tensor_mapping.py 55 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf nemotron olmoe olmo2 rwkv6qwen2 glm4-0414
  13. "tok_embeddings", # llama-pth
  14. "embeddings.word_embeddings", # bert nomic-bert
  15. "language_model.embedding.word_embeddings", # persimmon
  16. "wte", # gpt2
  17. "transformer.embd.wte", # phi2
  18. "model.tok_embeddings", # internlm2
  19. "model.embedding", # mamba-qbert
  20. "backbone.embedding", # mamba
  21. "backbone.embeddings", # mamba-hf
  22. "transformer.in_out_embed", # Grok
  23. "embedding.word_embeddings", # chatglm
  24. "transformer.token_embeddings", # openelm
  25. "shared", # t5
  26. "rwkv.embeddings", # rwkv6
  27. "model.embeddings", # rwkv7
  28. "model.word_embeddings", # bailingmoe
  29. "language_model.model.embed_tokens", # llama4
  30. "encoder", # neobert
  31. ),
  32. # Token type embeddings
  33. MODEL_TENSOR.TOKEN_TYPES: (
  34. "embeddings.token_type_embeddings", # bert nomic-bert
  35. ),
  36. # Normalization of token embeddings
  37. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  38. "word_embeddings_layernorm", # bloom
  39. "embeddings.LayerNorm", # bert
  40. "emb_ln", # nomic-bert
  41. "transformer.norm", # openelm
  42. "rwkv.blocks.0.pre_ln", # rwkv
  43. "rwkv.blocks.0.pre_ln", # rwkv6
  44. "model.pre_ln", # rwkv7
  45. "model.layers.0.pre_norm", # rwkv7
  46. "backbone.norm", # wavtokenizer
  47. ),
  48. # Position embeddings
  49. MODEL_TENSOR.POS_EMBD: (
  50. "transformer.wpe", # gpt2
  51. "embeddings.position_embeddings", # bert
  52. "wpe", # gpt2
  53. ),
  54. # Output
  55. MODEL_TENSOR.OUTPUT: (
  56. "embed_out", # gptneox
  57. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo2 phimoe
  58. "output", # llama-pth bloom internlm2
  59. "word_embeddings_for_head", # persimmon
  60. "lm_head.linear", # phi2
  61. "output_layer", # chatglm
  62. "head", # rwkv
  63. "head.out", # wavtokenizer
  64. "lm_head", # llama4
  65. ),
  66. # Output norm
  67. MODEL_TENSOR.OUTPUT_NORM: (
  68. "gpt_neox.final_layer_norm", # gptneox
  69. "transformer.ln_f", # gpt2 gpt-j falcon jais exaone
  70. "model.norm", # llama-hf baichuan internlm2 olmoe olmo2 phimoe
  71. "norm", # llama-pth
  72. "transformer.norm_f", # mpt dbrx
  73. "ln_f", # refact bloom qwen gpt2
  74. "language_model.encoder.final_layernorm", # persimmon
  75. "model.final_layernorm", # persimmon
  76. "lm_head.ln", # phi2
  77. "model.norm_f", # mamba-qbert
  78. "backbone.norm_f", # mamba
  79. "transformer.rms_norm", # Grok
  80. "encoder.final_layernorm", # chatglm
  81. "transformer.norm", # openelm
  82. "model.norm", # nemotron
  83. "rwkv.ln_out", # rwkv6
  84. "model.ln_out", # rwkv7
  85. "backbone.final_layer_norm", # wavtokenizer
  86. "model.norm", # llama4
  87. ),
  88. # Rope frequencies
  89. MODEL_TENSOR.ROPE_FREQS: (
  90. "rope.freqs", # llama-pth
  91. "rotary_pos_emb.inv_freq", # chatglm
  92. ),
  93. MODEL_TENSOR.ROPE_FACTORS_LONG: (),
  94. MODEL_TENSOR.ROPE_FACTORS_SHORT: (),
  95. MODEL_TENSOR.CONV1D: (
  96. "backbone.embed", # roberta
  97. ),
  98. }
  99. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  100. # Attention norm
  101. MODEL_TENSOR.ATTN_NORM: (
  102. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  103. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais exaone
  104. "transformer.blocks.{bid}.norm_1", # mpt
  105. "transformer.h.{bid}.input_layernorm", # falcon7b
  106. "h.{bid}.input_layernorm", # bloom
  107. "transformer.h.{bid}.ln_mlp", # falcon40b
  108. "model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe phimoe
  109. "layers.{bid}.attention_norm", # llama-pth
  110. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  111. "model.layers.{bid}.ln1", # yi
  112. "h.{bid}.ln_1", # gpt2
  113. "transformer.h.{bid}.ln", # phi2
  114. "model.layers.layers.{bid}.norm", # plamo
  115. "model.layers.{bid}.attention_norm", # internlm2
  116. "model.layers.{bid}.norm", # mamba-qbert
  117. "backbone.layers.{bid}.norm", # mamba
  118. "transformer.decoder_layer.{bid}.rms_norm", # Grok
  119. "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
  120. "encoder.layers.{bid}.input_layernorm", # chatglm
  121. "transformer.layers.{bid}.attn_norm", # openelm
  122. "rwkv.blocks.{bid}.ln1", # rwkv6
  123. "model.layers.{bid}.ln1", # rwkv7
  124. "model.layers.{bid}.input_layernorm", # llama4
  125. "transformer_encoder.{bid}.attention_norm", # neobert
  126. ),
  127. # Attention norm 2
  128. MODEL_TENSOR.ATTN_NORM_2: (
  129. "transformer.h.{bid}.ln_attn", # falcon40b
  130. "encoder.layer.{bid}.layer_norm_1", # jina-v2-code
  131. "rwkv.blocks.{bid}.ln2", # rwkv6
  132. "model.layers.{bid}.ln2", # rwkv7
  133. ),
  134. # Attention query-key-value
  135. MODEL_TENSOR.ATTN_QKV: (
  136. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  137. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais
  138. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  139. "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
  140. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  141. "h.{bid}.self_attention.query_key_value", # bloom
  142. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  143. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  144. "h.{bid}.attn.c_attn", # gpt2
  145. "transformer.h.{bid}.mixer.Wqkv", # phi2
  146. "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
  147. "encoder.layers.{bid}.mixer.Wqkv", # jina
  148. "model.layers.{bid}.self_attn.qkv_proj", # phi3
  149. "encoder.layers.{bid}.self_attention.query_key_value", # chatglm
  150. "transformer.layers.{bid}.attn.qkv_proj", # openelm
  151. "transformer_encoder.{bid}.qkv", # neobert
  152. ),
  153. # Attention query
  154. MODEL_TENSOR.ATTN_Q: (
  155. "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo2 phimoe
  156. "model.layers.{bid}.self_attn.q_proj_no_perm", # llama-custom
  157. "layers.{bid}.attention.wq", # llama-pth
  158. "encoder.layer.{bid}.attention.self.query", # bert
  159. "transformer.layer.{bid}.attention.q_lin", # distillbert
  160. "transformer.h.{bid}.attn.q_proj", # gpt-j
  161. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  162. "model.layers.{bid}.attention.wq", # internlm2
  163. "transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
  164. "transformer.h.{bid}.attn.attention.q_proj", # exaone
  165. "model.layers.{bid}.self_attn.q_proj", # llama4
  166. ),
  167. # Attention key
  168. MODEL_TENSOR.ATTN_K: (
  169. "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo2 phimoe
  170. "model.layers.{bid}.self_attn.k_proj_no_perm", # llama-custom
  171. "layers.{bid}.attention.wk", # llama-pth
  172. "encoder.layer.{bid}.attention.self.key", # bert
  173. "transformer.layer.{bid}.attention.k_lin", # distillbert
  174. "transformer.h.{bid}.attn.k_proj", # gpt-j
  175. "transformer.h.{bid}.attn.k", # refact
  176. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  177. "model.layers.{bid}.attention.wk", # internlm2
  178. "transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
  179. "transformer.h.{bid}.attn.attention.k_proj", # exaone
  180. "model.layers.{bid}.self_attn.k_proj", # llama4
  181. ),
  182. # Attention value
  183. MODEL_TENSOR.ATTN_V: (
  184. "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2 phimoe
  185. "layers.{bid}.attention.wv", # llama-pth
  186. "encoder.layer.{bid}.attention.self.value", # bert
  187. "transformer.layer.{bid}.attention.v_lin", # distillbert
  188. "transformer.h.{bid}.attn.v_proj", # gpt-j
  189. "transformer.h.{bid}.attn.v", # refact
  190. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  191. "model.layers.{bid}.attention.wv", # internlm2
  192. "transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok
  193. "transformer.h.{bid}.attn.attention.v_proj", # exaone
  194. "model.layers.{bid}.self_attn.v_proj", # llama4
  195. ),
  196. # Attention output
  197. MODEL_TENSOR.ATTN_OUT: (
  198. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  199. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais
  200. "transformer.blocks.{bid}.attn.out_proj", # mpt
  201. "transformer.h.{bid}.self_attention.dense", # falcon
  202. "h.{bid}.self_attention.dense", # bloom
  203. "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2 phimoe
  204. "model.layers.{bid}.self_attn.linear_attn", # deci
  205. "layers.{bid}.attention.wo", # llama-pth
  206. "encoder.layer.{bid}.attention.output.dense", # bert
  207. "transformer.layer.{bid}.attention.out_lin", # distillbert
  208. "transformer.h.{bid}.attn.out_proj", # gpt-j
  209. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  210. "model.layers.{bid}.self_attn.dense", # persimmon
  211. "h.{bid}.attn.c_proj", # gpt2
  212. "transformer.h.{bid}.mixer.out_proj", # phi2
  213. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  214. "model.layers.{bid}.attention.wo", # internlm2
  215. "encoder.layers.{bid}.attn.out_proj", # nomic-bert
  216. "encoder.layers.{bid}.mixer.out_proj", # jina
  217. "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
  218. "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
  219. "encoder.layers.{bid}.self_attention.dense", # chatglm
  220. "transformer.layers.{bid}.attn.out_proj", # openelm
  221. "transformer.h.{bid}.attn.attention.out_proj", # exaone
  222. "model.layers.{bid}.self_attn.o_proj", # llama4
  223. "transformer_encoder.{bid}.wo", # neobert
  224. ),
  225. # Attention output norm
  226. MODEL_TENSOR.ATTN_OUT_NORM: (
  227. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  228. "transformer.layer.{bid}.sa_layer_norm", # distillbert
  229. "encoder.layers.{bid}.norm1", # nomic-bert
  230. "transformer.decoder_layer.{bid}.rms_norm_1", # Grok
  231. "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
  232. ),
  233. MODEL_TENSOR.ATTN_POST_NORM: (
  234. "model.layers.{bid}.post_attention_layernorm", # gemma2 olmo2 # ge
  235. "model.layers.{bid}.post_self_attn_layernorm", # glm-4-0414
  236. ),
  237. # Rotary embeddings
  238. MODEL_TENSOR.ATTN_ROT_EMBD: (
  239. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  240. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  241. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  242. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  243. ),
  244. # Feed-forward norm
  245. MODEL_TENSOR.FFN_NORM: (
  246. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  247. "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone
  248. "h.{bid}.post_attention_layernorm", # bloom
  249. "transformer.blocks.{bid}.norm_2", # mpt
  250. "model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron olmoe phimoe
  251. "layers.{bid}.ffn_norm", # llama-pth
  252. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  253. "model.layers.{bid}.ln2", # yi
  254. "h.{bid}.ln_2", # gpt2
  255. "model.layers.{bid}.ffn_norm", # internlm2
  256. "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
  257. "encoder.layers.{bid}.post_attention_layernorm", # chatglm
  258. "transformer.layers.{bid}.ffn_norm", # openelm
  259. "model.layers.{bid}.post_attention_layernorm", # llama4
  260. "transformer_encoder.{bid}.ffn_norm", # neobert
  261. ),
  262. # Post feed-forward norm
  263. MODEL_TENSOR.FFN_PRE_NORM: (
  264. "model.layers.{bid}.pre_feedforward_layernorm", # gemma2
  265. ),
  266. # Post feed-forward norm
  267. MODEL_TENSOR.FFN_POST_NORM: (
  268. "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2
  269. "model.layers.{bid}.post_mlp_layernorm", # glm-4-0414
  270. ),
  271. MODEL_TENSOR.FFN_GATE_INP: (
  272. "layers.{bid}.feed_forward.gate", # mixtral
  273. "model.layers.{bid}.block_sparse_moe.gate", # mixtral phimoe
  274. "model.layers.{bid}.mlp.gate", # qwen2moe olmoe
  275. "transformer.decoder_layer.{bid}.router", # Grok
  276. "transformer.blocks.{bid}.ffn.router.layer", # dbrx
  277. "model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe
  278. "model.layers.{bid}.feed_forward.router", # llama4
  279. "encoder.layers.{bid}.mlp.router.layer", # nomic-bert-moe
  280. ),
  281. MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
  282. "model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
  283. ),
  284. MODEL_TENSOR.FFN_EXP_PROBS_B: (
  285. "model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3 dots1
  286. ),
  287. # Feed-forward up
  288. MODEL_TENSOR.FFN_UP: (
  289. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  290. "transformer.h.{bid}.mlp.c_fc", # gpt2 jais
  291. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  292. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  293. "h.{bid}.mlp.dense_h_to_4h", # bloom
  294. "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo2
  295. "layers.{bid}.feed_forward.w3", # llama-pth
  296. "encoder.layer.{bid}.intermediate.dense", # bert
  297. "transformer.layer.{bid}.ffn.lin1", # distillbert
  298. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  299. "transformer.h.{bid}.mlp.linear_3", # refact
  300. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  301. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  302. "transformer.h.{bid}.mlp.w1", # qwen
  303. "h.{bid}.mlp.c_fc", # gpt2
  304. "transformer.h.{bid}.mlp.fc1", # phi2
  305. "model.layers.{bid}.mlp.fc1", # phi2
  306. "model.layers.{bid}.mlp.gate_up_proj", # phi3 glm-4-0414
  307. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  308. "model.layers.{bid}.feed_forward.w3", # internlm2
  309. "encoder.layers.{bid}.mlp.fc11", # nomic-bert
  310. "encoder.layers.{bid}.mlp.fc1", # nomic-bert-moe
  311. "model.layers.{bid}.mlp.c_fc", # starcoder2
  312. "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2 (split up/gate, no longer used)
  313. "encoder.layer.{bid}.mlp.gated_layers", # jina-bert-v2 (GEGLU)
  314. "encoder.layer.{bid}.mlp.up_gated_layer", # jina-v2-code (GEGLU)
  315. "model.layers.{bid}.residual_mlp.w3", # arctic
  316. "encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
  317. "transformer.h.{bid}.mlp.c_fc_1", # exaone
  318. "model.layers.{bid}.feed_forward.up_proj", # llama4
  319. "transformer_encoder.{bid}.ffn.w12", # neobert
  320. ),
  321. MODEL_TENSOR.FFN_UP_EXP: (
  322. "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
  323. "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
  324. "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
  325. "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged)
  326. "model.layers.{bid}.block_sparse_moe.experts.w3", # phimoe (merged)
  327. "model.layers.{bid}.feed_forward.experts.up_proj", # llama4
  328. "encoder.layers.{bid}.mlp.experts.mlp.w1", # nomic-bert-moe
  329. ),
  330. MODEL_TENSOR.FFN_UP_SHEXP: (
  331. "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
  332. "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek deepseek2
  333. "model.layers.{bid}.feed_forward.shared_expert.up_proj", # llama4
  334. ),
  335. # AWQ-activation gate
  336. MODEL_TENSOR.FFN_ACT: (
  337. "transformer.blocks.{bid}.ffn.act", # mpt
  338. ),
  339. # Feed-forward gate
  340. MODEL_TENSOR.FFN_GATE: (
  341. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo2
  342. "layers.{bid}.feed_forward.w1", # llama-pth
  343. "transformer.h.{bid}.mlp.w2", # qwen
  344. "transformer.h.{bid}.mlp.c_fc2", # jais
  345. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  346. "model.layers.{bid}.feed_forward.w1", # internlm2
  347. "encoder.layers.{bid}.mlp.fc12", # nomic-bert
  348. "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2 (split up/gate, no longer used)
  349. "transformer.h.{bid}.mlp.linear_1", # refact
  350. "model.layers.{bid}.residual_mlp.w1", # arctic
  351. "transformer.h.{bid}.mlp.c_fc_0", # exaone
  352. "model.layers.{bid}.feed_forward.gate_proj", # llama4
  353. ),
  354. MODEL_TENSOR.FFN_GATE_EXP: (
  355. "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
  356. "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
  357. "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
  358. "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged)
  359. "model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged)
  360. "model.layers.{bid}.feed_forward.experts.gate_proj", # llama4
  361. ),
  362. MODEL_TENSOR.FFN_GATE_SHEXP: (
  363. "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
  364. "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek deepseek2
  365. "model.layers.{bid}.feed_forward.shared_expert.gate_proj", # llama4
  366. ),
  367. # Feed-forward down
  368. MODEL_TENSOR.FFN_DOWN: (
  369. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  370. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais
  371. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  372. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  373. "h.{bid}.mlp.dense_4h_to_h", # bloom
  374. "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo2
  375. "layers.{bid}.feed_forward.w2", # llama-pth
  376. "encoder.layer.{bid}.output.dense", # bert
  377. "transformer.layer.{bid}.ffn.lin2", # distillbert
  378. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  379. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  380. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  381. "h.{bid}.mlp.c_proj", # gpt2
  382. "transformer.h.{bid}.mlp.fc2", # phi2
  383. "model.layers.{bid}.mlp.fc2", # phi2
  384. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  385. "model.layers.{bid}.feed_forward.w2", # internlm2
  386. "encoder.layers.{bid}.mlp.fc2", # nomic-bert
  387. "model.layers.{bid}.mlp.c_proj", # starcoder2
  388. "encoder.layer.{bid}.mlp.wo", # jina-bert-v2
  389. "transformer.layers.{bid}.ffn.proj_2", # openelm
  390. "model.layers.{bid}.residual_mlp.w2", # arctic
  391. "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
  392. "encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
  393. "model.layers.h.{bid}.mlp.c_proj", # exaone
  394. "model.layers.{bid}.feed_forward.down_proj", # llama4
  395. "transformer_encoder.{bid}.ffn.w3", # neobert
  396. ),
  397. MODEL_TENSOR.FFN_DOWN_EXP: (
  398. "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
  399. "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
  400. "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
  401. "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged)
  402. "model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
  403. "model.layers.{bid}.block_sparse_moe.experts.w2", # phimoe (merged)
  404. "model.layers.{bid}.feed_forward.experts.down_proj", # llama4
  405. "encoder.layers.{bid}.mlp.experts.mlp.w2", # nomic-bert-moe
  406. ),
  407. MODEL_TENSOR.FFN_DOWN_SHEXP: (
  408. "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
  409. "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek deepseek2
  410. "model.layers.{bid}.feed_forward.shared_expert.down_proj", # llama4
  411. "model.layers.{bid}.shared_mlp.output_linear", # granitemoe
  412. ),
  413. MODEL_TENSOR.ATTN_Q_NORM: (
  414. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  415. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  416. "model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2
  417. "transformer.blocks.{bid}.attn.q_ln", # sea-lion
  418. "encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
  419. "transformer.layers.{bid}.attn.q_norm", # openelm
  420. ),
  421. MODEL_TENSOR.ATTN_K_NORM: (
  422. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  423. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  424. "model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2
  425. "transformer.blocks.{bid}.attn.k_ln", # sea-lion
  426. "encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
  427. "transformer.layers.{bid}.attn.k_norm", # openelm
  428. ),
  429. MODEL_TENSOR.ROPE_FREQS: (
  430. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  431. ),
  432. MODEL_TENSOR.LAYER_OUT_NORM: (
  433. "encoder.layer.{bid}.output.LayerNorm", # bert
  434. "transformer.layer.{bid}.output_layer_norm", # distillbert
  435. "encoder.layers.{bid}.norm2", # nomic-bert
  436. "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
  437. "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
  438. "encoder.layer.{bid}.layer_norm_2" # jina-v2-code
  439. ),
  440. MODEL_TENSOR.SSM_IN: (
  441. "model.layers.{bid}.in_proj",
  442. "backbone.layers.{bid}.mixer.in_proj",
  443. ),
  444. MODEL_TENSOR.SSM_CONV1D: (
  445. "model.layers.{bid}.conv1d",
  446. "backbone.layers.{bid}.mixer.conv1d",
  447. ),
  448. MODEL_TENSOR.SSM_X: (
  449. "model.layers.{bid}.x_proj",
  450. "backbone.layers.{bid}.mixer.x_proj",
  451. ),
  452. MODEL_TENSOR.SSM_DT: (
  453. "model.layers.{bid}.dt_proj",
  454. "backbone.layers.{bid}.mixer.dt_proj",
  455. ),
  456. MODEL_TENSOR.SSM_A: (
  457. "model.layers.{bid}.A_log",
  458. "backbone.layers.{bid}.mixer.A_log",
  459. ),
  460. MODEL_TENSOR.SSM_D: (
  461. "model.layers.{bid}.D",
  462. "backbone.layers.{bid}.mixer.D",
  463. ),
  464. MODEL_TENSOR.SSM_OUT: (
  465. "model.layers.{bid}.out_proj",
  466. "backbone.layers.{bid}.mixer.out_proj",
  467. ),
  468. MODEL_TENSOR.TIME_MIX_W0: (
  469. "model.layers.{bid}.attention.w0", # rwkv7
  470. ),
  471. MODEL_TENSOR.TIME_MIX_W1: (
  472. "rwkv.blocks.{bid}.attention.time_maa_w1", # rwkv6
  473. "model.layers.{bid}.self_attn.time_maa_w1", # rwkv6qwen2
  474. "model.layers.{bid}.attention.w1", # rwkv7
  475. ),
  476. MODEL_TENSOR.TIME_MIX_W2: (
  477. "rwkv.blocks.{bid}.attention.time_maa_w2", # rwkv6
  478. "model.layers.{bid}.self_attn.time_maa_w2", # rwkv6qwen2
  479. "model.layers.{bid}.attention.w2", # rwkv7
  480. ),
  481. MODEL_TENSOR.TIME_MIX_A0: (
  482. "model.layers.{bid}.attention.a0", # rwkv7
  483. ),
  484. MODEL_TENSOR.TIME_MIX_A1: (
  485. "model.layers.{bid}.attention.a1", # rwkv7
  486. ),
  487. MODEL_TENSOR.TIME_MIX_A2: (
  488. "model.layers.{bid}.attention.a2", # rwkv7
  489. ),
  490. MODEL_TENSOR.TIME_MIX_V0: (
  491. "model.layers.{bid}.attention.v0", # rwkv7
  492. ),
  493. MODEL_TENSOR.TIME_MIX_V1: (
  494. "model.layers.{bid}.attention.v1", # rwkv7
  495. ),
  496. MODEL_TENSOR.TIME_MIX_V2: (
  497. "model.layers.{bid}.attention.v2", # rwkv7
  498. ),
  499. MODEL_TENSOR.TIME_MIX_G1: (
  500. "model.layers.{bid}.attention.g1", # rwkv7
  501. ),
  502. MODEL_TENSOR.TIME_MIX_G2: (
  503. "model.layers.{bid}.attention.g2", # rwkv7
  504. ),
  505. MODEL_TENSOR.TIME_MIX_K_K: (
  506. "model.layers.{bid}.attention.k_k", # rwkv7
  507. ),
  508. MODEL_TENSOR.TIME_MIX_K_A: (
  509. "model.layers.{bid}.attention.k_a", # rwkv7
  510. ),
  511. MODEL_TENSOR.TIME_MIX_R_K: (
  512. "model.layers.{bid}.attention.r_k", # rwkv7
  513. ),
  514. MODEL_TENSOR.TIME_MIX_LERP_X: (
  515. "rwkv.blocks.{bid}.attention.time_maa_x", # rwkv6
  516. "model.layers.{bid}.self_attn.time_maa_x", # rwkv6qwen2
  517. ),
  518. MODEL_TENSOR.TIME_MIX_LERP_K: (
  519. "rwkv.blocks.{bid}.attention.time_maa_k", # rwkv6
  520. "model.layers.{bid}.self_attn.time_maa_k", # rwkv6qwen2
  521. ),
  522. MODEL_TENSOR.TIME_MIX_LERP_V: (
  523. "rwkv.blocks.{bid}.attention.time_maa_v", # rwkv6
  524. "model.layers.{bid}.self_attn.time_maa_v", # rwkv6qwen2
  525. ),
  526. MODEL_TENSOR.TIME_MIX_LERP_R: (
  527. "rwkv.blocks.{bid}.attention.time_maa_r", # rwkv6
  528. "model.layers.{bid}.self_attn.time_maa_r", # rwkv6qwen2
  529. ),
  530. MODEL_TENSOR.TIME_MIX_LERP_G: (
  531. "rwkv.blocks.{bid}.attention.time_maa_g", # rwkv6
  532. "model.layers.{bid}.self_attn.time_maa_g", # rwkv6qwen2
  533. ),
  534. MODEL_TENSOR.TIME_MIX_LERP_W: (
  535. "rwkv.blocks.{bid}.attention.time_maa_w", # rwkv6
  536. "model.layers.{bid}.self_attn.time_maa_w", # rwkv6qwen2
  537. ),
  538. MODEL_TENSOR.TIME_MIX_FIRST: (
  539. "rwkv.blocks.{bid}.attention.time_faaaa", # rwkv6
  540. ),
  541. MODEL_TENSOR.TIME_MIX_DECAY: (
  542. "rwkv.blocks.{bid}.attention.time_decay", # rwkv6
  543. "model.layers.{bid}.self_attn.time_decay", # rwkv6qwen2
  544. ),
  545. MODEL_TENSOR.TIME_MIX_DECAY_W1: (
  546. "rwkv.blocks.{bid}.attention.time_decay_w1", # rwkv6
  547. "model.layers.{bid}.self_attn.time_decay_w1", # rwkv6qwen2
  548. ),
  549. MODEL_TENSOR.TIME_MIX_DECAY_W2: (
  550. "rwkv.blocks.{bid}.attention.time_decay_w2", # rwkv6
  551. "model.layers.{bid}.self_attn.time_decay_w2", # rwkv6qwen2
  552. ),
  553. MODEL_TENSOR.TIME_MIX_KEY: (
  554. "rwkv.blocks.{bid}.attention.key", # rwkv6
  555. "model.layers.{bid}.self_attn.k_proj", # rwkv6qwen2
  556. "model.layers.{bid}.attention.key", # rwkv7
  557. "model.layers.{bid}.attention.k_proj", # rwkv7
  558. ),
  559. MODEL_TENSOR.TIME_MIX_VALUE: (
  560. "rwkv.blocks.{bid}.attention.value", # rwkv6
  561. "model.layers.{bid}.self_attn.v_proj", # rwkv6qwen2
  562. "model.layers.{bid}.attention.value", # rwkv7
  563. "model.layers.{bid}.attention.v_proj", # rwkv7
  564. ),
  565. MODEL_TENSOR.TIME_MIX_RECEPTANCE: (
  566. "rwkv.blocks.{bid}.attention.receptance", # rwkv6
  567. "model.layers.{bid}.self_attn.q_proj", # rwkv6qwen2
  568. "model.layers.{bid}.attention.receptance", # rwkv7
  569. "model.layers.{bid}.attention.r_proj", # rwkv7
  570. ),
  571. MODEL_TENSOR.TIME_MIX_GATE: (
  572. "rwkv.blocks.{bid}.attention.gate", # rwkv6
  573. "model.layers.{bid}.self_attn.gate", # rwkv6qwen2
  574. ),
  575. MODEL_TENSOR.TIME_MIX_LN: (
  576. "rwkv.blocks.{bid}.attention.ln_x", # rwkv6
  577. "model.layers.{bid}.attention.ln_x" # rwkv7
  578. ),
  579. MODEL_TENSOR.TIME_MIX_OUTPUT: (
  580. "rwkv.blocks.{bid}.attention.output", # rwkv6
  581. "model.layers.{bid}.self_attn.o_proj", # rwkv6qwen2
  582. "model.layers.{bid}.attention.output", # rwkv7
  583. "model.layers.{bid}.attention.o_proj", # rwkv7
  584. ),
  585. MODEL_TENSOR.CHANNEL_MIX_LERP_K: (
  586. "rwkv.blocks.{bid}.feed_forward.time_maa_k", # rwkv6
  587. "model.layers.{bid}.feed_forward.x_k", # rwkv7
  588. ),
  589. MODEL_TENSOR.CHANNEL_MIX_LERP_R: (
  590. "rwkv.blocks.{bid}.feed_forward.time_maa_r", # rwkv6
  591. ),
  592. MODEL_TENSOR.CHANNEL_MIX_KEY: (
  593. "rwkv.blocks.{bid}.feed_forward.key", # rwkv6
  594. "model.layers.{bid}.feed_forward.key", # rwkv7
  595. ),
  596. MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: (
  597. "rwkv.blocks.{bid}.feed_forward.receptance", # rwkv6
  598. ),
  599. MODEL_TENSOR.CHANNEL_MIX_VALUE: (
  600. "rwkv.blocks.{bid}.feed_forward.value", # rwkv6
  601. "model.layers.{bid}.feed_forward.value", # rwkv7
  602. ),
  603. MODEL_TENSOR.ATTN_Q_A: (
  604. "model.layers.{bid}.self_attn.q_a_proj", # deepseek2
  605. ),
  606. MODEL_TENSOR.ATTN_Q_B: (
  607. "model.layers.{bid}.self_attn.q_b_proj", # deepseek2
  608. ),
  609. MODEL_TENSOR.ATTN_KV_A_MQA: (
  610. "model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
  611. ),
  612. MODEL_TENSOR.ATTN_KV_B: (
  613. "model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
  614. ),
  615. MODEL_TENSOR.ATTN_K_B: (
  616. "model.layers.{bid}.self_attn.k_b_proj", # deepseek2
  617. ),
  618. MODEL_TENSOR.ATTN_V_B: (
  619. "model.layers.{bid}.self_attn.v_b_proj", # deepseek2
  620. ),
  621. MODEL_TENSOR.ATTN_Q_A_NORM: (
  622. "model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
  623. ),
  624. MODEL_TENSOR.ATTN_KV_A_NORM: (
  625. "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
  626. ),
  627. MODEL_TENSOR.ATTN_SUB_NORM: (
  628. "model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
  629. ),
  630. MODEL_TENSOR.FFN_SUB_NORM: (
  631. "model.layers.{bid}.mlp.ffn_layernorm", # bitnet
  632. ),
  633. MODEL_TENSOR.DEC_ATTN_NORM: (
  634. "decoder.block.{bid}.layer.0.layer_norm", # t5
  635. ),
  636. MODEL_TENSOR.DEC_ATTN_Q: (
  637. "decoder.block.{bid}.layer.0.SelfAttention.q", # t5
  638. ),
  639. MODEL_TENSOR.DEC_ATTN_K: (
  640. "decoder.block.{bid}.layer.0.SelfAttention.k", # t5
  641. ),
  642. MODEL_TENSOR.DEC_ATTN_V: (
  643. "decoder.block.{bid}.layer.0.SelfAttention.v", # t5
  644. ),
  645. MODEL_TENSOR.DEC_ATTN_OUT: (
  646. "decoder.block.{bid}.layer.0.SelfAttention.o", # t5
  647. ),
  648. MODEL_TENSOR.DEC_ATTN_REL_B: (
  649. "decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  650. ),
  651. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
  652. "decoder.block.{bid}.layer.1.layer_norm", # t5
  653. ),
  654. MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
  655. "decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
  656. ),
  657. MODEL_TENSOR.DEC_CROSS_ATTN_K: (
  658. "decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
  659. ),
  660. MODEL_TENSOR.DEC_CROSS_ATTN_V: (
  661. "decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
  662. ),
  663. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
  664. "decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
  665. ),
  666. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
  667. "decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
  668. ),
  669. MODEL_TENSOR.DEC_FFN_NORM: (
  670. "decoder.block.{bid}.layer.2.layer_norm", # t5
  671. ),
  672. MODEL_TENSOR.DEC_FFN_GATE: (
  673. "decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
  674. ),
  675. MODEL_TENSOR.DEC_FFN_UP: (
  676. "decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
  677. "decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
  678. ),
  679. MODEL_TENSOR.DEC_FFN_DOWN: (
  680. "decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
  681. ),
  682. MODEL_TENSOR.DEC_OUTPUT_NORM: (
  683. "decoder.final_layer_norm", # t5
  684. ),
  685. MODEL_TENSOR.ENC_ATTN_NORM: (
  686. "encoder.block.{bid}.layer.0.layer_norm", # t5
  687. ),
  688. MODEL_TENSOR.ENC_ATTN_Q: (
  689. "encoder.block.{bid}.layer.0.SelfAttention.q", # t5
  690. ),
  691. MODEL_TENSOR.ENC_ATTN_K: (
  692. "encoder.block.{bid}.layer.0.SelfAttention.k", # t5
  693. ),
  694. MODEL_TENSOR.ENC_ATTN_V: (
  695. "encoder.block.{bid}.layer.0.SelfAttention.v", # t5
  696. ),
  697. MODEL_TENSOR.ENC_ATTN_OUT: (
  698. "encoder.block.{bid}.layer.0.SelfAttention.o", # t5
  699. ),
  700. MODEL_TENSOR.ENC_ATTN_REL_B: (
  701. "encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  702. ),
  703. MODEL_TENSOR.ENC_FFN_NORM: (
  704. "encoder.block.{bid}.layer.1.layer_norm", # t5
  705. ),
  706. MODEL_TENSOR.ENC_FFN_GATE: (
  707. "encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
  708. ),
  709. MODEL_TENSOR.ENC_FFN_UP: (
  710. "encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
  711. "encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
  712. ),
  713. MODEL_TENSOR.ENC_FFN_DOWN: (
  714. "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
  715. ),
  716. ############################################################################
  717. # TODO: these do not belong to block_mappings_cfg - move them to mappings_cfg
  718. MODEL_TENSOR.ENC_OUTPUT_NORM: (
  719. "encoder.final_layer_norm", # t5
  720. "layer_norm", # neobert
  721. ),
  722. MODEL_TENSOR.CLS: (
  723. "classifier", # jina
  724. "classifier.dense", # roberta
  725. "pre_classifier", # distillbert
  726. "dense", # neobert
  727. ),
  728. MODEL_TENSOR.CLS_OUT: (
  729. "classifier.out_proj", # roberta
  730. ),
  731. #############################################################################
  732. MODEL_TENSOR.CONVNEXT_DW: (
  733. "backbone.convnext.{bid}.dwconv", # wavtokenizer
  734. ),
  735. MODEL_TENSOR.CONVNEXT_NORM: (
  736. "backbone.convnext.{bid}.norm", # wavtokenizer
  737. ),
  738. MODEL_TENSOR.CONVNEXT_PW1: (
  739. "backbone.convnext.{bid}.pwconv1", # wavtokenizer
  740. ),
  741. MODEL_TENSOR.CONVNEXT_PW2: (
  742. "backbone.convnext.{bid}.pwconv2", # wavtokenizer
  743. ),
  744. MODEL_TENSOR.CONVNEXT_GAMMA: (
  745. "backbone.convnext.{bid}.gamma", # wavtokenizer
  746. ),
  747. MODEL_TENSOR.POSNET_CONV1: (
  748. "backbone.posnet.{bid}.conv1", # wavtokenizer
  749. ),
  750. MODEL_TENSOR.POSNET_CONV2: (
  751. "backbone.posnet.{bid}.conv2", # wavtokenizer
  752. ),
  753. MODEL_TENSOR.POSNET_NORM: (
  754. "backbone.posnet.{bid}.norm", # wavtokenizer
  755. ),
  756. MODEL_TENSOR.POSNET_NORM1: (
  757. "backbone.posnet.{bid}.norm1", # wavtokenizer
  758. ),
  759. MODEL_TENSOR.POSNET_NORM2: (
  760. "backbone.posnet.{bid}.norm2", # wavtokenizer
  761. ),
  762. MODEL_TENSOR.POSNET_ATTN_NORM: (
  763. "backbone.posnet.{bid}.norm", # wavtokenizer
  764. ),
  765. MODEL_TENSOR.POSNET_ATTN_Q: (
  766. "backbone.posnet.{bid}.q", # wavtokenizer
  767. ),
  768. MODEL_TENSOR.POSNET_ATTN_K: (
  769. "backbone.posnet.{bid}.k", # wavtokenizer
  770. ),
  771. MODEL_TENSOR.POSNET_ATTN_V: (
  772. "backbone.posnet.{bid}.v", # wavtokenizer
  773. ),
  774. MODEL_TENSOR.POSNET_ATTN_OUT: (
  775. "backbone.posnet.{bid}.proj_out", # wavtokenizer
  776. ),
  777. #############################################################################
  778. ## Vision encoder
  779. MODEL_TENSOR.V_MMPROJ: (
  780. "multi_modal_projector.linear_{bid}",
  781. "visual.merger.mlp.{bid}", # qwen2vl
  782. ),
  783. MODEL_TENSOR.V_MMPROJ_FC: (
  784. "model.connector.modality_projection.proj", # SmolVLM
  785. ),
  786. MODEL_TENSOR.V_MMPROJ_MLP: (
  787. "model.mm_projector.mlp.mlp.{bid}",
  788. "vision_model.vision_adapter.mlp.fc{bid}", # llama 4
  789. "mlp1.{bid}", # InternVL
  790. ),
  791. MODEL_TENSOR.V_MMPROJ_PEG: (
  792. "model.mm_projector.peg.peg.{bid}",
  793. ),
  794. MODEL_TENSOR.V_ENC_EMBD_CLS: (
  795. "vision_tower.vision_model.embeddings.class_embedding",
  796. "vision_model.class_embedding", # llama 4
  797. ),
  798. MODEL_TENSOR.V_ENC_EMBD_PATCH: (
  799. "vision_tower.vision_model.embeddings.patch_embedding",
  800. "vpm.embeddings.patch_embedding",
  801. "model.vision_model.embeddings.patch_embedding", # SmolVLM
  802. "vision_tower.patch_conv", # pixtral
  803. "vision_model.patch_embedding.linear", # llama 4
  804. "visual.patch_embed.proj", # qwen2vl
  805. ),
  806. MODEL_TENSOR.V_ENC_EMBD_POS: (
  807. "vision_tower.vision_model.embeddings.position_embedding",
  808. "vpm.embeddings.position_embedding",
  809. "model.vision_model.embeddings.position_embedding", # SmolVLM
  810. "vision_model.positional_embedding_vlm", # llama 4
  811. ),
  812. MODEL_TENSOR.V_ENC_ATTN_Q: (
  813. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.q_proj",
  814. "vpm.encoder.layers.{bid}.self_attn.q_proj",
  815. "model.vision_model.encoder.layers.{bid}.self_attn.q_proj", # SmolVLM
  816. "vision_model.model.layers.{bid}.self_attn.q_proj", # llama4
  817. "vision_tower.transformer.layers.{bid}.attention.q_proj", # pixtral
  818. "visual.blocks.{bid}.attn.q", # qwen2vl, generated
  819. ),
  820. MODEL_TENSOR.V_ENC_ATTN_Q_NORM: (
  821. "vision_tower.vision_model.encoder.layers.{bid}.attn.q_norm", # InternVL
  822. ),
  823. MODEL_TENSOR.V_ENC_ATTN_K: (
  824. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.k_proj",
  825. "vpm.encoder.layers.{bid}.self_attn.k_proj",
  826. "model.vision_model.encoder.layers.{bid}.self_attn.k_proj", # SmolVLM
  827. "vision_model.model.layers.{bid}.self_attn.k_proj", # llama4
  828. "vision_tower.transformer.layers.{bid}.attention.k_proj", # pixtral
  829. "visual.blocks.{bid}.attn.k", # qwen2vl, generated
  830. ),
  831. MODEL_TENSOR.V_ENC_ATTN_K_NORM: (
  832. "vision_tower.vision_model.encoder.layers.{bid}.attn.k_norm", # InternVL
  833. ),
  834. MODEL_TENSOR.V_ENC_ATTN_V: (
  835. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.v_proj",
  836. "vpm.encoder.layers.{bid}.self_attn.v_proj",
  837. "model.vision_model.encoder.layers.{bid}.self_attn.v_proj", # SmolVLM
  838. "vision_model.model.layers.{bid}.self_attn.v_proj", # llama4
  839. "vision_tower.transformer.layers.{bid}.attention.v_proj", # pixtral
  840. "visual.blocks.{bid}.attn.v", # qwen2vl, generated
  841. ),
  842. MODEL_TENSOR.V_ENC_INPUT_NORM: (
  843. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm1",
  844. "vision_tower.vision_model.encoder.layers.{bid}.norm1", # InternVL
  845. "vpm.encoder.layers.{bid}.layer_norm1",
  846. "model.vision_model.encoder.layers.{bid}.layer_norm1", # SmolVLM
  847. "vision_tower.transformer.layers.{bid}.attention_norm", # pixtral
  848. "vision_model.model.layers.{bid}.input_layernorm", # llama4
  849. "visual.blocks.{bid}.norm1", # qwen2vl
  850. ),
  851. MODEL_TENSOR.V_ENC_ATTN_O: (
  852. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.out_proj",
  853. "vision_tower.vision_model.encoder.layers.{bid}.attn.proj", # InternVL
  854. "vpm.encoder.layers.{bid}.self_attn.out_proj",
  855. "model.vision_model.encoder.layers.{bid}.self_attn.out_proj", # SmolVLM
  856. "vision_model.model.layers.{bid}.self_attn.o_proj", # llama4
  857. "vision_tower.transformer.layers.{bid}.attention.o_proj", # pixtral
  858. "visual.blocks.{bid}.attn.proj", # qwen2vl
  859. ),
  860. MODEL_TENSOR.V_ENC_POST_ATTN_NORM: (
  861. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm2",
  862. "vision_tower.vision_model.encoder.layers.{bid}.norm2", # InternVL
  863. "vpm.encoder.layers.{bid}.layer_norm2",
  864. "model.vision_model.encoder.layers.{bid}.layer_norm2", # SmolVLM
  865. "vision_model.model.layers.{bid}.post_attention_layernorm", # llama4
  866. "vision_tower.transformer.layers.{bid}.ffn_norm", # pixtral
  867. "visual.blocks.{bid}.norm2", # qwen2vl
  868. ),
  869. MODEL_TENSOR.V_ENC_FFN_UP: (
  870. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc1",
  871. "vpm.encoder.layers.{bid}.mlp.fc1",
  872. "model.vision_model.encoder.layers.{bid}.mlp.fc1", # SmolVLM, gemma3
  873. "vision_tower.transformer.layers.{bid}.feed_forward.up_proj", # pixtral
  874. "vision_model.model.layers.{bid}.mlp.fc1", # llama4
  875. "visual.blocks.{bid}.mlp.fc1", # qwen2vl
  876. "visual.blocks.{bid}.mlp.up_proj", # qwen2.5vl
  877. ),
  878. MODEL_TENSOR.V_ENC_FFN_GATE: (
  879. "vision_tower.transformer.layers.{bid}.feed_forward.gate_proj", # pixtral
  880. "visual.blocks.{bid}.mlp.gate_proj", # qwen2.5vl
  881. ),
  882. MODEL_TENSOR.V_ENC_FFN_DOWN: (
  883. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc2",
  884. "vpm.encoder.layers.{bid}.mlp.fc2",
  885. "model.vision_model.encoder.layers.{bid}.mlp.fc2", # SmolVLM, gemma3
  886. "vision_tower.transformer.layers.{bid}.feed_forward.down_proj", # pixtral
  887. "vision_model.model.layers.{bid}.mlp.fc2", # llama4
  888. "visual.blocks.{bid}.mlp.fc2", # qwen2vl
  889. "visual.blocks.{bid}.mlp.down_proj", # qwen2.5vl
  890. ),
  891. MODEL_TENSOR.V_LAYER_SCALE_1: (
  892. "vision_tower.vision_model.encoder.layers.{bid}.ls1", # InternVL
  893. ),
  894. MODEL_TENSOR.V_LAYER_SCALE_2: (
  895. "vision_tower.vision_model.encoder.layers.{bid}.ls2", # InternVL
  896. ),
  897. MODEL_TENSOR.V_PRE_NORM: (
  898. "vision_tower.vision_model.pre_layrnorm",
  899. "vision_tower.ln_pre", # pixtral
  900. "vision_model.layernorm_pre", # llama4
  901. ),
  902. MODEL_TENSOR.V_POST_NORM: (
  903. "vision_tower.vision_model.post_layernorm",
  904. "model.vision_model.post_layernorm", # SmolVLM
  905. "vision_model.layernorm_post", # llama4
  906. "visual.merger.ln_q", # qwen2vl
  907. ),
  908. MODEL_TENSOR.V_MM_INP_PROJ: (
  909. "multi_modal_projector.mm_input_projection",
  910. ),
  911. MODEL_TENSOR.V_MM_INP_NORM: (
  912. "multi_modal_projector.norm",
  913. ),
  914. MODEL_TENSOR.V_MM_SOFT_EMB_NORM: (
  915. "multi_modal_projector.mm_soft_emb_norm",
  916. ),
  917. MODEL_TENSOR.V_RESMPL_POS_EMBD_K: (
  918. "resampler.pos_embed_k",
  919. ),
  920. MODEL_TENSOR.V_RESMPL_ATTN_Q: (
  921. "resampler.attn.in_proj_q", # tensor generated from resampler.attn.in_proj
  922. ),
  923. MODEL_TENSOR.V_RESMPL_ATTN_K: (
  924. "resampler.attn.in_proj_k", # tensor generated from resampler.attn.in_proj
  925. ),
  926. MODEL_TENSOR.V_RESMPL_ATTN_V: (
  927. "resampler.attn.in_proj_v", # tensor generated from resampler.attn.in_proj
  928. ),
  929. MODEL_TENSOR.V_RESMPL_ATTN_OUT: (
  930. "resampler.attn.out_proj",
  931. ),
  932. MODEL_TENSOR.V_RESMPL_KV: (
  933. "resampler.kv_proj",
  934. ),
  935. MODEL_TENSOR.V_RESMPL_POST_NORM: (
  936. "resampler.ln_post",
  937. ),
  938. MODEL_TENSOR.V_RESMPL_KV_NORM: (
  939. "resampler.ln_kv",
  940. ),
  941. MODEL_TENSOR.V_RESMPL_Q_NORM: (
  942. "resampler.ln_q",
  943. ),
  944. MODEL_TENSOR.V_RESMPL_PROJ: (
  945. "resampler.proj",
  946. ),
  947. MODEL_TENSOR.V_RESMPL_QUERY: (
  948. "resampler.query",
  949. ),
  950. MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK: (
  951. "v.token_embd.img_break", # for pixtral, this is a generated vector
  952. ),
  953. MODEL_TENSOR.V_MM_PATCH_MERGER: (
  954. "multi_modal_projector.patch_merger.merging_layer", # mistral small 3.1
  955. ),
  956. # audio (mtmd)
  957. MODEL_TENSOR.A_ENC_EMBD_POS: (
  958. "audio_tower.embed_positions", # ultravox
  959. ),
  960. MODEL_TENSOR.A_ENC_CONV1D: (
  961. "audio_tower.conv{bid}", # ultravox
  962. ),
  963. MODEL_TENSOR.A_PRE_NORM: (),
  964. MODEL_TENSOR.A_POST_NORM: (
  965. "audio_tower.layer_norm", # ultravox
  966. "audio_tower.ln_post", # qwen2omni
  967. ),
  968. MODEL_TENSOR.A_ENC_ATTN_Q: (
  969. "audio_tower.layers.{bid}.self_attn.q_proj", # ultravox
  970. ),
  971. MODEL_TENSOR.A_ENC_ATTN_K: (
  972. "audio_tower.layers.{bid}.self_attn.k_proj", # ultravox
  973. ),
  974. MODEL_TENSOR.A_ENC_ATTN_V: (
  975. "audio_tower.layers.{bid}.self_attn.v_proj", # ultravox
  976. ),
  977. MODEL_TENSOR.A_ENC_INPUT_NORM: (
  978. "audio_tower.layers.{bid}.self_attn_layer_norm", # ultravox
  979. ),
  980. MODEL_TENSOR.A_ENC_OUTPUT: (
  981. "audio_tower.layers.{bid}.self_attn.out_proj", # ultravox
  982. ),
  983. MODEL_TENSOR.A_ENC_OUTPUT_NORM: (
  984. "audio_tower.layers.{bid}.final_layer_norm", # ultravox
  985. ),
  986. MODEL_TENSOR.A_ENC_FFN_UP: (
  987. "audio_tower.layers.{bid}.fc1", # ultravox
  988. ),
  989. MODEL_TENSOR.A_ENC_FFN_GATE: (),
  990. MODEL_TENSOR.A_ENC_FFN_DOWN: (
  991. "audio_tower.layers.{bid}.fc2", # ultravox
  992. ),
  993. # note: some tensors below has "audio." pseudo-prefix, to prevent conflicts with vision tensors
  994. # this prefix is added in the conversion code in modify_tensors()
  995. MODEL_TENSOR.A_MMPROJ: (
  996. "audio.multi_modal_projector.linear_{bid}", # ultravox
  997. ),
  998. MODEL_TENSOR.A_MMPROJ_FC: (
  999. "audio.multi_modal_projector.linear", # qwen2audio
  1000. "audio_tower.proj", # qwen2omni
  1001. ),
  1002. MODEL_TENSOR.A_MM_NORM_PRE: (
  1003. "audio.multi_modal_projector.ln_pre", # ultravox
  1004. ),
  1005. MODEL_TENSOR.A_MM_NORM_MID: (
  1006. "audio.multi_modal_projector.ln_mid", # ultravox
  1007. ),
  1008. }
  1009. # architecture-specific block mappings
  1010. arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
  1011. MODEL_ARCH.ARCTIC: {
  1012. MODEL_TENSOR.FFN_NORM: (
  1013. "model.layers.{bid}.residual_layernorm",
  1014. ),
  1015. MODEL_TENSOR.FFN_NORM_EXP: (
  1016. "model.layers.{bid}.post_attention_layernorm",
  1017. ),
  1018. },
  1019. }
  1020. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  1021. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  1022. self.mapping = {}
  1023. for tensor, keys in self.mappings_cfg.items():
  1024. if tensor not in MODEL_TENSORS[arch]:
  1025. continue
  1026. tensor_name = TENSOR_NAMES[tensor]
  1027. self.mapping[tensor_name] = (tensor, tensor_name)
  1028. for key in keys:
  1029. self.mapping[key] = (tensor, tensor_name)
  1030. if arch in self.arch_block_mappings_cfg:
  1031. self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
  1032. for bid in range(n_blocks):
  1033. for tensor, keys in self.block_mappings_cfg.items():
  1034. if tensor not in MODEL_TENSORS[arch]:
  1035. continue
  1036. tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
  1037. self.mapping[tensor_name] = (tensor, tensor_name)
  1038. for key in keys:
  1039. key = key.format(bid = bid)
  1040. self.mapping[key] = (tensor, tensor_name)
  1041. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  1042. result = self.mapping.get(key)
  1043. if result is not None:
  1044. return result
  1045. for suffix in try_suffixes:
  1046. if key.endswith(suffix):
  1047. result = self.mapping.get(key[:-len(suffix)])
  1048. if result is not None:
  1049. return result[0], result[1] + suffix
  1050. return None
  1051. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  1052. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1053. if result is None:
  1054. return None
  1055. return result[1]
  1056. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  1057. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1058. if result is None:
  1059. return None
  1060. return result[0]
  1061. def __getitem__(self, key: str) -> str:
  1062. try:
  1063. return self.mapping[key][1]
  1064. except KeyError:
  1065. raise KeyError(key)
  1066. def __contains__(self, key: str) -> bool:
  1067. return key in self.mapping
  1068. def __repr__(self) -> str:
  1069. return repr(self.mapping)
  1070. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  1071. return TensorNameMap(arch, n_blocks)