common.cpp 54 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280
  1. #include "common.h"
  2. #include "build-info.h"
  3. #include "llama.h"
  4. #include <algorithm>
  5. #include <cassert>
  6. #include <cmath>
  7. #include <cstring>
  8. #include <ctime>
  9. #include <fstream>
  10. #include <iterator>
  11. #include <iostream>
  12. #include <regex>
  13. #include <sstream>
  14. #include <string>
  15. #include <unordered_set>
  16. #include <vector>
  17. #include <cinttypes>
  18. #if defined(__APPLE__) && defined(__MACH__)
  19. #include <sys/types.h>
  20. #include <sys/sysctl.h>
  21. #endif
  22. #if defined(_WIN32)
  23. #define WIN32_LEAN_AND_MEAN
  24. #ifndef NOMINMAX
  25. # define NOMINMAX
  26. #endif
  27. #include <codecvt>
  28. #include <locale>
  29. #include <windows.h>
  30. #include <fcntl.h>
  31. #include <io.h>
  32. #else
  33. #include <sys/ioctl.h>
  34. #include <sys/stat.h>
  35. #include <unistd.h>
  36. #endif
  37. #if defined(_MSC_VER)
  38. #pragma warning(disable: 4244 4267) // possible loss of data
  39. #endif
  40. int32_t get_num_physical_cores() {
  41. #ifdef __linux__
  42. // enumerate the set of thread siblings, num entries is num cores
  43. std::unordered_set<std::string> siblings;
  44. for (uint32_t cpu=0; cpu < UINT32_MAX; ++cpu) {
  45. std::ifstream thread_siblings("/sys/devices/system/cpu"
  46. + std::to_string(cpu) + "/topology/thread_siblings");
  47. if (!thread_siblings.is_open()) {
  48. break; // no more cpus
  49. }
  50. std::string line;
  51. if (std::getline(thread_siblings, line)) {
  52. siblings.insert(line);
  53. }
  54. }
  55. if (!siblings.empty()) {
  56. return static_cast<int32_t>(siblings.size());
  57. }
  58. #elif defined(__APPLE__) && defined(__MACH__)
  59. int32_t num_physical_cores;
  60. size_t len = sizeof(num_physical_cores);
  61. int result = sysctlbyname("hw.perflevel0.physicalcpu", &num_physical_cores, &len, NULL, 0);
  62. if (result == 0) {
  63. return num_physical_cores;
  64. }
  65. result = sysctlbyname("hw.physicalcpu", &num_physical_cores, &len, NULL, 0);
  66. if (result == 0) {
  67. return num_physical_cores;
  68. }
  69. #elif defined(_WIN32)
  70. //TODO: Implement
  71. #endif
  72. unsigned int n_threads = std::thread::hardware_concurrency();
  73. return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
  74. }
  75. void process_escapes(std::string& input) {
  76. std::size_t input_len = input.length();
  77. std::size_t output_idx = 0;
  78. for (std::size_t input_idx = 0; input_idx < input_len; ++input_idx) {
  79. if (input[input_idx] == '\\' && input_idx + 1 < input_len) {
  80. switch (input[++input_idx]) {
  81. case 'n': input[output_idx++] = '\n'; break;
  82. case 'r': input[output_idx++] = '\r'; break;
  83. case 't': input[output_idx++] = '\t'; break;
  84. case '\'': input[output_idx++] = '\''; break;
  85. case '\"': input[output_idx++] = '\"'; break;
  86. case '\\': input[output_idx++] = '\\'; break;
  87. default: input[output_idx++] = '\\';
  88. input[output_idx++] = input[input_idx]; break;
  89. }
  90. } else {
  91. input[output_idx++] = input[input_idx];
  92. }
  93. }
  94. input.resize(output_idx);
  95. }
  96. bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
  97. bool invalid_param = false;
  98. std::string arg;
  99. gpt_params default_params;
  100. const std::string arg_prefix = "--";
  101. llama_sampling_params & sparams = params.sparams;
  102. for (int i = 1; i < argc; i++) {
  103. arg = argv[i];
  104. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  105. std::replace(arg.begin(), arg.end(), '_', '-');
  106. }
  107. if (arg == "-s" || arg == "--seed") {
  108. if (++i >= argc) {
  109. invalid_param = true;
  110. break;
  111. }
  112. params.seed = std::stoul(argv[i]);
  113. } else if (arg == "-t" || arg == "--threads") {
  114. if (++i >= argc) {
  115. invalid_param = true;
  116. break;
  117. }
  118. params.n_threads = std::stoi(argv[i]);
  119. if (params.n_threads <= 0) {
  120. params.n_threads = std::thread::hardware_concurrency();
  121. }
  122. } else if (arg == "-tb" || arg == "--threads-batch") {
  123. if (++i >= argc) {
  124. invalid_param = true;
  125. break;
  126. }
  127. params.n_threads_batch = std::stoi(argv[i]);
  128. if (params.n_threads_batch <= 0) {
  129. params.n_threads_batch = std::thread::hardware_concurrency();
  130. }
  131. } else if (arg == "-p" || arg == "--prompt") {
  132. if (++i >= argc) {
  133. invalid_param = true;
  134. break;
  135. }
  136. params.prompt = argv[i];
  137. } else if (arg == "-e" || arg == "--escape") {
  138. params.escape = true;
  139. } else if (arg == "--prompt-cache") {
  140. if (++i >= argc) {
  141. invalid_param = true;
  142. break;
  143. }
  144. params.path_prompt_cache = argv[i];
  145. } else if (arg == "--prompt-cache-all") {
  146. params.prompt_cache_all = true;
  147. } else if (arg == "--prompt-cache-ro") {
  148. params.prompt_cache_ro = true;
  149. } else if (arg == "-f" || arg == "--file") {
  150. if (++i >= argc) {
  151. invalid_param = true;
  152. break;
  153. }
  154. std::ifstream file(argv[i]);
  155. if (!file) {
  156. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  157. invalid_param = true;
  158. break;
  159. }
  160. // store the external file name in params
  161. params.prompt_file = argv[i];
  162. std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
  163. if (!params.prompt.empty() && params.prompt.back() == '\n') {
  164. params.prompt.pop_back();
  165. }
  166. } else if (arg == "-n" || arg == "--n-predict") {
  167. if (++i >= argc) {
  168. invalid_param = true;
  169. break;
  170. }
  171. params.n_predict = std::stoi(argv[i]);
  172. } else if (arg == "--top-k") {
  173. if (++i >= argc) {
  174. invalid_param = true;
  175. break;
  176. }
  177. sparams.top_k = std::stoi(argv[i]);
  178. } else if (arg == "-c" || arg == "--ctx-size") {
  179. if (++i >= argc) {
  180. invalid_param = true;
  181. break;
  182. }
  183. params.n_ctx = std::stoi(argv[i]);
  184. } else if (arg == "--rope-freq-base") {
  185. if (++i >= argc) {
  186. invalid_param = true;
  187. break;
  188. }
  189. params.rope_freq_base = std::stof(argv[i]);
  190. } else if (arg == "--rope-freq-scale") {
  191. if (++i >= argc) {
  192. invalid_param = true;
  193. break;
  194. }
  195. params.rope_freq_scale = std::stof(argv[i]);
  196. } else if (arg == "--rope-scale") {
  197. if (++i >= argc) {
  198. invalid_param = true;
  199. break;
  200. }
  201. params.rope_freq_scale = 1.0f/std::stof(argv[i]);
  202. } else if (arg == "--memory-f32") {
  203. params.memory_f16 = false;
  204. } else if (arg == "--top-p") {
  205. if (++i >= argc) {
  206. invalid_param = true;
  207. break;
  208. }
  209. sparams.top_p = std::stof(argv[i]);
  210. } else if (arg == "--temp") {
  211. if (++i >= argc) {
  212. invalid_param = true;
  213. break;
  214. }
  215. sparams.temp = std::stof(argv[i]);
  216. sparams.temp = std::max(sparams.temp, 0.0f);
  217. } else if (arg == "--tfs") {
  218. if (++i >= argc) {
  219. invalid_param = true;
  220. break;
  221. }
  222. sparams.tfs_z = std::stof(argv[i]);
  223. } else if (arg == "--typical") {
  224. if (++i >= argc) {
  225. invalid_param = true;
  226. break;
  227. }
  228. sparams.typical_p = std::stof(argv[i]);
  229. } else if (arg == "--repeat-last-n") {
  230. if (++i >= argc) {
  231. invalid_param = true;
  232. break;
  233. }
  234. sparams.penalty_last_n = std::stoi(argv[i]);
  235. sparams.n_prev = std::max(sparams.n_prev, sparams.penalty_last_n);
  236. } else if (arg == "--repeat-penalty") {
  237. if (++i >= argc) {
  238. invalid_param = true;
  239. break;
  240. }
  241. sparams.penalty_repeat = std::stof(argv[i]);
  242. } else if (arg == "--frequency-penalty") {
  243. if (++i >= argc) {
  244. invalid_param = true;
  245. break;
  246. }
  247. sparams.penalty_freq = std::stof(argv[i]);
  248. } else if (arg == "--presence-penalty") {
  249. if (++i >= argc) {
  250. invalid_param = true;
  251. break;
  252. }
  253. sparams.penalty_present = std::stof(argv[i]);
  254. } else if (arg == "--mirostat") {
  255. if (++i >= argc) {
  256. invalid_param = true;
  257. break;
  258. }
  259. sparams.mirostat = std::stoi(argv[i]);
  260. } else if (arg == "--mirostat-lr") {
  261. if (++i >= argc) {
  262. invalid_param = true;
  263. break;
  264. }
  265. sparams.mirostat_eta = std::stof(argv[i]);
  266. } else if (arg == "--mirostat-ent") {
  267. if (++i >= argc) {
  268. invalid_param = true;
  269. break;
  270. }
  271. sparams.mirostat_tau = std::stof(argv[i]);
  272. } else if (arg == "--cfg-negative-prompt") {
  273. if (++i >= argc) {
  274. invalid_param = true;
  275. break;
  276. }
  277. sparams.cfg_negative_prompt = argv[i];
  278. } else if (arg == "--cfg-negative-prompt-file") {
  279. if (++i >= argc) {
  280. invalid_param = true;
  281. break;
  282. }
  283. std::ifstream file(argv[i]);
  284. if (!file) {
  285. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  286. invalid_param = true;
  287. break;
  288. }
  289. std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(sparams.cfg_negative_prompt));
  290. if (!sparams.cfg_negative_prompt.empty() && sparams.cfg_negative_prompt.back() == '\n') {
  291. sparams.cfg_negative_prompt.pop_back();
  292. }
  293. } else if (arg == "--cfg-scale") {
  294. if (++i >= argc) {
  295. invalid_param = true;
  296. break;
  297. }
  298. sparams.cfg_scale = std::stof(argv[i]);
  299. } else if (arg == "-b" || arg == "--batch-size") {
  300. if (++i >= argc) {
  301. invalid_param = true;
  302. break;
  303. }
  304. params.n_batch = std::stoi(argv[i]);
  305. } else if (arg == "--keep") {
  306. if (++i >= argc) {
  307. invalid_param = true;
  308. break;
  309. }
  310. params.n_keep = std::stoi(argv[i]);
  311. } else if (arg == "--draft") {
  312. if (++i >= argc) {
  313. invalid_param = true;
  314. break;
  315. }
  316. params.n_draft = std::stoi(argv[i]);
  317. } else if (arg == "--chunks") {
  318. if (++i >= argc) {
  319. invalid_param = true;
  320. break;
  321. }
  322. params.n_chunks = std::stoi(argv[i]);
  323. } else if (arg == "-np" || arg == "--parallel") {
  324. if (++i >= argc) {
  325. invalid_param = true;
  326. break;
  327. }
  328. params.n_parallel = std::stoi(argv[i]);
  329. } else if (arg == "-ns" || arg == "--sequences") {
  330. if (++i >= argc) {
  331. invalid_param = true;
  332. break;
  333. }
  334. params.n_sequences = std::stoi(argv[i]);
  335. } else if (arg == "-m" || arg == "--model") {
  336. if (++i >= argc) {
  337. invalid_param = true;
  338. break;
  339. }
  340. params.model = argv[i];
  341. } else if (arg == "-md" || arg == "--model-draft") {
  342. if (++i >= argc) {
  343. invalid_param = true;
  344. break;
  345. }
  346. params.model_draft = argv[i];
  347. } else if (arg == "-a" || arg == "--alias") {
  348. if (++i >= argc) {
  349. invalid_param = true;
  350. break;
  351. }
  352. params.model_alias = argv[i];
  353. } else if (arg == "--lora") {
  354. if (++i >= argc) {
  355. invalid_param = true;
  356. break;
  357. }
  358. params.lora_adapter.push_back(std::make_tuple(argv[i], 1.0f));
  359. params.use_mmap = false;
  360. } else if (arg == "--lora-scaled") {
  361. if (++i >= argc) {
  362. invalid_param = true;
  363. break;
  364. }
  365. const char * lora_adapter = argv[i];
  366. if (++i >= argc) {
  367. invalid_param = true;
  368. break;
  369. }
  370. params.lora_adapter.push_back(std::make_tuple(lora_adapter, std::stof(argv[i])));
  371. params.use_mmap = false;
  372. } else if (arg == "--lora-base") {
  373. if (++i >= argc) {
  374. invalid_param = true;
  375. break;
  376. }
  377. params.lora_base = argv[i];
  378. } else if (arg == "--mmproj") {
  379. if (++i >= argc) {
  380. invalid_param = true;
  381. break;
  382. }
  383. params.mmproj = argv[i];
  384. } else if (arg == "--image") {
  385. if (++i >= argc) {
  386. invalid_param = true;
  387. break;
  388. }
  389. params.image = argv[i];
  390. } else if (arg == "-i" || arg == "--interactive") {
  391. params.interactive = true;
  392. } else if (arg == "--embedding") {
  393. params.embedding = true;
  394. } else if (arg == "--interactive-first") {
  395. params.interactive_first = true;
  396. } else if (arg == "-ins" || arg == "--instruct") {
  397. params.instruct = true;
  398. } else if (arg == "--infill") {
  399. params.infill = true;
  400. } else if (arg == "--multiline-input") {
  401. params.multiline_input = true;
  402. } else if (arg == "--simple-io") {
  403. params.simple_io = true;
  404. } else if (arg == "-cb" || arg == "--cont-batching") {
  405. params.cont_batching = true;
  406. } else if (arg == "--color") {
  407. params.use_color = true;
  408. } else if (arg == "--mlock") {
  409. params.use_mlock = true;
  410. } else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") {
  411. if (++i >= argc) {
  412. invalid_param = true;
  413. break;
  414. }
  415. #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
  416. params.n_gpu_layers = std::stoi(argv[i]);
  417. #else
  418. fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
  419. fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
  420. #endif
  421. } else if (arg == "--gpu-layers-draft" || arg == "-ngld" || arg == "--n-gpu-layers-draft") {
  422. if (++i >= argc) {
  423. invalid_param = true;
  424. break;
  425. }
  426. #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
  427. params.n_gpu_layers_draft = std::stoi(argv[i]);
  428. #else
  429. fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers-draft option will be ignored\n");
  430. fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
  431. #endif
  432. } else if (arg == "--main-gpu" || arg == "-mg") {
  433. if (++i >= argc) {
  434. invalid_param = true;
  435. break;
  436. }
  437. #ifdef GGML_USE_CUBLAS
  438. params.main_gpu = std::stoi(argv[i]);
  439. #else
  440. fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.\n");
  441. #endif
  442. } else if (arg == "--tensor-split" || arg == "-ts") {
  443. if (++i >= argc) {
  444. invalid_param = true;
  445. break;
  446. }
  447. #ifdef GGML_USE_CUBLAS
  448. std::string arg_next = argv[i];
  449. // split string by , and /
  450. const std::regex regex{R"([,/]+)"};
  451. std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
  452. std::vector<std::string> split_arg{it, {}};
  453. GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
  454. for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
  455. if (i < split_arg.size()) {
  456. params.tensor_split[i] = std::stof(split_arg[i]);
  457. } else {
  458. params.tensor_split[i] = 0.0f;
  459. }
  460. }
  461. #else
  462. fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n");
  463. #endif // GGML_USE_CUBLAS
  464. } else if (arg == "--no-mul-mat-q" || arg == "-nommq") {
  465. #ifdef GGML_USE_CUBLAS
  466. params.mul_mat_q = false;
  467. #else
  468. fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Disabling mul_mat_q kernels has no effect.\n");
  469. #endif // GGML_USE_CUBLAS
  470. } else if (arg == "--no-mmap") {
  471. params.use_mmap = false;
  472. } else if (arg == "--numa") {
  473. params.numa = true;
  474. } else if (arg == "--verbose-prompt") {
  475. params.verbose_prompt = true;
  476. } else if (arg == "-r" || arg == "--reverse-prompt") {
  477. if (++i >= argc) {
  478. invalid_param = true;
  479. break;
  480. }
  481. params.antiprompt.push_back(argv[i]);
  482. } else if (arg == "-ld" || arg == "--logdir") {
  483. if (++i >= argc) {
  484. invalid_param = true;
  485. break;
  486. }
  487. params.logdir = argv[i];
  488. if (params.logdir.back() != DIRECTORY_SEPARATOR) {
  489. params.logdir += DIRECTORY_SEPARATOR;
  490. }
  491. } else if (arg == "--perplexity" || arg == "--all-logits") {
  492. params.logits_all = true;
  493. } else if (arg == "--ppl-stride") {
  494. if (++i >= argc) {
  495. invalid_param = true;
  496. break;
  497. }
  498. params.ppl_stride = std::stoi(argv[i]);
  499. } else if (arg == "--ppl-output-type") {
  500. if (++i >= argc) {
  501. invalid_param = true;
  502. break;
  503. }
  504. params.ppl_output_type = std::stoi(argv[i]);
  505. } else if (arg == "--hellaswag") {
  506. params.hellaswag = true;
  507. } else if (arg == "--hellaswag-tasks") {
  508. if (++i >= argc) {
  509. invalid_param = true;
  510. break;
  511. }
  512. params.hellaswag_tasks = std::stoi(argv[i]);
  513. } else if (arg == "--ignore-eos") {
  514. params.ignore_eos = true;
  515. } else if (arg == "--no-penalize-nl") {
  516. sparams.penalize_nl = false;
  517. } else if (arg == "-l" || arg == "--logit-bias") {
  518. if (++i >= argc) {
  519. invalid_param = true;
  520. break;
  521. }
  522. std::stringstream ss(argv[i]);
  523. llama_token key;
  524. char sign;
  525. std::string value_str;
  526. try {
  527. if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
  528. sparams.logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
  529. } else {
  530. throw std::exception();
  531. }
  532. } catch (const std::exception&) {
  533. invalid_param = true;
  534. break;
  535. }
  536. } else if (arg == "-h" || arg == "--help") {
  537. gpt_print_usage(argc, argv, default_params);
  538. #ifndef LOG_DISABLE_LOGS
  539. log_print_usage();
  540. #endif // LOG_DISABLE_LOGS
  541. exit(0);
  542. } else if (arg == "--random-prompt") {
  543. params.random_prompt = true;
  544. } else if (arg == "--in-prefix-bos") {
  545. params.input_prefix_bos = true;
  546. } else if (arg == "--in-prefix") {
  547. if (++i >= argc) {
  548. invalid_param = true;
  549. break;
  550. }
  551. params.input_prefix = argv[i];
  552. } else if (arg == "--in-suffix") {
  553. if (++i >= argc) {
  554. invalid_param = true;
  555. break;
  556. }
  557. params.input_suffix = argv[i];
  558. } else if (arg == "--grammar") {
  559. if (++i >= argc) {
  560. invalid_param = true;
  561. break;
  562. }
  563. sparams.grammar = argv[i];
  564. } else if (arg == "--grammar-file") {
  565. if (++i >= argc) {
  566. invalid_param = true;
  567. break;
  568. }
  569. std::ifstream file(argv[i]);
  570. if (!file) {
  571. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  572. invalid_param = true;
  573. break;
  574. }
  575. std::copy(
  576. std::istreambuf_iterator<char>(file),
  577. std::istreambuf_iterator<char>(),
  578. std::back_inserter(sparams.grammar)
  579. );
  580. #ifndef LOG_DISABLE_LOGS
  581. // Parse args for logging parameters
  582. } else if ( log_param_single_parse( argv[i] ) ) {
  583. // Do nothing, log_param_single_parse automatically does it's thing
  584. // and returns if a match was found and parsed.
  585. } else if ( log_param_pair_parse( /*check_but_dont_parse*/ true, argv[i] ) ) {
  586. // We have a matching known parameter requiring an argument,
  587. // now we need to check if there is anything after this argv
  588. // and flag invalid_param or parse it.
  589. if (++i >= argc) {
  590. invalid_param = true;
  591. break;
  592. }
  593. if( !log_param_pair_parse( /*check_but_dont_parse*/ false, argv[i-1], argv[i]) ) {
  594. invalid_param = true;
  595. break;
  596. }
  597. // End of Parse args for logging parameters
  598. #endif // LOG_DISABLE_LOGS
  599. } else {
  600. fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
  601. gpt_print_usage(argc, argv, default_params);
  602. exit(1);
  603. }
  604. }
  605. if (invalid_param) {
  606. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  607. gpt_print_usage(argc, argv, default_params);
  608. exit(1);
  609. }
  610. if (params.prompt_cache_all &&
  611. (params.interactive || params.interactive_first ||
  612. params.instruct)) {
  613. fprintf(stderr, "error: --prompt-cache-all not supported in interactive mode yet\n");
  614. gpt_print_usage(argc, argv, default_params);
  615. exit(1);
  616. }
  617. if (params.escape) {
  618. process_escapes(params.prompt);
  619. process_escapes(params.input_prefix);
  620. process_escapes(params.input_suffix);
  621. process_escapes(sparams.cfg_negative_prompt);
  622. for (auto & antiprompt : params.antiprompt) {
  623. process_escapes(antiprompt);
  624. }
  625. }
  626. return true;
  627. }
  628. void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
  629. const llama_sampling_params & sparams = params.sparams;
  630. printf("usage: %s [options]\n", argv[0]);
  631. printf("\n");
  632. printf("options:\n");
  633. printf(" -h, --help show this help message and exit\n");
  634. printf(" -i, --interactive run in interactive mode\n");
  635. printf(" --interactive-first run in interactive mode and wait for input right away\n");
  636. printf(" -ins, --instruct run in instruction mode (use with Alpaca models)\n");
  637. printf(" --multiline-input allows you to write or paste multiple lines without ending each in '\\'\n");
  638. printf(" -r PROMPT, --reverse-prompt PROMPT\n");
  639. printf(" halt generation at PROMPT, return control in interactive mode\n");
  640. printf(" (can be specified more than once for multiple prompts).\n");
  641. printf(" --color colorise output to distinguish prompt and user input from generations\n");
  642. printf(" -s SEED, --seed SEED RNG seed (default: -1, use random seed for < 0)\n");
  643. printf(" -t N, --threads N number of threads to use during generation (default: %d)\n", params.n_threads);
  644. printf(" -tb N, --threads-batch N\n");
  645. printf(" number of threads to use during batch and prompt processing (default: same as --threads)\n");
  646. printf(" -p PROMPT, --prompt PROMPT\n");
  647. printf(" prompt to start generation with (default: empty)\n");
  648. printf(" -e, --escape process prompt escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n");
  649. printf(" --prompt-cache FNAME file to cache prompt state for faster startup (default: none)\n");
  650. printf(" --prompt-cache-all if specified, saves user input and generations to cache as well.\n");
  651. printf(" not supported with --interactive or other interactive options\n");
  652. printf(" --prompt-cache-ro if specified, uses the prompt cache but does not update it.\n");
  653. printf(" --random-prompt start with a randomized prompt.\n");
  654. printf(" --in-prefix-bos prefix BOS to user inputs, preceding the `--in-prefix` string\n");
  655. printf(" --in-prefix STRING string to prefix user inputs with (default: empty)\n");
  656. printf(" --in-suffix STRING string to suffix after user inputs with (default: empty)\n");
  657. printf(" -f FNAME, --file FNAME\n");
  658. printf(" prompt file to start generation.\n");
  659. printf(" -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict);
  660. printf(" -c N, --ctx-size N size of the prompt context (default: %d, 0 = loaded from model)\n", params.n_ctx);
  661. printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
  662. printf(" --top-k N top-k sampling (default: %d, 0 = disabled)\n", sparams.top_k);
  663. printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)sparams.top_p);
  664. printf(" --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)sparams.tfs_z);
  665. printf(" --typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)sparams.typical_p);
  666. printf(" --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", sparams.penalty_last_n);
  667. printf(" --repeat-penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)sparams.penalty_repeat);
  668. printf(" --presence-penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.penalty_present);
  669. printf(" --frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.penalty_freq);
  670. printf(" --mirostat N use Mirostat sampling.\n");
  671. printf(" Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n");
  672. printf(" (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", sparams.mirostat);
  673. printf(" --mirostat-lr N Mirostat learning rate, parameter eta (default: %.1f)\n", (double)sparams.mirostat_eta);
  674. printf(" --mirostat-ent N Mirostat target entropy, parameter tau (default: %.1f)\n", (double)sparams.mirostat_tau);
  675. printf(" -l TOKEN_ID(+/-)BIAS, --logit-bias TOKEN_ID(+/-)BIAS\n");
  676. printf(" modifies the likelihood of token appearing in the completion,\n");
  677. printf(" i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n");
  678. printf(" or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'\n");
  679. printf(" --grammar GRAMMAR BNF-like grammar to constrain generations (see samples in grammars/ dir)\n");
  680. printf(" --grammar-file FNAME file to read grammar from\n");
  681. printf(" --cfg-negative-prompt PROMPT\n");
  682. printf(" negative prompt to use for guidance. (default: empty)\n");
  683. printf(" --cfg-negative-prompt-file FNAME\n");
  684. printf(" negative prompt file to use for guidance. (default: empty)\n");
  685. printf(" --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", sparams.cfg_scale);
  686. printf(" --rope-scale N RoPE context linear scaling factor, inverse of --rope-freq-scale\n");
  687. printf(" --rope-freq-base N RoPE base frequency, used by NTK-aware scaling (default: loaded from model)\n");
  688. printf(" --rope-freq-scale N RoPE frequency linear scaling factor (default: loaded from model)\n");
  689. printf(" --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n");
  690. printf(" --no-penalize-nl do not penalize newline token\n");
  691. printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
  692. printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
  693. printf(" --temp N temperature (default: %.1f)\n", (double)sparams.temp);
  694. printf(" --logits-all return logits for all tokens in the batch (default: disabled)\n");
  695. printf(" --hellaswag compute HellaSwag score over random tasks from datafile supplied with -f\n");
  696. printf(" --hellaswag-tasks N number of tasks to use when computing the HellaSwag score (default: %zu)\n", params.hellaswag_tasks);
  697. printf(" --keep N number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep);
  698. printf(" --draft N number of tokens to draft for speculative decoding (default: %d)\n", params.n_draft);
  699. printf(" --chunks N max number of chunks to process (default: %d, -1 = all)\n", params.n_chunks);
  700. printf(" -np N, --parallel N number of parallel sequences to decode (default: %d)\n", params.n_parallel);
  701. printf(" -ns N, --sequences N number of sequences to decode (default: %d)\n", params.n_sequences);
  702. printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
  703. printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA. see examples/llava/README.md\n");
  704. printf(" --image IMAGE_FILE path to an image file. use with multimodal models\n");
  705. if (llama_mlock_supported()) {
  706. printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
  707. }
  708. if (llama_mmap_supported()) {
  709. printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
  710. }
  711. printf(" --numa attempt optimizations that help on some NUMA systems\n");
  712. printf(" if run without this previously, it is recommended to drop the system page cache before using this\n");
  713. printf(" see https://github.com/ggerganov/llama.cpp/issues/1437\n");
  714. #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
  715. printf(" -ngl N, --n-gpu-layers N\n");
  716. printf(" number of layers to store in VRAM\n");
  717. printf(" -ngld N, --n-gpu-layers-draft N\n");
  718. printf(" number of layers to store in VRAM for the draft model\n");
  719. printf(" -ts SPLIT --tensor-split SPLIT\n");
  720. printf(" how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
  721. printf(" -mg i, --main-gpu i the GPU to use for scratch and small tensors\n");
  722. #ifdef GGML_USE_CUBLAS
  723. printf(" -nommq, --no-mul-mat-q\n");
  724. printf(" use " GGML_CUBLAS_NAME " instead of custom mul_mat_q " GGML_CUDA_NAME " kernels.\n");
  725. printf(" Not recommended since this is both slower and uses more VRAM.\n");
  726. #endif // GGML_USE_CUBLAS
  727. #endif
  728. printf(" --verbose-prompt print prompt before generation\n");
  729. printf(" --simple-io use basic IO for better compatibility in subprocesses and limited consoles\n");
  730. printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
  731. printf(" --lora-scaled FNAME S apply LoRA adapter with user defined scaling S (implies --no-mmap)\n");
  732. printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
  733. printf(" -m FNAME, --model FNAME\n");
  734. printf(" model path (default: %s)\n", params.model.c_str());
  735. printf(" -md FNAME, --model-draft FNAME\n");
  736. printf(" draft model for speculative decoding (default: %s)\n", params.model.c_str());
  737. printf(" -ld LOGDIR, --logdir LOGDIR\n");
  738. printf(" path under which to save YAML logs (no logging if unset)\n");
  739. printf("\n");
  740. }
  741. std::string get_system_info(const gpt_params & params) {
  742. std::ostringstream os;
  743. os << "system_info: n_threads = " << params.n_threads;
  744. if (params.n_threads_batch != -1) {
  745. os << " (n_threads_batch = " << params.n_threads_batch << ")";
  746. }
  747. os << " / " << std::thread::hardware_concurrency() << " | " << llama_print_system_info();
  748. return os.str();
  749. }
  750. std::string gpt_random_prompt(std::mt19937 & rng) {
  751. const int r = rng() % 10;
  752. switch (r) {
  753. case 0: return "So";
  754. case 1: return "Once upon a time";
  755. case 2: return "When";
  756. case 3: return "The";
  757. case 4: return "After";
  758. case 5: return "If";
  759. case 6: return "import";
  760. case 7: return "He";
  761. case 8: return "She";
  762. case 9: return "They";
  763. }
  764. GGML_UNREACHABLE();
  765. }
  766. //
  767. // Model utils
  768. //
  769. struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params) {
  770. auto mparams = llama_model_default_params();
  771. if (params.n_gpu_layers != -1) {
  772. mparams.n_gpu_layers = params.n_gpu_layers;
  773. }
  774. mparams.main_gpu = params.main_gpu;
  775. mparams.tensor_split = params.tensor_split;
  776. mparams.use_mmap = params.use_mmap;
  777. mparams.use_mlock = params.use_mlock;
  778. return mparams;
  779. }
  780. struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) {
  781. auto cparams = llama_context_default_params();
  782. cparams.n_ctx = params.n_ctx;
  783. cparams.n_batch = params.n_batch;
  784. cparams.n_threads = params.n_threads;
  785. cparams.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
  786. cparams.mul_mat_q = params.mul_mat_q;
  787. cparams.seed = params.seed;
  788. cparams.f16_kv = params.memory_f16;
  789. cparams.logits_all = params.logits_all;
  790. cparams.embedding = params.embedding;
  791. cparams.rope_freq_base = params.rope_freq_base;
  792. cparams.rope_freq_scale = params.rope_freq_scale;
  793. return cparams;
  794. }
  795. void llama_batch_clear(struct llama_batch & batch) {
  796. batch.n_tokens = 0;
  797. }
  798. void llama_batch_add(
  799. struct llama_batch & batch,
  800. llama_token id,
  801. llama_pos pos,
  802. const std::vector<llama_seq_id> & seq_ids,
  803. bool logits) {
  804. batch.token [batch.n_tokens] = id;
  805. batch.pos [batch.n_tokens] = pos,
  806. batch.n_seq_id[batch.n_tokens] = seq_ids.size();
  807. for (size_t i = 0; i < seq_ids.size(); ++i) {
  808. batch.seq_id[batch.n_tokens][i] = seq_ids[i];
  809. }
  810. batch.logits [batch.n_tokens] = logits;
  811. batch.n_tokens++;
  812. }
  813. std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params) {
  814. auto mparams = llama_model_params_from_gpt_params(params);
  815. llama_model * model = llama_load_model_from_file(params.model.c_str(), mparams);
  816. if (model == NULL) {
  817. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
  818. return std::make_tuple(nullptr, nullptr);
  819. }
  820. auto cparams = llama_context_params_from_gpt_params(params);
  821. llama_context * lctx = llama_new_context_with_model(model, cparams);
  822. if (lctx == NULL) {
  823. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str());
  824. llama_free_model(model);
  825. return std::make_tuple(nullptr, nullptr);
  826. }
  827. for (unsigned int i = 0; i < params.lora_adapter.size(); ++i) {
  828. const std::string& lora_adapter = std::get<0>(params.lora_adapter[i]);
  829. float lora_scale = std::get<1>(params.lora_adapter[i]);
  830. int err = llama_model_apply_lora_from_file(model,
  831. lora_adapter.c_str(),
  832. lora_scale,
  833. ((i > 0) || params.lora_base.empty())
  834. ? NULL
  835. : params.lora_base.c_str(),
  836. params.n_threads);
  837. if (err != 0) {
  838. fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
  839. llama_free(lctx);
  840. llama_free_model(model);
  841. return std::make_tuple(nullptr, nullptr);
  842. }
  843. }
  844. if (params.ignore_eos) {
  845. params.sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
  846. }
  847. {
  848. LOG("warming up the model with an empty run\n");
  849. std::vector<llama_token> tmp = { llama_token_bos(model), llama_token_eos(model), };
  850. llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0));
  851. llama_kv_cache_tokens_rm(lctx, -1, -1);
  852. llama_reset_timings(lctx);
  853. }
  854. return std::make_tuple(model, lctx);
  855. }
  856. //
  857. // Vocab utils
  858. //
  859. std::vector<llama_token> llama_tokenize(
  860. const struct llama_context * ctx,
  861. const std::string & text,
  862. bool add_bos,
  863. bool special) {
  864. return llama_tokenize(llama_get_model(ctx), text, add_bos, special);
  865. }
  866. std::vector<llama_token> llama_tokenize(
  867. const struct llama_model * model,
  868. const std::string & text,
  869. bool add_bos,
  870. bool special) {
  871. // upper limit for the number of tokens
  872. int n_tokens = text.length() + add_bos;
  873. std::vector<llama_token> result(n_tokens);
  874. n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos, special);
  875. if (n_tokens < 0) {
  876. result.resize(-n_tokens);
  877. int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos, special);
  878. GGML_ASSERT(check == -n_tokens);
  879. } else {
  880. result.resize(n_tokens);
  881. }
  882. return result;
  883. }
  884. std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
  885. std::vector<char> result(8, 0);
  886. const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
  887. if (n_tokens < 0) {
  888. result.resize(-n_tokens);
  889. int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
  890. GGML_ASSERT(check == -n_tokens);
  891. } else {
  892. result.resize(n_tokens);
  893. }
  894. return std::string(result.data(), result.size());
  895. }
  896. std::string llama_detokenize_spm(llama_context * ctx, const std::vector<llama_token> & tokens) {
  897. const llama_token bos_id = llama_token_bos(llama_get_model(ctx));
  898. std::string piece;
  899. std::string result;
  900. for (size_t i = 0; i < tokens.size(); ++i) {
  901. piece = llama_token_to_piece(ctx, tokens[i]);
  902. // remove the leading space of the first non-BOS token
  903. if (((tokens[0] == bos_id && i == 1) || (tokens[0] != bos_id && i == 0)) && piece[0] == ' ') {
  904. piece = piece.substr(1);
  905. }
  906. result += piece;
  907. }
  908. return result;
  909. }
  910. std::string llama_detokenize_bpe(llama_context * ctx, const std::vector<llama_token> & tokens) {
  911. std::string piece;
  912. std::string result;
  913. for (size_t i = 0; i < tokens.size(); ++i) {
  914. piece = llama_token_to_piece(ctx, tokens[i]);
  915. result += piece;
  916. }
  917. // NOTE: the original tokenizer decodes bytes after collecting the pieces.
  918. return result;
  919. }
  920. //
  921. // YAML utils
  922. //
  923. // returns true if successful, false otherwise
  924. bool create_directory_with_parents(const std::string & path) {
  925. #ifdef _WIN32
  926. std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
  927. std::wstring wpath = converter.from_bytes(path);
  928. // if the path already exists, check whether it's a directory
  929. const DWORD attributes = GetFileAttributesW(wpath.c_str());
  930. if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) {
  931. return true;
  932. }
  933. size_t pos_slash = 0;
  934. // process path from front to back, procedurally creating directories
  935. while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) {
  936. const std::wstring subpath = wpath.substr(0, pos_slash);
  937. const wchar_t * test = subpath.c_str();
  938. const bool success = CreateDirectoryW(test, NULL);
  939. if (!success) {
  940. const DWORD error = GetLastError();
  941. // if the path already exists, ensure that it's a directory
  942. if (error == ERROR_ALREADY_EXISTS) {
  943. const DWORD attributes = GetFileAttributesW(subpath.c_str());
  944. if (attributes == INVALID_FILE_ATTRIBUTES || !(attributes & FILE_ATTRIBUTE_DIRECTORY)) {
  945. return false;
  946. }
  947. } else {
  948. return false;
  949. }
  950. }
  951. pos_slash += 1;
  952. }
  953. return true;
  954. #else
  955. // if the path already exists, check whether it's a directory
  956. struct stat info;
  957. if (stat(path.c_str(), &info) == 0) {
  958. return S_ISDIR(info.st_mode);
  959. }
  960. size_t pos_slash = 1; // skip leading slashes for directory creation
  961. // process path from front to back, procedurally creating directories
  962. while ((pos_slash = path.find('/', pos_slash)) != std::string::npos) {
  963. const std::string subpath = path.substr(0, pos_slash);
  964. struct stat info;
  965. // if the path already exists, ensure that it's a directory
  966. if (stat(subpath.c_str(), &info) == 0) {
  967. if (!S_ISDIR(info.st_mode)) {
  968. return false;
  969. }
  970. } else {
  971. // create parent directories
  972. const int ret = mkdir(subpath.c_str(), 0755);
  973. if (ret != 0) {
  974. return false;
  975. }
  976. }
  977. pos_slash += 1;
  978. }
  979. return true;
  980. #endif // _WIN32
  981. }
  982. void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector<float> & data) {
  983. if (data.empty()) {
  984. fprintf(stream, "%s:\n", prop_name);
  985. return;
  986. }
  987. fprintf(stream, "%s: [", prop_name);
  988. for (size_t i = 0; i < data.size() - 1; ++i) {
  989. fprintf(stream, "%e, ", data[i]);
  990. }
  991. fprintf(stream, "%e]\n", data.back());
  992. }
  993. void dump_vector_int_yaml(FILE * stream, const char * prop_name, const std::vector<int> & data) {
  994. if (data.empty()) {
  995. fprintf(stream, "%s:\n", prop_name);
  996. return;
  997. }
  998. fprintf(stream, "%s: [", prop_name);
  999. for (size_t i = 0; i < data.size() - 1; ++i) {
  1000. fprintf(stream, "%d, ", data[i]);
  1001. }
  1002. fprintf(stream, "%d]\n", data.back());
  1003. }
  1004. void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const char * data) {
  1005. std::string data_str(data == NULL ? "" : data);
  1006. if (data_str.empty()) {
  1007. fprintf(stream, "%s:\n", prop_name);
  1008. return;
  1009. }
  1010. size_t pos_start = 0;
  1011. size_t pos_found = 0;
  1012. if (!data_str.empty() && (std::isspace(data_str[0]) || std::isspace(data_str.back()))) {
  1013. data_str = std::regex_replace(data_str, std::regex("\n"), "\\n");
  1014. data_str = std::regex_replace(data_str, std::regex("\""), "\\\"");
  1015. data_str = "\"" + data_str + "\"";
  1016. fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
  1017. return;
  1018. }
  1019. if (data_str.find('\n') == std::string::npos) {
  1020. fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
  1021. return;
  1022. }
  1023. fprintf(stream, "%s: |\n", prop_name);
  1024. while ((pos_found = data_str.find('\n', pos_start)) != std::string::npos) {
  1025. fprintf(stream, " %s\n", data_str.substr(pos_start, pos_found-pos_start).c_str());
  1026. pos_start = pos_found + 1;
  1027. }
  1028. }
  1029. std::string get_sortable_timestamp() {
  1030. using clock = std::chrono::system_clock;
  1031. const clock::time_point current_time = clock::now();
  1032. const time_t as_time_t = clock::to_time_t(current_time);
  1033. char timestamp_no_ns[100];
  1034. std::strftime(timestamp_no_ns, 100, "%Y_%m_%d-%H_%M_%S", std::localtime(&as_time_t));
  1035. const int64_t ns = std::chrono::duration_cast<std::chrono::nanoseconds>(
  1036. current_time.time_since_epoch() % 1000000000).count();
  1037. char timestamp_ns[11];
  1038. snprintf(timestamp_ns, 11, "%09" PRId64, ns);
  1039. return std::string(timestamp_no_ns) + "." + std::string(timestamp_ns);
  1040. }
  1041. void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const llama_context * lctx,
  1042. const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) {
  1043. const llama_sampling_params & sparams = params.sparams;
  1044. fprintf(stream, "build_commit: %s\n", BUILD_COMMIT);
  1045. fprintf(stream, "build_number: %d\n", BUILD_NUMBER);
  1046. fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false");
  1047. fprintf(stream, "cpu_has_avx: %s\n", ggml_cpu_has_avx() ? "true" : "false");
  1048. fprintf(stream, "cpu_has_avx2: %s\n", ggml_cpu_has_avx2() ? "true" : "false");
  1049. fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false");
  1050. fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false");
  1051. fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false");
  1052. fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
  1053. fprintf(stream, "cpu_has_cublas: %s\n", ggml_cpu_has_cublas() ? "true" : "false");
  1054. fprintf(stream, "cpu_has_clblast: %s\n", ggml_cpu_has_clblast() ? "true" : "false");
  1055. fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false");
  1056. fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false");
  1057. fprintf(stream, "cpu_has_neon: %s\n", ggml_cpu_has_neon() ? "true" : "false");
  1058. fprintf(stream, "cpu_has_f16c: %s\n", ggml_cpu_has_f16c() ? "true" : "false");
  1059. fprintf(stream, "cpu_has_fp16_va: %s\n", ggml_cpu_has_fp16_va() ? "true" : "false");
  1060. fprintf(stream, "cpu_has_wasm_simd: %s\n", ggml_cpu_has_wasm_simd() ? "true" : "false");
  1061. fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
  1062. fprintf(stream, "cpu_has_sse3: %s\n", ggml_cpu_has_sse3() ? "true" : "false");
  1063. fprintf(stream, "cpu_has_vsx: %s\n", ggml_cpu_has_vsx() ? "true" : "false");
  1064. #ifdef NDEBUG
  1065. fprintf(stream, "debug: false\n");
  1066. #else
  1067. fprintf(stream, "debug: true\n");
  1068. #endif // NDEBUG
  1069. fprintf(stream, "model_desc: %s\n", model_desc);
  1070. fprintf(stream, "n_vocab: %d # output size of the final layer, 32001 for some models\n", llama_n_vocab(llama_get_model(lctx)));
  1071. #ifdef __OPTIMIZE__
  1072. fprintf(stream, "optimize: true\n");
  1073. #else
  1074. fprintf(stream, "optimize: false\n");
  1075. #endif // __OPTIMIZE__
  1076. fprintf(stream, "time: %s\n", timestamp.c_str());
  1077. fprintf(stream, "\n");
  1078. fprintf(stream, "###############\n");
  1079. fprintf(stream, "# User Inputs #\n");
  1080. fprintf(stream, "###############\n");
  1081. fprintf(stream, "\n");
  1082. fprintf(stream, "alias: %s # default: unknown\n", params.model_alias.c_str());
  1083. fprintf(stream, "batch_size: %d # default: 512\n", params.n_batch);
  1084. dump_string_yaml_multiline(stream, "cfg_negative_prompt", sparams.cfg_negative_prompt.c_str());
  1085. fprintf(stream, "cfg_scale: %f # default: 1.0\n", sparams.cfg_scale);
  1086. fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks);
  1087. fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false");
  1088. fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx);
  1089. fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false");
  1090. fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n");
  1091. fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", sparams.penalty_freq);
  1092. dump_string_yaml_multiline(stream, "grammar", sparams.grammar.c_str());
  1093. fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n");
  1094. fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false");
  1095. fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks);
  1096. const auto logit_bias_eos = sparams.logit_bias.find(llama_token_eos(llama_get_model(lctx)));
  1097. const bool ignore_eos = logit_bias_eos != sparams.logit_bias.end() && logit_bias_eos->second == -INFINITY;
  1098. fprintf(stream, "ignore_eos: %s # default: false\n", ignore_eos ? "true" : "false");
  1099. dump_string_yaml_multiline(stream, "in_prefix", params.input_prefix.c_str());
  1100. fprintf(stream, "in_prefix_bos: %s # default: false\n", params.input_prefix_bos ? "true" : "false");
  1101. dump_string_yaml_multiline(stream, "in_suffix", params.input_prefix.c_str());
  1102. fprintf(stream, "instruct: %s # default: false\n", params.instruct ? "true" : "false");
  1103. fprintf(stream, "interactive: %s # default: false\n", params.interactive ? "true" : "false");
  1104. fprintf(stream, "interactive_first: %s # default: false\n", params.interactive_first ? "true" : "false");
  1105. fprintf(stream, "keep: %d # default: 0\n", params.n_keep);
  1106. fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str());
  1107. fprintf(stream, "logit_bias:\n");
  1108. for (std::pair<llama_token, float> lb : sparams.logit_bias) {
  1109. if (ignore_eos && lb.first == logit_bias_eos->first) {
  1110. continue;
  1111. }
  1112. fprintf(stream, " %d: %f", lb.first, lb.second);
  1113. }
  1114. fprintf(stream, "lora:\n");
  1115. for (std::tuple<std::string, float> la : params.lora_adapter) {
  1116. if (std::get<1>(la) != 1.0f) {
  1117. continue;
  1118. }
  1119. fprintf(stream, " - %s\n", std::get<0>(la).c_str());
  1120. }
  1121. fprintf(stream, "lora_scaled:\n");
  1122. for (std::tuple<std::string, float> la : params.lora_adapter) {
  1123. if (std::get<1>(la) == 1.0f) {
  1124. continue;
  1125. }
  1126. fprintf(stream, " - %s: %f\n", std::get<0>(la).c_str(), std::get<1>(la));
  1127. }
  1128. fprintf(stream, "lora_base: %s\n", params.lora_base.c_str());
  1129. fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu);
  1130. fprintf(stream, "memory_f32: %s # default: false\n", !params.memory_f16 ? "true" : "false");
  1131. fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat);
  1132. fprintf(stream, "mirostat_ent: %f # default: 5.0\n", sparams.mirostat_tau);
  1133. fprintf(stream, "mirostat_lr: %f # default: 0.1\n", sparams.mirostat_eta);
  1134. fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false");
  1135. fprintf(stream, "model: %s # default: models/7B/ggml-model.bin\n", params.model.c_str());
  1136. fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str());
  1137. fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false");
  1138. fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers);
  1139. fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict);
  1140. fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs);
  1141. fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false");
  1142. fprintf(stream, "no_mul_mat_q: %s # default: false\n", !params.mul_mat_q ? "true" : "false");
  1143. fprintf(stream, "no_penalize_nl: %s # default: false\n", !sparams.penalize_nl ? "true" : "false");
  1144. fprintf(stream, "numa: %s # default: false\n", params.numa ? "true" : "false");
  1145. fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type);
  1146. fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride);
  1147. fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.penalty_present);
  1148. dump_string_yaml_multiline(stream, "prompt", params.prompt.c_str());
  1149. fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str());
  1150. fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false");
  1151. fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false");
  1152. dump_vector_int_yaml(stream, "prompt_tokens", prompt_tokens);
  1153. fprintf(stream, "random_prompt: %s # default: false\n", params.random_prompt ? "true" : "false");
  1154. fprintf(stream, "repeat_penalty: %f # default: 1.1\n", sparams.penalty_repeat);
  1155. fprintf(stream, "reverse_prompt:\n");
  1156. for (std::string ap : params.antiprompt) {
  1157. size_t pos = 0;
  1158. while ((pos = ap.find('\n', pos)) != std::string::npos) {
  1159. ap.replace(pos, 1, "\\n");
  1160. pos += 1;
  1161. }
  1162. fprintf(stream, " - %s\n", ap.c_str());
  1163. }
  1164. fprintf(stream, "rope_freq_base: %f # default: 10000.0\n", params.rope_freq_base);
  1165. fprintf(stream, "rope_freq_scale: %f # default: 1.0\n", params.rope_freq_scale);
  1166. fprintf(stream, "seed: %d # default: -1 (random seed)\n", params.seed);
  1167. fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false");
  1168. fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false");
  1169. fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp);
  1170. const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + LLAMA_MAX_DEVICES);
  1171. dump_vector_float_yaml(stream, "tensor_split", tensor_split_vector);
  1172. fprintf(stream, "tfs: %f # default: 1.0\n", sparams.tfs_z);
  1173. fprintf(stream, "threads: %d # default: %d\n", params.n_threads, std::thread::hardware_concurrency());
  1174. fprintf(stream, "top_k: %d # default: 40\n", sparams.top_k);
  1175. fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p);
  1176. fprintf(stream, "typical_p: %f # default: 1.0\n", sparams.typical_p);
  1177. fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false");
  1178. }