convert_hf_to_gguf.py 299 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. logger = logging.getLogger("hf-to-gguf")
  27. ###### MODEL DEFINITIONS ######
  28. class SentencePieceTokenTypes(IntEnum):
  29. NORMAL = 1
  30. UNKNOWN = 2
  31. CONTROL = 3
  32. USER_DEFINED = 4
  33. UNUSED = 5
  34. BYTE = 6
  35. class ModelType(IntEnum):
  36. TEXT = 1
  37. MMPROJ = 2
  38. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  39. class ModelBase:
  40. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  41. ModelType.TEXT: {},
  42. ModelType.MMPROJ: {},
  43. }
  44. dir_model: Path
  45. ftype: gguf.LlamaFileType
  46. fname_out: Path
  47. is_big_endian: bool
  48. endianess: gguf.GGUFEndian
  49. use_temp_file: bool
  50. lazy: bool
  51. part_names: list[str]
  52. is_safetensors: bool
  53. hparams: dict[str, Any]
  54. tensor_names: set[str] | None
  55. gguf_writer: gguf.GGUFWriter
  56. model_name: str | None
  57. metadata_override: Path | None
  58. dir_model_card: Path
  59. remote_hf_model_id: str | None
  60. # subclasses should define this!
  61. model_arch: gguf.MODEL_ARCH
  62. # subclasses should initialize this!
  63. block_count: int
  64. tensor_map: gguf.TensorNameMap
  65. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  66. use_temp_file: bool = False, eager: bool = False,
  67. metadata_override: Path | None = None, model_name: str | None = None,
  68. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  69. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None):
  70. if type(self) is ModelBase or \
  71. type(self) is TextModel or \
  72. type(self) is MmprojModel:
  73. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  74. self.dir_model = dir_model
  75. self.ftype = ftype
  76. self.fname_out = fname_out
  77. self.is_big_endian = is_big_endian
  78. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  79. self.use_temp_file = use_temp_file
  80. self.lazy = not eager or (remote_hf_model_id is not None)
  81. self.remote_hf_model_id = remote_hf_model_id
  82. if remote_hf_model_id is not None:
  83. self.is_safetensors = True
  84. def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
  85. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  86. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  87. self.tensor_names = set(name for name in remote_tensors.keys())
  88. for name, remote_tensor in gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id).items():
  89. yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
  90. self.get_tensors = get_remote_tensors
  91. else:
  92. self.part_names = ModelBase.get_model_part_names(self.dir_model, "model", ".safetensors")
  93. self.is_safetensors = len(self.part_names) > 0
  94. if not self.is_safetensors:
  95. self.part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  96. self.hparams = ModelBase.load_hparams(self.dir_model) if hparams is None else hparams
  97. self.tensor_names = None
  98. self.metadata_override = metadata_override
  99. self.model_name = model_name
  100. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  101. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  102. if self.ftype == gguf.LlamaFileType.GUESSED:
  103. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  104. _, first_tensor = next(self.get_tensors())
  105. if first_tensor.dtype == torch.float16:
  106. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  107. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  108. else:
  109. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  110. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  111. # Configure GGUF Writer
  112. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  113. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  114. @classmethod
  115. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  116. stem, suffix = path.stem, path.suffix
  117. new_name = f"{prefix}{stem}{suffix}"
  118. return path.with_name(new_name)
  119. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  120. key = next((k for k in keys if k in self.hparams), None)
  121. if key is not None:
  122. return self.hparams[key]
  123. if optional:
  124. return None
  125. raise KeyError(f"could not find any of: {keys}")
  126. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  127. tensor_names_from_parts: set[str] = set()
  128. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  129. index_name += ".index.json"
  130. index_file = self.dir_model / index_name
  131. if index_file.is_file():
  132. self.tensor_names = set()
  133. logger.info(f"gguf: loading model weight map from '{index_name}'")
  134. with open(index_file, "r", encoding="utf-8") as f:
  135. index: dict[str, Any] = json.load(f)
  136. weight_map = index.get("weight_map")
  137. if weight_map is None or not isinstance(weight_map, dict):
  138. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  139. self.tensor_names.update(weight_map.keys())
  140. else:
  141. self.tensor_names = tensor_names_from_parts
  142. weight_map = {}
  143. for part_name in self.part_names:
  144. logger.info(f"gguf: loading model part '{part_name}'")
  145. ctx: ContextManager[Any]
  146. if self.is_safetensors:
  147. from safetensors import safe_open
  148. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  149. else:
  150. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  151. with ctx as model_part:
  152. tensor_names_from_parts.update(model_part.keys())
  153. for name in model_part.keys():
  154. if self.is_safetensors:
  155. if self.lazy:
  156. data = model_part.get_slice(name)
  157. data = LazyTorchTensor.from_safetensors_slice(data)
  158. else:
  159. data = model_part.get_tensor(name)
  160. else:
  161. data = model_part[name]
  162. if self.lazy:
  163. data = LazyTorchTensor.from_eager(data)
  164. yield name, data
  165. # verify tensor name presence and identify potentially missing files
  166. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  167. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  168. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  169. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  170. if len(extra) == 0 and len(missing_files) > 0:
  171. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  172. f"Missing tensors: {missing}")
  173. else:
  174. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  175. f"Missing tensors: {missing}\n"
  176. f"Extra tensors: {extra}")
  177. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  178. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  179. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  180. name: str = gguf.TENSOR_NAMES[key]
  181. if "{bid}" in name:
  182. assert bid is not None
  183. name = name.format(bid=bid)
  184. return name + suffix
  185. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  186. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  187. return False
  188. key_name: str = gguf.TENSOR_NAMES[key]
  189. if "{bid}" in key_name:
  190. if bid is None:
  191. return False
  192. key_name = key_name.format(bid=bid)
  193. else:
  194. if bid is not None:
  195. return False
  196. return name == (key_name + suffix)
  197. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  198. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  199. if new_name is None:
  200. raise ValueError(f"Can not map tensor {name!r}")
  201. return new_name
  202. def set_gguf_parameters(self):
  203. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  204. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  205. del bid # unused
  206. return [(self.map_tensor_name(name), data_torch)]
  207. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  208. del name, new_name, bid, n_dims # unused
  209. return False
  210. # some models need extra generated tensors (like rope_freqs)
  211. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  212. return ()
  213. def prepare_tensors(self):
  214. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  215. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  216. # we don't need these
  217. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  218. continue
  219. old_dtype = data_torch.dtype
  220. # convert any unsupported data types to float32
  221. if data_torch.dtype not in (torch.float16, torch.float32):
  222. data_torch = data_torch.to(torch.float32)
  223. # use the first number-like part of the tensor name as the block id
  224. bid = None
  225. for part in name.split("."):
  226. if part.isdecimal():
  227. bid = int(part)
  228. break
  229. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  230. # TODO: why do we squeeze here?
  231. # data = data_torch.squeeze().numpy()
  232. data = data_torch.numpy()
  233. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  234. if len(data.shape) == 0:
  235. data = data_torch.numpy()
  236. n_dims = len(data.shape)
  237. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  238. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  239. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  240. data_qtype = gguf.GGMLQuantizationType.F32
  241. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  242. # Some tensor types are always in float32
  243. if data_qtype is False and (
  244. any(
  245. self.match_model_tensor_name(new_name, key, bid)
  246. for key in (
  247. gguf.MODEL_TENSOR.FFN_GATE_INP,
  248. gguf.MODEL_TENSOR.POS_EMBD,
  249. gguf.MODEL_TENSOR.TOKEN_TYPES,
  250. gguf.MODEL_TENSOR.SSM_CONV1D,
  251. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  252. gguf.MODEL_TENSOR.TIME_MIX_W1,
  253. gguf.MODEL_TENSOR.TIME_MIX_W2,
  254. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  255. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  256. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  257. gguf.MODEL_TENSOR.POSNET_NORM1,
  258. gguf.MODEL_TENSOR.POSNET_NORM2,
  259. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  260. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  261. )
  262. )
  263. or not new_name.endswith(".weight")
  264. ):
  265. data_qtype = gguf.GGMLQuantizationType.F32
  266. if data_qtype is False and any(
  267. self.match_model_tensor_name(new_name, key, bid)
  268. for key in (
  269. gguf.MODEL_TENSOR.TOKEN_EMBD,
  270. gguf.MODEL_TENSOR.OUTPUT,
  271. )
  272. ):
  273. if self.ftype in (
  274. gguf.LlamaFileType.MOSTLY_TQ1_0,
  275. gguf.LlamaFileType.MOSTLY_TQ2_0,
  276. ):
  277. # TODO: use Q4_K and Q6_K
  278. data_qtype = gguf.GGMLQuantizationType.F16
  279. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  280. if isinstance(data_qtype, bool):
  281. if self.ftype == gguf.LlamaFileType.ALL_F32:
  282. data_qtype = gguf.GGMLQuantizationType.F32
  283. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  284. data_qtype = gguf.GGMLQuantizationType.F16
  285. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  286. data_qtype = gguf.GGMLQuantizationType.BF16
  287. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  288. data_qtype = gguf.GGMLQuantizationType.Q8_0
  289. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  290. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  291. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  292. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  293. else:
  294. raise ValueError(f"Unknown file type: {self.ftype.name}")
  295. try:
  296. data = gguf.quants.quantize(data, data_qtype)
  297. except gguf.QuantError as e:
  298. logger.warning("%s, %s", e, "falling back to F16")
  299. data_qtype = gguf.GGMLQuantizationType.F16
  300. data = gguf.quants.quantize(data, data_qtype)
  301. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  302. # reverse shape to make it similar to the internal ggml dimension order
  303. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  304. # n_dims is implicit in the shape
  305. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  306. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  307. def set_type(self):
  308. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  309. def prepare_metadata(self, vocab_only: bool):
  310. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  311. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  312. # If we are using HF model id, set the metadata name to the model id
  313. if self.remote_hf_model_id:
  314. self.metadata.name = self.remote_hf_model_id
  315. # Fallback to model directory name if metadata name is still missing
  316. if self.metadata.name is None:
  317. self.metadata.name = self.dir_model.name
  318. # Generate parameter weight class (useful for leader boards) if not yet determined
  319. if self.metadata.size_label is None and total_params > 0:
  320. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  321. self.set_type()
  322. logger.info("Set meta model")
  323. self.metadata.set_gguf_meta_model(self.gguf_writer)
  324. logger.info("Set model parameters")
  325. self.set_gguf_parameters()
  326. logger.info("Set model quantization version")
  327. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  328. def write_vocab(self):
  329. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  330. def write(self):
  331. self.prepare_tensors()
  332. self.prepare_metadata(vocab_only=False)
  333. self.gguf_writer.write_header_to_file(path=self.fname_out)
  334. self.gguf_writer.write_kv_data_to_file()
  335. self.gguf_writer.write_tensors_to_file(progress=True)
  336. self.gguf_writer.close()
  337. @staticmethod
  338. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  339. part_names: list[str] = []
  340. for filename in os.listdir(dir_model):
  341. if filename.startswith(prefix) and filename.endswith(suffix):
  342. part_names.append(filename)
  343. part_names.sort()
  344. return part_names
  345. @staticmethod
  346. def load_hparams(dir_model: Path):
  347. try:
  348. # for security reason, we don't allow loading remote code by default
  349. # if a model need remote code, we will fallback to config.json
  350. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  351. except Exception as e:
  352. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  353. logger.warning("Trying to load config.json instead")
  354. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  355. config = json.load(f)
  356. if "llm_config" in config:
  357. # rename for InternVL
  358. config["text_config"] = config["llm_config"]
  359. if "thinker_config" in config:
  360. # rename for Qwen2.5-Omni
  361. config["text_config"] = config["thinker_config"]["text_config"]
  362. return config
  363. @classmethod
  364. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  365. assert names
  366. def func(modelcls: AnyModel) -> AnyModel:
  367. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  368. for name in names:
  369. cls._model_classes[model_type][name] = modelcls
  370. return modelcls
  371. return func
  372. @classmethod
  373. def print_registered_models(cls):
  374. for model_type, model_classes in cls._model_classes.items():
  375. logger.error(f"{model_type.name} models:")
  376. for name in sorted(model_classes.keys()):
  377. logger.error(f" - {name}")
  378. @classmethod
  379. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  380. try:
  381. return cls._model_classes[model_type][arch]
  382. except KeyError:
  383. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  384. class TextModel(ModelBase):
  385. model_type = ModelType.TEXT
  386. hf_arch: str
  387. def __init__(self, *args, **kwargs):
  388. super().__init__(*args, **kwargs)
  389. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  390. if "text_config" in self.hparams:
  391. # move the text_config to the root level
  392. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  393. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  394. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  395. @classmethod
  396. def __init_subclass__(cls):
  397. # can't use an abstract property, because overriding it without type errors
  398. # would require using decorated functions instead of simply defining the property
  399. if "model_arch" not in cls.__dict__:
  400. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  401. def set_vocab(self):
  402. self._set_vocab_gpt2()
  403. def prepare_metadata(self, vocab_only: bool):
  404. super().prepare_metadata(vocab_only=vocab_only)
  405. total_params = self.gguf_writer.get_total_parameter_count()[0]
  406. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  407. output_type: str = self.ftype.name.partition("_")[2]
  408. # Filename Output
  409. if self.fname_out.is_dir():
  410. # Generate default filename based on model specification and available metadata
  411. if not vocab_only:
  412. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  413. else:
  414. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  415. # Use the default filename
  416. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  417. else:
  418. # Output path is a custom defined templated filename
  419. # Note: `not is_dir()` is used because `.is_file()` will not detect
  420. # file template strings as it doesn't actually exist as a file
  421. # Process templated file name with the output ftype, useful with the "auto" ftype
  422. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  423. logger.info("Set model tokenizer")
  424. self.set_vocab()
  425. def set_gguf_parameters(self):
  426. self.gguf_writer.add_block_count(self.block_count)
  427. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length"], optional=True)) is not None:
  428. self.gguf_writer.add_context_length(n_ctx)
  429. logger.info(f"gguf: context length = {n_ctx}")
  430. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  431. self.gguf_writer.add_embedding_length(n_embd)
  432. logger.info(f"gguf: embedding length = {n_embd}")
  433. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  434. self.gguf_writer.add_feed_forward_length(n_ff)
  435. logger.info(f"gguf: feed forward length = {n_ff}")
  436. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  437. self.gguf_writer.add_head_count(n_head)
  438. logger.info(f"gguf: head count = {n_head}")
  439. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  440. self.gguf_writer.add_head_count_kv(n_head_kv)
  441. logger.info(f"gguf: key-value head count = {n_head_kv}")
  442. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  443. self.gguf_writer.add_rope_freq_base(rope_theta)
  444. logger.info(f"gguf: rope theta = {rope_theta}")
  445. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  446. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  447. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  448. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  449. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  450. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  451. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  452. self.gguf_writer.add_expert_count(n_experts)
  453. logger.info(f"gguf: expert count = {n_experts}")
  454. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  455. self.gguf_writer.add_expert_used_count(n_experts_used)
  456. logger.info(f"gguf: experts used count = {n_experts_used}")
  457. if (head_dim := self.hparams.get("head_dim")) is not None:
  458. self.gguf_writer.add_key_length(head_dim)
  459. self.gguf_writer.add_value_length(head_dim)
  460. self.gguf_writer.add_file_type(self.ftype)
  461. logger.info(f"gguf: file type = {self.ftype}")
  462. def write_vocab(self):
  463. if len(self.gguf_writer.tensors) != 1:
  464. raise ValueError('Splitting the vocabulary is not supported')
  465. self.prepare_metadata(vocab_only=True)
  466. self.gguf_writer.write_header_to_file(path=self.fname_out)
  467. self.gguf_writer.write_kv_data_to_file()
  468. self.gguf_writer.close()
  469. def does_token_look_special(self, token: str | bytes) -> bool:
  470. if isinstance(token, (bytes, bytearray)):
  471. token_text = token.decode(encoding="utf-8")
  472. elif isinstance(token, memoryview):
  473. token_text = token.tobytes().decode(encoding="utf-8")
  474. else:
  475. token_text = token
  476. # Some models mark some added tokens which ought to be control tokens as not special.
  477. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  478. seems_special = token_text in (
  479. "<pad>", # deepseek-coder
  480. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  481. )
  482. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  483. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  484. # TODO: should these be marked as UNUSED instead? (maybe not)
  485. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  486. return seems_special
  487. # used for GPT-2 BPE and WordPiece vocabs
  488. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  489. tokens: list[str] = []
  490. toktypes: list[int] = []
  491. from transformers import AutoTokenizer
  492. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  493. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  494. assert max(tokenizer.vocab.values()) < vocab_size
  495. tokpre = self.get_vocab_base_pre(tokenizer)
  496. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  497. added_vocab = tokenizer.get_added_vocab()
  498. added_tokens_decoder = tokenizer.added_tokens_decoder
  499. for i in range(vocab_size):
  500. if i not in reverse_vocab:
  501. tokens.append(f"[PAD{i}]")
  502. toktypes.append(gguf.TokenType.UNUSED)
  503. else:
  504. token: str = reverse_vocab[i]
  505. if token in added_vocab:
  506. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  507. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  508. if not added_tokens_decoder[i].normalized:
  509. previous_token = token
  510. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  511. if previous_token != token:
  512. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  513. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  514. toktypes.append(gguf.TokenType.CONTROL)
  515. else:
  516. # NOTE: this was added for Gemma.
  517. # Encoding and decoding the tokens above isn't sufficient for this case.
  518. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  519. toktypes.append(gguf.TokenType.USER_DEFINED)
  520. else:
  521. toktypes.append(gguf.TokenType.NORMAL)
  522. tokens.append(token)
  523. return tokens, toktypes, tokpre
  524. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  525. # do not modify it manually!
  526. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  527. # Marker: Start get_vocab_base_pre
  528. def get_vocab_base_pre(self, tokenizer) -> str:
  529. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  530. # is specific for the BPE pre-tokenizer used by the model
  531. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  532. # use in llama.cpp to implement the same pre-tokenizer
  533. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  534. chktok = tokenizer.encode(chktxt)
  535. chkhsh = sha256(str(chktok).encode()).hexdigest()
  536. logger.debug(f"chktok: {chktok}")
  537. logger.debug(f"chkhsh: {chkhsh}")
  538. res = None
  539. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  540. # or pull the latest version of the model from Huggingface
  541. # don't edit the hashes manually!
  542. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  543. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  544. res = "llama-bpe"
  545. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  546. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  547. res = "deepseek-llm"
  548. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  549. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  550. res = "deepseek-coder"
  551. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  552. # ref: https://huggingface.co/tiiuae/falcon-7b
  553. res = "falcon"
  554. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  555. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  556. res = "bert-bge"
  557. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  558. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  559. res = "falcon3"
  560. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  561. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  562. res = "bert-bge-large"
  563. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  564. # ref: https://huggingface.co/mosaicml/mpt-7b
  565. res = "mpt"
  566. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  567. # ref: https://huggingface.co/bigcode/starcoder2-3b
  568. res = "starcoder"
  569. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  570. # ref: https://huggingface.co/openai-community/gpt2
  571. res = "gpt-2"
  572. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  573. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  574. res = "stablelm2"
  575. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  576. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  577. res = "refact"
  578. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  579. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  580. res = "command-r"
  581. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  582. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  583. res = "qwen2"
  584. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  585. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  586. res = "olmo"
  587. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  588. # ref: https://huggingface.co/databricks/dbrx-base
  589. res = "dbrx"
  590. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  591. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  592. res = "jina-v1-en"
  593. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  594. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  595. res = "jina-v2-en"
  596. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  597. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  598. res = "jina-v2-es"
  599. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  600. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  601. res = "jina-v2-de"
  602. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  603. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  604. res = "smaug-bpe"
  605. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  606. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  607. res = "poro-chat"
  608. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  609. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  610. res = "jina-v2-code"
  611. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  612. # ref: https://huggingface.co/LumiOpen/Viking-7B
  613. res = "viking"
  614. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  615. # ref: https://huggingface.co/core42/jais-13b
  616. res = "jais"
  617. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  618. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  619. res = "codeshell"
  620. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  621. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  622. res = "tekken"
  623. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  624. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  625. res = "smollm"
  626. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  627. # ref: https://huggingface.co/bigscience/bloom
  628. res = "bloom"
  629. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  630. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  631. res = "gpt3-finnish"
  632. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  633. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  634. res = "exaone"
  635. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  636. # ref: https://huggingface.co/microsoft/phi-2
  637. res = "phi-2"
  638. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  639. # ref: https://huggingface.co/facebook/chameleon-7b
  640. res = "chameleon"
  641. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  642. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  643. res = "roberta-bpe"
  644. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  645. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  646. res = "gigachat"
  647. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  648. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  649. res = "megrez"
  650. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  651. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  652. res = "deepseek-v3"
  653. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  654. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  655. res = "deepseek-r1-qwen"
  656. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  657. # ref: https://huggingface.co/Xenova/gpt-4o
  658. res = "gpt-4o"
  659. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  660. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  661. res = "superbpe"
  662. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  663. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  664. res = "trillion"
  665. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  666. # ref: https://huggingface.co/inclusionAI/Ling-lite
  667. res = "bailingmoe"
  668. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  669. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  670. res = "llama4"
  671. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  672. # ref: https://huggingface.co/mistral-community/pixtral-12b
  673. res = "pixtral"
  674. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  675. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  676. res = "seed-coder"
  677. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  678. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  679. res = "chatglm-bpe"
  680. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  681. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  682. res = "chatglm-bpe"
  683. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  684. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  685. res = "glm4"
  686. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  687. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  688. res = "minerva-7b"
  689. if res is None:
  690. logger.warning("\n")
  691. logger.warning("**************************************************************************************")
  692. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  693. logger.warning("** There are 2 possible reasons for this:")
  694. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  695. logger.warning("** - the pre-tokenization config has changed upstream")
  696. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  697. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  698. logger.warning("**")
  699. logger.warning(f"** chkhsh: {chkhsh}")
  700. logger.warning("**************************************************************************************")
  701. logger.warning("\n")
  702. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  703. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  704. logger.debug(f"chkhsh: {chkhsh}")
  705. return res
  706. # Marker: End get_vocab_base_pre
  707. def _set_vocab_none(self) -> None:
  708. self.gguf_writer.add_tokenizer_model("none")
  709. def _set_vocab_gpt2(self) -> None:
  710. tokens, toktypes, tokpre = self.get_vocab_base()
  711. self.gguf_writer.add_tokenizer_model("gpt2")
  712. self.gguf_writer.add_tokenizer_pre(tokpre)
  713. self.gguf_writer.add_token_list(tokens)
  714. self.gguf_writer.add_token_types(toktypes)
  715. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  716. special_vocab.add_to_gguf(self.gguf_writer)
  717. def _set_vocab_qwen(self):
  718. dir_model = self.dir_model
  719. hparams = self.hparams
  720. tokens: list[str] = []
  721. toktypes: list[int] = []
  722. from transformers import AutoTokenizer
  723. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  724. vocab_size = hparams["vocab_size"]
  725. assert max(tokenizer.get_vocab().values()) < vocab_size
  726. tokpre = self.get_vocab_base_pre(tokenizer)
  727. merges = []
  728. vocab = {}
  729. mergeable_ranks = tokenizer.mergeable_ranks
  730. for token, rank in mergeable_ranks.items():
  731. vocab[QwenModel.token_bytes_to_string(token)] = rank
  732. if len(token) == 1:
  733. continue
  734. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  735. assert len(merged) == 2
  736. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  737. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  738. added_vocab = tokenizer.special_tokens
  739. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  740. for i in range(vocab_size):
  741. if i not in reverse_vocab:
  742. tokens.append(f"[PAD{i}]")
  743. toktypes.append(gguf.TokenType.UNUSED)
  744. elif reverse_vocab[i] in added_vocab:
  745. tokens.append(reverse_vocab[i])
  746. toktypes.append(gguf.TokenType.CONTROL)
  747. else:
  748. tokens.append(reverse_vocab[i])
  749. toktypes.append(gguf.TokenType.NORMAL)
  750. self.gguf_writer.add_tokenizer_model("gpt2")
  751. self.gguf_writer.add_tokenizer_pre(tokpre)
  752. self.gguf_writer.add_token_list(tokens)
  753. self.gguf_writer.add_token_types(toktypes)
  754. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  755. special_vocab.merges = merges
  756. # only add special tokens when they were not already loaded from config.json
  757. if len(special_vocab.special_token_ids) == 0:
  758. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  759. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  760. # this one is usually not in config.json anyway
  761. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  762. special_vocab.add_to_gguf(self.gguf_writer)
  763. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  764. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  765. self.gguf_writer.add_tokenizer_model("llama")
  766. self.gguf_writer.add_tokenizer_pre("default")
  767. self.gguf_writer.add_token_list(tokens)
  768. self.gguf_writer.add_token_scores(scores)
  769. self.gguf_writer.add_token_types(toktypes)
  770. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  771. special_vocab.add_to_gguf(self.gguf_writer)
  772. def _create_vocab_sentencepiece(self):
  773. from sentencepiece import SentencePieceProcessor
  774. tokenizer_path = self.dir_model / 'tokenizer.model'
  775. if not tokenizer_path.is_file():
  776. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  777. tokenizer = SentencePieceProcessor()
  778. tokenizer.LoadFromFile(str(tokenizer_path))
  779. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  780. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  781. scores: list[float] = [-10000.0] * vocab_size
  782. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  783. for token_id in range(tokenizer.vocab_size()):
  784. piece = tokenizer.IdToPiece(token_id)
  785. text = piece.encode("utf-8")
  786. score = tokenizer.GetScore(token_id)
  787. toktype = SentencePieceTokenTypes.NORMAL
  788. if tokenizer.IsUnknown(token_id):
  789. toktype = SentencePieceTokenTypes.UNKNOWN
  790. elif tokenizer.IsControl(token_id):
  791. toktype = SentencePieceTokenTypes.CONTROL
  792. elif tokenizer.IsUnused(token_id):
  793. toktype = SentencePieceTokenTypes.UNUSED
  794. elif tokenizer.IsByte(token_id):
  795. toktype = SentencePieceTokenTypes.BYTE
  796. tokens[token_id] = text
  797. scores[token_id] = score
  798. toktypes[token_id] = toktype
  799. added_tokens_file = self.dir_model / 'added_tokens.json'
  800. if added_tokens_file.is_file():
  801. with open(added_tokens_file, "r", encoding="utf-8") as f:
  802. added_tokens_json = json.load(f)
  803. for key in added_tokens_json:
  804. token_id = added_tokens_json[key]
  805. if token_id >= vocab_size:
  806. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  807. continue
  808. tokens[token_id] = key.encode("utf-8")
  809. scores[token_id] = -1000.0
  810. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  811. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  812. if tokenizer_config_file.is_file():
  813. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  814. tokenizer_config_json = json.load(f)
  815. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  816. for token_id, token_data in added_tokens_decoder.items():
  817. token_id = int(token_id)
  818. token: str = token_data["content"]
  819. if token_id >= vocab_size:
  820. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  821. continue
  822. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  823. if tokens[token_id] != token.encode("utf-8"):
  824. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  825. if token_data.get("special") or self.does_token_look_special(token):
  826. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  827. else:
  828. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  829. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  830. scores[token_id] = -1000.0
  831. tokens[token_id] = token.encode("utf-8")
  832. if vocab_size > len(tokens):
  833. pad_count = vocab_size - len(tokens)
  834. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  835. for i in range(1, pad_count + 1):
  836. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  837. scores.append(-1000.0)
  838. toktypes.append(SentencePieceTokenTypes.UNUSED)
  839. return tokens, scores, toktypes
  840. def _set_vocab_llama_hf(self):
  841. vocab = gguf.LlamaHfVocab(self.dir_model)
  842. tokens = []
  843. scores = []
  844. toktypes = []
  845. for text, score, toktype in vocab.all_tokens():
  846. tokens.append(text)
  847. scores.append(score)
  848. toktypes.append(toktype)
  849. assert len(tokens) == vocab.vocab_size
  850. self.gguf_writer.add_tokenizer_model("llama")
  851. self.gguf_writer.add_tokenizer_pre("default")
  852. self.gguf_writer.add_token_list(tokens)
  853. self.gguf_writer.add_token_scores(scores)
  854. self.gguf_writer.add_token_types(toktypes)
  855. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  856. special_vocab.add_to_gguf(self.gguf_writer)
  857. def _set_vocab_rwkv_world(self):
  858. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  859. vocab_size = self.hparams.get("vocab_size", 65536)
  860. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  861. toktypes: list[int] = [gguf.TokenType.CONTROL]
  862. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  863. lines = f.readlines()
  864. for line in lines:
  865. parts = line.split(' ')
  866. assert len(parts) >= 3
  867. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  868. token = token.encode("utf-8") if isinstance(token, str) else token
  869. assert isinstance(token, bytes)
  870. assert len(token) == token_len
  871. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  872. tokens.append(token_text.encode("utf-8"))
  873. toktypes.append(gguf.TokenType.NORMAL)
  874. remainder = vocab_size - len(tokens)
  875. assert remainder >= 0
  876. for i in range(len(tokens), vocab_size):
  877. tokens.append(f"[PAD{i}]".encode("utf-8"))
  878. toktypes.append(gguf.TokenType.UNUSED)
  879. self.gguf_writer.add_tokenizer_model("rwkv")
  880. self.gguf_writer.add_token_list(tokens)
  881. self.gguf_writer.add_token_types(toktypes)
  882. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  883. special_vocab.chat_template = "rwkv-world"
  884. # hack: Add '\n\n' as the EOT token to make it chat normally
  885. special_vocab._set_special_token("eot", 261)
  886. # hack: Override these as they have already been set (incorrectly)
  887. special_vocab.special_token_ids["bos"] = 0
  888. special_vocab.special_token_ids["eos"] = 0
  889. special_vocab.add_to_gguf(self.gguf_writer)
  890. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  891. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  892. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  893. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  894. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  895. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  896. assert field # tokenizer model
  897. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  898. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  899. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  900. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  901. assert field # token list
  902. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  903. if model_name == "llama-spm":
  904. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  905. assert field # token scores
  906. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  907. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  908. assert field # token types
  909. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  910. if model_name != "llama-spm":
  911. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  912. assert field # token merges
  913. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  914. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  915. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  916. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  917. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  918. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  919. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  920. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  921. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  922. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  923. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  924. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  925. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  926. def _try_set_pooling_type(self) -> None:
  927. # get pooling path
  928. pooling_path = None
  929. module_path = self.dir_model / "modules.json"
  930. if module_path.is_file():
  931. with open(module_path, encoding="utf-8") as f:
  932. modules = json.load(f)
  933. for mod in modules:
  934. if mod["type"] == "sentence_transformers.models.Pooling":
  935. pooling_path = mod["path"]
  936. break
  937. # get pooling type
  938. if pooling_path is not None:
  939. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  940. pooling = json.load(f)
  941. if pooling["pooling_mode_mean_tokens"]:
  942. pooling_type = gguf.PoolingType.MEAN
  943. elif pooling["pooling_mode_cls_token"]:
  944. pooling_type = gguf.PoolingType.CLS
  945. elif pooling["pooling_mode_lasttoken"]:
  946. pooling_type = gguf.PoolingType.LAST
  947. else:
  948. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  949. self.gguf_writer.add_pooling_type(pooling_type)
  950. class MmprojModel(ModelBase):
  951. model_type = ModelType.MMPROJ
  952. model_arch = gguf.MODEL_ARCH.MMPROJ
  953. preprocessor_config: dict[str, Any]
  954. global_config: dict[str, Any]
  955. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"]
  956. has_vision_encoder: bool = True # by default
  957. has_audio_encoder: bool = False
  958. # for models having multiple encoders, we need to separate their hparams
  959. hparams_vision: dict[str, Any] | None = None
  960. hparams_audio: dict[str, Any] | None = None
  961. def __init__(self, *args, **kwargs):
  962. super().__init__(*args, **kwargs)
  963. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  964. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  965. # get n_embd of the text model
  966. if "text_config" not in self.hparams:
  967. self.hparams["text_config"] = {}
  968. if "audio_config" not in self.hparams:
  969. self.hparams["audio_config"] = {}
  970. text_config = {**self.hparams, **self.hparams["text_config"]}
  971. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  972. assert self.n_embd_text > 0, "n_embd not found in hparams"
  973. # move vision config to the top level, while preserving the original hparams in global_config
  974. import copy
  975. self.global_config = copy.deepcopy(self.hparams)
  976. self.hparams_vision = self.get_vision_config()
  977. self.hparams_audio = self.get_audio_config()
  978. if self.hparams_vision is None and self.hparams_audio is None:
  979. raise ValueError("vision_config / audio_config not found in hparams")
  980. # for compat with vision-only models
  981. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  982. # TODO @ngxson : this is a hack to support both vision and audio encoders
  983. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  984. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  985. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  986. # load preprocessor config
  987. with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
  988. self.preprocessor_config = json.load(f)
  989. def get_vision_config(self) -> dict[str, Any] | None:
  990. return self.global_config.get("vision_config")
  991. def get_audio_config(self) -> dict[str, Any] | None:
  992. return self.global_config.get("audio_config")
  993. def set_type(self):
  994. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  995. def set_gguf_parameters(self):
  996. self.gguf_writer.add_file_type(self.ftype)
  997. if self.has_vision_encoder:
  998. self.gguf_writer.add_clip_has_vision_encoder(True)
  999. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1000. # vision config
  1001. self.gguf_writer.add_vision_image_size(self.find_vparam(["image_size"]))
  1002. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1003. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1004. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1005. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1006. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads"]))
  1007. # preprocessor config
  1008. self.gguf_writer.add_vision_image_mean(self.preprocessor_config["image_mean"])
  1009. self.gguf_writer.add_vision_image_std(self.preprocessor_config["image_std"])
  1010. if self.has_audio_encoder:
  1011. self.gguf_writer.add_clip_has_audio_encoder(True)
  1012. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1013. # audio config
  1014. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1015. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1016. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1017. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1018. if not self.has_vision_encoder and not self.has_audio_encoder:
  1019. raise ValueError("MmprojModel must have either vision or audio encoder")
  1020. def write_vocab(self):
  1021. raise ValueError("MmprojModel does not support vocab writing")
  1022. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1023. assert self.hparams_vision is not None
  1024. return self._find_param(self.hparams_vision, keys, optional)
  1025. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1026. assert self.hparams_audio is not None
  1027. return self._find_param(self.hparams_audio, keys, optional)
  1028. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1029. key = next((k for k in keys if k in obj), None)
  1030. if key is not None:
  1031. return obj[key]
  1032. if optional:
  1033. return None
  1034. raise KeyError(f"could not find any of: {keys}")
  1035. @ModelBase.register("GPTNeoXForCausalLM")
  1036. class GPTNeoXModel(TextModel):
  1037. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1038. def set_gguf_parameters(self):
  1039. block_count = self.hparams["num_hidden_layers"]
  1040. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1041. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1042. self.gguf_writer.add_block_count(block_count)
  1043. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1044. self.gguf_writer.add_rope_dimension_count(
  1045. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1046. )
  1047. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1048. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1049. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1050. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1051. del bid # unused
  1052. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1053. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1054. tensors: list[tuple[str, Tensor]] = []
  1055. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1056. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1057. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1058. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1059. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1060. data_torch = torch.cat(
  1061. (
  1062. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1063. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1064. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1065. ),
  1066. dim=0,
  1067. )
  1068. logger.info("re-format attention.linear_qkv.weight")
  1069. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1070. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1071. data_torch = torch.cat(
  1072. (
  1073. qkv_bias[:, 0, :].reshape((n_embed,)),
  1074. qkv_bias[:, 1, :].reshape((n_embed,)),
  1075. qkv_bias[:, 2, :].reshape((n_embed,)),
  1076. ),
  1077. dim=0,
  1078. )
  1079. logger.info("re-format attention.linear_qkv.bias")
  1080. tensors.append((self.map_tensor_name(name), data_torch))
  1081. return tensors
  1082. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1083. class BloomModel(TextModel):
  1084. model_arch = gguf.MODEL_ARCH.BLOOM
  1085. def set_gguf_parameters(self):
  1086. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1087. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1088. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1089. self.gguf_writer.add_embedding_length(n_embed)
  1090. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1091. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1092. self.gguf_writer.add_head_count(n_head)
  1093. self.gguf_writer.add_head_count_kv(n_head)
  1094. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1095. self.gguf_writer.add_file_type(self.ftype)
  1096. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1097. del bid # unused
  1098. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1099. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1100. name = re.sub(r'transformer\.', '', name)
  1101. tensors: list[tuple[str, Tensor]] = []
  1102. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1103. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1104. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1105. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1106. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1107. data_torch = torch.cat(
  1108. (
  1109. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1110. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1111. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1112. ),
  1113. dim=0,
  1114. )
  1115. logger.info("re-format attention.linear_qkv.weight")
  1116. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1117. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1118. data_torch = torch.cat(
  1119. (
  1120. qkv_bias[:, 0, :].reshape((n_embed,)),
  1121. qkv_bias[:, 1, :].reshape((n_embed,)),
  1122. qkv_bias[:, 2, :].reshape((n_embed,)),
  1123. ),
  1124. dim=0,
  1125. )
  1126. logger.info("re-format attention.linear_qkv.bias")
  1127. tensors.append((self.map_tensor_name(name), data_torch))
  1128. return tensors
  1129. @ModelBase.register("MPTForCausalLM")
  1130. class MPTModel(TextModel):
  1131. model_arch = gguf.MODEL_ARCH.MPT
  1132. def set_vocab(self):
  1133. try:
  1134. self._set_vocab_gpt2()
  1135. except Exception:
  1136. # Fallback for SEA-LION model
  1137. self._set_vocab_sentencepiece()
  1138. self.gguf_writer.add_add_bos_token(False)
  1139. self.gguf_writer.add_pad_token_id(3)
  1140. self.gguf_writer.add_eos_token_id(1)
  1141. self.gguf_writer.add_unk_token_id(0)
  1142. def set_gguf_parameters(self):
  1143. block_count = self.hparams["n_layers"]
  1144. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1145. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1146. self.gguf_writer.add_block_count(block_count)
  1147. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1148. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1149. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1150. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1151. self.gguf_writer.add_layer_norm_eps(1e-5)
  1152. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1153. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1154. if self.hparams["attn_config"]["alibi"]:
  1155. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1156. else:
  1157. self.gguf_writer.add_max_alibi_bias(0.0)
  1158. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1159. del bid # unused
  1160. if "scales" in name:
  1161. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1162. new_name = new_name.replace("scales", "act.scales")
  1163. else:
  1164. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1165. return [(new_name, data_torch)]
  1166. @ModelBase.register("OrionForCausalLM")
  1167. class OrionModel(TextModel):
  1168. model_arch = gguf.MODEL_ARCH.ORION
  1169. def set_vocab(self):
  1170. self._set_vocab_sentencepiece()
  1171. def set_gguf_parameters(self):
  1172. block_count = self.hparams["num_hidden_layers"]
  1173. head_count = self.hparams["num_attention_heads"]
  1174. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1175. ctx_length = 0
  1176. if "max_sequence_length" in self.hparams:
  1177. ctx_length = self.hparams["max_sequence_length"]
  1178. elif "max_position_embeddings" in self.hparams:
  1179. ctx_length = self.hparams["max_position_embeddings"]
  1180. elif "model_max_length" in self.hparams:
  1181. ctx_length = self.hparams["model_max_length"]
  1182. else:
  1183. raise ValueError("gguf: can not find ctx length parameter.")
  1184. self.gguf_writer.add_file_type(self.ftype)
  1185. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1186. self.gguf_writer.add_context_length(ctx_length)
  1187. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1188. self.gguf_writer.add_block_count(block_count)
  1189. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1190. self.gguf_writer.add_head_count(head_count)
  1191. self.gguf_writer.add_head_count_kv(head_count_kv)
  1192. # note: config provides rms norm but it is actually layer norm
  1193. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1194. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1195. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1196. class BaichuanModel(TextModel):
  1197. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1198. def set_vocab(self):
  1199. self._set_vocab_sentencepiece()
  1200. def set_gguf_parameters(self):
  1201. block_count = self.hparams["num_hidden_layers"]
  1202. head_count = self.hparams["num_attention_heads"]
  1203. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1204. ctx_length = 0
  1205. if "max_sequence_length" in self.hparams:
  1206. ctx_length = self.hparams["max_sequence_length"]
  1207. elif "max_position_embeddings" in self.hparams:
  1208. ctx_length = self.hparams["max_position_embeddings"]
  1209. elif "model_max_length" in self.hparams:
  1210. ctx_length = self.hparams["model_max_length"]
  1211. else:
  1212. raise ValueError("gguf: can not find ctx length parameter.")
  1213. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1214. self.gguf_writer.add_context_length(ctx_length)
  1215. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1216. self.gguf_writer.add_block_count(block_count)
  1217. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1218. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1219. self.gguf_writer.add_head_count(head_count)
  1220. self.gguf_writer.add_head_count_kv(head_count_kv)
  1221. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1222. self.gguf_writer.add_file_type(self.ftype)
  1223. rope_scaling = self.hparams.get("rope_scaling") or {}
  1224. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1225. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1226. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1227. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1228. head_count = self.hparams["num_attention_heads"]
  1229. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1230. tensors: list[tuple[str, Tensor]] = []
  1231. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1232. logger.info(f"Unpacking and permuting layer {bid}")
  1233. tensors = [
  1234. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1235. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1236. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1237. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1238. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1239. self._reverse_hf_part(data_torch, 2)),
  1240. ]
  1241. else:
  1242. tensors = [(self.map_tensor_name(name), data_torch)]
  1243. return tensors
  1244. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1245. if n_kv_head is not None and n_head != n_kv_head:
  1246. n_head //= n_kv_head
  1247. return (
  1248. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1249. .swapaxes(1, 2)
  1250. .reshape(weights.shape)
  1251. )
  1252. def _reverse_hf_permute_part(
  1253. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1254. ) -> Tensor:
  1255. r = weights.shape[0] // 3
  1256. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1257. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1258. r = weights.shape[0] // 3
  1259. return weights[r * n_part:r * n_part + r, ...]
  1260. @ModelBase.register("XverseForCausalLM")
  1261. class XverseModel(TextModel):
  1262. model_arch = gguf.MODEL_ARCH.XVERSE
  1263. def set_vocab(self):
  1264. assert (self.dir_model / "tokenizer.json").is_file()
  1265. dir_model = self.dir_model
  1266. hparams = self.hparams
  1267. tokens: list[bytes] = []
  1268. toktypes: list[int] = []
  1269. from transformers import AutoTokenizer
  1270. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1271. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1272. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1273. # because vocab_size is the count of items, and indexes start at 0.
  1274. max_vocab_index = max(tokenizer.get_vocab().values())
  1275. if max_vocab_index >= vocab_size:
  1276. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1277. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1278. added_vocab = tokenizer.get_added_vocab()
  1279. for token_id in range(vocab_size):
  1280. token_text = reverse_vocab[token_id].encode('utf-8')
  1281. # replace "\x00" to string with length > 0
  1282. if token_text == b"\x00":
  1283. toktype = gguf.TokenType.BYTE # special
  1284. token_text = f"<{token_text}>".encode('utf-8')
  1285. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1286. toktype = gguf.TokenType.BYTE # special
  1287. elif reverse_vocab[token_id] in added_vocab:
  1288. if tokenizer.added_tokens_decoder[token_id].special:
  1289. toktype = gguf.TokenType.CONTROL
  1290. else:
  1291. toktype = gguf.TokenType.USER_DEFINED
  1292. else:
  1293. toktype = gguf.TokenType.NORMAL
  1294. tokens.append(token_text)
  1295. toktypes.append(toktype)
  1296. self.gguf_writer.add_tokenizer_model("llama")
  1297. self.gguf_writer.add_tokenizer_pre("default")
  1298. self.gguf_writer.add_token_list(tokens)
  1299. self.gguf_writer.add_token_types(toktypes)
  1300. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1301. special_vocab.add_to_gguf(self.gguf_writer)
  1302. def set_gguf_parameters(self):
  1303. block_count = self.hparams["num_hidden_layers"]
  1304. head_count = self.hparams["num_attention_heads"]
  1305. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1306. ctx_length = 0
  1307. if "max_sequence_length" in self.hparams:
  1308. ctx_length = self.hparams["max_sequence_length"]
  1309. elif "max_position_embeddings" in self.hparams:
  1310. ctx_length = self.hparams["max_position_embeddings"]
  1311. elif "model_max_length" in self.hparams:
  1312. ctx_length = self.hparams["model_max_length"]
  1313. else:
  1314. raise ValueError("gguf: can not find ctx length parameter.")
  1315. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1316. self.gguf_writer.add_context_length(ctx_length)
  1317. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1318. self.gguf_writer.add_block_count(block_count)
  1319. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1320. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1321. self.gguf_writer.add_head_count(head_count)
  1322. self.gguf_writer.add_head_count_kv(head_count_kv)
  1323. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1324. self.gguf_writer.add_file_type(self.ftype)
  1325. rope_scaling = self.hparams.get("rope_scaling") or {}
  1326. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1327. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1328. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1329. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1330. del bid # unused
  1331. head_count = self.hparams["num_attention_heads"]
  1332. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1333. # HF models permute some of the tensors, so we need to undo that
  1334. if name.endswith("q_proj.weight"):
  1335. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1336. if name.endswith("k_proj.weight"):
  1337. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1338. return [(self.map_tensor_name(name), data_torch)]
  1339. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1340. if n_kv_head is not None and n_head != n_kv_head:
  1341. n_head //= n_kv_head
  1342. return (
  1343. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1344. .swapaxes(1, 2)
  1345. .reshape(weights.shape)
  1346. )
  1347. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1348. class FalconModel(TextModel):
  1349. model_arch = gguf.MODEL_ARCH.FALCON
  1350. def set_gguf_parameters(self):
  1351. block_count = self.hparams.get("num_hidden_layers")
  1352. if block_count is None:
  1353. block_count = self.hparams["n_layer"] # old name
  1354. n_head = self.hparams.get("num_attention_heads")
  1355. if n_head is None:
  1356. n_head = self.hparams["n_head"] # old name
  1357. n_head_kv = self.hparams.get("num_kv_heads")
  1358. if n_head_kv is None:
  1359. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1360. self.gguf_writer.add_context_length(2048) # not in config.json
  1361. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1362. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1363. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1364. self.gguf_writer.add_block_count(block_count)
  1365. self.gguf_writer.add_head_count(n_head)
  1366. self.gguf_writer.add_head_count_kv(n_head_kv)
  1367. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1368. self.gguf_writer.add_file_type(self.ftype)
  1369. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1370. del bid # unused
  1371. # QKV tensor transform
  1372. # The original query_key_value tensor contains n_head_kv "kv groups",
  1373. # each consisting of n_head/n_head_kv query weights followed by one key
  1374. # and one value weight (shared by all query heads in the kv group).
  1375. # This layout makes it a big pain to work with in GGML.
  1376. # So we rearrange them here,, so that we have n_head query weights
  1377. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1378. # in contiguous fashion.
  1379. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1380. if "query_key_value" in name:
  1381. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1382. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1383. head_dim = self.hparams["hidden_size"] // n_head
  1384. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1385. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1386. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1387. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1388. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1389. return [(self.map_tensor_name(name), data_torch)]
  1390. @ModelBase.register("GPTBigCodeForCausalLM")
  1391. class StarCoderModel(TextModel):
  1392. model_arch = gguf.MODEL_ARCH.STARCODER
  1393. def set_gguf_parameters(self):
  1394. block_count = self.hparams["n_layer"]
  1395. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1396. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1397. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1398. self.gguf_writer.add_block_count(block_count)
  1399. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1400. self.gguf_writer.add_head_count_kv(1)
  1401. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1402. self.gguf_writer.add_file_type(self.ftype)
  1403. @ModelBase.register("GPTRefactForCausalLM")
  1404. class RefactModel(TextModel):
  1405. model_arch = gguf.MODEL_ARCH.REFACT
  1406. def set_vocab(self):
  1407. super().set_vocab()
  1408. # TODO: how to determine special FIM tokens automatically?
  1409. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1410. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1411. special_vocab._set_special_token("prefix", 1)
  1412. special_vocab._set_special_token("suffix", 3)
  1413. special_vocab._set_special_token("middle", 2)
  1414. special_vocab.chat_template = None # do not add it twice
  1415. special_vocab.add_to_gguf(self.gguf_writer)
  1416. def set_gguf_parameters(self):
  1417. hidden_dim = self.hparams["n_embd"]
  1418. inner_dim = 4 * hidden_dim
  1419. hidden_dim = int(2 * inner_dim / 3)
  1420. multiple_of = 256
  1421. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1422. block_count = self.hparams["n_layer"]
  1423. # refact uses Alibi. So this is from config.json which might be used by training.
  1424. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1425. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1426. self.gguf_writer.add_feed_forward_length(ff_dim)
  1427. self.gguf_writer.add_block_count(block_count)
  1428. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1429. self.gguf_writer.add_head_count_kv(1)
  1430. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1431. self.gguf_writer.add_file_type(self.ftype)
  1432. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1433. hidden_dim = self.hparams["n_embd"]
  1434. inner_dim = 4 * hidden_dim
  1435. hidden_dim = int(2 * inner_dim / 3)
  1436. multiple_of = 256
  1437. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1438. n_head = self.hparams["n_head"]
  1439. n_head_kv = 1
  1440. head_dim = self.hparams["n_embd"] // n_head
  1441. tensors: list[tuple[str, Tensor]] = []
  1442. if bid is not None:
  1443. if name == f"transformer.h.{bid}.attn.kv.weight":
  1444. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1445. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1446. elif name == f"transformer.h.{bid}.attn.q.weight":
  1447. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1448. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1449. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1450. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1451. if len(tensors) == 0:
  1452. tensors.append((self.map_tensor_name(name), data_torch))
  1453. return tensors
  1454. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1455. class StableLMModel(TextModel):
  1456. model_arch = gguf.MODEL_ARCH.STABLELM
  1457. def set_vocab(self):
  1458. if (self.dir_model / "tokenizer.json").is_file():
  1459. self._set_vocab_gpt2()
  1460. else:
  1461. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1462. self._set_vocab_qwen()
  1463. def set_gguf_parameters(self):
  1464. hparams = self.hparams
  1465. block_count = hparams["num_hidden_layers"]
  1466. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1467. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1468. self.gguf_writer.add_block_count(block_count)
  1469. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1470. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1471. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1472. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1473. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1474. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1475. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1476. self.gguf_writer.add_file_type(self.ftype)
  1477. _q_norms: list[dict[str, Tensor]] | None = None
  1478. _k_norms: list[dict[str, Tensor]] | None = None
  1479. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1480. n_head = self.hparams["num_attention_heads"]
  1481. n_kv_head = self.hparams["num_key_value_heads"]
  1482. if name.find("q_layernorm.norms") != -1:
  1483. assert bid is not None
  1484. if self._q_norms is None:
  1485. self._q_norms = [{} for _ in range(self.block_count)]
  1486. self._q_norms[bid][name] = data_torch
  1487. if len(self._q_norms[bid]) >= n_head:
  1488. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1489. else:
  1490. return []
  1491. if name.find("k_layernorm.norms") != -1:
  1492. assert bid is not None
  1493. if self._k_norms is None:
  1494. self._k_norms = [{} for _ in range(self.block_count)]
  1495. self._k_norms[bid][name] = data_torch
  1496. if len(self._k_norms[bid]) >= n_kv_head:
  1497. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1498. else:
  1499. return []
  1500. return [(self.map_tensor_name(name), data_torch)]
  1501. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1502. datas: list[Tensor] = []
  1503. # extract the norms in order
  1504. for xid in range(n_head):
  1505. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1506. datas.append(norms[ename])
  1507. del norms[ename]
  1508. data_torch = torch.stack(datas, dim=0)
  1509. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1510. new_name = self.map_tensor_name(merged_name)
  1511. return [(new_name, data_torch)]
  1512. def prepare_tensors(self):
  1513. super().prepare_tensors()
  1514. if self._q_norms is not None or self._k_norms is not None:
  1515. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1516. norms = (
  1517. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1518. ) + (
  1519. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1520. )
  1521. if len(norms) > 0:
  1522. raise ValueError(f"Unprocessed norms: {norms}")
  1523. @ModelBase.register(
  1524. "LLaMAForCausalLM",
  1525. "LlamaForCausalLM",
  1526. "MistralForCausalLM",
  1527. "MixtralForCausalLM",
  1528. "VLlama3ForCausalLM",
  1529. "LlavaForConditionalGeneration",
  1530. "LlamaModel")
  1531. class LlamaModel(TextModel):
  1532. model_arch = gguf.MODEL_ARCH.LLAMA
  1533. undo_permute = True
  1534. def __init__(self, *args, **kwargs):
  1535. super().__init__(*args, **kwargs)
  1536. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1537. if self.hf_arch == "VLlama3ForCausalLM":
  1538. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1539. def set_vocab(self):
  1540. try:
  1541. self._set_vocab_sentencepiece()
  1542. except FileNotFoundError:
  1543. try:
  1544. self._set_vocab_llama_hf()
  1545. except (FileNotFoundError, TypeError):
  1546. # Llama 3
  1547. self._set_vocab_gpt2()
  1548. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1549. if self.hparams.get("vocab_size", 32000) == 32016:
  1550. special_vocab = gguf.SpecialVocab(
  1551. self.dir_model, load_merges=False,
  1552. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1553. )
  1554. special_vocab._set_special_token("prefix", 32007)
  1555. special_vocab._set_special_token("suffix", 32008)
  1556. special_vocab._set_special_token("middle", 32009)
  1557. special_vocab._set_special_token("eot", 32010)
  1558. special_vocab.add_to_gguf(self.gguf_writer)
  1559. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1560. if tokenizer_config_file.is_file():
  1561. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1562. tokenizer_config_json = json.load(f)
  1563. if "add_prefix_space" in tokenizer_config_json:
  1564. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1565. # Apply to granite small models only
  1566. if self.hparams.get("vocab_size", 32000) == 49152:
  1567. self.gguf_writer.add_add_bos_token(False)
  1568. def set_gguf_parameters(self):
  1569. super().set_gguf_parameters()
  1570. hparams = self.hparams
  1571. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1572. if (rope_dim := hparams.get("head_dim")) is None:
  1573. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1574. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1575. rope_scaling = self.hparams.get("rope_scaling") or {}
  1576. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1577. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1578. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1579. @staticmethod
  1580. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1581. if n_head_kv is not None and n_head != n_head_kv:
  1582. n_head = n_head_kv
  1583. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1584. .swapaxes(1, 2)
  1585. .reshape(weights.shape))
  1586. _experts: list[dict[str, Tensor]] | None = None
  1587. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1588. n_head = self.hparams["num_attention_heads"]
  1589. n_kv_head = self.hparams.get("num_key_value_heads")
  1590. is_vision_tensor = "vision_tower" in name \
  1591. or "vision_model" in name \
  1592. or "model.connector" in name \
  1593. or "multi_modal_projector" in name
  1594. if is_vision_tensor:
  1595. return [] # skip vision tensors
  1596. elif self.hf_arch == "LlamaModel":
  1597. name = "model." + name
  1598. elif name.startswith("model.text_model"):
  1599. name = name.replace("text_model.", "") # for SmolVLM
  1600. elif name.startswith("language_model."):
  1601. name = name.replace("language_model.", "") # for the rest
  1602. if self.undo_permute:
  1603. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1604. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1605. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1606. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1607. # process the experts separately
  1608. if name.find("block_sparse_moe.experts") != -1:
  1609. n_experts = self.hparams["num_local_experts"]
  1610. assert bid is not None
  1611. if self._experts is None:
  1612. self._experts = [{} for _ in range(self.block_count)]
  1613. self._experts[bid][name] = data_torch
  1614. if len(self._experts[bid]) >= n_experts * 3:
  1615. tensors: list[tuple[str, Tensor]] = []
  1616. # merge the experts into a single 3d tensor
  1617. for wid in ["w1", "w2", "w3"]:
  1618. datas: list[Tensor] = []
  1619. for xid in range(n_experts):
  1620. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1621. datas.append(self._experts[bid][ename])
  1622. del self._experts[bid][ename]
  1623. data_torch = torch.stack(datas, dim=0)
  1624. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1625. new_name = self.map_tensor_name(merged_name)
  1626. tensors.append((new_name, data_torch))
  1627. return tensors
  1628. else:
  1629. return []
  1630. return [(self.map_tensor_name(name), data_torch)]
  1631. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1632. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1633. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1634. base = self.hparams.get("rope_theta", 10000.0)
  1635. if (dim := self.hparams.get("head_dim")) is None:
  1636. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1637. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1638. factor = rope_scaling.get("factor", 8.0)
  1639. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1640. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1641. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1642. low_freq_wavelen = old_context_len / low_freq_factor
  1643. high_freq_wavelen = old_context_len / high_freq_factor
  1644. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  1645. rope_factors = []
  1646. for freq in freqs:
  1647. wavelen = 2 * math.pi / freq
  1648. if wavelen < high_freq_wavelen:
  1649. rope_factors.append(1)
  1650. elif wavelen > low_freq_wavelen:
  1651. rope_factors.append(factor)
  1652. else:
  1653. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1654. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1655. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1656. def prepare_tensors(self):
  1657. super().prepare_tensors()
  1658. if self._experts is not None:
  1659. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1660. experts = [k for d in self._experts for k in d.keys()]
  1661. if len(experts) > 0:
  1662. raise ValueError(f"Unprocessed experts: {experts}")
  1663. @ModelBase.register("ArceeForCausalLM")
  1664. class ArceeModel(LlamaModel):
  1665. model_arch = gguf.MODEL_ARCH.ARCEE
  1666. def set_gguf_parameters(self):
  1667. super().set_gguf_parameters()
  1668. self._try_set_pooling_type()
  1669. rope_scaling = self.hparams.get("rope_scaling") or {}
  1670. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  1671. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  1672. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1673. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  1674. @ModelBase.register(
  1675. "LlavaForConditionalGeneration", # pixtral
  1676. "Mistral3ForConditionalGeneration", # mistral small 3.1
  1677. )
  1678. class LlavaVisionModel(MmprojModel):
  1679. img_break_tok_id = -1
  1680. def __init__(self, *args, **kwargs):
  1681. super().__init__(*args, **kwargs)
  1682. if self.hparams["model_type"] == "pixtral":
  1683. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  1684. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  1685. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  1686. logger.info(f"Image break token id: {self.img_break_tok_id}")
  1687. else:
  1688. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  1689. def get_token_id(self, token: str) -> int:
  1690. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1691. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1692. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  1693. for id_, token_data in added_tokens_decoder.items():
  1694. if token_data["content"] == token:
  1695. return int(id_)
  1696. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  1697. def set_gguf_parameters(self):
  1698. super().set_gguf_parameters()
  1699. hparams = self.hparams
  1700. if hparams["model_type"] == "pixtral":
  1701. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  1702. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  1703. # hidden_act
  1704. if hparams["hidden_act"] == "silu":
  1705. self.gguf_writer.add_vision_use_silu(True)
  1706. elif hparams["hidden_act"] == "gelu":
  1707. self.gguf_writer.add_vision_use_gelu(True)
  1708. else:
  1709. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  1710. # spatial_merge_size
  1711. if "spatial_merge_size" in self.global_config:
  1712. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  1713. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1714. del bid # unused
  1715. n_head = self.hparams["num_attention_heads"]
  1716. n_kv_head = n_head
  1717. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower."):
  1718. # process vision tensors
  1719. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1720. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1721. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1722. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1723. return [(self.map_tensor_name(name), data_torch)]
  1724. if self.img_break_tok_id > 0 and "embed_tokens.weight" in name:
  1725. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  1726. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  1727. img_break_embd = data_torch[self.img_break_tok_id]
  1728. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  1729. return [(self.map_tensor_name(name), img_break_embd)]
  1730. return [] # skip other tensors
  1731. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  1732. class SmolVLMModel(MmprojModel):
  1733. def __init__(self, *args, **kwargs):
  1734. super().__init__(*args, **kwargs)
  1735. if self.hparams["model_type"] == "smolvlm_vision":
  1736. # fix for SmolVLM2, missing some keys in config.json
  1737. # default values are taken from transformers code
  1738. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  1739. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  1740. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  1741. def set_gguf_parameters(self):
  1742. super().set_gguf_parameters()
  1743. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  1744. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  1745. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  1746. self.gguf_writer.add_vision_use_gelu(True)
  1747. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1748. del bid, new_name, n_dims # unused
  1749. if ".embeddings." in name:
  1750. return gguf.GGMLQuantizationType.F32
  1751. return False
  1752. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1753. del bid # unused
  1754. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  1755. if is_vision_tensor:
  1756. return [(self.map_tensor_name(name), data_torch)]
  1757. return [] # skip other tensors
  1758. @ModelBase.register("Llama4ForConditionalGeneration")
  1759. class Llama4Model(LlamaModel):
  1760. model_arch = gguf.MODEL_ARCH.LLAMA4
  1761. undo_permute = False
  1762. def __init__(self, *args, **kwargs):
  1763. super().__init__(*args, **kwargs)
  1764. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  1765. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  1766. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  1767. def set_vocab(self):
  1768. self._set_vocab_gpt2()
  1769. self.gguf_writer.add_add_bos_token(True)
  1770. def set_gguf_parameters(self):
  1771. super().set_gguf_parameters()
  1772. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  1773. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  1774. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1775. if name.startswith("language_model."):
  1776. name = name.replace("language_model.", "")
  1777. # split the gate_up into gate and up
  1778. if "gate_up_proj" in name:
  1779. name_up = name.replace("gate_up_proj", "up_proj.weight")
  1780. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  1781. dim_half = data_torch.shape[-1] // 2
  1782. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  1783. return [
  1784. (self.map_tensor_name(name_gate), gate_proj_weight),
  1785. (self.map_tensor_name(name_up), up_proj_weight)
  1786. ]
  1787. if name.endswith("down_proj"):
  1788. name += ".weight"
  1789. data_torch = data_torch.transpose(-1, -2)
  1790. if "multi_modal_projector" in name or "vision_model" in name:
  1791. return []
  1792. return super().modify_tensors(data_torch, name, bid)
  1793. @ModelBase.register("Llama4ForConditionalGeneration")
  1794. class Llama4VisionModel(MmprojModel):
  1795. def set_gguf_parameters(self):
  1796. super().set_gguf_parameters()
  1797. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  1798. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  1799. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  1800. assert self.hparams["hidden_act"] == "gelu"
  1801. self.gguf_writer.add_vision_use_gelu(True)
  1802. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1803. del bid # unused
  1804. if "multi_modal_projector" in name or "vision_model" in name:
  1805. # process vision tensors
  1806. if "positional_embedding_vlm" in name and ".weight" not in name:
  1807. name += ".weight"
  1808. if "multi_modal_projector.linear_1" in name:
  1809. # despite the name with number postfix, this is a single fully connected layer
  1810. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC], data_torch)]
  1811. return [(self.map_tensor_name(name), data_torch)]
  1812. return []
  1813. @ModelBase.register("Mistral3ForConditionalGeneration")
  1814. class Mistral3Model(LlamaModel):
  1815. model_arch = gguf.MODEL_ARCH.LLAMA
  1816. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1817. name = name.replace("language_model.", "")
  1818. if "multi_modal_projector" in name or "vision_tower" in name:
  1819. return []
  1820. return super().modify_tensors(data_torch, name, bid)
  1821. @ModelBase.register("DeciLMForCausalLM")
  1822. class DeciModel(TextModel):
  1823. model_arch = gguf.MODEL_ARCH.DECI
  1824. @staticmethod
  1825. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  1826. # DeciLM-specific code
  1827. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  1828. return DeciModel._find_multiple(intermediate_size, 256)
  1829. @staticmethod
  1830. def _find_multiple(n: int, k: int) -> int:
  1831. # DeciLM-specific code
  1832. if n % k == 0:
  1833. return n
  1834. return n + k - (n % k)
  1835. def __init__(self, *args, **kwargs):
  1836. super().__init__(*args, **kwargs)
  1837. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1838. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  1839. assert self.block_count == len(_block_configs)
  1840. self._num_kv_heads = list()
  1841. self._num_heads = list()
  1842. _ffn_multipliers = list()
  1843. # ***linear attention layer***
  1844. # if n_heads_in_group is None and replace_with_linear is True
  1845. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  1846. # ***attention-free layer***
  1847. # if n_heads_in_group is None and replace_with_linear is False
  1848. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  1849. # ***normal attention-layer***
  1850. # if n_heads_in_group is not None, then
  1851. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  1852. # _num_heads[il] is num_attention_head
  1853. # ***dummy layer*** for nemotron 253B
  1854. # if n_heads_in_group is None and ffn_mult is None
  1855. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  1856. for il in range(len(_block_configs)):
  1857. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  1858. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  1859. self._num_kv_heads.append(0)
  1860. self._num_heads.append(self.hparams["num_attention_heads"])
  1861. else:
  1862. self._num_kv_heads.append(0)
  1863. self._num_heads.append(0)
  1864. else:
  1865. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  1866. self._num_heads.append(self.hparams["num_attention_heads"])
  1867. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  1868. _ffn_multipliers.append(0.0)
  1869. else:
  1870. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  1871. assert self.block_count == len(self._num_kv_heads)
  1872. assert self.block_count == len(self._num_heads)
  1873. assert self.block_count == len(_ffn_multipliers)
  1874. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  1875. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  1876. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  1877. self._ffn_dims: list[int] = [
  1878. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  1879. for multiplier in _ffn_multipliers
  1880. ]
  1881. def set_vocab(self):
  1882. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  1883. # eos_token from '|eot_id|' to '|end_of_text|'
  1884. if self.hparams.get("vocab_size", 128256) == 128256:
  1885. tokens, toktypes, tokpre = self.get_vocab_base()
  1886. self.gguf_writer.add_tokenizer_model("gpt2")
  1887. self.gguf_writer.add_tokenizer_pre(tokpre)
  1888. self.gguf_writer.add_token_list(tokens)
  1889. self.gguf_writer.add_token_types(toktypes)
  1890. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1891. special_vocab.add_to_gguf(self.gguf_writer)
  1892. else:
  1893. # DeciLM-7B
  1894. self._set_vocab_llama_hf()
  1895. def set_gguf_parameters(self):
  1896. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1897. assert self.block_count == len(self._num_kv_heads)
  1898. assert self.block_count == len(self._num_heads)
  1899. assert self.block_count == len(self._ffn_dims)
  1900. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  1901. self.gguf_writer.add_rope_freq_base(rope_theta)
  1902. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1903. self.gguf_writer.add_head_count(self._num_heads)
  1904. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  1905. self.gguf_writer.add_block_count(self.block_count)
  1906. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1907. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1908. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1909. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1910. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1911. self.gguf_writer.add_file_type(self.ftype)
  1912. else: # DeciLM-7B
  1913. super().set_gguf_parameters()
  1914. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  1915. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  1916. assert self.block_count == len(self._num_kv_heads)
  1917. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1918. hparams = self.hparams
  1919. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1920. if (rope_dim := hparams.get("head_dim")) is None:
  1921. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1922. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1923. rope_scaling = self.hparams.get("rope_scaling") or {}
  1924. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1925. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1926. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1927. @staticmethod
  1928. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1929. if n_head_kv is not None and n_head != n_head_kv:
  1930. n_head = n_head_kv
  1931. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1932. .swapaxes(1, 2)
  1933. .reshape(weights.shape))
  1934. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1935. n_head = self.hparams["num_attention_heads"]
  1936. if bid is not None:
  1937. if "num_key_value_heads_per_layer" in self.hparams:
  1938. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  1939. elif "block_configs" in self.hparams:
  1940. n_kv_head = self._num_kv_heads[bid]
  1941. n_head = self._num_heads[bid]
  1942. else:
  1943. n_kv_head = self.hparams.get("num_key_value_heads")
  1944. else:
  1945. n_kv_head = self.hparams.get("num_key_value_heads")
  1946. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1947. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  1948. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1949. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  1950. return [(self.map_tensor_name(name), data_torch)]
  1951. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1952. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1953. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1954. base = self.hparams.get("rope_theta", 10000.0)
  1955. if (dim := self.hparams.get("head_dim")) is None:
  1956. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1957. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1958. factor = rope_scaling.get("factor", 8.0)
  1959. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1960. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1961. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1962. low_freq_wavelen = old_context_len / low_freq_factor
  1963. high_freq_wavelen = old_context_len / high_freq_factor
  1964. assert low_freq_wavelen != high_freq_wavelen
  1965. rope_factors = []
  1966. for freq in freqs:
  1967. wavelen = 2 * math.pi / freq
  1968. if wavelen < high_freq_wavelen:
  1969. rope_factors.append(1)
  1970. elif wavelen > low_freq_wavelen:
  1971. rope_factors.append(factor)
  1972. else:
  1973. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1974. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1975. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1976. def prepare_tensors(self):
  1977. super().prepare_tensors()
  1978. @ModelBase.register("BitnetForCausalLM")
  1979. class BitnetModel(TextModel):
  1980. model_arch = gguf.MODEL_ARCH.BITNET
  1981. def set_vocab(self):
  1982. self._set_vocab_sentencepiece()
  1983. def set_gguf_parameters(self):
  1984. super().set_gguf_parameters()
  1985. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1986. self.gguf_writer.add_rope_scaling_factor(1.0)
  1987. def weight_quant(self, weight: Tensor) -> Tensor:
  1988. dtype = weight.dtype
  1989. weight = weight.float()
  1990. scale = weight.abs().mean().clamp(min=1e-5)
  1991. iscale = 1 / scale
  1992. # TODO: multiply by the scale directly instead of inverting it twice
  1993. # (this is also unnecessarily doubly inverted upstream)
  1994. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  1995. result = (weight * iscale).round().clamp(-1, 1) / iscale
  1996. return result.type(dtype)
  1997. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1998. new_name = self.map_tensor_name(name)
  1999. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2000. gguf.MODEL_TENSOR.ATTN_Q,
  2001. gguf.MODEL_TENSOR.ATTN_K,
  2002. gguf.MODEL_TENSOR.ATTN_V,
  2003. gguf.MODEL_TENSOR.ATTN_OUT,
  2004. gguf.MODEL_TENSOR.FFN_UP,
  2005. gguf.MODEL_TENSOR.FFN_DOWN,
  2006. gguf.MODEL_TENSOR.FFN_GATE,
  2007. ]):
  2008. # transform weight into 1/0/-1 (in fp32)
  2009. data_torch = self.weight_quant(data_torch)
  2010. yield (new_name, data_torch)
  2011. @ModelBase.register("GrokForCausalLM")
  2012. class GrokModel(TextModel):
  2013. model_arch = gguf.MODEL_ARCH.GROK
  2014. def set_vocab(self):
  2015. self._set_vocab_sentencepiece()
  2016. def __init__(self, *args, **kwargs):
  2017. super().__init__(*args, **kwargs)
  2018. def set_gguf_parameters(self):
  2019. super().set_gguf_parameters()
  2020. _experts: list[dict[str, Tensor]] | None = None
  2021. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2022. # process the experts separately
  2023. if name.find(".moe.") != -1:
  2024. n_experts = self.hparams["num_local_experts"]
  2025. assert bid is not None
  2026. if self._experts is None:
  2027. self._experts = [{} for _ in range(self.block_count)]
  2028. self._experts[bid][name] = data_torch
  2029. if len(self._experts[bid]) >= n_experts * 3:
  2030. tensors: list[tuple[str, Tensor]] = []
  2031. # merge the experts into a single 3d tensor
  2032. for wid in ["linear", "linear_1", "linear_v"]:
  2033. datas: list[Tensor] = []
  2034. for xid in range(n_experts):
  2035. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  2036. datas.append(self._experts[bid][ename])
  2037. del self._experts[bid][ename]
  2038. data_torch = torch.stack(datas, dim=0)
  2039. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  2040. new_name = self.map_tensor_name(merged_name)
  2041. tensors.append((new_name, data_torch))
  2042. return tensors
  2043. else:
  2044. return []
  2045. return [(self.map_tensor_name(name), data_torch)]
  2046. @ModelBase.register("DbrxForCausalLM")
  2047. class DbrxModel(TextModel):
  2048. model_arch = gguf.MODEL_ARCH.DBRX
  2049. def set_gguf_parameters(self):
  2050. ffn_config = self.hparams["ffn_config"]
  2051. attn_config = self.hparams["attn_config"]
  2052. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  2053. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2054. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2055. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2056. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2057. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2058. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2059. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2060. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2061. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2062. self.gguf_writer.add_layer_norm_eps(1e-5)
  2063. self.gguf_writer.add_file_type(self.ftype)
  2064. logger.info(f"gguf: file type = {self.ftype}")
  2065. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2066. del bid # unused
  2067. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2068. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2069. n_embd = self.hparams["d_model"]
  2070. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2071. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2072. # But llama.cpp moe graph works differently
  2073. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2074. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2075. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2076. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2077. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2078. experts = False
  2079. for exp_tensor_name in exp_tensor_names.keys():
  2080. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2081. experts = True
  2082. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2083. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2084. data_torch = data_torch.permute(*permute_tensor)
  2085. break
  2086. # map tensor names
  2087. # In MoE models the ffn tensors are typically most of the model weights,
  2088. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2089. # Every other model has the weight names ending in .weight,
  2090. # let's assume that is the convention which is not the case for dbrx:
  2091. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2092. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2093. return [(new_name, data_torch)]
  2094. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2095. del name, new_name, bid # unused
  2096. return n_dims > 1
  2097. @ModelBase.register("MiniCPMForCausalLM")
  2098. class MiniCPMModel(TextModel):
  2099. model_arch = gguf.MODEL_ARCH.MINICPM
  2100. def set_gguf_parameters(self):
  2101. super().set_gguf_parameters()
  2102. embedding_scale = float(self.hparams["scale_emb"])
  2103. self.gguf_writer.add_embedding_scale(embedding_scale)
  2104. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2105. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2106. self.gguf_writer.add_residual_scale(residual_scale)
  2107. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2108. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2109. self.gguf_writer.add_logit_scale(logit_scale)
  2110. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2111. rope_scaling = self.hparams.get("rope_scaling") or {}
  2112. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope":
  2113. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  2114. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  2115. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2116. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2117. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2118. if rope_scaling is not None:
  2119. long_factors = rope_scaling.get('long_factor', None)
  2120. short_factors = rope_scaling.get('short_factor', None)
  2121. if long_factors is None or short_factors is None:
  2122. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2123. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2124. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2125. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2126. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2127. def set_vocab(self):
  2128. self._set_vocab_sentencepiece()
  2129. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2130. del bid # unused
  2131. n_head = self.hparams["num_attention_heads"]
  2132. n_kv_head = self.hparams.get("num_key_value_heads")
  2133. # HF models permute some of the tensors, so we need to undo that
  2134. if name.endswith(("q_proj.weight")):
  2135. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2136. if name.endswith(("k_proj.weight")):
  2137. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2138. return [(self.map_tensor_name(name), data_torch)]
  2139. @ModelBase.register("MiniCPM3ForCausalLM")
  2140. class MiniCPM3Model(TextModel):
  2141. model_arch = gguf.MODEL_ARCH.MINICPM3
  2142. def set_gguf_parameters(self):
  2143. hparams = self.hparams
  2144. self.gguf_writer.add_file_type(self.ftype)
  2145. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2146. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2147. self.gguf_writer.add_block_count(self.block_count)
  2148. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2149. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2150. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2151. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2152. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2153. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2154. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2155. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2156. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2157. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2158. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2159. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2160. if rope_scaling is not None:
  2161. rope_dims = self.hparams["qk_rope_head_dim"]
  2162. long_factors = rope_scaling.get('long_factor', None)
  2163. short_factors = rope_scaling.get('short_factor', None)
  2164. if long_factors is None or short_factors is None:
  2165. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2166. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2167. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2168. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2169. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2170. def set_vocab(self):
  2171. self._set_vocab_sentencepiece()
  2172. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2173. if n_kv_head is not None and n_head != n_kv_head:
  2174. n_head //= n_kv_head
  2175. return (
  2176. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2177. .swapaxes(1, 2)
  2178. .reshape(weights.shape)
  2179. )
  2180. @ModelBase.register("QWenLMHeadModel")
  2181. class QwenModel(TextModel):
  2182. model_arch = gguf.MODEL_ARCH.QWEN
  2183. @staticmethod
  2184. def token_bytes_to_string(b):
  2185. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2186. byte_encoder = bytes_to_unicode()
  2187. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2188. @staticmethod
  2189. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2190. parts = [bytes([b]) for b in token]
  2191. while True:
  2192. min_idx = None
  2193. min_rank = None
  2194. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2195. rank = mergeable_ranks.get(pair[0] + pair[1])
  2196. if rank is not None and (min_rank is None or rank < min_rank):
  2197. min_idx = i
  2198. min_rank = rank
  2199. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2200. break
  2201. assert min_idx is not None
  2202. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2203. return parts
  2204. def set_vocab(self):
  2205. self._set_vocab_qwen()
  2206. def set_gguf_parameters(self):
  2207. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2208. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2209. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2210. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2211. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2212. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2213. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2214. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2215. self.gguf_writer.add_file_type(self.ftype)
  2216. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration")
  2217. class Qwen2Model(TextModel):
  2218. model_arch = gguf.MODEL_ARCH.QWEN2
  2219. def set_vocab(self):
  2220. try:
  2221. self._set_vocab_sentencepiece()
  2222. except FileNotFoundError:
  2223. self._set_vocab_gpt2()
  2224. def set_gguf_parameters(self):
  2225. super().set_gguf_parameters()
  2226. self._try_set_pooling_type()
  2227. rope_scaling = self.hparams.get("rope_scaling") or {}
  2228. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2229. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2230. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2231. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2232. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2233. if self.hf_arch == "Qwen2Model":
  2234. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2235. if "language_model." in name:
  2236. name = name.replace("language_model.", "") # for InternVL
  2237. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2238. or name.startswith("vision_model") or name.startswith("audio_tower"):
  2239. # skip vision and audio tensors
  2240. return []
  2241. yield from super().modify_tensors(data_torch, name, bid)
  2242. @ModelBase.register(
  2243. "Qwen2VLModel",
  2244. "Qwen2VLForConditionalGeneration",
  2245. "Qwen2_5_VLForConditionalGeneration",
  2246. "Qwen2_5OmniModel",
  2247. )
  2248. class Qwen2VLModel(TextModel):
  2249. model_arch = gguf.MODEL_ARCH.QWEN2VL
  2250. def set_gguf_parameters(self):
  2251. super().set_gguf_parameters()
  2252. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  2253. mrope_section += [0] * max(0, 4 - len(mrope_section))
  2254. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  2255. def set_vocab(self):
  2256. try:
  2257. self._set_vocab_sentencepiece()
  2258. except FileNotFoundError:
  2259. self._set_vocab_gpt2()
  2260. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2261. del bid # unused
  2262. if name.startswith("thinker."):
  2263. name = name.replace("thinker.", "")
  2264. if name.startswith("visual") or name.startswith("audio") or \
  2265. name.startswith("talker") or name.startswith("token2wav"):
  2266. # skip multimodal tensors
  2267. return []
  2268. return [(self.map_tensor_name(name), data_torch)]
  2269. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2270. class Qwen2VLVisionModel(MmprojModel):
  2271. def __init__(self, *args, **kwargs):
  2272. super().__init__(*args, **kwargs)
  2273. assert self.hparams_vision is not None
  2274. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  2275. # rename config.json values
  2276. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  2277. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  2278. if "embed_dim" in self.hparams_vision: # qwen2vl
  2279. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  2280. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  2281. def set_gguf_parameters(self):
  2282. super().set_gguf_parameters()
  2283. assert self.hparams_vision is not None
  2284. hparams = self.hparams_vision
  2285. model_type = self.global_config['model_type']
  2286. if model_type == 'qwen2_vl':
  2287. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  2288. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  2289. if model_type == 'qwen2_5_omni':
  2290. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  2291. else:
  2292. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  2293. self.gguf_writer.add_vision_use_silu(True)
  2294. # find n_wa_pattern (window attention pattern)
  2295. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  2296. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  2297. n_wa_pattern = fullatt_block_indexes[0] + 1
  2298. # validate n_wa_pattern
  2299. for i in range(1, len(fullatt_block_indexes)):
  2300. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  2301. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  2302. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  2303. else:
  2304. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  2305. # default values below are taken from HF tranformers code
  2306. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  2307. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2308. del bid, name, n_dims # unused
  2309. if ".patch_embd." in new_name:
  2310. return gguf.GGMLQuantizationType.F16
  2311. if ".position_embd." in new_name:
  2312. return gguf.GGMLQuantizationType.F32
  2313. return False
  2314. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2315. del bid # unused
  2316. if name.startswith("visual."):
  2317. # process visual tensors
  2318. # split QKV tensors if needed
  2319. if ".qkv." in name:
  2320. if data_torch.ndim == 2: # weight
  2321. c3, _ = data_torch.shape
  2322. else: # bias
  2323. c3 = data_torch.shape[0]
  2324. assert c3 % 3 == 0
  2325. c = c3 // 3
  2326. wq = data_torch[:c]
  2327. wk = data_torch[c: c * 2]
  2328. wv = data_torch[c * 2:]
  2329. return [
  2330. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  2331. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  2332. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  2333. ]
  2334. elif 'patch_embed.proj.weight' in name:
  2335. # split Conv3D into Conv2Ds
  2336. c1, c2, kt, kh, kw = data_torch.shape
  2337. del c1, c2, kh, kw # unused
  2338. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  2339. return [
  2340. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  2341. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  2342. ]
  2343. else:
  2344. return [(self.map_tensor_name(name), data_torch)]
  2345. return [] # skip other tensors
  2346. @ModelBase.register("Qwen2_5OmniModel")
  2347. class Qwen25OmniModel(Qwen2VLVisionModel):
  2348. has_vision_encoder = True
  2349. has_audio_encoder = True
  2350. def __init__(self, *args, **kwargs):
  2351. super().__init__(*args, **kwargs)
  2352. assert self.hparams_audio is not None
  2353. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  2354. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  2355. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  2356. def set_gguf_parameters(self):
  2357. super().set_gguf_parameters()
  2358. assert self.hparams_audio is not None
  2359. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  2360. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  2361. def get_vision_config(self) -> dict[str, Any] | None:
  2362. return self.global_config["thinker_config"].get("vision_config")
  2363. def get_audio_config(self) -> dict[str, Any] | None:
  2364. return self.global_config["thinker_config"].get("audio_config")
  2365. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2366. # SinusoidsPositionEmbedding
  2367. assert self.hparams_audio is not None
  2368. max_timescale = 10000
  2369. length = 1500
  2370. channels = self.hparams_audio["hidden_size"]
  2371. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  2372. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  2373. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  2374. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  2375. yield ("audio_tower.embed_positions.weight", pos_embd)
  2376. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2377. del bid, new_name, n_dims # unused
  2378. if ".conv" in name and ".weight" in name:
  2379. return gguf.GGMLQuantizationType.F16
  2380. return False
  2381. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2382. if name.startswith("thinker."):
  2383. name = name.replace("thinker.", "")
  2384. if name.startswith("audio_tower"):
  2385. # process audio tensors
  2386. if "conv1.bias" in name or "conv2.bias" in name:
  2387. # transpose conv1 and conv2 bias
  2388. data_torch = data_torch.unsqueeze(-1)
  2389. if "audio_bos_eos_token" in name:
  2390. # this tensor is left unused in transformers code
  2391. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  2392. return []
  2393. return [(self.map_tensor_name(name), data_torch)]
  2394. return super().modify_tensors(data_torch, name, bid)
  2395. @ModelBase.register("InternVisionModel")
  2396. class InternVisionModel(MmprojModel):
  2397. def set_gguf_parameters(self):
  2398. super().set_gguf_parameters()
  2399. hparams = self.hparams
  2400. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  2401. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2402. # hidden_act
  2403. if hparams["hidden_act"] == "silu":
  2404. self.gguf_writer.add_vision_use_silu(True)
  2405. elif hparams["hidden_act"] == "gelu":
  2406. self.gguf_writer.add_vision_use_gelu(True)
  2407. else:
  2408. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2409. # downsample_ratio
  2410. downsample_ratio = self.global_config.get("downsample_ratio")
  2411. assert downsample_ratio is not None
  2412. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  2413. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2414. del bid, name, n_dims # unused
  2415. if ".patch_embd." in new_name:
  2416. return gguf.GGMLQuantizationType.F16
  2417. if ".position_embd." in new_name:
  2418. return gguf.GGMLQuantizationType.F32
  2419. return False
  2420. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2421. del bid # unused
  2422. if name.startswith("vision_model") or name.startswith("mlp"):
  2423. # process visual tensors
  2424. # correct name
  2425. if name.startswith("vision_model"):
  2426. name = "vision_tower." + name
  2427. if (".ls" in name or "position_embedding" in name) and not name.endswith(".weight"):
  2428. name += ".weight"
  2429. # split QKV tensors if needed
  2430. if ".qkv." in name:
  2431. if data_torch.ndim == 2: # weight
  2432. c3, _ = data_torch.shape
  2433. else: # bias
  2434. c3 = data_torch.shape[0]
  2435. assert c3 % 3 == 0
  2436. c = c3 // 3
  2437. wq = data_torch[:c]
  2438. wk = data_torch[c: c * 2]
  2439. wv = data_torch[c * 2:]
  2440. return [
  2441. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  2442. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  2443. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  2444. ]
  2445. return [(self.map_tensor_name(name), data_torch)]
  2446. return [] # skip other tensors
  2447. @ModelBase.register("WavTokenizerDec")
  2448. class WavTokenizerDecModel(TextModel):
  2449. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  2450. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2451. del bid # unused
  2452. if \
  2453. name.endswith("codebook.cluster_size") or \
  2454. name.endswith("codebook.embed_avg") or \
  2455. name.endswith("codebook.inited"):
  2456. logger.debug(f"Skipping {name!r}")
  2457. return []
  2458. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  2459. return [(self.map_tensor_name(name), data_torch)]
  2460. def set_vocab(self):
  2461. self._set_vocab_none()
  2462. def set_gguf_parameters(self):
  2463. super().set_gguf_parameters()
  2464. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  2465. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  2466. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  2467. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  2468. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  2469. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  2470. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  2471. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  2472. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  2473. self.gguf_writer.add_causal_attention(False)
  2474. @ModelBase.register("Qwen2MoeForCausalLM")
  2475. class Qwen2MoeModel(TextModel):
  2476. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  2477. def set_gguf_parameters(self):
  2478. super().set_gguf_parameters()
  2479. if (n_experts := self.hparams.get("num_experts")) is not None:
  2480. self.gguf_writer.add_expert_count(n_experts)
  2481. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2482. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2483. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  2484. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  2485. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  2486. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  2487. # YaRN is not enabled by default
  2488. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  2489. rope_scaling = self.hparams.get("rope_scaling") or {}
  2490. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2491. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2492. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2493. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2494. _experts: list[dict[str, Tensor]] | None = None
  2495. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2496. # process the experts separately
  2497. if name.find("experts") != -1:
  2498. n_experts = self.hparams["num_experts"]
  2499. assert bid is not None
  2500. if self._experts is None:
  2501. self._experts = [{} for _ in range(self.block_count)]
  2502. self._experts[bid][name] = data_torch
  2503. if len(self._experts[bid]) >= n_experts * 3:
  2504. tensors: list[tuple[str, Tensor]] = []
  2505. # merge the experts into a single 3d tensor
  2506. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2507. datas: list[Tensor] = []
  2508. for xid in range(n_experts):
  2509. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2510. datas.append(self._experts[bid][ename])
  2511. del self._experts[bid][ename]
  2512. data_torch = torch.stack(datas, dim=0)
  2513. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2514. new_name = self.map_tensor_name(merged_name)
  2515. tensors.append((new_name, data_torch))
  2516. return tensors
  2517. else:
  2518. return []
  2519. return [(self.map_tensor_name(name), data_torch)]
  2520. def prepare_tensors(self):
  2521. super().prepare_tensors()
  2522. if self._experts is not None:
  2523. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2524. experts = [k for d in self._experts for k in d.keys()]
  2525. if len(experts) > 0:
  2526. raise ValueError(f"Unprocessed experts: {experts}")
  2527. @ModelBase.register("Qwen3ForCausalLM")
  2528. class Qwen3Model(Qwen2Model):
  2529. model_arch = gguf.MODEL_ARCH.QWEN3
  2530. @ModelBase.register("Qwen3MoeForCausalLM")
  2531. class Qwen3MoeModel(Qwen2MoeModel):
  2532. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  2533. @ModelBase.register("GPT2LMHeadModel")
  2534. class GPT2Model(TextModel):
  2535. model_arch = gguf.MODEL_ARCH.GPT2
  2536. def set_gguf_parameters(self):
  2537. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2538. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  2539. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2540. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2541. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2542. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2543. self.gguf_writer.add_file_type(self.ftype)
  2544. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2545. del bid # unused
  2546. tensors: list[tuple[str, Tensor]] = []
  2547. # we don't need these
  2548. if name.endswith((".attn.bias", ".attn.masked_bias")):
  2549. return tensors
  2550. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  2551. data_torch = data_torch.transpose(1, 0)
  2552. new_name = self.map_tensor_name(name)
  2553. tensors.append((new_name, data_torch))
  2554. return tensors
  2555. @ModelBase.register("PhiForCausalLM")
  2556. class Phi2Model(TextModel):
  2557. model_arch = gguf.MODEL_ARCH.PHI2
  2558. def set_gguf_parameters(self):
  2559. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2560. rot_pct = self.find_hparam(["partial_rotary_factor"])
  2561. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2562. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2563. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  2564. self.gguf_writer.add_embedding_length(n_embd)
  2565. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  2566. self.gguf_writer.add_block_count(block_count)
  2567. self.gguf_writer.add_head_count(n_head)
  2568. self.gguf_writer.add_head_count_kv(n_head)
  2569. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  2570. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  2571. self.gguf_writer.add_file_type(self.ftype)
  2572. self.gguf_writer.add_add_bos_token(False)
  2573. @ModelBase.register("Phi3ForCausalLM")
  2574. class Phi3MiniModel(TextModel):
  2575. model_arch = gguf.MODEL_ARCH.PHI3
  2576. def set_vocab(self):
  2577. # Phi-4 model uses GPT2Tokenizer
  2578. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2579. if tokenizer_config_file.is_file():
  2580. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2581. tokenizer_config_json = json.load(f)
  2582. tokenizer_class = tokenizer_config_json['tokenizer_class']
  2583. if tokenizer_class == 'GPT2Tokenizer':
  2584. return self._set_vocab_gpt2()
  2585. from sentencepiece import SentencePieceProcessor
  2586. tokenizer_path = self.dir_model / 'tokenizer.model'
  2587. if not tokenizer_path.is_file():
  2588. raise ValueError(f'Error: Missing {tokenizer_path}')
  2589. tokenizer = SentencePieceProcessor()
  2590. tokenizer.LoadFromFile(str(tokenizer_path))
  2591. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2592. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2593. scores: list[float] = [-10000.0] * vocab_size
  2594. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2595. for token_id in range(tokenizer.vocab_size()):
  2596. piece = tokenizer.IdToPiece(token_id)
  2597. text = piece.encode("utf-8")
  2598. score = tokenizer.GetScore(token_id)
  2599. toktype = SentencePieceTokenTypes.NORMAL
  2600. if tokenizer.IsUnknown(token_id):
  2601. toktype = SentencePieceTokenTypes.UNKNOWN
  2602. elif tokenizer.IsControl(token_id):
  2603. toktype = SentencePieceTokenTypes.CONTROL
  2604. elif tokenizer.IsUnused(token_id):
  2605. toktype = SentencePieceTokenTypes.UNUSED
  2606. elif tokenizer.IsByte(token_id):
  2607. toktype = SentencePieceTokenTypes.BYTE
  2608. tokens[token_id] = text
  2609. scores[token_id] = score
  2610. toktypes[token_id] = toktype
  2611. added_tokens_file = self.dir_model / 'added_tokens.json'
  2612. if added_tokens_file.is_file():
  2613. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2614. added_tokens_json = json.load(f)
  2615. for key in added_tokens_json:
  2616. token_id = added_tokens_json[key]
  2617. if token_id >= vocab_size:
  2618. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2619. continue
  2620. tokens[token_id] = key.encode("utf-8")
  2621. scores[token_id] = -1000.0
  2622. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2623. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2624. if tokenizer_config_file.is_file():
  2625. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2626. tokenizer_config_json = json.load(f)
  2627. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2628. for token_id, foken_data in added_tokens_decoder.items():
  2629. token_id = int(token_id)
  2630. token = foken_data["content"].encode("utf-8")
  2631. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2632. if tokens[token_id] != token:
  2633. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2634. tokens[token_id] = token
  2635. scores[token_id] = -1000.0
  2636. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2637. if foken_data.get("special"):
  2638. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2639. tokenizer_file = self.dir_model / 'tokenizer.json'
  2640. if tokenizer_file.is_file():
  2641. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2642. tokenizer_json = json.load(f)
  2643. added_tokens = tokenizer_json.get("added_tokens", [])
  2644. for foken_data in added_tokens:
  2645. token_id = int(foken_data["id"])
  2646. token = foken_data["content"].encode("utf-8")
  2647. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2648. if tokens[token_id] != token:
  2649. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2650. tokens[token_id] = token
  2651. scores[token_id] = -1000.0
  2652. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2653. if foken_data.get("special"):
  2654. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2655. self.gguf_writer.add_tokenizer_model("llama")
  2656. self.gguf_writer.add_tokenizer_pre("default")
  2657. self.gguf_writer.add_token_list(tokens)
  2658. self.gguf_writer.add_token_scores(scores)
  2659. self.gguf_writer.add_token_types(toktypes)
  2660. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2661. special_vocab.add_to_gguf(self.gguf_writer)
  2662. def set_gguf_parameters(self):
  2663. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2664. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2665. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2666. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  2667. rms_eps = self.find_hparam(["rms_norm_eps"])
  2668. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2669. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2670. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2671. rope_dims = int(rot_pct * n_embd) // n_head
  2672. self.gguf_writer.add_context_length(max_pos_embds)
  2673. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  2674. self.gguf_writer.add_embedding_length(n_embd)
  2675. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  2676. self.gguf_writer.add_block_count(block_count)
  2677. self.gguf_writer.add_head_count(n_head)
  2678. self.gguf_writer.add_head_count_kv(n_head_kv)
  2679. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  2680. self.gguf_writer.add_rope_dimension_count(rope_dims)
  2681. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  2682. self.gguf_writer.add_file_type(self.ftype)
  2683. sliding_window = self.hparams.get("sliding_window")
  2684. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  2685. if sliding_window is None:
  2686. sliding_window = 0
  2687. self.gguf_writer.add_sliding_window(sliding_window)
  2688. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2689. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2690. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2691. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2692. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2693. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2694. rope_dims = int(rot_pct * n_embd) // n_head
  2695. # write rope scaling for long context (128k) model
  2696. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2697. if rope_scaling is None:
  2698. return
  2699. scale = max_pos_embds / orig_max_pos_embds
  2700. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  2701. if len(rope_scaling_type) == 0:
  2702. raise KeyError('Missing the required key rope_scaling.type')
  2703. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  2704. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  2705. elif rope_scaling_type == 'yarn':
  2706. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  2707. else:
  2708. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  2709. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  2710. long_factors = rope_scaling.get('long_factor', None)
  2711. short_factors = rope_scaling.get('short_factor', None)
  2712. if long_factors is None or short_factors is None:
  2713. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2714. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2715. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  2716. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2717. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2718. @ModelBase.register("PhiMoEForCausalLM")
  2719. class PhiMoeModel(Phi3MiniModel):
  2720. model_arch = gguf.MODEL_ARCH.PHIMOE
  2721. _experts: list[dict[str, Tensor]] | None = None
  2722. def set_gguf_parameters(self):
  2723. super().set_gguf_parameters()
  2724. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  2725. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  2726. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2727. # process the experts separately
  2728. if name.find("block_sparse_moe.experts") != -1:
  2729. n_experts = self.hparams["num_local_experts"]
  2730. assert bid is not None
  2731. if self._experts is None:
  2732. self._experts = [{} for _ in range(self.block_count)]
  2733. self._experts[bid][name] = data_torch
  2734. if len(self._experts[bid]) >= n_experts * 3:
  2735. tensors: list[tuple[str, Tensor]] = []
  2736. # merge the experts into a single 3d tensor
  2737. for w_name in ["w1", "w2", "w3"]:
  2738. datas: list[Tensor] = []
  2739. for xid in range(n_experts):
  2740. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  2741. datas.append(self._experts[bid][ename])
  2742. del self._experts[bid][ename]
  2743. data_torch = torch.stack(datas, dim=0)
  2744. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  2745. new_name = self.map_tensor_name(merged_name)
  2746. tensors.append((new_name, data_torch))
  2747. return tensors
  2748. else:
  2749. return []
  2750. return [(self.map_tensor_name(name), data_torch)]
  2751. def prepare_tensors(self):
  2752. super().prepare_tensors()
  2753. if self._experts is not None:
  2754. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2755. experts = [k for d in self._experts for k in d.keys()]
  2756. if len(experts) > 0:
  2757. raise ValueError(f"Unprocessed experts: {experts}")
  2758. @ModelBase.register("PlamoForCausalLM")
  2759. class PlamoModel(TextModel):
  2760. model_arch = gguf.MODEL_ARCH.PLAMO
  2761. def set_vocab(self):
  2762. self._set_vocab_sentencepiece()
  2763. def set_gguf_parameters(self):
  2764. hparams = self.hparams
  2765. block_count = hparams["num_hidden_layers"]
  2766. self.gguf_writer.add_context_length(4096) # not in config.json
  2767. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2768. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2769. self.gguf_writer.add_block_count(block_count)
  2770. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2771. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  2772. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2773. self.gguf_writer.add_file_type(self.ftype)
  2774. def shuffle_attn_q_weight(self, data_torch):
  2775. assert data_torch.size() == (5120, 5120)
  2776. data_torch = data_torch.reshape(8, 5, 128, 5120)
  2777. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  2778. data_torch = torch.reshape(data_torch, (5120, 5120))
  2779. return data_torch
  2780. def shuffle_attn_output_weight(self, data_torch):
  2781. assert data_torch.size() == (5120, 5120)
  2782. data_torch = data_torch.reshape(5120, 8, 5, 128)
  2783. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  2784. data_torch = torch.reshape(data_torch, (5120, 5120))
  2785. return data_torch
  2786. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2787. del bid # unused
  2788. new_name = self.map_tensor_name(name)
  2789. # shuffle for broadcasting of gqa in ggml_mul_mat
  2790. if new_name.endswith("attn_q.weight"):
  2791. data_torch = self.shuffle_attn_q_weight(data_torch)
  2792. elif new_name.endswith("attn_output.weight"):
  2793. data_torch = self.shuffle_attn_output_weight(data_torch)
  2794. return [(new_name, data_torch)]
  2795. @ModelBase.register("CodeShellForCausalLM")
  2796. class CodeShellModel(TextModel):
  2797. model_arch = gguf.MODEL_ARCH.CODESHELL
  2798. def set_gguf_parameters(self):
  2799. block_count = self.hparams["n_layer"]
  2800. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2801. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2802. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2803. self.gguf_writer.add_block_count(block_count)
  2804. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2805. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  2806. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2807. self.gguf_writer.add_file_type(self.ftype)
  2808. self.gguf_writer.add_rope_freq_base(10000.0)
  2809. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2810. self.gguf_writer.add_rope_scaling_factor(1.0)
  2811. _has_tok_embd = False
  2812. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2813. del bid # unused
  2814. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2815. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2816. new_name = self.map_tensor_name(name)
  2817. # assuming token_embd.weight is seen before output.weight
  2818. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  2819. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  2820. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  2821. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  2822. self.tensor_names.remove("transformer.wte.weight")
  2823. elif new_name == tok_embd_name:
  2824. self._has_tok_embd = True
  2825. return [(new_name, data_torch)]
  2826. @ModelBase.register("InternLM2ForCausalLM")
  2827. class InternLM2Model(TextModel):
  2828. model_arch = gguf.MODEL_ARCH.INTERNLM2
  2829. def set_vocab(self):
  2830. # (TODO): Is there a better way?
  2831. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  2832. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  2833. # recognized as an empty string in C++.
  2834. from sentencepiece import SentencePieceProcessor
  2835. from sentencepiece import sentencepiece_model_pb2 as model
  2836. tokenizer_path = self.dir_model / 'tokenizer.model'
  2837. tokens: list[bytes] = []
  2838. scores: list[float] = []
  2839. toktypes: list[int] = []
  2840. if not tokenizer_path.is_file():
  2841. logger.error(f'Error: Missing {tokenizer_path}')
  2842. sys.exit(1)
  2843. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2844. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2845. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2846. tokenizer = SentencePieceProcessor()
  2847. tokenizer.LoadFromFile(str(tokenizer_path))
  2848. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2849. for token_id in range(vocab_size):
  2850. piece = tokenizer.IdToPiece(token_id)
  2851. text = piece.encode("utf-8")
  2852. score = tokenizer.GetScore(token_id)
  2853. if text == b"\x00":
  2854. # (TODO): fixme
  2855. # Hack here and replace the \x00 characters.
  2856. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  2857. text = "🐉".encode("utf-8")
  2858. toktype = SentencePieceTokenTypes.NORMAL
  2859. if tokenizer.IsUnknown(token_id):
  2860. toktype = SentencePieceTokenTypes.UNKNOWN
  2861. elif tokenizer.IsControl(token_id):
  2862. toktype = SentencePieceTokenTypes.CONTROL
  2863. elif tokenizer.IsUnused(token_id):
  2864. toktype = SentencePieceTokenTypes.UNUSED
  2865. elif tokenizer.IsByte(token_id):
  2866. toktype = SentencePieceTokenTypes.BYTE
  2867. # take care of ununsed raw token
  2868. if piece.startswith('[UNUSED'):
  2869. toktype = SentencePieceTokenTypes.UNUSED
  2870. tokens.append(text)
  2871. scores.append(score)
  2872. toktypes.append(toktype)
  2873. added_tokens_file = self.dir_model / 'added_tokens.json'
  2874. if added_tokens_file.is_file():
  2875. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2876. added_tokens_json = json.load(f)
  2877. for key in added_tokens_json:
  2878. tokens.append(key.encode("utf-8"))
  2879. scores.append(-1000.0)
  2880. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  2881. chat_eos_token = '<|im_end|>'
  2882. chat_eos_token_id = None
  2883. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2884. if tokenizer_config_file.is_file():
  2885. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2886. tokenizer_config_json = json.load(f)
  2887. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2888. for token_id, foken_data in added_tokens_decoder.items():
  2889. token_id = int(token_id)
  2890. token = foken_data["content"]
  2891. if token == chat_eos_token:
  2892. chat_eos_token_id = token_id
  2893. token = token.encode("utf-8")
  2894. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2895. if tokens[token_id] != token:
  2896. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2897. tokens[token_id] = token
  2898. scores[token_id] = -1000.0
  2899. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2900. if foken_data.get("special"):
  2901. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2902. tokenizer_file = self.dir_model / 'tokenizer.json'
  2903. if tokenizer_file.is_file():
  2904. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2905. tokenizer_json = json.load(f)
  2906. added_tokens = tokenizer_json.get("added_tokens", [])
  2907. for foken_data in added_tokens:
  2908. token_id = int(foken_data["id"])
  2909. token = foken_data["content"]
  2910. if token == chat_eos_token:
  2911. chat_eos_token_id = token_id
  2912. token = token.encode("utf-8")
  2913. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2914. if tokens[token_id] != token:
  2915. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2916. tokens[token_id] = token
  2917. scores[token_id] = -1000.0
  2918. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2919. if foken_data.get("special"):
  2920. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2921. self.gguf_writer.add_tokenizer_model("llama")
  2922. self.gguf_writer.add_tokenizer_pre("default")
  2923. self.gguf_writer.add_token_list(tokens)
  2924. self.gguf_writer.add_token_scores(scores)
  2925. self.gguf_writer.add_token_types(toktypes)
  2926. self.gguf_writer.add_add_space_prefix(add_prefix)
  2927. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2928. old_eos = special_vocab.special_token_ids["eos"]
  2929. if chat_eos_token_id is not None:
  2930. # For the chat model, we replace the eos with '<|im_end|>'.
  2931. # TODO: this is a hack, should be fixed
  2932. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  2933. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  2934. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  2935. " in chat mode so that the conversation can end normally.")
  2936. special_vocab.add_to_gguf(self.gguf_writer)
  2937. def set_gguf_parameters(self):
  2938. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2939. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2940. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2941. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2942. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  2943. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2944. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2945. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  2946. self.gguf_writer.add_file_type(self.ftype)
  2947. rope_scaling = self.hparams.get("rope_scaling") or {}
  2948. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  2949. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2950. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2951. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2952. num_heads = self.hparams["num_attention_heads"]
  2953. num_kv_heads = self.hparams["num_key_value_heads"]
  2954. n_embd = self.hparams["hidden_size"]
  2955. q_per_kv = num_heads // num_kv_heads
  2956. head_dim = n_embd // num_heads
  2957. num_groups = num_heads // q_per_kv
  2958. name = name.replace("language_model.", "") # InternVL
  2959. if name.startswith("mlp") or name.startswith("vision_model"):
  2960. # skip visual tensors
  2961. return []
  2962. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  2963. qkv = data_torch
  2964. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  2965. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  2966. # The model weights of q and k equire additional reshape.
  2967. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  2968. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  2969. v = v.reshape((-1, v.shape[-1]))
  2970. return [
  2971. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  2972. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  2973. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  2974. ]
  2975. else:
  2976. return [(self.map_tensor_name(name), data_torch)]
  2977. @ModelBase.register("InternLM3ForCausalLM")
  2978. class InternLM3Model(TextModel):
  2979. model_arch = gguf.MODEL_ARCH.LLAMA
  2980. def set_vocab(self):
  2981. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  2982. self.gguf_writer.add_tokenizer_model("llama")
  2983. self.gguf_writer.add_tokenizer_pre("default")
  2984. self.gguf_writer.add_token_list(tokens)
  2985. self.gguf_writer.add_token_scores(scores)
  2986. self.gguf_writer.add_token_types(toktypes)
  2987. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2988. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2989. if tokenizer_config_file.is_file():
  2990. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2991. tokenizer_config_json = json.load(f)
  2992. if "add_prefix_space" in tokenizer_config_json:
  2993. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  2994. if "added_tokens_decoder" in tokenizer_config_json:
  2995. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  2996. if token_data.get("special"):
  2997. token_id = int(token_id)
  2998. token = token_data["content"]
  2999. special_vocab._set_special_token(token, token_id)
  3000. # update eos token
  3001. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  3002. special_vocab.special_token_ids["eos"] = token_id
  3003. special_vocab.add_to_gguf(self.gguf_writer)
  3004. def set_gguf_parameters(self):
  3005. super().set_gguf_parameters()
  3006. hparams = self.hparams
  3007. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3008. if (rope_dim := hparams.get("head_dim")) is None:
  3009. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3010. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3011. rope_scaling = self.hparams.get("rope_scaling") or {}
  3012. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3013. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3014. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3015. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3016. n_head = self.hparams["num_attention_heads"]
  3017. n_kv_head = self.hparams.get("num_key_value_heads")
  3018. name = name.replace("language_model.", "") # InternVL
  3019. if name.startswith("mlp") or name.startswith("vision_model"):
  3020. # skip visual tensors
  3021. return []
  3022. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3023. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3024. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3025. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3026. return [(self.map_tensor_name(name), data_torch)]
  3027. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  3028. class BertModel(TextModel):
  3029. model_arch = gguf.MODEL_ARCH.BERT
  3030. def __init__(self, *args, **kwargs):
  3031. super().__init__(*args, **kwargs)
  3032. self.vocab_size = None
  3033. if cls_out_labels := self.hparams.get("id2label"):
  3034. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  3035. # Remove dummy labels added by AutoConfig
  3036. cls_out_labels = None
  3037. self.cls_out_labels = cls_out_labels
  3038. def set_gguf_parameters(self):
  3039. super().set_gguf_parameters()
  3040. self.gguf_writer.add_causal_attention(False)
  3041. self._try_set_pooling_type()
  3042. if self.cls_out_labels:
  3043. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  3044. def set_vocab(self):
  3045. tokens, toktypes, tokpre = self.get_vocab_base()
  3046. self.vocab_size = len(tokens)
  3047. # we need this to validate the size of the token_type embeddings
  3048. # though currently we are passing all zeros to the token_type embeddings
  3049. # "Sequence A" or "Sequence B"
  3050. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3051. # convert to phantom space vocab
  3052. def phantom(tok):
  3053. if tok.startswith("[") and tok.endswith("]"):
  3054. return tok
  3055. if tok.startswith("##"):
  3056. return tok[2:]
  3057. return "\u2581" + tok
  3058. tokens = list(map(phantom, tokens))
  3059. # add vocab to gguf
  3060. self.gguf_writer.add_tokenizer_model("bert")
  3061. self.gguf_writer.add_tokenizer_pre(tokpre)
  3062. self.gguf_writer.add_token_list(tokens)
  3063. self.gguf_writer.add_token_types(toktypes)
  3064. # handle special tokens
  3065. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3066. special_vocab.add_to_gguf(self.gguf_writer)
  3067. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3068. del bid # unused
  3069. if name.startswith("bert."):
  3070. name = name[5:]
  3071. if name.endswith(".gamma"):
  3072. name = name[:-6] + ".weight"
  3073. if name.endswith(".beta"):
  3074. name = name[:-5] + ".bias"
  3075. # we are only using BERT for embeddings so we don't need the pooling layer
  3076. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  3077. return [] # we don't need these
  3078. if name.startswith("cls.predictions"):
  3079. return []
  3080. if name.startswith("cls.seq_relationship"):
  3081. return []
  3082. if self.cls_out_labels:
  3083. # For BertForSequenceClassification (direct projection layer)
  3084. if name == "classifier.weight":
  3085. name = "classifier.out_proj.weight"
  3086. if name == "classifier.bias":
  3087. name = "classifier.out_proj.bias"
  3088. return [(self.map_tensor_name(name), data_torch)]
  3089. def _xlmroberta_tokenizer_init(self) -> None:
  3090. # we need the pad_token_id to know how to chop down position_embd matrix
  3091. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3092. self._position_offset = 1 + pad_token_id
  3093. if "max_position_embeddings" in self.hparams:
  3094. self.hparams["max_position_embeddings"] -= self._position_offset
  3095. else:
  3096. self._position_offset = None
  3097. def _xlmroberta_set_vocab(self) -> None:
  3098. # to avoid TypeError: Descriptors cannot be created directly
  3099. # exception when importing sentencepiece_model_pb2
  3100. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3101. from sentencepiece import SentencePieceProcessor
  3102. from sentencepiece import sentencepiece_model_pb2 as model
  3103. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  3104. tokenizer_json = {}
  3105. tokenizer_config_json = {}
  3106. if not tokenizer_path.is_file():
  3107. tokenizer_path = self.dir_model / 'tokenizer.json'
  3108. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  3109. if not tokenizer_path.is_file():
  3110. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3111. from base64 import b64decode
  3112. from transformers import AutoTokenizer
  3113. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3114. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  3115. tokenizer_json = json.load(fp)
  3116. if tokenizer_config_path.is_file():
  3117. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  3118. tokenizer_config_json = json.load(fp)
  3119. add_prefix = tokenizer.add_prefix_space
  3120. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  3121. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  3122. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  3123. else:
  3124. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3125. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3126. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3127. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3128. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3129. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3130. tokenizer = SentencePieceProcessor()
  3131. tokenizer.LoadFromFile(str(tokenizer_path))
  3132. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  3133. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3134. scores: list[float] = [-10000.0] * vocab_size
  3135. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3136. if isinstance(tokenizer, SentencePieceProcessor):
  3137. for token_id in range(tokenizer.vocab_size()):
  3138. piece = tokenizer.IdToPiece(token_id)
  3139. text = piece.encode("utf-8")
  3140. score = tokenizer.GetScore(token_id)
  3141. toktype = SentencePieceTokenTypes.NORMAL
  3142. if tokenizer.IsUnknown(token_id):
  3143. toktype = SentencePieceTokenTypes.UNKNOWN
  3144. elif tokenizer.IsControl(token_id):
  3145. toktype = SentencePieceTokenTypes.CONTROL
  3146. elif tokenizer.IsUnused(token_id):
  3147. toktype = SentencePieceTokenTypes.UNUSED
  3148. elif tokenizer.IsByte(token_id):
  3149. toktype = SentencePieceTokenTypes.BYTE
  3150. tokens[token_id] = text
  3151. scores[token_id] = score
  3152. toktypes[token_id] = toktype
  3153. else:
  3154. added_vocab = tokenizer.get_added_vocab()
  3155. unk_token = tokenizer_config_json.get("unk_token")
  3156. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  3157. for token_id in range(tokenizer.vocab_size):
  3158. piece = tokenizer._convert_id_to_token(token_id)
  3159. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  3160. text = piece.encode("utf-8")
  3161. score = tokenizer_json["model"]["vocab"][token_id][1]
  3162. toktype = SentencePieceTokenTypes.NORMAL
  3163. if token_id == unk_token_id:
  3164. toktype = SentencePieceTokenTypes.UNKNOWN
  3165. elif token_id in tokenizer.all_special_ids:
  3166. toktype = SentencePieceTokenTypes.CONTROL
  3167. elif token_id in added_vocab.values():
  3168. toktype = SentencePieceTokenTypes.USER_DEFINED
  3169. # No reliable way to detect this, but jina doesn't have any
  3170. # elif tokenizer.IsByte(token_id):
  3171. # toktype = SentencePieceTokenTypes.BYTE
  3172. tokens[token_id] = text
  3173. scores[token_id] = score
  3174. toktypes[token_id] = toktype
  3175. if isinstance(tokenizer, SentencePieceProcessor):
  3176. # realign tokens (see HF tokenizer code)
  3177. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  3178. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  3179. toktypes = [
  3180. SentencePieceTokenTypes.CONTROL,
  3181. SentencePieceTokenTypes.CONTROL,
  3182. SentencePieceTokenTypes.CONTROL,
  3183. SentencePieceTokenTypes.UNKNOWN,
  3184. ] + toktypes[3:-1]
  3185. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  3186. # Add mask token missing from sentencepiece.bpe.model
  3187. tokens[250001] = b'<mask>'
  3188. scores[250001] = 0.0
  3189. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  3190. self.gguf_writer.add_tokenizer_model("t5")
  3191. self.gguf_writer.add_tokenizer_pre("default")
  3192. self.gguf_writer.add_token_list(tokens)
  3193. self.gguf_writer.add_token_scores(scores)
  3194. self.gguf_writer.add_token_types(toktypes)
  3195. self.gguf_writer.add_add_space_prefix(add_prefix)
  3196. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3197. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3198. if precompiled_charsmap:
  3199. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3200. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3201. special_vocab.add_to_gguf(self.gguf_writer)
  3202. self.gguf_writer.add_add_bos_token(True)
  3203. self.gguf_writer.add_add_eos_token(True)
  3204. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  3205. class DistilBertModel(BertModel):
  3206. model_arch = gguf.MODEL_ARCH.BERT
  3207. def set_gguf_parameters(self):
  3208. self.gguf_writer.add_layer_norm_eps(1e-12)
  3209. logger.info("gguf: layer norm epsilon = 1e-12")
  3210. super().set_gguf_parameters()
  3211. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3212. if name.startswith("distilbert."):
  3213. name = name[11:]
  3214. # These layers act as MLM head, so we don't need them
  3215. if name.startswith("vocab_"):
  3216. return []
  3217. return super().modify_tensors(data_torch, name, bid)
  3218. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  3219. class RobertaModel(BertModel):
  3220. model_arch = gguf.MODEL_ARCH.BERT
  3221. def __init__(self, *args, **kwargs):
  3222. super().__init__(*args, **kwargs)
  3223. # we need the pad_token_id to know how to chop down position_embd matrix
  3224. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3225. self._position_offset = 1 + pad_token_id
  3226. if "max_position_embeddings" in self.hparams:
  3227. self.hparams["max_position_embeddings"] -= self._position_offset
  3228. else:
  3229. self._position_offset = None
  3230. def set_vocab(self):
  3231. """Support BPE tokenizers for roberta models"""
  3232. bpe_tok_path = self.dir_model / "tokenizer.json"
  3233. if bpe_tok_path.exists():
  3234. self._set_vocab_gpt2()
  3235. self.gguf_writer.add_add_bos_token(True)
  3236. self.gguf_writer.add_add_eos_token(True)
  3237. # we need this to validate the size of the token_type embeddings
  3238. # though currently we are passing all zeros to the token_type embeddings
  3239. # "Sequence A" or "Sequence B"
  3240. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3241. else:
  3242. return super().set_vocab()
  3243. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3244. # if name starts with "roberta.", remove the prefix
  3245. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3246. if name.startswith("roberta."):
  3247. name = name[8:]
  3248. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3249. if name == "embeddings.position_embeddings.weight":
  3250. if self._position_offset is not None:
  3251. data_torch = data_torch[self._position_offset:,:]
  3252. return super().modify_tensors(data_torch, name, bid)
  3253. @ModelBase.register("NomicBertModel")
  3254. class NomicBertModel(BertModel):
  3255. model_arch = gguf.MODEL_ARCH.BERT
  3256. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  3257. hparams = kwargs.pop("hparams", None)
  3258. if hparams is None:
  3259. hparams = ModelBase.load_hparams(dir_model)
  3260. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  3261. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  3262. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  3263. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  3264. if self._tokenizer_is_xlmroberta:
  3265. self._xlmroberta_tokenizer_init()
  3266. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  3267. if npos == 8192 and mtp == 2048:
  3268. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  3269. elif npos == 2048 and mtp == 2048:
  3270. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  3271. else:
  3272. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  3273. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  3274. # this doesn't do anything in the HF version
  3275. assert self.hparams["causal"] is False
  3276. # no bias tensors unless MoE
  3277. assert self.hparams["qkv_proj_bias"] == self.is_moe
  3278. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  3279. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  3280. # norm at end of layer
  3281. assert self.hparams["prenorm"] is False
  3282. # standard RoPE
  3283. assert self.hparams["rotary_emb_fraction"] == 1.0
  3284. assert self.hparams["rotary_emb_interleaved"] is False
  3285. assert self.hparams["rotary_emb_scale_base"] is None
  3286. def set_vocab(self) -> None:
  3287. if self._tokenizer_is_xlmroberta:
  3288. return self._xlmroberta_set_vocab()
  3289. return super().set_vocab()
  3290. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  3291. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  3292. if "mlp.experts.bias" in name:
  3293. return [] # Explicitly return an empty list.
  3294. if "mlp.experts.mlp.w1" in name:
  3295. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3296. name += ".weight"
  3297. if "mlp.experts.mlp.w2" in name:
  3298. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3299. data_torch = data_torch.transpose(1, 2)
  3300. name += ".weight"
  3301. return [(self.map_tensor_name(name), data_torch)]
  3302. def set_gguf_parameters(self):
  3303. super().set_gguf_parameters()
  3304. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  3305. if self.is_moe:
  3306. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  3307. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  3308. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  3309. def _is_tokenizer_xlmroberta(self) -> bool:
  3310. with open(self.dir_model / "tokenizer.json") as f:
  3311. tokenizer_json = json.load(f)
  3312. toktyp = tokenizer_json["model"]["type"]
  3313. if toktyp == "Unigram":
  3314. return True
  3315. if toktyp == "WordPiece":
  3316. return False
  3317. raise ValueError(f"unknown tokenizer: {toktyp}")
  3318. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  3319. class NeoBert(BertModel):
  3320. model_arch = gguf.MODEL_ARCH.NEO_BERT
  3321. def set_gguf_parameters(self):
  3322. super().set_gguf_parameters()
  3323. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  3324. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  3325. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  3326. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3327. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  3328. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  3329. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  3330. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  3331. def modify_tensors(self, data_torch, name, bid):
  3332. if name.startswith("decoder."):
  3333. return []
  3334. if name.startswith("model."):
  3335. name = name[6:]
  3336. return super().modify_tensors(data_torch, name, bid)
  3337. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  3338. class XLMRobertaModel(BertModel):
  3339. model_arch = gguf.MODEL_ARCH.BERT
  3340. def __init__(self, *args, **kwargs):
  3341. super().__init__(*args, **kwargs)
  3342. self._xlmroberta_tokenizer_init()
  3343. def set_vocab(self):
  3344. self._xlmroberta_set_vocab()
  3345. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3346. # if name starts with "roberta.", remove the prefix
  3347. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3348. if name.startswith("roberta."):
  3349. name = name[8:]
  3350. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3351. if name == "embeddings.position_embeddings.weight":
  3352. if self._position_offset is not None:
  3353. data_torch = data_torch[self._position_offset:,:]
  3354. return super().modify_tensors(data_torch, name, bid)
  3355. @ModelBase.register("GemmaForCausalLM")
  3356. class GemmaModel(TextModel):
  3357. model_arch = gguf.MODEL_ARCH.GEMMA
  3358. def set_vocab(self):
  3359. self._set_vocab_sentencepiece()
  3360. # TODO: these special tokens should be exported only for the CodeGemma family
  3361. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  3362. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  3363. special_vocab._set_special_token("prefix", 67)
  3364. special_vocab._set_special_token("suffix", 69)
  3365. special_vocab._set_special_token("middle", 68)
  3366. special_vocab._set_special_token("fsep", 70)
  3367. special_vocab._set_special_token("eot", 107)
  3368. special_vocab.chat_template = None # do not add it twice
  3369. special_vocab.add_to_gguf(self.gguf_writer)
  3370. self.gguf_writer.add_add_space_prefix(False)
  3371. def set_gguf_parameters(self):
  3372. hparams = self.hparams
  3373. block_count = hparams["num_hidden_layers"]
  3374. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3375. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3376. self.gguf_writer.add_block_count(block_count)
  3377. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3378. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3379. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  3380. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3381. self.gguf_writer.add_key_length(hparams["head_dim"])
  3382. self.gguf_writer.add_value_length(hparams["head_dim"])
  3383. self.gguf_writer.add_file_type(self.ftype)
  3384. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3385. del bid # unused
  3386. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3387. # To prevent errors, skip loading lm_head.weight.
  3388. if name == "lm_head.weight":
  3389. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3390. return []
  3391. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3392. if name.endswith("norm.weight"):
  3393. data_torch = data_torch + 1
  3394. return [(self.map_tensor_name(name), data_torch)]
  3395. @ModelBase.register("Gemma2ForCausalLM")
  3396. class Gemma2Model(TextModel):
  3397. model_arch = gguf.MODEL_ARCH.GEMMA2
  3398. def set_vocab(self):
  3399. self._set_vocab_sentencepiece()
  3400. self.gguf_writer.add_add_space_prefix(False)
  3401. def set_gguf_parameters(self):
  3402. hparams = self.hparams
  3403. block_count = hparams["num_hidden_layers"]
  3404. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3405. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3406. self.gguf_writer.add_block_count(block_count)
  3407. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3408. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3409. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  3410. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3411. self.gguf_writer.add_key_length(hparams["head_dim"])
  3412. self.gguf_writer.add_value_length(hparams["head_dim"])
  3413. self.gguf_writer.add_file_type(self.ftype)
  3414. self.gguf_writer.add_attn_logit_softcapping(
  3415. self.hparams["attn_logit_softcapping"]
  3416. )
  3417. self.gguf_writer.add_final_logit_softcapping(
  3418. self.hparams["final_logit_softcapping"]
  3419. )
  3420. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3421. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3422. del bid # unused
  3423. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3424. # To prevent errors, skip loading lm_head.weight.
  3425. if name == "lm_head.weight":
  3426. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3427. return []
  3428. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3429. if name.endswith("norm.weight"):
  3430. data_torch = data_torch + 1
  3431. return [(self.map_tensor_name(name), data_torch)]
  3432. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  3433. class Gemma3Model(TextModel):
  3434. model_arch = gguf.MODEL_ARCH.GEMMA3
  3435. def set_vocab(self):
  3436. self._set_vocab_sentencepiece()
  3437. self.gguf_writer.add_add_space_prefix(False)
  3438. def set_gguf_parameters(self):
  3439. hparams = self.hparams
  3440. block_count = hparams["num_hidden_layers"]
  3441. # some default values are not specified in the hparams
  3442. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  3443. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3444. self.gguf_writer.add_block_count(block_count)
  3445. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3446. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  3447. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  3448. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  3449. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  3450. self.gguf_writer.add_file_type(self.ftype)
  3451. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  3452. # both attn_logit_softcapping and final_logit_softcapping are removed in Gemma3
  3453. assert hparams.get("attn_logit_softcapping") is None
  3454. assert hparams.get("final_logit_softcapping") is None
  3455. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  3456. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  3457. if hparams.get("rope_scaling") is not None:
  3458. assert hparams["rope_scaling"]["rope_type"] == "linear"
  3459. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  3460. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3461. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3462. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3463. del bid # unused
  3464. if name.startswith("language_model."):
  3465. name = name.replace("language_model.", "")
  3466. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3467. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3468. return [] # skip vision tensors
  3469. # remove OOV (out-of-vocabulary) rows in token_embd
  3470. if "embed_tokens.weight" in name:
  3471. vocab = self._create_vocab_sentencepiece()
  3472. tokens = vocab[0]
  3473. data_torch = data_torch[:len(tokens)]
  3474. # ref code in Gemma3RMSNorm
  3475. # output = output * (1.0 + self.weight.float())
  3476. if name.endswith("norm.weight"):
  3477. data_torch = data_torch + 1
  3478. return [(self.map_tensor_name(name), data_torch)]
  3479. @ModelBase.register("Gemma3ForConditionalGeneration")
  3480. class Gemma3VisionModel(MmprojModel):
  3481. def set_gguf_parameters(self):
  3482. super().set_gguf_parameters()
  3483. hparams = self.hparams
  3484. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  3485. # default values below are taken from HF tranformers code
  3486. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  3487. self.gguf_writer.add_vision_use_gelu(True)
  3488. # calculate proj_scale_factor (used by tinygemma3 test model)
  3489. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  3490. n_per_side = int(image_seq_length ** 0.5)
  3491. image_size = self.hparams["image_size"]
  3492. patch_size = self.hparams["patch_size"]
  3493. proj_scale_factor = (image_size // patch_size) // n_per_side
  3494. if proj_scale_factor > 0 and proj_scale_factor != 4:
  3495. # we only need to write this if it's not the default value
  3496. # in this case, we are converting a test model
  3497. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  3498. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3499. del bid, new_name, n_dims # unused
  3500. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  3501. if "input_projection" in name:
  3502. return gguf.GGMLQuantizationType.F16
  3503. if ".embeddings." in name:
  3504. return gguf.GGMLQuantizationType.F32
  3505. return False
  3506. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3507. del bid # unused
  3508. if "vision_model.head." in name:
  3509. return [] # skip redundant tensors for tinygemma3
  3510. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3511. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3512. # process vision tensors
  3513. name = name.replace("_weight", ".weight")
  3514. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  3515. # the other norm values are part of SigLIP model, and they are already correct
  3516. # ref code: Gemma3RMSNorm
  3517. if "soft_emb_norm.weight" in name:
  3518. logger.info(f"Correcting norm value for '{name}'")
  3519. data_torch = data_torch + 1
  3520. return [(self.map_tensor_name(name), data_torch)]
  3521. return [] # skip other tensors
  3522. @ModelBase.register("Starcoder2ForCausalLM")
  3523. class StarCoder2Model(TextModel):
  3524. model_arch = gguf.MODEL_ARCH.STARCODER2
  3525. @ModelBase.register("Rwkv6ForCausalLM")
  3526. class Rwkv6Model(TextModel):
  3527. model_arch = gguf.MODEL_ARCH.RWKV6
  3528. def set_vocab(self):
  3529. self._set_vocab_rwkv_world()
  3530. def set_gguf_parameters(self):
  3531. block_count = self.hparams["num_hidden_layers"]
  3532. head_size = self.hparams["head_size"]
  3533. hidden_size = self.hparams["hidden_size"]
  3534. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  3535. rescale_every_n_layers = self.hparams["rescale_every"]
  3536. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  3537. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  3538. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  3539. # RWKV isn't context limited
  3540. self.gguf_writer.add_context_length(1048576)
  3541. self.gguf_writer.add_embedding_length(hidden_size)
  3542. self.gguf_writer.add_block_count(block_count)
  3543. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3544. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  3545. self.gguf_writer.add_wkv_head_size(head_size)
  3546. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  3547. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  3548. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3549. self.gguf_writer.add_file_type(self.ftype)
  3550. # required by llama.cpp, unused
  3551. self.gguf_writer.add_head_count(0)
  3552. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3553. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3554. new_name = self.map_tensor_name(name)
  3555. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  3556. new_name += ".weight"
  3557. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  3558. data_torch = data_torch.transpose(0, 1)
  3559. if new_name.endswith("time_mix_w2.weight"):
  3560. data_torch = data_torch.permute(0, 2, 1)
  3561. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  3562. data_torch = data_torch.squeeze()
  3563. try:
  3564. rescale_every_n_layers = self.hparams["rescale_every"]
  3565. if rescale_every_n_layers > 0:
  3566. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  3567. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  3568. except KeyError:
  3569. pass
  3570. # concat time_mix_lerp weights to reduce some cpu overhead
  3571. # also reduces the number of tensors in the model
  3572. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  3573. try:
  3574. self.lerp_weights[bid][new_name] = data_torch
  3575. except KeyError:
  3576. self.lerp_weights[bid] = {new_name: data_torch}
  3577. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  3578. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3579. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  3580. yield (new_name, data)
  3581. return
  3582. yield (new_name, data_torch)
  3583. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  3584. class RWKV6Qwen2Model(Rwkv6Model):
  3585. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  3586. def set_vocab(self):
  3587. try:
  3588. self._set_vocab_sentencepiece()
  3589. except FileNotFoundError:
  3590. self._set_vocab_gpt2()
  3591. def set_gguf_parameters(self):
  3592. block_count = self.hparams["num_hidden_layers"]
  3593. num_attention_heads = self.hparams["num_attention_heads"]
  3594. num_key_value_heads = self.hparams["num_key_value_heads"]
  3595. hidden_size = self.hparams["hidden_size"]
  3596. head_size = hidden_size // num_attention_heads
  3597. rms_norm_eps = self.hparams["rms_norm_eps"]
  3598. intermediate_size = self.hparams["intermediate_size"]
  3599. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  3600. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  3601. # RWKV isn't context limited
  3602. self.gguf_writer.add_context_length(1048576)
  3603. self.gguf_writer.add_embedding_length(hidden_size)
  3604. self.gguf_writer.add_block_count(block_count)
  3605. self.gguf_writer.add_wkv_head_size(head_size)
  3606. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  3607. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  3608. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3609. self.gguf_writer.add_file_type(self.ftype)
  3610. # special parameters for time_mixing in RWKV6QWEN2
  3611. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3612. self.gguf_writer.add_token_shift_count(1)
  3613. # RWKV6QWEN2 use grouped key/value like GQA
  3614. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  3615. # required by llama.cpp, unused
  3616. self.gguf_writer.add_head_count(0)
  3617. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3618. for new_name, data in super().modify_tensors(data_torch, name, bid):
  3619. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  3620. data = data.view(5, -1, data.shape[-1])
  3621. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  3622. # permute them here to avoid code changes
  3623. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  3624. if "w2" in new_name:
  3625. data = data.view(5, -1, data.shape[-1])
  3626. yield (new_name, data)
  3627. continue
  3628. yield (new_name, data)
  3629. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  3630. class Rwkv7Model(TextModel):
  3631. model_arch = gguf.MODEL_ARCH.RWKV7
  3632. def set_vocab(self):
  3633. self._set_vocab_rwkv_world()
  3634. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  3635. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  3636. def set_gguf_parameters(self):
  3637. block_count = self.hparams["num_hidden_layers"]
  3638. try:
  3639. head_size = self.hparams["head_size"]
  3640. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  3641. except KeyError:
  3642. head_size = self.hparams["head_dim"]
  3643. layer_norm_eps = self.hparams["norm_eps"]
  3644. hidden_size = self.hparams["hidden_size"]
  3645. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  3646. # ICLR: In-Context-Learning-Rate
  3647. try:
  3648. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3649. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3650. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  3651. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  3652. except KeyError:
  3653. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3654. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3655. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  3656. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  3657. # RWKV isn't context limited
  3658. self.gguf_writer.add_context_length(1048576)
  3659. self.gguf_writer.add_embedding_length(hidden_size)
  3660. self.gguf_writer.add_block_count(block_count)
  3661. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3662. self.gguf_writer.add_wkv_head_size(head_size)
  3663. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3664. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3665. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3666. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3667. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3668. self.gguf_writer.add_file_type(self.ftype)
  3669. # required by llama.cpp, unused
  3670. self.gguf_writer.add_head_count(0)
  3671. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3672. lora_needs_transpose: bool = True
  3673. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3674. # unify tensor names here to make life easier
  3675. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  3676. name = name.replace("self_attn", "attention").replace("attn", "attention")
  3677. name = name.replace("time_mixer.", "")
  3678. # lora layer names in fla-hub's impl
  3679. if "_lora.lora" in name:
  3680. self.lora_needs_transpose = False
  3681. name = name.replace("_lora.lora.0.weight", "1.weight")
  3682. name = name.replace("_lora.lora.2.weight", "2.weight")
  3683. name = name.replace("_lora.lora.2.bias", "0.weight")
  3684. name = name.replace("feed_forward_norm", "ln2")
  3685. name = name.replace("g_norm", "ln_x")
  3686. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  3687. # some models have dummy v0/v1/v2 on first layer while others don't
  3688. # ignore them all since they are not used
  3689. return
  3690. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  3691. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  3692. if bid is not None and "attention.x_" in name:
  3693. if "attention.x_x" in name:
  3694. # already concatenated
  3695. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3696. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  3697. yield (new_name, data)
  3698. else:
  3699. try:
  3700. self.lerp_weights[bid][name] = data_torch
  3701. except KeyError:
  3702. self.lerp_weights[bid] = {name: data_torch}
  3703. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  3704. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3705. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  3706. yield (new_name, data)
  3707. return
  3708. else:
  3709. data_torch = data_torch.squeeze()
  3710. new_name = self.map_tensor_name(name)
  3711. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  3712. new_name += ".weight"
  3713. if self.lora_needs_transpose and any(
  3714. new_name.endswith(t) for t in [
  3715. "time_mix_w1.weight", "time_mix_w2.weight",
  3716. "time_mix_a1.weight", "time_mix_a2.weight",
  3717. "time_mix_v1.weight", "time_mix_v2.weight",
  3718. "time_mix_g1.weight", "time_mix_g2.weight",
  3719. ]
  3720. ):
  3721. data_torch = data_torch.transpose(0, 1)
  3722. if 'r_k' in new_name:
  3723. data_torch = data_torch.flatten()
  3724. if bid == 0 and "time_mix_a" in new_name:
  3725. # dummy v0/v1/v2 on first layer
  3726. # easist way to make llama happy
  3727. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  3728. yield (new_name, data_torch)
  3729. @ModelBase.register("RwkvHybridForCausalLM")
  3730. class ARwkv7Model(Rwkv7Model):
  3731. model_arch = gguf.MODEL_ARCH.ARWKV7
  3732. def set_vocab(self):
  3733. try:
  3734. self._set_vocab_sentencepiece()
  3735. except FileNotFoundError:
  3736. self._set_vocab_gpt2()
  3737. def set_gguf_parameters(self):
  3738. block_count = self.hparams["num_hidden_layers"]
  3739. hidden_size = self.hparams["hidden_size"]
  3740. head_size = self.hparams["head_size"]
  3741. rms_norm_eps = self.hparams["rms_norm_eps"]
  3742. intermediate_size = self.hparams["intermediate_size"]
  3743. wkv_has_gate = self.hparams["wkv_has_gate"]
  3744. assert self.hparams["wkv_version"] == 7
  3745. # ICLR: In-Context-Learning-Rate
  3746. lora_rank_decay = 64
  3747. lora_rank_iclr = 64
  3748. lora_rank_value_residual_mix = 32
  3749. lora_rank_gate = 128 if wkv_has_gate else 0
  3750. # RWKV isn't context limited
  3751. self.gguf_writer.add_context_length(1048576)
  3752. self.gguf_writer.add_embedding_length(hidden_size)
  3753. self.gguf_writer.add_block_count(block_count)
  3754. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3755. self.gguf_writer.add_wkv_head_size(head_size)
  3756. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3757. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3758. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3759. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3760. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3761. self.gguf_writer.add_file_type(self.ftype)
  3762. self.gguf_writer.add_token_shift_count(1)
  3763. # required by llama.cpp, unused
  3764. self.gguf_writer.add_head_count(0)
  3765. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  3766. class MambaModel(TextModel):
  3767. model_arch = gguf.MODEL_ARCH.MAMBA
  3768. def set_vocab(self):
  3769. vocab_size = self.hparams["vocab_size"]
  3770. # Round vocab size to next multiple of 8
  3771. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  3772. # pad using ceiling division
  3773. # ref: https://stackoverflow.com/a/17511341/22827863
  3774. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  3775. self.hparams["vocab_size"] = vocab_size
  3776. if (self.dir_model / "tokenizer.json").is_file():
  3777. self._set_vocab_gpt2()
  3778. elif (self.dir_model / "tokenizer.model").is_file():
  3779. self._set_vocab_sentencepiece()
  3780. else:
  3781. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  3782. self._set_vocab_builtin("gpt-neox", vocab_size)
  3783. def set_gguf_parameters(self):
  3784. d_model = self.find_hparam(["hidden_size", "d_model"])
  3785. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  3786. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  3787. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  3788. # ceiling division
  3789. # ref: https://stackoverflow.com/a/17511341/22827863
  3790. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  3791. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  3792. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  3793. use_dt_b_c_norm = False
  3794. # For falconmamba we do apply RMS norm on B / DT and C layers
  3795. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  3796. use_dt_b_c_norm = True
  3797. # Fail early for models which don't have a block expansion factor of 2
  3798. assert d_inner == 2 * d_model
  3799. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  3800. self.gguf_writer.add_embedding_length(d_model)
  3801. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  3802. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  3803. self.gguf_writer.add_block_count(self.block_count)
  3804. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  3805. self.gguf_writer.add_ssm_inner_size(d_inner)
  3806. self.gguf_writer.add_ssm_state_size(d_state)
  3807. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  3808. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3809. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  3810. self.gguf_writer.add_file_type(self.ftype)
  3811. _tok_embd = None
  3812. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3813. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3814. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3815. new_name = self.map_tensor_name(name)
  3816. if name.endswith(".A_log"):
  3817. logger.debug("A_log --> A ==> " + new_name)
  3818. data_torch = -torch.exp(data_torch)
  3819. # [4 1 8192 1] -> [4 8192 1 1]
  3820. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  3821. data_torch = data_torch.squeeze()
  3822. # assuming token_embd.weight is seen before output.weight
  3823. if self._tok_embd is not None and new_name == output_name:
  3824. if torch.equal(self._tok_embd, data_torch):
  3825. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  3826. return []
  3827. elif new_name == tok_embd_name:
  3828. self._tok_embd = data_torch
  3829. return [(new_name, data_torch)]
  3830. @ModelBase.register("CohereForCausalLM")
  3831. class CommandR2Model(TextModel):
  3832. model_arch = gguf.MODEL_ARCH.COMMAND_R
  3833. def __init__(self, *args, **kwargs):
  3834. super().__init__(*args, **kwargs)
  3835. # max_position_embeddings = 8192 in config.json but model was actually
  3836. # trained on 128k context length
  3837. # aya-23 models don't have model_max_length specified
  3838. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  3839. def set_gguf_parameters(self):
  3840. super().set_gguf_parameters()
  3841. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3842. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3843. @ModelBase.register("Cohere2ForCausalLM")
  3844. class Cohere2Model(TextModel):
  3845. model_arch = gguf.MODEL_ARCH.COHERE2
  3846. def set_gguf_parameters(self):
  3847. super().set_gguf_parameters()
  3848. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3849. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3850. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3851. rotary_pct = self.hparams["rotary_pct"]
  3852. hidden_size = self.hparams["hidden_size"]
  3853. num_attention_heads = self.hparams["num_attention_heads"]
  3854. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  3855. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3856. @ModelBase.register("OlmoForCausalLM")
  3857. @ModelBase.register("OLMoForCausalLM")
  3858. class OlmoModel(TextModel):
  3859. model_arch = gguf.MODEL_ARCH.OLMO
  3860. def set_gguf_parameters(self):
  3861. super().set_gguf_parameters()
  3862. self.gguf_writer.add_layer_norm_eps(1e-5)
  3863. clip_qkv = self.hparams.get("clip_qkv")
  3864. if clip_qkv is not None:
  3865. self.gguf_writer.add_clamp_kqv(clip_qkv)
  3866. # Same as super class, but permuting q_proj, k_proj
  3867. # Copied from: LlamaModel
  3868. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3869. del bid # unused
  3870. n_head = self.hparams["num_attention_heads"]
  3871. n_kv_head = self.hparams.get("num_key_value_heads")
  3872. if name.endswith("q_proj.weight"):
  3873. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3874. if name.endswith("k_proj.weight"):
  3875. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3876. return [(self.map_tensor_name(name), data_torch)]
  3877. @ModelBase.register("Olmo2ForCausalLM")
  3878. class Olmo2Model(TextModel):
  3879. model_arch = gguf.MODEL_ARCH.OLMO2
  3880. @ModelBase.register("OlmoeForCausalLM")
  3881. class OlmoeModel(TextModel):
  3882. model_arch = gguf.MODEL_ARCH.OLMOE
  3883. def set_gguf_parameters(self):
  3884. super().set_gguf_parameters()
  3885. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  3886. if (n_experts := self.hparams.get("num_experts")) is not None:
  3887. self.gguf_writer.add_expert_count(n_experts)
  3888. _experts: list[dict[str, Tensor]] | None = None
  3889. # Copied from: Qwen2MoeModel
  3890. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3891. # process the experts separately
  3892. if name.find("experts") != -1:
  3893. n_experts = self.hparams["num_experts"]
  3894. assert bid is not None
  3895. if self._experts is None:
  3896. self._experts = [{} for _ in range(self.block_count)]
  3897. self._experts[bid][name] = data_torch
  3898. if len(self._experts[bid]) >= n_experts * 3:
  3899. tensors: list[tuple[str, Tensor]] = []
  3900. # merge the experts into a single 3d tensor
  3901. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3902. datas: list[Tensor] = []
  3903. for xid in range(n_experts):
  3904. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3905. datas.append(self._experts[bid][ename])
  3906. del self._experts[bid][ename]
  3907. data_torch = torch.stack(datas, dim=0)
  3908. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3909. new_name = self.map_tensor_name(merged_name)
  3910. tensors.append((new_name, data_torch))
  3911. return tensors
  3912. else:
  3913. return []
  3914. return [(self.map_tensor_name(name), data_torch)]
  3915. # Copied from: Qwen2MoeModel
  3916. def prepare_tensors(self):
  3917. super().prepare_tensors()
  3918. if self._experts is not None:
  3919. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3920. experts = [k for d in self._experts for k in d.keys()]
  3921. if len(experts) > 0:
  3922. raise ValueError(f"Unprocessed experts: {experts}")
  3923. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  3924. class JinaBertV2Model(BertModel):
  3925. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  3926. def set_vocab(self):
  3927. tokenizer_class = 'BertTokenizer'
  3928. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  3929. tokenizer_class = json.load(f)['tokenizer_class']
  3930. if tokenizer_class == 'BertTokenizer':
  3931. super().set_vocab()
  3932. elif tokenizer_class == 'RobertaTokenizer':
  3933. self._set_vocab_gpt2()
  3934. self.gguf_writer.add_token_type_count(2)
  3935. else:
  3936. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  3937. self.gguf_writer.add_add_bos_token(True)
  3938. self.gguf_writer.add_add_eos_token(True)
  3939. @ModelBase.register("OpenELMForCausalLM")
  3940. class OpenELMModel(TextModel):
  3941. model_arch = gguf.MODEL_ARCH.OPENELM
  3942. @staticmethod
  3943. def _make_divisible(v: float | int, divisor: int) -> int:
  3944. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  3945. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  3946. # Make sure that round down does not go down by more than 10%.
  3947. if new_v < 0.9 * v:
  3948. new_v += divisor
  3949. return new_v
  3950. def __init__(self, *args, **kwargs):
  3951. super().__init__(*args, **kwargs)
  3952. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  3953. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  3954. self._n_embd: int = self.hparams["model_dim"]
  3955. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  3956. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  3957. self._ffn_dims: list[int] = [
  3958. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  3959. for multiplier in ffn_multipliers
  3960. ]
  3961. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  3962. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  3963. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  3964. def set_vocab(self):
  3965. try:
  3966. self._set_vocab_sentencepiece()
  3967. except FileNotFoundError:
  3968. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  3969. def set_gguf_parameters(self):
  3970. n_embd = self._n_embd
  3971. head_dim = self.hparams["head_dim"]
  3972. rot_pct = 1.0
  3973. assert self.block_count == len(self._num_kv_heads)
  3974. assert self.block_count == len(self._num_query_heads)
  3975. assert self.block_count == len(self._ffn_dims)
  3976. self.gguf_writer.add_block_count(self.block_count)
  3977. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  3978. self.gguf_writer.add_embedding_length(n_embd)
  3979. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  3980. self.gguf_writer.add_head_count(self._num_query_heads)
  3981. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  3982. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  3983. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  3984. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  3985. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  3986. self.gguf_writer.add_key_length(head_dim)
  3987. self.gguf_writer.add_value_length(head_dim)
  3988. self.gguf_writer.add_file_type(self.ftype)
  3989. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  3990. if "n_layers" in keys:
  3991. return self.hparams["num_transformer_layers"]
  3992. return super().find_hparam(keys, optional)
  3993. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3994. # split ff
  3995. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  3996. ff_dim = self._ffn_dims[bid]
  3997. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  3998. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  3999. return
  4000. yield (self.map_tensor_name(name), data_torch)
  4001. @ModelBase.register("ArcticForCausalLM")
  4002. class ArcticModel(TextModel):
  4003. model_arch = gguf.MODEL_ARCH.ARCTIC
  4004. def set_vocab(self):
  4005. # The reason for using a custom implementation here is that the
  4006. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  4007. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  4008. from sentencepiece import SentencePieceProcessor
  4009. tokenizer_path = self.dir_model / 'tokenizer.model'
  4010. if not tokenizer_path.is_file():
  4011. logger.error(f'Error: Missing {tokenizer_path}')
  4012. sys.exit(1)
  4013. # Read the whole vocabulary from the tokenizer.model file
  4014. tokenizer = SentencePieceProcessor()
  4015. tokenizer.LoadFromFile(str(tokenizer_path))
  4016. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4017. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4018. scores: list[float] = [-10000.0] * vocab_size
  4019. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4020. for token_id in range(tokenizer.vocab_size()):
  4021. piece = tokenizer.IdToPiece(token_id)
  4022. text = piece.encode("utf-8")
  4023. score = tokenizer.GetScore(token_id)
  4024. toktype = SentencePieceTokenTypes.NORMAL
  4025. if tokenizer.IsUnknown(token_id):
  4026. toktype = SentencePieceTokenTypes.UNKNOWN
  4027. elif tokenizer.IsControl(token_id):
  4028. toktype = SentencePieceTokenTypes.CONTROL
  4029. elif tokenizer.IsUnused(token_id):
  4030. toktype = SentencePieceTokenTypes.UNUSED
  4031. elif tokenizer.IsByte(token_id):
  4032. toktype = SentencePieceTokenTypes.BYTE
  4033. tokens[token_id] = text
  4034. scores[token_id] = score
  4035. toktypes[token_id] = toktype
  4036. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  4037. # of information about added/redefined tokens and modify them accordingly.
  4038. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4039. if tokenizer_config_file.is_file():
  4040. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4041. tokenizer_config_json = json.load(f)
  4042. if "added_tokens_decoder" in tokenizer_config_json:
  4043. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  4044. for token_id, token_json in added_tokens_decoder.items():
  4045. token_id = int(token_id)
  4046. if token_id >= vocab_size:
  4047. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4048. continue
  4049. token_content = token_json["content"]
  4050. token_type = SentencePieceTokenTypes.USER_DEFINED
  4051. token_score = -10000.0
  4052. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  4053. # Set the score to 0.0 as in the original tokenizer.model
  4054. if ("special" in token_json) and token_json["special"]:
  4055. if token_content == tokenizer_config_json["unk_token"]:
  4056. token_type = SentencePieceTokenTypes.UNKNOWN
  4057. else:
  4058. token_type = SentencePieceTokenTypes.CONTROL
  4059. token_score = 0.0
  4060. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  4061. tokens[token_id] = token_content.encode("utf-8")
  4062. toktypes[token_id] = token_type
  4063. scores[token_id] = token_score
  4064. self.gguf_writer.add_tokenizer_model("llama")
  4065. self.gguf_writer.add_tokenizer_pre("default")
  4066. self.gguf_writer.add_token_list(tokens)
  4067. self.gguf_writer.add_token_scores(scores)
  4068. self.gguf_writer.add_token_types(toktypes)
  4069. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4070. special_vocab.add_to_gguf(self.gguf_writer)
  4071. def set_gguf_parameters(self):
  4072. super().set_gguf_parameters()
  4073. hparams = self.hparams
  4074. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4075. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  4076. _experts: list[dict[str, Tensor]] | None = None
  4077. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4078. n_head = self.hparams["num_attention_heads"]
  4079. n_kv_head = self.hparams.get("num_key_value_heads")
  4080. if name.endswith("q_proj.weight"):
  4081. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4082. if name.endswith("k_proj.weight"):
  4083. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4084. # process the experts separately
  4085. if name.find("block_sparse_moe.experts") != -1:
  4086. n_experts = self.hparams["num_local_experts"]
  4087. assert bid is not None
  4088. if self._experts is None:
  4089. self._experts = [{} for _ in range(self.block_count)]
  4090. self._experts[bid][name] = data_torch
  4091. if len(self._experts[bid]) >= n_experts * 3:
  4092. tensors: list[tuple[str, Tensor]] = []
  4093. # merge the experts into a single 3d tensor
  4094. for wid in ["w1", "w2", "w3"]:
  4095. datas: list[Tensor] = []
  4096. for xid in range(n_experts):
  4097. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  4098. datas.append(self._experts[bid][ename])
  4099. del self._experts[bid][ename]
  4100. data_torch = torch.stack(datas, dim=0)
  4101. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  4102. new_name = self.map_tensor_name(merged_name)
  4103. tensors.append((new_name, data_torch))
  4104. return tensors
  4105. else:
  4106. return []
  4107. return [(self.map_tensor_name(name), data_torch)]
  4108. def prepare_tensors(self):
  4109. super().prepare_tensors()
  4110. if self._experts is not None:
  4111. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4112. experts = [k for d in self._experts for k in d.keys()]
  4113. if len(experts) > 0:
  4114. raise ValueError(f"Unprocessed experts: {experts}")
  4115. @ModelBase.register("DeepseekForCausalLM")
  4116. class DeepseekModel(TextModel):
  4117. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  4118. def set_vocab(self):
  4119. try:
  4120. self._set_vocab_sentencepiece()
  4121. except FileNotFoundError:
  4122. self._set_vocab_gpt2()
  4123. def set_gguf_parameters(self):
  4124. super().set_gguf_parameters()
  4125. hparams = self.hparams
  4126. if (rope_dim := hparams.get("head_dim")) is None:
  4127. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  4128. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4129. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4130. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4131. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4132. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4133. self.gguf_writer.add_expert_weights_scale(1.0)
  4134. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  4135. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  4136. _experts: list[dict[str, Tensor]] | None = None
  4137. @staticmethod
  4138. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  4139. if n_head_kv is not None and n_head != n_head_kv:
  4140. n_head = n_head_kv
  4141. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  4142. .swapaxes(1, 2)
  4143. .reshape(weights.shape))
  4144. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4145. n_head = self.hparams["num_attention_heads"]
  4146. n_kv_head = self.hparams.get("num_key_value_heads")
  4147. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4148. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  4149. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4150. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  4151. # process the experts separately
  4152. if name.find("mlp.experts") != -1:
  4153. n_experts = self.hparams["n_routed_experts"]
  4154. assert bid is not None
  4155. if self._experts is None:
  4156. self._experts = [{} for _ in range(self.block_count)]
  4157. self._experts[bid][name] = data_torch
  4158. if len(self._experts[bid]) >= n_experts * 3:
  4159. tensors: list[tuple[str, Tensor]] = []
  4160. # merge the experts into a single 3d tensor
  4161. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4162. datas: list[Tensor] = []
  4163. for xid in range(n_experts):
  4164. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4165. datas.append(self._experts[bid][ename])
  4166. del self._experts[bid][ename]
  4167. data_torch = torch.stack(datas, dim=0)
  4168. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4169. new_name = self.map_tensor_name(merged_name)
  4170. tensors.append((new_name, data_torch))
  4171. return tensors
  4172. else:
  4173. return []
  4174. return [(self.map_tensor_name(name), data_torch)]
  4175. def prepare_tensors(self):
  4176. super().prepare_tensors()
  4177. if self._experts is not None:
  4178. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4179. experts = [k for d in self._experts for k in d.keys()]
  4180. if len(experts) > 0:
  4181. raise ValueError(f"Unprocessed experts: {experts}")
  4182. @ModelBase.register("DeepseekV2ForCausalLM")
  4183. @ModelBase.register("DeepseekV3ForCausalLM")
  4184. class DeepseekV2Model(TextModel):
  4185. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  4186. def set_vocab(self):
  4187. self._set_vocab_gpt2()
  4188. def set_gguf_parameters(self):
  4189. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  4190. self.hparams["num_key_value_heads"] = 1
  4191. super().set_gguf_parameters()
  4192. hparams = self.hparams
  4193. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4194. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4195. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  4196. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  4197. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  4198. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  4199. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  4200. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  4201. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  4202. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  4203. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4204. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  4205. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  4206. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  4207. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  4208. if hparams["scoring_func"] == "sigmoid":
  4209. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  4210. elif hparams["scoring_func"] == "softmax":
  4211. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  4212. else:
  4213. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  4214. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  4215. rope_scaling = self.hparams.get("rope_scaling") or {}
  4216. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  4217. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4218. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4219. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  4220. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"])
  4221. _experts: list[dict[str, Tensor]] | None = None
  4222. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4223. # rename e_score_correction_bias tensors
  4224. if name.endswith("e_score_correction_bias"):
  4225. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  4226. # skip Multi-Token Prediction (MTP) layers
  4227. block_count = self.hparams["num_hidden_layers"]
  4228. match = re.match(r"model.layers.(\d+)", name)
  4229. if match and int(match.group(1)) >= block_count:
  4230. return []
  4231. # process the experts separately
  4232. if name.find("mlp.experts") != -1:
  4233. n_experts = self.hparams["n_routed_experts"]
  4234. assert bid is not None
  4235. if self._experts is None:
  4236. self._experts = [{} for _ in range(self.block_count)]
  4237. self._experts[bid][name] = data_torch
  4238. if len(self._experts[bid]) >= n_experts * 3:
  4239. tensors: list[tuple[str, Tensor]] = []
  4240. # merge the experts into a single 3d tensor
  4241. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4242. datas: list[Tensor] = []
  4243. for xid in range(n_experts):
  4244. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4245. datas.append(self._experts[bid][ename])
  4246. del self._experts[bid][ename]
  4247. data_torch = torch.stack(datas, dim=0)
  4248. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4249. new_name = self.map_tensor_name(merged_name)
  4250. tensors.append((new_name, data_torch))
  4251. return tensors
  4252. else:
  4253. return []
  4254. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  4255. if name.endswith("kv_b_proj.weight"):
  4256. name_kb = name.replace("kv_b_proj", "k_b_proj")
  4257. name_vb = name.replace("kv_b_proj", "v_b_proj")
  4258. n_head_kv = self.hparams["num_key_value_heads"]
  4259. v_head_dim = self.hparams["v_head_dim"]
  4260. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  4261. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  4262. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  4263. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  4264. k_b = k_b.transpose(1, 2)
  4265. return [
  4266. (self.map_tensor_name(name_kb), k_b),
  4267. (self.map_tensor_name(name_vb), v_b)
  4268. ]
  4269. return [(self.map_tensor_name(name), data_torch)]
  4270. def prepare_tensors(self):
  4271. super().prepare_tensors()
  4272. if self._experts is not None:
  4273. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4274. experts = [k for d in self._experts for k in d.keys()]
  4275. if len(experts) > 0:
  4276. raise ValueError(f"Unprocessed experts: {experts}")
  4277. @ModelBase.register("Dots1ForCausalLM")
  4278. class Dots1Model(Qwen2MoeModel):
  4279. model_arch = gguf.MODEL_ARCH.DOTS1
  4280. def __init__(self, *args, **kwargs):
  4281. super().__init__(*args, **kwargs)
  4282. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  4283. def set_gguf_parameters(self):
  4284. super().set_gguf_parameters()
  4285. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  4286. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  4287. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  4288. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  4289. if self.hparams["scoring_func"] == "noaux_tc":
  4290. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  4291. else:
  4292. raise ValueError(f"Unsupported scoring_func value: {self.hparams['scoring_func']}")
  4293. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  4294. if name.endswith("e_score_correction_bias"):
  4295. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  4296. if "shared_experts" in name:
  4297. return [(self.map_tensor_name(name), data_torch)]
  4298. return super().modify_tensors(data_torch, name, bid)
  4299. @ModelBase.register("PLMForCausalLM")
  4300. class PLMModel(TextModel):
  4301. model_arch = gguf.MODEL_ARCH.PLM
  4302. def set_vocab(self):
  4303. self._set_vocab_gpt2()
  4304. def set_gguf_parameters(self):
  4305. super().set_gguf_parameters()
  4306. hparams = self.hparams
  4307. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4308. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  4309. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  4310. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  4311. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  4312. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4313. return [(self.map_tensor_name(name), data_torch)]
  4314. def prepare_tensors(self):
  4315. super().prepare_tensors()
  4316. @ModelBase.register("T5WithLMHeadModel")
  4317. @ModelBase.register("T5ForConditionalGeneration")
  4318. @ModelBase.register("MT5ForConditionalGeneration")
  4319. @ModelBase.register("UMT5ForConditionalGeneration")
  4320. class T5Model(TextModel):
  4321. model_arch = gguf.MODEL_ARCH.T5
  4322. def __init__(self, *args, **kwargs):
  4323. super().__init__(*args, **kwargs)
  4324. self.shared_token_embeddings_found = False
  4325. def set_vocab(self):
  4326. # to avoid TypeError: Descriptors cannot be created directly
  4327. # exception when importing sentencepiece_model_pb2
  4328. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4329. from sentencepiece import SentencePieceProcessor
  4330. from sentencepiece import sentencepiece_model_pb2 as model
  4331. tokenizer_path = self.dir_model / 'tokenizer.model'
  4332. # many older models use spiece.model tokenizer model filename
  4333. if not tokenizer_path.is_file():
  4334. tokenizer_path = self.dir_model / 'spiece.model'
  4335. if not tokenizer_path.is_file():
  4336. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4337. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4338. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4339. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  4340. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  4341. # assure the tokenizer model file name is correct
  4342. assert tokenizer_path.name == 'tokenizer.model'
  4343. return self._set_vocab_sentencepiece()
  4344. else:
  4345. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4346. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4347. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4348. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4349. tokenizer = SentencePieceProcessor()
  4350. tokenizer.LoadFromFile(str(tokenizer_path))
  4351. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4352. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4353. scores: list[float] = [-10000.0] * vocab_size
  4354. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4355. for token_id in range(tokenizer.vocab_size()):
  4356. piece = tokenizer.IdToPiece(token_id)
  4357. text = piece.encode("utf-8")
  4358. score = tokenizer.GetScore(token_id)
  4359. toktype = SentencePieceTokenTypes.NORMAL
  4360. if tokenizer.IsUnknown(token_id):
  4361. toktype = SentencePieceTokenTypes.UNKNOWN
  4362. elif tokenizer.IsControl(token_id):
  4363. toktype = SentencePieceTokenTypes.CONTROL
  4364. elif tokenizer.IsUnused(token_id):
  4365. toktype = SentencePieceTokenTypes.UNUSED
  4366. elif tokenizer.IsByte(token_id):
  4367. toktype = SentencePieceTokenTypes.BYTE
  4368. tokens[token_id] = text
  4369. scores[token_id] = score
  4370. toktypes[token_id] = toktype
  4371. added_tokens_file = self.dir_model / 'added_tokens.json'
  4372. if added_tokens_file.is_file():
  4373. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4374. added_tokens_json = json.load(f)
  4375. for key in added_tokens_json:
  4376. token_id = added_tokens_json[key]
  4377. if token_id >= vocab_size:
  4378. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4379. continue
  4380. tokens[token_id] = key.encode("utf-8")
  4381. scores[token_id] = -1000.0
  4382. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4383. if vocab_size > len(tokens):
  4384. pad_count = vocab_size - len(tokens)
  4385. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  4386. for i in range(1, pad_count + 1):
  4387. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  4388. scores.append(-1000.0)
  4389. toktypes.append(SentencePieceTokenTypes.UNUSED)
  4390. self.gguf_writer.add_tokenizer_model("t5")
  4391. self.gguf_writer.add_tokenizer_pre("default")
  4392. self.gguf_writer.add_token_list(tokens)
  4393. self.gguf_writer.add_token_scores(scores)
  4394. self.gguf_writer.add_token_types(toktypes)
  4395. self.gguf_writer.add_add_space_prefix(add_prefix)
  4396. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4397. if precompiled_charsmap:
  4398. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4399. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4400. special_vocab.add_to_gguf(self.gguf_writer)
  4401. self.gguf_writer.add_add_bos_token(False)
  4402. self.gguf_writer.add_add_eos_token(True)
  4403. def set_gguf_parameters(self):
  4404. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  4405. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  4406. n_ctx = 512
  4407. self.gguf_writer.add_context_length(n_ctx)
  4408. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  4409. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  4410. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  4411. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  4412. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  4413. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  4414. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4415. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  4416. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  4417. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  4418. self.gguf_writer.add_file_type(self.ftype)
  4419. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4420. del bid # unused
  4421. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  4422. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  4423. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  4424. # and decoder and ignore the remaining ones.
  4425. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  4426. if not self.shared_token_embeddings_found:
  4427. name = "shared.weight"
  4428. self.shared_token_embeddings_found = True
  4429. else:
  4430. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  4431. return []
  4432. return [(self.map_tensor_name(name), data_torch)]
  4433. @ModelBase.register("T5EncoderModel")
  4434. class T5EncoderModel(TextModel):
  4435. model_arch = gguf.MODEL_ARCH.T5ENCODER
  4436. def __init__(self, *args, **kwargs):
  4437. super().__init__(*args, **kwargs)
  4438. self.shared_token_embeddings_found = False
  4439. def set_vocab(self):
  4440. # to avoid TypeError: Descriptors cannot be created directly
  4441. # exception when importing sentencepiece_model_pb2
  4442. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4443. from sentencepiece import SentencePieceProcessor
  4444. from sentencepiece import sentencepiece_model_pb2 as model
  4445. tokenizer_path = self.dir_model / 'tokenizer.model'
  4446. # many older models use spiece.model tokenizer model filename
  4447. if not tokenizer_path.is_file():
  4448. tokenizer_path = self.dir_model / 'spiece.model'
  4449. if not tokenizer_path.is_file():
  4450. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4451. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4452. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4453. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  4454. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  4455. # assure the tokenizer model file name is correct
  4456. assert tokenizer_path.name == 'tokenizer.model'
  4457. return self._set_vocab_sentencepiece()
  4458. else:
  4459. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4460. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4461. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4462. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4463. tokenizer = SentencePieceProcessor()
  4464. tokenizer.LoadFromFile(str(tokenizer_path))
  4465. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4466. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4467. scores: list[float] = [-10000.0] * vocab_size
  4468. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4469. for token_id in range(tokenizer.vocab_size()):
  4470. piece = tokenizer.IdToPiece(token_id)
  4471. text = piece.encode("utf-8")
  4472. score = tokenizer.GetScore(token_id)
  4473. toktype = SentencePieceTokenTypes.NORMAL
  4474. if tokenizer.IsUnknown(token_id):
  4475. toktype = SentencePieceTokenTypes.UNKNOWN
  4476. elif tokenizer.IsControl(token_id):
  4477. toktype = SentencePieceTokenTypes.CONTROL
  4478. elif tokenizer.IsUnused(token_id):
  4479. toktype = SentencePieceTokenTypes.UNUSED
  4480. elif tokenizer.IsByte(token_id):
  4481. toktype = SentencePieceTokenTypes.BYTE
  4482. tokens[token_id] = text
  4483. scores[token_id] = score
  4484. toktypes[token_id] = toktype
  4485. added_tokens_file = self.dir_model / 'added_tokens.json'
  4486. if added_tokens_file.is_file():
  4487. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4488. added_tokens_json = json.load(f)
  4489. for key in added_tokens_json:
  4490. token_id = added_tokens_json[key]
  4491. if token_id >= vocab_size:
  4492. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4493. continue
  4494. tokens[token_id] = key.encode("utf-8")
  4495. scores[token_id] = -1000.0
  4496. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4497. if vocab_size > len(tokens):
  4498. pad_count = vocab_size - len(tokens)
  4499. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  4500. for i in range(1, pad_count + 1):
  4501. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  4502. scores.append(-1000.0)
  4503. toktypes.append(SentencePieceTokenTypes.UNUSED)
  4504. self.gguf_writer.add_tokenizer_model("t5")
  4505. self.gguf_writer.add_tokenizer_pre("default")
  4506. self.gguf_writer.add_token_list(tokens)
  4507. self.gguf_writer.add_token_scores(scores)
  4508. self.gguf_writer.add_token_types(toktypes)
  4509. self.gguf_writer.add_add_space_prefix(add_prefix)
  4510. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4511. if precompiled_charsmap:
  4512. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4513. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4514. special_vocab.add_to_gguf(self.gguf_writer)
  4515. self.gguf_writer.add_add_bos_token(False)
  4516. self.gguf_writer.add_add_eos_token(True)
  4517. def set_gguf_parameters(self):
  4518. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  4519. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  4520. n_ctx = 512
  4521. self.gguf_writer.add_context_length(n_ctx)
  4522. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  4523. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  4524. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  4525. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  4526. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  4527. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  4528. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4529. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  4530. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  4531. self.gguf_writer.add_file_type(self.ftype)
  4532. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4533. del bid # unused
  4534. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  4535. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  4536. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  4537. # and decoder and ignore the remaining ones.
  4538. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  4539. if not self.shared_token_embeddings_found:
  4540. name = "shared.weight"
  4541. self.shared_token_embeddings_found = True
  4542. else:
  4543. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  4544. return []
  4545. return [(self.map_tensor_name(name), data_torch)]
  4546. @ModelBase.register("JAISLMHeadModel")
  4547. class JaisModel(TextModel):
  4548. model_arch = gguf.MODEL_ARCH.JAIS
  4549. def __init__(self, *args, **kwargs):
  4550. super().__init__(*args, **kwargs)
  4551. # SwigLU activation
  4552. assert self.hparams["activation_function"] == "swiglu"
  4553. # ALiBi position embedding
  4554. assert self.hparams["position_embedding_type"] == "alibi"
  4555. # Embeddings scale
  4556. self.embeddings_scale = 1.0
  4557. if 'mup_embeddings_scale' in self.hparams:
  4558. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  4559. elif 'embeddings_scale' in self.hparams:
  4560. self.embeddings_scale = self.hparams['embeddings_scale']
  4561. else:
  4562. assert False
  4563. self.width_scale = 1.0
  4564. if 'mup_output_alpha' in self.hparams:
  4565. assert 'mup_width_scale' in self.hparams
  4566. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  4567. elif 'width_scale' in self.hparams:
  4568. self.width_scale = self.hparams['width_scale']
  4569. else:
  4570. assert False
  4571. self.max_alibi_bias = 8.0
  4572. def set_vocab(self):
  4573. self._set_vocab_gpt2()
  4574. def set_gguf_parameters(self):
  4575. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  4576. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  4577. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  4578. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  4579. self.gguf_writer.add_head_count(self.hparams["n_head"])
  4580. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4581. self.gguf_writer.add_file_type(self.ftype)
  4582. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4583. del bid # unused
  4584. tensors: list[tuple[str, Tensor]] = []
  4585. # we don't need these
  4586. if name.endswith((".attn.bias")):
  4587. return tensors
  4588. if name.endswith(("relative_pe.slopes")):
  4589. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  4590. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  4591. # but Jais's PyTorch model simply precalculates the slope values and places them
  4592. # in relative_pes.slopes
  4593. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  4594. first_val = float(data_torch[0].item())
  4595. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  4596. return tensors
  4597. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  4598. data_torch = data_torch.transpose(1, 0)
  4599. new_name = self.map_tensor_name(name)
  4600. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  4601. tensors.append((new_name, data_torch * self.embeddings_scale))
  4602. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  4603. tensors.append((new_name, data_torch * self.width_scale))
  4604. else:
  4605. tensors.append((new_name, data_torch))
  4606. return tensors
  4607. def prepare_tensors(self):
  4608. super().prepare_tensors()
  4609. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  4610. @ModelBase.register("Glm4ForCausalLM")
  4611. class Glm4Model(TextModel):
  4612. model_arch = gguf.MODEL_ARCH.GLM4
  4613. def set_vocab(self):
  4614. from transformers import AutoTokenizer
  4615. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  4616. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4617. tokens, toktypes, tokpre = self.get_vocab_base()
  4618. self.gguf_writer.add_tokenizer_model("gpt2")
  4619. self.gguf_writer.add_tokenizer_pre(tokpre)
  4620. self.gguf_writer.add_token_list(tokens)
  4621. self.gguf_writer.add_token_types(toktypes)
  4622. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4623. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4624. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  4625. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  4626. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4627. special_vocab.add_to_gguf(self.gguf_writer)
  4628. def set_gguf_parameters(self):
  4629. super().set_gguf_parameters()
  4630. rope_dim = self.hparams["head_dim"]
  4631. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  4632. rope_scaling = self.hparams.get("rope_scaling") or {}
  4633. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  4634. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4635. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4636. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  4637. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  4638. class ChatGLMModel(TextModel):
  4639. model_arch = gguf.MODEL_ARCH.CHATGLM
  4640. def set_vocab_chatglm3(self):
  4641. dir_model = self.dir_model
  4642. hparams = self.hparams
  4643. tokens: list[bytes] = []
  4644. toktypes: list[int] = []
  4645. scores: list[float] = []
  4646. from transformers import AutoTokenizer
  4647. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  4648. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  4649. assert max(tokenizer.get_vocab().values()) < vocab_size
  4650. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  4651. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  4652. for token_id in range(vocab_size):
  4653. piece = tokenizer._convert_id_to_token(token_id)
  4654. if token_id == 0:
  4655. piece = "<unk>"
  4656. elif token_id == 1:
  4657. piece = "<bos>"
  4658. elif token_id == 2:
  4659. piece = "<eos>"
  4660. text = piece.encode("utf-8")
  4661. score = 0.0
  4662. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  4663. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  4664. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  4665. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  4666. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  4667. if piece in special_tokens:
  4668. toktype = SentencePieceTokenTypes.CONTROL
  4669. elif len(piece) == 0:
  4670. text = f"[PAD{token_id}]".encode("utf-8")
  4671. toktype = SentencePieceTokenTypes.UNUSED
  4672. else:
  4673. toktype = SentencePieceTokenTypes.USER_DEFINED
  4674. tokens.append(text)
  4675. scores.append(score)
  4676. toktypes.append(toktype)
  4677. continue
  4678. toktype = SentencePieceTokenTypes.NORMAL
  4679. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  4680. toktype = SentencePieceTokenTypes.UNKNOWN
  4681. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  4682. toktype = SentencePieceTokenTypes.CONTROL
  4683. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  4684. toktype = SentencePieceTokenTypes.UNUSED
  4685. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  4686. toktype = SentencePieceTokenTypes.BYTE
  4687. tokens.append(text)
  4688. scores.append(score)
  4689. toktypes.append(toktype)
  4690. self.gguf_writer.add_tokenizer_model("llama")
  4691. # glm3 needs prefix and suffix formatted as:
  4692. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  4693. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  4694. self.gguf_writer.add_token_list(tokens)
  4695. self.gguf_writer.add_token_scores(scores)
  4696. self.gguf_writer.add_token_types(toktypes)
  4697. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4698. special_vocab.add_to_gguf(self.gguf_writer)
  4699. @staticmethod
  4700. def token_bytes_to_string(b):
  4701. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  4702. byte_encoder = bytes_to_unicode()
  4703. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  4704. @staticmethod
  4705. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  4706. parts = [bytes([b]) for b in token]
  4707. while True:
  4708. min_idx = None
  4709. min_rank = None
  4710. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  4711. rank = mergeable_ranks.get(pair[0] + pair[1])
  4712. if rank is not None and (min_rank is None or rank < min_rank):
  4713. min_idx = i
  4714. min_rank = rank
  4715. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  4716. break
  4717. assert min_idx is not None
  4718. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  4719. return parts
  4720. def set_vocab(self):
  4721. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  4722. self.set_vocab_chatglm3()
  4723. return
  4724. dir_model = self.dir_model
  4725. hparams = self.hparams
  4726. tokens: list[str] = []
  4727. toktypes: list[int] = []
  4728. from transformers import AutoTokenizer
  4729. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  4730. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  4731. assert max(tokenizer.get_vocab().values()) < vocab_size
  4732. tokens, toktypes, tokpre = self.get_vocab_base()
  4733. self.gguf_writer.add_tokenizer_model("gpt2")
  4734. self.gguf_writer.add_tokenizer_pre(tokpre)
  4735. self.gguf_writer.add_token_list(tokens)
  4736. self.gguf_writer.add_token_types(toktypes)
  4737. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4738. # only add special tokens when they were not already loaded from config.json
  4739. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4740. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  4741. # this one is usually not in config.json anyway
  4742. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  4743. special_vocab.add_to_gguf(self.gguf_writer)
  4744. def set_gguf_parameters(self):
  4745. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  4746. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  4747. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  4748. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  4749. self.gguf_writer.add_embedding_length(n_embed)
  4750. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  4751. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  4752. self.gguf_writer.add_head_count(n_head)
  4753. self.gguf_writer.add_head_count_kv(n_head_kv)
  4754. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  4755. self.gguf_writer.add_file_type(self.ftype)
  4756. if "attention_dim" in self.hparams:
  4757. rope_dim = self.hparams["attention_dim"]
  4758. else:
  4759. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  4760. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  4761. self.gguf_writer.add_add_bos_token(False)
  4762. rope_freq = 10000
  4763. if "rope_ratio" in self.hparams:
  4764. rope_freq = rope_freq * self.hparams["rope_ratio"]
  4765. self.gguf_writer.add_rope_freq_base(rope_freq)
  4766. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4767. del bid # unused
  4768. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  4769. return []
  4770. name = name.removeprefix("transformer.")
  4771. return [(self.map_tensor_name(name), data_torch)]
  4772. @ModelBase.register("NemotronForCausalLM")
  4773. class NemotronModel(TextModel):
  4774. model_arch = gguf.MODEL_ARCH.NEMOTRON
  4775. def set_vocab(self):
  4776. self._set_vocab_sentencepiece()
  4777. self.gguf_writer.add_pad_token_id(0)
  4778. self.gguf_writer.add_unk_token_id(1)
  4779. def set_gguf_parameters(self):
  4780. super().set_gguf_parameters()
  4781. hparams = self.hparams
  4782. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4783. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  4784. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  4785. # * Partial RoPE
  4786. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  4787. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  4788. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  4789. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  4790. # * RopeScaling for Nemotron
  4791. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  4792. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4793. else:
  4794. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4795. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  4796. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4797. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  4798. # model.layers.{l}.input_layernorm.weight
  4799. # model.layers.{l}.post_attention_layernorm.weight
  4800. # model.norm.weight
  4801. if name.endswith("norm.weight"):
  4802. data_torch = data_torch + 1
  4803. return [(self.map_tensor_name(name), data_torch)]
  4804. @ModelBase.register("ExaoneForCausalLM")
  4805. class ExaoneModel(TextModel):
  4806. model_arch = gguf.MODEL_ARCH.EXAONE
  4807. def set_gguf_parameters(self):
  4808. hparams = self.hparams
  4809. assert (hparams["activation_function"] == "silu")
  4810. max_position_embeddings = hparams["max_position_embeddings"]
  4811. embed_dim = hparams["hidden_size"]
  4812. num_heads = hparams["num_attention_heads"]
  4813. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  4814. layer_norm_eps = hparams["layer_norm_epsilon"]
  4815. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  4816. num_layers = hparams["num_layers"]
  4817. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  4818. # attention_dropout_rate = hparams["attention_dropout"]
  4819. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  4820. # embed_dropout_rate = hparams["embed_dropout"]
  4821. self.gguf_writer.add_embedding_length(embed_dim)
  4822. self.gguf_writer.add_head_count(num_heads)
  4823. self.gguf_writer.add_head_count_kv(num_kv_heads)
  4824. self.gguf_writer.add_context_length(max_position_embeddings)
  4825. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  4826. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4827. self.gguf_writer.add_block_count(num_layers)
  4828. self.gguf_writer.add_file_type(self.ftype)
  4829. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  4830. self.gguf_writer.add_rope_freq_base(rope_theta)
  4831. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  4832. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  4833. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  4834. rope_scaling = self.hparams.get("rope_scaling") or {}
  4835. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  4836. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4837. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4838. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4839. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  4840. if rope_scaling.get("rope_type", '').lower() == "llama3":
  4841. base = self.hparams.get("rope_theta", 10000.0)
  4842. if (dim := self.hparams.get("head_dim")) is None:
  4843. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  4844. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  4845. factor = rope_scaling.get("factor", 8.0)
  4846. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  4847. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  4848. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  4849. low_freq_wavelen = old_context_len / low_freq_factor
  4850. high_freq_wavelen = old_context_len / high_freq_factor
  4851. assert low_freq_wavelen != high_freq_wavelen
  4852. rope_factors = []
  4853. for freq in freqs:
  4854. wavelen = 2 * math.pi / freq
  4855. if wavelen < high_freq_wavelen:
  4856. rope_factors.append(1)
  4857. elif wavelen > low_freq_wavelen:
  4858. rope_factors.append(factor)
  4859. else:
  4860. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  4861. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  4862. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  4863. @ModelBase.register("GraniteForCausalLM")
  4864. class GraniteModel(LlamaModel):
  4865. """Conversion for IBM's GraniteForCausalLM"""
  4866. model_arch = gguf.MODEL_ARCH.GRANITE
  4867. def set_gguf_parameters(self):
  4868. """Granite uses standard llama parameters with the following differences:
  4869. - No head_dim support
  4870. - New multiplier params:
  4871. - attention_scale
  4872. - embedding_scale
  4873. - residual_scale
  4874. - logits_scaling
  4875. """
  4876. if head_dim := self.hparams.pop("head_dim", None):
  4877. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  4878. super().set_gguf_parameters()
  4879. # NOTE: Convert _multiplier params to _scale params for naming
  4880. # consistency
  4881. if attention_scale := self.hparams.get("attention_multiplier"):
  4882. self.gguf_writer.add_attention_scale(attention_scale)
  4883. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  4884. if embedding_scale := self.hparams.get("embedding_multiplier"):
  4885. self.gguf_writer.add_embedding_scale(embedding_scale)
  4886. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  4887. if residual_scale := self.hparams.get("residual_multiplier"):
  4888. self.gguf_writer.add_residual_scale(residual_scale)
  4889. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  4890. if logits_scale := self.hparams.get("logits_scaling"):
  4891. self.gguf_writer.add_logit_scale(logits_scale)
  4892. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  4893. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  4894. class GraniteMoeModel(GraniteModel):
  4895. """Conversion for IBM's GraniteMoeForCausalLM"""
  4896. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  4897. def set_gguf_parameters(self):
  4898. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  4899. - shared_intermediate_size
  4900. """
  4901. super().set_gguf_parameters()
  4902. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  4903. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  4904. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  4905. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4906. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  4907. is used. This essentially merges w1 and w3 into a single tensor with 2x
  4908. the hidden size that is then split during forward. To keep compatibility
  4909. with existing mixtral support, we pull them apart here.
  4910. """
  4911. if name.endswith("block_sparse_moe.input_linear.weight"):
  4912. ffn_dim = self.hparams["intermediate_size"]
  4913. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  4914. gate, up = data_torch.split(ffn_dim, dim=-2)
  4915. return [
  4916. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  4917. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  4918. ]
  4919. if name.endswith("shared_mlp.input_linear.weight"):
  4920. ffn_dim = self.hparams["shared_intermediate_size"]
  4921. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  4922. gate, up = data_torch.split(ffn_dim, dim=-2)
  4923. return [
  4924. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  4925. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  4926. ]
  4927. return super().modify_tensors(data_torch, name, bid)
  4928. @ModelBase.register("BailingMoeForCausalLM")
  4929. class BailingMoeModel(TextModel):
  4930. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  4931. def set_vocab(self):
  4932. self._set_vocab_gpt2()
  4933. def set_gguf_parameters(self):
  4934. super().set_gguf_parameters()
  4935. hparams = self.hparams
  4936. if (rope_dim := hparams.get("head_dim")) is None:
  4937. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  4938. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4939. rope_scaling = self.hparams.get("rope_scaling") or {}
  4940. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  4941. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4942. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4943. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  4944. else:
  4945. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4946. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4947. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4948. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4949. self.gguf_writer.add_expert_weights_scale(1.0)
  4950. self.gguf_writer.add_expert_count(hparams["num_experts"])
  4951. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  4952. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  4953. _experts: list[dict[str, Tensor]] | None = None
  4954. @staticmethod
  4955. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  4956. if n_head_kv is not None and n_head != n_head_kv:
  4957. n_head = n_head_kv
  4958. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  4959. .swapaxes(1, 2)
  4960. .reshape(weights.shape))
  4961. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4962. n_head = self.hparams["num_attention_heads"]
  4963. n_kv_head = self.hparams.get("num_key_value_heads")
  4964. n_embd = self.hparams["hidden_size"]
  4965. if (head_dim := self.hparams.get("head_dim")) is None:
  4966. head_dim = n_embd // n_head
  4967. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  4968. if name.endswith("attention.dense.weight"):
  4969. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  4970. elif name.endswith("query_key_value.weight"):
  4971. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  4972. return [
  4973. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  4974. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  4975. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  4976. ]
  4977. elif name.find("mlp.experts") != -1:
  4978. n_experts = self.hparams["num_experts"]
  4979. assert bid is not None
  4980. tensors: list[tuple[str, Tensor]] = []
  4981. if self._experts is None:
  4982. self._experts = [{} for _ in range(self.block_count)]
  4983. self._experts[bid][name] = data_torch
  4984. if len(self._experts[bid]) >= n_experts * 3:
  4985. # merge the experts into a single 3d tensor
  4986. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4987. datas: list[Tensor] = []
  4988. for xid in range(n_experts):
  4989. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4990. datas.append(self._experts[bid][ename])
  4991. del self._experts[bid][ename]
  4992. data_torch = torch.stack(datas, dim=0)
  4993. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4994. new_name = self.map_tensor_name(merged_name)
  4995. tensors.append((new_name, data_torch))
  4996. return tensors
  4997. new_name = self.map_tensor_name(name)
  4998. if new_name == output_name and self.hparams.get("norm_head"):
  4999. data_torch = data_torch.float()
  5000. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  5001. return [(new_name, data_torch)]
  5002. def prepare_tensors(self):
  5003. super().prepare_tensors()
  5004. if self._experts is not None:
  5005. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5006. experts = [k for d in self._experts for k in d.keys()]
  5007. if len(experts) > 0:
  5008. raise ValueError(f"Unprocessed experts: {experts}")
  5009. @ModelBase.register("ChameleonForConditionalGeneration")
  5010. @ModelBase.register("ChameleonForCausalLM") # obsolete
  5011. class ChameleonModel(TextModel):
  5012. model_arch = gguf.MODEL_ARCH.CHAMELEON
  5013. def set_gguf_parameters(self):
  5014. super().set_gguf_parameters()
  5015. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  5016. def set_vocab(self):
  5017. self._set_vocab_gpt2()
  5018. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5019. # ignore image tokenizer for now
  5020. # TODO: remove this once image support is implemented for Chameleon
  5021. if name.startswith("model.vqmodel"):
  5022. return []
  5023. n_head = self.hparams["num_attention_heads"]
  5024. n_kv_head = self.hparams.get("num_key_value_heads")
  5025. hidden_dim = self.hparams.get("hidden_size")
  5026. if name.endswith(("q_proj.weight", "q_proj.bias")):
  5027. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5028. if name.endswith(("k_proj.weight", "k_proj.bias")):
  5029. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5030. if name.endswith(("q_norm.weight", "q_norm.bias")):
  5031. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  5032. if name.endswith(("k_norm.weight", "k_norm.bias")):
  5033. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  5034. return [(self.map_tensor_name(name), data_torch)]
  5035. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  5036. @staticmethod
  5037. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  5038. head_dim = hidden_dim // n_heads
  5039. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  5040. data_torch = data_torch.repeat_interleave(n_heads, 0)
  5041. return data_torch
  5042. @ModelBase.register("UltravoxModel")
  5043. class UltravoxModel(TextModel):
  5044. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  5045. def __init__(self, *args, **kwargs):
  5046. super().__init__(*args, **kwargs)
  5047. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  5048. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  5049. class WhisperEncoderModel(MmprojModel):
  5050. has_vision_encoder = False # no vision encoder
  5051. has_audio_encoder = True
  5052. def __init__(self, *args, **kwargs):
  5053. super().__init__(*args, **kwargs)
  5054. self.hparams["hidden_size"] = self.hparams["d_model"]
  5055. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  5056. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  5057. def set_gguf_parameters(self):
  5058. super().set_gguf_parameters()
  5059. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  5060. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  5061. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  5062. def tensor_force_quant(self, name, new_name, bid, n_dims):
  5063. del bid, new_name, n_dims # unused
  5064. if ".conv" in name and ".weight" in name:
  5065. return gguf.GGMLQuantizationType.F16
  5066. return False
  5067. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5068. del bid # unused
  5069. if name.startswith("language_model."):
  5070. # skip language model tensors
  5071. return []
  5072. # prevent clash naming with vision tensors
  5073. if name.startswith("multi_modal_projector"):
  5074. name = "audio." + name
  5075. if "conv1.bias" in name or "conv2.bias" in name:
  5076. # transpose conv1 and conv2 bias
  5077. data_torch = data_torch.unsqueeze(-1)
  5078. return [(self.map_tensor_name(name), data_torch)]
  5079. @ModelBase.register("UltravoxModel")
  5080. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  5081. has_vision_encoder = False # no vision encoder
  5082. has_audio_encoder = True
  5083. def set_gguf_parameters(self):
  5084. super().set_gguf_parameters()
  5085. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  5086. ###### CONVERSION LOGIC ######
  5087. # tree of lazy tensors
  5088. class LazyTorchTensor(gguf.LazyBase):
  5089. _tensor_type = torch.Tensor
  5090. # to keep the type-checker happy
  5091. dtype: torch.dtype
  5092. shape: torch.Size
  5093. # only used when converting a torch.Tensor to a np.ndarray
  5094. _dtype_map: dict[torch.dtype, type] = {
  5095. torch.float16: np.float16,
  5096. torch.float32: np.float32,
  5097. }
  5098. # used for safetensors slices
  5099. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  5100. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  5101. _dtype_str_map: dict[str, torch.dtype] = {
  5102. "F64": torch.float64,
  5103. "F32": torch.float32,
  5104. "BF16": torch.bfloat16,
  5105. "F16": torch.float16,
  5106. # "U64": torch.uint64,
  5107. "I64": torch.int64,
  5108. # "U32": torch.uint32,
  5109. "I32": torch.int32,
  5110. # "U16": torch.uint16,
  5111. "I16": torch.int16,
  5112. "U8": torch.uint8,
  5113. "I8": torch.int8,
  5114. "BOOL": torch.bool,
  5115. "F8_E4M3": torch.float8_e4m3fn,
  5116. "F8_E5M2": torch.float8_e5m2,
  5117. }
  5118. def numpy(self) -> gguf.LazyNumpyTensor:
  5119. dtype = self._dtype_map[self.dtype]
  5120. return gguf.LazyNumpyTensor(
  5121. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  5122. args=(self,),
  5123. func=(lambda s: s.numpy())
  5124. )
  5125. @classmethod
  5126. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  5127. return torch.empty(size=shape, dtype=dtype, device="meta")
  5128. @classmethod
  5129. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  5130. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  5131. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  5132. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  5133. return cast(torch.Tensor, lazy)
  5134. @classmethod
  5135. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  5136. dtype = cls._dtype_str_map[remote_tensor.dtype]
  5137. shape = remote_tensor.shape
  5138. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  5139. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  5140. return cast(torch.Tensor, lazy)
  5141. @classmethod
  5142. def __torch_function__(cls, func, types, args=(), kwargs=None):
  5143. del types # unused
  5144. if kwargs is None:
  5145. kwargs = {}
  5146. if func is torch.Tensor.numpy:
  5147. return args[0].numpy()
  5148. return cls._wrap_fn(func)(*args, **kwargs)
  5149. def parse_args() -> argparse.Namespace:
  5150. parser = argparse.ArgumentParser(
  5151. description="Convert a huggingface model to a GGML compatible file")
  5152. parser.add_argument(
  5153. "--vocab-only", action="store_true",
  5154. help="extract only the vocab",
  5155. )
  5156. parser.add_argument(
  5157. "--outfile", type=Path,
  5158. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  5159. )
  5160. parser.add_argument(
  5161. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  5162. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  5163. )
  5164. parser.add_argument(
  5165. "--bigendian", action="store_true",
  5166. help="model is executed on big endian machine",
  5167. )
  5168. parser.add_argument(
  5169. "model", type=Path,
  5170. help="directory containing model file",
  5171. nargs="?",
  5172. )
  5173. parser.add_argument(
  5174. "--use-temp-file", action="store_true",
  5175. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  5176. )
  5177. parser.add_argument(
  5178. "--no-lazy", action="store_true",
  5179. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  5180. )
  5181. parser.add_argument(
  5182. "--model-name", type=str, default=None,
  5183. help="name of the model",
  5184. )
  5185. parser.add_argument(
  5186. "--verbose", action="store_true",
  5187. help="increase output verbosity",
  5188. )
  5189. parser.add_argument(
  5190. "--split-max-tensors", type=int, default=0,
  5191. help="max tensors in each split",
  5192. )
  5193. parser.add_argument(
  5194. "--split-max-size", type=str, default="0",
  5195. help="max size per split N(M|G)",
  5196. )
  5197. parser.add_argument(
  5198. "--dry-run", action="store_true",
  5199. help="only print out a split plan and exit, without writing any new files",
  5200. )
  5201. parser.add_argument(
  5202. "--no-tensor-first-split", action="store_true",
  5203. help="do not add tensors to the first split (disabled by default)"
  5204. )
  5205. parser.add_argument(
  5206. "--metadata", type=Path,
  5207. help="Specify the path for an authorship metadata override file"
  5208. )
  5209. parser.add_argument(
  5210. "--print-supported-models", action="store_true",
  5211. help="Print the supported models"
  5212. )
  5213. parser.add_argument(
  5214. "--remote", action="store_true",
  5215. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  5216. )
  5217. parser.add_argument(
  5218. "--mmproj", action="store_true",
  5219. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  5220. )
  5221. args = parser.parse_args()
  5222. if not args.print_supported_models and args.model is None:
  5223. parser.error("the following arguments are required: model")
  5224. return args
  5225. def split_str_to_n_bytes(split_str: str) -> int:
  5226. if split_str.endswith("K"):
  5227. n = int(split_str[:-1]) * 1000
  5228. elif split_str.endswith("M"):
  5229. n = int(split_str[:-1]) * 1000 * 1000
  5230. elif split_str.endswith("G"):
  5231. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  5232. elif split_str.isnumeric():
  5233. n = int(split_str)
  5234. else:
  5235. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  5236. if n < 0:
  5237. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  5238. return n
  5239. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  5240. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  5241. # maybe we should fallback to text model's arch in that case, since not many models have both
  5242. text_config = hparams.get("text_config", {})
  5243. vision_config = hparams.get("vision_config", {})
  5244. arch = hparams["architectures"][0]
  5245. # if "architectures" is found in the sub-config, use that instead
  5246. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  5247. arch = text_config["architectures"][0]
  5248. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  5249. arch = vision_config["architectures"][0]
  5250. return arch
  5251. def main() -> None:
  5252. args = parse_args()
  5253. if args.print_supported_models:
  5254. logger.error("Supported models:")
  5255. ModelBase.print_registered_models()
  5256. sys.exit(0)
  5257. if args.verbose:
  5258. logging.basicConfig(level=logging.DEBUG)
  5259. else:
  5260. logging.basicConfig(level=logging.INFO)
  5261. dir_model = args.model
  5262. if args.remote:
  5263. from huggingface_hub import snapshot_download
  5264. local_dir = snapshot_download(
  5265. repo_id=str(dir_model),
  5266. allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
  5267. dir_model = Path(local_dir)
  5268. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  5269. if not dir_model.is_dir():
  5270. logger.error(f'Error: {args.model} is not a directory')
  5271. sys.exit(1)
  5272. ftype_map: dict[str, gguf.LlamaFileType] = {
  5273. "f32": gguf.LlamaFileType.ALL_F32,
  5274. "f16": gguf.LlamaFileType.MOSTLY_F16,
  5275. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  5276. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  5277. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  5278. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  5279. "auto": gguf.LlamaFileType.GUESSED,
  5280. }
  5281. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  5282. if args.use_temp_file and is_split:
  5283. logger.error("Error: Cannot use temp file when splitting")
  5284. sys.exit(1)
  5285. if args.outfile is not None:
  5286. fname_out = args.outfile
  5287. elif args.remote:
  5288. # if remote, use the model ID as the output file name
  5289. fname_out = Path("./" + str(args.model).replace("/", "-") + "-{ftype}.gguf")
  5290. else:
  5291. fname_out = dir_model
  5292. logger.info(f"Loading model: {dir_model.name}")
  5293. if args.mmproj:
  5294. if "mmproj" not in fname_out.name:
  5295. fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")
  5296. with torch.inference_mode():
  5297. output_type = ftype_map[args.outtype]
  5298. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  5299. hparams = ModelBase.load_hparams(dir_model)
  5300. model_architecture = get_model_architecture(hparams, model_type)
  5301. logger.info(f"Model architecture: {model_architecture}")
  5302. try:
  5303. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  5304. except NotImplementedError:
  5305. logger.error(f"Model {model_architecture} is not supported")
  5306. sys.exit(1)
  5307. model_instance = model_class(dir_model, output_type, fname_out,
  5308. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  5309. eager=args.no_lazy,
  5310. metadata_override=args.metadata, model_name=args.model_name,
  5311. split_max_tensors=args.split_max_tensors,
  5312. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  5313. small_first_shard=args.no_tensor_first_split,
  5314. remote_hf_model_id=str(args.model) if args.remote else None)
  5315. if args.vocab_only:
  5316. logger.info("Exporting model vocab...")
  5317. model_instance.write_vocab()
  5318. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  5319. else:
  5320. logger.info("Exporting model...")
  5321. model_instance.write()
  5322. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  5323. logger.info(f"Model successfully exported to {out_path}")
  5324. if __name__ == '__main__':
  5325. main()