32:
  4079. {
  4080. assert(tensor->nb[0] == sizeof(float));
  4081. for (int i = 0; i < n; i++) {
  4082. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  4083. }
  4084. } break;
  4085. default:
  4086. {
  4087. GGML_ASSERT(false);
  4088. } break;
  4089. }
  4090. return tensor;
  4091. }
  4092. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  4093. switch (tensor->type) {
  4094. case GGML_TYPE_I8:
  4095. {
  4096. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4097. return ((int8_t *)(tensor->data))[i];
  4098. } break;
  4099. case GGML_TYPE_I16:
  4100. {
  4101. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4102. return ((int16_t *)(tensor->data))[i];
  4103. } break;
  4104. case GGML_TYPE_I32:
  4105. {
  4106. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4107. return ((int32_t *)(tensor->data))[i];
  4108. } break;
  4109. case GGML_TYPE_F16:
  4110. {
  4111. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4112. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  4113. } break;
  4114. case GGML_TYPE_F32:
  4115. {
  4116. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4117. return ((float *)(tensor->data))[i];
  4118. } break;
  4119. default:
  4120. {
  4121. GGML_ASSERT(false);
  4122. } break;
  4123. }
  4124. return 0.0f;
  4125. }
  4126. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  4127. switch (tensor->type) {
  4128. case GGML_TYPE_I8:
  4129. {
  4130. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4131. ((int8_t *)(tensor->data))[i] = value;
  4132. } break;
  4133. case GGML_TYPE_I16:
  4134. {
  4135. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4136. ((int16_t *)(tensor->data))[i] = value;
  4137. } break;
  4138. case GGML_TYPE_I32:
  4139. {
  4140. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4141. ((int32_t *)(tensor->data))[i] = value;
  4142. } break;
  4143. case GGML_TYPE_F16:
  4144. {
  4145. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4146. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4147. } break;
  4148. case GGML_TYPE_F32:
  4149. {
  4150. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4151. ((float *)(tensor->data))[i] = value;
  4152. } break;
  4153. default:
  4154. {
  4155. GGML_ASSERT(false);
  4156. } break;
  4157. }
  4158. }
  4159. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  4160. switch (tensor->type) {
  4161. case GGML_TYPE_I8:
  4162. {
  4163. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4164. return ((int8_t *)(tensor->data))[i];
  4165. } break;
  4166. case GGML_TYPE_I16:
  4167. {
  4168. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4169. return ((int16_t *)(tensor->data))[i];
  4170. } break;
  4171. case GGML_TYPE_I32:
  4172. {
  4173. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4174. return ((int32_t *)(tensor->data))[i];
  4175. } break;
  4176. case GGML_TYPE_F16:
  4177. {
  4178. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4179. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  4180. } break;
  4181. case GGML_TYPE_F32:
  4182. {
  4183. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4184. return ((float *)(tensor->data))[i];
  4185. } break;
  4186. default:
  4187. {
  4188. GGML_ASSERT(false);
  4189. } break;
  4190. }
  4191. return 0.0f;
  4192. }
  4193. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  4194. switch (tensor->type) {
  4195. case GGML_TYPE_I8:
  4196. {
  4197. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4198. ((int8_t *)(tensor->data))[i] = value;
  4199. } break;
  4200. case GGML_TYPE_I16:
  4201. {
  4202. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4203. ((int16_t *)(tensor->data))[i] = value;
  4204. } break;
  4205. case GGML_TYPE_I32:
  4206. {
  4207. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4208. ((int32_t *)(tensor->data))[i] = value;
  4209. } break;
  4210. case GGML_TYPE_F16:
  4211. {
  4212. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4213. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4214. } break;
  4215. case GGML_TYPE_F32:
  4216. {
  4217. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4218. ((float *)(tensor->data))[i] = value;
  4219. } break;
  4220. default:
  4221. {
  4222. GGML_ASSERT(false);
  4223. } break;
  4224. }
  4225. }
  4226. void * ggml_get_data(const struct ggml_tensor * tensor) {
  4227. return tensor->data;
  4228. }
  4229. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  4230. assert(tensor->type == GGML_TYPE_F32);
  4231. return (float *)(tensor->data);
  4232. }
  4233. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  4234. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  4235. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  4236. }
  4237. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  4238. return tensor->name;
  4239. }
  4240. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  4241. strncpy(tensor->name, name, sizeof(tensor->name));
  4242. tensor->name[sizeof(tensor->name) - 1] = '\0';
  4243. return tensor;
  4244. }
  4245. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  4246. va_list args;
  4247. va_start(args, fmt);
  4248. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  4249. va_end(args);
  4250. return tensor;
  4251. }
  4252. struct ggml_tensor * ggml_view_tensor(
  4253. struct ggml_context * ctx,
  4254. struct ggml_tensor * src) {
  4255. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src, 0);
  4256. ggml_format_name(result, "%s (view)", src->name);
  4257. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  4258. result->nb[i] = src->nb[i];
  4259. }
  4260. return result;
  4261. }
  4262. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  4263. struct ggml_object * obj = ctx->objects_begin;
  4264. char * const mem_buffer = ctx->mem_buffer;
  4265. while (obj != NULL) {
  4266. if (obj->type == GGML_OBJECT_TENSOR) {
  4267. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  4268. if (strcmp(cur->name, name) == 0) {
  4269. return cur;
  4270. }
  4271. }
  4272. obj = obj->next;
  4273. }
  4274. return NULL;
  4275. }
  4276. ////////////////////////////////////////////////////////////////////////////////
  4277. // ggml_dup
  4278. static struct ggml_tensor * ggml_dup_impl(
  4279. struct ggml_context * ctx,
  4280. struct ggml_tensor * a,
  4281. bool inplace) {
  4282. bool is_node = false;
  4283. if (!inplace && (a->grad)) {
  4284. is_node = true;
  4285. }
  4286. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4287. result->op = GGML_OP_DUP;
  4288. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4289. result->src[0] = a;
  4290. return result;
  4291. }
  4292. struct ggml_tensor * ggml_dup(
  4293. struct ggml_context * ctx,
  4294. struct ggml_tensor * a) {
  4295. return ggml_dup_impl(ctx, a, false);
  4296. }
  4297. struct ggml_tensor * ggml_dup_inplace(
  4298. struct ggml_context * ctx,
  4299. struct ggml_tensor * a) {
  4300. return ggml_dup_impl(ctx, a, true);
  4301. }
  4302. // ggml_add
  4303. static struct ggml_tensor * ggml_add_impl(
  4304. struct ggml_context * ctx,
  4305. struct ggml_tensor * a,
  4306. struct ggml_tensor * b,
  4307. bool inplace) {
  4308. // TODO: support less-strict constraint
  4309. // GGML_ASSERT(ggml_can_repeat(b, a));
  4310. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4311. bool is_node = false;
  4312. if (!inplace && (a->grad || b->grad)) {
  4313. // TODO: support backward pass for broadcasting
  4314. GGML_ASSERT(ggml_are_same_shape(a, b));
  4315. is_node = true;
  4316. }
  4317. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4318. result->op = GGML_OP_ADD;
  4319. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4320. result->src[0] = a;
  4321. result->src[1] = b;
  4322. return result;
  4323. }
  4324. struct ggml_tensor * ggml_add(
  4325. struct ggml_context * ctx,
  4326. struct ggml_tensor * a,
  4327. struct ggml_tensor * b) {
  4328. return ggml_add_impl(ctx, a, b, false);
  4329. }
  4330. struct ggml_tensor * ggml_add_inplace(
  4331. struct ggml_context * ctx,
  4332. struct ggml_tensor * a,
  4333. struct ggml_tensor * b) {
  4334. return ggml_add_impl(ctx, a, b, true);
  4335. }
  4336. // ggml_add1
  4337. static struct ggml_tensor * ggml_add1_impl(
  4338. struct ggml_context * ctx,
  4339. struct ggml_tensor * a,
  4340. struct ggml_tensor * b,
  4341. bool inplace) {
  4342. GGML_ASSERT(ggml_is_scalar(b));
  4343. GGML_ASSERT(ggml_is_padded_1d(a));
  4344. bool is_node = false;
  4345. if (a->grad || b->grad) {
  4346. is_node = true;
  4347. }
  4348. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4349. result->op = GGML_OP_ADD1;
  4350. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4351. result->src[0] = a;
  4352. result->src[1] = b;
  4353. return result;
  4354. }
  4355. struct ggml_tensor * ggml_add1(
  4356. struct ggml_context * ctx,
  4357. struct ggml_tensor * a,
  4358. struct ggml_tensor * b) {
  4359. return ggml_add1_impl(ctx, a, b, false);
  4360. }
  4361. struct ggml_tensor * ggml_add1_inplace(
  4362. struct ggml_context * ctx,
  4363. struct ggml_tensor * a,
  4364. struct ggml_tensor * b) {
  4365. return ggml_add1_impl(ctx, a, b, true);
  4366. }
  4367. // ggml_acc
  4368. static struct ggml_tensor * ggml_acc_impl(
  4369. struct ggml_context * ctx,
  4370. struct ggml_tensor * a,
  4371. struct ggml_tensor * b,
  4372. size_t nb1,
  4373. size_t nb2,
  4374. size_t nb3,
  4375. size_t offset,
  4376. bool inplace) {
  4377. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  4378. GGML_ASSERT(ggml_is_contiguous(a));
  4379. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4380. GGML_ASSERT(b->type == GGML_TYPE_F32);
  4381. bool is_node = false;
  4382. if (!inplace && (a->grad || b->grad)) {
  4383. is_node = true;
  4384. }
  4385. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4386. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4387. ggml_set_op_params(result, params, sizeof(params));
  4388. result->op = GGML_OP_ACC;
  4389. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4390. result->src[0] = a;
  4391. result->src[1] = b;
  4392. return result;
  4393. }
  4394. struct ggml_tensor * ggml_acc(
  4395. struct ggml_context * ctx,
  4396. struct ggml_tensor * a,
  4397. struct ggml_tensor * b,
  4398. size_t nb1,
  4399. size_t nb2,
  4400. size_t nb3,
  4401. size_t offset) {
  4402. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4403. }
  4404. struct ggml_tensor * ggml_acc_inplace(
  4405. struct ggml_context * ctx,
  4406. struct ggml_tensor * a,
  4407. struct ggml_tensor * b,
  4408. size_t nb1,
  4409. size_t nb2,
  4410. size_t nb3,
  4411. size_t offset) {
  4412. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4413. }
  4414. // ggml_sub
  4415. static struct ggml_tensor * ggml_sub_impl(
  4416. struct ggml_context * ctx,
  4417. struct ggml_tensor * a,
  4418. struct ggml_tensor * b,
  4419. bool inplace) {
  4420. GGML_ASSERT(ggml_are_same_shape(a, b));
  4421. bool is_node = false;
  4422. if (!inplace && (a->grad || b->grad)) {
  4423. is_node = true;
  4424. }
  4425. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4426. result->op = GGML_OP_SUB;
  4427. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4428. result->src[0] = a;
  4429. result->src[1] = b;
  4430. return result;
  4431. }
  4432. struct ggml_tensor * ggml_sub(
  4433. struct ggml_context * ctx,
  4434. struct ggml_tensor * a,
  4435. struct ggml_tensor * b) {
  4436. return ggml_sub_impl(ctx, a, b, false);
  4437. }
  4438. struct ggml_tensor * ggml_sub_inplace(
  4439. struct ggml_context * ctx,
  4440. struct ggml_tensor * a,
  4441. struct ggml_tensor * b) {
  4442. return ggml_sub_impl(ctx, a, b, true);
  4443. }
  4444. // ggml_mul
  4445. static struct ggml_tensor * ggml_mul_impl(
  4446. struct ggml_context * ctx,
  4447. struct ggml_tensor * a,
  4448. struct ggml_tensor * b,
  4449. bool inplace) {
  4450. // TODO: support less-strict constraint
  4451. // GGML_ASSERT(ggml_can_repeat(b, a));
  4452. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4453. bool is_node = false;
  4454. if (!inplace && (a->grad || b->grad)) {
  4455. // TODO: support backward pass for broadcasting
  4456. GGML_ASSERT(ggml_are_same_shape(a, b));
  4457. is_node = true;
  4458. }
  4459. if (inplace) {
  4460. GGML_ASSERT(!is_node);
  4461. }
  4462. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4463. result->op = GGML_OP_MUL;
  4464. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4465. result->src[0] = a;
  4466. result->src[1] = b;
  4467. return result;
  4468. }
  4469. struct ggml_tensor * ggml_mul(
  4470. struct ggml_context * ctx,
  4471. struct ggml_tensor * a,
  4472. struct ggml_tensor * b) {
  4473. return ggml_mul_impl(ctx, a, b, false);
  4474. }
  4475. struct ggml_tensor * ggml_mul_inplace(
  4476. struct ggml_context * ctx,
  4477. struct ggml_tensor * a,
  4478. struct ggml_tensor * b) {
  4479. return ggml_mul_impl(ctx, a, b, true);
  4480. }
  4481. // ggml_div
  4482. static struct ggml_tensor * ggml_div_impl(
  4483. struct ggml_context * ctx,
  4484. struct ggml_tensor * a,
  4485. struct ggml_tensor * b,
  4486. bool inplace) {
  4487. GGML_ASSERT(ggml_are_same_shape(a, b));
  4488. bool is_node = false;
  4489. if (!inplace && (a->grad || b->grad)) {
  4490. is_node = true;
  4491. }
  4492. if (inplace) {
  4493. GGML_ASSERT(!is_node);
  4494. }
  4495. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4496. result->op = GGML_OP_DIV;
  4497. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4498. result->src[0] = a;
  4499. result->src[1] = b;
  4500. return result;
  4501. }
  4502. struct ggml_tensor * ggml_div(
  4503. struct ggml_context * ctx,
  4504. struct ggml_tensor * a,
  4505. struct ggml_tensor * b) {
  4506. return ggml_div_impl(ctx, a, b, false);
  4507. }
  4508. struct ggml_tensor * ggml_div_inplace(
  4509. struct ggml_context * ctx,
  4510. struct ggml_tensor * a,
  4511. struct ggml_tensor * b) {
  4512. return ggml_div_impl(ctx, a, b, true);
  4513. }
  4514. // ggml_sqr
  4515. static struct ggml_tensor * ggml_sqr_impl(
  4516. struct ggml_context * ctx,
  4517. struct ggml_tensor * a,
  4518. bool inplace) {
  4519. bool is_node = false;
  4520. if (!inplace && (a->grad)) {
  4521. is_node = true;
  4522. }
  4523. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4524. result->op = GGML_OP_SQR;
  4525. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4526. result->src[0] = a;
  4527. return result;
  4528. }
  4529. struct ggml_tensor * ggml_sqr(
  4530. struct ggml_context * ctx,
  4531. struct ggml_tensor * a) {
  4532. return ggml_sqr_impl(ctx, a, false);
  4533. }
  4534. struct ggml_tensor * ggml_sqr_inplace(
  4535. struct ggml_context * ctx,
  4536. struct ggml_tensor * a) {
  4537. return ggml_sqr_impl(ctx, a, true);
  4538. }
  4539. // ggml_sqrt
  4540. static struct ggml_tensor * ggml_sqrt_impl(
  4541. struct ggml_context * ctx,
  4542. struct ggml_tensor * a,
  4543. bool inplace) {
  4544. bool is_node = false;
  4545. if (!inplace && (a->grad)) {
  4546. is_node = true;
  4547. }
  4548. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4549. result->op = GGML_OP_SQRT;
  4550. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4551. result->src[0] = a;
  4552. return result;
  4553. }
  4554. struct ggml_tensor * ggml_sqrt(
  4555. struct ggml_context * ctx,
  4556. struct ggml_tensor * a) {
  4557. return ggml_sqrt_impl(ctx, a, false);
  4558. }
  4559. struct ggml_tensor * ggml_sqrt_inplace(
  4560. struct ggml_context * ctx,
  4561. struct ggml_tensor * a) {
  4562. return ggml_sqrt_impl(ctx, a, true);
  4563. }
  4564. // ggml_log
  4565. static struct ggml_tensor * ggml_log_impl(
  4566. struct ggml_context * ctx,
  4567. struct ggml_tensor * a,
  4568. bool inplace) {
  4569. bool is_node = false;
  4570. if (!inplace && (a->grad)) {
  4571. is_node = true;
  4572. }
  4573. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4574. result->op = GGML_OP_LOG;
  4575. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4576. result->src[0] = a;
  4577. return result;
  4578. }
  4579. struct ggml_tensor * ggml_log(
  4580. struct ggml_context * ctx,
  4581. struct ggml_tensor * a) {
  4582. return ggml_log_impl(ctx, a, false);
  4583. }
  4584. struct ggml_tensor * ggml_log_inplace(
  4585. struct ggml_context * ctx,
  4586. struct ggml_tensor * a) {
  4587. return ggml_log_impl(ctx, a, true);
  4588. }
  4589. // ggml_sum
  4590. struct ggml_tensor * ggml_sum(
  4591. struct ggml_context * ctx,
  4592. struct ggml_tensor * a) {
  4593. bool is_node = false;
  4594. if (a->grad) {
  4595. is_node = true;
  4596. }
  4597. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4598. result->op = GGML_OP_SUM;
  4599. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4600. result->src[0] = a;
  4601. return result;
  4602. }
  4603. // ggml_sum_rows
  4604. struct ggml_tensor * ggml_sum_rows(
  4605. struct ggml_context * ctx,
  4606. struct ggml_tensor * a) {
  4607. bool is_node = false;
  4608. if (a->grad) {
  4609. is_node = true;
  4610. }
  4611. int64_t ne[4] = {1,1,1,1};
  4612. for (int i=1; i<a->n_dims; ++i) {
  4613. ne[i] = a->ne[i];
  4614. }
  4615. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4616. result->op = GGML_OP_SUM_ROWS;
  4617. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4618. result->src[0] = a;
  4619. return result;
  4620. }
  4621. // ggml_mean
  4622. struct ggml_tensor * ggml_mean(
  4623. struct ggml_context * ctx,
  4624. struct ggml_tensor * a) {
  4625. bool is_node = false;
  4626. if (a->grad) {
  4627. GGML_ASSERT(false); // TODO: implement
  4628. is_node = true;
  4629. }
  4630. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4631. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4632. result->op = GGML_OP_MEAN;
  4633. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4634. result->src[0] = a;
  4635. return result;
  4636. }
  4637. // ggml_argmax
  4638. struct ggml_tensor * ggml_argmax(
  4639. struct ggml_context * ctx,
  4640. struct ggml_tensor * a) {
  4641. GGML_ASSERT(ggml_is_matrix(a));
  4642. bool is_node = false;
  4643. if (a->grad) {
  4644. GGML_ASSERT(false);
  4645. is_node = true;
  4646. }
  4647. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  4648. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  4649. result->op = GGML_OP_ARGMAX;
  4650. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4651. result->src[0] = a;
  4652. return result;
  4653. }
  4654. // ggml_repeat
  4655. struct ggml_tensor * ggml_repeat(
  4656. struct ggml_context * ctx,
  4657. struct ggml_tensor * a,
  4658. struct ggml_tensor * b) {
  4659. GGML_ASSERT(ggml_can_repeat(a, b));
  4660. bool is_node = false;
  4661. if (a->grad) {
  4662. is_node = true;
  4663. }
  4664. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4665. result->op = GGML_OP_REPEAT;
  4666. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4667. result->src[0] = a;
  4668. result->src[1] = b;
  4669. return result;
  4670. }
  4671. // ggml_repeat_back
  4672. struct ggml_tensor * ggml_repeat_back(
  4673. struct ggml_context * ctx,
  4674. struct ggml_tensor * a,
  4675. struct ggml_tensor * b) {
  4676. GGML_ASSERT(ggml_can_repeat(b, a));
  4677. bool is_node = false;
  4678. if (a->grad) {
  4679. is_node = true;
  4680. }
  4681. if (ggml_are_same_shape(a, b) && !is_node) {
  4682. return a;
  4683. }
  4684. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4685. result->op = GGML_OP_REPEAT_BACK;
  4686. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4687. result->src[0] = a;
  4688. result->src[1] = b;
  4689. return result;
  4690. }
  4691. // ggml_concat
  4692. struct ggml_tensor * ggml_concat(
  4693. struct ggml_context* ctx,
  4694. struct ggml_tensor* a,
  4695. struct ggml_tensor* b) {
  4696. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  4697. bool is_node = false;
  4698. if (a->grad || b->grad) {
  4699. is_node = true;
  4700. }
  4701. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  4702. result->op = GGML_OP_CONCAT;
  4703. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4704. result->src[0] = a;
  4705. result->src[1] = b;
  4706. return result;
  4707. }
  4708. // ggml_abs
  4709. struct ggml_tensor * ggml_abs(
  4710. struct ggml_context * ctx,
  4711. struct ggml_tensor * a) {
  4712. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4713. }
  4714. struct ggml_tensor * ggml_abs_inplace(
  4715. struct ggml_context * ctx,
  4716. struct ggml_tensor * a) {
  4717. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4718. }
  4719. // ggml_sgn
  4720. struct ggml_tensor * ggml_sgn(
  4721. struct ggml_context * ctx,
  4722. struct ggml_tensor * a) {
  4723. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4724. }
  4725. struct ggml_tensor * ggml_sgn_inplace(
  4726. struct ggml_context * ctx,
  4727. struct ggml_tensor * a) {
  4728. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4729. }
  4730. // ggml_neg
  4731. struct ggml_tensor * ggml_neg(
  4732. struct ggml_context * ctx,
  4733. struct ggml_tensor * a) {
  4734. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4735. }
  4736. struct ggml_tensor * ggml_neg_inplace(
  4737. struct ggml_context * ctx,
  4738. struct ggml_tensor * a) {
  4739. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4740. }
  4741. // ggml_step
  4742. struct ggml_tensor * ggml_step(
  4743. struct ggml_context * ctx,
  4744. struct ggml_tensor * a) {
  4745. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4746. }
  4747. struct ggml_tensor * ggml_step_inplace(
  4748. struct ggml_context * ctx,
  4749. struct ggml_tensor * a) {
  4750. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4751. }
  4752. // ggml_tanh
  4753. struct ggml_tensor * ggml_tanh(
  4754. struct ggml_context * ctx,
  4755. struct ggml_tensor * a) {
  4756. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4757. }
  4758. struct ggml_tensor * ggml_tanh_inplace(
  4759. struct ggml_context * ctx,
  4760. struct ggml_tensor * a) {
  4761. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4762. }
  4763. // ggml_elu
  4764. struct ggml_tensor * ggml_elu(
  4765. struct ggml_context * ctx,
  4766. struct ggml_tensor * a) {
  4767. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4768. }
  4769. struct ggml_tensor * ggml_elu_inplace(
  4770. struct ggml_context * ctx,
  4771. struct ggml_tensor * a) {
  4772. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4773. }
  4774. // ggml_relu
  4775. struct ggml_tensor * ggml_relu(
  4776. struct ggml_context * ctx,
  4777. struct ggml_tensor * a) {
  4778. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4779. }
  4780. struct ggml_tensor * ggml_relu_inplace(
  4781. struct ggml_context * ctx,
  4782. struct ggml_tensor * a) {
  4783. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4784. }
  4785. // ggml_gelu
  4786. struct ggml_tensor * ggml_gelu(
  4787. struct ggml_context * ctx,
  4788. struct ggml_tensor * a) {
  4789. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4790. }
  4791. struct ggml_tensor * ggml_gelu_inplace(
  4792. struct ggml_context * ctx,
  4793. struct ggml_tensor * a) {
  4794. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4795. }
  4796. // ggml_gelu_quick
  4797. struct ggml_tensor * ggml_gelu_quick(
  4798. struct ggml_context * ctx,
  4799. struct ggml_tensor * a) {
  4800. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4801. }
  4802. struct ggml_tensor * ggml_gelu_quick_inplace(
  4803. struct ggml_context * ctx,
  4804. struct ggml_tensor * a) {
  4805. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4806. }
  4807. // ggml_silu
  4808. struct ggml_tensor * ggml_silu(
  4809. struct ggml_context * ctx,
  4810. struct ggml_tensor * a) {
  4811. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4812. }
  4813. struct ggml_tensor * ggml_silu_inplace(
  4814. struct ggml_context * ctx,
  4815. struct ggml_tensor * a) {
  4816. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4817. }
  4818. // ggml_silu_back
  4819. struct ggml_tensor * ggml_silu_back(
  4820. struct ggml_context * ctx,
  4821. struct ggml_tensor * a,
  4822. struct ggml_tensor * b) {
  4823. bool is_node = false;
  4824. if (a->grad || b->grad) {
  4825. // TODO: implement backward
  4826. is_node = true;
  4827. }
  4828. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4829. result->op = GGML_OP_SILU_BACK;
  4830. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4831. result->src[0] = a;
  4832. result->src[1] = b;
  4833. return result;
  4834. }
  4835. // ggml_norm
  4836. static struct ggml_tensor * ggml_norm_impl(
  4837. struct ggml_context * ctx,
  4838. struct ggml_tensor * a,
  4839. float eps,
  4840. bool inplace) {
  4841. bool is_node = false;
  4842. if (!inplace && (a->grad)) {
  4843. GGML_ASSERT(false); // TODO: implement backward
  4844. is_node = true;
  4845. }
  4846. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4847. ggml_set_op_params(result, &eps, sizeof(eps));
  4848. result->op = GGML_OP_NORM;
  4849. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4850. result->src[0] = a;
  4851. return result;
  4852. }
  4853. struct ggml_tensor * ggml_norm(
  4854. struct ggml_context * ctx,
  4855. struct ggml_tensor * a,
  4856. float eps) {
  4857. return ggml_norm_impl(ctx, a, eps, false);
  4858. }
  4859. struct ggml_tensor * ggml_norm_inplace(
  4860. struct ggml_context * ctx,
  4861. struct ggml_tensor * a,
  4862. float eps) {
  4863. return ggml_norm_impl(ctx, a, eps, true);
  4864. }
  4865. // ggml_rms_norm
  4866. static struct ggml_tensor * ggml_rms_norm_impl(
  4867. struct ggml_context * ctx,
  4868. struct ggml_tensor * a,
  4869. float eps,
  4870. bool inplace) {
  4871. bool is_node = false;
  4872. if (!inplace && (a->grad)) {
  4873. is_node = true;
  4874. }
  4875. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4876. ggml_set_op_params(result, &eps, sizeof(eps));
  4877. result->op = GGML_OP_RMS_NORM;
  4878. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4879. result->src[0] = a;
  4880. return result;
  4881. }
  4882. struct ggml_tensor * ggml_rms_norm(
  4883. struct ggml_context * ctx,
  4884. struct ggml_tensor * a,
  4885. float eps) {
  4886. return ggml_rms_norm_impl(ctx, a, eps, false);
  4887. }
  4888. struct ggml_tensor * ggml_rms_norm_inplace(
  4889. struct ggml_context * ctx,
  4890. struct ggml_tensor * a,
  4891. float eps) {
  4892. return ggml_rms_norm_impl(ctx, a, eps, true);
  4893. }
  4894. // ggml_rms_norm_back
  4895. struct ggml_tensor * ggml_rms_norm_back(
  4896. struct ggml_context * ctx,
  4897. struct ggml_tensor * a,
  4898. struct ggml_tensor * b,
  4899. float eps) {
  4900. bool is_node = false;
  4901. if (a->grad) {
  4902. // TODO: implement backward
  4903. is_node = true;
  4904. }
  4905. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4906. ggml_set_op_params(result, &eps, sizeof(eps));
  4907. result->op = GGML_OP_RMS_NORM_BACK;
  4908. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4909. result->src[0] = a;
  4910. result->src[1] = b;
  4911. return result;
  4912. }
  4913. // ggml_group_norm
  4914. static struct ggml_tensor * ggml_group_norm_impl(
  4915. struct ggml_context * ctx,
  4916. struct ggml_tensor * a,
  4917. int n_groups,
  4918. bool inplace) {
  4919. bool is_node = false;
  4920. if (!inplace && (a->grad)) {
  4921. GGML_ASSERT(false); // TODO: implement backward
  4922. is_node = true;
  4923. }
  4924. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4925. result->op = GGML_OP_GROUP_NORM;
  4926. result->op_params[0] = n_groups;
  4927. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4928. result->src[0] = a;
  4929. result->src[1] = NULL; // TODO: maybe store epsilon here?
  4930. return result;
  4931. }
  4932. struct ggml_tensor * ggml_group_norm(
  4933. struct ggml_context * ctx,
  4934. struct ggml_tensor * a,
  4935. int n_groups) {
  4936. return ggml_group_norm_impl(ctx, a, n_groups, false);
  4937. }
  4938. struct ggml_tensor * ggml_group_norm_inplace(
  4939. struct ggml_context * ctx,
  4940. struct ggml_tensor * a,
  4941. int n_groups) {
  4942. return ggml_group_norm_impl(ctx, a, n_groups, true);
  4943. }
  4944. // ggml_mul_mat
  4945. struct ggml_tensor * ggml_mul_mat(
  4946. struct ggml_context * ctx,
  4947. struct ggml_tensor * a,
  4948. struct ggml_tensor * b) {
  4949. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4950. GGML_ASSERT(!ggml_is_transposed(a));
  4951. bool is_node = false;
  4952. if (a->grad || b->grad) {
  4953. is_node = true;
  4954. }
  4955. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4956. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  4957. result->op = GGML_OP_MUL_MAT;
  4958. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4959. result->src[0] = a;
  4960. result->src[1] = b;
  4961. return result;
  4962. }
  4963. // ggml_out_prod
  4964. struct ggml_tensor * ggml_out_prod(
  4965. struct ggml_context * ctx,
  4966. struct ggml_tensor * a,
  4967. struct ggml_tensor * b) {
  4968. GGML_ASSERT(ggml_can_out_prod(a, b));
  4969. GGML_ASSERT(!ggml_is_transposed(a));
  4970. bool is_node = false;
  4971. if (a->grad || b->grad) {
  4972. is_node = true;
  4973. }
  4974. const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] };
  4975. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4976. result->op = GGML_OP_OUT_PROD;
  4977. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4978. result->src[0] = a;
  4979. result->src[1] = b;
  4980. return result;
  4981. }
  4982. // ggml_scale
  4983. static struct ggml_tensor * ggml_scale_impl(
  4984. struct ggml_context * ctx,
  4985. struct ggml_tensor * a,
  4986. struct ggml_tensor * b,
  4987. bool inplace) {
  4988. GGML_ASSERT(ggml_is_scalar(b));
  4989. GGML_ASSERT(ggml_is_padded_1d(a));
  4990. bool is_node = false;
  4991. if (a->grad || b->grad) {
  4992. is_node = true;
  4993. }
  4994. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4995. result->op = GGML_OP_SCALE;
  4996. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4997. result->src[0] = a;
  4998. result->src[1] = b;
  4999. return result;
  5000. }
  5001. struct ggml_tensor * ggml_scale(
  5002. struct ggml_context * ctx,
  5003. struct ggml_tensor * a,
  5004. struct ggml_tensor * b) {
  5005. return ggml_scale_impl(ctx, a, b, false);
  5006. }
  5007. struct ggml_tensor * ggml_scale_inplace(
  5008. struct ggml_context * ctx,
  5009. struct ggml_tensor * a,
  5010. struct ggml_tensor * b) {
  5011. return ggml_scale_impl(ctx, a, b, true);
  5012. }
  5013. // ggml_set
  5014. static struct ggml_tensor * ggml_set_impl(
  5015. struct ggml_context * ctx,
  5016. struct ggml_tensor * a,
  5017. struct ggml_tensor * b,
  5018. size_t nb1,
  5019. size_t nb2,
  5020. size_t nb3,
  5021. size_t offset,
  5022. bool inplace) {
  5023. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  5024. bool is_node = false;
  5025. if (a->grad || b->grad) {
  5026. is_node = true;
  5027. }
  5028. // make a view of the destination
  5029. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5030. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  5031. ggml_set_op_params(result, params, sizeof(params));
  5032. result->op = GGML_OP_SET;
  5033. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5034. result->src[0] = a;
  5035. result->src[1] = b;
  5036. return result;
  5037. }
  5038. struct ggml_tensor * ggml_set(
  5039. struct ggml_context * ctx,
  5040. struct ggml_tensor * a,
  5041. struct ggml_tensor * b,
  5042. size_t nb1,
  5043. size_t nb2,
  5044. size_t nb3,
  5045. size_t offset) {
  5046. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  5047. }
  5048. struct ggml_tensor * ggml_set_inplace(
  5049. struct ggml_context * ctx,
  5050. struct ggml_tensor * a,
  5051. struct ggml_tensor * b,
  5052. size_t nb1,
  5053. size_t nb2,
  5054. size_t nb3,
  5055. size_t offset) {
  5056. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  5057. }
  5058. struct ggml_tensor * ggml_set_1d(
  5059. struct ggml_context * ctx,
  5060. struct ggml_tensor * a,
  5061. struct ggml_tensor * b,
  5062. size_t offset) {
  5063. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  5064. }
  5065. struct ggml_tensor * ggml_set_1d_inplace(
  5066. struct ggml_context * ctx,
  5067. struct ggml_tensor * a,
  5068. struct ggml_tensor * b,
  5069. size_t offset) {
  5070. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  5071. }
  5072. struct ggml_tensor * ggml_set_2d(
  5073. struct ggml_context * ctx,
  5074. struct ggml_tensor * a,
  5075. struct ggml_tensor * b,
  5076. size_t nb1,
  5077. size_t offset) {
  5078. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  5079. }
  5080. struct ggml_tensor * ggml_set_2d_inplace(
  5081. struct ggml_context * ctx,
  5082. struct ggml_tensor * a,
  5083. struct ggml_tensor * b,
  5084. size_t nb1,
  5085. size_t offset) {
  5086. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  5087. }
  5088. // ggml_cpy
  5089. static struct ggml_tensor * ggml_cpy_impl(
  5090. struct ggml_context * ctx,
  5091. struct ggml_tensor * a,
  5092. struct ggml_tensor * b,
  5093. bool inplace) {
  5094. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5095. bool is_node = false;
  5096. if (!inplace && (a->grad || b->grad)) {
  5097. is_node = true;
  5098. }
  5099. // make a view of the destination
  5100. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  5101. if (strlen(b->name) > 0) {
  5102. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  5103. } else {
  5104. ggml_format_name(result, "%s (copy)", a->name);
  5105. }
  5106. result->op = GGML_OP_CPY;
  5107. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5108. result->src[0] = a;
  5109. result->src[1] = b;
  5110. return result;
  5111. }
  5112. struct ggml_tensor * ggml_cpy(
  5113. struct ggml_context * ctx,
  5114. struct ggml_tensor * a,
  5115. struct ggml_tensor * b) {
  5116. return ggml_cpy_impl(ctx, a, b, false);
  5117. }
  5118. struct ggml_tensor * ggml_cpy_inplace(
  5119. struct ggml_context * ctx,
  5120. struct ggml_tensor * a,
  5121. struct ggml_tensor * b) {
  5122. return ggml_cpy_impl(ctx, a, b, true);
  5123. }
  5124. // ggml_cont
  5125. static struct ggml_tensor * ggml_cont_impl(
  5126. struct ggml_context * ctx,
  5127. struct ggml_tensor * a,
  5128. bool inplace) {
  5129. bool is_node = false;
  5130. if (!inplace && a->grad) {
  5131. is_node = true;
  5132. }
  5133. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5134. ggml_format_name(result, "%s (cont)", a->name);
  5135. result->op = GGML_OP_CONT;
  5136. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5137. result->src[0] = a;
  5138. return result;
  5139. }
  5140. struct ggml_tensor * ggml_cont(
  5141. struct ggml_context * ctx,
  5142. struct ggml_tensor * a) {
  5143. return ggml_cont_impl(ctx, a, false);
  5144. }
  5145. struct ggml_tensor * ggml_cont_inplace(
  5146. struct ggml_context * ctx,
  5147. struct ggml_tensor * a) {
  5148. return ggml_cont_impl(ctx, a, true);
  5149. }
  5150. // make contiguous, with new shape
  5151. GGML_API struct ggml_tensor * ggml_cont_1d(
  5152. struct ggml_context * ctx,
  5153. struct ggml_tensor * a,
  5154. int64_t ne0) {
  5155. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  5156. }
  5157. GGML_API struct ggml_tensor * ggml_cont_2d(
  5158. struct ggml_context * ctx,
  5159. struct ggml_tensor * a,
  5160. int64_t ne0,
  5161. int64_t ne1) {
  5162. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  5163. }
  5164. GGML_API struct ggml_tensor * ggml_cont_3d(
  5165. struct ggml_context * ctx,
  5166. struct ggml_tensor * a,
  5167. int64_t ne0,
  5168. int64_t ne1,
  5169. int64_t ne2) {
  5170. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  5171. }
  5172. struct ggml_tensor * ggml_cont_4d(
  5173. struct ggml_context * ctx,
  5174. struct ggml_tensor * a,
  5175. int64_t ne0,
  5176. int64_t ne1,
  5177. int64_t ne2,
  5178. int64_t ne3) {
  5179. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  5180. bool is_node = false;
  5181. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  5182. ggml_format_name(result, "%s (cont)", a->name);
  5183. result->op = GGML_OP_CONT;
  5184. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5185. result->src[0] = a;
  5186. return result;
  5187. }
  5188. // ggml_reshape
  5189. struct ggml_tensor * ggml_reshape(
  5190. struct ggml_context * ctx,
  5191. struct ggml_tensor * a,
  5192. struct ggml_tensor * b) {
  5193. GGML_ASSERT(ggml_is_contiguous(a));
  5194. GGML_ASSERT(ggml_is_contiguous(b));
  5195. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5196. bool is_node = false;
  5197. if (a->grad) {
  5198. is_node = true;
  5199. }
  5200. if (b->grad) {
  5201. // gradient propagation is not supported
  5202. //GGML_ASSERT(false);
  5203. }
  5204. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a, 0);
  5205. ggml_format_name(result, "%s (reshaped)", a->name);
  5206. result->op = GGML_OP_RESHAPE;
  5207. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5208. result->src[0] = a;
  5209. return result;
  5210. }
  5211. struct ggml_tensor * ggml_reshape_1d(
  5212. struct ggml_context * ctx,
  5213. struct ggml_tensor * a,
  5214. int64_t ne0) {
  5215. GGML_ASSERT(ggml_is_contiguous(a));
  5216. GGML_ASSERT(ggml_nelements(a) == ne0);
  5217. bool is_node = false;
  5218. if (a->grad) {
  5219. is_node = true;
  5220. }
  5221. const int64_t ne[1] = { ne0 };
  5222. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  5223. ggml_format_name(result, "%s (reshaped)", a->name);
  5224. result->op = GGML_OP_RESHAPE;
  5225. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5226. result->src[0] = a;
  5227. return result;
  5228. }
  5229. struct ggml_tensor * ggml_reshape_2d(
  5230. struct ggml_context * ctx,
  5231. struct ggml_tensor * a,
  5232. int64_t ne0,
  5233. int64_t ne1) {
  5234. GGML_ASSERT(ggml_is_contiguous(a));
  5235. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  5236. bool is_node = false;
  5237. if (a->grad) {
  5238. is_node = true;
  5239. }
  5240. const int64_t ne[2] = { ne0, ne1 };
  5241. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  5242. ggml_format_name(result, "%s (reshaped)", a->name);
  5243. result->op = GGML_OP_RESHAPE;
  5244. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5245. result->src[0] = a;
  5246. return result;
  5247. }
  5248. struct ggml_tensor * ggml_reshape_3d(
  5249. struct ggml_context * ctx,
  5250. struct ggml_tensor * a,
  5251. int64_t ne0,
  5252. int64_t ne1,
  5253. int64_t ne2) {
  5254. GGML_ASSERT(ggml_is_contiguous(a));
  5255. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  5256. bool is_node = false;
  5257. if (a->grad) {
  5258. is_node = true;
  5259. }
  5260. const int64_t ne[3] = { ne0, ne1, ne2 };
  5261. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  5262. ggml_format_name(result, "%s (reshaped)", a->name);
  5263. result->op = GGML_OP_RESHAPE;
  5264. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5265. result->src[0] = a;
  5266. return result;
  5267. }
  5268. struct ggml_tensor * ggml_reshape_4d(
  5269. struct ggml_context * ctx,
  5270. struct ggml_tensor * a,
  5271. int64_t ne0,
  5272. int64_t ne1,
  5273. int64_t ne2,
  5274. int64_t ne3) {
  5275. GGML_ASSERT(ggml_is_contiguous(a));
  5276. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  5277. bool is_node = false;
  5278. if (a->grad) {
  5279. is_node = true;
  5280. }
  5281. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5282. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  5283. ggml_format_name(result, "%s (reshaped)", a->name);
  5284. result->op = GGML_OP_RESHAPE;
  5285. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5286. result->src[0] = a;
  5287. return result;
  5288. }
  5289. static struct ggml_tensor * ggml_view_impl(
  5290. struct ggml_context * ctx,
  5291. struct ggml_tensor * a,
  5292. int n_dims,
  5293. const int64_t * ne,
  5294. size_t offset) {
  5295. bool is_node = false;
  5296. if (a->grad) {
  5297. is_node = true;
  5298. }
  5299. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  5300. ggml_format_name(result, "%s (view)", a->name);
  5301. ggml_set_op_params(result, &offset, sizeof(offset));
  5302. result->op = GGML_OP_VIEW;
  5303. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5304. result->src[0] = a;
  5305. return result;
  5306. }
  5307. // ggml_view_1d
  5308. struct ggml_tensor * ggml_view_1d(
  5309. struct ggml_context * ctx,
  5310. struct ggml_tensor * a,
  5311. int64_t ne0,
  5312. size_t offset) {
  5313. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  5314. return result;
  5315. }
  5316. // ggml_view_2d
  5317. struct ggml_tensor * ggml_view_2d(
  5318. struct ggml_context * ctx,
  5319. struct ggml_tensor * a,
  5320. int64_t ne0,
  5321. int64_t ne1,
  5322. size_t nb1,
  5323. size_t offset) {
  5324. const int64_t ne[2] = { ne0, ne1 };
  5325. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  5326. result->nb[1] = nb1;
  5327. result->nb[2] = result->nb[1]*ne1;
  5328. result->nb[3] = result->nb[2];
  5329. return result;
  5330. }
  5331. // ggml_view_3d
  5332. struct ggml_tensor * ggml_view_3d(
  5333. struct ggml_context * ctx,
  5334. struct ggml_tensor * a,
  5335. int64_t ne0,
  5336. int64_t ne1,
  5337. int64_t ne2,
  5338. size_t nb1,
  5339. size_t nb2,
  5340. size_t offset) {
  5341. const int64_t ne[3] = { ne0, ne1, ne2 };
  5342. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  5343. result->nb[1] = nb1;
  5344. result->nb[2] = nb2;
  5345. result->nb[3] = result->nb[2]*ne2;
  5346. return result;
  5347. }
  5348. // ggml_view_4d
  5349. struct ggml_tensor * ggml_view_4d(
  5350. struct ggml_context * ctx,
  5351. struct ggml_tensor * a,
  5352. int64_t ne0,
  5353. int64_t ne1,
  5354. int64_t ne2,
  5355. int64_t ne3,
  5356. size_t nb1,
  5357. size_t nb2,
  5358. size_t nb3,
  5359. size_t offset) {
  5360. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5361. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  5362. result->nb[1] = nb1;
  5363. result->nb[2] = nb2;
  5364. result->nb[3] = nb3;
  5365. return result;
  5366. }
  5367. // ggml_permute
  5368. struct ggml_tensor * ggml_permute(
  5369. struct ggml_context * ctx,
  5370. struct ggml_tensor * a,
  5371. int axis0,
  5372. int axis1,
  5373. int axis2,
  5374. int axis3) {
  5375. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5376. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5377. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5378. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5379. GGML_ASSERT(axis0 != axis1);
  5380. GGML_ASSERT(axis0 != axis2);
  5381. GGML_ASSERT(axis0 != axis3);
  5382. GGML_ASSERT(axis1 != axis2);
  5383. GGML_ASSERT(axis1 != axis3);
  5384. GGML_ASSERT(axis2 != axis3);
  5385. bool is_node = false;
  5386. if (a->grad) {
  5387. is_node = true;
  5388. }
  5389. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5390. ggml_format_name(result, "%s (permuted)", a->name);
  5391. int ne[GGML_MAX_DIMS];
  5392. int nb[GGML_MAX_DIMS];
  5393. ne[axis0] = a->ne[0];
  5394. ne[axis1] = a->ne[1];
  5395. ne[axis2] = a->ne[2];
  5396. ne[axis3] = a->ne[3];
  5397. nb[axis0] = a->nb[0];
  5398. nb[axis1] = a->nb[1];
  5399. nb[axis2] = a->nb[2];
  5400. nb[axis3] = a->nb[3];
  5401. result->ne[0] = ne[0];
  5402. result->ne[1] = ne[1];
  5403. result->ne[2] = ne[2];
  5404. result->ne[3] = ne[3];
  5405. result->nb[0] = nb[0];
  5406. result->nb[1] = nb[1];
  5407. result->nb[2] = nb[2];
  5408. result->nb[3] = nb[3];
  5409. result->op = GGML_OP_PERMUTE;
  5410. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5411. result->src[0] = a;
  5412. int32_t params[] = { axis0, axis1, axis2, axis3 };
  5413. ggml_set_op_params(result, params, sizeof(params));
  5414. return result;
  5415. }
  5416. // ggml_transpose
  5417. struct ggml_tensor * ggml_transpose(
  5418. struct ggml_context * ctx,
  5419. struct ggml_tensor * a) {
  5420. bool is_node = false;
  5421. if (a->grad) {
  5422. is_node = true;
  5423. }
  5424. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5425. ggml_format_name(result, "%s (transposed)", a->name);
  5426. result->ne[0] = a->ne[1];
  5427. result->ne[1] = a->ne[0];
  5428. result->nb[0] = a->nb[1];
  5429. result->nb[1] = a->nb[0];
  5430. result->op = GGML_OP_TRANSPOSE;
  5431. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5432. result->src[0] = a;
  5433. return result;
  5434. }
  5435. // ggml_get_rows
  5436. struct ggml_tensor * ggml_get_rows(
  5437. struct ggml_context * ctx,
  5438. struct ggml_tensor * a,
  5439. struct ggml_tensor * b) {
  5440. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5441. bool is_node = false;
  5442. if (a->grad || b->grad) {
  5443. is_node = true;
  5444. }
  5445. // TODO: implement non F32 return
  5446. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5447. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  5448. result->op = GGML_OP_GET_ROWS;
  5449. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5450. result->src[0] = a;
  5451. result->src[1] = b;
  5452. return result;
  5453. }
  5454. // ggml_get_rows_back
  5455. struct ggml_tensor * ggml_get_rows_back(
  5456. struct ggml_context * ctx,
  5457. struct ggml_tensor * a,
  5458. struct ggml_tensor * b,
  5459. struct ggml_tensor * c) {
  5460. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5461. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5462. bool is_node = false;
  5463. if (a->grad || b->grad) {
  5464. is_node = true;
  5465. }
  5466. // TODO: implement non F32 return
  5467. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5468. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5469. result->op = GGML_OP_GET_ROWS_BACK;
  5470. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5471. result->src[0] = a;
  5472. result->src[1] = b;
  5473. result->src[2] = c;
  5474. return result;
  5475. }
  5476. // ggml_diag
  5477. struct ggml_tensor * ggml_diag(
  5478. struct ggml_context * ctx,
  5479. struct ggml_tensor * a) {
  5480. GGML_ASSERT(a->ne[1] == 1);
  5481. bool is_node = false;
  5482. if (a->grad) {
  5483. is_node = true;
  5484. }
  5485. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5486. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  5487. result->op = GGML_OP_DIAG;
  5488. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5489. result->src[0] = a;
  5490. return result;
  5491. }
  5492. // ggml_diag_mask_inf
  5493. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5494. struct ggml_context * ctx,
  5495. struct ggml_tensor * a,
  5496. int n_past,
  5497. bool inplace) {
  5498. bool is_node = false;
  5499. if (a->grad) {
  5500. is_node = true;
  5501. }
  5502. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5503. int32_t params[] = { n_past };
  5504. ggml_set_op_params(result, params, sizeof(params));
  5505. result->op = GGML_OP_DIAG_MASK_INF;
  5506. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5507. result->src[0] = a;
  5508. return result;
  5509. }
  5510. struct ggml_tensor * ggml_diag_mask_inf(
  5511. struct ggml_context * ctx,
  5512. struct ggml_tensor * a,
  5513. int n_past) {
  5514. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5515. }
  5516. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5517. struct ggml_context * ctx,
  5518. struct ggml_tensor * a,
  5519. int n_past) {
  5520. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5521. }
  5522. // ggml_diag_mask_zero
  5523. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5524. struct ggml_context * ctx,
  5525. struct ggml_tensor * a,
  5526. int n_past,
  5527. bool inplace) {
  5528. bool is_node = false;
  5529. if (a->grad) {
  5530. is_node = true;
  5531. }
  5532. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5533. int32_t params[] = { n_past };
  5534. ggml_set_op_params(result, params, sizeof(params));
  5535. result->op = GGML_OP_DIAG_MASK_ZERO;
  5536. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5537. result->src[0] = a;
  5538. return result;
  5539. }
  5540. struct ggml_tensor * ggml_diag_mask_zero(
  5541. struct ggml_context * ctx,
  5542. struct ggml_tensor * a,
  5543. int n_past) {
  5544. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5545. }
  5546. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5547. struct ggml_context * ctx,
  5548. struct ggml_tensor * a,
  5549. int n_past) {
  5550. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5551. }
  5552. // ggml_soft_max
  5553. static struct ggml_tensor * ggml_soft_max_impl(
  5554. struct ggml_context * ctx,
  5555. struct ggml_tensor * a,
  5556. bool inplace) {
  5557. bool is_node = false;
  5558. if (a->grad) {
  5559. is_node = true;
  5560. }
  5561. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5562. result->op = GGML_OP_SOFT_MAX;
  5563. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5564. result->src[0] = a;
  5565. return result;
  5566. }
  5567. struct ggml_tensor * ggml_soft_max(
  5568. struct ggml_context * ctx,
  5569. struct ggml_tensor * a) {
  5570. return ggml_soft_max_impl(ctx, a, false);
  5571. }
  5572. struct ggml_tensor * ggml_soft_max_inplace(
  5573. struct ggml_context * ctx,
  5574. struct ggml_tensor * a) {
  5575. return ggml_soft_max_impl(ctx, a, true);
  5576. }
  5577. // ggml_soft_max_back
  5578. static struct ggml_tensor * ggml_soft_max_back_impl(
  5579. struct ggml_context * ctx,
  5580. struct ggml_tensor * a,
  5581. struct ggml_tensor * b,
  5582. bool inplace) {
  5583. bool is_node = false;
  5584. if (a->grad || b->grad) {
  5585. is_node = true; // TODO : implement backward pass
  5586. }
  5587. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5588. result->op = GGML_OP_SOFT_MAX_BACK;
  5589. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5590. result->src[0] = a;
  5591. result->src[1] = b;
  5592. return result;
  5593. }
  5594. struct ggml_tensor * ggml_soft_max_back(
  5595. struct ggml_context * ctx,
  5596. struct ggml_tensor * a,
  5597. struct ggml_tensor * b) {
  5598. return ggml_soft_max_back_impl(ctx, a, b, false);
  5599. }
  5600. struct ggml_tensor * ggml_soft_max_back_inplace(
  5601. struct ggml_context * ctx,
  5602. struct ggml_tensor * a,
  5603. struct ggml_tensor * b) {
  5604. return ggml_soft_max_back_impl(ctx, a, b, true);
  5605. }
  5606. // ggml_rope
  5607. static struct ggml_tensor * ggml_rope_impl(
  5608. struct ggml_context * ctx,
  5609. struct ggml_tensor * a,
  5610. struct ggml_tensor * b,
  5611. int n_dims,
  5612. int mode,
  5613. int n_ctx,
  5614. float freq_base,
  5615. float freq_scale,
  5616. float xpos_base,
  5617. bool xpos_down,
  5618. bool inplace) {
  5619. GGML_ASSERT(ggml_is_vector(b));
  5620. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5621. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5622. bool is_node = false;
  5623. if (a->grad) {
  5624. is_node = true;
  5625. }
  5626. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5627. int32_t params[8] = { /*n_past*/ 0, n_dims, mode, n_ctx };
  5628. memcpy(params + 4, &freq_base, sizeof(float));
  5629. memcpy(params + 5, &freq_scale, sizeof(float));
  5630. memcpy(params + 6, &xpos_base, sizeof(float));
  5631. memcpy(params + 7, &xpos_down, sizeof(bool));
  5632. ggml_set_op_params(result, params, sizeof(params));
  5633. result->op = GGML_OP_ROPE;
  5634. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5635. result->src[0] = a;
  5636. result->src[1] = b;
  5637. return result;
  5638. }
  5639. struct ggml_tensor * ggml_rope(
  5640. struct ggml_context * ctx,
  5641. struct ggml_tensor * a,
  5642. struct ggml_tensor * b,
  5643. int n_dims,
  5644. int mode,
  5645. int n_ctx) {
  5646. return ggml_rope_impl(ctx, a, b, n_dims, mode, n_ctx, 10000.0f, 1.0f, 0.0f, false, false);
  5647. }
  5648. struct ggml_tensor * ggml_rope_inplace(
  5649. struct ggml_context * ctx,
  5650. struct ggml_tensor * a,
  5651. struct ggml_tensor * b,
  5652. int n_dims,
  5653. int mode,
  5654. int n_ctx) {
  5655. return ggml_rope_impl(ctx, a, b, n_dims, mode, n_ctx, 10000.0f, 1.0f, 0.0f, false, true);
  5656. }
  5657. struct ggml_tensor * ggml_rope_custom(
  5658. struct ggml_context * ctx,
  5659. struct ggml_tensor * a,
  5660. struct ggml_tensor * b,
  5661. int n_dims,
  5662. int mode,
  5663. int n_ctx,
  5664. float freq_base,
  5665. float freq_scale) {
  5666. return ggml_rope_impl(ctx, a, b, n_dims, mode, n_ctx, freq_base, freq_scale, 0.0f, false, false);
  5667. }
  5668. struct ggml_tensor * ggml_rope_custom_inplace(
  5669. struct ggml_context * ctx,
  5670. struct ggml_tensor * a,
  5671. struct ggml_tensor * b,
  5672. int n_dims,
  5673. int mode,
  5674. int n_ctx,
  5675. float freq_base,
  5676. float freq_scale) {
  5677. return ggml_rope_impl(ctx, a, b, n_dims, mode, n_ctx, freq_base, freq_scale, 0.0f, false, true);
  5678. }
  5679. struct ggml_tensor * ggml_rope_xpos_inplace(
  5680. struct ggml_context * ctx,
  5681. struct ggml_tensor * a,
  5682. struct ggml_tensor * b,
  5683. int n_dims,
  5684. float base,
  5685. bool down) {
  5686. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 10000.0f, 1.0f, base, down, true);
  5687. }
  5688. // ggml_rope_back
  5689. struct ggml_tensor * ggml_rope_back(
  5690. struct ggml_context * ctx,
  5691. struct ggml_tensor * a,
  5692. struct ggml_tensor * b,
  5693. int n_dims,
  5694. int mode,
  5695. int n_ctx,
  5696. float freq_base,
  5697. float freq_scale,
  5698. float xpos_base,
  5699. bool xpos_down) {
  5700. GGML_ASSERT(ggml_is_vector(b));
  5701. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5702. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5703. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5704. bool is_node = false;
  5705. if (a->grad) {
  5706. is_node = false; // TODO: implement backward
  5707. }
  5708. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5709. int32_t params[8] = { /*n_past*/ 0, n_dims, mode, n_ctx };
  5710. memcpy(params + 4, &freq_base, sizeof(float));
  5711. memcpy(params + 5, &freq_scale, sizeof(float));
  5712. memcpy(params + 6, &xpos_base, sizeof(float));
  5713. memcpy(params + 7, &xpos_down, sizeof(bool));
  5714. ggml_set_op_params(result, params, sizeof(params));
  5715. result->op = GGML_OP_ROPE_BACK;
  5716. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5717. result->src[0] = a;
  5718. result->src[1] = b;
  5719. return result;
  5720. }
  5721. // ggml_alibi
  5722. struct ggml_tensor * ggml_alibi(
  5723. struct ggml_context * ctx,
  5724. struct ggml_tensor * a,
  5725. int n_past,
  5726. int n_head,
  5727. float bias_max) {
  5728. GGML_ASSERT(n_past >= 0);
  5729. bool is_node = false;
  5730. if (a->grad) {
  5731. GGML_ASSERT(false); // TODO: implement backward
  5732. is_node = true;
  5733. }
  5734. // TODO: when implement backward, fix this:
  5735. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5736. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5737. int32_t op_params[3] = { n_past, n_head };
  5738. memcpy(op_params + 2, &bias_max, sizeof(float));
  5739. ggml_set_op_params(result, op_params, sizeof(op_params));
  5740. result->op = GGML_OP_ALIBI;
  5741. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5742. result->src[0] = a;
  5743. return result;
  5744. }
  5745. // ggml_clamp
  5746. struct ggml_tensor * ggml_clamp(
  5747. struct ggml_context * ctx,
  5748. struct ggml_tensor * a,
  5749. float min,
  5750. float max) {
  5751. bool is_node = false;
  5752. if (a->grad) {
  5753. GGML_ASSERT(false); // TODO: implement backward
  5754. is_node = true;
  5755. }
  5756. // TODO: when implement backward, fix this:
  5757. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5758. float params[] = { min, max };
  5759. ggml_set_op_params(result, params, sizeof(params));
  5760. result->op = GGML_OP_CLAMP;
  5761. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5762. result->src[0] = a;
  5763. return result;
  5764. }
  5765. // ggml_conv_1d
  5766. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5767. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5768. }
  5769. GGML_API struct ggml_tensor * ggml_conv_1d(
  5770. struct ggml_context * ctx,
  5771. struct ggml_tensor * a,
  5772. struct ggml_tensor * b,
  5773. int s0,
  5774. int p0,
  5775. int d0) {
  5776. GGML_ASSERT(ggml_is_matrix(b));
  5777. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5778. bool is_node = false;
  5779. if (a->grad || b->grad) {
  5780. GGML_ASSERT(false); // TODO: implement backward
  5781. is_node = true;
  5782. }
  5783. const int64_t ne[4] = {
  5784. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5785. a->ne[2], 1, 1,
  5786. };
  5787. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5788. int32_t params[] = { s0, p0, d0 };
  5789. ggml_set_op_params(result, params, sizeof(params));
  5790. result->op = GGML_OP_CONV_1D;
  5791. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5792. result->src[0] = a;
  5793. result->src[1] = b;
  5794. return result;
  5795. }
  5796. // ggml_conv_1d_ph
  5797. struct ggml_tensor* ggml_conv_1d_ph(
  5798. struct ggml_context * ctx,
  5799. struct ggml_tensor * a,
  5800. struct ggml_tensor * b,
  5801. int s,
  5802. int d) {
  5803. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5804. }
  5805. // ggml_conv_2d
  5806. struct ggml_tensor * ggml_conv_2d(
  5807. struct ggml_context * ctx,
  5808. struct ggml_tensor * a,
  5809. struct ggml_tensor * b,
  5810. int s0,
  5811. int s1,
  5812. int p0,
  5813. int p1,
  5814. int d0,
  5815. int d1) {
  5816. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5817. bool is_node = false;
  5818. if (a->grad || b->grad) {
  5819. GGML_ASSERT(false); // TODO: implement backward
  5820. is_node = true;
  5821. }
  5822. const int64_t ne[4] = {
  5823. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5824. ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1),
  5825. a->ne[3], b->ne[3],
  5826. };
  5827. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5828. int32_t params[] = { s0, s1, p0, p1, d0, d1 };
  5829. ggml_set_op_params(result, params, sizeof(params));
  5830. result->op = GGML_OP_CONV_2D;
  5831. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5832. result->src[0] = a;
  5833. result->src[1] = b;
  5834. return result;
  5835. }
  5836. // ggml_conv_2d_sk_p0
  5837. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5838. struct ggml_context * ctx,
  5839. struct ggml_tensor * a,
  5840. struct ggml_tensor * b) {
  5841. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5842. }
  5843. // ggml_conv_2d_s1_ph
  5844. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5845. struct ggml_context * ctx,
  5846. struct ggml_tensor * a,
  5847. struct ggml_tensor * b) {
  5848. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5849. }
  5850. // ggml_conv_transpose_2d_p0
  5851. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5852. return (ins - 1) * s - 2 * p + ks;
  5853. }
  5854. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5855. struct ggml_context * ctx,
  5856. struct ggml_tensor * a,
  5857. struct ggml_tensor * b,
  5858. int stride) {
  5859. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5860. bool is_node = false;
  5861. if (a->grad || b->grad) {
  5862. GGML_ASSERT(false); // TODO: implement backward
  5863. is_node = true;
  5864. }
  5865. const int64_t ne[4] = {
  5866. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5867. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5868. a->ne[2], b->ne[3],
  5869. };
  5870. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5871. ggml_set_op_params_i32(result, 0, stride);
  5872. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5873. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5874. result->src[0] = a;
  5875. result->src[1] = b;
  5876. return result;
  5877. }
  5878. // ggml_pool_*
  5879. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, int p) {
  5880. return (ins + 2 * p - ks) / s + 1;
  5881. }
  5882. // ggml_pool_1d
  5883. struct ggml_tensor * ggml_pool_1d(
  5884. struct ggml_context * ctx,
  5885. struct ggml_tensor * a,
  5886. enum ggml_op_pool op,
  5887. int k0,
  5888. int s0,
  5889. int p0) {
  5890. bool is_node = false;
  5891. if (a->grad) {
  5892. GGML_ASSERT(false); // TODO: implement backward
  5893. is_node = true;
  5894. }
  5895. const int64_t ne[3] = {
  5896. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5897. a->ne[1],
  5898. };
  5899. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5900. int32_t params[] = { op, k0, s0, p0 };
  5901. ggml_set_op_params(result, params, sizeof(params));
  5902. result->op = GGML_OP_POOL_1D;
  5903. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5904. result->src[0] = a;
  5905. return result;
  5906. }
  5907. // ggml_pool_2d
  5908. struct ggml_tensor * ggml_pool_2d(
  5909. struct ggml_context * ctx,
  5910. struct ggml_tensor * a,
  5911. enum ggml_op_pool op,
  5912. int k0,
  5913. int k1,
  5914. int s0,
  5915. int s1,
  5916. int p0,
  5917. int p1) {
  5918. bool is_node = false;
  5919. if (a->grad) {
  5920. GGML_ASSERT(false); // TODO: implement backward
  5921. is_node = true;
  5922. }
  5923. const int64_t ne[3] = {
  5924. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5925. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5926. a->ne[2],
  5927. };
  5928. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5929. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5930. ggml_set_op_params(result, params, sizeof(params));
  5931. result->op = GGML_OP_POOL_2D;
  5932. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5933. result->src[0] = a;
  5934. return result;
  5935. }
  5936. // ggml_upscale
  5937. static struct ggml_tensor * ggml_upscale_impl(
  5938. struct ggml_context * ctx,
  5939. struct ggml_tensor * a,
  5940. int scale_factor) {
  5941. bool is_node = false;
  5942. if (a->grad) {
  5943. GGML_ASSERT(false); // TODO: implement backward
  5944. is_node = true;
  5945. }
  5946. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5947. a->ne[0] * scale_factor,
  5948. a->ne[1] * scale_factor,
  5949. a->ne[2], a->ne[3]);
  5950. result->op = GGML_OP_UPSCALE;
  5951. result->op_params[0] = scale_factor;
  5952. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5953. result->src[0] = a;
  5954. result->src[1] = NULL;
  5955. return result;
  5956. }
  5957. struct ggml_tensor * ggml_upscale(
  5958. struct ggml_context * ctx,
  5959. struct ggml_tensor * a,
  5960. int scale_factor) {
  5961. return ggml_upscale_impl(ctx, a, scale_factor);
  5962. }
  5963. // ggml_flash_attn
  5964. struct ggml_tensor * ggml_flash_attn(
  5965. struct ggml_context * ctx,
  5966. struct ggml_tensor * q,
  5967. struct ggml_tensor * k,
  5968. struct ggml_tensor * v,
  5969. bool masked) {
  5970. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5971. // TODO: check if vT can be multiplied by (k*qT)
  5972. bool is_node = false;
  5973. if (q->grad || k->grad || v->grad) {
  5974. is_node = true;
  5975. }
  5976. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5977. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, q->n_dims, q->ne);
  5978. int32_t t = masked ? 1 : 0;
  5979. ggml_set_op_params(result, &t, sizeof(t));
  5980. result->op = GGML_OP_FLASH_ATTN;
  5981. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5982. result->src[0] = q;
  5983. result->src[1] = k;
  5984. result->src[2] = v;
  5985. return result;
  5986. }
  5987. // ggml_flash_ff
  5988. struct ggml_tensor * ggml_flash_ff(
  5989. struct ggml_context * ctx,
  5990. struct ggml_tensor * a,
  5991. struct ggml_tensor * b0,
  5992. struct ggml_tensor * b1,
  5993. struct ggml_tensor * c0,
  5994. struct ggml_tensor * c1) {
  5995. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5996. // TODO: more checks
  5997. bool is_node = false;
  5998. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5999. is_node = true;
  6000. }
  6001. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6002. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne);
  6003. result->op = GGML_OP_FLASH_FF;
  6004. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6005. result->src[0] = a;
  6006. result->src[1] = b0;
  6007. result->src[2] = b1;
  6008. result->src[3] = c0;
  6009. result->src[4] = c1;
  6010. return result;
  6011. }
  6012. // ggml_flash_attn_back
  6013. struct ggml_tensor * ggml_flash_attn_back(
  6014. struct ggml_context * ctx,
  6015. struct ggml_tensor * q,
  6016. struct ggml_tensor * k,
  6017. struct ggml_tensor * v,
  6018. struct ggml_tensor * d,
  6019. bool masked) {
  6020. GGML_ASSERT(ggml_can_mul_mat(k, q));
  6021. // TODO: check if vT can be multiplied by (k*qT)
  6022. // d shape [D,N,ne2,ne3]
  6023. // q shape [D,N,ne2,ne3]
  6024. // k shape [D,M,ne2,ne3]
  6025. // v shape [M,D,ne2,ne3]
  6026. const int64_t D = q->ne[0];
  6027. const int64_t N = q->ne[1];
  6028. const int64_t M = k->ne[1];
  6029. const int64_t ne2 = q->ne[2];
  6030. const int64_t ne3 = q->ne[3];
  6031. GGML_ASSERT(k->ne[0] == D);
  6032. GGML_ASSERT(v->ne[0] == M);
  6033. GGML_ASSERT(v->ne[1] == D);
  6034. GGML_ASSERT(d->ne[0] == D);
  6035. GGML_ASSERT(d->ne[1] == N);
  6036. GGML_ASSERT(k->ne[2] == ne2);
  6037. GGML_ASSERT(k->ne[3] == ne3);
  6038. GGML_ASSERT(v->ne[2] == ne2);
  6039. GGML_ASSERT(v->ne[3] == ne3);
  6040. GGML_ASSERT(d->ne[2] == ne2);
  6041. GGML_ASSERT(d->ne[3] == ne3);
  6042. bool is_node = false;
  6043. if (q->grad || k->grad || v->grad) {
  6044. // when using this operation (in backwards pass) these grads are set.
  6045. // we don't want to create (big) grad of our result, so is_node is false.
  6046. is_node = false;
  6047. }
  6048. // store gradients of q, k and v as continuous tensors concatenated in result.
  6049. // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3]
  6050. // gradq->data = result->data
  6051. // gradk->data = result->data + nb0*D*N*ne2*ne3
  6052. // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3
  6053. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  6054. int64_t ne[4] = {D,M+N+M,ne2,ne3};
  6055. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  6056. int32_t masked_i = masked ? 1 : 0;
  6057. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  6058. result->op = GGML_OP_FLASH_ATTN_BACK;
  6059. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6060. result->src[0] = q;
  6061. result->src[1] = k;
  6062. result->src[2] = v;
  6063. result->src[3] = d;
  6064. return result;
  6065. }
  6066. // ggml_win_part
  6067. struct ggml_tensor * ggml_win_part(
  6068. struct ggml_context * ctx,
  6069. struct ggml_tensor * a,
  6070. int w) {
  6071. GGML_ASSERT(a->ne[3] == 1);
  6072. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6073. bool is_node = false;
  6074. if (a->grad) {
  6075. GGML_ASSERT(false); // TODO: implement backward
  6076. is_node = true;
  6077. }
  6078. // padding
  6079. const int px = (w - a->ne[1]%w)%w;
  6080. const int py = (w - a->ne[2]%w)%w;
  6081. const int npx = (px + a->ne[1])/w;
  6082. const int npy = (py + a->ne[2])/w;
  6083. const int np = npx*npy;
  6084. const int64_t ne[4] = { a->ne[0], w, w, np, };
  6085. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  6086. int32_t params[] = { npx, npy, w };
  6087. ggml_set_op_params(result, params, sizeof(params));
  6088. result->op = GGML_OP_WIN_PART;
  6089. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6090. result->src[0] = a;
  6091. return result;
  6092. }
  6093. // ggml_win_unpart
  6094. struct ggml_tensor * ggml_win_unpart(
  6095. struct ggml_context * ctx,
  6096. struct ggml_tensor * a,
  6097. int w0,
  6098. int h0,
  6099. int w) {
  6100. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6101. bool is_node = false;
  6102. if (a->grad) {
  6103. GGML_ASSERT(false); // TODO: implement backward
  6104. is_node = true;
  6105. }
  6106. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  6107. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  6108. int32_t params[] = { w };
  6109. ggml_set_op_params(result, params, sizeof(params));
  6110. result->op = GGML_OP_WIN_UNPART;
  6111. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6112. result->src[0] = a;
  6113. return result;
  6114. }
  6115. // ggml_get_rel_pos
  6116. struct ggml_tensor * ggml_get_rel_pos(
  6117. struct ggml_context * ctx,
  6118. struct ggml_tensor * a,
  6119. int qh,
  6120. int kh) {
  6121. GGML_ASSERT(qh == kh);
  6122. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  6123. bool is_node = false;
  6124. if (a->grad) {
  6125. GGML_ASSERT(false); // TODO: implement backward
  6126. is_node = true;
  6127. }
  6128. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  6129. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  6130. result->op = GGML_OP_GET_REL_POS;
  6131. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6132. result->src[0] = a;
  6133. result->src[1] = NULL;
  6134. return result;
  6135. }
  6136. // ggml_add_rel_pos
  6137. static struct ggml_tensor * ggml_add_rel_pos_impl(
  6138. struct ggml_context * ctx,
  6139. struct ggml_tensor * a,
  6140. struct ggml_tensor * pw,
  6141. struct ggml_tensor * ph,
  6142. bool inplace) {
  6143. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  6144. GGML_ASSERT(ggml_is_contiguous(a));
  6145. GGML_ASSERT(ggml_is_contiguous(pw));
  6146. GGML_ASSERT(ggml_is_contiguous(ph));
  6147. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  6148. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  6149. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  6150. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  6151. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  6152. bool is_node = false;
  6153. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  6154. is_node = true;
  6155. }
  6156. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6157. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  6158. result->op = GGML_OP_ADD_REL_POS;
  6159. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6160. result->src[0] = a;
  6161. result->src[1] = pw;
  6162. result->src[2] = ph;
  6163. return result;
  6164. }
  6165. struct ggml_tensor * ggml_add_rel_pos(
  6166. struct ggml_context * ctx,
  6167. struct ggml_tensor * a,
  6168. struct ggml_tensor * pw,
  6169. struct ggml_tensor * ph) {
  6170. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  6171. }
  6172. struct ggml_tensor * ggml_add_rel_pos_inplace(
  6173. struct ggml_context * ctx,
  6174. struct ggml_tensor * a,
  6175. struct ggml_tensor * pw,
  6176. struct ggml_tensor * ph) {
  6177. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  6178. }
  6179. // gmml_unary
  6180. static struct ggml_tensor * ggml_unary_impl(
  6181. struct ggml_context * ctx,
  6182. struct ggml_tensor * a,
  6183. enum ggml_unary_op op,
  6184. bool inplace) {
  6185. bool is_node = false;
  6186. if (!inplace && (a->grad)) {
  6187. is_node = true;
  6188. }
  6189. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6190. ggml_set_op_params_i32(result, 0, (int32_t) op);
  6191. result->op = GGML_OP_UNARY;
  6192. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6193. result->src[0] = a;
  6194. return result;
  6195. }
  6196. struct ggml_tensor * ggml_unary(
  6197. struct ggml_context * ctx,
  6198. struct ggml_tensor * a,
  6199. enum ggml_unary_op op) {
  6200. return ggml_unary_impl(ctx, a, op, false);
  6201. }
  6202. struct ggml_tensor * ggml_unary_inplace(
  6203. struct ggml_context * ctx,
  6204. struct ggml_tensor * a,
  6205. enum ggml_unary_op op) {
  6206. return ggml_unary_impl(ctx, a, op, true);
  6207. }
  6208. // ggml_map_unary
  6209. static struct ggml_tensor * ggml_map_unary_impl_f32(
  6210. struct ggml_context * ctx,
  6211. struct ggml_tensor * a,
  6212. const ggml_unary_op_f32_t fun,
  6213. bool inplace) {
  6214. bool is_node = false;
  6215. if (!inplace && a->grad) {
  6216. is_node = true;
  6217. }
  6218. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6219. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6220. result->op = GGML_OP_MAP_UNARY;
  6221. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6222. result->src[0] = a;
  6223. return result;
  6224. }
  6225. struct ggml_tensor * ggml_map_unary_f32(
  6226. struct ggml_context * ctx,
  6227. struct ggml_tensor * a,
  6228. const ggml_unary_op_f32_t fun) {
  6229. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  6230. }
  6231. struct ggml_tensor * ggml_map_unary_inplace_f32(
  6232. struct ggml_context * ctx,
  6233. struct ggml_tensor * a,
  6234. const ggml_unary_op_f32_t fun) {
  6235. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  6236. }
  6237. // ggml_map_binary
  6238. static struct ggml_tensor * ggml_map_binary_impl_f32(
  6239. struct ggml_context * ctx,
  6240. struct ggml_tensor * a,
  6241. struct ggml_tensor * b,
  6242. const ggml_binary_op_f32_t fun,
  6243. bool inplace) {
  6244. GGML_ASSERT(ggml_are_same_shape(a, b));
  6245. bool is_node = false;
  6246. if (!inplace && (a->grad || b->grad)) {
  6247. is_node = true;
  6248. }
  6249. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6250. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6251. result->op = GGML_OP_MAP_BINARY;
  6252. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6253. result->src[0] = a;
  6254. result->src[1] = b;
  6255. return result;
  6256. }
  6257. struct ggml_tensor * ggml_map_binary_f32(
  6258. struct ggml_context * ctx,
  6259. struct ggml_tensor * a,
  6260. struct ggml_tensor * b,
  6261. const ggml_binary_op_f32_t fun) {
  6262. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6263. }
  6264. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6265. struct ggml_context * ctx,
  6266. struct ggml_tensor * a,
  6267. struct ggml_tensor * b,
  6268. const ggml_binary_op_f32_t fun) {
  6269. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6270. }
  6271. // ggml_map_custom1_f32
  6272. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  6273. struct ggml_context * ctx,
  6274. struct ggml_tensor * a,
  6275. const ggml_custom1_op_f32_t fun,
  6276. bool inplace) {
  6277. bool is_node = false;
  6278. if (!inplace && a->grad) {
  6279. is_node = true;
  6280. }
  6281. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6282. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6283. result->op = GGML_OP_MAP_CUSTOM1_F32;
  6284. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6285. result->src[0] = a;
  6286. return result;
  6287. }
  6288. struct ggml_tensor * ggml_map_custom1_f32(
  6289. struct ggml_context * ctx,
  6290. struct ggml_tensor * a,
  6291. const ggml_custom1_op_f32_t fun) {
  6292. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6293. }
  6294. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6295. struct ggml_context * ctx,
  6296. struct ggml_tensor * a,
  6297. const ggml_custom1_op_f32_t fun) {
  6298. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6299. }
  6300. // ggml_map_custom2_f32
  6301. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  6302. struct ggml_context * ctx,
  6303. struct ggml_tensor * a,
  6304. struct ggml_tensor * b,
  6305. const ggml_custom2_op_f32_t fun,
  6306. bool inplace) {
  6307. bool is_node = false;
  6308. if (!inplace && (a->grad || b->grad)) {
  6309. is_node = true;
  6310. }
  6311. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6312. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6313. result->op = GGML_OP_MAP_CUSTOM2_F32;
  6314. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6315. result->src[0] = a;
  6316. result->src[1] = b;
  6317. return result;
  6318. }
  6319. struct ggml_tensor * ggml_map_custom2_f32(
  6320. struct ggml_context * ctx,
  6321. struct ggml_tensor * a,
  6322. struct ggml_tensor * b,
  6323. const ggml_custom2_op_f32_t fun) {
  6324. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6325. }
  6326. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6327. struct ggml_context * ctx,
  6328. struct ggml_tensor * a,
  6329. struct ggml_tensor * b,
  6330. const ggml_custom2_op_f32_t fun) {
  6331. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6332. }
  6333. // ggml_map_custom3_f32
  6334. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  6335. struct ggml_context * ctx,
  6336. struct ggml_tensor * a,
  6337. struct ggml_tensor * b,
  6338. struct ggml_tensor * c,
  6339. const ggml_custom3_op_f32_t fun,
  6340. bool inplace) {
  6341. bool is_node = false;
  6342. if (!inplace && (a->grad || b->grad || c->grad)) {
  6343. is_node = true;
  6344. }
  6345. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6346. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6347. result->op = GGML_OP_MAP_CUSTOM3_F32;
  6348. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6349. result->src[0] = a;
  6350. result->src[1] = b;
  6351. result->src[2] = c;
  6352. return result;
  6353. }
  6354. struct ggml_tensor * ggml_map_custom3_f32(
  6355. struct ggml_context * ctx,
  6356. struct ggml_tensor * a,
  6357. struct ggml_tensor * b,
  6358. struct ggml_tensor * c,
  6359. const ggml_custom3_op_f32_t fun) {
  6360. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6361. }
  6362. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6363. struct ggml_context * ctx,
  6364. struct ggml_tensor * a,
  6365. struct ggml_tensor * b,
  6366. struct ggml_tensor * c,
  6367. const ggml_custom3_op_f32_t fun) {
  6368. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6369. }
  6370. // ggml_map_custom1
  6371. struct ggml_map_custom1_op_params {
  6372. ggml_custom1_op_t fun;
  6373. int n_tasks;
  6374. void * userdata;
  6375. };
  6376. static struct ggml_tensor * ggml_map_custom1_impl(
  6377. struct ggml_context * ctx,
  6378. struct ggml_tensor * a,
  6379. const ggml_custom1_op_t fun,
  6380. int n_tasks,
  6381. void * userdata,
  6382. bool inplace) {
  6383. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6384. bool is_node = false;
  6385. if (!inplace && a->grad) {
  6386. is_node = true;
  6387. }
  6388. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6389. struct ggml_map_custom1_op_params params = {
  6390. /*.fun =*/ fun,
  6391. /*.n_tasks =*/ n_tasks,
  6392. /*.userdata =*/ userdata
  6393. };
  6394. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6395. result->op = GGML_OP_MAP_CUSTOM1;
  6396. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6397. result->src[0] = a;
  6398. return result;
  6399. }
  6400. struct ggml_tensor * ggml_map_custom1(
  6401. struct ggml_context * ctx,
  6402. struct ggml_tensor * a,
  6403. const ggml_custom1_op_t fun,
  6404. int n_tasks,
  6405. void * userdata) {
  6406. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6407. }
  6408. struct ggml_tensor * ggml_map_custom1_inplace(
  6409. struct ggml_context * ctx,
  6410. struct ggml_tensor * a,
  6411. const ggml_custom1_op_t fun,
  6412. int n_tasks,
  6413. void * userdata) {
  6414. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6415. }
  6416. // ggml_map_custom2
  6417. struct ggml_map_custom2_op_params {
  6418. ggml_custom2_op_t fun;
  6419. int n_tasks;
  6420. void * userdata;
  6421. };
  6422. static struct ggml_tensor * ggml_map_custom2_impl(
  6423. struct ggml_context * ctx,
  6424. struct ggml_tensor * a,
  6425. struct ggml_tensor * b,
  6426. const ggml_custom2_op_t fun,
  6427. int n_tasks,
  6428. void * userdata,
  6429. bool inplace) {
  6430. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6431. bool is_node = false;
  6432. if (!inplace && (a->grad || b->grad)) {
  6433. is_node = true;
  6434. }
  6435. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6436. struct ggml_map_custom2_op_params params = {
  6437. /*.fun =*/ fun,
  6438. /*.n_tasks =*/ n_tasks,
  6439. /*.userdata =*/ userdata
  6440. };
  6441. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6442. result->op = GGML_OP_MAP_CUSTOM2;
  6443. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6444. result->src[0] = a;
  6445. result->src[1] = b;
  6446. return result;
  6447. }
  6448. struct ggml_tensor * ggml_map_custom2(
  6449. struct ggml_context * ctx,
  6450. struct ggml_tensor * a,
  6451. struct ggml_tensor * b,
  6452. const ggml_custom2_op_t fun,
  6453. int n_tasks,
  6454. void * userdata) {
  6455. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6456. }
  6457. struct ggml_tensor * ggml_map_custom2_inplace(
  6458. struct ggml_context * ctx,
  6459. struct ggml_tensor * a,
  6460. struct ggml_tensor * b,
  6461. const ggml_custom2_op_t fun,
  6462. int n_tasks,
  6463. void * userdata) {
  6464. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6465. }
  6466. // ggml_map_custom3
  6467. struct ggml_map_custom3_op_params {
  6468. ggml_custom3_op_t fun;
  6469. int n_tasks;
  6470. void * userdata;
  6471. };
  6472. static struct ggml_tensor * ggml_map_custom3_impl(
  6473. struct ggml_context * ctx,
  6474. struct ggml_tensor * a,
  6475. struct ggml_tensor * b,
  6476. struct ggml_tensor * c,
  6477. const ggml_custom3_op_t fun,
  6478. int n_tasks,
  6479. void * userdata,
  6480. bool inplace) {
  6481. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6482. bool is_node = false;
  6483. if (!inplace && (a->grad || b->grad || c->grad)) {
  6484. is_node = true;
  6485. }
  6486. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6487. struct ggml_map_custom3_op_params params = {
  6488. /*.fun =*/ fun,
  6489. /*.n_tasks =*/ n_tasks,
  6490. /*.userdata =*/ userdata
  6491. };
  6492. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6493. result->op = GGML_OP_MAP_CUSTOM3;
  6494. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6495. result->src[0] = a;
  6496. result->src[1] = b;
  6497. result->src[2] = c;
  6498. return result;
  6499. }
  6500. struct ggml_tensor * ggml_map_custom3(
  6501. struct ggml_context * ctx,
  6502. struct ggml_tensor * a,
  6503. struct ggml_tensor * b,
  6504. struct ggml_tensor * c,
  6505. const ggml_custom3_op_t fun,
  6506. int n_tasks,
  6507. void * userdata) {
  6508. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6509. }
  6510. struct ggml_tensor * ggml_map_custom3_inplace(
  6511. struct ggml_context * ctx,
  6512. struct ggml_tensor * a,
  6513. struct ggml_tensor * b,
  6514. struct ggml_tensor * c,
  6515. const ggml_custom3_op_t fun,
  6516. int n_tasks,
  6517. void * userdata) {
  6518. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6519. }
  6520. // ggml_cross_entropy_loss
  6521. struct ggml_tensor * ggml_cross_entropy_loss(
  6522. struct ggml_context * ctx,
  6523. struct ggml_tensor * a,
  6524. struct ggml_tensor * b) {
  6525. GGML_ASSERT(ggml_are_same_shape(a, b));
  6526. bool is_node = false;
  6527. if (a->grad || b->grad) {
  6528. is_node = true;
  6529. }
  6530. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6531. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6532. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6533. result->src[0] = a;
  6534. result->src[1] = b;
  6535. return result;
  6536. }
  6537. // ggml_cross_entropy_loss_back
  6538. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6539. struct ggml_context * ctx,
  6540. struct ggml_tensor * a,
  6541. struct ggml_tensor * b,
  6542. struct ggml_tensor * c) {
  6543. GGML_ASSERT(ggml_are_same_shape(a, b));
  6544. GGML_ASSERT(ggml_is_scalar(c));
  6545. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6546. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6547. result->grad = NULL;
  6548. result->src[0] = a;
  6549. result->src[1] = b;
  6550. result->src[2] = c;
  6551. return result;
  6552. }
  6553. ////////////////////////////////////////////////////////////////////////////////
  6554. void ggml_set_param(
  6555. struct ggml_context * ctx,
  6556. struct ggml_tensor * tensor) {
  6557. tensor->is_param = true;
  6558. GGML_ASSERT(tensor->grad == NULL);
  6559. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6560. }
  6561. // ggml_compute_forward_dup
  6562. static void ggml_compute_forward_dup_same_cont(
  6563. const struct ggml_compute_params * params,
  6564. const struct ggml_tensor * src0,
  6565. struct ggml_tensor * dst) {
  6566. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6567. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6568. GGML_ASSERT(src0->type == dst->type);
  6569. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6570. return;
  6571. }
  6572. const size_t nb00 = src0->nb[0];
  6573. const size_t nb0 = dst->nb[0];
  6574. const int ith = params->ith; // thread index
  6575. const int nth = params->nth; // number of threads
  6576. // parallelize by elements
  6577. const int ne = ggml_nelements(dst);
  6578. const int dr = (ne + nth - 1) / nth;
  6579. const int ie0 = dr * ith;
  6580. const int ie1 = MIN(ie0 + dr, ne);
  6581. if (ie0 < ie1) {
  6582. memcpy(
  6583. ((char *) dst->data + ie0*nb0),
  6584. ((char *) src0->data + ie0*nb00),
  6585. (ie1 - ie0) * ggml_type_size(src0->type));
  6586. }
  6587. }
  6588. static void ggml_compute_forward_dup_f16(
  6589. const struct ggml_compute_params * params,
  6590. const struct ggml_tensor * src0,
  6591. struct ggml_tensor * dst) {
  6592. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6593. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6594. return;
  6595. }
  6596. GGML_TENSOR_UNARY_OP_LOCALS;
  6597. const int ith = params->ith; // thread index
  6598. const int nth = params->nth; // number of threads
  6599. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6600. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6601. return;
  6602. }
  6603. // parallelize by rows
  6604. const int nr = ne01;
  6605. // number of rows per thread
  6606. const int dr = (nr + nth - 1) / nth;
  6607. // row range for this thread
  6608. const int ir0 = dr * ith;
  6609. const int ir1 = MIN(ir0 + dr, nr);
  6610. if (src0->type == dst->type &&
  6611. ne00 == ne0 &&
  6612. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6613. // copy by rows
  6614. const size_t rs = ne00*nb00;
  6615. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6616. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6617. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6618. memcpy(
  6619. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6620. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6621. rs);
  6622. }
  6623. }
  6624. }
  6625. return;
  6626. }
  6627. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6628. if (ggml_is_contiguous(dst)) {
  6629. if (nb00 == sizeof(ggml_fp16_t)) {
  6630. if (dst->type == GGML_TYPE_F16) {
  6631. size_t id = 0;
  6632. const size_t rs = ne00 * nb00;
  6633. char * dst_ptr = (char *) dst->data;
  6634. for (int i03 = 0; i03 < ne03; i03++) {
  6635. for (int i02 = 0; i02 < ne02; i02++) {
  6636. id += rs * ir0;
  6637. for (int i01 = ir0; i01 < ir1; i01++) {
  6638. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6639. memcpy(dst_ptr + id, src0_ptr, rs);
  6640. id += rs;
  6641. }
  6642. id += rs * (ne01 - ir1);
  6643. }
  6644. }
  6645. } else if (dst->type == GGML_TYPE_F32) {
  6646. size_t id = 0;
  6647. float * dst_ptr = (float *) dst->data;
  6648. for (int i03 = 0; i03 < ne03; i03++) {
  6649. for (int i02 = 0; i02 < ne02; i02++) {
  6650. id += ne00 * ir0;
  6651. for (int i01 = ir0; i01 < ir1; i01++) {
  6652. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6653. for (int i00 = 0; i00 < ne00; i00++) {
  6654. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6655. id++;
  6656. }
  6657. }
  6658. id += ne00 * (ne01 - ir1);
  6659. }
  6660. }
  6661. } else if (type_traits[dst->type].from_float) {
  6662. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6663. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6664. size_t id = 0;
  6665. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6666. char * dst_ptr = (char *) dst->data;
  6667. for (int i03 = 0; i03 < ne03; i03++) {
  6668. for (int i02 = 0; i02 < ne02; i02++) {
  6669. id += rs * ir0;
  6670. for (int i01 = ir0; i01 < ir1; i01++) {
  6671. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6672. for (int i00 = 0; i00 < ne00; i00++) {
  6673. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6674. }
  6675. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6676. id += rs;
  6677. }
  6678. id += rs * (ne01 - ir1);
  6679. }
  6680. }
  6681. } else {
  6682. GGML_ASSERT(false); // TODO: implement
  6683. }
  6684. } else {
  6685. //printf("%s: this is not optimal - fix me\n", __func__);
  6686. if (dst->type == GGML_TYPE_F32) {
  6687. size_t id = 0;
  6688. float * dst_ptr = (float *) dst->data;
  6689. for (int i03 = 0; i03 < ne03; i03++) {
  6690. for (int i02 = 0; i02 < ne02; i02++) {
  6691. id += ne00 * ir0;
  6692. for (int i01 = ir0; i01 < ir1; i01++) {
  6693. for (int i00 = 0; i00 < ne00; i00++) {
  6694. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6695. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6696. id++;
  6697. }
  6698. }
  6699. id += ne00 * (ne01 - ir1);
  6700. }
  6701. }
  6702. } else if (dst->type == GGML_TYPE_F16) {
  6703. size_t id = 0;
  6704. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6705. for (int i03 = 0; i03 < ne03; i03++) {
  6706. for (int i02 = 0; i02 < ne02; i02++) {
  6707. id += ne00 * ir0;
  6708. for (int i01 = ir0; i01 < ir1; i01++) {
  6709. for (int i00 = 0; i00 < ne00; i00++) {
  6710. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6711. dst_ptr[id] = *src0_ptr;
  6712. id++;
  6713. }
  6714. }
  6715. id += ne00 * (ne01 - ir1);
  6716. }
  6717. }
  6718. } else {
  6719. GGML_ASSERT(false); // TODO: implement
  6720. }
  6721. }
  6722. return;
  6723. }
  6724. // dst counters
  6725. int64_t i10 = 0;
  6726. int64_t i11 = 0;
  6727. int64_t i12 = 0;
  6728. int64_t i13 = 0;
  6729. if (dst->type == GGML_TYPE_F16) {
  6730. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6731. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6732. i10 += ne00 * ir0;
  6733. while (i10 >= ne0) {
  6734. i10 -= ne0;
  6735. if (++i11 == ne1) {
  6736. i11 = 0;
  6737. if (++i12 == ne2) {
  6738. i12 = 0;
  6739. if (++i13 == ne3) {
  6740. i13 = 0;
  6741. }
  6742. }
  6743. }
  6744. }
  6745. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6746. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6747. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6748. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6749. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6750. if (++i10 == ne00) {
  6751. i10 = 0;
  6752. if (++i11 == ne01) {
  6753. i11 = 0;
  6754. if (++i12 == ne02) {
  6755. i12 = 0;
  6756. if (++i13 == ne03) {
  6757. i13 = 0;
  6758. }
  6759. }
  6760. }
  6761. }
  6762. }
  6763. }
  6764. i10 += ne00 * (ne01 - ir1);
  6765. while (i10 >= ne0) {
  6766. i10 -= ne0;
  6767. if (++i11 == ne1) {
  6768. i11 = 0;
  6769. if (++i12 == ne2) {
  6770. i12 = 0;
  6771. if (++i13 == ne3) {
  6772. i13 = 0;
  6773. }
  6774. }
  6775. }
  6776. }
  6777. }
  6778. }
  6779. } else if (dst->type == GGML_TYPE_F32) {
  6780. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6781. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6782. i10 += ne00 * ir0;
  6783. while (i10 >= ne0) {
  6784. i10 -= ne0;
  6785. if (++i11 == ne1) {
  6786. i11 = 0;
  6787. if (++i12 == ne2) {
  6788. i12 = 0;
  6789. if (++i13 == ne3) {
  6790. i13 = 0;
  6791. }
  6792. }
  6793. }
  6794. }
  6795. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6796. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6797. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6798. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6799. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6800. if (++i10 == ne0) {
  6801. i10 = 0;
  6802. if (++i11 == ne1) {
  6803. i11 = 0;
  6804. if (++i12 == ne2) {
  6805. i12 = 0;
  6806. if (++i13 == ne3) {
  6807. i13 = 0;
  6808. }
  6809. }
  6810. }
  6811. }
  6812. }
  6813. }
  6814. i10 += ne00 * (ne01 - ir1);
  6815. while (i10 >= ne0) {
  6816. i10 -= ne0;
  6817. if (++i11 == ne1) {
  6818. i11 = 0;
  6819. if (++i12 == ne2) {
  6820. i12 = 0;
  6821. if (++i13 == ne3) {
  6822. i13 = 0;
  6823. }
  6824. }
  6825. }
  6826. }
  6827. }
  6828. }
  6829. } else {
  6830. GGML_ASSERT(false); // TODO: implement
  6831. }
  6832. }
  6833. static void ggml_compute_forward_dup_f32(
  6834. const struct ggml_compute_params * params,
  6835. const struct ggml_tensor * src0,
  6836. struct ggml_tensor * dst) {
  6837. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6838. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6839. return;
  6840. }
  6841. GGML_TENSOR_UNARY_OP_LOCALS;
  6842. const int ith = params->ith; // thread index
  6843. const int nth = params->nth; // number of threads
  6844. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6845. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6846. return;
  6847. }
  6848. // parallelize by rows
  6849. const int nr = ne01;
  6850. // number of rows per thread
  6851. const int dr = (nr + nth - 1) / nth;
  6852. // row range for this thread
  6853. const int ir0 = dr * ith;
  6854. const int ir1 = MIN(ir0 + dr, nr);
  6855. if (src0->type == dst->type &&
  6856. ne00 == ne0 &&
  6857. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6858. // copy by rows
  6859. const size_t rs = ne00*nb00;
  6860. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6861. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6862. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6863. memcpy(
  6864. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6865. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6866. rs);
  6867. }
  6868. }
  6869. }
  6870. return;
  6871. }
  6872. if (ggml_is_contiguous(dst)) {
  6873. // TODO: simplify
  6874. if (nb00 == sizeof(float)) {
  6875. if (dst->type == GGML_TYPE_F32) {
  6876. size_t id = 0;
  6877. const size_t rs = ne00 * nb00;
  6878. char * dst_ptr = (char *) dst->data;
  6879. for (int i03 = 0; i03 < ne03; i03++) {
  6880. for (int i02 = 0; i02 < ne02; i02++) {
  6881. id += rs * ir0;
  6882. for (int i01 = ir0; i01 < ir1; i01++) {
  6883. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6884. memcpy(dst_ptr + id, src0_ptr, rs);
  6885. id += rs;
  6886. }
  6887. id += rs * (ne01 - ir1);
  6888. }
  6889. }
  6890. } else if (type_traits[dst->type].from_float) {
  6891. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6892. size_t id = 0;
  6893. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6894. char * dst_ptr = (char *) dst->data;
  6895. for (int i03 = 0; i03 < ne03; i03++) {
  6896. for (int i02 = 0; i02 < ne02; i02++) {
  6897. id += rs * ir0;
  6898. for (int i01 = ir0; i01 < ir1; i01++) {
  6899. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6900. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6901. id += rs;
  6902. }
  6903. id += rs * (ne01 - ir1);
  6904. }
  6905. }
  6906. } else {
  6907. GGML_ASSERT(false); // TODO: implement
  6908. }
  6909. } else {
  6910. //printf("%s: this is not optimal - fix me\n", __func__);
  6911. if (dst->type == GGML_TYPE_F32) {
  6912. size_t id = 0;
  6913. float * dst_ptr = (float *) dst->data;
  6914. for (int i03 = 0; i03 < ne03; i03++) {
  6915. for (int i02 = 0; i02 < ne02; i02++) {
  6916. id += ne00 * ir0;
  6917. for (int i01 = ir0; i01 < ir1; i01++) {
  6918. for (int i00 = 0; i00 < ne00; i00++) {
  6919. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6920. dst_ptr[id] = *src0_ptr;
  6921. id++;
  6922. }
  6923. }
  6924. id += ne00 * (ne01 - ir1);
  6925. }
  6926. }
  6927. } else if (dst->type == GGML_TYPE_F16) {
  6928. size_t id = 0;
  6929. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6930. for (int i03 = 0; i03 < ne03; i03++) {
  6931. for (int i02 = 0; i02 < ne02; i02++) {
  6932. id += ne00 * ir0;
  6933. for (int i01 = ir0; i01 < ir1; i01++) {
  6934. for (int i00 = 0; i00 < ne00; i00++) {
  6935. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6936. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6937. id++;
  6938. }
  6939. }
  6940. id += ne00 * (ne01 - ir1);
  6941. }
  6942. }
  6943. } else {
  6944. GGML_ASSERT(false); // TODO: implement
  6945. }
  6946. }
  6947. return;
  6948. }
  6949. // dst counters
  6950. int64_t i10 = 0;
  6951. int64_t i11 = 0;
  6952. int64_t i12 = 0;
  6953. int64_t i13 = 0;
  6954. if (dst->type == GGML_TYPE_F32) {
  6955. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6956. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6957. i10 += ne00 * ir0;
  6958. while (i10 >= ne0) {
  6959. i10 -= ne0;
  6960. if (++i11 == ne1) {
  6961. i11 = 0;
  6962. if (++i12 == ne2) {
  6963. i12 = 0;
  6964. if (++i13 == ne3) {
  6965. i13 = 0;
  6966. }
  6967. }
  6968. }
  6969. }
  6970. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6971. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6972. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6973. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6974. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6975. if (++i10 == ne0) {
  6976. i10 = 0;
  6977. if (++i11 == ne1) {
  6978. i11 = 0;
  6979. if (++i12 == ne2) {
  6980. i12 = 0;
  6981. if (++i13 == ne3) {
  6982. i13 = 0;
  6983. }
  6984. }
  6985. }
  6986. }
  6987. }
  6988. }
  6989. i10 += ne00 * (ne01 - ir1);
  6990. while (i10 >= ne0) {
  6991. i10 -= ne0;
  6992. if (++i11 == ne1) {
  6993. i11 = 0;
  6994. if (++i12 == ne2) {
  6995. i12 = 0;
  6996. if (++i13 == ne3) {
  6997. i13 = 0;
  6998. }
  6999. }
  7000. }
  7001. }
  7002. }
  7003. }
  7004. } else if (dst->type == GGML_TYPE_F16) {
  7005. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7006. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7007. i10 += ne00 * ir0;
  7008. while (i10 >= ne0) {
  7009. i10 -= ne0;
  7010. if (++i11 == ne1) {
  7011. i11 = 0;
  7012. if (++i12 == ne2) {
  7013. i12 = 0;
  7014. if (++i13 == ne3) {
  7015. i13 = 0;
  7016. }
  7017. }
  7018. }
  7019. }
  7020. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7021. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7022. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7023. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7024. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  7025. if (++i10 == ne0) {
  7026. i10 = 0;
  7027. if (++i11 == ne1) {
  7028. i11 = 0;
  7029. if (++i12 == ne2) {
  7030. i12 = 0;
  7031. if (++i13 == ne3) {
  7032. i13 = 0;
  7033. }
  7034. }
  7035. }
  7036. }
  7037. }
  7038. }
  7039. i10 += ne00 * (ne01 - ir1);
  7040. while (i10 >= ne0) {
  7041. i10 -= ne0;
  7042. if (++i11 == ne1) {
  7043. i11 = 0;
  7044. if (++i12 == ne2) {
  7045. i12 = 0;
  7046. if (++i13 == ne3) {
  7047. i13 = 0;
  7048. }
  7049. }
  7050. }
  7051. }
  7052. }
  7053. }
  7054. } else {
  7055. GGML_ASSERT(false); // TODO: implement
  7056. }
  7057. }
  7058. static void ggml_compute_forward_dup(
  7059. const struct ggml_compute_params * params,
  7060. const struct ggml_tensor * src0,
  7061. struct ggml_tensor * dst) {
  7062. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  7063. ggml_compute_forward_dup_same_cont(params, src0, dst);
  7064. return;
  7065. }
  7066. switch (src0->type) {
  7067. case GGML_TYPE_F16:
  7068. {
  7069. ggml_compute_forward_dup_f16(params, src0, dst);
  7070. } break;
  7071. case GGML_TYPE_F32:
  7072. {
  7073. ggml_compute_forward_dup_f32(params, src0, dst);
  7074. } break;
  7075. default:
  7076. {
  7077. GGML_ASSERT(false);
  7078. } break;
  7079. }
  7080. }
  7081. // ggml_compute_forward_add
  7082. static void ggml_compute_forward_add_f32(
  7083. const struct ggml_compute_params * params,
  7084. const struct ggml_tensor * src0,
  7085. const struct ggml_tensor * src1,
  7086. struct ggml_tensor * dst) {
  7087. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7088. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7089. return;
  7090. }
  7091. const int ith = params->ith;
  7092. const int nth = params->nth;
  7093. const int nr = ggml_nrows(src0);
  7094. GGML_TENSOR_BINARY_OP_LOCALS;
  7095. GGML_ASSERT( nb0 == sizeof(float));
  7096. GGML_ASSERT(nb00 == sizeof(float));
  7097. // rows per thread
  7098. const int dr = (nr + nth - 1)/nth;
  7099. // row range for this thread
  7100. const int ir0 = dr*ith;
  7101. const int ir1 = MIN(ir0 + dr, nr);
  7102. if (nb10 == sizeof(float)) {
  7103. for (int ir = ir0; ir < ir1; ++ir) {
  7104. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7105. const int64_t i03 = ir/(ne02*ne01);
  7106. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7107. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7108. const int64_t i13 = i03 % ne13;
  7109. const int64_t i12 = i02 % ne12;
  7110. const int64_t i11 = i01 % ne11;
  7111. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7112. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7113. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7114. #ifdef GGML_USE_ACCELERATE
  7115. vDSP_vadd(src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7116. #else
  7117. ggml_vec_add_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7118. #endif
  7119. }
  7120. } else {
  7121. // src1 is not contiguous
  7122. for (int ir = ir0; ir < ir1; ++ir) {
  7123. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7124. const int64_t i03 = ir/(ne02*ne01);
  7125. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7126. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7127. const int64_t i13 = i03 % ne13;
  7128. const int64_t i12 = i02 % ne12;
  7129. const int64_t i11 = i01 % ne11;
  7130. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7131. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7132. for (int i0 = 0; i0 < ne0; i0++) {
  7133. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7134. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  7135. }
  7136. }
  7137. }
  7138. }
  7139. static void ggml_compute_forward_add_f16_f32(
  7140. const struct ggml_compute_params * params,
  7141. const struct ggml_tensor * src0,
  7142. const struct ggml_tensor * src1,
  7143. struct ggml_tensor * dst) {
  7144. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7145. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7146. return;
  7147. }
  7148. const int ith = params->ith;
  7149. const int nth = params->nth;
  7150. const int nr = ggml_nrows(src0);
  7151. GGML_TENSOR_BINARY_OP_LOCALS;
  7152. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7153. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7154. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7155. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7156. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7157. // rows per thread
  7158. const int dr = (nr + nth - 1)/nth;
  7159. // row range for this thread
  7160. const int ir0 = dr*ith;
  7161. const int ir1 = MIN(ir0 + dr, nr);
  7162. if (nb10 == sizeof(float)) {
  7163. for (int ir = ir0; ir < ir1; ++ir) {
  7164. // src0, src1 and dst are same shape => same indices
  7165. const int i3 = ir/(ne2*ne1);
  7166. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7167. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7168. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7169. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7170. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7171. for (int i = 0; i < ne0; i++) {
  7172. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7173. }
  7174. }
  7175. }
  7176. else {
  7177. // src1 is not contiguous
  7178. GGML_ASSERT(false);
  7179. }
  7180. }
  7181. static void ggml_compute_forward_add_f16_f16(
  7182. const struct ggml_compute_params * params,
  7183. const struct ggml_tensor * src0,
  7184. const struct ggml_tensor * src1,
  7185. struct ggml_tensor * dst) {
  7186. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7187. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7188. return;
  7189. }
  7190. const int ith = params->ith;
  7191. const int nth = params->nth;
  7192. const int nr = ggml_nrows(src0);
  7193. GGML_TENSOR_BINARY_OP_LOCALS;
  7194. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7195. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7196. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7197. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7198. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7199. // rows per thread
  7200. const int dr = (nr + nth - 1)/nth;
  7201. // row range for this thread
  7202. const int ir0 = dr*ith;
  7203. const int ir1 = MIN(ir0 + dr, nr);
  7204. if (nb10 == sizeof(ggml_fp16_t)) {
  7205. for (int ir = ir0; ir < ir1; ++ir) {
  7206. // src0, src1 and dst are same shape => same indices
  7207. const int i3 = ir/(ne2*ne1);
  7208. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7209. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7210. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7211. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7212. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7213. for (int i = 0; i < ne0; i++) {
  7214. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7215. }
  7216. }
  7217. }
  7218. else {
  7219. // src1 is not contiguous
  7220. GGML_ASSERT(false);
  7221. }
  7222. }
  7223. static void ggml_compute_forward_add_q_f32(
  7224. const struct ggml_compute_params * params,
  7225. const struct ggml_tensor * src0,
  7226. const struct ggml_tensor * src1,
  7227. struct ggml_tensor * dst) {
  7228. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7229. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7230. return;
  7231. }
  7232. const int nr = ggml_nrows(src0);
  7233. GGML_TENSOR_BINARY_OP_LOCALS;
  7234. const int ith = params->ith;
  7235. const int nth = params->nth;
  7236. const enum ggml_type type = src0->type;
  7237. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7238. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7239. // we don't support permuted src0 or src1
  7240. GGML_ASSERT(nb00 == ggml_type_size(type));
  7241. GGML_ASSERT(nb10 == sizeof(float));
  7242. // dst cannot be transposed or permuted
  7243. GGML_ASSERT(nb0 <= nb1);
  7244. GGML_ASSERT(nb1 <= nb2);
  7245. GGML_ASSERT(nb2 <= nb3);
  7246. GGML_ASSERT(ggml_is_quantized(src0->type));
  7247. GGML_ASSERT(dst->type == src0->type);
  7248. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7249. // rows per thread
  7250. const int dr = (nr + nth - 1)/nth;
  7251. // row range for this thread
  7252. const int ir0 = dr*ith;
  7253. const int ir1 = MIN(ir0 + dr, nr);
  7254. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7255. for (int ir = ir0; ir < ir1; ++ir) {
  7256. // src0 indices
  7257. const int i03 = ir/(ne02*ne01);
  7258. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7259. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7260. // src1 and dst are same shape as src0 => same indices
  7261. const int i13 = i03;
  7262. const int i12 = i02;
  7263. const int i11 = i01;
  7264. const int i3 = i03;
  7265. const int i2 = i02;
  7266. const int i1 = i01;
  7267. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7268. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7269. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7270. assert(ne00 % 32 == 0);
  7271. // unquantize row from src0 to temp buffer
  7272. dequantize_row_q(src0_row, wdata, ne00);
  7273. // add src1
  7274. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7275. // quantize row to dst
  7276. quantize_row_q(wdata, dst_row, ne00);
  7277. }
  7278. }
  7279. static void ggml_compute_forward_add(
  7280. const struct ggml_compute_params * params,
  7281. const struct ggml_tensor * src0,
  7282. const struct ggml_tensor * src1,
  7283. struct ggml_tensor * dst) {
  7284. switch (src0->type) {
  7285. case GGML_TYPE_F32:
  7286. {
  7287. ggml_compute_forward_add_f32(params, src0, src1, dst);
  7288. } break;
  7289. case GGML_TYPE_F16:
  7290. {
  7291. if (src1->type == GGML_TYPE_F16) {
  7292. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  7293. }
  7294. else if (src1->type == GGML_TYPE_F32) {
  7295. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  7296. }
  7297. else {
  7298. GGML_ASSERT(false);
  7299. }
  7300. } break;
  7301. case GGML_TYPE_Q4_0:
  7302. case GGML_TYPE_Q4_1:
  7303. case GGML_TYPE_Q5_0:
  7304. case GGML_TYPE_Q5_1:
  7305. case GGML_TYPE_Q8_0:
  7306. case GGML_TYPE_Q2_K:
  7307. case GGML_TYPE_Q3_K:
  7308. case GGML_TYPE_Q4_K:
  7309. case GGML_TYPE_Q5_K:
  7310. case GGML_TYPE_Q6_K:
  7311. {
  7312. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  7313. } break;
  7314. default:
  7315. {
  7316. GGML_ASSERT(false);
  7317. } break;
  7318. }
  7319. }
  7320. // ggml_compute_forward_add1
  7321. static void ggml_compute_forward_add1_f32(
  7322. const struct ggml_compute_params * params,
  7323. const struct ggml_tensor * src0,
  7324. const struct ggml_tensor * src1,
  7325. struct ggml_tensor * dst) {
  7326. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7327. GGML_ASSERT(ggml_is_scalar(src1));
  7328. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7329. return;
  7330. }
  7331. const int ith = params->ith;
  7332. const int nth = params->nth;
  7333. const int nr = ggml_nrows(src0);
  7334. GGML_TENSOR_UNARY_OP_LOCALS;
  7335. GGML_ASSERT( nb0 == sizeof(float));
  7336. GGML_ASSERT(nb00 == sizeof(float));
  7337. // rows per thread
  7338. const int dr = (nr + nth - 1)/nth;
  7339. // row range for this thread
  7340. const int ir0 = dr*ith;
  7341. const int ir1 = MIN(ir0 + dr, nr);
  7342. for (int ir = ir0; ir < ir1; ++ir) {
  7343. // src0 and dst are same shape => same indices
  7344. const int i3 = ir/(ne2*ne1);
  7345. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7346. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7347. #ifdef GGML_USE_ACCELERATE
  7348. UNUSED(ggml_vec_add1_f32);
  7349. vDSP_vadd(
  7350. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7351. (float *) ((char *) src1->data), 0,
  7352. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7353. ne0);
  7354. #else
  7355. ggml_vec_add1_f32(ne0,
  7356. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7357. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7358. *(float *) src1->data);
  7359. #endif
  7360. }
  7361. }
  7362. static void ggml_compute_forward_add1_f16_f32(
  7363. const struct ggml_compute_params * params,
  7364. const struct ggml_tensor * src0,
  7365. const struct ggml_tensor * src1,
  7366. struct ggml_tensor * dst) {
  7367. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7368. GGML_ASSERT(ggml_is_scalar(src1));
  7369. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7370. return;
  7371. }
  7372. // scalar to add
  7373. const float v = *(float *) src1->data;
  7374. const int ith = params->ith;
  7375. const int nth = params->nth;
  7376. const int nr = ggml_nrows(src0);
  7377. GGML_TENSOR_UNARY_OP_LOCALS;
  7378. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7379. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7380. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7381. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7382. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7383. // rows per thread
  7384. const int dr = (nr + nth - 1)/nth;
  7385. // row range for this thread
  7386. const int ir0 = dr*ith;
  7387. const int ir1 = MIN(ir0 + dr, nr);
  7388. for (int ir = ir0; ir < ir1; ++ir) {
  7389. // src0 and dst are same shape => same indices
  7390. const int i3 = ir/(ne2*ne1);
  7391. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7392. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7393. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7394. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7395. for (int i = 0; i < ne0; i++) {
  7396. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7397. }
  7398. }
  7399. }
  7400. static void ggml_compute_forward_add1_f16_f16(
  7401. const struct ggml_compute_params * params,
  7402. const struct ggml_tensor * src0,
  7403. const struct ggml_tensor * src1,
  7404. struct ggml_tensor * dst) {
  7405. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7406. GGML_ASSERT(ggml_is_scalar(src1));
  7407. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7408. return;
  7409. }
  7410. // scalar to add
  7411. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  7412. const int ith = params->ith;
  7413. const int nth = params->nth;
  7414. const int nr = ggml_nrows(src0);
  7415. GGML_TENSOR_UNARY_OP_LOCALS;
  7416. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7417. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7418. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7419. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7420. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7421. // rows per thread
  7422. const int dr = (nr + nth - 1)/nth;
  7423. // row range for this thread
  7424. const int ir0 = dr*ith;
  7425. const int ir1 = MIN(ir0 + dr, nr);
  7426. for (int ir = ir0; ir < ir1; ++ir) {
  7427. // src0 and dst are same shape => same indices
  7428. const int i3 = ir/(ne2*ne1);
  7429. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7430. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7431. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7432. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7433. for (int i = 0; i < ne0; i++) {
  7434. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7435. }
  7436. }
  7437. }
  7438. static void ggml_compute_forward_add1_q_f32(
  7439. const struct ggml_compute_params * params,
  7440. const struct ggml_tensor * src0,
  7441. const struct ggml_tensor * src1,
  7442. struct ggml_tensor * dst) {
  7443. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7444. GGML_ASSERT(ggml_is_scalar(src1));
  7445. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7446. return;
  7447. }
  7448. // scalar to add
  7449. const float v = *(float *) src1->data;
  7450. const int ith = params->ith;
  7451. const int nth = params->nth;
  7452. const int nr = ggml_nrows(src0);
  7453. GGML_TENSOR_UNARY_OP_LOCALS;
  7454. const enum ggml_type type = src0->type;
  7455. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7456. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7457. // we don't support permuted src0
  7458. GGML_ASSERT(nb00 == ggml_type_size(type));
  7459. // dst cannot be transposed or permuted
  7460. GGML_ASSERT(nb0 <= nb1);
  7461. GGML_ASSERT(nb1 <= nb2);
  7462. GGML_ASSERT(nb2 <= nb3);
  7463. GGML_ASSERT(ggml_is_quantized(src0->type));
  7464. GGML_ASSERT(dst->type == src0->type);
  7465. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7466. // rows per thread
  7467. const int dr = (nr + nth - 1)/nth;
  7468. // row range for this thread
  7469. const int ir0 = dr*ith;
  7470. const int ir1 = MIN(ir0 + dr, nr);
  7471. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  7472. for (int ir = ir0; ir < ir1; ++ir) {
  7473. // src0 and dst are same shape => same indices
  7474. const int i3 = ir/(ne2*ne1);
  7475. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7476. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7477. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  7478. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  7479. assert(ne0 % 32 == 0);
  7480. // unquantize row from src0 to temp buffer
  7481. dequantize_row_q(src0_row, wdata, ne0);
  7482. // add src1
  7483. ggml_vec_acc1_f32(ne0, wdata, v);
  7484. // quantize row to dst
  7485. quantize_row_q(wdata, dst_row, ne0);
  7486. }
  7487. }
  7488. static void ggml_compute_forward_add1(
  7489. const struct ggml_compute_params * params,
  7490. const struct ggml_tensor * src0,
  7491. const struct ggml_tensor * src1,
  7492. struct ggml_tensor * dst) {
  7493. switch (src0->type) {
  7494. case GGML_TYPE_F32:
  7495. {
  7496. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  7497. } break;
  7498. case GGML_TYPE_F16:
  7499. {
  7500. if (src1->type == GGML_TYPE_F16) {
  7501. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  7502. }
  7503. else if (src1->type == GGML_TYPE_F32) {
  7504. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  7505. }
  7506. else {
  7507. GGML_ASSERT(false);
  7508. }
  7509. } break;
  7510. case GGML_TYPE_Q4_0:
  7511. case GGML_TYPE_Q4_1:
  7512. case GGML_TYPE_Q5_0:
  7513. case GGML_TYPE_Q5_1:
  7514. case GGML_TYPE_Q8_0:
  7515. case GGML_TYPE_Q8_1:
  7516. case GGML_TYPE_Q2_K:
  7517. case GGML_TYPE_Q3_K:
  7518. case GGML_TYPE_Q4_K:
  7519. case GGML_TYPE_Q5_K:
  7520. case GGML_TYPE_Q6_K:
  7521. {
  7522. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  7523. } break;
  7524. default:
  7525. {
  7526. GGML_ASSERT(false);
  7527. } break;
  7528. }
  7529. }
  7530. // ggml_compute_forward_acc
  7531. static void ggml_compute_forward_acc_f32(
  7532. const struct ggml_compute_params * params,
  7533. const struct ggml_tensor * src0,
  7534. const struct ggml_tensor * src1,
  7535. struct ggml_tensor * dst) {
  7536. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7537. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7538. // view src0 and dst with these strides and data offset inbytes during acc
  7539. // nb0 is implicitely element_size because src0 and dst are contiguous
  7540. size_t nb1 = ((int32_t *) dst->op_params)[0];
  7541. size_t nb2 = ((int32_t *) dst->op_params)[1];
  7542. size_t nb3 = ((int32_t *) dst->op_params)[2];
  7543. size_t offset = ((int32_t *) dst->op_params)[3];
  7544. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  7545. if (!inplace && (params->type == GGML_TASK_INIT)) {
  7546. // memcpy needs to be synchronized across threads to avoid race conditions.
  7547. // => do it in INIT phase
  7548. memcpy(
  7549. ((char *) dst->data),
  7550. ((char *) src0->data),
  7551. ggml_nbytes(dst));
  7552. }
  7553. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7554. return;
  7555. }
  7556. const int ith = params->ith;
  7557. const int nth = params->nth;
  7558. const int nr = ggml_nrows(src1);
  7559. const int nc = src1->ne[0];
  7560. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  7561. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  7562. // src0 and dst as viewed during acc
  7563. const size_t nb0 = ggml_element_size(src0);
  7564. const size_t nb00 = nb0;
  7565. const size_t nb01 = nb1;
  7566. const size_t nb02 = nb2;
  7567. const size_t nb03 = nb3;
  7568. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  7569. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  7570. GGML_ASSERT(nb10 == sizeof(float));
  7571. // rows per thread
  7572. const int dr = (nr + nth - 1)/nth;
  7573. // row range for this thread
  7574. const int ir0 = dr*ith;
  7575. const int ir1 = MIN(ir0 + dr, nr);
  7576. for (int ir = ir0; ir < ir1; ++ir) {
  7577. // src0 and dst are viewed with shape of src1 and offset
  7578. // => same indices
  7579. const int i3 = ir/(ne12*ne11);
  7580. const int i2 = (ir - i3*ne12*ne11)/ne11;
  7581. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  7582. #ifdef GGML_USE_ACCELERATE
  7583. vDSP_vadd(
  7584. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  7585. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7586. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  7587. #else
  7588. ggml_vec_add_f32(nc,
  7589. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  7590. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  7591. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7592. #endif
  7593. }
  7594. }
  7595. static void ggml_compute_forward_acc(
  7596. const struct ggml_compute_params * params,
  7597. const struct ggml_tensor * src0,
  7598. const struct ggml_tensor * src1,
  7599. struct ggml_tensor * dst) {
  7600. switch (src0->type) {
  7601. case GGML_TYPE_F32:
  7602. {
  7603. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  7604. } break;
  7605. case GGML_TYPE_F16:
  7606. case GGML_TYPE_Q4_0:
  7607. case GGML_TYPE_Q4_1:
  7608. case GGML_TYPE_Q5_0:
  7609. case GGML_TYPE_Q5_1:
  7610. case GGML_TYPE_Q8_0:
  7611. case GGML_TYPE_Q8_1:
  7612. case GGML_TYPE_Q2_K:
  7613. case GGML_TYPE_Q3_K:
  7614. case GGML_TYPE_Q4_K:
  7615. case GGML_TYPE_Q5_K:
  7616. case GGML_TYPE_Q6_K:
  7617. default:
  7618. {
  7619. GGML_ASSERT(false);
  7620. } break;
  7621. }
  7622. }
  7623. // ggml_compute_forward_sub
  7624. static void ggml_compute_forward_sub_f32(
  7625. const struct ggml_compute_params * params,
  7626. const struct ggml_tensor * src0,
  7627. const struct ggml_tensor * src1,
  7628. struct ggml_tensor * dst) {
  7629. assert(params->ith == 0);
  7630. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7631. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7632. return;
  7633. }
  7634. const int nr = ggml_nrows(src0);
  7635. GGML_TENSOR_BINARY_OP_LOCALS;
  7636. GGML_ASSERT( nb0 == sizeof(float));
  7637. GGML_ASSERT(nb00 == sizeof(float));
  7638. if (nb10 == sizeof(float)) {
  7639. for (int ir = 0; ir < nr; ++ir) {
  7640. // src0, src1 and dst are same shape => same indices
  7641. const int i3 = ir/(ne2*ne1);
  7642. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7643. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7644. #ifdef GGML_USE_ACCELERATE
  7645. vDSP_vsub(
  7646. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7647. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7648. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7649. ne0);
  7650. #else
  7651. ggml_vec_sub_f32(ne0,
  7652. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7653. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7654. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7655. #endif
  7656. // }
  7657. // }
  7658. }
  7659. } else {
  7660. // src1 is not contiguous
  7661. for (int ir = 0; ir < nr; ++ir) {
  7662. // src0, src1 and dst are same shape => same indices
  7663. const int i3 = ir/(ne2*ne1);
  7664. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7665. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7666. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7667. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7668. for (int i0 = 0; i0 < ne0; i0++) {
  7669. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7670. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7671. }
  7672. }
  7673. }
  7674. }
  7675. static void ggml_compute_forward_sub(
  7676. const struct ggml_compute_params * params,
  7677. const struct ggml_tensor * src0,
  7678. const struct ggml_tensor * src1,
  7679. struct ggml_tensor * dst) {
  7680. switch (src0->type) {
  7681. case GGML_TYPE_F32:
  7682. {
  7683. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  7684. } break;
  7685. default:
  7686. {
  7687. GGML_ASSERT(false);
  7688. } break;
  7689. }
  7690. }
  7691. // ggml_compute_forward_mul
  7692. static void ggml_compute_forward_mul_f32(
  7693. const struct ggml_compute_params * params,
  7694. const struct ggml_tensor * src0,
  7695. const struct ggml_tensor * src1,
  7696. struct ggml_tensor * dst) {
  7697. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7698. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7699. return;
  7700. }
  7701. const int ith = params->ith;
  7702. const int nth = params->nth;
  7703. #ifdef GGML_USE_CLBLAST
  7704. if (src1->backend == GGML_BACKEND_GPU) {
  7705. if (ith == 0) {
  7706. ggml_cl_mul(src0, src1, dst);
  7707. }
  7708. return;
  7709. }
  7710. #endif
  7711. const int64_t nr = ggml_nrows(src0);
  7712. GGML_TENSOR_BINARY_OP_LOCALS;
  7713. GGML_ASSERT( nb0 == sizeof(float));
  7714. GGML_ASSERT(nb00 == sizeof(float));
  7715. GGML_ASSERT(ne00 == ne10);
  7716. if (nb10 == sizeof(float)) {
  7717. for (int64_t ir = ith; ir < nr; ir += nth) {
  7718. // src0 and dst are same shape => same indices
  7719. const int64_t i03 = ir/(ne02*ne01);
  7720. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7721. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7722. const int64_t i13 = i03 % ne13;
  7723. const int64_t i12 = i02 % ne12;
  7724. const int64_t i11 = i01 % ne11;
  7725. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7726. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7727. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7728. #ifdef GGML_USE_ACCELERATE
  7729. UNUSED(ggml_vec_mul_f32);
  7730. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7731. #else
  7732. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7733. #endif
  7734. // }
  7735. // }
  7736. }
  7737. } else {
  7738. // src1 is not contiguous
  7739. for (int64_t ir = ith; ir < nr; ir += nth) {
  7740. // src0 and dst are same shape => same indices
  7741. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7742. const int64_t i03 = ir/(ne02*ne01);
  7743. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7744. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7745. const int64_t i13 = i03 % ne13;
  7746. const int64_t i12 = i02 % ne12;
  7747. const int64_t i11 = i01 % ne11;
  7748. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7749. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7750. for (int64_t i0 = 0; i0 < ne00; i0++) {
  7751. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7752. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7753. }
  7754. }
  7755. }
  7756. }
  7757. static void ggml_compute_forward_mul(
  7758. const struct ggml_compute_params * params,
  7759. const struct ggml_tensor * src0,
  7760. const struct ggml_tensor * src1,
  7761. struct ggml_tensor * dst) {
  7762. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  7763. switch (src0->type) {
  7764. case GGML_TYPE_F32:
  7765. {
  7766. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  7767. } break;
  7768. default:
  7769. {
  7770. GGML_ASSERT(false);
  7771. } break;
  7772. }
  7773. }
  7774. // ggml_compute_forward_div
  7775. static void ggml_compute_forward_div_f32(
  7776. const struct ggml_compute_params * params,
  7777. const struct ggml_tensor * src0,
  7778. const struct ggml_tensor * src1,
  7779. struct ggml_tensor * dst) {
  7780. assert(params->ith == 0);
  7781. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7782. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7783. return;
  7784. }
  7785. const int nr = ggml_nrows(src0);
  7786. GGML_TENSOR_BINARY_OP_LOCALS;
  7787. GGML_ASSERT( nb0 == sizeof(float));
  7788. GGML_ASSERT(nb00 == sizeof(float));
  7789. if (nb10 == sizeof(float)) {
  7790. for (int ir = 0; ir < nr; ++ir) {
  7791. // src0, src1 and dst are same shape => same indices
  7792. const int i3 = ir/(ne2*ne1);
  7793. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7794. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7795. #ifdef GGML_USE_ACCELERATE
  7796. UNUSED(ggml_vec_div_f32);
  7797. vDSP_vdiv(
  7798. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7799. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7800. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7801. ne0);
  7802. #else
  7803. ggml_vec_div_f32(ne0,
  7804. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7805. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7806. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7807. #endif
  7808. // }
  7809. // }
  7810. }
  7811. } else {
  7812. // src1 is not contiguous
  7813. for (int ir = 0; ir < nr; ++ir) {
  7814. // src0, src1 and dst are same shape => same indices
  7815. const int i3 = ir/(ne2*ne1);
  7816. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7817. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7818. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7819. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7820. for (int i0 = 0; i0 < ne0; i0++) {
  7821. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7822. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7823. }
  7824. }
  7825. }
  7826. }
  7827. static void ggml_compute_forward_div(
  7828. const struct ggml_compute_params * params,
  7829. const struct ggml_tensor * src0,
  7830. const struct ggml_tensor * src1,
  7831. struct ggml_tensor * dst) {
  7832. switch (src0->type) {
  7833. case GGML_TYPE_F32:
  7834. {
  7835. ggml_compute_forward_div_f32(params, src0, src1, dst);
  7836. } break;
  7837. default:
  7838. {
  7839. GGML_ASSERT(false);
  7840. } break;
  7841. }
  7842. }
  7843. // ggml_compute_forward_sqr
  7844. static void ggml_compute_forward_sqr_f32(
  7845. const struct ggml_compute_params * params,
  7846. const struct ggml_tensor * src0,
  7847. struct ggml_tensor * dst) {
  7848. assert(params->ith == 0);
  7849. assert(ggml_are_same_shape(src0, dst));
  7850. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7851. return;
  7852. }
  7853. const int n = ggml_nrows(src0);
  7854. const int nc = src0->ne[0];
  7855. assert( dst->nb[0] == sizeof(float));
  7856. assert(src0->nb[0] == sizeof(float));
  7857. for (int i = 0; i < n; i++) {
  7858. ggml_vec_sqr_f32(nc,
  7859. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7860. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7861. }
  7862. }
  7863. static void ggml_compute_forward_sqr(
  7864. const struct ggml_compute_params * params,
  7865. const struct ggml_tensor * src0,
  7866. struct ggml_tensor * dst) {
  7867. switch (src0->type) {
  7868. case GGML_TYPE_F32:
  7869. {
  7870. ggml_compute_forward_sqr_f32(params, src0, dst);
  7871. } break;
  7872. default:
  7873. {
  7874. GGML_ASSERT(false);
  7875. } break;
  7876. }
  7877. }
  7878. // ggml_compute_forward_sqrt
  7879. static void ggml_compute_forward_sqrt_f32(
  7880. const struct ggml_compute_params * params,
  7881. const struct ggml_tensor * src0,
  7882. struct ggml_tensor * dst) {
  7883. assert(params->ith == 0);
  7884. assert(ggml_are_same_shape(src0, dst));
  7885. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7886. return;
  7887. }
  7888. const int n = ggml_nrows(src0);
  7889. const int nc = src0->ne[0];
  7890. assert( dst->nb[0] == sizeof(float));
  7891. assert(src0->nb[0] == sizeof(float));
  7892. for (int i = 0; i < n; i++) {
  7893. ggml_vec_sqrt_f32(nc,
  7894. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7895. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7896. }
  7897. }
  7898. static void ggml_compute_forward_sqrt(
  7899. const struct ggml_compute_params * params,
  7900. const struct ggml_tensor * src0,
  7901. struct ggml_tensor * dst) {
  7902. switch (src0->type) {
  7903. case GGML_TYPE_F32:
  7904. {
  7905. ggml_compute_forward_sqrt_f32(params, src0, dst);
  7906. } break;
  7907. default:
  7908. {
  7909. GGML_ASSERT(false);
  7910. } break;
  7911. }
  7912. }
  7913. // ggml_compute_forward_log
  7914. static void ggml_compute_forward_log_f32(
  7915. const struct ggml_compute_params * params,
  7916. const struct ggml_tensor * src0,
  7917. struct ggml_tensor * dst) {
  7918. GGML_ASSERT(params->ith == 0);
  7919. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7920. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7921. return;
  7922. }
  7923. const int n = ggml_nrows(src0);
  7924. const int nc = src0->ne[0];
  7925. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7926. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7927. for (int i = 0; i < n; i++) {
  7928. ggml_vec_log_f32(nc,
  7929. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7930. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7931. }
  7932. }
  7933. static void ggml_compute_forward_log(
  7934. const struct ggml_compute_params * params,
  7935. const struct ggml_tensor * src0,
  7936. struct ggml_tensor * dst) {
  7937. switch (src0->type) {
  7938. case GGML_TYPE_F32:
  7939. {
  7940. ggml_compute_forward_log_f32(params, src0, dst);
  7941. } break;
  7942. default:
  7943. {
  7944. GGML_ASSERT(false);
  7945. } break;
  7946. }
  7947. }
  7948. // ggml_compute_forward_sum
  7949. static void ggml_compute_forward_sum_f32(
  7950. const struct ggml_compute_params * params,
  7951. const struct ggml_tensor * src0,
  7952. struct ggml_tensor * dst) {
  7953. assert(params->ith == 0);
  7954. assert(ggml_is_scalar(dst));
  7955. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7956. return;
  7957. }
  7958. assert(ggml_is_scalar(dst));
  7959. assert(src0->nb[0] == sizeof(float));
  7960. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7961. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7962. ggml_float sum = 0;
  7963. ggml_float row_sum = 0;
  7964. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7965. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7966. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7967. ggml_vec_sum_f32_ggf(ne00,
  7968. &row_sum,
  7969. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7970. sum += row_sum;
  7971. }
  7972. }
  7973. }
  7974. ((float *) dst->data)[0] = sum;
  7975. }
  7976. static void ggml_compute_forward_sum_f16(
  7977. const struct ggml_compute_params * params,
  7978. const struct ggml_tensor * src0,
  7979. struct ggml_tensor * dst) {
  7980. assert(params->ith == 0);
  7981. assert(ggml_is_scalar(dst));
  7982. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7983. return;
  7984. }
  7985. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7986. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7987. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7988. float sum = 0;
  7989. float row_sum = 0;
  7990. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7991. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7992. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7993. ggml_vec_sum_f16_ggf(ne00,
  7994. &row_sum,
  7995. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7996. sum += row_sum;
  7997. }
  7998. }
  7999. }
  8000. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  8001. }
  8002. static void ggml_compute_forward_sum(
  8003. const struct ggml_compute_params * params,
  8004. const struct ggml_tensor * src0,
  8005. struct ggml_tensor * dst) {
  8006. switch (src0->type) {
  8007. case GGML_TYPE_F32:
  8008. {
  8009. ggml_compute_forward_sum_f32(params, src0, dst);
  8010. } break;
  8011. case GGML_TYPE_F16:
  8012. {
  8013. ggml_compute_forward_sum_f16(params, src0, dst);
  8014. } break;
  8015. default:
  8016. {
  8017. GGML_ASSERT(false);
  8018. } break;
  8019. }
  8020. }
  8021. // ggml_compute_forward_sum_rows
  8022. static void ggml_compute_forward_sum_rows_f32(
  8023. const struct ggml_compute_params * params,
  8024. const struct ggml_tensor * src0,
  8025. struct ggml_tensor * dst) {
  8026. GGML_ASSERT(params->ith == 0);
  8027. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8028. return;
  8029. }
  8030. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8031. GGML_ASSERT(dst->nb[0] == sizeof(float));
  8032. GGML_TENSOR_UNARY_OP_LOCALS;
  8033. GGML_ASSERT(ne0 == 1);
  8034. GGML_ASSERT(ne1 == ne01);
  8035. GGML_ASSERT(ne2 == ne02);
  8036. GGML_ASSERT(ne3 == ne03);
  8037. for (int64_t i3 = 0; i3 < ne03; i3++) {
  8038. for (int64_t i2 = 0; i2 < ne02; i2++) {
  8039. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8040. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  8041. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  8042. float row_sum = 0;
  8043. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  8044. dst_row[0] = row_sum;
  8045. }
  8046. }
  8047. }
  8048. }
  8049. static void ggml_compute_forward_sum_rows(
  8050. const struct ggml_compute_params * params,
  8051. const struct ggml_tensor * src0,
  8052. struct ggml_tensor * dst) {
  8053. switch (src0->type) {
  8054. case GGML_TYPE_F32:
  8055. {
  8056. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  8057. } break;
  8058. default:
  8059. {
  8060. GGML_ASSERT(false);
  8061. } break;
  8062. }
  8063. }
  8064. // ggml_compute_forward_mean
  8065. static void ggml_compute_forward_mean_f32(
  8066. const struct ggml_compute_params * params,
  8067. const struct ggml_tensor * src0,
  8068. struct ggml_tensor * dst) {
  8069. assert(params->ith == 0);
  8070. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8071. return;
  8072. }
  8073. assert(src0->nb[0] == sizeof(float));
  8074. GGML_TENSOR_UNARY_OP_LOCALS;
  8075. assert(ne0 == 1);
  8076. assert(ne1 == ne01);
  8077. assert(ne2 == ne02);
  8078. assert(ne3 == ne03);
  8079. UNUSED(ne0);
  8080. UNUSED(ne1);
  8081. UNUSED(ne2);
  8082. UNUSED(ne3);
  8083. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8084. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8085. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8086. ggml_vec_sum_f32(ne00,
  8087. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  8088. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8089. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  8090. }
  8091. }
  8092. }
  8093. }
  8094. static void ggml_compute_forward_mean(
  8095. const struct ggml_compute_params * params,
  8096. const struct ggml_tensor * src0,
  8097. struct ggml_tensor * dst) {
  8098. switch (src0->type) {
  8099. case GGML_TYPE_F32:
  8100. {
  8101. ggml_compute_forward_mean_f32(params, src0, dst);
  8102. } break;
  8103. default:
  8104. {
  8105. GGML_ASSERT(false);
  8106. } break;
  8107. }
  8108. }
  8109. // ggml_compute_forward_argmax
  8110. static void ggml_compute_forward_argmax_f32(
  8111. const struct ggml_compute_params * params,
  8112. const struct ggml_tensor * src0,
  8113. struct ggml_tensor * dst) {
  8114. assert(params->ith == 0);
  8115. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8116. return;
  8117. }
  8118. assert(src0->nb[0] == sizeof(float));
  8119. assert(dst->nb[0] == sizeof(float));
  8120. const int64_t ne00 = src0->ne[0];
  8121. const int64_t ne01 = src0->ne[1];
  8122. const size_t nb01 = src0->nb[1];
  8123. const size_t nb0 = dst->nb[0];
  8124. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8125. float * src = (float *) ((char *) src0->data + i1*nb01);
  8126. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  8127. int v = 0;
  8128. ggml_vec_argmax_f32(ne00, &v, src);
  8129. dst_[0] = v;
  8130. }
  8131. }
  8132. static void ggml_compute_forward_argmax(
  8133. const struct ggml_compute_params * params,
  8134. const struct ggml_tensor * src0,
  8135. struct ggml_tensor * dst) {
  8136. switch (src0->type) {
  8137. case GGML_TYPE_F32:
  8138. {
  8139. ggml_compute_forward_argmax_f32(params, src0, dst);
  8140. } break;
  8141. default:
  8142. {
  8143. GGML_ASSERT(false);
  8144. } break;
  8145. }
  8146. }
  8147. // ggml_compute_forward_repeat
  8148. static void ggml_compute_forward_repeat_f32(
  8149. const struct ggml_compute_params * params,
  8150. const struct ggml_tensor * src0,
  8151. struct ggml_tensor * dst) {
  8152. GGML_ASSERT(params->ith == 0);
  8153. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8154. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8155. return;
  8156. }
  8157. GGML_TENSOR_UNARY_OP_LOCALS;
  8158. // guaranteed to be an integer due to the check in ggml_can_repeat
  8159. const int nr0 = (int)(ne0/ne00);
  8160. const int nr1 = (int)(ne1/ne01);
  8161. const int nr2 = (int)(ne2/ne02);
  8162. const int nr3 = (int)(ne3/ne03);
  8163. // TODO: support for transposed / permuted tensors
  8164. GGML_ASSERT(nb0 == sizeof(float));
  8165. GGML_ASSERT(nb00 == sizeof(float));
  8166. // TODO: maybe this is not optimal?
  8167. for (int i3 = 0; i3 < nr3; i3++) {
  8168. for (int k3 = 0; k3 < ne03; k3++) {
  8169. for (int i2 = 0; i2 < nr2; i2++) {
  8170. for (int k2 = 0; k2 < ne02; k2++) {
  8171. for (int i1 = 0; i1 < nr1; i1++) {
  8172. for (int k1 = 0; k1 < ne01; k1++) {
  8173. for (int i0 = 0; i0 < nr0; i0++) {
  8174. ggml_vec_cpy_f32(ne00,
  8175. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  8176. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  8177. }
  8178. }
  8179. }
  8180. }
  8181. }
  8182. }
  8183. }
  8184. }
  8185. static void ggml_compute_forward_repeat(
  8186. const struct ggml_compute_params * params,
  8187. const struct ggml_tensor * src0,
  8188. struct ggml_tensor * dst) {
  8189. switch (src0->type) {
  8190. case GGML_TYPE_F32:
  8191. {
  8192. ggml_compute_forward_repeat_f32(params, src0, dst);
  8193. } break;
  8194. default:
  8195. {
  8196. GGML_ASSERT(false);
  8197. } break;
  8198. }
  8199. }
  8200. // ggml_compute_forward_repeat_back
  8201. static void ggml_compute_forward_repeat_back_f32(
  8202. const struct ggml_compute_params * params,
  8203. const struct ggml_tensor * src0,
  8204. struct ggml_tensor * dst) {
  8205. GGML_ASSERT(params->ith == 0);
  8206. GGML_ASSERT(ggml_can_repeat(dst, src0));
  8207. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8208. return;
  8209. }
  8210. GGML_TENSOR_UNARY_OP_LOCALS;
  8211. // guaranteed to be an integer due to the check in ggml_can_repeat
  8212. const int nr0 = (int)(ne00/ne0);
  8213. const int nr1 = (int)(ne01/ne1);
  8214. const int nr2 = (int)(ne02/ne2);
  8215. const int nr3 = (int)(ne03/ne3);
  8216. // TODO: support for transposed / permuted tensors
  8217. GGML_ASSERT(nb0 == sizeof(float));
  8218. GGML_ASSERT(nb00 == sizeof(float));
  8219. if (ggml_is_contiguous(dst)) {
  8220. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8221. } else {
  8222. for (int k3 = 0; k3 < ne3; k3++) {
  8223. for (int k2 = 0; k2 < ne2; k2++) {
  8224. for (int k1 = 0; k1 < ne1; k1++) {
  8225. ggml_vec_set_f32(ne0,
  8226. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  8227. 0);
  8228. }
  8229. }
  8230. }
  8231. }
  8232. // TODO: maybe this is not optimal?
  8233. for (int i3 = 0; i3 < nr3; i3++) {
  8234. for (int k3 = 0; k3 < ne3; k3++) {
  8235. for (int i2 = 0; i2 < nr2; i2++) {
  8236. for (int k2 = 0; k2 < ne2; k2++) {
  8237. for (int i1 = 0; i1 < nr1; i1++) {
  8238. for (int k1 = 0; k1 < ne1; k1++) {
  8239. for (int i0 = 0; i0 < nr0; i0++) {
  8240. ggml_vec_acc_f32(ne0,
  8241. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  8242. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  8243. }
  8244. }
  8245. }
  8246. }
  8247. }
  8248. }
  8249. }
  8250. }
  8251. static void ggml_compute_forward_repeat_back(
  8252. const struct ggml_compute_params * params,
  8253. const struct ggml_tensor * src0,
  8254. struct ggml_tensor * dst) {
  8255. switch (src0->type) {
  8256. case GGML_TYPE_F32:
  8257. {
  8258. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  8259. } break;
  8260. default:
  8261. {
  8262. GGML_ASSERT(false);
  8263. } break;
  8264. }
  8265. }
  8266. // ggml_compute_forward_concat
  8267. static void ggml_compute_forward_concat_f32(
  8268. const struct ggml_compute_params * params,
  8269. const struct ggml_tensor * src0,
  8270. const struct ggml_tensor * src1,
  8271. struct ggml_tensor * dst) {
  8272. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8273. return;
  8274. }
  8275. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8276. const int ith = params->ith;
  8277. GGML_TENSOR_BINARY_OP_LOCALS;
  8278. // TODO: support for transposed / permuted tensors
  8279. GGML_ASSERT(nb0 == sizeof(float));
  8280. GGML_ASSERT(nb00 == sizeof(float));
  8281. GGML_ASSERT(nb10 == sizeof(float));
  8282. for (int i3 = 0; i3 < ne3; i3++) {
  8283. for (int i2 = ith; i2 < ne2; i2++) {
  8284. if (i2 < ne02) { // src0
  8285. for (int i1 = 0; i1 < ne1; i1++) {
  8286. for (int i0 = 0; i0 < ne0; i0++) {
  8287. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  8288. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8289. *y = *x;
  8290. }
  8291. }
  8292. } // src1
  8293. else {
  8294. for (int i1 = 0; i1 < ne1; i1++) {
  8295. for (int i0 = 0; i0 < ne0; i0++) {
  8296. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  8297. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8298. *y = *x;
  8299. }
  8300. }
  8301. }
  8302. }
  8303. }
  8304. }
  8305. static void ggml_compute_forward_concat(
  8306. const struct ggml_compute_params* params,
  8307. const struct ggml_tensor* src0,
  8308. const struct ggml_tensor* src1,
  8309. struct ggml_tensor* dst) {
  8310. switch (src0->type) {
  8311. case GGML_TYPE_F32:
  8312. {
  8313. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  8314. } break;
  8315. default:
  8316. {
  8317. GGML_ASSERT(false);
  8318. } break;
  8319. }
  8320. }
  8321. // ggml_compute_forward_abs
  8322. static void ggml_compute_forward_abs_f32(
  8323. const struct ggml_compute_params * params,
  8324. const struct ggml_tensor * src0,
  8325. struct ggml_tensor * dst) {
  8326. assert(params->ith == 0);
  8327. assert(ggml_are_same_shape(src0, dst));
  8328. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8329. return;
  8330. }
  8331. const int n = ggml_nrows(src0);
  8332. const int nc = src0->ne[0];
  8333. assert(dst->nb[0] == sizeof(float));
  8334. assert(src0->nb[0] == sizeof(float));
  8335. for (int i = 0; i < n; i++) {
  8336. ggml_vec_abs_f32(nc,
  8337. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8338. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8339. }
  8340. }
  8341. static void ggml_compute_forward_abs(
  8342. const struct ggml_compute_params * params,
  8343. const struct ggml_tensor * src0,
  8344. struct ggml_tensor * dst) {
  8345. switch (src0->type) {
  8346. case GGML_TYPE_F32:
  8347. {
  8348. ggml_compute_forward_abs_f32(params, src0, dst);
  8349. } break;
  8350. default:
  8351. {
  8352. GGML_ASSERT(false);
  8353. } break;
  8354. }
  8355. }
  8356. // ggml_compute_forward_sgn
  8357. static void ggml_compute_forward_sgn_f32(
  8358. const struct ggml_compute_params * params,
  8359. const struct ggml_tensor * src0,
  8360. struct ggml_tensor * dst) {
  8361. assert(params->ith == 0);
  8362. assert(ggml_are_same_shape(src0, dst));
  8363. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8364. return;
  8365. }
  8366. const int n = ggml_nrows(src0);
  8367. const int nc = src0->ne[0];
  8368. assert(dst->nb[0] == sizeof(float));
  8369. assert(src0->nb[0] == sizeof(float));
  8370. for (int i = 0; i < n; i++) {
  8371. ggml_vec_sgn_f32(nc,
  8372. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8373. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8374. }
  8375. }
  8376. static void ggml_compute_forward_sgn(
  8377. const struct ggml_compute_params * params,
  8378. const struct ggml_tensor * src0,
  8379. struct ggml_tensor * dst) {
  8380. switch (src0->type) {
  8381. case GGML_TYPE_F32:
  8382. {
  8383. ggml_compute_forward_sgn_f32(params, src0, dst);
  8384. } break;
  8385. default:
  8386. {
  8387. GGML_ASSERT(false);
  8388. } break;
  8389. }
  8390. }
  8391. // ggml_compute_forward_neg
  8392. static void ggml_compute_forward_neg_f32(
  8393. const struct ggml_compute_params * params,
  8394. const struct ggml_tensor * src0,
  8395. struct ggml_tensor * dst) {
  8396. assert(params->ith == 0);
  8397. assert(ggml_are_same_shape(src0, dst));
  8398. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8399. return;
  8400. }
  8401. const int n = ggml_nrows(src0);
  8402. const int nc = src0->ne[0];
  8403. assert(dst->nb[0] == sizeof(float));
  8404. assert(src0->nb[0] == sizeof(float));
  8405. for (int i = 0; i < n; i++) {
  8406. ggml_vec_neg_f32(nc,
  8407. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8408. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8409. }
  8410. }
  8411. static void ggml_compute_forward_neg(
  8412. const struct ggml_compute_params * params,
  8413. const struct ggml_tensor * src0,
  8414. struct ggml_tensor * dst) {
  8415. switch (src0->type) {
  8416. case GGML_TYPE_F32:
  8417. {
  8418. ggml_compute_forward_neg_f32(params, src0, dst);
  8419. } break;
  8420. default:
  8421. {
  8422. GGML_ASSERT(false);
  8423. } break;
  8424. }
  8425. }
  8426. // ggml_compute_forward_step
  8427. static void ggml_compute_forward_step_f32(
  8428. const struct ggml_compute_params * params,
  8429. const struct ggml_tensor * src0,
  8430. struct ggml_tensor * dst) {
  8431. assert(params->ith == 0);
  8432. assert(ggml_are_same_shape(src0, dst));
  8433. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8434. return;
  8435. }
  8436. const int n = ggml_nrows(src0);
  8437. const int nc = src0->ne[0];
  8438. assert(dst->nb[0] == sizeof(float));
  8439. assert(src0->nb[0] == sizeof(float));
  8440. for (int i = 0; i < n; i++) {
  8441. ggml_vec_step_f32(nc,
  8442. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8443. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8444. }
  8445. }
  8446. static void ggml_compute_forward_step(
  8447. const struct ggml_compute_params * params,
  8448. const struct ggml_tensor * src0,
  8449. struct ggml_tensor * dst) {
  8450. switch (src0->type) {
  8451. case GGML_TYPE_F32:
  8452. {
  8453. ggml_compute_forward_step_f32(params, src0, dst);
  8454. } break;
  8455. default:
  8456. {
  8457. GGML_ASSERT(false);
  8458. } break;
  8459. }
  8460. }
  8461. // ggml_compute_forward_tanh
  8462. static void ggml_compute_forward_tanh_f32(
  8463. const struct ggml_compute_params * params,
  8464. const struct ggml_tensor * src0,
  8465. struct ggml_tensor * dst) {
  8466. assert(params->ith == 0);
  8467. assert(ggml_are_same_shape(src0, dst));
  8468. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8469. return;
  8470. }
  8471. const int n = ggml_nrows(src0);
  8472. const int nc = src0->ne[0];
  8473. assert(dst->nb[0] == sizeof(float));
  8474. assert(src0->nb[0] == sizeof(float));
  8475. for (int i = 0; i < n; i++) {
  8476. ggml_vec_tanh_f32(nc,
  8477. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8478. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8479. }
  8480. }
  8481. static void ggml_compute_forward_tanh(
  8482. const struct ggml_compute_params * params,
  8483. const struct ggml_tensor * src0,
  8484. struct ggml_tensor * dst) {
  8485. switch (src0->type) {
  8486. case GGML_TYPE_F32:
  8487. {
  8488. ggml_compute_forward_tanh_f32(params, src0, dst);
  8489. } break;
  8490. default:
  8491. {
  8492. GGML_ASSERT(false);
  8493. } break;
  8494. }
  8495. }
  8496. // ggml_compute_forward_elu
  8497. static void ggml_compute_forward_elu_f32(
  8498. const struct ggml_compute_params * params,
  8499. const struct ggml_tensor * src0,
  8500. struct ggml_tensor * dst) {
  8501. assert(params->ith == 0);
  8502. assert(ggml_are_same_shape(src0, dst));
  8503. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8504. return;
  8505. }
  8506. const int n = ggml_nrows(src0);
  8507. const int nc = src0->ne[0];
  8508. assert(dst->nb[0] == sizeof(float));
  8509. assert(src0->nb[0] == sizeof(float));
  8510. for (int i = 0; i < n; i++) {
  8511. ggml_vec_elu_f32(nc,
  8512. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8513. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8514. }
  8515. }
  8516. static void ggml_compute_forward_elu(
  8517. const struct ggml_compute_params * params,
  8518. const struct ggml_tensor * src0,
  8519. struct ggml_tensor * dst) {
  8520. switch (src0->type) {
  8521. case GGML_TYPE_F32:
  8522. {
  8523. ggml_compute_forward_elu_f32(params, src0, dst);
  8524. } break;
  8525. default:
  8526. {
  8527. GGML_ASSERT(false);
  8528. } break;
  8529. }
  8530. }
  8531. // ggml_compute_forward_relu
  8532. static void ggml_compute_forward_relu_f32(
  8533. const struct ggml_compute_params * params,
  8534. const struct ggml_tensor * src0,
  8535. struct ggml_tensor * dst) {
  8536. assert(params->ith == 0);
  8537. assert(ggml_are_same_shape(src0, dst));
  8538. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8539. return;
  8540. }
  8541. const int n = ggml_nrows(src0);
  8542. const int nc = src0->ne[0];
  8543. assert(dst->nb[0] == sizeof(float));
  8544. assert(src0->nb[0] == sizeof(float));
  8545. for (int i = 0; i < n; i++) {
  8546. ggml_vec_relu_f32(nc,
  8547. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8548. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8549. }
  8550. }
  8551. static void ggml_compute_forward_relu(
  8552. const struct ggml_compute_params * params,
  8553. const struct ggml_tensor * src0,
  8554. struct ggml_tensor * dst) {
  8555. switch (src0->type) {
  8556. case GGML_TYPE_F32:
  8557. {
  8558. ggml_compute_forward_relu_f32(params, src0, dst);
  8559. } break;
  8560. default:
  8561. {
  8562. GGML_ASSERT(false);
  8563. } break;
  8564. }
  8565. }
  8566. // ggml_compute_forward_gelu
  8567. static void ggml_compute_forward_gelu_f32(
  8568. const struct ggml_compute_params * params,
  8569. const struct ggml_tensor * src0,
  8570. struct ggml_tensor * dst) {
  8571. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8572. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8573. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8574. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8575. return;
  8576. }
  8577. const int ith = params->ith;
  8578. const int nth = params->nth;
  8579. const int nc = src0->ne[0];
  8580. const int nr = ggml_nrows(src0);
  8581. // rows per thread
  8582. const int dr = (nr + nth - 1)/nth;
  8583. // row range for this thread
  8584. const int ir0 = dr*ith;
  8585. const int ir1 = MIN(ir0 + dr, nr);
  8586. for (int i1 = ir0; i1 < ir1; i1++) {
  8587. ggml_vec_gelu_f32(nc,
  8588. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8589. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8590. #ifndef NDEBUG
  8591. for (int k = 0; k < nc; k++) {
  8592. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8593. UNUSED(x);
  8594. assert(!isnan(x));
  8595. assert(!isinf(x));
  8596. }
  8597. #endif
  8598. }
  8599. }
  8600. static void ggml_compute_forward_gelu(
  8601. const struct ggml_compute_params * params,
  8602. const struct ggml_tensor * src0,
  8603. struct ggml_tensor * dst) {
  8604. switch (src0->type) {
  8605. case GGML_TYPE_F32:
  8606. {
  8607. ggml_compute_forward_gelu_f32(params, src0, dst);
  8608. } break;
  8609. default:
  8610. {
  8611. GGML_ASSERT(false);
  8612. } break;
  8613. }
  8614. }
  8615. // ggml_compute_forward_gelu_quick
  8616. static void ggml_compute_forward_gelu_quick_f32(
  8617. const struct ggml_compute_params * params,
  8618. const struct ggml_tensor * src0,
  8619. struct ggml_tensor * dst) {
  8620. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8621. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8622. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8623. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8624. return;
  8625. }
  8626. const int ith = params->ith;
  8627. const int nth = params->nth;
  8628. const int nc = src0->ne[0];
  8629. const int nr = ggml_nrows(src0);
  8630. // rows per thread
  8631. const int dr = (nr + nth - 1)/nth;
  8632. // row range for this thread
  8633. const int ir0 = dr*ith;
  8634. const int ir1 = MIN(ir0 + dr, nr);
  8635. for (int i1 = ir0; i1 < ir1; i1++) {
  8636. ggml_vec_gelu_quick_f32(nc,
  8637. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8638. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8639. #ifndef NDEBUG
  8640. for (int k = 0; k < nc; k++) {
  8641. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8642. UNUSED(x);
  8643. assert(!isnan(x));
  8644. assert(!isinf(x));
  8645. }
  8646. #endif
  8647. }
  8648. }
  8649. static void ggml_compute_forward_gelu_quick(
  8650. const struct ggml_compute_params * params,
  8651. const struct ggml_tensor * src0,
  8652. struct ggml_tensor * dst) {
  8653. switch (src0->type) {
  8654. case GGML_TYPE_F32:
  8655. {
  8656. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  8657. } break;
  8658. default:
  8659. {
  8660. GGML_ASSERT(false);
  8661. } break;
  8662. }
  8663. }
  8664. // ggml_compute_forward_silu
  8665. static void ggml_compute_forward_silu_f32(
  8666. const struct ggml_compute_params * params,
  8667. const struct ggml_tensor * src0,
  8668. struct ggml_tensor * dst) {
  8669. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8670. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8671. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8672. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8673. return;
  8674. }
  8675. const int ith = params->ith;
  8676. const int nth = params->nth;
  8677. const int nc = src0->ne[0];
  8678. const int nr = ggml_nrows(src0);
  8679. // rows per thread
  8680. const int dr = (nr + nth - 1)/nth;
  8681. // row range for this thread
  8682. const int ir0 = dr*ith;
  8683. const int ir1 = MIN(ir0 + dr, nr);
  8684. for (int i1 = ir0; i1 < ir1; i1++) {
  8685. ggml_vec_silu_f32(nc,
  8686. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8687. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8688. #ifndef NDEBUG
  8689. for (int k = 0; k < nc; k++) {
  8690. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8691. UNUSED(x);
  8692. assert(!isnan(x));
  8693. assert(!isinf(x));
  8694. }
  8695. #endif
  8696. }
  8697. }
  8698. static void ggml_compute_forward_silu(
  8699. const struct ggml_compute_params * params,
  8700. const struct ggml_tensor * src0,
  8701. struct ggml_tensor * dst) {
  8702. switch (src0->type) {
  8703. case GGML_TYPE_F32:
  8704. {
  8705. ggml_compute_forward_silu_f32(params, src0, dst);
  8706. } break;
  8707. default:
  8708. {
  8709. GGML_ASSERT(false);
  8710. } break;
  8711. }
  8712. }
  8713. // ggml_compute_forward_silu_back
  8714. static void ggml_compute_forward_silu_back_f32(
  8715. const struct ggml_compute_params * params,
  8716. const struct ggml_tensor * src0,
  8717. const struct ggml_tensor * grad,
  8718. struct ggml_tensor * dst) {
  8719. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  8720. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8721. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8722. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8723. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8724. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8725. return;
  8726. }
  8727. const int ith = params->ith;
  8728. const int nth = params->nth;
  8729. const int nc = src0->ne[0];
  8730. const int nr = ggml_nrows(src0);
  8731. // rows per thread
  8732. const int dr = (nr + nth - 1)/nth;
  8733. // row range for this thread
  8734. const int ir0 = dr*ith;
  8735. const int ir1 = MIN(ir0 + dr, nr);
  8736. for (int i1 = ir0; i1 < ir1; i1++) {
  8737. ggml_vec_silu_backward_f32(nc,
  8738. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8739. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8740. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8741. #ifndef NDEBUG
  8742. for (int k = 0; k < nc; k++) {
  8743. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8744. UNUSED(x);
  8745. assert(!isnan(x));
  8746. assert(!isinf(x));
  8747. }
  8748. #endif
  8749. }
  8750. }
  8751. static void ggml_compute_forward_silu_back(
  8752. const struct ggml_compute_params * params,
  8753. const struct ggml_tensor * src0,
  8754. const struct ggml_tensor * grad,
  8755. struct ggml_tensor * dst) {
  8756. switch (src0->type) {
  8757. case GGML_TYPE_F32:
  8758. {
  8759. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  8760. } break;
  8761. default:
  8762. {
  8763. GGML_ASSERT(false);
  8764. } break;
  8765. }
  8766. }
  8767. // ggml_compute_forward_norm
  8768. static void ggml_compute_forward_norm_f32(
  8769. const struct ggml_compute_params * params,
  8770. const struct ggml_tensor * src0,
  8771. struct ggml_tensor * dst) {
  8772. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8773. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8774. return;
  8775. }
  8776. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8777. const int ith = params->ith;
  8778. const int nth = params->nth;
  8779. GGML_TENSOR_UNARY_OP_LOCALS;
  8780. float eps;
  8781. memcpy(&eps, dst->op_params, sizeof(float));
  8782. // TODO: optimize
  8783. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8784. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8785. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8786. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8787. ggml_float sum = 0.0;
  8788. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8789. sum += (ggml_float)x[i00];
  8790. }
  8791. float mean = sum/ne00;
  8792. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8793. ggml_float sum2 = 0.0;
  8794. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8795. float v = x[i00] - mean;
  8796. y[i00] = v;
  8797. sum2 += (ggml_float)(v*v);
  8798. }
  8799. float variance = sum2/ne00;
  8800. const float scale = 1.0f/sqrtf(variance + eps);
  8801. ggml_vec_scale_f32(ne00, y, scale);
  8802. }
  8803. }
  8804. }
  8805. }
  8806. static void ggml_compute_forward_norm(
  8807. const struct ggml_compute_params * params,
  8808. const struct ggml_tensor * src0,
  8809. struct ggml_tensor * dst) {
  8810. switch (src0->type) {
  8811. case GGML_TYPE_F32:
  8812. {
  8813. ggml_compute_forward_norm_f32(params, src0, dst);
  8814. } break;
  8815. default:
  8816. {
  8817. GGML_ASSERT(false);
  8818. } break;
  8819. }
  8820. }
  8821. // ggml_compute_forward_group_rms_norm
  8822. static void ggml_compute_forward_rms_norm_f32(
  8823. const struct ggml_compute_params * params,
  8824. const struct ggml_tensor * src0,
  8825. struct ggml_tensor * dst) {
  8826. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8827. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8828. return;
  8829. }
  8830. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8831. const int ith = params->ith;
  8832. const int nth = params->nth;
  8833. GGML_TENSOR_UNARY_OP_LOCALS;
  8834. float eps;
  8835. memcpy(&eps, dst->op_params, sizeof(float));
  8836. // TODO: optimize
  8837. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8838. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8839. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8840. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8841. ggml_float sum = 0.0;
  8842. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8843. sum += (ggml_float)(x[i00] * x[i00]);
  8844. }
  8845. const float mean = sum/ne00;
  8846. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8847. memcpy(y, x, ne00 * sizeof(float));
  8848. // for (int i00 = 0; i00 < ne00; i00++) {
  8849. // y[i00] = x[i00];
  8850. // }
  8851. const float scale = 1.0f/sqrtf(mean + eps);
  8852. ggml_vec_scale_f32(ne00, y, scale);
  8853. }
  8854. }
  8855. }
  8856. }
  8857. static void ggml_compute_forward_rms_norm(
  8858. const struct ggml_compute_params * params,
  8859. const struct ggml_tensor * src0,
  8860. struct ggml_tensor * dst) {
  8861. switch (src0->type) {
  8862. case GGML_TYPE_F32:
  8863. {
  8864. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  8865. } break;
  8866. default:
  8867. {
  8868. GGML_ASSERT(false);
  8869. } break;
  8870. }
  8871. }
  8872. static void ggml_compute_forward_rms_norm_back_f32(
  8873. const struct ggml_compute_params * params,
  8874. const struct ggml_tensor * src0,
  8875. const struct ggml_tensor * src1,
  8876. struct ggml_tensor * dst) {
  8877. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8878. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8879. return;
  8880. }
  8881. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8882. const int ith = params->ith;
  8883. const int nth = params->nth;
  8884. GGML_TENSOR_BINARY_OP_LOCALS;
  8885. float eps;
  8886. memcpy(&eps, dst->op_params, sizeof(float));
  8887. // TODO: optimize
  8888. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8889. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8890. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8891. // src1 is same shape as src0 => same indices
  8892. const int64_t i11 = i01;
  8893. const int64_t i12 = i02;
  8894. const int64_t i13 = i03;
  8895. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8896. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8897. ggml_float sum_xx = 0.0;
  8898. ggml_float sum_xdz = 0.0;
  8899. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8900. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8901. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8902. }
  8903. //const float mean = (float)(sum_xx)/ne00;
  8904. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8905. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8906. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8907. // we could cache rms from forward pass to improve performance.
  8908. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8909. //const float rms = sqrtf(mean_eps);
  8910. const float rrms = 1.0f / sqrtf(mean_eps);
  8911. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8912. {
  8913. // z = rms_norm(x)
  8914. //
  8915. // rms_norm(src0) =
  8916. // scale(
  8917. // src0,
  8918. // div(
  8919. // 1,
  8920. // sqrt(
  8921. // add(
  8922. // scale(
  8923. // sum(
  8924. // sqr(
  8925. // src0)),
  8926. // (1.0/N)),
  8927. // eps))));
  8928. // postorder:
  8929. // ## op args grad
  8930. // 00 param src0 grad[#00]
  8931. // 01 const 1
  8932. // 02 sqr (#00) grad[#02]
  8933. // 03 sum (#02) grad[#03]
  8934. // 04 const 1/N
  8935. // 05 scale (#03, #04) grad[#05]
  8936. // 06 const eps
  8937. // 07 add (#05, #06) grad[#07]
  8938. // 08 sqrt (#07) grad[#08]
  8939. // 09 div (#01,#08) grad[#09]
  8940. // 10 scale (#00,#09) grad[#10]
  8941. //
  8942. // backward pass, given grad[#10]
  8943. // #10: scale
  8944. // grad[#00] += scale(grad[#10],#09)
  8945. // grad[#09] += sum(mul(grad[#10],#00))
  8946. // #09: div
  8947. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8948. // #08: sqrt
  8949. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8950. // #07: add
  8951. // grad[#05] += grad[#07]
  8952. // #05: scale
  8953. // grad[#03] += scale(grad[#05],#04)
  8954. // #03: sum
  8955. // grad[#02] += repeat(grad[#03], #02)
  8956. // #02:
  8957. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8958. //
  8959. // substitute and simplify:
  8960. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8961. // grad[#02] = repeat(grad[#03], #02)
  8962. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8963. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8964. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8965. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8966. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8967. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8968. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8969. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8970. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8971. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8972. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8973. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8974. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8975. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8976. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8977. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8978. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8979. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8980. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8981. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8982. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8983. // a = b*c + d*e
  8984. // a = b*c*f/f + d*e*f/f
  8985. // a = (b*c*f + d*e*f)*(1/f)
  8986. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8987. // a = (b + d*e/c)*c
  8988. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8989. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8990. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8991. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8992. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8993. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8994. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8995. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8996. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8997. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8998. }
  8999. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9000. // post-order:
  9001. // dx := x
  9002. // dx := scale(dx,-mean_xdz/mean_eps)
  9003. // dx := add(dx, dz)
  9004. // dx := scale(dx, rrms)
  9005. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9006. ggml_vec_cpy_f32 (ne00, dx, x);
  9007. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  9008. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  9009. ggml_vec_acc_f32 (ne00, dx, dz);
  9010. ggml_vec_scale_f32(ne00, dx, rrms);
  9011. }
  9012. }
  9013. }
  9014. }
  9015. static void ggml_compute_forward_rms_norm_back(
  9016. const struct ggml_compute_params * params,
  9017. const struct ggml_tensor * src0,
  9018. const struct ggml_tensor * src1,
  9019. struct ggml_tensor * dst) {
  9020. switch (src0->type) {
  9021. case GGML_TYPE_F32:
  9022. {
  9023. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  9024. } break;
  9025. default:
  9026. {
  9027. GGML_ASSERT(false);
  9028. } break;
  9029. }
  9030. }
  9031. // ggml_compute_forward_group_norm
  9032. static void ggml_compute_forward_group_norm_f32(
  9033. const struct ggml_compute_params * params,
  9034. const struct ggml_tensor * src0,
  9035. struct ggml_tensor * dst) {
  9036. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9037. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9038. return;
  9039. }
  9040. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9041. const int ith = params->ith;
  9042. const int nth = params->nth;
  9043. GGML_TENSOR_UNARY_OP_LOCALS;
  9044. const float eps = 1e-6f; // TODO: make this a parameter
  9045. // TODO: optimize
  9046. int n_channels = src0->ne[2];
  9047. int n_groups = dst->op_params[0];
  9048. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  9049. for (int i = ith; i < n_groups; i+=nth) {
  9050. int start = i * n_channels_per_group;
  9051. int end = start + n_channels_per_group;
  9052. if (end > n_channels) {
  9053. end = n_channels;
  9054. }
  9055. int step = end - start;
  9056. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9057. ggml_float sum = 0.0;
  9058. for (int64_t i02 = start; i02 < end; i02++) {
  9059. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9060. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9061. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9062. sum += (ggml_float)x[i00];
  9063. }
  9064. }
  9065. }
  9066. float mean = sum / (ne00 * ne01 * step);
  9067. ggml_float sum2 = 0.0;
  9068. for (int64_t i02 = start; i02 < end; i02++) {
  9069. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9070. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9071. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9072. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9073. float v = x[i00] - mean;
  9074. y[i00] = v;
  9075. sum2 += (ggml_float)(v * v);
  9076. }
  9077. }
  9078. }
  9079. float variance = sum2 / (ne00 * ne01 * step);
  9080. const float scale = 1.0f / sqrtf(variance + eps);
  9081. for (int64_t i02 = start; i02 < end; i02++) {
  9082. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9083. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9084. ggml_vec_scale_f32(ne00, y, scale);
  9085. }
  9086. }
  9087. }
  9088. }
  9089. }
  9090. static void ggml_compute_forward_group_norm(
  9091. const struct ggml_compute_params * params,
  9092. const struct ggml_tensor * src0,
  9093. struct ggml_tensor * dst) {
  9094. switch (src0->type) {
  9095. case GGML_TYPE_F32:
  9096. {
  9097. ggml_compute_forward_group_norm_f32(params, src0, dst);
  9098. } break;
  9099. default:
  9100. {
  9101. GGML_ASSERT(false);
  9102. } break;
  9103. }
  9104. }
  9105. // ggml_compute_forward_mul_mat
  9106. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9107. // helper function to determine if it is better to use BLAS or not
  9108. // for large matrices, BLAS is faster
  9109. static bool ggml_compute_forward_mul_mat_use_blas(
  9110. const struct ggml_tensor * src0,
  9111. const struct ggml_tensor * src1,
  9112. struct ggml_tensor * dst) {
  9113. //const int64_t ne00 = src0->ne[0];
  9114. //const int64_t ne01 = src0->ne[1];
  9115. const int64_t ne10 = src1->ne[0];
  9116. const int64_t ne0 = dst->ne[0];
  9117. const int64_t ne1 = dst->ne[1];
  9118. // TODO: find the optimal values for these
  9119. if (ggml_is_contiguous(src0) &&
  9120. ggml_is_contiguous(src1) &&
  9121. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  9122. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  9123. return true;
  9124. }
  9125. return false;
  9126. }
  9127. #endif
  9128. static void ggml_compute_forward_mul_mat(
  9129. const struct ggml_compute_params * params,
  9130. const struct ggml_tensor * src0,
  9131. const struct ggml_tensor * src1,
  9132. struct ggml_tensor * dst) {
  9133. int64_t t0 = ggml_perf_time_us();
  9134. UNUSED(t0);
  9135. GGML_TENSOR_BINARY_OP_LOCALS;
  9136. const int ith = params->ith;
  9137. const int nth = params->nth;
  9138. const enum ggml_type type = src0->type;
  9139. const bool src1_cont = ggml_is_contiguous(src1);
  9140. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  9141. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  9142. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  9143. GGML_ASSERT(ne0 == ne01);
  9144. GGML_ASSERT(ne1 == ne11);
  9145. GGML_ASSERT(ne2 == ne12);
  9146. GGML_ASSERT(ne3 == ne13);
  9147. // we don't support permuted src0 or src1
  9148. GGML_ASSERT(nb00 == ggml_type_size(type));
  9149. GGML_ASSERT(nb10 == sizeof(float));
  9150. // dst cannot be transposed or permuted
  9151. GGML_ASSERT(nb0 == sizeof(float));
  9152. GGML_ASSERT(nb0 <= nb1);
  9153. GGML_ASSERT(nb1 <= nb2);
  9154. GGML_ASSERT(nb2 <= nb3);
  9155. // broadcast factors
  9156. const int64_t r2 = ne12/ne02;
  9157. const int64_t r3 = ne13/ne03;
  9158. // nb01 >= nb00 - src0 is not transposed
  9159. // compute by src0 rows
  9160. #if defined(GGML_USE_CLBLAST)
  9161. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  9162. // TODO: handle case when src0 is broadcast-able into src1 across 2nd,3rd dimension
  9163. // ref: https://github.com/ggerganov/ggml/pull/224
  9164. GGML_ASSERT(ne02 == ne12);
  9165. GGML_ASSERT(ne03 == ne13);
  9166. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  9167. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  9168. }
  9169. return;
  9170. }
  9171. #endif
  9172. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9173. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  9174. if (params->ith != 0) {
  9175. return;
  9176. }
  9177. if (params->type == GGML_TASK_INIT) {
  9178. return;
  9179. }
  9180. if (params->type == GGML_TASK_FINALIZE) {
  9181. return;
  9182. }
  9183. for (int64_t i13 = 0; i13 < ne13; i13++) {
  9184. for (int64_t i12 = 0; i12 < ne12; i12++) {
  9185. // broadcast src0 into src1 across 2nd,3rd dimension
  9186. const int64_t i03 = i13/r3;
  9187. const int64_t i02 = i12/r2;
  9188. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  9189. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  9190. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  9191. if (type != GGML_TYPE_F32) {
  9192. float * const wdata = params->wdata;
  9193. ggml_to_float_t const to_float = type_traits[type].to_float;
  9194. size_t id = 0;
  9195. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9196. to_float((const char *) x + i01*nb01, wdata + id, ne00);
  9197. id += ne00;
  9198. }
  9199. assert(id*sizeof(float) <= params->wsize);
  9200. x = wdata;
  9201. }
  9202. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  9203. ne11, ne01, ne10,
  9204. 1.0f, y, ne10,
  9205. x, ne00,
  9206. 0.0f, d, ne01);
  9207. }
  9208. }
  9209. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  9210. return;
  9211. }
  9212. #endif
  9213. if (params->type == GGML_TASK_INIT) {
  9214. if (src1->type != vec_dot_type) {
  9215. char * wdata = params->wdata;
  9216. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  9217. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  9218. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9219. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9220. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  9221. wdata += row_size;
  9222. }
  9223. }
  9224. }
  9225. }
  9226. return;
  9227. }
  9228. if (params->type == GGML_TASK_FINALIZE) {
  9229. return;
  9230. }
  9231. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  9232. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  9233. const int64_t nr0 = ne01; // src0 rows
  9234. const int64_t nr1 = ne11*ne12*ne13; // src1 rows
  9235. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  9236. // distribute the thread work across the inner or outer loop based on which one is larger
  9237. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  9238. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  9239. const int64_t ith0 = ith % nth0;
  9240. const int64_t ith1 = ith / nth0;
  9241. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  9242. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  9243. const int64_t ir010 = dr0*ith0;
  9244. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  9245. const int64_t ir110 = dr1*ith1;
  9246. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  9247. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  9248. // threads with no work simply yield (not sure if it helps)
  9249. if (ir010 >= ir011 || ir110 >= ir111) {
  9250. sched_yield();
  9251. return;
  9252. }
  9253. assert(ne12 % ne02 == 0);
  9254. assert(ne13 % ne03 == 0);
  9255. // block-tiling attempt
  9256. const int64_t blck_0 = 16;
  9257. const int64_t blck_1 = 16;
  9258. // attempt to reduce false-sharing (does not seem to make a difference)
  9259. float tmp[16];
  9260. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  9261. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  9262. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  9263. const int64_t i13 = (ir1/(ne12*ne11));
  9264. const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
  9265. const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
  9266. // broadcast src0 into src1
  9267. const int64_t i03 = i13/r3;
  9268. const int64_t i02 = i12/r2;
  9269. const int64_t i1 = i11;
  9270. const int64_t i2 = i12;
  9271. const int64_t i3 = i13;
  9272. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  9273. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  9274. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  9275. // the original src1 data pointer, so we should index using the indices directly
  9276. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  9277. const char * src1_col = (const char *) wdata +
  9278. (src1_cont || src1->type != vec_dot_type
  9279. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  9280. : (i11*nb11 + i12*nb12 + i13*nb13));
  9281. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  9282. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9283. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  9284. //}
  9285. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9286. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  9287. }
  9288. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  9289. }
  9290. }
  9291. }
  9292. }
  9293. // ggml_compute_forward_out_prod
  9294. static void ggml_compute_forward_out_prod_f32(
  9295. const struct ggml_compute_params * params,
  9296. const struct ggml_tensor * src0,
  9297. const struct ggml_tensor * src1,
  9298. struct ggml_tensor * dst) {
  9299. int64_t t0 = ggml_perf_time_us();
  9300. UNUSED(t0);
  9301. GGML_TENSOR_BINARY_OP_LOCALS;
  9302. const int ith = params->ith;
  9303. const int nth = params->nth;
  9304. GGML_ASSERT(ne02 == ne12);
  9305. GGML_ASSERT(ne03 == ne13);
  9306. GGML_ASSERT(ne2 == ne12);
  9307. GGML_ASSERT(ne3 == ne13);
  9308. // we don't support permuted src0 or src1
  9309. GGML_ASSERT(nb00 == sizeof(float));
  9310. // dst cannot be transposed or permuted
  9311. GGML_ASSERT(nb0 == sizeof(float));
  9312. // GGML_ASSERT(nb0 <= nb1);
  9313. // GGML_ASSERT(nb1 <= nb2);
  9314. // GGML_ASSERT(nb2 <= nb3);
  9315. GGML_ASSERT(ne0 == ne00);
  9316. GGML_ASSERT(ne1 == ne10);
  9317. GGML_ASSERT(ne2 == ne02);
  9318. GGML_ASSERT(ne3 == ne03);
  9319. // nb01 >= nb00 - src0 is not transposed
  9320. // compute by src0 rows
  9321. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  9322. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9323. if (params->type == GGML_TASK_INIT) {
  9324. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9325. return;
  9326. }
  9327. if (params->type == GGML_TASK_FINALIZE) {
  9328. return;
  9329. }
  9330. // parallelize by last three dimensions
  9331. // total rows in dst
  9332. const int64_t nr = ne1*ne2*ne3;
  9333. // rows per thread
  9334. const int64_t dr = (nr + nth - 1)/nth;
  9335. // row range for this thread
  9336. const int64_t ir0 = dr*ith;
  9337. const int64_t ir1 = MIN(ir0 + dr, nr);
  9338. // dst[:,:,:,:] = 0
  9339. // for i2,i3:
  9340. // for i1:
  9341. // for i01:
  9342. // for i0:
  9343. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9344. for (int64_t ir = ir0; ir < ir1; ++ir) {
  9345. // dst indices
  9346. const int64_t i3 = ir/(ne2*ne1);
  9347. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9348. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9349. const int64_t i02 = i2;
  9350. const int64_t i03 = i3;
  9351. //const int64_t i10 = i1;
  9352. const int64_t i12 = i2;
  9353. const int64_t i13 = i3;
  9354. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9355. const int64_t i11 = i01;
  9356. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9357. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9358. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9359. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9360. // for (int64_t i0 = 0; i0 < ne0; ++i0) {
  9361. // d[i0] += s0[i0] * s1[i1];
  9362. // }
  9363. }
  9364. }
  9365. //int64_t t1 = ggml_perf_time_us();
  9366. //static int64_t acc = 0;
  9367. //acc += t1 - t0;
  9368. //if (t1 - t0 > 10) {
  9369. // printf("\n");
  9370. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9371. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9372. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9373. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9374. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9375. //}
  9376. }
  9377. static void ggml_compute_forward_out_prod(
  9378. const struct ggml_compute_params * params,
  9379. const struct ggml_tensor * src0,
  9380. const struct ggml_tensor * src1,
  9381. struct ggml_tensor * dst) {
  9382. switch (src0->type) {
  9383. case GGML_TYPE_Q4_0:
  9384. case GGML_TYPE_Q4_1:
  9385. case GGML_TYPE_Q5_0:
  9386. case GGML_TYPE_Q5_1:
  9387. case GGML_TYPE_Q8_0:
  9388. case GGML_TYPE_Q8_1:
  9389. {
  9390. GGML_ASSERT(false); // todo
  9391. // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  9392. } break;
  9393. case GGML_TYPE_F16:
  9394. {
  9395. GGML_ASSERT(false); // todo
  9396. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  9397. } break;
  9398. case GGML_TYPE_F32:
  9399. {
  9400. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  9401. } break;
  9402. default:
  9403. {
  9404. GGML_ASSERT(false);
  9405. } break;
  9406. }
  9407. }
  9408. // ggml_compute_forward_scale
  9409. static void ggml_compute_forward_scale_f32(
  9410. const struct ggml_compute_params * params,
  9411. const struct ggml_tensor * src0,
  9412. const struct ggml_tensor * src1,
  9413. struct ggml_tensor * dst) {
  9414. GGML_ASSERT(ggml_is_contiguous(src0));
  9415. GGML_ASSERT(ggml_is_contiguous(dst));
  9416. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9417. GGML_ASSERT(ggml_is_scalar(src1));
  9418. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9419. return;
  9420. }
  9421. // scale factor
  9422. const float v = *(float *) src1->data;
  9423. const int ith = params->ith;
  9424. const int nth = params->nth;
  9425. const int nc = src0->ne[0];
  9426. const int nr = ggml_nrows(src0);
  9427. // rows per thread
  9428. const int dr = (nr + nth - 1)/nth;
  9429. // row range for this thread
  9430. const int ir0 = dr*ith;
  9431. const int ir1 = MIN(ir0 + dr, nr);
  9432. const size_t nb01 = src0->nb[1];
  9433. const size_t nb1 = dst->nb[1];
  9434. for (int i1 = ir0; i1 < ir1; i1++) {
  9435. if (dst->data != src0->data) {
  9436. // src0 is same shape as dst => same indices
  9437. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  9438. }
  9439. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9440. }
  9441. }
  9442. static void ggml_compute_forward_scale(
  9443. const struct ggml_compute_params * params,
  9444. const struct ggml_tensor * src0,
  9445. const struct ggml_tensor * src1,
  9446. struct ggml_tensor * dst) {
  9447. switch (src0->type) {
  9448. case GGML_TYPE_F32:
  9449. {
  9450. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  9451. } break;
  9452. default:
  9453. {
  9454. GGML_ASSERT(false);
  9455. } break;
  9456. }
  9457. }
  9458. // ggml_compute_forward_set
  9459. static void ggml_compute_forward_set_f32(
  9460. const struct ggml_compute_params * params,
  9461. const struct ggml_tensor * src0,
  9462. const struct ggml_tensor * src1,
  9463. struct ggml_tensor * dst) {
  9464. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9465. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9466. // view src0 and dst with these strides and data offset inbytes during set
  9467. // nb0 is implicitely element_size because src0 and dst are contiguous
  9468. size_t nb1 = ((int32_t *) dst->op_params)[0];
  9469. size_t nb2 = ((int32_t *) dst->op_params)[1];
  9470. size_t nb3 = ((int32_t *) dst->op_params)[2];
  9471. size_t offset = ((int32_t *) dst->op_params)[3];
  9472. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  9473. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9474. // memcpy needs to be synchronized across threads to avoid race conditions.
  9475. // => do it in INIT phase
  9476. memcpy(
  9477. ((char *) dst->data),
  9478. ((char *) src0->data),
  9479. ggml_nbytes(dst));
  9480. }
  9481. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9482. return;
  9483. }
  9484. const int ith = params->ith;
  9485. const int nth = params->nth;
  9486. const int nr = ggml_nrows(src1);
  9487. const int nc = src1->ne[0];
  9488. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  9489. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  9490. // src0 and dst as viewed during set
  9491. const size_t nb0 = ggml_element_size(src0);
  9492. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9493. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9494. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9495. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9496. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9497. GGML_ASSERT(nb10 == sizeof(float));
  9498. // rows per thread
  9499. const int dr = (nr + nth - 1)/nth;
  9500. // row range for this thread
  9501. const int ir0 = dr*ith;
  9502. const int ir1 = MIN(ir0 + dr, nr);
  9503. for (int ir = ir0; ir < ir1; ++ir) {
  9504. // src0 and dst are viewed with shape of src1 and offset
  9505. // => same indices
  9506. const int i3 = ir/(ne12*ne11);
  9507. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9508. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9509. ggml_vec_cpy_f32(nc,
  9510. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9511. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9512. }
  9513. }
  9514. static void ggml_compute_forward_set(
  9515. const struct ggml_compute_params * params,
  9516. const struct ggml_tensor * src0,
  9517. const struct ggml_tensor * src1,
  9518. struct ggml_tensor * dst) {
  9519. switch (src0->type) {
  9520. case GGML_TYPE_F32:
  9521. {
  9522. ggml_compute_forward_set_f32(params, src0, src1, dst);
  9523. } break;
  9524. case GGML_TYPE_F16:
  9525. case GGML_TYPE_Q4_0:
  9526. case GGML_TYPE_Q4_1:
  9527. case GGML_TYPE_Q5_0:
  9528. case GGML_TYPE_Q5_1:
  9529. case GGML_TYPE_Q8_0:
  9530. case GGML_TYPE_Q8_1:
  9531. case GGML_TYPE_Q2_K:
  9532. case GGML_TYPE_Q3_K:
  9533. case GGML_TYPE_Q4_K:
  9534. case GGML_TYPE_Q5_K:
  9535. case GGML_TYPE_Q6_K:
  9536. default:
  9537. {
  9538. GGML_ASSERT(false);
  9539. } break;
  9540. }
  9541. }
  9542. // ggml_compute_forward_cpy
  9543. static void ggml_compute_forward_cpy(
  9544. const struct ggml_compute_params * params,
  9545. const struct ggml_tensor * src0,
  9546. struct ggml_tensor * dst) {
  9547. ggml_compute_forward_dup(params, src0, dst);
  9548. }
  9549. // ggml_compute_forward_cont
  9550. static void ggml_compute_forward_cont(
  9551. const struct ggml_compute_params * params,
  9552. const struct ggml_tensor * src0,
  9553. struct ggml_tensor * dst) {
  9554. ggml_compute_forward_dup(params, src0, dst);
  9555. }
  9556. // ggml_compute_forward_reshape
  9557. static void ggml_compute_forward_reshape(
  9558. const struct ggml_compute_params * params,
  9559. const struct ggml_tensor * src0,
  9560. struct ggml_tensor * dst) {
  9561. // NOP
  9562. UNUSED(params);
  9563. UNUSED(src0);
  9564. UNUSED(dst);
  9565. }
  9566. // ggml_compute_forward_view
  9567. static void ggml_compute_forward_view(
  9568. const struct ggml_compute_params * params,
  9569. const struct ggml_tensor * src0) {
  9570. // NOP
  9571. UNUSED(params);
  9572. UNUSED(src0);
  9573. }
  9574. // ggml_compute_forward_permute
  9575. static void ggml_compute_forward_permute(
  9576. const struct ggml_compute_params * params,
  9577. const struct ggml_tensor * src0) {
  9578. // NOP
  9579. UNUSED(params);
  9580. UNUSED(src0);
  9581. }
  9582. // ggml_compute_forward_transpose
  9583. static void ggml_compute_forward_transpose(
  9584. const struct ggml_compute_params * params,
  9585. const struct ggml_tensor * src0) {
  9586. // NOP
  9587. UNUSED(params);
  9588. UNUSED(src0);
  9589. }
  9590. // ggml_compute_forward_get_rows
  9591. static void ggml_compute_forward_get_rows_q(
  9592. const struct ggml_compute_params * params,
  9593. const struct ggml_tensor * src0,
  9594. const struct ggml_tensor * src1,
  9595. struct ggml_tensor * dst) {
  9596. assert(params->ith == 0);
  9597. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9598. return;
  9599. }
  9600. const int nc = src0->ne[0];
  9601. const int nr = ggml_nelements(src1);
  9602. const enum ggml_type type = src0->type;
  9603. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9604. assert( dst->ne[0] == nc);
  9605. assert( dst->ne[1] == nr);
  9606. assert(src0->nb[0] == ggml_type_size(type));
  9607. for (int i = 0; i < nr; ++i) {
  9608. const int r = ((int32_t *) src1->data)[i];
  9609. dequantize_row_q(
  9610. (const void *) ((char *) src0->data + r*src0->nb[1]),
  9611. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  9612. }
  9613. }
  9614. static void ggml_compute_forward_get_rows_f16(
  9615. const struct ggml_compute_params * params,
  9616. const struct ggml_tensor * src0,
  9617. const struct ggml_tensor * src1,
  9618. struct ggml_tensor * dst) {
  9619. assert(params->ith == 0);
  9620. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9621. return;
  9622. }
  9623. const int nc = src0->ne[0];
  9624. const int nr = ggml_nelements(src1);
  9625. assert( dst->ne[0] == nc);
  9626. assert( dst->ne[1] == nr);
  9627. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  9628. for (int i = 0; i < nr; ++i) {
  9629. const int r = ((int32_t *) src1->data)[i];
  9630. for (int j = 0; j < nc; ++j) {
  9631. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  9632. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  9633. }
  9634. }
  9635. }
  9636. static void ggml_compute_forward_get_rows_f32(
  9637. const struct ggml_compute_params * params,
  9638. const struct ggml_tensor * src0,
  9639. const struct ggml_tensor * src1,
  9640. struct ggml_tensor * dst) {
  9641. assert(params->ith == 0);
  9642. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9643. return;
  9644. }
  9645. const int nc = src0->ne[0];
  9646. const int nr = ggml_nelements(src1);
  9647. assert( dst->ne[0] == nc);
  9648. assert( dst->ne[1] == nr);
  9649. assert(src0->nb[0] == sizeof(float));
  9650. for (int i = 0; i < nr; ++i) {
  9651. const int r = ((int32_t *) src1->data)[i];
  9652. ggml_vec_cpy_f32(nc,
  9653. (float *) ((char *) dst->data + i*dst->nb[1]),
  9654. (float *) ((char *) src0->data + r*src0->nb[1]));
  9655. }
  9656. }
  9657. static void ggml_compute_forward_get_rows(
  9658. const struct ggml_compute_params * params,
  9659. const struct ggml_tensor * src0,
  9660. const struct ggml_tensor * src1,
  9661. struct ggml_tensor * dst) {
  9662. switch (src0->type) {
  9663. case GGML_TYPE_Q4_0:
  9664. case GGML_TYPE_Q4_1:
  9665. case GGML_TYPE_Q5_0:
  9666. case GGML_TYPE_Q5_1:
  9667. case GGML_TYPE_Q8_0:
  9668. case GGML_TYPE_Q8_1:
  9669. case GGML_TYPE_Q2_K:
  9670. case GGML_TYPE_Q3_K:
  9671. case GGML_TYPE_Q4_K:
  9672. case GGML_TYPE_Q5_K:
  9673. case GGML_TYPE_Q6_K:
  9674. {
  9675. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9676. } break;
  9677. case GGML_TYPE_F16:
  9678. {
  9679. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9680. } break;
  9681. case GGML_TYPE_F32:
  9682. {
  9683. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9684. } break;
  9685. default:
  9686. {
  9687. GGML_ASSERT(false);
  9688. } break;
  9689. }
  9690. //static bool first = true;
  9691. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9692. //if (first) {
  9693. // first = false;
  9694. //} else {
  9695. // for (int k = 0; k < dst->ne[1]; ++k) {
  9696. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9697. // for (int i = 0; i < 16; ++i) {
  9698. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9699. // }
  9700. // printf("\n");
  9701. // }
  9702. // printf("\n");
  9703. // }
  9704. // printf("\n");
  9705. // exit(0);
  9706. //}
  9707. }
  9708. // ggml_compute_forward_get_rows_back
  9709. static void ggml_compute_forward_get_rows_back_f32_f16(
  9710. const struct ggml_compute_params * params,
  9711. const struct ggml_tensor * src0,
  9712. const struct ggml_tensor * src1,
  9713. const struct ggml_tensor * opt0,
  9714. struct ggml_tensor * dst) {
  9715. GGML_ASSERT(params->ith == 0);
  9716. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9717. GGML_ASSERT(ggml_is_contiguous(opt0));
  9718. GGML_ASSERT(ggml_is_contiguous(dst));
  9719. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9720. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9721. return;
  9722. }
  9723. const int nc = src0->ne[0];
  9724. const int nr = ggml_nelements(src1);
  9725. GGML_ASSERT( dst->ne[0] == nc);
  9726. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9727. for (int i = 0; i < nr; ++i) {
  9728. const int r = ((int32_t *) src1->data)[i];
  9729. for (int j = 0; j < nc; ++j) {
  9730. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9731. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9732. }
  9733. }
  9734. }
  9735. static void ggml_compute_forward_get_rows_back_f32(
  9736. const struct ggml_compute_params * params,
  9737. const struct ggml_tensor * src0,
  9738. const struct ggml_tensor * src1,
  9739. const struct ggml_tensor * opt0,
  9740. struct ggml_tensor * dst) {
  9741. GGML_ASSERT(params->ith == 0);
  9742. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9743. GGML_ASSERT(ggml_is_contiguous(opt0));
  9744. GGML_ASSERT(ggml_is_contiguous(dst));
  9745. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9746. if (params->type == GGML_TASK_INIT) {
  9747. memset(dst->data, 0, ggml_nbytes(dst));
  9748. }
  9749. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9750. return;
  9751. }
  9752. const int nc = src0->ne[0];
  9753. const int nr = ggml_nelements(src1);
  9754. GGML_ASSERT( dst->ne[0] == nc);
  9755. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9756. for (int i = 0; i < nr; ++i) {
  9757. const int r = ((int32_t *) src1->data)[i];
  9758. ggml_vec_add_f32(nc,
  9759. (float *) ((char *) dst->data + r*dst->nb[1]),
  9760. (float *) ((char *) dst->data + r*dst->nb[1]),
  9761. (float *) ((char *) src0->data + i*src0->nb[1]));
  9762. }
  9763. }
  9764. static void ggml_compute_forward_get_rows_back(
  9765. const struct ggml_compute_params * params,
  9766. const struct ggml_tensor * src0,
  9767. const struct ggml_tensor * src1,
  9768. const struct ggml_tensor * opt0,
  9769. struct ggml_tensor * dst) {
  9770. switch (src0->type) {
  9771. case GGML_TYPE_F16:
  9772. {
  9773. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  9774. } break;
  9775. case GGML_TYPE_F32:
  9776. {
  9777. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  9778. } break;
  9779. default:
  9780. {
  9781. GGML_ASSERT(false);
  9782. } break;
  9783. }
  9784. //static bool first = true;
  9785. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9786. //if (first) {
  9787. // first = false;
  9788. //} else {
  9789. // for (int k = 0; k < dst->ne[1]; ++k) {
  9790. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9791. // for (int i = 0; i < 16; ++i) {
  9792. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9793. // }
  9794. // printf("\n");
  9795. // }
  9796. // printf("\n");
  9797. // }
  9798. // printf("\n");
  9799. // exit(0);
  9800. //}
  9801. }
  9802. // ggml_compute_forward_diag
  9803. static void ggml_compute_forward_diag_f32(
  9804. const struct ggml_compute_params * params,
  9805. const struct ggml_tensor * src0,
  9806. struct ggml_tensor * dst) {
  9807. GGML_ASSERT(params->ith == 0);
  9808. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9809. return;
  9810. }
  9811. // TODO: handle transposed/permuted matrices
  9812. GGML_TENSOR_UNARY_OP_LOCALS;
  9813. GGML_ASSERT(ne00 == ne0);
  9814. GGML_ASSERT(ne00 == ne1);
  9815. GGML_ASSERT(ne01 == 1);
  9816. GGML_ASSERT(ne02 == ne2);
  9817. GGML_ASSERT(ne03 == ne3);
  9818. GGML_ASSERT(nb00 == sizeof(float));
  9819. GGML_ASSERT(nb0 == sizeof(float));
  9820. for (int i3 = 0; i3 < ne3; i3++) {
  9821. for (int i2 = 0; i2 < ne2; i2++) {
  9822. for (int i1 = 0; i1 < ne1; i1++) {
  9823. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9824. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9825. for (int i0 = 0; i0 < i1; i0++) {
  9826. d[i0] = 0;
  9827. }
  9828. d[i1] = s[i1];
  9829. for (int i0 = i1+1; i0 < ne0; i0++) {
  9830. d[i0] = 0;
  9831. }
  9832. }
  9833. }
  9834. }
  9835. }
  9836. static void ggml_compute_forward_diag(
  9837. const struct ggml_compute_params * params,
  9838. const struct ggml_tensor * src0,
  9839. struct ggml_tensor * dst) {
  9840. switch (src0->type) {
  9841. case GGML_TYPE_F32:
  9842. {
  9843. ggml_compute_forward_diag_f32(params, src0, dst);
  9844. } break;
  9845. default:
  9846. {
  9847. GGML_ASSERT(false);
  9848. } break;
  9849. }
  9850. }
  9851. // ggml_compute_forward_diag_mask_inf
  9852. static void ggml_compute_forward_diag_mask_f32(
  9853. const struct ggml_compute_params * params,
  9854. const struct ggml_tensor * src0,
  9855. struct ggml_tensor * dst,
  9856. const float value) {
  9857. const int ith = params->ith;
  9858. const int nth = params->nth;
  9859. const int n_past = ((int32_t *) dst->op_params)[0];
  9860. const bool inplace = src0->data == dst->data;
  9861. GGML_ASSERT(n_past >= 0);
  9862. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9863. // memcpy needs to be synchronized across threads to avoid race conditions.
  9864. // => do it in INIT phase
  9865. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9866. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9867. memcpy(
  9868. ((char *) dst->data),
  9869. ((char *) src0->data),
  9870. ggml_nbytes(dst));
  9871. }
  9872. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9873. return;
  9874. }
  9875. // TODO: handle transposed/permuted matrices
  9876. const int n = ggml_nrows(src0);
  9877. const int nc = src0->ne[0];
  9878. const int nr = src0->ne[1];
  9879. const int nz = n/nr;
  9880. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9881. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9882. for (int k = 0; k < nz; k++) {
  9883. for (int j = ith; j < nr; j += nth) {
  9884. for (int i = n_past; i < nc; i++) {
  9885. if (i > n_past + j) {
  9886. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9887. }
  9888. }
  9889. }
  9890. }
  9891. }
  9892. static void ggml_compute_forward_diag_mask_inf(
  9893. const struct ggml_compute_params * params,
  9894. const struct ggml_tensor * src0,
  9895. struct ggml_tensor * dst) {
  9896. switch (src0->type) {
  9897. case GGML_TYPE_F32:
  9898. {
  9899. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  9900. } break;
  9901. default:
  9902. {
  9903. GGML_ASSERT(false);
  9904. } break;
  9905. }
  9906. }
  9907. static void ggml_compute_forward_diag_mask_zero(
  9908. const struct ggml_compute_params * params,
  9909. const struct ggml_tensor * src0,
  9910. struct ggml_tensor * dst) {
  9911. switch (src0->type) {
  9912. case GGML_TYPE_F32:
  9913. {
  9914. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  9915. } break;
  9916. default:
  9917. {
  9918. GGML_ASSERT(false);
  9919. } break;
  9920. }
  9921. }
  9922. // ggml_compute_forward_soft_max
  9923. static void ggml_compute_forward_soft_max_f32(
  9924. const struct ggml_compute_params * params,
  9925. const struct ggml_tensor * src0,
  9926. struct ggml_tensor * dst) {
  9927. GGML_ASSERT(ggml_is_contiguous(src0));
  9928. GGML_ASSERT(ggml_is_contiguous(dst));
  9929. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9930. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9931. return;
  9932. }
  9933. // TODO: handle transposed/permuted matrices
  9934. const int ith = params->ith;
  9935. const int nth = params->nth;
  9936. const int nc = src0->ne[0];
  9937. const int nr = ggml_nrows(src0);
  9938. // rows per thread
  9939. const int dr = (nr + nth - 1)/nth;
  9940. // row range for this thread
  9941. const int ir0 = dr*ith;
  9942. const int ir1 = MIN(ir0 + dr, nr);
  9943. for (int i1 = ir0; i1 < ir1; i1++) {
  9944. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9945. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9946. #ifndef NDEBUG
  9947. for (int i = 0; i < nc; ++i) {
  9948. //printf("p[%d] = %f\n", i, p[i]);
  9949. assert(!isnan(sp[i]));
  9950. }
  9951. #endif
  9952. float max = -INFINITY;
  9953. ggml_vec_max_f32(nc, &max, sp);
  9954. ggml_float sum = 0.0;
  9955. uint16_t scvt;
  9956. for (int i = 0; i < nc; i++) {
  9957. if (sp[i] == -INFINITY) {
  9958. dp[i] = 0.0f;
  9959. } else {
  9960. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  9961. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  9962. memcpy(&scvt, &s, sizeof(scvt));
  9963. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  9964. sum += (ggml_float)val;
  9965. dp[i] = val;
  9966. }
  9967. }
  9968. assert(sum > 0.0);
  9969. sum = 1.0/sum;
  9970. ggml_vec_scale_f32(nc, dp, sum);
  9971. #ifndef NDEBUG
  9972. for (int i = 0; i < nc; ++i) {
  9973. assert(!isnan(dp[i]));
  9974. assert(!isinf(dp[i]));
  9975. }
  9976. #endif
  9977. }
  9978. }
  9979. static void ggml_compute_forward_soft_max(
  9980. const struct ggml_compute_params * params,
  9981. const struct ggml_tensor * src0,
  9982. struct ggml_tensor * dst) {
  9983. switch (src0->type) {
  9984. case GGML_TYPE_F32:
  9985. {
  9986. ggml_compute_forward_soft_max_f32(params, src0, dst);
  9987. } break;
  9988. default:
  9989. {
  9990. GGML_ASSERT(false);
  9991. } break;
  9992. }
  9993. }
  9994. // ggml_compute_forward_soft_max_back
  9995. static void ggml_compute_forward_soft_max_back_f32(
  9996. const struct ggml_compute_params * params,
  9997. const struct ggml_tensor * src0,
  9998. const struct ggml_tensor * src1,
  9999. struct ggml_tensor * dst) {
  10000. GGML_ASSERT(ggml_is_contiguous(src0));
  10001. GGML_ASSERT(ggml_is_contiguous(src1));
  10002. GGML_ASSERT(ggml_is_contiguous(dst));
  10003. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10004. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  10005. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10006. return;
  10007. }
  10008. // TODO: handle transposed/permuted matrices
  10009. const int ith = params->ith;
  10010. const int nth = params->nth;
  10011. const int nc = src0->ne[0];
  10012. const int nr = ggml_nrows(src0);
  10013. // rows per thread
  10014. const int dr = (nr + nth - 1)/nth;
  10015. // row range for this thread
  10016. const int ir0 = dr*ith;
  10017. const int ir1 = MIN(ir0 + dr, nr);
  10018. for (int i1 = ir0; i1 < ir1; i1++) {
  10019. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  10020. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  10021. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  10022. #ifndef NDEBUG
  10023. for (int i = 0; i < nc; ++i) {
  10024. //printf("p[%d] = %f\n", i, p[i]);
  10025. assert(!isnan(dy[i]));
  10026. assert(!isnan(y[i]));
  10027. }
  10028. #endif
  10029. // Jii = yi - yi*yi
  10030. // Jij = -yi*yj
  10031. // J = diag(y)-y.T*y
  10032. // dx = J * dy
  10033. // dxk = sum_i(Jki * dyi)
  10034. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  10035. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  10036. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  10037. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  10038. // dxk = -yk * dot(y, dy) + yk*dyk
  10039. // dxk = yk * (- dot(y, dy) + dyk)
  10040. // dxk = yk * (dyk - dot(y, dy))
  10041. //
  10042. // post-order:
  10043. // dot_y_dy := dot(y, dy)
  10044. // dx := dy
  10045. // dx := dx - dot_y_dy
  10046. // dx := dx * y
  10047. // linear runtime, no additional memory
  10048. float dot_y_dy = 0;
  10049. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  10050. ggml_vec_cpy_f32 (nc, dx, dy);
  10051. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  10052. ggml_vec_mul_f32 (nc, dx, dx, y);
  10053. #ifndef NDEBUG
  10054. for (int i = 0; i < nc; ++i) {
  10055. assert(!isnan(dx[i]));
  10056. assert(!isinf(dx[i]));
  10057. }
  10058. #endif
  10059. }
  10060. }
  10061. static void ggml_compute_forward_soft_max_back(
  10062. const struct ggml_compute_params * params,
  10063. const struct ggml_tensor * src0,
  10064. const struct ggml_tensor * src1,
  10065. struct ggml_tensor * dst) {
  10066. switch (src0->type) {
  10067. case GGML_TYPE_F32:
  10068. {
  10069. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  10070. } break;
  10071. default:
  10072. {
  10073. GGML_ASSERT(false);
  10074. } break;
  10075. }
  10076. }
  10077. // ggml_compute_forward_alibi
  10078. static void ggml_compute_forward_alibi_f32(
  10079. const struct ggml_compute_params * params,
  10080. const struct ggml_tensor * src0,
  10081. struct ggml_tensor * dst) {
  10082. assert(params->ith == 0);
  10083. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10084. return;
  10085. }
  10086. const int n_past = ((int32_t *) dst->op_params)[0];
  10087. const int n_head = ((int32_t *) dst->op_params)[1];
  10088. float max_bias;
  10089. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10090. assert(n_past >= 0);
  10091. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10092. const int ne1 = src0->ne[1]; // seq_len_without_past
  10093. const int ne2 = src0->ne[2]; // n_head -> this is k
  10094. //const int ne3 = src0->ne[3]; // 1 -> bsz
  10095. const int n = ggml_nrows(src0);
  10096. const int ne2_ne3 = n/ne1; // ne2*ne3
  10097. const int nb0 = src0->nb[0];
  10098. const int nb1 = src0->nb[1];
  10099. const int nb2 = src0->nb[2];
  10100. //const int nb3 = src0->nb[3];
  10101. GGML_ASSERT(nb0 == sizeof(float));
  10102. GGML_ASSERT(ne1 + n_past == ne0);
  10103. GGML_ASSERT(n_head == ne2);
  10104. // add alibi to src0 (KQ_scaled)
  10105. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10106. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10107. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10108. for (int i = 0; i < ne0; i++) {
  10109. for (int j = 0; j < ne1; j++) {
  10110. for (int k = 0; k < ne2_ne3; k++) {
  10111. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10112. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10113. // TODO: k*nb2 or k*nb3
  10114. float m_k;
  10115. if (k < n_heads_log2_floor) {
  10116. m_k = powf(m0, k + 1);
  10117. } else {
  10118. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10119. }
  10120. pdst[0] = i * m_k + src[0];
  10121. }
  10122. }
  10123. }
  10124. }
  10125. static void ggml_compute_forward_alibi_f16(
  10126. const struct ggml_compute_params * params,
  10127. const struct ggml_tensor * src0,
  10128. struct ggml_tensor * dst) {
  10129. assert(params->ith == 0);
  10130. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10131. return;
  10132. }
  10133. //const int n_past = ((int32_t *) dst->op_params)[0];
  10134. const int n_head = ((int32_t *) dst->op_params)[1];
  10135. float max_bias;
  10136. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10137. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10138. const int ne1 = src0->ne[1]; // seq_len_without_past
  10139. const int ne2 = src0->ne[2]; // n_head -> this is k
  10140. //const int ne3 = src0->ne[3]; // 1 -> bsz
  10141. const int n = ggml_nrows(src0);
  10142. const int ne2_ne3 = n/ne1; // ne2*ne3
  10143. const int nb0 = src0->nb[0];
  10144. const int nb1 = src0->nb[1];
  10145. const int nb2 = src0->nb[2];
  10146. //const int nb3 = src0->nb[3];
  10147. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10148. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  10149. GGML_ASSERT(n_head == ne2);
  10150. // add alibi to src0 (KQ_scaled)
  10151. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10152. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10153. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10154. for (int i = 0; i < ne0; i++) {
  10155. for (int j = 0; j < ne1; j++) {
  10156. for (int k = 0; k < ne2_ne3; k++) {
  10157. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10158. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10159. // TODO: k*nb2 or k*nb3
  10160. float m_k;
  10161. if (k < n_heads_log2_floor) {
  10162. m_k = powf(m0, k + 1);
  10163. } else {
  10164. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10165. }
  10166. // we return F32
  10167. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  10168. }
  10169. }
  10170. }
  10171. }
  10172. static void ggml_compute_forward_alibi(
  10173. const struct ggml_compute_params * params,
  10174. const struct ggml_tensor * src0,
  10175. struct ggml_tensor * dst) {
  10176. switch (src0->type) {
  10177. case GGML_TYPE_F16:
  10178. {
  10179. ggml_compute_forward_alibi_f16(params, src0, dst);
  10180. } break;
  10181. case GGML_TYPE_F32:
  10182. {
  10183. ggml_compute_forward_alibi_f32(params, src0, dst);
  10184. } break;
  10185. case GGML_TYPE_Q4_0:
  10186. case GGML_TYPE_Q4_1:
  10187. case GGML_TYPE_Q5_0:
  10188. case GGML_TYPE_Q5_1:
  10189. case GGML_TYPE_Q8_0:
  10190. case GGML_TYPE_Q8_1:
  10191. case GGML_TYPE_Q2_K:
  10192. case GGML_TYPE_Q3_K:
  10193. case GGML_TYPE_Q4_K:
  10194. case GGML_TYPE_Q5_K:
  10195. case GGML_TYPE_Q6_K:
  10196. case GGML_TYPE_Q8_K:
  10197. case GGML_TYPE_I8:
  10198. case GGML_TYPE_I16:
  10199. case GGML_TYPE_I32:
  10200. case GGML_TYPE_COUNT:
  10201. {
  10202. GGML_ASSERT(false);
  10203. } break;
  10204. }
  10205. }
  10206. // ggml_compute_forward_clamp
  10207. static void ggml_compute_forward_clamp_f32(
  10208. const struct ggml_compute_params * params,
  10209. const struct ggml_tensor * src0,
  10210. struct ggml_tensor * dst) {
  10211. assert(params->ith == 0);
  10212. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10213. return;
  10214. }
  10215. float min;
  10216. float max;
  10217. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  10218. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  10219. const int ith = params->ith;
  10220. const int nth = params->nth;
  10221. const int n = ggml_nrows(src0);
  10222. const int nc = src0->ne[0];
  10223. const size_t nb00 = src0->nb[0];
  10224. const size_t nb01 = src0->nb[1];
  10225. const size_t nb0 = dst->nb[0];
  10226. const size_t nb1 = dst->nb[1];
  10227. GGML_ASSERT( nb0 == sizeof(float));
  10228. GGML_ASSERT(nb00 == sizeof(float));
  10229. for (int j = ith; j < n; j += nth) {
  10230. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  10231. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  10232. for (int i = 0; i < nc; i++) {
  10233. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  10234. }
  10235. }
  10236. }
  10237. static void ggml_compute_forward_clamp(
  10238. const struct ggml_compute_params * params,
  10239. const struct ggml_tensor * src0,
  10240. struct ggml_tensor * dst) {
  10241. switch (src0->type) {
  10242. case GGML_TYPE_F32:
  10243. {
  10244. ggml_compute_forward_clamp_f32(params, src0, dst);
  10245. } break;
  10246. case GGML_TYPE_F16:
  10247. case GGML_TYPE_Q4_0:
  10248. case GGML_TYPE_Q4_1:
  10249. case GGML_TYPE_Q5_0:
  10250. case GGML_TYPE_Q5_1:
  10251. case GGML_TYPE_Q8_0:
  10252. case GGML_TYPE_Q8_1:
  10253. case GGML_TYPE_Q2_K:
  10254. case GGML_TYPE_Q3_K:
  10255. case GGML_TYPE_Q4_K:
  10256. case GGML_TYPE_Q5_K:
  10257. case GGML_TYPE_Q6_K:
  10258. case GGML_TYPE_Q8_K:
  10259. case GGML_TYPE_I8:
  10260. case GGML_TYPE_I16:
  10261. case GGML_TYPE_I32:
  10262. case GGML_TYPE_COUNT:
  10263. {
  10264. GGML_ASSERT(false);
  10265. } break;
  10266. }
  10267. }
  10268. // ggml_compute_forward_rope
  10269. static void ggml_compute_forward_rope_f32(
  10270. const struct ggml_compute_params * params,
  10271. const struct ggml_tensor * src0,
  10272. const struct ggml_tensor * src1,
  10273. struct ggml_tensor * dst) {
  10274. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10275. return;
  10276. }
  10277. float freq_base;
  10278. float freq_scale;
  10279. // these two only relevant for xPos RoPE:
  10280. float xpos_base;
  10281. bool xpos_down;
  10282. //const int n_past = ((int32_t *) dst->op_params)[0];
  10283. const int n_dims = ((int32_t *) dst->op_params)[1];
  10284. const int mode = ((int32_t *) dst->op_params)[2];
  10285. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10286. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  10287. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  10288. memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float));
  10289. memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool));
  10290. GGML_TENSOR_UNARY_OP_LOCALS;
  10291. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10292. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10293. GGML_ASSERT(nb00 == sizeof(float));
  10294. const int ith = params->ith;
  10295. const int nth = params->nth;
  10296. const int nr = ggml_nrows(dst);
  10297. GGML_ASSERT(n_dims <= ne0);
  10298. GGML_ASSERT(n_dims % 2 == 0);
  10299. // rows per thread
  10300. const int dr = (nr + nth - 1)/nth;
  10301. // row range for this thread
  10302. const int ir0 = dr*ith;
  10303. const int ir1 = MIN(ir0 + dr, nr);
  10304. // row index used to determine which thread to use
  10305. int ir = 0;
  10306. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10307. const bool is_neox = mode & 2;
  10308. const bool is_glm = mode & 4;
  10309. const int32_t * pos = (const int32_t *) src1->data;
  10310. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10311. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10312. const int64_t p = pos[i2];
  10313. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10314. if (ir++ < ir0) continue;
  10315. if (ir > ir1) break;
  10316. float theta = freq_scale * (float)p;
  10317. if (is_glm) {
  10318. theta = MIN(p, n_ctx - 2);
  10319. float block_theta = MAX(p - (n_ctx - 2), 0);
  10320. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10321. const float cos_theta = cosf(theta);
  10322. const float sin_theta = sinf(theta);
  10323. const float cos_block_theta = cosf(block_theta);
  10324. const float sin_block_theta = sinf(block_theta);
  10325. theta *= theta_scale;
  10326. block_theta *= theta_scale;
  10327. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10328. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10329. const float x0 = src[0];
  10330. const float x1 = src[n_dims/2];
  10331. const float x2 = src[n_dims];
  10332. const float x3 = src[n_dims/2*3];
  10333. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10334. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10335. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10336. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10337. }
  10338. } else if (!is_neox) {
  10339. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10340. const float cos_theta = cosf(theta);
  10341. const float sin_theta = sinf(theta);
  10342. // zeta scaling for xPos only:
  10343. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  10344. if (xpos_down) zeta = 1.0f / zeta;
  10345. theta *= theta_scale;
  10346. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10347. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10348. const float x0 = src[0];
  10349. const float x1 = src[1];
  10350. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  10351. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  10352. }
  10353. } else {
  10354. // TODO: this might be wrong for ne0 != n_dims - need double check
  10355. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  10356. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10357. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10358. const float cos_theta = cosf(theta);
  10359. const float sin_theta = sinf(theta);
  10360. theta *= theta_scale;
  10361. const int64_t i0 = ib*n_dims + ic/2;
  10362. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10363. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10364. const float x0 = src[0];
  10365. const float x1 = src[n_dims/2];
  10366. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10367. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10368. }
  10369. }
  10370. }
  10371. }
  10372. }
  10373. }
  10374. }
  10375. static void ggml_compute_forward_rope_f16(
  10376. const struct ggml_compute_params * params,
  10377. const struct ggml_tensor * src0,
  10378. const struct ggml_tensor * src1,
  10379. struct ggml_tensor * dst) {
  10380. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10381. return;
  10382. }
  10383. float freq_base;
  10384. float freq_scale;
  10385. //const int n_past = ((int32_t *) dst->op_params)[0];
  10386. const int n_dims = ((int32_t *) dst->op_params)[1];
  10387. const int mode = ((int32_t *) dst->op_params)[2];
  10388. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10389. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  10390. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  10391. GGML_TENSOR_UNARY_OP_LOCALS;
  10392. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10393. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10394. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10395. const int ith = params->ith;
  10396. const int nth = params->nth;
  10397. const int nr = ggml_nrows(dst);
  10398. GGML_ASSERT(n_dims <= ne0);
  10399. GGML_ASSERT(n_dims % 2 == 0);
  10400. // rows per thread
  10401. const int dr = (nr + nth - 1)/nth;
  10402. // row range for this thread
  10403. const int ir0 = dr*ith;
  10404. const int ir1 = MIN(ir0 + dr, nr);
  10405. // row index used to determine which thread to use
  10406. int ir = 0;
  10407. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10408. const bool is_neox = mode & 2;
  10409. const bool is_glm = mode & 4;
  10410. const int32_t * pos = (const int32_t *) src1->data;
  10411. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10412. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10413. const int64_t p = pos[i2];
  10414. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10415. if (ir++ < ir0) continue;
  10416. if (ir > ir1) break;
  10417. float theta = freq_scale * (float)p;
  10418. if (is_glm) {
  10419. theta = MIN(p, n_ctx - 2);
  10420. float block_theta = MAX(p - (n_ctx - 2), 0);
  10421. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10422. const float cos_theta = cosf(theta);
  10423. const float sin_theta = sinf(theta);
  10424. const float cos_block_theta = cosf(block_theta);
  10425. const float sin_block_theta = sinf(block_theta);
  10426. theta *= theta_scale;
  10427. block_theta *= theta_scale;
  10428. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10429. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10430. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10431. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10432. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10433. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10434. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10435. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10436. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10437. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10438. }
  10439. } if (!is_neox) {
  10440. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10441. const float cos_theta = cosf(theta);
  10442. const float sin_theta = sinf(theta);
  10443. theta *= theta_scale;
  10444. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10445. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10446. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10447. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10448. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10449. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10450. }
  10451. } else {
  10452. // TODO: this might be wrong for ne0 != n_dims - need double check
  10453. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  10454. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10455. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10456. const float cos_theta = cosf(theta);
  10457. const float sin_theta = sinf(theta);
  10458. theta *= theta_scale;
  10459. const int64_t i0 = ib*n_dims + ic/2;
  10460. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10461. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10462. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10463. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10464. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10465. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10466. }
  10467. }
  10468. }
  10469. }
  10470. }
  10471. }
  10472. }
  10473. static void ggml_compute_forward_rope(
  10474. const struct ggml_compute_params * params,
  10475. const struct ggml_tensor * src0,
  10476. const struct ggml_tensor * src1,
  10477. struct ggml_tensor * dst) {
  10478. switch (src0->type) {
  10479. case GGML_TYPE_F16:
  10480. {
  10481. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  10482. } break;
  10483. case GGML_TYPE_F32:
  10484. {
  10485. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  10486. } break;
  10487. default:
  10488. {
  10489. GGML_ASSERT(false);
  10490. } break;
  10491. }
  10492. }
  10493. // ggml_compute_forward_rope_back
  10494. static void ggml_compute_forward_rope_back_f32(
  10495. const struct ggml_compute_params * params,
  10496. const struct ggml_tensor * src0,
  10497. const struct ggml_tensor * src1,
  10498. struct ggml_tensor * dst) {
  10499. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10500. return;
  10501. }
  10502. // y = rope(x, src1)
  10503. // dx = rope_back(dy, src1)
  10504. // src0 is dy, src1 contains options
  10505. float freq_base;
  10506. float freq_scale;
  10507. // these two only relevant for xPos RoPE:
  10508. float xpos_base;
  10509. bool xpos_down;
  10510. //const int n_past = ((int32_t *) dst->op_params)[0];
  10511. const int n_dims = ((int32_t *) dst->op_params)[1];
  10512. const int mode = ((int32_t *) dst->op_params)[2];
  10513. const int n_ctx = ((int32_t *) dst->op_params)[3]; UNUSED(n_ctx);
  10514. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  10515. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  10516. memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float));
  10517. memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool));
  10518. GGML_TENSOR_UNARY_OP_LOCALS;
  10519. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10520. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10521. assert(nb0 == sizeof(float));
  10522. const int ith = params->ith;
  10523. const int nth = params->nth;
  10524. const int nr = ggml_nrows(dst);
  10525. // rows per thread
  10526. const int dr = (nr + nth - 1)/nth;
  10527. // row range for this thread
  10528. const int ir0 = dr*ith;
  10529. const int ir1 = MIN(ir0 + dr, nr);
  10530. // row index used to determine which thread to use
  10531. int ir = 0;
  10532. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10533. const bool is_neox = mode & 2;
  10534. const int32_t * pos = (const int32_t *) src1->data;
  10535. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10536. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10537. const int64_t p = pos[i2];
  10538. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10539. if (ir++ < ir0) continue;
  10540. if (ir > ir1) break;
  10541. float theta = freq_scale * (float)p;
  10542. if (!is_neox) {
  10543. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10544. const float cos_theta = cosf(theta);
  10545. const float sin_theta = sinf(theta);
  10546. // zeta scaling for xPos only:
  10547. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  10548. if (xpos_down) zeta = 1.0f / zeta;
  10549. theta *= theta_scale;
  10550. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10551. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10552. const float dy0 = dy[0];
  10553. const float dy1 = dy[1];
  10554. dx[0] = dy0*cos_theta*zeta + dy1*sin_theta*zeta;
  10555. dx[1] = - dy0*sin_theta*zeta + dy1*cos_theta*zeta;
  10556. }
  10557. } else {
  10558. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10559. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10560. const float cos_theta = cosf(theta);
  10561. const float sin_theta = sinf(theta);
  10562. theta *= theta_scale;
  10563. const int64_t i0 = ib*n_dims + ic/2;
  10564. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10565. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10566. const float dy0 = dy[0];
  10567. const float dy1 = dy[n_dims/2];
  10568. dx[0] = dy0*cos_theta + dy1*sin_theta;
  10569. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  10570. }
  10571. }
  10572. }
  10573. }
  10574. }
  10575. }
  10576. }
  10577. static void ggml_compute_forward_rope_back_f16(
  10578. const struct ggml_compute_params * params,
  10579. const struct ggml_tensor * src0,
  10580. const struct ggml_tensor * src1,
  10581. struct ggml_tensor * dst) {
  10582. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10583. return;
  10584. }
  10585. // y = rope(x, src1)
  10586. // dx = rope_back(dy, src1)
  10587. // src0 is dy, src1 contains options
  10588. //const int n_past = ((int32_t *) dst->op_params)[0];
  10589. const int n_dims = ((int32_t *) dst->op_params)[1];
  10590. const int mode = ((int32_t *) dst->op_params)[2];
  10591. GGML_TENSOR_UNARY_OP_LOCALS;
  10592. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10593. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10594. assert(nb0 == sizeof(ggml_fp16_t));
  10595. const int ith = params->ith;
  10596. const int nth = params->nth;
  10597. const int nr = ggml_nrows(dst);
  10598. // rows per thread
  10599. const int dr = (nr + nth - 1)/nth;
  10600. // row range for this thread
  10601. const int ir0 = dr*ith;
  10602. const int ir1 = MIN(ir0 + dr, nr);
  10603. // row index used to determine which thread to use
  10604. int ir = 0;
  10605. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10606. const bool is_neox = mode & 2;
  10607. const int32_t * pos = (const int32_t *) src1->data;
  10608. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10609. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10610. const int64_t p = pos[i2];
  10611. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10612. if (ir++ < ir0) continue;
  10613. if (ir > ir1) break;
  10614. float theta = (float)p;
  10615. if (!is_neox) {
  10616. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10617. const float cos_theta = cosf(theta);
  10618. const float sin_theta = sinf(theta);
  10619. theta *= theta_scale;
  10620. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10621. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10622. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10623. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  10624. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10625. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10626. }
  10627. } else {
  10628. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10629. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10630. const float cos_theta = cosf(theta);
  10631. const float sin_theta = sinf(theta);
  10632. theta *= theta_scale;
  10633. const int64_t i0 = ib*n_dims + ic/2;
  10634. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10635. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10636. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10637. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  10638. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10639. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10640. }
  10641. }
  10642. }
  10643. }
  10644. }
  10645. }
  10646. }
  10647. static void ggml_compute_forward_rope_back(
  10648. const struct ggml_compute_params * params,
  10649. const struct ggml_tensor * src0,
  10650. const struct ggml_tensor * src1,
  10651. struct ggml_tensor * dst) {
  10652. switch (src0->type) {
  10653. case GGML_TYPE_F16:
  10654. {
  10655. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  10656. } break;
  10657. case GGML_TYPE_F32:
  10658. {
  10659. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  10660. } break;
  10661. default:
  10662. {
  10663. GGML_ASSERT(false);
  10664. } break;
  10665. }
  10666. }
  10667. // ggml_compute_forward_conv_1d
  10668. static void ggml_compute_forward_conv_1d_s1_ph_f16_f32(
  10669. const struct ggml_compute_params * params,
  10670. const struct ggml_tensor * src0,
  10671. const struct ggml_tensor * src1,
  10672. struct ggml_tensor * dst) {
  10673. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10674. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10675. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10676. int64_t t0 = ggml_perf_time_us();
  10677. UNUSED(t0);
  10678. GGML_TENSOR_BINARY_OP_LOCALS;
  10679. const int ith = params->ith;
  10680. const int nth = params->nth;
  10681. const int nk = ne00;
  10682. const int nh = nk/2;
  10683. const int ew0 = ggml_up32(ne01);
  10684. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10685. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10686. GGML_ASSERT(nb10 == sizeof(float));
  10687. if (params->type == GGML_TASK_INIT) {
  10688. // TODO: fix this memset (wsize is overestimated)
  10689. memset(params->wdata, 0, params->wsize);
  10690. // prepare kernel data (src0)
  10691. {
  10692. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10693. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10694. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10695. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10696. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10697. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10698. dst_data[i00*ew0 + i01] = src[i00];
  10699. }
  10700. }
  10701. }
  10702. }
  10703. // prepare source data (src1)
  10704. {
  10705. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10706. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10707. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10708. ggml_fp16_t * dst_data = wdata;
  10709. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10710. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10711. }
  10712. }
  10713. }
  10714. return;
  10715. }
  10716. if (params->type == GGML_TASK_FINALIZE) {
  10717. return;
  10718. }
  10719. // total rows in dst
  10720. const int nr = ne02;
  10721. // rows per thread
  10722. const int dr = (nr + nth - 1)/nth;
  10723. // row range for this thread
  10724. const int ir0 = dr*ith;
  10725. const int ir1 = MIN(ir0 + dr, nr);
  10726. for (int i1 = ir0; i1 < ir1; i1++) {
  10727. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10728. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10729. dst_data[i0] = 0;
  10730. for (int k = -nh; k <= nh; k++) {
  10731. float v = 0.0f;
  10732. ggml_vec_dot_f16(ew0, &v,
  10733. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10734. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10735. dst_data[i0] += v;
  10736. }
  10737. }
  10738. }
  10739. }
  10740. static void ggml_compute_forward_conv_1d_s1_ph_f32(
  10741. const struct ggml_compute_params * params,
  10742. const struct ggml_tensor * src0,
  10743. const struct ggml_tensor * src1,
  10744. struct ggml_tensor * dst) {
  10745. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10746. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10747. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10748. int64_t t0 = ggml_perf_time_us();
  10749. UNUSED(t0);
  10750. GGML_TENSOR_BINARY_OP_LOCALS;
  10751. const int ith = params->ith;
  10752. const int nth = params->nth;
  10753. const int nk = ne00;
  10754. const int nh = nk/2;
  10755. const int ew0 = ggml_up32(ne01);
  10756. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10757. GGML_ASSERT(nb00 == sizeof(float));
  10758. GGML_ASSERT(nb10 == sizeof(float));
  10759. if (params->type == GGML_TASK_INIT) {
  10760. // TODO: fix this memset (wsize is overestimated)
  10761. memset(params->wdata, 0, params->wsize);
  10762. // prepare kernel data (src0)
  10763. {
  10764. float * const wdata = (float *) params->wdata + 0;
  10765. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10766. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10767. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10768. float * dst_data = wdata + i02*ew0*ne00;
  10769. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10770. dst_data[i00*ew0 + i01] = src[i00];
  10771. }
  10772. }
  10773. }
  10774. }
  10775. // prepare source data (src1)
  10776. {
  10777. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10778. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10779. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10780. float * dst_data = wdata;
  10781. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10782. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10783. }
  10784. }
  10785. }
  10786. return;
  10787. }
  10788. if (params->type == GGML_TASK_FINALIZE) {
  10789. return;
  10790. }
  10791. // total rows in dst
  10792. const int nr = ne02;
  10793. // rows per thread
  10794. const int dr = (nr + nth - 1)/nth;
  10795. // row range for this thread
  10796. const int ir0 = dr*ith;
  10797. const int ir1 = MIN(ir0 + dr, nr);
  10798. for (int i1 = ir0; i1 < ir1; i1++) {
  10799. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10800. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10801. dst_data[i0] = 0;
  10802. for (int k = -nh; k <= nh; k++) {
  10803. float v = 0.0f;
  10804. ggml_vec_dot_f32(ew0, &v,
  10805. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10806. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10807. dst_data[i0] += v;
  10808. }
  10809. }
  10810. }
  10811. }
  10812. static void ggml_compute_forward_conv_1d_s1_ph(
  10813. const struct ggml_compute_params * params,
  10814. const struct ggml_tensor * src0,
  10815. const struct ggml_tensor * src1,
  10816. struct ggml_tensor * dst) {
  10817. switch (src0->type) {
  10818. case GGML_TYPE_F16:
  10819. {
  10820. ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst);
  10821. } break;
  10822. case GGML_TYPE_F32:
  10823. {
  10824. ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst);
  10825. } break;
  10826. default:
  10827. {
  10828. GGML_ASSERT(false);
  10829. } break;
  10830. }
  10831. }
  10832. static void ggml_compute_forward_conv_1d_s2_ph_f16_f32(
  10833. const struct ggml_compute_params * params,
  10834. const struct ggml_tensor * src0,
  10835. const struct ggml_tensor * src1,
  10836. struct ggml_tensor * dst) {
  10837. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10838. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10839. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10840. int64_t t0 = ggml_perf_time_us();
  10841. UNUSED(t0);
  10842. GGML_TENSOR_BINARY_OP_LOCALS;
  10843. const int ith = params->ith;
  10844. const int nth = params->nth;
  10845. const int nk = ne00;
  10846. const int nh = nk/2;
  10847. const int ew0 = ggml_up32(ne01);
  10848. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10849. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10850. GGML_ASSERT(nb10 == sizeof(float));
  10851. if (params->type == GGML_TASK_INIT) {
  10852. // TODO: fix this memset (wsize is overestimated)
  10853. memset(params->wdata, 0, params->wsize);
  10854. // prepare kernel data (src0)
  10855. {
  10856. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10857. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10858. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10859. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10860. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10861. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10862. dst_data[i00*ew0 + i01] = src[i00];
  10863. }
  10864. }
  10865. }
  10866. }
  10867. // prepare source data (src1)
  10868. {
  10869. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10870. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10871. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10872. ggml_fp16_t * dst_data = wdata;
  10873. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10874. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10875. }
  10876. }
  10877. }
  10878. return;
  10879. }
  10880. if (params->type == GGML_TASK_FINALIZE) {
  10881. return;
  10882. }
  10883. // total rows in dst
  10884. const int nr = ne02;
  10885. // rows per thread
  10886. const int dr = (nr + nth - 1)/nth;
  10887. // row range for this thread
  10888. const int ir0 = dr*ith;
  10889. const int ir1 = MIN(ir0 + dr, nr);
  10890. for (int i1 = ir0; i1 < ir1; i1++) {
  10891. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10892. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10893. dst_data[i0/2] = 0;
  10894. for (int k = -nh; k <= nh; k++) {
  10895. float v = 0.0f;
  10896. ggml_vec_dot_f16(ew0, &v,
  10897. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10898. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10899. dst_data[i0/2] += v;
  10900. }
  10901. }
  10902. }
  10903. }
  10904. static void ggml_compute_forward_conv_1d_s2_ph_f32(
  10905. const struct ggml_compute_params * params,
  10906. const struct ggml_tensor * src0,
  10907. const struct ggml_tensor * src1,
  10908. struct ggml_tensor * dst) {
  10909. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10910. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10911. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10912. int64_t t0 = ggml_perf_time_us();
  10913. UNUSED(t0);
  10914. GGML_TENSOR_BINARY_OP_LOCALS;
  10915. const int ith = params->ith;
  10916. const int nth = params->nth;
  10917. const int nk = ne00;
  10918. const int nh = nk/2;
  10919. const int ew0 = ggml_up32(ne01);
  10920. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10921. GGML_ASSERT(nb00 == sizeof(float));
  10922. GGML_ASSERT(nb10 == sizeof(float));
  10923. if (params->type == GGML_TASK_INIT) {
  10924. // TODO: fix this memset (wsize is overestimated)
  10925. memset(params->wdata, 0, params->wsize);
  10926. // prepare kernel data (src0)
  10927. {
  10928. float * const wdata = (float *) params->wdata + 0;
  10929. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10930. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10931. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10932. float * dst_data = wdata + i02*ew0*ne00;
  10933. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10934. dst_data[i00*ew0 + i01] = src[i00];
  10935. }
  10936. }
  10937. }
  10938. }
  10939. // prepare source data (src1)
  10940. {
  10941. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10942. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10943. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10944. float * dst_data = wdata;
  10945. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10946. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10947. }
  10948. }
  10949. }
  10950. return;
  10951. }
  10952. if (params->type == GGML_TASK_FINALIZE) {
  10953. return;
  10954. }
  10955. // total rows in dst
  10956. const int nr = ne02;
  10957. // rows per thread
  10958. const int dr = (nr + nth - 1)/nth;
  10959. // row range for this thread
  10960. const int ir0 = dr*ith;
  10961. const int ir1 = MIN(ir0 + dr, nr);
  10962. for (int i1 = ir0; i1 < ir1; i1++) {
  10963. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10964. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10965. dst_data[i0/2] = 0;
  10966. for (int k = -nh; k <= nh; k++) {
  10967. float v = 0.0f;
  10968. ggml_vec_dot_f32(ew0, &v,
  10969. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10970. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10971. dst_data[i0/2] += v;
  10972. }
  10973. }
  10974. }
  10975. }
  10976. static void ggml_compute_forward_conv_1d_s2_ph(
  10977. const struct ggml_compute_params * params,
  10978. const struct ggml_tensor * src0,
  10979. const struct ggml_tensor * src1,
  10980. struct ggml_tensor * dst) {
  10981. switch (src0->type) {
  10982. case GGML_TYPE_F16:
  10983. {
  10984. ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst);
  10985. } break;
  10986. case GGML_TYPE_F32:
  10987. {
  10988. ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst);
  10989. } break;
  10990. default:
  10991. {
  10992. GGML_ASSERT(false);
  10993. } break;
  10994. }
  10995. }
  10996. // ggml_compute_forward_conv_1d
  10997. static void ggml_compute_forward_conv_1d(
  10998. const struct ggml_compute_params * params,
  10999. const struct ggml_tensor * src0,
  11000. const struct ggml_tensor * src1,
  11001. struct ggml_tensor * dst) {
  11002. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11003. const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
  11004. const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
  11005. GGML_ASSERT(d0 == 1); // dilation not supported
  11006. GGML_ASSERT(p0 == src0->ne[0]/2); // only half padding supported
  11007. if (s0 == 1) {
  11008. ggml_compute_forward_conv_1d_s1_ph(params, src0, src1, dst);
  11009. } else if (s0 == 2) {
  11010. ggml_compute_forward_conv_1d_s2_ph(params, src0, src1, dst);
  11011. } else {
  11012. GGML_ASSERT(false); // only stride 1 and 2 supported
  11013. };
  11014. }
  11015. // ggml_compute_forward_conv_2d
  11016. static void ggml_compute_forward_conv_2d_f16_f32(
  11017. const struct ggml_compute_params * params,
  11018. const struct ggml_tensor * src0,
  11019. const struct ggml_tensor * src1,
  11020. struct ggml_tensor * dst) {
  11021. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11022. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11023. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11024. int64_t t0 = ggml_perf_time_us();
  11025. UNUSED(t0);
  11026. GGML_TENSOR_BINARY_OP_LOCALS;
  11027. const int ith = params->ith;
  11028. const int nth = params->nth;
  11029. const int nk0 = ne00;
  11030. const int nk1 = ne01;
  11031. // size of the convolution row - the kernel size unrolled across all channels
  11032. const int ew0 = nk0*nk1*ne02;
  11033. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11034. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  11035. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  11036. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  11037. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  11038. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  11039. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11040. GGML_ASSERT(nb10 == sizeof(float));
  11041. if (params->type == GGML_TASK_INIT) {
  11042. memset(params->wdata, 0, params->wsize);
  11043. // prepare source data (src1)
  11044. {
  11045. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11046. for (int i12 = 0; i12 < ne12; i12++) {
  11047. const float * const src = (float *)((char *) src1->data + i12*nb12);
  11048. ggml_fp16_t * dst_data = wdata;
  11049. for (int i1 = 0; i1 < ne1; i1++) {
  11050. for (int i0 = 0; i0 < ne0; i0++) {
  11051. for (int ik1 = 0; ik1 < nk1; ik1++) {
  11052. for (int ik0 = 0; ik0 < nk0; ik0++) {
  11053. const int idx0 = i0*s0 + ik0*d0 - p0;
  11054. const int idx1 = i1*s1 + ik1*d1 - p1;
  11055. if (!(idx1 < 0 || idx1 >= ne11 || idx0 < 0 || idx0 >= ne10)) {
  11056. dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] =
  11057. GGML_FP32_TO_FP16(src[idx1*ne10 + idx0]);
  11058. }
  11059. }
  11060. }
  11061. }
  11062. }
  11063. }
  11064. }
  11065. return;
  11066. }
  11067. if (params->type == GGML_TASK_FINALIZE) {
  11068. return;
  11069. }
  11070. // total patches in dst
  11071. const int np = ne2;
  11072. // patches per thread
  11073. const int dp = (np + nth - 1)/nth;
  11074. // patch range for this thread
  11075. const int ip0 = dp*ith;
  11076. const int ip1 = MIN(ip0 + dp, np);
  11077. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11078. for (int i3 = 0; i3 < ne3; i3++) {
  11079. for (int i2 = ip0; i2 < ip1; i2++) {
  11080. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2);
  11081. for (int i1 = 0; i1 < ne1; ++i1) {
  11082. for (int i0 = 0; i0 < ne0; ++i0) {
  11083. ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0,
  11084. (ggml_fp16_t *) ((char *) src0->data + i2*nb03),
  11085. (ggml_fp16_t *) wdata + i3*nb3 + (i1*ne0 + i0)*ew0);
  11086. }
  11087. }
  11088. }
  11089. }
  11090. }
  11091. static void ggml_compute_forward_conv_2d(
  11092. const struct ggml_compute_params * params,
  11093. const struct ggml_tensor * src0,
  11094. const struct ggml_tensor * src1,
  11095. struct ggml_tensor * dst) {
  11096. switch (src0->type) {
  11097. case GGML_TYPE_F16:
  11098. {
  11099. ggml_compute_forward_conv_2d_f16_f32(params, src0, src1, dst);
  11100. } break;
  11101. case GGML_TYPE_F32:
  11102. {
  11103. //ggml_compute_forward_conv_2d_f32(params, src0, src1, dst);
  11104. GGML_ASSERT(false);
  11105. } break;
  11106. default:
  11107. {
  11108. GGML_ASSERT(false);
  11109. } break;
  11110. }
  11111. }
  11112. // ggml_compute_forward_conv_transpose_2d
  11113. static void ggml_compute_forward_conv_transpose_2d(
  11114. const struct ggml_compute_params * params,
  11115. const struct ggml_tensor * src0,
  11116. const struct ggml_tensor * src1,
  11117. struct ggml_tensor * dst) {
  11118. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11119. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11120. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11121. int64_t t0 = ggml_perf_time_us();
  11122. UNUSED(t0);
  11123. GGML_TENSOR_BINARY_OP_LOCALS;
  11124. const int ith = params->ith;
  11125. const int nth = params->nth;
  11126. const int nk = ne00*ne01*ne02*ne03;
  11127. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11128. GGML_ASSERT(nb10 == sizeof(float));
  11129. if (params->type == GGML_TASK_INIT) {
  11130. memset(params->wdata, 0, params->wsize);
  11131. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  11132. {
  11133. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11134. for (int64_t i03 = 0; i03 < ne03; i03++) {
  11135. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11136. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  11137. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  11138. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11139. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11140. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  11141. }
  11142. }
  11143. }
  11144. }
  11145. }
  11146. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  11147. {
  11148. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11149. for (int i12 = 0; i12 < ne12; i12++) {
  11150. for (int i11 = 0; i11 < ne11; i11++) {
  11151. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  11152. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  11153. for (int i10 = 0; i10 < ne10; i10++) {
  11154. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  11155. }
  11156. }
  11157. }
  11158. }
  11159. return;
  11160. }
  11161. if (params->type == GGML_TASK_FINALIZE) {
  11162. return;
  11163. }
  11164. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  11165. // total patches in dst
  11166. const int np = ne2;
  11167. // patches per thread
  11168. const int dp = (np + nth - 1)/nth;
  11169. // patch range for this thread
  11170. const int ip0 = dp*ith;
  11171. const int ip1 = MIN(ip0 + dp, np);
  11172. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11173. ggml_fp16_t * const wdata_src = wdata + nk;
  11174. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  11175. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  11176. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  11177. for (int i11 = 0; i11 < ne11; i11++) {
  11178. for (int i10 = 0; i10 < ne10; i10++) {
  11179. const int i1n = i11*ne10*ne12 + i10*ne12;
  11180. for (int i01 = 0; i01 < ne01; i01++) {
  11181. for (int i00 = 0; i00 < ne00; i00++) {
  11182. float v = 0;
  11183. ggml_vec_dot_f16(ne03, &v,
  11184. wdata_src + i1n,
  11185. wdata_kernel + i01*ne00*ne03 + i00*ne03);
  11186. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  11187. }
  11188. }
  11189. }
  11190. }
  11191. }
  11192. }
  11193. // ggml_compute_forward_pool_1d_sk_p0
  11194. static void ggml_compute_forward_pool_1d_sk_p0(
  11195. const struct ggml_compute_params * params,
  11196. const enum ggml_op_pool op,
  11197. const struct ggml_tensor * src,
  11198. const int k,
  11199. struct ggml_tensor * dst) {
  11200. assert(src->type == GGML_TYPE_F32);
  11201. assert(params->ith == 0);
  11202. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11203. return;
  11204. }
  11205. const char * cdata = (const char *)src->data;
  11206. const char * const data_end = cdata + ggml_nbytes(src);
  11207. float * drow = (float *)dst->data;
  11208. const int64_t rs = dst->ne[0];
  11209. while (cdata < data_end) {
  11210. const float * const srow = (const float *)cdata;
  11211. int j = 0;
  11212. for (int64_t i = 0; i < rs; ++i) {
  11213. switch (op) {
  11214. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  11215. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  11216. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11217. }
  11218. for (int ki = 0; ki < k; ++ki) {
  11219. switch (op) {
  11220. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  11221. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  11222. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11223. }
  11224. ++j;
  11225. }
  11226. switch (op) {
  11227. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  11228. case GGML_OP_POOL_MAX: break;
  11229. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11230. }
  11231. }
  11232. cdata += src->nb[1];
  11233. drow += rs;
  11234. }
  11235. }
  11236. // ggml_compute_forward_pool_1d
  11237. static void ggml_compute_forward_pool_1d(
  11238. const struct ggml_compute_params * params,
  11239. const struct ggml_tensor * src0,
  11240. struct ggml_tensor * dst) {
  11241. const int32_t * opts = (const int32_t *)dst->op_params;
  11242. enum ggml_op_pool op = opts[0];
  11243. const int k0 = opts[1];
  11244. const int s0 = opts[2];
  11245. const int p0 = opts[3];
  11246. GGML_ASSERT(p0 == 0); // padding not supported
  11247. GGML_ASSERT(k0 == s0); // only s = k supported
  11248. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  11249. }
  11250. // ggml_compute_forward_pool_2d_sk_p0
  11251. static void ggml_compute_forward_pool_2d_sk_p0(
  11252. const struct ggml_compute_params * params,
  11253. const enum ggml_op_pool op,
  11254. const struct ggml_tensor * src,
  11255. const int k0,
  11256. const int k1,
  11257. struct ggml_tensor * dst) {
  11258. assert(src->type == GGML_TYPE_F32);
  11259. assert(params->ith == 0);
  11260. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11261. return;
  11262. }
  11263. const char * cdata = (const char*)src->data;
  11264. const char * const data_end = cdata + ggml_nbytes(src);
  11265. const int64_t px = dst->ne[0];
  11266. const int64_t py = dst->ne[1];
  11267. const int64_t pa = px * py;
  11268. float * dplane = (float *)dst->data;
  11269. const int ka = k0 * k1;
  11270. while (cdata < data_end) {
  11271. for (int oy = 0; oy < py; ++oy) {
  11272. float * const drow = dplane + oy * px;
  11273. for (int ox = 0; ox < px; ++ox) {
  11274. float * const out = drow + ox;
  11275. switch (op) {
  11276. case GGML_OP_POOL_AVG: *out = 0; break;
  11277. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  11278. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11279. }
  11280. const int ix = ox * k0;
  11281. const int iy = oy * k1;
  11282. for (int ky = 0; ky < k1; ++ky) {
  11283. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  11284. for (int kx = 0; kx < k0; ++kx) {
  11285. int j = ix + kx;
  11286. switch (op) {
  11287. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  11288. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  11289. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11290. }
  11291. }
  11292. }
  11293. switch (op) {
  11294. case GGML_OP_POOL_AVG: *out /= ka; break;
  11295. case GGML_OP_POOL_MAX: break;
  11296. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11297. }
  11298. }
  11299. }
  11300. cdata += src->nb[2];
  11301. dplane += pa;
  11302. }
  11303. }
  11304. // ggml_compute_forward_pool_2d
  11305. static void ggml_compute_forward_pool_2d(
  11306. const struct ggml_compute_params * params,
  11307. const struct ggml_tensor * src0,
  11308. struct ggml_tensor * dst) {
  11309. const int32_t * opts = (const int32_t *)dst->op_params;
  11310. enum ggml_op_pool op = opts[0];
  11311. const int k0 = opts[1];
  11312. const int k1 = opts[2];
  11313. const int s0 = opts[3];
  11314. const int s1 = opts[4];
  11315. const int p0 = opts[5];
  11316. const int p1 = opts[6];
  11317. GGML_ASSERT(p0 == 0);
  11318. GGML_ASSERT(p1 == 0); // padding not supported
  11319. GGML_ASSERT(k0 == s0);
  11320. GGML_ASSERT(k1 == s1); // only s = k supported
  11321. ggml_compute_forward_pool_2d_sk_p0(params, op, src0, k0, k1, dst);
  11322. }
  11323. // ggml_compute_forward_upscale
  11324. static void ggml_compute_forward_upscale_f32(
  11325. const struct ggml_compute_params * params,
  11326. const struct ggml_tensor * src0,
  11327. struct ggml_tensor * dst) {
  11328. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11329. return;
  11330. }
  11331. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11332. const int ith = params->ith;
  11333. GGML_TENSOR_UNARY_OP_LOCALS;
  11334. const int scale_factor = dst->op_params[0];
  11335. // TODO: optimize
  11336. for (int i03 = 0; i03 < ne03; i03++) {
  11337. for (int i02 = ith; i02 < ne02; i02++) {
  11338. for (int m = 0; m < dst->ne[1]; m++) {
  11339. int i01 = m / scale_factor;
  11340. for (int n = 0; n < dst->ne[0]; n++) {
  11341. int i00 = n / scale_factor;
  11342. const float * x = (float *)((char *) src0->data + i00 * nb00 +i01 * nb01 + i02 * nb02 + i03 * nb03);
  11343. float * y = (float *)((char *) dst->data + n * dst->nb[0] + m * dst->nb[1] + i02 * dst->nb[2] + i03 * dst->nb[3]);
  11344. *y = *x;
  11345. }
  11346. }
  11347. }
  11348. }
  11349. }
  11350. static void ggml_compute_forward_upscale(
  11351. const struct ggml_compute_params * params,
  11352. const struct ggml_tensor * src0,
  11353. struct ggml_tensor * dst) {
  11354. switch (src0->type) {
  11355. case GGML_TYPE_F32:
  11356. {
  11357. ggml_compute_forward_upscale_f32(params, src0, dst);
  11358. } break;
  11359. default:
  11360. {
  11361. GGML_ASSERT(false);
  11362. } break;
  11363. }
  11364. }
  11365. // ggml_compute_forward_flash_attn
  11366. static void ggml_compute_forward_flash_attn_f32(
  11367. const struct ggml_compute_params * params,
  11368. const struct ggml_tensor * q,
  11369. const struct ggml_tensor * k,
  11370. const struct ggml_tensor * v,
  11371. const bool masked,
  11372. struct ggml_tensor * dst) {
  11373. int64_t t0 = ggml_perf_time_us();
  11374. UNUSED(t0);
  11375. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11376. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11377. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11378. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11379. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11380. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11381. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11382. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11383. const int ith = params->ith;
  11384. const int nth = params->nth;
  11385. const int64_t D = neq0;
  11386. const int64_t N = neq1;
  11387. const int64_t P = nek1 - N;
  11388. const int64_t M = P + N;
  11389. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11390. GGML_ASSERT(ne0 == D);
  11391. GGML_ASSERT(ne1 == N);
  11392. GGML_ASSERT(P >= 0);
  11393. GGML_ASSERT(nbq0 == sizeof(float));
  11394. GGML_ASSERT(nbk0 == sizeof(float));
  11395. GGML_ASSERT(nbv0 == sizeof(float));
  11396. GGML_ASSERT(neq0 == D);
  11397. GGML_ASSERT(nek0 == D);
  11398. GGML_ASSERT(nev1 == D);
  11399. GGML_ASSERT(neq1 == N);
  11400. GGML_ASSERT(nek1 == N + P);
  11401. GGML_ASSERT(nev1 == D);
  11402. // dst cannot be transposed or permuted
  11403. GGML_ASSERT(nb0 == sizeof(float));
  11404. GGML_ASSERT(nb0 <= nb1);
  11405. GGML_ASSERT(nb1 <= nb2);
  11406. GGML_ASSERT(nb2 <= nb3);
  11407. if (params->type == GGML_TASK_INIT) {
  11408. return;
  11409. }
  11410. if (params->type == GGML_TASK_FINALIZE) {
  11411. return;
  11412. }
  11413. // parallelize by q rows using ggml_vec_dot_f32
  11414. // total rows in q
  11415. const int nr = neq1*neq2*neq3;
  11416. // rows per thread
  11417. const int dr = (nr + nth - 1)/nth;
  11418. // row range for this thread
  11419. const int ir0 = dr*ith;
  11420. const int ir1 = MIN(ir0 + dr, nr);
  11421. const float scale = 1.0f/sqrtf(D);
  11422. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11423. for (int ir = ir0; ir < ir1; ++ir) {
  11424. // q indices
  11425. const int iq3 = ir/(neq2*neq1);
  11426. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11427. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11428. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  11429. for (int i = M; i < Mup; ++i) {
  11430. S[i] = -INFINITY;
  11431. }
  11432. for (int64_t ic = 0; ic < nek1; ++ic) {
  11433. // k indices
  11434. const int ik3 = iq3;
  11435. const int ik2 = iq2;
  11436. const int ik1 = ic;
  11437. // S indices
  11438. const int i1 = ik1;
  11439. ggml_vec_dot_f32(neq0,
  11440. S + i1,
  11441. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11442. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11443. }
  11444. // scale
  11445. ggml_vec_scale_f32(nek1, S, scale);
  11446. if (masked) {
  11447. for (int64_t i = P; i < M; i++) {
  11448. if (i > P + iq1) {
  11449. S[i] = -INFINITY;
  11450. }
  11451. }
  11452. }
  11453. // softmax
  11454. {
  11455. float max = -INFINITY;
  11456. ggml_vec_max_f32(M, &max, S);
  11457. ggml_float sum = 0.0;
  11458. {
  11459. #ifdef GGML_SOFT_MAX_ACCELERATE
  11460. max = -max;
  11461. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11462. vvexpf(S, S, &Mup);
  11463. ggml_vec_sum_f32(Mup, &sum, S);
  11464. #else
  11465. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11466. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11467. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11468. float * SS = S + i;
  11469. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11470. if (SS[j] == -INFINITY) {
  11471. SS[j] = 0.0f;
  11472. } else {
  11473. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11474. const float val = expf(SS[j] - max);
  11475. #else
  11476. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11477. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11478. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11479. #endif
  11480. sump[j] += (ggml_float)val;
  11481. SS[j] = val;
  11482. }
  11483. }
  11484. }
  11485. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11486. sum += sump[i];
  11487. }
  11488. #endif
  11489. }
  11490. assert(sum > 0.0);
  11491. sum = 1.0/sum;
  11492. ggml_vec_scale_f32(M, S, sum);
  11493. #ifndef NDEBUG
  11494. for (int i = 0; i < M; ++i) {
  11495. assert(!isnan(S[i]));
  11496. assert(!isinf(S[i]));
  11497. }
  11498. #endif
  11499. }
  11500. for (int64_t ic = 0; ic < nev1; ++ic) {
  11501. // dst indices
  11502. const int i1 = iq1;
  11503. const int i2 = iq2;
  11504. const int i3 = iq3;
  11505. ggml_vec_dot_f32(nek1,
  11506. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11507. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11508. S);
  11509. }
  11510. }
  11511. }
  11512. static void ggml_compute_forward_flash_attn_f16(
  11513. const struct ggml_compute_params * params,
  11514. const struct ggml_tensor * q,
  11515. const struct ggml_tensor * k,
  11516. const struct ggml_tensor * v,
  11517. const bool masked,
  11518. struct ggml_tensor * dst) {
  11519. int64_t t0 = ggml_perf_time_us();
  11520. UNUSED(t0);
  11521. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11522. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11523. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11524. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11525. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11526. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11527. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11528. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11529. const int ith = params->ith;
  11530. const int nth = params->nth;
  11531. const int64_t D = neq0;
  11532. const int64_t N = neq1;
  11533. const int64_t P = nek1 - N;
  11534. const int64_t M = P + N;
  11535. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11536. GGML_ASSERT(ne0 == D);
  11537. GGML_ASSERT(ne1 == N);
  11538. GGML_ASSERT(P >= 0);
  11539. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11540. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11541. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11542. GGML_ASSERT(neq0 == D);
  11543. GGML_ASSERT(nek0 == D);
  11544. GGML_ASSERT(nev1 == D);
  11545. GGML_ASSERT(neq1 == N);
  11546. GGML_ASSERT(nek1 == N + P);
  11547. GGML_ASSERT(nev1 == D);
  11548. // dst cannot be transposed or permuted
  11549. GGML_ASSERT(nb0 == sizeof(float));
  11550. GGML_ASSERT(nb0 <= nb1);
  11551. GGML_ASSERT(nb1 <= nb2);
  11552. GGML_ASSERT(nb2 <= nb3);
  11553. if (params->type == GGML_TASK_INIT) {
  11554. return;
  11555. }
  11556. if (params->type == GGML_TASK_FINALIZE) {
  11557. return;
  11558. }
  11559. // parallelize by q rows using ggml_vec_dot_f32
  11560. // total rows in q
  11561. const int nr = neq1*neq2*neq3;
  11562. // rows per thread
  11563. const int dr = (nr + nth - 1)/nth;
  11564. // row range for this thread
  11565. const int ir0 = dr*ith;
  11566. const int ir1 = MIN(ir0 + dr, nr);
  11567. const float scale = 1.0f/sqrtf(D);
  11568. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11569. for (int ir = ir0; ir < ir1; ++ir) {
  11570. // q indices
  11571. const int iq3 = ir/(neq2*neq1);
  11572. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11573. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11574. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11575. for (int i = M; i < Mup; ++i) {
  11576. S[i] = -INFINITY;
  11577. }
  11578. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11579. for (int64_t ic = 0; ic < nek1; ++ic) {
  11580. // k indices
  11581. const int ik3 = iq3;
  11582. const int ik2 = iq2;
  11583. const int ik1 = ic;
  11584. // S indices
  11585. const int i1 = ik1;
  11586. ggml_vec_dot_f16(neq0,
  11587. S + i1,
  11588. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11589. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11590. }
  11591. } else {
  11592. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11593. // k indices
  11594. const int ik3 = iq3;
  11595. const int ik2 = iq2;
  11596. const int ik1 = ic;
  11597. // S indices
  11598. const int i1 = ik1;
  11599. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11600. S + i1,
  11601. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11602. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11603. }
  11604. }
  11605. // scale
  11606. ggml_vec_scale_f32(nek1, S, scale);
  11607. if (masked) {
  11608. for (int64_t i = P; i < M; i++) {
  11609. if (i > P + iq1) {
  11610. S[i] = -INFINITY;
  11611. }
  11612. }
  11613. }
  11614. // softmax
  11615. {
  11616. float max = -INFINITY;
  11617. ggml_vec_max_f32(M, &max, S);
  11618. ggml_float sum = 0.0;
  11619. {
  11620. #ifdef GGML_SOFT_MAX_ACCELERATE
  11621. max = -max;
  11622. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11623. vvexpf(S, S, &Mup);
  11624. ggml_vec_sum_f32(Mup, &sum, S);
  11625. #else
  11626. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11627. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11628. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11629. float * SS = S + i;
  11630. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11631. if (SS[j] == -INFINITY) {
  11632. SS[j] = 0.0f;
  11633. } else {
  11634. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11635. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11636. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11637. sump[j] += (ggml_float)val;
  11638. SS[j] = val;
  11639. }
  11640. }
  11641. }
  11642. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11643. sum += sump[i];
  11644. }
  11645. #endif
  11646. }
  11647. assert(sum > 0.0);
  11648. sum = 1.0/sum;
  11649. ggml_vec_scale_f32(M, S, sum);
  11650. #ifndef NDEBUG
  11651. for (int i = 0; i < M; ++i) {
  11652. assert(!isnan(S[i]));
  11653. assert(!isinf(S[i]));
  11654. }
  11655. #endif
  11656. }
  11657. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11658. for (int64_t i = 0; i < M; i++) {
  11659. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11660. }
  11661. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11662. for (int64_t ic = 0; ic < nev1; ++ic) {
  11663. // dst indices
  11664. const int i1 = iq1;
  11665. const int i2 = iq2;
  11666. const int i3 = iq3;
  11667. ggml_vec_dot_f16(nek1,
  11668. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11669. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11670. S16);
  11671. }
  11672. } else {
  11673. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11674. // dst indices
  11675. const int i1 = iq1;
  11676. const int i2 = iq2;
  11677. const int i3 = iq3;
  11678. ggml_vec_dot_f16_unroll(nek1, nbv1,
  11679. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11680. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11681. S16);
  11682. }
  11683. }
  11684. }
  11685. }
  11686. static void ggml_compute_forward_flash_attn(
  11687. const struct ggml_compute_params * params,
  11688. const struct ggml_tensor * q,
  11689. const struct ggml_tensor * k,
  11690. const struct ggml_tensor * v,
  11691. const bool masked,
  11692. struct ggml_tensor * dst) {
  11693. switch (q->type) {
  11694. case GGML_TYPE_F16:
  11695. {
  11696. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  11697. } break;
  11698. case GGML_TYPE_F32:
  11699. {
  11700. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  11701. } break;
  11702. default:
  11703. {
  11704. GGML_ASSERT(false);
  11705. } break;
  11706. }
  11707. }
  11708. // ggml_compute_forward_flash_ff
  11709. static void ggml_compute_forward_flash_ff_f16(
  11710. const struct ggml_compute_params * params,
  11711. const struct ggml_tensor * a, // F16
  11712. const struct ggml_tensor * b0, // F16 fc_w
  11713. const struct ggml_tensor * b1, // F32 fc_b
  11714. const struct ggml_tensor * c0, // F16 proj_w
  11715. const struct ggml_tensor * c1, // F32 proj_b
  11716. struct ggml_tensor * dst) {
  11717. int64_t t0 = ggml_perf_time_us();
  11718. UNUSED(t0);
  11719. GGML_TENSOR_LOCALS(int64_t, nea, a, ne);
  11720. GGML_TENSOR_LOCALS(size_t, nba, a, nb);
  11721. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne);
  11722. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb);
  11723. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne);
  11724. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb);
  11725. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne);
  11726. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb);
  11727. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne);
  11728. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb);
  11729. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11730. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11731. const int ith = params->ith;
  11732. const int nth = params->nth;
  11733. const int64_t D = nea0;
  11734. //const int64_t N = nea1;
  11735. const int64_t M = neb01;
  11736. GGML_ASSERT(ne0 == nea0);
  11737. GGML_ASSERT(ne1 == nea1);
  11738. GGML_ASSERT(ne2 == nea2);
  11739. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11740. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11741. GGML_ASSERT(nbb10 == sizeof(float));
  11742. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11743. GGML_ASSERT(nbc10 == sizeof(float));
  11744. GGML_ASSERT(neb00 == D);
  11745. GGML_ASSERT(neb01 == M);
  11746. GGML_ASSERT(neb10 == M);
  11747. GGML_ASSERT(neb11 == 1);
  11748. GGML_ASSERT(nec00 == M);
  11749. GGML_ASSERT(nec01 == D);
  11750. GGML_ASSERT(nec10 == D);
  11751. GGML_ASSERT(nec11 == 1);
  11752. // dst cannot be transposed or permuted
  11753. GGML_ASSERT(nb0 == sizeof(float));
  11754. GGML_ASSERT(nb0 <= nb1);
  11755. GGML_ASSERT(nb1 <= nb2);
  11756. GGML_ASSERT(nb2 <= nb3);
  11757. if (params->type == GGML_TASK_INIT) {
  11758. return;
  11759. }
  11760. if (params->type == GGML_TASK_FINALIZE) {
  11761. return;
  11762. }
  11763. // parallelize by a rows using ggml_vec_dot_f32
  11764. // total rows in a
  11765. const int nr = nea1*nea2*nea3;
  11766. // rows per thread
  11767. const int dr = (nr + nth - 1)/nth;
  11768. // row range for this thread
  11769. const int ir0 = dr*ith;
  11770. const int ir1 = MIN(ir0 + dr, nr);
  11771. for (int ir = ir0; ir < ir1; ++ir) {
  11772. // a indices
  11773. const int ia3 = ir/(nea2*nea1);
  11774. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11775. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11776. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11777. for (int64_t ic = 0; ic < neb01; ++ic) {
  11778. // b0 indices
  11779. const int ib03 = ia3;
  11780. const int ib02 = ia2;
  11781. const int ib01 = ic;
  11782. // S indices
  11783. const int i1 = ib01;
  11784. ggml_vec_dot_f16(nea0,
  11785. S + i1,
  11786. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  11787. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  11788. }
  11789. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11790. //ggml_vec_gelu_f32(neb01, S, S);
  11791. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11792. for (int64_t i = 0; i < M; i++) {
  11793. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11794. }
  11795. ggml_vec_gelu_f16(neb01, S16, S16);
  11796. {
  11797. // dst indices
  11798. const int i1 = ia1;
  11799. const int i2 = ia2;
  11800. const int i3 = ia3;
  11801. for (int64_t ic = 0; ic < nec01; ++ic) {
  11802. ggml_vec_dot_f16(neb01,
  11803. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11804. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  11805. S16);
  11806. }
  11807. ggml_vec_add_f32(nec01,
  11808. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11809. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11810. (float *) c1->data);
  11811. }
  11812. }
  11813. }
  11814. static void ggml_compute_forward_flash_ff(
  11815. const struct ggml_compute_params * params,
  11816. const struct ggml_tensor * a,
  11817. const struct ggml_tensor * b0,
  11818. const struct ggml_tensor * b1,
  11819. const struct ggml_tensor * c0,
  11820. const struct ggml_tensor * c1,
  11821. struct ggml_tensor * dst) {
  11822. switch (b0->type) {
  11823. case GGML_TYPE_F16:
  11824. {
  11825. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  11826. } break;
  11827. case GGML_TYPE_F32:
  11828. {
  11829. GGML_ASSERT(false); // TODO
  11830. } break;
  11831. default:
  11832. {
  11833. GGML_ASSERT(false);
  11834. } break;
  11835. }
  11836. }
  11837. // ggml_compute_forward_flash_attn_back
  11838. static void ggml_compute_forward_flash_attn_back_f32(
  11839. const struct ggml_compute_params * params,
  11840. const struct ggml_tensor * q,
  11841. const struct ggml_tensor * k,
  11842. const struct ggml_tensor * v,
  11843. const struct ggml_tensor * d,
  11844. const bool masked,
  11845. struct ggml_tensor * dst) {
  11846. int64_t t0 = ggml_perf_time_us();
  11847. UNUSED(t0);
  11848. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11849. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11850. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11851. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11852. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11853. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11854. GGML_TENSOR_LOCALS(int64_t, ned, d, ne);
  11855. GGML_TENSOR_LOCALS(size_t, nbd, d, nb);
  11856. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11857. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11858. const int ith = params->ith;
  11859. const int nth = params->nth;
  11860. const int64_t D = neq0;
  11861. const int64_t N = neq1;
  11862. const int64_t P = nek1 - N;
  11863. const int64_t M = P + N;
  11864. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11865. const int mxDM = MAX(D, Mup);
  11866. // GGML_ASSERT(ne0 == D);
  11867. // GGML_ASSERT(ne1 == N);
  11868. GGML_ASSERT(P >= 0);
  11869. GGML_ASSERT(nbq0 == sizeof(float));
  11870. GGML_ASSERT(nbk0 == sizeof(float));
  11871. GGML_ASSERT(nbv0 == sizeof(float));
  11872. GGML_ASSERT(neq0 == D);
  11873. GGML_ASSERT(nek0 == D);
  11874. GGML_ASSERT(nev1 == D);
  11875. GGML_ASSERT(ned0 == D);
  11876. GGML_ASSERT(neq1 == N);
  11877. GGML_ASSERT(nek1 == N + P);
  11878. GGML_ASSERT(nev1 == D);
  11879. GGML_ASSERT(ned1 == N);
  11880. // dst cannot be transposed or permuted
  11881. GGML_ASSERT(nb0 == sizeof(float));
  11882. GGML_ASSERT(nb0 <= nb1);
  11883. GGML_ASSERT(nb1 <= nb2);
  11884. GGML_ASSERT(nb2 <= nb3);
  11885. if (params->type == GGML_TASK_INIT) {
  11886. if (ith == 0) {
  11887. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11888. }
  11889. return;
  11890. }
  11891. if (params->type == GGML_TASK_FINALIZE) {
  11892. return;
  11893. }
  11894. // parallelize by q rows using ggml_vec_dot_f32
  11895. // total rows in q
  11896. const int nr = neq2*neq3;
  11897. // rows per thread
  11898. const int dr = (nr + nth - 1)/nth;
  11899. // row range for this thread
  11900. const int ir0 = dr*ith;
  11901. const int ir1 = MIN(ir0 + dr, nr);
  11902. const float scale = 1.0f/sqrtf(D);
  11903. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11904. for (int ir = ir0; ir < ir1; ++ir) {
  11905. // q indices
  11906. const int iq3 = ir/(neq2);
  11907. const int iq2 = ir - iq3*neq2;
  11908. for ( int iq1 = 0; iq1 < neq1; ++iq1) {
  11909. // not sure about CACHE_LINE_SIZE_F32..
  11910. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11911. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11912. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11913. for (int i = M; i < Mup; ++i) {
  11914. S[i] = -INFINITY;
  11915. }
  11916. for (int64_t ic = 0; ic < nek1; ++ic) {
  11917. // k indices
  11918. const int ik3 = iq3;
  11919. const int ik2 = iq2;
  11920. const int ik1 = ic;
  11921. // S indices
  11922. const int i1 = ik1;
  11923. ggml_vec_dot_f32(neq0,
  11924. S + i1,
  11925. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11926. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11927. }
  11928. // scale
  11929. ggml_vec_scale_f32(nek1, S, scale);
  11930. if (masked) {
  11931. for (int64_t i = P; i < M; i++) {
  11932. if (i > P + iq1) {
  11933. S[i] = -INFINITY;
  11934. }
  11935. }
  11936. }
  11937. // softmax
  11938. {
  11939. float max = -INFINITY;
  11940. ggml_vec_max_f32(M, &max, S);
  11941. ggml_float sum = 0.0;
  11942. {
  11943. #ifdef GGML_SOFT_MAX_ACCELERATE
  11944. max = -max;
  11945. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11946. vvexpf(SM, SM, &Mup);
  11947. ggml_vec_sum_f32(Mup, &sum, SM);
  11948. #else
  11949. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11950. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11951. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11952. float * SR = S + i;
  11953. float * SW = SM + i;
  11954. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11955. if (SR[j] == -INFINITY) {
  11956. SW[j] = 0.0f;
  11957. } else {
  11958. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11959. const float val = expf(SR[j] - max);
  11960. #else
  11961. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11962. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11963. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11964. #endif
  11965. sump[j] += (ggml_float)val;
  11966. SW[j] = val;
  11967. }
  11968. }
  11969. }
  11970. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11971. sum += sump[i];
  11972. }
  11973. #endif
  11974. }
  11975. assert(sum > 0.0);
  11976. sum = 1.0/sum;
  11977. ggml_vec_scale_f32(M, SM, sum);
  11978. }
  11979. // step-by-step explanation
  11980. {
  11981. // forward-process shape grads from backward process
  11982. // parallel_for iq2,iq3:
  11983. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur]
  11984. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11985. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur]
  11986. // for iq1:
  11987. // kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11988. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11989. // vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11990. // S0 = -Inf [D,1,1,1]
  11991. // ~S1[i] = dot(kcur[:D,i], qcur)
  11992. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11993. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11994. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11995. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11996. // ~S5[i] = dot(vcur[:,i], S4)
  11997. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3]
  11998. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11999. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3]
  12000. // dst backward-/ grad[dst] = d
  12001. //
  12002. // output gradients with their dependencies:
  12003. //
  12004. // grad[kcur] = grad[S1].T @ qcur
  12005. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12006. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12007. // grad[S4] = grad[S5] @ vcur
  12008. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  12009. // grad[qcur] = grad[S1] @ kcur
  12010. // grad[vcur] = grad[S5].T @ S4
  12011. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  12012. //
  12013. // in post-order:
  12014. //
  12015. // S1 = qcur @ kcur.T
  12016. // S2 = S1 * scale
  12017. // S3 = diag_mask_inf(S2, P)
  12018. // S4 = softmax(S3)
  12019. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  12020. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12021. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12022. // grad[qcur] = grad[S1] @ kcur
  12023. // grad[kcur] = grad[S1].T @ qcur
  12024. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  12025. //
  12026. // using less variables (SM=S4):
  12027. //
  12028. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  12029. // SM = softmax(S)
  12030. // S = d[:D,iq1,iq2,iq3] @ vcur
  12031. // dot_SM_gradSM = dot(SM, S)
  12032. // S = SM * (S - dot(SM, S))
  12033. // S = diag_mask_zero(S, P) * scale
  12034. //
  12035. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12036. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  12037. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  12038. }
  12039. // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur
  12040. // S = d[:D,iq1,iq2,iq3] @ vcur
  12041. // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3]
  12042. ggml_vec_set_f32(M, S, 0);
  12043. for (int64_t ic = 0; ic < D; ++ic) {
  12044. // dst indices
  12045. const int i1 = iq1;
  12046. const int i2 = iq2;
  12047. const int i3 = iq3;
  12048. ggml_vec_mad_f32(M,
  12049. S,
  12050. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  12051. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  12052. }
  12053. // S = SM * (S - dot(SM, S))
  12054. float dot_SM_gradSM = 0;
  12055. ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S);
  12056. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  12057. ggml_vec_mul_f32 (M, S, S, SM);
  12058. // S = diag_mask_zero(S, P) * scale
  12059. if (masked) {
  12060. // for (int64_t i = P + iq1 + 1; i < M; i++) {
  12061. // S[i] = 0;
  12062. // }
  12063. for (int64_t i = P; i < M; i++) {
  12064. if (i > P + iq1) {
  12065. S[i] = 0;
  12066. }
  12067. }
  12068. }
  12069. ggml_vec_scale_f32(M, S, scale);
  12070. void * grad_q = (char *) dst->data;
  12071. void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3;
  12072. void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3;
  12073. const size_t nbgq1 = nb0*neq0;
  12074. const size_t nbgq2 = nb0*neq0*neq1;
  12075. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  12076. const size_t nbgk1 = nb0*nek0;
  12077. const size_t nbgk2 = nb0*nek0*nek1;
  12078. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  12079. const size_t nbgv1 = nb0*nev0;
  12080. const size_t nbgv2 = nb0*nev0*nev1;
  12081. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  12082. // S shape [M,1]
  12083. // SM shape [M,1]
  12084. // kcur shape [D,M]
  12085. // qcur shape [D,1]
  12086. // vcur shape [M,D]
  12087. //
  12088. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12089. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  12090. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic]
  12091. //
  12092. //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T)
  12093. //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T)
  12094. for (int64_t ic = 0; ic < M; ++ic) {
  12095. // dst indices
  12096. const int i1 = iq1;
  12097. const int i2 = iq2;
  12098. const int i3 = iq3;
  12099. ggml_vec_mad_f32(D,
  12100. (float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)),
  12101. (float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)),
  12102. S[ic]);
  12103. }
  12104. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  12105. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  12106. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  12107. for (int64_t ic = 0; ic < M; ++ic) {
  12108. // dst indices
  12109. const int i1 = iq1;
  12110. const int i2 = iq2;
  12111. const int i3 = iq3;
  12112. // ggml_vec_set_f32(D,
  12113. // (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  12114. // 0);
  12115. ggml_vec_mad_f32(D,
  12116. (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  12117. (float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)),
  12118. S[ic]);
  12119. }
  12120. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  12121. // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M]
  12122. // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M]
  12123. for (int64_t ic = 0; ic < D; ++ic) {
  12124. // dst indices
  12125. const int i1 = iq1;
  12126. const int i2 = iq2;
  12127. const int i3 = iq3;
  12128. // ggml_vec_set_f32(M,
  12129. // (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  12130. // 0);
  12131. ggml_vec_mad_f32(M,
  12132. (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  12133. SM,
  12134. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  12135. }
  12136. }
  12137. }
  12138. }
  12139. static void ggml_compute_forward_flash_attn_back(
  12140. const struct ggml_compute_params * params,
  12141. const struct ggml_tensor * q,
  12142. const struct ggml_tensor * k,
  12143. const struct ggml_tensor * v,
  12144. const struct ggml_tensor * d,
  12145. const bool masked,
  12146. struct ggml_tensor * dst) {
  12147. switch (q->type) {
  12148. case GGML_TYPE_F32:
  12149. {
  12150. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  12151. } break;
  12152. default:
  12153. {
  12154. GGML_ASSERT(false);
  12155. } break;
  12156. }
  12157. }
  12158. // ggml_compute_forward_win_part
  12159. static void ggml_compute_forward_win_part_f32(
  12160. const struct ggml_compute_params * params,
  12161. const struct ggml_tensor * src0,
  12162. struct ggml_tensor * dst) {
  12163. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12164. return;
  12165. }
  12166. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  12167. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  12168. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  12169. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  12170. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  12171. assert(ne00 == ne0);
  12172. assert(ne3 == nep0*nep1);
  12173. // TODO: optimize / multi-thread
  12174. for (int py = 0; py < nep1; ++py) {
  12175. for (int px = 0; px < nep0; ++px) {
  12176. const int64_t i3 = py*nep0 + px;
  12177. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12178. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12179. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12180. const int64_t i02 = py*w + i2;
  12181. const int64_t i01 = px*w + i1;
  12182. const int64_t i00 = i0;
  12183. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  12184. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  12185. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  12186. ((float *) dst->data)[i] = 0.0f;
  12187. } else {
  12188. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  12189. }
  12190. }
  12191. }
  12192. }
  12193. }
  12194. }
  12195. }
  12196. static void ggml_compute_forward_win_part(
  12197. const struct ggml_compute_params * params,
  12198. const struct ggml_tensor * src0,
  12199. struct ggml_tensor * dst) {
  12200. switch (src0->type) {
  12201. case GGML_TYPE_F32:
  12202. {
  12203. ggml_compute_forward_win_part_f32(params, src0, dst);
  12204. } break;
  12205. default:
  12206. {
  12207. GGML_ASSERT(false);
  12208. } break;
  12209. }
  12210. }
  12211. // ggml_compute_forward_win_unpart
  12212. static void ggml_compute_forward_win_unpart_f32(
  12213. const struct ggml_compute_params * params,
  12214. const struct ggml_tensor * src0,
  12215. struct ggml_tensor * dst) {
  12216. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12217. return;
  12218. }
  12219. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  12220. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  12221. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  12222. // padding
  12223. const int px = (w - ne1%w)%w;
  12224. //const int py = (w - ne2%w)%w;
  12225. const int npx = (px + ne1)/w;
  12226. //const int npy = (py + ne2)/w;
  12227. assert(ne0 == ne00);
  12228. // TODO: optimize / multi-thread
  12229. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12230. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12231. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12232. const int ip2 = i2/w;
  12233. const int ip1 = i1/w;
  12234. const int64_t i02 = i2%w;
  12235. const int64_t i01 = i1%w;
  12236. const int64_t i00 = i0;
  12237. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  12238. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  12239. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  12240. }
  12241. }
  12242. }
  12243. }
  12244. static void ggml_compute_forward_win_unpart(
  12245. const struct ggml_compute_params * params,
  12246. const struct ggml_tensor * src0,
  12247. struct ggml_tensor * dst) {
  12248. switch (src0->type) {
  12249. case GGML_TYPE_F32:
  12250. {
  12251. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  12252. } break;
  12253. default:
  12254. {
  12255. GGML_ASSERT(false);
  12256. } break;
  12257. }
  12258. }
  12259. //gmml_compute_forward_unary
  12260. static void ggml_compute_forward_unary(
  12261. const struct ggml_compute_params * params,
  12262. const struct ggml_tensor * src0,
  12263. struct ggml_tensor * dst) {
  12264. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  12265. switch (op) {
  12266. case GGML_UNARY_OP_ABS:
  12267. {
  12268. ggml_compute_forward_abs(params, src0, dst);
  12269. } break;
  12270. case GGML_UNARY_OP_SGN:
  12271. {
  12272. ggml_compute_forward_sgn(params, src0, dst);
  12273. } break;
  12274. case GGML_UNARY_OP_NEG:
  12275. {
  12276. ggml_compute_forward_neg(params, src0, dst);
  12277. } break;
  12278. case GGML_UNARY_OP_STEP:
  12279. {
  12280. ggml_compute_forward_step(params, src0, dst);
  12281. } break;
  12282. case GGML_UNARY_OP_TANH:
  12283. {
  12284. ggml_compute_forward_tanh(params, src0, dst);
  12285. } break;
  12286. case GGML_UNARY_OP_ELU:
  12287. {
  12288. ggml_compute_forward_elu(params, src0, dst);
  12289. } break;
  12290. case GGML_UNARY_OP_RELU:
  12291. {
  12292. ggml_compute_forward_relu(params, src0, dst);
  12293. } break;
  12294. case GGML_UNARY_OP_GELU:
  12295. {
  12296. ggml_compute_forward_gelu(params, src0, dst);
  12297. } break;
  12298. case GGML_UNARY_OP_GELU_QUICK:
  12299. {
  12300. ggml_compute_forward_gelu_quick(params, src0, dst);
  12301. } break;
  12302. case GGML_UNARY_OP_SILU:
  12303. {
  12304. ggml_compute_forward_silu(params, src0, dst);
  12305. } break;
  12306. default:
  12307. {
  12308. GGML_ASSERT(false);
  12309. } break;
  12310. }
  12311. }
  12312. // ggml_compute_forward_get_rel_pos
  12313. static void ggml_compute_forward_get_rel_pos_f16(
  12314. const struct ggml_compute_params * params,
  12315. const struct ggml_tensor * src0,
  12316. struct ggml_tensor * dst) {
  12317. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12318. return;
  12319. }
  12320. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  12321. GGML_TENSOR_UNARY_OP_LOCALS;
  12322. const int64_t w = ne1;
  12323. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  12324. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  12325. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12326. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12327. const int64_t pos = (w - i1 - 1) + i2;
  12328. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12329. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  12330. }
  12331. }
  12332. }
  12333. }
  12334. static void ggml_compute_forward_get_rel_pos(
  12335. const struct ggml_compute_params * params,
  12336. const struct ggml_tensor * src0,
  12337. struct ggml_tensor * dst) {
  12338. switch (src0->type) {
  12339. case GGML_TYPE_F16:
  12340. {
  12341. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  12342. } break;
  12343. default:
  12344. {
  12345. GGML_ASSERT(false);
  12346. } break;
  12347. }
  12348. }
  12349. // ggml_compute_forward_add_rel_pos
  12350. static void ggml_compute_forward_add_rel_pos_f32(
  12351. const struct ggml_compute_params * params,
  12352. const struct ggml_tensor * src0,
  12353. const struct ggml_tensor * src1,
  12354. const struct ggml_tensor * src2,
  12355. struct ggml_tensor * dst) {
  12356. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  12357. if (!inplace && params->type == GGML_TASK_INIT) {
  12358. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  12359. return;
  12360. }
  12361. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12362. return;
  12363. }
  12364. int64_t t0 = ggml_perf_time_us();
  12365. UNUSED(t0);
  12366. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  12367. float * src1_data = (float *) src1->data;
  12368. float * src2_data = (float *) src2->data;
  12369. float * dst_data = (float *) dst->data;
  12370. const int64_t ne10 = src1->ne[0];
  12371. const int64_t ne11 = src1->ne[1];
  12372. const int64_t ne12 = src1->ne[2];
  12373. const int64_t ne13 = src1->ne[3];
  12374. const int ith = params->ith;
  12375. const int nth = params->nth;
  12376. // total patches in dst
  12377. const int np = ne13;
  12378. // patches per thread
  12379. const int dp = (np + nth - 1)/nth;
  12380. // patch range for this thread
  12381. const int ip0 = dp*ith;
  12382. const int ip1 = MIN(ip0 + dp, np);
  12383. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  12384. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  12385. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  12386. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  12387. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  12388. const int64_t jp0 = jp1 + i10;
  12389. const float src1_e = src1_data[jp0];
  12390. const float src2_e = src2_data[jp0];
  12391. const int64_t jdh = jp0 * ne10;
  12392. const int64_t jdw = jdh - (ne10 - 1) * i10;
  12393. for (int64_t j = 0; j < ne10; ++j) {
  12394. dst_data[jdh + j ] += src2_e;
  12395. dst_data[jdw + j*ne10] += src1_e;
  12396. }
  12397. }
  12398. }
  12399. }
  12400. }
  12401. }
  12402. static void ggml_compute_forward_add_rel_pos(
  12403. const struct ggml_compute_params * params,
  12404. const struct ggml_tensor * src0,
  12405. const struct ggml_tensor * src1,
  12406. const struct ggml_tensor * src2,
  12407. struct ggml_tensor * dst) {
  12408. switch (src0->type) {
  12409. case GGML_TYPE_F32:
  12410. {
  12411. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  12412. } break;
  12413. default:
  12414. {
  12415. GGML_ASSERT(false);
  12416. } break;
  12417. }
  12418. }
  12419. // ggml_compute_forward_map_unary
  12420. static void ggml_compute_forward_map_unary_f32(
  12421. const struct ggml_compute_params * params,
  12422. const struct ggml_tensor * src0,
  12423. struct ggml_tensor * dst,
  12424. const ggml_unary_op_f32_t fun) {
  12425. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  12426. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12427. return;
  12428. }
  12429. const int n = ggml_nrows(src0);
  12430. const int nc = src0->ne[0];
  12431. assert( dst->nb[0] == sizeof(float));
  12432. assert(src0->nb[0] == sizeof(float));
  12433. for (int i = 0; i < n; i++) {
  12434. fun(nc,
  12435. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12436. (float *) ((char *) src0->data + i*(src0->nb[1])));
  12437. }
  12438. }
  12439. static void ggml_compute_forward_map_unary(
  12440. const struct ggml_compute_params * params,
  12441. const struct ggml_tensor * src0,
  12442. struct ggml_tensor * dst,
  12443. const ggml_unary_op_f32_t fun) {
  12444. switch (src0->type) {
  12445. case GGML_TYPE_F32:
  12446. {
  12447. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  12448. } break;
  12449. default:
  12450. {
  12451. GGML_ASSERT(false);
  12452. } break;
  12453. }
  12454. }
  12455. // ggml_compute_forward_map_binary
  12456. static void ggml_compute_forward_map_binary_f32(
  12457. const struct ggml_compute_params * params,
  12458. const struct ggml_tensor * src0,
  12459. const struct ggml_tensor * src1,
  12460. struct ggml_tensor * dst,
  12461. const ggml_binary_op_f32_t fun) {
  12462. assert(params->ith == 0);
  12463. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12464. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12465. return;
  12466. }
  12467. const int n = ggml_nrows(src0);
  12468. const int nc = src0->ne[0];
  12469. assert( dst->nb[0] == sizeof(float));
  12470. assert(src0->nb[0] == sizeof(float));
  12471. assert(src1->nb[0] == sizeof(float));
  12472. for (int i = 0; i < n; i++) {
  12473. fun(nc,
  12474. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12475. (float *) ((char *) src0->data + i*(src0->nb[1])),
  12476. (float *) ((char *) src1->data + i*(src1->nb[1])));
  12477. }
  12478. }
  12479. static void ggml_compute_forward_map_binary(
  12480. const struct ggml_compute_params * params,
  12481. const struct ggml_tensor * src0,
  12482. const struct ggml_tensor * src1,
  12483. struct ggml_tensor * dst,
  12484. const ggml_binary_op_f32_t fun) {
  12485. switch (src0->type) {
  12486. case GGML_TYPE_F32:
  12487. {
  12488. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  12489. } break;
  12490. default:
  12491. {
  12492. GGML_ASSERT(false);
  12493. } break;
  12494. }
  12495. }
  12496. // ggml_compute_forward_map_custom1
  12497. static void ggml_compute_forward_map_custom1_f32(
  12498. const struct ggml_compute_params * params,
  12499. const struct ggml_tensor * a,
  12500. struct ggml_tensor * dst,
  12501. const ggml_custom1_op_f32_t fun) {
  12502. assert(params->ith == 0);
  12503. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12504. return;
  12505. }
  12506. fun(dst, a);
  12507. }
  12508. // ggml_compute_forward_map_custom2
  12509. static void ggml_compute_forward_map_custom2_f32(
  12510. const struct ggml_compute_params * params,
  12511. const struct ggml_tensor * a,
  12512. const struct ggml_tensor * b,
  12513. struct ggml_tensor * dst,
  12514. const ggml_custom2_op_f32_t fun) {
  12515. assert(params->ith == 0);
  12516. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12517. return;
  12518. }
  12519. fun(dst, a, b);
  12520. }
  12521. // ggml_compute_forward_map_custom3
  12522. static void ggml_compute_forward_map_custom3_f32(
  12523. const struct ggml_compute_params * params,
  12524. const struct ggml_tensor * a,
  12525. const struct ggml_tensor * b,
  12526. const struct ggml_tensor * c,
  12527. struct ggml_tensor * dst,
  12528. const ggml_custom3_op_f32_t fun) {
  12529. assert(params->ith == 0);
  12530. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12531. return;
  12532. }
  12533. fun(dst, a, b, c);
  12534. }
  12535. // ggml_compute_forward_map_custom1
  12536. static void ggml_compute_forward_map_custom1(
  12537. const struct ggml_compute_params * params,
  12538. const struct ggml_tensor * a,
  12539. struct ggml_tensor * dst) {
  12540. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12541. return;
  12542. }
  12543. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  12544. p->fun(dst, a, params->ith, params->nth, p->userdata);
  12545. }
  12546. // ggml_compute_forward_map_custom2
  12547. static void ggml_compute_forward_map_custom2(
  12548. const struct ggml_compute_params * params,
  12549. const struct ggml_tensor * a,
  12550. const struct ggml_tensor * b,
  12551. struct ggml_tensor * dst) {
  12552. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12553. return;
  12554. }
  12555. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  12556. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  12557. }
  12558. // ggml_compute_forward_map_custom3
  12559. static void ggml_compute_forward_map_custom3(
  12560. const struct ggml_compute_params * params,
  12561. const struct ggml_tensor * a,
  12562. const struct ggml_tensor * b,
  12563. const struct ggml_tensor * c,
  12564. struct ggml_tensor * dst) {
  12565. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12566. return;
  12567. }
  12568. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  12569. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  12570. }
  12571. // ggml_compute_forward_cross_entropy_loss
  12572. static void ggml_compute_forward_cross_entropy_loss_f32(
  12573. const struct ggml_compute_params * params,
  12574. const struct ggml_tensor * src0,
  12575. const struct ggml_tensor * src1,
  12576. struct ggml_tensor * dst) {
  12577. GGML_ASSERT(ggml_is_contiguous(src0));
  12578. GGML_ASSERT(ggml_is_contiguous(src1));
  12579. GGML_ASSERT(ggml_is_scalar(dst));
  12580. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12581. const int ith = params->ith;
  12582. const int nth = params->nth;
  12583. float * sums = (float *) params->wdata;
  12584. // TODO: handle transposed/permuted matrices
  12585. const int nc = src0->ne[0];
  12586. const int nr = ggml_nrows(src0);
  12587. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  12588. if (params->type == GGML_TASK_INIT) {
  12589. if (ith == 0) {
  12590. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12591. }
  12592. return;
  12593. }
  12594. if (params->type == GGML_TASK_FINALIZE) {
  12595. if (ith == 0) {
  12596. float * dp = (float *) dst->data;
  12597. ggml_vec_sum_f32(nth, dp, sums);
  12598. dp[0] *= -1.0f / (float) nr;
  12599. }
  12600. return;
  12601. }
  12602. const double eps = 1e-9;
  12603. // rows per thread
  12604. const int dr = (nr + nth - 1)/nth;
  12605. // row range for this thread
  12606. const int ir0 = dr*ith;
  12607. const int ir1 = MIN(ir0 + dr, nr);
  12608. for (int i1 = ir0; i1 < ir1; i1++) {
  12609. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12610. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12611. float * st = ((float *) params->wdata) + nth + ith*nc;
  12612. #ifndef NDEBUG
  12613. for (int i = 0; i < nc; ++i) {
  12614. //printf("p[%d] = %f\n", i, p[i]);
  12615. assert(!isnan(s0[i]));
  12616. assert(!isnan(s1[i]));
  12617. }
  12618. #endif
  12619. // soft_max
  12620. ggml_float sum = 0.0;
  12621. {
  12622. float max = -INFINITY;
  12623. ggml_vec_max_f32(nc, &max, s0);
  12624. uint16_t scvt; UNUSED(scvt);
  12625. for (int i = 0; i < nc; i++) {
  12626. if (s0[i] == -INFINITY) {
  12627. st[i] = 0.0f;
  12628. } else {
  12629. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12630. const float s = s0[i] - max;
  12631. const float val = expf(s);
  12632. #else
  12633. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12634. memcpy(&scvt, &s, sizeof(scvt));
  12635. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  12636. #endif
  12637. sum += (ggml_float)val;
  12638. st[i] = val;
  12639. }
  12640. }
  12641. assert(sum > 0.0);
  12642. // sum = 1.0/sum;
  12643. }
  12644. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12645. sum = (1.0 - eps) / sum;
  12646. ggml_vec_scale_f32(nc, st, sum);
  12647. ggml_vec_add1_f32(nc, st, st, eps);
  12648. ggml_vec_log_f32(nc, st, st);
  12649. ggml_vec_mul_f32(nc, st, st, s1);
  12650. float st_sum = 0;
  12651. ggml_vec_sum_f32(nc, &st_sum, st);
  12652. sums[ith] += st_sum;
  12653. #ifndef NDEBUG
  12654. for (int i = 0; i < nc; ++i) {
  12655. assert(!isnan(st[i]));
  12656. assert(!isinf(st[i]));
  12657. }
  12658. #endif
  12659. }
  12660. }
  12661. static void ggml_compute_forward_cross_entropy_loss(
  12662. const struct ggml_compute_params * params,
  12663. const struct ggml_tensor * src0,
  12664. const struct ggml_tensor * src1,
  12665. struct ggml_tensor * dst) {
  12666. switch (src0->type) {
  12667. case GGML_TYPE_F32:
  12668. {
  12669. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  12670. } break;
  12671. default:
  12672. {
  12673. GGML_ASSERT(false);
  12674. } break;
  12675. }
  12676. }
  12677. // ggml_compute_forward_cross_entropy_loss_back
  12678. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12679. const struct ggml_compute_params * params,
  12680. const struct ggml_tensor * src0,
  12681. const struct ggml_tensor * src1,
  12682. const struct ggml_tensor * opt0,
  12683. struct ggml_tensor * dst) {
  12684. GGML_ASSERT(ggml_is_contiguous(dst));
  12685. GGML_ASSERT(ggml_is_contiguous(src0));
  12686. GGML_ASSERT(ggml_is_contiguous(src1));
  12687. GGML_ASSERT(ggml_is_contiguous(opt0));
  12688. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12689. const int64_t ith = params->ith;
  12690. const int64_t nth = params->nth;
  12691. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12692. return;
  12693. }
  12694. const double eps = 1e-9;
  12695. // TODO: handle transposed/permuted matrices
  12696. const int64_t nc = src0->ne[0];
  12697. const int64_t nr = ggml_nrows(src0);
  12698. // rows per thread
  12699. const int64_t dr = (nr + nth - 1)/nth;
  12700. // row range for this thread
  12701. const int64_t ir0 = dr*ith;
  12702. const int64_t ir1 = MIN(ir0 + dr, nr);
  12703. float * d = (float *) opt0->data;
  12704. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12705. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12706. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12707. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12708. #ifndef NDEBUG
  12709. for (int i = 0; i < nc; ++i) {
  12710. //printf("p[%d] = %f\n", i, p[i]);
  12711. assert(!isnan(s0[i]));
  12712. assert(!isnan(s1[i]));
  12713. }
  12714. #endif
  12715. // soft_max
  12716. ggml_float sum = 0.0;
  12717. {
  12718. float max = -INFINITY;
  12719. ggml_vec_max_f32(nc, &max, s0);
  12720. uint16_t scvt; UNUSED(scvt);
  12721. for (int i = 0; i < nc; i++) {
  12722. if (s0[i] == -INFINITY) {
  12723. ds0[i] = 0.0f;
  12724. } else {
  12725. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12726. const float s = s0[i] - max;
  12727. const float val = expf(s);
  12728. #else
  12729. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12730. memcpy(&scvt, &s, sizeof(scvt));
  12731. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  12732. #endif
  12733. sum += (ggml_float)val;
  12734. ds0[i] = val;
  12735. }
  12736. }
  12737. assert(sum > 0.0);
  12738. sum = (1.0 - eps)/sum;
  12739. }
  12740. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  12741. ggml_vec_scale_f32(nc, ds0, sum);
  12742. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  12743. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  12744. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  12745. #ifndef NDEBUG
  12746. for (int i = 0; i < nc; ++i) {
  12747. assert(!isnan(ds0[i]));
  12748. assert(!isinf(ds0[i]));
  12749. }
  12750. #endif
  12751. }
  12752. }
  12753. static void ggml_compute_forward_cross_entropy_loss_back(
  12754. const struct ggml_compute_params * params,
  12755. const struct ggml_tensor * src0,
  12756. const struct ggml_tensor * src1,
  12757. const struct ggml_tensor * opt0,
  12758. struct ggml_tensor * dst) {
  12759. switch (src0->type) {
  12760. case GGML_TYPE_F32:
  12761. {
  12762. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  12763. } break;
  12764. default:
  12765. {
  12766. GGML_ASSERT(false);
  12767. } break;
  12768. }
  12769. }
  12770. /////////////////////////////////
  12771. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12772. GGML_ASSERT(params);
  12773. #ifdef GGML_USE_CUBLAS
  12774. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12775. if (skip_cpu) {
  12776. return;
  12777. }
  12778. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  12779. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  12780. #endif // GGML_USE_CUBLAS
  12781. switch (tensor->op) {
  12782. case GGML_OP_DUP:
  12783. {
  12784. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  12785. } break;
  12786. case GGML_OP_ADD:
  12787. {
  12788. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  12789. } break;
  12790. case GGML_OP_ADD1:
  12791. {
  12792. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  12793. } break;
  12794. case GGML_OP_ACC:
  12795. {
  12796. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  12797. } break;
  12798. case GGML_OP_SUB:
  12799. {
  12800. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  12801. } break;
  12802. case GGML_OP_MUL:
  12803. {
  12804. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  12805. } break;
  12806. case GGML_OP_DIV:
  12807. {
  12808. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  12809. } break;
  12810. case GGML_OP_SQR:
  12811. {
  12812. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  12813. } break;
  12814. case GGML_OP_SQRT:
  12815. {
  12816. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  12817. } break;
  12818. case GGML_OP_LOG:
  12819. {
  12820. ggml_compute_forward_log(params, tensor->src[0], tensor);
  12821. } break;
  12822. case GGML_OP_SUM:
  12823. {
  12824. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  12825. } break;
  12826. case GGML_OP_SUM_ROWS:
  12827. {
  12828. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  12829. } break;
  12830. case GGML_OP_MEAN:
  12831. {
  12832. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  12833. } break;
  12834. case GGML_OP_ARGMAX:
  12835. {
  12836. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  12837. } break;
  12838. case GGML_OP_REPEAT:
  12839. {
  12840. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  12841. } break;
  12842. case GGML_OP_REPEAT_BACK:
  12843. {
  12844. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  12845. } break;
  12846. case GGML_OP_CONCAT:
  12847. {
  12848. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  12849. } break;
  12850. case GGML_OP_SILU_BACK:
  12851. {
  12852. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  12853. } break;
  12854. case GGML_OP_NORM:
  12855. {
  12856. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  12857. } break;
  12858. case GGML_OP_RMS_NORM:
  12859. {
  12860. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  12861. } break;
  12862. case GGML_OP_RMS_NORM_BACK:
  12863. {
  12864. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  12865. } break;
  12866. case GGML_OP_GROUP_NORM:
  12867. {
  12868. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  12869. } break;
  12870. case GGML_OP_MUL_MAT:
  12871. {
  12872. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  12873. } break;
  12874. case GGML_OP_OUT_PROD:
  12875. {
  12876. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  12877. } break;
  12878. case GGML_OP_SCALE:
  12879. {
  12880. ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
  12881. } break;
  12882. case GGML_OP_SET:
  12883. {
  12884. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  12885. } break;
  12886. case GGML_OP_CPY:
  12887. {
  12888. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  12889. } break;
  12890. case GGML_OP_CONT:
  12891. {
  12892. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  12893. } break;
  12894. case GGML_OP_RESHAPE:
  12895. {
  12896. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  12897. } break;
  12898. case GGML_OP_VIEW:
  12899. {
  12900. ggml_compute_forward_view(params, tensor->src[0]);
  12901. } break;
  12902. case GGML_OP_PERMUTE:
  12903. {
  12904. ggml_compute_forward_permute(params, tensor->src[0]);
  12905. } break;
  12906. case GGML_OP_TRANSPOSE:
  12907. {
  12908. ggml_compute_forward_transpose(params, tensor->src[0]);
  12909. } break;
  12910. case GGML_OP_GET_ROWS:
  12911. {
  12912. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  12913. } break;
  12914. case GGML_OP_GET_ROWS_BACK:
  12915. {
  12916. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12917. } break;
  12918. case GGML_OP_DIAG:
  12919. {
  12920. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  12921. } break;
  12922. case GGML_OP_DIAG_MASK_INF:
  12923. {
  12924. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  12925. } break;
  12926. case GGML_OP_DIAG_MASK_ZERO:
  12927. {
  12928. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  12929. } break;
  12930. case GGML_OP_SOFT_MAX:
  12931. {
  12932. ggml_compute_forward_soft_max(params, tensor->src[0], tensor);
  12933. } break;
  12934. case GGML_OP_SOFT_MAX_BACK:
  12935. {
  12936. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12937. } break;
  12938. case GGML_OP_ROPE:
  12939. {
  12940. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  12941. } break;
  12942. case GGML_OP_ROPE_BACK:
  12943. {
  12944. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  12945. } break;
  12946. case GGML_OP_ALIBI:
  12947. {
  12948. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  12949. } break;
  12950. case GGML_OP_CLAMP:
  12951. {
  12952. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  12953. } break;
  12954. case GGML_OP_CONV_1D:
  12955. {
  12956. ggml_compute_forward_conv_1d(params, tensor->src[0], tensor->src[1], tensor);
  12957. } break;
  12958. case GGML_OP_CONV_2D:
  12959. {
  12960. ggml_compute_forward_conv_2d(params, tensor->src[0], tensor->src[1], tensor);
  12961. } break;
  12962. case GGML_OP_CONV_TRANSPOSE_2D:
  12963. {
  12964. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  12965. } break;
  12966. case GGML_OP_POOL_1D:
  12967. {
  12968. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  12969. } break;
  12970. case GGML_OP_POOL_2D:
  12971. {
  12972. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  12973. } break;
  12974. case GGML_OP_UPSCALE:
  12975. {
  12976. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  12977. } break;
  12978. case GGML_OP_FLASH_ATTN:
  12979. {
  12980. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12981. GGML_ASSERT(t == 0 || t == 1);
  12982. const bool masked = t != 0;
  12983. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12984. } break;
  12985. case GGML_OP_FLASH_FF:
  12986. {
  12987. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12988. } break;
  12989. case GGML_OP_FLASH_ATTN_BACK:
  12990. {
  12991. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12992. GGML_ASSERT(t == 0 || t == 1);
  12993. bool masked = t != 0;
  12994. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12995. } break;
  12996. case GGML_OP_WIN_PART:
  12997. {
  12998. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12999. } break;
  13000. case GGML_OP_WIN_UNPART:
  13001. {
  13002. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  13003. } break;
  13004. case GGML_OP_UNARY:
  13005. {
  13006. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  13007. } break;
  13008. case GGML_OP_GET_REL_POS:
  13009. {
  13010. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  13011. } break;
  13012. case GGML_OP_ADD_REL_POS:
  13013. {
  13014. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  13015. } break;
  13016. case GGML_OP_MAP_UNARY:
  13017. {
  13018. ggml_unary_op_f32_t fun;
  13019. memcpy(&fun, tensor->op_params, sizeof(fun));
  13020. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  13021. }
  13022. break;
  13023. case GGML_OP_MAP_BINARY:
  13024. {
  13025. ggml_binary_op_f32_t fun;
  13026. memcpy(&fun, tensor->op_params, sizeof(fun));
  13027. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  13028. }
  13029. break;
  13030. case GGML_OP_MAP_CUSTOM1_F32:
  13031. {
  13032. ggml_custom1_op_f32_t fun;
  13033. memcpy(&fun, tensor->op_params, sizeof(fun));
  13034. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  13035. }
  13036. break;
  13037. case GGML_OP_MAP_CUSTOM2_F32:
  13038. {
  13039. ggml_custom2_op_f32_t fun;
  13040. memcpy(&fun, tensor->op_params, sizeof(fun));
  13041. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  13042. }
  13043. break;
  13044. case GGML_OP_MAP_CUSTOM3_F32:
  13045. {
  13046. ggml_custom3_op_f32_t fun;
  13047. memcpy(&fun, tensor->op_params, sizeof(fun));
  13048. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  13049. }
  13050. break;
  13051. case GGML_OP_MAP_CUSTOM1:
  13052. {
  13053. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  13054. }
  13055. break;
  13056. case GGML_OP_MAP_CUSTOM2:
  13057. {
  13058. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  13059. }
  13060. break;
  13061. case GGML_OP_MAP_CUSTOM3:
  13062. {
  13063. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  13064. }
  13065. break;
  13066. case GGML_OP_CROSS_ENTROPY_LOSS:
  13067. {
  13068. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  13069. }
  13070. break;
  13071. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13072. {
  13073. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  13074. }
  13075. break;
  13076. case GGML_OP_NONE:
  13077. {
  13078. // nop
  13079. } break;
  13080. case GGML_OP_COUNT:
  13081. {
  13082. GGML_ASSERT(false);
  13083. } break;
  13084. }
  13085. }
  13086. ////////////////////////////////////////////////////////////////////////////////
  13087. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  13088. struct ggml_tensor * src0 = tensor->src[0];
  13089. struct ggml_tensor * src1 = tensor->src[1];
  13090. switch (tensor->op) {
  13091. case GGML_OP_DUP:
  13092. {
  13093. if (src0->grad) {
  13094. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13095. }
  13096. } break;
  13097. case GGML_OP_ADD:
  13098. {
  13099. if (src0->grad) {
  13100. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13101. }
  13102. if (src1->grad) {
  13103. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  13104. }
  13105. } break;
  13106. case GGML_OP_ADD1:
  13107. {
  13108. if (src0->grad) {
  13109. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13110. }
  13111. if (src1->grad) {
  13112. src1->grad = ggml_add_impl(ctx,
  13113. src1->grad,
  13114. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  13115. inplace);
  13116. }
  13117. } break;
  13118. case GGML_OP_ACC:
  13119. {
  13120. if (src0->grad) {
  13121. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13122. }
  13123. if (src1->grad) {
  13124. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13125. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13126. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13127. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13128. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  13129. tensor->grad,
  13130. src1->grad->ne[0],
  13131. src1->grad->ne[1],
  13132. src1->grad->ne[2],
  13133. src1->grad->ne[3],
  13134. nb1, nb2, nb3, offset);
  13135. src1->grad =
  13136. ggml_add_impl(ctx,
  13137. src1->grad,
  13138. ggml_reshape(ctx,
  13139. ggml_cont(ctx, tensor_grad_view),
  13140. src1->grad),
  13141. inplace);
  13142. }
  13143. } break;
  13144. case GGML_OP_SUB:
  13145. {
  13146. if (src0->grad) {
  13147. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13148. }
  13149. if (src1->grad) {
  13150. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  13151. }
  13152. } break;
  13153. case GGML_OP_MUL:
  13154. {
  13155. if (src0->grad) {
  13156. src0->grad =
  13157. ggml_add_impl(ctx,
  13158. src0->grad,
  13159. ggml_mul(ctx, src1, tensor->grad),
  13160. inplace);
  13161. }
  13162. if (src1->grad) {
  13163. src1->grad =
  13164. ggml_add_impl(ctx,
  13165. src1->grad,
  13166. ggml_mul(ctx, src0, tensor->grad),
  13167. inplace);
  13168. }
  13169. } break;
  13170. case GGML_OP_DIV:
  13171. {
  13172. if (src0->grad) {
  13173. src0->grad =
  13174. ggml_add_impl(ctx,
  13175. src0->grad,
  13176. ggml_div(ctx, tensor->grad, src1),
  13177. inplace);
  13178. }
  13179. if (src1->grad) {
  13180. src1->grad =
  13181. ggml_sub_impl(ctx,
  13182. src1->grad,
  13183. ggml_mul(ctx,
  13184. tensor->grad,
  13185. ggml_div(ctx, tensor, src1)),
  13186. inplace);
  13187. }
  13188. } break;
  13189. case GGML_OP_SQR:
  13190. {
  13191. if (src0->grad) {
  13192. src0->grad =
  13193. ggml_add_impl(ctx,
  13194. src0->grad,
  13195. ggml_scale(ctx,
  13196. ggml_mul(ctx, src0, tensor->grad),
  13197. ggml_new_f32(ctx, 2.0f)),
  13198. inplace);
  13199. }
  13200. } break;
  13201. case GGML_OP_SQRT:
  13202. {
  13203. if (src0->grad) {
  13204. src0->grad =
  13205. ggml_add_impl(ctx,
  13206. src0->grad,
  13207. ggml_scale(ctx,
  13208. ggml_div(ctx,
  13209. tensor->grad,
  13210. tensor),
  13211. ggml_new_f32(ctx, 0.5f)),
  13212. inplace);
  13213. }
  13214. } break;
  13215. case GGML_OP_LOG:
  13216. {
  13217. if (src0->grad) {
  13218. src0->grad =
  13219. ggml_add_impl(ctx,
  13220. src0->grad,
  13221. ggml_div(ctx,
  13222. tensor->grad,
  13223. src0),
  13224. inplace);
  13225. }
  13226. } break;
  13227. case GGML_OP_SUM:
  13228. {
  13229. if (src0->grad) {
  13230. src0->grad =
  13231. ggml_add1_impl(ctx,
  13232. src0->grad,
  13233. tensor->grad,
  13234. inplace);
  13235. }
  13236. } break;
  13237. case GGML_OP_SUM_ROWS:
  13238. {
  13239. if (src0->grad) {
  13240. src0->grad =
  13241. ggml_add_impl(ctx,
  13242. src0->grad,
  13243. ggml_repeat(ctx,
  13244. tensor->grad,
  13245. src0->grad),
  13246. inplace);
  13247. }
  13248. } break;
  13249. case GGML_OP_MEAN:
  13250. case GGML_OP_ARGMAX:
  13251. {
  13252. GGML_ASSERT(false); // TODO: implement
  13253. } break;
  13254. case GGML_OP_REPEAT:
  13255. {
  13256. // necessary for llama
  13257. if (src0->grad) {
  13258. src0->grad = ggml_add_impl(ctx,
  13259. src0->grad,
  13260. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  13261. inplace);
  13262. }
  13263. } break;
  13264. case GGML_OP_REPEAT_BACK:
  13265. {
  13266. if (src0->grad) {
  13267. // TODO: test this
  13268. src0->grad = ggml_add_impl(ctx,
  13269. src0->grad,
  13270. ggml_repeat(ctx, tensor->grad, src0->grad),
  13271. inplace);
  13272. }
  13273. } break;
  13274. case GGML_OP_CONCAT:
  13275. {
  13276. GGML_ASSERT(false); // TODO: implement
  13277. } break;
  13278. case GGML_OP_SILU_BACK:
  13279. {
  13280. GGML_ASSERT(false); // TODO: not implemented
  13281. } break;
  13282. case GGML_OP_NORM:
  13283. {
  13284. GGML_ASSERT(false); // TODO: not implemented
  13285. } break;
  13286. case GGML_OP_RMS_NORM:
  13287. {
  13288. // necessary for llama
  13289. if (src0->grad) {
  13290. float eps;
  13291. memcpy(&eps, tensor->op_params, sizeof(float));
  13292. src0->grad = ggml_add_impl(ctx,
  13293. src0->grad,
  13294. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  13295. inplace);
  13296. }
  13297. } break;
  13298. case GGML_OP_RMS_NORM_BACK:
  13299. {
  13300. GGML_ASSERT(false); // TODO: not implemented
  13301. } break;
  13302. case GGML_OP_GROUP_NORM:
  13303. {
  13304. GGML_ASSERT(false); // TODO: not implemented
  13305. } break;
  13306. case GGML_OP_MUL_MAT:
  13307. {
  13308. // https://cs231n.github.io/optimization-2/#staged
  13309. // # forward pass
  13310. // s0 = np.random.randn(5, 10)
  13311. // s1 = np.random.randn(10, 3)
  13312. // t = s0.dot(s1)
  13313. // # now suppose we had the gradient on t from above in the circuit
  13314. // dt = np.random.randn(*t.shape) # same shape as t
  13315. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13316. // ds1 = t.T.dot(dt)
  13317. // tensor.shape [m,p]
  13318. // src0.shape [n,m]
  13319. // src1.shape [n,p]
  13320. // necessary for llama
  13321. if (src0->grad) {
  13322. src0->grad =
  13323. ggml_add_impl(ctx,
  13324. src0->grad,
  13325. ggml_out_prod(ctx, // [n,m]
  13326. src1, // [n,p]
  13327. tensor->grad), // [m,p]
  13328. inplace);
  13329. }
  13330. if (src1->grad) {
  13331. src1->grad =
  13332. ggml_add_impl(ctx,
  13333. src1->grad,
  13334. // ggml_mul_mat(ctx, // [n,p]
  13335. // ggml_cont(ctx, // [m,n]
  13336. // ggml_transpose(ctx, src0)), // [m,n]
  13337. // tensor->grad), // [m,p]
  13338. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13339. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13340. // // and then use ggml_out_prod
  13341. ggml_out_prod(ctx, // [n,p]
  13342. src0, // [n,m]
  13343. ggml_transpose(ctx, // [p,m]
  13344. tensor->grad)), // [m,p]
  13345. inplace);
  13346. }
  13347. } break;
  13348. case GGML_OP_OUT_PROD:
  13349. {
  13350. GGML_ASSERT(false); // TODO: not implemented
  13351. } break;
  13352. case GGML_OP_SCALE:
  13353. {
  13354. // necessary for llama
  13355. if (src0->grad) {
  13356. src0->grad =
  13357. ggml_add_impl(ctx,
  13358. src0->grad,
  13359. ggml_scale_impl(ctx, tensor->grad, src1, false),
  13360. inplace);
  13361. }
  13362. if (src1->grad) {
  13363. src1->grad =
  13364. ggml_add_impl(ctx,
  13365. src1->grad,
  13366. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  13367. inplace);
  13368. }
  13369. } break;
  13370. case GGML_OP_SET:
  13371. {
  13372. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13373. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13374. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13375. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13376. struct ggml_tensor * tensor_grad_view = NULL;
  13377. if (src0->grad || src1->grad) {
  13378. GGML_ASSERT(src0->type == tensor->type);
  13379. GGML_ASSERT(tensor->grad->type == tensor->type);
  13380. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13381. tensor_grad_view = ggml_view_4d(ctx,
  13382. tensor->grad,
  13383. src1->grad->ne[0],
  13384. src1->grad->ne[1],
  13385. src1->grad->ne[2],
  13386. src1->grad->ne[3],
  13387. nb1, nb2, nb3, offset);
  13388. }
  13389. if (src0->grad) {
  13390. src0->grad = ggml_add_impl(ctx,
  13391. src0->grad,
  13392. ggml_acc_impl(ctx,
  13393. tensor->grad,
  13394. ggml_neg(ctx, tensor_grad_view),
  13395. nb1, nb2, nb3, offset, false),
  13396. inplace);
  13397. }
  13398. if (src1->grad) {
  13399. src1->grad =
  13400. ggml_add_impl(ctx,
  13401. src1->grad,
  13402. ggml_reshape(ctx,
  13403. ggml_cont(ctx, tensor_grad_view),
  13404. src1->grad),
  13405. inplace);
  13406. }
  13407. } break;
  13408. case GGML_OP_CPY:
  13409. {
  13410. // necessary for llama
  13411. // cpy overwrites value of src1 by src0 and returns view(src1)
  13412. // the overwriting is mathematically equivalent to:
  13413. // tensor = src0 * 1 + src1 * 0
  13414. if (src0->grad) {
  13415. // dsrc0 = dtensor * 1
  13416. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13417. }
  13418. if (src1->grad) {
  13419. // dsrc1 = dtensor * 0 -> noop
  13420. }
  13421. } break;
  13422. case GGML_OP_CONT:
  13423. {
  13424. // same as cpy
  13425. if (src0->grad) {
  13426. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13427. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13428. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13429. }
  13430. } break;
  13431. case GGML_OP_RESHAPE:
  13432. {
  13433. // necessary for llama
  13434. if (src0->grad) {
  13435. src0->grad =
  13436. ggml_add_impl(ctx, src0->grad,
  13437. ggml_reshape(ctx, tensor->grad, src0->grad),
  13438. inplace);
  13439. }
  13440. } break;
  13441. case GGML_OP_VIEW:
  13442. {
  13443. // necessary for llama
  13444. if (src0->grad) {
  13445. size_t offset;
  13446. memcpy(&offset, tensor->op_params, sizeof(offset));
  13447. size_t nb1 = tensor->nb[1];
  13448. size_t nb2 = tensor->nb[2];
  13449. size_t nb3 = tensor->nb[3];
  13450. if (src0->type != src0->grad->type) {
  13451. // gradient is typically F32, but src0 could be other type
  13452. size_t ng = ggml_element_size(src0->grad);
  13453. size_t n0 = ggml_element_size(src0);
  13454. GGML_ASSERT(offset % n0 == 0);
  13455. GGML_ASSERT(nb1 % n0 == 0);
  13456. GGML_ASSERT(nb2 % n0 == 0);
  13457. GGML_ASSERT(nb3 % n0 == 0);
  13458. offset = (offset / n0) * ng;
  13459. nb1 = (nb1 / n0) * ng;
  13460. nb2 = (nb2 / n0) * ng;
  13461. nb3 = (nb3 / n0) * ng;
  13462. }
  13463. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  13464. }
  13465. } break;
  13466. case GGML_OP_PERMUTE:
  13467. {
  13468. // necessary for llama
  13469. if (src0->grad) {
  13470. int32_t * axes = (int32_t *) tensor->op_params;
  13471. int axis0 = axes[0] & 0x3;
  13472. int axis1 = axes[1] & 0x3;
  13473. int axis2 = axes[2] & 0x3;
  13474. int axis3 = axes[3] & 0x3;
  13475. int axes_backward[4] = {0,0,0,0};
  13476. axes_backward[axis0] = 0;
  13477. axes_backward[axis1] = 1;
  13478. axes_backward[axis2] = 2;
  13479. axes_backward[axis3] = 3;
  13480. src0->grad =
  13481. ggml_add_impl(ctx, src0->grad,
  13482. ggml_permute(ctx,
  13483. tensor->grad,
  13484. axes_backward[0],
  13485. axes_backward[1],
  13486. axes_backward[2],
  13487. axes_backward[3]),
  13488. inplace);
  13489. }
  13490. } break;
  13491. case GGML_OP_TRANSPOSE:
  13492. {
  13493. // necessary for llama
  13494. if (src0->grad) {
  13495. src0->grad =
  13496. ggml_add_impl(ctx, src0->grad,
  13497. ggml_transpose(ctx, tensor->grad),
  13498. inplace);
  13499. }
  13500. } break;
  13501. case GGML_OP_GET_ROWS:
  13502. {
  13503. // necessary for llama (only for tokenizer)
  13504. if (src0->grad) {
  13505. src0->grad =
  13506. ggml_add_impl(ctx, src0->grad,
  13507. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  13508. inplace);
  13509. }
  13510. if (src1->grad) {
  13511. // noop
  13512. }
  13513. } break;
  13514. case GGML_OP_GET_ROWS_BACK:
  13515. {
  13516. GGML_ASSERT(false); // TODO: not implemented
  13517. } break;
  13518. case GGML_OP_DIAG:
  13519. {
  13520. GGML_ASSERT(false); // TODO: not implemented
  13521. } break;
  13522. case GGML_OP_DIAG_MASK_INF:
  13523. {
  13524. // necessary for llama
  13525. if (src0->grad) {
  13526. const int n_past = ((int32_t *) tensor->op_params)[0];
  13527. src0->grad =
  13528. ggml_add_impl(ctx, src0->grad,
  13529. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13530. inplace);
  13531. }
  13532. } break;
  13533. case GGML_OP_DIAG_MASK_ZERO:
  13534. {
  13535. // necessary for llama
  13536. if (src0->grad) {
  13537. const int n_past = ((int32_t *) tensor->op_params)[0];
  13538. src0->grad =
  13539. ggml_add_impl(ctx, src0->grad,
  13540. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13541. inplace);
  13542. }
  13543. } break;
  13544. case GGML_OP_SOFT_MAX:
  13545. {
  13546. // necessary for llama
  13547. if (src0->grad) {
  13548. src0->grad =
  13549. ggml_add_impl(ctx, src0->grad,
  13550. ggml_soft_max_back(ctx, tensor->grad, tensor),
  13551. inplace);
  13552. }
  13553. } break;
  13554. case GGML_OP_SOFT_MAX_BACK:
  13555. {
  13556. GGML_ASSERT(false); // TODO: not implemented
  13557. } break;
  13558. case GGML_OP_ROPE:
  13559. {
  13560. // necessary for llama
  13561. if (src0->grad) {
  13562. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13563. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13564. const int mode = ((int32_t *) tensor->op_params)[2];
  13565. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13566. float freq_base;
  13567. float freq_scale;
  13568. float xpos_base;
  13569. bool xpos_down;
  13570. memcpy(&freq_base, (int32_t *) tensor->op_params + 4, sizeof(float));
  13571. memcpy(&freq_scale, (int32_t *) tensor->op_params + 5, sizeof(float));
  13572. memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float));
  13573. memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool));
  13574. src0->grad = ggml_add_impl(ctx,
  13575. src0->grad,
  13576. ggml_rope_back(ctx,
  13577. tensor->grad,
  13578. src1,
  13579. n_dims,
  13580. mode,
  13581. n_ctx,
  13582. freq_base,
  13583. freq_scale,
  13584. xpos_base,
  13585. xpos_down),
  13586. inplace);
  13587. }
  13588. } break;
  13589. case GGML_OP_ROPE_BACK:
  13590. {
  13591. if (src0->grad) {
  13592. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13593. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13594. const int mode = ((int32_t *) tensor->op_params)[2];
  13595. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13596. float freq_base;
  13597. float freq_scale;
  13598. float xpos_base;
  13599. bool xpos_down;
  13600. memcpy(&freq_base, (int32_t *) tensor->op_params + 4, sizeof(float));
  13601. memcpy(&freq_scale, (int32_t *) tensor->op_params + 5, sizeof(float));
  13602. memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float));
  13603. memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool));
  13604. src0->grad = ggml_add_impl(ctx,
  13605. src0->grad,
  13606. ggml_rope_impl(ctx,
  13607. tensor->grad,
  13608. src1,
  13609. n_dims,
  13610. mode,
  13611. n_ctx,
  13612. freq_base,
  13613. freq_scale,
  13614. xpos_base,
  13615. xpos_down,
  13616. false),
  13617. inplace);
  13618. }
  13619. } break;
  13620. case GGML_OP_ALIBI:
  13621. {
  13622. GGML_ASSERT(false); // TODO: not implemented
  13623. } break;
  13624. case GGML_OP_CLAMP:
  13625. {
  13626. GGML_ASSERT(false); // TODO: not implemented
  13627. } break;
  13628. case GGML_OP_CONV_1D:
  13629. {
  13630. GGML_ASSERT(false); // TODO: not implemented
  13631. } break;
  13632. case GGML_OP_CONV_2D:
  13633. {
  13634. GGML_ASSERT(false); // TODO: not implemented
  13635. } break;
  13636. case GGML_OP_CONV_TRANSPOSE_2D:
  13637. {
  13638. GGML_ASSERT(false); // TODO: not implemented
  13639. } break;
  13640. case GGML_OP_POOL_1D:
  13641. {
  13642. GGML_ASSERT(false); // TODO: not implemented
  13643. } break;
  13644. case GGML_OP_POOL_2D:
  13645. {
  13646. GGML_ASSERT(false); // TODO: not implemented
  13647. } break;
  13648. case GGML_OP_UPSCALE:
  13649. {
  13650. GGML_ASSERT(false); // TODO: not implemented
  13651. } break;
  13652. case GGML_OP_FLASH_ATTN:
  13653. {
  13654. struct ggml_tensor * flash_grad = NULL;
  13655. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  13656. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13657. GGML_ASSERT(t == 0 || t == 1);
  13658. bool masked = t != 0;
  13659. flash_grad =
  13660. ggml_flash_attn_back(ctx,
  13661. src0,
  13662. src1,
  13663. tensor->src[2],
  13664. tensor->grad,
  13665. masked);
  13666. }
  13667. if (src0->grad) {
  13668. struct ggml_tensor * grad_q = NULL;
  13669. const size_t nb0 = flash_grad->nb[0];
  13670. const size_t offset = 0;
  13671. switch(src0->n_dims) {
  13672. case 2:
  13673. {
  13674. grad_q = ggml_view_2d(ctx,
  13675. flash_grad,
  13676. src0->ne[0],
  13677. src0->ne[1],
  13678. nb0*src0->ne[0],
  13679. offset);
  13680. } break;
  13681. case 3:
  13682. {
  13683. grad_q = ggml_view_3d(ctx,
  13684. flash_grad,
  13685. src0->ne[0],
  13686. src0->ne[1],
  13687. src0->ne[2],
  13688. nb0*src0->ne[0],
  13689. nb0*src0->ne[0]*src0->ne[1],
  13690. offset);
  13691. } break;
  13692. case 4:
  13693. {
  13694. grad_q = ggml_view_4d(ctx,
  13695. flash_grad,
  13696. src0->ne[0],
  13697. src0->ne[1],
  13698. src0->ne[2],
  13699. src0->ne[3],
  13700. nb0*src0->ne[0],
  13701. nb0*src0->ne[0]*src0->ne[1],
  13702. nb0*src0->ne[0]*src0->ne[1]*src0->ne[2],
  13703. offset);
  13704. } break;
  13705. }
  13706. src0->grad = ggml_add_impl(ctx,
  13707. src0->grad,
  13708. grad_q,
  13709. inplace);
  13710. }
  13711. if (src1->grad) {
  13712. struct ggml_tensor * grad_k = NULL;
  13713. const size_t nb0 = flash_grad->nb[0];
  13714. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3];
  13715. switch(src1->n_dims) {
  13716. case 2:
  13717. {
  13718. grad_k = ggml_view_2d(ctx,
  13719. flash_grad,
  13720. src1->ne[0],
  13721. src1->ne[1],
  13722. nb0*src1->ne[0],
  13723. offset);
  13724. } break;
  13725. case 3:
  13726. {
  13727. grad_k = ggml_view_3d(ctx,
  13728. flash_grad,
  13729. src1->ne[0],
  13730. src1->ne[1],
  13731. src1->ne[2],
  13732. nb0*src1->ne[0],
  13733. nb0*src1->ne[0]*src1->ne[1],
  13734. offset);
  13735. } break;
  13736. case 4:
  13737. {
  13738. grad_k = ggml_view_4d(ctx,
  13739. flash_grad,
  13740. src1->ne[0],
  13741. src1->ne[1],
  13742. src1->ne[2],
  13743. src1->ne[3],
  13744. nb0*src1->ne[0],
  13745. nb0*src1->ne[0]*src1->ne[1],
  13746. nb0*src1->ne[0]*src1->ne[1]*src1->ne[2],
  13747. offset);
  13748. } break;
  13749. }
  13750. src1->grad = ggml_add_impl(ctx,
  13751. src1->grad,
  13752. grad_k,
  13753. inplace);
  13754. }
  13755. struct ggml_tensor * opt0 = tensor->src[2];
  13756. if (opt0->grad) {
  13757. struct ggml_tensor * grad_v = NULL;
  13758. const size_t nb0 = flash_grad->nb[0];
  13759. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]
  13760. + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3];
  13761. switch(opt0->n_dims) {
  13762. case 2:
  13763. {
  13764. grad_v = ggml_view_2d(ctx,
  13765. flash_grad,
  13766. opt0->ne[0],
  13767. opt0->ne[1],
  13768. nb0*opt0->ne[0],
  13769. offset);
  13770. } break;
  13771. case 3:
  13772. {
  13773. grad_v = ggml_view_3d(ctx,
  13774. flash_grad,
  13775. opt0->ne[0],
  13776. opt0->ne[1],
  13777. opt0->ne[2],
  13778. nb0*opt0->ne[0],
  13779. nb0*opt0->ne[0]*opt0->ne[1],
  13780. offset);
  13781. } break;
  13782. case 4:
  13783. {
  13784. grad_v = ggml_view_4d(ctx,
  13785. flash_grad,
  13786. opt0->ne[0],
  13787. opt0->ne[1],
  13788. opt0->ne[2],
  13789. opt0->ne[3],
  13790. nb0*opt0->ne[0],
  13791. nb0*opt0->ne[0]*opt0->ne[1],
  13792. nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2],
  13793. offset);
  13794. } break;
  13795. }
  13796. opt0->grad = ggml_add_impl(ctx,
  13797. opt0->grad,
  13798. grad_v,
  13799. inplace);
  13800. }
  13801. } break;
  13802. case GGML_OP_FLASH_FF:
  13803. {
  13804. GGML_ASSERT(false); // not supported
  13805. } break;
  13806. case GGML_OP_FLASH_ATTN_BACK:
  13807. {
  13808. GGML_ASSERT(false); // not supported
  13809. } break;
  13810. case GGML_OP_WIN_PART:
  13811. case GGML_OP_WIN_UNPART:
  13812. case GGML_OP_UNARY:
  13813. {
  13814. switch (ggml_get_unary_op(tensor)) {
  13815. case GGML_UNARY_OP_ABS:
  13816. {
  13817. if (src0->grad) {
  13818. src0->grad =
  13819. ggml_add_impl(ctx,
  13820. src0->grad,
  13821. ggml_mul(ctx,
  13822. ggml_sgn(ctx, src0),
  13823. tensor->grad),
  13824. inplace);
  13825. }
  13826. } break;
  13827. case GGML_UNARY_OP_SGN:
  13828. {
  13829. if (src0->grad) {
  13830. // noop
  13831. }
  13832. } break;
  13833. case GGML_UNARY_OP_NEG:
  13834. {
  13835. if (src0->grad) {
  13836. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  13837. }
  13838. } break;
  13839. case GGML_UNARY_OP_STEP:
  13840. {
  13841. if (src0->grad) {
  13842. // noop
  13843. }
  13844. } break;
  13845. case GGML_UNARY_OP_TANH:
  13846. {
  13847. GGML_ASSERT(false); // TODO: not implemented
  13848. } break;
  13849. case GGML_UNARY_OP_ELU:
  13850. {
  13851. GGML_ASSERT(false); // TODO: not implemented
  13852. } break;
  13853. case GGML_UNARY_OP_RELU:
  13854. {
  13855. if (src0->grad) {
  13856. src0->grad = ggml_add_impl(ctx,
  13857. src0->grad,
  13858. ggml_mul(ctx,
  13859. ggml_step(ctx, src0),
  13860. tensor->grad),
  13861. inplace);
  13862. }
  13863. } break;
  13864. case GGML_UNARY_OP_GELU:
  13865. {
  13866. GGML_ASSERT(false); // TODO: not implemented
  13867. } break;
  13868. case GGML_UNARY_OP_GELU_QUICK:
  13869. {
  13870. GGML_ASSERT(false); // TODO: not implemented
  13871. } break;
  13872. case GGML_UNARY_OP_SILU:
  13873. {
  13874. // necessary for llama
  13875. if (src0->grad) {
  13876. src0->grad = ggml_add_impl(ctx,
  13877. src0->grad,
  13878. ggml_silu_back(ctx, src0, tensor->grad),
  13879. inplace);
  13880. }
  13881. } break;
  13882. default:
  13883. GGML_ASSERT(false);
  13884. }
  13885. } break;
  13886. case GGML_OP_GET_REL_POS:
  13887. case GGML_OP_ADD_REL_POS:
  13888. case GGML_OP_MAP_UNARY:
  13889. case GGML_OP_MAP_BINARY:
  13890. case GGML_OP_MAP_CUSTOM1_F32:
  13891. case GGML_OP_MAP_CUSTOM2_F32:
  13892. case GGML_OP_MAP_CUSTOM3_F32:
  13893. case GGML_OP_MAP_CUSTOM1:
  13894. case GGML_OP_MAP_CUSTOM2:
  13895. case GGML_OP_MAP_CUSTOM3:
  13896. {
  13897. GGML_ASSERT(false); // not supported
  13898. } break;
  13899. case GGML_OP_CROSS_ENTROPY_LOSS:
  13900. {
  13901. if (src0->grad) {
  13902. src0->grad = ggml_add_impl(ctx,
  13903. src0->grad,
  13904. ggml_cross_entropy_loss_back(ctx,
  13905. src0,
  13906. src1,
  13907. tensor->grad),
  13908. inplace);
  13909. }
  13910. } break;
  13911. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13912. {
  13913. GGML_ASSERT(false); // not supported
  13914. } break;
  13915. case GGML_OP_NONE:
  13916. {
  13917. // nop
  13918. } break;
  13919. case GGML_OP_COUNT:
  13920. {
  13921. GGML_ASSERT(false);
  13922. } break;
  13923. }
  13924. }
  13925. static_assert(GGML_GRAPH_HASHTABLE_SIZE > GGML_MAX_NODES * 2, "GGML_GRAPH_HT_SIZE is too small");
  13926. static size_t hash(void * p) {
  13927. return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
  13928. }
  13929. static bool hash_insert(void * hash_table[], void * p) {
  13930. size_t h = hash(p);
  13931. // linear probing
  13932. size_t i = h;
  13933. while (hash_table[i] != NULL && hash_table[i] != p) {
  13934. i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
  13935. if (i == h) {
  13936. // hash table is full
  13937. GGML_ASSERT(false);
  13938. }
  13939. }
  13940. if (hash_table[i] == p) {
  13941. return true;
  13942. }
  13943. // insert
  13944. hash_table[i] = p;
  13945. return false;
  13946. }
  13947. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13948. if (node->grad == NULL) {
  13949. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13950. // it can also happen during forward pass, if the user performs computations with constants
  13951. if (node->op != GGML_OP_NONE) {
  13952. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13953. }
  13954. }
  13955. // check if already visited
  13956. if (hash_insert(cgraph->visited_hash_table, node)) {
  13957. return;
  13958. }
  13959. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13960. if (node->src[i]) {
  13961. ggml_visit_parents(cgraph, node->src[i]);
  13962. }
  13963. }
  13964. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13965. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13966. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  13967. if (strlen(node->name) == 0) {
  13968. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13969. }
  13970. cgraph->leafs[cgraph->n_leafs] = node;
  13971. cgraph->n_leafs++;
  13972. } else {
  13973. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  13974. if (strlen(node->name) == 0) {
  13975. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13976. }
  13977. cgraph->nodes[cgraph->n_nodes] = node;
  13978. cgraph->grads[cgraph->n_nodes] = node->grad;
  13979. cgraph->n_nodes++;
  13980. }
  13981. }
  13982. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13983. if (!expand) {
  13984. cgraph->n_nodes = 0;
  13985. cgraph->n_leafs = 0;
  13986. }
  13987. const int n0 = cgraph->n_nodes;
  13988. UNUSED(n0);
  13989. ggml_visit_parents(cgraph, tensor);
  13990. const int n_new = cgraph->n_nodes - n0;
  13991. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13992. if (n_new > 0) {
  13993. // the last added node should always be starting point
  13994. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13995. }
  13996. }
  13997. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13998. ggml_build_forward_impl(cgraph, tensor, true);
  13999. }
  14000. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  14001. struct ggml_cgraph result = {
  14002. /*.n_nodes =*/ 0,
  14003. /*.n_leafs =*/ 0,
  14004. /*.nodes =*/ { NULL },
  14005. /*.grads =*/ { NULL },
  14006. /*.leafs =*/ { NULL },
  14007. /*.hash_table =*/ { NULL },
  14008. /*.perf_runs =*/ 0,
  14009. /*.perf_cycles =*/ 0,
  14010. /*.perf_time_us =*/ 0,
  14011. };
  14012. ggml_build_forward_impl(&result, tensor, false);
  14013. return result;
  14014. }
  14015. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  14016. GGML_ASSERT(gf->n_nodes > 0);
  14017. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  14018. if (keep) {
  14019. for (int i = 0; i < gf->n_nodes; i++) {
  14020. struct ggml_tensor * node = gf->nodes[i];
  14021. if (node->grad) {
  14022. node->grad = ggml_dup_tensor(ctx, node);
  14023. gf->grads[i] = node->grad;
  14024. }
  14025. }
  14026. }
  14027. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  14028. struct ggml_tensor * node = gf->nodes[i];
  14029. // because we detached the grad nodes from the original graph, we can afford inplace operations
  14030. if (node->grad) {
  14031. ggml_compute_backward(ctx, node, keep);
  14032. }
  14033. }
  14034. for (int i = 0; i < gf->n_nodes; i++) {
  14035. struct ggml_tensor * node = gf->nodes[i];
  14036. if (node->is_param) {
  14037. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  14038. ggml_build_forward_expand(gb, node->grad);
  14039. }
  14040. }
  14041. }
  14042. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  14043. struct ggml_cgraph result = *gf;
  14044. ggml_build_backward_expand(ctx, gf, &result, keep);
  14045. return result;
  14046. }
  14047. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  14048. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, GGML_GRAPH_SIZE);
  14049. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  14050. *cgraph = (struct ggml_cgraph) {
  14051. /*.n_nodes =*/ 0,
  14052. /*.n_leafs =*/ 0,
  14053. /*.nodes =*/ { NULL },
  14054. /*.grads =*/ { NULL },
  14055. /*.leafs =*/ { NULL },
  14056. /*.hash_table =*/ { NULL },
  14057. /*.perf_runs =*/ 0,
  14058. /*.perf_cycles =*/ 0,
  14059. /*.perf_time_us =*/ 0,
  14060. };
  14061. return cgraph;
  14062. }
  14063. struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  14064. struct ggml_cgraph * cgraph = ggml_new_graph(ctx);
  14065. ggml_build_forward_impl(cgraph, tensor, false);
  14066. return cgraph;
  14067. }
  14068. size_t ggml_graph_overhead(void) {
  14069. return GGML_OBJECT_SIZE + GGML_PAD(GGML_GRAPH_SIZE, GGML_MEM_ALIGN);
  14070. }
  14071. //
  14072. // thread data
  14073. //
  14074. // synchronization is done via busy loops
  14075. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  14076. //
  14077. #ifdef __APPLE__
  14078. //#include <os/lock.h>
  14079. //
  14080. //typedef os_unfair_lock ggml_lock_t;
  14081. //
  14082. //#define ggml_lock_init(x) UNUSED(x)
  14083. //#define ggml_lock_destroy(x) UNUSED(x)
  14084. //#define ggml_lock_lock os_unfair_lock_lock
  14085. //#define ggml_lock_unlock os_unfair_lock_unlock
  14086. //
  14087. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  14088. typedef int ggml_lock_t;
  14089. #define ggml_lock_init(x) UNUSED(x)
  14090. #define ggml_lock_destroy(x) UNUSED(x)
  14091. #define ggml_lock_lock(x) UNUSED(x)
  14092. #define ggml_lock_unlock(x) UNUSED(x)
  14093. #define GGML_LOCK_INITIALIZER 0
  14094. typedef pthread_t ggml_thread_t;
  14095. #define ggml_thread_create pthread_create
  14096. #define ggml_thread_join pthread_join
  14097. #else
  14098. //typedef pthread_spinlock_t ggml_lock_t;
  14099. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  14100. //#define ggml_lock_destroy pthread_spin_destroy
  14101. //#define ggml_lock_lock pthread_spin_lock
  14102. //#define ggml_lock_unlock pthread_spin_unlock
  14103. typedef int ggml_lock_t;
  14104. #define ggml_lock_init(x) UNUSED(x)
  14105. #define ggml_lock_destroy(x) UNUSED(x)
  14106. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  14107. #define ggml_lock_lock(x) _mm_pause()
  14108. #else
  14109. #define ggml_lock_lock(x) UNUSED(x)
  14110. #endif
  14111. #define ggml_lock_unlock(x) UNUSED(x)
  14112. #define GGML_LOCK_INITIALIZER 0
  14113. typedef pthread_t ggml_thread_t;
  14114. #define ggml_thread_create pthread_create
  14115. #define ggml_thread_join pthread_join
  14116. #endif
  14117. // Android's libc implementation "bionic" does not support setting affinity
  14118. #if defined(__linux__) && !defined(__BIONIC__)
  14119. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  14120. if (!ggml_is_numa()) {
  14121. return;
  14122. }
  14123. // run thread on node_num thread_n / (threads per node)
  14124. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  14125. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  14126. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14127. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14128. CPU_ZERO_S(setsize, cpus);
  14129. for (size_t i = 0; i < node->n_cpus; ++i) {
  14130. CPU_SET_S(node->cpus[i], setsize, cpus);
  14131. }
  14132. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14133. if (rv) {
  14134. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  14135. strerror(rv));
  14136. }
  14137. CPU_FREE(cpus);
  14138. }
  14139. static void clear_numa_thread_affinity(void) {
  14140. if (!ggml_is_numa()) {
  14141. return;
  14142. }
  14143. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14144. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14145. CPU_ZERO_S(setsize, cpus);
  14146. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  14147. CPU_SET_S(i, setsize, cpus);
  14148. }
  14149. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14150. if (rv) {
  14151. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  14152. strerror(rv));
  14153. }
  14154. CPU_FREE(cpus);
  14155. }
  14156. #else
  14157. // TODO: Windows etc.
  14158. // (the linux implementation may also work on BSD, someone should test)
  14159. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  14160. static void clear_numa_thread_affinity(void) {}
  14161. #endif
  14162. struct ggml_compute_state_shared {
  14163. const struct ggml_cgraph * cgraph;
  14164. const struct ggml_cplan * cplan;
  14165. int64_t perf_node_start_cycles;
  14166. int64_t perf_node_start_time_us;
  14167. const int n_threads;
  14168. // synchronization primitives
  14169. atomic_int n_active; // num active threads
  14170. atomic_int node_n; // active graph node
  14171. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  14172. void * abort_callback_data;
  14173. };
  14174. struct ggml_compute_state {
  14175. ggml_thread_t thrd;
  14176. int ith;
  14177. struct ggml_compute_state_shared * shared;
  14178. };
  14179. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  14180. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  14181. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  14182. node->perf_runs++;
  14183. node->perf_cycles += cycles_cur;
  14184. node->perf_time_us += time_us_cur;
  14185. }
  14186. static thread_ret_t ggml_graph_compute_thread(void * data) {
  14187. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  14188. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  14189. const struct ggml_cplan * cplan = state->shared->cplan;
  14190. const int * n_tasks_arr = cplan->n_tasks;
  14191. const int n_threads = state->shared->n_threads;
  14192. set_numa_thread_affinity(state->ith, n_threads);
  14193. int node_n = -1;
  14194. while (true) {
  14195. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14196. state->shared->node_n += 1;
  14197. return (thread_ret_t) GGML_EXIT_ABORTED;
  14198. }
  14199. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14200. // all other threads are finished and spinning
  14201. // do finalize and init here so we don't have synchronize again
  14202. struct ggml_compute_params params = {
  14203. /*.type =*/ GGML_TASK_FINALIZE,
  14204. /*.ith =*/ 0,
  14205. /*.nth =*/ 0,
  14206. /*.wsize =*/ cplan->work_size,
  14207. /*.wdata =*/ cplan->work_data,
  14208. };
  14209. if (node_n != -1) {
  14210. /* FINALIZE */
  14211. struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
  14212. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14213. params.nth = n_tasks_arr[node_n];
  14214. ggml_compute_forward(&params, node);
  14215. }
  14216. ggml_graph_compute_perf_stats_node(node, state->shared);
  14217. }
  14218. // distribute new work or execute it direct if 1T
  14219. while (++node_n < cgraph->n_nodes) {
  14220. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  14221. struct ggml_tensor * node = cgraph->nodes[node_n];
  14222. const int n_tasks = n_tasks_arr[node_n];
  14223. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  14224. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  14225. params.nth = n_tasks;
  14226. /* INIT */
  14227. if (GGML_OP_HAS_INIT[node->op]) {
  14228. params.type = GGML_TASK_INIT;
  14229. ggml_compute_forward(&params, node);
  14230. }
  14231. if (n_tasks == 1) {
  14232. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  14233. // they do something more efficient than spinning (?)
  14234. params.type = GGML_TASK_COMPUTE;
  14235. ggml_compute_forward(&params, node);
  14236. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14237. params.type = GGML_TASK_FINALIZE;
  14238. ggml_compute_forward(&params, node);
  14239. }
  14240. ggml_graph_compute_perf_stats_node(node, state->shared);
  14241. } else {
  14242. break;
  14243. }
  14244. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14245. break;
  14246. }
  14247. }
  14248. atomic_store(&state->shared->n_active, n_threads);
  14249. atomic_store(&state->shared->node_n, node_n);
  14250. } else {
  14251. // wait for other threads to finish
  14252. const int last = node_n;
  14253. while (true) {
  14254. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  14255. // depending on the workload and the operating system.
  14256. // since it is not clear what is the best approach, it should potentially become user-configurable
  14257. // ref: https://github.com/ggerganov/ggml/issues/291
  14258. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  14259. sched_yield();
  14260. #endif
  14261. node_n = atomic_load(&state->shared->node_n);
  14262. if (node_n != last) break;
  14263. };
  14264. }
  14265. // check if we should stop
  14266. if (node_n >= cgraph->n_nodes) break;
  14267. /* COMPUTE */
  14268. struct ggml_tensor * node = cgraph->nodes[node_n];
  14269. const int n_tasks = n_tasks_arr[node_n];
  14270. struct ggml_compute_params params = {
  14271. /*.type =*/ GGML_TASK_COMPUTE,
  14272. /*.ith =*/ state->ith,
  14273. /*.nth =*/ n_tasks,
  14274. /*.wsize =*/ cplan->work_size,
  14275. /*.wdata =*/ cplan->work_data,
  14276. };
  14277. if (state->ith < n_tasks) {
  14278. ggml_compute_forward(&params, node);
  14279. }
  14280. }
  14281. return GGML_EXIT_SUCCESS;
  14282. }
  14283. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  14284. if (n_threads <= 0) {
  14285. n_threads = GGML_DEFAULT_N_THREADS;
  14286. }
  14287. size_t work_size = 0;
  14288. struct ggml_cplan cplan;
  14289. memset(&cplan, 0, sizeof(struct ggml_cplan));
  14290. // thread scheduling for the different operations + work buffer size estimation
  14291. for (int i = 0; i < cgraph->n_nodes; i++) {
  14292. int n_tasks = 1;
  14293. struct ggml_tensor * node = cgraph->nodes[i];
  14294. switch (node->op) {
  14295. case GGML_OP_CPY:
  14296. case GGML_OP_DUP:
  14297. {
  14298. n_tasks = n_threads;
  14299. size_t cur = 0;
  14300. if (ggml_is_quantized(node->type)) {
  14301. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14302. }
  14303. work_size = MAX(work_size, cur);
  14304. } break;
  14305. case GGML_OP_ADD:
  14306. case GGML_OP_ADD1:
  14307. {
  14308. n_tasks = n_threads;
  14309. size_t cur = 0;
  14310. if (ggml_is_quantized(node->src[0]->type)) {
  14311. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14312. }
  14313. work_size = MAX(work_size, cur);
  14314. } break;
  14315. case GGML_OP_ACC:
  14316. {
  14317. n_tasks = n_threads;
  14318. size_t cur = 0;
  14319. if (ggml_is_quantized(node->src[0]->type)) {
  14320. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  14321. }
  14322. work_size = MAX(work_size, cur);
  14323. } break;
  14324. case GGML_OP_SUB:
  14325. case GGML_OP_DIV:
  14326. case GGML_OP_SQR:
  14327. case GGML_OP_SQRT:
  14328. case GGML_OP_LOG:
  14329. case GGML_OP_SUM:
  14330. case GGML_OP_SUM_ROWS:
  14331. case GGML_OP_MEAN:
  14332. case GGML_OP_ARGMAX:
  14333. case GGML_OP_REPEAT:
  14334. case GGML_OP_REPEAT_BACK:
  14335. {
  14336. n_tasks = 1;
  14337. } break;
  14338. case GGML_OP_UNARY:
  14339. {
  14340. switch (ggml_get_unary_op(node)) {
  14341. case GGML_UNARY_OP_ABS:
  14342. case GGML_UNARY_OP_SGN:
  14343. case GGML_UNARY_OP_NEG:
  14344. case GGML_UNARY_OP_STEP:
  14345. case GGML_UNARY_OP_TANH:
  14346. case GGML_UNARY_OP_ELU:
  14347. case GGML_UNARY_OP_RELU:
  14348. {
  14349. n_tasks = 1;
  14350. } break;
  14351. case GGML_UNARY_OP_GELU:
  14352. case GGML_UNARY_OP_GELU_QUICK:
  14353. case GGML_UNARY_OP_SILU:
  14354. {
  14355. n_tasks = n_threads;
  14356. } break;
  14357. }
  14358. } break;
  14359. case GGML_OP_SILU_BACK:
  14360. case GGML_OP_MUL:
  14361. case GGML_OP_NORM:
  14362. case GGML_OP_RMS_NORM:
  14363. case GGML_OP_RMS_NORM_BACK:
  14364. case GGML_OP_GROUP_NORM:
  14365. {
  14366. n_tasks = n_threads;
  14367. } break;
  14368. case GGML_OP_CONCAT:
  14369. case GGML_OP_MUL_MAT:
  14370. case GGML_OP_OUT_PROD:
  14371. {
  14372. n_tasks = n_threads;
  14373. // TODO: use different scheduling for different matrix sizes
  14374. //const int nr0 = ggml_nrows(node->src[0]);
  14375. //const int nr1 = ggml_nrows(node->src[1]);
  14376. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  14377. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  14378. size_t cur = 0;
  14379. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  14380. #if defined(GGML_USE_CUBLAS)
  14381. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  14382. n_tasks = 1; // TODO: this actually is doing nothing
  14383. // the threads are still spinning
  14384. } else
  14385. #elif defined(GGML_USE_CLBLAST)
  14386. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  14387. n_tasks = 1; // TODO: this actually is doing nothing
  14388. // the threads are still spinning
  14389. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  14390. } else
  14391. #endif
  14392. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  14393. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  14394. n_tasks = 1; // TODO: this actually is doing nothing
  14395. // the threads are still spinning
  14396. if (node->src[0]->type != GGML_TYPE_F32) {
  14397. // here we need memory just for single 2D matrix from src0
  14398. cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  14399. }
  14400. } else
  14401. #endif
  14402. if (node->src[1]->type != vec_dot_type) {
  14403. cur = ggml_type_size(vec_dot_type)*ggml_nelements(node->src[1])/ggml_blck_size(vec_dot_type);
  14404. } else {
  14405. cur = 0;
  14406. }
  14407. work_size = MAX(work_size, cur);
  14408. } break;
  14409. case GGML_OP_SCALE:
  14410. {
  14411. n_tasks = 1;
  14412. } break;
  14413. case GGML_OP_SET:
  14414. case GGML_OP_CONT:
  14415. case GGML_OP_RESHAPE:
  14416. case GGML_OP_VIEW:
  14417. case GGML_OP_PERMUTE:
  14418. case GGML_OP_TRANSPOSE:
  14419. case GGML_OP_GET_ROWS:
  14420. case GGML_OP_GET_ROWS_BACK:
  14421. case GGML_OP_DIAG:
  14422. {
  14423. n_tasks = 1;
  14424. } break;
  14425. case GGML_OP_DIAG_MASK_ZERO:
  14426. case GGML_OP_DIAG_MASK_INF:
  14427. case GGML_OP_SOFT_MAX:
  14428. case GGML_OP_SOFT_MAX_BACK:
  14429. case GGML_OP_ROPE:
  14430. case GGML_OP_ROPE_BACK:
  14431. case GGML_OP_ADD_REL_POS:
  14432. {
  14433. n_tasks = n_threads;
  14434. } break;
  14435. case GGML_OP_ALIBI:
  14436. {
  14437. n_tasks = 1; //TODO
  14438. } break;
  14439. case GGML_OP_CLAMP:
  14440. {
  14441. n_tasks = 1; //TODO
  14442. } break;
  14443. case GGML_OP_CONV_1D:
  14444. {
  14445. n_tasks = n_threads;
  14446. GGML_ASSERT(node->src[0]->ne[3] == 1);
  14447. GGML_ASSERT(node->src[1]->ne[2] == 1);
  14448. GGML_ASSERT(node->src[1]->ne[3] == 1);
  14449. size_t cur = 0;
  14450. const int nk = node->src[0]->ne[0];
  14451. if (node->src[0]->type == GGML_TYPE_F16 &&
  14452. node->src[1]->type == GGML_TYPE_F32) {
  14453. cur = sizeof(ggml_fp16_t)*(
  14454. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  14455. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  14456. );
  14457. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14458. node->src[1]->type == GGML_TYPE_F32) {
  14459. cur = sizeof(float)*(
  14460. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  14461. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  14462. );
  14463. } else {
  14464. GGML_ASSERT(false);
  14465. }
  14466. work_size = MAX(work_size, cur);
  14467. } break;
  14468. case GGML_OP_CONV_2D:
  14469. {
  14470. n_tasks = n_threads;
  14471. const int64_t ne00 = node->src[0]->ne[0]; // W
  14472. const int64_t ne01 = node->src[0]->ne[1]; // H
  14473. const int64_t ne02 = node->src[0]->ne[2]; // C
  14474. const int64_t ne03 = node->src[0]->ne[3]; // N
  14475. const int64_t ne10 = node->src[1]->ne[0]; // W
  14476. const int64_t ne11 = node->src[1]->ne[1]; // H
  14477. const int64_t ne12 = node->src[1]->ne[2]; // C
  14478. const int64_t ne0 = node->ne[0];
  14479. const int64_t ne1 = node->ne[1];
  14480. const int64_t ne2 = node->ne[2];
  14481. const int64_t nk = ne00*ne01;
  14482. const int64_t ew0 = nk * ne02;
  14483. UNUSED(ne03);
  14484. UNUSED(ne2);
  14485. size_t cur = 0;
  14486. if (node->src[0]->type == GGML_TYPE_F16 &&
  14487. node->src[1]->type == GGML_TYPE_F32) {
  14488. cur = sizeof(ggml_fp16_t)*(ne0*ne1*ew0);
  14489. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14490. node->src[1]->type == GGML_TYPE_F32) {
  14491. cur = sizeof(float)* (ne10*ne11*ne12);
  14492. } else {
  14493. GGML_ASSERT(false);
  14494. }
  14495. work_size = MAX(work_size, cur);
  14496. } break;
  14497. case GGML_OP_CONV_TRANSPOSE_2D:
  14498. {
  14499. n_tasks = n_threads;
  14500. const int64_t ne00 = node->src[0]->ne[0]; // W
  14501. const int64_t ne01 = node->src[0]->ne[1]; // H
  14502. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  14503. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  14504. const int64_t ne10 = node->src[1]->ne[0]; // W
  14505. const int64_t ne11 = node->src[1]->ne[1]; // H
  14506. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  14507. size_t cur = 0;
  14508. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  14509. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  14510. work_size = MAX(work_size, cur);
  14511. } break;
  14512. case GGML_OP_POOL_1D:
  14513. case GGML_OP_POOL_2D:
  14514. {
  14515. n_tasks = 1;
  14516. } break;
  14517. case GGML_OP_UPSCALE:
  14518. {
  14519. n_tasks = n_threads;
  14520. } break;
  14521. case GGML_OP_FLASH_ATTN:
  14522. {
  14523. n_tasks = n_threads;
  14524. size_t cur = 0;
  14525. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14526. if (node->src[1]->type == GGML_TYPE_F32) {
  14527. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14528. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14529. }
  14530. if (node->src[1]->type == GGML_TYPE_F16) {
  14531. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14532. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14533. }
  14534. work_size = MAX(work_size, cur);
  14535. } break;
  14536. case GGML_OP_FLASH_FF:
  14537. {
  14538. n_tasks = n_threads;
  14539. size_t cur = 0;
  14540. if (node->src[1]->type == GGML_TYPE_F32) {
  14541. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14542. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14543. }
  14544. if (node->src[1]->type == GGML_TYPE_F16) {
  14545. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14546. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14547. }
  14548. work_size = MAX(work_size, cur);
  14549. } break;
  14550. case GGML_OP_FLASH_ATTN_BACK:
  14551. {
  14552. n_tasks = n_threads;
  14553. size_t cur = 0;
  14554. const int64_t D = node->src[0]->ne[0];
  14555. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14556. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  14557. if (node->src[1]->type == GGML_TYPE_F32) {
  14558. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14559. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14560. }
  14561. if (node->src[1]->type == GGML_TYPE_F16) {
  14562. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14563. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14564. }
  14565. work_size = MAX(work_size, cur);
  14566. } break;
  14567. case GGML_OP_WIN_PART:
  14568. case GGML_OP_WIN_UNPART:
  14569. case GGML_OP_GET_REL_POS:
  14570. case GGML_OP_MAP_UNARY:
  14571. case GGML_OP_MAP_BINARY:
  14572. case GGML_OP_MAP_CUSTOM1_F32:
  14573. case GGML_OP_MAP_CUSTOM2_F32:
  14574. case GGML_OP_MAP_CUSTOM3_F32:
  14575. {
  14576. n_tasks = 1;
  14577. } break;
  14578. case GGML_OP_MAP_CUSTOM1:
  14579. {
  14580. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  14581. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14582. n_tasks = n_threads;
  14583. } else {
  14584. n_tasks = MIN(p->n_tasks, n_threads);
  14585. }
  14586. } break;
  14587. case GGML_OP_MAP_CUSTOM2:
  14588. {
  14589. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  14590. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14591. n_tasks = n_threads;
  14592. } else {
  14593. n_tasks = MIN(p->n_tasks, n_threads);
  14594. }
  14595. } break;
  14596. case GGML_OP_MAP_CUSTOM3:
  14597. {
  14598. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  14599. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14600. n_tasks = n_threads;
  14601. } else {
  14602. n_tasks = MIN(p->n_tasks, n_threads);
  14603. }
  14604. } break;
  14605. case GGML_OP_CROSS_ENTROPY_LOSS:
  14606. {
  14607. n_tasks = n_threads;
  14608. size_t cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  14609. work_size = MAX(work_size, cur);
  14610. } break;
  14611. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14612. {
  14613. n_tasks = n_threads;
  14614. } break;
  14615. case GGML_OP_NONE:
  14616. {
  14617. n_tasks = 1;
  14618. } break;
  14619. case GGML_OP_COUNT:
  14620. {
  14621. GGML_ASSERT(false);
  14622. } break;
  14623. }
  14624. cplan.n_tasks[i] = n_tasks;
  14625. }
  14626. if (work_size > 0) {
  14627. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  14628. }
  14629. cplan.n_threads = n_threads;
  14630. cplan.work_size = work_size;
  14631. cplan.work_data = NULL;
  14632. return cplan;
  14633. }
  14634. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  14635. {
  14636. GGML_ASSERT(cplan);
  14637. GGML_ASSERT(cplan->n_threads > 0);
  14638. if (cplan->work_size > 0) {
  14639. GGML_ASSERT(cplan->work_data);
  14640. }
  14641. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14642. if (cgraph->nodes[i]->op != GGML_OP_NONE) {
  14643. GGML_ASSERT(cplan->n_tasks[i] > 0);
  14644. }
  14645. }
  14646. }
  14647. const int n_threads = cplan->n_threads;
  14648. struct ggml_compute_state_shared state_shared = {
  14649. /*.cgraph =*/ cgraph,
  14650. /*.cgraph_plan =*/ cplan,
  14651. /*.perf_node_start_cycles =*/ 0,
  14652. /*.perf_node_start_time_us =*/ 0,
  14653. /*.n_threads =*/ n_threads,
  14654. /*.n_active =*/ n_threads,
  14655. /*.node_n =*/ -1,
  14656. /*.abort_callback =*/ NULL,
  14657. /*.abort_callback_data =*/ NULL,
  14658. };
  14659. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  14660. // create thread pool
  14661. if (n_threads > 1) {
  14662. for (int j = 1; j < n_threads; ++j) {
  14663. workers[j] = (struct ggml_compute_state) {
  14664. .thrd = 0,
  14665. .ith = j,
  14666. .shared = &state_shared,
  14667. };
  14668. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  14669. GGML_ASSERT(rc == 0);
  14670. UNUSED(rc);
  14671. }
  14672. }
  14673. workers[0].ith = 0;
  14674. workers[0].shared = &state_shared;
  14675. const int64_t perf_start_cycles = ggml_perf_cycles();
  14676. const int64_t perf_start_time_us = ggml_perf_time_us();
  14677. // this is a work thread too
  14678. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  14679. // don't leave affinity set on the main thread
  14680. clear_numa_thread_affinity();
  14681. // join or kill thread pool
  14682. if (n_threads > 1) {
  14683. for (int j = 1; j < n_threads; j++) {
  14684. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  14685. GGML_ASSERT(rc == 0);
  14686. }
  14687. }
  14688. // performance stats (graph)
  14689. {
  14690. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14691. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14692. cgraph->perf_runs++;
  14693. cgraph->perf_cycles += perf_cycles_cur;
  14694. cgraph->perf_time_us += perf_time_us_cur;
  14695. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14696. __func__, cgraph->perf_runs,
  14697. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14698. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14699. (double) perf_time_us_cur / 1000.0,
  14700. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14701. }
  14702. return compute_status;
  14703. }
  14704. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  14705. for (int i = 0; i < cgraph->n_nodes; i++) {
  14706. struct ggml_tensor * grad = cgraph->grads[i];
  14707. if (grad) {
  14708. ggml_set_zero(grad);
  14709. }
  14710. }
  14711. }
  14712. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  14713. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  14714. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14715. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14716. ggml_graph_compute(cgraph, &cplan);
  14717. }
  14718. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14719. for (int i = 0; i < cgraph->n_leafs; i++) {
  14720. struct ggml_tensor * leaf = cgraph->leafs[i];
  14721. if (strcmp(leaf->name, name) == 0) {
  14722. return leaf;
  14723. }
  14724. }
  14725. for (int i = 0; i < cgraph->n_nodes; i++) {
  14726. struct ggml_tensor * node = cgraph->nodes[i];
  14727. if (strcmp(node->name, name) == 0) {
  14728. return node;
  14729. }
  14730. }
  14731. return NULL;
  14732. }
  14733. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14734. const int64_t * ne = tensor->ne;
  14735. const size_t * nb = tensor->nb;
  14736. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14737. ggml_type_name(tensor->type),
  14738. ggml_op_name (tensor->op),
  14739. tensor->n_dims,
  14740. ne[0], ne[1], ne[2], ne[3],
  14741. nb[0], nb[1], nb[2], nb[3],
  14742. tensor->data,
  14743. tensor->name);
  14744. }
  14745. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14746. const int64_t * ne = tensor->ne;
  14747. const size_t * nb = tensor->nb;
  14748. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14749. arg,
  14750. ggml_type_name(tensor->type),
  14751. ggml_op_name (tensor->op),
  14752. tensor->n_dims,
  14753. ne[0], ne[1], ne[2], ne[3],
  14754. nb[0], nb[1], nb[2], nb[3],
  14755. tensor->data,
  14756. tensor->name);
  14757. }
  14758. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14759. uint64_t size_eval = 0;
  14760. // compute size of intermediate results
  14761. // TODO: does not take into account scratch buffers !!!!
  14762. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14763. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  14764. }
  14765. // print
  14766. {
  14767. FILE * fout = stdout;
  14768. fprintf(fout, "\n");
  14769. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14770. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14771. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14772. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14773. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14774. // header
  14775. fprintf(fout, "\n");
  14776. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14777. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14778. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14779. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14780. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14781. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  14782. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  14783. }
  14784. // header
  14785. fprintf(fout, "\n");
  14786. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14787. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14788. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14789. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14790. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14791. if (cgraph->nodes[i]->src[j]) {
  14792. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  14793. }
  14794. }
  14795. fprintf(fout, "\n");
  14796. }
  14797. fprintf(fout, "\n");
  14798. }
  14799. // write binary data
  14800. {
  14801. FILE * fout = fopen(fname, "wb");
  14802. if (!fout) {
  14803. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14804. return;
  14805. }
  14806. // header
  14807. {
  14808. const uint32_t magic = GGML_FILE_MAGIC;
  14809. const uint32_t version = GGML_FILE_VERSION;
  14810. const uint32_t n_leafs = cgraph->n_leafs;
  14811. const uint32_t nodes = cgraph->n_nodes;
  14812. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14813. fwrite(&version, sizeof(uint32_t), 1, fout);
  14814. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14815. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  14816. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14817. }
  14818. // leafs
  14819. {
  14820. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14821. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14822. const uint32_t type = tensor->type;
  14823. const uint32_t op = tensor->op;
  14824. const uint32_t n_dims = tensor->n_dims;
  14825. fwrite(&type, sizeof(uint32_t), 1, fout);
  14826. fwrite(&op, sizeof(uint32_t), 1, fout);
  14827. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14828. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14829. const uint64_t ne = tensor->ne[j];
  14830. const uint64_t nb = tensor->nb[j];
  14831. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14832. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14833. }
  14834. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14835. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14836. // dump the data
  14837. // TODO: pad this to 32 byte boundary
  14838. {
  14839. const size_t size = ggml_nbytes(tensor);
  14840. fwrite(tensor->data, sizeof(char), size, fout);
  14841. }
  14842. }
  14843. }
  14844. // nodes
  14845. {
  14846. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14847. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14848. const uint32_t type = tensor->type;
  14849. const uint32_t op = tensor->op;
  14850. const uint32_t n_dims = tensor->n_dims;
  14851. fwrite(&type, sizeof(uint32_t), 1, fout);
  14852. fwrite(&op, sizeof(uint32_t), 1, fout);
  14853. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14854. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14855. const uint64_t ne = tensor->ne[j];
  14856. const uint64_t nb = tensor->nb[j];
  14857. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14858. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14859. }
  14860. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14861. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14862. // output the op arguments
  14863. {
  14864. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14865. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14866. args[j] = tensor->src[j];
  14867. }
  14868. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14869. if (args[j]) {
  14870. int32_t idx = -1;
  14871. // check if leaf
  14872. {
  14873. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14874. if (args[j] == cgraph->leafs[k]) {
  14875. idx = k;
  14876. break;
  14877. }
  14878. }
  14879. }
  14880. // check if node
  14881. if (idx == -1) {
  14882. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14883. if (args[j] == cgraph->nodes[k]) {
  14884. idx = GGML_MAX_NODES + k;
  14885. break;
  14886. }
  14887. }
  14888. }
  14889. if (idx == -1) {
  14890. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14891. return;
  14892. }
  14893. fwrite(&idx, sizeof(int32_t), 1, fout);
  14894. } else {
  14895. const int32_t nul = -1;
  14896. fwrite(&nul, sizeof(int32_t), 1, fout);
  14897. }
  14898. }
  14899. }
  14900. }
  14901. }
  14902. fclose(fout);
  14903. }
  14904. }
  14905. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14906. assert(*ctx_data == NULL);
  14907. assert(*ctx_eval == NULL);
  14908. struct ggml_cgraph result = { 0 };
  14909. struct ggml_tensor * data = NULL;
  14910. // read file into data
  14911. {
  14912. FILE * fin = fopen(fname, "rb");
  14913. if (!fin) {
  14914. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14915. return result;
  14916. }
  14917. size_t fsize = 0;
  14918. fseek(fin, 0, SEEK_END);
  14919. fsize = ftell(fin);
  14920. fseek(fin, 0, SEEK_SET);
  14921. // create the data context
  14922. {
  14923. const size_t overhead = 1*ggml_tensor_overhead();
  14924. struct ggml_init_params params = {
  14925. .mem_size = fsize + overhead,
  14926. .mem_buffer = NULL,
  14927. .no_alloc = false,
  14928. };
  14929. *ctx_data = ggml_init(params);
  14930. if (!*ctx_data) {
  14931. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14932. fclose(fin);
  14933. return result;
  14934. }
  14935. }
  14936. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14937. {
  14938. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14939. if (ret != fsize) {
  14940. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14941. fclose(fin);
  14942. return result;
  14943. }
  14944. }
  14945. fclose(fin);
  14946. }
  14947. // populate result
  14948. {
  14949. char * ptr = (char *) data->data;
  14950. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14951. if (magic != GGML_FILE_MAGIC) {
  14952. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14953. return result;
  14954. }
  14955. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14956. if (version != GGML_FILE_VERSION) {
  14957. fprintf(stderr, "%s: invalid version number\n", __func__);
  14958. return result;
  14959. }
  14960. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14961. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14962. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14963. result.n_leafs = n_leafs;
  14964. result.n_nodes = n_nodes;
  14965. // create the data context
  14966. {
  14967. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  14968. struct ggml_init_params params = {
  14969. .mem_size = size_eval + overhead,
  14970. .mem_buffer = NULL,
  14971. .no_alloc = true,
  14972. };
  14973. *ctx_eval = ggml_init(params);
  14974. if (!*ctx_eval) {
  14975. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14976. return result;
  14977. }
  14978. }
  14979. // leafs
  14980. {
  14981. uint32_t type;
  14982. uint32_t op;
  14983. uint32_t n_dims;
  14984. for (uint32_t i = 0; i < n_leafs; ++i) {
  14985. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14986. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14987. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14988. int64_t ne[GGML_MAX_DIMS];
  14989. size_t nb[GGML_MAX_DIMS];
  14990. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14991. uint64_t ne_cur;
  14992. uint64_t nb_cur;
  14993. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14994. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14995. ne[j] = ne_cur;
  14996. nb[j] = nb_cur;
  14997. }
  14998. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14999. tensor->op = (enum ggml_op) op;
  15000. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  15001. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  15002. tensor->data = (void *) ptr;
  15003. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15004. tensor->nb[j] = nb[j];
  15005. }
  15006. result.leafs[i] = tensor;
  15007. ptr += ggml_nbytes(tensor);
  15008. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  15009. }
  15010. }
  15011. ggml_set_no_alloc(*ctx_eval, false);
  15012. // nodes
  15013. {
  15014. uint32_t type;
  15015. uint32_t op;
  15016. uint32_t n_dims;
  15017. for (uint32_t i = 0; i < n_nodes; ++i) {
  15018. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15019. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15020. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  15021. enum ggml_op eop = (enum ggml_op) op;
  15022. int64_t ne[GGML_MAX_DIMS];
  15023. size_t nb[GGML_MAX_DIMS];
  15024. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15025. uint64_t ne_cur;
  15026. uint64_t nb_cur;
  15027. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15028. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15029. ne[j] = ne_cur;
  15030. nb[j] = nb_cur;
  15031. }
  15032. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  15033. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  15034. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  15035. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15036. // parse args
  15037. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15038. const int32_t arg_idx = ptr_arg_idx[j];
  15039. if (arg_idx == -1) {
  15040. continue;
  15041. }
  15042. if (arg_idx < GGML_MAX_NODES) {
  15043. args[j] = result.leafs[arg_idx];
  15044. } else {
  15045. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  15046. }
  15047. }
  15048. // create the tensor
  15049. // "view" operations are handled differently
  15050. // TODO: handle inplace ops - currently a copy is always made
  15051. struct ggml_tensor * tensor = NULL;
  15052. switch (eop) {
  15053. // TODO: implement other view ops
  15054. case GGML_OP_RESHAPE:
  15055. {
  15056. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  15057. } break;
  15058. case GGML_OP_VIEW:
  15059. {
  15060. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15061. size_t offs;
  15062. memcpy(&offs, ptr_op_params, sizeof(offs));
  15063. tensor->data = ((char *) tensor->data) + offs;
  15064. } break;
  15065. case GGML_OP_TRANSPOSE:
  15066. {
  15067. tensor = ggml_transpose(*ctx_eval, args[0]);
  15068. } break;
  15069. case GGML_OP_PERMUTE:
  15070. {
  15071. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15072. } break;
  15073. default:
  15074. {
  15075. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  15076. tensor->op = eop;
  15077. } break;
  15078. }
  15079. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  15080. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  15081. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15082. tensor->nb[j] = nb[j];
  15083. }
  15084. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15085. tensor->src[j] = args[j];
  15086. }
  15087. result.nodes[i] = tensor;
  15088. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  15089. }
  15090. }
  15091. }
  15092. return result;
  15093. }
  15094. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  15095. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  15096. GGML_PRINT("=== GRAPH ===\n");
  15097. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  15098. for (int i = 0; i < cgraph->n_nodes; i++) {
  15099. struct ggml_tensor * node = cgraph->nodes[i];
  15100. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  15101. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  15102. i,
  15103. node->ne[0], node->ne[1], node->ne[2],
  15104. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  15105. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  15106. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  15107. (double) node->perf_time_us / 1000.0,
  15108. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  15109. }
  15110. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  15111. for (int i = 0; i < cgraph->n_leafs; i++) {
  15112. struct ggml_tensor * node = cgraph->leafs[i];
  15113. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  15114. i,
  15115. node->ne[0], node->ne[1],
  15116. ggml_op_name(node->op),
  15117. ggml_get_name(node));
  15118. }
  15119. for (int i = 0; i < GGML_OP_COUNT; i++) {
  15120. if (perf_total_per_op_us[i] == 0) {
  15121. continue;
  15122. }
  15123. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  15124. }
  15125. GGML_PRINT("========================================\n");
  15126. }
  15127. // check if node is part of the graph
  15128. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15129. if (cgraph == NULL) {
  15130. return true;
  15131. }
  15132. for (int i = 0; i < cgraph->n_nodes; i++) {
  15133. if (cgraph->nodes[i] == node) {
  15134. return true;
  15135. }
  15136. }
  15137. return false;
  15138. }
  15139. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15140. for (int i = 0; i < cgraph->n_nodes; i++) {
  15141. struct ggml_tensor * parent = cgraph->nodes[i];
  15142. if (parent->grad == node) {
  15143. return parent;
  15144. }
  15145. }
  15146. return NULL;
  15147. }
  15148. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15149. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  15150. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  15151. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  15152. gparent0 ? (void *) gparent0 : (void *) parent,
  15153. gparent0 ? "g" : "x",
  15154. gparent ? (void *) gparent : (void *) node,
  15155. gparent ? "g" : "x",
  15156. gparent ? "empty" : "vee",
  15157. gparent ? "dashed" : "solid",
  15158. label);
  15159. }
  15160. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15161. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  15162. (void *) parent, "x",
  15163. (void *) node, "x",
  15164. label);
  15165. }
  15166. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  15167. char color[16];
  15168. FILE * fp = fopen(filename, "w");
  15169. GGML_ASSERT(fp);
  15170. fprintf(fp, "digraph G {\n");
  15171. fprintf(fp, " newrank = true;\n");
  15172. fprintf(fp, " rankdir = LR;\n");
  15173. for (int i = 0; i < gb->n_nodes; i++) {
  15174. struct ggml_tensor * node = gb->nodes[i];
  15175. if (ggml_graph_get_parent(gb, node) != NULL) {
  15176. continue;
  15177. }
  15178. if (node->is_param) {
  15179. snprintf(color, sizeof(color), "yellow");
  15180. } else if (node->grad) {
  15181. if (ggml_graph_find(gf, node)) {
  15182. snprintf(color, sizeof(color), "green");
  15183. } else {
  15184. snprintf(color, sizeof(color), "lightblue");
  15185. }
  15186. } else {
  15187. snprintf(color, sizeof(color), "white");
  15188. }
  15189. fprintf(fp, " \"%p\" [ "
  15190. "style = filled; fillcolor = %s; shape = record; "
  15191. "label=\"",
  15192. (void *) node, color);
  15193. if (strlen(node->name) > 0) {
  15194. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15195. } else {
  15196. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15197. }
  15198. if (node->n_dims == 2) {
  15199. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15200. } else {
  15201. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15202. }
  15203. if (node->grad) {
  15204. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15205. } else {
  15206. fprintf(fp, "\"; ]\n");
  15207. }
  15208. }
  15209. for (int i = 0; i < gb->n_leafs; i++) {
  15210. struct ggml_tensor * node = gb->leafs[i];
  15211. snprintf(color, sizeof(color), "pink");
  15212. fprintf(fp, " \"%p\" [ "
  15213. "style = filled; fillcolor = %s; shape = record; "
  15214. "label=\"<x>",
  15215. (void *) node, color);
  15216. if (strlen(node->name) > 0) {
  15217. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15218. } else {
  15219. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15220. }
  15221. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15222. if (ggml_nelements(node) < 5) {
  15223. fprintf(fp, " | (");
  15224. for (int j = 0; j < ggml_nelements(node); j++) {
  15225. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15226. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15227. }
  15228. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  15229. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15230. }
  15231. else {
  15232. fprintf(fp, "#");
  15233. }
  15234. if (j < ggml_nelements(node) - 1) {
  15235. fprintf(fp, ", ");
  15236. }
  15237. }
  15238. fprintf(fp, ")");
  15239. }
  15240. fprintf(fp, "\"; ]\n");
  15241. }
  15242. for (int i = 0; i < gb->n_nodes; i++) {
  15243. struct ggml_tensor * node = gb->nodes[i];
  15244. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15245. if (node->src[j]) {
  15246. char label[16];
  15247. snprintf(label, sizeof(label), "src %d", j);
  15248. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15249. }
  15250. }
  15251. }
  15252. for (int i = 0; i < gb->n_leafs; i++) {
  15253. struct ggml_tensor * node = gb->leafs[i];
  15254. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15255. if (node->src[j]) {
  15256. char label[16];
  15257. snprintf(label, sizeof(label), "src %d", j);
  15258. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15259. }
  15260. }
  15261. }
  15262. fprintf(fp, "}\n");
  15263. fclose(fp);
  15264. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15265. }
  15266. ////////////////////////////////////////////////////////////////////////////////
  15267. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15268. int i = 0;
  15269. for (int p = 0; p < np; ++p) {
  15270. const int64_t ne = ggml_nelements(ps[p]) ;
  15271. // TODO: add function to set tensor from array
  15272. for (int64_t j = 0; j < ne; ++j) {
  15273. ggml_set_f32_1d(ps[p], j, x[i++]);
  15274. }
  15275. }
  15276. }
  15277. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15278. int i = 0;
  15279. for (int p = 0; p < np; ++p) {
  15280. const int64_t ne = ggml_nelements(ps[p]) ;
  15281. // TODO: add function to get all elements at once
  15282. for (int64_t j = 0; j < ne; ++j) {
  15283. x[i++] = ggml_get_f32_1d(ps[p], j);
  15284. }
  15285. }
  15286. }
  15287. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15288. int i = 0;
  15289. for (int p = 0; p < np; ++p) {
  15290. const int64_t ne = ggml_nelements(ps[p]) ;
  15291. // TODO: add function to get all elements at once
  15292. for (int64_t j = 0; j < ne; ++j) {
  15293. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15294. }
  15295. }
  15296. }
  15297. //
  15298. // ADAM
  15299. //
  15300. // ref: https://arxiv.org/pdf/1412.6980.pdf
  15301. //
  15302. static enum ggml_opt_result ggml_opt_adam(
  15303. struct ggml_context * ctx,
  15304. struct ggml_opt_context * opt,
  15305. struct ggml_opt_params params,
  15306. struct ggml_tensor * f,
  15307. struct ggml_cgraph * gf,
  15308. struct ggml_cgraph * gb,
  15309. ggml_opt_callback callback,
  15310. void * callback_data) {
  15311. GGML_ASSERT(ggml_is_scalar(f));
  15312. // these will store the parameters we want to optimize
  15313. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15314. int np = 0;
  15315. int64_t nx = 0;
  15316. for (int i = 0; i < gf->n_nodes; ++i) {
  15317. if (gf->nodes[i]->is_param) {
  15318. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15319. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15320. ps[np++] = gf->nodes[i];
  15321. nx += ggml_nelements(gf->nodes[i]);
  15322. }
  15323. }
  15324. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  15325. int iter = opt->iter;
  15326. ggml_opt_init(opt->ctx, opt, params, nx);
  15327. opt->iter = iter;
  15328. }
  15329. // constants
  15330. float sched = params.adam.sched;
  15331. const float alpha = params.adam.alpha;
  15332. const float decay = params.adam.decay * alpha;
  15333. const float beta1 = params.adam.beta1;
  15334. const float beta2 = params.adam.beta2;
  15335. const float eps = params.adam.eps;
  15336. const float gclip = params.adam.gclip;
  15337. const int decay_min_ndim = params.adam.decay_min_ndim;
  15338. float * m = opt->adam.m->data; // first moment
  15339. float * v = opt->adam.v->data; // second moment
  15340. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  15341. if (callback) {
  15342. callback(callback_data, &sched);
  15343. }
  15344. // compute the function value
  15345. ggml_graph_reset (gf);
  15346. ggml_set_f32 (f->grad, 1.0f);
  15347. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15348. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15349. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15350. ggml_graph_compute(gb, &cplan);
  15351. opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
  15352. opt->adam.fx_best = opt->adam.fx_prev;
  15353. if (pf) {
  15354. pf[opt->iter % params.past] = opt->adam.fx_prev;
  15355. }
  15356. opt->loss_before = opt->adam.fx_prev;
  15357. opt->loss_after = opt->adam.fx_prev;
  15358. // initialize
  15359. if (opt->just_initialized) {
  15360. opt->adam.n_no_improvement = 0;
  15361. opt->just_initialized = false;
  15362. }
  15363. float * fx_best = &opt->adam.fx_best;
  15364. float * fx_prev = &opt->adam.fx_prev;
  15365. int * n_no_improvement = &opt->adam.n_no_improvement;
  15366. int iter0 = opt->iter;
  15367. // run the optimizer
  15368. for (int t = 0; t < params.adam.n_iter; ++t) {
  15369. opt->iter = iter0 + t + 1;
  15370. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  15371. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15372. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  15373. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  15374. for (int i = 0; i < np; ++i) {
  15375. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  15376. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  15377. }
  15378. const int64_t t_start_wall = ggml_time_us();
  15379. const int64_t t_start_cpu = ggml_cycles();
  15380. UNUSED(t_start_wall);
  15381. UNUSED(t_start_cpu);
  15382. {
  15383. float gnorm = 1.0f;
  15384. if (gclip > 0.0f) {
  15385. // gradient clipping
  15386. ggml_float sum = 0.0;
  15387. for (int p = 0; p < np; ++p) {
  15388. const int64_t ne = ggml_nelements(ps[p]);
  15389. for (int64_t j = 0; j < ne; ++j) {
  15390. float g = ggml_get_f32_1d(ps[p]->grad, j);
  15391. sum += (ggml_float)(g*g);
  15392. }
  15393. }
  15394. ggml_float norm = sqrt(sum);
  15395. if (norm > (ggml_float) gclip) {
  15396. gnorm = (float) ((ggml_float) gclip / norm);
  15397. }
  15398. }
  15399. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  15400. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  15401. int64_t i = 0;
  15402. for (int p = 0; p < np; ++p) {
  15403. const int64_t ne = ggml_nelements(ps[p]);
  15404. const float p_decay = ((ps[p]->n_dims >= decay_min_ndim) ? decay : 0.0f) * sched;
  15405. for (int64_t j = 0; j < ne; ++j) {
  15406. float x = ggml_get_f32_1d(ps[p], j);
  15407. float g = ggml_get_f32_1d(ps[p]->grad, j)*gnorm;
  15408. m[i] = m[i]*beta1 + g*(1.0f - beta1);
  15409. v[i] = v[i]*beta2 + g*g*(1.0f - beta2);
  15410. float mh = m[i]*beta1h;
  15411. float vh = v[i]*beta2h;
  15412. vh = sqrtf(vh) + eps;
  15413. x = x*(1.0f - p_decay) - mh/vh;
  15414. ggml_set_f32_1d(ps[p], j, x);
  15415. ++i;
  15416. }
  15417. }
  15418. }
  15419. if (callback) {
  15420. callback(callback_data, &sched);
  15421. }
  15422. ggml_graph_reset (gf);
  15423. ggml_set_f32 (f->grad, 1.0f);
  15424. ggml_graph_compute(gb, &cplan);
  15425. const float fx = ggml_get_f32_1d(f, 0);
  15426. opt->loss_after = fx;
  15427. // check convergence
  15428. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  15429. GGML_PRINT_DEBUG("converged\n");
  15430. return GGML_OPT_OK;
  15431. }
  15432. // delta-based convergence test
  15433. if (pf != NULL) {
  15434. // need at least params.past iterations to start checking for convergence
  15435. if (params.past <= iter0 + t) {
  15436. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  15437. if (fabsf(rate) < params.delta) {
  15438. return GGML_OPT_OK;
  15439. }
  15440. }
  15441. pf[(iter0 + t)%params.past] = fx;
  15442. }
  15443. // check for improvement
  15444. if (params.max_no_improvement > 0) {
  15445. if (fx_best[0] > fx) {
  15446. fx_best[0] = fx;
  15447. n_no_improvement[0] = 0;
  15448. } else {
  15449. ++n_no_improvement[0];
  15450. if (n_no_improvement[0] >= params.max_no_improvement) {
  15451. return GGML_OPT_OK;
  15452. }
  15453. }
  15454. }
  15455. fx_prev[0] = fx;
  15456. {
  15457. const int64_t t_end_cpu = ggml_cycles();
  15458. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  15459. UNUSED(t_end_cpu);
  15460. const int64_t t_end_wall = ggml_time_us();
  15461. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  15462. UNUSED(t_end_wall);
  15463. }
  15464. }
  15465. return GGML_OPT_DID_NOT_CONVERGE;
  15466. }
  15467. //
  15468. // L-BFGS
  15469. //
  15470. // the L-BFGS implementation below is based on the following implementation:
  15471. //
  15472. // https://github.com/chokkan/liblbfgs
  15473. //
  15474. struct ggml_lbfgs_iteration_data {
  15475. float alpha;
  15476. float ys;
  15477. float * s;
  15478. float * y;
  15479. };
  15480. static enum ggml_opt_result linesearch_backtracking(
  15481. const struct ggml_opt_params * params,
  15482. int nx,
  15483. float * x,
  15484. float * fx,
  15485. float * g,
  15486. float * d,
  15487. float * step,
  15488. const float * xp,
  15489. struct ggml_tensor * f,
  15490. struct ggml_cgraph * gf,
  15491. struct ggml_cgraph * gb,
  15492. struct ggml_cplan * cplan,
  15493. const int np,
  15494. struct ggml_tensor * ps[],
  15495. ggml_opt_callback callback,
  15496. void * callback_data) {
  15497. int count = 0;
  15498. float width = 0.0f;
  15499. float dg = 0.0f;
  15500. float finit = 0.0f;
  15501. float dginit = 0.0f;
  15502. float dgtest = 0.0f;
  15503. const float dec = 0.5f;
  15504. const float inc = 2.1f;
  15505. if (*step <= 0.f) {
  15506. return GGML_LINESEARCH_INVALID_PARAMETERS;
  15507. }
  15508. // compute the initial gradient in the search direction
  15509. ggml_vec_dot_f32(nx, &dginit, g, d);
  15510. // make sure that d points to a descent direction
  15511. if (0 < dginit) {
  15512. return GGML_LINESEARCH_FAIL;
  15513. }
  15514. // initialize local variables
  15515. finit = *fx;
  15516. dgtest = params->lbfgs.ftol*dginit;
  15517. while (true) {
  15518. if (callback) {
  15519. // LBFG-S does not support learning rate -> ignore learning schedule
  15520. float sched = 0;
  15521. callback(callback_data, &sched);
  15522. }
  15523. ggml_vec_cpy_f32(nx, x, xp);
  15524. ggml_vec_mad_f32(nx, x, d, *step);
  15525. // evaluate the function and gradient values
  15526. {
  15527. ggml_opt_set_params(np, ps, x);
  15528. ggml_graph_reset (gf);
  15529. ggml_set_f32 (f->grad, 1.0f);
  15530. ggml_graph_compute(gb, cplan);
  15531. ggml_opt_get_grad(np, ps, g);
  15532. *fx = ggml_get_f32_1d(f, 0);
  15533. }
  15534. ++count;
  15535. if (*fx > finit + (*step)*dgtest) {
  15536. width = dec;
  15537. } else {
  15538. // Armijo condition is satisfied
  15539. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  15540. return count;
  15541. }
  15542. ggml_vec_dot_f32(nx, &dg, g, d);
  15543. // check the Wolfe condition
  15544. if (dg < params->lbfgs.wolfe * dginit) {
  15545. width = inc;
  15546. } else {
  15547. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  15548. // regular Wolfe conditions
  15549. return count;
  15550. }
  15551. if(dg > -params->lbfgs.wolfe*dginit) {
  15552. width = dec;
  15553. } else {
  15554. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  15555. return count;
  15556. }
  15557. }
  15558. }
  15559. if (*step < params->lbfgs.min_step) {
  15560. return GGML_LINESEARCH_MINIMUM_STEP;
  15561. }
  15562. if (*step > params->lbfgs.max_step) {
  15563. return GGML_LINESEARCH_MAXIMUM_STEP;
  15564. }
  15565. if (params->lbfgs.max_linesearch <= count) {
  15566. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  15567. }
  15568. (*step) *= width;
  15569. }
  15570. return GGML_LINESEARCH_FAIL;
  15571. }
  15572. static enum ggml_opt_result ggml_opt_lbfgs(
  15573. struct ggml_context * ctx,
  15574. struct ggml_opt_context * opt,
  15575. struct ggml_opt_params params,
  15576. struct ggml_tensor * f,
  15577. struct ggml_cgraph * gf,
  15578. struct ggml_cgraph * gb,
  15579. ggml_opt_callback callback,
  15580. void * callback_data) {
  15581. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  15582. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  15583. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  15584. return GGML_OPT_INVALID_WOLFE;
  15585. }
  15586. }
  15587. const int m = params.lbfgs.m;
  15588. // these will store the parameters we want to optimize
  15589. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15590. int np = 0;
  15591. int nx = 0;
  15592. for (int i = 0; i < gf->n_nodes; ++i) {
  15593. if (gf->nodes[i]->is_param) {
  15594. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15595. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15596. ps[np++] = gf->nodes[i];
  15597. nx += ggml_nelements(gf->nodes[i]);
  15598. }
  15599. }
  15600. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  15601. int iter = opt->iter;
  15602. ggml_opt_init(ctx, opt, params, nx);
  15603. opt->iter = iter;
  15604. }
  15605. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15606. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15607. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15608. float * x = opt->lbfgs.x->data; // current parameters
  15609. float * xp = opt->lbfgs.xp->data; // previous parameters
  15610. float * g = opt->lbfgs.g->data; // current gradient
  15611. float * gp = opt->lbfgs.gp->data; // previous gradient
  15612. float * d = opt->lbfgs.d->data; // search direction
  15613. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  15614. float fx = 0.0f; // cost function value
  15615. float xnorm = 0.0f; // ||x||
  15616. float gnorm = 0.0f; // ||g||
  15617. // initialize x from the graph nodes
  15618. ggml_opt_get_params(np, ps, x);
  15619. // the L-BFGS memory
  15620. float * lm_alpha = opt->lbfgs.lmal->data;
  15621. float * lm_ys = opt->lbfgs.lmys->data;
  15622. float * lm_s = opt->lbfgs.lms->data;
  15623. float * lm_y = opt->lbfgs.lmy->data;
  15624. if (callback) {
  15625. // LBFG-S does not support learning rate -> ignore learning schedule
  15626. float sched = 0;
  15627. callback(callback_data, &sched);
  15628. }
  15629. // evaluate the function value and its gradient
  15630. {
  15631. ggml_opt_set_params(np, ps, x);
  15632. ggml_graph_reset (gf);
  15633. ggml_set_f32 (f->grad, 1.0f);
  15634. ggml_graph_compute(gb, &cplan);
  15635. ggml_opt_get_grad(np, ps, g);
  15636. fx = ggml_get_f32_1d(f, 0);
  15637. opt->loss_before = fx;
  15638. opt->loss_after = fx;
  15639. }
  15640. // search direction = -gradient
  15641. ggml_vec_neg_f32(nx, d, g);
  15642. // ||x||, ||g||
  15643. ggml_vec_norm_f32(nx, &xnorm, x);
  15644. ggml_vec_norm_f32(nx, &gnorm, g);
  15645. if (xnorm < 1.0f) {
  15646. xnorm = 1.0f;
  15647. }
  15648. // already optimized
  15649. if (gnorm/xnorm <= params.lbfgs.eps) {
  15650. return GGML_OPT_OK;
  15651. }
  15652. if (opt->just_initialized) {
  15653. if (pf) {
  15654. pf[0] = fx;
  15655. }
  15656. opt->lbfgs.fx_best = fx;
  15657. // initial step
  15658. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15659. opt->lbfgs.j = 0;
  15660. opt->lbfgs.k = 1;
  15661. opt->lbfgs.end = 0;
  15662. opt->lbfgs.n_no_improvement = 0;
  15663. opt->just_initialized = false;
  15664. }
  15665. float * fx_best = &opt->lbfgs.fx_best;
  15666. float * step = &opt->lbfgs.step;
  15667. int * j = &opt->lbfgs.j;
  15668. int * k = &opt->lbfgs.k;
  15669. int * end = &opt->lbfgs.end;
  15670. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15671. int ls = 0;
  15672. int bound = 0;
  15673. float ys = 0.0f;
  15674. float yy = 0.0f;
  15675. float beta = 0.0f;
  15676. int it = 0;
  15677. while (true) {
  15678. // store the current position and gradient vectors
  15679. ggml_vec_cpy_f32(nx, xp, x);
  15680. ggml_vec_cpy_f32(nx, gp, g);
  15681. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gf, gb, &cplan, np, ps, callback, callback_data);
  15682. if (ls < 0) {
  15683. // linesearch failed - go back to the previous point and return
  15684. ggml_vec_cpy_f32(nx, x, xp);
  15685. ggml_vec_cpy_f32(nx, g, gp);
  15686. return ls;
  15687. }
  15688. opt->loss_after = fx;
  15689. ggml_vec_norm_f32(nx, &xnorm, x);
  15690. ggml_vec_norm_f32(nx, &gnorm, g);
  15691. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15692. if (xnorm < 1.0f) {
  15693. xnorm = 1.0f;
  15694. }
  15695. if (gnorm/xnorm <= params.lbfgs.eps) {
  15696. // converged
  15697. return GGML_OPT_OK;
  15698. }
  15699. // delta-based convergence test
  15700. if (pf != NULL) {
  15701. // need at least params.past iterations to start checking for convergence
  15702. if (params.past <= k[0]) {
  15703. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15704. if (fabsf(rate) < params.delta) {
  15705. return GGML_OPT_OK;
  15706. }
  15707. }
  15708. pf[k[0]%params.past] = fx;
  15709. }
  15710. // check for improvement
  15711. if (params.max_no_improvement > 0) {
  15712. if (fx < fx_best[0]) {
  15713. fx_best[0] = fx;
  15714. n_no_improvement[0] = 0;
  15715. } else {
  15716. n_no_improvement[0]++;
  15717. if (n_no_improvement[0] >= params.max_no_improvement) {
  15718. return GGML_OPT_OK;
  15719. }
  15720. }
  15721. }
  15722. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15723. // reached the maximum number of iterations
  15724. return GGML_OPT_DID_NOT_CONVERGE;
  15725. }
  15726. // update vectors s and y:
  15727. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15728. // y_{k+1} = g_{k+1} - g_{k}.
  15729. //
  15730. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15731. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15732. // compute scalars ys and yy:
  15733. // ys = y^t \cdot s -> 1 / \rho.
  15734. // yy = y^t \cdot y.
  15735. //
  15736. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]);
  15737. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  15738. lm_ys[end[0]] = ys;
  15739. // find new search direction
  15740. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15741. bound = (m <= k[0]) ? m : k[0];
  15742. k[0]++;
  15743. it++;
  15744. end[0] = (end[0] + 1)%m;
  15745. // initialize search direction with -g
  15746. ggml_vec_neg_f32(nx, d, g);
  15747. j[0] = end[0];
  15748. for (int i = 0; i < bound; ++i) {
  15749. j[0] = (j[0] + m - 1) % m;
  15750. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15751. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  15752. lm_alpha[j[0]] /= lm_ys[j[0]];
  15753. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15754. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15755. }
  15756. ggml_vec_scale_f32(nx, d, ys/yy);
  15757. for (int i = 0; i < bound; ++i) {
  15758. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15759. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  15760. beta /= lm_ys[j[0]];
  15761. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15762. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15763. j[0] = (j[0] + 1)%m;
  15764. }
  15765. step[0] = 1.0;
  15766. }
  15767. return GGML_OPT_DID_NOT_CONVERGE;
  15768. }
  15769. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15770. struct ggml_opt_params result;
  15771. switch (type) {
  15772. case GGML_OPT_ADAM:
  15773. {
  15774. result = (struct ggml_opt_params) {
  15775. .type = GGML_OPT_ADAM,
  15776. .n_threads = 1,
  15777. .past = 0,
  15778. .delta = 1e-5f,
  15779. .max_no_improvement = 100,
  15780. .print_forward_graph = true,
  15781. .print_backward_graph = true,
  15782. .adam = {
  15783. .n_iter = 10000,
  15784. .sched = 1.000f,
  15785. .decay = 0.0f,
  15786. .decay_min_ndim = 2,
  15787. .alpha = 0.001f,
  15788. .beta1 = 0.9f,
  15789. .beta2 = 0.999f,
  15790. .eps = 1e-8f,
  15791. .eps_f = 1e-5f,
  15792. .eps_g = 1e-3f,
  15793. .gclip = 0.0f,
  15794. },
  15795. };
  15796. } break;
  15797. case GGML_OPT_LBFGS:
  15798. {
  15799. result = (struct ggml_opt_params) {
  15800. .type = GGML_OPT_LBFGS,
  15801. .n_threads = 1,
  15802. .past = 0,
  15803. .delta = 1e-5f,
  15804. .max_no_improvement = 0,
  15805. .print_forward_graph = true,
  15806. .print_backward_graph = true,
  15807. .lbfgs = {
  15808. .m = 6,
  15809. .n_iter = 100,
  15810. .max_linesearch = 20,
  15811. .eps = 1e-5f,
  15812. .ftol = 1e-4f,
  15813. .wolfe = 0.9f,
  15814. .min_step = 1e-20f,
  15815. .max_step = 1e+20f,
  15816. .linesearch = GGML_LINESEARCH_DEFAULT,
  15817. },
  15818. };
  15819. } break;
  15820. }
  15821. return result;
  15822. }
  15823. GGML_API void ggml_opt_init(
  15824. struct ggml_context * ctx,
  15825. struct ggml_opt_context * opt,
  15826. struct ggml_opt_params params,
  15827. int64_t nx) {
  15828. opt->ctx = ctx;
  15829. opt->params = params;
  15830. opt->iter = 0;
  15831. opt->nx = nx;
  15832. opt->just_initialized = true;
  15833. switch (opt->params.type) {
  15834. case GGML_OPT_ADAM:
  15835. {
  15836. opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15837. opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15838. opt->adam.pf = params.past > 0
  15839. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  15840. : NULL;
  15841. ggml_set_zero(opt->adam.m);
  15842. ggml_set_zero(opt->adam.v);
  15843. if (opt->adam.pf) {
  15844. ggml_set_zero(opt->adam.pf);
  15845. }
  15846. } break;
  15847. case GGML_OPT_LBFGS:
  15848. {
  15849. opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15850. opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15851. opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15852. opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15853. opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15854. opt->lbfgs.pf = params.past > 0
  15855. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  15856. : NULL;
  15857. opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  15858. opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  15859. opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15860. opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15861. ggml_set_zero(opt->lbfgs.x);
  15862. ggml_set_zero(opt->lbfgs.xp);
  15863. ggml_set_zero(opt->lbfgs.g);
  15864. ggml_set_zero(opt->lbfgs.gp);
  15865. ggml_set_zero(opt->lbfgs.d);
  15866. if (opt->lbfgs.pf) {
  15867. ggml_set_zero(opt->lbfgs.pf);
  15868. }
  15869. ggml_set_zero(opt->lbfgs.lmal);
  15870. ggml_set_zero(opt->lbfgs.lmys);
  15871. ggml_set_zero(opt->lbfgs.lms);
  15872. ggml_set_zero(opt->lbfgs.lmy);
  15873. } break;
  15874. }
  15875. }
  15876. enum ggml_opt_result ggml_opt(
  15877. struct ggml_context * ctx,
  15878. struct ggml_opt_params params,
  15879. struct ggml_tensor * f) {
  15880. bool free_ctx = false;
  15881. if (ctx == NULL) {
  15882. struct ggml_init_params params_ctx = {
  15883. .mem_size = 16*1024*1024,
  15884. .mem_buffer = NULL,
  15885. .no_alloc = false,
  15886. };
  15887. ctx = ggml_init(params_ctx);
  15888. if (ctx == NULL) {
  15889. return GGML_OPT_NO_CONTEXT;
  15890. }
  15891. free_ctx = true;
  15892. }
  15893. enum ggml_opt_result result = GGML_OPT_OK;
  15894. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15895. ggml_opt_init(ctx, opt, params, 0);
  15896. result = ggml_opt_resume(ctx, opt, f);
  15897. if (free_ctx) {
  15898. ggml_free(ctx);
  15899. }
  15900. return result;
  15901. }
  15902. enum ggml_opt_result ggml_opt_resume(
  15903. struct ggml_context * ctx,
  15904. struct ggml_opt_context * opt,
  15905. struct ggml_tensor * f) {
  15906. // build forward + backward compute graphs
  15907. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
  15908. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
  15909. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  15910. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  15911. *gf = ggml_build_forward (f);
  15912. *gb = ggml_build_backward(ctx, gf, true);
  15913. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  15914. }
  15915. enum ggml_opt_result ggml_opt_resume_g(
  15916. struct ggml_context * ctx,
  15917. struct ggml_opt_context * opt,
  15918. struct ggml_tensor * f,
  15919. struct ggml_cgraph * gf,
  15920. struct ggml_cgraph * gb,
  15921. ggml_opt_callback callback,
  15922. void * callback_data) {
  15923. // build forward + backward compute graphs
  15924. enum ggml_opt_result result = GGML_OPT_OK;
  15925. switch (opt->params.type) {
  15926. case GGML_OPT_ADAM:
  15927. {
  15928. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15929. } break;
  15930. case GGML_OPT_LBFGS:
  15931. {
  15932. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15933. } break;
  15934. }
  15935. if (opt->params.print_forward_graph) {
  15936. ggml_graph_print (gf);
  15937. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15938. }
  15939. if (opt->params.print_backward_graph) {
  15940. ggml_graph_print (gb);
  15941. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15942. }
  15943. return result;
  15944. }
  15945. ////////////////////////////////////////////////////////////////////////////////
  15946. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15947. assert(k % QK4_0 == 0);
  15948. const int nb = k / QK4_0;
  15949. for (int b = 0; b < n; b += k) {
  15950. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15951. quantize_row_q4_0_reference(src + b, y, k);
  15952. for (int i = 0; i < nb; i++) {
  15953. for (int j = 0; j < QK4_0; j += 2) {
  15954. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15955. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15956. hist[vi0]++;
  15957. hist[vi1]++;
  15958. }
  15959. }
  15960. }
  15961. return (n/QK4_0*sizeof(block_q4_0));
  15962. }
  15963. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15964. assert(k % QK4_1 == 0);
  15965. const int nb = k / QK4_1;
  15966. for (int b = 0; b < n; b += k) {
  15967. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15968. quantize_row_q4_1_reference(src + b, y, k);
  15969. for (int i = 0; i < nb; i++) {
  15970. for (int j = 0; j < QK4_1; j += 2) {
  15971. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15972. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15973. hist[vi0]++;
  15974. hist[vi1]++;
  15975. }
  15976. }
  15977. }
  15978. return (n/QK4_1*sizeof(block_q4_1));
  15979. }
  15980. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15981. assert(k % QK5_0 == 0);
  15982. const int nb = k / QK5_0;
  15983. for (int b = 0; b < n; b += k) {
  15984. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15985. quantize_row_q5_0_reference(src + b, y, k);
  15986. for (int i = 0; i < nb; i++) {
  15987. uint32_t qh;
  15988. memcpy(&qh, &y[i].qh, sizeof(qh));
  15989. for (int j = 0; j < QK5_0; j += 2) {
  15990. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15991. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15992. // cast to 16 bins
  15993. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15994. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15995. hist[vi0]++;
  15996. hist[vi1]++;
  15997. }
  15998. }
  15999. }
  16000. return (n/QK5_0*sizeof(block_q5_0));
  16001. }
  16002. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  16003. assert(k % QK5_1 == 0);
  16004. const int nb = k / QK5_1;
  16005. for (int b = 0; b < n; b += k) {
  16006. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  16007. quantize_row_q5_1_reference(src + b, y, k);
  16008. for (int i = 0; i < nb; i++) {
  16009. uint32_t qh;
  16010. memcpy(&qh, &y[i].qh, sizeof(qh));
  16011. for (int j = 0; j < QK5_1; j += 2) {
  16012. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  16013. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  16014. // cast to 16 bins
  16015. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  16016. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  16017. hist[vi0]++;
  16018. hist[vi1]++;
  16019. }
  16020. }
  16021. }
  16022. return (n/QK5_1*sizeof(block_q5_1));
  16023. }
  16024. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16025. assert(k % QK8_0 == 0);
  16026. const int nb = k / QK8_0;
  16027. for (int b = 0; b < n; b += k) {
  16028. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  16029. quantize_row_q8_0_reference(src + b, y, k);
  16030. for (int i = 0; i < nb; i++) {
  16031. for (int j = 0; j < QK8_0; ++j) {
  16032. const int8_t vi = y[i].qs[j];
  16033. hist[vi/16 + 8]++;
  16034. }
  16035. }
  16036. }
  16037. return (n/QK8_0*sizeof(block_q8_0));
  16038. }
  16039. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  16040. size_t result = 0;
  16041. switch (type) {
  16042. case GGML_TYPE_Q4_0:
  16043. {
  16044. GGML_ASSERT(start % QK4_0 == 0);
  16045. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  16046. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  16047. } break;
  16048. case GGML_TYPE_Q4_1:
  16049. {
  16050. GGML_ASSERT(start % QK4_1 == 0);
  16051. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  16052. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  16053. } break;
  16054. case GGML_TYPE_Q5_0:
  16055. {
  16056. GGML_ASSERT(start % QK5_0 == 0);
  16057. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  16058. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  16059. } break;
  16060. case GGML_TYPE_Q5_1:
  16061. {
  16062. GGML_ASSERT(start % QK5_1 == 0);
  16063. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  16064. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  16065. } break;
  16066. case GGML_TYPE_Q8_0:
  16067. {
  16068. GGML_ASSERT(start % QK8_0 == 0);
  16069. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  16070. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  16071. } break;
  16072. #ifdef GGML_USE_K_QUANTS
  16073. case GGML_TYPE_Q2_K:
  16074. {
  16075. GGML_ASSERT(start % QK_K == 0);
  16076. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  16077. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  16078. } break;
  16079. case GGML_TYPE_Q3_K:
  16080. {
  16081. GGML_ASSERT(start % QK_K == 0);
  16082. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  16083. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  16084. } break;
  16085. case GGML_TYPE_Q4_K:
  16086. {
  16087. GGML_ASSERT(start % QK_K == 0);
  16088. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  16089. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  16090. } break;
  16091. case GGML_TYPE_Q5_K:
  16092. {
  16093. GGML_ASSERT(start % QK_K == 0);
  16094. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  16095. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  16096. } break;
  16097. case GGML_TYPE_Q6_K:
  16098. {
  16099. GGML_ASSERT(start % QK_K == 0);
  16100. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  16101. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  16102. } break;
  16103. #endif
  16104. case GGML_TYPE_F16:
  16105. {
  16106. int elemsize = sizeof(ggml_fp16_t);
  16107. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  16108. result = n * elemsize;
  16109. } break;
  16110. case GGML_TYPE_F32:
  16111. {
  16112. int elemsize = sizeof(float);
  16113. result = n * elemsize;
  16114. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  16115. } break;
  16116. default:
  16117. assert(false);
  16118. }
  16119. return result;
  16120. }
  16121. ////////////////////////////////////////////////////////////////////////////////
  16122. struct gguf_str {
  16123. uint64_t n; // GGUFv2
  16124. char * data;
  16125. };
  16126. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  16127. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  16128. [GGUF_TYPE_INT8] = sizeof(int8_t),
  16129. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  16130. [GGUF_TYPE_INT16] = sizeof(int16_t),
  16131. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  16132. [GGUF_TYPE_INT32] = sizeof(int32_t),
  16133. [GGUF_TYPE_FLOAT32] = sizeof(float),
  16134. [GGUF_TYPE_BOOL] = sizeof(bool),
  16135. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  16136. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  16137. [GGUF_TYPE_INT64] = sizeof(int64_t),
  16138. [GGUF_TYPE_FLOAT64] = sizeof(double),
  16139. [GGUF_TYPE_ARRAY] = 0, // undefined
  16140. };
  16141. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16142. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  16143. [GGUF_TYPE_UINT8] = "u8",
  16144. [GGUF_TYPE_INT8] = "i8",
  16145. [GGUF_TYPE_UINT16] = "u16",
  16146. [GGUF_TYPE_INT16] = "i16",
  16147. [GGUF_TYPE_UINT32] = "u32",
  16148. [GGUF_TYPE_INT32] = "i32",
  16149. [GGUF_TYPE_FLOAT32] = "f32",
  16150. [GGUF_TYPE_BOOL] = "bool",
  16151. [GGUF_TYPE_STRING] = "str",
  16152. [GGUF_TYPE_ARRAY] = "arr",
  16153. [GGUF_TYPE_UINT64] = "u64",
  16154. [GGUF_TYPE_INT64] = "i64",
  16155. [GGUF_TYPE_FLOAT64] = "f64",
  16156. };
  16157. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16158. union gguf_value {
  16159. uint8_t uint8;
  16160. int8_t int8;
  16161. uint16_t uint16;
  16162. int16_t int16;
  16163. uint32_t uint32;
  16164. int32_t int32;
  16165. float float32;
  16166. uint64_t uint64;
  16167. int64_t int64;
  16168. double float64;
  16169. bool bool_;
  16170. struct gguf_str str;
  16171. struct {
  16172. enum gguf_type type;
  16173. uint64_t n; // GGUFv2
  16174. void * data;
  16175. } arr;
  16176. };
  16177. struct gguf_kv {
  16178. struct gguf_str key;
  16179. enum gguf_type type;
  16180. union gguf_value value;
  16181. };
  16182. struct gguf_header {
  16183. uint32_t magic;
  16184. uint32_t version;
  16185. uint64_t n_tensors; // GGUFv2
  16186. uint64_t n_kv; // GGUFv2
  16187. };
  16188. struct gguf_tensor_info {
  16189. struct gguf_str name;
  16190. uint32_t n_dims;
  16191. uint64_t ne[GGML_MAX_DIMS];
  16192. enum ggml_type type;
  16193. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16194. // for writing API
  16195. const void * data;
  16196. size_t size;
  16197. };
  16198. struct gguf_context {
  16199. struct gguf_header header;
  16200. struct gguf_kv * kv;
  16201. struct gguf_tensor_info * infos;
  16202. size_t alignment;
  16203. size_t offset; // offset of `data` from beginning of file
  16204. size_t size; // size of `data` in bytes
  16205. //uint8_t * padding;
  16206. void * data;
  16207. };
  16208. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16209. const size_t n = fread(dst, 1, size, file);
  16210. *offset += n;
  16211. return n == size;
  16212. }
  16213. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16214. static bool gguf_fread_str_cur(FILE * file, struct gguf_str * p, size_t * offset) {
  16215. p->n = 0;
  16216. p->data = NULL;
  16217. bool ok = true;
  16218. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
  16219. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16220. return ok;
  16221. }
  16222. static bool gguf_fread_str_v1(FILE * file, struct gguf_str * p, size_t * offset) {
  16223. p->n = 0;
  16224. p->data = NULL;
  16225. bool ok = true;
  16226. uint32_t n = 0;
  16227. ok = ok && gguf_fread_el(file, &n, sizeof(n), offset); p->data = calloc(n + 1, 1); p->n = n;
  16228. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16229. return ok;
  16230. }
  16231. struct gguf_context * gguf_init_empty(void) {
  16232. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16233. ctx->header.magic = GGUF_MAGIC;
  16234. ctx->header.version = GGUF_VERSION;
  16235. ctx->header.n_tensors = 0;
  16236. ctx->header.n_kv = 0;
  16237. ctx->kv = NULL;
  16238. ctx->infos = NULL;
  16239. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16240. ctx->offset = 0;
  16241. ctx->size = 0;
  16242. ctx->data = NULL;
  16243. return ctx;
  16244. }
  16245. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16246. FILE * file = fopen(fname, "rb");
  16247. if (!file) {
  16248. return NULL;
  16249. }
  16250. // offset from start of file
  16251. size_t offset = 0;
  16252. uint32_t magic = 0;
  16253. // check the magic before making allocations
  16254. {
  16255. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16256. if (magic != GGUF_MAGIC) {
  16257. fprintf(stderr, "%s: invalid magic number %08x\n", __func__, magic);
  16258. fclose(file);
  16259. return NULL;
  16260. }
  16261. }
  16262. bool ok = true;
  16263. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16264. // read the header
  16265. {
  16266. ctx->header.magic = magic;
  16267. ctx->kv = NULL;
  16268. ctx->infos = NULL;
  16269. ctx->data = NULL;
  16270. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16271. if (ctx->header.version == 1) {
  16272. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16273. uint32_t n_tensors = 0;
  16274. uint32_t n_kv = 0;
  16275. ok = ok && gguf_fread_el(file, &n_tensors, sizeof(n_tensors), &offset);
  16276. ok = ok && gguf_fread_el(file, &n_kv, sizeof(n_kv), &offset);
  16277. ctx->header.n_tensors = n_tensors;
  16278. ctx->header.n_kv = n_kv;
  16279. } else {
  16280. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16281. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16282. }
  16283. if (!ok) {
  16284. fprintf(stderr, "%s: failed to read header\n", __func__);
  16285. fclose(file);
  16286. gguf_free(ctx);
  16287. return NULL;
  16288. }
  16289. }
  16290. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16291. bool (* gguf_fread_str)(FILE *, struct gguf_str *, size_t *) = gguf_fread_str_cur;
  16292. if (ctx->header.version == 1) {
  16293. gguf_fread_str = gguf_fread_str_v1;
  16294. }
  16295. // read the kv pairs
  16296. {
  16297. ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv));
  16298. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16299. struct gguf_kv * kv = &ctx->kv[i];
  16300. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16301. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16302. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16303. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16304. switch (kv->type) {
  16305. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16306. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16307. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16308. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16309. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16310. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16311. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16312. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16313. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16314. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16315. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16316. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16317. case GGUF_TYPE_ARRAY:
  16318. {
  16319. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16320. if (ctx->header.version == 1) {
  16321. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16322. uint32_t n = 0;
  16323. ok = ok && gguf_fread_el(file, &n, sizeof(n), &offset);
  16324. kv->value.arr.n = n;
  16325. } else {
  16326. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16327. }
  16328. switch (kv->value.arr.type) {
  16329. case GGUF_TYPE_UINT8:
  16330. case GGUF_TYPE_INT8:
  16331. case GGUF_TYPE_UINT16:
  16332. case GGUF_TYPE_INT16:
  16333. case GGUF_TYPE_UINT32:
  16334. case GGUF_TYPE_INT32:
  16335. case GGUF_TYPE_FLOAT32:
  16336. case GGUF_TYPE_UINT64:
  16337. case GGUF_TYPE_INT64:
  16338. case GGUF_TYPE_FLOAT64:
  16339. case GGUF_TYPE_BOOL:
  16340. {
  16341. kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16342. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
  16343. } break;
  16344. case GGUF_TYPE_STRING:
  16345. {
  16346. kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
  16347. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16348. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  16349. }
  16350. } break;
  16351. case GGUF_TYPE_ARRAY:
  16352. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16353. };
  16354. } break;
  16355. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16356. };
  16357. if (!ok) {
  16358. break;
  16359. }
  16360. }
  16361. if (!ok) {
  16362. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  16363. fclose(file);
  16364. gguf_free(ctx);
  16365. return NULL;
  16366. }
  16367. }
  16368. // read the tensor infos
  16369. {
  16370. ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  16371. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16372. struct gguf_tensor_info * info = &ctx->infos[i];
  16373. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16374. info->ne[j] = 1;
  16375. }
  16376. ok = ok && gguf_fread_str(file, &info->name, &offset);
  16377. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  16378. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16379. if (ctx->header.version == 1) {
  16380. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16381. uint32_t t = 0;
  16382. ok = ok && gguf_fread_el(file, &t, sizeof(t), &offset);
  16383. info->ne[j] = t;
  16384. } else {
  16385. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  16386. }
  16387. }
  16388. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  16389. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  16390. if (!ok) {
  16391. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  16392. fclose(file);
  16393. gguf_free(ctx);
  16394. return NULL;
  16395. }
  16396. }
  16397. }
  16398. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16399. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  16400. if (alignment_idx != -1) {
  16401. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  16402. }
  16403. // we require the data section to be aligned, so take into account any padding
  16404. {
  16405. const size_t offset_pad = offset % ctx->alignment;
  16406. if (offset_pad != 0) {
  16407. offset += ctx->alignment - offset_pad;
  16408. fseek(file, offset, SEEK_SET);
  16409. }
  16410. }
  16411. // store the current file offset - this is where the data section starts
  16412. ctx->offset = offset;
  16413. // compute the total size of the data section, taking into account the alignment
  16414. {
  16415. ctx->size = 0;
  16416. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16417. struct gguf_tensor_info * info = &ctx->infos[i];
  16418. const int64_t ne =
  16419. (int64_t) info->ne[0] *
  16420. (int64_t) info->ne[1] *
  16421. (int64_t) info->ne[2] *
  16422. (int64_t) info->ne[3];
  16423. if (ne % ggml_blck_size(info->type) != 0) {
  16424. fprintf(stderr, "%s: tensor '%s' number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  16425. __func__, info->name.data, ne, ggml_blck_size(info->type));
  16426. fclose(file);
  16427. gguf_free(ctx);
  16428. return NULL;
  16429. }
  16430. const size_t size_cur = (ne*ggml_type_size(info->type))/ggml_blck_size(info->type);
  16431. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  16432. }
  16433. }
  16434. // load the tensor data only if requested
  16435. if (params.ctx != NULL) {
  16436. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  16437. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  16438. // the ggml_tensor structs to the appropriate locations in the binary blob
  16439. // compute the exact size needed for the new ggml_context
  16440. const size_t mem_size =
  16441. params.no_alloc ?
  16442. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  16443. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  16444. struct ggml_init_params pdata = {
  16445. .mem_size = mem_size,
  16446. .mem_buffer = NULL,
  16447. .no_alloc = params.no_alloc,
  16448. };
  16449. *params.ctx = ggml_init(pdata);
  16450. struct ggml_context * ctx_data = *params.ctx;
  16451. struct ggml_tensor * data = NULL;
  16452. if (!params.no_alloc) {
  16453. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  16454. ok = ok && data != NULL;
  16455. // read the binary blob with the tensor data
  16456. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  16457. if (!ok) {
  16458. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  16459. fclose(file);
  16460. ggml_free(ctx_data);
  16461. gguf_free(ctx);
  16462. return NULL;
  16463. }
  16464. ctx->data = data->data;
  16465. }
  16466. ggml_set_no_alloc(ctx_data, true);
  16467. // create the tensors
  16468. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16469. const int64_t ne[GGML_MAX_DIMS] = {
  16470. ctx->infos[i].ne[0],
  16471. ctx->infos[i].ne[1],
  16472. ctx->infos[i].ne[2],
  16473. ctx->infos[i].ne[3],
  16474. };
  16475. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  16476. ok = ok && cur != NULL;
  16477. ggml_set_name(cur, ctx->infos[i].name.data);
  16478. if (!ok) {
  16479. break;
  16480. }
  16481. // point the data member to the appropriate location in the binary blob using the tensor infos
  16482. if (!params.no_alloc) {
  16483. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  16484. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  16485. }
  16486. }
  16487. if (!ok) {
  16488. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  16489. fclose(file);
  16490. ggml_free(ctx_data);
  16491. gguf_free(ctx);
  16492. return NULL;
  16493. }
  16494. ggml_set_no_alloc(ctx_data, params.no_alloc);
  16495. }
  16496. fclose(file);
  16497. return ctx;
  16498. }
  16499. void gguf_free(struct gguf_context * ctx) {
  16500. if (ctx == NULL) {
  16501. return;
  16502. }
  16503. if (ctx->kv) {
  16504. // free string memory - not great..
  16505. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16506. struct gguf_kv * kv = &ctx->kv[i];
  16507. if (kv->key.data) {
  16508. free(kv->key.data);
  16509. }
  16510. if (kv->type == GGUF_TYPE_STRING) {
  16511. if (kv->value.str.data) {
  16512. free(kv->value.str.data);
  16513. }
  16514. }
  16515. if (kv->type == GGUF_TYPE_ARRAY) {
  16516. if (kv->value.arr.data) {
  16517. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  16518. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16519. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  16520. if (str->data) {
  16521. free(str->data);
  16522. }
  16523. }
  16524. }
  16525. free(kv->value.arr.data);
  16526. }
  16527. }
  16528. }
  16529. free(ctx->kv);
  16530. }
  16531. if (ctx->infos) {
  16532. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16533. struct gguf_tensor_info * info = &ctx->infos[i];
  16534. if (info->name.data) {
  16535. free(info->name.data);
  16536. }
  16537. }
  16538. free(ctx->infos);
  16539. }
  16540. GGML_ALIGNED_FREE(ctx);
  16541. }
  16542. const char * gguf_type_name(enum gguf_type type) {
  16543. return GGUF_TYPE_NAME[type];
  16544. }
  16545. int gguf_get_version(const struct gguf_context * ctx) {
  16546. return ctx->header.version;
  16547. }
  16548. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  16549. return ctx->alignment;
  16550. }
  16551. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  16552. return ctx->offset;
  16553. }
  16554. void * gguf_get_data(const struct gguf_context * ctx) {
  16555. return ctx->data;
  16556. }
  16557. int gguf_get_n_kv(const struct gguf_context * ctx) {
  16558. return ctx->header.n_kv;
  16559. }
  16560. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  16561. // return -1 if key not found
  16562. int keyfound = -1;
  16563. const int n_kv = gguf_get_n_kv(ctx);
  16564. for (int i = 0; i < n_kv; ++i) {
  16565. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  16566. keyfound = i;
  16567. break;
  16568. }
  16569. }
  16570. return keyfound;
  16571. }
  16572. const char * gguf_get_key(const struct gguf_context * ctx, int i) {
  16573. return ctx->kv[i].key.data;
  16574. }
  16575. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int i) {
  16576. return ctx->kv[i].type;
  16577. }
  16578. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int i) {
  16579. return ctx->kv[i].value.arr.type;
  16580. }
  16581. const void * gguf_get_arr_data(const struct gguf_context * ctx, int i) {
  16582. return ctx->kv[i].value.arr.data;
  16583. }
  16584. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  16585. struct gguf_kv * kv = &ctx->kv[key_id];
  16586. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  16587. return str->data;
  16588. }
  16589. int gguf_get_arr_n(const struct gguf_context * ctx, int i) {
  16590. return ctx->kv[i].value.arr.n;
  16591. }
  16592. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int i) {
  16593. return ctx->kv[i].value.uint8;
  16594. }
  16595. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int i) {
  16596. return ctx->kv[i].value.int8;
  16597. }
  16598. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int i) {
  16599. return ctx->kv[i].value.uint16;
  16600. }
  16601. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int i) {
  16602. return ctx->kv[i].value.int16;
  16603. }
  16604. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int i) {
  16605. return ctx->kv[i].value.uint32;
  16606. }
  16607. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int i) {
  16608. return ctx->kv[i].value.int32;
  16609. }
  16610. float gguf_get_val_f32(const struct gguf_context * ctx, int i) {
  16611. return ctx->kv[i].value.float32;
  16612. }
  16613. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int i) {
  16614. return ctx->kv[i].value.uint64;
  16615. }
  16616. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int i) {
  16617. return ctx->kv[i].value.int64;
  16618. }
  16619. double gguf_get_val_f64(const struct gguf_context * ctx, int i) {
  16620. return ctx->kv[i].value.float64;
  16621. }
  16622. bool gguf_get_val_bool(const struct gguf_context * ctx, int i) {
  16623. return ctx->kv[i].value.bool_;
  16624. }
  16625. const char * gguf_get_val_str (const struct gguf_context * ctx, int i) {
  16626. return ctx->kv[i].value.str.data;
  16627. }
  16628. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  16629. return ctx->header.n_tensors;
  16630. }
  16631. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  16632. // return -1 if tensor not found
  16633. int tensorfound = -1;
  16634. const int n_tensors = gguf_get_n_tensors(ctx);
  16635. for (int i = 0; i < n_tensors; ++i) {
  16636. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  16637. tensorfound = i;
  16638. break;
  16639. }
  16640. }
  16641. return tensorfound;
  16642. }
  16643. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  16644. return ctx->infos[i].offset;
  16645. }
  16646. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  16647. return ctx->infos[i].name.data;
  16648. }
  16649. // returns the index
  16650. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  16651. const int idx = gguf_find_key(ctx, key);
  16652. if (idx >= 0) {
  16653. return idx;
  16654. }
  16655. const int n_kv = gguf_get_n_kv(ctx);
  16656. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  16657. ctx->kv[n_kv].key.n = strlen(key);
  16658. ctx->kv[n_kv].key.data = strdup(key);
  16659. ctx->header.n_kv++;
  16660. return n_kv;
  16661. }
  16662. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  16663. const int idx = gguf_get_or_add_key(ctx, key);
  16664. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  16665. ctx->kv[idx].value.uint8 = val;
  16666. }
  16667. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  16668. const int idx = gguf_get_or_add_key(ctx, key);
  16669. ctx->kv[idx].type = GGUF_TYPE_INT8;
  16670. ctx->kv[idx].value.int8 = val;
  16671. }
  16672. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  16673. const int idx = gguf_get_or_add_key(ctx, key);
  16674. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  16675. ctx->kv[idx].value.uint16 = val;
  16676. }
  16677. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  16678. const int idx = gguf_get_or_add_key(ctx, key);
  16679. ctx->kv[idx].type = GGUF_TYPE_INT16;
  16680. ctx->kv[idx].value.int16 = val;
  16681. }
  16682. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  16683. const int idx = gguf_get_or_add_key(ctx, key);
  16684. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  16685. ctx->kv[idx].value.uint32 = val;
  16686. }
  16687. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  16688. const int idx = gguf_get_or_add_key(ctx, key);
  16689. ctx->kv[idx].type = GGUF_TYPE_INT32;
  16690. ctx->kv[idx].value.int32 = val;
  16691. }
  16692. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  16693. const int idx = gguf_get_or_add_key(ctx, key);
  16694. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  16695. ctx->kv[idx].value.float32 = val;
  16696. }
  16697. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  16698. const int idx = gguf_get_or_add_key(ctx, key);
  16699. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  16700. ctx->kv[idx].value.uint64 = val;
  16701. }
  16702. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  16703. const int idx = gguf_get_or_add_key(ctx, key);
  16704. ctx->kv[idx].type = GGUF_TYPE_INT64;
  16705. ctx->kv[idx].value.int64 = val;
  16706. }
  16707. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  16708. const int idx = gguf_get_or_add_key(ctx, key);
  16709. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  16710. ctx->kv[idx].value.float64 = val;
  16711. }
  16712. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  16713. const int idx = gguf_get_or_add_key(ctx, key);
  16714. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  16715. ctx->kv[idx].value.bool_ = val;
  16716. }
  16717. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  16718. const int idx = gguf_get_or_add_key(ctx, key);
  16719. ctx->kv[idx].type = GGUF_TYPE_STRING;
  16720. ctx->kv[idx].value.str.n = strlen(val);
  16721. ctx->kv[idx].value.str.data = strdup(val);
  16722. }
  16723. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  16724. const int idx = gguf_get_or_add_key(ctx, key);
  16725. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16726. ctx->kv[idx].value.arr.type = type;
  16727. ctx->kv[idx].value.arr.n = n;
  16728. ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
  16729. memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
  16730. }
  16731. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16732. const int idx = gguf_get_or_add_key(ctx, key);
  16733. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16734. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  16735. ctx->kv[idx].value.arr.n = n;
  16736. ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
  16737. for (int i = 0; i < n; i++) {
  16738. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  16739. str->n = strlen(data[i]);
  16740. str->data = strdup(data[i]);
  16741. }
  16742. }
  16743. // set or add KV pairs from another context
  16744. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  16745. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  16746. switch (src->kv[i].type) {
  16747. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  16748. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  16749. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  16750. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  16751. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  16752. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  16753. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  16754. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  16755. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  16756. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  16757. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  16758. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  16759. case GGUF_TYPE_ARRAY:
  16760. {
  16761. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  16762. const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
  16763. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  16764. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  16765. }
  16766. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  16767. free(data);
  16768. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  16769. GGML_ASSERT(false && "nested arrays not supported");
  16770. } else {
  16771. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  16772. }
  16773. } break;
  16774. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16775. }
  16776. }
  16777. }
  16778. void gguf_add_tensor(
  16779. struct gguf_context * ctx,
  16780. const struct ggml_tensor * tensor) {
  16781. const int idx = ctx->header.n_tensors;
  16782. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  16783. ctx->infos[idx].name.n = strlen(tensor->name);
  16784. ctx->infos[idx].name.data = strdup(tensor->name);
  16785. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  16786. ctx->infos[idx].ne[i] = 1;
  16787. }
  16788. ctx->infos[idx].n_dims = tensor->n_dims;
  16789. for (int i = 0; i < tensor->n_dims; i++) {
  16790. ctx->infos[idx].ne[i] = tensor->ne[i];
  16791. }
  16792. ctx->infos[idx].type = tensor->type;
  16793. ctx->infos[idx].offset = 0;
  16794. ctx->infos[idx].data = tensor->data;
  16795. ctx->infos[idx].size = ggml_nbytes(tensor);
  16796. if (ctx->header.n_tensors > 0) {
  16797. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  16798. }
  16799. ctx->header.n_tensors++;
  16800. }
  16801. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  16802. const int idx = gguf_find_tensor(ctx, name);
  16803. if (idx < 0) {
  16804. GGML_ASSERT(false && "tensor not found");
  16805. }
  16806. ctx->infos[idx].type = type;
  16807. }
  16808. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  16809. const int idx = gguf_find_tensor(ctx, name);
  16810. if (idx < 0) {
  16811. GGML_ASSERT(false && "tensor not found");
  16812. }
  16813. ctx->infos[idx].data = data;
  16814. ctx->infos[idx].size = size;
  16815. // update offsets
  16816. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  16817. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  16818. }
  16819. }
  16820. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  16821. // fwrite(&val->n, sizeof(val->n), 1, file);
  16822. // fwrite(val->data, sizeof(char), val->n, file);
  16823. //}
  16824. //
  16825. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  16826. // fwrite(val, sizeof(char), size, file);
  16827. //}
  16828. struct gguf_buf {
  16829. void * data;
  16830. size_t size;
  16831. size_t offset;
  16832. };
  16833. static struct gguf_buf gguf_buf_init(size_t size) {
  16834. struct gguf_buf buf = {
  16835. /*buf.data =*/ size == 0 ? NULL : malloc(size),
  16836. /*buf.size =*/ size,
  16837. /*buf.offset =*/ 0,
  16838. };
  16839. return buf;
  16840. }
  16841. static void gguf_buf_free(struct gguf_buf buf) {
  16842. if (buf.data) {
  16843. free(buf.data);
  16844. }
  16845. }
  16846. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  16847. if (buf->offset + size > buf->size) {
  16848. buf->size = 1.5*(buf->offset + size);
  16849. if (buf->data) {
  16850. buf->data = realloc(buf->data, buf->size);
  16851. }
  16852. }
  16853. }
  16854. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  16855. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  16856. if (buf->data) {
  16857. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  16858. }
  16859. buf->offset += sizeof(val->n);
  16860. if (buf->data) {
  16861. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  16862. }
  16863. buf->offset += val->n;
  16864. }
  16865. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  16866. gguf_buf_grow(buf, el_size);
  16867. if (buf->data) {
  16868. memcpy((char *) buf->data + buf->offset, val, el_size);
  16869. }
  16870. buf->offset += el_size;
  16871. }
  16872. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  16873. // write header
  16874. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  16875. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  16876. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  16877. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  16878. // write key-value pairs
  16879. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16880. struct gguf_kv * kv = &ctx->kv[i];
  16881. gguf_bwrite_str(buf, &kv->key);
  16882. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  16883. switch (kv->type) {
  16884. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  16885. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  16886. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  16887. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  16888. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  16889. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  16890. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  16891. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  16892. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  16893. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  16894. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  16895. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  16896. case GGUF_TYPE_ARRAY:
  16897. {
  16898. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  16899. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  16900. switch (kv->value.arr.type) {
  16901. case GGUF_TYPE_UINT8:
  16902. case GGUF_TYPE_INT8:
  16903. case GGUF_TYPE_UINT16:
  16904. case GGUF_TYPE_INT16:
  16905. case GGUF_TYPE_UINT32:
  16906. case GGUF_TYPE_INT32:
  16907. case GGUF_TYPE_FLOAT32:
  16908. case GGUF_TYPE_UINT64:
  16909. case GGUF_TYPE_INT64:
  16910. case GGUF_TYPE_FLOAT64:
  16911. case GGUF_TYPE_BOOL:
  16912. {
  16913. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16914. } break;
  16915. case GGUF_TYPE_STRING:
  16916. {
  16917. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16918. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  16919. }
  16920. } break;
  16921. case GGUF_TYPE_ARRAY:
  16922. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16923. };
  16924. } break;
  16925. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16926. };
  16927. }
  16928. // write tensor infos
  16929. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16930. struct gguf_tensor_info * info = &ctx->infos[i];
  16931. gguf_bwrite_str(buf, &info->name);
  16932. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  16933. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16934. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  16935. }
  16936. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  16937. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  16938. }
  16939. // we require the data section to be aligned, so take into account any padding
  16940. {
  16941. const size_t offset = buf->offset;
  16942. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  16943. if (offset_pad != offset) {
  16944. uint8_t pad = 0;
  16945. for (size_t i = 0; i < offset_pad - offset; ++i) {
  16946. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16947. }
  16948. }
  16949. }
  16950. if (only_meta) {
  16951. return;
  16952. }
  16953. size_t offset = 0;
  16954. // write tensor data
  16955. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16956. struct gguf_tensor_info * info = &ctx->infos[i];
  16957. const size_t size = info->size;
  16958. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  16959. gguf_bwrite_el(buf, info->data, size);
  16960. if (size_pad != size) {
  16961. uint8_t pad = 0;
  16962. for (size_t j = 0; j < size_pad - size; ++j) {
  16963. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16964. }
  16965. }
  16966. GGML_ASSERT(offset == info->offset);
  16967. offset += size_pad;
  16968. }
  16969. }
  16970. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  16971. FILE * file = fopen(fname, "wb");
  16972. if (!file) {
  16973. GGML_ASSERT(false && "failed to open file for writing");
  16974. }
  16975. struct gguf_buf buf = gguf_buf_init(16*1024);
  16976. gguf_write_to_buf(ctx, &buf, only_meta);
  16977. fwrite(buf.data, 1, buf.offset, file);
  16978. gguf_buf_free(buf);
  16979. fclose(file);
  16980. }
  16981. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  16982. // no allocs - only compute size
  16983. struct gguf_buf buf = gguf_buf_init(0);
  16984. gguf_write_to_buf(ctx, &buf, true);
  16985. return buf.offset;
  16986. }
  16987. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  16988. struct gguf_buf buf = gguf_buf_init(16*1024);
  16989. gguf_write_to_buf(ctx, &buf, true);
  16990. memcpy(data, buf.data, buf.offset);
  16991. gguf_buf_free(buf);
  16992. }
  16993. ////////////////////////////////////////////////////////////////////////////////
  16994. int ggml_cpu_has_avx(void) {
  16995. #if defined(__AVX__)
  16996. return 1;
  16997. #else
  16998. return 0;
  16999. #endif
  17000. }
  17001. int ggml_cpu_has_avx2(void) {
  17002. #if defined(__AVX2__)
  17003. return 1;
  17004. #else
  17005. return 0;
  17006. #endif
  17007. }
  17008. int ggml_cpu_has_avx512(void) {
  17009. #if defined(__AVX512F__)
  17010. return 1;
  17011. #else
  17012. return 0;
  17013. #endif
  17014. }
  17015. int ggml_cpu_has_avx512_vbmi(void) {
  17016. #if defined(__AVX512VBMI__)
  17017. return 1;
  17018. #else
  17019. return 0;
  17020. #endif
  17021. }
  17022. int ggml_cpu_has_avx512_vnni(void) {
  17023. #if defined(__AVX512VNNI__)
  17024. return 1;
  17025. #else
  17026. return 0;
  17027. #endif
  17028. }
  17029. int ggml_cpu_has_fma(void) {
  17030. #if defined(__FMA__)
  17031. return 1;
  17032. #else
  17033. return 0;
  17034. #endif
  17035. }
  17036. int ggml_cpu_has_neon(void) {
  17037. #if defined(__ARM_NEON)
  17038. return 1;
  17039. #else
  17040. return 0;
  17041. #endif
  17042. }
  17043. int ggml_cpu_has_arm_fma(void) {
  17044. #if defined(__ARM_FEATURE_FMA)
  17045. return 1;
  17046. #else
  17047. return 0;
  17048. #endif
  17049. }
  17050. int ggml_cpu_has_metal(void) {
  17051. #if defined(GGML_USE_METAL)
  17052. return 1;
  17053. #else
  17054. return 0;
  17055. #endif
  17056. }
  17057. int ggml_cpu_has_f16c(void) {
  17058. #if defined(__F16C__)
  17059. return 1;
  17060. #else
  17061. return 0;
  17062. #endif
  17063. }
  17064. int ggml_cpu_has_fp16_va(void) {
  17065. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  17066. return 1;
  17067. #else
  17068. return 0;
  17069. #endif
  17070. }
  17071. int ggml_cpu_has_wasm_simd(void) {
  17072. #if defined(__wasm_simd128__)
  17073. return 1;
  17074. #else
  17075. return 0;
  17076. #endif
  17077. }
  17078. int ggml_cpu_has_blas(void) {
  17079. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  17080. return 1;
  17081. #else
  17082. return 0;
  17083. #endif
  17084. }
  17085. int ggml_cpu_has_cublas(void) {
  17086. #if defined(GGML_USE_CUBLAS)
  17087. return 1;
  17088. #else
  17089. return 0;
  17090. #endif
  17091. }
  17092. int ggml_cpu_has_clblast(void) {
  17093. #if defined(GGML_USE_CLBLAST)
  17094. return 1;
  17095. #else
  17096. return 0;
  17097. #endif
  17098. }
  17099. int ggml_cpu_has_gpublas(void) {
  17100. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  17101. }
  17102. int ggml_cpu_has_sse3(void) {
  17103. #if defined(__SSE3__)
  17104. return 1;
  17105. #else
  17106. return 0;
  17107. #endif
  17108. }
  17109. int ggml_cpu_has_ssse3(void) {
  17110. #if defined(__SSSE3__)
  17111. return 1;
  17112. #else
  17113. return 0;
  17114. #endif
  17115. }
  17116. int ggml_cpu_has_vsx(void) {
  17117. #if defined(__POWER9_VECTOR__)
  17118. return 1;
  17119. #else
  17120. return 0;
  17121. #endif
  17122. }
  17123. ////////////////////////////////////////////////////////////////////////////////