ggml.h 72 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049
  1. #pragma once
  2. //
  3. // GGML Tensor Library
  4. //
  5. // This documentation is still a work in progress.
  6. // If you wish some specific topics to be covered, feel free to drop a comment:
  7. //
  8. // https://github.com/ggerganov/whisper.cpp/issues/40
  9. //
  10. // ## Overview
  11. //
  12. // This library implements:
  13. //
  14. // - a set of tensor operations
  15. // - automatic differentiation
  16. // - basic optimization algorithms
  17. //
  18. // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
  19. // but is not limited to, the following:
  20. //
  21. // - linear regression
  22. // - support vector machines
  23. // - neural networks
  24. //
  25. // The library allows the user to define a certain function using the available tensor operations. This function
  26. // definition is represented internally via a computation graph. Each tensor operation in the function definition
  27. // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
  28. // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
  29. // using one of the available optimization algorithms.
  30. //
  31. // For example, here we define the function: f(x) = a*x^2 + b
  32. //
  33. // {
  34. // struct ggml_init_params params = {
  35. // .mem_size = 16*1024*1024,
  36. // .mem_buffer = NULL,
  37. // };
  38. //
  39. // // memory allocation happens here
  40. // struct ggml_context * ctx = ggml_init(params);
  41. //
  42. // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  43. //
  44. // ggml_set_param(ctx, x); // x is an input variable
  45. //
  46. // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  47. // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  48. // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
  49. // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
  50. //
  51. // ...
  52. // }
  53. //
  54. // Notice that the function definition above does not involve any actual computation. The computation is performed only
  55. // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
  56. //
  57. // {
  58. // ...
  59. //
  60. // struct ggml_cgraph gf = ggml_build_forward(f);
  61. //
  62. // // set the input variable and parameter values
  63. // ggml_set_f32(x, 2.0f);
  64. // ggml_set_f32(a, 3.0f);
  65. // ggml_set_f32(b, 4.0f);
  66. //
  67. // ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
  68. //
  69. // printf("f = %f\n", ggml_get_f32_1d(f, 0));
  70. //
  71. // ...
  72. // }
  73. //
  74. // The actual computation is performed in the ggml_graph_compute() function.
  75. //
  76. // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
  77. // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
  78. // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
  79. // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
  80. // actually needed.
  81. //
  82. // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
  83. // differentiation and optimization algorithms.
  84. //
  85. // The described approach allows to define the function graph once and then compute its forward or backward graphs
  86. // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
  87. // the user can avoid the memory allocation overhead at runtime.
  88. //
  89. // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
  90. // citizens, but in theory the library can be extended to support FP8 and integer data types.
  91. //
  92. // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
  93. // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
  94. // clear that the library needs to support more complex operations. The way to support these operations is not clear
  95. // yet, but a few examples are demonstrated in the following operations:
  96. //
  97. // - ggml_permute()
  98. // - ggml_conv_1d_1s()
  99. // - ggml_conv_1d_2s()
  100. //
  101. // For each tensor operator, the library implements a forward and backward computation function. The forward function
  102. // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
  103. // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
  104. // calculus class, or watch the following video:
  105. //
  106. // What is Automatic Differentiation?
  107. // https://www.youtube.com/watch?v=wG_nF1awSSY
  108. //
  109. //
  110. // ## Tensor data (struct ggml_tensor)
  111. //
  112. // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
  113. // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
  114. // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
  115. //
  116. // {
  117. // struct ggml_tensor * c = ggml_add(ctx, a, b);
  118. //
  119. // assert(c->src[0] == a);
  120. // assert(c->src[1] == b);
  121. // }
  122. //
  123. // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
  124. // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
  125. // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
  126. // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
  127. // contiguous in memory.
  128. //
  129. // The data of the tensor is accessed via the "data" pointer. For example:
  130. //
  131. // {
  132. // const int nx = 2;
  133. // const int ny = 3;
  134. //
  135. // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny);
  136. //
  137. // for (int y = 0; y < ny; y++) {
  138. // for (int x = 0; x < nx; x++) {
  139. // *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
  140. // }
  141. // }
  142. //
  143. // ...
  144. // }
  145. //
  146. // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
  147. //
  148. // ## The matrix multiplication operator (ggml_mul_mat)
  149. //
  150. // TODO
  151. //
  152. //
  153. // ## Multi-threading
  154. //
  155. // TODO
  156. //
  157. //
  158. // ## Overview of ggml.c
  159. //
  160. // TODO
  161. //
  162. //
  163. // ## SIMD optimizations
  164. //
  165. // TODO
  166. //
  167. //
  168. // ## Debugging ggml
  169. //
  170. // TODO
  171. //
  172. //
  173. #ifdef GGML_SHARED
  174. # if defined(_WIN32) && !defined(__MINGW32__)
  175. # ifdef GGML_BUILD
  176. # define GGML_API __declspec(dllexport)
  177. # else
  178. # define GGML_API __declspec(dllimport)
  179. # endif
  180. # else
  181. # define GGML_API __attribute__ ((visibility ("default")))
  182. # endif
  183. #else
  184. # define GGML_API
  185. #endif
  186. // TODO: support for clang
  187. #ifdef __GNUC__
  188. # define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  189. #elif defined(_MSC_VER)
  190. # define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  191. #else
  192. # define GGML_DEPRECATED(func, hint) func
  193. #endif
  194. #ifndef __GNUC__
  195. # define GGML_ATTRIBUTE_FORMAT(...)
  196. #elif defined(__MINGW32__)
  197. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  198. #else
  199. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  200. #endif
  201. #include <stdint.h>
  202. #include <stddef.h>
  203. #include <stdbool.h>
  204. #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
  205. #define GGML_FILE_VERSION 1
  206. #define GGML_QNT_VERSION 2 // bump this on quantization format changes
  207. #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
  208. #define GGML_MAX_DIMS 4
  209. #define GGML_MAX_NODES 4096
  210. #define GGML_MAX_PARAMS 256
  211. #define GGML_MAX_CONTEXTS 64
  212. #define GGML_MAX_SRC 6
  213. #define GGML_MAX_NAME 64
  214. #define GGML_MAX_OP_PARAMS 32
  215. #define GGML_DEFAULT_N_THREADS 4
  216. #if UINTPTR_MAX == 0xFFFFFFFF
  217. #define GGML_MEM_ALIGN 4
  218. #else
  219. #define GGML_MEM_ALIGN 16
  220. #endif
  221. #define GGML_EXIT_SUCCESS 0
  222. #define GGML_EXIT_ABORTED 1
  223. #define GGUF_MAGIC 0x46554747 // "GGUF"
  224. #define GGUF_VERSION 2
  225. #define GGUF_DEFAULT_ALIGNMENT 32
  226. #define GGML_UNUSED(x) (void)(x)
  227. #define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
  228. #define GGML_ASSERT(x) \
  229. do { \
  230. if (!(x)) { \
  231. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  232. abort(); \
  233. } \
  234. } while (0)
  235. // used to copy the number of elements and stride in bytes of tensors into local variables.
  236. // main purpose is to reduce code duplication and improve readability.
  237. //
  238. // example:
  239. //
  240. // GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  241. // GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  242. //
  243. #define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
  244. const type prefix##0 = (pointer)->array[0]; \
  245. GGML_UNUSED(prefix##0);
  246. #define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
  247. GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
  248. const type prefix##1 = (pointer)->array[1]; \
  249. GGML_UNUSED(prefix##1);
  250. #define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
  251. GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
  252. const type prefix##2 = (pointer)->array[2]; \
  253. GGML_UNUSED(prefix##2);
  254. #define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
  255. GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
  256. const type prefix##3 = (pointer)->array[3]; \
  257. GGML_UNUSED(prefix##3);
  258. #ifdef __cplusplus
  259. extern "C" {
  260. #endif
  261. #if defined(__ARM_NEON) && defined(__CUDACC__)
  262. typedef half ggml_fp16_t;
  263. #elif defined(__ARM_NEON)
  264. typedef __fp16 ggml_fp16_t;
  265. #else
  266. typedef uint16_t ggml_fp16_t;
  267. #endif
  268. // convert FP16 <-> FP32
  269. GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x);
  270. GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x);
  271. GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n);
  272. GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n);
  273. struct ggml_object;
  274. struct ggml_context;
  275. enum ggml_type {
  276. GGML_TYPE_F32 = 0,
  277. GGML_TYPE_F16 = 1,
  278. GGML_TYPE_Q4_0 = 2,
  279. GGML_TYPE_Q4_1 = 3,
  280. // GGML_TYPE_Q4_2 = 4, support has been removed
  281. // GGML_TYPE_Q4_3 (5) support has been removed
  282. GGML_TYPE_Q5_0 = 6,
  283. GGML_TYPE_Q5_1 = 7,
  284. GGML_TYPE_Q8_0 = 8,
  285. GGML_TYPE_Q8_1 = 9,
  286. // k-quantizations
  287. GGML_TYPE_Q2_K = 10,
  288. GGML_TYPE_Q3_K = 11,
  289. GGML_TYPE_Q4_K = 12,
  290. GGML_TYPE_Q5_K = 13,
  291. GGML_TYPE_Q6_K = 14,
  292. GGML_TYPE_Q8_K = 15,
  293. GGML_TYPE_I8,
  294. GGML_TYPE_I16,
  295. GGML_TYPE_I32,
  296. GGML_TYPE_COUNT,
  297. };
  298. enum ggml_backend {
  299. GGML_BACKEND_CPU = 0,
  300. GGML_BACKEND_GPU = 10,
  301. GGML_BACKEND_GPU_SPLIT = 20,
  302. };
  303. // model file types
  304. enum ggml_ftype {
  305. GGML_FTYPE_UNKNOWN = -1,
  306. GGML_FTYPE_ALL_F32 = 0,
  307. GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  308. GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  309. GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  310. GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  311. GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  312. GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  313. GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  314. GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  315. GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
  316. GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
  317. GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
  318. GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
  319. };
  320. // available tensor operations:
  321. enum ggml_op {
  322. GGML_OP_NONE = 0,
  323. GGML_OP_DUP,
  324. GGML_OP_ADD,
  325. GGML_OP_ADD1,
  326. GGML_OP_ACC,
  327. GGML_OP_SUB,
  328. GGML_OP_MUL,
  329. GGML_OP_DIV,
  330. GGML_OP_SQR,
  331. GGML_OP_SQRT,
  332. GGML_OP_LOG,
  333. GGML_OP_SUM,
  334. GGML_OP_SUM_ROWS,
  335. GGML_OP_MEAN,
  336. GGML_OP_ARGMAX,
  337. GGML_OP_REPEAT,
  338. GGML_OP_REPEAT_BACK,
  339. GGML_OP_CONCAT,
  340. GGML_OP_SILU_BACK,
  341. GGML_OP_NORM, // normalize
  342. GGML_OP_RMS_NORM,
  343. GGML_OP_RMS_NORM_BACK,
  344. GGML_OP_GROUP_NORM,
  345. GGML_OP_MUL_MAT,
  346. GGML_OP_OUT_PROD,
  347. GGML_OP_SCALE,
  348. GGML_OP_SET,
  349. GGML_OP_CPY,
  350. GGML_OP_CONT,
  351. GGML_OP_RESHAPE,
  352. GGML_OP_VIEW,
  353. GGML_OP_PERMUTE,
  354. GGML_OP_TRANSPOSE,
  355. GGML_OP_GET_ROWS,
  356. GGML_OP_GET_ROWS_BACK,
  357. GGML_OP_DIAG,
  358. GGML_OP_DIAG_MASK_INF,
  359. GGML_OP_DIAG_MASK_ZERO,
  360. GGML_OP_SOFT_MAX,
  361. GGML_OP_SOFT_MAX_BACK,
  362. GGML_OP_ROPE,
  363. GGML_OP_ROPE_BACK,
  364. GGML_OP_ALIBI,
  365. GGML_OP_CLAMP,
  366. GGML_OP_CONV_1D,
  367. GGML_OP_CONV_2D,
  368. GGML_OP_CONV_TRANSPOSE_2D,
  369. GGML_OP_POOL_1D,
  370. GGML_OP_POOL_2D,
  371. GGML_OP_UPSCALE, // nearest interpolate
  372. GGML_OP_FLASH_ATTN,
  373. GGML_OP_FLASH_FF,
  374. GGML_OP_FLASH_ATTN_BACK,
  375. GGML_OP_WIN_PART,
  376. GGML_OP_WIN_UNPART,
  377. GGML_OP_GET_REL_POS,
  378. GGML_OP_ADD_REL_POS,
  379. GGML_OP_UNARY,
  380. GGML_OP_MAP_UNARY,
  381. GGML_OP_MAP_BINARY,
  382. GGML_OP_MAP_CUSTOM1_F32,
  383. GGML_OP_MAP_CUSTOM2_F32,
  384. GGML_OP_MAP_CUSTOM3_F32,
  385. GGML_OP_MAP_CUSTOM1,
  386. GGML_OP_MAP_CUSTOM2,
  387. GGML_OP_MAP_CUSTOM3,
  388. GGML_OP_CROSS_ENTROPY_LOSS,
  389. GGML_OP_CROSS_ENTROPY_LOSS_BACK,
  390. GGML_OP_COUNT,
  391. };
  392. enum ggml_unary_op {
  393. GGML_UNARY_OP_ABS,
  394. GGML_UNARY_OP_SGN,
  395. GGML_UNARY_OP_NEG,
  396. GGML_UNARY_OP_STEP,
  397. GGML_UNARY_OP_TANH,
  398. GGML_UNARY_OP_ELU,
  399. GGML_UNARY_OP_RELU,
  400. GGML_UNARY_OP_GELU,
  401. GGML_UNARY_OP_GELU_QUICK,
  402. GGML_UNARY_OP_SILU,
  403. };
  404. enum ggml_object_type {
  405. GGML_OBJECT_TENSOR,
  406. GGML_OBJECT_GRAPH,
  407. GGML_OBJECT_WORK_BUFFER
  408. };
  409. enum ggml_log_level {
  410. GGML_LOG_LEVEL_ERROR = 2,
  411. GGML_LOG_LEVEL_WARN = 3,
  412. GGML_LOG_LEVEL_INFO = 4
  413. };
  414. // ggml object
  415. struct ggml_object {
  416. size_t offs;
  417. size_t size;
  418. struct ggml_object * next;
  419. enum ggml_object_type type;
  420. char padding[4];
  421. };
  422. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  423. // n-dimensional tensor
  424. struct ggml_tensor {
  425. enum ggml_type type;
  426. enum ggml_backend backend;
  427. int n_dims;
  428. int64_t ne[GGML_MAX_DIMS]; // number of elements
  429. size_t nb[GGML_MAX_DIMS]; // stride in bytes:
  430. // nb[0] = sizeof(type)
  431. // nb[1] = nb[0] * ne[0] + padding
  432. // nb[i] = nb[i-1] * ne[i-1]
  433. // compute data
  434. enum ggml_op op;
  435. // op params - allocated as int32_t for alignment
  436. int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
  437. bool is_param;
  438. struct ggml_tensor * grad;
  439. struct ggml_tensor * src[GGML_MAX_SRC];
  440. // performance
  441. int perf_runs;
  442. int64_t perf_cycles;
  443. int64_t perf_time_us;
  444. struct ggml_tensor * view_src;
  445. size_t view_offs;
  446. void * data;
  447. char name[GGML_MAX_NAME];
  448. void * extra; // extra things e.g. for ggml-cuda.cu
  449. char padding[4];
  450. };
  451. static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
  452. // the compute plan that needs to be prepared for ggml_graph_compute()
  453. // since https://github.com/ggerganov/ggml/issues/287
  454. struct ggml_cplan {
  455. size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
  456. uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
  457. int n_threads;
  458. // the `n_tasks` of nodes, 1:1 mapping to cgraph nodes
  459. int n_tasks[GGML_MAX_NODES];
  460. // abort ggml_graph_compute when true
  461. bool (*abort_callback)(void * data);
  462. void * abort_callback_data;
  463. };
  464. // next prime after GGML_MAX_NODES
  465. // #define GGML_GRAPH_HASHTABLE_SIZE 4099
  466. // next prime after GGML_MAX_NODES * 2 (nodes + leafs)
  467. #define GGML_GRAPH_HASHTABLE_SIZE 8273
  468. // computation graph
  469. struct ggml_cgraph {
  470. int n_nodes;
  471. int n_leafs;
  472. struct ggml_tensor * nodes[GGML_MAX_NODES];
  473. struct ggml_tensor * grads[GGML_MAX_NODES];
  474. struct ggml_tensor * leafs[GGML_MAX_NODES];
  475. void * visited_hash_table[GGML_GRAPH_HASHTABLE_SIZE];
  476. // performance
  477. int perf_runs;
  478. int64_t perf_cycles;
  479. int64_t perf_time_us;
  480. };
  481. static const size_t GGML_GRAPH_SIZE = sizeof(struct ggml_cgraph);
  482. // scratch buffer
  483. struct ggml_scratch {
  484. size_t offs;
  485. size_t size;
  486. void * data;
  487. };
  488. struct ggml_init_params {
  489. // memory pool
  490. size_t mem_size; // bytes
  491. void * mem_buffer; // if NULL, memory will be allocated internally
  492. bool no_alloc; // don't allocate memory for the tensor data
  493. };
  494. // compute types
  495. // NOTE: the INIT or FINALIZE pass is not scheduled unless explicitly enabled.
  496. // This behavior was changed since https://github.com/ggerganov/llama.cpp/pull/1995.
  497. enum ggml_task_type {
  498. GGML_TASK_INIT = 0,
  499. GGML_TASK_COMPUTE,
  500. GGML_TASK_FINALIZE,
  501. };
  502. struct ggml_compute_params {
  503. enum ggml_task_type type;
  504. // ith = thread index, nth = number of threads
  505. int ith, nth;
  506. // work buffer for all threads
  507. size_t wsize;
  508. void * wdata;
  509. };
  510. // misc
  511. GGML_API void ggml_time_init(void); // call this once at the beginning of the program
  512. GGML_API int64_t ggml_time_ms(void);
  513. GGML_API int64_t ggml_time_us(void);
  514. GGML_API int64_t ggml_cycles(void);
  515. GGML_API int64_t ggml_cycles_per_ms(void);
  516. GGML_API void ggml_numa_init(void); // call once for better performance on NUMA systems
  517. GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
  518. GGML_API void ggml_print_object (const struct ggml_object * obj);
  519. GGML_API void ggml_print_objects(const struct ggml_context * ctx);
  520. GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor);
  521. GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
  522. GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
  523. GGML_API size_t ggml_nbytes_pad (const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
  524. GGML_API size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split);
  525. GGML_API int ggml_blck_size (enum ggml_type type);
  526. GGML_API size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
  527. GGML_API float ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float
  528. GGML_API const char * ggml_type_name(enum ggml_type type);
  529. GGML_API const char * ggml_op_name (enum ggml_op op);
  530. GGML_API const char * ggml_op_symbol(enum ggml_op op);
  531. GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
  532. GGML_API bool ggml_is_quantized(enum ggml_type type);
  533. // TODO: temporary until model loading of ggml examples is refactored
  534. GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
  535. GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
  536. GGML_API bool ggml_is_contiguous(const struct ggml_tensor * tensor);
  537. GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
  538. GGML_API bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  539. // use this to compute the memory overhead of a tensor
  540. GGML_API size_t ggml_tensor_overhead(void);
  541. // main
  542. GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
  543. GGML_API void ggml_free(struct ggml_context * ctx);
  544. GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
  545. GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
  546. GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
  547. GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
  548. GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
  549. GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
  550. GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
  551. GGML_API struct ggml_tensor * ggml_new_tensor(
  552. struct ggml_context * ctx,
  553. enum ggml_type type,
  554. int n_dims,
  555. const int64_t *ne);
  556. GGML_API struct ggml_tensor * ggml_new_tensor_1d(
  557. struct ggml_context * ctx,
  558. enum ggml_type type,
  559. int64_t ne0);
  560. GGML_API struct ggml_tensor * ggml_new_tensor_2d(
  561. struct ggml_context * ctx,
  562. enum ggml_type type,
  563. int64_t ne0,
  564. int64_t ne1);
  565. GGML_API struct ggml_tensor * ggml_new_tensor_3d(
  566. struct ggml_context * ctx,
  567. enum ggml_type type,
  568. int64_t ne0,
  569. int64_t ne1,
  570. int64_t ne2);
  571. GGML_API struct ggml_tensor * ggml_new_tensor_4d(
  572. struct ggml_context * ctx,
  573. enum ggml_type type,
  574. int64_t ne0,
  575. int64_t ne1,
  576. int64_t ne2,
  577. int64_t ne3);
  578. GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
  579. GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
  580. GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
  581. GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
  582. GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
  583. GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
  584. GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
  585. GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
  586. GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
  587. GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
  588. GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
  589. GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
  590. GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
  591. GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
  592. GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
  593. GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
  594. GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
  595. GGML_ATTRIBUTE_FORMAT(2, 3)
  596. GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
  597. //
  598. // operations on tensors with backpropagation
  599. //
  600. GGML_API struct ggml_tensor * ggml_dup(
  601. struct ggml_context * ctx,
  602. struct ggml_tensor * a);
  603. // in-place, returns view(a)
  604. GGML_API struct ggml_tensor * ggml_dup_inplace(
  605. struct ggml_context * ctx,
  606. struct ggml_tensor * a);
  607. GGML_API struct ggml_tensor * ggml_add(
  608. struct ggml_context * ctx,
  609. struct ggml_tensor * a,
  610. struct ggml_tensor * b);
  611. GGML_API struct ggml_tensor * ggml_add_inplace(
  612. struct ggml_context * ctx,
  613. struct ggml_tensor * a,
  614. struct ggml_tensor * b);
  615. GGML_API struct ggml_tensor * ggml_add1(
  616. struct ggml_context * ctx,
  617. struct ggml_tensor * a,
  618. struct ggml_tensor * b);
  619. GGML_API struct ggml_tensor * ggml_add1_inplace(
  620. struct ggml_context * ctx,
  621. struct ggml_tensor * a,
  622. struct ggml_tensor * b);
  623. GGML_API struct ggml_tensor * ggml_acc(
  624. struct ggml_context * ctx,
  625. struct ggml_tensor * a,
  626. struct ggml_tensor * b,
  627. size_t nb1,
  628. size_t nb2,
  629. size_t nb3,
  630. size_t offset);
  631. GGML_API struct ggml_tensor * ggml_acc_inplace(
  632. struct ggml_context * ctx,
  633. struct ggml_tensor * a,
  634. struct ggml_tensor * b,
  635. size_t nb1,
  636. size_t nb2,
  637. size_t nb3,
  638. size_t offset);
  639. GGML_API struct ggml_tensor * ggml_sub(
  640. struct ggml_context * ctx,
  641. struct ggml_tensor * a,
  642. struct ggml_tensor * b);
  643. GGML_API struct ggml_tensor * ggml_sub_inplace(
  644. struct ggml_context * ctx,
  645. struct ggml_tensor * a,
  646. struct ggml_tensor * b);
  647. GGML_API struct ggml_tensor * ggml_mul(
  648. struct ggml_context * ctx,
  649. struct ggml_tensor * a,
  650. struct ggml_tensor * b);
  651. GGML_API struct ggml_tensor * ggml_mul_inplace(
  652. struct ggml_context * ctx,
  653. struct ggml_tensor * a,
  654. struct ggml_tensor * b);
  655. GGML_API struct ggml_tensor * ggml_div(
  656. struct ggml_context * ctx,
  657. struct ggml_tensor * a,
  658. struct ggml_tensor * b);
  659. GGML_API struct ggml_tensor * ggml_div_inplace(
  660. struct ggml_context * ctx,
  661. struct ggml_tensor * a,
  662. struct ggml_tensor * b);
  663. GGML_API struct ggml_tensor * ggml_sqr(
  664. struct ggml_context * ctx,
  665. struct ggml_tensor * a);
  666. GGML_API struct ggml_tensor * ggml_sqr_inplace(
  667. struct ggml_context * ctx,
  668. struct ggml_tensor * a);
  669. GGML_API struct ggml_tensor * ggml_sqrt(
  670. struct ggml_context * ctx,
  671. struct ggml_tensor * a);
  672. GGML_API struct ggml_tensor * ggml_sqrt_inplace(
  673. struct ggml_context * ctx,
  674. struct ggml_tensor * a);
  675. GGML_API struct ggml_tensor * ggml_log(
  676. struct ggml_context * ctx,
  677. struct ggml_tensor * a);
  678. GGML_API struct ggml_tensor * ggml_log_inplace(
  679. struct ggml_context * ctx,
  680. struct ggml_tensor * a);
  681. // return scalar
  682. GGML_API struct ggml_tensor * ggml_sum(
  683. struct ggml_context * ctx,
  684. struct ggml_tensor * a);
  685. // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
  686. GGML_API struct ggml_tensor * ggml_sum_rows(
  687. struct ggml_context * ctx,
  688. struct ggml_tensor * a);
  689. // mean along rows
  690. GGML_API struct ggml_tensor * ggml_mean(
  691. struct ggml_context * ctx,
  692. struct ggml_tensor * a);
  693. // argmax along rows
  694. GGML_API struct ggml_tensor * ggml_argmax(
  695. struct ggml_context * ctx,
  696. struct ggml_tensor * a);
  697. // if a is the same shape as b, and a is not parameter, return a
  698. // otherwise, return a new tensor: repeat(a) to fit in b
  699. GGML_API struct ggml_tensor * ggml_repeat(
  700. struct ggml_context * ctx,
  701. struct ggml_tensor * a,
  702. struct ggml_tensor * b);
  703. GGML_API struct ggml_tensor * ggml_repeat_back(
  704. struct ggml_context * ctx,
  705. struct ggml_tensor * a,
  706. struct ggml_tensor * b);
  707. // concat a and b on dim 2
  708. // used in stable-diffusion
  709. GGML_API struct ggml_tensor * ggml_concat(
  710. struct ggml_context * ctx,
  711. struct ggml_tensor * a,
  712. struct ggml_tensor * b);
  713. GGML_API struct ggml_tensor * ggml_abs(
  714. struct ggml_context * ctx,
  715. struct ggml_tensor * a);
  716. GGML_API struct ggml_tensor * ggml_abs_inplace(
  717. struct ggml_context * ctx,
  718. struct ggml_tensor * a);
  719. GGML_API struct ggml_tensor * ggml_sgn(
  720. struct ggml_context * ctx,
  721. struct ggml_tensor * a);
  722. GGML_API struct ggml_tensor * ggml_sgn_inplace(
  723. struct ggml_context * ctx,
  724. struct ggml_tensor * a);
  725. GGML_API struct ggml_tensor * ggml_neg(
  726. struct ggml_context * ctx,
  727. struct ggml_tensor * a);
  728. GGML_API struct ggml_tensor * ggml_neg_inplace(
  729. struct ggml_context * ctx,
  730. struct ggml_tensor * a);
  731. GGML_API struct ggml_tensor * ggml_step(
  732. struct ggml_context * ctx,
  733. struct ggml_tensor * a);
  734. GGML_API struct ggml_tensor * ggml_step_inplace(
  735. struct ggml_context * ctx,
  736. struct ggml_tensor * a);
  737. GGML_API struct ggml_tensor * ggml_tanh(
  738. struct ggml_context * ctx,
  739. struct ggml_tensor * a);
  740. GGML_API struct ggml_tensor * ggml_tanh_inplace(
  741. struct ggml_context * ctx,
  742. struct ggml_tensor * a);
  743. GGML_API struct ggml_tensor * ggml_elu(
  744. struct ggml_context * ctx,
  745. struct ggml_tensor * a);
  746. GGML_API struct ggml_tensor * ggml_elu_inplace(
  747. struct ggml_context * ctx,
  748. struct ggml_tensor * a);
  749. GGML_API struct ggml_tensor * ggml_relu(
  750. struct ggml_context * ctx,
  751. struct ggml_tensor * a);
  752. GGML_API struct ggml_tensor * ggml_relu_inplace(
  753. struct ggml_context * ctx,
  754. struct ggml_tensor * a);
  755. // TODO: double-check this computation is correct
  756. GGML_API struct ggml_tensor * ggml_gelu(
  757. struct ggml_context * ctx,
  758. struct ggml_tensor * a);
  759. GGML_API struct ggml_tensor * ggml_gelu_inplace(
  760. struct ggml_context * ctx,
  761. struct ggml_tensor * a);
  762. GGML_API struct ggml_tensor * ggml_gelu_quick(
  763. struct ggml_context * ctx,
  764. struct ggml_tensor * a);
  765. GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
  766. struct ggml_context * ctx,
  767. struct ggml_tensor * a);
  768. GGML_API struct ggml_tensor * ggml_silu(
  769. struct ggml_context * ctx,
  770. struct ggml_tensor * a);
  771. GGML_API struct ggml_tensor * ggml_silu_inplace(
  772. struct ggml_context * ctx,
  773. struct ggml_tensor * a);
  774. // a - x
  775. // b - dy
  776. GGML_API struct ggml_tensor * ggml_silu_back(
  777. struct ggml_context * ctx,
  778. struct ggml_tensor * a,
  779. struct ggml_tensor * b);
  780. // normalize along rows
  781. GGML_API struct ggml_tensor * ggml_norm(
  782. struct ggml_context * ctx,
  783. struct ggml_tensor * a,
  784. float eps);
  785. GGML_API struct ggml_tensor * ggml_norm_inplace(
  786. struct ggml_context * ctx,
  787. struct ggml_tensor * a,
  788. float eps);
  789. GGML_API struct ggml_tensor * ggml_rms_norm(
  790. struct ggml_context * ctx,
  791. struct ggml_tensor * a,
  792. float eps);
  793. GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
  794. struct ggml_context * ctx,
  795. struct ggml_tensor * a,
  796. float eps);
  797. // group normalize along ne0*ne1*n_groups
  798. // used in stable-diffusion
  799. // TODO: eps is hardcoded to 1e-6 for now
  800. GGML_API struct ggml_tensor * ggml_group_norm(
  801. struct ggml_context * ctx,
  802. struct ggml_tensor * a,
  803. int n_groups);
  804. GGML_API struct ggml_tensor * ggml_group_norm_inplace(
  805. struct ggml_context * ctx,
  806. struct ggml_tensor * a,
  807. int n_groups);
  808. // a - x
  809. // b - dy
  810. GGML_API struct ggml_tensor * ggml_rms_norm_back(
  811. struct ggml_context * ctx,
  812. struct ggml_tensor * a,
  813. struct ggml_tensor * b,
  814. float eps);
  815. // A: n columns, m rows
  816. // B: n columns, p rows (i.e. we transpose it internally)
  817. // result is m columns, p rows
  818. GGML_API struct ggml_tensor * ggml_mul_mat(
  819. struct ggml_context * ctx,
  820. struct ggml_tensor * a,
  821. struct ggml_tensor * b);
  822. // A: m columns, n rows,
  823. // B: p columns, n rows,
  824. // result is m columns, p rows
  825. GGML_API struct ggml_tensor * ggml_out_prod(
  826. struct ggml_context * ctx,
  827. struct ggml_tensor * a,
  828. struct ggml_tensor * b);
  829. //
  830. // operations on tensors without backpropagation
  831. //
  832. GGML_API struct ggml_tensor * ggml_scale(
  833. struct ggml_context * ctx,
  834. struct ggml_tensor * a,
  835. struct ggml_tensor * b);
  836. // in-place, returns view(a)
  837. GGML_API struct ggml_tensor * ggml_scale_inplace(
  838. struct ggml_context * ctx,
  839. struct ggml_tensor * a,
  840. struct ggml_tensor * b);
  841. // b -> view(a,offset,nb1,nb2,3), return modified a
  842. GGML_API struct ggml_tensor * ggml_set(
  843. struct ggml_context * ctx,
  844. struct ggml_tensor * a,
  845. struct ggml_tensor * b,
  846. size_t nb1,
  847. size_t nb2,
  848. size_t nb3,
  849. size_t offset);
  850. // b -> view(a,offset,nb1,nb2,3), return view(a)
  851. GGML_API struct ggml_tensor * ggml_set_inplace(
  852. struct ggml_context * ctx,
  853. struct ggml_tensor * a,
  854. struct ggml_tensor * b,
  855. size_t nb1,
  856. size_t nb2,
  857. size_t nb3,
  858. size_t offset);
  859. GGML_API struct ggml_tensor * ggml_set_1d(
  860. struct ggml_context * ctx,
  861. struct ggml_tensor * a,
  862. struct ggml_tensor * b,
  863. size_t offset);
  864. GGML_API struct ggml_tensor * ggml_set_1d_inplace(
  865. struct ggml_context * ctx,
  866. struct ggml_tensor * a,
  867. struct ggml_tensor * b,
  868. size_t offset);
  869. // b -> view(a,offset,nb1,nb2,3), return modified a
  870. GGML_API struct ggml_tensor * ggml_set_2d(
  871. struct ggml_context * ctx,
  872. struct ggml_tensor * a,
  873. struct ggml_tensor * b,
  874. size_t nb1,
  875. size_t offset);
  876. // b -> view(a,offset,nb1,nb2,3), return view(a)
  877. GGML_API struct ggml_tensor * ggml_set_2d_inplace(
  878. struct ggml_context * ctx,
  879. struct ggml_tensor * a,
  880. struct ggml_tensor * b,
  881. size_t nb1,
  882. size_t offset);
  883. // a -> b, return view(b)
  884. GGML_API struct ggml_tensor * ggml_cpy(
  885. struct ggml_context * ctx,
  886. struct ggml_tensor * a,
  887. struct ggml_tensor * b);
  888. // a -> b, in-place, return view(b)
  889. GGML_API struct ggml_tensor * ggml_cpy_inplace(
  890. struct ggml_context * ctx,
  891. struct ggml_tensor * a,
  892. struct ggml_tensor * b);
  893. // make contiguous
  894. GGML_API struct ggml_tensor * ggml_cont(
  895. struct ggml_context * ctx,
  896. struct ggml_tensor * a);
  897. // make contiguous, in-place
  898. GGML_API struct ggml_tensor * ggml_cont_inplace(
  899. struct ggml_context * ctx,
  900. struct ggml_tensor * a);
  901. // make contiguous, with new shape
  902. GGML_API struct ggml_tensor * ggml_cont_1d(
  903. struct ggml_context * ctx,
  904. struct ggml_tensor * a,
  905. int64_t ne0);
  906. GGML_API struct ggml_tensor * ggml_cont_2d(
  907. struct ggml_context * ctx,
  908. struct ggml_tensor * a,
  909. int64_t ne0,
  910. int64_t ne1);
  911. GGML_API struct ggml_tensor * ggml_cont_3d(
  912. struct ggml_context * ctx,
  913. struct ggml_tensor * a,
  914. int64_t ne0,
  915. int64_t ne1,
  916. int64_t ne2);
  917. GGML_API struct ggml_tensor * ggml_cont_4d(
  918. struct ggml_context * ctx,
  919. struct ggml_tensor * a,
  920. int64_t ne0,
  921. int64_t ne1,
  922. int64_t ne2,
  923. int64_t ne3);
  924. // return view(a), b specifies the new shape
  925. // TODO: when we start computing gradient, make a copy instead of view
  926. GGML_API struct ggml_tensor * ggml_reshape(
  927. struct ggml_context * ctx,
  928. struct ggml_tensor * a,
  929. struct ggml_tensor * b);
  930. // return view(a)
  931. // TODO: when we start computing gradient, make a copy instead of view
  932. GGML_API struct ggml_tensor * ggml_reshape_1d(
  933. struct ggml_context * ctx,
  934. struct ggml_tensor * a,
  935. int64_t ne0);
  936. GGML_API struct ggml_tensor * ggml_reshape_2d(
  937. struct ggml_context * ctx,
  938. struct ggml_tensor * a,
  939. int64_t ne0,
  940. int64_t ne1);
  941. // return view(a)
  942. // TODO: when we start computing gradient, make a copy instead of view
  943. GGML_API struct ggml_tensor * ggml_reshape_3d(
  944. struct ggml_context * ctx,
  945. struct ggml_tensor * a,
  946. int64_t ne0,
  947. int64_t ne1,
  948. int64_t ne2);
  949. GGML_API struct ggml_tensor * ggml_reshape_4d(
  950. struct ggml_context * ctx,
  951. struct ggml_tensor * a,
  952. int64_t ne0,
  953. int64_t ne1,
  954. int64_t ne2,
  955. int64_t ne3);
  956. // offset in bytes
  957. GGML_API struct ggml_tensor * ggml_view_1d(
  958. struct ggml_context * ctx,
  959. struct ggml_tensor * a,
  960. int64_t ne0,
  961. size_t offset);
  962. GGML_API struct ggml_tensor * ggml_view_2d(
  963. struct ggml_context * ctx,
  964. struct ggml_tensor * a,
  965. int64_t ne0,
  966. int64_t ne1,
  967. size_t nb1, // row stride in bytes
  968. size_t offset);
  969. GGML_API struct ggml_tensor * ggml_view_3d(
  970. struct ggml_context * ctx,
  971. struct ggml_tensor * a,
  972. int64_t ne0,
  973. int64_t ne1,
  974. int64_t ne2,
  975. size_t nb1, // row stride in bytes
  976. size_t nb2, // slice stride in bytes
  977. size_t offset);
  978. GGML_API struct ggml_tensor * ggml_view_4d(
  979. struct ggml_context * ctx,
  980. struct ggml_tensor * a,
  981. int64_t ne0,
  982. int64_t ne1,
  983. int64_t ne2,
  984. int64_t ne3,
  985. size_t nb1, // row stride in bytes
  986. size_t nb2, // slice stride in bytes
  987. size_t nb3,
  988. size_t offset);
  989. GGML_API struct ggml_tensor * ggml_permute(
  990. struct ggml_context * ctx,
  991. struct ggml_tensor * a,
  992. int axis0,
  993. int axis1,
  994. int axis2,
  995. int axis3);
  996. // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
  997. GGML_API struct ggml_tensor * ggml_transpose(
  998. struct ggml_context * ctx,
  999. struct ggml_tensor * a);
  1000. GGML_API struct ggml_tensor * ggml_get_rows(
  1001. struct ggml_context * ctx,
  1002. struct ggml_tensor * a,
  1003. struct ggml_tensor * b);
  1004. GGML_API struct ggml_tensor * ggml_get_rows_back(
  1005. struct ggml_context * ctx,
  1006. struct ggml_tensor * a,
  1007. struct ggml_tensor * b,
  1008. struct ggml_tensor * c);
  1009. GGML_API struct ggml_tensor * ggml_diag(
  1010. struct ggml_context * ctx,
  1011. struct ggml_tensor * a);
  1012. // set elements above the diagonal to -INF
  1013. GGML_API struct ggml_tensor * ggml_diag_mask_inf(
  1014. struct ggml_context * ctx,
  1015. struct ggml_tensor * a,
  1016. int n_past);
  1017. // in-place, returns view(a)
  1018. GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
  1019. struct ggml_context * ctx,
  1020. struct ggml_tensor * a,
  1021. int n_past);
  1022. // set elements above the diagonal to 0
  1023. GGML_API struct ggml_tensor * ggml_diag_mask_zero(
  1024. struct ggml_context * ctx,
  1025. struct ggml_tensor * a,
  1026. int n_past);
  1027. // in-place, returns view(a)
  1028. GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
  1029. struct ggml_context * ctx,
  1030. struct ggml_tensor * a,
  1031. int n_past);
  1032. GGML_API struct ggml_tensor * ggml_soft_max(
  1033. struct ggml_context * ctx,
  1034. struct ggml_tensor * a);
  1035. // in-place, returns view(a)
  1036. GGML_API struct ggml_tensor * ggml_soft_max_inplace(
  1037. struct ggml_context * ctx,
  1038. struct ggml_tensor * a);
  1039. GGML_API struct ggml_tensor * ggml_soft_max_back(
  1040. struct ggml_context * ctx,
  1041. struct ggml_tensor * a,
  1042. struct ggml_tensor * b);
  1043. // in-place, returns view(a)
  1044. GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
  1045. struct ggml_context * ctx,
  1046. struct ggml_tensor * a,
  1047. struct ggml_tensor * b);
  1048. // rotary position embedding
  1049. // if mode & 1 == 1, skip n_past elements (DEPRECATED)
  1050. // if mode & 2 == 1, GPT-NeoX style
  1051. // if mode & 4 == 1, ChatGLM style
  1052. //
  1053. // b is an int32 vector with size a->ne[2], it contains the positions
  1054. GGML_API struct ggml_tensor * ggml_rope(
  1055. struct ggml_context * ctx,
  1056. struct ggml_tensor * a,
  1057. struct ggml_tensor * b,
  1058. int n_dims,
  1059. int mode,
  1060. int n_ctx);
  1061. // in-place, returns view(a)
  1062. GGML_API struct ggml_tensor * ggml_rope_inplace(
  1063. struct ggml_context * ctx,
  1064. struct ggml_tensor * a,
  1065. struct ggml_tensor * b,
  1066. int n_dims,
  1067. int mode,
  1068. int n_ctx);
  1069. // custom RoPE
  1070. GGML_API struct ggml_tensor * ggml_rope_custom(
  1071. struct ggml_context * ctx,
  1072. struct ggml_tensor * a,
  1073. struct ggml_tensor * b,
  1074. int n_dims,
  1075. int mode,
  1076. int n_ctx,
  1077. float freq_base,
  1078. float freq_scale);
  1079. // in-place, returns view(a)
  1080. GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
  1081. struct ggml_context * ctx,
  1082. struct ggml_tensor * a,
  1083. struct ggml_tensor * b,
  1084. int n_dims,
  1085. int mode,
  1086. int n_ctx,
  1087. float freq_base,
  1088. float freq_scale);
  1089. // xPos RoPE, in-place, returns view(a)
  1090. GGML_API struct ggml_tensor * ggml_rope_xpos_inplace(
  1091. struct ggml_context * ctx,
  1092. struct ggml_tensor * a,
  1093. struct ggml_tensor * b,
  1094. int n_dims,
  1095. float base,
  1096. bool down);
  1097. // rotary position embedding backward, i.e compute dx from dy
  1098. // a - dy
  1099. GGML_API struct ggml_tensor * ggml_rope_back(
  1100. struct ggml_context * ctx,
  1101. struct ggml_tensor * a,
  1102. struct ggml_tensor * b,
  1103. int n_dims,
  1104. int mode,
  1105. int n_ctx,
  1106. float freq_base,
  1107. float freq_scale,
  1108. float xpos_base,
  1109. bool xpos_down);
  1110. // alibi position embedding
  1111. // in-place, returns view(a)
  1112. struct ggml_tensor * ggml_alibi(
  1113. struct ggml_context * ctx,
  1114. struct ggml_tensor * a,
  1115. int n_past,
  1116. int n_head,
  1117. float bias_max);
  1118. // clamp
  1119. // in-place, returns view(a)
  1120. struct ggml_tensor * ggml_clamp(
  1121. struct ggml_context * ctx,
  1122. struct ggml_tensor * a,
  1123. float min,
  1124. float max);
  1125. GGML_API struct ggml_tensor * ggml_conv_1d(
  1126. struct ggml_context * ctx,
  1127. struct ggml_tensor * a,
  1128. struct ggml_tensor * b,
  1129. int s0, // stride
  1130. int p0, // padding
  1131. int d0); // dilation
  1132. // conv_1d with padding = half
  1133. // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
  1134. GGML_API struct ggml_tensor* ggml_conv_1d_ph(
  1135. struct ggml_context * ctx,
  1136. struct ggml_tensor * a,
  1137. struct ggml_tensor * b,
  1138. int s,
  1139. int d);
  1140. GGML_API struct ggml_tensor * ggml_conv_2d(
  1141. struct ggml_context * ctx,
  1142. struct ggml_tensor * a,
  1143. struct ggml_tensor * b,
  1144. int s0,
  1145. int s1,
  1146. int p0,
  1147. int p1,
  1148. int d0,
  1149. int d1);
  1150. // kernel size is a->ne[0] x a->ne[1]
  1151. // stride is equal to kernel size
  1152. // padding is zero
  1153. // example:
  1154. // a: 16 16 3 768
  1155. // b: 1024 1024 3 1
  1156. // res: 64 64 768 1
  1157. // used in sam
  1158. GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
  1159. struct ggml_context * ctx,
  1160. struct ggml_tensor * a,
  1161. struct ggml_tensor * b);
  1162. // kernel size is a->ne[0] x a->ne[1]
  1163. // stride is 1
  1164. // padding is half
  1165. // example:
  1166. // a: 3 3 256 256
  1167. // b: 64 64 256 1
  1168. // res: 64 64 256 1
  1169. // used in sam
  1170. GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph(
  1171. struct ggml_context * ctx,
  1172. struct ggml_tensor * a,
  1173. struct ggml_tensor * b);
  1174. GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
  1175. struct ggml_context * ctx,
  1176. struct ggml_tensor * a,
  1177. struct ggml_tensor * b,
  1178. int stride);
  1179. enum ggml_op_pool {
  1180. GGML_OP_POOL_MAX,
  1181. GGML_OP_POOL_AVG,
  1182. GGML_OP_POOL_COUNT,
  1183. };
  1184. GGML_API struct ggml_tensor * ggml_pool_1d(
  1185. struct ggml_context * ctx,
  1186. struct ggml_tensor * a,
  1187. enum ggml_op_pool op,
  1188. int k0, // kernel size
  1189. int s0, // stride
  1190. int p0); // padding
  1191. GGML_API struct ggml_tensor * ggml_pool_2d(
  1192. struct ggml_context * ctx,
  1193. struct ggml_tensor * a,
  1194. enum ggml_op_pool op,
  1195. int k0,
  1196. int k1,
  1197. int s0,
  1198. int s1,
  1199. int p0,
  1200. int p1);
  1201. // nearest interpolate
  1202. // used in stable-diffusion
  1203. GGML_API struct ggml_tensor * ggml_upscale(
  1204. struct ggml_context * ctx,
  1205. struct ggml_tensor * a,
  1206. int scale_factor);
  1207. GGML_API struct ggml_tensor * ggml_flash_attn(
  1208. struct ggml_context * ctx,
  1209. struct ggml_tensor * q,
  1210. struct ggml_tensor * k,
  1211. struct ggml_tensor * v,
  1212. bool masked);
  1213. GGML_API struct ggml_tensor * ggml_flash_attn_back(
  1214. struct ggml_context * ctx,
  1215. struct ggml_tensor * q,
  1216. struct ggml_tensor * k,
  1217. struct ggml_tensor * v,
  1218. struct ggml_tensor * d,
  1219. bool masked);
  1220. GGML_API struct ggml_tensor * ggml_flash_ff(
  1221. struct ggml_context * ctx,
  1222. struct ggml_tensor * a,
  1223. struct ggml_tensor * b0,
  1224. struct ggml_tensor * b1,
  1225. struct ggml_tensor * c0,
  1226. struct ggml_tensor * c1);
  1227. // partition into non-overlapping windows with padding if needed
  1228. // example:
  1229. // a: 768 64 64 1
  1230. // w: 14
  1231. // res: 768 14 14 25
  1232. // used in sam
  1233. GGML_API struct ggml_tensor * ggml_win_part(
  1234. struct ggml_context * ctx,
  1235. struct ggml_tensor * a,
  1236. int w);
  1237. // reverse of ggml_win_part
  1238. // used in sam
  1239. GGML_API struct ggml_tensor * ggml_win_unpart(
  1240. struct ggml_context * ctx,
  1241. struct ggml_tensor * a,
  1242. int w0,
  1243. int h0,
  1244. int w);
  1245. GGML_API struct ggml_tensor * ggml_unary(
  1246. struct ggml_context * ctx,
  1247. struct ggml_tensor * a,
  1248. enum ggml_unary_op op);
  1249. GGML_API struct ggml_tensor * ggml_unary_inplace(
  1250. struct ggml_context * ctx,
  1251. struct ggml_tensor * a,
  1252. enum ggml_unary_op op);
  1253. // used in sam
  1254. GGML_API struct ggml_tensor * ggml_get_rel_pos(
  1255. struct ggml_context * ctx,
  1256. struct ggml_tensor * a,
  1257. int qh,
  1258. int kh);
  1259. // used in sam
  1260. GGML_API struct ggml_tensor * ggml_add_rel_pos(
  1261. struct ggml_context * ctx,
  1262. struct ggml_tensor * a,
  1263. struct ggml_tensor * pw,
  1264. struct ggml_tensor * ph);
  1265. GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace(
  1266. struct ggml_context * ctx,
  1267. struct ggml_tensor * a,
  1268. struct ggml_tensor * pw,
  1269. struct ggml_tensor * ph);
  1270. // custom operators
  1271. typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
  1272. typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
  1273. typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
  1274. typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1275. typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1276. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32(
  1277. struct ggml_context * ctx,
  1278. struct ggml_tensor * a,
  1279. ggml_unary_op_f32_t fun),
  1280. "use ggml_map_custom1 instead");
  1281. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
  1282. struct ggml_context * ctx,
  1283. struct ggml_tensor * a,
  1284. ggml_unary_op_f32_t fun),
  1285. "use ggml_map_custom1_inplace instead");
  1286. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32(
  1287. struct ggml_context * ctx,
  1288. struct ggml_tensor * a,
  1289. struct ggml_tensor * b,
  1290. ggml_binary_op_f32_t fun),
  1291. "use ggml_map_custom2 instead");
  1292. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
  1293. struct ggml_context * ctx,
  1294. struct ggml_tensor * a,
  1295. struct ggml_tensor * b,
  1296. ggml_binary_op_f32_t fun),
  1297. "use ggml_map_custom2_inplace instead");
  1298. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32(
  1299. struct ggml_context * ctx,
  1300. struct ggml_tensor * a,
  1301. ggml_custom1_op_f32_t fun),
  1302. "use ggml_map_custom1 instead");
  1303. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
  1304. struct ggml_context * ctx,
  1305. struct ggml_tensor * a,
  1306. ggml_custom1_op_f32_t fun),
  1307. "use ggml_map_custom1_inplace instead");
  1308. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32(
  1309. struct ggml_context * ctx,
  1310. struct ggml_tensor * a,
  1311. struct ggml_tensor * b,
  1312. ggml_custom2_op_f32_t fun),
  1313. "use ggml_map_custom2 instead");
  1314. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
  1315. struct ggml_context * ctx,
  1316. struct ggml_tensor * a,
  1317. struct ggml_tensor * b,
  1318. ggml_custom2_op_f32_t fun),
  1319. "use ggml_map_custom2_inplace instead");
  1320. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32(
  1321. struct ggml_context * ctx,
  1322. struct ggml_tensor * a,
  1323. struct ggml_tensor * b,
  1324. struct ggml_tensor * c,
  1325. ggml_custom3_op_f32_t fun),
  1326. "use ggml_map_custom3 instead");
  1327. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
  1328. struct ggml_context * ctx,
  1329. struct ggml_tensor * a,
  1330. struct ggml_tensor * b,
  1331. struct ggml_tensor * c,
  1332. ggml_custom3_op_f32_t fun),
  1333. "use ggml_map_custom3_inplace instead");
  1334. // custom operators v2
  1335. typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
  1336. typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
  1337. typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
  1338. #define GGML_N_TASKS_MAX -1
  1339. GGML_API struct ggml_tensor * ggml_map_custom1(
  1340. struct ggml_context * ctx,
  1341. struct ggml_tensor * a,
  1342. ggml_custom1_op_t fun,
  1343. int n_tasks,
  1344. void * userdata);
  1345. GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
  1346. struct ggml_context * ctx,
  1347. struct ggml_tensor * a,
  1348. ggml_custom1_op_t fun,
  1349. int n_tasks,
  1350. void * userdata);
  1351. GGML_API struct ggml_tensor * ggml_map_custom2(
  1352. struct ggml_context * ctx,
  1353. struct ggml_tensor * a,
  1354. struct ggml_tensor * b,
  1355. ggml_custom2_op_t fun,
  1356. int n_tasks,
  1357. void * userdata);
  1358. GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
  1359. struct ggml_context * ctx,
  1360. struct ggml_tensor * a,
  1361. struct ggml_tensor * b,
  1362. ggml_custom2_op_t fun,
  1363. int n_tasks,
  1364. void * userdata);
  1365. GGML_API struct ggml_tensor * ggml_map_custom3(
  1366. struct ggml_context * ctx,
  1367. struct ggml_tensor * a,
  1368. struct ggml_tensor * b,
  1369. struct ggml_tensor * c,
  1370. ggml_custom3_op_t fun,
  1371. int n_tasks,
  1372. void * userdata);
  1373. GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
  1374. struct ggml_context * ctx,
  1375. struct ggml_tensor * a,
  1376. struct ggml_tensor * b,
  1377. struct ggml_tensor * c,
  1378. ggml_custom3_op_t fun,
  1379. int n_tasks,
  1380. void * userdata);
  1381. // loss function
  1382. GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
  1383. struct ggml_context * ctx,
  1384. struct ggml_tensor * a,
  1385. struct ggml_tensor * b);
  1386. GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
  1387. struct ggml_context * ctx,
  1388. struct ggml_tensor * a,
  1389. struct ggml_tensor * b,
  1390. struct ggml_tensor * c);
  1391. //
  1392. // automatic differentiation
  1393. //
  1394. GGML_API void ggml_set_param(
  1395. struct ggml_context * ctx,
  1396. struct ggml_tensor * tensor);
  1397. GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  1398. GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);
  1399. GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
  1400. GGML_API struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
  1401. // graph allocation in a context
  1402. GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx);
  1403. GGML_API struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor);
  1404. GGML_API size_t ggml_graph_overhead(void);
  1405. // ggml_graph_plan() has to be called before ggml_graph_compute()
  1406. // when plan.work_size > 0, caller must allocate memory for plan.work_data
  1407. GGML_API struct ggml_cplan ggml_graph_plan (struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
  1408. GGML_API int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
  1409. GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph);
  1410. // same as ggml_graph_compute() but the work data is allocated as a part of the context
  1411. // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
  1412. GGML_API void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
  1413. GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
  1414. GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
  1415. GGML_API struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
  1416. // print info and performance information for the graph
  1417. GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
  1418. // dump the graph into a file using the dot format
  1419. GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
  1420. //
  1421. // optimization
  1422. //
  1423. // optimization methods
  1424. enum ggml_opt_type {
  1425. GGML_OPT_ADAM,
  1426. GGML_OPT_LBFGS,
  1427. };
  1428. // linesearch methods
  1429. enum ggml_linesearch {
  1430. GGML_LINESEARCH_DEFAULT = 1,
  1431. GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
  1432. GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
  1433. GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
  1434. };
  1435. // optimization return values
  1436. enum ggml_opt_result {
  1437. GGML_OPT_OK = 0,
  1438. GGML_OPT_DID_NOT_CONVERGE,
  1439. GGML_OPT_NO_CONTEXT,
  1440. GGML_OPT_INVALID_WOLFE,
  1441. GGML_OPT_FAIL,
  1442. GGML_LINESEARCH_FAIL = -128,
  1443. GGML_LINESEARCH_MINIMUM_STEP,
  1444. GGML_LINESEARCH_MAXIMUM_STEP,
  1445. GGML_LINESEARCH_MAXIMUM_ITERATIONS,
  1446. GGML_LINESEARCH_INVALID_PARAMETERS,
  1447. };
  1448. typedef void (*ggml_opt_callback)(void * data, float * sched);
  1449. typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
  1450. // optimization parameters
  1451. //
  1452. // see ggml.c (ggml_opt_default_params) for default values
  1453. //
  1454. struct ggml_opt_params {
  1455. enum ggml_opt_type type;
  1456. int n_threads;
  1457. // delta-based convergence test
  1458. //
  1459. // if past == 0 - disabled
  1460. // if past > 0:
  1461. // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
  1462. //
  1463. int past;
  1464. float delta;
  1465. // maximum number of iterations without improvement
  1466. //
  1467. // if 0 - disabled
  1468. // if > 0:
  1469. // assume convergence if no cost improvement in this number of iterations
  1470. //
  1471. int max_no_improvement;
  1472. bool print_forward_graph;
  1473. bool print_backward_graph;
  1474. // ADAM parameters
  1475. struct {
  1476. int n_iter;
  1477. float sched; // schedule multiplier (fixed, decay or warmup)
  1478. float decay; // weight decay for AdamW, use 0.0f to disable
  1479. int decay_min_ndim; // minimum number of tensor dimension to apply weight decay
  1480. float alpha; // learning rate
  1481. float beta1;
  1482. float beta2;
  1483. float eps; // epsilon for numerical stability
  1484. float eps_f; // epsilon for convergence test
  1485. float eps_g; // epsilon for convergence test
  1486. float gclip; // gradient clipping
  1487. } adam;
  1488. // LBFGS parameters
  1489. struct {
  1490. int m; // number of corrections to approximate the inv. Hessian
  1491. int n_iter;
  1492. int max_linesearch;
  1493. float eps; // convergence tolerance
  1494. float ftol; // line search tolerance
  1495. float wolfe;
  1496. float min_step;
  1497. float max_step;
  1498. enum ggml_linesearch linesearch;
  1499. } lbfgs;
  1500. };
  1501. struct ggml_opt_context {
  1502. struct ggml_context * ctx;
  1503. struct ggml_opt_params params;
  1504. int iter;
  1505. int64_t nx; // number of parameter elements
  1506. bool just_initialized;
  1507. float loss_before;
  1508. float loss_after;
  1509. struct {
  1510. struct ggml_tensor * m; // first moment
  1511. struct ggml_tensor * v; // second moment
  1512. struct ggml_tensor * pf; // past function values
  1513. float fx_best;
  1514. float fx_prev;
  1515. int n_no_improvement;
  1516. } adam;
  1517. struct {
  1518. struct ggml_tensor * x; // current parameters
  1519. struct ggml_tensor * xp; // previous parameters
  1520. struct ggml_tensor * g; // current gradient
  1521. struct ggml_tensor * gp; // previous gradient
  1522. struct ggml_tensor * d; // search direction
  1523. struct ggml_tensor * pf; // past function values
  1524. struct ggml_tensor * lmal; // the L-BFGS memory alpha
  1525. struct ggml_tensor * lmys; // the L-BFGS memory ys
  1526. struct ggml_tensor * lms; // the L-BFGS memory s
  1527. struct ggml_tensor * lmy; // the L-BFGS memory y
  1528. float fx_best;
  1529. float step;
  1530. int j;
  1531. int k;
  1532. int end;
  1533. int n_no_improvement;
  1534. } lbfgs;
  1535. };
  1536. GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
  1537. // optimize the function defined by the tensor f
  1538. GGML_API enum ggml_opt_result ggml_opt(
  1539. struct ggml_context * ctx,
  1540. struct ggml_opt_params params,
  1541. struct ggml_tensor * f);
  1542. // initialize optimizer context
  1543. GGML_API void ggml_opt_init(
  1544. struct ggml_context * ctx,
  1545. struct ggml_opt_context * opt,
  1546. struct ggml_opt_params params,
  1547. int64_t nx);
  1548. // continue optimizing the function defined by the tensor f
  1549. GGML_API enum ggml_opt_result ggml_opt_resume(
  1550. struct ggml_context * ctx,
  1551. struct ggml_opt_context * opt,
  1552. struct ggml_tensor * f);
  1553. // continue optimizing the function defined by the tensor f
  1554. GGML_API enum ggml_opt_result ggml_opt_resume_g(
  1555. struct ggml_context * ctx,
  1556. struct ggml_opt_context * opt,
  1557. struct ggml_tensor * f,
  1558. struct ggml_cgraph * gf,
  1559. struct ggml_cgraph * gb,
  1560. ggml_opt_callback callback,
  1561. void * callback_data);
  1562. //
  1563. // quantization
  1564. //
  1565. GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1566. GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
  1567. GGML_API size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1568. GGML_API size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist);
  1569. GGML_API size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1570. GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist);
  1571. //
  1572. // gguf
  1573. //
  1574. enum gguf_type {
  1575. GGUF_TYPE_UINT8 = 0,
  1576. GGUF_TYPE_INT8 = 1,
  1577. GGUF_TYPE_UINT16 = 2,
  1578. GGUF_TYPE_INT16 = 3,
  1579. GGUF_TYPE_UINT32 = 4,
  1580. GGUF_TYPE_INT32 = 5,
  1581. GGUF_TYPE_FLOAT32 = 6,
  1582. GGUF_TYPE_BOOL = 7,
  1583. GGUF_TYPE_STRING = 8,
  1584. GGUF_TYPE_ARRAY = 9,
  1585. GGUF_TYPE_UINT64 = 10,
  1586. GGUF_TYPE_INT64 = 11,
  1587. GGUF_TYPE_FLOAT64 = 12,
  1588. GGUF_TYPE_COUNT, // marks the end of the enum
  1589. };
  1590. struct gguf_context;
  1591. struct gguf_init_params {
  1592. bool no_alloc;
  1593. // if not NULL, create a ggml_context and allocate the tensor data in it
  1594. struct ggml_context ** ctx;
  1595. };
  1596. GGML_API struct gguf_context * gguf_init_empty(void);
  1597. GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
  1598. //GGML_API struct gguf_context * gguf_init_from_buffer(..);
  1599. GGML_API void gguf_free(struct gguf_context * ctx);
  1600. GGML_API const char * gguf_type_name(enum gguf_type type);
  1601. GGML_API int gguf_get_version (const struct gguf_context * ctx);
  1602. GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx);
  1603. GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx);
  1604. GGML_API void * gguf_get_data (const struct gguf_context * ctx);
  1605. GGML_API int gguf_get_n_kv(const struct gguf_context * ctx);
  1606. GGML_API int gguf_find_key(const struct gguf_context * ctx, const char * key);
  1607. GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int i);
  1608. GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int i);
  1609. GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int i);
  1610. // results are undefined if the wrong type is used for the key
  1611. GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int i);
  1612. GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int i);
  1613. GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int i);
  1614. GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int i);
  1615. GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int i);
  1616. GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int i);
  1617. GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int i);
  1618. GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int i);
  1619. GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int i);
  1620. GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int i);
  1621. GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int i);
  1622. GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int i);
  1623. GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int i);
  1624. GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int i);
  1625. GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);
  1626. GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx);
  1627. GGML_API int gguf_find_tensor (const struct gguf_context * ctx, const char * name);
  1628. GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i);
  1629. GGML_API char * gguf_get_tensor_name (const struct gguf_context * ctx, int i);
  1630. // overrides existing values or adds a new one
  1631. GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
  1632. GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
  1633. GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
  1634. GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
  1635. GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
  1636. GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
  1637. GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
  1638. GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
  1639. GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val);
  1640. GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val);
  1641. GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
  1642. GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
  1643. GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n);
  1644. GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, int n);
  1645. // set or add KV pairs from another context
  1646. GGML_API void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src);
  1647. // manage tensor info
  1648. GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
  1649. GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
  1650. GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size);
  1651. // writing gguf files can be done in 2 ways:
  1652. //
  1653. // - write the entire gguf_context to a binary file in a single pass:
  1654. //
  1655. // gguf_write_to_file(ctx, fname);
  1656. //
  1657. // - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
  1658. //
  1659. // FILE * f = fopen(fname, "wb");
  1660. // fseek(f, gguf_get_meta_size(ctx), SEEK_SET);
  1661. // fwrite(f, ...);
  1662. // void * data = gguf_meta_get_meta_data(ctx);
  1663. // fseek(f, 0, SEEK_SET);
  1664. // fwrite(f, data, gguf_get_meta_size(ctx));
  1665. // free(data);
  1666. // fclose(f);
  1667. //
  1668. // write the entire context to a binary file
  1669. GGML_API void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta);
  1670. // get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
  1671. GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
  1672. GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
  1673. //
  1674. // system info
  1675. //
  1676. GGML_API int ggml_cpu_has_avx (void);
  1677. GGML_API int ggml_cpu_has_avx2 (void);
  1678. GGML_API int ggml_cpu_has_avx512 (void);
  1679. GGML_API int ggml_cpu_has_avx512_vbmi(void);
  1680. GGML_API int ggml_cpu_has_avx512_vnni(void);
  1681. GGML_API int ggml_cpu_has_fma (void);
  1682. GGML_API int ggml_cpu_has_neon (void);
  1683. GGML_API int ggml_cpu_has_arm_fma (void);
  1684. GGML_API int ggml_cpu_has_metal (void);
  1685. GGML_API int ggml_cpu_has_f16c (void);
  1686. GGML_API int ggml_cpu_has_fp16_va (void);
  1687. GGML_API int ggml_cpu_has_wasm_simd (void);
  1688. GGML_API int ggml_cpu_has_blas (void);
  1689. GGML_API int ggml_cpu_has_cublas (void);
  1690. GGML_API int ggml_cpu_has_clblast (void);
  1691. GGML_API int ggml_cpu_has_gpublas (void);
  1692. GGML_API int ggml_cpu_has_sse3 (void);
  1693. GGML_API int ggml_cpu_has_ssse3 (void);
  1694. GGML_API int ggml_cpu_has_vsx (void);
  1695. //
  1696. // Internal types and functions exposed for tests and benchmarks
  1697. //
  1698. #ifdef __cplusplus
  1699. // restrict not standard in C++
  1700. #define GGML_RESTRICT
  1701. #else
  1702. #define GGML_RESTRICT restrict
  1703. #endif
  1704. typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
  1705. typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
  1706. typedef void (*ggml_vec_dot_t) (const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
  1707. typedef struct {
  1708. const char * type_name;
  1709. int blck_size;
  1710. size_t type_size;
  1711. bool is_quantized;
  1712. ggml_to_float_t to_float;
  1713. ggml_from_float_t from_float;
  1714. ggml_from_float_t from_float_reference;
  1715. ggml_vec_dot_t vec_dot;
  1716. enum ggml_type vec_dot_type;
  1717. } ggml_type_traits_t;
  1718. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type);
  1719. #ifdef __cplusplus
  1720. }
  1721. #endif