test-backend-ops.cpp 171 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674
  1. // This file defines tests for various GGML ops and backends.
  2. // For the forward pass it asserts that the results of multiple backends computing the same GGML ops are consistent.
  3. // For the backward pass it asserts that the gradients from backpropagation are consistent
  4. // with the gradients obtained via the method of finite differences ("grad" mode, this is optional).
  5. // It is also possible to check the performance ("perf" mode).
  6. //
  7. // this file has three sections: Section 1 does general setup, section 2 defines the GGML ops to be tested,
  8. // and section 3 defines which tests to run.
  9. // Quick start for adding a new GGML op: Go to section 2 and create a struct that inherits from test_case,
  10. // then go to section 3 and add an instantiation of your struct.
  11. // ##############################
  12. // ## Section 1: General Setup ##
  13. // ##############################
  14. #include <ggml.h>
  15. #include <ggml-alloc.h>
  16. #include <ggml-backend.h>
  17. #include <ggml-cpp.h>
  18. #include <algorithm>
  19. #include <array>
  20. #include <cfloat>
  21. #include <cinttypes>
  22. #include <cstdint>
  23. #include <cstdio>
  24. #include <cstdlib>
  25. #include <cstring>
  26. #include <future>
  27. #include <memory>
  28. #include <random>
  29. #include <regex>
  30. #include <string>
  31. #include <thread>
  32. #include <vector>
  33. static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  34. size_t nels = ggml_nelements(tensor);
  35. std::vector<float> data(nels);
  36. {
  37. // parallel initialization
  38. static const size_t n_threads = std::thread::hardware_concurrency();
  39. // static RNG initialization (revisit if n_threads stops being constant)
  40. static std::vector<std::default_random_engine> generators = []() {
  41. std::random_device rd;
  42. std::vector<std::default_random_engine> vec;
  43. vec.reserve(n_threads);
  44. //for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
  45. for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
  46. return vec;
  47. }();
  48. auto init_thread = [&](size_t ith, size_t start, size_t end) {
  49. std::uniform_real_distribution<float> distribution(min, max);
  50. auto & gen = generators[ith];
  51. for (size_t i = start; i < end; i++) {
  52. data[i] = distribution(gen);
  53. }
  54. };
  55. std::vector<std::future<void>> tasks;
  56. tasks.reserve(n_threads);
  57. for (size_t i = 0; i < n_threads; i++) {
  58. size_t start = i*nels/n_threads;
  59. size_t end = (i+1)*nels/n_threads;
  60. tasks.push_back(std::async(std::launch::async, init_thread, i, start, end));
  61. }
  62. for (auto & t : tasks) {
  63. t.get();
  64. }
  65. }
  66. if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
  67. ggml_backend_tensor_set(tensor, data.data(), 0, nels * sizeof(float));
  68. } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) {
  69. GGML_ASSERT(nels % ggml_blck_size(tensor->type) == 0);
  70. // dummy importance matrix
  71. std::vector<float> imatrix(tensor->ne[0], 1.0f);
  72. const float * im = imatrix.data();
  73. if (!ggml_quantize_requires_imatrix(tensor->type)) {
  74. // when the imatrix is optional, we want to test both quantization with and without imatrix
  75. // use one of the random numbers to decide
  76. if (data[0] > 0.5f*(min + max)) {
  77. im = nullptr;
  78. }
  79. }
  80. std::vector<uint8_t> dataq(ggml_row_size(tensor->type, nels));
  81. {
  82. // parallel quantization by block
  83. size_t blck_size = ggml_blck_size(tensor->type);
  84. size_t n_blocks = nels / blck_size;
  85. auto quantize_thread = [&](size_t start, size_t end) {
  86. ggml_quantize_chunk(tensor->type, data.data(), dataq.data(),
  87. start * blck_size, end - start, blck_size, im);
  88. };
  89. const size_t min_blocks_per_thread = 1;
  90. const size_t n_threads = std::min<size_t>(std::thread::hardware_concurrency()/2,
  91. std::max<size_t>(1, n_blocks / min_blocks_per_thread));
  92. std::vector<std::future<void>> tasks;
  93. tasks.reserve(n_threads);
  94. for (size_t i = 0; i < n_threads; i++) {
  95. size_t start = i*n_blocks/n_threads;
  96. size_t end = (i+1)*n_blocks/n_threads;
  97. tasks.push_back(std::async(std::launch::async, quantize_thread, start, end));
  98. }
  99. for (auto & t : tasks) {
  100. t.get();
  101. }
  102. }
  103. ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
  104. } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
  105. // This is going to create some weird integers though.
  106. ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
  107. } else if (tensor->type == GGML_TYPE_I64) {
  108. // Integers with a size of 8 bytes can be set by mirroring the float data, the specific values are again not really meaningful.
  109. const size_t nbytes_half = ggml_nbytes(tensor)/2;
  110. ggml_backend_tensor_set(tensor, data.data(), 0*nbytes_half, nbytes_half);
  111. ggml_backend_tensor_set(tensor, data.data(), 1*nbytes_half, nbytes_half);
  112. } else {
  113. GGML_ABORT("fatal error");
  114. }
  115. }
  116. static std::vector<float> tensor_to_float(const ggml_tensor * t) {
  117. std::vector<float> tv;
  118. tv.reserve(ggml_nelements(t));
  119. std::vector<uint8_t> buf(ggml_nbytes(t));
  120. ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
  121. const auto * tt = ggml_get_type_traits(t->type);
  122. size_t bs = ggml_blck_size(t->type);
  123. std::vector<float> vq(ggml_blck_size(t->type));
  124. bool quantized = ggml_is_quantized(t->type);
  125. // access elements by index to avoid gaps in views
  126. for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
  127. for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
  128. for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
  129. for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
  130. size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
  131. if (t->type == GGML_TYPE_F16) {
  132. tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
  133. } else if (t->type == GGML_TYPE_BF16) {
  134. tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i]));
  135. } else if (t->type == GGML_TYPE_F32) {
  136. tv.push_back(*(float *) &buf[i]);
  137. } else if (t->type == GGML_TYPE_I64) {
  138. tv.push_back((float)*(int64_t *) &buf[i]);
  139. } else if (t->type == GGML_TYPE_I32) {
  140. tv.push_back((float)*(int32_t *) &buf[i]);
  141. } else if (t->type == GGML_TYPE_I16) {
  142. tv.push_back((float)*(int16_t *) &buf[i]);
  143. } else if (t->type == GGML_TYPE_I8) {
  144. tv.push_back((float)*(int8_t *) &buf[i]);
  145. } else if (quantized) {
  146. tt->to_float(&buf[i], vq.data(), bs);
  147. tv.insert(tv.end(), vq.begin(), vq.end());
  148. } else {
  149. GGML_ABORT("fatal error");
  150. }
  151. }
  152. }
  153. }
  154. }
  155. return tv;
  156. }
  157. // normalized mean squared error = mse(a, b) / mse(a, 0)
  158. static double nmse(const float * a, const float * b, size_t n) {
  159. double mse_a_b = 0.0;
  160. double mse_a_0 = 0.0;
  161. for (size_t i = 0; i < n; i++) {
  162. float a_i = a[i];
  163. float b_i = b[i];
  164. mse_a_b += (a_i - b_i) * (a_i - b_i);
  165. mse_a_0 += a_i * a_i;
  166. }
  167. return mse_a_b / mse_a_0;
  168. }
  169. // maximum absolute asymmetry between a and b
  170. // asymmetry: (a - b) / (a + b)
  171. // This is more stable than relative error if one of the values fluctuates towards zero.
  172. // n: number of values to compare.
  173. // expected_vals: optional vector of expected values for a. If expected_vals is not empty, filter out all comparisons where
  174. // a does not match any of the expected values. Needed for noncontinuous gradients where the numerical calculation can fail.
  175. static double mean_abs_asymm(const float * a, const float * b, const size_t n, const std::vector<float> & expected_vals) {
  176. double sum = 0.0f;
  177. size_t nvalid = 0;
  178. for (size_t i = 0; i < n; i++) {
  179. if (!expected_vals.empty()) {
  180. bool matches_any = false;
  181. for (const float & ev : expected_vals) {
  182. if (fabsf(a[i] - ev) < 1e-3f) {
  183. matches_any = true;
  184. break;
  185. }
  186. }
  187. if (!matches_any) {
  188. continue;
  189. }
  190. }
  191. const float asymm = (a[i] - b[i]) / (a[i] + b[i]);
  192. sum += fabsf(asymm);
  193. nvalid++;
  194. }
  195. return sum/nvalid;
  196. }
  197. // utils for printing the variables of the test cases
  198. template<typename T>
  199. static std::string var_to_str(const T & x) {
  200. return std::to_string(x);
  201. }
  202. template<typename T, size_t N>
  203. static std::string var_to_str(const T (&x)[N]) {
  204. std::string s = "[";
  205. for (size_t i = 0; i < N; i++) {
  206. if (i > 0) {
  207. s += ",";
  208. }
  209. s += var_to_str(x[i]);
  210. }
  211. s += "]";
  212. return s;
  213. }
  214. template<typename T, size_t N>
  215. static std::string var_to_str(const std::array<T, N> & x) {
  216. std::string s = "[";
  217. for (size_t i = 0; i < N; i++) {
  218. if (i > 0) {
  219. s += ",";
  220. }
  221. s += var_to_str(x[i]);
  222. }
  223. s += "]";
  224. return s;
  225. }
  226. static std::string var_to_str(ggml_type type) {
  227. return ggml_type_name(type);
  228. }
  229. static std::string var_to_str(ggml_prec prec) {
  230. return prec == GGML_PREC_F32 ? "f32" : "def";
  231. }
  232. static std::string var_to_str(ggml_op_pool pool) {
  233. switch (pool) {
  234. case GGML_OP_POOL_AVG: return "avg";
  235. case GGML_OP_POOL_MAX: return "max";
  236. default: return std::to_string(pool);
  237. }
  238. }
  239. #define VAR_TO_STR(x) (#x "=" + var_to_str(x))
  240. #define VARS_TO_STR1(a) VAR_TO_STR(a)
  241. #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
  242. #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
  243. #define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
  244. #define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
  245. #define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
  246. #define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
  247. #define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
  248. #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
  249. #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
  250. #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
  251. #define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
  252. #ifdef GGML_USE_SYCL
  253. static bool inline _isinf(float f) {
  254. return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000;
  255. }
  256. #else
  257. static bool inline _isinf(float f) { return std::isinf(f); }
  258. #endif
  259. // accept FLT_MAX as infinity
  260. static bool isinf_or_max(float f) {
  261. return _isinf(f) || f == FLT_MAX || f == -FLT_MAX;
  262. }
  263. static bool ggml_is_view_op(enum ggml_op op) {
  264. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  265. }
  266. enum test_mode {
  267. MODE_TEST,
  268. MODE_PERF,
  269. MODE_GRAD,
  270. };
  271. struct test_case {
  272. virtual ~test_case() {}
  273. virtual std::string op_desc(ggml_tensor * t) {
  274. return ggml_op_desc(t);
  275. }
  276. virtual std::string vars() {
  277. return "";
  278. }
  279. virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
  280. virtual double max_nmse_err() {
  281. return 1e-7;
  282. }
  283. virtual double max_maa_err() {
  284. return 1e-4;
  285. }
  286. virtual float grad_eps() {
  287. return 1e-1f;
  288. }
  289. // If false, estimate gradient with 2 points, neglects 3rd order derivative and higher.
  290. // If true, estimate gradient with 4 points, neglects 5th order derivative and higher.
  291. virtual bool grad_precise() {
  292. return false;
  293. }
  294. // Skip gradient checks if total number of gradients to be checked is larger than this (to speed up the tests).
  295. virtual int64_t grad_nmax() {
  296. return 10000;
  297. }
  298. // No effect if empty.
  299. // If not empty, skip all gradient checks where the numerical result does not match any of the values.
  300. // Needed for dealing with noncontinuous gradients (e.g. ReLU) where estimation using finite differences is unreliable.
  301. virtual std::vector<float> grad_expect() {
  302. return {};
  303. }
  304. virtual void initialize_tensors(ggml_context * ctx) {
  305. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
  306. init_tensor_uniform(t);
  307. }
  308. }
  309. virtual size_t op_size(ggml_tensor * t) {
  310. size_t size = ggml_nbytes(t);
  311. // add source tensors
  312. for (int i = 0; i < GGML_MAX_SRC; i++) {
  313. if (t->src[i] != NULL) {
  314. size += ggml_nbytes(t->src[i]);
  315. }
  316. }
  317. return size;
  318. }
  319. virtual uint64_t op_flops(ggml_tensor * t) {
  320. GGML_UNUSED(t);
  321. return 0;
  322. }
  323. ggml_cgraph * gf = nullptr;
  324. ggml_cgraph * gb = nullptr;
  325. static const int sentinel_size = 1024;
  326. test_mode mode;
  327. std::vector<ggml_tensor *> sentinels;
  328. void add_sentinel(ggml_context * ctx) {
  329. if (mode == MODE_PERF || mode == MODE_GRAD) {
  330. return;
  331. }
  332. ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size);
  333. ggml_format_name(sentinel, "sent_%zu", sentinels.size());
  334. sentinels.push_back(sentinel);
  335. }
  336. // hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend
  337. ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) {
  338. ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne);
  339. add_sentinel(ctx);
  340. return t;
  341. }
  342. ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) {
  343. ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0);
  344. add_sentinel(ctx);
  345. return t;
  346. }
  347. ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) {
  348. ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1);
  349. add_sentinel(ctx);
  350. return t;
  351. }
  352. ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) {
  353. ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2);
  354. add_sentinel(ctx);
  355. return t;
  356. }
  357. ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
  358. ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
  359. add_sentinel(ctx);
  360. return t;
  361. }
  362. bool eval(ggml_backend_t backend1, ggml_backend_t backend2, const char * op_name) {
  363. mode = MODE_TEST;
  364. ggml_init_params params = {
  365. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  366. /* .mem_base = */ NULL,
  367. /* .no_alloc = */ true,
  368. };
  369. ggml_context * ctx = ggml_init(params);
  370. GGML_ASSERT(ctx);
  371. gf = ggml_new_graph(ctx);
  372. // pre-graph sentinel
  373. add_sentinel(ctx);
  374. ggml_tensor * out = build_graph(ctx);
  375. if (op_name != nullptr && op_desc(out) != op_name) {
  376. //printf(" %s: skipping\n", op_desc(out).c_str());
  377. ggml_free(ctx);
  378. return true;
  379. }
  380. printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
  381. fflush(stdout);
  382. // check if the backends support the ops
  383. bool supported = true;
  384. for (ggml_backend_t backend : {backend1, backend2}) {
  385. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  386. if (!ggml_backend_supports_op(backend, t)) {
  387. printf("not supported [%s] ", ggml_backend_name(backend));
  388. supported = false;
  389. break;
  390. }
  391. }
  392. }
  393. if (!supported) {
  394. printf("\n");
  395. ggml_free(ctx);
  396. return true;
  397. }
  398. // post-graph sentinel
  399. add_sentinel(ctx);
  400. // allocate
  401. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
  402. if (buf == NULL) {
  403. printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
  404. ggml_free(ctx);
  405. return false;
  406. }
  407. // build graph
  408. ggml_build_forward_expand(gf, out);
  409. // add sentinels as graph nodes so that they are checked in the callback
  410. for (ggml_tensor * sentinel : sentinels) {
  411. ggml_graph_add_node(gf, sentinel);
  412. }
  413. // randomize tensors
  414. initialize_tensors(ctx);
  415. // compare
  416. struct callback_userdata {
  417. bool ok;
  418. double max_err;
  419. ggml_backend_t backend1;
  420. ggml_backend_t backend2;
  421. };
  422. callback_userdata ud {
  423. true,
  424. max_nmse_err(),
  425. backend1,
  426. backend2
  427. };
  428. auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
  429. callback_userdata * ud = (callback_userdata *) user_data;
  430. const char * bn1 = ggml_backend_name(ud->backend1);
  431. const char * bn2 = ggml_backend_name(ud->backend2);
  432. if (t1->op == GGML_OP_NONE) {
  433. // sentinels must be unchanged
  434. std::vector<uint8_t> t1_data(ggml_nbytes(t1));
  435. std::vector<uint8_t> t2_data(ggml_nbytes(t2));
  436. ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1));
  437. ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2));
  438. if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) {
  439. printf("sentinel mismatch: %s ", t1->name);
  440. ud->ok = false;
  441. return true;
  442. }
  443. }
  444. std::vector<float> f1 = tensor_to_float(t1);
  445. std::vector<float> f2 = tensor_to_float(t2);
  446. for (size_t i = 0; i < f1.size(); i++) {
  447. // check for nans
  448. if (std::isnan(f1[i]) || std::isnan(f2[i])) {
  449. printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]);
  450. ud->ok = false;
  451. return true;
  452. }
  453. // check for infs: both must be inf of the same sign, or both must be finite
  454. if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
  455. if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
  456. if (std::signbit(f1[i]) != std::signbit(f2[i])) {
  457. printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  458. ud->ok = false;
  459. return true;
  460. }
  461. } else {
  462. printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  463. ud->ok = false;
  464. return true;
  465. }
  466. }
  467. }
  468. double err = nmse(f1.data(), f2.data(), f1.size());
  469. if (err > ud->max_err) {
  470. printf("[%s] NMSE = %.9f > %.9f ", ggml_op_desc(t1), err, ud->max_err);
  471. //for (int i = 0; i < (int) f1.size(); i++) {
  472. // printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
  473. //}
  474. //printf("\n");
  475. //exit(1);
  476. ud->ok = false;
  477. }
  478. return true;
  479. GGML_UNUSED(index);
  480. };
  481. const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud);
  482. if (!cmp_ok) {
  483. printf("compare failed ");
  484. }
  485. ggml_backend_buffer_free(buf);
  486. ggml_free(ctx);
  487. if (ud.ok && cmp_ok) {
  488. printf("\033[1;32mOK\033[0m\n");
  489. return true;
  490. }
  491. printf("\033[1;31mFAIL\033[0m\n");
  492. return false;
  493. }
  494. bool eval_perf(ggml_backend_t backend, const char * op_name) {
  495. mode = MODE_PERF;
  496. static const size_t graph_nodes = 8192;
  497. ggml_init_params params = {
  498. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  499. /* .mem_base = */ NULL,
  500. /* .no_alloc = */ true,
  501. };
  502. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  503. GGML_ASSERT(ctx);
  504. ggml_tensor * out = build_graph(ctx.get());
  505. if (op_name != nullptr && op_desc(out) != op_name) {
  506. //printf(" %s: skipping\n", op_desc(out).c_str());
  507. return true;
  508. }
  509. int len = printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
  510. fflush(stdout);
  511. // check if backends support op
  512. if (!ggml_backend_supports_op(backend, out)) {
  513. printf("not supported\n");
  514. return true;
  515. }
  516. // align while also leaving some margin for variations in parameters
  517. int align = 8;
  518. int last = (len + align - 1) / align * align;
  519. if (last - len < 5) {
  520. last += align;
  521. }
  522. printf("%*s", last - len, "");
  523. // allocate
  524. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  525. if (buf == NULL) {
  526. printf("failed to allocate tensors\n");
  527. return false;
  528. }
  529. // randomize tensors
  530. initialize_tensors(ctx.get());
  531. // build graph
  532. ggml_cgraph * gf = ggml_new_graph_custom(ctx.get(), graph_nodes, false);
  533. ggml_build_forward_expand(gf, out);
  534. // warmup run
  535. ggml_status status = ggml_backend_graph_compute(backend, gf);
  536. if (status != GGML_STATUS_SUCCESS) {
  537. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  538. return false;
  539. }
  540. // determine number of runs
  541. int n_runs;
  542. bool is_cpu = ggml_backend_dev_type(ggml_backend_get_device(backend)) == GGML_BACKEND_DEVICE_TYPE_CPU;
  543. if (op_flops(out) > 0) {
  544. // based on flops
  545. const uint64_t GFLOP = 1000 * 1000 * 1000;
  546. const uint64_t target_flops_cpu = 8ULL * GFLOP;
  547. const uint64_t target_flops_gpu = 100ULL * GFLOP;
  548. uint64_t target_flops = is_cpu ? target_flops_cpu : target_flops_gpu;
  549. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_flops / op_flops(out)) + 1;
  550. } else {
  551. // based on memory size
  552. const size_t GB = 1ULL << 30;
  553. const size_t target_size_cpu = 8 * GB;
  554. const size_t target_size_gpu = 32 * GB;
  555. size_t target_size = is_cpu ? target_size_cpu : target_size_gpu;
  556. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_size / op_size(out)) + 1;
  557. }
  558. // duplicate the op
  559. for (int i = 1; i < n_runs; i++) {
  560. ggml_graph_add_node(gf, out);
  561. }
  562. // calculate memory
  563. size_t mem = n_runs * op_size(out);
  564. auto tensor_op_size = [](ggml_tensor * t) {
  565. size_t size = ggml_nbytes(t);
  566. // add source tensors
  567. for (int i = 0; i < GGML_MAX_SRC; i++) {
  568. if (t->src[i] != NULL) {
  569. size += ggml_nbytes(t->src[i]);
  570. }
  571. }
  572. return size;
  573. };
  574. for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
  575. if (ggml_is_view_op(ggml_graph_node(gf, i)->op) || ggml_graph_node(gf, i) == out) {
  576. continue;
  577. }
  578. mem += tensor_op_size(ggml_graph_node(gf, i));
  579. }
  580. // run
  581. int64_t total_time_us = 0;
  582. int64_t total_mem = 0;
  583. int total_runs = 0;
  584. do {
  585. int64_t start_time = ggml_time_us();
  586. ggml_status status = ggml_backend_graph_compute(backend, gf);
  587. if (status != GGML_STATUS_SUCCESS) {
  588. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  589. return false;
  590. }
  591. int64_t end_time = ggml_time_us();
  592. total_time_us += end_time - start_time;
  593. total_mem += mem;
  594. total_runs += n_runs;
  595. } while (total_time_us < 1000*1000); // run for at least 1 second
  596. printf(" %8d runs - %8.2f us/run - ",
  597. total_runs,
  598. (double)total_time_us / total_runs);
  599. if (op_flops(out) > 0) {
  600. double flops_per_sec = (op_flops(out) * total_runs) / (total_time_us / 1e6);
  601. auto format_flops = [](double flops) -> std::string {
  602. char buf[256];
  603. if (flops >= 1e12) {
  604. snprintf(buf, sizeof(buf), "%6.2f TFLOP", flops / 1e12);
  605. } else if (flops >= 1e9) {
  606. snprintf(buf, sizeof(buf), "%6.2f GFLOP", flops / 1e9);
  607. } else if (flops >= 1e6) {
  608. snprintf(buf, sizeof(buf), "%6.2f MFLOP", flops / 1e6);
  609. } else {
  610. snprintf(buf, sizeof(buf), "%6.2f KFLOP", flops / 1e3);
  611. }
  612. return buf;
  613. };
  614. printf("%s/run - \033[1;34m%sS\033[0m",
  615. format_flops(op_flops(out)).c_str(),
  616. format_flops(flops_per_sec).c_str());
  617. } else {
  618. printf("%8zu kB/run - \033[1;34m%7.2f GB/s\033[0m",
  619. op_size(out) / 1024,
  620. total_mem / (total_time_us / 1e6) / 1024.0 / 1024.0 / 1024.0);
  621. }
  622. printf("\n");
  623. return true;
  624. }
  625. bool eval_grad(ggml_backend_t backend, const char * op_name) {
  626. mode = MODE_GRAD;
  627. const std::vector<float> expect = grad_expect();
  628. ggml_init_params params = {
  629. /* .mem_size = */ ggml_tensor_overhead()*128 + 2*ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, true),
  630. /* .mem_base = */ NULL,
  631. /* .no_alloc = */ true,
  632. };
  633. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  634. GGML_ASSERT(ctx);
  635. gf = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  636. gb = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  637. ggml_tensor * out = build_graph(ctx.get());
  638. if ((op_name != nullptr && op_desc(out) != op_name) || out->op == GGML_OP_OPT_STEP_ADAMW) {
  639. //printf(" %s: skipping\n", op_desc(out).c_str());
  640. return true;
  641. }
  642. printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
  643. fflush(stdout);
  644. if (out->type != GGML_TYPE_F32) {
  645. printf("not supported [%s->type != FP32]\n", out->name);
  646. return true;
  647. }
  648. // check if the backend supports the ops
  649. bool supported = true;
  650. bool any_params = false;
  651. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  652. if (!ggml_backend_supports_op(backend, t)) {
  653. printf("not supported [%s] ", ggml_backend_name(backend));
  654. supported = false;
  655. break;
  656. }
  657. if ((t->flags & GGML_TENSOR_FLAG_PARAM)) {
  658. any_params = true;
  659. if (t->type != GGML_TYPE_F32) {
  660. printf("not supported [%s->type != FP32] ", t->name);
  661. supported = false;
  662. break;
  663. }
  664. }
  665. }
  666. if (!any_params) {
  667. printf("not supported [%s] \n", op_desc(out).c_str());
  668. supported = false;
  669. }
  670. if (!supported) {
  671. printf("\n");
  672. return true;
  673. }
  674. int64_t ngrads = 0;
  675. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  676. if (t->flags & GGML_TENSOR_FLAG_PARAM) {
  677. ngrads += ggml_nelements(t);
  678. }
  679. }
  680. if (ngrads > grad_nmax()) {
  681. printf("skipping large tensors for speed \n");
  682. return true;
  683. }
  684. if (!ggml_is_scalar(out)) {
  685. out = ggml_sum(ctx.get(), out);
  686. ggml_set_name(out, "sum_of_out");
  687. }
  688. ggml_set_loss(out);
  689. ggml_build_forward_expand(gf, out);
  690. ggml_graph_cpy(gf, gb);
  691. ggml_build_backward_expand(ctx.get(), ctx.get(), gb, false);
  692. if (expect.size() != 1 || expect[0] != 0.0f) {
  693. GGML_ASSERT(ggml_graph_n_nodes(gb) > ggml_graph_n_nodes(gf));
  694. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  695. GGML_ASSERT(!(t->flags & GGML_TENSOR_FLAG_PARAM) || ggml_graph_get_grad(gb, t)->op != GGML_OP_NONE);
  696. }
  697. }
  698. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  699. if (!ggml_backend_supports_op(backend, t)) {
  700. printf("not supported [%s] ", ggml_backend_name(backend));
  701. supported = false;
  702. break;
  703. }
  704. if ((t->flags & GGML_TENSOR_FLAG_PARAM) && t->type != GGML_TYPE_F32) {
  705. printf("not supported [%s->type != FP32] ", t->name);
  706. supported = false;
  707. break;
  708. }
  709. }
  710. if (!supported) {
  711. printf("\n");
  712. return true;
  713. }
  714. // allocate
  715. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  716. if (buf == NULL) {
  717. printf("failed to allocate tensors [%s] ", ggml_backend_name(backend));
  718. return false;
  719. }
  720. initialize_tensors(ctx.get()); // Randomizes all tensors (including gradients).
  721. ggml_graph_reset(gb); // Sets gradients to 1 if loss, 0 otherwise.
  722. ggml_status status = ggml_backend_graph_compute(backend, gf);
  723. if (status != GGML_STATUS_SUCCESS) {
  724. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  725. return false;
  726. }
  727. status = ggml_backend_graph_compute(backend, gb);
  728. if (status != GGML_STATUS_SUCCESS) {
  729. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  730. return false;
  731. }
  732. bool ok = true;
  733. for (struct ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != nullptr; t = ggml_get_next_tensor(ctx.get(), t)) {
  734. if (!(t->flags & GGML_TENSOR_FLAG_PARAM)) {
  735. continue;
  736. }
  737. const char * bn = ggml_backend_name(backend);
  738. const int64_t ne = ggml_nelements(t);
  739. std::vector<float> ga;
  740. struct ggml_tensor * grad = ggml_graph_get_grad(gb, t);
  741. if (grad) {
  742. ga = tensor_to_float(grad);
  743. } else {
  744. ga.resize(ne); // default value is 0.0f
  745. }
  746. for (int64_t i = 0; i < ne; ++i) { // gradient algebraic
  747. // check for nans
  748. if (!std::isfinite(ga[i])) {
  749. printf("[%s] nonfinite gradient at index %" PRId64 " (%s=%f) ", ggml_op_desc(t), i, bn, ga[i]);
  750. ok = false;
  751. break;
  752. }
  753. }
  754. if (!ok) {
  755. break;
  756. }
  757. std::vector<float> gn(ne); // gradient numeric
  758. GGML_ASSERT(ga.size() == gn.size());
  759. std::vector<float> x0 = tensor_to_float(t); // original t data
  760. GGML_ASSERT(ggml_is_scalar(out));
  761. GGML_ASSERT(out->type == GGML_TYPE_F32);
  762. const float eps = grad_eps();
  763. for (int64_t i = 0; i < ne; ++i) {
  764. const float xiu = x0[i] + 1.0f*eps; // x, index i, up
  765. const float xiuh = x0[i] + 0.5f*eps; // x, index i, up half
  766. const float xidh = x0[i] - 0.5f*eps; // x, index i, down half
  767. const float xid = x0[i] - 1.0f*eps; // x, index i, down
  768. float fu, fuh, fdh, fd; // output values for xiu, xiuh, xid, xidh
  769. ggml_backend_tensor_set(t, &xiu, i*sizeof(float), sizeof(float));
  770. status = ggml_backend_graph_compute(backend, gf);
  771. if (status != GGML_STATUS_SUCCESS) {
  772. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  773. return false;
  774. }
  775. ggml_backend_tensor_get(out, &fu, 0, ggml_nbytes(out));
  776. ggml_backend_tensor_set(t, &xid, i*sizeof(float), sizeof(float));
  777. status = ggml_backend_graph_compute(backend, gf);
  778. if (status != GGML_STATUS_SUCCESS) {
  779. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  780. return false;
  781. }
  782. ggml_backend_tensor_get(out, &fd, 0, ggml_nbytes(out));
  783. if (grad_precise()) {
  784. ggml_backend_tensor_set(t, &xiuh, i*sizeof(float), sizeof(float));
  785. status = ggml_backend_graph_compute(backend, gf);
  786. if (status != GGML_STATUS_SUCCESS) {
  787. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  788. return false;
  789. }
  790. ggml_backend_tensor_get(out, &fuh, 0, ggml_nbytes(out));
  791. ggml_backend_tensor_set(t, &xidh, i*sizeof(float), sizeof(float));
  792. status = ggml_backend_graph_compute(backend, gf);
  793. if (status != GGML_STATUS_SUCCESS) {
  794. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  795. return false;
  796. }
  797. ggml_backend_tensor_get(out, &fdh, 0, ggml_nbytes(out));
  798. gn[i] = (8.0*(double)fuh + (double)fd - (8.0*(double)fdh + (double)fu)) / (6.0*(double)eps);
  799. } else {
  800. gn[i] = (fu - fd) / (2.0f*eps);
  801. }
  802. ggml_backend_tensor_set(t, x0.data(), 0, ggml_nbytes(t));
  803. }
  804. const double err = mean_abs_asymm(gn.data(), ga.data(), gn.size(), expect);
  805. if (err > max_maa_err()) {
  806. printf("[%s] MAA = %.9f > %.9f ", ggml_op_desc(t), err, max_maa_err());
  807. ok = false;
  808. break;
  809. }
  810. if (!ok) {
  811. break;
  812. }
  813. }
  814. if (!ok) {
  815. printf("compare failed ");
  816. }
  817. if (ok) {
  818. printf("\033[1;32mOK\033[0m\n");
  819. return true;
  820. }
  821. printf("\033[1;31mFAIL\033[0m\n");
  822. return false;
  823. }
  824. };
  825. // ###################################
  826. // ## Section 2: GGML Op Defintions ##
  827. // ###################################
  828. // The following is an example showing the bare minimum for creating a test for a GGML op.
  829. // GGML_OP_EXAMPLE
  830. struct test_example : public test_case {
  831. // Always define these 2 or variants thereof:
  832. const ggml_type type; // The type of the input tensors.
  833. const std::array<int64_t, 4> ne; // The shape of the input tensors.
  834. // For some ops it's necessary to define multiple types or shapes for the inputs.
  835. // Or they may need additional parameters.
  836. // Put all parameters needed to fully define the test into one of the VARS_TO_STR macros.
  837. // In most cases these are just the properties of the struct that you defined above.
  838. // This is needed for info prints.
  839. std::string vars() override {
  840. return VARS_TO_STR2(type, ne);
  841. }
  842. // Define a constructor for the struct.
  843. // In most cases it will be sufficient to have the same arguments as the struct has properties
  844. // and just use initializer lists.
  845. test_example(ggml_type type = GGML_TYPE_F32,
  846. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  847. : type(type), ne(ne) {}
  848. // Define how a simple GGML compute graph can be constructed for the new GGML op.
  849. ggml_tensor * build_graph(ggml_context * ctx) override {
  850. // Step 1: create input tensors that don't depend on any other tensors:
  851. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  852. ggml_set_name(a, "a"); // Setting names is optional but it's useful for debugging.
  853. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  854. ggml_set_name(b, "b");
  855. // Step 2: use the op that you want to test in the GGML compute graph.
  856. ggml_tensor * out = ggml_add(ctx, a, b); // For this example we're just doing a simple addition.
  857. ggml_set_name(out, "out");
  858. // Step 3: return the output tensor.
  859. return out;
  860. }
  861. // In order to also check the gradients for your op, add calls like ggml_set_param(ctx, a)
  862. // immediately after you create the tensors.
  863. // This is optional and only makes sense if a backward pass has actually been implemented for the new op.
  864. };
  865. // GGML_OP_UNARY
  866. struct test_unary : public test_case {
  867. const ggml_unary_op op;
  868. const ggml_type type;
  869. const std::array<int64_t, 4> ne_a;
  870. int v; // view (1 : non-contiguous a)
  871. std::string vars() override {
  872. return VARS_TO_STR3(type, ne_a, v);
  873. }
  874. test_unary(ggml_unary_op op,
  875. ggml_type type = GGML_TYPE_F32,
  876. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  877. int v = 0)
  878. : op(op), type(type), ne_a(ne_a), v(v) {}
  879. ggml_tensor * build_graph(ggml_context * ctx) override {
  880. const bool grad_supported = op == GGML_UNARY_OP_ABS || op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_NEG ||
  881. op == GGML_UNARY_OP_STEP || op == GGML_UNARY_OP_RELU || op == GGML_UNARY_OP_SILU;
  882. ggml_tensor * a;
  883. if (v & 1) {
  884. auto ne = ne_a; ne[0] *= 3;
  885. a = ggml_new_tensor(ctx, type, 4, ne.data());
  886. if (grad_supported) {
  887. ggml_set_param(ctx, a);
  888. }
  889. ggml_set_name(a, "a");
  890. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  891. ggml_set_name(a, "view_of_a");
  892. } else {
  893. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  894. if (grad_supported) {
  895. ggml_set_param(ctx, a);
  896. }
  897. ggml_set_name(a, "a");
  898. }
  899. ggml_tensor * out = ggml_unary(ctx, a, op);
  900. ggml_set_name(out, "out");
  901. return out;
  902. }
  903. void initialize_tensors(ggml_context * ctx) override {
  904. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  905. // test extended range of values to check for NaNs in GELU
  906. init_tensor_uniform(t, -150.f, 150.f);
  907. }
  908. }
  909. float grad_eps() override {
  910. return 15.0f;
  911. }
  912. std::vector<float> grad_expect() override {
  913. if (op == GGML_UNARY_OP_ABS) {
  914. return {-1.0f, 1.0f};
  915. }
  916. if (op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_STEP) {
  917. return {0.0f};
  918. }
  919. if (op == GGML_UNARY_OP_RELU) {
  920. return {0.0f, 1.0f};
  921. }
  922. return {};
  923. }
  924. };
  925. // GGML_OP_GET_ROWS
  926. struct test_get_rows : public test_case {
  927. const ggml_type type;
  928. const int n; // cols
  929. const int m; // rows
  930. const int r; // rows to get
  931. const int b; // batch size
  932. const bool v; // view (non-contiguous src1)
  933. std::string vars() override {
  934. return VARS_TO_STR6(type, n, m, r, b, v);
  935. }
  936. test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  937. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  938. ggml_tensor * build_graph(ggml_context * ctx) override {
  939. ggml_tensor * in = ggml_new_tensor_3d(ctx, type, n, m, b);
  940. ggml_set_name(in, "in");
  941. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  942. ggml_set_name(rows, "rows");
  943. if (v) {
  944. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  945. ggml_set_name(rows, "view_of_rows");
  946. }
  947. const bool grad_supported = ggml_is_matrix(in) && ggml_is_vector(rows);
  948. if (grad_supported) {
  949. ggml_set_param(ctx, in);
  950. // rows is a constant input -> no gradients
  951. }
  952. ggml_tensor * out = ggml_get_rows(ctx, in, rows);
  953. ggml_set_name(out, "out");
  954. return out;
  955. }
  956. void initialize_tensors(ggml_context * ctx) override {
  957. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  958. if (t->type == GGML_TYPE_I32) {
  959. if (ggml_is_view_op(t->op)) { continue; }
  960. // rows
  961. std::vector<int> data(r*b);
  962. for (int i = 0; i < r*b; i++) {
  963. data[i] = rand() % m;
  964. }
  965. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  966. } else {
  967. init_tensor_uniform(t);
  968. }
  969. }
  970. }
  971. };
  972. // GGML_OP_GET_ROWS_BACK
  973. struct test_get_rows_back : public test_case {
  974. const ggml_type type;
  975. const int n; // cols
  976. const int m; // rows
  977. const int r; // rows to get
  978. const int b; // batch size
  979. const bool v; // view (non-contiguous src1)
  980. std::string vars() override {
  981. return VARS_TO_STR6(type, n, m, r, b, v);
  982. }
  983. test_get_rows_back(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  984. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  985. ggml_tensor * build_graph(ggml_context * ctx) override {
  986. ggml_tensor * in_forward = ggml_new_tensor_3d(ctx, type, n, m, b);
  987. ggml_set_name(in_forward, "in_forward");
  988. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  989. ggml_set_name(rows, "rows");
  990. if (v) {
  991. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  992. ggml_set_name(rows, "view_of_rows");
  993. }
  994. ggml_tensor * grad = ggml_new_tensor_3d(ctx, type, n, r, b);
  995. ggml_set_name(grad, "grad");
  996. ggml_tensor * out = ggml_get_rows_back(ctx, grad, rows, in_forward);
  997. ggml_set_name(out, "out");
  998. return out;
  999. }
  1000. void initialize_tensors(ggml_context * ctx) override {
  1001. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1002. if (t->type == GGML_TYPE_I32) {
  1003. if (ggml_is_view_op(t->op)) { continue; }
  1004. // rows
  1005. std::vector<int> data(r*b);
  1006. for (int i = 0; i < r*b; i++) {
  1007. data[i] = rand() % m;
  1008. }
  1009. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  1010. } else {
  1011. init_tensor_uniform(t);
  1012. }
  1013. }
  1014. }
  1015. };
  1016. // GGML_OP_ARGMAX
  1017. struct test_argmax : public test_case {
  1018. const ggml_type type;
  1019. const std::array<int64_t, 4> ne;
  1020. std::string vars() override {
  1021. return VARS_TO_STR2(type, ne);
  1022. }
  1023. test_argmax(ggml_type type = GGML_TYPE_F32,
  1024. std::array<int64_t, 4> ne = {10, 100, 1, 1})
  1025. : type(type), ne(ne) {}
  1026. ggml_tensor * build_graph(ggml_context * ctx) override {
  1027. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1028. ggml_set_name(a, "a");
  1029. ggml_tensor * out = ggml_argmax(ctx, a);
  1030. ggml_set_name(out, "out");
  1031. return out;
  1032. }
  1033. void initialize_tensors(ggml_context * ctx) override {
  1034. std::random_device rd;
  1035. std::default_random_engine rng(rd());
  1036. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1037. if (t->type == GGML_TYPE_F32) {
  1038. // initialize with unique values to avoid ties
  1039. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  1040. std::vector<float> data(t->ne[0]);
  1041. for (int i = 0; i < t->ne[0]; i++) {
  1042. data[i] = i;
  1043. }
  1044. std::shuffle(data.begin(), data.end(), rng);
  1045. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  1046. }
  1047. } else {
  1048. init_tensor_uniform(t);
  1049. }
  1050. }
  1051. }
  1052. double max_nmse_err() override {
  1053. return 0.0;
  1054. }
  1055. };
  1056. // GGML_OP_COUNT_EQUAL
  1057. struct test_count_equal : public test_case {
  1058. const ggml_type type;
  1059. const std::array<int64_t, 4> ne;
  1060. std::string vars() override {
  1061. return VARS_TO_STR2(type, ne);
  1062. }
  1063. test_count_equal(ggml_type type = GGML_TYPE_F32,
  1064. std::array<int64_t, 4> ne = {4, 500, 1, 1})
  1065. : type(type), ne(ne) {}
  1066. ggml_tensor * build_graph(ggml_context * ctx) override {
  1067. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1068. ggml_set_name(a, "a");
  1069. ggml_tensor * a_argmax = ggml_argmax(ctx, a);
  1070. ggml_set_name(a_argmax, "a_argmax");
  1071. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1072. ggml_set_name(b, "b");
  1073. ggml_tensor * b_argmax = ggml_argmax(ctx, b);
  1074. ggml_set_name(b_argmax, "b_argmax");
  1075. ggml_tensor * out = ggml_count_equal(ctx, a_argmax, b_argmax);
  1076. ggml_set_name(out, "out");
  1077. return out;
  1078. }
  1079. double max_nmse_err() override {
  1080. return 0.0;
  1081. }
  1082. };
  1083. // GGML_OP_REPEAT
  1084. struct test_repeat : public test_case {
  1085. const ggml_type type;
  1086. const std::array<int64_t, 4> ne;
  1087. const std::array<int, 4> nr;
  1088. std::string vars() override {
  1089. return VARS_TO_STR3(type, ne, nr);
  1090. }
  1091. size_t op_size(ggml_tensor * t) override {
  1092. return ggml_nbytes(t) * 2;
  1093. }
  1094. test_repeat(ggml_type type = GGML_TYPE_F32,
  1095. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  1096. std::array<int, 4> nr = {2, 2, 2, 2})
  1097. : type(type), ne(ne), nr(nr) {}
  1098. ggml_tensor * build_graph(ggml_context * ctx) override {
  1099. ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1100. ggml_set_name(target, "target");
  1101. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1102. ggml_set_param(ctx, src);
  1103. ggml_set_name(src, "src");
  1104. ggml_tensor * out = ggml_repeat(ctx, src, target);
  1105. ggml_set_name(out, "out");
  1106. return out;
  1107. }
  1108. };
  1109. // GGML_OP_REPEAT_BACK
  1110. struct test_repeat_back : public test_case {
  1111. const ggml_type type;
  1112. const std::array<int64_t, 4> ne;
  1113. const std::array<int, 4> nr;
  1114. const bool v; // whether src is a noncontiguous view
  1115. std::string vars() override {
  1116. return VARS_TO_STR4(type, ne, nr, v);
  1117. }
  1118. size_t op_size(ggml_tensor * t) override {
  1119. return ggml_nbytes(t) * 2;
  1120. }
  1121. test_repeat_back(ggml_type type = GGML_TYPE_F32,
  1122. std::array<int64_t, 4> ne = {8, 6, 4, 2},
  1123. std::array<int, 4> nr = {2, 2, 2, 2},
  1124. bool v = false)
  1125. : type(type), ne(ne), nr(nr), v(v) {}
  1126. ggml_tensor * build_graph(ggml_context * ctx) override {
  1127. ggml_tensor * src = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1128. ggml_set_name(src, "src");
  1129. if (v) {
  1130. GGML_ASSERT(ne[0] % 2 == 0);
  1131. GGML_ASSERT(ne[1] % 2 == 0);
  1132. GGML_ASSERT(ne[2] % 2 == 0);
  1133. GGML_ASSERT(ne[3] % 2 == 0);
  1134. GGML_ASSERT(nr[0] % 2 == 0 || nr[0] == 1);
  1135. GGML_ASSERT(nr[1] % 2 == 0 || nr[1] == 1);
  1136. GGML_ASSERT(nr[2] % 2 == 0 || nr[2] == 1);
  1137. GGML_ASSERT(nr[3] % 2 == 0 || nr[3] == 1);
  1138. const int64_t ne00 = nr[0] == 1 ? src->ne[0] : src->ne[0] / 2;
  1139. const int64_t ne01 = nr[1] == 1 ? src->ne[1] : src->ne[1] / 2;
  1140. const int64_t ne02 = nr[2] == 1 ? src->ne[2] : src->ne[2] / 2;
  1141. const int64_t ne03 = nr[3] == 1 ? src->ne[3] : src->ne[3] / 2;
  1142. src = ggml_view_4d(ctx, src, ne00, ne01, ne02, ne03, src->nb[1], src->nb[2], src->nb[3], 0);
  1143. }
  1144. ggml_tensor * target = ggml_new_tensor(ctx, type, 4, ne.data());
  1145. ggml_set_name(target, "target");
  1146. ggml_tensor * out = ggml_repeat_back(ctx, src, target);
  1147. ggml_set_name(out, "out");
  1148. return out;
  1149. }
  1150. };
  1151. // GGML_OP_DUP
  1152. struct test_dup : public test_case {
  1153. const ggml_type type;
  1154. const std::array<int64_t, 4> ne;
  1155. const std::array<int64_t, 4> permute;
  1156. bool _use_permute;
  1157. std::string vars() override {
  1158. std::string v = VARS_TO_STR2(type, ne);
  1159. if (_use_permute) v += "," + VAR_TO_STR(permute);
  1160. return v;
  1161. }
  1162. test_dup(ggml_type type = GGML_TYPE_F32,
  1163. std::array<int64_t, 4> ne = {10, 10, 20, 1},
  1164. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  1165. : type(type), ne(ne), permute(permute),
  1166. _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  1167. ggml_tensor * build_graph(ggml_context * ctx) override {
  1168. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1169. ggml_set_param(ctx, src);
  1170. ggml_set_name(src, "src");
  1171. if (_use_permute) {
  1172. src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
  1173. ggml_set_name(src, "src_permuted");
  1174. }
  1175. ggml_tensor * out = ggml_dup(ctx, src);
  1176. ggml_set_name(out, "out");
  1177. return out;
  1178. }
  1179. };
  1180. // GGML_OP_SET
  1181. struct test_set : public test_case {
  1182. const ggml_type type_src;
  1183. const ggml_type type_dst;
  1184. const std::array<int64_t, 4> ne;
  1185. const int dim;
  1186. std::string vars() override {
  1187. return VARS_TO_STR4(type_src, type_dst, ne, dim);
  1188. }
  1189. size_t op_size(ggml_tensor * t) override {
  1190. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  1191. }
  1192. test_set(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  1193. std::array<int64_t, 4> ne = {6, 5, 4, 3}, int dim = 1)
  1194. : type_src(type_src), type_dst(type_dst), ne(ne), dim(dim) {}
  1195. ggml_tensor * build_graph(ggml_context * ctx) override {
  1196. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  1197. ggml_set_param(ctx, src);
  1198. ggml_set_name(src, "src");
  1199. auto ne_dst = ne;
  1200. for (int i = 0; i < dim; ++i) {
  1201. ne_dst[i] *= 2;
  1202. }
  1203. ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, ne_dst.data());
  1204. ggml_set_param(ctx, dst);
  1205. ggml_set_name(dst, "dst");
  1206. size_t offset = 0;
  1207. for (int i = 0; i < dim; ++i) {
  1208. offset += ((ne_dst[i] - ne[i])/2)*dst->nb[i];
  1209. }
  1210. ggml_tensor * out = ggml_set(ctx, dst, src,
  1211. // The backward pass requires setting a contiguous region:
  1212. src->nb[1], src->nb[2], src->nb[3], offset);
  1213. ggml_set_name(out, "out");
  1214. return out;
  1215. }
  1216. };
  1217. // GGML_OP_CPY
  1218. struct test_cpy : public test_case {
  1219. const ggml_type type_src;
  1220. const ggml_type type_dst;
  1221. const std::array<int64_t, 4> ne;
  1222. const std::array<int64_t, 4> permute;
  1223. bool _src_use_permute;
  1224. std::string vars() override {
  1225. return VARS_TO_STR4(type_src, type_dst, ne, permute);
  1226. }
  1227. double max_nmse_err() override {
  1228. return 1e-6;
  1229. }
  1230. size_t op_size(ggml_tensor * t) override {
  1231. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  1232. }
  1233. test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  1234. std::array<int64_t, 4> ne = {10, 10, 10, 1},
  1235. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  1236. : type_src(type_src), type_dst(type_dst), ne(ne), permute(permute),
  1237. _src_use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  1238. ggml_tensor * build_graph(ggml_context * ctx) override {
  1239. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  1240. ggml_set_param(ctx, src);
  1241. ggml_set_name(src, "src");
  1242. if (_src_use_permute) {
  1243. src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
  1244. ggml_set_name(src, "src_permuted");
  1245. }
  1246. ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, src->ne);
  1247. ggml_set_name(dst, "dst");
  1248. ggml_tensor * out = ggml_cpy(ctx, src, dst);
  1249. ggml_set_name(out, "out");
  1250. return out;
  1251. }
  1252. };
  1253. // GGML_OP_CONT
  1254. struct test_cont : public test_case {
  1255. const ggml_type type;
  1256. const std::array<int64_t, 4> ne;
  1257. std::string vars() override {
  1258. return VARS_TO_STR2(type, ne);
  1259. }
  1260. test_cont(ggml_type type = GGML_TYPE_F32,
  1261. std::array<int64_t, 4> ne = {10, 10, 10, 1})
  1262. : type(type), ne(ne) {}
  1263. ggml_tensor * build_graph(ggml_context * ctx) override {
  1264. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1265. ggml_set_param(ctx, src);
  1266. ggml_set_name(src, "src");
  1267. src = ggml_transpose(ctx, src);
  1268. ggml_set_name(src, "src_transposed");
  1269. ggml_tensor * out = ggml_cont(ctx, src);
  1270. ggml_set_name(out, "out");
  1271. return out;
  1272. }
  1273. };
  1274. // GGML_OP_ADD
  1275. // GGML_OP_SUB
  1276. // GGML_OP_MUL
  1277. // GGML_OP_DIV
  1278. struct test_bin_bcast : public test_case {
  1279. using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
  1280. op_t op;
  1281. const ggml_type type;
  1282. const std::array<int64_t, 4> ne;
  1283. const std::array<int, 4> nr;
  1284. std::string vars() override {
  1285. return VARS_TO_STR3(type, ne, nr);
  1286. }
  1287. size_t op_size(ggml_tensor * t) override {
  1288. return ggml_nbytes(t) * 3;
  1289. }
  1290. test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
  1291. std::array<int64_t, 4> ne = {10, 10, 1, 1},
  1292. std::array<int, 4> nr = {1, 2, 1, 1})
  1293. : op(op), type(type), ne(ne), nr(nr) {}
  1294. ggml_tensor * build_graph(ggml_context * ctx) override {
  1295. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1296. ggml_set_name(a, "a");
  1297. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1298. ggml_set_name(b, "b");
  1299. // The backward pass supports broadcasting only for GGML_ADD:
  1300. const bool grad_supported = op == ggml_add || ggml_are_same_shape(a, b);
  1301. if (grad_supported) {
  1302. ggml_set_param(ctx, a);
  1303. ggml_set_param(ctx, b);
  1304. }
  1305. ggml_tensor * out = op(ctx, a, b);
  1306. ggml_set_name(out, "out");
  1307. return out;
  1308. }
  1309. void initialize_tensors(ggml_context * ctx) override {
  1310. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1311. if (op == ggml_mul || op == ggml_div) {
  1312. // MUL and DIV have numerical issues around zero:
  1313. init_tensor_uniform(t, 0.9f, 1.1f);
  1314. } else {
  1315. init_tensor_uniform(t);
  1316. }
  1317. }
  1318. }
  1319. float grad_eps() override {
  1320. return 0.1f * (op == ggml_mul ? ne[0]*ne[1]*ne[2]*ne[3] : 1);
  1321. }
  1322. bool grad_precise() override {
  1323. return op == ggml_div;
  1324. }
  1325. double max_maa_err() override {
  1326. return op == ggml_add ? 1e-4 : 1e-3;
  1327. }
  1328. };
  1329. // GGML_OP_ADD1
  1330. struct test_add1 : public test_case {
  1331. const ggml_type type;
  1332. const std::array<int64_t, 4> ne;
  1333. std::string vars() override {
  1334. return VARS_TO_STR2(type, ne);
  1335. }
  1336. test_add1(ggml_type type = GGML_TYPE_F32,
  1337. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1338. : type(type), ne(ne) {}
  1339. ggml_tensor * build_graph(ggml_context * ctx) override {
  1340. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1341. ggml_set_param(ctx, a);
  1342. ggml_set_name(a, "a");
  1343. ggml_tensor * b = ggml_new_tensor_1d(ctx, type, 1);
  1344. // ggml_set_param(ctx, b); // TODO: implement
  1345. ggml_set_name(b, "b");
  1346. ggml_tensor * out = ggml_add1(ctx, a, b);
  1347. ggml_set_name(out, "out");
  1348. return out;
  1349. }
  1350. float grad_eps() override {
  1351. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  1352. }
  1353. };
  1354. // GGML_OP_SCALE
  1355. struct test_scale : public test_case {
  1356. const ggml_type type;
  1357. const std::array<int64_t, 4> ne;
  1358. float scale;
  1359. std::string vars() override {
  1360. return VARS_TO_STR3(type, ne, scale);
  1361. }
  1362. test_scale(ggml_type type = GGML_TYPE_F32,
  1363. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  1364. float scale = 2.0f)
  1365. : type(type), ne(ne), scale(scale) {}
  1366. ggml_tensor * build_graph(ggml_context * ctx) override {
  1367. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1368. ggml_set_param(ctx, a);
  1369. ggml_set_name(a, "a");
  1370. ggml_tensor * out = ggml_scale(ctx, a, scale);
  1371. ggml_set_name(out, "out");
  1372. return out;
  1373. }
  1374. };
  1375. // GGML_OP_SILU_BACK
  1376. struct test_silu_back : public test_case {
  1377. const ggml_type type;
  1378. const std::array<int64_t, 4> ne;
  1379. float eps;
  1380. std::string vars() override {
  1381. return VARS_TO_STR3(type, ne, eps);
  1382. }
  1383. test_silu_back(ggml_type type = GGML_TYPE_F32,
  1384. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  1385. float eps = 1e-6f)
  1386. : type(type), ne(ne), eps(eps) {}
  1387. ggml_tensor * build_graph(ggml_context * ctx) override {
  1388. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1389. ggml_set_name(a, "a");
  1390. ggml_tensor * grad = ggml_new_tensor(ctx, type, 4, ne.data());
  1391. ggml_set_name(grad, "grad");
  1392. ggml_tensor * out = ggml_silu_back(ctx, a, grad);
  1393. ggml_set_name(out, "out");
  1394. return out;
  1395. }
  1396. bool grad_precise() override {
  1397. return true;
  1398. }
  1399. };
  1400. // GGML_OP_NORM
  1401. struct test_norm : public test_case {
  1402. const ggml_type type;
  1403. const std::array<int64_t, 4> ne;
  1404. const bool v; // whether a is a non-contiguous view
  1405. const float eps;
  1406. std::string vars() override {
  1407. return VARS_TO_STR4(type, ne, v, eps);
  1408. }
  1409. test_norm(ggml_type type = GGML_TYPE_F32,
  1410. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  1411. bool v = false,
  1412. float eps = 1e-6f)
  1413. : type(type), ne(ne), v(v), eps(eps) {}
  1414. ggml_tensor * build_graph(ggml_context * ctx) override {
  1415. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1416. ggml_set_name(a, "a");
  1417. if (v) {
  1418. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  1419. ggml_set_name(a, "view of a");
  1420. }
  1421. ggml_tensor * out = ggml_norm(ctx, a, eps);
  1422. ggml_set_name(out, "out");
  1423. return out;
  1424. }
  1425. };
  1426. // GGML_OP_RMS_NORM
  1427. struct test_rms_norm : public test_case {
  1428. const ggml_type type;
  1429. const std::array<int64_t, 4> ne;
  1430. const bool v; // whether a is a non-contiguous view
  1431. const float eps;
  1432. std::string vars() override {
  1433. return VARS_TO_STR4(type, ne, v, eps);
  1434. }
  1435. test_rms_norm(ggml_type type = GGML_TYPE_F32,
  1436. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  1437. bool v = false,
  1438. float eps = 1e-6f)
  1439. : type(type), ne(ne), v(v), eps(eps) {}
  1440. ggml_tensor * build_graph(ggml_context * ctx) override {
  1441. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1442. ggml_set_param(ctx, a);
  1443. ggml_set_name(a, "a");
  1444. if (v) {
  1445. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  1446. ggml_set_name(a, "view of a");
  1447. }
  1448. ggml_tensor * out = ggml_rms_norm(ctx, a, eps);
  1449. ggml_set_name(out, "out");
  1450. return out;
  1451. }
  1452. void initialize_tensors(ggml_context * ctx) override {
  1453. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1454. init_tensor_uniform(t, -10.f, 10.f);
  1455. }
  1456. }
  1457. float grad_eps() override {
  1458. return 1.0f;
  1459. }
  1460. bool grad_precise() override {
  1461. return true;
  1462. }
  1463. };
  1464. // GGML_OP_RMS_NORM_BACK
  1465. struct test_rms_norm_back : public test_case {
  1466. const ggml_type type;
  1467. const std::array<int64_t, 4> ne;
  1468. const float eps;
  1469. std::string vars() override {
  1470. return VARS_TO_STR3(type, ne, eps);
  1471. }
  1472. test_rms_norm_back(ggml_type type = GGML_TYPE_F32,
  1473. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  1474. float eps = 1e-6f)
  1475. : type(type), ne(ne), eps(eps) {}
  1476. ggml_tensor * build_graph(ggml_context * ctx) override {
  1477. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1478. ggml_set_name(a, "a");
  1479. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1480. ggml_set_name(b, "b");
  1481. ggml_tensor * out = ggml_rms_norm_back(ctx, a, b, eps);
  1482. ggml_set_name(out, "out");
  1483. return out;
  1484. }
  1485. void initialize_tensors(ggml_context * ctx) override {
  1486. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1487. init_tensor_uniform(t, -10.f, 10.f);
  1488. }
  1489. }
  1490. };
  1491. // GGML_OP_SSM_CONV
  1492. struct test_ssm_conv : public test_case {
  1493. const ggml_type type;
  1494. const std::array<int64_t, 4> ne_a;
  1495. const std::array<int64_t, 4> ne_b;
  1496. std::string vars() override {
  1497. return VARS_TO_STR3(type, ne_a, ne_b);
  1498. }
  1499. test_ssm_conv(ggml_type type = GGML_TYPE_F32,
  1500. std::array<int64_t, 4> ne_a = {10, 10, 10, 1},
  1501. std::array<int64_t, 4> ne_b = {3, 3, 1, 1})
  1502. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  1503. ggml_tensor * build_graph(ggml_context * ctx) override {
  1504. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1505. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  1506. ggml_tensor * out = ggml_ssm_conv(ctx, a, b);
  1507. return out;
  1508. }
  1509. };
  1510. // GGML_OP_SSM_SCAN
  1511. struct test_ssm_scan : public test_case {
  1512. const ggml_type type;
  1513. const int64_t d_state;
  1514. const int64_t d_inner;
  1515. const int64_t n_seq_tokens;
  1516. const int64_t n_seqs;
  1517. std::string vars() override {
  1518. return VARS_TO_STR5(type, d_state, d_inner, n_seq_tokens, n_seqs);
  1519. }
  1520. test_ssm_scan(ggml_type type = GGML_TYPE_F32,
  1521. int64_t d_state = 32, int64_t d_inner = 32, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  1522. : type(type), d_state(d_state), d_inner(d_inner), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  1523. ggml_tensor * build_graph(ggml_context * ctx) override {
  1524. ggml_tensor * s = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, d_inner, n_seqs, 1 }.data());
  1525. ggml_tensor * x = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_inner, n_seq_tokens, n_seqs, 1 }.data());
  1526. ggml_tensor * dt = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_inner, n_seq_tokens, n_seqs, 1 }.data());
  1527. ggml_tensor * A = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, d_inner, 1 , 1 }.data());
  1528. ggml_tensor * B = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, n_seq_tokens, n_seqs, 1 }.data());
  1529. ggml_tensor * C = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, n_seq_tokens, n_seqs, 1 }.data());
  1530. ggml_tensor * out = ggml_ssm_scan(ctx, s, x, dt, A, B, C);
  1531. return out;
  1532. }
  1533. };
  1534. // GGML_OP_RWKV_WKV6
  1535. struct test_rwkv_wkv6 : public test_case {
  1536. const ggml_type type;
  1537. const int64_t head_count;
  1538. const int64_t head_size;
  1539. const int64_t n_seq_tokens;
  1540. const int64_t n_seqs;
  1541. std::string vars() override {
  1542. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  1543. }
  1544. test_rwkv_wkv6(ggml_type type = GGML_TYPE_F32,
  1545. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  1546. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  1547. ggml_tensor * build_graph(ggml_context * ctx) override {
  1548. const int64_t n_tokens = n_seq_tokens * n_seqs;
  1549. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1550. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1551. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1552. ggml_tensor * tf = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size, head_count }.data());
  1553. ggml_tensor * td = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1554. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  1555. ggml_tensor * out = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, s);
  1556. return out;
  1557. }
  1558. };
  1559. // GGML_OP_GATED_LINEAR_ATTN
  1560. struct test_gla : public test_case {
  1561. const ggml_type type;
  1562. const int64_t head_count;
  1563. const int64_t head_size;
  1564. const int64_t n_seq_tokens;
  1565. const int64_t n_seqs;
  1566. std::string vars() override {
  1567. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  1568. }
  1569. test_gla(ggml_type type = GGML_TYPE_F32,
  1570. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  1571. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  1572. ggml_tensor * build_graph(ggml_context * ctx) override {
  1573. const int64_t n_tokens = n_seq_tokens * n_seqs;
  1574. ggml_tensor * q = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1575. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1576. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1577. ggml_tensor * g = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1578. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  1579. ggml_tensor * out = ggml_gated_linear_attn(ctx, k, v, q, g, s, pow(head_size, -0.5));
  1580. return out;
  1581. }
  1582. };
  1583. // GGML_OP_RWKV_WKV7
  1584. struct test_rwkv_wkv7 : public test_case {
  1585. const ggml_type type;
  1586. const int64_t head_count;
  1587. const int64_t head_size;
  1588. const int64_t n_seq_tokens;
  1589. const int64_t n_seqs;
  1590. std::string vars() override {
  1591. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  1592. }
  1593. test_rwkv_wkv7(ggml_type type = GGML_TYPE_F32,
  1594. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  1595. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  1596. ggml_tensor * build_graph(ggml_context * ctx) override {
  1597. const int64_t n_tokens = n_seq_tokens * n_seqs;
  1598. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1599. ggml_tensor * w = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1600. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1601. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1602. ggml_tensor * a = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1603. ggml_tensor * b = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1604. // Outputs may become NaN with long seqlen without these normalization
  1605. a = ggml_l2_norm(ctx, a, 1e-7F);
  1606. b = ggml_l2_norm(ctx, b, 1e-7F);
  1607. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  1608. ggml_tensor * out = ggml_rwkv_wkv7(ctx, r, w, k, v, a, b, s);
  1609. return out;
  1610. }
  1611. };
  1612. // GGML_OP_MUL_MAT
  1613. struct test_mul_mat : public test_case {
  1614. const ggml_type type_a;
  1615. const ggml_type type_b;
  1616. const int64_t m;
  1617. const int64_t n;
  1618. const int64_t k;
  1619. const std::array<int64_t, 2> bs; // dims 3 and 4
  1620. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  1621. const std::array<int64_t, 4> per; // permutation of dimensions
  1622. const bool v; // whether a is a non-contiguous view
  1623. std::string vars() override {
  1624. return VARS_TO_STR9(type_a, type_b, m, n, k, bs, nr, per, v);
  1625. }
  1626. double max_nmse_err() override {
  1627. return 5e-4;
  1628. }
  1629. int64_t grad_nmax() override {
  1630. return 20000;
  1631. }
  1632. uint64_t op_flops(ggml_tensor * t) override {
  1633. GGML_UNUSED(t);
  1634. return 2 * m * n * k * bs[0] * nr[0] * bs[1] * nr[1];
  1635. }
  1636. test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  1637. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  1638. std::array<int64_t, 2> bs = {10, 10},
  1639. std::array<int64_t, 2> nr = {2, 2},
  1640. std::array<int64_t, 4> per = {0, 1, 2, 3},
  1641. bool v = false)
  1642. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), per(per), v(v) {}
  1643. ggml_tensor * build_graph(ggml_context * ctx) override {
  1644. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  1645. ggml_tensor * a;
  1646. ggml_tensor * b;
  1647. const int npermuted = (per[0] != 0) + (per[1] != 1) + (per[2] != 2) + (per[3] != 3);
  1648. if (npermuted > 0) {
  1649. GGML_ASSERT(npermuted == 2);
  1650. GGML_ASSERT(!v); // not handled
  1651. GGML_ASSERT(!ggml_is_quantized(type_a) || per[0] == 0);
  1652. GGML_ASSERT(!ggml_is_quantized(type_b) || per[0] == 0);
  1653. // Create tensors with the permuted dimensions, then permute them back to the dimensions given by m,n,k.
  1654. const int64_t ne_a[4] = {k, m, bs[0], bs[1]};
  1655. const int64_t ne_b[4] = {k, n, bs[0]*nr[0], bs[1]*nr[1]};
  1656. a = ggml_new_tensor_4d(ctx, type_a, ne_a[per[0]], ne_a[per[1]], ne_a[per[2]], ne_a[per[3]]);
  1657. b = ggml_new_tensor_4d(ctx, type_b, ne_b[per[0]], ne_b[per[1]], ne_b[per[2]], ne_b[per[3]]);
  1658. if (!ggml_is_quantized(type_a)) {
  1659. if (bs[1] == 1 && nr[1] == 1) {
  1660. ggml_set_param(ctx, a);
  1661. }
  1662. ggml_set_param(ctx, b);
  1663. }
  1664. ggml_set_name(a, "a");
  1665. ggml_set_name(b, "b");
  1666. a = ggml_permute(ctx, a, per[0], per[1], per[2], per[3]);
  1667. b = ggml_permute(ctx, b, per[0], per[1], per[2], per[3]);
  1668. ggml_set_name(a, "a_permuted");
  1669. ggml_set_name(b, "b_permuted");
  1670. } else {
  1671. if (v) {
  1672. a = ggml_new_tensor_4d(ctx, type_a, k*2, m, bs[0], bs[1]);
  1673. a = ggml_view_4d(ctx, a, k, m, bs[0], bs[1], a->nb[1], a->nb[2], a->nb[3], 0);
  1674. } else {
  1675. a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0], bs[1]);
  1676. }
  1677. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  1678. if (!ggml_is_quantized(type_a)) {
  1679. if (bs[1] == 1 && nr[1] == 1) {
  1680. ggml_set_param(ctx, a);
  1681. }
  1682. ggml_set_param(ctx, b);
  1683. }
  1684. ggml_set_name(a, "a");
  1685. ggml_set_name(b, "b");
  1686. }
  1687. ggml_tensor * out = ggml_mul_mat(ctx, a, b);
  1688. ggml_set_name(out, "out");
  1689. return out;
  1690. }
  1691. };
  1692. // GGML_OP_MUL_MAT_ID
  1693. struct test_mul_mat_id : public test_case {
  1694. const ggml_type type_a;
  1695. const ggml_type type_b;
  1696. const int n_mats;
  1697. const int n_used;
  1698. const bool b; // brodcast b matrix
  1699. const int64_t m;
  1700. const int64_t n;
  1701. const int64_t k;
  1702. std::string vars() override {
  1703. return VARS_TO_STR8(type_a, type_b, n_mats, n_used, b, m, n, k);
  1704. }
  1705. double max_nmse_err() override {
  1706. return 5e-4;
  1707. }
  1708. uint64_t op_flops(ggml_tensor * t) override {
  1709. GGML_UNUSED(t);
  1710. return 2 * m * k * n * n_used;
  1711. }
  1712. test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  1713. int n_mats = 8, int n_used = 2, bool b = false,
  1714. int64_t m = 32, int64_t n = 32, int64_t k = 32)
  1715. : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
  1716. m(m), n(n), k(k) {
  1717. GGML_ASSERT(n_used <= n_mats);
  1718. }
  1719. ggml_tensor * build_graph(ggml_context * ctx) override {
  1720. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  1721. ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  1722. ggml_set_name(as, "as");
  1723. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
  1724. ggml_set_name(ids, "ids");
  1725. if (n_used != n_mats) {
  1726. ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
  1727. ggml_set_name(ids, "view_of_ids");
  1728. }
  1729. ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
  1730. ggml_set_name(b, "b");
  1731. ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
  1732. ggml_set_name(out, "out");
  1733. return out;
  1734. }
  1735. void initialize_tensors(ggml_context * ctx) override {
  1736. std::random_device rd;
  1737. std::default_random_engine rng(rd());
  1738. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1739. if (t->type == GGML_TYPE_I32) {
  1740. if (ggml_is_view_op(t->op)) { continue; }
  1741. // ids
  1742. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  1743. std::vector<int32_t> data(t->ne[0]);
  1744. for (int i = 0; i < t->ne[0]; i++) {
  1745. data[i] = i % n_mats;
  1746. }
  1747. std::shuffle(data.begin(), data.end(), rng);
  1748. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  1749. }
  1750. } else {
  1751. init_tensor_uniform(t);
  1752. }
  1753. }
  1754. }
  1755. };
  1756. // GGML_OP_OUT_PROD
  1757. struct test_out_prod : public test_case {
  1758. const ggml_type type_a;
  1759. const ggml_type type_b;
  1760. const int64_t m;
  1761. const int64_t n;
  1762. const int64_t k;
  1763. const std::array<int64_t, 2> bs; // dims 3 and 4
  1764. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  1765. const bool trans_b;
  1766. std::string vars() override {
  1767. return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, trans_b);
  1768. }
  1769. double max_nmse_err() override {
  1770. return 5e-4;
  1771. }
  1772. test_out_prod(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  1773. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  1774. std::array<int64_t, 2> bs = {10, 10},
  1775. std::array<int64_t, 2> nr = {2, 2},
  1776. bool trans_b = false)
  1777. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), trans_b(trans_b) {}
  1778. ggml_tensor * build_graph(ggml_context * ctx) override {
  1779. ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, m, k, bs[0], bs[1]);
  1780. ggml_set_name(a, "a");
  1781. ggml_tensor * b;
  1782. if (trans_b) {
  1783. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  1784. b = ggml_transpose(ctx, b);
  1785. } else {
  1786. b = ggml_new_tensor_4d(ctx, type_b, n, k, bs[0]*nr[0], bs[1]*nr[1]);
  1787. }
  1788. ggml_set_name(b, "b");
  1789. ggml_tensor * out = ggml_out_prod(ctx, a, b);
  1790. ggml_set_name(out, "out");
  1791. return out;
  1792. }
  1793. };
  1794. // GGML_OP_SQR
  1795. struct test_sqr : public test_case {
  1796. const ggml_type type;
  1797. const std::array<int64_t, 4> ne;
  1798. std::string vars() override {
  1799. return VARS_TO_STR2(type, ne);
  1800. }
  1801. test_sqr(ggml_type type = GGML_TYPE_F32,
  1802. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1803. : type(type), ne(ne) {}
  1804. ggml_tensor * build_graph(ggml_context * ctx) override {
  1805. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1806. ggml_set_param(ctx, a);
  1807. ggml_set_name(a, "a");
  1808. ggml_tensor * out = ggml_sqr(ctx, a);
  1809. ggml_set_name(out, "out");
  1810. return out;
  1811. }
  1812. float grad_eps() override {
  1813. return 0.1f * 0.25f*ne[0]*ne[1]*ne[2]*ne[3]; // 10% of expected value of sum.
  1814. }
  1815. };
  1816. // GGML_OP_SQRT
  1817. struct test_sqrt : public test_case {
  1818. const ggml_type type;
  1819. const std::array<int64_t, 4> ne;
  1820. std::string vars() override {
  1821. return VARS_TO_STR2(type, ne);
  1822. }
  1823. test_sqrt(ggml_type type = GGML_TYPE_F32,
  1824. std::array<int64_t, 4> ne = {10, 3, 3, 2})
  1825. : type(type), ne(ne) {}
  1826. ggml_tensor * build_graph(ggml_context * ctx) override {
  1827. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1828. ggml_set_param(ctx, a);
  1829. ggml_set_name(a, "a");
  1830. ggml_tensor * out = ggml_sqrt(ctx, a);
  1831. ggml_set_name(out, "out");
  1832. return out;
  1833. }
  1834. void initialize_tensors(ggml_context * ctx) override {
  1835. // fill with positive values
  1836. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1837. init_tensor_uniform(t, 50.0f, 100.0f);
  1838. }
  1839. }
  1840. float grad_eps() override {
  1841. return 20.0f;
  1842. }
  1843. bool grad_precise() override {
  1844. return true;
  1845. }
  1846. };
  1847. // GGML_OP_LOG
  1848. struct test_log : public test_case {
  1849. const ggml_type type;
  1850. const std::array<int64_t, 4> ne;
  1851. std::string vars() override {
  1852. return VARS_TO_STR2(type, ne);
  1853. }
  1854. test_log(ggml_type type = GGML_TYPE_F32,
  1855. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1856. : type(type), ne(ne) {}
  1857. ggml_tensor * build_graph(ggml_context * ctx) override {
  1858. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1859. ggml_set_param(ctx, a);
  1860. ggml_set_name(a, "a");
  1861. ggml_tensor * out = ggml_log(ctx, a);
  1862. ggml_set_name(out, "out");
  1863. return out;
  1864. }
  1865. void initialize_tensors(ggml_context * ctx) override {
  1866. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1867. // log(1) == 0, cluster values there to keep the sum low for better precision in the backward pass:
  1868. init_tensor_uniform(t, 0.9f, 1.1f);
  1869. }
  1870. }
  1871. bool grad_precise() override {
  1872. return true;
  1873. }
  1874. };
  1875. // GGML_OP_SIN
  1876. struct test_sin : public test_case {
  1877. const ggml_type type;
  1878. const std::array<int64_t, 4> ne;
  1879. std::string vars() override {
  1880. return VARS_TO_STR2(type, ne);
  1881. }
  1882. test_sin(ggml_type type = GGML_TYPE_F32,
  1883. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  1884. : type(type), ne(ne) {}
  1885. ggml_tensor * build_graph(ggml_context * ctx) override {
  1886. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1887. ggml_set_param(ctx, a);
  1888. ggml_set_name(a, "a");
  1889. ggml_tensor * out = ggml_sin(ctx, a);
  1890. ggml_set_name(out, "out");
  1891. return out;
  1892. }
  1893. void initialize_tensors(ggml_context * ctx) override {
  1894. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1895. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  1896. }
  1897. }
  1898. double max_maa_err() override {
  1899. return 1e-3;
  1900. }
  1901. float grad_eps() override {
  1902. return 0.2f;
  1903. }
  1904. bool grad_precise() override {
  1905. return true;
  1906. }
  1907. };
  1908. // GGML_OP_COS
  1909. struct test_cos : public test_case {
  1910. const ggml_type type;
  1911. const std::array<int64_t, 4> ne;
  1912. std::string vars() override {
  1913. return VARS_TO_STR2(type, ne);
  1914. }
  1915. test_cos(ggml_type type = GGML_TYPE_F32,
  1916. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  1917. : type(type), ne(ne) {}
  1918. ggml_tensor * build_graph(ggml_context * ctx) override {
  1919. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1920. ggml_set_param(ctx, a);
  1921. ggml_set_name(a, "a");
  1922. ggml_tensor * out = ggml_cos(ctx, a);
  1923. ggml_set_name(out, "out");
  1924. return out;
  1925. }
  1926. void initialize_tensors(ggml_context * ctx) override {
  1927. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1928. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  1929. }
  1930. }
  1931. double max_maa_err() override {
  1932. return 1e-3;
  1933. }
  1934. float grad_eps() override {
  1935. return 0.2f;
  1936. }
  1937. bool grad_precise() override {
  1938. return true;
  1939. }
  1940. };
  1941. // GGML_OP_CLAMP
  1942. struct test_clamp : public test_case {
  1943. const ggml_type type;
  1944. const std::array<int64_t, 4> ne;
  1945. float min;
  1946. float max;
  1947. std::string vars() override {
  1948. return VARS_TO_STR4(type, ne, min, max);
  1949. }
  1950. test_clamp(ggml_type type = GGML_TYPE_F32,
  1951. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  1952. float min = -0.5f, float max = 0.5f)
  1953. : type(type), ne(ne), min(min), max(max) {}
  1954. ggml_tensor * build_graph(ggml_context * ctx) override {
  1955. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1956. ggml_set_name(a, "a");
  1957. ggml_tensor * out = ggml_clamp(ctx, a, min, max);
  1958. ggml_set_name(out, "out");
  1959. return out;
  1960. }
  1961. float grad_eps() override {
  1962. return 1e-2f;
  1963. }
  1964. std::vector<float> grad_expect() override {
  1965. return {0.0f, 1.0f};
  1966. }
  1967. };
  1968. // GGML_OP_DIAG_MASK_INF
  1969. struct test_diag_mask_inf : public test_case {
  1970. const ggml_type type;
  1971. const std::array<int64_t, 4> ne;
  1972. const int n_past;
  1973. std::string vars() override {
  1974. return VARS_TO_STR3(type, ne, n_past);
  1975. }
  1976. test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
  1977. std::array<int64_t, 4> ne = {10, 10, 3, 2},
  1978. int n_past = 5)
  1979. : type(type), ne(ne), n_past(n_past) {}
  1980. ggml_tensor * build_graph(ggml_context * ctx) override {
  1981. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1982. ggml_set_param(ctx, a);
  1983. ggml_set_name(a, "a");
  1984. ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past);
  1985. ggml_set_name(out, "out");
  1986. return out;
  1987. }
  1988. };
  1989. // GGML_OP_SOFT_MAX
  1990. struct test_soft_max : public test_case {
  1991. const ggml_type type;
  1992. const std::array<int64_t, 4> ne;
  1993. const bool mask;
  1994. const ggml_type m_prec;
  1995. const float scale;
  1996. const float max_bias;
  1997. std::string vars() override {
  1998. return VARS_TO_STR6(type, ne, mask, m_prec, scale, max_bias);
  1999. }
  2000. // the 1024 test with bias occasionally fails:
  2001. // SOFT_MAX(type=f32,ne=[1024,16,1,1],mask=1,scale=1.000000,max_bias=8.000000): [SOFT_MAX] NMSE = 0.000000103 > 0.000000100 FAIL
  2002. virtual double max_nmse_err() override {
  2003. return 1e-6;
  2004. }
  2005. test_soft_max(ggml_type type = GGML_TYPE_F32,
  2006. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  2007. bool mask = false,
  2008. ggml_type m_prec = GGML_TYPE_F32,
  2009. float scale = 1.0f,
  2010. float max_bias = 0.0f)
  2011. : type(type), ne(ne), mask(mask), m_prec(m_prec), scale(scale), max_bias(max_bias) {}
  2012. ggml_tensor * build_graph(ggml_context * ctx) override {
  2013. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2014. ggml_set_param(ctx, a);
  2015. ggml_set_name(a, "a");
  2016. ggml_tensor * mask = nullptr;
  2017. if (this->mask) {
  2018. mask = ggml_new_tensor_2d(ctx, m_prec, ne[0], ne[1]);
  2019. ggml_set_name(mask, "mask");
  2020. }
  2021. ggml_tensor * out = ggml_soft_max_ext(ctx, a, mask, scale, max_bias);
  2022. ggml_set_name(out, "out");
  2023. return out;
  2024. }
  2025. bool grad_precise() override {
  2026. return true;
  2027. }
  2028. };
  2029. // GGML_OP_SOFT_MAX_BACK
  2030. struct test_soft_max_back : public test_case {
  2031. const ggml_type type;
  2032. const std::array<int64_t, 4> ne;
  2033. const float scale;
  2034. const float max_bias;
  2035. std::string vars() override {
  2036. return VARS_TO_STR4(type, ne, scale, max_bias);
  2037. }
  2038. test_soft_max_back(ggml_type type = GGML_TYPE_F32,
  2039. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  2040. float scale = 1.0f,
  2041. float max_bias = 0.0f)
  2042. : type(type), ne(ne), scale(scale), max_bias(max_bias) {}
  2043. ggml_tensor * build_graph(ggml_context * ctx) override {
  2044. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2045. ggml_set_name(a, "a");
  2046. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2047. ggml_set_name(a, "a");
  2048. ggml_tensor * out = ggml_soft_max_ext_back(ctx, a, b, scale, max_bias);
  2049. ggml_set_name(out, "out");
  2050. return out;
  2051. }
  2052. };
  2053. // GGML_OP_ROPE + GGML_OP_ROPE_BACK
  2054. struct test_rope : public test_case {
  2055. const ggml_type type;
  2056. const std::array<int64_t, 4> ne_a;
  2057. int n_dims;
  2058. int mode;
  2059. int n_ctx; // used to generate positions
  2060. float fs; // freq_scale
  2061. float ef; // ext_factor
  2062. float af; // attn_factor
  2063. bool ff;
  2064. int v; // view (1 : non-contiguous a)
  2065. bool forward;
  2066. std::string vars() override {
  2067. // forward can be inferred from the op, does not need to be printed
  2068. return VARS_TO_STR10(type, ne_a, n_dims, mode, n_ctx, fs, ef, af, ff, v);
  2069. }
  2070. test_rope(ggml_type type = GGML_TYPE_F32,
  2071. std::array<int64_t, 4> ne_a = {10, 5, 3, 1},
  2072. int n_dims = 10, int mode = 0, int n_ctx = 512, float fs = 1.0f,
  2073. float ef = 0.0f, float af = 0.0f, bool ff = false, int v = 0, bool forward = true)
  2074. : type(type), ne_a(ne_a), n_dims(n_dims), mode(mode), n_ctx(n_ctx), fs(fs), ef(ef), af(af), ff(ff), v(v), forward(forward) {}
  2075. ggml_tensor * build_graph(ggml_context * ctx) override {
  2076. ggml_tensor * a;
  2077. if (v & 1) {
  2078. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  2079. a = ggml_new_tensor(ctx, type, 4, ne.data());
  2080. if (forward) {
  2081. ggml_set_param(ctx, a);
  2082. }
  2083. ggml_set_name(a, "a");
  2084. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  2085. ggml_set_name(a, "view_of_a");
  2086. } else {
  2087. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2088. if (forward) {
  2089. ggml_set_param(ctx, a);
  2090. }
  2091. ggml_set_name(a, "a");
  2092. }
  2093. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  2094. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  2095. ggml_tensor * pos;
  2096. if (is_mrope || is_vision) {
  2097. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2] * 4);
  2098. } else {
  2099. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]);
  2100. }
  2101. ggml_set_name(pos, "pos");
  2102. ggml_tensor * freq = nullptr;
  2103. if (ff) {
  2104. freq = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_dims/2);
  2105. ggml_set_name(freq, "freq");
  2106. }
  2107. ggml_tensor * out;
  2108. if (is_mrope) {
  2109. if (is_vision) {
  2110. GGML_ASSERT(n_dims/4 > 0);
  2111. int rope_sections[4] = {n_dims/4, n_dims/4, 0, 0}; // Vision-RoPE only use first two dimension for image (x, y) coordinate
  2112. if (forward) {
  2113. out = ggml_rope_multi (ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2114. } else {
  2115. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2116. }
  2117. } else {
  2118. GGML_ASSERT(n_dims/3 > 0);
  2119. int rope_sections[4] = {n_dims/3, n_dims/3, n_dims/3, 0};
  2120. if (forward) {
  2121. out = ggml_rope_multi (ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2122. } else {
  2123. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2124. }
  2125. }
  2126. } else {
  2127. if (forward) {
  2128. out = ggml_rope_ext (ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2129. } else {
  2130. out = ggml_rope_ext_back(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2131. }
  2132. }
  2133. ggml_set_name(out, "out");
  2134. return out;
  2135. }
  2136. void initialize_tensors(ggml_context * ctx) override {
  2137. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2138. if (t->type == GGML_TYPE_I32) {
  2139. // pos
  2140. const int num_pos_ids = (mode & GGML_ROPE_TYPE_MROPE) ? ne_a[2] * 4 : ne_a[2];
  2141. std::vector<int> data(num_pos_ids);
  2142. for (int i = 0; i < num_pos_ids; i++) {
  2143. data[i] = rand() % n_ctx;
  2144. }
  2145. ggml_backend_tensor_set(t, data.data(), 0, num_pos_ids * sizeof(int));
  2146. } else {
  2147. if (t->ne[0] == n_dims/2) {
  2148. // frequency factors in the range [0.9f, 1.1f]
  2149. init_tensor_uniform(t, 0.9f, 1.1f);
  2150. } else {
  2151. init_tensor_uniform(t);
  2152. }
  2153. }
  2154. }
  2155. }
  2156. double max_maa_err() override {
  2157. return 1e-3;
  2158. }
  2159. bool grad_precise() override {
  2160. return true;
  2161. }
  2162. };
  2163. // GGML_OP_POOL2D
  2164. struct test_pool2d : public test_case {
  2165. enum ggml_op_pool pool_type;
  2166. const ggml_type type_input;
  2167. const std::array<int64_t, 4> ne_input;
  2168. // kernel size
  2169. const int k0;
  2170. const int k1;
  2171. // stride
  2172. const int s0;
  2173. const int s1;
  2174. // padding
  2175. const int p0;
  2176. const int p1;
  2177. std::string vars() override {
  2178. return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1);
  2179. }
  2180. test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG,
  2181. ggml_type type_input = GGML_TYPE_F32,
  2182. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  2183. int k0 = 3, int k1 = 3,
  2184. int s0 = 1, int s1 = 1,
  2185. int p0 = 1, int p1 = 1)
  2186. : pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {}
  2187. ggml_tensor * build_graph(ggml_context * ctx) override {
  2188. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  2189. ggml_set_param(ctx, input);
  2190. ggml_set_name(input, "input");
  2191. ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1);
  2192. ggml_set_name(out, "out");
  2193. return out;
  2194. }
  2195. };
  2196. // GGML_OP_CONV_TRANSPOSE_1D
  2197. struct test_conv_transpose_1d : public test_case {
  2198. const std::array<int64_t, 4> ne_input;
  2199. const std::array<int64_t, 4> ne_kernel;
  2200. const int s0; // stride
  2201. const int p0; // padding
  2202. const int d0; // dilation
  2203. std::string vars() override {
  2204. return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0);
  2205. }
  2206. test_conv_transpose_1d(std::array<int64_t, 4> ne_input = {197, 32, 1, 1}, // [input_width, input_height, input_channels, 1]
  2207. std::array<int64_t, 4> ne_kernel = {16, 32, 32, 1}, // [kernel_width, kernel_height, input_channels, 1]
  2208. int s0 = 1, int p0 = 0, int d0 = 1)
  2209. : ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), p0(p0), d0(d0) {}
  2210. ggml_tensor * build_graph(ggml_context * ctx) override {
  2211. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  2212. ggml_set_name(input, "input");
  2213. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  2214. ggml_set_name(kernel, "kernel");
  2215. ggml_tensor * out = ggml_conv_transpose_1d(ctx, kernel, input, s0, p0, d0);
  2216. ggml_set_name(out, "out");
  2217. return out;
  2218. }
  2219. };
  2220. // GGML_OP_IM2COL
  2221. struct test_im2col : public test_case {
  2222. const ggml_type type_input;
  2223. const ggml_type type_kernel;
  2224. const ggml_type dst_type;
  2225. const std::array<int64_t, 4> ne_input;
  2226. const std::array<int64_t, 4> ne_kernel;
  2227. // stride
  2228. const int s0;
  2229. const int s1;
  2230. // padding
  2231. const int p0;
  2232. const int p1;
  2233. // dilation
  2234. const int d0;
  2235. const int d1;
  2236. // mode
  2237. const bool is_2D;
  2238. std::string vars() override {
  2239. return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
  2240. }
  2241. test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  2242. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  2243. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  2244. int s0 = 1, int s1 = 1,
  2245. int p0 = 1, int p1 = 1,
  2246. int d0 = 1, int d1 = 1,
  2247. bool is_2D = true)
  2248. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
  2249. ggml_tensor * build_graph(ggml_context * ctx) override {
  2250. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  2251. ggml_set_param(ctx, input);
  2252. ggml_set_name(input, "input");
  2253. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  2254. ggml_set_name(kernel, "kernel");
  2255. ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type);
  2256. ggml_set_name(out, "out");
  2257. return out;
  2258. }
  2259. };
  2260. // GGML_OP_CONCAT
  2261. struct test_concat : public test_case {
  2262. const ggml_type type;
  2263. const std::array<int64_t, 4> ne_a;
  2264. const int64_t ne_b_d;
  2265. const int dim;
  2266. const int v; // view (1 << 0: non-cont a, 1 << 1: non-cont b)
  2267. std::string vars() override {
  2268. return VARS_TO_STR5(type, ne_a, ne_b_d, dim, v);
  2269. }
  2270. test_concat(ggml_type type = GGML_TYPE_F32,
  2271. std::array<int64_t, 4> ne_a = {10, 5, 5, 5},
  2272. int64_t ne_b_d = 5,
  2273. int dim = 2, int v = 0)
  2274. : type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim), v(v) {}
  2275. ggml_tensor * build_graph(ggml_context * ctx) override {
  2276. auto ne_b = ne_a;
  2277. ne_b[dim] = ne_b_d;
  2278. ggml_tensor * a;
  2279. if (v & 1) {
  2280. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  2281. a = ggml_new_tensor(ctx, type, 4, ne.data());
  2282. ggml_set_name(a, "a");
  2283. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  2284. ggml_set_name(a, "view_of_a");
  2285. } else {
  2286. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2287. ggml_set_name(a, "a");
  2288. }
  2289. ggml_tensor * b;
  2290. if (v & 2) {
  2291. auto ne = ne_b; ne[0] *= 3; ne[1] *= 2; ne[2] *= 4;
  2292. b = ggml_new_tensor(ctx, type, 4, ne.data());
  2293. ggml_set_name(b, "b");
  2294. b = ggml_view_4d(ctx, b, ne_b[0], ne_b[1], ne_b[2], ne_b[3], b->nb[1], b->nb[2], b->nb[3], 0);
  2295. ggml_set_name(b, "view_of_b");
  2296. } else {
  2297. b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  2298. ggml_set_name(b, "b");
  2299. }
  2300. ggml_tensor * out = ggml_concat(ctx, a, b, dim);
  2301. ggml_set_name(out, "out");
  2302. return out;
  2303. }
  2304. };
  2305. // GGML_OP_ARGSORT
  2306. struct test_argsort : public test_case {
  2307. const ggml_type type;
  2308. const std::array<int64_t, 4> ne;
  2309. ggml_sort_order order;
  2310. std::string vars() override {
  2311. return VARS_TO_STR3(type, ne, order);
  2312. }
  2313. test_argsort(ggml_type type = GGML_TYPE_F32,
  2314. std::array<int64_t, 4> ne = {16, 10, 10, 10},
  2315. ggml_sort_order order = GGML_SORT_ORDER_ASC)
  2316. : type(type), ne(ne), order(order) {}
  2317. ggml_tensor * build_graph(ggml_context * ctx) override {
  2318. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2319. ggml_set_name(a, "a");
  2320. ggml_tensor * out = ggml_argsort(ctx, a, order);
  2321. ggml_set_name(out, "out");
  2322. return out;
  2323. }
  2324. void initialize_tensors(ggml_context * ctx) override {
  2325. std::random_device rd;
  2326. std::default_random_engine rng(rd());
  2327. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2328. if (t->type == GGML_TYPE_I32) {
  2329. // indices
  2330. std::vector<int> data(ggml_nelements(t));
  2331. for (int i = 0; i < ggml_nelements(t); i++) {
  2332. data[i] = rand();
  2333. }
  2334. std::shuffle(data.begin(), data.end(), rng);
  2335. ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
  2336. } else if (t->type == GGML_TYPE_F32) {
  2337. // initialize with unique values to avoid ties
  2338. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2339. std::vector<float> data(t->ne[0]);
  2340. for (int i = 0; i < t->ne[0]; i++) {
  2341. data[i] = i;
  2342. }
  2343. std::shuffle(data.begin(), data.end(), rng);
  2344. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  2345. }
  2346. } else {
  2347. GGML_ABORT("fatal error");
  2348. }
  2349. }
  2350. }
  2351. };
  2352. // GGML_OP_SUM
  2353. struct test_sum : public test_case {
  2354. const ggml_type type;
  2355. const std::array<int64_t, 4> ne;
  2356. std::string vars() override {
  2357. return VARS_TO_STR2(type, ne);
  2358. }
  2359. test_sum(ggml_type type = GGML_TYPE_F32,
  2360. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2361. : type(type), ne(ne) {}
  2362. ggml_tensor * build_graph(ggml_context * ctx) override {
  2363. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2364. ggml_set_param(ctx, a);
  2365. ggml_set_name(a, "a");
  2366. ggml_tensor * out = ggml_sum(ctx, a);
  2367. ggml_set_name(out, "out");
  2368. return out;
  2369. }
  2370. float grad_eps() override {
  2371. return 0.1f * sqrtf(ne[0]*ne[1]*ne[2]*ne[3]);
  2372. }
  2373. };
  2374. // GGML_OP_SUM_ROWS
  2375. struct test_sum_rows : public test_case {
  2376. const ggml_type type;
  2377. const std::array<int64_t, 4> ne;
  2378. std::string vars() override {
  2379. return VARS_TO_STR2(type, ne);
  2380. }
  2381. test_sum_rows(ggml_type type = GGML_TYPE_F32,
  2382. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2383. : type(type), ne(ne) {}
  2384. ggml_tensor * build_graph(ggml_context * ctx) override {
  2385. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2386. ggml_set_param(ctx, a);
  2387. ggml_set_name(a, "a");
  2388. ggml_tensor * out = ggml_sum_rows(ctx, a);
  2389. ggml_set_name(out, "out");
  2390. return out;
  2391. }
  2392. };
  2393. // GGML_OP_MEAN
  2394. struct test_mean : public test_case {
  2395. const ggml_type type;
  2396. const std::array<int64_t, 4> ne;
  2397. std::string vars() override {
  2398. return VARS_TO_STR2(type, ne);
  2399. }
  2400. test_mean(ggml_type type = GGML_TYPE_F32,
  2401. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2402. : type(type), ne(ne) {}
  2403. ggml_tensor * build_graph(ggml_context * ctx) override {
  2404. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2405. ggml_set_param(ctx, a);
  2406. ggml_set_name(a, "a");
  2407. ggml_tensor * out = ggml_mean(ctx, a);
  2408. ggml_set_name(out, "out");
  2409. return out;
  2410. }
  2411. float grad_eps() override {
  2412. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  2413. }
  2414. };
  2415. // GGML_OP_UPSCALE
  2416. struct test_upscale : public test_case {
  2417. const ggml_type type;
  2418. const std::array<int64_t, 4> ne;
  2419. const int32_t scale_factor;
  2420. const bool transpose;
  2421. std::string vars() override {
  2422. return VARS_TO_STR4(type, ne, scale_factor, transpose);
  2423. }
  2424. test_upscale(ggml_type type = GGML_TYPE_F32,
  2425. std::array<int64_t, 4> ne = {512, 512, 3, 1},
  2426. int32_t scale_factor = 2, bool transpose = false)
  2427. : type(type), ne(ne), scale_factor(scale_factor), transpose(transpose) {}
  2428. ggml_tensor * build_graph(ggml_context * ctx) override {
  2429. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2430. ggml_set_name(a, "a");
  2431. if (transpose) {
  2432. a = ggml_transpose(ctx, a);
  2433. ggml_set_name(a, "a_transposed");
  2434. }
  2435. ggml_tensor * out = ggml_upscale(ctx, a, scale_factor);
  2436. ggml_set_name(out, "out");
  2437. return out;
  2438. }
  2439. };
  2440. // GGML_OP_UPSCALE (ext)
  2441. struct test_upscale_ext : public test_case {
  2442. const ggml_type type;
  2443. const std::array<int64_t, 4> ne;
  2444. const std::array<int64_t, 4> ne_tgt;
  2445. std::string vars() override {
  2446. return VARS_TO_STR3(type, ne, ne_tgt);
  2447. }
  2448. test_upscale_ext(ggml_type type = GGML_TYPE_F32,
  2449. std::array<int64_t, 4> ne = {2, 5, 7, 11},
  2450. std::array<int64_t, 4> ne_tgt = {5, 7, 11, 13})
  2451. : type(type), ne(ne), ne_tgt(ne_tgt) {}
  2452. ggml_tensor * build_graph(ggml_context * ctx) override {
  2453. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2454. ggml_set_name(a, "a");
  2455. ggml_tensor * out = ggml_upscale_ext(ctx, a, ne_tgt[0], ne_tgt[1],ne_tgt[2], ne_tgt[3]);
  2456. ggml_set_name(out, "out");
  2457. return out;
  2458. }
  2459. };
  2460. // GGML_OP_GROUP_NORM
  2461. struct test_group_norm : public test_case {
  2462. const ggml_type type;
  2463. const std::array<int64_t, 4> ne;
  2464. const int32_t num_groups;
  2465. const float eps;
  2466. std::string vars() override {
  2467. return VARS_TO_STR4(type, ne, num_groups, eps);
  2468. }
  2469. test_group_norm(ggml_type type = GGML_TYPE_F32,
  2470. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  2471. int32_t num_groups = 32,
  2472. float eps = 1e-6f)
  2473. : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
  2474. ggml_tensor * build_graph(ggml_context * ctx) override {
  2475. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2476. ggml_set_name(a, "a");
  2477. ggml_tensor * out = ggml_group_norm(ctx, a, num_groups, eps);
  2478. ggml_set_name(out, "out");
  2479. return out;
  2480. }
  2481. };
  2482. // GGML_OP_L2_NORM
  2483. struct test_l2_norm : public test_case {
  2484. const ggml_type type;
  2485. const std::array<int64_t, 4> ne;
  2486. const float eps;
  2487. std::string vars() override {
  2488. return VARS_TO_STR2(type, ne);
  2489. }
  2490. test_l2_norm(ggml_type type = GGML_TYPE_F32,
  2491. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  2492. float eps = 1e-12f)
  2493. : type(type), ne(ne), eps(eps) {}
  2494. ggml_tensor * build_graph(ggml_context * ctx) override {
  2495. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2496. ggml_set_name(a, "a");
  2497. ggml_tensor * out = ggml_l2_norm(ctx, a, eps);
  2498. ggml_set_name(out, "out");
  2499. return out;
  2500. }
  2501. };
  2502. // GGML_OP_ACC
  2503. struct test_acc : public test_case {
  2504. const ggml_type type;
  2505. const std::array<int64_t, 4> ne_a;
  2506. const std::array<int64_t, 4> ne_b;
  2507. std::string vars() override {
  2508. return VARS_TO_STR3(type, ne_a, ne_b);
  2509. }
  2510. test_acc(ggml_type type = GGML_TYPE_F32,
  2511. std::array<int64_t, 4> ne_a = {256, 17, 1, 1},
  2512. std::array<int64_t, 4> ne_b = {256, 16, 1, 1})
  2513. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  2514. ggml_tensor * build_graph(ggml_context * ctx) override {
  2515. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2516. ggml_set_param(ctx, a);
  2517. ggml_set_name(a, "a");
  2518. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  2519. ggml_set_param(ctx, b);
  2520. ggml_set_name(b, "b");
  2521. ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
  2522. ggml_set_name(out, "out");
  2523. return out;
  2524. }
  2525. };
  2526. // GGML_OP_PAD
  2527. struct test_pad : public test_case {
  2528. const ggml_type type;
  2529. const std::array<int64_t, 4> ne_a;
  2530. const int pad_0;
  2531. const int pad_1;
  2532. std::string vars() override {
  2533. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  2534. }
  2535. test_pad(ggml_type type = GGML_TYPE_F32,
  2536. std::array<int64_t, 4> ne_a = {512, 512, 1, 1},
  2537. int pad_0 = 1, int pad_1 = 1)
  2538. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  2539. ggml_tensor * build_graph(ggml_context * ctx) override {
  2540. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2541. ggml_set_name(a, "a");
  2542. ggml_tensor * out = ggml_pad(ctx, a, pad_0, pad_1, 0, 0);
  2543. ggml_set_name(out, "out");
  2544. return out;
  2545. }
  2546. };
  2547. // GGML_OP_PAD_REFLECT_1D
  2548. struct test_pad_reflect_1d : public test_case {
  2549. const ggml_type type;
  2550. const std::array<int64_t, 4> ne_a;
  2551. const int pad_0;
  2552. const int pad_1;
  2553. std::string vars() override {
  2554. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  2555. }
  2556. test_pad_reflect_1d(ggml_type type = GGML_TYPE_F32,
  2557. std::array<int64_t, 4> ne_a = {512, 34, 2, 1},
  2558. int pad_0 = 10, int pad_1 = 9)
  2559. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  2560. ggml_tensor * build_graph(ggml_context * ctx) override {
  2561. ggml_tensor * a = ggml_new_tensor(ctx, type, 2, ne_a.data());
  2562. ggml_set_name(a, "a");
  2563. ggml_tensor * out = ggml_pad_reflect_1d(ctx, a, pad_0, pad_1);
  2564. ggml_set_name(out, "out");
  2565. return out;
  2566. }
  2567. };
  2568. // GGML_OP_ARANGE
  2569. struct test_arange : public test_case {
  2570. const ggml_type type;
  2571. const float start;
  2572. const float stop;
  2573. const float step;
  2574. std::string vars() override {
  2575. return VARS_TO_STR4(type, start, stop, step);
  2576. }
  2577. test_arange(ggml_type type = GGML_TYPE_F32,
  2578. float start = 0.f, float stop = 10.f, float step = 1.f)
  2579. : type(type), start(start), stop(stop), step(step) {}
  2580. ggml_tensor * build_graph(ggml_context * ctx) override {
  2581. ggml_tensor * out = ggml_arange(ctx, start, stop, step);
  2582. ggml_set_name(out, "out");
  2583. return out;
  2584. }
  2585. };
  2586. // GGML_OP_TIMESTEP_EMBEDDING
  2587. struct test_timestep_embedding : public test_case {
  2588. const ggml_type type;
  2589. const std::array<int64_t, 4> ne_a;
  2590. const int dim;
  2591. const int max_period;
  2592. std::string vars() override {
  2593. return VARS_TO_STR4(type, ne_a, dim, max_period);
  2594. }
  2595. test_timestep_embedding(ggml_type type = GGML_TYPE_F32,
  2596. std::array<int64_t, 4> ne_a = {2, 1, 1, 1},
  2597. int dim = 320, int max_period=10000)
  2598. : type(type), ne_a(ne_a), dim(dim), max_period(max_period) {}
  2599. ggml_tensor * build_graph(ggml_context * ctx) override {
  2600. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2601. ggml_set_name(a, "a");
  2602. ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period);
  2603. ggml_set_name(out, "out");
  2604. return out;
  2605. }
  2606. };
  2607. // GGML_OP_LEAKY_RELU
  2608. struct test_leaky_relu : public test_case {
  2609. const ggml_type type;
  2610. const std::array<int64_t, 4> ne_a;
  2611. const float negative_slope;
  2612. std::string vars() override {
  2613. return VARS_TO_STR3(type, ne_a, negative_slope);
  2614. }
  2615. test_leaky_relu(ggml_type type = GGML_TYPE_F32,
  2616. std::array<int64_t, 4> ne_a = {10, 5, 4, 3},
  2617. float negative_slope = 0.1f)
  2618. : type(type), ne_a(ne_a), negative_slope(negative_slope) {}
  2619. ggml_tensor * build_graph(ggml_context * ctx) override {
  2620. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2621. ggml_set_name(a, "a");
  2622. ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true);
  2623. ggml_set_name(out, "out");
  2624. return out;
  2625. }
  2626. };
  2627. // GGML_OP_FLASH_ATTN_EXT
  2628. struct test_flash_attn_ext : public test_case {
  2629. const int64_t hs; // head size
  2630. const int64_t nh; // num heads
  2631. const int64_t nr; // repeat in Q, tests for grouped-query attention
  2632. const int64_t kv; // kv size
  2633. const int64_t nb; // batch size
  2634. const bool mask; // use mask
  2635. const float max_bias; // ALiBi
  2636. const float logit_softcap; // Gemma 2
  2637. const ggml_prec prec;
  2638. const ggml_type type_KV;
  2639. std::array<int32_t, 4> permute;
  2640. std::string vars() override {
  2641. return VARS_TO_STR11(hs, nh, nr, kv, nb, mask, max_bias, logit_softcap, prec, type_KV, permute);
  2642. }
  2643. double max_nmse_err() override {
  2644. return 5e-4;
  2645. }
  2646. uint64_t op_flops(ggml_tensor * t) override {
  2647. GGML_UNUSED(t);
  2648. // Just counting matmul costs:
  2649. // Q*K^T is nb x hs x kv, P*V is nb x kv x hs, per head
  2650. return 2 * 2 * nh*nr * nb * hs * kv;
  2651. }
  2652. test_flash_attn_ext(int64_t hs = 128, int64_t nh = 32, int64_t nr = 1, int64_t kv = 96, int64_t nb = 8,
  2653. bool mask = true, float max_bias = 0.0f, float logit_softcap = 0.0f, ggml_prec prec = GGML_PREC_F32,
  2654. ggml_type type_KV = GGML_TYPE_F16, std::array<int32_t, 4> permute = {0, 1, 2, 3})
  2655. : hs(hs), nh(nh), nr(nr), kv(kv), nb(nb), mask(mask), max_bias(max_bias), logit_softcap(logit_softcap), prec(prec), type_KV(type_KV), permute(permute) {}
  2656. ggml_tensor * build_graph(ggml_context * ctx) override {
  2657. const int64_t hs_padded = GGML_PAD(hs, ggml_blck_size(type_KV));
  2658. auto const &create_permuted = [&](ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) -> ggml_tensor * {
  2659. int64_t ne[4] = {ne0, ne1, ne2, ne3};
  2660. int64_t ne_perm[4];
  2661. for (int i = 0; i < 4; ++i) {
  2662. ne_perm[permute[i]] = ne[i];
  2663. }
  2664. ggml_tensor * t = ggml_new_tensor_4d(ctx, type, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3]);
  2665. if (permute != std::array<int32_t, 4>{0, 1, 2, 3}) {
  2666. t = ggml_permute(ctx, t, permute[0], permute[1], permute[2], permute[3]);
  2667. }
  2668. return t;
  2669. };
  2670. ggml_tensor * q = create_permuted(GGML_TYPE_F32, hs_padded, nb, nh*nr, 1);
  2671. ggml_set_name(q, "q");
  2672. ggml_tensor * k = create_permuted(type_KV, hs_padded, kv, nh, 1);
  2673. ggml_set_name(k, "k");
  2674. ggml_tensor * v = create_permuted(type_KV, hs_padded, kv, nh, 1);
  2675. ggml_set_name(v, "v");
  2676. ggml_tensor * m = nullptr;
  2677. if (mask) {
  2678. m = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, 1);
  2679. ggml_set_name(m, "m");
  2680. }
  2681. ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hs), max_bias, logit_softcap);
  2682. ggml_flash_attn_ext_set_prec(out, prec);
  2683. ggml_set_name(out, "out");
  2684. return out;
  2685. }
  2686. bool grad_precise() override {
  2687. return true;
  2688. }
  2689. };
  2690. // GGML_OP_CROSS_ENTROPY_LOSS
  2691. struct test_cross_entropy_loss : public test_case {
  2692. const ggml_type type;
  2693. const std::array<int64_t, 4> ne;
  2694. std::string vars() override {
  2695. return VARS_TO_STR2(type, ne);
  2696. }
  2697. test_cross_entropy_loss(ggml_type type = GGML_TYPE_F32,
  2698. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2699. : type(type), ne(ne) {}
  2700. ggml_tensor * build_graph(ggml_context * ctx) override {
  2701. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  2702. ggml_set_param(ctx, logits);
  2703. ggml_set_name(logits, "logits");
  2704. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  2705. // The labels are assumed to be constant -> no gradients.
  2706. ggml_set_name(labels, "labels");
  2707. // Ensure labels add up to 1:
  2708. labels = ggml_soft_max(ctx, labels);
  2709. ggml_set_name(labels, "labels_normalized");
  2710. ggml_tensor * out = ggml_cross_entropy_loss(ctx, logits, labels);
  2711. ggml_set_name(out, "out");
  2712. return out;
  2713. }
  2714. void initialize_tensors(ggml_context * ctx) override {
  2715. // For larger abs. diffs between logits softmax is more linear, therefore more precise num. gradients.
  2716. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2717. init_tensor_uniform(t, -100.0f, 100.0f);
  2718. }
  2719. }
  2720. float grad_eps() override {
  2721. return 1.0f;
  2722. }
  2723. bool grad_precise() override {
  2724. return true;
  2725. }
  2726. };
  2727. // GGML_OP_CROSS_ENTROPY_LOSS_BACK
  2728. struct test_cross_entropy_loss_back : public test_case {
  2729. const ggml_type type;
  2730. const std::array<int64_t, 4> ne;
  2731. std::string vars() override {
  2732. return VARS_TO_STR2(type, ne);
  2733. }
  2734. test_cross_entropy_loss_back(ggml_type type = GGML_TYPE_F32,
  2735. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2736. : type(type), ne(ne) {}
  2737. ggml_tensor * build_graph(ggml_context * ctx) override {
  2738. ggml_tensor * grad = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2739. ggml_set_name(grad, "grad");
  2740. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  2741. ggml_set_name(logits, "logits");
  2742. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  2743. ggml_set_name(labels, "labels");
  2744. // Ensure labels add up to 1:
  2745. labels = ggml_soft_max(ctx, labels);
  2746. ggml_set_name(labels, "labels_normalized");
  2747. ggml_tensor * out = ggml_cross_entropy_loss_back(ctx, grad, logits, labels);
  2748. ggml_set_name(out, "out");
  2749. return out;
  2750. }
  2751. };
  2752. // GGML_OP_OPT_STEP_ADAMW
  2753. struct test_opt_step_adamw : public test_case {
  2754. const ggml_type type;
  2755. const std::array<int64_t, 4> ne;
  2756. std::string vars() override {
  2757. return VARS_TO_STR2(type, ne);
  2758. }
  2759. test_opt_step_adamw(ggml_type type = GGML_TYPE_F32,
  2760. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2761. : type(type), ne(ne) {}
  2762. ggml_tensor * build_graph(ggml_context * ctx) override {
  2763. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  2764. ggml_set_param(ctx, a); // Despite tensor a having gradients the output tensor will not.
  2765. ggml_set_name(a, "a");
  2766. ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  2767. ggml_set_name(grad, "grad");
  2768. ggml_tensor * grad_m = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  2769. ggml_set_name(grad_m, "grad_m");
  2770. ggml_tensor * grad_v = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  2771. ggml_set_name(grad_v, "grad_v");
  2772. ggml_tensor * adamw_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 7);
  2773. ggml_set_name(adamw_params, "adamw_params");
  2774. ggml_tensor * out = ggml_opt_step_adamw(ctx, a, grad, grad_m, grad_v, adamw_params);
  2775. ggml_set_name(out, "out");
  2776. return out;
  2777. }
  2778. void initialize_tensors(ggml_context * ctx) override {
  2779. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2780. init_tensor_uniform(t, 0.0f, 1.0f); // grad_v and adamw_params need non-negative values.
  2781. }
  2782. }
  2783. bool grad_precise() override {
  2784. return true;
  2785. }
  2786. };
  2787. enum llm_norm_type {
  2788. LLM_NORM,
  2789. LLM_NORM_RMS,
  2790. };
  2791. struct llama_hparams {
  2792. uint32_t n_vocab;
  2793. uint32_t n_embd;
  2794. uint32_t n_head;
  2795. uint32_t n_head_kv;
  2796. static constexpr uint32_t n_layer = 1;
  2797. uint32_t n_rot;
  2798. uint32_t n_embd_head; // dimension of values (d_v)
  2799. uint32_t n_ff;
  2800. float f_norm_eps;
  2801. float f_norm_rms_eps;
  2802. // cparams
  2803. static constexpr uint32_t n_ctx = 512; // user-specified context size
  2804. static constexpr uint32_t n_ctx_orig = n_ctx;
  2805. // batch
  2806. int32_t n_tokens;
  2807. // llm_build_context
  2808. static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx
  2809. static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache
  2810. uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
  2811. return n_embd_head * n_head_kv;
  2812. }
  2813. };
  2814. // LLM base class
  2815. struct test_llm : public test_case {
  2816. llama_hparams hp;
  2817. protected:
  2818. test_llm(llama_hparams hp)
  2819. : hp(std::move(hp)) {
  2820. }
  2821. public:
  2822. struct ggml_tensor * llm_build_norm(
  2823. struct ggml_context * ctx,
  2824. struct ggml_tensor * cur,
  2825. struct ggml_tensor * mw,
  2826. struct ggml_tensor * mb,
  2827. llm_norm_type type) {
  2828. switch (type) {
  2829. case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break;
  2830. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break;
  2831. }
  2832. cur = ggml_mul(ctx, cur, mw);
  2833. if (mb) {
  2834. cur = ggml_add(ctx, cur, mb);
  2835. }
  2836. return cur;
  2837. }
  2838. void llm_build_kv_store(
  2839. struct ggml_context * ctx,
  2840. struct ggml_tensor * k_l,
  2841. struct ggml_tensor * v_l,
  2842. struct ggml_tensor * k_cur,
  2843. struct ggml_tensor * v_cur) {
  2844. // compute the transposed [n_tokens, n_embd] V matrix
  2845. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens));
  2846. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(),
  2847. (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head);
  2848. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(),
  2849. ( hp.n_ctx)*ggml_element_size(v_l),
  2850. (hp.kv_head)*ggml_element_size(v_l));
  2851. // important: storing RoPE-ed version of K in the KV cache!
  2852. ggml_cpy(ctx, k_cur, k_cache_view);
  2853. ggml_cpy(ctx, v_cur_t, v_cache_view);
  2854. }
  2855. struct ggml_tensor * llm_build_kqv(
  2856. struct ggml_context * ctx,
  2857. struct ggml_tensor * k_l,
  2858. struct ggml_tensor * v_l,
  2859. struct ggml_tensor * q_cur,
  2860. struct ggml_tensor * kq_mask,
  2861. float kq_scale) {
  2862. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  2863. struct ggml_tensor * k =
  2864. ggml_view_3d(ctx, k_l,
  2865. hp.n_embd_head, hp.n_kv, hp.n_head_kv,
  2866. ggml_row_size(k_l->type, hp.n_embd_gqa()),
  2867. ggml_row_size(k_l->type, hp.n_embd_head),
  2868. 0);
  2869. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  2870. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, 0.0f);
  2871. // split cached v into n_head heads
  2872. struct ggml_tensor * v =
  2873. ggml_view_3d(ctx, v_l,
  2874. hp.n_kv, hp.n_embd_head, hp.n_head_kv,
  2875. ggml_element_size(v_l)*hp.n_ctx,
  2876. ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head,
  2877. 0);
  2878. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  2879. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  2880. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens);
  2881. struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  2882. cur = ggml_mul_mat(ctx, wo, cur);
  2883. return cur;
  2884. }
  2885. void initialize_tensors(ggml_context * ctx) override {
  2886. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2887. if (t->type == GGML_TYPE_I32) {
  2888. // pos
  2889. std::vector<int> data(hp.n_tokens);
  2890. for (int i = 0; i < hp.n_tokens; i++) {
  2891. data[i] = rand() % hp.n_ctx;
  2892. }
  2893. ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int));
  2894. } else {
  2895. init_tensor_uniform(t);
  2896. }
  2897. }
  2898. }
  2899. };
  2900. // Llama
  2901. struct test_llama : public test_llm {
  2902. static constexpr float freq_base = 10000.0f;
  2903. static constexpr float freq_scale = 1.0f;
  2904. static constexpr float ext_factor = 0.0f;
  2905. static constexpr float attn_factor = 1.0f;
  2906. static constexpr float beta_fast = 32.0f;
  2907. static constexpr float beta_slow = 1.0f;
  2908. std::string op_desc(ggml_tensor * t) override {
  2909. GGML_UNUSED(t);
  2910. return "LLAMA";
  2911. }
  2912. std::string vars() override {
  2913. auto n_tokens = hp.n_tokens;
  2914. return VARS_TO_STR1(n_tokens);
  2915. }
  2916. double max_nmse_err() override {
  2917. return 2e-3;
  2918. }
  2919. test_llama(int n_tokens = 1)
  2920. : test_llm({
  2921. /*n_vocab =*/ 32000,
  2922. /*n_embd =*/ 3200,
  2923. /*n_head =*/ 32,
  2924. /*n_head_kv =*/ 32,
  2925. /*n_rot =*/ 100,
  2926. /*n_embd_head =*/ 100,
  2927. /*n_ff =*/ 8640,
  2928. /*f_norm_eps =*/ 0.f,
  2929. /*f_norm_rms_eps =*/ 1e-5f,
  2930. /*n_tokens =*/ n_tokens,
  2931. }) {
  2932. }
  2933. ggml_tensor * build_graph(ggml_context * ctx) override {
  2934. struct ggml_tensor * cur;
  2935. struct ggml_tensor * inpL;
  2936. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  2937. // inp_pos - contains the positions
  2938. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  2939. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  2940. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  2941. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  2942. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  2943. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  2944. struct ggml_tensor * inpSA = inpL;
  2945. // norm
  2946. ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  2947. cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);
  2948. // self-attention
  2949. {
  2950. ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  2951. ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  2952. ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  2953. // compute Q and K and RoPE them
  2954. struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur);
  2955. struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur);
  2956. struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur);
  2957. Qcur = ggml_rope_ext(
  2958. ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos, nullptr,
  2959. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  2960. ext_factor, attn_factor, beta_fast, beta_slow
  2961. );
  2962. Kcur = ggml_rope_ext(
  2963. ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, nullptr,
  2964. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  2965. ext_factor, attn_factor, beta_fast, beta_slow
  2966. );
  2967. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  2968. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  2969. }
  2970. struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA);
  2971. // feed-forward network
  2972. ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  2973. cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);
  2974. ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  2975. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  2976. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  2977. struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
  2978. cur = ggml_mul_mat(ctx, ffn_gate, cur);
  2979. cur = ggml_silu(ctx, cur);
  2980. cur = ggml_mul(ctx, cur, tmp);
  2981. cur = ggml_mul_mat(ctx, ffn_down, cur);
  2982. cur = ggml_add(ctx, cur, ffn_inp);
  2983. // input for next layer
  2984. inpL = cur;
  2985. }
  2986. cur = inpL;
  2987. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  2988. cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);
  2989. // lm_head
  2990. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab);
  2991. cur = ggml_mul_mat(ctx, output, cur);
  2992. return cur;
  2993. }
  2994. };
  2995. // Falcon
  2996. struct test_falcon : public test_llm {
  2997. static constexpr float freq_base = 10000.0f;
  2998. static constexpr float freq_scale = 1.0f;
  2999. static constexpr float ext_factor = 0.0f;
  3000. static constexpr float attn_factor = 1.0f;
  3001. static constexpr float beta_fast = 32.0f;
  3002. static constexpr float beta_slow = 1.0f;
  3003. std::string op_desc(ggml_tensor * t) override {
  3004. GGML_UNUSED(t);
  3005. return "FALCON";
  3006. }
  3007. std::string vars() override {
  3008. auto n_tokens = hp.n_tokens;
  3009. return VARS_TO_STR1(n_tokens);
  3010. }
  3011. double max_nmse_err() override {
  3012. return 2e-3;
  3013. }
  3014. test_falcon(int n_tokens = 1)
  3015. : test_llm({
  3016. /*n_vocab =*/ 32000,
  3017. /*n_embd =*/ 3200,
  3018. /*n_head =*/ 50,
  3019. /*n_head_kv =*/ 1,
  3020. /*n_rot =*/ 64,
  3021. /*n_embd_head =*/ 64,
  3022. /*n_ff =*/ 8640,
  3023. /*f_norm_eps =*/ 1e-5f,
  3024. /*f_norm_rms_eps =*/ 0.f,
  3025. /*n_tokens =*/ n_tokens,
  3026. }) {
  3027. }
  3028. ggml_tensor * build_graph(ggml_context * ctx) override {
  3029. struct ggml_tensor * cur;
  3030. struct ggml_tensor * inpL;
  3031. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  3032. // inp_pos - contains the positions
  3033. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  3034. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  3035. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  3036. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  3037. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  3038. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  3039. // norm
  3040. ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3041. ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3042. ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);
  3043. // self-attention
  3044. {
  3045. cur = attn_norm;
  3046. ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa());
  3047. cur = ggml_mul_mat(ctx, wqkv, cur);
  3048. struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd)));
  3049. struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd)));
  3050. struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa())));
  3051. Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens);
  3052. Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens);
  3053. // using mode = 2 for neox mode
  3054. Qcur = ggml_rope_ext(
  3055. ctx, Qcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  3056. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  3057. );
  3058. Kcur = ggml_rope_ext(
  3059. ctx, Kcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  3060. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  3061. );
  3062. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  3063. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  3064. }
  3065. struct ggml_tensor * ffn_inp = cur;
  3066. // feed forward
  3067. {
  3068. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  3069. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  3070. cur = attn_norm;
  3071. cur = ggml_mul_mat(ctx, ffn_up, cur);
  3072. cur = ggml_gelu(ctx, cur);
  3073. cur = ggml_mul_mat(ctx, ffn_down, cur);
  3074. }
  3075. cur = ggml_add(ctx, cur, ffn_inp);
  3076. cur = ggml_add(ctx, cur, inpL);
  3077. // input for next layer
  3078. inpL = cur;
  3079. }
  3080. cur = inpL;
  3081. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3082. ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3083. cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);
  3084. // lm_head
  3085. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab);
  3086. cur = ggml_mul_mat(ctx, output, cur);
  3087. return cur;
  3088. }
  3089. };
  3090. // ###########################################
  3091. // ## Section 3: GGML Op Test Instantiation ##
  3092. // ###########################################
  3093. static const ggml_type all_types[] = {
  3094. GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16,
  3095. GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
  3096. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  3097. GGML_TYPE_Q8_0,
  3098. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  3099. GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
  3100. GGML_TYPE_Q6_K,
  3101. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  3102. GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  3103. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  3104. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  3105. };
  3106. static const ggml_type base_types[] = {
  3107. GGML_TYPE_F32, GGML_TYPE_F16,
  3108. GGML_TYPE_Q8_0, // for I8MM tests
  3109. GGML_TYPE_Q4_0,
  3110. GGML_TYPE_Q4_1, // for I8MM tests
  3111. GGML_TYPE_Q4_K,
  3112. GGML_TYPE_IQ2_XXS
  3113. };
  3114. static const ggml_type other_types[] = {
  3115. GGML_TYPE_Q4_1,
  3116. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  3117. GGML_TYPE_Q8_0,
  3118. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  3119. GGML_TYPE_Q5_K,
  3120. GGML_TYPE_Q6_K,
  3121. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  3122. GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  3123. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  3124. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  3125. GGML_TYPE_BF16,
  3126. };
  3127. // Test cases for evaluation: should try to cover edge cases while using small input sizes to keep the runtime low
  3128. static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
  3129. std::vector<std::unique_ptr<test_case>> test_cases;
  3130. std::default_random_engine rng(0);
  3131. // unary ops
  3132. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3133. for (int v : {0, 1}) {
  3134. for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
  3135. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 128, 2, 2, 2 }, v));
  3136. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 5, 7, 11, 13 }, v));
  3137. }
  3138. }
  3139. }
  3140. test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, false));
  3141. for (ggml_type type : all_types) {
  3142. for (int b : {1, 7}) {
  3143. for (bool v : {false, true}) {
  3144. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, v));
  3145. }
  3146. }
  3147. }
  3148. for (int b : {1, 7}) {
  3149. for (bool v : {false, true}) {
  3150. test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, v));
  3151. }
  3152. }
  3153. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_F32, 1, 8, 2, 1, false));
  3154. for (ggml_type type : all_types) {
  3155. for (bool v : {false, true}) {
  3156. test_cases.emplace_back(new test_get_rows_back(type, 256, 5, 4, 1, v));
  3157. }
  3158. }
  3159. for (bool v : {false, true}) {
  3160. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_I32, 256, 5, 4, 1, v));
  3161. }
  3162. for (ggml_type type_input : {GGML_TYPE_F32}) {
  3163. for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
  3164. for (int k0 : {1, 3}) {
  3165. for (int k1 : {1, 3}) {
  3166. for (int s0 : {1, 2}) {
  3167. for (int s1 : {1, 2}) {
  3168. for (int p0 : {0, 1}) {
  3169. for (int p1 : {0, 1}) {
  3170. test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1));
  3171. }
  3172. }
  3173. }
  3174. }
  3175. }
  3176. }
  3177. }
  3178. }
  3179. // im2col 1D
  3180. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  3181. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  3182. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  3183. for (int s0 : {1, 3}) {
  3184. for (int p0 : {0, 3}) {
  3185. for (int d0 : {1, 3}) {
  3186. test_cases.emplace_back(new test_im2col(
  3187. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 2, 2, 1}, {3, 2, 2, 1},
  3188. s0, 0, p0, 0, d0, 0, false));
  3189. }
  3190. }
  3191. }
  3192. // im2col 2D
  3193. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
  3194. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  3195. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  3196. for (int s0 : {1, 3}) {
  3197. for (int s1 : {1, 3}) {
  3198. for (int p0 : {0, 3}) {
  3199. for (int p1 : {0, 3}) {
  3200. for (int d0 : {1, 3}) {
  3201. for (int d1 : {1, 3}) {
  3202. test_cases.emplace_back(new test_im2col(
  3203. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 2, 2}, {3, 3, 2, 2},
  3204. s0, s1, p0, p1, d0, d1, true));
  3205. }
  3206. }
  3207. }
  3208. }
  3209. }
  3210. }
  3211. // extra tests for im2col 2D
  3212. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 32}, {3, 3, 1, 32}, 1, 1, 1, 1, 1, 1, true));
  3213. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 32}, {3, 3, 2, 32}, 1, 1, 1, 1, 1, 1, true));
  3214. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 1024}, {3, 3, 1, 1024}, 1, 1, 1, 1, 1, 1, true));
  3215. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 1024}, {3, 3, 2, 1024}, 1, 1, 1, 1, 1, 1, true));
  3216. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2048}, {3, 3, 1, 2048}, 1, 1, 1, 1, 1, 1, true));
  3217. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2048}, {3, 3, 2, 2048}, 1, 1, 1, 1, 1, 1, true));
  3218. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2560}, {3, 3, 1, 2560}, 1, 1, 1, 1, 1, 1, true));
  3219. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2560}, {3, 3, 2, 2560}, 1, 1, 1, 1, 1, 1, true));
  3220. // sycl backend will limit task global_range < MAX_INT
  3221. // test cases for 2D im2col with large input W and H (occurs in stable-diffusion)
  3222. // however these cases need to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  3223. // these cases are verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  3224. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  3225. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  3226. test_cases.emplace_back(new test_conv_transpose_1d());
  3227. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1));
  3228. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 2, 0, 1));
  3229. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 1, 0, 1));
  3230. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 2, 0, 1));
  3231. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 1, 0, 1));
  3232. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1));
  3233. test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1));
  3234. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 500, 1, 1}));
  3235. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 5000, 1, 1}));
  3236. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 1, 1, 1}));
  3237. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {100, 10, 1, 1}));
  3238. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  3239. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 12, 1, 1}));
  3240. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {2000, 10, 1, 1}));
  3241. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {5438, 3, 1, 1}));
  3242. for (int ne3 : {1, 3}) { // CUDA backward pass only supports ne3 == 1
  3243. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 1}));
  3244. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  3245. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 2, 1, 1}));
  3246. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 2, 1}));
  3247. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  3248. test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  3249. test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  3250. }
  3251. for (bool view : {false, true}) {
  3252. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 1}, view));
  3253. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {2, 1, 1, 1}, view));
  3254. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 2, 1, 1}, view));
  3255. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 2, 1}, view));
  3256. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 2}, view));
  3257. }
  3258. test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
  3259. test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
  3260. test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
  3261. test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
  3262. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {0, 2, 1, 3}));
  3263. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {0, 2, 1, 3})); // dup by rows
  3264. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {1, 0, 2, 3}));
  3265. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {1, 0, 2, 3})); // dup dst not-contiguous
  3266. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
  3267. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
  3268. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  3269. test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim));
  3270. }
  3271. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  3272. test_cases.emplace_back(new test_set(GGML_TYPE_I32, GGML_TYPE_I32, {6, 5, 4, 3}, dim));
  3273. }
  3274. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3275. for (ggml_type type_dst : all_types) {
  3276. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  3277. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  3278. }
  3279. }
  3280. for (ggml_type type_dst : {GGML_TYPE_F32}) {
  3281. for (ggml_type type_src : all_types) {
  3282. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  3283. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  3284. }
  3285. }
  3286. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3287. for (ggml_type type_dst : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3288. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {1, 0, 2, 3})); // cpy not-contiguous
  3289. }
  3290. }
  3291. test_cases.emplace_back(new test_cont());
  3292. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 1 ,1}));
  3293. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 3 ,5}));
  3294. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 3, 5 ,7}));
  3295. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 1 ,1}));
  3296. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 3 ,5}));
  3297. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 3, 5 ,7}));
  3298. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 1 ,1}));
  3299. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 3 ,5}));
  3300. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 3, 5 ,7}));
  3301. auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
  3302. for (auto op : {ggml_add, ggml_sub, ggml_mul, ggml_div}) {
  3303. test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
  3304. }
  3305. };
  3306. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3307. add_test_bin_bcast(type, {1, 1, 8, 1}, {1, 1, 1, 1});
  3308. add_test_bin_bcast(type, {1, 1, 1, 1}, {32, 1, 1, 1});
  3309. add_test_bin_bcast(type, {1, 1, 320, 320}, {1, 1, 1, 1});
  3310. add_test_bin_bcast(type, {10, 5, 1, 1}, {1, 1, 1, 1});
  3311. add_test_bin_bcast(type, {10, 5, 4, 1}, {1, 1, 1, 1});
  3312. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 1});
  3313. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 1, 1, 1});
  3314. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 1, 1});
  3315. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 1});
  3316. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 2});
  3317. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 2});
  3318. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 2, 2});
  3319. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 2, 2, 2});
  3320. // stable diffusion
  3321. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 1, 1, 1});
  3322. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 16, 16, 1});
  3323. add_test_bin_bcast(type, {1280, 16, 16, 1}, {1, 1, 1, 1});
  3324. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 256, 1, 1});
  3325. add_test_bin_bcast(type, {1, 1, 1280, 1}, {16, 16, 1, 1});
  3326. add_test_bin_bcast(type, {16, 16, 1280, 1}, {1, 1, 1, 1});
  3327. add_test_bin_bcast(type, {1, 1, 1920, 1}, {16, 16, 1, 1});
  3328. add_test_bin_bcast(type, {1, 1, 2560, 1}, {16, 16, 1, 1});
  3329. add_test_bin_bcast(type, {1, 1, 1280, 1}, {32, 32, 1, 1});
  3330. add_test_bin_bcast(type, {1, 1, 1920, 1}, {32, 32, 1, 1});
  3331. add_test_bin_bcast(type, {1, 1, 640, 1}, {32, 32, 1, 1});
  3332. add_test_bin_bcast(type, {5120, 1, 1, 1}, {1, 256, 1, 1});
  3333. add_test_bin_bcast(type, {640, 1, 1, 1}, {1, 1, 1, 1});
  3334. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {1, 1, 1, 1});
  3335. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {2, 1, 1, 1});
  3336. }
  3337. test_cases.emplace_back(new test_add1());
  3338. test_cases.emplace_back(new test_scale());
  3339. test_cases.emplace_back(new test_silu_back());
  3340. for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f}) {
  3341. for (bool v : {false, true}) {
  3342. test_cases.emplace_back(new test_norm (GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  3343. test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  3344. }
  3345. test_cases.emplace_back(new test_rms_norm_back(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  3346. test_cases.emplace_back(new test_l2_norm (GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  3347. }
  3348. test_cases.emplace_back(new test_l2_norm(GGML_TYPE_F32, {64, 5, 4, 3}, 1e-12f));
  3349. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 1536, 1, 1}, {4, 1536, 1, 1}));
  3350. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {8, 1536, 1, 1}, {4, 1536, 1, 1}));
  3351. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 1536, 4, 1}, {4, 1536, 1, 1}));
  3352. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 16, 1024, 32, 4));
  3353. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 1, 1));
  3354. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 1));
  3355. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 4));
  3356. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 128, 4));
  3357. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 1, 1));
  3358. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 1));
  3359. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 4));
  3360. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 128, 4));
  3361. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 1, 1));
  3362. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 1));
  3363. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 4));
  3364. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 128, 4));
  3365. for (ggml_type type_a : all_types) {
  3366. for (int i = 1; i < 10; ++i) {
  3367. test_cases.emplace_back(new test_mul_mat(type_a, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
  3368. }
  3369. }
  3370. #if 1
  3371. for (ggml_type type_a : base_types) {
  3372. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  3373. // test cases without permutation
  3374. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
  3375. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {2, 1}));
  3376. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 2}));
  3377. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 1}, {1, 1}));
  3378. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 1}, {2, 1}));
  3379. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 2}, {1, 1}));
  3380. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 2}, {2, 1}));
  3381. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 2}, {1, 2}));
  3382. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 2}, {2, 2}));
  3383. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {1, 1}, {1, 1}));
  3384. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {1, 1}, {2, 1}));
  3385. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {1, 1}, {1, 2}));
  3386. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 1}, {1, 1}));
  3387. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 1}, {2, 1}));
  3388. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 2}, {1, 1}));
  3389. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 2}, {2, 1}));
  3390. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 2}, {1, 2}));
  3391. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 2}, {2, 2}));
  3392. // test cases with permutation
  3393. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  3394. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  3395. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  3396. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  3397. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  3398. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  3399. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  3400. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  3401. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  3402. }
  3403. }
  3404. for (ggml_type type_a : other_types) {
  3405. for (ggml_type type_b : {GGML_TYPE_F32}) {
  3406. if (ggml_blck_size(type_a) != 256) {
  3407. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1, 1}, {1, 1}));
  3408. }
  3409. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
  3410. }
  3411. }
  3412. #else
  3413. // m = a rows
  3414. // n = b rows
  3415. // k = cols
  3416. std::uniform_int_distribution<> dist_m(1, 128);
  3417. std::uniform_int_distribution<> dist_n(16, 128);
  3418. std::uniform_int_distribution<> dist_k(1, 16);
  3419. for (int i = 0; i < 1000; i++) {
  3420. for (ggml_type type_a : all_types) {
  3421. for (ggml_type type_b : {GGML_TYPE_F32}) {
  3422. int m = dist_m(rng);
  3423. int n = dist_n(rng);
  3424. int k = dist_k(rng) * ggml_blck_size(type_a);
  3425. test_cases.emplace_back(new test_mul_mat(type_a, type_b, m, n, k, { 1, 1}, {1, 1}));
  3426. }
  3427. }
  3428. }
  3429. #endif
  3430. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1}));
  3431. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1}));
  3432. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1}));
  3433. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 64, { 8, 1}, {4, 1}));
  3434. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1}));
  3435. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1}));
  3436. for (auto bs : {1,2,4,8}) {
  3437. for (auto nr : {1,4}) {
  3438. for (uint32_t m = 0; m < 2; ++m) {
  3439. for (uint32_t k = 0; k < 2; ++k) {
  3440. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056 + m, 1, 128 + k, {bs, 1}, {nr, 1}, {0, 2, 1, 3}));
  3441. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128 + m, 1, 1056 + k, {bs, 1}, {nr, 1}, {0, 1, 2, 3}, true));
  3442. }
  3443. }
  3444. }
  3445. }
  3446. // sycl backend will limit task global_range < MAX_INT
  3447. // test case for f16-type-convert-to-fp32 kernel with large k under fp32 compute dtype (occurs in stable-diffusion)
  3448. // however this case needs to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  3449. // this case is verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  3450. // test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 512, 262144, 9216, {1, 1}, {1, 1}));
  3451. for (ggml_type type_a : base_types) {
  3452. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  3453. for (int n_mats : {4, 8}) {
  3454. for (int n_used : {1, 2, 4}) {
  3455. for (bool b : {false, true}) {
  3456. for (int n : {1, 32, 129}) {
  3457. int m = 512;
  3458. int k = 256;
  3459. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  3460. }
  3461. }
  3462. }
  3463. }
  3464. }
  3465. }
  3466. for (ggml_type type_a : other_types) {
  3467. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  3468. for (int n_mats : {4}) {
  3469. for (int n_used : {2}) {
  3470. for (bool b : {false}) {
  3471. for (int n : {1, 32}) {
  3472. int m = 512;
  3473. int k = 256;
  3474. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  3475. }
  3476. }
  3477. }
  3478. }
  3479. }
  3480. }
  3481. for (ggml_type type_a : base_types) {
  3482. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  3483. for (int n : {1, 16}) {
  3484. for (int k : {1, 16}) {
  3485. for (int bs2 : {1, 3}) {
  3486. for (int bs3 : {1, 3}) {
  3487. for (int nr2 : {1, 2}) {
  3488. for (int nr3 : {1, 2}) {
  3489. test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, n, k, {bs2, bs3}, {nr2, nr3}));
  3490. }
  3491. }
  3492. }
  3493. }
  3494. }
  3495. }
  3496. }
  3497. }
  3498. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3499. test_cases.emplace_back(new test_sqr(type));
  3500. test_cases.emplace_back(new test_sqrt(type));
  3501. test_cases.emplace_back(new test_log(type));
  3502. test_cases.emplace_back(new test_sin(type));
  3503. test_cases.emplace_back(new test_cos(type));
  3504. test_cases.emplace_back(new test_clamp(type));
  3505. }
  3506. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
  3507. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 1}, 5));
  3508. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 2}, 5));
  3509. #if 0
  3510. std::uniform_int_distribution<> dist_ne1(1, 50);
  3511. int exponent = 1;
  3512. while (exponent < (1 << 17)) {
  3513. std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent);
  3514. for (int n = 0; n < 10; ++n) {
  3515. int64_t ne0 = dist_ne0(rng);
  3516. int64_t ne1 = dist_ne1(rng);
  3517. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
  3518. }
  3519. exponent <<= 1;
  3520. }
  3521. #endif
  3522. for (bool mask : {false, true}) {
  3523. for (float max_bias : {0.0f, 8.0f}) {
  3524. if (!mask && max_bias > 0.0f) continue;
  3525. for (float scale : {1.0f, 0.1f}) {
  3526. for (int64_t ne0 : {16, 1024}) {
  3527. for (int64_t ne1 : {16, 1024}) {
  3528. if (mask) {
  3529. for (ggml_type m_prec : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  3530. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, m_prec, scale, max_bias));
  3531. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, m_prec, scale, max_bias));
  3532. }
  3533. } else {
  3534. /* The precision of mask here doesn't matter as boolean mask is false */
  3535. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, GGML_TYPE_F32, scale, max_bias));
  3536. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, GGML_TYPE_F32, scale, max_bias));
  3537. }
  3538. }
  3539. }
  3540. }
  3541. }
  3542. }
  3543. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, GGML_TYPE_F32, 0.1f, 0.0f));
  3544. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, GGML_TYPE_F16, 0.1f, 0.0f));
  3545. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, GGML_TYPE_F32, 0.1f, 0.0f));
  3546. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F32, 0.1f, 0.0f));
  3547. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F16, 0.1f, 0.0f));
  3548. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F32, 0.1f, 8.0f));
  3549. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F16, 0.1f, 8.0f));
  3550. for (float max_bias : {0.0f, 8.0f}) {
  3551. for (float scale : {1.0f, 0.1f}) {
  3552. for (int64_t ne0 : {16, 1024}) {
  3553. for (int64_t ne1 : {16, 1024}) {
  3554. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 1, 1}, scale, max_bias));
  3555. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, scale, max_bias));
  3556. }
  3557. }
  3558. }
  3559. }
  3560. for (bool fw : {true, false}) { // fw == forward
  3561. bool all = true;
  3562. for (float v : { 0, 1 }) {
  3563. for (float fs : { 1.0f, 1.4245f }) {
  3564. for (float ef : { 0.0f, 0.7465f }) {
  3565. for (float af : { 1.0f, 1.4245f }) {
  3566. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  3567. for (bool ff : {false, true}) { // freq_factors
  3568. test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 7B
  3569. if (all) {
  3570. test_cases.emplace_back(new test_rope(type, {128, 40, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 13B
  3571. test_cases.emplace_back(new test_rope(type, {128, 52, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 30B
  3572. test_cases.emplace_back(new test_rope(type, {128, 64, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 65B
  3573. }
  3574. if (all) {
  3575. test_cases.emplace_back(new test_rope(type, { 64, 1, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  3576. test_cases.emplace_back(new test_rope(type, { 64, 71, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  3577. test_cases.emplace_back(new test_rope(type, { 64, 8, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  3578. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, 2, 512, fs, ef, af, ff, v, fw)); // neox (stablelm)
  3579. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, 2, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
  3580. }
  3581. if (all) {
  3582. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 2B)
  3583. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 7B)
  3584. test_cases.emplace_back(new test_rope(type, { 80, 16, 2, 1}, 80, GGML_ROPE_TYPE_VISION, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl ViT)
  3585. }
  3586. test_cases.emplace_back(new test_rope(type, { 64, 128, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  3587. }
  3588. }
  3589. all = false;
  3590. }
  3591. }
  3592. }
  3593. }
  3594. }
  3595. for (int v : { 0, 1, 2, 3 }) {
  3596. for (int dim : { 0, 1, 2, 3, }) {
  3597. test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim, v));
  3598. test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim, v));
  3599. }
  3600. }
  3601. for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
  3602. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
  3603. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
  3604. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); // qwen
  3605. }
  3606. test_cases.emplace_back(new test_sum());
  3607. test_cases.emplace_back(new test_sum_rows());
  3608. test_cases.emplace_back(new test_mean());
  3609. test_cases.emplace_back(new test_upscale());
  3610. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, { 512, 512, 3, 1 }, 2, true));
  3611. test_cases.emplace_back(new test_upscale_ext());
  3612. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {64, 64, 320, 1}));
  3613. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {9, 9, 1280, 1}));
  3614. test_cases.emplace_back(new test_acc());
  3615. test_cases.emplace_back(new test_pad());
  3616. test_cases.emplace_back(new test_pad_reflect_1d());
  3617. test_cases.emplace_back(new test_arange());
  3618. test_cases.emplace_back(new test_timestep_embedding());
  3619. test_cases.emplace_back(new test_leaky_relu());
  3620. for (int hs : { 64, 80, 128, 256, }) {
  3621. for (bool mask : { true, false } ) {
  3622. for (float max_bias : { 0.0f, 8.0f }) {
  3623. if (!mask && max_bias > 0.0f) continue;
  3624. for (float logit_softcap : {0.0f, 10.0f}) {
  3625. if (hs != 128 && logit_softcap != 0.0f) continue;
  3626. for (int nh : { 4, }) {
  3627. for (int nr : { 1, 4, 16 }) {
  3628. if (nr == 16 && hs != 128) continue;
  3629. for (int kv : { 512, 1024, }) {
  3630. if (nr != 1 && kv != 512) continue;
  3631. for (int nb : { 1, 3, 32, 35, }) {
  3632. for (ggml_prec prec : {GGML_PREC_F32, GGML_PREC_DEFAULT}) {
  3633. if (hs != 128 && prec == GGML_PREC_DEFAULT) continue;
  3634. for (ggml_type type_KV : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
  3635. test_cases.emplace_back(new test_flash_attn_ext(
  3636. hs, nh, nr, kv, nb, mask, max_bias, logit_softcap, prec, type_KV));
  3637. // run fewer test cases permuted
  3638. if (mask == true && max_bias == 0.0f && logit_softcap == 0 && kv == 512) {
  3639. test_cases.emplace_back(new test_flash_attn_ext(
  3640. hs, nh, nr, kv, nb, mask, max_bias, logit_softcap, prec, type_KV, {0, 2, 1, 3}));
  3641. }
  3642. }
  3643. }
  3644. }
  3645. }
  3646. }
  3647. }
  3648. }
  3649. }
  3650. }
  3651. }
  3652. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, { 10, 5, 4, 3}));
  3653. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, {30000, 1, 1, 1}));
  3654. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, { 10, 5, 4, 3}));
  3655. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, {30000, 1, 1, 1}));
  3656. test_cases.emplace_back(new test_opt_step_adamw(GGML_TYPE_F32, {10, 5, 4, 3}));
  3657. // these tests are disabled to save execution time, but they can be handy for debugging
  3658. #if 0
  3659. test_cases.emplace_back(new test_llama(1));
  3660. test_cases.emplace_back(new test_llama(2));
  3661. test_cases.emplace_back(new test_falcon(1));
  3662. test_cases.emplace_back(new test_falcon(2));
  3663. #endif
  3664. return test_cases;
  3665. }
  3666. // Test cases for performance evaluation: should be representative of real-world use cases
  3667. static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
  3668. std::vector<std::unique_ptr<test_case>> test_cases;
  3669. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 1, 1, 1}));
  3670. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 512, 1, 1}));
  3671. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F16, {512, 3072, 1, 1}));
  3672. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {8192, 512, 2, 1}, {0, 2, 1, 3}));
  3673. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {3072, 512, 2, 1}, {0, 2, 1, 3}));
  3674. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {4096, 4096, 5, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3675. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 4096, 5, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3676. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {1024, 1024, 10, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3677. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 1024, 10, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3678. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {256, 256, 20, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3679. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3680. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3681. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 10, 1, 1}));
  3682. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  3683. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32000, 512, 1, 1}));
  3684. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 16416, 1, 128, {8, 1}, {4, 1}, {0, 2, 1, 3}));
  3685. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 1, 16416, {8, 1}, {4, 1}, {0, 1, 2, 3}, true));
  3686. for (int bs : {1, 2, 3, 4, 5, 8, 512}) {
  3687. for (ggml_type type_a : all_types) {
  3688. for (ggml_type type_b : {GGML_TYPE_F32}) {
  3689. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 4096, bs, 14336, {1, 1}, {1, 1}));
  3690. }
  3691. }
  3692. }
  3693. for (int K : {3, 5}) {
  3694. for (int IC : {256, 2560}) {
  3695. for (int IW_IH : {32, 64, 256}) {
  3696. if (IC == 2560 && IW_IH == 256) {
  3697. // too big
  3698. continue;
  3699. }
  3700. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {IW_IH, IW_IH, IC, 1}, {K, K, IC, 1}, 1, 1, 1, 1, 1, 1, true));
  3701. }
  3702. }
  3703. }
  3704. return test_cases;
  3705. }
  3706. static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name, const char * params_filter) {
  3707. auto filter_test_cases = [](std::vector<std::unique_ptr<test_case>> & test_cases, const char * params_filter) {
  3708. if (params_filter == nullptr) {
  3709. return;
  3710. }
  3711. std::regex params_filter_regex(params_filter);
  3712. for (auto it = test_cases.begin(); it != test_cases.end();) {
  3713. if (!std::regex_search((*it)->vars(), params_filter_regex)) {
  3714. it = test_cases.erase(it);
  3715. continue;
  3716. }
  3717. it++;
  3718. }
  3719. };
  3720. if (mode == MODE_TEST) {
  3721. auto test_cases = make_test_cases_eval();
  3722. filter_test_cases(test_cases, params_filter);
  3723. ggml_backend_t backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, NULL);
  3724. if (backend_cpu == NULL) {
  3725. printf(" Failed to initialize CPU backend\n");
  3726. return false;
  3727. }
  3728. size_t n_ok = 0;
  3729. for (auto & test : test_cases) {
  3730. if (test->eval(backend, backend_cpu, op_name)) {
  3731. n_ok++;
  3732. }
  3733. }
  3734. printf(" %zu/%zu tests passed\n", n_ok, test_cases.size());
  3735. ggml_backend_free(backend_cpu);
  3736. return n_ok == test_cases.size();
  3737. }
  3738. if (mode == MODE_GRAD) {
  3739. auto test_cases = make_test_cases_eval();
  3740. filter_test_cases(test_cases, params_filter);
  3741. size_t n_ok = 0;
  3742. for (auto & test : test_cases) {
  3743. if (test->eval_grad(backend, op_name)) {
  3744. n_ok++;
  3745. }
  3746. }
  3747. printf(" %zu/%zu tests passed\n", n_ok, test_cases.size());
  3748. return n_ok == test_cases.size();
  3749. }
  3750. if (mode == MODE_PERF) {
  3751. auto test_cases = make_test_cases_perf();
  3752. filter_test_cases(test_cases, params_filter);
  3753. for (auto & test : test_cases) {
  3754. test->eval_perf(backend, op_name);
  3755. }
  3756. return true;
  3757. }
  3758. GGML_ABORT("fatal error");
  3759. }
  3760. static void usage(char ** argv) {
  3761. printf("Usage: %s [mode] [-o <op>] [-b <backend>] [-p <params regex>]\n", argv[0]);
  3762. printf(" valid modes:\n");
  3763. printf(" - test (default, compare with CPU backend for correctness)\n");
  3764. printf(" - grad (compare gradients from backpropagation with method of finite differences)\n");
  3765. printf(" - perf (performance evaluation)\n");
  3766. printf(" op names for -o are as given by ggml_op_desc() (e.g. ADD, MUL_MAT, etc)\n");
  3767. }
  3768. int main(int argc, char ** argv) {
  3769. test_mode mode = MODE_TEST;
  3770. const char * op_name_filter = nullptr;
  3771. const char * backend_filter = nullptr;
  3772. const char * params_filter = nullptr;
  3773. for (int i = 1; i < argc; i++) {
  3774. if (strcmp(argv[i], "test") == 0) {
  3775. mode = MODE_TEST;
  3776. } else if (strcmp(argv[i], "perf") == 0) {
  3777. mode = MODE_PERF;
  3778. } else if (strcmp(argv[i], "grad") == 0) {
  3779. mode = MODE_GRAD;
  3780. } else if (strcmp(argv[i], "-o") == 0) {
  3781. if (i + 1 < argc) {
  3782. op_name_filter = argv[++i];
  3783. } else {
  3784. usage(argv);
  3785. return 1;
  3786. }
  3787. } else if (strcmp(argv[i], "-b") == 0) {
  3788. if (i + 1 < argc) {
  3789. backend_filter = argv[++i];
  3790. } else {
  3791. usage(argv);
  3792. return 1;
  3793. }
  3794. } else if (strcmp(argv[i], "-p") == 0) {
  3795. if (i + 1 < argc) {
  3796. params_filter = argv[++i];
  3797. } else {
  3798. usage(argv);
  3799. return 1;
  3800. }
  3801. } else {
  3802. usage(argv);
  3803. return 1;
  3804. }
  3805. }
  3806. // load and enumerate backends
  3807. ggml_backend_load_all();
  3808. printf("Testing %zu devices\n\n", ggml_backend_dev_count());
  3809. size_t n_ok = 0;
  3810. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  3811. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  3812. printf("Backend %zu/%zu: %s\n", i + 1, ggml_backend_dev_count(), ggml_backend_dev_name(dev));
  3813. if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_dev_name(dev)) != 0) {
  3814. printf(" Skipping\n");
  3815. n_ok++;
  3816. continue;
  3817. }
  3818. if (backend_filter == NULL && ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU && mode != MODE_GRAD) {
  3819. printf(" Skipping CPU backend\n");
  3820. n_ok++;
  3821. continue;
  3822. }
  3823. ggml_backend_t backend = ggml_backend_dev_init(dev, NULL);
  3824. GGML_ASSERT(backend != NULL);
  3825. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  3826. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  3827. if (ggml_backend_set_n_threads_fn) {
  3828. // TODO: better value for n_threads
  3829. ggml_backend_set_n_threads_fn(backend, std::thread::hardware_concurrency());
  3830. }
  3831. printf(" Device description: %s\n", ggml_backend_dev_description(dev));
  3832. size_t free, total; // NOLINT
  3833. ggml_backend_dev_memory(dev, &free, &total);
  3834. printf(" Device memory: %zu MB (%zu MB free)\n", total / 1024 / 1024, free / 1024 / 1024);
  3835. printf("\n");
  3836. bool ok = test_backend(backend, mode, op_name_filter, params_filter);
  3837. printf(" Backend %s: ", ggml_backend_name(backend));
  3838. if (ok) {
  3839. printf("\033[1;32mOK\033[0m\n");
  3840. n_ok++;
  3841. } else {
  3842. printf("\033[1;31mFAIL\033[0m\n");
  3843. }
  3844. printf("\n");
  3845. ggml_backend_free(backend);
  3846. }
  3847. ggml_quantize_free();
  3848. printf("%zu/%zu backends passed\n", n_ok, ggml_backend_dev_count());
  3849. if (n_ok != ggml_backend_dev_count()) {
  3850. printf("\033[1;31mFAIL\033[0m\n");
  3851. return 1;
  3852. }
  3853. printf("\033[1;32mOK\033[0m\n");
  3854. return 0;
  3855. }