ggml.c 383 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #define GGML_ASSERT(x) \
  116. do { \
  117. if (!(x)) { \
  118. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  119. abort(); \
  120. } \
  121. } while (0)
  122. #if defined(GGML_USE_ACCELERATE)
  123. #include <Accelerate/Accelerate.h>
  124. #elif defined(GGML_USE_OPENBLAS)
  125. #include <cblas.h>
  126. #elif defined(GGML_USE_CUBLAS)
  127. #include "ggml-cuda.h"
  128. #endif
  129. #undef MIN
  130. #undef MAX
  131. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  132. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  133. // floating point type used to accumulate sums
  134. typedef double ggml_float;
  135. // 16-bit float
  136. // on Arm, we use __fp16
  137. // on x86, we use uint16_t
  138. #ifdef __ARM_NEON
  139. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  140. //
  141. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  142. //
  143. #include <arm_neon.h>
  144. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  145. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  146. #define GGML_FP16_TO_FP32(x) ((float) (x))
  147. #define GGML_FP32_TO_FP16(x) (x)
  148. #else
  149. #ifdef __wasm_simd128__
  150. #include <wasm_simd128.h>
  151. #else
  152. #ifdef __POWER9_VECTOR__
  153. #include <altivec.h>
  154. #undef bool
  155. #define bool _Bool
  156. #else
  157. #include <immintrin.h>
  158. #endif
  159. #endif
  160. #ifdef __F16C__
  161. #ifdef _MSC_VER
  162. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  163. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  164. #else
  165. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  166. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  167. #endif
  168. #elif defined(__POWER9_VECTOR__)
  169. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  170. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  171. /* the inline asm below is about 12% faster than the lookup method */
  172. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  173. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  174. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  175. register float f;
  176. register double d;
  177. __asm__(
  178. "mtfprd %0,%2\n"
  179. "xscvhpdp %0,%0\n"
  180. "frsp %1,%0\n" :
  181. /* temp */ "=d"(d),
  182. /* out */ "=f"(f):
  183. /* in */ "r"(h));
  184. return f;
  185. }
  186. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  187. register double d;
  188. register ggml_fp16_t r;
  189. __asm__( /* xscvdphp can work on double or single precision */
  190. "xscvdphp %0,%2\n"
  191. "mffprd %1,%0\n" :
  192. /* temp */ "=d"(d),
  193. /* out */ "=r"(r):
  194. /* in */ "f"(f));
  195. return r;
  196. }
  197. #else
  198. // FP16 <-> FP32
  199. // ref: https://github.com/Maratyszcza/FP16
  200. static inline float fp32_from_bits(uint32_t w) {
  201. union {
  202. uint32_t as_bits;
  203. float as_value;
  204. } fp32;
  205. fp32.as_bits = w;
  206. return fp32.as_value;
  207. }
  208. static inline uint32_t fp32_to_bits(float f) {
  209. union {
  210. float as_value;
  211. uint32_t as_bits;
  212. } fp32;
  213. fp32.as_value = f;
  214. return fp32.as_bits;
  215. }
  216. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  217. const uint32_t w = (uint32_t) h << 16;
  218. const uint32_t sign = w & UINT32_C(0x80000000);
  219. const uint32_t two_w = w + w;
  220. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  221. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  222. const float exp_scale = 0x1.0p-112f;
  223. #else
  224. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  225. #endif
  226. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  227. const uint32_t magic_mask = UINT32_C(126) << 23;
  228. const float magic_bias = 0.5f;
  229. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  230. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  231. const uint32_t result = sign |
  232. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  233. return fp32_from_bits(result);
  234. }
  235. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  236. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  237. const float scale_to_inf = 0x1.0p+112f;
  238. const float scale_to_zero = 0x1.0p-110f;
  239. #else
  240. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  241. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  242. #endif
  243. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  244. const uint32_t w = fp32_to_bits(f);
  245. const uint32_t shl1_w = w + w;
  246. const uint32_t sign = w & UINT32_C(0x80000000);
  247. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  248. if (bias < UINT32_C(0x71000000)) {
  249. bias = UINT32_C(0x71000000);
  250. }
  251. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  252. const uint32_t bits = fp32_to_bits(base);
  253. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  254. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  255. const uint32_t nonsign = exp_bits + mantissa_bits;
  256. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  257. }
  258. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  259. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  260. #endif // __F16C__
  261. #endif // __ARM_NEON
  262. //
  263. // global data
  264. //
  265. // precomputed gelu table for f16 (128 KB)
  266. static ggml_fp16_t table_gelu_f16[1 << 16];
  267. // precomputed silu table for f16 (128 KB)
  268. static ggml_fp16_t table_silu_f16[1 << 16];
  269. // precomputed exp table for f16 (128 KB)
  270. static ggml_fp16_t table_exp_f16[1 << 16];
  271. // precomputed f32 table for f16 (256 KB)
  272. static float table_f32_f16[1 << 16];
  273. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  274. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  275. // This is also true for POWER9.
  276. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  277. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  278. uint16_t s;
  279. memcpy(&s, &f, sizeof(uint16_t));
  280. return table_f32_f16[s];
  281. }
  282. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  283. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  284. #endif
  285. // note: do not use these inside ggml.c
  286. // these are meant to be used via the ggml.h API
  287. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  288. return (float) GGML_FP16_TO_FP32(x);
  289. }
  290. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  291. return GGML_FP32_TO_FP16(x);
  292. }
  293. //
  294. // timing
  295. //
  296. #if defined(_MSC_VER) || defined(__MINGW32__)
  297. static int64_t timer_freq;
  298. void ggml_time_init(void) {
  299. LARGE_INTEGER frequency;
  300. QueryPerformanceFrequency(&frequency);
  301. timer_freq = frequency.QuadPart;
  302. }
  303. int64_t ggml_time_ms(void) {
  304. LARGE_INTEGER t;
  305. QueryPerformanceCounter(&t);
  306. return (t.QuadPart * 1000) / timer_freq;
  307. }
  308. int64_t ggml_time_us(void) {
  309. LARGE_INTEGER t;
  310. QueryPerformanceCounter(&t);
  311. return (t.QuadPart * 1000000) / timer_freq;
  312. }
  313. #else
  314. void ggml_time_init(void) {}
  315. int64_t ggml_time_ms(void) {
  316. struct timespec ts;
  317. clock_gettime(CLOCK_MONOTONIC, &ts);
  318. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  319. }
  320. int64_t ggml_time_us(void) {
  321. struct timespec ts;
  322. clock_gettime(CLOCK_MONOTONIC, &ts);
  323. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  324. }
  325. #endif
  326. int64_t ggml_cycles(void) {
  327. return clock();
  328. }
  329. int64_t ggml_cycles_per_ms(void) {
  330. return CLOCKS_PER_SEC/1000;
  331. }
  332. #ifdef GGML_PERF
  333. #define ggml_perf_time_ms() ggml_time_ms()
  334. #define ggml_perf_time_us() ggml_time_us()
  335. #define ggml_perf_cycles() ggml_cycles()
  336. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  337. #else
  338. #define ggml_perf_time_ms() 0
  339. #define ggml_perf_time_us() 0
  340. #define ggml_perf_cycles() 0
  341. #define ggml_perf_cycles_per_ms() 0
  342. #endif
  343. //
  344. // cache line
  345. //
  346. #if defined(__cpp_lib_hardware_interference_size)
  347. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  348. #else
  349. #if defined(__POWER9_VECTOR__)
  350. #define CACHE_LINE_SIZE 128
  351. #else
  352. #define CACHE_LINE_SIZE 64
  353. #endif
  354. #endif
  355. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  356. //
  357. // quantization
  358. //
  359. #if __AVX__ || __AVX2__ || __AVX512F__
  360. // Unpack 16 4-bit fields into 16 bytes
  361. // The output vector contains 16 bytes, each one in [ 0 .. 15 ] interval
  362. static inline __m128i bytes_from_nibbles_16(const uint8_t * rsi)
  363. {
  364. // Load 8 bytes from memory
  365. __m128i tmp = _mm_loadu_si64( ( const __m128i* )rsi );
  366. // Expand bytes into uint16_t values
  367. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  368. // Unpack values into individual bytes
  369. const __m128i lowMask = _mm_set1_epi8( 0xF );
  370. __m128i high = _mm_andnot_si128( lowMask, bytes );
  371. __m128i low = _mm_and_si128( lowMask, bytes );
  372. high = _mm_slli_epi16( high, 4 );
  373. bytes = _mm_or_si128( low, high );
  374. return bytes;
  375. }
  376. // horizontally add 8 floats
  377. static inline float hsum_float_8(const __m256 x) {
  378. __m128 res = _mm256_extractf128_ps(x, 1);
  379. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  380. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  381. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  382. return _mm_cvtss_f32(res);
  383. }
  384. // horizontally add 8 int32_t
  385. static inline int hsum_i32_8(const __m256i a) {
  386. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  387. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  388. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  389. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  390. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  391. }
  392. // horizontally add 4 int32_t
  393. static inline int hsum_i32_4(const __m128i a) {
  394. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  395. const __m128i sum64 = _mm_add_epi32(hi64, a);
  396. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  397. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  398. }
  399. #if __AVX2__ || __AVX512F__
  400. // Unpack 32 4-bit fields into 32 bytes
  401. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  402. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  403. {
  404. // Load 16 bytes from memory
  405. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  406. // Expand bytes into uint16_t values
  407. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  408. // Unpack values into individual bytes
  409. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  410. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  411. __m256i low = _mm256_and_si256( lowMask, bytes );
  412. high = _mm256_slli_epi16( high, 4 );
  413. bytes = _mm256_or_si256( low, high );
  414. return bytes;
  415. }
  416. // add int16_t pairwise and return as float vector
  417. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  418. const __m256i ones = _mm256_set1_epi16(1);
  419. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  420. return _mm256_cvtepi32_ps(summed_pairs);
  421. }
  422. // multiply int8_t, add results pairwise twice and return as float vector
  423. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  424. // Get absolute values of x vectors
  425. const __m256i ax = _mm256_sign_epi8(x, x);
  426. // Sign the values of the y vectors
  427. const __m256i sy = _mm256_sign_epi8(y, x);
  428. #if __AVXVNNI__
  429. const __m256i zero = _mm256_setzero_si256();
  430. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  431. return _mm256_cvtepi32_ps(summed_pairs);
  432. #else
  433. // Perform multiplication and create 16-bit values
  434. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  435. return sum_i16_pairs_float(dot);
  436. #endif
  437. }
  438. static inline __m128i packNibbles( __m256i bytes )
  439. {
  440. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  441. #if __AVX512F__
  442. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  443. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  444. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  445. #else
  446. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  447. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  448. __m256i low = _mm256_and_si256( lowByte, bytes );
  449. high = _mm256_srli_epi16( high, 4 );
  450. bytes = _mm256_or_si256( low, high );
  451. // Compress uint16_t lanes into bytes
  452. __m128i r0 = _mm256_castsi256_si128( bytes );
  453. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  454. return _mm_packus_epi16( r0, r1 );
  455. #endif
  456. }
  457. #else
  458. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  459. {
  460. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  461. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  462. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  463. __m128i low = _mm_and_si128( lowByte, bytes1 );
  464. high = _mm_srli_epi16( high, 4 );
  465. bytes1 = _mm_or_si128( low, high );
  466. high = _mm_andnot_si128( lowByte, bytes2 );
  467. low = _mm_and_si128( lowByte, bytes2 );
  468. high = _mm_srli_epi16( high, 4 );
  469. bytes2 = _mm_or_si128( low, high );
  470. return _mm_packus_epi16( bytes1, bytes2);
  471. }
  472. #endif
  473. #endif // __AVX__ || __AVX2__ || __AVX512F__
  474. #if __ARM_NEON
  475. #if !defined(__aarch64__)
  476. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  477. return
  478. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  479. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  480. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  481. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  482. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  483. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  484. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  485. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  486. }
  487. inline static int16_t vaddvq_s8(int8x16_t v) {
  488. return
  489. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  490. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  491. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  492. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  493. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  494. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  495. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  496. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  497. }
  498. inline static int32_t vaddvq_s16(int16x8_t v) {
  499. return
  500. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  501. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  502. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  503. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  504. }
  505. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  506. return
  507. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  508. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  509. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  510. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  511. }
  512. inline static int32_t vaddvq_s32(int32x4_t v) {
  513. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  514. }
  515. inline static float vaddvq_f32(float32x4_t v) {
  516. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  517. }
  518. float vminvq_f32(float32x4_t v) {
  519. return
  520. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  521. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  522. }
  523. float vmaxvq_f32(float32x4_t v) {
  524. return
  525. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  526. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  527. }
  528. int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) {
  529. return vget_low_s8(vcombine_s8(a, b));
  530. }
  531. int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) {
  532. return vget_high_s8(vcombine_s8(a, b));
  533. }
  534. uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  535. return vget_low_u8(vcombine_u8(a, b));
  536. }
  537. uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  538. return vget_high_u8(vcombine_u8(a, b));
  539. }
  540. #endif
  541. #endif
  542. #define QK4_0 32
  543. typedef struct {
  544. float d; // delta
  545. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  546. } block_q4_0;
  547. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  548. #define QK4_1 32
  549. typedef struct {
  550. float d; // delta
  551. float m; // min
  552. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  553. } block_q4_1;
  554. static_assert(sizeof(block_q4_1) == 2 * sizeof(float) + QK4_1 / 2, "wrong q4_1 block size/padding");
  555. #define QK4_2 16
  556. typedef struct {
  557. ggml_fp16_t d; // delta
  558. uint8_t qs[QK4_2 / 2]; // nibbles / quants
  559. } block_q4_2;
  560. static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
  561. #define QK4_3 16
  562. typedef struct {
  563. ggml_fp16_t d; // delta
  564. ggml_fp16_t m; // min
  565. uint8_t qs[QK4_3 / 2]; // nibbles / quants
  566. } block_q4_3;
  567. static_assert(sizeof(block_q4_3) == 2 * sizeof(ggml_fp16_t) + QK4_3 / 2, "wrong q4_3 block size/padding");
  568. #define QK8_0 32
  569. typedef struct {
  570. float d; // delta
  571. float s0; // d * sum(qs[i]) low
  572. float s1; // d * sum(qs[i]) high
  573. int8_t qs[QK8_0]; // quants
  574. } block_q8_0;
  575. static_assert(sizeof(block_q8_0) == 3*sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  576. // reference implementation for deterministic creation of model files
  577. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  578. assert(k % QK4_0 == 0);
  579. const int nb = k / QK4_0;
  580. uint8_t pp[QK4_0/2];
  581. for (int i = 0; i < nb; i++) {
  582. float amax = 0.0f; // absolute max
  583. for (int l = 0; l < QK4_0; l++) {
  584. const float v = x[i*QK4_0 + l];
  585. amax = MAX(amax, fabsf(v));
  586. }
  587. const float d = amax / ((1 << 3) - 1);
  588. const float id = d ? 1.0f/d : 0.0f;
  589. y[i].d = d;
  590. for (int l = 0; l < QK4_0; l += 2) {
  591. const float v0 = x[i*QK4_0 + l + 0]*id;
  592. const float v1 = x[i*QK4_0 + l + 1]*id;
  593. const uint8_t vi0 = (int8_t)roundf(v0) + 8;
  594. const uint8_t vi1 = (int8_t)roundf(v1) + 8;
  595. assert(vi0 < 16);
  596. assert(vi1 < 16);
  597. pp[l/2] = vi0 | (vi1 << 4);
  598. }
  599. memcpy(y[i].qs, pp, sizeof(pp));
  600. }
  601. }
  602. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  603. assert(k % QK4_0 == 0);
  604. const int nb = k / QK4_0;
  605. block_q4_0 * restrict y = vy;
  606. #if defined(__POWER9_VECTOR__)
  607. const vector float v85 = vec_splats(8.5f);
  608. for (int i = 0; i < nb; i++) {
  609. float amax = 0.0f; // absolute max
  610. vector float srcv [8];
  611. vector float asrcv[8];
  612. vector float amaxv[8];
  613. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  614. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  615. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  616. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  617. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  618. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  619. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  620. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  621. amax = MAX(
  622. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  623. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  624. const float d = amax / ((1 << 3) - 1);
  625. const float id = d ? 1.0/d : 0.0;
  626. y[i].d = d;
  627. const vector float vid = vec_splats(id);
  628. uint8_t * restrict pb = y[i].qs;
  629. for (int l = 0; l < 8; l++) {
  630. const vector float vf = vec_madd(srcv[l], vid, v85);
  631. const vector signed int vi = vec_signed(vf);
  632. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  633. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  634. }
  635. }
  636. #elif __ARM_NEON
  637. for (int i = 0; i < nb; i++) {
  638. float32x4_t srcv [8];
  639. float32x4_t asrcv[8];
  640. float32x4_t amaxv[8];
  641. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  642. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  643. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  644. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  645. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  646. const float amax = vmaxvq_f32(amaxv[0]);
  647. const float d = amax / ((1 << 3) - 1);
  648. const float id = d ? 1.0f/d : 0.0f;
  649. y[i].d = d;
  650. for (int l = 0; l < 8; l++) {
  651. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  652. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  653. const int32x4_t vi = vcvtq_s32_f32(vf);
  654. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  655. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  656. }
  657. }
  658. #elif defined(__AVX2__)
  659. for (int i = 0; i < nb; i++) {
  660. // Load elements into 4 AVX vectors
  661. __m256 v0 = _mm256_loadu_ps( x );
  662. __m256 v1 = _mm256_loadu_ps( x + 8 );
  663. __m256 v2 = _mm256_loadu_ps( x + 16 );
  664. __m256 v3 = _mm256_loadu_ps( x + 24 );
  665. x += 32;
  666. // Compute max(abs(e)) for the block
  667. const __m256 signBit = _mm256_set1_ps( -0.0f );
  668. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  669. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  670. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  671. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  672. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  673. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  674. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  675. const float maxScalar = _mm_cvtss_f32( max4 );
  676. // Quantize these floats
  677. const float d = maxScalar / 7.0f;
  678. y[i].d = d;
  679. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  680. const __m256 mul = _mm256_set1_ps( id );
  681. // Apply the multiplier
  682. v0 = _mm256_mul_ps( v0, mul );
  683. v1 = _mm256_mul_ps( v1, mul );
  684. v2 = _mm256_mul_ps( v2, mul );
  685. v3 = _mm256_mul_ps( v3, mul );
  686. // Round to nearest integer
  687. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  688. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  689. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  690. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  691. // Convert floats to integers
  692. __m256i i0 = _mm256_cvtps_epi32( v0 );
  693. __m256i i1 = _mm256_cvtps_epi32( v1 );
  694. __m256i i2 = _mm256_cvtps_epi32( v2 );
  695. __m256i i3 = _mm256_cvtps_epi32( v3 );
  696. // Convert int32 to int16
  697. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  698. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  699. // Convert int16 to int8
  700. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  701. // We got our precious signed bytes, but the order is now wrong
  702. // These AVX2 pack instructions process 16-byte pieces independently
  703. // The following instruction is fixing the order
  704. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  705. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  706. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  707. const __m256i off = _mm256_set1_epi8( 8 );
  708. i0 = _mm256_add_epi8( i0, off );
  709. // Compress the vector into 4 bit/value, and store
  710. __m128i res = packNibbles( i0 );
  711. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  712. }
  713. #elif defined(__AVX__)
  714. for (int i = 0; i < nb; i++) {
  715. // Load elements into 4 AVX vectors
  716. __m256 v0 = _mm256_loadu_ps( x );
  717. __m256 v1 = _mm256_loadu_ps( x + 8 );
  718. __m256 v2 = _mm256_loadu_ps( x + 16 );
  719. __m256 v3 = _mm256_loadu_ps( x + 24 );
  720. x += 32;
  721. // Compute max(abs(e)) for the block
  722. const __m256 signBit = _mm256_set1_ps( -0.0f );
  723. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  724. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  725. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  726. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  727. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  728. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  729. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  730. const float maxScalar = _mm_cvtss_f32( max4 );
  731. // Quantize these floats
  732. const float d = maxScalar / 7.0f;
  733. y[i].d = d;
  734. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  735. const __m256 mul = _mm256_set1_ps( id );
  736. // Apply the multiplier
  737. v0 = _mm256_mul_ps( v0, mul );
  738. v1 = _mm256_mul_ps( v1, mul );
  739. v2 = _mm256_mul_ps( v2, mul );
  740. v3 = _mm256_mul_ps( v3, mul );
  741. // Round to nearest integer
  742. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  743. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  744. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  745. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  746. // Convert floats to integers
  747. __m256i i0 = _mm256_cvtps_epi32( v0 );
  748. __m256i i1 = _mm256_cvtps_epi32( v1 );
  749. __m256i i2 = _mm256_cvtps_epi32( v2 );
  750. __m256i i3 = _mm256_cvtps_epi32( v3 );
  751. // Since we don't have in AVX some necessary functions,
  752. // we split the registers in half and call AVX2 analogs from SSE
  753. __m128i ni0 = _mm256_castsi256_si128( i0 );
  754. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  755. __m128i ni2 = _mm256_castsi256_si128( i1 );
  756. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  757. __m128i ni4 = _mm256_castsi256_si128( i2 );
  758. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  759. __m128i ni6 = _mm256_castsi256_si128( i3 );
  760. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  761. // Convert int32 to int16
  762. ni0 = _mm_packs_epi32( ni0, ni1 );
  763. ni2 = _mm_packs_epi32( ni2, ni3 );
  764. ni4 = _mm_packs_epi32( ni4, ni5 );
  765. ni6 = _mm_packs_epi32( ni6, ni7 );
  766. // Convert int16 to int8
  767. ni0 = _mm_packs_epi16( ni0, ni2 );
  768. ni4 = _mm_packs_epi16( ni4, ni6 );
  769. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  770. const __m128i off = _mm_set1_epi8( 8);
  771. ni0 = _mm_add_epi8( ni0, off );
  772. ni4 = _mm_add_epi8( ni4, off );
  773. // Compress the vector into 4 bit/value, and store
  774. __m128i res = packNibbles( ni0, ni4 );
  775. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  776. }
  777. #elif defined(__wasm_simd128__)
  778. for (int i = 0; i < nb; i++) {
  779. float amax = 0.0f; // absolute max
  780. v128_t srcv [8];
  781. v128_t asrcv[8];
  782. v128_t amaxv[8];
  783. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  784. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  785. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  786. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  787. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  788. amax = MAX(
  789. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  790. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  791. const float d = amax / ((1 << 3) - 1);
  792. const float id = d ? 1.0/d : 0.0;
  793. y[i].d = d;
  794. for (int l = 0; l < 8; l++) {
  795. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  796. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  797. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  798. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  799. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  800. }
  801. }
  802. #else
  803. // scalar
  804. quantize_row_q4_0_reference(x, y, k);
  805. #endif
  806. }
  807. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  808. assert(k % QK4_1 == 0);
  809. const int nb = k / QK4_1;
  810. block_q4_1 * restrict y = vy;
  811. uint8_t pp[QK4_1/2];
  812. for (int i = 0; i < nb; i++) {
  813. float min = FLT_MAX;
  814. float max = -FLT_MAX;
  815. for (int l = 0; l < QK4_1; l++) {
  816. const float v = x[i*QK4_1 + l];
  817. if (v < min) min = v;
  818. if (v > max) max = v;
  819. }
  820. const float d = (max - min) / ((1 << 4) - 1);
  821. const float id = d ? 1.0f/d : 0.0f;
  822. y[i].d = d;
  823. y[i].m = min;
  824. for (int l = 0; l < QK4_1; l += 2) {
  825. const float v0 = (x[i*QK4_1 + l + 0] - min)*id;
  826. const float v1 = (x[i*QK4_1 + l + 1] - min)*id;
  827. const uint8_t vi0 = roundf(v0);
  828. const uint8_t vi1 = roundf(v1);
  829. assert(vi0 < 16);
  830. assert(vi1 < 16);
  831. pp[l/2] = vi0 | (vi1 << 4);
  832. }
  833. memcpy(y[i].qs, pp, sizeof(pp));
  834. }
  835. }
  836. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  837. assert(k % QK4_1 == 0);
  838. const int nb = k / QK4_1;
  839. block_q4_1 * restrict y = vy;
  840. #if defined(__AVX2__)
  841. for (int i = 0; i < nb; i++) {
  842. // Load elements into 4 AVX vectors
  843. __m256 v0 = _mm256_loadu_ps( x );
  844. __m256 v1 = _mm256_loadu_ps( x + 8 );
  845. __m256 v2 = _mm256_loadu_ps( x + 16 );
  846. __m256 v3 = _mm256_loadu_ps( x + 24 );
  847. x += 32;
  848. // Compute max for the block
  849. __m256 vmax;
  850. vmax = _mm256_max_ps( v0, v1 );
  851. vmax = _mm256_max_ps( vmax, v2 );
  852. vmax = _mm256_max_ps( vmax, v3 );
  853. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  854. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  855. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  856. const float maxScalar = _mm_cvtss_f32( max4 );
  857. // Compute min for the block
  858. __m256 vmin;
  859. vmin = _mm256_min_ps( v0, v1 );
  860. vmin = _mm256_min_ps( vmin, v2 );
  861. vmin = _mm256_min_ps( vmin, v3 );
  862. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  863. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  864. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  865. const float minScalar = _mm_cvtss_f32( min4 );
  866. // Quantize these floats
  867. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  868. const float id = d ? 1.0f/d : 0.0f;
  869. y[i].m = minScalar;
  870. y[i].d = d;
  871. // x = (x-min)*id
  872. const __m256 mul = _mm256_set1_ps( id );
  873. const __m256 off = _mm256_set1_ps( minScalar );
  874. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  875. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  876. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  877. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  878. // Round to nearest integer
  879. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  880. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  881. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  882. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  883. // Convert floats to integers
  884. __m256i i0 = _mm256_cvtps_epi32( v0 );
  885. __m256i i1 = _mm256_cvtps_epi32( v1 );
  886. __m256i i2 = _mm256_cvtps_epi32( v2 );
  887. __m256i i3 = _mm256_cvtps_epi32( v3 );
  888. // Convert int32 to int16
  889. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  890. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  891. // Convert int16 to int8
  892. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  893. // We got our precious signed bytes, but the order is now wrong
  894. // These AVX2 pack instructions process 16-byte pieces independently
  895. // The following instruction is fixing the order
  896. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  897. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  898. // Compress the vector into 4 bit/value, and store
  899. __m128i res = packNibbles( i0 );
  900. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  901. }
  902. #elif __ARM_NEON
  903. for (int i = 0; i < nb; i++) {
  904. float32x4_t srcv[8];
  905. float32x4_t minv[8];
  906. float32x4_t maxv[8];
  907. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK4_1 + 4*l);
  908. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  909. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  910. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  911. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  912. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  913. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  914. const float min = vminvq_f32(minv[0]);
  915. const float max = vmaxvq_f32(maxv[0]);
  916. const float d = (max - min) / ((1 << 4) - 1);
  917. const float id = d ? 1.0f/d : 0.0f;
  918. y[i].d = d;
  919. y[i].m = min;
  920. const float32x4_t minv0 = vdupq_n_f32(min);
  921. for (int l = 0; l < 8; l++) {
  922. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  923. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  924. const int32x4_t vi = vcvtq_s32_f32(vf);
  925. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  926. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  927. }
  928. }
  929. #else
  930. // scalar
  931. quantize_row_q4_1_reference(x, vy, k);
  932. #endif
  933. }
  934. // reference implementation for deterministic creation of model files
  935. static void quantize_row_q4_2_reference(const float * restrict x, block_q4_2 * restrict y, int k) {
  936. assert(k % QK4_2 == 0);
  937. const int nb = k / QK4_2;
  938. for (int i = 0; i < nb; i++) {
  939. float amax = 0.0f; // absolute max
  940. for (int l = 0; l < QK4_2; l++) {
  941. const float v = x[i*QK4_2 + l];
  942. amax = MAX(amax, fabsf(v));
  943. }
  944. const float d = amax / ((1 << 3) - 1);
  945. const float id = d ? 1.0f/d : 0.0f;
  946. y[i].d = GGML_FP32_TO_FP16(d);
  947. for (int l = 0; l < QK4_2; l += 2) {
  948. const float v0 = x[i*QK4_2 + l + 0]*id;
  949. const float v1 = x[i*QK4_2 + l + 1]*id;
  950. const uint8_t vi0 = (uint8_t)(v0 + 8.5f);
  951. const uint8_t vi1 = (uint8_t)(v1 + 8.5f);
  952. assert(vi0 < 16);
  953. assert(vi1 < 16);
  954. y[i].qs[l/2] = vi0 | (vi1 << 4);
  955. }
  956. }
  957. }
  958. static inline int nearest_int(float fval) {
  959. assert(fval <= 4194303.f);
  960. float val = fval + 12582912.f;
  961. int i; memcpy(&i, &val, sizeof(int));
  962. return (i & 0x007fffff) - 0x00400000;
  963. }
  964. static float kquantize_q4_with_bounds(int n, int nmin, int nmax, const float * restrict X, int nCandidates,
  965. const float * restrict candidates, int8_t * restrict L) {
  966. assert (nmin >= INT8_MIN);
  967. assert (nmax <= INT8_MAX);
  968. float amax = 0;
  969. for (int i=0; i<n; ++i) amax = MAX(amax, fabsf(X[i]));
  970. if (!amax) { // all zero
  971. for (int i=0; i<n; ++i) L[i] = 0;
  972. return 1.f;
  973. }
  974. float best = 0, bestScale = 0;
  975. for (int si=0; si<nCandidates; ++si) {
  976. float iscale = candidates[si]/amax;
  977. float sumlxP = 0; int suml2P = 0;
  978. float sumlxM = 0; int suml2M = 0;
  979. for (int i=0; i<n; ++i) {
  980. int l = nearest_int(iscale*X[i]);
  981. int lp = MAX(nmin, MIN(nmax, +l));
  982. int lm = MAX(nmin, MIN(nmax, -l));
  983. sumlxP += X[i]*lp; suml2P += lp*lp;
  984. sumlxM += X[i]*lm; suml2M += lm*lm;
  985. }
  986. float sumlxP2 = sumlxP*sumlxP;
  987. float sumlxM2 = sumlxM*sumlxM;
  988. if (sumlxP2*suml2M > sumlxM2*suml2P) {
  989. if (sumlxP2 > best*suml2P) {
  990. best = sumlxP2/suml2P; bestScale = iscale;
  991. }
  992. } else {
  993. if (sumlxM2 > best*suml2M) {
  994. best = sumlxM2/suml2M; bestScale = -iscale;
  995. }
  996. }
  997. }
  998. float sumlx = 0; int suml2 = 0;
  999. for (int i=0; i<n; ++i) {
  1000. int l = nearest_int(bestScale*X[i]);
  1001. l = MAX(nmin, MIN(nmax, l));
  1002. sumlx += X[i]*l; suml2 += l*l;
  1003. L[i] = l;
  1004. }
  1005. float scale = sumlx/suml2;
  1006. return scale;
  1007. }
  1008. static void quantize_row_q4_2_rmse(const float * restrict x, block_q4_2 * restrict y, int k) {
  1009. #define CANDIDATE_COUNT 8
  1010. static const float candidates[CANDIDATE_COUNT] = { +8.7f, +8.3f, +8.1f, +7.8f, +7.3f, +7.0f, +6.3f, +5.7f };
  1011. assert(k % QK4_2 == 0);
  1012. int8_t L[QK4_2];
  1013. const int nb = k / QK4_2;
  1014. for (int i = 0; i < nb; i++) {
  1015. float scale = kquantize_q4_with_bounds(QK4_2, -8, 7, x, CANDIDATE_COUNT, candidates, L);
  1016. y[i].d = GGML_FP32_TO_FP16(scale);
  1017. for (int l = 0; l < QK4_2; l += 2) {
  1018. const uint8_t vi0 = (uint8_t)(L[l+0] + 8);
  1019. const uint8_t vi1 = (uint8_t)(L[l+1] + 8);
  1020. assert(vi0 < 16);
  1021. assert(vi1 < 16);
  1022. y[i].qs[l/2] = vi0 | (vi1 << 4);
  1023. }
  1024. x += QK4_2;
  1025. }
  1026. }
  1027. static void quantize_row_q4_2(const float * restrict x, void * restrict vy, int k) {
  1028. assert(k % QK4_2 == 0);
  1029. block_q4_2 * restrict y = vy;
  1030. //quantize_row_q4_2_reference(x, y, k);
  1031. // This produces the exact same format, just better match to the input floats ("better" as measured by RMSE)
  1032. quantize_row_q4_2_rmse(x, y, k);
  1033. }
  1034. static void quantize_row_q4_3_reference(const float * restrict x, block_q4_3 * restrict y, int k) {
  1035. assert(k % QK4_3 == 0);
  1036. const int nb = k / QK4_3;
  1037. for (int i = 0; i < nb; i++) {
  1038. float min = FLT_MAX;
  1039. float max = -FLT_MAX;
  1040. for (int l = 0; l < QK4_3; l++) {
  1041. const float v = x[i*QK4_3 + l];
  1042. if (v < min) min = v;
  1043. if (v > max) max = v;
  1044. }
  1045. const float d = (max - min) / ((1 << 4) - 1);
  1046. const float id = d ? 1.0f/d : 0.0f;
  1047. y[i].d = GGML_FP32_TO_FP16(d);
  1048. y[i].m = GGML_FP32_TO_FP16(min);
  1049. for (int l = 0; l < QK4_3; l += 2) {
  1050. const float v0 = (x[i*QK4_3 + l + 0] - min)*id;
  1051. const float v1 = (x[i*QK4_3 + l + 1] - min)*id;
  1052. const uint8_t vi0 = (int) (v0 + 0.5f);
  1053. const uint8_t vi1 = (int) (v1 + 0.5f);
  1054. assert(vi0 < 16);
  1055. assert(vi1 < 16);
  1056. y[i].qs[l/2] = vi0 | (vi1 << 4);
  1057. }
  1058. }
  1059. }
  1060. static void quantize_row_q4_3(const float * restrict x, void * restrict vy, int k) {
  1061. assert(k % QK4_3 == 0);
  1062. block_q4_3 * restrict y = vy;
  1063. quantize_row_q4_3_reference(x, y, k);
  1064. }
  1065. // reference implementation for deterministic creation of model files
  1066. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  1067. assert(k % QK8_0 == 0);
  1068. const int nb = k / QK8_0;
  1069. for (int i = 0; i < nb; i++) {
  1070. float amax = 0.0f; // absolute max
  1071. for (int l = 0; l < QK8_0; l++) {
  1072. const float v = x[i*QK8_0 + l];
  1073. amax = MAX(amax, fabsf(v));
  1074. }
  1075. const float d = amax / ((1 << 7) - 1);
  1076. const float id = d ? 1.0f/d : 0.0f;
  1077. y[i].d = d;
  1078. int sum0 = 0;
  1079. int sum1 = 0;
  1080. for (int l = 0; l < QK8_0/2; ++l) {
  1081. const float v0 = x[i*QK8_0 + l]*id;
  1082. const float v1 = x[i*QK8_0 + QK8_0/2 + l]*id;
  1083. y[i].qs[ l] = roundf(v0);
  1084. y[i].qs[QK8_0/2 + l] = roundf(v1);
  1085. sum0 += y[i].qs[ l];
  1086. sum1 += y[i].qs[QK8_0/2 + l];
  1087. }
  1088. y[i].s0 = d * sum0;
  1089. y[i].s1 = d * sum1;
  1090. }
  1091. }
  1092. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  1093. assert(k % QK8_0 == 0);
  1094. const int nb = k / QK8_0;
  1095. block_q8_0 * restrict y = vy;
  1096. #if defined(__ARM_NEON)
  1097. for (int i = 0; i < nb; i++) {
  1098. float32x4_t srcv [8];
  1099. float32x4_t asrcv[8];
  1100. float32x4_t amaxv[8];
  1101. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  1102. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  1103. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  1104. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  1105. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  1106. const float amax = vmaxvq_f32(amaxv[0]);
  1107. const float d = amax / ((1 << 7) - 1);
  1108. const float id = d ? 1.0f/d : 0.0f;
  1109. y[i].d = d;
  1110. int32x4_t accv0 = vdupq_n_s32(0);
  1111. int32x4_t accv1 = vdupq_n_s32(0);
  1112. // low half
  1113. for (int l = 0; l < 4; l++) {
  1114. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1115. const int32x4_t vi = vcvtnq_s32_f32(v);
  1116. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1117. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1118. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1119. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1120. accv0 = vaddq_s32(accv0, vi);
  1121. }
  1122. // high half
  1123. for (int l = 4; l < 8; l++) {
  1124. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1125. const int32x4_t vi = vcvtnq_s32_f32(v);
  1126. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1127. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1128. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1129. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1130. accv1 = vaddq_s32(accv1, vi);
  1131. }
  1132. const int32_t sum0 = vaddvq_s32(accv0);
  1133. const int32_t sum1 = vaddvq_s32(accv1);
  1134. y[i].s0 = d * sum0;
  1135. y[i].s1 = d * sum1;
  1136. }
  1137. #elif defined(__AVX2__) || defined(__AVX__)
  1138. for (int i = 0; i < nb; i++) {
  1139. // Load elements into 4 AVX vectors
  1140. __m256 v0 = _mm256_loadu_ps( x );
  1141. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1142. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1143. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1144. x += 32;
  1145. // Compute max(abs(e)) for the block
  1146. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1147. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1148. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1149. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1150. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1151. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1152. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1153. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1154. const float maxScalar = _mm_cvtss_f32( max4 );
  1155. // Quantize these floats
  1156. const float d = maxScalar / 127.f;
  1157. y[i].d = d;
  1158. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1159. const __m256 mul = _mm256_set1_ps( id );
  1160. // Apply the multiplier
  1161. v0 = _mm256_mul_ps( v0, mul );
  1162. v1 = _mm256_mul_ps( v1, mul );
  1163. v2 = _mm256_mul_ps( v2, mul );
  1164. v3 = _mm256_mul_ps( v3, mul );
  1165. // Round to nearest integer
  1166. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1167. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1168. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1169. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1170. // Convert floats to integers
  1171. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1172. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1173. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1174. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1175. #if defined(__AVX2__)
  1176. // Compute the sum of the quants and set y[i].s
  1177. //y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1178. y[i].s0 = d * hsum_i32_8(_mm256_add_epi32(i0, i1));
  1179. y[i].s1 = d * hsum_i32_8(_mm256_add_epi32(i2, i3));
  1180. // Convert int32 to int16
  1181. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1182. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1183. // Convert int16 to int8
  1184. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1185. // We got our precious signed bytes, but the order is now wrong
  1186. // These AVX2 pack instructions process 16-byte pieces independently
  1187. // The following instruction is fixing the order
  1188. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1189. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1190. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1191. #else
  1192. // Since we don't have in AVX some necessary functions,
  1193. // we split the registers in half and call AVX2 analogs from SSE
  1194. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1195. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1196. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1197. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1198. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1199. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1200. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1201. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1202. // Compute the sum of the quants and set y[i].s
  1203. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1204. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1205. y[i].s0 = d * hsum_i32_4(s0);
  1206. y[i].s1 = d * hsum_i32_4(s1);
  1207. // Convert int32 to int16
  1208. ni0 = _mm_packs_epi32( ni0, ni1 );
  1209. ni2 = _mm_packs_epi32( ni2, ni3 );
  1210. ni4 = _mm_packs_epi32( ni4, ni5 );
  1211. ni6 = _mm_packs_epi32( ni6, ni7 );
  1212. // Convert int16 to int8
  1213. ni0 = _mm_packs_epi16( ni0, ni2 );
  1214. ni4 = _mm_packs_epi16( ni4, ni6 );
  1215. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1216. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1217. #endif
  1218. }
  1219. #else
  1220. // scalar
  1221. quantize_row_q8_0_reference(x, y, k);
  1222. #endif
  1223. }
  1224. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  1225. assert(k % QK4_0 == 0);
  1226. const int nb = k / QK4_0;
  1227. const block_q4_0 * restrict x = vx;
  1228. #if defined(__AVX2__)
  1229. for (int i = 0; i < nb; i++) {
  1230. // scale factor
  1231. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1232. const uint8_t * restrict pp = x[i].qs;
  1233. for (int l = 0; l < QK4_0; l += 32) {
  1234. // Load 32x4-bit integers into 32x8-bit integers
  1235. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1236. // Subtract 8 from the integers
  1237. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  1238. // Convert to 16-bit int
  1239. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1240. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1241. // Convert to 32-bit int -> float 32
  1242. const __m256 vf[4] = {
  1243. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1244. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1245. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1246. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1247. };
  1248. // Scale and store
  1249. for (int j = 0; j < 4; j++) {
  1250. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  1251. _mm256_storeu_ps(y + i * QK4_0 + l + j*8, result);
  1252. }
  1253. }
  1254. }
  1255. #elif defined(__ARM_NEON)
  1256. for (int i = 0; i < nb; i++) {
  1257. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1258. const uint8_t * restrict pp = x[i].qs;
  1259. for (int l = 0; l < QK4_0; l += 16) {
  1260. // Load 16x4-bit integers into 8x8-bit integers
  1261. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1262. // Expand 4-bit qs to 8-bit bytes
  1263. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  1264. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1265. // Convert to signed 8-bit integers
  1266. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  1267. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  1268. // Subtract 8 from each byte
  1269. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  1270. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  1271. // Interleave and combine
  1272. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  1273. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  1274. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  1275. // convert to 2x int16x8_t
  1276. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  1277. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  1278. // convert to 4x float32x4_t
  1279. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  1280. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  1281. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  1282. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  1283. // Multiply by d
  1284. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  1285. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  1286. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  1287. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  1288. // Store
  1289. vst1q_f32(y + i*QK4_0 + l + 0, r0);
  1290. vst1q_f32(y + i*QK4_0 + l + 4, r1);
  1291. vst1q_f32(y + i*QK4_0 + l + 8, r2);
  1292. vst1q_f32(y + i*QK4_0 + l + 12, r3);
  1293. }
  1294. }
  1295. #else
  1296. // scalar
  1297. for (int i = 0; i < nb; i++) {
  1298. const float d = x[i].d;
  1299. const uint8_t * restrict pp = x[i].qs;
  1300. for (int l = 0; l < QK4_0; l += 2) {
  1301. const uint8_t vi = pp[l/2];
  1302. const int8_t vi0 = vi & 0xf;
  1303. const int8_t vi1 = vi >> 4;
  1304. const float v0 = (vi0 - 8)*d;
  1305. const float v1 = (vi1 - 8)*d;
  1306. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  1307. y[i*QK4_0 + l + 0] = v0;
  1308. y[i*QK4_0 + l + 1] = v1;
  1309. assert(!isnan(y[i*QK4_0 + l + 0]));
  1310. assert(!isnan(y[i*QK4_0 + l + 1]));
  1311. }
  1312. }
  1313. #endif
  1314. }
  1315. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  1316. assert(k % QK4_1 == 0);
  1317. const int nb = k / QK4_1;
  1318. const block_q4_1 * restrict x = vx;
  1319. #if defined(__AVX2__)
  1320. for (int i = 0; i < nb; i++) {
  1321. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1322. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  1323. const uint8_t * restrict pp = x[i].qs;
  1324. for (int l = 0; l < QK4_1; l += 32) {
  1325. // Load 32x4-bit integers into 32x8-bit integers
  1326. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1327. // Convert to 16-bit int
  1328. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1329. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1330. // Convert to 32-bit int -> float 32
  1331. const __m256 vf[4] = {
  1332. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1333. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1334. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1335. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1336. };
  1337. // Scale, add m and store
  1338. for (int j = 0; j < 4; j++) {
  1339. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  1340. _mm256_storeu_ps(y + i * QK4_1 + l + j*8, result);
  1341. }
  1342. }
  1343. }
  1344. #elif defined(__ARM_NEON)
  1345. for (int i = 0; i < nb; i++) {
  1346. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1347. const float32x4_t vm = vdupq_n_f32(x[i].m);
  1348. const uint8_t * restrict pp = x[i].qs;
  1349. for (int l = 0; l < QK4_1; l += 16) {
  1350. // Load 16x4-bit integers into 8x8-bit integers
  1351. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1352. // Expand 4-bit qs to 8-bit bytes
  1353. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  1354. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1355. // Interleave and combine
  1356. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  1357. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  1358. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  1359. // convert to 2x uint16x8_t
  1360. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  1361. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  1362. // convert to 4x float32x4_t
  1363. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  1364. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  1365. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  1366. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  1367. // multiply by d and add m
  1368. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  1369. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  1370. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  1371. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  1372. // Store
  1373. vst1q_f32(y + i*QK4_1 + l + 0, r0);
  1374. vst1q_f32(y + i*QK4_1 + l + 4, r1);
  1375. vst1q_f32(y + i*QK4_1 + l + 8, r2);
  1376. vst1q_f32(y + i*QK4_1 + l + 12, r3);
  1377. }
  1378. }
  1379. #else
  1380. for (int i = 0; i < nb; i++) {
  1381. const float d = x[i].d;
  1382. const float m = x[i].m;
  1383. const uint8_t * restrict pp = x[i].qs;
  1384. for (int l = 0; l < QK4_1; l += 2) {
  1385. const uint8_t vi = pp[l/2];
  1386. const int8_t vi0 = vi & 0xf;
  1387. const int8_t vi1 = vi >> 4;
  1388. const float v0 = vi0*d + m;
  1389. const float v1 = vi1*d + m;
  1390. y[i*QK4_1 + l + 0] = v0;
  1391. y[i*QK4_1 + l + 1] = v1;
  1392. assert(!isnan(y[i*QK4_1 + l + 0]));
  1393. assert(!isnan(y[i*QK4_1 + l + 1]));
  1394. }
  1395. }
  1396. #endif
  1397. }
  1398. static void dequantize_row_q4_2(const void * restrict vx, float * restrict y, int k) {
  1399. assert(k % QK4_2 == 0);
  1400. const int nb = k / QK4_2;
  1401. const block_q4_2 * restrict x = vx;
  1402. for (int i = 0; i < nb; i++) {
  1403. const float d = GGML_FP16_TO_FP32(x[i].d);
  1404. const uint8_t * restrict pp = x[i].qs;
  1405. for (int l = 0; l < QK4_2; l += 2) {
  1406. const uint8_t vi = pp[l/2];
  1407. const int8_t vi0 = vi & 0xf;
  1408. const int8_t vi1 = vi >> 4;
  1409. const float v0 = (vi0 - 8)*d;
  1410. const float v1 = (vi1 - 8)*d;
  1411. y[i*QK4_2 + l + 0] = v0;
  1412. y[i*QK4_2 + l + 1] = v1;
  1413. assert(!isnan(y[i*QK4_2 + l + 0]));
  1414. assert(!isnan(y[i*QK4_2 + l + 1]));
  1415. }
  1416. }
  1417. }
  1418. static void dequantize_row_q4_3(const void * restrict vx, float * restrict y, int k) {
  1419. assert(k % QK4_3 == 0);
  1420. const int nb = k / QK4_3;
  1421. const block_q4_3 * restrict x = vx;
  1422. for (int i = 0; i < nb; i++) {
  1423. const float d = GGML_FP16_TO_FP32(x[i].d);
  1424. const float m = GGML_FP16_TO_FP32(x[i].m);
  1425. const uint8_t * restrict pp = x[i].qs;
  1426. for (int l = 0; l < QK4_3; l += 2) {
  1427. const uint8_t vi = pp[l/2];
  1428. const int8_t vi0 = vi & 0xf;
  1429. const int8_t vi1 = vi >> 4;
  1430. const float v0 = vi0*d + m;
  1431. const float v1 = vi1*d + m;
  1432. y[i*QK4_3 + l + 0] = v0;
  1433. y[i*QK4_3 + l + 1] = v1;
  1434. assert(!isnan(y[i*QK4_3 + l + 0]));
  1435. assert(!isnan(y[i*QK4_3 + l + 1]));
  1436. }
  1437. }
  1438. }
  1439. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1440. static void ggml_vec_dot_q4_1_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1441. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1442. static void ggml_vec_dot_q4_3_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1443. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1444. [GGML_TYPE_Q4_0] = {
  1445. .dequantize_row_q = dequantize_row_q4_0,
  1446. .quantize_row_q = quantize_row_q4_0,
  1447. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1448. .quantize_row_q_dot = quantize_row_q8_0,
  1449. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1450. },
  1451. [GGML_TYPE_Q4_1] = {
  1452. .dequantize_row_q = dequantize_row_q4_1,
  1453. .quantize_row_q = quantize_row_q4_1,
  1454. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1455. .quantize_row_q_dot = quantize_row_q8_0,
  1456. .vec_dot_q = ggml_vec_dot_q4_1_q8_0,
  1457. },
  1458. [GGML_TYPE_Q4_2] = {
  1459. .dequantize_row_q = dequantize_row_q4_2,
  1460. .quantize_row_q = quantize_row_q4_2,
  1461. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_2_rmse, //quantize_row_q4_2_reference,
  1462. .quantize_row_q_dot = quantize_row_q8_0,
  1463. .vec_dot_q = ggml_vec_dot_q4_2_q8_0,
  1464. },
  1465. [GGML_TYPE_Q4_3] = {
  1466. .dequantize_row_q = dequantize_row_q4_3,
  1467. .quantize_row_q = quantize_row_q4_3,
  1468. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_3_reference, // TODO: RMSE optimization
  1469. .quantize_row_q_dot = quantize_row_q8_0,
  1470. .vec_dot_q = ggml_vec_dot_q4_3_q8_0,
  1471. },
  1472. [GGML_TYPE_Q8_0] = {
  1473. .dequantize_row_q = NULL, // TODO
  1474. .quantize_row_q = quantize_row_q8_0,
  1475. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1476. .quantize_row_q_dot = quantize_row_q8_0,
  1477. .vec_dot_q = NULL, // TODO
  1478. },
  1479. };
  1480. // For internal test use
  1481. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1482. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1483. return quantize_fns[i];
  1484. }
  1485. //
  1486. // simd mappings
  1487. //
  1488. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1489. // we then implement the fundamental computation operations below using only these macros
  1490. // adding support for new architectures requires to define the corresponding SIMD macros
  1491. //
  1492. // GGML_F32_STEP / GGML_F16_STEP
  1493. // number of elements to process in a single step
  1494. //
  1495. // GGML_F32_EPR / GGML_F16_EPR
  1496. // number of elements to fit in a single register
  1497. //
  1498. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1499. #define GGML_SIMD
  1500. // F32 NEON
  1501. #define GGML_F32_STEP 16
  1502. #define GGML_F32_EPR 4
  1503. #define GGML_F32x4 float32x4_t
  1504. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1505. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1506. #define GGML_F32x4_LOAD vld1q_f32
  1507. #define GGML_F32x4_STORE vst1q_f32
  1508. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1509. #define GGML_F32x4_ADD vaddq_f32
  1510. #define GGML_F32x4_MUL vmulq_f32
  1511. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1512. #define GGML_F32x4_REDUCE(res, x) \
  1513. { \
  1514. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1515. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1516. } \
  1517. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1518. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1519. } \
  1520. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1521. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1522. } \
  1523. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1524. }
  1525. #define GGML_F32_VEC GGML_F32x4
  1526. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1527. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1528. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1529. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1530. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1531. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1532. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1533. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1534. // F16 NEON
  1535. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1536. #define GGML_F16_STEP 32
  1537. #define GGML_F16_EPR 8
  1538. #define GGML_F16x8 float16x8_t
  1539. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1540. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1541. #define GGML_F16x8_LOAD vld1q_f16
  1542. #define GGML_F16x8_STORE vst1q_f16
  1543. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1544. #define GGML_F16x8_ADD vaddq_f16
  1545. #define GGML_F16x8_MUL vmulq_f16
  1546. #define GGML_F16x8_REDUCE(res, x) \
  1547. { \
  1548. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1549. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1550. } \
  1551. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1552. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1553. } \
  1554. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1555. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1556. } \
  1557. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1558. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1559. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1560. }
  1561. #define GGML_F16_VEC GGML_F16x8
  1562. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1563. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1564. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1565. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1566. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1567. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1568. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1569. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1570. #else
  1571. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1572. // and take advantage of the vcvt_ functions to convert to/from FP16
  1573. #define GGML_F16_STEP 16
  1574. #define GGML_F16_EPR 4
  1575. #define GGML_F32Cx4 float32x4_t
  1576. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1577. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1578. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1579. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1580. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1581. #define GGML_F32Cx4_ADD vaddq_f32
  1582. #define GGML_F32Cx4_MUL vmulq_f32
  1583. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1584. #define GGML_F16_VEC GGML_F32Cx4
  1585. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1586. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1587. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1588. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1589. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1590. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1591. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1592. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1593. #endif
  1594. #elif defined(__AVX__)
  1595. #define GGML_SIMD
  1596. // F32 AVX
  1597. #define GGML_F32_STEP 32
  1598. #define GGML_F32_EPR 8
  1599. #define GGML_F32x8 __m256
  1600. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1601. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1602. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1603. #define GGML_F32x8_STORE _mm256_storeu_ps
  1604. #if defined(__FMA__)
  1605. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1606. #else
  1607. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1608. #endif
  1609. #define GGML_F32x8_ADD _mm256_add_ps
  1610. #define GGML_F32x8_MUL _mm256_mul_ps
  1611. #define GGML_F32x8_REDUCE(res, x) \
  1612. { \
  1613. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1614. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1615. } \
  1616. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1617. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1618. } \
  1619. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1620. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1621. } \
  1622. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1623. _mm256_extractf128_ps(x[0], 1)); \
  1624. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1625. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1626. }
  1627. // TODO: is this optimal ?
  1628. #define GGML_F32_VEC GGML_F32x8
  1629. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1630. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1631. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1632. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1633. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1634. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1635. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1636. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1637. // F16 AVX
  1638. #define GGML_F16_STEP 32
  1639. #define GGML_F16_EPR 8
  1640. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1641. #define GGML_F32Cx8 __m256
  1642. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1643. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1644. #if defined(__F16C__)
  1645. // the _mm256_cvt intrinsics require F16C
  1646. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1647. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1648. #else
  1649. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1650. float tmp[8];
  1651. for (int i = 0; i < 8; i++)
  1652. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1653. return _mm256_loadu_ps(tmp);
  1654. }
  1655. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1656. float arr[8];
  1657. _mm256_storeu_ps(arr, y);
  1658. for (int i = 0; i < 8; i++)
  1659. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1660. }
  1661. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1662. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1663. #endif
  1664. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1665. #define GGML_F32Cx8_ADD _mm256_add_ps
  1666. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1667. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1668. #define GGML_F16_VEC GGML_F32Cx8
  1669. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1670. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1671. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1672. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1673. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1674. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1675. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1676. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1677. #elif defined(__POWER9_VECTOR__)
  1678. #define GGML_SIMD
  1679. // F32 POWER9
  1680. #define GGML_F32_STEP 32
  1681. #define GGML_F32_EPR 4
  1682. #define GGML_F32x4 vector float
  1683. #define GGML_F32x4_ZERO 0.0f
  1684. #define GGML_F32x4_SET1 vec_splats
  1685. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1686. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1687. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1688. #define GGML_F32x4_ADD vec_add
  1689. #define GGML_F32x4_MUL vec_mul
  1690. #define GGML_F32x4_REDUCE(res, x) \
  1691. { \
  1692. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1693. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1694. } \
  1695. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1696. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1697. } \
  1698. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1699. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1700. } \
  1701. res = vec_extract(x[0], 0) + \
  1702. vec_extract(x[0], 1) + \
  1703. vec_extract(x[0], 2) + \
  1704. vec_extract(x[0], 3); \
  1705. }
  1706. #define GGML_F32_VEC GGML_F32x4
  1707. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1708. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1709. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1710. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1711. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1712. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1713. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1714. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1715. // F16 POWER9
  1716. #define GGML_F16_STEP GGML_F32_STEP
  1717. #define GGML_F16_EPR GGML_F32_EPR
  1718. #define GGML_F16_VEC GGML_F32x4
  1719. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1720. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1721. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1722. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1723. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1724. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1725. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1726. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1727. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1728. #define GGML_F16_VEC_STORE(p, r, i) \
  1729. if (i & 0x1) \
  1730. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1731. r[i - GGML_ENDIAN_BYTE(0)]), \
  1732. 0, p - GGML_F16_EPR)
  1733. #elif defined(__wasm_simd128__)
  1734. #define GGML_SIMD
  1735. // F32 WASM
  1736. #define GGML_F32_STEP 16
  1737. #define GGML_F32_EPR 4
  1738. #define GGML_F32x4 v128_t
  1739. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1740. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1741. #define GGML_F32x4_LOAD wasm_v128_load
  1742. #define GGML_F32x4_STORE wasm_v128_store
  1743. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1744. #define GGML_F32x4_ADD wasm_f32x4_add
  1745. #define GGML_F32x4_MUL wasm_f32x4_mul
  1746. #define GGML_F32x4_REDUCE(res, x) \
  1747. { \
  1748. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1749. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1750. } \
  1751. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1752. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1753. } \
  1754. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1755. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1756. } \
  1757. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1758. wasm_f32x4_extract_lane(x[0], 1) + \
  1759. wasm_f32x4_extract_lane(x[0], 2) + \
  1760. wasm_f32x4_extract_lane(x[0], 3); \
  1761. }
  1762. #define GGML_F32_VEC GGML_F32x4
  1763. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1764. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1765. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1766. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1767. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1768. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1769. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1770. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1771. // F16 WASM
  1772. #define GGML_F16_STEP 16
  1773. #define GGML_F16_EPR 4
  1774. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1775. float tmp[4];
  1776. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1777. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1778. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1779. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1780. return wasm_v128_load(tmp);
  1781. }
  1782. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1783. float tmp[4];
  1784. wasm_v128_store(tmp, x);
  1785. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1786. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1787. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1788. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1789. }
  1790. #define GGML_F16x4 v128_t
  1791. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1792. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1793. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1794. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1795. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1796. #define GGML_F16x4_ADD wasm_f32x4_add
  1797. #define GGML_F16x4_MUL wasm_f32x4_mul
  1798. #define GGML_F16x4_REDUCE(res, x) \
  1799. { \
  1800. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1801. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1802. } \
  1803. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1804. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1805. } \
  1806. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1807. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1808. } \
  1809. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1810. wasm_f32x4_extract_lane(x[0], 1) + \
  1811. wasm_f32x4_extract_lane(x[0], 2) + \
  1812. wasm_f32x4_extract_lane(x[0], 3); \
  1813. }
  1814. #define GGML_F16_VEC GGML_F16x4
  1815. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1816. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1817. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1818. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1819. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1820. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1821. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1822. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1823. #elif defined(__SSE3__)
  1824. #define GGML_SIMD
  1825. // F32 SSE
  1826. #define GGML_F32_STEP 32
  1827. #define GGML_F32_EPR 4
  1828. #define GGML_F32x4 __m128
  1829. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1830. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1831. #define GGML_F32x4_LOAD _mm_loadu_ps
  1832. #define GGML_F32x4_STORE _mm_storeu_ps
  1833. #if defined(__FMA__)
  1834. // TODO: Does this work?
  1835. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1836. #else
  1837. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1838. #endif
  1839. #define GGML_F32x4_ADD _mm_add_ps
  1840. #define GGML_F32x4_MUL _mm_mul_ps
  1841. #define GGML_F32x4_REDUCE(res, x) \
  1842. { \
  1843. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1844. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1845. } \
  1846. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1847. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1848. } \
  1849. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1850. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1851. } \
  1852. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1853. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1854. }
  1855. // TODO: is this optimal ?
  1856. #define GGML_F32_VEC GGML_F32x4
  1857. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1858. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1859. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1860. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1861. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1862. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1863. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1864. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1865. // F16 SSE
  1866. #define GGML_F16_STEP 32
  1867. #define GGML_F16_EPR 4
  1868. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1869. float tmp[4];
  1870. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1871. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1872. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1873. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1874. return _mm_loadu_ps(tmp);
  1875. }
  1876. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1877. float arr[4];
  1878. _mm_storeu_ps(arr, y);
  1879. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1880. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1881. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1882. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1883. }
  1884. #define GGML_F32Cx4 __m128
  1885. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1886. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1887. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1888. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1889. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1890. #define GGML_F32Cx4_ADD _mm_add_ps
  1891. #define GGML_F32Cx4_MUL _mm_mul_ps
  1892. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1893. #define GGML_F16_VEC GGML_F32Cx4
  1894. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1895. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1896. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1897. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1898. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1899. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1900. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1901. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1902. #endif
  1903. // GGML_F32_ARR / GGML_F16_ARR
  1904. // number of registers to use per step
  1905. #ifdef GGML_SIMD
  1906. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1907. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1908. #endif
  1909. //
  1910. // fundamental operations
  1911. //
  1912. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1913. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1914. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1915. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1916. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1917. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1918. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1919. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1920. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1921. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1922. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1923. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1924. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1925. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1926. #ifdef GGML_SIMD
  1927. float sumf = 0.0f;
  1928. const int np = (n & ~(GGML_F32_STEP - 1));
  1929. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1930. GGML_F32_VEC ax[GGML_F32_ARR];
  1931. GGML_F32_VEC ay[GGML_F32_ARR];
  1932. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1933. for (int j = 0; j < GGML_F32_ARR; j++) {
  1934. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1935. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1936. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1937. }
  1938. }
  1939. // reduce sum0..sum3 to sum0
  1940. GGML_F32_VEC_REDUCE(sumf, sum);
  1941. // leftovers
  1942. for (int i = np; i < n; ++i) {
  1943. sumf += x[i]*y[i];
  1944. }
  1945. #else
  1946. // scalar
  1947. ggml_float sumf = 0.0;
  1948. for (int i = 0; i < n; ++i) {
  1949. sumf += (ggml_float)(x[i]*y[i]);
  1950. }
  1951. #endif
  1952. *s = sumf;
  1953. }
  1954. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1955. ggml_float sumf = 0.0;
  1956. #if defined(GGML_SIMD)
  1957. const int np = (n & ~(GGML_F16_STEP - 1));
  1958. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1959. GGML_F16_VEC ax[GGML_F16_ARR];
  1960. GGML_F16_VEC ay[GGML_F16_ARR];
  1961. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1962. for (int j = 0; j < GGML_F16_ARR; j++) {
  1963. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1964. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1965. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1966. }
  1967. }
  1968. // reduce sum0..sum3 to sum0
  1969. GGML_F16_VEC_REDUCE(sumf, sum);
  1970. // leftovers
  1971. for (int i = np; i < n; ++i) {
  1972. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1973. }
  1974. #else
  1975. for (int i = 0; i < n; ++i) {
  1976. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1977. }
  1978. #endif
  1979. *s = sumf;
  1980. }
  1981. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1982. const int nb = n / QK8_0;
  1983. assert(n % QK8_0 == 0);
  1984. assert(nb % 2 == 0);
  1985. const block_q4_0 * restrict x = vx;
  1986. const block_q8_0 * restrict y = vy;
  1987. #if defined(__ARM_NEON)
  1988. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1989. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1990. float sum8 = 0;
  1991. for (int i = 0; i < nb; i += 2) {
  1992. const block_q4_0 * restrict x0 = &x[i + 0];
  1993. const block_q4_0 * restrict x1 = &x[i + 1];
  1994. const block_q8_0 * restrict y0 = &y[i + 0];
  1995. const block_q8_0 * restrict y1 = &y[i + 1];
  1996. sum8 += x0->d * (y0->s0 + y0->s1) + x1->d * (y1->s0 + y1->s1);
  1997. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1998. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1999. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2000. // 4-bit -> 8-bit
  2001. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2002. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2003. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2004. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2005. // load y
  2006. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2007. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2008. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2009. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2010. // interleave
  2011. const int8x16_t v1_0ls = vuzp1q_s8(v1_0l, v1_0h);
  2012. const int8x16_t v1_0hs = vuzp2q_s8(v1_0l, v1_0h);
  2013. const int8x16_t v1_1ls = vuzp1q_s8(v1_1l, v1_1h);
  2014. const int8x16_t v1_1hs = vuzp2q_s8(v1_1l, v1_1h);
  2015. #if defined(__ARM_FEATURE_DOTPROD)
  2016. // dot product into int32x4_t
  2017. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0ls), v0_0h, v1_0hs);
  2018. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1ls), v0_1h, v1_1hs);
  2019. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2020. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2021. #else
  2022. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0ls));
  2023. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0ls));
  2024. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0hs));
  2025. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0hs));
  2026. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1ls));
  2027. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1ls));
  2028. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1hs));
  2029. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1hs));
  2030. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2031. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2032. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2033. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2034. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2035. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2036. #endif
  2037. }
  2038. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) - 8 * sum8;
  2039. #elif defined(__AVX2__)
  2040. // Initialize accumulator with zeros
  2041. __m256 acc = _mm256_setzero_ps();
  2042. // Main loop
  2043. for (int i = 0; i < nb; ++i) {
  2044. /* Compute combined scale for the block */
  2045. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2046. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2047. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2048. const __m256i off = _mm256_set1_epi8( 8 );
  2049. bx = _mm256_sub_epi8( bx, off );
  2050. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2051. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2052. /* Multiply q with scale and accumulate */
  2053. acc = _mm256_fmadd_ps( d, q, acc );
  2054. }
  2055. *s = hsum_float_8(acc);
  2056. #elif defined(__AVX__)
  2057. // Initialize accumulator with zeros
  2058. __m256 acc = _mm256_setzero_ps();
  2059. // Main loop
  2060. for (int i = 0; i < nb; ++i) {
  2061. // Compute combined scale for the block
  2062. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2063. __m128i i32[2];
  2064. for (int j = 0; j < 2; ++j) {
  2065. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  2066. __m128i bx = bytes_from_nibbles_16(x[i].qs + 8*j);
  2067. __m128i by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16*j));
  2068. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2069. const __m128i off = _mm_set1_epi8( 8 );
  2070. bx = _mm_sub_epi8( bx, off );
  2071. // Get absolute values of x vectors
  2072. const __m128i ax = _mm_sign_epi8(bx, bx);
  2073. // Sign the values of the y vectors
  2074. const __m128i sy = _mm_sign_epi8(by, bx);
  2075. // Perform multiplication and create 16-bit values
  2076. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  2077. const __m128i ones = _mm_set1_epi16(1);
  2078. i32[j] = _mm_madd_epi16(ones, dot);
  2079. }
  2080. // Convert int32_t to float
  2081. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  2082. // Apply the scale, and accumulate
  2083. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2084. }
  2085. *s = hsum_float_8(acc);
  2086. #else
  2087. // scalar
  2088. float sumf = 0.0;
  2089. for (int i = 0; i < nb; i++) {
  2090. const float d0 = x[i].d;
  2091. const float d1 = y[i].d;
  2092. const uint8_t * restrict p0 = x[i].qs;
  2093. const int8_t * restrict p1 = y[i].qs;
  2094. int sumi = 0;
  2095. for (int j = 0; j < QK8_0/2; j++) {
  2096. const uint8_t v0 = p0[j];
  2097. const int i0 = (int8_t) (v0 & 0xf) - 8;
  2098. const int i1 = (int8_t) (v0 >> 4) - 8;
  2099. const int i2 = p1[2*j + 0];
  2100. const int i3 = p1[2*j + 1];
  2101. sumi += i0*i2 + i1*i3;
  2102. }
  2103. sumf += d0*d1*sumi;
  2104. }
  2105. *s = sumf;
  2106. #endif
  2107. }
  2108. static void ggml_vec_dot_q4_1_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2109. const int nb = n / QK8_0;
  2110. assert(n % QK8_0 == 0);
  2111. assert(nb % 2 == 0);
  2112. const block_q4_1 * restrict x = vx;
  2113. const block_q8_0 * restrict y = vy;
  2114. // TODO: add AVX / WASM SIMD / etc
  2115. #if defined(__ARM_NEON)
  2116. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2117. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2118. float summs = 0;
  2119. for (int i = 0; i < nb; i += 2) {
  2120. const block_q4_1 * restrict x0 = &x[i + 0];
  2121. const block_q4_1 * restrict x1 = &x[i + 1];
  2122. const block_q8_0 * restrict y0 = &y[i + 0];
  2123. const block_q8_0 * restrict y1 = &y[i + 1];
  2124. summs += x0->m * (y0->s0 + y0->s1) + x1->m * (y1->s0 + y1->s1);
  2125. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2126. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2127. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2128. // 4-bit -> 8-bit
  2129. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2130. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2131. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2132. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2133. // interleave
  2134. const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h);
  2135. const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h);
  2136. const int8x16_t v0_1lz = vzip1q_s8(v0_1l, v0_1h);
  2137. const int8x16_t v0_1hz = vzip2q_s8(v0_1l, v0_1h);
  2138. // load y
  2139. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2140. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2141. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2142. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2143. #if defined(__ARM_FEATURE_DOTPROD)
  2144. // dot product into int32x4_t
  2145. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l), v0_0hz, v1_0h);
  2146. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l), v0_1hz, v1_1h);
  2147. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2148. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2149. #else
  2150. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2151. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2152. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2153. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2154. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2155. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2156. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2157. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2158. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2159. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2160. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2161. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2162. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2163. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2164. #endif
  2165. }
  2166. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2167. #elif defined(__AVX2__)
  2168. // Initialize accumulator with zeros
  2169. __m256 acc = _mm256_setzero_ps();
  2170. float summs = 0;
  2171. // Main loop
  2172. for (int i = 0; i < nb; ++i) {
  2173. const float * d0 = &x[i].d;
  2174. const float * d1 = &y[i].d;
  2175. summs += x[i].m * (y[i].s0 + y[i].s1);
  2176. const __m256 d0v = _mm256_broadcast_ss( d0 );
  2177. const __m256 d1v = _mm256_broadcast_ss( d1 );
  2178. // Compute combined scales
  2179. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2180. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2181. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2182. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2183. const __m256 xy = mul_sum_i8_pairs_float(bx, by);
  2184. // Accumulate d0*d1*x*y
  2185. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2186. }
  2187. *s = hsum_float_8(acc) + summs;
  2188. #else
  2189. // scalar
  2190. float sumf = 0.0;
  2191. for (int i = 0; i < nb; i++) {
  2192. const float d0 = x[i].d;
  2193. const float m0 = x[i].m;
  2194. const float d1 = y[i].d;
  2195. const uint8_t * restrict p0 = x[i].qs;
  2196. const int8_t * restrict p1 = y[i].qs;
  2197. // TODO: this is very slow ..
  2198. for (int j = 0; j < QK8_0/2; j++) {
  2199. const uint8_t v0 = p0[j];
  2200. const float f0 = d0*(v0 & 0xf) + m0;
  2201. const float f1 = d0*(v0 >> 4) + m0;
  2202. const float f2 = d1*p1[2*j + 0];
  2203. const float f3 = d1*p1[2*j + 1];
  2204. sumf += f0*f2 + f1*f3;
  2205. }
  2206. }
  2207. *s = sumf;
  2208. #endif
  2209. }
  2210. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2211. const int nb = n / QK8_0;
  2212. assert(n % QK8_0 == 0);
  2213. assert(nb % 2 == 0);
  2214. assert(QK8_0 == 2*QK4_2);
  2215. const block_q4_2 * restrict x = vx;
  2216. const block_q8_0 * restrict y = vy;
  2217. #if defined(__ARM_NEON)
  2218. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2219. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2220. for (int i = 0; i < nb; i += 2) {
  2221. const block_q4_2 * restrict x0_0 = &x[2*(i + 0) + 0];
  2222. const block_q4_2 * restrict x0_1 = &x[2*(i + 0) + 1];
  2223. const block_q4_2 * restrict x1_0 = &x[2*(i + 1) + 0];
  2224. const block_q4_2 * restrict x1_1 = &x[2*(i + 1) + 1];
  2225. const block_q8_0 * restrict y0 = &y[i + 0];
  2226. const block_q8_0 * restrict y1 = &y[i + 1];
  2227. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2228. const int8x16_t s8b = vdupq_n_s8(0x8);
  2229. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2230. const uint8x16_t v0_1 = vcombine_u8(vld1_u8(x1_0->qs), vld1_u8(x1_1->qs));
  2231. // 4-bit -> 8-bit
  2232. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2233. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2234. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2235. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2236. // sub 8
  2237. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2238. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2239. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2240. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2241. // interleave
  2242. const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs);
  2243. const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs);
  2244. const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs);
  2245. const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs);
  2246. // load y
  2247. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2248. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2249. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2250. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2251. #if defined(__ARM_FEATURE_DOTPROD)
  2252. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2253. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), GGML_FP16_TO_FP32(x0_0->d)),
  2254. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2255. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2256. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l)), GGML_FP16_TO_FP32(x1_0->d)),
  2257. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1hz, v1_1h)), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2258. #else
  2259. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2260. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2261. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2262. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2263. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2264. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2265. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2266. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2267. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2268. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2269. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2270. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2271. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2272. vmulq_n_f32(vcvtq_f32_s32(pl0), GGML_FP16_TO_FP32(x0_0->d)),
  2273. vmulq_n_f32(vcvtq_f32_s32(ph0), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2274. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2275. vmulq_n_f32(vcvtq_f32_s32(pl1), GGML_FP16_TO_FP32(x1_0->d)),
  2276. vmulq_n_f32(vcvtq_f32_s32(ph1), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2277. #endif
  2278. }
  2279. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2280. #elif defined(__AVX2__)
  2281. // Initialize accumulator with zeros
  2282. __m256 acc = _mm256_setzero_ps();
  2283. // Main loop
  2284. for (int i = 0; i < nb; i++) {
  2285. /* Compute combined scale for the block */
  2286. const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d));
  2287. const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d));
  2288. const __m256 d = _mm256_mul_ps(_mm256_set_m128(d1, d0), _mm256_broadcast_ss(&y[i].d));
  2289. __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs);
  2290. __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs);
  2291. __m256i bx = _mm256_set_m128i(bx1, bx0);
  2292. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2293. const __m256i off = _mm256_set1_epi8(8);
  2294. bx = _mm256_sub_epi8(bx, off);
  2295. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2296. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2297. /* Multiply q with scale and accumulate */
  2298. acc = _mm256_fmadd_ps(d, q, acc);
  2299. }
  2300. *s = hsum_float_8(acc);
  2301. #else
  2302. // scalar
  2303. float sumf = 0.0;
  2304. for (int i = 0; i < nb; i++) {
  2305. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2306. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2307. const int8_t * restrict y0 = y[i].qs;
  2308. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2309. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2310. int sumi_0 = 0;
  2311. int sumi_1 = 0;
  2312. for (int j = 0; j < QK8_0/4; j++) {
  2313. const uint8_t v0 = x0[j];
  2314. const uint8_t v1 = x1[j];
  2315. const int i0_0 = (int8_t) (v0 & 0xf) - 8;
  2316. const int i1_0 = (int8_t) (v0 >> 4) - 8;
  2317. const int i0_1 = (int8_t) (v1 & 0xf) - 8;
  2318. const int i1_1 = (int8_t) (v1 >> 4) - 8;
  2319. const int i2_0 = y0[2*j + 0];
  2320. const int i3_0 = y0[2*j + 1];
  2321. const int i2_1 = y0[2*(j + QK8_0/4) + 0];
  2322. const int i3_1 = y0[2*(j + QK8_0/4) + 1];
  2323. sumi_0 += i0_0*i2_0 + i1_0*i3_0;
  2324. sumi_1 += i0_1*i2_1 + i1_1*i3_1;
  2325. }
  2326. sumf += (d0 * y[i].d) * sumi_0;
  2327. sumf += (d1 * y[i].d) * sumi_1;
  2328. }
  2329. *s = sumf;
  2330. #endif
  2331. }
  2332. static void ggml_vec_dot_q4_3_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2333. const int nb = n / QK8_0;
  2334. assert(n % QK8_0 == 0);
  2335. assert(nb % 2 == 0);
  2336. assert(QK8_0 == 2*QK4_2);
  2337. const block_q4_3 * restrict x = vx;
  2338. const block_q8_0 * restrict y = vy;
  2339. #if defined(__ARM_NEON)
  2340. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2341. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2342. float summs0 = 0.0f;
  2343. float summs1 = 0.0f;
  2344. for (int i = 0; i < nb; ++i) {
  2345. const block_q4_3 * restrict x0_0 = &x[2*(i + 0) + 0];
  2346. const block_q4_3 * restrict x0_1 = &x[2*(i + 0) + 1];
  2347. const block_q8_0 * restrict y0 = &y[i + 0];
  2348. summs0 += GGML_FP16_TO_FP32(x0_0->m) * y0->s0;
  2349. summs1 += GGML_FP16_TO_FP32(x0_1->m) * y0->s1;
  2350. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2351. // 4-bit -> 8-bit
  2352. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, vdupq_n_u8(0xf)));
  2353. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2354. // interleave
  2355. const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h);
  2356. const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h);
  2357. // load y
  2358. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2359. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2360. const float x0_0d = GGML_FP16_TO_FP32(x0_0->d);
  2361. const float x0_1d = GGML_FP16_TO_FP32(x0_1->d);
  2362. #if defined(__ARM_FEATURE_DOTPROD)
  2363. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), x0_0d*y0->d);
  2364. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), x0_1d*y0->d);
  2365. #else
  2366. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2367. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2368. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2369. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2370. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2371. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2372. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(pl0), x0_0d*y0->d);
  2373. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(ph0), x0_1d*y0->d);
  2374. #endif
  2375. }
  2376. *s = vaddvq_f32(vaddq_f32(sumv0, sumv1)) + summs0 + summs1;
  2377. #elif defined(__AVX2__)
  2378. // Initialize accumulator with zeros
  2379. __m256 acc = _mm256_setzero_ps();
  2380. float summs = 0.0f;
  2381. // Main loop
  2382. for (int i = 0; i < nb; i++) {
  2383. const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d));
  2384. const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d));
  2385. const __m256 dx = _mm256_set_m128(d1, d0);
  2386. summs += GGML_FP16_TO_FP32(x[2*i + 0].m) * y[i].s0
  2387. + GGML_FP16_TO_FP32(x[2*i + 1].m) * y[i].s1;
  2388. const __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs);
  2389. const __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs);
  2390. const __m256i bx = _mm256_set_m128i(bx1, bx0);
  2391. const __m256 dy = _mm256_broadcast_ss(&y[i].d);
  2392. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2393. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2394. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2395. }
  2396. *s = hsum_float_8(acc) + summs;
  2397. #else
  2398. // scalar
  2399. float sumf = 0.0;
  2400. for (int i = 0; i < nb; i++) {
  2401. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2402. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2403. const int8_t * restrict y0 = y[i].qs;
  2404. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2405. const float m0 = GGML_FP16_TO_FP32(x[2*i + 0].m);
  2406. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2407. const float m1 = GGML_FP16_TO_FP32(x[2*i + 1].m);
  2408. int sxy_0 = 0;
  2409. int sxy_1 = 0;
  2410. for (int j = 0; j < QK8_0/4; j++) {
  2411. const uint8_t v0 = x0[j];
  2412. const uint8_t v1 = x1[j];
  2413. const int x0_0 = v0 & 0xf;
  2414. const int x1_0 = v0 >> 4;
  2415. const int x0_1 = v1 & 0xf;
  2416. const int x1_1 = v1 >> 4;
  2417. const int y0_0 = y0[2*j + 0];
  2418. const int y1_0 = y0[2*j + 1];
  2419. const int y0_1 = y0[2*(j + QK8_0/4) + 0];
  2420. const int y1_1 = y0[2*(j + QK8_0/4) + 1];
  2421. sxy_0 += x0_0*y0_0 + x1_0*y1_0;
  2422. sxy_1 += x0_1*y0_1 + x1_1*y1_1;
  2423. }
  2424. sumf += (d0*sxy_0 + d1*sxy_1)*y[i].d + m0*y[i].s0 + m1*y[i].s1;
  2425. }
  2426. *s = sumf;
  2427. #endif
  2428. }
  2429. // compute GGML_VEC_DOT_UNROLL dot products at once
  2430. // xs - x row stride in bytes
  2431. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2432. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2433. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2434. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2435. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2436. }
  2437. #if defined(GGML_SIMD)
  2438. const int np = (n & ~(GGML_F16_STEP - 1));
  2439. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2440. GGML_F16_VEC ax[GGML_F16_ARR];
  2441. GGML_F16_VEC ay[GGML_F16_ARR];
  2442. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2443. for (int j = 0; j < GGML_F16_ARR; j++) {
  2444. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2445. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2446. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2447. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2448. }
  2449. }
  2450. }
  2451. // reduce sum0..sum3 to sum0
  2452. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2453. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2454. }
  2455. // leftovers
  2456. for (int i = np; i < n; ++i) {
  2457. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2458. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2459. }
  2460. }
  2461. #else
  2462. for (int i = 0; i < n; ++i) {
  2463. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2464. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2465. }
  2466. }
  2467. #endif
  2468. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2469. s[i] = sumf[i];
  2470. }
  2471. }
  2472. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2473. #if defined(GGML_SIMD)
  2474. const int np = (n & ~(GGML_F32_STEP - 1));
  2475. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2476. GGML_F32_VEC ax[GGML_F32_ARR];
  2477. GGML_F32_VEC ay[GGML_F32_ARR];
  2478. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2479. for (int j = 0; j < GGML_F32_ARR; j++) {
  2480. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2481. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2482. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2483. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2484. }
  2485. }
  2486. // leftovers
  2487. for (int i = np; i < n; ++i) {
  2488. y[i] += x[i]*v;
  2489. }
  2490. #else
  2491. // scalar
  2492. for (int i = 0; i < n; ++i) {
  2493. y[i] += x[i]*v;
  2494. }
  2495. #endif
  2496. }
  2497. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2498. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2499. #if defined(GGML_SIMD)
  2500. const int np = (n & ~(GGML_F32_STEP - 1));
  2501. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2502. GGML_F32_VEC ay[GGML_F32_ARR];
  2503. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2504. for (int j = 0; j < GGML_F32_ARR; j++) {
  2505. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2506. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2507. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2508. }
  2509. }
  2510. // leftovers
  2511. for (int i = np; i < n; ++i) {
  2512. y[i] *= v;
  2513. }
  2514. #else
  2515. // scalar
  2516. for (int i = 0; i < n; ++i) {
  2517. y[i] *= v;
  2518. }
  2519. #endif
  2520. }
  2521. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2522. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2523. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2524. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2525. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2526. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2527. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2528. static const float GELU_COEF_A = 0.044715f;
  2529. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2530. inline static float ggml_gelu_f32(float x) {
  2531. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2532. }
  2533. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2534. const uint16_t * i16 = (const uint16_t *) x;
  2535. for (int i = 0; i < n; ++i) {
  2536. y[i] = table_gelu_f16[i16[i]];
  2537. }
  2538. }
  2539. #ifdef GGML_GELU_FP16
  2540. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2541. uint16_t t;
  2542. for (int i = 0; i < n; ++i) {
  2543. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2544. memcpy(&t, &fp16, sizeof(uint16_t));
  2545. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2546. }
  2547. }
  2548. #else
  2549. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2550. for (int i = 0; i < n; ++i) {
  2551. y[i] = ggml_gelu_f32(x[i]);
  2552. }
  2553. }
  2554. #endif
  2555. // Sigmoid Linear Unit (SiLU) function
  2556. inline static float ggml_silu_f32(float x) {
  2557. return x/(1.0f + expf(-x));
  2558. }
  2559. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2560. const uint16_t * i16 = (const uint16_t *) x;
  2561. for (int i = 0; i < n; ++i) {
  2562. y[i] = table_silu_f16[i16[i]];
  2563. }
  2564. }
  2565. #ifdef GGML_SILU_FP16
  2566. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2567. uint16_t t;
  2568. for (int i = 0; i < n; ++i) {
  2569. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2570. memcpy(&t, &fp16, sizeof(uint16_t));
  2571. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2572. }
  2573. }
  2574. #else
  2575. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2576. for (int i = 0; i < n; ++i) {
  2577. y[i] = ggml_silu_f32(x[i]);
  2578. }
  2579. }
  2580. #endif
  2581. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2582. #ifndef GGML_USE_ACCELERATE
  2583. ggml_float sum = 0.0;
  2584. for (int i = 0; i < n; ++i) {
  2585. sum += (ggml_float)x[i];
  2586. }
  2587. *s = sum;
  2588. #else
  2589. vDSP_sve(x, 1, s, n);
  2590. #endif
  2591. }
  2592. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2593. #ifndef GGML_USE_ACCELERATE
  2594. float max = -INFINITY;
  2595. for (int i = 0; i < n; ++i) {
  2596. max = MAX(max, x[i]);
  2597. }
  2598. *s = max;
  2599. #else
  2600. vDSP_maxv(x, 1, s, n);
  2601. #endif
  2602. }
  2603. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2604. ggml_vec_norm_f32(n, s, x);
  2605. *s = 1.f/(*s);
  2606. }
  2607. //
  2608. // logging
  2609. //
  2610. #if (GGML_DEBUG >= 1)
  2611. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2612. #else
  2613. #define GGML_PRINT_DEBUG(...)
  2614. #endif
  2615. #if (GGML_DEBUG >= 5)
  2616. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2617. #else
  2618. #define GGML_PRINT_DEBUG_5(...)
  2619. #endif
  2620. #if (GGML_DEBUG >= 10)
  2621. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2622. #else
  2623. #define GGML_PRINT_DEBUG_10(...)
  2624. #endif
  2625. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2626. //
  2627. // data types
  2628. //
  2629. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2630. [GGML_TYPE_F32] = 1,
  2631. [GGML_TYPE_F16] = 1,
  2632. [GGML_TYPE_Q4_0] = QK4_0,
  2633. [GGML_TYPE_Q4_1] = QK4_1,
  2634. [GGML_TYPE_Q4_2] = QK4_2,
  2635. [GGML_TYPE_Q4_3] = QK4_3,
  2636. [GGML_TYPE_Q8_0] = QK8_0,
  2637. [GGML_TYPE_I8] = 1,
  2638. [GGML_TYPE_I16] = 1,
  2639. [GGML_TYPE_I32] = 1,
  2640. };
  2641. static_assert(GGML_TYPE_COUNT == 10, "GGML_BLCK_SIZE is outdated");
  2642. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2643. [GGML_TYPE_F32] = sizeof(float),
  2644. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2645. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2646. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2647. [GGML_TYPE_Q4_2] = sizeof(block_q4_2),
  2648. [GGML_TYPE_Q4_3] = sizeof(block_q4_3),
  2649. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2650. [GGML_TYPE_I8] = sizeof(int8_t),
  2651. [GGML_TYPE_I16] = sizeof(int16_t),
  2652. [GGML_TYPE_I32] = sizeof(int32_t),
  2653. };
  2654. static_assert(GGML_TYPE_COUNT == 10, "GGML_TYPE_SIZE is outdated");
  2655. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2656. [GGML_TYPE_F32] = "f32",
  2657. [GGML_TYPE_F16] = "f16",
  2658. [GGML_TYPE_Q4_0] = "q4_0",
  2659. [GGML_TYPE_Q4_1] = "q4_1",
  2660. [GGML_TYPE_Q4_2] = "q4_2",
  2661. [GGML_TYPE_Q4_3] = "q4_3",
  2662. [GGML_TYPE_Q8_0] = "q8_0",
  2663. [GGML_TYPE_I8] = "i8",
  2664. [GGML_TYPE_I16] = "i16",
  2665. [GGML_TYPE_I32] = "i32",
  2666. };
  2667. static_assert(GGML_TYPE_COUNT == 10, "GGML_TYPE_NAME is outdated");
  2668. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2669. [GGML_TYPE_F32] = false,
  2670. [GGML_TYPE_F16] = false,
  2671. [GGML_TYPE_Q4_0] = true,
  2672. [GGML_TYPE_Q4_1] = true,
  2673. [GGML_TYPE_Q4_2] = true,
  2674. [GGML_TYPE_Q4_3] = true,
  2675. [GGML_TYPE_Q8_0] = true,
  2676. [GGML_TYPE_I8] = false,
  2677. [GGML_TYPE_I16] = false,
  2678. [GGML_TYPE_I32] = false,
  2679. };
  2680. static_assert(GGML_TYPE_COUNT == 10, "GGML_IS_QUANTIZED is outdated");
  2681. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2682. "NONE",
  2683. "DUP",
  2684. "ADD",
  2685. "SUB",
  2686. "MUL",
  2687. "DIV",
  2688. "SQR",
  2689. "SQRT",
  2690. "SUM",
  2691. "MEAN",
  2692. "REPEAT",
  2693. "ABS",
  2694. "SGN",
  2695. "NEG",
  2696. "STEP",
  2697. "RELU",
  2698. "GELU",
  2699. "SILU",
  2700. "NORM",
  2701. "RMS_NORM",
  2702. "MUL_MAT",
  2703. "SCALE",
  2704. "CPY",
  2705. "CONT",
  2706. "RESHAPE",
  2707. "VIEW",
  2708. "PERMUTE",
  2709. "TRANSPOSE",
  2710. "GET_ROWS",
  2711. "DIAG_MASK_INF",
  2712. "SOFT_MAX",
  2713. "ROPE",
  2714. "CONV_1D_1S",
  2715. "CONV_1D_2S",
  2716. "FLASH_ATTN",
  2717. "FLASH_FF",
  2718. "MAP_UNARY",
  2719. "MAP_BINARY",
  2720. };
  2721. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  2722. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2723. "none",
  2724. "x",
  2725. "x+y",
  2726. "x-y",
  2727. "x*y",
  2728. "x/y",
  2729. "x^2",
  2730. "√x",
  2731. "Σx",
  2732. "Σx/n",
  2733. "repeat(x)",
  2734. "abs(x)",
  2735. "sgn(x)",
  2736. "-x",
  2737. "step(x)",
  2738. "relu(x)",
  2739. "gelu(x)",
  2740. "silu(x)",
  2741. "norm(x)",
  2742. "rms_norm(x)",
  2743. "X*Y",
  2744. "x*v",
  2745. "x-\\>y",
  2746. "cont(x)",
  2747. "reshape(x)",
  2748. "view(x)",
  2749. "permute(x)",
  2750. "transpose(x)",
  2751. "get_rows(x)",
  2752. "diag_mask_inf(x)",
  2753. "soft_max(x)",
  2754. "rope(x)",
  2755. "conv_1d_1s(x)",
  2756. "conv_1d_2s(x)",
  2757. "flash_attn(x)",
  2758. "flash_ff(x)",
  2759. "f(x)",
  2760. "f(x,y)",
  2761. };
  2762. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  2763. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2764. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2765. //
  2766. // ggml context
  2767. //
  2768. struct ggml_context {
  2769. size_t mem_size;
  2770. void * mem_buffer;
  2771. bool mem_buffer_owned;
  2772. bool no_alloc;
  2773. int n_objects;
  2774. struct ggml_object * objects_begin;
  2775. struct ggml_object * objects_end;
  2776. struct ggml_scratch scratch;
  2777. struct ggml_scratch scratch_save;
  2778. };
  2779. struct ggml_context_container {
  2780. bool used;
  2781. struct ggml_context context;
  2782. };
  2783. //
  2784. // compute types
  2785. //
  2786. enum ggml_task_type {
  2787. GGML_TASK_INIT = 0,
  2788. GGML_TASK_COMPUTE,
  2789. GGML_TASK_FINALIZE,
  2790. };
  2791. struct ggml_compute_params {
  2792. enum ggml_task_type type;
  2793. int ith, nth;
  2794. // work buffer for all threads
  2795. size_t wsize;
  2796. void * wdata;
  2797. };
  2798. //
  2799. // ggml state
  2800. //
  2801. struct ggml_state {
  2802. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2803. };
  2804. // global state
  2805. static struct ggml_state g_state;
  2806. static atomic_int g_state_barrier = 0;
  2807. // barrier via spin lock
  2808. inline static void ggml_critical_section_start(void) {
  2809. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2810. while (processing > 0) {
  2811. // wait for other threads to finish
  2812. atomic_fetch_sub(&g_state_barrier, 1);
  2813. sched_yield(); // TODO: reconsider this
  2814. processing = atomic_fetch_add(&g_state_barrier, 1);
  2815. }
  2816. }
  2817. // TODO: make this somehow automatically executed
  2818. // some sort of "sentry" mechanism
  2819. inline static void ggml_critical_section_end(void) {
  2820. atomic_fetch_sub(&g_state_barrier, 1);
  2821. }
  2822. ////////////////////////////////////////////////////////////////////////////////
  2823. void ggml_print_object(const struct ggml_object * obj) {
  2824. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2825. obj->offs, obj->size, (const void *) obj->next);
  2826. }
  2827. void ggml_print_objects(const struct ggml_context * ctx) {
  2828. struct ggml_object * obj = ctx->objects_begin;
  2829. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2830. while (obj != NULL) {
  2831. ggml_print_object(obj);
  2832. obj = obj->next;
  2833. }
  2834. GGML_PRINT("%s: --- end ---\n", __func__);
  2835. }
  2836. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2837. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2838. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2839. }
  2840. int ggml_nrows(const struct ggml_tensor * tensor) {
  2841. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2842. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2843. }
  2844. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2845. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2846. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2847. }
  2848. int ggml_blck_size(enum ggml_type type) {
  2849. return GGML_BLCK_SIZE[type];
  2850. }
  2851. size_t ggml_type_size(enum ggml_type type) {
  2852. return GGML_TYPE_SIZE[type];
  2853. }
  2854. float ggml_type_sizef(enum ggml_type type) {
  2855. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2856. }
  2857. const char * ggml_type_name(enum ggml_type type) {
  2858. return GGML_TYPE_NAME[type];
  2859. }
  2860. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2861. return GGML_TYPE_SIZE[tensor->type];
  2862. }
  2863. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2864. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2865. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2866. }
  2867. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2868. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2869. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2870. }
  2871. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2872. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2873. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2874. }
  2875. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2876. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2877. return
  2878. (t0->ne[0] == t1->ne[0]) &&
  2879. (t0->ne[2] == t1->ne[2]) &&
  2880. (t0->ne[3] == t1->ne[3]);
  2881. }
  2882. bool ggml_is_quantized(enum ggml_type type) {
  2883. return GGML_IS_QUANTIZED[type];
  2884. }
  2885. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2886. return tensor->nb[0] > tensor->nb[1];
  2887. }
  2888. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2889. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2890. return
  2891. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2892. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2893. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2894. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2895. }
  2896. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2897. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2898. return
  2899. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2900. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2901. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2902. }
  2903. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2904. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2905. return
  2906. (t0->ne[0] == t1->ne[0] ) &&
  2907. (t0->ne[1] == t1->ne[1] ) &&
  2908. (t0->ne[2] == t1->ne[2] ) &&
  2909. (t0->ne[3] == t1->ne[3] );
  2910. }
  2911. // check if t1 can be represented as a repeatition of t0
  2912. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2913. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2914. return
  2915. (t1->ne[0]%t0->ne[0] == 0) &&
  2916. (t1->ne[1]%t0->ne[1] == 0) &&
  2917. (t1->ne[2]%t0->ne[2] == 0) &&
  2918. (t1->ne[3]%t0->ne[3] == 0);
  2919. }
  2920. static inline int ggml_up32(int n) {
  2921. return (n + 31) & ~31;
  2922. }
  2923. static inline int ggml_up64(int n) {
  2924. return (n + 63) & ~63;
  2925. }
  2926. static inline int ggml_up(int n, int m) {
  2927. // assert m is a power of 2
  2928. GGML_ASSERT((m & (m - 1)) == 0);
  2929. return (n + m - 1) & ~(m - 1);
  2930. }
  2931. // assert that pointer is aligned to GGML_MEM_ALIGN
  2932. #define ggml_assert_aligned(ptr) \
  2933. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2934. ////////////////////////////////////////////////////////////////////////////////
  2935. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2936. // make this function thread safe
  2937. ggml_critical_section_start();
  2938. static bool is_first_call = true;
  2939. if (is_first_call) {
  2940. // initialize time system (required on Windows)
  2941. ggml_time_init();
  2942. // initialize GELU, SILU and EXP F32 tables
  2943. {
  2944. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2945. ggml_fp16_t ii;
  2946. for (int i = 0; i < (1 << 16); ++i) {
  2947. uint16_t ui = i;
  2948. memcpy(&ii, &ui, sizeof(ii));
  2949. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2950. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2951. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2952. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2953. }
  2954. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2955. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2956. }
  2957. // initialize g_state
  2958. {
  2959. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2960. g_state = (struct ggml_state) {
  2961. /*.contexts =*/ { { 0 } },
  2962. };
  2963. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2964. g_state.contexts[i].used = false;
  2965. }
  2966. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2967. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2968. }
  2969. // initialize cuBLAS
  2970. #if defined(GGML_USE_CUBLAS)
  2971. ggml_init_cublas();
  2972. #endif
  2973. is_first_call = false;
  2974. }
  2975. // find non-used context in g_state
  2976. struct ggml_context * ctx = NULL;
  2977. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2978. if (!g_state.contexts[i].used) {
  2979. g_state.contexts[i].used = true;
  2980. ctx = &g_state.contexts[i].context;
  2981. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2982. break;
  2983. }
  2984. }
  2985. if (ctx == NULL) {
  2986. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2987. ggml_critical_section_end();
  2988. return NULL;
  2989. }
  2990. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  2991. *ctx = (struct ggml_context) {
  2992. /*.mem_size =*/ mem_size,
  2993. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2994. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2995. /*.no_alloc =*/ params.no_alloc,
  2996. /*.n_objects =*/ 0,
  2997. /*.objects_begin =*/ NULL,
  2998. /*.objects_end =*/ NULL,
  2999. /*.scratch =*/ { 0, 0, NULL, },
  3000. /*.scratch_save =*/ { 0, 0, NULL, },
  3001. };
  3002. GGML_ASSERT(ctx->mem_buffer != NULL);
  3003. ggml_assert_aligned(ctx->mem_buffer);
  3004. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3005. ggml_critical_section_end();
  3006. return ctx;
  3007. }
  3008. void ggml_free(struct ggml_context * ctx) {
  3009. // make this function thread safe
  3010. ggml_critical_section_start();
  3011. bool found = false;
  3012. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3013. if (&g_state.contexts[i].context == ctx) {
  3014. g_state.contexts[i].used = false;
  3015. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3016. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3017. if (ctx->mem_buffer_owned) {
  3018. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3019. }
  3020. found = true;
  3021. break;
  3022. }
  3023. }
  3024. if (!found) {
  3025. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3026. }
  3027. ggml_critical_section_end();
  3028. }
  3029. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3030. return ctx->objects_end->offs + ctx->objects_end->size;
  3031. }
  3032. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3033. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3034. ctx->scratch = scratch;
  3035. return result;
  3036. }
  3037. ////////////////////////////////////////////////////////////////////////////////
  3038. struct ggml_tensor * ggml_new_tensor_impl(
  3039. struct ggml_context * ctx,
  3040. enum ggml_type type,
  3041. int n_dims,
  3042. const int64_t* ne,
  3043. void* data) {
  3044. // always insert objects at the end of the context's memory pool
  3045. struct ggml_object * obj_cur = ctx->objects_end;
  3046. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3047. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3048. const size_t cur_end = cur_offs + cur_size;
  3049. size_t size_needed = 0;
  3050. if (data == NULL && !ctx->no_alloc) {
  3051. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3052. for (int i = 1; i < n_dims; i++) {
  3053. size_needed *= ne[i];
  3054. }
  3055. // align to GGML_MEM_ALIGN
  3056. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3057. }
  3058. char * const mem_buffer = ctx->mem_buffer;
  3059. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3060. if (ctx->scratch.data == NULL || data != NULL) {
  3061. size_needed += sizeof(struct ggml_tensor);
  3062. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3063. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3064. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3065. assert(false);
  3066. return NULL;
  3067. }
  3068. *obj_new = (struct ggml_object) {
  3069. .offs = cur_end + GGML_OBJECT_SIZE,
  3070. .size = size_needed,
  3071. .next = NULL,
  3072. };
  3073. } else {
  3074. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3075. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  3076. assert(false);
  3077. return NULL;
  3078. }
  3079. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  3080. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3081. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  3082. assert(false);
  3083. return NULL;
  3084. }
  3085. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3086. *obj_new = (struct ggml_object) {
  3087. .offs = cur_end + GGML_OBJECT_SIZE,
  3088. .size = sizeof(struct ggml_tensor),
  3089. .next = NULL,
  3090. };
  3091. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3092. ctx->scratch.offs += size_needed;
  3093. }
  3094. if (obj_cur != NULL) {
  3095. obj_cur->next = obj_new;
  3096. } else {
  3097. // this is the first object in this context
  3098. ctx->objects_begin = obj_new;
  3099. }
  3100. ctx->objects_end = obj_new;
  3101. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3102. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3103. ggml_assert_aligned(result);
  3104. *result = (struct ggml_tensor) {
  3105. /*.type =*/ type,
  3106. /*.n_dims =*/ n_dims,
  3107. /*.ne =*/ { 1, 1, 1, 1 },
  3108. /*.nb =*/ { 0, 0, 0, 0 },
  3109. /*.op =*/ GGML_OP_NONE,
  3110. /*.is_param =*/ false,
  3111. /*.grad =*/ NULL,
  3112. /*.src0 =*/ NULL,
  3113. /*.src1 =*/ NULL,
  3114. /*.opt =*/ { NULL },
  3115. /*.n_tasks =*/ 0,
  3116. /*.perf_runs =*/ 0,
  3117. /*.perf_cycles =*/ 0,
  3118. /*.perf_time_us =*/ 0,
  3119. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3120. /*.pad =*/ { 0 },
  3121. };
  3122. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3123. //ggml_assert_aligned(result->data);
  3124. for (int i = 0; i < n_dims; i++) {
  3125. result->ne[i] = ne[i];
  3126. }
  3127. result->nb[0] = GGML_TYPE_SIZE[type];
  3128. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3129. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3130. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3131. }
  3132. ctx->n_objects++;
  3133. return result;
  3134. }
  3135. struct ggml_tensor * ggml_new_tensor(
  3136. struct ggml_context * ctx,
  3137. enum ggml_type type,
  3138. int n_dims,
  3139. const int64_t * ne) {
  3140. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3141. }
  3142. struct ggml_tensor * ggml_new_tensor_1d(
  3143. struct ggml_context * ctx,
  3144. enum ggml_type type,
  3145. int64_t ne0) {
  3146. return ggml_new_tensor(ctx, type, 1, &ne0);
  3147. }
  3148. struct ggml_tensor * ggml_new_tensor_2d(
  3149. struct ggml_context * ctx,
  3150. enum ggml_type type,
  3151. int64_t ne0,
  3152. int64_t ne1) {
  3153. const int64_t ne[2] = { ne0, ne1 };
  3154. return ggml_new_tensor(ctx, type, 2, ne);
  3155. }
  3156. struct ggml_tensor * ggml_new_tensor_3d(
  3157. struct ggml_context * ctx,
  3158. enum ggml_type type,
  3159. int64_t ne0,
  3160. int64_t ne1,
  3161. int64_t ne2) {
  3162. const int64_t ne[3] = { ne0, ne1, ne2 };
  3163. return ggml_new_tensor(ctx, type, 3, ne);
  3164. }
  3165. struct ggml_tensor * ggml_new_tensor_4d(
  3166. struct ggml_context * ctx,
  3167. enum ggml_type type,
  3168. int64_t ne0,
  3169. int64_t ne1,
  3170. int64_t ne2,
  3171. int64_t ne3) {
  3172. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3173. return ggml_new_tensor(ctx, type, 4, ne);
  3174. }
  3175. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3176. ctx->scratch_save = ctx->scratch;
  3177. ctx->scratch.data = NULL;
  3178. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3179. ctx->scratch = ctx->scratch_save;
  3180. ggml_set_i32(result, value);
  3181. return result;
  3182. }
  3183. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3184. ctx->scratch_save = ctx->scratch;
  3185. ctx->scratch.data = NULL;
  3186. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3187. ctx->scratch = ctx->scratch_save;
  3188. ggml_set_f32(result, value);
  3189. return result;
  3190. }
  3191. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3192. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3193. }
  3194. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3195. memset(tensor->data, 0, ggml_nbytes(tensor));
  3196. return tensor;
  3197. }
  3198. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3199. const int n = ggml_nrows(tensor);
  3200. const int nc = tensor->ne[0];
  3201. const size_t n1 = tensor->nb[1];
  3202. char * const data = tensor->data;
  3203. switch (tensor->type) {
  3204. case GGML_TYPE_I8:
  3205. {
  3206. assert(tensor->nb[0] == sizeof(int8_t));
  3207. for (int i = 0; i < n; i++) {
  3208. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3209. }
  3210. } break;
  3211. case GGML_TYPE_I16:
  3212. {
  3213. assert(tensor->nb[0] == sizeof(int16_t));
  3214. for (int i = 0; i < n; i++) {
  3215. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3216. }
  3217. } break;
  3218. case GGML_TYPE_I32:
  3219. {
  3220. assert(tensor->nb[0] == sizeof(int32_t));
  3221. for (int i = 0; i < n; i++) {
  3222. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3223. }
  3224. } break;
  3225. case GGML_TYPE_F16:
  3226. {
  3227. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3228. for (int i = 0; i < n; i++) {
  3229. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3230. }
  3231. } break;
  3232. case GGML_TYPE_F32:
  3233. {
  3234. assert(tensor->nb[0] == sizeof(float));
  3235. for (int i = 0; i < n; i++) {
  3236. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3237. }
  3238. } break;
  3239. default:
  3240. {
  3241. GGML_ASSERT(false);
  3242. } break;
  3243. }
  3244. return tensor;
  3245. }
  3246. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3247. const int n = ggml_nrows(tensor);
  3248. const int nc = tensor->ne[0];
  3249. const size_t n1 = tensor->nb[1];
  3250. char * const data = tensor->data;
  3251. switch (tensor->type) {
  3252. case GGML_TYPE_I8:
  3253. {
  3254. assert(tensor->nb[0] == sizeof(int8_t));
  3255. for (int i = 0; i < n; i++) {
  3256. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3257. }
  3258. } break;
  3259. case GGML_TYPE_I16:
  3260. {
  3261. assert(tensor->nb[0] == sizeof(int16_t));
  3262. for (int i = 0; i < n; i++) {
  3263. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3264. }
  3265. } break;
  3266. case GGML_TYPE_I32:
  3267. {
  3268. assert(tensor->nb[0] == sizeof(int32_t));
  3269. for (int i = 0; i < n; i++) {
  3270. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3271. }
  3272. } break;
  3273. case GGML_TYPE_F16:
  3274. {
  3275. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3276. for (int i = 0; i < n; i++) {
  3277. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3278. }
  3279. } break;
  3280. case GGML_TYPE_F32:
  3281. {
  3282. assert(tensor->nb[0] == sizeof(float));
  3283. for (int i = 0; i < n; i++) {
  3284. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3285. }
  3286. } break;
  3287. default:
  3288. {
  3289. GGML_ASSERT(false);
  3290. } break;
  3291. }
  3292. return tensor;
  3293. }
  3294. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3295. switch (tensor->type) {
  3296. case GGML_TYPE_I8:
  3297. {
  3298. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3299. return ((int8_t *)(tensor->data))[i];
  3300. } break;
  3301. case GGML_TYPE_I16:
  3302. {
  3303. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3304. return ((int16_t *)(tensor->data))[i];
  3305. } break;
  3306. case GGML_TYPE_I32:
  3307. {
  3308. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3309. return ((int32_t *)(tensor->data))[i];
  3310. } break;
  3311. case GGML_TYPE_F16:
  3312. {
  3313. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3314. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3315. } break;
  3316. case GGML_TYPE_F32:
  3317. {
  3318. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3319. return ((float *)(tensor->data))[i];
  3320. } break;
  3321. default:
  3322. {
  3323. GGML_ASSERT(false);
  3324. } break;
  3325. }
  3326. return 0.0f;
  3327. }
  3328. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3329. switch (tensor->type) {
  3330. case GGML_TYPE_I8:
  3331. {
  3332. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3333. ((int8_t *)(tensor->data))[i] = value;
  3334. } break;
  3335. case GGML_TYPE_I16:
  3336. {
  3337. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3338. ((int16_t *)(tensor->data))[i] = value;
  3339. } break;
  3340. case GGML_TYPE_I32:
  3341. {
  3342. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3343. ((int32_t *)(tensor->data))[i] = value;
  3344. } break;
  3345. case GGML_TYPE_F16:
  3346. {
  3347. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3348. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3349. } break;
  3350. case GGML_TYPE_F32:
  3351. {
  3352. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3353. ((float *)(tensor->data))[i] = value;
  3354. } break;
  3355. default:
  3356. {
  3357. GGML_ASSERT(false);
  3358. } break;
  3359. }
  3360. }
  3361. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3362. switch (tensor->type) {
  3363. case GGML_TYPE_I8:
  3364. {
  3365. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3366. return ((int8_t *)(tensor->data))[i];
  3367. } break;
  3368. case GGML_TYPE_I16:
  3369. {
  3370. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3371. return ((int16_t *)(tensor->data))[i];
  3372. } break;
  3373. case GGML_TYPE_I32:
  3374. {
  3375. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3376. return ((int32_t *)(tensor->data))[i];
  3377. } break;
  3378. case GGML_TYPE_F16:
  3379. {
  3380. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3381. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3382. } break;
  3383. case GGML_TYPE_F32:
  3384. {
  3385. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3386. return ((float *)(tensor->data))[i];
  3387. } break;
  3388. default:
  3389. {
  3390. GGML_ASSERT(false);
  3391. } break;
  3392. }
  3393. return 0.0f;
  3394. }
  3395. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3396. switch (tensor->type) {
  3397. case GGML_TYPE_I8:
  3398. {
  3399. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3400. ((int8_t *)(tensor->data))[i] = value;
  3401. } break;
  3402. case GGML_TYPE_I16:
  3403. {
  3404. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3405. ((int16_t *)(tensor->data))[i] = value;
  3406. } break;
  3407. case GGML_TYPE_I32:
  3408. {
  3409. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3410. ((int32_t *)(tensor->data))[i] = value;
  3411. } break;
  3412. case GGML_TYPE_F16:
  3413. {
  3414. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3415. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3416. } break;
  3417. case GGML_TYPE_F32:
  3418. {
  3419. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3420. ((float *)(tensor->data))[i] = value;
  3421. } break;
  3422. default:
  3423. {
  3424. GGML_ASSERT(false);
  3425. } break;
  3426. }
  3427. }
  3428. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3429. return tensor->data;
  3430. }
  3431. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3432. assert(tensor->type == GGML_TYPE_F32);
  3433. return (float *)(tensor->data);
  3434. }
  3435. struct ggml_tensor * ggml_view_tensor(
  3436. struct ggml_context * ctx,
  3437. const struct ggml_tensor * src) {
  3438. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3439. result->nb[0] = src->nb[0];
  3440. result->nb[1] = src->nb[1];
  3441. result->nb[2] = src->nb[2];
  3442. result->nb[3] = src->nb[3];
  3443. return result;
  3444. }
  3445. ////////////////////////////////////////////////////////////////////////////////
  3446. // ggml_dup
  3447. struct ggml_tensor * ggml_dup_impl(
  3448. struct ggml_context * ctx,
  3449. struct ggml_tensor * a,
  3450. bool inplace) {
  3451. bool is_node = false;
  3452. if (!inplace && (a->grad)) {
  3453. is_node = true;
  3454. }
  3455. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3456. result->op = GGML_OP_DUP;
  3457. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3458. result->src0 = a;
  3459. result->src1 = NULL;
  3460. return result;
  3461. }
  3462. struct ggml_tensor * ggml_dup(
  3463. struct ggml_context * ctx,
  3464. struct ggml_tensor * a) {
  3465. return ggml_dup_impl(ctx, a, false);
  3466. }
  3467. struct ggml_tensor * ggml_dup_inplace(
  3468. struct ggml_context * ctx,
  3469. struct ggml_tensor * a) {
  3470. return ggml_dup_impl(ctx, a, true);
  3471. }
  3472. // ggml_add
  3473. struct ggml_tensor * ggml_add_impl(
  3474. struct ggml_context * ctx,
  3475. struct ggml_tensor * a,
  3476. struct ggml_tensor * b,
  3477. bool inplace) {
  3478. GGML_ASSERT(ggml_are_same_shape(a, b));
  3479. bool is_node = false;
  3480. if (!inplace && (a->grad || b->grad)) {
  3481. is_node = true;
  3482. }
  3483. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3484. result->op = GGML_OP_ADD;
  3485. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3486. result->src0 = a;
  3487. result->src1 = b;
  3488. return result;
  3489. }
  3490. struct ggml_tensor * ggml_add(
  3491. struct ggml_context * ctx,
  3492. struct ggml_tensor * a,
  3493. struct ggml_tensor * b) {
  3494. return ggml_add_impl(ctx, a, b, false);
  3495. }
  3496. struct ggml_tensor * ggml_add_inplace(
  3497. struct ggml_context * ctx,
  3498. struct ggml_tensor * a,
  3499. struct ggml_tensor * b) {
  3500. return ggml_add_impl(ctx, a, b, true);
  3501. }
  3502. // ggml_sub
  3503. struct ggml_tensor * ggml_sub_impl(
  3504. struct ggml_context * ctx,
  3505. struct ggml_tensor * a,
  3506. struct ggml_tensor * b,
  3507. bool inplace) {
  3508. GGML_ASSERT(ggml_are_same_shape(a, b));
  3509. bool is_node = false;
  3510. if (!inplace && (a->grad || b->grad)) {
  3511. is_node = true;
  3512. }
  3513. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3514. result->op = GGML_OP_SUB;
  3515. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3516. result->src0 = a;
  3517. result->src1 = b;
  3518. return result;
  3519. }
  3520. struct ggml_tensor * ggml_sub(
  3521. struct ggml_context * ctx,
  3522. struct ggml_tensor * a,
  3523. struct ggml_tensor * b) {
  3524. return ggml_sub_impl(ctx, a, b, false);
  3525. }
  3526. struct ggml_tensor * ggml_sub_inplace(
  3527. struct ggml_context * ctx,
  3528. struct ggml_tensor * a,
  3529. struct ggml_tensor * b) {
  3530. return ggml_sub_impl(ctx, a, b, true);
  3531. }
  3532. // ggml_mul
  3533. struct ggml_tensor * ggml_mul_impl(
  3534. struct ggml_context * ctx,
  3535. struct ggml_tensor * a,
  3536. struct ggml_tensor * b,
  3537. bool inplace) {
  3538. GGML_ASSERT(ggml_are_same_shape(a, b));
  3539. bool is_node = false;
  3540. if (!inplace && (a->grad || b->grad)) {
  3541. is_node = true;
  3542. }
  3543. if (inplace) {
  3544. GGML_ASSERT(is_node == false);
  3545. }
  3546. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3547. result->op = GGML_OP_MUL;
  3548. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3549. result->src0 = a;
  3550. result->src1 = b;
  3551. return result;
  3552. }
  3553. struct ggml_tensor * ggml_mul(
  3554. struct ggml_context * ctx,
  3555. struct ggml_tensor * a,
  3556. struct ggml_tensor * b) {
  3557. return ggml_mul_impl(ctx, a, b, false);
  3558. }
  3559. struct ggml_tensor * ggml_mul_inplace(
  3560. struct ggml_context * ctx,
  3561. struct ggml_tensor * a,
  3562. struct ggml_tensor * b) {
  3563. return ggml_mul_impl(ctx, a, b, true);
  3564. }
  3565. // ggml_div
  3566. struct ggml_tensor * ggml_div_impl(
  3567. struct ggml_context * ctx,
  3568. struct ggml_tensor * a,
  3569. struct ggml_tensor * b,
  3570. bool inplace) {
  3571. GGML_ASSERT(ggml_are_same_shape(a, b));
  3572. bool is_node = false;
  3573. if (!inplace && (a->grad || b->grad)) {
  3574. is_node = true;
  3575. }
  3576. if (inplace) {
  3577. GGML_ASSERT(is_node == false);
  3578. }
  3579. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3580. result->op = GGML_OP_DIV;
  3581. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3582. result->src0 = a;
  3583. result->src1 = b;
  3584. return result;
  3585. }
  3586. struct ggml_tensor * ggml_div(
  3587. struct ggml_context * ctx,
  3588. struct ggml_tensor * a,
  3589. struct ggml_tensor * b) {
  3590. return ggml_div_impl(ctx, a, b, false);
  3591. }
  3592. struct ggml_tensor * ggml_div_inplace(
  3593. struct ggml_context * ctx,
  3594. struct ggml_tensor * a,
  3595. struct ggml_tensor * b) {
  3596. return ggml_div_impl(ctx, a, b, true);
  3597. }
  3598. // ggml_sqr
  3599. struct ggml_tensor * ggml_sqr_impl(
  3600. struct ggml_context * ctx,
  3601. struct ggml_tensor * a,
  3602. bool inplace) {
  3603. bool is_node = false;
  3604. if (!inplace && (a->grad)) {
  3605. is_node = true;
  3606. }
  3607. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3608. result->op = GGML_OP_SQR;
  3609. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3610. result->src0 = a;
  3611. result->src1 = NULL;
  3612. return result;
  3613. }
  3614. struct ggml_tensor * ggml_sqr(
  3615. struct ggml_context * ctx,
  3616. struct ggml_tensor * a) {
  3617. return ggml_sqr_impl(ctx, a, false);
  3618. }
  3619. struct ggml_tensor * ggml_sqr_inplace(
  3620. struct ggml_context * ctx,
  3621. struct ggml_tensor * a) {
  3622. return ggml_sqr_impl(ctx, a, true);
  3623. }
  3624. // ggml_sqrt
  3625. struct ggml_tensor * ggml_sqrt_impl(
  3626. struct ggml_context * ctx,
  3627. struct ggml_tensor * a,
  3628. bool inplace) {
  3629. bool is_node = false;
  3630. if (!inplace && (a->grad)) {
  3631. is_node = true;
  3632. }
  3633. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3634. result->op = GGML_OP_SQRT;
  3635. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3636. result->src0 = a;
  3637. result->src1 = NULL;
  3638. return result;
  3639. }
  3640. struct ggml_tensor * ggml_sqrt(
  3641. struct ggml_context * ctx,
  3642. struct ggml_tensor * a) {
  3643. return ggml_sqrt_impl(ctx, a, false);
  3644. }
  3645. struct ggml_tensor * ggml_sqrt_inplace(
  3646. struct ggml_context * ctx,
  3647. struct ggml_tensor * a) {
  3648. return ggml_sqrt_impl(ctx, a, true);
  3649. }
  3650. // ggml_sum
  3651. struct ggml_tensor * ggml_sum(
  3652. struct ggml_context * ctx,
  3653. struct ggml_tensor * a) {
  3654. bool is_node = false;
  3655. if (a->grad) {
  3656. is_node = true;
  3657. }
  3658. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3659. result->op = GGML_OP_SUM;
  3660. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3661. result->src0 = a;
  3662. result->src1 = NULL;
  3663. return result;
  3664. }
  3665. // ggml_mean
  3666. struct ggml_tensor * ggml_mean(
  3667. struct ggml_context * ctx,
  3668. struct ggml_tensor * a) {
  3669. bool is_node = false;
  3670. if (a->grad) {
  3671. GGML_ASSERT(false); // TODO: implement
  3672. is_node = true;
  3673. }
  3674. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3675. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3676. result->op = GGML_OP_MEAN;
  3677. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3678. result->src0 = a;
  3679. result->src1 = NULL;
  3680. return result;
  3681. }
  3682. // ggml_repeat
  3683. struct ggml_tensor * ggml_repeat(
  3684. struct ggml_context * ctx,
  3685. struct ggml_tensor * a,
  3686. struct ggml_tensor * b) {
  3687. GGML_ASSERT(ggml_can_repeat(a, b));
  3688. bool is_node = false;
  3689. if (a->grad) {
  3690. is_node = true;
  3691. }
  3692. if (ggml_are_same_shape(a, b) && !is_node) {
  3693. return a;
  3694. }
  3695. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3696. result->op = GGML_OP_REPEAT;
  3697. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3698. result->src0 = a;
  3699. result->src1 = b;
  3700. return result;
  3701. }
  3702. // ggml_abs
  3703. struct ggml_tensor * ggml_abs_impl(
  3704. struct ggml_context * ctx,
  3705. struct ggml_tensor * a,
  3706. bool inplace) {
  3707. bool is_node = false;
  3708. if (!inplace && (a->grad)) {
  3709. is_node = true;
  3710. }
  3711. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3712. result->op = GGML_OP_ABS;
  3713. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3714. result->src0 = a;
  3715. result->src1 = NULL;
  3716. return result;
  3717. }
  3718. struct ggml_tensor * ggml_abs(
  3719. struct ggml_context * ctx,
  3720. struct ggml_tensor * a) {
  3721. return ggml_abs_impl(ctx, a, false);
  3722. }
  3723. struct ggml_tensor * ggml_abs_inplace(
  3724. struct ggml_context * ctx,
  3725. struct ggml_tensor * a) {
  3726. return ggml_abs_impl(ctx, a, true);
  3727. }
  3728. // ggml_sgn
  3729. struct ggml_tensor * ggml_sgn_impl(
  3730. struct ggml_context * ctx,
  3731. struct ggml_tensor * a,
  3732. bool inplace) {
  3733. bool is_node = false;
  3734. if (!inplace && (a->grad)) {
  3735. is_node = true;
  3736. }
  3737. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3738. result->op = GGML_OP_SGN;
  3739. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3740. result->src0 = a;
  3741. result->src1 = NULL;
  3742. return result;
  3743. }
  3744. struct ggml_tensor * ggml_sgn(
  3745. struct ggml_context * ctx,
  3746. struct ggml_tensor * a) {
  3747. return ggml_sgn_impl(ctx, a, false);
  3748. }
  3749. struct ggml_tensor * ggml_sgn_inplace(
  3750. struct ggml_context * ctx,
  3751. struct ggml_tensor * a) {
  3752. return ggml_sgn_impl(ctx, a, true);
  3753. }
  3754. // ggml_neg
  3755. struct ggml_tensor * ggml_neg_impl(
  3756. struct ggml_context * ctx,
  3757. struct ggml_tensor * a,
  3758. bool inplace) {
  3759. bool is_node = false;
  3760. if (!inplace && (a->grad)) {
  3761. is_node = true;
  3762. }
  3763. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3764. result->op = GGML_OP_NEG;
  3765. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3766. result->src0 = a;
  3767. result->src1 = NULL;
  3768. return result;
  3769. }
  3770. struct ggml_tensor * ggml_neg(
  3771. struct ggml_context * ctx,
  3772. struct ggml_tensor * a) {
  3773. return ggml_neg_impl(ctx, a, false);
  3774. }
  3775. struct ggml_tensor * ggml_neg_inplace(
  3776. struct ggml_context * ctx,
  3777. struct ggml_tensor * a) {
  3778. return ggml_neg_impl(ctx, a, true);
  3779. }
  3780. // ggml_step
  3781. struct ggml_tensor * ggml_step_impl(
  3782. struct ggml_context * ctx,
  3783. struct ggml_tensor * a,
  3784. bool inplace) {
  3785. bool is_node = false;
  3786. if (!inplace && (a->grad)) {
  3787. is_node = true;
  3788. }
  3789. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3790. result->op = GGML_OP_STEP;
  3791. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3792. result->src0 = a;
  3793. result->src1 = NULL;
  3794. return result;
  3795. }
  3796. struct ggml_tensor * ggml_step(
  3797. struct ggml_context * ctx,
  3798. struct ggml_tensor * a) {
  3799. return ggml_step_impl(ctx, a, false);
  3800. }
  3801. struct ggml_tensor * ggml_step_inplace(
  3802. struct ggml_context * ctx,
  3803. struct ggml_tensor * a) {
  3804. return ggml_step_impl(ctx, a, true);
  3805. }
  3806. // ggml_relu
  3807. struct ggml_tensor * ggml_relu_impl(
  3808. struct ggml_context * ctx,
  3809. struct ggml_tensor * a,
  3810. bool inplace) {
  3811. bool is_node = false;
  3812. if (!inplace && (a->grad)) {
  3813. is_node = true;
  3814. }
  3815. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3816. result->op = GGML_OP_RELU;
  3817. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3818. result->src0 = a;
  3819. result->src1 = NULL;
  3820. return result;
  3821. }
  3822. struct ggml_tensor * ggml_relu(
  3823. struct ggml_context * ctx,
  3824. struct ggml_tensor * a) {
  3825. return ggml_relu_impl(ctx, a, false);
  3826. }
  3827. struct ggml_tensor * ggml_relu_inplace(
  3828. struct ggml_context * ctx,
  3829. struct ggml_tensor * a) {
  3830. return ggml_relu_impl(ctx, a, true);
  3831. }
  3832. // ggml_gelu
  3833. struct ggml_tensor * ggml_gelu_impl(
  3834. struct ggml_context * ctx,
  3835. struct ggml_tensor * a,
  3836. bool inplace) {
  3837. bool is_node = false;
  3838. if (!inplace && (a->grad)) {
  3839. is_node = true;
  3840. }
  3841. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3842. result->op = GGML_OP_GELU;
  3843. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3844. result->src0 = a;
  3845. result->src1 = NULL;
  3846. return result;
  3847. }
  3848. struct ggml_tensor * ggml_gelu(
  3849. struct ggml_context * ctx,
  3850. struct ggml_tensor * a) {
  3851. return ggml_gelu_impl(ctx, a, false);
  3852. }
  3853. struct ggml_tensor * ggml_gelu_inplace(
  3854. struct ggml_context * ctx,
  3855. struct ggml_tensor * a) {
  3856. return ggml_gelu_impl(ctx, a, true);
  3857. }
  3858. // ggml_silu
  3859. struct ggml_tensor * ggml_silu_impl(
  3860. struct ggml_context * ctx,
  3861. struct ggml_tensor * a,
  3862. bool inplace) {
  3863. bool is_node = false;
  3864. if (!inplace && (a->grad)) {
  3865. is_node = true;
  3866. }
  3867. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3868. result->op = GGML_OP_SILU;
  3869. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3870. result->src0 = a;
  3871. result->src1 = NULL;
  3872. return result;
  3873. }
  3874. struct ggml_tensor * ggml_silu(
  3875. struct ggml_context * ctx,
  3876. struct ggml_tensor * a) {
  3877. return ggml_silu_impl(ctx, a, false);
  3878. }
  3879. struct ggml_tensor * ggml_silu_inplace(
  3880. struct ggml_context * ctx,
  3881. struct ggml_tensor * a) {
  3882. return ggml_silu_impl(ctx, a, true);
  3883. }
  3884. // ggml_norm
  3885. struct ggml_tensor * ggml_norm_impl(
  3886. struct ggml_context * ctx,
  3887. struct ggml_tensor * a,
  3888. bool inplace) {
  3889. bool is_node = false;
  3890. if (!inplace && (a->grad)) {
  3891. GGML_ASSERT(false); // TODO: implement backward
  3892. is_node = true;
  3893. }
  3894. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3895. result->op = GGML_OP_NORM;
  3896. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3897. result->src0 = a;
  3898. result->src1 = NULL; // TODO: maybe store epsilon here?
  3899. return result;
  3900. }
  3901. struct ggml_tensor * ggml_norm(
  3902. struct ggml_context * ctx,
  3903. struct ggml_tensor * a) {
  3904. return ggml_norm_impl(ctx, a, false);
  3905. }
  3906. struct ggml_tensor * ggml_norm_inplace(
  3907. struct ggml_context * ctx,
  3908. struct ggml_tensor * a) {
  3909. return ggml_norm_impl(ctx, a, true);
  3910. }
  3911. struct ggml_tensor * ggml_rms_norm_impl(
  3912. struct ggml_context * ctx,
  3913. struct ggml_tensor * a,
  3914. bool inplace) {
  3915. bool is_node = false;
  3916. if (!inplace && (a->grad)) {
  3917. GGML_ASSERT(false); // TODO: implement backward
  3918. is_node = true;
  3919. }
  3920. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3921. result->op = GGML_OP_RMS_NORM;
  3922. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3923. result->src0 = a;
  3924. result->src1 = NULL; // TODO: maybe store epsilon here?
  3925. return result;
  3926. }
  3927. struct ggml_tensor * ggml_rms_norm(
  3928. struct ggml_context * ctx,
  3929. struct ggml_tensor * a) {
  3930. return ggml_rms_norm_impl(ctx, a, false);
  3931. }
  3932. struct ggml_tensor * ggml_rms_norm_inplace(
  3933. struct ggml_context * ctx,
  3934. struct ggml_tensor * a) {
  3935. return ggml_rms_norm_impl(ctx, a, true);
  3936. }
  3937. // ggml_mul_mat
  3938. struct ggml_tensor * ggml_mul_mat(
  3939. struct ggml_context * ctx,
  3940. struct ggml_tensor * a,
  3941. struct ggml_tensor * b) {
  3942. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3943. GGML_ASSERT(!ggml_is_transposed(a));
  3944. bool is_node = false;
  3945. if (a->grad || b->grad) {
  3946. is_node = true;
  3947. }
  3948. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3949. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3950. result->op = GGML_OP_MUL_MAT;
  3951. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3952. result->src0 = a;
  3953. result->src1 = b;
  3954. return result;
  3955. }
  3956. // ggml_scale
  3957. struct ggml_tensor * ggml_scale_impl(
  3958. struct ggml_context * ctx,
  3959. struct ggml_tensor * a,
  3960. struct ggml_tensor * b,
  3961. bool inplace) {
  3962. GGML_ASSERT(ggml_is_scalar(b));
  3963. GGML_ASSERT(ggml_is_padded_1d(a));
  3964. bool is_node = false;
  3965. if (!inplace && (a->grad || b->grad)) {
  3966. GGML_ASSERT(false); // TODO: implement backward
  3967. is_node = true;
  3968. }
  3969. // TODO: when implement backward, fix this:
  3970. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3971. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3972. result->op = GGML_OP_SCALE;
  3973. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3974. result->src0 = a;
  3975. result->src1 = b;
  3976. return result;
  3977. }
  3978. struct ggml_tensor * ggml_scale(
  3979. struct ggml_context * ctx,
  3980. struct ggml_tensor * a,
  3981. struct ggml_tensor * b) {
  3982. return ggml_scale_impl(ctx, a, b, false);
  3983. }
  3984. struct ggml_tensor * ggml_scale_inplace(
  3985. struct ggml_context * ctx,
  3986. struct ggml_tensor * a,
  3987. struct ggml_tensor * b) {
  3988. return ggml_scale_impl(ctx, a, b, true);
  3989. }
  3990. // ggml_cpy
  3991. struct ggml_tensor * ggml_cpy_impl(
  3992. struct ggml_context * ctx,
  3993. struct ggml_tensor * a,
  3994. struct ggml_tensor * b,
  3995. bool inplace) {
  3996. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3997. bool is_node = false;
  3998. if (!inplace && (a->grad || b->grad)) {
  3999. GGML_ASSERT(false); // TODO: implement backward
  4000. is_node = true;
  4001. }
  4002. // make a view of the destination
  4003. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4004. result->op = GGML_OP_CPY;
  4005. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4006. result->src0 = a;
  4007. result->src1 = b;
  4008. return result;
  4009. }
  4010. struct ggml_tensor * ggml_cpy(
  4011. struct ggml_context * ctx,
  4012. struct ggml_tensor * a,
  4013. struct ggml_tensor * b) {
  4014. return ggml_cpy_impl(ctx, a, b, false);
  4015. }
  4016. struct ggml_tensor * ggml_cpy_inplace(
  4017. struct ggml_context * ctx,
  4018. struct ggml_tensor * a,
  4019. struct ggml_tensor * b) {
  4020. return ggml_cpy_impl(ctx, a, b, true);
  4021. }
  4022. // ggml_cont
  4023. struct ggml_tensor * ggml_cont_impl(
  4024. struct ggml_context * ctx,
  4025. struct ggml_tensor * a,
  4026. bool inplace) {
  4027. bool is_node = false;
  4028. if (!inplace && a->grad) {
  4029. GGML_ASSERT(false); // TODO: implement backward
  4030. is_node = true;
  4031. }
  4032. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4033. result->op = GGML_OP_CONT;
  4034. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4035. result->src0 = a;
  4036. result->src1 = NULL;
  4037. return result;
  4038. }
  4039. struct ggml_tensor * ggml_cont(
  4040. struct ggml_context * ctx,
  4041. struct ggml_tensor * a) {
  4042. return ggml_cont_impl(ctx, a, false);
  4043. }
  4044. struct ggml_tensor * ggml_cont_inplace(
  4045. struct ggml_context * ctx,
  4046. struct ggml_tensor * a) {
  4047. return ggml_cont_impl(ctx, a, true);
  4048. }
  4049. // ggml_reshape
  4050. struct ggml_tensor * ggml_reshape(
  4051. struct ggml_context * ctx,
  4052. struct ggml_tensor * a,
  4053. struct ggml_tensor * b) {
  4054. GGML_ASSERT(ggml_is_contiguous(a));
  4055. GGML_ASSERT(ggml_is_contiguous(b));
  4056. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4057. bool is_node = false;
  4058. if (a->grad || b->grad) {
  4059. GGML_ASSERT(false); // TODO: implement backward
  4060. is_node = true;
  4061. }
  4062. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4063. result->op = GGML_OP_RESHAPE;
  4064. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4065. result->src0 = a;
  4066. result->src1 = NULL;
  4067. return result;
  4068. }
  4069. struct ggml_tensor * ggml_reshape_2d(
  4070. struct ggml_context * ctx,
  4071. struct ggml_tensor * a,
  4072. int64_t ne0,
  4073. int64_t ne1) {
  4074. GGML_ASSERT(ggml_is_contiguous(a));
  4075. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4076. bool is_node = false;
  4077. if (a->grad) {
  4078. GGML_ASSERT(false); // TODO: implement backward
  4079. is_node = true;
  4080. }
  4081. const int64_t ne[2] = { ne0, ne1 };
  4082. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4083. result->op = GGML_OP_RESHAPE;
  4084. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4085. result->src0 = a;
  4086. result->src1 = NULL;
  4087. return result;
  4088. }
  4089. struct ggml_tensor * ggml_reshape_3d(
  4090. struct ggml_context * ctx,
  4091. struct ggml_tensor * a,
  4092. int64_t ne0,
  4093. int64_t ne1,
  4094. int64_t ne2) {
  4095. GGML_ASSERT(ggml_is_contiguous(a));
  4096. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4097. bool is_node = false;
  4098. if (a->grad) {
  4099. GGML_ASSERT(false); // TODO: implement backward
  4100. is_node = true;
  4101. }
  4102. const int64_t ne[3] = { ne0, ne1, ne2 };
  4103. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4104. result->op = GGML_OP_RESHAPE;
  4105. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4106. result->src0 = a;
  4107. result->src1 = NULL;
  4108. return result;
  4109. }
  4110. // ggml_view_1d
  4111. struct ggml_tensor * ggml_view_1d(
  4112. struct ggml_context * ctx,
  4113. struct ggml_tensor * a,
  4114. int64_t ne0,
  4115. size_t offset) {
  4116. if (a->grad) {
  4117. GGML_ASSERT(false); // gradient propagation is not supported
  4118. }
  4119. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4120. result->op = GGML_OP_VIEW;
  4121. result->grad = NULL;
  4122. result->src0 = a;
  4123. result->src1 = NULL; // TODO: maybe store the offset here?
  4124. return result;
  4125. }
  4126. // ggml_view_2d
  4127. struct ggml_tensor * ggml_view_2d(
  4128. struct ggml_context * ctx,
  4129. struct ggml_tensor * a,
  4130. int64_t ne0,
  4131. int64_t ne1,
  4132. size_t nb1,
  4133. size_t offset) {
  4134. if (a->grad) {
  4135. GGML_ASSERT(false); // gradient propagation is not supported
  4136. }
  4137. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4138. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4139. result->nb[1] = nb1;
  4140. result->nb[2] = result->nb[1]*ne1;
  4141. result->nb[3] = result->nb[2];
  4142. result->op = GGML_OP_VIEW;
  4143. result->grad = NULL;
  4144. result->src0 = a;
  4145. result->src1 = NULL; // TODO: maybe store the offset here?
  4146. return result;
  4147. }
  4148. // ggml_view_3d
  4149. struct ggml_tensor * ggml_view_3d(
  4150. struct ggml_context * ctx,
  4151. struct ggml_tensor * a,
  4152. int64_t ne0,
  4153. int64_t ne1,
  4154. int64_t ne2,
  4155. size_t nb1,
  4156. size_t nb2,
  4157. size_t offset) {
  4158. if (a->grad) {
  4159. GGML_ASSERT(false); // gradient propagation is not supported
  4160. }
  4161. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4162. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4163. result->nb[1] = nb1;
  4164. result->nb[2] = nb2;
  4165. result->nb[3] = result->nb[2]*ne2;
  4166. result->op = GGML_OP_VIEW;
  4167. result->grad = NULL;
  4168. result->src0 = a;
  4169. result->src1 = NULL; // TODO: maybe store the offset here?
  4170. return result;
  4171. }
  4172. // ggml_permute
  4173. struct ggml_tensor * ggml_permute(
  4174. struct ggml_context * ctx,
  4175. struct ggml_tensor * a,
  4176. int axis0,
  4177. int axis1,
  4178. int axis2,
  4179. int axis3) {
  4180. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4181. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4182. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4183. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4184. GGML_ASSERT(axis0 != axis1);
  4185. GGML_ASSERT(axis0 != axis2);
  4186. GGML_ASSERT(axis0 != axis3);
  4187. GGML_ASSERT(axis1 != axis2);
  4188. GGML_ASSERT(axis1 != axis3);
  4189. GGML_ASSERT(axis2 != axis3);
  4190. bool is_node = false;
  4191. if (a->grad) {
  4192. GGML_ASSERT(false); // TODO: implement backward
  4193. is_node = true;
  4194. }
  4195. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4196. int ne[GGML_MAX_DIMS];
  4197. int nb[GGML_MAX_DIMS];
  4198. ne[axis0] = a->ne[0];
  4199. ne[axis1] = a->ne[1];
  4200. ne[axis2] = a->ne[2];
  4201. ne[axis3] = a->ne[3];
  4202. nb[axis0] = a->nb[0];
  4203. nb[axis1] = a->nb[1];
  4204. nb[axis2] = a->nb[2];
  4205. nb[axis3] = a->nb[3];
  4206. result->ne[0] = ne[0];
  4207. result->ne[1] = ne[1];
  4208. result->ne[2] = ne[2];
  4209. result->ne[3] = ne[3];
  4210. result->nb[0] = nb[0];
  4211. result->nb[1] = nb[1];
  4212. result->nb[2] = nb[2];
  4213. result->nb[3] = nb[3];
  4214. result->op = GGML_OP_PERMUTE;
  4215. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4216. result->src0 = a;
  4217. result->src1 = NULL; // TODO: maybe store the permutation here?
  4218. return result;
  4219. }
  4220. // ggml_transpose
  4221. struct ggml_tensor * ggml_transpose(
  4222. struct ggml_context * ctx,
  4223. struct ggml_tensor * a) {
  4224. bool is_node = false;
  4225. if (a->grad) {
  4226. GGML_ASSERT(false); // TODO: implement backward
  4227. is_node = true;
  4228. }
  4229. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4230. result->ne[0] = a->ne[1];
  4231. result->ne[1] = a->ne[0];
  4232. result->nb[0] = a->nb[1];
  4233. result->nb[1] = a->nb[0];
  4234. result->op = GGML_OP_TRANSPOSE;
  4235. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4236. result->src0 = a;
  4237. result->src1 = NULL;
  4238. return result;
  4239. }
  4240. // ggml_get_rows
  4241. struct ggml_tensor * ggml_get_rows(
  4242. struct ggml_context * ctx,
  4243. struct ggml_tensor * a,
  4244. struct ggml_tensor * b) {
  4245. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4246. bool is_node = false;
  4247. if (a->grad || b->grad) {
  4248. GGML_ASSERT(false); // TODO: implement backward
  4249. is_node = true;
  4250. }
  4251. // TODO: implement non F32 return
  4252. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4253. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4254. result->op = GGML_OP_GET_ROWS;
  4255. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4256. result->src0 = a;
  4257. result->src1 = b;
  4258. return result;
  4259. }
  4260. // ggml_diag_mask_inf
  4261. struct ggml_tensor * ggml_diag_mask_inf(
  4262. struct ggml_context * ctx,
  4263. struct ggml_tensor * a,
  4264. int n_past) {
  4265. bool is_node = false;
  4266. if (a->grad) {
  4267. GGML_ASSERT(false); // TODO: implement backward
  4268. is_node = true;
  4269. }
  4270. // TODO: when implement backward, fix this:
  4271. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4272. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4273. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  4274. result->op = GGML_OP_DIAG_MASK_INF;
  4275. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4276. result->src0 = a;
  4277. result->src1 = b;
  4278. return result;
  4279. }
  4280. // ggml_soft_max
  4281. struct ggml_tensor * ggml_soft_max(
  4282. struct ggml_context * ctx,
  4283. struct ggml_tensor * a) {
  4284. bool is_node = false;
  4285. if (a->grad) {
  4286. GGML_ASSERT(false); // TODO: implement backward
  4287. is_node = true;
  4288. }
  4289. // TODO: when implement backward, fix this:
  4290. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4291. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4292. result->op = GGML_OP_SOFT_MAX;
  4293. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4294. result->src0 = a;
  4295. result->src1 = NULL;
  4296. return result;
  4297. }
  4298. // ggml_rope
  4299. struct ggml_tensor * ggml_rope(
  4300. struct ggml_context * ctx,
  4301. struct ggml_tensor * a,
  4302. int n_past,
  4303. int n_dims,
  4304. int mode) {
  4305. GGML_ASSERT(n_past >= 0);
  4306. bool is_node = false;
  4307. if (a->grad) {
  4308. GGML_ASSERT(false); // TODO: implement backward
  4309. is_node = true;
  4310. }
  4311. // TODO: when implement backward, fix this:
  4312. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4313. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4314. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4315. ((int32_t *) b->data)[0] = n_past;
  4316. ((int32_t *) b->data)[1] = n_dims;
  4317. ((int32_t *) b->data)[2] = mode;
  4318. result->op = GGML_OP_ROPE;
  4319. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4320. result->src0 = a;
  4321. result->src1 = b;
  4322. return result;
  4323. }
  4324. // ggml_conv_1d_1s
  4325. struct ggml_tensor * ggml_conv_1d_1s(
  4326. struct ggml_context * ctx,
  4327. struct ggml_tensor * a,
  4328. struct ggml_tensor * b) {
  4329. GGML_ASSERT(ggml_is_matrix(b));
  4330. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4331. GGML_ASSERT(a->ne[3] == 1);
  4332. bool is_node = false;
  4333. if (a->grad || b->grad) {
  4334. GGML_ASSERT(false); // TODO: implement backward
  4335. is_node = true;
  4336. }
  4337. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  4338. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4339. result->op = GGML_OP_CONV_1D_1S;
  4340. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4341. result->src0 = a;
  4342. result->src1 = b;
  4343. return result;
  4344. }
  4345. // ggml_conv_1d_2s
  4346. struct ggml_tensor * ggml_conv_1d_2s(
  4347. struct ggml_context * ctx,
  4348. struct ggml_tensor * a,
  4349. struct ggml_tensor * b) {
  4350. GGML_ASSERT(ggml_is_matrix(b));
  4351. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4352. GGML_ASSERT(a->ne[3] == 1);
  4353. bool is_node = false;
  4354. if (a->grad || b->grad) {
  4355. GGML_ASSERT(false); // TODO: implement backward
  4356. is_node = true;
  4357. }
  4358. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  4359. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4360. result->op = GGML_OP_CONV_1D_2S;
  4361. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4362. result->src0 = a;
  4363. result->src1 = b;
  4364. return result;
  4365. }
  4366. // ggml_flash_attn
  4367. struct ggml_tensor * ggml_flash_attn(
  4368. struct ggml_context * ctx,
  4369. struct ggml_tensor * q,
  4370. struct ggml_tensor * k,
  4371. struct ggml_tensor * v,
  4372. bool masked) {
  4373. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4374. // TODO: check if vT can be multiplied by (k*qT)
  4375. bool is_node = false;
  4376. if (q->grad || k->grad || v->grad) {
  4377. GGML_ASSERT(false); // TODO: implement backward
  4378. is_node = true;
  4379. }
  4380. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4381. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  4382. result->op = GGML_OP_FLASH_ATTN;
  4383. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4384. result->src0 = q;
  4385. result->src1 = k;
  4386. result->opt[0] = v;
  4387. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  4388. return result;
  4389. }
  4390. // ggml_flash_ff
  4391. struct ggml_tensor * ggml_flash_ff(
  4392. struct ggml_context * ctx,
  4393. struct ggml_tensor * a,
  4394. struct ggml_tensor * b0,
  4395. struct ggml_tensor * b1,
  4396. struct ggml_tensor * c0,
  4397. struct ggml_tensor * c1) {
  4398. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4399. // TODO: more checks
  4400. bool is_node = false;
  4401. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4402. GGML_ASSERT(false); // TODO: implement backward
  4403. is_node = true;
  4404. }
  4405. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4406. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  4407. result->op = GGML_OP_FLASH_FF;
  4408. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4409. result->src0 = a;
  4410. result->src1 = b0;
  4411. result->opt[0] = b1;
  4412. result->opt[1] = c0;
  4413. result->opt[2] = c1;
  4414. return result;
  4415. }
  4416. // ggml_map_unary
  4417. struct ggml_tensor * ggml_map_unary_impl_f32(
  4418. struct ggml_context * ctx,
  4419. struct ggml_tensor * a,
  4420. const ggml_unary_op_f32_t fun,
  4421. bool inplace) {
  4422. bool is_node = false;
  4423. if (!inplace && a->grad) {
  4424. is_node = true;
  4425. }
  4426. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4427. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4428. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4429. result->op = GGML_OP_MAP_UNARY;
  4430. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4431. result->src0 = a;
  4432. result->opt[0] = addr_tensor;
  4433. return result;
  4434. }
  4435. struct ggml_tensor * ggml_map_unary_f32(
  4436. struct ggml_context * ctx,
  4437. struct ggml_tensor * a,
  4438. const ggml_unary_op_f32_t fun) {
  4439. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4440. }
  4441. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4442. struct ggml_context * ctx,
  4443. struct ggml_tensor * a,
  4444. const ggml_unary_op_f32_t fun) {
  4445. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4446. }
  4447. // ggml_map_binary
  4448. struct ggml_tensor * ggml_map_binary_impl_f32(
  4449. struct ggml_context * ctx,
  4450. struct ggml_tensor * a,
  4451. struct ggml_tensor * b,
  4452. const ggml_binary_op_f32_t fun,
  4453. bool inplace) {
  4454. GGML_ASSERT(ggml_are_same_shape(a, b));
  4455. bool is_node = false;
  4456. if (!inplace && (a->grad || b->grad)) {
  4457. is_node = true;
  4458. }
  4459. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4460. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4461. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4462. result->op = GGML_OP_MAP_BINARY;
  4463. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4464. result->src0 = a;
  4465. result->src1 = b;
  4466. result->opt[0] = addr_tensor;
  4467. return result;
  4468. }
  4469. struct ggml_tensor * ggml_map_binary_f32(
  4470. struct ggml_context * ctx,
  4471. struct ggml_tensor * a,
  4472. struct ggml_tensor * b,
  4473. const ggml_binary_op_f32_t fun) {
  4474. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4475. }
  4476. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4477. struct ggml_context * ctx,
  4478. struct ggml_tensor * a,
  4479. struct ggml_tensor * b,
  4480. const ggml_binary_op_f32_t fun) {
  4481. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4482. }
  4483. ////////////////////////////////////////////////////////////////////////////////
  4484. void ggml_set_param(
  4485. struct ggml_context * ctx,
  4486. struct ggml_tensor * tensor) {
  4487. tensor->is_param = true;
  4488. GGML_ASSERT(tensor->grad == NULL);
  4489. tensor->grad = ggml_dup_tensor(ctx, tensor);
  4490. }
  4491. // ggml_compute_forward_dup
  4492. static void ggml_compute_forward_dup_f16(
  4493. const struct ggml_compute_params * params,
  4494. const struct ggml_tensor * src0,
  4495. struct ggml_tensor * dst) {
  4496. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4497. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4498. return;
  4499. }
  4500. const int64_t ne00 = src0->ne[0];
  4501. const int64_t ne01 = src0->ne[1];
  4502. const int64_t ne02 = src0->ne[2];
  4503. const int64_t ne03 = src0->ne[3];
  4504. const int64_t ne0 = dst->ne[0];
  4505. const int64_t ne1 = dst->ne[1];
  4506. const int64_t ne2 = dst->ne[2];
  4507. const int64_t ne3 = dst->ne[3];
  4508. const size_t nb00 = src0->nb[0];
  4509. const size_t nb01 = src0->nb[1];
  4510. const size_t nb02 = src0->nb[2];
  4511. const size_t nb03 = src0->nb[3];
  4512. const size_t nb0 = dst->nb[0];
  4513. const size_t nb1 = dst->nb[1];
  4514. const size_t nb2 = dst->nb[2];
  4515. const size_t nb3 = dst->nb[3];
  4516. const int ith = params->ith; // thread index
  4517. const int nth = params->nth; // number of threads
  4518. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4519. // parallelize by elements
  4520. const int ne = ggml_nelements(dst);
  4521. const int dr = (ne + nth - 1) / nth;
  4522. const int ie0 = dr * ith;
  4523. const int ie1 = MIN(ie0 + dr, ne);
  4524. memcpy(
  4525. ((char *) dst->data + ie0*nb0),
  4526. ((char *) src0->data + ie0*nb00),
  4527. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  4528. return;
  4529. }
  4530. // parallelize by rows
  4531. const int nr = ne01;
  4532. // number of rows per thread
  4533. const int dr = (nr + nth - 1) / nth;
  4534. // row range for this thread
  4535. const int ir0 = dr * ith;
  4536. const int ir1 = MIN(ir0 + dr, nr);
  4537. if (src0->type == dst->type &&
  4538. ne00 == ne0 &&
  4539. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  4540. // copy by rows
  4541. const size_t rs = ne00*nb00;
  4542. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4543. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4544. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4545. memcpy(
  4546. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4547. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4548. rs);
  4549. }
  4550. }
  4551. }
  4552. return;
  4553. }
  4554. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  4555. if (ggml_is_contiguous(dst)) {
  4556. if (nb00 == sizeof(ggml_fp16_t)) {
  4557. if (dst->type == GGML_TYPE_F16) {
  4558. size_t id = 0;
  4559. const size_t rs = ne00 * nb00;
  4560. char * dst_ptr = (char *) dst->data;
  4561. for (int i03 = 0; i03 < ne03; i03++) {
  4562. for (int i02 = 0; i02 < ne02; i02++) {
  4563. id += rs * ir0;
  4564. for (int i01 = ir0; i01 < ir1; i01++) {
  4565. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4566. memcpy(dst_ptr + id, src0_ptr, rs);
  4567. id += rs;
  4568. }
  4569. id += rs * (ne01 - ir1);
  4570. }
  4571. }
  4572. } else if (dst->type == GGML_TYPE_F32) {
  4573. size_t id = 0;
  4574. float * dst_ptr = (float *) dst->data;
  4575. for (int i03 = 0; i03 < ne03; i03++) {
  4576. for (int i02 = 0; i02 < ne02; i02++) {
  4577. id += ne00 * ir0;
  4578. for (int i01 = ir0; i01 < ir1; i01++) {
  4579. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4580. for (int i00 = 0; i00 < ne00; i00++) {
  4581. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4582. id++;
  4583. }
  4584. }
  4585. id += ne00 * (ne01 - ir1);
  4586. }
  4587. }
  4588. } else if (ggml_is_quantized(dst->type)) {
  4589. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  4590. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  4591. size_t id = 0;
  4592. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  4593. char * dst_ptr = (char *) dst->data;
  4594. for (int i03 = 0; i03 < ne03; i03++) {
  4595. for (int i02 = 0; i02 < ne02; i02++) {
  4596. id += rs * ir0;
  4597. for (int i01 = ir0; i01 < ir1; i01++) {
  4598. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4599. for (int i00 = 0; i00 < ne00; i00++) {
  4600. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4601. }
  4602. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  4603. id += rs;
  4604. }
  4605. id += rs * (ne01 - ir1);
  4606. }
  4607. }
  4608. } else {
  4609. GGML_ASSERT(false); // TODO: implement
  4610. }
  4611. } else {
  4612. //printf("%s: this is not optimal - fix me\n", __func__);
  4613. if (dst->type == GGML_TYPE_F32) {
  4614. size_t id = 0;
  4615. float * dst_ptr = (float *) dst->data;
  4616. for (int i03 = 0; i03 < ne03; i03++) {
  4617. for (int i02 = 0; i02 < ne02; i02++) {
  4618. id += ne00 * ir0;
  4619. for (int i01 = ir0; i01 < ir1; i01++) {
  4620. for (int i00 = 0; i00 < ne00; i00++) {
  4621. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4622. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  4623. id++;
  4624. }
  4625. }
  4626. id += ne00 * (ne01 - ir1);
  4627. }
  4628. }
  4629. } else if (dst->type == GGML_TYPE_F16) {
  4630. size_t id = 0;
  4631. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4632. for (int i03 = 0; i03 < ne03; i03++) {
  4633. for (int i02 = 0; i02 < ne02; i02++) {
  4634. id += ne00 * ir0;
  4635. for (int i01 = ir0; i01 < ir1; i01++) {
  4636. for (int i00 = 0; i00 < ne00; i00++) {
  4637. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4638. dst_ptr[id] = *src0_ptr;
  4639. id++;
  4640. }
  4641. }
  4642. id += ne00 * (ne01 - ir1);
  4643. }
  4644. }
  4645. } else {
  4646. GGML_ASSERT(false); // TODO: implement
  4647. }
  4648. }
  4649. return;
  4650. }
  4651. // dst counters
  4652. int64_t i10 = 0;
  4653. int64_t i11 = 0;
  4654. int64_t i12 = 0;
  4655. int64_t i13 = 0;
  4656. if (dst->type == GGML_TYPE_F16) {
  4657. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4658. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4659. i10 += ne00 * ir0;
  4660. while (i10 >= ne0) {
  4661. i10 -= ne0;
  4662. if (++i11 == ne1) {
  4663. i11 = 0;
  4664. if (++i12 == ne2) {
  4665. i12 = 0;
  4666. if (++i13 == ne3) {
  4667. i13 = 0;
  4668. }
  4669. }
  4670. }
  4671. }
  4672. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4673. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4674. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4675. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4676. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  4677. if (++i10 == ne00) {
  4678. i10 = 0;
  4679. if (++i11 == ne01) {
  4680. i11 = 0;
  4681. if (++i12 == ne02) {
  4682. i12 = 0;
  4683. if (++i13 == ne03) {
  4684. i13 = 0;
  4685. }
  4686. }
  4687. }
  4688. }
  4689. }
  4690. }
  4691. i10 += ne00 * (ne01 - ir1);
  4692. while (i10 >= ne0) {
  4693. i10 -= ne0;
  4694. if (++i11 == ne1) {
  4695. i11 = 0;
  4696. if (++i12 == ne2) {
  4697. i12 = 0;
  4698. if (++i13 == ne3) {
  4699. i13 = 0;
  4700. }
  4701. }
  4702. }
  4703. }
  4704. }
  4705. }
  4706. } else if (dst->type == GGML_TYPE_F32) {
  4707. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4708. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4709. i10 += ne00 * ir0;
  4710. while (i10 >= ne0) {
  4711. i10 -= ne0;
  4712. if (++i11 == ne1) {
  4713. i11 = 0;
  4714. if (++i12 == ne2) {
  4715. i12 = 0;
  4716. if (++i13 == ne3) {
  4717. i13 = 0;
  4718. }
  4719. }
  4720. }
  4721. }
  4722. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4723. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4724. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4725. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4726. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  4727. if (++i10 == ne0) {
  4728. i10 = 0;
  4729. if (++i11 == ne1) {
  4730. i11 = 0;
  4731. if (++i12 == ne2) {
  4732. i12 = 0;
  4733. if (++i13 == ne3) {
  4734. i13 = 0;
  4735. }
  4736. }
  4737. }
  4738. }
  4739. }
  4740. }
  4741. i10 += ne00 * (ne01 - ir1);
  4742. while (i10 >= ne0) {
  4743. i10 -= ne0;
  4744. if (++i11 == ne1) {
  4745. i11 = 0;
  4746. if (++i12 == ne2) {
  4747. i12 = 0;
  4748. if (++i13 == ne3) {
  4749. i13 = 0;
  4750. }
  4751. }
  4752. }
  4753. }
  4754. }
  4755. }
  4756. } else {
  4757. GGML_ASSERT(false); // TODO: implement
  4758. }
  4759. }
  4760. static void ggml_compute_forward_dup_f32(
  4761. const struct ggml_compute_params * params,
  4762. const struct ggml_tensor * src0,
  4763. struct ggml_tensor * dst) {
  4764. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4765. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4766. return;
  4767. }
  4768. const int64_t ne00 = src0->ne[0];
  4769. const int64_t ne01 = src0->ne[1];
  4770. const int64_t ne02 = src0->ne[2];
  4771. const int64_t ne03 = src0->ne[3];
  4772. const int64_t ne0 = dst->ne[0];
  4773. const int64_t ne1 = dst->ne[1];
  4774. const int64_t ne2 = dst->ne[2];
  4775. const int64_t ne3 = dst->ne[3];
  4776. const size_t nb00 = src0->nb[0];
  4777. const size_t nb01 = src0->nb[1];
  4778. const size_t nb02 = src0->nb[2];
  4779. const size_t nb03 = src0->nb[3];
  4780. const size_t nb0 = dst->nb[0];
  4781. const size_t nb1 = dst->nb[1];
  4782. const size_t nb2 = dst->nb[2];
  4783. const size_t nb3 = dst->nb[3];
  4784. const int ith = params->ith; // thread index
  4785. const int nth = params->nth; // number of threads
  4786. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4787. // parallelize by elements
  4788. const int ne = ggml_nelements(dst);
  4789. const int dr = (ne + nth - 1) / nth;
  4790. const int ie0 = dr * ith;
  4791. const int ie1 = MIN(ie0 + dr, ne);
  4792. memcpy(
  4793. ((char *) dst->data + ie0*nb0),
  4794. ((char *) src0->data + ie0*nb00),
  4795. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  4796. return;
  4797. }
  4798. // parallelize by rows
  4799. const int nr = ne01;
  4800. // number of rows per thread
  4801. const int dr = (nr + nth - 1) / nth;
  4802. // row range for this thread
  4803. const int ir0 = dr * ith;
  4804. const int ir1 = MIN(ir0 + dr, nr);
  4805. if (src0->type == dst->type &&
  4806. ne00 == ne0 &&
  4807. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  4808. // copy by rows
  4809. const size_t rs = ne00*nb00;
  4810. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4811. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4812. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4813. memcpy(
  4814. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4815. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4816. rs);
  4817. }
  4818. }
  4819. }
  4820. return;
  4821. }
  4822. if (ggml_is_contiguous(dst)) {
  4823. // TODO: simplify
  4824. if (nb00 == sizeof(float)) {
  4825. if (dst->type == GGML_TYPE_F32) {
  4826. size_t id = 0;
  4827. const size_t rs = ne00 * nb00;
  4828. char * dst_ptr = (char *) dst->data;
  4829. for (int i03 = 0; i03 < ne03; i03++) {
  4830. for (int i02 = 0; i02 < ne02; i02++) {
  4831. id += rs * ir0;
  4832. for (int i01 = ir0; i01 < ir1; i01++) {
  4833. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4834. memcpy(dst_ptr + id, src0_ptr, rs);
  4835. id += rs;
  4836. }
  4837. id += rs * (ne01 - ir1);
  4838. }
  4839. }
  4840. } else if (dst->type == GGML_TYPE_F16) {
  4841. size_t id = 0;
  4842. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4843. for (int i03 = 0; i03 < ne03; i03++) {
  4844. for (int i02 = 0; i02 < ne02; i02++) {
  4845. id += ne00 * ir0;
  4846. for (int i01 = ir0; i01 < ir1; i01++) {
  4847. for (int i00 = 0; i00 < ne00; i00++) {
  4848. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4849. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4850. id++;
  4851. }
  4852. }
  4853. id += ne00 * (ne01 - ir1);
  4854. }
  4855. }
  4856. } else if (ggml_is_quantized(dst->type)) {
  4857. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  4858. size_t id = 0;
  4859. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  4860. char * dst_ptr = (char *) dst->data;
  4861. for (int i03 = 0; i03 < ne03; i03++) {
  4862. for (int i02 = 0; i02 < ne02; i02++) {
  4863. id += rs * ir0;
  4864. for (int i01 = ir0; i01 < ir1; i01++) {
  4865. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4866. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  4867. id += rs;
  4868. }
  4869. id += rs * (ne01 - ir1);
  4870. }
  4871. }
  4872. } else {
  4873. GGML_ASSERT(false); // TODO: implement
  4874. }
  4875. } else {
  4876. //printf("%s: this is not optimal - fix me\n", __func__);
  4877. if (dst->type == GGML_TYPE_F32) {
  4878. size_t id = 0;
  4879. float * dst_ptr = (float *) dst->data;
  4880. for (int i03 = 0; i03 < ne03; i03++) {
  4881. for (int i02 = 0; i02 < ne02; i02++) {
  4882. id += ne00 * ir0;
  4883. for (int i01 = ir0; i01 < ir1; i01++) {
  4884. for (int i00 = 0; i00 < ne00; i00++) {
  4885. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4886. dst_ptr[id] = *src0_ptr;
  4887. id++;
  4888. }
  4889. }
  4890. id += ne00 * (ne01 - ir1);
  4891. }
  4892. }
  4893. } else if (dst->type == GGML_TYPE_F16) {
  4894. size_t id = 0;
  4895. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4896. for (int i03 = 0; i03 < ne03; i03++) {
  4897. for (int i02 = 0; i02 < ne02; i02++) {
  4898. id += ne00 * ir0;
  4899. for (int i01 = ir0; i01 < ir1; i01++) {
  4900. for (int i00 = 0; i00 < ne00; i00++) {
  4901. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4902. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4903. id++;
  4904. }
  4905. }
  4906. id += ne00 * (ne01 - ir1);
  4907. }
  4908. }
  4909. } else {
  4910. GGML_ASSERT(false); // TODO: implement
  4911. }
  4912. }
  4913. return;
  4914. }
  4915. // dst counters
  4916. int64_t i10 = 0;
  4917. int64_t i11 = 0;
  4918. int64_t i12 = 0;
  4919. int64_t i13 = 0;
  4920. if (dst->type == GGML_TYPE_F32) {
  4921. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4922. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4923. i10 += ne00 * ir0;
  4924. while (i10 >= ne0) {
  4925. i10 -= ne0;
  4926. if (++i11 == ne1) {
  4927. i11 = 0;
  4928. if (++i12 == ne2) {
  4929. i12 = 0;
  4930. if (++i13 == ne3) {
  4931. i13 = 0;
  4932. }
  4933. }
  4934. }
  4935. }
  4936. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4937. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4938. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4939. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4940. memcpy(dst_ptr, src0_ptr, sizeof(float));
  4941. if (++i10 == ne0) {
  4942. i10 = 0;
  4943. if (++i11 == ne1) {
  4944. i11 = 0;
  4945. if (++i12 == ne2) {
  4946. i12 = 0;
  4947. if (++i13 == ne3) {
  4948. i13 = 0;
  4949. }
  4950. }
  4951. }
  4952. }
  4953. }
  4954. }
  4955. i10 += ne00 * (ne01 - ir1);
  4956. while (i10 >= ne0) {
  4957. i10 -= ne0;
  4958. if (++i11 == ne1) {
  4959. i11 = 0;
  4960. if (++i12 == ne2) {
  4961. i12 = 0;
  4962. if (++i13 == ne3) {
  4963. i13 = 0;
  4964. }
  4965. }
  4966. }
  4967. }
  4968. }
  4969. }
  4970. } else if (dst->type == GGML_TYPE_F16) {
  4971. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4972. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4973. i10 += ne00 * ir0;
  4974. while (i10 >= ne0) {
  4975. i10 -= ne0;
  4976. if (++i11 == ne1) {
  4977. i11 = 0;
  4978. if (++i12 == ne2) {
  4979. i12 = 0;
  4980. if (++i13 == ne3) {
  4981. i13 = 0;
  4982. }
  4983. }
  4984. }
  4985. }
  4986. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4987. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4988. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4989. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4990. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  4991. if (++i10 == ne0) {
  4992. i10 = 0;
  4993. if (++i11 == ne1) {
  4994. i11 = 0;
  4995. if (++i12 == ne2) {
  4996. i12 = 0;
  4997. if (++i13 == ne3) {
  4998. i13 = 0;
  4999. }
  5000. }
  5001. }
  5002. }
  5003. }
  5004. }
  5005. i10 += ne00 * (ne01 - ir1);
  5006. while (i10 >= ne0) {
  5007. i10 -= ne0;
  5008. if (++i11 == ne1) {
  5009. i11 = 0;
  5010. if (++i12 == ne2) {
  5011. i12 = 0;
  5012. if (++i13 == ne3) {
  5013. i13 = 0;
  5014. }
  5015. }
  5016. }
  5017. }
  5018. }
  5019. }
  5020. } else {
  5021. GGML_ASSERT(false); // TODO: implement
  5022. }
  5023. }
  5024. static void ggml_compute_forward_dup(
  5025. const struct ggml_compute_params * params,
  5026. const struct ggml_tensor * src0,
  5027. struct ggml_tensor * dst) {
  5028. switch (src0->type) {
  5029. case GGML_TYPE_F16:
  5030. {
  5031. ggml_compute_forward_dup_f16(params, src0, dst);
  5032. } break;
  5033. case GGML_TYPE_F32:
  5034. {
  5035. ggml_compute_forward_dup_f32(params, src0, dst);
  5036. } break;
  5037. default:
  5038. {
  5039. GGML_ASSERT(false);
  5040. } break;
  5041. }
  5042. }
  5043. // ggml_compute_forward_add
  5044. static void ggml_compute_forward_add_f32(
  5045. const struct ggml_compute_params * params,
  5046. const struct ggml_tensor * src0,
  5047. const struct ggml_tensor * src1,
  5048. struct ggml_tensor * dst) {
  5049. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5050. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5051. return;
  5052. }
  5053. const int ith = params->ith;
  5054. const int nth = params->nth;
  5055. const int n = ggml_nrows(src0);
  5056. const int nc = src0->ne[0];
  5057. const size_t nb00 = src0->nb[0];
  5058. const size_t nb01 = src0->nb[1];
  5059. const size_t nb10 = src1->nb[0];
  5060. const size_t nb11 = src1->nb[1];
  5061. const size_t nb0 = dst->nb[0];
  5062. const size_t nb1 = dst->nb[1];
  5063. GGML_ASSERT( nb0 == sizeof(float));
  5064. GGML_ASSERT(nb00 == sizeof(float));
  5065. if (nb10 == sizeof(float)) {
  5066. for (int j = ith; j < n; j += nth) {
  5067. #ifdef GGML_USE_ACCELERATE
  5068. vDSP_vadd(
  5069. (float *) ((char *) src0->data + j*nb01), 1,
  5070. (float *) ((char *) src1->data + j*nb11), 1,
  5071. (float *) ((char *) dst->data + j*nb1), 1, nc);
  5072. #else
  5073. ggml_vec_add_f32(nc,
  5074. (float *) ((char *) dst->data + j*nb1),
  5075. (float *) ((char *) src0->data + j*nb01),
  5076. (float *) ((char *) src1->data + j*nb11));
  5077. #endif
  5078. }
  5079. } else {
  5080. // src1 is not contiguous
  5081. for (int j = ith; j < n; j += nth) {
  5082. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  5083. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  5084. for (int i = 0; i < nc; i++) {
  5085. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5086. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  5087. }
  5088. }
  5089. }
  5090. }
  5091. static void ggml_compute_forward_add_f16_f32(
  5092. const struct ggml_compute_params * params,
  5093. const struct ggml_tensor * src0,
  5094. const struct ggml_tensor * src1,
  5095. struct ggml_tensor * dst) {
  5096. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5097. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5098. return;
  5099. }
  5100. const int ith = params->ith;
  5101. const int nth = params->nth;
  5102. const int n = ggml_nrows(src0);
  5103. const int nc = src0->ne[0];
  5104. const size_t nb00 = src0->nb[0];
  5105. const size_t nb01 = src0->nb[1];
  5106. const size_t nb10 = src1->nb[0];
  5107. const size_t nb11 = src1->nb[1];
  5108. const size_t nb0 = dst->nb[0];
  5109. const size_t nb1 = dst->nb[1];
  5110. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5111. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5112. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5113. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5114. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5115. if (nb10 == sizeof(float)) {
  5116. for (int j = ith; j < n; j += nth) {
  5117. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5118. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5119. for (int i = 0; i < nc; i++) {
  5120. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5121. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + *src1_ptr);
  5122. }
  5123. }
  5124. }
  5125. else {
  5126. // src1 is not contiguous
  5127. GGML_ASSERT(false);
  5128. }
  5129. }
  5130. static void ggml_compute_forward_add_f16_f16(
  5131. const struct ggml_compute_params * params,
  5132. const struct ggml_tensor * src0,
  5133. const struct ggml_tensor * src1,
  5134. struct ggml_tensor * dst) {
  5135. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5136. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5137. return;
  5138. }
  5139. const int ith = params->ith;
  5140. const int nth = params->nth;
  5141. const int n = ggml_nrows(src0);
  5142. const int nc = src0->ne[0];
  5143. const size_t nb00 = src0->nb[0];
  5144. const size_t nb01 = src0->nb[1];
  5145. const size_t nb10 = src1->nb[0];
  5146. const size_t nb11 = src1->nb[1];
  5147. const size_t nb0 = dst->nb[0];
  5148. const size_t nb1 = dst->nb[1];
  5149. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5150. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5151. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5152. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5153. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5154. if (nb10 == sizeof(ggml_fp16_t)) {
  5155. for (int j = ith; j < n; j += nth) {
  5156. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5157. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5158. for (int i = 0; i < nc; i++) {
  5159. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + j*nb11 + i*nb10);
  5160. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(*src1_ptr));
  5161. }
  5162. }
  5163. }
  5164. else {
  5165. // src1 is not contiguous
  5166. GGML_ASSERT(false);
  5167. }
  5168. }
  5169. static void ggml_compute_forward_add_q_f32(
  5170. const struct ggml_compute_params * params,
  5171. const struct ggml_tensor * src0,
  5172. const struct ggml_tensor * src1,
  5173. struct ggml_tensor * dst) {
  5174. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5175. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5176. return;
  5177. }
  5178. const int64_t ne00 = src0->ne[0];
  5179. const int64_t ne01 = src0->ne[1];
  5180. const int64_t ne02 = src0->ne[2];
  5181. const int64_t ne03 = src0->ne[3];
  5182. //const int64_t ne10 = src1->ne[0];
  5183. //const int64_t ne11 = src1->ne[1];
  5184. const int64_t ne12 = src1->ne[2];
  5185. const int64_t ne13 = src1->ne[3];
  5186. //const int64_t ne0 = dst->ne[0];
  5187. //const int64_t ne1 = dst->ne[1];
  5188. const int64_t ne2 = dst->ne[2];
  5189. const int64_t ne3 = dst->ne[3];
  5190. const int nb00 = src0->nb[0];
  5191. const int nb01 = src0->nb[1];
  5192. const int nb02 = src0->nb[2];
  5193. const int nb03 = src0->nb[3];
  5194. const int nb10 = src1->nb[0];
  5195. const int nb11 = src1->nb[1];
  5196. const int nb12 = src1->nb[2];
  5197. const int nb13 = src1->nb[3];
  5198. const int nb0 = dst->nb[0];
  5199. const int nb1 = dst->nb[1];
  5200. const int nb2 = dst->nb[2];
  5201. const int nb3 = dst->nb[3];
  5202. const int ith = params->ith;
  5203. const int nth = params->nth;
  5204. GGML_ASSERT(ne02 == ne12);
  5205. GGML_ASSERT(ne03 == ne13);
  5206. GGML_ASSERT(ne2 == ne12);
  5207. GGML_ASSERT(ne3 == ne13);
  5208. const enum ggml_type type = src0->type;
  5209. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5210. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5211. // we don't support permuted src0 or src1
  5212. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5213. GGML_ASSERT(nb10 == sizeof(float));
  5214. // dst cannot be transposed or permuted
  5215. GGML_ASSERT(nb0 <= nb1);
  5216. GGML_ASSERT(nb1 <= nb2);
  5217. GGML_ASSERT(nb2 <= nb3);
  5218. GGML_ASSERT(ggml_is_quantized(src0->type));
  5219. GGML_ASSERT(dst->type == src0->type);
  5220. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5221. // total rows in src0
  5222. const int nr = ne01*ne02*ne03;
  5223. // rows per thread
  5224. const int dr = (nr + nth - 1)/nth;
  5225. // row range for this thread
  5226. const int ir0 = dr*ith;
  5227. const int ir1 = MIN(ir0 + dr, nr);
  5228. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5229. for (int ir = ir0; ir < ir1; ++ir) {
  5230. // src0 indices
  5231. const int i03 = ir/(ne02*ne01);
  5232. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5233. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5234. // src1 and dst are same shape as src0 => same indices
  5235. const int i13 = i03;
  5236. const int i12 = i02;
  5237. const int i11 = i01;
  5238. const int i3 = i03;
  5239. const int i2 = i02;
  5240. const int i1 = i01;
  5241. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5242. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5243. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  5244. assert(ne00 % 32 == 0);
  5245. // unquantize row from src0 to temp buffer
  5246. dequantize_row_q(src0_row, wdata, ne00);
  5247. // add src1
  5248. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5249. // quantize row to dst
  5250. quantize_row_q(wdata, dst_row, ne00);
  5251. }
  5252. }
  5253. static void ggml_compute_forward_add(
  5254. const struct ggml_compute_params * params,
  5255. const struct ggml_tensor * src0,
  5256. const struct ggml_tensor * src1,
  5257. struct ggml_tensor * dst) {
  5258. switch (src0->type) {
  5259. case GGML_TYPE_F32:
  5260. {
  5261. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5262. } break;
  5263. case GGML_TYPE_F16:
  5264. {
  5265. if (src1->type == GGML_TYPE_F16) {
  5266. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5267. }
  5268. else if (src1->type == GGML_TYPE_F32) {
  5269. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5270. }
  5271. else {
  5272. GGML_ASSERT(false);
  5273. }
  5274. } break;
  5275. case GGML_TYPE_Q4_0:
  5276. case GGML_TYPE_Q4_1:
  5277. case GGML_TYPE_Q4_2:
  5278. case GGML_TYPE_Q4_3:
  5279. {
  5280. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5281. } break;
  5282. default:
  5283. {
  5284. GGML_ASSERT(false);
  5285. } break;
  5286. }
  5287. }
  5288. // ggml_compute_forward_sub
  5289. static void ggml_compute_forward_sub_f32(
  5290. const struct ggml_compute_params * params,
  5291. const struct ggml_tensor * src0,
  5292. const struct ggml_tensor * src1,
  5293. struct ggml_tensor * dst) {
  5294. assert(params->ith == 0);
  5295. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5296. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5297. return;
  5298. }
  5299. const int n = ggml_nrows(src0);
  5300. const int nc = src0->ne[0];
  5301. assert( dst->nb[0] == sizeof(float));
  5302. assert(src0->nb[0] == sizeof(float));
  5303. assert(src1->nb[0] == sizeof(float));
  5304. for (int i = 0; i < n; i++) {
  5305. ggml_vec_sub_f32(nc,
  5306. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5307. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5308. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5309. }
  5310. }
  5311. static void ggml_compute_forward_sub(
  5312. const struct ggml_compute_params * params,
  5313. const struct ggml_tensor * src0,
  5314. const struct ggml_tensor * src1,
  5315. struct ggml_tensor * dst) {
  5316. switch (src0->type) {
  5317. case GGML_TYPE_F32:
  5318. {
  5319. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  5320. } break;
  5321. default:
  5322. {
  5323. GGML_ASSERT(false);
  5324. } break;
  5325. }
  5326. }
  5327. // ggml_compute_forward_mul
  5328. static void ggml_compute_forward_mul_f32(
  5329. const struct ggml_compute_params * params,
  5330. const struct ggml_tensor * src0,
  5331. const struct ggml_tensor * src1,
  5332. struct ggml_tensor * dst) {
  5333. assert(params->ith == 0);
  5334. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5335. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5336. return;
  5337. }
  5338. const int n = ggml_nrows(src0);
  5339. const int nc = src0->ne[0];
  5340. assert( dst->nb[0] == sizeof(float));
  5341. assert(src0->nb[0] == sizeof(float));
  5342. assert(src1->nb[0] == sizeof(float));
  5343. for (int i = 0; i < n; i++) {
  5344. ggml_vec_mul_f32(nc,
  5345. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5346. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5347. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5348. }
  5349. }
  5350. static void ggml_compute_forward_mul(
  5351. const struct ggml_compute_params * params,
  5352. const struct ggml_tensor * src0,
  5353. const struct ggml_tensor * src1,
  5354. struct ggml_tensor * dst) {
  5355. switch (src0->type) {
  5356. case GGML_TYPE_F32:
  5357. {
  5358. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  5359. } break;
  5360. default:
  5361. {
  5362. GGML_ASSERT(false);
  5363. } break;
  5364. }
  5365. }
  5366. // ggml_compute_forward_div
  5367. static void ggml_compute_forward_div_f32(
  5368. const struct ggml_compute_params * params,
  5369. const struct ggml_tensor * src0,
  5370. const struct ggml_tensor * src1,
  5371. struct ggml_tensor * dst) {
  5372. assert(params->ith == 0);
  5373. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5374. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5375. return;
  5376. }
  5377. const int n = ggml_nrows(src0);
  5378. const int nc = src0->ne[0];
  5379. assert( dst->nb[0] == sizeof(float));
  5380. assert(src0->nb[0] == sizeof(float));
  5381. assert(src1->nb[0] == sizeof(float));
  5382. for (int i = 0; i < n; i++) {
  5383. ggml_vec_div_f32(nc,
  5384. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5385. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5386. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5387. }
  5388. }
  5389. static void ggml_compute_forward_div(
  5390. const struct ggml_compute_params * params,
  5391. const struct ggml_tensor * src0,
  5392. const struct ggml_tensor * src1,
  5393. struct ggml_tensor * dst) {
  5394. switch (src0->type) {
  5395. case GGML_TYPE_F32:
  5396. {
  5397. ggml_compute_forward_div_f32(params, src0, src1, dst);
  5398. } break;
  5399. default:
  5400. {
  5401. GGML_ASSERT(false);
  5402. } break;
  5403. }
  5404. }
  5405. // ggml_compute_forward_sqr
  5406. static void ggml_compute_forward_sqr_f32(
  5407. const struct ggml_compute_params * params,
  5408. const struct ggml_tensor * src0,
  5409. struct ggml_tensor * dst) {
  5410. assert(params->ith == 0);
  5411. assert(ggml_are_same_shape(src0, dst));
  5412. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5413. return;
  5414. }
  5415. const int n = ggml_nrows(src0);
  5416. const int nc = src0->ne[0];
  5417. assert( dst->nb[0] == sizeof(float));
  5418. assert(src0->nb[0] == sizeof(float));
  5419. for (int i = 0; i < n; i++) {
  5420. ggml_vec_sqr_f32(nc,
  5421. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5422. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5423. }
  5424. }
  5425. static void ggml_compute_forward_sqr(
  5426. const struct ggml_compute_params * params,
  5427. const struct ggml_tensor * src0,
  5428. struct ggml_tensor * dst) {
  5429. switch (src0->type) {
  5430. case GGML_TYPE_F32:
  5431. {
  5432. ggml_compute_forward_sqr_f32(params, src0, dst);
  5433. } break;
  5434. default:
  5435. {
  5436. GGML_ASSERT(false);
  5437. } break;
  5438. }
  5439. }
  5440. // ggml_compute_forward_sqrt
  5441. static void ggml_compute_forward_sqrt_f32(
  5442. const struct ggml_compute_params * params,
  5443. const struct ggml_tensor * src0,
  5444. struct ggml_tensor * dst) {
  5445. assert(params->ith == 0);
  5446. assert(ggml_are_same_shape(src0, dst));
  5447. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5448. return;
  5449. }
  5450. const int n = ggml_nrows(src0);
  5451. const int nc = src0->ne[0];
  5452. assert( dst->nb[0] == sizeof(float));
  5453. assert(src0->nb[0] == sizeof(float));
  5454. for (int i = 0; i < n; i++) {
  5455. ggml_vec_sqrt_f32(nc,
  5456. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5457. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5458. }
  5459. }
  5460. static void ggml_compute_forward_sqrt(
  5461. const struct ggml_compute_params * params,
  5462. const struct ggml_tensor * src0,
  5463. struct ggml_tensor * dst) {
  5464. switch (src0->type) {
  5465. case GGML_TYPE_F32:
  5466. {
  5467. ggml_compute_forward_sqrt_f32(params, src0, dst);
  5468. } break;
  5469. default:
  5470. {
  5471. GGML_ASSERT(false);
  5472. } break;
  5473. }
  5474. }
  5475. // ggml_compute_forward_sum
  5476. static void ggml_compute_forward_sum_f32(
  5477. const struct ggml_compute_params * params,
  5478. const struct ggml_tensor * src0,
  5479. struct ggml_tensor * dst) {
  5480. assert(params->ith == 0);
  5481. assert(ggml_is_scalar(dst));
  5482. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5483. return;
  5484. }
  5485. assert(ggml_is_scalar(dst));
  5486. assert(src0->nb[0] == sizeof(float));
  5487. const int64_t ne00 = src0->ne[0];
  5488. const int64_t ne01 = src0->ne[1];
  5489. const int64_t ne02 = src0->ne[2];
  5490. const int64_t ne03 = src0->ne[3];
  5491. const size_t nb01 = src0->nb[1];
  5492. const size_t nb02 = src0->nb[2];
  5493. const size_t nb03 = src0->nb[3];
  5494. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5495. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5496. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5497. ggml_vec_sum_f32(ne00,
  5498. (float *) (dst->data),
  5499. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5500. }
  5501. }
  5502. }
  5503. }
  5504. static void ggml_compute_forward_sum(
  5505. const struct ggml_compute_params * params,
  5506. const struct ggml_tensor * src0,
  5507. struct ggml_tensor * dst) {
  5508. switch (src0->type) {
  5509. case GGML_TYPE_F32:
  5510. {
  5511. ggml_compute_forward_sum_f32(params, src0, dst);
  5512. } break;
  5513. default:
  5514. {
  5515. GGML_ASSERT(false);
  5516. } break;
  5517. }
  5518. }
  5519. // ggml_compute_forward_mean
  5520. static void ggml_compute_forward_mean_f32(
  5521. const struct ggml_compute_params * params,
  5522. const struct ggml_tensor * src0,
  5523. struct ggml_tensor * dst) {
  5524. assert(params->ith == 0);
  5525. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5526. return;
  5527. }
  5528. assert(src0->nb[0] == sizeof(float));
  5529. const int64_t ne00 = src0->ne[0];
  5530. const int64_t ne01 = src0->ne[1];
  5531. const int64_t ne02 = src0->ne[2];
  5532. const int64_t ne03 = src0->ne[3];
  5533. const size_t nb01 = src0->nb[1];
  5534. const size_t nb02 = src0->nb[2];
  5535. const size_t nb03 = src0->nb[3];
  5536. const int64_t ne0 = dst->ne[0];
  5537. const int64_t ne1 = dst->ne[1];
  5538. const int64_t ne2 = dst->ne[2];
  5539. const int64_t ne3 = dst->ne[3];
  5540. assert(ne0 == 1);
  5541. assert(ne1 == ne01);
  5542. assert(ne2 == ne02);
  5543. assert(ne3 == ne03);
  5544. UNUSED(ne0);
  5545. UNUSED(ne1);
  5546. UNUSED(ne2);
  5547. UNUSED(ne3);
  5548. const size_t nb1 = dst->nb[1];
  5549. const size_t nb2 = dst->nb[2];
  5550. const size_t nb3 = dst->nb[3];
  5551. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5552. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5553. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5554. ggml_vec_sum_f32(ne00,
  5555. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5556. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5557. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  5558. }
  5559. }
  5560. }
  5561. }
  5562. static void ggml_compute_forward_mean(
  5563. const struct ggml_compute_params * params,
  5564. const struct ggml_tensor * src0,
  5565. struct ggml_tensor * dst) {
  5566. switch (src0->type) {
  5567. case GGML_TYPE_F32:
  5568. {
  5569. ggml_compute_forward_mean_f32(params, src0, dst);
  5570. } break;
  5571. default:
  5572. {
  5573. GGML_ASSERT(false);
  5574. } break;
  5575. }
  5576. }
  5577. // ggml_compute_forward_repeat
  5578. static void ggml_compute_forward_repeat_f32(
  5579. const struct ggml_compute_params * params,
  5580. const struct ggml_tensor * src0,
  5581. struct ggml_tensor * dst) {
  5582. assert(params->ith == 0);
  5583. assert(ggml_can_repeat(src0, dst));
  5584. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5585. return;
  5586. }
  5587. // TODO: implement support for rank > 2 tensors
  5588. assert(src0->ne[2] == 1);
  5589. assert(src0->ne[3] == 1);
  5590. assert( dst->ne[2] == 1);
  5591. assert( dst->ne[3] == 1);
  5592. const int nc = dst->ne[0];
  5593. const int nr = dst->ne[1];
  5594. const int nc0 = src0->ne[0];
  5595. const int nr0 = src0->ne[1];
  5596. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5597. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5598. // TODO: support for transposed / permuted tensors
  5599. assert( dst->nb[0] == sizeof(float));
  5600. assert(src0->nb[0] == sizeof(float));
  5601. // TODO: maybe this is not optimal?
  5602. for (int i = 0; i < nrr; i++) {
  5603. for (int j = 0; j < ncr; j++) {
  5604. for (int k = 0; k < nr0; k++) {
  5605. ggml_vec_cpy_f32(nc0,
  5606. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  5607. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  5608. }
  5609. }
  5610. }
  5611. }
  5612. static void ggml_compute_forward_repeat(
  5613. const struct ggml_compute_params * params,
  5614. const struct ggml_tensor * src0,
  5615. struct ggml_tensor * dst) {
  5616. switch (src0->type) {
  5617. case GGML_TYPE_F32:
  5618. {
  5619. ggml_compute_forward_repeat_f32(params, src0, dst);
  5620. } break;
  5621. default:
  5622. {
  5623. GGML_ASSERT(false);
  5624. } break;
  5625. }
  5626. }
  5627. // ggml_compute_forward_abs
  5628. static void ggml_compute_forward_abs_f32(
  5629. const struct ggml_compute_params * params,
  5630. const struct ggml_tensor * src0,
  5631. struct ggml_tensor * dst) {
  5632. assert(params->ith == 0);
  5633. assert(ggml_are_same_shape(src0, dst));
  5634. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5635. return;
  5636. }
  5637. const int n = ggml_nrows(src0);
  5638. const int nc = src0->ne[0];
  5639. assert(dst->nb[0] == sizeof(float));
  5640. assert(src0->nb[0] == sizeof(float));
  5641. for (int i = 0; i < n; i++) {
  5642. ggml_vec_abs_f32(nc,
  5643. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5644. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5645. }
  5646. }
  5647. static void ggml_compute_forward_abs(
  5648. const struct ggml_compute_params * params,
  5649. const struct ggml_tensor * src0,
  5650. struct ggml_tensor * dst) {
  5651. switch (src0->type) {
  5652. case GGML_TYPE_F32:
  5653. {
  5654. ggml_compute_forward_abs_f32(params, src0, dst);
  5655. } break;
  5656. default:
  5657. {
  5658. GGML_ASSERT(false);
  5659. } break;
  5660. }
  5661. }
  5662. // ggml_compute_forward_sgn
  5663. static void ggml_compute_forward_sgn_f32(
  5664. const struct ggml_compute_params * params,
  5665. const struct ggml_tensor * src0,
  5666. struct ggml_tensor * dst) {
  5667. assert(params->ith == 0);
  5668. assert(ggml_are_same_shape(src0, dst));
  5669. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5670. return;
  5671. }
  5672. const int n = ggml_nrows(src0);
  5673. const int nc = src0->ne[0];
  5674. assert(dst->nb[0] == sizeof(float));
  5675. assert(src0->nb[0] == sizeof(float));
  5676. for (int i = 0; i < n; i++) {
  5677. ggml_vec_sgn_f32(nc,
  5678. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5679. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5680. }
  5681. }
  5682. static void ggml_compute_forward_sgn(
  5683. const struct ggml_compute_params * params,
  5684. const struct ggml_tensor * src0,
  5685. struct ggml_tensor * dst) {
  5686. switch (src0->type) {
  5687. case GGML_TYPE_F32:
  5688. {
  5689. ggml_compute_forward_sgn_f32(params, src0, dst);
  5690. } break;
  5691. default:
  5692. {
  5693. GGML_ASSERT(false);
  5694. } break;
  5695. }
  5696. }
  5697. // ggml_compute_forward_neg
  5698. static void ggml_compute_forward_neg_f32(
  5699. const struct ggml_compute_params * params,
  5700. const struct ggml_tensor * src0,
  5701. struct ggml_tensor * dst) {
  5702. assert(params->ith == 0);
  5703. assert(ggml_are_same_shape(src0, dst));
  5704. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5705. return;
  5706. }
  5707. const int n = ggml_nrows(src0);
  5708. const int nc = src0->ne[0];
  5709. assert(dst->nb[0] == sizeof(float));
  5710. assert(src0->nb[0] == sizeof(float));
  5711. for (int i = 0; i < n; i++) {
  5712. ggml_vec_neg_f32(nc,
  5713. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5714. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5715. }
  5716. }
  5717. static void ggml_compute_forward_neg(
  5718. const struct ggml_compute_params * params,
  5719. const struct ggml_tensor * src0,
  5720. struct ggml_tensor * dst) {
  5721. switch (src0->type) {
  5722. case GGML_TYPE_F32:
  5723. {
  5724. ggml_compute_forward_neg_f32(params, src0, dst);
  5725. } break;
  5726. default:
  5727. {
  5728. GGML_ASSERT(false);
  5729. } break;
  5730. }
  5731. }
  5732. // ggml_compute_forward_step
  5733. static void ggml_compute_forward_step_f32(
  5734. const struct ggml_compute_params * params,
  5735. const struct ggml_tensor * src0,
  5736. struct ggml_tensor * dst) {
  5737. assert(params->ith == 0);
  5738. assert(ggml_are_same_shape(src0, dst));
  5739. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5740. return;
  5741. }
  5742. const int n = ggml_nrows(src0);
  5743. const int nc = src0->ne[0];
  5744. assert(dst->nb[0] == sizeof(float));
  5745. assert(src0->nb[0] == sizeof(float));
  5746. for (int i = 0; i < n; i++) {
  5747. ggml_vec_step_f32(nc,
  5748. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5749. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5750. }
  5751. }
  5752. static void ggml_compute_forward_step(
  5753. const struct ggml_compute_params * params,
  5754. const struct ggml_tensor * src0,
  5755. struct ggml_tensor * dst) {
  5756. switch (src0->type) {
  5757. case GGML_TYPE_F32:
  5758. {
  5759. ggml_compute_forward_step_f32(params, src0, dst);
  5760. } break;
  5761. default:
  5762. {
  5763. GGML_ASSERT(false);
  5764. } break;
  5765. }
  5766. }
  5767. // ggml_compute_forward_relu
  5768. static void ggml_compute_forward_relu_f32(
  5769. const struct ggml_compute_params * params,
  5770. const struct ggml_tensor * src0,
  5771. struct ggml_tensor * dst) {
  5772. assert(params->ith == 0);
  5773. assert(ggml_are_same_shape(src0, dst));
  5774. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5775. return;
  5776. }
  5777. const int n = ggml_nrows(src0);
  5778. const int nc = src0->ne[0];
  5779. assert(dst->nb[0] == sizeof(float));
  5780. assert(src0->nb[0] == sizeof(float));
  5781. for (int i = 0; i < n; i++) {
  5782. ggml_vec_relu_f32(nc,
  5783. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5784. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5785. }
  5786. }
  5787. static void ggml_compute_forward_relu(
  5788. const struct ggml_compute_params * params,
  5789. const struct ggml_tensor * src0,
  5790. struct ggml_tensor * dst) {
  5791. switch (src0->type) {
  5792. case GGML_TYPE_F32:
  5793. {
  5794. ggml_compute_forward_relu_f32(params, src0, dst);
  5795. } break;
  5796. default:
  5797. {
  5798. GGML_ASSERT(false);
  5799. } break;
  5800. }
  5801. }
  5802. // ggml_compute_forward_gelu
  5803. static void ggml_compute_forward_gelu_f32(
  5804. const struct ggml_compute_params * params,
  5805. const struct ggml_tensor * src0,
  5806. struct ggml_tensor * dst) {
  5807. GGML_ASSERT(ggml_is_contiguous(src0));
  5808. GGML_ASSERT(ggml_is_contiguous(dst));
  5809. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5810. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5811. return;
  5812. }
  5813. const int ith = params->ith;
  5814. const int nth = params->nth;
  5815. const int nc = src0->ne[0];
  5816. const int nr = ggml_nrows(src0);
  5817. // rows per thread
  5818. const int dr = (nr + nth - 1)/nth;
  5819. // row range for this thread
  5820. const int ir0 = dr*ith;
  5821. const int ir1 = MIN(ir0 + dr, nr);
  5822. for (int i1 = ir0; i1 < ir1; i1++) {
  5823. ggml_vec_gelu_f32(nc,
  5824. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5825. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5826. #ifndef NDEBUG
  5827. for (int k = 0; k < nc; k++) {
  5828. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5829. UNUSED(x);
  5830. assert(!isnan(x));
  5831. assert(!isinf(x));
  5832. }
  5833. #endif
  5834. }
  5835. }
  5836. static void ggml_compute_forward_gelu(
  5837. const struct ggml_compute_params * params,
  5838. const struct ggml_tensor * src0,
  5839. struct ggml_tensor * dst) {
  5840. switch (src0->type) {
  5841. case GGML_TYPE_F32:
  5842. {
  5843. ggml_compute_forward_gelu_f32(params, src0, dst);
  5844. } break;
  5845. default:
  5846. {
  5847. GGML_ASSERT(false);
  5848. } break;
  5849. }
  5850. //printf("XXXXXXXX gelu\n");
  5851. }
  5852. // ggml_compute_forward_silu
  5853. static void ggml_compute_forward_silu_f32(
  5854. const struct ggml_compute_params * params,
  5855. const struct ggml_tensor * src0,
  5856. struct ggml_tensor * dst) {
  5857. GGML_ASSERT(ggml_is_contiguous(src0));
  5858. GGML_ASSERT(ggml_is_contiguous(dst));
  5859. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5860. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5861. return;
  5862. }
  5863. const int ith = params->ith;
  5864. const int nth = params->nth;
  5865. const int nc = src0->ne[0];
  5866. const int nr = ggml_nrows(src0);
  5867. // rows per thread
  5868. const int dr = (nr + nth - 1)/nth;
  5869. // row range for this thread
  5870. const int ir0 = dr*ith;
  5871. const int ir1 = MIN(ir0 + dr, nr);
  5872. for (int i1 = ir0; i1 < ir1; i1++) {
  5873. ggml_vec_silu_f32(nc,
  5874. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5875. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5876. #ifndef NDEBUG
  5877. for (int k = 0; k < nc; k++) {
  5878. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5879. UNUSED(x);
  5880. assert(!isnan(x));
  5881. assert(!isinf(x));
  5882. }
  5883. #endif
  5884. }
  5885. }
  5886. static void ggml_compute_forward_silu(
  5887. const struct ggml_compute_params * params,
  5888. const struct ggml_tensor * src0,
  5889. struct ggml_tensor * dst) {
  5890. switch (src0->type) {
  5891. case GGML_TYPE_F32:
  5892. {
  5893. ggml_compute_forward_silu_f32(params, src0, dst);
  5894. } break;
  5895. default:
  5896. {
  5897. GGML_ASSERT(false);
  5898. } break;
  5899. }
  5900. }
  5901. // ggml_compute_forward_norm
  5902. static void ggml_compute_forward_norm_f32(
  5903. const struct ggml_compute_params * params,
  5904. const struct ggml_tensor * src0,
  5905. struct ggml_tensor * dst) {
  5906. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5907. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5908. return;
  5909. }
  5910. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5911. const int ith = params->ith;
  5912. const int nth = params->nth;
  5913. const int64_t ne00 = src0->ne[0];
  5914. const int64_t ne01 = src0->ne[1];
  5915. const int64_t ne02 = src0->ne[2];
  5916. const int64_t ne03 = src0->ne[3];
  5917. const size_t nb01 = src0->nb[1];
  5918. const size_t nb02 = src0->nb[2];
  5919. const size_t nb03 = src0->nb[3];
  5920. const size_t nb1 = dst->nb[1];
  5921. const size_t nb2 = dst->nb[2];
  5922. const size_t nb3 = dst->nb[3];
  5923. const float eps = 1e-5f; // TODO: make this a parameter
  5924. // TODO: optimize
  5925. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5926. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5927. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5928. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5929. ggml_float sum = 0.0;
  5930. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5931. sum += (ggml_float)x[i00];
  5932. }
  5933. float mean = sum/ne00;
  5934. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5935. ggml_float sum2 = 0.0;
  5936. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5937. float v = x[i00] - mean;
  5938. y[i00] = v;
  5939. sum2 += (ggml_float)(v*v);
  5940. }
  5941. float variance = sum2/ne00;
  5942. const float scale = 1.0f/sqrtf(variance + eps);
  5943. ggml_vec_scale_f32(ne00, y, scale);
  5944. }
  5945. }
  5946. }
  5947. }
  5948. static void ggml_compute_forward_norm(
  5949. const struct ggml_compute_params * params,
  5950. const struct ggml_tensor * src0,
  5951. struct ggml_tensor * dst) {
  5952. switch (src0->type) {
  5953. case GGML_TYPE_F32:
  5954. {
  5955. ggml_compute_forward_norm_f32(params, src0, dst);
  5956. } break;
  5957. default:
  5958. {
  5959. GGML_ASSERT(false);
  5960. } break;
  5961. }
  5962. }
  5963. static void ggml_compute_forward_rms_norm_f32(
  5964. const struct ggml_compute_params * params,
  5965. const struct ggml_tensor * src0,
  5966. struct ggml_tensor * dst) {
  5967. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5968. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5969. return;
  5970. }
  5971. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5972. const int ith = params->ith;
  5973. const int nth = params->nth;
  5974. const int64_t ne00 = src0->ne[0];
  5975. const int64_t ne01 = src0->ne[1];
  5976. const int64_t ne02 = src0->ne[2];
  5977. const int64_t ne03 = src0->ne[3];
  5978. const size_t nb01 = src0->nb[1];
  5979. const size_t nb02 = src0->nb[2];
  5980. const size_t nb03 = src0->nb[3];
  5981. const size_t nb1 = dst->nb[1];
  5982. const size_t nb2 = dst->nb[2];
  5983. const size_t nb3 = dst->nb[3];
  5984. const float eps = 1e-6f; // TODO: make this a parameter
  5985. // TODO: optimize
  5986. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5987. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5988. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5989. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5990. ggml_float sum = 0.0;
  5991. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5992. sum += (ggml_float)(x[i00] * x[i00]);
  5993. }
  5994. float mean = sum/ne00;
  5995. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5996. memcpy(y, x, ne00 * sizeof(float));
  5997. // for (int i00 = 0; i00 < ne00; i00++) {
  5998. // y[i00] = x[i00];
  5999. // }
  6000. const float scale = 1.0f/sqrtf(mean + eps);
  6001. ggml_vec_scale_f32(ne00, y, scale);
  6002. }
  6003. }
  6004. }
  6005. }
  6006. static void ggml_compute_forward_rms_norm(
  6007. const struct ggml_compute_params * params,
  6008. const struct ggml_tensor * src0,
  6009. struct ggml_tensor * dst) {
  6010. switch (src0->type) {
  6011. case GGML_TYPE_F32:
  6012. {
  6013. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  6014. } break;
  6015. default:
  6016. {
  6017. GGML_ASSERT(false);
  6018. } break;
  6019. }
  6020. }
  6021. // ggml_compute_forward_mul_mat
  6022. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6023. // helper function to determine if it is better to use BLAS or not
  6024. // for large matrices, BLAS is faster
  6025. static bool ggml_compute_forward_mul_mat_use_blas(
  6026. const struct ggml_tensor * src0,
  6027. const struct ggml_tensor * src1,
  6028. struct ggml_tensor * dst) {
  6029. //const int64_t ne00 = src0->ne[0];
  6030. //const int64_t ne01 = src0->ne[1];
  6031. const int64_t ne10 = src1->ne[0];
  6032. const int64_t ne0 = dst->ne[0];
  6033. const int64_t ne1 = dst->ne[1];
  6034. // TODO: find the optimal values for these
  6035. if (ggml_is_contiguous(src0) &&
  6036. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  6037. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  6038. return true;
  6039. }
  6040. return false;
  6041. }
  6042. #endif
  6043. static void ggml_compute_forward_mul_mat_f32(
  6044. const struct ggml_compute_params * params,
  6045. const struct ggml_tensor * src0,
  6046. const struct ggml_tensor * src1,
  6047. struct ggml_tensor * dst) {
  6048. int64_t t0 = ggml_perf_time_us();
  6049. UNUSED(t0);
  6050. const int64_t ne00 = src0->ne[0];
  6051. const int64_t ne01 = src0->ne[1];
  6052. const int64_t ne02 = src0->ne[2];
  6053. const int64_t ne03 = src0->ne[3];
  6054. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6055. const int64_t ne10 = src1->ne[0];
  6056. #endif
  6057. const int64_t ne11 = src1->ne[1];
  6058. #ifndef NDEBUG
  6059. const int64_t ne12 = src1->ne[2];
  6060. const int64_t ne13 = src1->ne[3];
  6061. const int64_t ne0 = dst->ne[0];
  6062. const int64_t ne1 = dst->ne[1];
  6063. const int64_t ne2 = dst->ne[2];
  6064. const int64_t ne3 = dst->ne[3];
  6065. const int nb00 = src0->nb[0];
  6066. #endif
  6067. const int nb01 = src0->nb[1];
  6068. const int nb02 = src0->nb[2];
  6069. const int nb03 = src0->nb[3];
  6070. #ifndef NDEBUG
  6071. const int nb10 = src1->nb[0];
  6072. #endif
  6073. const int nb11 = src1->nb[1];
  6074. const int nb12 = src1->nb[2];
  6075. const int nb13 = src1->nb[3];
  6076. const int nb0 = dst->nb[0];
  6077. const int nb1 = dst->nb[1];
  6078. const int nb2 = dst->nb[2];
  6079. const int nb3 = dst->nb[3];
  6080. const int ith = params->ith;
  6081. const int nth = params->nth;
  6082. assert(ne02 == ne12);
  6083. assert(ne03 == ne13);
  6084. assert(ne2 == ne12);
  6085. assert(ne3 == ne13);
  6086. // we don't support permuted src0 or src1
  6087. assert(nb00 == sizeof(float));
  6088. assert(nb10 == sizeof(float));
  6089. // dst cannot be transposed or permuted
  6090. assert(nb0 == sizeof(float));
  6091. assert(nb0 <= nb1);
  6092. assert(nb1 <= nb2);
  6093. assert(nb2 <= nb3);
  6094. assert(ne0 == ne01);
  6095. assert(ne1 == ne11);
  6096. assert(ne2 == ne02);
  6097. assert(ne3 == ne03);
  6098. // nb01 >= nb00 - src0 is not transposed
  6099. // compute by src0 rows
  6100. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6101. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6102. if (params->ith != 0) {
  6103. return;
  6104. }
  6105. if (params->type == GGML_TASK_INIT) {
  6106. return;
  6107. }
  6108. if (params->type == GGML_TASK_FINALIZE) {
  6109. return;
  6110. }
  6111. #if defined(GGML_USE_CUBLAS)
  6112. const float alpha = 1.0f;
  6113. const float beta = 0.0f;
  6114. const int x_ne = ne01 * ne10;
  6115. const int y_ne = ne11 * ne10;
  6116. const int d_ne = ne11 * ne01;
  6117. size_t x_size, y_size, d_size;
  6118. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6119. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6120. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6121. #endif
  6122. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6123. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6124. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6125. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6126. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6127. #if defined(GGML_USE_CUBLAS)
  6128. // copy data to device
  6129. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(float) * x_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6130. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6131. // compute
  6132. CUBLAS_CHECK(
  6133. cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6134. ne01, ne11, ne10,
  6135. &alpha, d_X, ne00,
  6136. d_Y, ne10,
  6137. &beta, d_D, ne01));
  6138. // copy data to host
  6139. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6140. #else
  6141. // zT = y * xT
  6142. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6143. ne11, ne01, ne10,
  6144. 1.0f, y, ne10,
  6145. x, ne00,
  6146. 0.0f, d, ne01);
  6147. #endif
  6148. }
  6149. }
  6150. #if defined(GGML_USE_CUBLAS)
  6151. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6152. ggml_cuda_pool_free(d_X, x_size);
  6153. ggml_cuda_pool_free(d_Y, y_size);
  6154. ggml_cuda_pool_free(d_D, d_size);
  6155. #endif
  6156. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6157. return;
  6158. }
  6159. #endif
  6160. if (params->type == GGML_TASK_INIT) {
  6161. return;
  6162. }
  6163. if (params->type == GGML_TASK_FINALIZE) {
  6164. return;
  6165. }
  6166. // parallelize by src0 rows using ggml_vec_dot_f32
  6167. // total rows in src0
  6168. const int nr = ne01*ne02*ne03;
  6169. // rows per thread
  6170. const int dr = (nr + nth - 1)/nth;
  6171. // row range for this thread
  6172. const int ir0 = dr*ith;
  6173. const int ir1 = MIN(ir0 + dr, nr);
  6174. for (int ir = ir0; ir < ir1; ++ir) {
  6175. // src0 indices
  6176. const int i03 = ir/(ne02*ne01);
  6177. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6178. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6179. for (int64_t ic = 0; ic < ne11; ++ic) {
  6180. // src1 indices
  6181. const int i13 = i03;
  6182. const int i12 = i02;
  6183. const int i11 = ic;
  6184. // dst indices
  6185. const int i0 = i01;
  6186. const int i1 = i11;
  6187. const int i2 = i02;
  6188. const int i3 = i03;
  6189. ggml_vec_dot_f32(ne00,
  6190. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6191. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  6192. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  6193. }
  6194. }
  6195. //int64_t t1 = ggml_perf_time_us();
  6196. //static int64_t acc = 0;
  6197. //acc += t1 - t0;
  6198. //if (t1 - t0 > 10) {
  6199. // printf("\n");
  6200. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6201. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6202. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6203. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  6204. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6205. //}
  6206. }
  6207. static void ggml_compute_forward_mul_mat_f16_f32(
  6208. const struct ggml_compute_params * params,
  6209. const struct ggml_tensor * src0,
  6210. const struct ggml_tensor * src1,
  6211. struct ggml_tensor * dst) {
  6212. int64_t t0 = ggml_perf_time_us();
  6213. UNUSED(t0);
  6214. const int64_t ne00 = src0->ne[0];
  6215. const int64_t ne01 = src0->ne[1];
  6216. const int64_t ne02 = src0->ne[2];
  6217. const int64_t ne03 = src0->ne[3];
  6218. const int64_t ne10 = src1->ne[0];
  6219. const int64_t ne11 = src1->ne[1];
  6220. const int64_t ne12 = src1->ne[2];
  6221. const int64_t ne13 = src1->ne[3];
  6222. const int64_t ne0 = dst->ne[0];
  6223. const int64_t ne1 = dst->ne[1];
  6224. const int64_t ne2 = dst->ne[2];
  6225. const int64_t ne3 = dst->ne[3];
  6226. //const int64_t ne = ne0*ne1*ne2*ne3;
  6227. const int nb00 = src0->nb[0];
  6228. const int nb01 = src0->nb[1];
  6229. const int nb02 = src0->nb[2];
  6230. const int nb03 = src0->nb[3];
  6231. const int nb10 = src1->nb[0];
  6232. const int nb11 = src1->nb[1];
  6233. const int nb12 = src1->nb[2];
  6234. const int nb13 = src1->nb[3];
  6235. const int nb0 = dst->nb[0];
  6236. const int nb1 = dst->nb[1];
  6237. const int nb2 = dst->nb[2];
  6238. const int nb3 = dst->nb[3];
  6239. const int ith = params->ith;
  6240. const int nth = params->nth;
  6241. GGML_ASSERT(ne02 == ne12);
  6242. GGML_ASSERT(ne03 == ne13);
  6243. GGML_ASSERT(ne2 == ne12);
  6244. GGML_ASSERT(ne3 == ne13);
  6245. // TODO: we don't support permuted src0
  6246. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6247. // dst cannot be transposed or permuted
  6248. GGML_ASSERT(nb0 == sizeof(float));
  6249. GGML_ASSERT(nb0 <= nb1);
  6250. GGML_ASSERT(nb1 <= nb2);
  6251. GGML_ASSERT(nb2 <= nb3);
  6252. GGML_ASSERT(ne0 == ne01);
  6253. GGML_ASSERT(ne1 == ne11);
  6254. GGML_ASSERT(ne2 == ne02);
  6255. GGML_ASSERT(ne3 == ne03);
  6256. // nb01 >= nb00 - src0 is not transposed
  6257. // compute by src0 rows
  6258. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6259. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6260. GGML_ASSERT(nb10 == sizeof(float));
  6261. if (params->ith != 0) {
  6262. return;
  6263. }
  6264. if (params->type == GGML_TASK_INIT) {
  6265. return;
  6266. }
  6267. if (params->type == GGML_TASK_FINALIZE) {
  6268. return;
  6269. }
  6270. #if defined(GGML_USE_CUBLAS)
  6271. ggml_fp16_t * const wdata = params->wdata;
  6272. const float alpha = 1.0f;
  6273. const float beta = 0.0f;
  6274. const int x_ne = ne01 * ne10;
  6275. const int y_ne = ne11 * ne10;
  6276. const int d_ne = ne11 * ne01;
  6277. size_t x_size, y_size, d_size;
  6278. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6279. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6280. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6281. #else
  6282. float * const wdata = params->wdata;
  6283. #endif
  6284. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6285. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6286. #if defined(GGML_USE_CUBLAS)
  6287. // with cuBlAS, instead of converting src0 to fp32, we convert src1 to fp16
  6288. {
  6289. size_t id = 0;
  6290. for (int64_t i01 = 0; i01 < ne11; ++i01) {
  6291. for (int64_t i00 = 0; i00 < ne10; ++i00) {
  6292. wdata[id++] = GGML_FP32_TO_FP16(*(float *) ((char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11 + i00*nb10));
  6293. }
  6294. }
  6295. }
  6296. #else
  6297. {
  6298. size_t id = 0;
  6299. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6300. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  6301. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  6302. }
  6303. }
  6304. }
  6305. #endif
  6306. #if defined(GGML_USE_CUBLAS)
  6307. const ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6308. const ggml_fp16_t * y = (ggml_fp16_t *) wdata;
  6309. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6310. // copy data to device
  6311. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(ggml_fp16_t) * x_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6312. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(ggml_fp16_t) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6313. // compute
  6314. CUBLAS_CHECK(
  6315. cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6316. ne01, ne11, ne10,
  6317. &alpha, d_X, CUDA_R_16F, ne00,
  6318. d_Y, CUDA_R_16F, ne10,
  6319. &beta, d_D, CUDA_R_32F, ne01,
  6320. CUBLAS_COMPUTE_32F,
  6321. CUBLAS_GEMM_DEFAULT));
  6322. // copy data to host
  6323. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6324. #else
  6325. const float * x = wdata;
  6326. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6327. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6328. // zT = y * xT
  6329. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6330. ne11, ne01, ne10,
  6331. 1.0f, y, ne10,
  6332. x, ne00,
  6333. 0.0f, d, ne01);
  6334. #endif
  6335. }
  6336. }
  6337. #if defined(GGML_USE_CUBLAS)
  6338. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6339. ggml_cuda_pool_free(d_X, x_size);
  6340. ggml_cuda_pool_free(d_Y, y_size);
  6341. ggml_cuda_pool_free(d_D, d_size);
  6342. #endif
  6343. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  6344. return;
  6345. }
  6346. #endif
  6347. if (params->type == GGML_TASK_INIT) {
  6348. ggml_fp16_t * const wdata = params->wdata;
  6349. size_t id = 0;
  6350. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6351. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6352. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6353. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  6354. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  6355. }
  6356. }
  6357. }
  6358. }
  6359. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  6360. return;
  6361. }
  6362. if (params->type == GGML_TASK_FINALIZE) {
  6363. return;
  6364. }
  6365. // fp16 -> half the size, so divide by 2
  6366. // TODO: do not support transposed src1
  6367. assert(nb10/2 == sizeof(ggml_fp16_t));
  6368. // parallelize by src0 rows using ggml_vec_dot_f16
  6369. // total rows in src0
  6370. const int nr = ne01*ne02*ne03;
  6371. // rows per thread
  6372. const int dr = (nr + nth - 1)/nth;
  6373. // row range for this thread
  6374. const int ir0 = dr*ith;
  6375. const int ir1 = MIN(ir0 + dr, nr);
  6376. ggml_fp16_t * wdata = params->wdata;
  6377. for (int ir = ir0; ir < ir1; ++ir) {
  6378. // src0 indices
  6379. const int i03 = ir/(ne02*ne01);
  6380. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6381. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6382. const int i13 = i03;
  6383. const int i12 = i02;
  6384. const int i0 = i01;
  6385. const int i2 = i02;
  6386. const int i3 = i03;
  6387. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6388. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  6389. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6390. for (int64_t ic = 0; ic < ne11; ++ic) {
  6391. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  6392. }
  6393. }
  6394. //int64_t t1 = ggml_time_us();
  6395. //static int64_t acc = 0;
  6396. //acc += t1 - t0;
  6397. //if (t1 - t0 > 10) {
  6398. // printf("\n");
  6399. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6400. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6401. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6402. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6403. //}
  6404. }
  6405. static void ggml_compute_forward_mul_mat_q_f32(
  6406. const struct ggml_compute_params * params,
  6407. const struct ggml_tensor * src0,
  6408. const struct ggml_tensor * src1,
  6409. struct ggml_tensor * dst) {
  6410. int64_t t0 = ggml_perf_time_us();
  6411. UNUSED(t0);
  6412. const int64_t ne00 = src0->ne[0];
  6413. const int64_t ne01 = src0->ne[1];
  6414. const int64_t ne02 = src0->ne[2];
  6415. const int64_t ne03 = src0->ne[3];
  6416. const int64_t ne10 = src1->ne[0];
  6417. const int64_t ne11 = src1->ne[1];
  6418. const int64_t ne12 = src1->ne[2];
  6419. const int64_t ne13 = src1->ne[3];
  6420. const int64_t ne0 = dst->ne[0];
  6421. const int64_t ne1 = dst->ne[1];
  6422. const int64_t ne2 = dst->ne[2];
  6423. const int64_t ne3 = dst->ne[3];
  6424. const int nb00 = src0->nb[0];
  6425. const int nb01 = src0->nb[1];
  6426. const int nb02 = src0->nb[2];
  6427. const int nb03 = src0->nb[3];
  6428. const int nb10 = src1->nb[0];
  6429. const int nb11 = src1->nb[1];
  6430. const int nb12 = src1->nb[2];
  6431. const int nb13 = src1->nb[3];
  6432. const int nb0 = dst->nb[0];
  6433. const int nb1 = dst->nb[1];
  6434. const int nb2 = dst->nb[2];
  6435. const int nb3 = dst->nb[3];
  6436. const int ith = params->ith;
  6437. const int nth = params->nth;
  6438. GGML_ASSERT(ne02 == ne12);
  6439. GGML_ASSERT(ne03 == ne13);
  6440. GGML_ASSERT(ne2 == ne12);
  6441. GGML_ASSERT(ne3 == ne13);
  6442. const enum ggml_type type = src0->type;
  6443. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  6444. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  6445. // we don't support permuted src0 or src1
  6446. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  6447. GGML_ASSERT(nb10 == sizeof(float));
  6448. // dst cannot be transposed or permuted
  6449. GGML_ASSERT(nb0 == sizeof(float));
  6450. GGML_ASSERT(nb0 <= nb1);
  6451. GGML_ASSERT(nb1 <= nb2);
  6452. GGML_ASSERT(nb2 <= nb3);
  6453. GGML_ASSERT(ne0 == ne01);
  6454. GGML_ASSERT(ne1 == ne11);
  6455. GGML_ASSERT(ne2 == ne02);
  6456. GGML_ASSERT(ne3 == ne03);
  6457. // nb01 >= nb00 - src0 is not transposed
  6458. // compute by src0 rows
  6459. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6460. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6461. if (params->ith != 0) {
  6462. return;
  6463. }
  6464. if (params->type == GGML_TASK_INIT) {
  6465. return;
  6466. }
  6467. if (params->type == GGML_TASK_FINALIZE) {
  6468. return;
  6469. }
  6470. #if defined(GGML_USE_CUBLAS)
  6471. const float alpha = 1.0f;
  6472. const float beta = 0.0f;
  6473. const int x_ne = ne01 * ne10;
  6474. const int y_ne = ne11 * ne10;
  6475. const int d_ne = ne11 * ne01;
  6476. size_t x_size, y_size, d_size, q_size;
  6477. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6478. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6479. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6480. float *d_Q = ggml_cuda_pool_malloc(GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], &q_size);
  6481. void (*dequantize_row_q_cuda)(const void * x, float * y, int k, cudaStream_t stream) = NULL;
  6482. if (type == GGML_TYPE_Q4_0) {
  6483. dequantize_row_q_cuda = dequantize_row_q4_0_cuda;
  6484. }
  6485. else if (type == GGML_TYPE_Q4_1) {
  6486. dequantize_row_q_cuda = dequantize_row_q4_1_cuda;
  6487. }
  6488. else if (type == GGML_TYPE_Q4_2) {
  6489. dequantize_row_q_cuda = dequantize_row_q4_2_cuda;
  6490. }
  6491. else if (type == GGML_TYPE_Q4_3) {
  6492. dequantize_row_q_cuda = dequantize_row_q4_3_cuda;
  6493. }
  6494. else {
  6495. GGML_ASSERT(false);
  6496. }
  6497. #else
  6498. float * const wdata = params->wdata;
  6499. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6500. #endif
  6501. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6502. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6503. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6504. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6505. #if defined(GGML_USE_CUBLAS)
  6506. // copy and dequantize on device
  6507. CUDA_CHECK(
  6508. cudaMemcpyAsync(d_Q, (char *) src0->data + i03*nb03 + i02*nb02,
  6509. GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], cudaMemcpyHostToDevice, g_cudaStream));
  6510. dequantize_row_q_cuda(d_Q, d_X, ne01 * ne00, g_cudaStream);
  6511. CUDA_CHECK(cudaGetLastError());
  6512. #else
  6513. {
  6514. size_t id = 0;
  6515. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6516. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  6517. id += ne00;
  6518. }
  6519. }
  6520. const float * x = wdata;
  6521. #endif
  6522. #if defined(GGML_USE_CUBLAS)
  6523. // copy data to device
  6524. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6525. // compute
  6526. CUBLAS_CHECK(
  6527. cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6528. ne01, ne11, ne10,
  6529. &alpha, d_X, ne00,
  6530. d_Y, ne10,
  6531. &beta, d_D, ne01));
  6532. // copy data to host
  6533. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6534. #else
  6535. // zT = y * xT
  6536. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6537. ne11, ne01, ne10,
  6538. 1.0f, y, ne10,
  6539. x, ne00,
  6540. 0.0f, d, ne01);
  6541. #endif
  6542. }
  6543. }
  6544. #if defined(GGML_USE_CUBLAS)
  6545. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6546. ggml_cuda_pool_free(d_X, x_size);
  6547. ggml_cuda_pool_free(d_Y, y_size);
  6548. ggml_cuda_pool_free(d_D, d_size);
  6549. ggml_cuda_pool_free(d_Q, q_size);
  6550. #endif
  6551. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6552. return;
  6553. }
  6554. #endif
  6555. if (params->type == GGML_TASK_INIT) {
  6556. char * wdata = params->wdata;
  6557. const size_t row_size = ne10*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  6558. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6559. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6560. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6561. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  6562. wdata += row_size;
  6563. }
  6564. }
  6565. }
  6566. return;
  6567. }
  6568. if (params->type == GGML_TASK_FINALIZE) {
  6569. return;
  6570. }
  6571. // parallelize by src0 rows using ggml_vec_dot_q
  6572. // total rows in src0
  6573. const int nr = ne01*ne02*ne03;
  6574. // rows per thread
  6575. const int dr = (nr + nth - 1)/nth;
  6576. // row range for this thread
  6577. const int ir0 = dr*ith;
  6578. const int ir1 = MIN(ir0 + dr, nr);
  6579. void * wdata = params->wdata;
  6580. const size_t row_size = ne00*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  6581. for (int ir = ir0; ir < ir1; ++ir) {
  6582. // src0 indices
  6583. const int i03 = ir/(ne02*ne01);
  6584. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6585. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6586. const int i13 = i03;
  6587. const int i12 = i02;
  6588. const int i0 = i01;
  6589. const int i2 = i02;
  6590. const int i3 = i03;
  6591. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6592. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  6593. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6594. assert(ne00 % 32 == 0);
  6595. for (int64_t ic = 0; ic < ne11; ++ic) {
  6596. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  6597. }
  6598. }
  6599. //int64_t t1 = ggml_time_us();
  6600. //static int64_t acc = 0;
  6601. //acc += t1 - t0;
  6602. //if (t1 - t0 > 10) {
  6603. // printf("\n");
  6604. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6605. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6606. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6607. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6608. //}
  6609. }
  6610. static void ggml_compute_forward_mul_mat(
  6611. const struct ggml_compute_params * params,
  6612. const struct ggml_tensor * src0,
  6613. const struct ggml_tensor * src1,
  6614. struct ggml_tensor * dst) {
  6615. switch (src0->type) {
  6616. case GGML_TYPE_Q4_0:
  6617. case GGML_TYPE_Q4_1:
  6618. case GGML_TYPE_Q4_2:
  6619. case GGML_TYPE_Q4_3:
  6620. case GGML_TYPE_Q8_0:
  6621. {
  6622. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  6623. } break;
  6624. case GGML_TYPE_F16:
  6625. {
  6626. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  6627. } break;
  6628. case GGML_TYPE_F32:
  6629. {
  6630. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  6631. } break;
  6632. default:
  6633. {
  6634. GGML_ASSERT(false);
  6635. } break;
  6636. }
  6637. }
  6638. // ggml_compute_forward_scale
  6639. static void ggml_compute_forward_scale_f32(
  6640. const struct ggml_compute_params * params,
  6641. const struct ggml_tensor * src0,
  6642. const struct ggml_tensor * src1,
  6643. struct ggml_tensor * dst) {
  6644. GGML_ASSERT(ggml_is_contiguous(src0));
  6645. GGML_ASSERT(ggml_is_contiguous(dst));
  6646. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6647. GGML_ASSERT(ggml_is_scalar(src1));
  6648. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6649. return;
  6650. }
  6651. // scale factor
  6652. const float v = *(float *) src1->data;
  6653. const int ith = params->ith;
  6654. const int nth = params->nth;
  6655. const int nc = src0->ne[0];
  6656. const int nr = ggml_nrows(src0);
  6657. // rows per thread
  6658. const int dr = (nr + nth - 1)/nth;
  6659. // row range for this thread
  6660. const int ir0 = dr*ith;
  6661. const int ir1 = MIN(ir0 + dr, nr);
  6662. for (int i1 = ir0; i1 < ir1; i1++) {
  6663. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  6664. }
  6665. }
  6666. static void ggml_compute_forward_scale(
  6667. const struct ggml_compute_params * params,
  6668. const struct ggml_tensor * src0,
  6669. const struct ggml_tensor * src1,
  6670. struct ggml_tensor * dst) {
  6671. switch (src0->type) {
  6672. case GGML_TYPE_F32:
  6673. {
  6674. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  6675. } break;
  6676. default:
  6677. {
  6678. GGML_ASSERT(false);
  6679. } break;
  6680. }
  6681. }
  6682. // ggml_compute_forward_cpy
  6683. static void ggml_compute_forward_cpy(
  6684. const struct ggml_compute_params * params,
  6685. const struct ggml_tensor * src0,
  6686. struct ggml_tensor * dst) {
  6687. ggml_compute_forward_dup(params, src0, dst);
  6688. }
  6689. // ggml_compute_forward_cont
  6690. static void ggml_compute_forward_cont(
  6691. const struct ggml_compute_params * params,
  6692. const struct ggml_tensor * src0,
  6693. struct ggml_tensor * dst) {
  6694. ggml_compute_forward_dup(params, src0, dst);
  6695. }
  6696. // ggml_compute_forward_reshape
  6697. static void ggml_compute_forward_reshape(
  6698. const struct ggml_compute_params * params,
  6699. const struct ggml_tensor * src0,
  6700. struct ggml_tensor * dst) {
  6701. // NOP
  6702. UNUSED(params);
  6703. UNUSED(src0);
  6704. UNUSED(dst);
  6705. }
  6706. // ggml_compute_forward_view
  6707. static void ggml_compute_forward_view(
  6708. const struct ggml_compute_params * params,
  6709. const struct ggml_tensor * src0) {
  6710. // NOP
  6711. UNUSED(params);
  6712. UNUSED(src0);
  6713. }
  6714. // ggml_compute_forward_permute
  6715. static void ggml_compute_forward_permute(
  6716. const struct ggml_compute_params * params,
  6717. const struct ggml_tensor * src0) {
  6718. // NOP
  6719. UNUSED(params);
  6720. UNUSED(src0);
  6721. }
  6722. // ggml_compute_forward_transpose
  6723. static void ggml_compute_forward_transpose(
  6724. const struct ggml_compute_params * params,
  6725. const struct ggml_tensor * src0) {
  6726. // NOP
  6727. UNUSED(params);
  6728. UNUSED(src0);
  6729. }
  6730. // ggml_compute_forward_get_rows
  6731. static void ggml_compute_forward_get_rows_q(
  6732. const struct ggml_compute_params * params,
  6733. const struct ggml_tensor * src0,
  6734. const struct ggml_tensor * src1,
  6735. struct ggml_tensor * dst) {
  6736. assert(params->ith == 0);
  6737. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6738. return;
  6739. }
  6740. const int nc = src0->ne[0];
  6741. const int nr = ggml_nelements(src1);
  6742. const enum ggml_type type = src0->type;
  6743. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6744. assert( dst->ne[0] == nc);
  6745. assert( dst->ne[1] == nr);
  6746. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  6747. for (int i = 0; i < nr; ++i) {
  6748. const int r = ((int32_t *) src1->data)[i];
  6749. dequantize_row_q(
  6750. (const void *) ((char *) src0->data + r*src0->nb[1]),
  6751. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  6752. }
  6753. }
  6754. static void ggml_compute_forward_get_rows_f16(
  6755. const struct ggml_compute_params * params,
  6756. const struct ggml_tensor * src0,
  6757. const struct ggml_tensor * src1,
  6758. struct ggml_tensor * dst) {
  6759. assert(params->ith == 0);
  6760. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6761. return;
  6762. }
  6763. const int nc = src0->ne[0];
  6764. const int nr = ggml_nelements(src1);
  6765. assert( dst->ne[0] == nc);
  6766. assert( dst->ne[1] == nr);
  6767. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6768. for (int i = 0; i < nr; ++i) {
  6769. const int r = ((int32_t *) src1->data)[i];
  6770. for (int j = 0; j < nc; ++j) {
  6771. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  6772. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  6773. }
  6774. }
  6775. }
  6776. static void ggml_compute_forward_get_rows_f32(
  6777. const struct ggml_compute_params * params,
  6778. const struct ggml_tensor * src0,
  6779. const struct ggml_tensor * src1,
  6780. struct ggml_tensor * dst) {
  6781. assert(params->ith == 0);
  6782. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6783. return;
  6784. }
  6785. const int nc = src0->ne[0];
  6786. const int nr = ggml_nelements(src1);
  6787. assert( dst->ne[0] == nc);
  6788. assert( dst->ne[1] == nr);
  6789. assert(src0->nb[0] == sizeof(float));
  6790. for (int i = 0; i < nr; ++i) {
  6791. const int r = ((int32_t *) src1->data)[i];
  6792. ggml_vec_cpy_f32(nc,
  6793. (float *) ((char *) dst->data + i*dst->nb[1]),
  6794. (float *) ((char *) src0->data + r*src0->nb[1]));
  6795. }
  6796. }
  6797. static void ggml_compute_forward_get_rows(
  6798. const struct ggml_compute_params * params,
  6799. const struct ggml_tensor * src0,
  6800. const struct ggml_tensor * src1,
  6801. struct ggml_tensor * dst) {
  6802. switch (src0->type) {
  6803. case GGML_TYPE_Q4_0:
  6804. case GGML_TYPE_Q4_1:
  6805. case GGML_TYPE_Q4_2:
  6806. case GGML_TYPE_Q4_3:
  6807. case GGML_TYPE_Q8_0:
  6808. {
  6809. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  6810. } break;
  6811. case GGML_TYPE_F16:
  6812. {
  6813. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  6814. } break;
  6815. case GGML_TYPE_F32:
  6816. {
  6817. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  6818. } break;
  6819. default:
  6820. {
  6821. GGML_ASSERT(false);
  6822. } break;
  6823. }
  6824. //static bool first = true;
  6825. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  6826. //if (first) {
  6827. // first = false;
  6828. //} else {
  6829. // for (int k = 0; k < dst->ne[1]; ++k) {
  6830. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  6831. // for (int i = 0; i < 16; ++i) {
  6832. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  6833. // }
  6834. // printf("\n");
  6835. // }
  6836. // printf("\n");
  6837. // }
  6838. // printf("\n");
  6839. // exit(0);
  6840. //}
  6841. }
  6842. // ggml_compute_forward_diag_mask_inf
  6843. static void ggml_compute_forward_diag_mask_inf_f32(
  6844. const struct ggml_compute_params * params,
  6845. const struct ggml_tensor * src0,
  6846. const struct ggml_tensor * src1,
  6847. struct ggml_tensor * dst) {
  6848. assert(params->ith == 0);
  6849. assert(src1->type == GGML_TYPE_I32);
  6850. assert(ggml_nelements(src1) == 1);
  6851. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6852. return;
  6853. }
  6854. const int n_past = ((int32_t *) src1->data)[0];
  6855. // TODO: handle transposed/permuted matrices
  6856. const int n = ggml_nrows(src0);
  6857. const int nc = src0->ne[0];
  6858. const int nr = src0->ne[1];
  6859. const int nz = n/nr;
  6860. assert( dst->nb[0] == sizeof(float));
  6861. assert(src0->nb[0] == sizeof(float));
  6862. for (int k = 0; k < nz; k++) {
  6863. for (int j = 0; j < nr; j++) {
  6864. for (int i = n_past; i < nc; i++) {
  6865. if (i > n_past + j) {
  6866. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  6867. }
  6868. }
  6869. }
  6870. }
  6871. }
  6872. static void ggml_compute_forward_diag_mask_inf(
  6873. const struct ggml_compute_params * params,
  6874. const struct ggml_tensor * src0,
  6875. const struct ggml_tensor * src1,
  6876. struct ggml_tensor * dst) {
  6877. switch (src0->type) {
  6878. case GGML_TYPE_F32:
  6879. {
  6880. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  6881. } break;
  6882. default:
  6883. {
  6884. GGML_ASSERT(false);
  6885. } break;
  6886. }
  6887. }
  6888. // ggml_compute_forward_soft_max
  6889. static void ggml_compute_forward_soft_max_f32(
  6890. const struct ggml_compute_params * params,
  6891. const struct ggml_tensor * src0,
  6892. struct ggml_tensor * dst) {
  6893. GGML_ASSERT(ggml_is_contiguous(src0));
  6894. GGML_ASSERT(ggml_is_contiguous(dst));
  6895. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6896. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6897. return;
  6898. }
  6899. // TODO: handle transposed/permuted matrices
  6900. const int ith = params->ith;
  6901. const int nth = params->nth;
  6902. const int nc = src0->ne[0];
  6903. const int nr = ggml_nrows(src0);
  6904. // rows per thread
  6905. const int dr = (nr + nth - 1)/nth;
  6906. // row range for this thread
  6907. const int ir0 = dr*ith;
  6908. const int ir1 = MIN(ir0 + dr, nr);
  6909. for (int i1 = ir0; i1 < ir1; i1++) {
  6910. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  6911. #ifndef NDEBUG
  6912. for (int i = 0; i < nc; ++i) {
  6913. //printf("p[%d] = %f\n", i, p[i]);
  6914. assert(!isnan(p[i]));
  6915. }
  6916. #endif
  6917. float max = -INFINITY;
  6918. ggml_vec_max_f32(nc, &max, p);
  6919. ggml_float sum = 0.0;
  6920. uint16_t scvt;
  6921. for (int i = 0; i < nc; i++) {
  6922. if (p[i] == -INFINITY) {
  6923. p[i] = 0.0f;
  6924. } else {
  6925. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  6926. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  6927. memcpy(&scvt, &s, sizeof(scvt));
  6928. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  6929. sum += (ggml_float)val;
  6930. p[i] = val;
  6931. }
  6932. }
  6933. assert(sum > 0.0);
  6934. sum = 1.0/sum;
  6935. ggml_vec_scale_f32(nc, p, sum);
  6936. #ifndef NDEBUG
  6937. for (int i = 0; i < nc; ++i) {
  6938. assert(!isnan(p[i]));
  6939. assert(!isinf(p[i]));
  6940. }
  6941. #endif
  6942. }
  6943. }
  6944. static void ggml_compute_forward_soft_max(
  6945. const struct ggml_compute_params * params,
  6946. const struct ggml_tensor * src0,
  6947. struct ggml_tensor * dst) {
  6948. switch (src0->type) {
  6949. case GGML_TYPE_F32:
  6950. {
  6951. ggml_compute_forward_soft_max_f32(params, src0, dst);
  6952. } break;
  6953. default:
  6954. {
  6955. GGML_ASSERT(false);
  6956. } break;
  6957. }
  6958. }
  6959. // ggml_compute_forward_rope
  6960. static void ggml_compute_forward_rope_f32(
  6961. const struct ggml_compute_params * params,
  6962. const struct ggml_tensor * src0,
  6963. const struct ggml_tensor * src1,
  6964. struct ggml_tensor * dst) {
  6965. assert(src1->type == GGML_TYPE_I32);
  6966. assert(ggml_nelements(src1) == 3);
  6967. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6968. return;
  6969. }
  6970. const int n_past = ((int32_t *) src1->data)[0];
  6971. const int n_dims = ((int32_t *) src1->data)[1];
  6972. const int mode = ((int32_t *) src1->data)[2];
  6973. //const int64_t ne0 = src0->ne[0];
  6974. const int64_t ne1 = src0->ne[1];
  6975. const int64_t ne2 = src0->ne[2];
  6976. const int64_t ne3 = src0->ne[3];
  6977. const int nb0 = src0->nb[0];
  6978. const int nb1 = src0->nb[1];
  6979. const int nb2 = src0->nb[2];
  6980. const int nb3 = src0->nb[3];
  6981. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6982. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6983. assert(nb0 == sizeof(float));
  6984. const int ith = params->ith;
  6985. const int nth = params->nth;
  6986. const int nr = ggml_nrows(src0);
  6987. // rows per thread
  6988. const int dr = (nr + nth - 1)/nth;
  6989. // row range for this thread
  6990. const int ir0 = dr*ith;
  6991. const int ir1 = MIN(ir0 + dr, nr);
  6992. // row index used to determine which thread to use
  6993. int ir = 0;
  6994. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  6995. const bool is_neox = mode & 2;
  6996. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6997. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6998. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  6999. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7000. if (ir++ < ir0) continue;
  7001. if (ir > ir1) break;
  7002. float theta = (float)p;
  7003. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7004. const float cos_theta = cosf(theta);
  7005. const float sin_theta = sinf(theta);
  7006. theta *= theta_scale;
  7007. if (!is_neox) {
  7008. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7009. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7010. const float x0 = src[0];
  7011. const float x1 = src[1];
  7012. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7013. dst_data[1] = x0*sin_theta + x1*cos_theta;
  7014. } else {
  7015. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7016. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7017. const float x0 = src[0];
  7018. const float x1 = src[n_dims/2];
  7019. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7020. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  7021. }
  7022. }
  7023. }
  7024. }
  7025. }
  7026. }
  7027. static void ggml_compute_forward_rope_f16(
  7028. const struct ggml_compute_params * params,
  7029. const struct ggml_tensor * src0,
  7030. const struct ggml_tensor * src1,
  7031. struct ggml_tensor * dst) {
  7032. assert(src1->type == GGML_TYPE_I32);
  7033. assert(ggml_nelements(src1) == 3);
  7034. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7035. return;
  7036. }
  7037. const int n_past = ((int32_t *) src1->data)[0];
  7038. const int n_dims = ((int32_t *) src1->data)[1];
  7039. const int mode = ((int32_t *) src1->data)[2];
  7040. //const int64_t ne0 = src0->ne[0];
  7041. const int64_t ne1 = src0->ne[1];
  7042. const int64_t ne2 = src0->ne[2];
  7043. const int64_t ne3 = src0->ne[3];
  7044. const int nb0 = src0->nb[0];
  7045. const int nb1 = src0->nb[1];
  7046. const int nb2 = src0->nb[2];
  7047. const int nb3 = src0->nb[3];
  7048. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7049. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7050. assert(nb0 == sizeof(ggml_fp16_t));
  7051. const int ith = params->ith;
  7052. const int nth = params->nth;
  7053. const int nr = ggml_nrows(src0);
  7054. // rows per thread
  7055. const int dr = (nr + nth - 1)/nth;
  7056. // row range for this thread
  7057. const int ir0 = dr*ith;
  7058. const int ir1 = MIN(ir0 + dr, nr);
  7059. // row index used to determine which thread to use
  7060. int ir = 0;
  7061. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7062. const bool is_neox = mode & 2;
  7063. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7064. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7065. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7066. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7067. if (ir++ < ir0) continue;
  7068. if (ir > ir1) break;
  7069. float theta = (float)p;
  7070. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7071. const float cos_theta = cosf(theta);
  7072. const float sin_theta = sinf(theta);
  7073. theta *= theta_scale;
  7074. if (!is_neox) {
  7075. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7076. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7077. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7078. const float x1 = GGML_FP16_TO_FP32(src[1]);
  7079. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7080. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7081. } else {
  7082. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7083. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7084. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7085. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  7086. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7087. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7088. }
  7089. }
  7090. }
  7091. }
  7092. }
  7093. }
  7094. static void ggml_compute_forward_rope(
  7095. const struct ggml_compute_params * params,
  7096. const struct ggml_tensor * src0,
  7097. const struct ggml_tensor * src1,
  7098. struct ggml_tensor * dst) {
  7099. switch (src0->type) {
  7100. case GGML_TYPE_F16:
  7101. {
  7102. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  7103. } break;
  7104. case GGML_TYPE_F32:
  7105. {
  7106. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  7107. } break;
  7108. default:
  7109. {
  7110. GGML_ASSERT(false);
  7111. } break;
  7112. }
  7113. }
  7114. // ggml_compute_forward_conv_1d_1s
  7115. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  7116. const struct ggml_compute_params * params,
  7117. const struct ggml_tensor * src0,
  7118. const struct ggml_tensor * src1,
  7119. struct ggml_tensor * dst) {
  7120. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7121. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7122. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7123. int64_t t0 = ggml_perf_time_us();
  7124. UNUSED(t0);
  7125. const int64_t ne00 = src0->ne[0];
  7126. const int64_t ne01 = src0->ne[1];
  7127. const int64_t ne02 = src0->ne[2];
  7128. //const int64_t ne03 = src0->ne[3];
  7129. const int64_t ne10 = src1->ne[0];
  7130. const int64_t ne11 = src1->ne[1];
  7131. //const int64_t ne12 = src1->ne[2];
  7132. //const int64_t ne13 = src1->ne[3];
  7133. //const int64_t ne0 = dst->ne[0];
  7134. //const int64_t ne1 = dst->ne[1];
  7135. //const int64_t ne2 = dst->ne[2];
  7136. //const int64_t ne3 = dst->ne[3];
  7137. //const int64_t ne = ne0*ne1*ne2*ne3;
  7138. const int nb00 = src0->nb[0];
  7139. const int nb01 = src0->nb[1];
  7140. const int nb02 = src0->nb[2];
  7141. //const int nb03 = src0->nb[3];
  7142. const int nb10 = src1->nb[0];
  7143. const int nb11 = src1->nb[1];
  7144. //const int nb12 = src1->nb[2];
  7145. //const int nb13 = src1->nb[3];
  7146. //const int nb0 = dst->nb[0];
  7147. const int nb1 = dst->nb[1];
  7148. //const int nb2 = dst->nb[2];
  7149. //const int nb3 = dst->nb[3];
  7150. const int ith = params->ith;
  7151. const int nth = params->nth;
  7152. const int nk = ne00;
  7153. const int nh = nk/2;
  7154. const int ew0 = ggml_up32(ne01);
  7155. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7156. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7157. GGML_ASSERT(nb10 == sizeof(float));
  7158. if (params->type == GGML_TASK_INIT) {
  7159. // TODO: fix this memset (wsize is overestimated)
  7160. memset(params->wdata, 0, params->wsize);
  7161. // prepare kernel data (src0)
  7162. {
  7163. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7164. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7165. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7166. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7167. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7168. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7169. dst_data[i00*ew0 + i01] = src[i00];
  7170. }
  7171. }
  7172. }
  7173. }
  7174. // prepare source data (src1)
  7175. {
  7176. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7177. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7178. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7179. ggml_fp16_t * dst_data = wdata;
  7180. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7181. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7182. }
  7183. }
  7184. }
  7185. return;
  7186. }
  7187. if (params->type == GGML_TASK_FINALIZE) {
  7188. return;
  7189. }
  7190. // total rows in dst
  7191. const int nr = ne02;
  7192. // rows per thread
  7193. const int dr = (nr + nth - 1)/nth;
  7194. // row range for this thread
  7195. const int ir0 = dr*ith;
  7196. const int ir1 = MIN(ir0 + dr, nr);
  7197. for (int i1 = ir0; i1 < ir1; i1++) {
  7198. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7199. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7200. dst_data[i0] = 0;
  7201. for (int k = -nh; k <= nh; k++) {
  7202. float v = 0.0f;
  7203. ggml_vec_dot_f16(ew0, &v,
  7204. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7205. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7206. dst_data[i0] += v;
  7207. }
  7208. }
  7209. }
  7210. }
  7211. static void ggml_compute_forward_conv_1d_1s_f32(
  7212. const struct ggml_compute_params * params,
  7213. const struct ggml_tensor * src0,
  7214. const struct ggml_tensor * src1,
  7215. struct ggml_tensor * dst) {
  7216. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7217. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7218. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7219. int64_t t0 = ggml_perf_time_us();
  7220. UNUSED(t0);
  7221. const int64_t ne00 = src0->ne[0];
  7222. const int64_t ne01 = src0->ne[1];
  7223. const int64_t ne02 = src0->ne[2];
  7224. //const int64_t ne03 = src0->ne[3];
  7225. const int64_t ne10 = src1->ne[0];
  7226. const int64_t ne11 = src1->ne[1];
  7227. //const int64_t ne12 = src1->ne[2];
  7228. //const int64_t ne13 = src1->ne[3];
  7229. //const int64_t ne0 = dst->ne[0];
  7230. //const int64_t ne1 = dst->ne[1];
  7231. //const int64_t ne2 = dst->ne[2];
  7232. //const int64_t ne3 = dst->ne[3];
  7233. //const int64_t ne = ne0*ne1*ne2*ne3;
  7234. const int nb00 = src0->nb[0];
  7235. const int nb01 = src0->nb[1];
  7236. const int nb02 = src0->nb[2];
  7237. //const int nb03 = src0->nb[3];
  7238. const int nb10 = src1->nb[0];
  7239. const int nb11 = src1->nb[1];
  7240. //const int nb12 = src1->nb[2];
  7241. //const int nb13 = src1->nb[3];
  7242. //const int nb0 = dst->nb[0];
  7243. const int nb1 = dst->nb[1];
  7244. //const int nb2 = dst->nb[2];
  7245. //const int nb3 = dst->nb[3];
  7246. const int ith = params->ith;
  7247. const int nth = params->nth;
  7248. const int nk = ne00;
  7249. const int nh = nk/2;
  7250. const int ew0 = ggml_up32(ne01);
  7251. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7252. GGML_ASSERT(nb00 == sizeof(float));
  7253. GGML_ASSERT(nb10 == sizeof(float));
  7254. if (params->type == GGML_TASK_INIT) {
  7255. // TODO: fix this memset (wsize is overestimated)
  7256. memset(params->wdata, 0, params->wsize);
  7257. // prepare kernel data (src0)
  7258. {
  7259. float * const wdata = (float *) params->wdata + 0;
  7260. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7261. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7262. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7263. float * dst_data = wdata + i02*ew0*ne00;
  7264. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7265. dst_data[i00*ew0 + i01] = src[i00];
  7266. }
  7267. }
  7268. }
  7269. }
  7270. // prepare source data (src1)
  7271. {
  7272. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7273. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7274. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7275. float * dst_data = wdata;
  7276. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7277. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7278. }
  7279. }
  7280. }
  7281. return;
  7282. }
  7283. if (params->type == GGML_TASK_FINALIZE) {
  7284. return;
  7285. }
  7286. // total rows in dst
  7287. const int nr = ne02;
  7288. // rows per thread
  7289. const int dr = (nr + nth - 1)/nth;
  7290. // row range for this thread
  7291. const int ir0 = dr*ith;
  7292. const int ir1 = MIN(ir0 + dr, nr);
  7293. for (int i1 = ir0; i1 < ir1; i1++) {
  7294. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7295. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7296. dst_data[i0] = 0;
  7297. for (int k = -nh; k <= nh; k++) {
  7298. float v = 0.0f;
  7299. ggml_vec_dot_f32(ew0, &v,
  7300. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7301. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7302. dst_data[i0] += v;
  7303. }
  7304. }
  7305. }
  7306. }
  7307. static void ggml_compute_forward_conv_1d_1s(
  7308. const struct ggml_compute_params * params,
  7309. const struct ggml_tensor * src0,
  7310. const struct ggml_tensor * src1,
  7311. struct ggml_tensor * dst) {
  7312. switch (src0->type) {
  7313. case GGML_TYPE_F16:
  7314. {
  7315. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  7316. } break;
  7317. case GGML_TYPE_F32:
  7318. {
  7319. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  7320. } break;
  7321. default:
  7322. {
  7323. GGML_ASSERT(false);
  7324. } break;
  7325. }
  7326. }
  7327. // ggml_compute_forward_conv_1d_2s
  7328. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  7329. const struct ggml_compute_params * params,
  7330. const struct ggml_tensor * src0,
  7331. const struct ggml_tensor * src1,
  7332. struct ggml_tensor * dst) {
  7333. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7334. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7335. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7336. int64_t t0 = ggml_perf_time_us();
  7337. UNUSED(t0);
  7338. const int64_t ne00 = src0->ne[0];
  7339. const int64_t ne01 = src0->ne[1];
  7340. const int64_t ne02 = src0->ne[2];
  7341. //const int64_t ne03 = src0->ne[3];
  7342. const int64_t ne10 = src1->ne[0];
  7343. const int64_t ne11 = src1->ne[1];
  7344. //const int64_t ne12 = src1->ne[2];
  7345. //const int64_t ne13 = src1->ne[3];
  7346. //const int64_t ne0 = dst->ne[0];
  7347. //const int64_t ne1 = dst->ne[1];
  7348. //const int64_t ne2 = dst->ne[2];
  7349. //const int64_t ne3 = dst->ne[3];
  7350. //const int64_t ne = ne0*ne1*ne2*ne3;
  7351. const int nb00 = src0->nb[0];
  7352. const int nb01 = src0->nb[1];
  7353. const int nb02 = src0->nb[2];
  7354. //const int nb03 = src0->nb[3];
  7355. const int nb10 = src1->nb[0];
  7356. const int nb11 = src1->nb[1];
  7357. //const int nb12 = src1->nb[2];
  7358. //const int nb13 = src1->nb[3];
  7359. //const int nb0 = dst->nb[0];
  7360. const int nb1 = dst->nb[1];
  7361. //const int nb2 = dst->nb[2];
  7362. //const int nb3 = dst->nb[3];
  7363. const int ith = params->ith;
  7364. const int nth = params->nth;
  7365. const int nk = ne00;
  7366. const int nh = nk/2;
  7367. const int ew0 = ggml_up32(ne01);
  7368. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7369. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7370. GGML_ASSERT(nb10 == sizeof(float));
  7371. if (params->type == GGML_TASK_INIT) {
  7372. // TODO: fix this memset (wsize is overestimated)
  7373. memset(params->wdata, 0, params->wsize);
  7374. // prepare kernel data (src0)
  7375. {
  7376. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7377. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7378. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7379. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7380. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7381. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7382. dst_data[i00*ew0 + i01] = src[i00];
  7383. }
  7384. }
  7385. }
  7386. }
  7387. // prepare source data (src1)
  7388. {
  7389. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7390. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7391. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7392. ggml_fp16_t * dst_data = wdata;
  7393. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7394. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7395. }
  7396. }
  7397. }
  7398. return;
  7399. }
  7400. if (params->type == GGML_TASK_FINALIZE) {
  7401. return;
  7402. }
  7403. // total rows in dst
  7404. const int nr = ne02;
  7405. // rows per thread
  7406. const int dr = (nr + nth - 1)/nth;
  7407. // row range for this thread
  7408. const int ir0 = dr*ith;
  7409. const int ir1 = MIN(ir0 + dr, nr);
  7410. for (int i1 = ir0; i1 < ir1; i1++) {
  7411. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7412. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7413. dst_data[i0/2] = 0;
  7414. for (int k = -nh; k <= nh; k++) {
  7415. float v = 0.0f;
  7416. ggml_vec_dot_f16(ew0, &v,
  7417. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7418. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7419. dst_data[i0/2] += v;
  7420. }
  7421. }
  7422. }
  7423. }
  7424. static void ggml_compute_forward_conv_1d_2s_f32(
  7425. const struct ggml_compute_params * params,
  7426. const struct ggml_tensor * src0,
  7427. const struct ggml_tensor * src1,
  7428. struct ggml_tensor * dst) {
  7429. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7430. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7431. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7432. int64_t t0 = ggml_perf_time_us();
  7433. UNUSED(t0);
  7434. const int64_t ne00 = src0->ne[0];
  7435. const int64_t ne01 = src0->ne[1];
  7436. const int64_t ne02 = src0->ne[2];
  7437. //const int64_t ne03 = src0->ne[3];
  7438. const int64_t ne10 = src1->ne[0];
  7439. const int64_t ne11 = src1->ne[1];
  7440. //const int64_t ne12 = src1->ne[2];
  7441. //const int64_t ne13 = src1->ne[3];
  7442. //const int64_t ne0 = dst->ne[0];
  7443. //const int64_t ne1 = dst->ne[1];
  7444. //const int64_t ne2 = dst->ne[2];
  7445. //const int64_t ne3 = dst->ne[3];
  7446. //const int64_t ne = ne0*ne1*ne2*ne3;
  7447. const int nb00 = src0->nb[0];
  7448. const int nb01 = src0->nb[1];
  7449. const int nb02 = src0->nb[2];
  7450. //const int nb03 = src0->nb[3];
  7451. const int nb10 = src1->nb[0];
  7452. const int nb11 = src1->nb[1];
  7453. //const int nb12 = src1->nb[2];
  7454. //const int nb13 = src1->nb[3];
  7455. //const int nb0 = dst->nb[0];
  7456. const int nb1 = dst->nb[1];
  7457. //const int nb2 = dst->nb[2];
  7458. //const int nb3 = dst->nb[3];
  7459. const int ith = params->ith;
  7460. const int nth = params->nth;
  7461. const int nk = ne00;
  7462. const int nh = nk/2;
  7463. const int ew0 = ggml_up32(ne01);
  7464. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7465. GGML_ASSERT(nb00 == sizeof(float));
  7466. GGML_ASSERT(nb10 == sizeof(float));
  7467. if (params->type == GGML_TASK_INIT) {
  7468. // TODO: fix this memset (wsize is overestimated)
  7469. memset(params->wdata, 0, params->wsize);
  7470. // prepare kernel data (src0)
  7471. {
  7472. float * const wdata = (float *) params->wdata + 0;
  7473. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7474. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7475. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7476. float * dst_data = wdata + i02*ew0*ne00;
  7477. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7478. dst_data[i00*ew0 + i01] = src[i00];
  7479. }
  7480. }
  7481. }
  7482. }
  7483. // prepare source data (src1)
  7484. {
  7485. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7486. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7487. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7488. float * dst_data = wdata;
  7489. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7490. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7491. }
  7492. }
  7493. }
  7494. return;
  7495. }
  7496. if (params->type == GGML_TASK_FINALIZE) {
  7497. return;
  7498. }
  7499. // total rows in dst
  7500. const int nr = ne02;
  7501. // rows per thread
  7502. const int dr = (nr + nth - 1)/nth;
  7503. // row range for this thread
  7504. const int ir0 = dr*ith;
  7505. const int ir1 = MIN(ir0 + dr, nr);
  7506. for (int i1 = ir0; i1 < ir1; i1++) {
  7507. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7508. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7509. dst_data[i0/2] = 0;
  7510. for (int k = -nh; k <= nh; k++) {
  7511. float v = 0.0f;
  7512. ggml_vec_dot_f32(ew0, &v,
  7513. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7514. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7515. dst_data[i0/2] += v;
  7516. }
  7517. }
  7518. }
  7519. }
  7520. static void ggml_compute_forward_conv_1d_2s(
  7521. const struct ggml_compute_params * params,
  7522. const struct ggml_tensor * src0,
  7523. const struct ggml_tensor * src1,
  7524. struct ggml_tensor * dst) {
  7525. switch (src0->type) {
  7526. case GGML_TYPE_F16:
  7527. {
  7528. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  7529. } break;
  7530. case GGML_TYPE_F32:
  7531. {
  7532. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  7533. } break;
  7534. default:
  7535. {
  7536. GGML_ASSERT(false);
  7537. } break;
  7538. }
  7539. }
  7540. // ggml_compute_forward_flash_attn
  7541. static void ggml_compute_forward_flash_attn_f32(
  7542. const struct ggml_compute_params * params,
  7543. const struct ggml_tensor * q,
  7544. const struct ggml_tensor * k,
  7545. const struct ggml_tensor * v,
  7546. const bool masked,
  7547. struct ggml_tensor * dst) {
  7548. int64_t t0 = ggml_perf_time_us();
  7549. UNUSED(t0);
  7550. const int64_t neq0 = q->ne[0];
  7551. const int64_t neq1 = q->ne[1];
  7552. const int64_t neq2 = q->ne[2];
  7553. const int64_t neq3 = q->ne[3];
  7554. const int64_t nek0 = k->ne[0];
  7555. const int64_t nek1 = k->ne[1];
  7556. //const int64_t nek2 = k->ne[2];
  7557. //const int64_t nek3 = k->ne[3];
  7558. //const int64_t nev0 = v->ne[0];
  7559. const int64_t nev1 = v->ne[1];
  7560. //const int64_t nev2 = v->ne[2];
  7561. //const int64_t nev3 = v->ne[3];
  7562. const int64_t ne0 = dst->ne[0];
  7563. const int64_t ne1 = dst->ne[1];
  7564. //const int64_t ne2 = dst->ne[2];
  7565. //const int64_t ne3 = dst->ne[3];
  7566. const int nbk0 = k->nb[0];
  7567. const int nbk1 = k->nb[1];
  7568. const int nbk2 = k->nb[2];
  7569. const int nbk3 = k->nb[3];
  7570. const int nbq0 = q->nb[0];
  7571. const int nbq1 = q->nb[1];
  7572. const int nbq2 = q->nb[2];
  7573. const int nbq3 = q->nb[3];
  7574. const int nbv0 = v->nb[0];
  7575. const int nbv1 = v->nb[1];
  7576. const int nbv2 = v->nb[2];
  7577. const int nbv3 = v->nb[3];
  7578. const int nb0 = dst->nb[0];
  7579. const int nb1 = dst->nb[1];
  7580. const int nb2 = dst->nb[2];
  7581. const int nb3 = dst->nb[3];
  7582. const int ith = params->ith;
  7583. const int nth = params->nth;
  7584. const int64_t D = neq0;
  7585. const int64_t N = neq1;
  7586. const int64_t P = nek1 - N;
  7587. const int64_t M = P + N;
  7588. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7589. GGML_ASSERT(ne0 == D);
  7590. GGML_ASSERT(ne1 == N);
  7591. GGML_ASSERT(P >= 0);
  7592. GGML_ASSERT(nbq0 == sizeof(float));
  7593. GGML_ASSERT(nbk0 == sizeof(float));
  7594. GGML_ASSERT(nbv0 == sizeof(float));
  7595. GGML_ASSERT(neq0 == D);
  7596. GGML_ASSERT(nek0 == D);
  7597. GGML_ASSERT(nev1 == D);
  7598. GGML_ASSERT(neq1 == N);
  7599. GGML_ASSERT(nek1 == N + P);
  7600. GGML_ASSERT(nev1 == D);
  7601. // dst cannot be transposed or permuted
  7602. GGML_ASSERT(nb0 == sizeof(float));
  7603. GGML_ASSERT(nb0 <= nb1);
  7604. GGML_ASSERT(nb1 <= nb2);
  7605. GGML_ASSERT(nb2 <= nb3);
  7606. if (params->type == GGML_TASK_INIT) {
  7607. return;
  7608. }
  7609. if (params->type == GGML_TASK_FINALIZE) {
  7610. return;
  7611. }
  7612. // parallelize by q rows using ggml_vec_dot_f32
  7613. // total rows in q
  7614. const int nr = neq1*neq2*neq3;
  7615. // rows per thread
  7616. const int dr = (nr + nth - 1)/nth;
  7617. // row range for this thread
  7618. const int ir0 = dr*ith;
  7619. const int ir1 = MIN(ir0 + dr, nr);
  7620. const float scale = 1.0f/sqrtf(D);
  7621. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7622. for (int ir = ir0; ir < ir1; ++ir) {
  7623. // q indices
  7624. const int iq3 = ir/(neq2*neq1);
  7625. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7626. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7627. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  7628. for (int i = M; i < Mup; ++i) {
  7629. S[i] = -INFINITY;
  7630. }
  7631. for (int64_t ic = 0; ic < nek1; ++ic) {
  7632. // k indices
  7633. const int ik3 = iq3;
  7634. const int ik2 = iq2;
  7635. const int ik1 = ic;
  7636. // S indices
  7637. const int i1 = ik1;
  7638. ggml_vec_dot_f32(neq0,
  7639. S + i1,
  7640. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7641. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7642. }
  7643. // scale
  7644. ggml_vec_scale_f32(nek1, S, scale);
  7645. if (masked) {
  7646. for (int64_t i = P; i < M; i++) {
  7647. if (i > P + iq1) {
  7648. S[i] = -INFINITY;
  7649. }
  7650. }
  7651. }
  7652. // softmax
  7653. {
  7654. float max = -INFINITY;
  7655. ggml_vec_max_f32(M, &max, S);
  7656. ggml_float sum = 0.0;
  7657. {
  7658. #ifdef GGML_SOFT_MAX_ACCELERATE
  7659. max = -max;
  7660. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7661. vvexpf(S, S, &Mup);
  7662. ggml_vec_sum_f32(Mup, &sum, S);
  7663. #else
  7664. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7665. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7666. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7667. float * SS = S + i;
  7668. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7669. if (SS[j] == -INFINITY) {
  7670. SS[j] = 0.0f;
  7671. } else {
  7672. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7673. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7674. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7675. sump[j] += (ggml_float)val;
  7676. SS[j] = val;
  7677. }
  7678. }
  7679. }
  7680. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7681. sum += sump[i];
  7682. }
  7683. #endif
  7684. }
  7685. assert(sum > 0.0);
  7686. sum = 1.0/sum;
  7687. ggml_vec_scale_f32(M, S, sum);
  7688. #ifndef NDEBUG
  7689. for (int i = 0; i < M; ++i) {
  7690. assert(!isnan(S[i]));
  7691. assert(!isinf(S[i]));
  7692. }
  7693. #endif
  7694. }
  7695. for (int64_t ic = 0; ic < nev1; ++ic) {
  7696. // dst indices
  7697. const int i1 = iq1;
  7698. const int i2 = iq2;
  7699. const int i3 = iq3;
  7700. ggml_vec_dot_f32(nek1,
  7701. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7702. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7703. S);
  7704. }
  7705. }
  7706. }
  7707. static void ggml_compute_forward_flash_attn_f16(
  7708. const struct ggml_compute_params * params,
  7709. const struct ggml_tensor * q,
  7710. const struct ggml_tensor * k,
  7711. const struct ggml_tensor * v,
  7712. const bool masked,
  7713. struct ggml_tensor * dst) {
  7714. int64_t t0 = ggml_perf_time_us();
  7715. UNUSED(t0);
  7716. const int64_t neq0 = q->ne[0];
  7717. const int64_t neq1 = q->ne[1];
  7718. const int64_t neq2 = q->ne[2];
  7719. const int64_t neq3 = q->ne[3];
  7720. const int64_t nek0 = k->ne[0];
  7721. const int64_t nek1 = k->ne[1];
  7722. //const int64_t nek2 = k->ne[2];
  7723. //const int64_t nek3 = k->ne[3];
  7724. //const int64_t nev0 = v->ne[0];
  7725. const int64_t nev1 = v->ne[1];
  7726. //const int64_t nev2 = v->ne[2];
  7727. //const int64_t nev3 = v->ne[3];
  7728. const int64_t ne0 = dst->ne[0];
  7729. const int64_t ne1 = dst->ne[1];
  7730. //const int64_t ne2 = dst->ne[2];
  7731. //const int64_t ne3 = dst->ne[3];
  7732. const int nbk0 = k->nb[0];
  7733. const int nbk1 = k->nb[1];
  7734. const int nbk2 = k->nb[2];
  7735. const int nbk3 = k->nb[3];
  7736. const int nbq0 = q->nb[0];
  7737. const int nbq1 = q->nb[1];
  7738. const int nbq2 = q->nb[2];
  7739. const int nbq3 = q->nb[3];
  7740. const int nbv0 = v->nb[0];
  7741. const int nbv1 = v->nb[1];
  7742. const int nbv2 = v->nb[2];
  7743. const int nbv3 = v->nb[3];
  7744. const int nb0 = dst->nb[0];
  7745. const int nb1 = dst->nb[1];
  7746. const int nb2 = dst->nb[2];
  7747. const int nb3 = dst->nb[3];
  7748. const int ith = params->ith;
  7749. const int nth = params->nth;
  7750. const int64_t D = neq0;
  7751. const int64_t N = neq1;
  7752. const int64_t P = nek1 - N;
  7753. const int64_t M = P + N;
  7754. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7755. GGML_ASSERT(ne0 == D);
  7756. GGML_ASSERT(ne1 == N);
  7757. GGML_ASSERT(P >= 0);
  7758. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  7759. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  7760. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  7761. GGML_ASSERT(neq0 == D);
  7762. GGML_ASSERT(nek0 == D);
  7763. GGML_ASSERT(nev1 == D);
  7764. GGML_ASSERT(neq1 == N);
  7765. GGML_ASSERT(nek1 == N + P);
  7766. GGML_ASSERT(nev1 == D);
  7767. // dst cannot be transposed or permuted
  7768. GGML_ASSERT(nb0 == sizeof(float));
  7769. GGML_ASSERT(nb0 <= nb1);
  7770. GGML_ASSERT(nb1 <= nb2);
  7771. GGML_ASSERT(nb2 <= nb3);
  7772. if (params->type == GGML_TASK_INIT) {
  7773. return;
  7774. }
  7775. if (params->type == GGML_TASK_FINALIZE) {
  7776. return;
  7777. }
  7778. // parallelize by q rows using ggml_vec_dot_f32
  7779. // total rows in q
  7780. const int nr = neq1*neq2*neq3;
  7781. // rows per thread
  7782. const int dr = (nr + nth - 1)/nth;
  7783. // row range for this thread
  7784. const int ir0 = dr*ith;
  7785. const int ir1 = MIN(ir0 + dr, nr);
  7786. const float scale = 1.0f/sqrtf(D);
  7787. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7788. for (int ir = ir0; ir < ir1; ++ir) {
  7789. // q indices
  7790. const int iq3 = ir/(neq2*neq1);
  7791. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7792. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7793. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  7794. for (int i = M; i < Mup; ++i) {
  7795. S[i] = -INFINITY;
  7796. }
  7797. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  7798. for (int64_t ic = 0; ic < nek1; ++ic) {
  7799. // k indices
  7800. const int ik3 = iq3;
  7801. const int ik2 = iq2;
  7802. const int ik1 = ic;
  7803. // S indices
  7804. const int i1 = ik1;
  7805. ggml_vec_dot_f16(neq0,
  7806. S + i1,
  7807. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7808. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7809. }
  7810. } else {
  7811. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  7812. // k indices
  7813. const int ik3 = iq3;
  7814. const int ik2 = iq2;
  7815. const int ik1 = ic;
  7816. // S indices
  7817. const int i1 = ik1;
  7818. ggml_vec_dot_f16_unroll(neq0, nbk1,
  7819. S + i1,
  7820. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7821. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7822. }
  7823. }
  7824. // scale
  7825. ggml_vec_scale_f32(nek1, S, scale);
  7826. if (masked) {
  7827. for (int64_t i = P; i < M; i++) {
  7828. if (i > P + iq1) {
  7829. S[i] = -INFINITY;
  7830. }
  7831. }
  7832. }
  7833. // softmax
  7834. {
  7835. float max = -INFINITY;
  7836. ggml_vec_max_f32(M, &max, S);
  7837. ggml_float sum = 0.0;
  7838. {
  7839. #ifdef GGML_SOFT_MAX_ACCELERATE
  7840. max = -max;
  7841. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7842. vvexpf(S, S, &Mup);
  7843. ggml_vec_sum_f32(Mup, &sum, S);
  7844. #else
  7845. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7846. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7847. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7848. float * SS = S + i;
  7849. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7850. if (SS[j] == -INFINITY) {
  7851. SS[j] = 0.0f;
  7852. } else {
  7853. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7854. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7855. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7856. sump[j] += (ggml_float)val;
  7857. SS[j] = val;
  7858. }
  7859. }
  7860. }
  7861. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7862. sum += sump[i];
  7863. }
  7864. #endif
  7865. }
  7866. assert(sum > 0.0);
  7867. sum = 1.0/sum;
  7868. ggml_vec_scale_f32(M, S, sum);
  7869. #ifndef NDEBUG
  7870. for (int i = 0; i < M; ++i) {
  7871. assert(!isnan(S[i]));
  7872. assert(!isinf(S[i]));
  7873. }
  7874. #endif
  7875. }
  7876. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  7877. for (int64_t i = 0; i < M; i++) {
  7878. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7879. }
  7880. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  7881. for (int64_t ic = 0; ic < nev1; ++ic) {
  7882. // dst indices
  7883. const int i1 = iq1;
  7884. const int i2 = iq2;
  7885. const int i3 = iq3;
  7886. ggml_vec_dot_f16(nek1,
  7887. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7888. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7889. S16);
  7890. }
  7891. } else {
  7892. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  7893. // dst indices
  7894. const int i1 = iq1;
  7895. const int i2 = iq2;
  7896. const int i3 = iq3;
  7897. ggml_vec_dot_f16_unroll(nek1, nbv1,
  7898. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7899. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7900. S16);
  7901. }
  7902. }
  7903. }
  7904. }
  7905. static void ggml_compute_forward_flash_attn(
  7906. const struct ggml_compute_params * params,
  7907. const struct ggml_tensor * q,
  7908. const struct ggml_tensor * k,
  7909. const struct ggml_tensor * v,
  7910. const bool masked,
  7911. struct ggml_tensor * dst) {
  7912. switch (q->type) {
  7913. case GGML_TYPE_F16:
  7914. {
  7915. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  7916. } break;
  7917. case GGML_TYPE_F32:
  7918. {
  7919. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  7920. } break;
  7921. default:
  7922. {
  7923. GGML_ASSERT(false);
  7924. } break;
  7925. }
  7926. }
  7927. // ggml_compute_forward_flash_ff
  7928. static void ggml_compute_forward_flash_ff_f16(
  7929. const struct ggml_compute_params * params,
  7930. const struct ggml_tensor * a, // F16
  7931. const struct ggml_tensor * b0, // F16 fc_w
  7932. const struct ggml_tensor * b1, // F32 fc_b
  7933. const struct ggml_tensor * c0, // F16 proj_w
  7934. const struct ggml_tensor * c1, // F32 proj_b
  7935. struct ggml_tensor * dst) {
  7936. int64_t t0 = ggml_perf_time_us();
  7937. UNUSED(t0);
  7938. const int64_t nea0 = a->ne[0];
  7939. const int64_t nea1 = a->ne[1];
  7940. const int64_t nea2 = a->ne[2];
  7941. const int64_t nea3 = a->ne[3];
  7942. const int64_t neb00 = b0->ne[0];
  7943. const int64_t neb01 = b0->ne[1];
  7944. //const int64_t neb02 = b0->ne[2];
  7945. //const int64_t neb03 = b0->ne[3];
  7946. const int64_t neb10 = b1->ne[0];
  7947. const int64_t neb11 = b1->ne[1];
  7948. //const int64_t neb12 = b1->ne[2];
  7949. //const int64_t neb13 = b1->ne[3];
  7950. const int64_t nec00 = c0->ne[0];
  7951. const int64_t nec01 = c0->ne[1];
  7952. //const int64_t nec02 = c0->ne[2];
  7953. //const int64_t nec03 = c0->ne[3];
  7954. const int64_t nec10 = c1->ne[0];
  7955. const int64_t nec11 = c1->ne[1];
  7956. //const int64_t nec12 = c1->ne[2];
  7957. //const int64_t nec13 = c1->ne[3];
  7958. const int64_t ne0 = dst->ne[0];
  7959. const int64_t ne1 = dst->ne[1];
  7960. const int64_t ne2 = dst->ne[2];
  7961. //const int64_t ne3 = dst->ne[3];
  7962. const int nba0 = a->nb[0];
  7963. const int nba1 = a->nb[1];
  7964. const int nba2 = a->nb[2];
  7965. const int nba3 = a->nb[3];
  7966. const int nbb00 = b0->nb[0];
  7967. const int nbb01 = b0->nb[1];
  7968. const int nbb02 = b0->nb[2];
  7969. const int nbb03 = b0->nb[3];
  7970. const int nbb10 = b1->nb[0];
  7971. //const int nbb11 = b1->nb[1];
  7972. //const int nbb12 = b1->nb[2];
  7973. //const int nbb13 = b1->nb[3];
  7974. const int nbc00 = c0->nb[0];
  7975. const int nbc01 = c0->nb[1];
  7976. const int nbc02 = c0->nb[2];
  7977. const int nbc03 = c0->nb[3];
  7978. const int nbc10 = c1->nb[0];
  7979. //const int nbc11 = c1->nb[1];
  7980. //const int nbc12 = c1->nb[2];
  7981. //const int nbc13 = c1->nb[3];
  7982. const int nb0 = dst->nb[0];
  7983. const int nb1 = dst->nb[1];
  7984. const int nb2 = dst->nb[2];
  7985. const int nb3 = dst->nb[3];
  7986. const int ith = params->ith;
  7987. const int nth = params->nth;
  7988. const int64_t D = nea0;
  7989. //const int64_t N = nea1;
  7990. const int64_t M = neb01;
  7991. GGML_ASSERT(ne0 == nea0);
  7992. GGML_ASSERT(ne1 == nea1);
  7993. GGML_ASSERT(ne2 == nea2);
  7994. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  7995. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  7996. GGML_ASSERT(nbb10 == sizeof(float));
  7997. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  7998. GGML_ASSERT(nbc10 == sizeof(float));
  7999. GGML_ASSERT(neb00 == D);
  8000. GGML_ASSERT(neb01 == M);
  8001. GGML_ASSERT(neb10 == M);
  8002. GGML_ASSERT(neb11 == 1);
  8003. GGML_ASSERT(nec00 == M);
  8004. GGML_ASSERT(nec01 == D);
  8005. GGML_ASSERT(nec10 == D);
  8006. GGML_ASSERT(nec11 == 1);
  8007. // dst cannot be transposed or permuted
  8008. GGML_ASSERT(nb0 == sizeof(float));
  8009. GGML_ASSERT(nb0 <= nb1);
  8010. GGML_ASSERT(nb1 <= nb2);
  8011. GGML_ASSERT(nb2 <= nb3);
  8012. if (params->type == GGML_TASK_INIT) {
  8013. return;
  8014. }
  8015. if (params->type == GGML_TASK_FINALIZE) {
  8016. return;
  8017. }
  8018. // parallelize by a rows using ggml_vec_dot_f32
  8019. // total rows in a
  8020. const int nr = nea1*nea2*nea3;
  8021. // rows per thread
  8022. const int dr = (nr + nth - 1)/nth;
  8023. // row range for this thread
  8024. const int ir0 = dr*ith;
  8025. const int ir1 = MIN(ir0 + dr, nr);
  8026. for (int ir = ir0; ir < ir1; ++ir) {
  8027. // a indices
  8028. const int ia3 = ir/(nea2*nea1);
  8029. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  8030. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  8031. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  8032. for (int64_t ic = 0; ic < neb01; ++ic) {
  8033. // b0 indices
  8034. const int ib03 = ia3;
  8035. const int ib02 = ia2;
  8036. const int ib01 = ic;
  8037. // S indices
  8038. const int i1 = ib01;
  8039. ggml_vec_dot_f16(nea0,
  8040. S + i1,
  8041. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  8042. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  8043. }
  8044. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  8045. //ggml_vec_gelu_f32(neb01, S, S);
  8046. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  8047. for (int64_t i = 0; i < M; i++) {
  8048. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8049. }
  8050. ggml_vec_gelu_f16(neb01, S16, S16);
  8051. {
  8052. // dst indices
  8053. const int i1 = ia1;
  8054. const int i2 = ia2;
  8055. const int i3 = ia3;
  8056. for (int64_t ic = 0; ic < nec01; ++ic) {
  8057. ggml_vec_dot_f16(neb01,
  8058. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8059. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  8060. S16);
  8061. }
  8062. ggml_vec_add_f32(nec01,
  8063. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8064. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8065. (float *) c1->data);
  8066. }
  8067. }
  8068. }
  8069. static void ggml_compute_forward_flash_ff(
  8070. const struct ggml_compute_params * params,
  8071. const struct ggml_tensor * a,
  8072. const struct ggml_tensor * b0,
  8073. const struct ggml_tensor * b1,
  8074. const struct ggml_tensor * c0,
  8075. const struct ggml_tensor * c1,
  8076. struct ggml_tensor * dst) {
  8077. switch (b0->type) {
  8078. case GGML_TYPE_F16:
  8079. {
  8080. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  8081. } break;
  8082. case GGML_TYPE_F32:
  8083. {
  8084. GGML_ASSERT(false); // TODO
  8085. } break;
  8086. default:
  8087. {
  8088. GGML_ASSERT(false);
  8089. } break;
  8090. }
  8091. }
  8092. // ggml_compute_forward_map_unary
  8093. static void ggml_compute_forward_map_unary_f32(
  8094. const struct ggml_compute_params * params,
  8095. const struct ggml_tensor * src0,
  8096. struct ggml_tensor * dst,
  8097. const ggml_unary_op_f32_t fun) {
  8098. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8099. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8100. return;
  8101. }
  8102. const int n = ggml_nrows(src0);
  8103. const int nc = src0->ne[0];
  8104. assert( dst->nb[0] == sizeof(float));
  8105. assert(src0->nb[0] == sizeof(float));
  8106. for (int i = 0; i < n; i++) {
  8107. fun(nc,
  8108. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8109. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8110. }
  8111. }
  8112. static void ggml_compute_forward_map_unary(
  8113. const struct ggml_compute_params * params,
  8114. const struct ggml_tensor * src0,
  8115. struct ggml_tensor * dst,
  8116. const ggml_unary_op_f32_t fun) {
  8117. switch (src0->type) {
  8118. case GGML_TYPE_F32:
  8119. {
  8120. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  8121. } break;
  8122. default:
  8123. {
  8124. GGML_ASSERT(false);
  8125. } break;
  8126. }
  8127. }
  8128. // ggml_compute_forward_map_binary
  8129. static void ggml_compute_forward_map_binary_f32(
  8130. const struct ggml_compute_params * params,
  8131. const struct ggml_tensor * src0,
  8132. const struct ggml_tensor * src1,
  8133. struct ggml_tensor * dst,
  8134. const ggml_binary_op_f32_t fun) {
  8135. assert(params->ith == 0);
  8136. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8137. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8138. return;
  8139. }
  8140. const int n = ggml_nrows(src0);
  8141. const int nc = src0->ne[0];
  8142. assert( dst->nb[0] == sizeof(float));
  8143. assert(src0->nb[0] == sizeof(float));
  8144. assert(src1->nb[0] == sizeof(float));
  8145. for (int i = 0; i < n; i++) {
  8146. fun(nc,
  8147. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8148. (float *) ((char *) src0->data + i*(src0->nb[1])),
  8149. (float *) ((char *) src1->data + i*(src1->nb[1])));
  8150. }
  8151. }
  8152. static void ggml_compute_forward_map_binary(
  8153. const struct ggml_compute_params * params,
  8154. const struct ggml_tensor * src0,
  8155. const struct ggml_tensor * src1,
  8156. struct ggml_tensor * dst,
  8157. const ggml_binary_op_f32_t fun) {
  8158. switch (src0->type) {
  8159. case GGML_TYPE_F32:
  8160. {
  8161. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  8162. } break;
  8163. default:
  8164. {
  8165. GGML_ASSERT(false);
  8166. } break;
  8167. }
  8168. }
  8169. /////////////////////////////////
  8170. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  8171. GGML_ASSERT(params);
  8172. switch (tensor->op) {
  8173. case GGML_OP_DUP:
  8174. {
  8175. ggml_compute_forward_dup(params, tensor->src0, tensor);
  8176. } break;
  8177. case GGML_OP_ADD:
  8178. {
  8179. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  8180. } break;
  8181. case GGML_OP_SUB:
  8182. {
  8183. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  8184. } break;
  8185. case GGML_OP_MUL:
  8186. {
  8187. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  8188. } break;
  8189. case GGML_OP_DIV:
  8190. {
  8191. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  8192. } break;
  8193. case GGML_OP_SQR:
  8194. {
  8195. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  8196. } break;
  8197. case GGML_OP_SQRT:
  8198. {
  8199. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  8200. } break;
  8201. case GGML_OP_SUM:
  8202. {
  8203. ggml_compute_forward_sum(params, tensor->src0, tensor);
  8204. } break;
  8205. case GGML_OP_MEAN:
  8206. {
  8207. ggml_compute_forward_mean(params, tensor->src0, tensor);
  8208. } break;
  8209. case GGML_OP_REPEAT:
  8210. {
  8211. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  8212. } break;
  8213. case GGML_OP_ABS:
  8214. {
  8215. ggml_compute_forward_abs(params, tensor->src0, tensor);
  8216. } break;
  8217. case GGML_OP_SGN:
  8218. {
  8219. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  8220. } break;
  8221. case GGML_OP_NEG:
  8222. {
  8223. ggml_compute_forward_neg(params, tensor->src0, tensor);
  8224. } break;
  8225. case GGML_OP_STEP:
  8226. {
  8227. ggml_compute_forward_step(params, tensor->src0, tensor);
  8228. } break;
  8229. case GGML_OP_RELU:
  8230. {
  8231. ggml_compute_forward_relu(params, tensor->src0, tensor);
  8232. } break;
  8233. case GGML_OP_GELU:
  8234. {
  8235. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  8236. } break;
  8237. case GGML_OP_SILU:
  8238. {
  8239. ggml_compute_forward_silu(params, tensor->src0, tensor);
  8240. } break;
  8241. case GGML_OP_NORM:
  8242. {
  8243. ggml_compute_forward_norm(params, tensor->src0, tensor);
  8244. } break;
  8245. case GGML_OP_RMS_NORM:
  8246. {
  8247. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  8248. } break;
  8249. case GGML_OP_MUL_MAT:
  8250. {
  8251. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  8252. } break;
  8253. case GGML_OP_SCALE:
  8254. {
  8255. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  8256. } break;
  8257. case GGML_OP_CPY:
  8258. {
  8259. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  8260. } break;
  8261. case GGML_OP_CONT:
  8262. {
  8263. ggml_compute_forward_cont(params, tensor->src0, tensor);
  8264. } break;
  8265. case GGML_OP_RESHAPE:
  8266. {
  8267. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  8268. } break;
  8269. case GGML_OP_VIEW:
  8270. {
  8271. ggml_compute_forward_view(params, tensor->src0);
  8272. } break;
  8273. case GGML_OP_PERMUTE:
  8274. {
  8275. ggml_compute_forward_permute(params, tensor->src0);
  8276. } break;
  8277. case GGML_OP_TRANSPOSE:
  8278. {
  8279. ggml_compute_forward_transpose(params, tensor->src0);
  8280. } break;
  8281. case GGML_OP_GET_ROWS:
  8282. {
  8283. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  8284. } break;
  8285. case GGML_OP_DIAG_MASK_INF:
  8286. {
  8287. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  8288. } break;
  8289. case GGML_OP_SOFT_MAX:
  8290. {
  8291. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  8292. } break;
  8293. case GGML_OP_ROPE:
  8294. {
  8295. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  8296. } break;
  8297. case GGML_OP_CONV_1D_1S:
  8298. {
  8299. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  8300. } break;
  8301. case GGML_OP_CONV_1D_2S:
  8302. {
  8303. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  8304. } break;
  8305. case GGML_OP_FLASH_ATTN:
  8306. {
  8307. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  8308. GGML_ASSERT(t == 0 || t == 1);
  8309. bool masked = t != 0;
  8310. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  8311. } break;
  8312. case GGML_OP_FLASH_FF:
  8313. {
  8314. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  8315. } break;
  8316. case GGML_OP_MAP_UNARY:
  8317. {
  8318. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  8319. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  8320. }
  8321. break;
  8322. case GGML_OP_MAP_BINARY:
  8323. {
  8324. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  8325. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  8326. }
  8327. break;
  8328. case GGML_OP_NONE:
  8329. {
  8330. // nop
  8331. } break;
  8332. case GGML_OP_COUNT:
  8333. {
  8334. GGML_ASSERT(false);
  8335. } break;
  8336. }
  8337. }
  8338. ////////////////////////////////////////////////////////////////////////////////
  8339. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  8340. struct ggml_tensor * src0 = tensor->src0;
  8341. struct ggml_tensor * src1 = tensor->src1;
  8342. switch (tensor->op) {
  8343. case GGML_OP_DUP:
  8344. {
  8345. if (src0->grad) {
  8346. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8347. }
  8348. } break;
  8349. case GGML_OP_ADD:
  8350. {
  8351. if (src0->grad) {
  8352. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8353. }
  8354. if (src1->grad) {
  8355. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  8356. }
  8357. } break;
  8358. case GGML_OP_SUB:
  8359. {
  8360. if (src0->grad) {
  8361. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8362. }
  8363. if (src1->grad) {
  8364. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  8365. }
  8366. } break;
  8367. case GGML_OP_MUL:
  8368. {
  8369. if (src0->grad) {
  8370. src0->grad =
  8371. ggml_add_impl(ctx,
  8372. src0->grad,
  8373. ggml_mul(ctx, src1, tensor->grad),
  8374. inplace);
  8375. }
  8376. if (src1->grad) {
  8377. src1->grad =
  8378. ggml_add_impl(ctx,
  8379. src1->grad,
  8380. ggml_mul(ctx, src0, tensor->grad),
  8381. inplace);
  8382. }
  8383. } break;
  8384. case GGML_OP_DIV:
  8385. {
  8386. if (src0->grad) {
  8387. src0->grad =
  8388. ggml_add_impl(ctx,
  8389. src0->grad,
  8390. ggml_div(ctx, tensor->grad, src1),
  8391. inplace);
  8392. }
  8393. if (src1->grad) {
  8394. src1->grad =
  8395. ggml_sub_impl(ctx,
  8396. src1->grad,
  8397. ggml_mul(ctx,
  8398. tensor->grad,
  8399. ggml_div(ctx, tensor, src1)),
  8400. inplace);
  8401. }
  8402. } break;
  8403. case GGML_OP_SQR:
  8404. {
  8405. if (src0->grad) {
  8406. src0->grad =
  8407. ggml_add_impl(ctx,
  8408. src0->grad,
  8409. ggml_mul(ctx,
  8410. ggml_mul(ctx, src0, tensor->grad),
  8411. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  8412. inplace);
  8413. }
  8414. } break;
  8415. case GGML_OP_SQRT:
  8416. {
  8417. if (src0->grad) {
  8418. src0->grad =
  8419. ggml_add_impl(ctx,
  8420. src0->grad,
  8421. ggml_div(ctx,
  8422. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  8423. tensor),
  8424. inplace);
  8425. }
  8426. } break;
  8427. case GGML_OP_SUM:
  8428. {
  8429. if (src0->grad) {
  8430. src0->grad =
  8431. ggml_add_impl(ctx,
  8432. src0->grad,
  8433. ggml_repeat(ctx, tensor->grad, src0->grad),
  8434. inplace);
  8435. }
  8436. } break;
  8437. case GGML_OP_MEAN:
  8438. {
  8439. GGML_ASSERT(false); // TODO: implement
  8440. } break;
  8441. case GGML_OP_REPEAT:
  8442. {
  8443. if (src0->grad) {
  8444. src0->grad =
  8445. ggml_add_impl(ctx,
  8446. src0->grad,
  8447. ggml_sum(ctx, tensor->grad),
  8448. inplace);
  8449. }
  8450. } break;
  8451. case GGML_OP_ABS:
  8452. {
  8453. if (src0->grad) {
  8454. src0->grad =
  8455. ggml_add_impl(ctx,
  8456. src0->grad,
  8457. ggml_mul(ctx,
  8458. ggml_sgn(ctx, src0),
  8459. tensor->grad),
  8460. inplace);
  8461. }
  8462. } break;
  8463. case GGML_OP_SGN:
  8464. {
  8465. if (src0->grad) {
  8466. // noop
  8467. }
  8468. } break;
  8469. case GGML_OP_NEG:
  8470. {
  8471. if (src0->grad) {
  8472. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  8473. }
  8474. } break;
  8475. case GGML_OP_STEP:
  8476. {
  8477. if (src0->grad) {
  8478. // noop
  8479. }
  8480. } break;
  8481. case GGML_OP_RELU:
  8482. {
  8483. if (src0->grad) {
  8484. src0->grad = ggml_sub_impl(ctx,
  8485. src0->grad,
  8486. ggml_mul(ctx,
  8487. ggml_step(ctx, src0),
  8488. tensor->grad),
  8489. inplace);
  8490. }
  8491. } break;
  8492. case GGML_OP_GELU:
  8493. {
  8494. GGML_ASSERT(false); // TODO: not implemented
  8495. } break;
  8496. case GGML_OP_SILU:
  8497. {
  8498. GGML_ASSERT(false); // TODO: not implemented
  8499. } break;
  8500. case GGML_OP_NORM:
  8501. {
  8502. GGML_ASSERT(false); // TODO: not implemented
  8503. } break;
  8504. case GGML_OP_RMS_NORM:
  8505. {
  8506. GGML_ASSERT(false); // TODO: not implemented
  8507. } break;
  8508. case GGML_OP_MUL_MAT:
  8509. {
  8510. if (src0->grad) {
  8511. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  8512. GGML_ASSERT(false);
  8513. }
  8514. if (src1->grad) {
  8515. src1->grad =
  8516. ggml_add_impl(ctx,
  8517. src1->grad,
  8518. ggml_mul_mat(ctx,
  8519. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  8520. tensor->grad),
  8521. inplace);
  8522. }
  8523. } break;
  8524. case GGML_OP_SCALE:
  8525. {
  8526. GGML_ASSERT(false); // TODO: not implemented
  8527. } break;
  8528. case GGML_OP_CPY:
  8529. {
  8530. GGML_ASSERT(false); // TODO: not implemented
  8531. } break;
  8532. case GGML_OP_CONT:
  8533. {
  8534. GGML_ASSERT(false); // TODO: not implemented
  8535. } break;
  8536. case GGML_OP_RESHAPE:
  8537. {
  8538. GGML_ASSERT(false); // TODO: not implemented
  8539. } break;
  8540. case GGML_OP_VIEW:
  8541. {
  8542. GGML_ASSERT(false); // not supported
  8543. } break;
  8544. case GGML_OP_PERMUTE:
  8545. {
  8546. GGML_ASSERT(false); // TODO: not implemented
  8547. } break;
  8548. case GGML_OP_TRANSPOSE:
  8549. {
  8550. GGML_ASSERT(false); // TODO: not implemented
  8551. } break;
  8552. case GGML_OP_GET_ROWS:
  8553. {
  8554. GGML_ASSERT(false); // TODO: not implemented
  8555. } break;
  8556. case GGML_OP_DIAG_MASK_INF:
  8557. {
  8558. GGML_ASSERT(false); // TODO: not implemented
  8559. } break;
  8560. case GGML_OP_SOFT_MAX:
  8561. {
  8562. GGML_ASSERT(false); // TODO: not implemented
  8563. } break;
  8564. case GGML_OP_ROPE:
  8565. {
  8566. GGML_ASSERT(false); // TODO: not implemented
  8567. } break;
  8568. case GGML_OP_CONV_1D_1S:
  8569. {
  8570. GGML_ASSERT(false); // TODO: not implemented
  8571. } break;
  8572. case GGML_OP_CONV_1D_2S:
  8573. {
  8574. GGML_ASSERT(false); // TODO: not implemented
  8575. } break;
  8576. case GGML_OP_FLASH_ATTN:
  8577. {
  8578. GGML_ASSERT(false); // not supported
  8579. } break;
  8580. case GGML_OP_FLASH_FF:
  8581. {
  8582. GGML_ASSERT(false); // not supported
  8583. } break;
  8584. case GGML_OP_MAP_UNARY:
  8585. case GGML_OP_MAP_BINARY:
  8586. {
  8587. GGML_ASSERT(false); // not supported
  8588. } break;
  8589. case GGML_OP_NONE:
  8590. {
  8591. // nop
  8592. } break;
  8593. case GGML_OP_COUNT:
  8594. {
  8595. GGML_ASSERT(false);
  8596. } break;
  8597. }
  8598. }
  8599. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  8600. if (node->grad == NULL) {
  8601. // this usually happens when we generate intermediate nodes from constants in the backward pass
  8602. // it can also happen during forward pass, if the user performs computations with constants
  8603. if (node->op != GGML_OP_NONE) {
  8604. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  8605. }
  8606. }
  8607. // check if already visited
  8608. for (int i = 0; i < cgraph->n_nodes; i++) {
  8609. if (cgraph->nodes[i] == node) {
  8610. return;
  8611. }
  8612. }
  8613. for (int i = 0; i < cgraph->n_leafs; i++) {
  8614. if (cgraph->leafs[i] == node) {
  8615. return;
  8616. }
  8617. }
  8618. if (node->src0) {
  8619. ggml_visit_parents(cgraph, node->src0);
  8620. }
  8621. if (node->src1) {
  8622. ggml_visit_parents(cgraph, node->src1);
  8623. }
  8624. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  8625. if (node->opt[i]) {
  8626. ggml_visit_parents(cgraph, node->opt[i]);
  8627. }
  8628. }
  8629. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  8630. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  8631. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  8632. cgraph->leafs[cgraph->n_leafs] = node;
  8633. cgraph->n_leafs++;
  8634. } else {
  8635. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  8636. cgraph->nodes[cgraph->n_nodes] = node;
  8637. cgraph->grads[cgraph->n_nodes] = node->grad;
  8638. cgraph->n_nodes++;
  8639. }
  8640. }
  8641. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  8642. if (!expand) {
  8643. cgraph->n_nodes = 0;
  8644. cgraph->n_leafs = 0;
  8645. }
  8646. const int n0 = cgraph->n_nodes;
  8647. UNUSED(n0);
  8648. ggml_visit_parents(cgraph, tensor);
  8649. const int n_new = cgraph->n_nodes - n0;
  8650. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  8651. if (n_new > 0) {
  8652. // the last added node should always be starting point
  8653. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  8654. }
  8655. }
  8656. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  8657. ggml_build_forward_impl(cgraph, tensor, true);
  8658. }
  8659. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  8660. struct ggml_cgraph result = {
  8661. /*.n_nodes =*/ 0,
  8662. /*.n_leafs =*/ 0,
  8663. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  8664. /*.work_size =*/ 0,
  8665. /*.work =*/ NULL,
  8666. /*.nodes =*/ { NULL },
  8667. /*.grads =*/ { NULL },
  8668. /*.leafs =*/ { NULL },
  8669. /*.perf_runs =*/ 0,
  8670. /*.perf_cycles =*/ 0,
  8671. /*.perf_time_us =*/ 0,
  8672. };
  8673. ggml_build_forward_impl(&result, tensor, false);
  8674. return result;
  8675. }
  8676. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  8677. struct ggml_cgraph result = *gf;
  8678. GGML_ASSERT(gf->n_nodes > 0);
  8679. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  8680. if (keep) {
  8681. for (int i = 0; i < gf->n_nodes; i++) {
  8682. struct ggml_tensor * node = gf->nodes[i];
  8683. if (node->grad) {
  8684. node->grad = ggml_dup_tensor(ctx, node);
  8685. gf->grads[i] = node->grad;
  8686. }
  8687. }
  8688. }
  8689. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  8690. struct ggml_tensor * node = gf->nodes[i];
  8691. // because we detached the grad nodes from the original graph, we can afford inplace operations
  8692. if (node->grad) {
  8693. ggml_compute_backward(ctx, node, keep);
  8694. }
  8695. }
  8696. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  8697. struct ggml_tensor * node = gf->nodes[i];
  8698. if (node->is_param) {
  8699. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  8700. ggml_build_forward_impl(&result, node->grad, true);
  8701. }
  8702. }
  8703. return result;
  8704. }
  8705. //
  8706. // thread data
  8707. //
  8708. // synchronization is done via busy loops
  8709. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  8710. //
  8711. #ifdef __APPLE__
  8712. //#include <os/lock.h>
  8713. //
  8714. //typedef os_unfair_lock ggml_lock_t;
  8715. //
  8716. //#define ggml_lock_init(x) UNUSED(x)
  8717. //#define ggml_lock_destroy(x) UNUSED(x)
  8718. //#define ggml_lock_lock os_unfair_lock_lock
  8719. //#define ggml_lock_unlock os_unfair_lock_unlock
  8720. //
  8721. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  8722. typedef int ggml_lock_t;
  8723. #define ggml_lock_init(x) UNUSED(x)
  8724. #define ggml_lock_destroy(x) UNUSED(x)
  8725. #define ggml_lock_lock(x) UNUSED(x)
  8726. #define ggml_lock_unlock(x) UNUSED(x)
  8727. #define GGML_LOCK_INITIALIZER 0
  8728. typedef pthread_t ggml_thread_t;
  8729. #define ggml_thread_create pthread_create
  8730. #define ggml_thread_join pthread_join
  8731. #else
  8732. //typedef pthread_spinlock_t ggml_lock_t;
  8733. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  8734. //#define ggml_lock_destroy pthread_spin_destroy
  8735. //#define ggml_lock_lock pthread_spin_lock
  8736. //#define ggml_lock_unlock pthread_spin_unlock
  8737. typedef int ggml_lock_t;
  8738. #define ggml_lock_init(x) UNUSED(x)
  8739. #define ggml_lock_destroy(x) UNUSED(x)
  8740. #define ggml_lock_lock(x) UNUSED(x)
  8741. #define ggml_lock_unlock(x) UNUSED(x)
  8742. #define GGML_LOCK_INITIALIZER 0
  8743. typedef pthread_t ggml_thread_t;
  8744. #define ggml_thread_create pthread_create
  8745. #define ggml_thread_join pthread_join
  8746. #endif
  8747. struct ggml_compute_state_shared {
  8748. ggml_lock_t spin;
  8749. int n_threads;
  8750. // synchronization primitives
  8751. atomic_int n_ready;
  8752. atomic_bool has_work;
  8753. atomic_bool stop; // stop all threads
  8754. };
  8755. struct ggml_compute_state {
  8756. ggml_thread_t thrd;
  8757. struct ggml_compute_params params;
  8758. struct ggml_tensor * node;
  8759. struct ggml_compute_state_shared * shared;
  8760. };
  8761. static thread_ret_t ggml_graph_compute_thread(void * data) {
  8762. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  8763. const int n_threads = state->shared->n_threads;
  8764. while (true) {
  8765. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  8766. atomic_store(&state->shared->has_work, false);
  8767. } else {
  8768. while (atomic_load(&state->shared->has_work)) {
  8769. if (atomic_load(&state->shared->stop)) {
  8770. return 0;
  8771. }
  8772. ggml_lock_lock (&state->shared->spin);
  8773. ggml_lock_unlock(&state->shared->spin);
  8774. }
  8775. }
  8776. atomic_fetch_sub(&state->shared->n_ready, 1);
  8777. // wait for work
  8778. while (!atomic_load(&state->shared->has_work)) {
  8779. if (atomic_load(&state->shared->stop)) {
  8780. return 0;
  8781. }
  8782. ggml_lock_lock (&state->shared->spin);
  8783. ggml_lock_unlock(&state->shared->spin);
  8784. }
  8785. // check if we should stop
  8786. if (atomic_load(&state->shared->stop)) {
  8787. break;
  8788. }
  8789. if (state->node) {
  8790. if (state->params.ith < state->params.nth) {
  8791. ggml_compute_forward(&state->params, state->node);
  8792. }
  8793. state->node = NULL;
  8794. } else {
  8795. break;
  8796. }
  8797. }
  8798. return 0;
  8799. }
  8800. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  8801. const int n_threads = cgraph->n_threads;
  8802. struct ggml_compute_state_shared state_shared = {
  8803. /*.spin =*/ GGML_LOCK_INITIALIZER,
  8804. /*.n_threads =*/ n_threads,
  8805. /*.n_ready =*/ 0,
  8806. /*.has_work =*/ false,
  8807. /*.stop =*/ false,
  8808. };
  8809. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  8810. // create thread pool
  8811. if (n_threads > 1) {
  8812. ggml_lock_init(&state_shared.spin);
  8813. atomic_store(&state_shared.has_work, true);
  8814. for (int j = 0; j < n_threads - 1; j++) {
  8815. workers[j] = (struct ggml_compute_state) {
  8816. .thrd = 0,
  8817. .params = {
  8818. .type = GGML_TASK_COMPUTE,
  8819. .ith = j + 1,
  8820. .nth = n_threads,
  8821. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8822. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8823. },
  8824. .node = NULL,
  8825. .shared = &state_shared,
  8826. };
  8827. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  8828. GGML_ASSERT(rc == 0);
  8829. UNUSED(rc);
  8830. }
  8831. }
  8832. // initialize tasks + work buffer
  8833. {
  8834. size_t work_size = 0;
  8835. // thread scheduling for the different operations
  8836. for (int i = 0; i < cgraph->n_nodes; i++) {
  8837. struct ggml_tensor * node = cgraph->nodes[i];
  8838. switch (node->op) {
  8839. case GGML_OP_CPY:
  8840. case GGML_OP_DUP:
  8841. {
  8842. node->n_tasks = n_threads;
  8843. size_t cur = 0;
  8844. if (ggml_is_quantized(node->type)) {
  8845. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  8846. }
  8847. work_size = MAX(work_size, cur);
  8848. } break;
  8849. case GGML_OP_ADD:
  8850. {
  8851. node->n_tasks = n_threads;
  8852. size_t cur = 0;
  8853. if (ggml_is_quantized(node->src0->type)) {
  8854. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  8855. }
  8856. work_size = MAX(work_size, cur);
  8857. } break;
  8858. case GGML_OP_SUB:
  8859. case GGML_OP_MUL:
  8860. case GGML_OP_DIV:
  8861. case GGML_OP_SQR:
  8862. case GGML_OP_SQRT:
  8863. case GGML_OP_SUM:
  8864. case GGML_OP_MEAN:
  8865. case GGML_OP_REPEAT:
  8866. case GGML_OP_ABS:
  8867. case GGML_OP_SGN:
  8868. case GGML_OP_NEG:
  8869. case GGML_OP_STEP:
  8870. case GGML_OP_RELU:
  8871. {
  8872. node->n_tasks = 1;
  8873. } break;
  8874. case GGML_OP_GELU:
  8875. {
  8876. node->n_tasks = n_threads;
  8877. } break;
  8878. case GGML_OP_SILU:
  8879. {
  8880. node->n_tasks = n_threads;
  8881. } break;
  8882. case GGML_OP_NORM:
  8883. case GGML_OP_RMS_NORM:
  8884. {
  8885. node->n_tasks = n_threads;
  8886. } break;
  8887. case GGML_OP_MUL_MAT:
  8888. {
  8889. node->n_tasks = n_threads;
  8890. // TODO: use different scheduling for different matrix sizes
  8891. //const int nr0 = ggml_nrows(node->src0);
  8892. //const int nr1 = ggml_nrows(node->src1);
  8893. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  8894. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  8895. size_t cur = 0;
  8896. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  8897. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  8898. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8899. node->n_tasks = 1; // TODO: this actually is doing nothing
  8900. // the threads are still spinning
  8901. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  8902. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  8903. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  8904. //printf("cur = %zu\n", cur);
  8905. } else {
  8906. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  8907. }
  8908. #else
  8909. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  8910. #endif
  8911. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  8912. cur = 0;
  8913. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  8914. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  8915. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8916. node->n_tasks = 1;
  8917. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  8918. } else
  8919. #endif
  8920. {
  8921. cur = GGML_TYPE_SIZE[GGML_TYPE_Q8_0]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  8922. }
  8923. } else {
  8924. GGML_ASSERT(false);
  8925. }
  8926. work_size = MAX(work_size, cur);
  8927. } break;
  8928. case GGML_OP_SCALE:
  8929. {
  8930. node->n_tasks = n_threads;
  8931. } break;
  8932. case GGML_OP_CONT:
  8933. case GGML_OP_RESHAPE:
  8934. case GGML_OP_VIEW:
  8935. case GGML_OP_PERMUTE:
  8936. case GGML_OP_TRANSPOSE:
  8937. case GGML_OP_GET_ROWS:
  8938. case GGML_OP_DIAG_MASK_INF:
  8939. {
  8940. node->n_tasks = 1;
  8941. } break;
  8942. case GGML_OP_SOFT_MAX:
  8943. {
  8944. node->n_tasks = n_threads;
  8945. } break;
  8946. case GGML_OP_ROPE:
  8947. {
  8948. node->n_tasks = n_threads;
  8949. } break;
  8950. case GGML_OP_CONV_1D_1S:
  8951. case GGML_OP_CONV_1D_2S:
  8952. {
  8953. node->n_tasks = n_threads;
  8954. GGML_ASSERT(node->src0->ne[3] == 1);
  8955. GGML_ASSERT(node->src1->ne[2] == 1);
  8956. GGML_ASSERT(node->src1->ne[3] == 1);
  8957. size_t cur = 0;
  8958. const int nk = node->src0->ne[0];
  8959. if (node->src0->type == GGML_TYPE_F16 &&
  8960. node->src1->type == GGML_TYPE_F32) {
  8961. cur = sizeof(ggml_fp16_t)*(
  8962. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  8963. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  8964. );
  8965. } else if (node->src0->type == GGML_TYPE_F32 &&
  8966. node->src1->type == GGML_TYPE_F32) {
  8967. cur = sizeof(float)*(
  8968. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  8969. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  8970. );
  8971. } else {
  8972. GGML_ASSERT(false);
  8973. }
  8974. work_size = MAX(work_size, cur);
  8975. } break;
  8976. case GGML_OP_FLASH_ATTN:
  8977. {
  8978. node->n_tasks = n_threads;
  8979. size_t cur = 0;
  8980. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  8981. if (node->src1->type == GGML_TYPE_F32) {
  8982. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  8983. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  8984. }
  8985. if (node->src1->type == GGML_TYPE_F16) {
  8986. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  8987. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  8988. }
  8989. work_size = MAX(work_size, cur);
  8990. } break;
  8991. case GGML_OP_FLASH_FF:
  8992. {
  8993. node->n_tasks = n_threads;
  8994. size_t cur = 0;
  8995. if (node->src1->type == GGML_TYPE_F32) {
  8996. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  8997. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  8998. }
  8999. if (node->src1->type == GGML_TYPE_F16) {
  9000. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9001. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9002. }
  9003. work_size = MAX(work_size, cur);
  9004. } break;
  9005. case GGML_OP_MAP_UNARY:
  9006. case GGML_OP_MAP_BINARY:
  9007. {
  9008. node->n_tasks = 1;
  9009. } break;
  9010. case GGML_OP_NONE:
  9011. {
  9012. node->n_tasks = 1;
  9013. } break;
  9014. case GGML_OP_COUNT:
  9015. {
  9016. GGML_ASSERT(false);
  9017. } break;
  9018. }
  9019. }
  9020. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  9021. GGML_ASSERT(false); // TODO: better handling
  9022. }
  9023. if (work_size > 0 && cgraph->work == NULL) {
  9024. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  9025. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  9026. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  9027. }
  9028. }
  9029. const int64_t perf_start_cycles = ggml_perf_cycles();
  9030. const int64_t perf_start_time_us = ggml_perf_time_us();
  9031. for (int i = 0; i < cgraph->n_nodes; i++) {
  9032. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  9033. struct ggml_tensor * node = cgraph->nodes[i];
  9034. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  9035. //if (node->grad == NULL && node->perf_runs > 0) {
  9036. // continue;
  9037. //}
  9038. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  9039. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  9040. // INIT
  9041. struct ggml_compute_params params = {
  9042. /*.type =*/ GGML_TASK_INIT,
  9043. /*.ith =*/ 0,
  9044. /*.nth =*/ node->n_tasks,
  9045. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9046. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  9047. };
  9048. ggml_compute_forward(&params, node);
  9049. // COMPUTE
  9050. if (node->n_tasks > 1) {
  9051. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9052. atomic_store(&state_shared.has_work, false);
  9053. }
  9054. while (atomic_load(&state_shared.has_work)) {
  9055. ggml_lock_lock (&state_shared.spin);
  9056. ggml_lock_unlock(&state_shared.spin);
  9057. }
  9058. // launch thread pool
  9059. for (int j = 0; j < n_threads - 1; j++) {
  9060. workers[j].params = (struct ggml_compute_params) {
  9061. .type = GGML_TASK_COMPUTE,
  9062. .ith = j + 1,
  9063. .nth = node->n_tasks,
  9064. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9065. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9066. };
  9067. workers[j].node = node;
  9068. }
  9069. atomic_fetch_sub(&state_shared.n_ready, 1);
  9070. while (atomic_load(&state_shared.n_ready) > 0) {
  9071. ggml_lock_lock (&state_shared.spin);
  9072. ggml_lock_unlock(&state_shared.spin);
  9073. }
  9074. atomic_store(&state_shared.has_work, true);
  9075. }
  9076. params.type = GGML_TASK_COMPUTE;
  9077. ggml_compute_forward(&params, node);
  9078. // wait for thread pool
  9079. if (node->n_tasks > 1) {
  9080. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9081. atomic_store(&state_shared.has_work, false);
  9082. }
  9083. while (atomic_load(&state_shared.has_work)) {
  9084. ggml_lock_lock (&state_shared.spin);
  9085. ggml_lock_unlock(&state_shared.spin);
  9086. }
  9087. atomic_fetch_sub(&state_shared.n_ready, 1);
  9088. while (atomic_load(&state_shared.n_ready) != 0) {
  9089. ggml_lock_lock (&state_shared.spin);
  9090. ggml_lock_unlock(&state_shared.spin);
  9091. }
  9092. }
  9093. // FINALIZE
  9094. if (node->n_tasks > 1) {
  9095. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9096. atomic_store(&state_shared.has_work, false);
  9097. }
  9098. while (atomic_load(&state_shared.has_work)) {
  9099. ggml_lock_lock (&state_shared.spin);
  9100. ggml_lock_unlock(&state_shared.spin);
  9101. }
  9102. // launch thread pool
  9103. for (int j = 0; j < n_threads - 1; j++) {
  9104. workers[j].params = (struct ggml_compute_params) {
  9105. .type = GGML_TASK_FINALIZE,
  9106. .ith = j + 1,
  9107. .nth = node->n_tasks,
  9108. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9109. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9110. };
  9111. workers[j].node = node;
  9112. }
  9113. atomic_fetch_sub(&state_shared.n_ready, 1);
  9114. while (atomic_load(&state_shared.n_ready) > 0) {
  9115. ggml_lock_lock (&state_shared.spin);
  9116. ggml_lock_unlock(&state_shared.spin);
  9117. }
  9118. atomic_store(&state_shared.has_work, true);
  9119. }
  9120. params.type = GGML_TASK_FINALIZE;
  9121. ggml_compute_forward(&params, node);
  9122. // wait for thread pool
  9123. if (node->n_tasks > 1) {
  9124. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9125. atomic_store(&state_shared.has_work, false);
  9126. }
  9127. while (atomic_load(&state_shared.has_work)) {
  9128. ggml_lock_lock (&state_shared.spin);
  9129. ggml_lock_unlock(&state_shared.spin);
  9130. }
  9131. atomic_fetch_sub(&state_shared.n_ready, 1);
  9132. while (atomic_load(&state_shared.n_ready) != 0) {
  9133. ggml_lock_lock (&state_shared.spin);
  9134. ggml_lock_unlock(&state_shared.spin);
  9135. }
  9136. }
  9137. // performance stats (node)
  9138. {
  9139. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  9140. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  9141. node->perf_runs++;
  9142. node->perf_cycles += perf_cycles_cur;
  9143. node->perf_time_us += perf_time_us_cur;
  9144. }
  9145. }
  9146. // join thread pool
  9147. if (n_threads > 1) {
  9148. atomic_store(&state_shared.stop, true);
  9149. atomic_store(&state_shared.has_work, true);
  9150. for (int j = 0; j < n_threads - 1; j++) {
  9151. int rc = ggml_thread_join(workers[j].thrd, NULL);
  9152. GGML_ASSERT(rc == 0);
  9153. UNUSED(rc);
  9154. }
  9155. ggml_lock_destroy(&state_shared.spin);
  9156. }
  9157. // performance stats (graph)
  9158. {
  9159. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  9160. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  9161. cgraph->perf_runs++;
  9162. cgraph->perf_cycles += perf_cycles_cur;
  9163. cgraph->perf_time_us += perf_time_us_cur;
  9164. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  9165. __func__, cgraph->perf_runs,
  9166. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  9167. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  9168. (double) perf_time_us_cur / 1000.0,
  9169. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  9170. }
  9171. }
  9172. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  9173. for (int i = 0; i < cgraph->n_nodes; i++) {
  9174. struct ggml_tensor * grad = cgraph->grads[i];
  9175. if (grad) {
  9176. ggml_set_zero(grad);
  9177. }
  9178. }
  9179. }
  9180. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  9181. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  9182. GGML_PRINT("=== GRAPH ===\n");
  9183. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  9184. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  9185. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  9186. for (int i = 0; i < cgraph->n_nodes; i++) {
  9187. struct ggml_tensor * node = cgraph->nodes[i];
  9188. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  9189. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  9190. i,
  9191. node->ne[0], node->ne[1], node->ne[2],
  9192. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  9193. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  9194. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  9195. (double) node->perf_time_us / 1000.0,
  9196. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  9197. }
  9198. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  9199. for (int i = 0; i < cgraph->n_leafs; i++) {
  9200. struct ggml_tensor * node = cgraph->leafs[i];
  9201. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  9202. i,
  9203. node->ne[0], node->ne[1],
  9204. GGML_OP_LABEL[node->op]);
  9205. }
  9206. for (int i = 0; i < GGML_OP_COUNT; i++) {
  9207. if (perf_total_per_op_us[i] == 0) {
  9208. continue;
  9209. }
  9210. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  9211. }
  9212. GGML_PRINT("========================================\n");
  9213. }
  9214. // check if node is part of the graph
  9215. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9216. if (cgraph == NULL) {
  9217. return true;
  9218. }
  9219. for (int i = 0; i < cgraph->n_nodes; i++) {
  9220. if (cgraph->nodes[i] == node) {
  9221. return true;
  9222. }
  9223. }
  9224. return false;
  9225. }
  9226. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9227. for (int i = 0; i < cgraph->n_nodes; i++) {
  9228. struct ggml_tensor * parent = cgraph->nodes[i];
  9229. if (parent->grad == node) {
  9230. return parent;
  9231. }
  9232. }
  9233. return NULL;
  9234. }
  9235. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  9236. char color[16];
  9237. FILE * fp = fopen(filename, "w");
  9238. GGML_ASSERT(fp);
  9239. fprintf(fp, "digraph G {\n");
  9240. fprintf(fp, " newrank = true;\n");
  9241. fprintf(fp, " rankdir = LR;\n");
  9242. for (int i = 0; i < gb->n_nodes; i++) {
  9243. struct ggml_tensor * node = gb->nodes[i];
  9244. if (ggml_graph_get_parent(gb, node) != NULL) {
  9245. continue;
  9246. }
  9247. if (node->is_param) {
  9248. snprintf(color, sizeof(color), "yellow");
  9249. } else if (node->grad) {
  9250. if (ggml_graph_find(gf, node)) {
  9251. snprintf(color, sizeof(color), "green");
  9252. } else {
  9253. snprintf(color, sizeof(color), "lightblue");
  9254. }
  9255. } else {
  9256. snprintf(color, sizeof(color), "white");
  9257. }
  9258. fprintf(fp, " \"%p\" [ \
  9259. style = filled; fillcolor = %s; shape = record; \
  9260. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  9261. (void *) node, color,
  9262. i, node->ne[0], node->ne[1],
  9263. GGML_OP_SYMBOL[node->op]);
  9264. if (node->grad) {
  9265. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  9266. } else {
  9267. fprintf(fp, "\"; ]\n");
  9268. }
  9269. }
  9270. for (int i = 0; i < gb->n_leafs; i++) {
  9271. struct ggml_tensor * node = gb->leafs[i];
  9272. snprintf(color, sizeof(color), "pink");
  9273. if (ggml_nelements(node) == 1) {
  9274. fprintf(fp, " \"%p\" [ \
  9275. style = filled; fillcolor = %s; shape = record; \
  9276. label=\"<x>%.1e\"; ]\n",
  9277. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  9278. } else {
  9279. fprintf(fp, " \"%p\" [ \
  9280. style = filled; fillcolor = %s; shape = record; \
  9281. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  9282. (void *) node, color,
  9283. i, node->ne[0], node->ne[1]);
  9284. }
  9285. }
  9286. for (int i = 0; i < gb->n_nodes; i++) {
  9287. struct ggml_tensor * node = gb->nodes[i];
  9288. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  9289. if (node->src0) {
  9290. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  9291. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  9292. parent0 ? (void *) parent0 : (void *) node->src0,
  9293. parent0 ? "g" : "x",
  9294. parent ? (void *) parent : (void *) node,
  9295. parent ? "g" : "x",
  9296. parent ? "empty" : "vee",
  9297. parent ? "dashed" : "solid");
  9298. }
  9299. if (node->src1) {
  9300. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  9301. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  9302. parent1 ? (void *) parent1 : (void *) node->src1,
  9303. parent1 ? "g" : "x",
  9304. parent ? (void *) parent : (void *) node,
  9305. parent ? "g" : "x",
  9306. parent ? "empty" : "vee",
  9307. parent ? "dashed" : "solid");
  9308. }
  9309. }
  9310. for (int i = 0; i < gb->n_leafs; i++) {
  9311. struct ggml_tensor * node = gb->leafs[i];
  9312. if (node->src0) {
  9313. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  9314. (void *) node->src0, "x",
  9315. (void *) node, "x");
  9316. }
  9317. if (node->src1) {
  9318. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  9319. (void *) node->src1, "x",
  9320. (void *) node, "x");
  9321. }
  9322. }
  9323. fprintf(fp, "}\n");
  9324. fclose(fp);
  9325. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  9326. }
  9327. ////////////////////////////////////////////////////////////////////////////////
  9328. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  9329. int i = 0;
  9330. for (int p = 0; p < np; ++p) {
  9331. const int64_t ne = ggml_nelements(ps[p]) ;
  9332. // TODO: add function to set tensor from array
  9333. for (int64_t j = 0; j < ne; ++j) {
  9334. ggml_set_f32_1d(ps[p], j, x[i++]);
  9335. }
  9336. }
  9337. }
  9338. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  9339. int i = 0;
  9340. for (int p = 0; p < np; ++p) {
  9341. const int64_t ne = ggml_nelements(ps[p]) ;
  9342. // TODO: add function to get all elements at once
  9343. for (int64_t j = 0; j < ne; ++j) {
  9344. x[i++] = ggml_get_f32_1d(ps[p], j);
  9345. }
  9346. }
  9347. }
  9348. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  9349. int i = 0;
  9350. for (int p = 0; p < np; ++p) {
  9351. const int64_t ne = ggml_nelements(ps[p]) ;
  9352. // TODO: add function to get all elements at once
  9353. for (int64_t j = 0; j < ne; ++j) {
  9354. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  9355. }
  9356. }
  9357. }
  9358. //
  9359. // ADAM
  9360. //
  9361. // ref: https://arxiv.org/pdf/1412.6980.pdf
  9362. //
  9363. static enum ggml_opt_result ggml_opt_adam(
  9364. struct ggml_context * ctx,
  9365. struct ggml_opt_params params,
  9366. struct ggml_tensor * f,
  9367. struct ggml_cgraph * gf,
  9368. struct ggml_cgraph * gb) {
  9369. GGML_ASSERT(ggml_is_scalar(f));
  9370. gf->n_threads = params.n_threads;
  9371. gb->n_threads = params.n_threads;
  9372. // these will store the parameters we want to optimize
  9373. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9374. int np = 0;
  9375. int nx = 0;
  9376. for (int i = 0; i < gf->n_nodes; ++i) {
  9377. if (gf->nodes[i]->is_param) {
  9378. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9379. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9380. ps[np++] = gf->nodes[i];
  9381. nx += ggml_nelements(gf->nodes[i]);
  9382. }
  9383. }
  9384. // constants
  9385. const float alpha = params.adam.alpha;
  9386. const float beta1 = params.adam.beta1;
  9387. const float beta2 = params.adam.beta2;
  9388. const float eps = params.adam.eps;
  9389. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  9390. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  9391. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  9392. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  9393. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  9394. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  9395. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  9396. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9397. // initialize
  9398. ggml_vec_set_f32(nx, m, 0.0f);
  9399. ggml_vec_set_f32(nx, v, 0.0f);
  9400. // update view
  9401. ggml_opt_get_params(np, ps, x);
  9402. // compute the function value
  9403. ggml_graph_reset (gf);
  9404. ggml_set_f32 (f->grad, 1.0f);
  9405. ggml_graph_compute(ctx, gb);
  9406. float fx_prev = ggml_get_f32_1d(f, 0);
  9407. if (pf) {
  9408. pf[0] = fx_prev;
  9409. }
  9410. int n_no_improvement = 0;
  9411. float fx_best = fx_prev;
  9412. // run the optimizer
  9413. for (int t = 0; t < params.adam.n_iter; ++t) {
  9414. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  9415. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9416. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  9417. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  9418. for (int i = 0; i < np; ++i) {
  9419. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  9420. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  9421. }
  9422. const int64_t t_start_wall = ggml_time_us();
  9423. const int64_t t_start_cpu = ggml_cycles();
  9424. UNUSED(t_start_wall);
  9425. UNUSED(t_start_cpu);
  9426. {
  9427. // update the gradient
  9428. ggml_opt_get_grad(np, ps, g1);
  9429. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  9430. ggml_vec_scale_f32(nx, m, beta1);
  9431. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  9432. // g2 = g1^2
  9433. ggml_vec_sqr_f32 (nx, g2, g1);
  9434. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  9435. ggml_vec_scale_f32(nx, v, beta2);
  9436. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  9437. // m^hat = m_t / (1 - beta1^t)
  9438. // v^hat = v_t / (1 - beta2^t)
  9439. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  9440. ggml_vec_cpy_f32 (nx, mh, m);
  9441. ggml_vec_cpy_f32 (nx, vh, v);
  9442. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  9443. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  9444. ggml_vec_sqrt_f32 (nx, vh, vh);
  9445. ggml_vec_acc1_f32 (nx, vh, eps);
  9446. ggml_vec_div_f32 (nx, mh, mh, vh);
  9447. ggml_vec_sub_f32 (nx, x, x, mh);
  9448. // update the parameters
  9449. ggml_opt_set_params(np, ps, x);
  9450. }
  9451. ggml_graph_reset (gf);
  9452. ggml_set_f32 (f->grad, 1.0f);
  9453. ggml_graph_compute(ctx, gb);
  9454. const float fx = ggml_get_f32_1d(f, 0);
  9455. // check convergence
  9456. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  9457. GGML_PRINT_DEBUG("converged\n");
  9458. return GGML_OPT_OK;
  9459. }
  9460. // delta-based convergence test
  9461. if (pf != NULL) {
  9462. // need at least params.past iterations to start checking for convergence
  9463. if (params.past <= t) {
  9464. const float rate = (pf[t%params.past] - fx)/fx;
  9465. if (fabsf(rate) < params.delta) {
  9466. return GGML_OPT_OK;
  9467. }
  9468. }
  9469. pf[t%params.past] = fx;
  9470. }
  9471. // check for improvement
  9472. if (params.max_no_improvement > 0) {
  9473. if (fx_best > fx) {
  9474. fx_best = fx;
  9475. n_no_improvement = 0;
  9476. } else {
  9477. ++n_no_improvement;
  9478. if (n_no_improvement >= params.max_no_improvement) {
  9479. return GGML_OPT_OK;
  9480. }
  9481. }
  9482. }
  9483. fx_prev = fx;
  9484. {
  9485. const int64_t t_end_cpu = ggml_cycles();
  9486. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  9487. UNUSED(t_end_cpu);
  9488. const int64_t t_end_wall = ggml_time_us();
  9489. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  9490. UNUSED(t_end_wall);
  9491. }
  9492. }
  9493. return GGML_OPT_DID_NOT_CONVERGE;
  9494. }
  9495. //
  9496. // L-BFGS
  9497. //
  9498. // the L-BFGS implementation below is based on the following implementation:
  9499. //
  9500. // https://github.com/chokkan/liblbfgs
  9501. //
  9502. struct ggml_lbfgs_iteration_data {
  9503. float alpha;
  9504. float ys;
  9505. float * s;
  9506. float * y;
  9507. };
  9508. static enum ggml_opt_result linesearch_backtracking(
  9509. struct ggml_context * ctx,
  9510. const struct ggml_opt_params * params,
  9511. int nx,
  9512. float * x,
  9513. float * fx,
  9514. float * g,
  9515. float * d,
  9516. float * step,
  9517. const float * xp,
  9518. struct ggml_tensor * f,
  9519. struct ggml_cgraph * gf,
  9520. struct ggml_cgraph * gb,
  9521. const int np,
  9522. struct ggml_tensor * ps[]) {
  9523. int count = 0;
  9524. float width = 0.0f;
  9525. float dg = 0.0f;
  9526. float finit = 0.0f;
  9527. float dginit = 0.0f;
  9528. float dgtest = 0.0f;
  9529. const float dec = 0.5f;
  9530. const float inc = 2.1f;
  9531. if (*step <= 0.f) {
  9532. return GGML_LINESEARCH_INVALID_PARAMETERS;
  9533. }
  9534. // compute the initial gradient in the search direction
  9535. ggml_vec_dot_f32(nx, &dginit, g, d);
  9536. // make sure that d points to a descent direction
  9537. if (0 < dginit) {
  9538. return GGML_LINESEARCH_FAIL;
  9539. }
  9540. // initialize local variables
  9541. finit = *fx;
  9542. dgtest = params->lbfgs.ftol*dginit;
  9543. while (true) {
  9544. ggml_vec_cpy_f32(nx, x, xp);
  9545. ggml_vec_mad_f32(nx, x, d, *step);
  9546. // evaluate the function and gradient values
  9547. {
  9548. ggml_opt_set_params(np, ps, x);
  9549. ggml_graph_reset (gf);
  9550. ggml_set_f32 (f->grad, 1.0f);
  9551. ggml_graph_compute(ctx, gb);
  9552. ggml_opt_get_grad(np, ps, g);
  9553. *fx = ggml_get_f32_1d(f, 0);
  9554. }
  9555. ++count;
  9556. if (*fx > finit + (*step)*dgtest) {
  9557. width = dec;
  9558. } else {
  9559. // Armijo condition is satisfied
  9560. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  9561. return count;
  9562. }
  9563. ggml_vec_dot_f32(nx, &dg, g, d);
  9564. // check the Wolfe condition
  9565. if (dg < params->lbfgs.wolfe * dginit) {
  9566. width = inc;
  9567. } else {
  9568. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  9569. // regular Wolfe conditions
  9570. return count;
  9571. }
  9572. if(dg > -params->lbfgs.wolfe*dginit) {
  9573. width = dec;
  9574. } else {
  9575. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  9576. return count;
  9577. }
  9578. return count;
  9579. }
  9580. }
  9581. if (*step < params->lbfgs.min_step) {
  9582. return GGML_LINESEARCH_MINIMUM_STEP;
  9583. }
  9584. if (*step > params->lbfgs.max_step) {
  9585. return GGML_LINESEARCH_MAXIMUM_STEP;
  9586. }
  9587. if (params->lbfgs.max_linesearch <= count) {
  9588. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  9589. }
  9590. (*step) *= width;
  9591. }
  9592. return GGML_LINESEARCH_FAIL;
  9593. }
  9594. static enum ggml_opt_result ggml_opt_lbfgs(
  9595. struct ggml_context * ctx,
  9596. struct ggml_opt_params params,
  9597. struct ggml_tensor * f,
  9598. struct ggml_cgraph * gf,
  9599. struct ggml_cgraph * gb) {
  9600. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  9601. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  9602. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  9603. return GGML_OPT_INVALID_WOLFE;
  9604. }
  9605. }
  9606. gf->n_threads = params.n_threads;
  9607. gb->n_threads = params.n_threads;
  9608. const int m = params.lbfgs.m;
  9609. // these will store the parameters we want to optimize
  9610. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9611. int np = 0;
  9612. int nx = 0;
  9613. for (int i = 0; i < gf->n_nodes; ++i) {
  9614. if (gf->nodes[i]->is_param) {
  9615. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9616. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9617. ps[np++] = gf->nodes[i];
  9618. nx += ggml_nelements(gf->nodes[i]);
  9619. }
  9620. }
  9621. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  9622. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  9623. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  9624. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  9625. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  9626. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9627. float fx = 0.0f; // cost function value
  9628. float xnorm = 0.0f; // ||x||
  9629. float gnorm = 0.0f; // ||g||
  9630. float step = 0.0f;
  9631. // initialize x from the graph nodes
  9632. ggml_opt_get_params(np, ps, x);
  9633. // the L-BFGS memory
  9634. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  9635. for (int i = 0; i < m; ++i) {
  9636. lm[i].alpha = 0.0f;
  9637. lm[i].ys = 0.0f;
  9638. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  9639. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  9640. }
  9641. // evaluate the function value and its gradient
  9642. {
  9643. ggml_opt_set_params(np, ps, x);
  9644. ggml_graph_reset (gf);
  9645. ggml_set_f32 (f->grad, 1.0f);
  9646. ggml_graph_compute(ctx, gb);
  9647. ggml_opt_get_grad(np, ps, g);
  9648. fx = ggml_get_f32_1d(f, 0);
  9649. }
  9650. if (pf) {
  9651. pf[0] = fx;
  9652. }
  9653. float fx_best = fx;
  9654. // search direction = -gradient
  9655. ggml_vec_neg_f32(nx, d, g);
  9656. // ||x||, ||g||
  9657. ggml_vec_norm_f32(nx, &xnorm, x);
  9658. ggml_vec_norm_f32(nx, &gnorm, g);
  9659. if (xnorm < 1.0f) {
  9660. xnorm = 1.0f;
  9661. }
  9662. // already optimized
  9663. if (gnorm/xnorm <= params.lbfgs.eps) {
  9664. return GGML_OPT_OK;
  9665. }
  9666. // initial step
  9667. ggml_vec_norm_inv_f32(nx, &step, d);
  9668. int j = 0;
  9669. int k = 1;
  9670. int ls = 0;
  9671. int end = 0;
  9672. int bound = 0;
  9673. int n_no_improvement = 0;
  9674. float ys = 0.0f;
  9675. float yy = 0.0f;
  9676. float beta = 0.0f;
  9677. while (true) {
  9678. // store the current position and gradient vectors
  9679. ggml_vec_cpy_f32(nx, xp, x);
  9680. ggml_vec_cpy_f32(nx, gp, g);
  9681. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  9682. if (ls < 0) {
  9683. // linesearch failed - go back to the previous point and return
  9684. ggml_vec_cpy_f32(nx, x, xp);
  9685. ggml_vec_cpy_f32(nx, g, gp);
  9686. return ls;
  9687. }
  9688. ggml_vec_norm_f32(nx, &xnorm, x);
  9689. ggml_vec_norm_f32(nx, &gnorm, g);
  9690. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9691. if (xnorm < 1.0f) {
  9692. xnorm = 1.0f;
  9693. }
  9694. if (gnorm/xnorm <= params.lbfgs.eps) {
  9695. // converged
  9696. return GGML_OPT_OK;
  9697. }
  9698. // delta-based convergence test
  9699. if (pf != NULL) {
  9700. // need at least params.past iterations to start checking for convergence
  9701. if (params.past <= k) {
  9702. const float rate = (pf[k%params.past] - fx)/fx;
  9703. if (fabsf(rate) < params.delta) {
  9704. return GGML_OPT_OK;
  9705. }
  9706. }
  9707. pf[k%params.past] = fx;
  9708. }
  9709. // check for improvement
  9710. if (params.max_no_improvement > 0) {
  9711. if (fx < fx_best) {
  9712. fx_best = fx;
  9713. n_no_improvement = 0;
  9714. } else {
  9715. n_no_improvement++;
  9716. if (n_no_improvement >= params.max_no_improvement) {
  9717. return GGML_OPT_OK;
  9718. }
  9719. }
  9720. }
  9721. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  9722. // reached the maximum number of iterations
  9723. return GGML_OPT_DID_NOT_CONVERGE;
  9724. }
  9725. // update vectors s and y:
  9726. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  9727. // y_{k+1} = g_{k+1} - g_{k}.
  9728. //
  9729. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  9730. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  9731. // compute scalars ys and yy:
  9732. // ys = y^t \cdot s -> 1 / \rho.
  9733. // yy = y^t \cdot y.
  9734. //
  9735. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  9736. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  9737. lm[end].ys = ys;
  9738. // find new search direction
  9739. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  9740. bound = (m <= k) ? m : k;
  9741. k++;
  9742. end = (end + 1)%m;
  9743. // initialize search direction with -g
  9744. ggml_vec_neg_f32(nx, d, g);
  9745. j = end;
  9746. for (int i = 0; i < bound; ++i) {
  9747. j = (j + m - 1) % m;
  9748. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  9749. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  9750. lm[j].alpha /= lm[j].ys;
  9751. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  9752. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  9753. }
  9754. ggml_vec_scale_f32(nx, d, ys/yy);
  9755. for (int i = 0; i < bound; ++i) {
  9756. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  9757. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  9758. beta /= lm[j].ys;
  9759. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  9760. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  9761. j = (j + 1)%m;
  9762. }
  9763. step = 1.0;
  9764. }
  9765. return GGML_OPT_DID_NOT_CONVERGE;
  9766. }
  9767. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  9768. struct ggml_opt_params result;
  9769. switch (type) {
  9770. case GGML_OPT_ADAM:
  9771. {
  9772. result = (struct ggml_opt_params) {
  9773. .type = GGML_OPT_ADAM,
  9774. .n_threads = 1,
  9775. .past = 0,
  9776. .delta = 1e-5f,
  9777. .max_no_improvement = 100,
  9778. .print_forward_graph = true,
  9779. .print_backward_graph = true,
  9780. .adam = {
  9781. .n_iter = 10000,
  9782. .alpha = 0.001f,
  9783. .beta1 = 0.9f,
  9784. .beta2 = 0.999f,
  9785. .eps = 1e-8f,
  9786. .eps_f = 1e-5f,
  9787. .eps_g = 1e-3f,
  9788. },
  9789. };
  9790. } break;
  9791. case GGML_OPT_LBFGS:
  9792. {
  9793. result = (struct ggml_opt_params) {
  9794. .type = GGML_OPT_LBFGS,
  9795. .n_threads = 1,
  9796. .past = 0,
  9797. .delta = 1e-5f,
  9798. .max_no_improvement = 0,
  9799. .print_forward_graph = true,
  9800. .print_backward_graph = true,
  9801. .lbfgs = {
  9802. .m = 6,
  9803. .n_iter = 100,
  9804. .max_linesearch = 20,
  9805. .eps = 1e-5f,
  9806. .ftol = 1e-4f,
  9807. .wolfe = 0.9f,
  9808. .min_step = 1e-20f,
  9809. .max_step = 1e+20f,
  9810. .linesearch = GGML_LINESEARCH_DEFAULT,
  9811. },
  9812. };
  9813. } break;
  9814. }
  9815. return result;
  9816. }
  9817. enum ggml_opt_result ggml_opt(
  9818. struct ggml_context * ctx,
  9819. struct ggml_opt_params params,
  9820. struct ggml_tensor * f) {
  9821. bool free_ctx = false;
  9822. if (ctx == NULL) {
  9823. struct ggml_init_params params_ctx = {
  9824. .mem_size = 16*1024*1024,
  9825. .mem_buffer = NULL,
  9826. .no_alloc = false,
  9827. };
  9828. ctx = ggml_init(params_ctx);
  9829. if (ctx == NULL) {
  9830. return GGML_OPT_NO_CONTEXT;
  9831. }
  9832. free_ctx = true;
  9833. }
  9834. enum ggml_opt_result result = GGML_OPT_OK;
  9835. // build forward + backward compute graphs
  9836. struct ggml_cgraph gf = ggml_build_forward (f);
  9837. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  9838. switch (params.type) {
  9839. case GGML_OPT_ADAM:
  9840. {
  9841. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  9842. } break;
  9843. case GGML_OPT_LBFGS:
  9844. {
  9845. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  9846. } break;
  9847. }
  9848. if (params.print_forward_graph) {
  9849. ggml_graph_print (&gf);
  9850. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  9851. }
  9852. if (params.print_backward_graph) {
  9853. ggml_graph_print (&gb);
  9854. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  9855. }
  9856. if (free_ctx) {
  9857. ggml_free(ctx);
  9858. }
  9859. return result;
  9860. }
  9861. ////////////////////////////////////////////////////////////////////////////////
  9862. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  9863. assert(k % QK4_0 == 0);
  9864. const int nb = k / QK4_0;
  9865. for (int j = 0; j < n; j += k) {
  9866. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK4_0;
  9867. quantize_row_q4_0_reference(src + j, y, k);
  9868. for (int i = 0; i < nb; i++) {
  9869. for (int l = 0; l < QK4_0; l += 2) {
  9870. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9871. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9872. hist[vi0]++;
  9873. hist[vi1]++;
  9874. }
  9875. }
  9876. }
  9877. return (n/QK4_0*sizeof(block_q4_0));
  9878. }
  9879. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  9880. assert(k % QK4_1 == 0);
  9881. const int nb = k / QK4_1;
  9882. for (int j = 0; j < n; j += k) {
  9883. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK4_1;
  9884. quantize_row_q4_1_reference(src + j, y, k);
  9885. for (int i = 0; i < nb; i++) {
  9886. for (int l = 0; l < QK4_1; l += 2) {
  9887. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9888. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9889. hist[vi0]++;
  9890. hist[vi1]++;
  9891. }
  9892. }
  9893. }
  9894. return (n/QK4_1*sizeof(block_q4_1));
  9895. }
  9896. size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist) {
  9897. assert(k % QK4_2 == 0);
  9898. const int nb = k / QK4_2;
  9899. for (int j = 0; j < n; j += k) {
  9900. block_q4_2 * restrict y = (block_q4_2 *)dst + j/QK4_2;
  9901. //quantize_row_q4_2_reference(src + j, y, k);
  9902. quantize_row_q4_2_rmse(src + j, y, k);
  9903. for (int i = 0; i < nb; i++) {
  9904. for (int l = 0; l < QK4_2; l += 2) {
  9905. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9906. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9907. hist[vi0]++;
  9908. hist[vi1]++;
  9909. }
  9910. }
  9911. }
  9912. return (n/QK4_2*sizeof(block_q4_2));
  9913. }
  9914. size_t ggml_quantize_q4_3(const float * src, void * dst, int n, int k, int64_t * hist) {
  9915. assert(k % QK4_3 == 0);
  9916. const int nb = k / QK4_3;
  9917. for (int j = 0; j < n; j += k) {
  9918. block_q4_3 * restrict y = (block_q4_3 *)dst + j/QK4_3;
  9919. quantize_row_q4_3_reference(src + j, y, k);
  9920. for (int i = 0; i < nb; i++) {
  9921. for (int l = 0; l < QK4_3; l += 2) {
  9922. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9923. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9924. hist[vi0]++;
  9925. hist[vi1]++;
  9926. }
  9927. }
  9928. }
  9929. return (n/QK4_3*sizeof(block_q4_3));
  9930. }
  9931. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  9932. size_t result = 0;
  9933. switch (type) {
  9934. case GGML_TYPE_Q4_0:
  9935. {
  9936. GGML_ASSERT(start % QK4_0 == 0);
  9937. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  9938. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  9939. } break;
  9940. case GGML_TYPE_Q4_1:
  9941. {
  9942. GGML_ASSERT(start % QK4_1 == 0);
  9943. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  9944. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  9945. } break;
  9946. case GGML_TYPE_Q4_2:
  9947. {
  9948. GGML_ASSERT(start % QK4_2 == 0);
  9949. block_q4_2 * block = (block_q4_2*)dst + start / QK4_2;
  9950. result = ggml_quantize_q4_2(src + start, block, n, n, hist);
  9951. } break;
  9952. case GGML_TYPE_Q4_3:
  9953. {
  9954. GGML_ASSERT(start % QK4_3 == 0);
  9955. block_q4_3 * block = (block_q4_3*)dst + start / QK4_3;
  9956. result = ggml_quantize_q4_3(src + start, block, n, n, hist);
  9957. } break;
  9958. default:
  9959. assert(false);
  9960. }
  9961. return result;
  9962. }
  9963. ////////////////////////////////////////////////////////////////////////////////
  9964. int ggml_cpu_has_avx(void) {
  9965. #if defined(__AVX__)
  9966. return 1;
  9967. #else
  9968. return 0;
  9969. #endif
  9970. }
  9971. int ggml_cpu_has_avx2(void) {
  9972. #if defined(__AVX2__)
  9973. return 1;
  9974. #else
  9975. return 0;
  9976. #endif
  9977. }
  9978. int ggml_cpu_has_avx512(void) {
  9979. #if defined(__AVX512F__)
  9980. return 1;
  9981. #else
  9982. return 0;
  9983. #endif
  9984. }
  9985. int ggml_cpu_has_avx512_vbmi(void) {
  9986. #if defined(__AVX512VBMI__)
  9987. return 1;
  9988. #else
  9989. return 0;
  9990. #endif
  9991. }
  9992. int ggml_cpu_has_avx512_vnni(void) {
  9993. #if defined(__AVX512VNNI__)
  9994. return 1;
  9995. #else
  9996. return 0;
  9997. #endif
  9998. }
  9999. int ggml_cpu_has_fma(void) {
  10000. #if defined(__FMA__)
  10001. return 1;
  10002. #else
  10003. return 0;
  10004. #endif
  10005. }
  10006. int ggml_cpu_has_neon(void) {
  10007. #if defined(__ARM_NEON)
  10008. return 1;
  10009. #else
  10010. return 0;
  10011. #endif
  10012. }
  10013. int ggml_cpu_has_arm_fma(void) {
  10014. #if defined(__ARM_FEATURE_FMA)
  10015. return 1;
  10016. #else
  10017. return 0;
  10018. #endif
  10019. }
  10020. int ggml_cpu_has_f16c(void) {
  10021. #if defined(__F16C__)
  10022. return 1;
  10023. #else
  10024. return 0;
  10025. #endif
  10026. }
  10027. int ggml_cpu_has_fp16_va(void) {
  10028. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  10029. return 1;
  10030. #else
  10031. return 0;
  10032. #endif
  10033. }
  10034. int ggml_cpu_has_wasm_simd(void) {
  10035. #if defined(__wasm_simd128__)
  10036. return 1;
  10037. #else
  10038. return 0;
  10039. #endif
  10040. }
  10041. int ggml_cpu_has_blas(void) {
  10042. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  10043. return 1;
  10044. #else
  10045. return 0;
  10046. #endif
  10047. }
  10048. int ggml_cpu_has_cublas(void) {
  10049. #if defined(GGML_USE_CUBLAS)
  10050. return 1;
  10051. #else
  10052. return 0;
  10053. #endif
  10054. }
  10055. int ggml_cpu_has_sse3(void) {
  10056. #if defined(__SSE3__)
  10057. return 1;
  10058. #else
  10059. return 0;
  10060. #endif
  10061. }
  10062. int ggml_cpu_has_vsx(void) {
  10063. #if defined(__POWER9_VECTOR__)
  10064. return 1;
  10065. #else
  10066. return 0;
  10067. #endif
  10068. }
  10069. ////////////////////////////////////////////////////////////////////////////////